
z/OS Communications Server

SNA Programming
Version 2 Release 1

SC27-3674-00

���

Note:
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
903.

First Edition (September 2013)

This edition applies to version 2, release 1, modification 0 of z/OS (5650-ZOS), and to subsequent releases and
modifications until otherwise indicated in new editions.

IBM welcomes your comments. You may send your comments to the following address.
International Business Machines Corporation

Attn: z/OS Communications Server Information Development

Department AKCA, Building 501

P.O. Box 12195, 3039 Cornwallis Road

Research Triangle Park, North Carolina 27709-2195

You can send us comments electronically by using one of the following methods:

Fax (USA and Canada):
1+919-254-1258

Send the fax to “Attn: z/OS Communications Server Information Development”

Internet email:
comsvrcf@us.ibm.com

World Wide Web:
http://www.ibm.com/systems/z/os/zos/webqs.html

If you would like a reply, be sure to include your name, address, telephone number, or FAX number. Make sure to
include the following information in your comment or note:
v Title and order number of this document

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2000, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/systems/z/os/zos/webqs.html

Contents

Figures . xiii

Tables . xvii

About this document . xxi
Who should read this document . xxi
How this document is organized . xxi
How to use this document . xxiii

Determining whether a publication is current . xxiii
How to contact IBM service . xxiv

Conventions and terminology that are used in this document xxiv
How to read a syntax diagram . xxv
Prerequisite and related information . xxix

Summary of changes . xxxv

Chapter 1. VTAM application program concepts 1
Systems Network Architecture (SNA) concepts in VTAM . 1

Network accessible units . 1
Sessions . 3

Major programming elements in a VTAM application program 7
Opening the program . 10
Establishing a session with an LU . 11
Receiving requests from LUs . 11
Sending a request . 12
Sending a response . 12
Receiving a response . 13
Other exit routines . 13
Terminating a session with an LU . 13
Closing the program . 13
Constants and control blocks . 14
VTAM macroinstructions . 14

VTAM application program as part of an SNA network . 14
VTAM application program . 15
Processing part . 16
Communication part . 16
VTAM part . 16
Network control program . 16
Logical unit . 17
Terminal operator and devices . 17
Another VTAM application program . 17

Using a VTAM application program to manage the network 18

Chapter 2. VTAM language . 19
Characteristics of the language . 19

Keyword operands . 19
Manipulative macroinstructions . 19
Exit routines . 19

Summary description of the VTAM macroinstructions . 20
Declarative macroinstructions . 21
Manipulative macroinstructions . 22
ACB-based macroinstructions . 22
RPL-based macroinstructions . 23

Relationship between the executable macroinstructions and control blocks 26

© Copyright IBM Corp. 2000, 2013 iii

Opening the application program . 27
Establishing sessions with LUs . 27
Communicating with LUs . 28
Terminating sessions with LUs . 28
Closing the application program . 28

Exit routines . 28
Normal operating system environment for a VTAM application program 30

Use of a single task. 30
Mainline program . 31
Inline exit routines . 31
Asynchronous exit routines . 31
Dispatching priorities . 32

Chapter 3. Organizing an application program. 33
Coding guidelines for application programs . 33

Program structure recommendations . 33
Simplifying migration and network upgrades . 35

Single-thread or multithread operations . 36
Using a single-thread program . 36
Using a multithread program . 36

Multithreading facilities . 37
USERFLD field of the NIB . 37
Scheduling output . 38
Receiving input on any session except those already in communication 39

How a synchronous operation works . 40
How an asynchronous operation works . 41

Using ECBs . 41
Using RPL exit routines . 42
Initializing a session . 44
Advantages and disadvantages of different forms of operation 44

Some questions that affect program organization . 45
Application programming interface . 50
Handling control blocks and work areas . 51
Techniques for handling control blocks and work areas . 52

Chapter 4. Opening and closing an application program 55
Opening an application program . 55

Access method control block (ACB) . 56
OPEN macroinstruction . 57
Vector lists. 58
Supplying control vectors with the SETLOGON START 64
Using multiple ACBs in a VTAM application program . 65
Using network-qualified names. 65
Where OPEN can be issued . 66

Using persistent LU-LU session support . 66
How an application establishes persistence . 67
Session recovery states . 67
Application program recovery with single-node persistence enabled 67
Application program recovery with multinode persistence enabled 69

Closing an application program . 73
Program initiates closing . 74
Program receives a closedown message . 74
TPEND exit routine is entered . 74

Opening and closing an application program as a generic resource 78
Identifying an application program as a generic resource member 78
Initiating a session using a generic resource name . 79
Initiating a session using the name of an application that is a member of a generic resource 79
Closing an application program that is a member of a generic resource 79

Chapter 5. Establishing and terminating sessions with logical units 81

iv z/OS V2R1.0 Communications Server: SNA Programming

Defining LUs . 81
Stages of session establishment . 83
Stages of session termination . 84
Sources of SNA Initiate and Terminate requests . 85

Macroinstructions related to session establishment and termination. 87
SIMLOGON macroinstruction . 87
OPNDST macroinstruction . 89
CLSDST macroinstruction . 92
REQSESS macroinstruction . 95
OPNSEC macroinstruction . 96
SESSIONC macroinstruction with CONTROL=BIND . 98
TERMSESS macroinstruction. 99

Exit routines related to session establishment and termination 100
LOGON exit routine . 101
SCIP exit routine . 102
NSEXIT exit routine . 104
LOSTERM exit routine . 106
Summary tables of exit routines . 107

Session outage notification . 110
Queuing a request for a session with an SLU . 110
Control blocks used for session establishment and termination 114

Request parameter list (RPL) . 114
Node initialization block (NIB) . 115
Application-supplied dial parameter control block (ASDP) 119

Establishing parameters for sessions . 122
General pattern of agreement on session parameters . 122
Defining and naming a set of session parameters (logon mode and class of service) 123
How logon mode names and session parameters are used 123
NIB LOGMODE and BNDAREA operands . 124
Examples of how an application program processes session parameters 127

Establishing cryptographic sessions . 131
Establishing single-domain cryptographic sessions . 132
Establishing cross-domain cryptographic sessions . 133
How VTAM determines the level of cryptography for a cryptographic session. 133

Restoring sessions pending recovery. 137
Data tracking . 137
Restoring sessions . 139

Extended recovery facility (XRF) programming . 149

Chapter 6. Communicating with logical units 151
Who is communicating: The VTAM application program and LUs. 151
What is communicated: Requests and responses . 151

What a request contains . 152
What a response contains . 153

How requests and responses are exchanged . 157
SEND, RECEIVE, and SESSIONC macroinstructions . 157
Normal-flow and expedited-flow requests and responses 158
Sequence numbers. 163
Controlling flow . 164
Identifying LUs and sessions . 168
Using VTAM to communicate with LUs . 168

Chapter 7. Using exit routines . 219
How exit routines work . 219

RPL exit routines . 219
EXLST exit routines . 221

Summary of exit routines . 224
Deciding whether and how to use exit routines . 228
Specifying the DFASY, RESP, and SCIP exit routines in an ACB or NIB 229
Special requirements for LERAD and SYNAD exit routines 230

Contents v

Exit scheduling versus ECB posting . 231
Procedures to follow in writing exit routines . 231

Entry procedures . 234
Cautions, restrictions and techniques . 235
Exit procedures. 235

DFASY exit routine . 236
LERAD exit routine . 237
LOGON exit routine . 238

TSO/VTAM Katakana and double-byte character set (DBCS) support 241
LOSTERM exit routine . 241

LOSTERM reason codes . 242
NSEXIT exit routine . 244

Network services procedure error or Notify . 245
Cleanup session . 252

RELREQ exit routine . 253
RESP exit routine . 254
RPL exit routine . 256
SCIP exit routine . 256

Clear . 257
Start Data Traffic (SDT) . 257
Request Recovery (RQR) . 257
Set and Test Sequence Numbers (STSN) . 258
BIND . 258
UNBIND . 260

SYNAD exit routine . 263
TPEND exit routine . 263

Chapter 8. Setting and testing control blocks and macro global variables 267
Setting and testing control block values . 267
Using manipulative macroinstructions . 267

GENCB macroinstruction . 268
MODCB macroinstruction . 269
SHOWCB macroinstruction. 270
TESTCB macroinstruction . 271

Using INQUIRE OPTCD=TERMS to generate NIBs . 271
Using DSECT-creating assembler instructions and macroinstructions 272

Defining the DSECTs . 272
Using the DSECTs . 273

ISTGLBAL macroinstruction . 274
Release-level and component-ID macro global variables 274
Function-list macro global variables . 275

Chapter 9. Handling errors and special conditions 277
OPEN and CLOSE errors and special conditions. 277
Manipulative macroinstruction errors and special conditions 278
RPL-based macroinstruction errors and special conditions 279

Coding LERAD and SYNAD exit routines . 290
Handling exception conditions (register 0=04) . 291
Handling retriable completion (register 0=08). 293
Handling data integrity damage (register 0=0C) . 293
Handling environment errors (register 0=10) . 293
Handling logic errors (register 0=14 and register 0=18) 294

Chapter 10. Operating system facilities . 295
VTAM macroinstruction differences across operating systems 295
Assigning operating system authorization . 296

Authorization criteria. 296
Multitasking. 296

Separating data communication activity from other activity 297
Dividing data communication activity among several tasks 297

vi z/OS V2R1.0 Communications Server: SNA Programming

Using multiple ACBs within one task . 299
Authorized path . 300

Specifying authorized path macroinstructions . 301
Additional coding considerations for authorized path . 302
Simple example of authorized path usage . 304

Authorized asynchronous exit routines . 307
Execution of exit routines . 307

EXLST exit routines other than LERAD and SYNAD . 307
LERAD and SYNAD exit routines . 308
RPL exit routines . 309

Serialization of execution . 309
Task association . 310

Exit routine task association . 310
Macroinstruction task association . 311

Multiple address spaces . 312
Types of address spaces . 312
Rules for coding macroinstructions and exit routines . 316
Address space used for exit routine execution . 316

Cross-memory application program interface (API) support 317
31-bit addressing . 319

Opening by the Application Program . 320
Specifying macroinstructions . 320
Executing exit routines . 321
Closing by the Application Program. 321

Error handling . 322
Isolation of errors . 322

Chapter 11. Programming for the IBM 3270 Information Display System 327
Types of 3270 terminals . 327
Characteristics of LU type 0 for 3270 terminals . 328

Data stream . 328
Data flow control . 329
Transmission control . 331
Exception conditions and sense information . 332
Session parameter . 333
Device characteristics field . 334
Logon message . 335
Logoff . 335
Test request . 335
Summary of differences among LU type 0 3270 terminals 335

Chapter 12. Coding for the communication network management interface. 337
CNM interface . 337
Functions of the application program . 337

Gathering maintenance-related information from a PU 338
Gathering session data from VTAM and NCP . 338
Gathering performance data from VTAM . 338
Loading a PU . 338
Receiving hardware alerts . 338

Request unit flow . 339
Application program coding requirements for the CNM interface 340
CNM interface requests and responses . 341
Protocols and procedures . 342

Request unit (RU) formats . 342
Inquiry data . 352
Constant values . 353
Reply data . 354

Requirements for receiving session-awareness and trace data 355
VTAM definition requirements . 355
Interfaces and interactions . 355

Contents vii

Session-awareness data buffer . 356
Trace data buffer . 357

Requirements for receiving performance data. 358
Performance monitor definition requirements for initialization 358
Data collection mechanism . 358
Automatic data delivery . 360
Data collection dynamics . 362
Performance monitor interface termination . 363
Performance data types . 363
Implications of the multiple monitor environment . 363
Request unit formats for the performance monitor interface 364
Sense codes for the performance monitor CNM RUs . 368

Chapter 13. Conventions and descriptions of VTAM macroinstructions 371
How the macroinstructions are described . 371
How the macroinstructions are coded . 371

Name . 372
Operation . 372
Operands. 372
Types of operands . 372
Comments and continuation lines . 373

Description of the VTAM macroinstructions . 375
ACB—Create an access method control block. 375
CHANGE—Terminate affinity between LU and generic resource application 384
CHECK—Check request status . 387
CLOSE—Close one or more ACBs . 390
CLSDST—Terminate sessions, application program is the PLU 394

Network-qualified names with CLSDST . 402
EXECRPL—Execute a request . 403
EXLST—Create an exit list . 404
GENCB—Generate a control block . 407
INQUIRE—Obtain logical unit information or application program status 412
INTRPRET—Interpret an input sequence . 426
ISTGLBAL—Declare and set macro global variables . 430
MODCB—Modify the contents of control block fields . 431
NIB—Create a node initialization block. 433

NIB fields set by VTAM . 442
OPEN—Open one or more ACBs . 444
OPNDST—Establish sessions (application as PLU) or recover sessions 453
OPNSEC—Establish a session, application program acts as the SLU 460
RCVCMD—Receive a message from VTAM . 463
RECEIVE—Receive input on a session . 466
REQSESS—Initiate a session, application program acts as the SLU. 477
RESETSR—Cancel RECEIVE operations and switch a session's CA-CS mode 481
RPL—Create a request parameter list . 487

RPL fields set by VTAM . 505
RPL fields and RPL-based macroinstructions . 510

SEND—Send output on a session. 514
SENDCMD—Send a VTAM operator command to VTAM 529
SESSIONC—Send a session-control request or response . 532

Send a Start Data-Traffic request to the SLU . 540
SETLOGON—Modify an application program's capability to establish sessions 543
SHOWCB—Extract the contents of control block fields . 551

Control block fields applicable for SHOWCB . 553
SIMLOGON—Initiate a session, application program acts as the PLU 555
TERMSESS—Request session termination, application program is SLU 560
TESTCB—Test the contents of a control block field . 565

Control block fields applicable for TESTCB . 568

Chapter 14. Logic of a simple application program 573

viii z/OS V2R1.0 Communications Server: SNA Programming

Logic of Sample Program 1. 573

Chapter 15. Sample code of a simple application program 579
What SAMP1 does . 579
How SAMP1 relates to Sample Program 1 (Chapter 14) . 579
Data interface between SAMP1 and LUs . 580
Notes on SAMP1 . 582

Mainline program . 582
LOGON exit routine . 583
RESP exit routine . 584
LERAD and SYNAD exit routines . 584
LOSTERM exit routine . 585

SAMP1 . 585

Chapter 16. Logic of a more complicated application program 605
Introduction . 605
Organization and flow of Sample Program 2 . 607
Logic of the 3600 finance communication system I/O routine 614
Logic of the 3600 chaining output routine . 617
Routine logic of the 3270 I/O routine . 619
Logic of the RESP exit routine . 621
Logic of the DFASY exit routine of Sample Program 2 . 624

Chapter 17. Sample code using authorized path 627
Notes on SAMP3 . 627
SAMP3 assembler language code . 628

Appendix A. Summary of control block field usage 633
ACB . 633
CHANGE . 634
CHECK . 634
CLOSE . 634
CLSDST . 634
EXECRPL . 635
EXLST. 635
GENCB . 635
INQUIRE. 636
INTRPRET . 638
ISTGLBAL . 639
MODCB . 640
NIB . 640
OPEN . 640
OPNDST . 641
OPNSEC . 642
RCVCMD . 643
RECEIVE . 644
REQSESS . 644
RESETSR . 645
RPL . 645
SEND . 646
SENDCMD . 647
SESSIONC . 648
SETLOGON . 648
SHOWCB . 649
SIMLOGON . 649
TERMSESS . 650
TESTCB . 650

Appendix B. Return codes and sense fields for RPL-based macroinstructions 651
Return code posting . 651

Contents ix

RPL return code (RTNCD,FDB2) combinations . 655
SNA sense fields . 679

Appendix C. Summary of control requests and indicators 681

Appendix D. Request and response exchanges for typical communication operations 693

Appendix E. Control block formats and DSECTs 739
ACB (IFGACB) . 740
ASDP (ISTASDP) . 743
BLENT (ISTBLENT) . 746
Control vector hex 29 (CV29) . 747
EXLST (IFGEXLST) . 750
MTS override (ISTMTS) . 752
NIB (ISTDNIB) . 753
NIB DEVCHAR (ISTDVCHR) . 756
NIB PROC (ISTDPROC) . 761
NRIPL (ISTNRIPL) . 761
Request/response header (ISTRH) . 763
RPL (IFGRPL) . 766
RPL RTNCD-FDB2-FDBK (ISTUSFBC) . 774
Access-method-support vector list (ISTAMSVL) . 781

Resource-information vector list (ISTRIVL) . 785
Application-ACB vector list (ISTVACBV) . 789

Appendix F. Specifying a session parameter 793
Session parameter fields (BIND image) . 793

Format . 795
Type . 795
Function management profile . 795
Transmission services profile . 795
Transmission services usage field . 797
Pacing count . 798
Logical unit presentation services profile . 799
Logical unit presentation services usage field . 800
Cryptographic control . 815
Primary logical unit name length . 816
Primary logical unit name . 816
User data length . 816
User data. 816
BIND area format and DSECT. 816

Appendix G. RPL fields associated with VTAM macroinstructions 847

Appendix H. Summary of register usage. 853

Appendix I. Return codes for manipulative macroinstructions 855

Appendix J. Summary of operand specifications 857
Address . 861
Quantity . 862
Fixed value . 863
Name . 863
Register-indirect value . 863
Indirect value . 863

Appendix K. Forms of the manipulative macroinstruction 865
Optional and required operands . 867

Optional and required operands for the alternative forms of GENCB 868

x z/OS V2R1.0 Communications Server: SNA Programming

Optional and required operands for the alternative forms of MODCB 869
Optional and required operands for the alternative forms of SHOWCB 870
Optional and required operands for the alternative forms of TESTCB. 872

Appendix L. Program operator coding requirements 875
Defining a program operator . 875
Authorizing a program operator . 878
Method for writing a program operator . 878
VTAM operator commands. 879
Operational characteristics . 880
Messages rerouted to a PPO . 880
Programming requirements. 881
Orderly closing of a program operator . 882
Limiting VTAM messages queued to a program operator. 883
Data exchanged between a program operator and VTAM. 883

Header . 884
Data received from VTAM . 885
Data sent to VTAM . 887

Format and DSECT of the message and command header 888
POA communication with tuning facility using the MODIFY QUERY COMMAND 889

Appendix M. List of macroinstructions . 891

Appendix N. Application program migration 893
Migrating from prior releases of VTAM . 893

COS name and logon mode name . 893
Increase of ACB size . 894
Application program minor node name in BIND . 894
Sequence number dependencies for LU type 0 3270 terminals 894
Dynamic network access function . 894

Differences between BTAM and VTAM application programs 895
Migrating from a single-domain to a multiple-domain environment 895

Use of INQUIRE for a cross-domain resource. 896
Specifying LOGMODE names with OPNDST for a cross-domain resource 896
Use of INTRPRET for a cross-domain resource . 896

Considerations for a multiple-network environment . 896
Use of INQUIRE for a cross-network resource . 896

Appendix O. Architectural specifications . 897

Appendix P. Accessibility . 899

Notices . 903
Programming interface information . 911
Policy for unsupported hardware. 911
Trademarks . 911

Bibliography. 913

Index . 917

Index for Communications Server: SNA Programming. 939

Communicating your comments to IBM . 961

Contents xi

xii z/OS V2R1.0 Communications Server: SNA Programming

Figures

1. SSCP, CP, PUs, and LUs in an SNA network . 3
2. Example of establishing an LU-LU session . 5
3. Major functions of the communication part of a VTAM application program 8
4. Major programming elements in the communication part of a VTAM application program (Part 1 of 2) . . . 9
5. Major programming elements in the communication part of a VTAM application program (Part 2 of 2) 10
6. VTAM application programs in an SNA network . 15
7. Macroinstructions by category . 20
8. Synchronous operation. 40
9. Asynchronous operation with an ECB posted . 42

10. Asynchronous operation with an RPL exit routine scheduled 43
11. Possible pattern of asynchronous requests in RPL exit routines 44
12. Element per LU at assembly . 53
13. Format of a vector list . 58
14. Format of each vector within the application-ACB vector list 60
15. Format of vectors built by VTAM during OPEN processing 62
16. Format of the CV64 Vector List to supply with SETLOGON START 65
17. Recovery data for INQUIRE OPTCD=PERSESS for sessions other than LU 6.1 and LU 6.2 140
18. Recovery data for INQUIRE OPTCD=PERSESS for LU 6.2 sessions 141
19. Recovery data for INQUIRE OPTCD=PERSESS for LU 6.1 sessions 142
20. Recovery data for OPNDST OPTCD=RESTORE for sessions other than LU 6.1 and LU 6.2 (NIBRPARM

from INQUIRE is used) . 144
21. Recovery data for OPNDST OPTCD=RESTORE for LU 6.2 sessions (NIBRPARM from INQUIRE is used) 145
22. Recovery data for OPNDST OPTCD=RESTORE for LU 6.1 sessions (NIBRPARM from INQUIRE is used) 146
23. Recovery data for OPNDST OPTCD=RESTORE for sessions other than LU 6.1 and LU 6.2 (NIBRPARM

from INQUIRE is not used) . 147
24. Recovery data for OPNDST OPTCD=RESTORE for LU 6.2 sessions (NIBRPARM from INQUIRE is not

used) . 148
25. Recovery data for OPNDST OPTCD=RESTORE for LU 6.1 sessions (NIBRPARM from INQUIRE is not

used) . 149
26. Legend for request and response flows . 152
27. Exchange requests and responses . 152
28. Receiving requests from an LU. 155
29. Normal-flow requests are sent sequentially . 159
30. Difference between normal-flow and expedited-flow requests 160
31. How sequence numbers are used . 164
32. Starting and stopping the flow of requests and responses 166
33. General sequence of events when ECB-posting is specified 171
34. General sequence of events when an RPL exit routine is specified 172
35. Scheduled output . 173
36. Responded output . 174
37. Example of using any-mode and specific-mode to handle an inquiry on a session. 176
38. Example of using continue-any and continue-specific modes to handle concurrent inquiries 178
39. How input RUs are classified by VTAM . 179
40. How VTAM handles DFASY (expedited-flow data-flow-control request) input 180
41. How VTAM handles RESP (normal-flow response) input 181
42. How VTAM handles DFSYN (normal-flow request and DFSYN response) input 182
43. Example showing values in the RECLEN field of an RPL 183
44. LMPEO operation on a message sent to an SNA LU 184
45. LMPEO handling of selected RH indicators . 187
46. LMPEO handling of selected RH-chain indicators . 188
47. Buffer-list operation . 192
48. Buffer-list entry format . 193
49. Buffer-list LMPEO-state transitions . 195
50. Example of a SEND operation, OPTCD=(LMPEO,BUFFLST,USERRH) with a maximum RU size of 100 200
51. Example of request chaining . 203

© Copyright IBM Corp. 2000, 2013 xiii

52. Example of sending a chain of requests to an LU that is buffering data (Part 1 of 2) 204
53. Example of sending a chain of requests to an LU that is buffering data (Part 2 of 2) 205
54. Example of an LU quiescing an application program in order to interrupt continuous sending (Part 1 of 2) 208
55. Example of an LU quiescing an application program in order to interrupt continuous sending (Part 2 of 2) 209
56. Quiesce protocol . 211
57. Change-direction protocol . 213
58. Bracket protocol . 215
59. Example of using an RPL exit routine . 221
60. ACB-oriented and NIB-oriented exit routines . 230
61. Summary of addressability and save-area requirements for the mainline program. 232
62. Situations in which LERAD and SYNAD exit routines do not have to be reentrant 233
63. Situations in which LERAD and SYNAD exit routines must be reentrant. 234
64. Format of a Network Services Procedure Error request unit 247
65. Format of a Cleanup Session request unit . 252
66. BIND information presented to SCIP exit . 259
67. How OPEN/CLOSE error and special-condition information is organized 278
68. How manipulative-macroinstruction error and special-condition information is organized 279
69. How RPL-based macroinstruction error and special-condition information is organized 281
70. Summary of error and special-condition handling with synchronous operations 283
71. Summary of error and special-condition handling with asynchronous operations (Part 1 of 2). 284
72. Summary of error and special-condition handling with asynchronous operations (Part 2 of 2). 285
73. Multitasking a program . 297
74. Multiple tasks using the same ACB . 298
75. Multiple tasks, each with its own ACB . 299
76. Single task with multiple ACBs . 300
77. Categories of VTAM macroinstructions versus the authorized path function 301
78. Example of the use of authorized path . 305
79. Example of a multiple-address-space configuration with one multiple-address-space ACB 313
80. Example of a multiple-address-space configuration with more than one multiple-address-space ACB 314
81. Categories of VTAM macroinstructions versus the multiple-address-space functions 315
82. Example of an application program operating in cross-memory mode. 318
83. Bracket-state transitions at the 3270 SLU . 331
84. Example of Forward and Deliver request unit flow . 339
85. How to code comments and continuation lines . 372
86. How to code comments and continuation lines . 374
87. Major options for a RECEIVE macroinstruction . 467
88. Major RESETSR options . 482
89. RPL fields applicable to the macroinstructions that can modify RPLs (Part 1 of 2) 512
90. RPL fields applicable to the macroinstructions that can modify RPLs (Part 2 of 2) 513
91. Major SEND options . 517
92. How the POST operand in the SEND macroinstruction is used 522
93. General logic of Sample Program 1 . 574
94. Data request format . 580
95. Header format . 581
96. Sense information format . 581
97. Possible data communication configuration for sample program 606
98. Organization and flow of Sample Program 2 . 608
99. Logic of the 3600 I/O routine . 615

100. Logic of the chaining output routine . 618
101. Logic of the 3270 I/O routine . 620
102. Logic of the RESP exit routine . 623
103. Logic of the DFASY exit routine . 625
104. RTNCD,FDB2 combinations possible for each macroinstruction (Part 1 of 3) 652
105. RTNCD,FDB2 combinations possible for each macroinstruction (Part 2 of 3) 653
106. RTNCD,FDB2 combinations possible for each macroinstruction (Part 3 of 3) 654
107. Device-type LU initiates and establishes a session with a PLU application program 694
108. PLU application program acquires (initiates and establishes) a session with a device-type LU. 695
109. After a warm start, a PLU application program reestablishes a session and resynchronizes sequence

numbers (Part 1 of 2) . 696
110. After a warm start, a PLU application program reestablishes a session and resynchronizes sequence

numbers (Part 2 of 2) . 697

xiv z/OS V2R1.0 Communications Server: SNA Programming

111. PLU application program and a secondary logical unit exchange data (Part 1 of 3) 698
112. PLU application program and a secondary logical unit exchange data (Part 2 of 3) 699
113. PLU application program and a secondary logical unit exchange data (Part 3 of 3 about sections A, B, C

and D) . 700
114. Logical unit sends a chain of data to the PLU application program 701
115. Application program and logical unit use quiesce protocol 702
116. Application program and logical unit use bracket protocol (Part 1 of 2) 703
117. Application program and logical unit use bracket protocol (Part 2 of 2) 704
118. Application program and logical unit use change-direction protocol 705
119. PLU application program resynchronizes sequence numbers with the logical unit. 706
120. Application program and logical unit use the signal request 707
121. Application program and logical unit use the LUSTAT request 708
122. Operations are shut down in an orderly fashion . 709
123. Logical unit terminates a session . 710
124. PLU application program terminates a session with the logical unit 711
125. PLU application program terminates a session with the logical unit with a CLSDST OPTCD=PASS 712
126. PLU application program and a device-type logical unit use cryptography in a required cryptographic

session . 713
127. PLU application program and a device-type logical unit use cryptography in a selective cryptographic

session . 714
128. SLU application program requests a session with the PLU application program (Part 1 of 2) 715
129. SLU application program requests a session with the PLU application program (Part 2 of 2) 716
130. PLU application program acquires (initiates and establishes) a session with the SLU application program 717
131. PLU application program issues a SIMLOGON to acquire (initiate a session with) the SLU application

program . 718
132. PLU application program resynchronizes sequence numbers with the SLU application program (Part 1 of 2) 719
133. PLU application program resynchronizes sequence numbers with the SLU application program (Part 2 of 2) 720
134. PLU application program and SLU application program use bracket protocol 721
135. PLU application program and SLU use-bracket protocol: BID by PLU rejected but Ready-to-Receive follows 722
136. SLU application program sends a conditional request for session termination 723
137. SLU application program sends an unconditional request for session termination 724
138. SLU application program sends a Request Shutdown request 725
139. PLU application program shuts down the SLU application program 726
140. PLU application program and the SLU application program use cryptography in a required cryptographic

session . 727
141. PLU application program and the SLU application program use cryptography in a selective cryptographic

session . 727
142. PLU application program stops bracket initiation . 728
143. Application program receives a load request during physical unit activation (Part 1 of 2) 729
144. Application program receives a load request during physical unit activation (Part 2 of 2) 730
145. PLU application program acquires (initiates and establishes) a session with an XRF backup-session

service-type LU . 731
146. PLU application program acquires (initiates and establishes) a session with an XRF backup-session

device-type LU . 732
147. PLU application program issues SIMLOGON to acquire (initiate and establish) an XRF session with a

device-type LU . 733
148. PLU application program issues SIMLOGON to acquire (initiate and establish) an XRF session with a

device-type LU . 734
149. Device-type LU initiates and establishes a session with an XRF primary-PLU application program 735
150. Switch without XRF primary failing first . 736
151. Switch after XRF primary fails . 737
152. Normal XRF primary end of session . 737
153. Normal XRF backup end of session with XRF primary 738
154. Format of the ACB. 740
155. Format of ISTASDP . 743
156. Dial number subfield . 744
157. Direct call line name subfield . 744
158. IDBLK/IDNUM subfield. 744
159. CPNAME subfield . 744
160. Expanded dial information subfield . 745
161. DLCADDR subfield . 745

Figures xv

162. Connection name subfield . 745
163. Format of BLENT . 746
164. Format of the EXLST . 751
165. Format of MTS . 753
166. Format of the NIB . 754
167. Format of NRIPL . 762
168. Format of the RH . 763
169. Format of the RPL (Part 1 of 2) . 767
170. Format of the RPL (Part 2 of 2) . 768
171. Format of session parameters area (BIND image) . 794
172. Profile 0 presentation services usage field . 800
173. Profile 1 presentation services usage field . 801
174. Profile 2 and 3 presentation services usage fields. 807
175. Profile 4 presentation services usage field . 809
176. Profile 6 for LU 6.2 presentation services usage field 813
177. Format of BNDAREA (ISTDBIND) . 818
178. RPL fields associated with the SEND and SESSIONC macroinstructions for various modes of operation

(Part 1 of 3) . 848
179. RPL fields associated with the SEND and SESSIONC macroinstructions for various modes of operation

(Part 2 of 3) . 849
180. RPL fields associated with the SEND and SESSIONC macroinstructions for various modes of operation

(Part 3 of 3) . 850
181. RPL fields associated with the RECEIVE macroinstruction for various modes of operation (Part 1 of 2) 851
182. RPL fields associated with the RECEIVE macroinstruction for various modes of operation (Part 2 of 2) 852
183. VTAM operator control of a VTAM domain . 876
184. VTAM operator control of a multiple-domain VTAM network 877

xvi z/OS V2R1.0 Communications Server: SNA Programming

Tables

1. Summary of special-purpose exit routines . 29
2. Rules for specifying a session parameter . 34
3. Relative advantages of synchronous and asynchronous requests 45
4. Some questions that affect program design and coding 45
5. Vector lists . 58
6. Interaction between SETLOGON and the ACB MACRF operand 82
7. OPNSEC macroinstruction PROC options used to send BIND response 97
8. Session outage notification summary. 105
9. Summary of exit routines involved in session initiation 107

10. Summary of exit routines involved in session outages or disruption 108
11. Summary of exit routines involved in session termination by session participant 109
12. Session outage notification UNBIND type codes and reason codes 111
13. Language code settings (MVS only) . 118
14. How to specify a logon mode name . 123
15. Determining session parameters for an INQUIRE macroinstruction 124
16. Determining session parameters for an OPNDST OPTCD=ACCEPT macroinstruction 125
17. Determining session parameters for an OPNDST OPTCD=ACQUIRE macroinstruction 125
18. Determining session parameters for a SIMLOGON or CLSDST OPTCD=PASS macroinstruction 125
19. Determining session parameters for a REQSESS macroinstruction 125
20. Level of cryptography for OPNDST requests . 134
21. Establishing cryptographic requirements using logon mode entry and definition for secondary end of

session . 135
22. Level of cryptography for OPNSEC requests . 136
23. Information tracked for recovery of LU 6.1 and LU 6.2 sessions 138
24. Summary of requests and responses transmitted on normal flow and expedited flow 161
25. Location of the initial RH . 185
26. Possible chain indicators resulting from initial RH-chain indicator settings 185
27. Negative-response handling by VTAM for SEND OPTCD=LMPEO 190
28. Buffer-list entry format . 193
29. Relationship of the user RH field to the request/response header 197
30. Summary of exit routines . 224
31. Parameter list for the EXLST exit routines . 226
32. DFASY exit routine: Registers upon entry . 237
33. LERAD exit routine: Registers upon entry . 238
34. LOGON exit routine: Registers upon entry. 240
35. LOSTERM exit routine: Registers upon entry . 242
36. Format of a Notify request unit (Part 1 of 5) . 247
37. Format of a Notify request unit (Part 2 of 5) . 249
38. Format of a Notify request unit (Part 3 of 5) . 250
39. Format of a Notify request unit (Part 4 of 5) . 250
40. Format of a Notify request unit (Part 5 of 5) . 251
41. NSEXIT exit routine: Registers upon entry . 253
42. RELREQ exit routine: Registers upon entry . 254
43. RESP exit routine: Registers upon entry . 255
44. RPL exit routine: Registers upon entry . 256
45. SCIP exit routine: Registers upon entry . 262
46. SYNAD exit routine: Registers upon entry . 263
47. TPEND exit routine: Registers upon entry . 265
48. DSECT—Creating macroinstructions . 272
49. Release-level macro global variables for VTAM V6R1.2. 274
50. Manipulative macroinstructions: Return code values and meanings 278
51. Summary of register and RPL feedback return codes following an RPL-based request 280
52. Recovery action return codes and their general meanings 280
53. Completion conditions acceptance stage of asynchronous requests 286
54. Completion conditions completion of synchronous requests or for CHECK of asynchronous requests 288

© Copyright IBM Corp. 2000, 2013 xvii

55. Coding requirements for authorized path . 302
56. Valid AMODE and RMODE specifications . 319
57. Addressing mode for each kind of exit routine . 321
58. SNA sense information received at the application program 332
59. Explanation of USENSEI information . 333
60. Actions taken by the network when a test request message is received 335
61. Standard CNM header, SSCP-PU request format . 343
62. Standard CNM header, PU-SSCP request format . 343
63. Forward request unit format 0 request format. 344
64. Deliver request unit format 0 . 345
65. Format of additional targets in Deliver requests . 348
66. Examples of embedded network services request units. 349
67. Initiate load request (NS-INITLOAD) request unit format 350
68. Load status request (NS-LOADSTAT) request unit format 350
69. Types of network services request units not embedded. 351
70. CNM request unit format . 351
71. Timeout CNM request unit format . 352
72. Translate-inquiry request (TR-INQ) request unit format 352
73. Translate inquiry data. 353
74. Network ID 1—ID in which the name to be translated was used 353
75. Network ID 2—ID of the network in which the translated name is used 353
76. Class-of-input names . 353
77. Input name type code (TR-INQ) . 353
78. Input name type code (TR-REPLY) . 354
79. Translate reply request (TR-REPLY) request unit format 354
80. Translate reply data . 354
81. Network identifier 1 . 355
82. Network identifier 2 . 355
83. Translated name data . 355
84. Session-awareness data buffer header . 356
85. PIU trace data buffer header . 357
86. PIU trace data buffer entry . 357
87. Data categorization for performance monitor interface 359
88. Request code vector format . 365
89. Format of all possible resource data descriptions . 367
90. Forms of the CLOSE macroinstruction . 391
91. Permissible option codes in the INQUIRE macroinstruction 412
92. Forms of the OPEN macroinstruction . 445
93. Types of STSN requests and their possible responses 542
94. Control block fields that can be tested with SHOWCB 553
95. Control block fields that can be tested with TESTCB 568
96. Sense field values . 680
97. Summary of sending normal-flow data-flow-control requests 681
98. Summary of receiving normal-flow data-flow-control requests 683
99. Summary of sending expedited-flow-control requests 684

100. Summary of receiving expedited-flow data-flow-control requests 685
101. Summary of sending session-control requests . 687
102. Summary of receiving session-control requests . 689
103. Summary of change-direction indicator . 690
104. Summary of bracket indicators. 691
105. ACB DSECT (IFGACB) . 740
106. ISTASDP DSECT . 745
107. ISTASDP subfield DSECT (ASDSUBFD). 745
108. ISTASDP DLCADDR subfield DSECT (ASDDLCSF). 746
109. Buffer list entry DSECT (ISTBLENT) . 746
110. Control vector hex 29 . 747
111. Control vector hex 29 (constants) . 750
112. EXLST DSECT (IFGEXLST) . 751
113. MTS override DSECT (ISTMTS) . 753
114. NIB DSECT (ISTDNIB) . 754
115. NIB's DEVCHAR DSECT (ISTDVCHR) . 756

xviii z/OS V2R1.0 Communications Server: SNA Programming

116. NIB's PROC DSECT (ISTDPROC) . 761
117. NRIPL DSECT (ISTNRIPL) . 762
118. Request/response header DSECT (ISTRH) . 763
119. RPL DSECT (IFGRPL). 768
120. RPL's RTNCD-FDB2-FDBK DSECT (ISTUSFBC) . 774
121. Session-control requests for each transmission services profile 796
122. Maximum size of request unit (in decimal). 797
123. Session parameter fields: How they are made available and who can change them 819
124. BNDAREA DSECT (ISTDBIND) . 821
125. BINPSCHR field of BNDAREA DSECT for logical unit profile 0. 828
126. BINPSCHR field of BNDAREA DSECT for logical unit profile 1. 829
127. BINPSCHR field of BNDAREA DSECT for logical unit profile 2. 838
128. BINPSCHR field of BNDAREA DSECT for logical unit profile 3. 839
129. BINPSCHR field of BNDAREA DSECT for logical unit profile 4. 840
130. BINPSCHR field of BNDAREA DSECT for logical unit profile 6. 843
131. Structure of the XRF vector hex 27 . 846
132. Register contents upon return of control . 853
133. Manipulative macroinstruction register 0 return codes when register 15 is 4. 855
134. Manipulative macroinstruction operands exclusive of control block operands 857
135. Manipulative macroinstruction operands for ACB fields 857
136. Manipulative macroinstruction operands for EXLST fields 858
137. Manipulative macroinstruction operands for RPL fields 858
138. Manipulative macroinstruction operands for NIB fields 860
139. Forms of manipulative macroinstructions . 865
140. Some considerations that affect the coding of a program operator 881
141. Format of the VTAM message and command header (ISTDPOHD). 888
142. VTAM message and command header DSECT (ISTDPOHD) 888
143. Wraparound points for sequence numbers in sessions involving LU type 0 3270 terminals 894
144. Major similarities and differences between VTAM and BTAM application programs 895

Tables xix

xx z/OS V2R1.0 Communications Server: SNA Programming

About this document

This manual describes programming concepts and VTAM® macroinstructions. Use
it as a guide when designing and coding application programs. This publication
covers all macroinstructions except APPCCMD (see z/OS Communications Server:
SNA Programmer's LU 6.2 Reference) and macroinstructions related to the
installation of VTAM (see z/OS Communications Server: SNA Resource Definition
Reference).

Who should read this document

This document is designed to help programmers (such as application or system
programmers) write application programs that use VTAM macroinstructions.

How this document is organized

This document contains the following chapters:
v Chapter 1, “VTAM application program concepts,” on page 1 provides an

overview of a VTAM application program.
v Chapter 2, “VTAM language,” on page 19 contains the following:

– Characteristics of the VTAM language
– A summary of the VTAM application program macroinstructions
– Relationships among the VTAM control blocks as well as their relationship to

the macroinstructions
– A description of a normal operating system environment for a VTAM

application program
v Chapter 3, “Organizing an application program,” on page 33 discusses the

following:
– General coding guidelines to consider when writing an application program
– Coding guidelines to facilitate migration of application programs
– Whether the application program should be single-thread or multithread
– Whether the application program operation should be synchronous or

asynchronous and what posting mechanism should be used
– VTAM and user control block decisions to be made that affect application

program organization
v Chapter 4, “Opening and closing an application program,” on page 55 describes

aspects of the OPEN, CLOSE, and ACB macroinstructions that apply to all
application programs.

v Chapter 5, “Establishing and terminating sessions with logical units,” on page
81 describes how VTAM establishes and terminates a session between LUs.

v Chapter 6, “Communicating with logical units,” on page 151 provides a general
description of communication facilities.

v Chapter 7, “Using exit routines,” on page 219 discusses how exit routines work,
presents some of their advantages and disadvantages, and describes procedures
to follow in using them.

v Chapter 8, “Setting and testing control blocks and macro global variables,” on
page 267 discusses the ways in which the VTAM application program sets and
tests control block values.

© Copyright IBM Corp. 2000, 2013 xxi

v Chapter 9, “Handling errors and special conditions,” on page 277 discusses how
to analyze information for errors and special conditions and what to do, in
general, when the error or special condition is identified.

v Chapter 10, “Operating system facilities,” on page 295 describes a number of
operating-system-dependent facilities to use when writing a VTAM application
program.

v Chapter 11, “Programming for the IBM 3270 Information Display System,” on
page 327 describes VTAM application programming for sessions that use LU
type 0 protocols.

v Chapter 12, “Coding for the communication network management interface,” on
page 337 describes the coding required for an application program to function
on the communication network management (CNM) interface.

v Chapter 13, “Conventions and descriptions of VTAM macroinstructions,” on
page 371 describes the format of the macroinstructions and then presents each
macroinstruction in alphabetical order.

v Chapter 14, “Logic of a simple application program,” on page 573 shows the
logic of a VTAM application program that receives a request for a session with a
logical unit (LU), establishes the session, reads input from any session, processes
the input, prepares a reply for output, and writes the output on the session.

v Chapter 15, “Sample code of a simple application program,” on page 579
contains the assembler language instructions for a VTAM application program,
SAMP1.

v Chapter 16, “Logic of a more complicated application program,” on page 605
contains a more typical example of a VTAM application program than SAMP1.

v Chapter 17, “Sample code using authorized path,” on page 627 contains sample
program, SAMP3, which shows an application program using the authorized
path facility under the control of both a task control block (TCB) and a service
request block (SRB).

v Appendix A, “Summary of control block field usage,” on page 633 serves as a
reference for the experienced VTAM application programmer by showing the
information for each executable macroinstruction discussed in this document.

v Appendix B, “Return codes and sense fields for RPL-based macroinstructions,”
on page 651 provides information about return code posting and explains what
the different return code and feedback field values mean. It also provides
information about SNA sense fields.

v Appendix C, “Summary of control requests and indicators,” on page 681
contains tables that summarize the SNA control requests and indicators sent and
received by VTAM application programs.

v Appendix D, “Request and response exchanges for typical communication
operations,” on page 693 contains diagrams that show the sequences in which
requests and responses are exchanged to perform typical data communication
operations using VTAM.

v Appendix E, “Control block formats and DSECTs,” on page 739 contains file
description control block formats and DSECTs.

v Appendix F, “Specifying a session parameter,” on page 793 describes the format
of the session parameter as seen by a VTAM application program.

v Appendix G, “RPL fields associated with VTAM macroinstructions,” on page
847 shows fields modified by the SEND and SESSIONC macroinstructions.

v Appendix H, “Summary of register usage,” on page 853 shows what VTAM
does with the general-purpose registers before it returns control to the
application program at the next sequential instruction.

xxii z/OS V2R1.0 Communications Server: SNA Programming

v Appendix I, “Return codes for manipulative macroinstructions,” on page 855
explains return codes for manipulative macroinstructions.

v Appendix J, “Summary of operand specifications,” on page 857 indicates which
manipulative macroinstructions apply for each operand and the types of values
that can be coded with each operand.

v Appendix K, “Forms of the manipulative macroinstruction,” on page 865
summarizes the actions of various forms of manipulative macroinstructions.

v Appendix L, “Program operator coding requirements,” on page 875 describes
how to write the program operator portion of a VTAM application program
using the SENDCMD and RCVCMD macroinstructions.

v Appendix M, “List of macroinstructions,” on page 891 contains
macroinstructions provided as programming interfaces by VTAM. Do not use as
programming interfaces any VTAM macroinstructions other than those identified
in this appendix.

v Appendix N, “Application program migration,” on page 893 describes factors to
consider in various migration environments.

v Appendix O, “Architectural specifications,” on page 897 lists documents that
provide architectural specifications for the SNA protocol.

v Appendix P, “Accessibility,” on page 899 describes accessibility features to help
users with physical disabilities.

v “Notices” on page 903 contains notices and trademarks used in this document.
v “Bibliography” on page 913 contains descriptions of the documents in the z/OS®

Communications Server library.

How to use this document

Before using this document, you should be familiar with the information in the
assembler language documentation for your operating system. You should also be
familiar with the following:
v Basic Assembler Language (BAL)
v Operating system facilities that the application program uses
v Characteristics of the devices with which the application program communicates
v SNA protocols
v Data communication concepts

Determining whether a publication is current

As needed, IBM® updates its publications with new and changed information. For
a given publication, updates to the hardcopy and associated BookManager®

softcopy are usually available at the same time. Sometimes, however, the updates
to hardcopy and softcopy are available at different times. The following
information describes how to determine if you are looking at the most current
copy of a publication:
v At the end of a publication's order number there is a dash followed by two

digits, often referred to as the dash level. A publication with a higher dash level
is more current than one with a lower dash level. For example, in the
publication order number GC28-1747-07, the dash level 07 means that the
publication is more current than previous levels, such as 05 or 04.

v If a hardcopy publication and a softcopy publication have the same dash level, it
is possible that the softcopy publication is more current than the hardcopy

About this document xxiii

publication. Check the dates shown in the Summary of Changes. The softcopy
publication might have a more recently dated Summary of Changes than the
hardcopy publication.

v To compare softcopy publications, you can check the last 2 characters of the
publication's file name (also called the book name). The higher the number, the
more recent the publication. Also, next to the publication titles in the CD-ROM
booklet and the readme files, there is an asterisk (*) that indicates whether a
publication is new or changed.

How to contact IBM service

For immediate assistance, visit this website: http://www.software.ibm.com/
network/commserver/support/

Most problems can be resolved at this website, where you can submit questions
and problem reports electronically, and access a variety of diagnosis information.

For telephone assistance in problem diagnosis and resolution (in the United States
or Puerto Rico), call the IBM Software Support Center anytime (1-800-IBM-SERV).
You will receive a return call within 8 business hours (Monday – Friday, 8:00 a.m.
– 5:00 p.m., local customer time).

Outside the United States or Puerto Rico, contact your local IBM representative or
your authorized IBM supplier.

If you would like to provide feedback on this publication, see “Communicating
your comments to IBM” on page 961.

Conventions and terminology that are used in this document

Commands in this book that can be used in both TSO and z/OS UNIX
environments use the following conventions:
v When describing how to use the command in a TSO environment, the command

is presented in uppercase (for example, NETSTAT).
v When describing how to use the command in a z/OS UNIX environment, the

command is presented in bold lowercase (for example, netstat).
v When referring to the command in a general way in text, the command is

presented with an initial capital letter (for example, Netstat).

All the exit routines described in this document are installation-wide exit routines.
The installation-wide exit routines also called installation-wide exits, exit routines,
and exits throughout this document.

The TPF logon manager, although included with VTAM, is an application program;
therefore, the logon manager is documented separately from VTAM.

Samples used in this book might not be updated for each release. Evaluate a
sample carefully before applying it to your system.

Note: In this information, you might see the term RDMA network interface card
(RNIC) that is used to refer to the IBM 10GbE RoCE Express feature.

For definitions of the terms and abbreviations that are used in this document, you
can view the latest IBM terminology at the IBM Terminology website.

xxiv z/OS V2R1.0 Communications Server: SNA Programming

http://www.software.ibm.com/network/commserver/support/
http://www.software.ibm.com/network/commserver/support/
http://www.ibm.com/software/globalization/terminology/index.jsp

Clarification of notes

Information traditionally qualified as Notes is further qualified as follows:

Note Supplemental detail

Tip Offers shortcuts or alternative ways of performing an action; a hint

Guideline
Customary way to perform a procedure

Rule Something you must do; limitations on your actions

Restriction
Indicates certain conditions are not supported; limitations on a product or
facility

Requirement
Dependencies, prerequisites

Result Indicates the outcome

How to read a syntax diagram

This section describes how to read the syntax diagrams used in this book.
v Read the diagrams from left-to-right, top-to-bottom, following the main path

line. Each diagram begins on the left with double arrowheads (��) and ends on
the right with two arrowheads facing each other (��).

�� Syntax Diagram ��

v If a diagram is longer than one line, the first line ends with a single arrowhead
(�) and the second line begins with a single arrowhead.

About this document xxv

�� First Line OPERAND1 OPERAND2 OPERAND3 OPERAND4 OPERAND5 �

� Second Line ��

v Required operands and values appear on the main path line.

�� REQUIRED_OPERAND ��

You must code required operands and values.
If there is more than one mutually exclusive required operand or value to
choose from, they are stacked vertically in alphanumeric order.

�� REQUIRED_OPERAND_OR_VALUE_1
REQUIRED_OPERAND_OR_VALUE_2

��

v Optional operands and values appear below the main path line.

��
OPERAND

��

You can choose not to code optional operands and values.
If there is more than one mutually exclusive optional operand or value to choose
from, they are stacked vertically in alphanumeric order below the main path
line.

��
OPERAND_OR_VALUE_1
OPERAND_OR_VALUE_2

��

v An arrow returning to the left above an operand or value on the main path line
means that the operand or value can be repeated. The comma means that each
operand or value must be separated from the next by a comma.

xxvi z/OS V2R1.0 Communications Server: SNA Programming

�� �

,

REPEATABLE_OPERAND ��

v An arrow returning to the left above a group of operands or values means more
than one can be selected, or a single one can be repeated.

��

�

,

REPEATABLE_OPERAND_OR_VALUE_1
REPEATABLE_OPERAND_OR_VALUE_2

��

v A word in all uppercase is an operand or value you must spell exactly as shown.
In this example, you must code OPERAND.

Note: VTAM and IP commands are not case sensitive. You can code them in
uppercase or lowercase. If the operand is shown in both uppercase and
lowercase, the uppercase portion is the abbreviation (for example, OPERand).

�� OPERAND ��

If an operand or value can be abbreviated, the abbreviation is described in the
text associated with the syntax diagram.

v If a diagram shows a character that is not alphanumeric (such as parentheses,
periods, commas, and equal signs), you must code the character as part of the
syntax. In this example, you must code OPERAND=(001,0.001).

About this document xxvii

�� OPERAND = (001 , 0.001) ��

v If a diagram shows a blank space, you must code the blank space as part of the
syntax. In this example, you must code OPERAND=(001 FIXED).

�� OPERAND = (001 FIXED) ��

v Default operands and values appear above the main path line. VTAM uses the
default if you omit the operand entirely.

��
DEFAULT

OPERAND
��

v A word in all lowercase italics is a variable. Where you see a variable in the
syntax, you must replace it with one of its allowable names or values, as defined
in the text.

�� variable ��

v References to syntax notes appear as numbers enclosed in parentheses above the
line. Do not code the parentheses or the number.

��
(1)

OPERAND ��

Notes:

1 An example of a syntax note.
v Some diagrams contain syntax fragments, which serve to break up diagrams that

are too long, too complex, or too repetitious. Syntax fragment names are in
mixed case and are shown in the diagram and in the heading of the fragment.
The fragment is placed below the main diagram.

xxviii z/OS V2R1.0 Communications Server: SNA Programming

�� Reference to Syntax Fragment ��

Syntax Fragment:

1ST_OPERAND , 2ND_OPERAND , 3RD_OPERAND

Prerequisite and related information

z/OS Communications Server function is described in the z/OS Communications
Server library. Descriptions of those documents are listed in “Bibliography” on
page 913, in the back of this document.

Required information

Before using this product, you should be familiar with TCP/IP, VTAM, MVS™, and
UNIX System Services.

Softcopy information

Softcopy publications are available in the following collection.

Titles Order
Number

Description

IBM System z® Redbooks
Collection

SK3T-7876 The IBM Redbooks® publications selected for this CD series are
taken from the IBM Redbooks inventory of over 800 books. All the
Redbooks publications that are of interest to the zSeries® platform
professional are identified by their authors and are included in this
collection. The zSeries subject areas range from e-business
application development and enablement to hardware, networking,
Linux, solutions, security, parallel sysplex, and many others. For
more information about the Redbooks publications, see
http://www-03.ibm.com/systems/z/os/zos/zfavorites/.

Other documents

This information explains how z/OS references information in other documents.

When possible, this information uses cross-document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see z/OS Information Roadmap (SA23-2299). The Roadmap describes what level of
documents are supplied with each release of z/OS Communications Server, and
also describes each z/OS publication.

To find the complete z/OS library, including the z/OS Information Center, see
www.ibm.com/systems/z/os/zos/bkserv/.

Relevant RFCs are listed in an appendix of the IP documents. Architectural
specifications for the SNA protocol are listed in an appendix of the SNA
documents.

The following table lists documents that might be helpful to readers.

About this document xxix

http://www-03.ibm.com/systems/z/os/zos/zfavorites/
http://www.ibm.com/systems/z/os/zos/bkserv/

Title Number

DNS and BIND, Fifth Edition, O'Reilly Media, 2006 ISBN 13: 978-0596100575

Routing in the Internet, Second Edition, Christian Huitema (Prentice Hall 1999) ISBN 13: 978-0130226471

sendmail, Fourth Edition, Bryan Costales, Claus Assmann, George Jansen, and
Gregory Shapiro, O'Reilly Media, 2007

ISBN 13: 978-0596510299

SNA Formats GA27-3136

TCP/IP Illustrated, Volume 1: The Protocols, W. Richard Stevens, Addison-Wesley
Professional, 1994

ISBN 13: 978-0201633467

TCP/IP Illustrated, Volume 2: The Implementation, Gary R. Wright and W. Richard
Stevens, Addison-Wesley Professional, 1995

ISBN 13: 978-0201633542

TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the UNIX Domain
Protocols, W. Richard Stevens, Addison-Wesley Professional, 1996

ISBN 13: 978-0201634952

TCP/IP Tutorial and Technical Overview GG24-3376

Understanding LDAP SG24-4986

z/OS Cryptographic Services System SSL Programming SC24-5901

z/OS IBM Tivoli Directory Server Administration and Use for z/OS SC23-6788

z/OS JES2 Initialization and Tuning Guide SA32-0991

z/OS Problem Management SC23-6844

z/OS MVS Diagnosis: Reference GA32-0904

z/OS MVS Diagnosis: Tools and Service Aids GA32-0905

z/OS MVS Using the Subsystem Interface SA38-0679

z/OS Program Directory GI11-9848

z/OS UNIX System Services Command Reference SA23-2280

z/OS UNIX System Services Planning GA32-0884

z/OS UNIX System Services Programming: Assembler Callable Services Reference SA23-2281

z/OS UNIX System Services User's Guide SA23-2279

z/OS XL C/C++ Runtime Library Reference SC14-7314

zEnterprise 196, System z10, System z9 and eServer zSeries OSA-Express
Customer's Guide and Reference

SA22-7935

Redbooks publications

The following Redbooks publications might help you as you implement z/OS
Communications Server.

Title Number

IBM z/OS V1R13 Communications Server TCP/IP Implementation, Volume 1: Base
Functions, Connectivity, and Routing

SG24-7996

IBM z/OS V1R13 Communications Server TCP/IP Implementation, Volume 2: Standard
Applications

SG24-7997

IBM z/OS V1R13 Communications Server TCP/IP Implementation, Volume 3: High
Availability, Scalability, and Performance

SG24-7998

IBM z/OS V1R13 Communications Server TCP/IP Implementation, Volume 4: Security
and Policy-Based Networking

SG24-7999

IBM Communication Controller Migration Guide SG24-6298

IP Network Design Guide SG24-2580

xxx z/OS V2R1.0 Communications Server: SNA Programming

Title Number

Managing OS/390® TCP/IP with SNMP SG24-5866

Migrating Subarea Networks to an IP Infrastructure Using Enterprise Extender SG24-5957

SecureWay Communications Server for OS/390 V2R8 TCP/IP: Guide to Enhancements SG24–5631

SNA and TCP/IP Integration SG24-5291

TCP/IP in a Sysplex SG24-5235

TCP/IP Tutorial and Technical Overview GG24-3376

Threadsafe Considerations for CICS SG24-6351

Where to find related information on the Internet

z/OS

This site provides information about z/OS Communications Server release
availability, migration information, downloads, and links to information
about z/OS technology

http://www.ibm.com/systems/z/os/zos/

z/OS Internet Library

Use this site to view and download z/OS Communications Server
documentation

www.ibm.com/systems/z/os/zos/bkserv/

IBM Communications Server product

The primary home page for information about z/OS Communications
Server

http://www.software.ibm.com/network/commserver/

IBM Communications Server product support

Use this site to submit and track problems and search the z/OS
Communications Server knowledge base for Technotes, FAQs, white
papers, and other z/OS Communications Server information

http://www.software.ibm.com/network/commserver/support/

IBM Communications Server performance information

This site contains links to the most recent Communications Server
performance reports.

http://www.ibm.com/support/docview.wss?uid=swg27005524

IBM Systems Center publications

Use this site to view and order Redbooks publications, Redpapers™, and
Technotes

http://www.redbooks.ibm.com/

IBM Systems Center flashes

Search the Technical Sales Library for Techdocs (including Flashes,
presentations, Technotes, FAQs, white papers, Customer Support Plans,
and Skills Transfer information)

http://www.ibm.com/support/techdocs/atsmastr.nsf

About this document xxxi

http://www.ibm.com/systems/z/os/zos/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.software.ibm.com/network/commserver/
http://www.software.ibm.com/network/commserver/support/
http://www.ibm.com/support/docview.wss?uid=swg27005524
http://www.redbooks.ibm.com
http://www.ibm.com/support/techdocs

RFCs

Search for and view Request for Comments documents in this section of
the Internet Engineering Task Force website, with links to the RFC
repository and the IETF Working Groups web page

http://www.ietf.org/rfc.html

Internet drafts

View Internet-Drafts, which are working documents of the Internet
Engineering Task Force (IETF) and other groups, in this section of the
Internet Engineering Task Force website

http://www.ietf.org/ID.html

Information about web addresses can also be found in information APAR II11334.

Note: Any pointers in this publication to websites are provided for convenience
only and do not serve as an endorsement of these websites.

DNS websites

For more information about DNS, see the following USENET news groups and
mailing addresses:

USENET news groups
comp.protocols.dns.bind

BIND mailing lists
https://lists.isc.org/mailman/listinfo

BIND Users

v Subscribe by sending mail to bind-users-request@isc.org.
v Submit questions or answers to this forum by sending mail to

bind-users@isc.org.

BIND 9 Users (This list might not be maintained indefinitely.)

v Subscribe by sending mail to bind9-users-request@isc.org.
v Submit questions or answers to this forum by sending mail to

bind9-users@isc.org.

The z/OS Basic Skills Information Center

The z/OS Basic Skills Information Center is a web-based information resource
intended to help users learn the basic concepts of z/OS, the operating system that
runs most of the IBM mainframe computers in use today. The Information Center
is designed to introduce a new generation of Information Technology professionals
to basic concepts and help them prepare for a career as a z/OS professional, such
as a z/OS systems programmer.

Specifically, the z/OS Basic Skills Information Center is intended to achieve the
following objectives:
v Provide basic education and information about z/OS without charge
v Shorten the time it takes for people to become productive on the mainframe
v Make it easier for new people to learn z/OS

To access the z/OS Basic Skills Information Center, open your web browser to the
following website, which is available to all users (no login required):

xxxii z/OS V2R1.0 Communications Server: SNA Programming

http://www.rfc-editor.org/rfc.html
http://www.ietf.org/ID.html
http://www.isc.org/ml-archives/

http://publib.boulder.ibm.com/infocenter/zos/basics/index.jsp

About this document xxxiii

http://publib.boulder.ibm.com/infocenter/zos/basics/index.jsp

xxxiv z/OS V2R1.0 Communications Server: SNA Programming

Summary of changes

This section describes the release enhancements that were made.

New in z/OS Version 2 Release 1

For specifics on the enhancements for z/OS Version 2, Release 1, see the following
publications:
v z/OS Summary of Message and Interface Changes
v z/OS Introduction and Release Guide
v z/OS Planning for Installation
v z/OS Migration

© Copyright IBM Corp. 2000, 2013 xxxv

xxxvi z/OS V2R1.0 Communications Server: SNA Programming

Chapter 1. VTAM application program concepts

This chapter provides an overview of a VTAM application program. It describes a
VTAM application program by showing:
v A VTAM application program's relationship to the concepts of Systems Network

Architecture (SNA)
v The major programming elements in a VTAM application program
v A VTAM application program as part of an SNA network.

Systems Network Architecture (SNA) concepts in VTAM
VTAM follows SNA protocols and uses SNA concepts to connect and communicate
with elements in a data communication network. The following SNA concepts
provide helpful background information for the programmer writing a VTAM
application program:
v Network accessible units (NAUs)
v Primary and secondary logical units (PLUs and SLUs)
v Sessions
v Domains
v Networks

Network accessible units
Each element in an SNA network to which a data or control message can be sent is
assigned a network address. Each element with such an address is known as a
network accessible unit (NAU). The network address uniquely identifies the
element and contains the information necessary to route a message to its
destination.

VTAM recognizes various types of NAUs defined by SNA:
v System services control points (SSCPs)
v Physical units (PUs)
v Logical units (LUs)
v Control points (CPs)

Figure 1 on page 3 shows the location of these types of NAUs in a simplified SNA
network.

The system services control point (SSCP) is a unit of coding in VTAM that
manages a domain. The SSCP performs functions such as bringing up the domain
and shutting it down, assisting in the establishment and termination of sessions
between NAUs, and reacting to network problems (such as failure of a link or
cluster controller). To perform these functions, the SSCP must be able to
communicate with physical units (PUs) and logical units (LUs) under its control.

A physical unit (PU) is not literally a physical device in the network. Rather, a PU
is a portion of a device (usually programming or circuitry, or both) that performs
control functions for the device in which it is located and, in some cases, for other
devices that are attached to the PU-containing device. For the devices under its
control, the PU takes action during activation and deactivation, error recovery and

© Copyright IBM Corp. 2000, 2013 1

resynchronization, testing, and gathering of statistics about the operation of the
device. Each device in the network is associated with a PU.

The PU exists either within the device or within an attached controlling device. A
PU exists within a host processor, a communication controller, and a cluster
controller. For a terminal, however, the PU can be within the terminal, the host
processor or the communication controller, or the cluster controller to which the
terminal is attached.

A logical unit (LU) is a device or program by which an end user (an application
program, a terminal operator, or an input/output mechanism) gains access to the
SNA network. To the network, an LU is the source of a request coming into the
network, but the LU might not be the original source.

The contents of the request or the information on which the request is based might
have originated at a device controlled by the LU. (For example, in a 3601 Cluster
Controller, the LU is a program that handles input and output for one or several
finance terminals attached to the controller. Input actually originates at one of the
terminals, but it is the LU—the program—in the 3601 that uses the input to create
a request and begin transmitting the request.) Similarly, the network sees an LU as
the destination of a request, but the LU can pass the data on to a device for
recording, printing, or displaying to a terminal operator. (For example, data
received by an LU—a program—in a 3601 can be passed on to a finance terminal
to be displayed on the screen of that terminal.) In some cases, however, the LU is
an intrinsic part of the device at which the data is displayed (for example, a 3767
terminal contains the LU and is the input/output device).

Each advanced peer-to-peer network (APPN) has a control point (CP) that
manages the node and its resources in the APPN network. In an end node, the CP
communicates with the CP in its network node server to obtain APPN network
services. In a network node, the CP communicates with the CPs in adjacent
network nodes to manage the network. The control point directs the activation and
deactivation of CP-CP sessions and helps establish LU-LU sessions that cross the
APPN network.

The control point name of an adjacent APPN node can be predefined or learned
when the connection is established. The control point name of a VTAM node, or a
composite network node, is the SSCP name specified on a VTAM start option.

2 z/OS V2R1.0 Communications Server: SNA Programming

A VTAM application program is also an LU. VTAM sees it as an originator of and
destination for requests. Other programs in the host processor can interface with a
VTAM application program and can receive or transmit the contents of requests.
Therefore, although the VTAM application program is the LU, the requests it
handles can be used by another program. In this case, the other program is the end
user.

LUs are the only type of NAU that generally concern a VTAM application
programmer. A programmer is usually not concerned with the SSCP, CP, and PUs.
A VTAM application programmer is concerned with LUs because the program
communicates with them. A VTAM application program does not generally
communicate directly with the SSCP, CP, or PUs; however, requests issued by the
application program can lead to actions by the SSCP, CP, or PUs.

Sessions
Before two NAUs can communicate with each other, they must be bound together
in what is known as a session. An SNA network establishes the following types of
sessions:

VTAM

System
services
control
point
(SSCP)

Host Processor

VTAM
application program

VTAM
application program LU

PU PU
LULU

LU

LU

LU

Application programs
in the cluster controller

Cluster
Controller

Cluster
Controller

Communication
Controller

PU1

1

1 PU function is provided
by the attached
communication controller.

Devices

Devices

Devices

Communication
Controller

Cluster
Controller

LULULU
PU

LU
PU

LU

PU
PU

PU

Output
device

Input
device

CP

Figure 1. SSCP, CP, PUs, and LUs in an SNA network

Chapter 1. VTAM application program concepts 3

v SSCP-SSCP
v SSCP-PU
v SSCP-LU
v LU-LU
v CP-CP.

When a network includes more than one host processor, and therefore more than
one VTAM (or VTAM in one or more host processors and other SNA access
methods in one or more other host processors), a session called an SSCP-SSCP
session must be established between the SSCP in one VTAM and any other SSCP
with which the first SSCP communicates.

Within the portion of the network controlled by each SSCP, different types of
sessions are established in stages. The SSCP must first establish an SSCP-PU
session with each PU that is active in the configuration. Then, for each active LU
associated with a PU, the SSCP must establish an SSCP-LU session. And finally,
when a pair of LUs indicates that they want to communicate with each other, the
SSCP must establish an LU-LU session between them.

In a particular session between two LUs, one LU adheres to a set of SNA-defined
primary protocols and is known as the primary logical unit (PLU) for that session.
The other LU adheres to a set of secondary protocols and is known as the
secondary logical unit (SLU) for that session. More than one session can exist
between two LUs. Multiple concurrent sessions between the same two LUs are
referred to as parallel sessions. Not all LUs have parallel session capability.

A VTAM application program can act as a PLU, as an SLU, or as both at the same
time. It can be a PLU in some sessions while it is also functioning as an SLU in
others. In a set of parallel sessions involving an application program and another
LU, the application program can operate as the PLU for some sessions, and the
SLU for the remainder. The LUs associated with cluster controllers are called
device-type LUs in this book; they can act only as SLUs.

CP-CP sessions are between control points in the APPN nodes, similar to
SSCP-SSCP sessions between system service control points in subarea nodes.
CP-CP sessions are used to exchange network information that enables control
points to:
v Search for resources
v Register resources
v Set up LU-LU sessions
v Route network management data
v Learn the location and characteristics of nodes and links.

A CP-CP session is actually a pair of sessions between control points in adjacent
nodes in an APPN network. This pair of sessions is an LU 6.2 contention-winner
session and an LU 6.2 contention-loser session that together provide a CP-CP
session. LU 6.2 protocols are used to communicate network control information
and session control information.

A network node establishes a CP-CP session with each adjacent network node and
with each served end node. Each end node is required to have a CP-CP session
with a network node, which acts as its current network node server. Connections
to adjacent LEN nodes do not support CP-CP sessions. After connection has been
established between two attached nodes, a CP-CP session can be established.

4 z/OS V2R1.0 Communications Server: SNA Programming

Identification information is exchanged between the nodes. A CP-CP session is
then automatically started between the control points, if the nodes indicate that
they want the CP-CP session and if no CP-CP session already exists between them.
Each node informs the other about the capabilities of its control point and about
the links connected to it. If both nodes are network nodes, they exchange updated
information about the nodes and links (and their characteristics) between network
nodes within the network.

The sections that follow describe the steps required to establish some of the
different types of sessions. The numbers beneath the headings correspond to the
numbers in Figure 2. The example used is a device-type LU communicating with
an application program LU.

SSCP-PU session
1

To prepare for an SSCP-LU session, the SSCP must first establish a session with the
PU that controls the LU. This type of session is an SSCP-PU session. It enables the
exchange of requests and responses pertaining to startup and shutdown of the
configuration or the individual PU, and to the recovery of operations after a device
or link failure. After VTAM establishes the SSCP-PU session, the SSCP might
attempt to establish a session with any active LU associated with that PU. The
SSCP-PU session is established on a nonswitched line as soon as the PU is
activated. On a switched line, the session is established following a dial-in or
dial-out operation. For channel-attached SNA devices, the session is established
when physical connection is established. In VTAM, the SSCP establishes the
SSCP-PU session; a VTAM application program itself does not take any direct
action to establish that session.

To
other
LUs

VTAM
application
program LU
(PLU)

VTAM

SSCP

LOGON
exit routine

OPNDST

PU

Device
type
LU (SLU)

SSCP-LU session SSCP-LU session

SSCP-PU
session

Bind session (BIND)
request

LU-LU session

initiate request
or Logon

Control initiate
(CINIT) request

Figure 2. Example of establishing an LU-LU session

Chapter 1. VTAM application program concepts 5

SSCP-LU session
2

Once a session is established between the SSCP and a PU, the SSCP can issue
requests to establish a session between itself and any active LU associated with the
PU. This type of session, called an SSCP-LU session, enables SNA requests to flow
back and forth between the LU and the SSCP. These requests pertain mainly to
LU-LU session establishment and termination. For application program LUs,
VTAM establishes the SSCP-LU session with the application program when the
application program opens its ACB. See “Opening the program” on page 10 for
details on opening an ACB. The SSCP-LU session with the application program
ends when closing its ACB. See “Closing the program” on page 13 for details on
closing an ACB. For other LUs (for example, those associated with cluster
controllers), VTAM usually establishes SSCP-LU sessions because of a command
issued by the VTAM operator.

Initiate request or logon
3

After the SSCP establishes a session with the device-type LU, that LU might
attempt to initiate a session with a VTAM application program LU. Action by the
device-type LU to start such a session is usually initiated when a terminal operator
communicates with the LU and indicates that he or she wants to work with an
application program in the host processor. The LU either uses the logon
information entered by the terminal operator to create an Initiate request to be sent
to the SSCP, or the LU passes the logon information from the terminal operator to
the SSCP in the form in which it is received from the operator. The SSCP
immediately translates the logon form of the request into an Initiate request
format.

In a similar manner, after its SSCP-LU session is established, a VTAM application
program (replacing the device-type LU in Figure 2 on page 5) can request that a
session be initiated between itself and another LU (for example, another VTAM
application program). It does this by issuing a VTAM macroinstruction that causes
an Initiate request (containing logon information) to be sent to the SSCP.

Control Initiate request
4

When the Initiate request is processed by the SSCP, the SSCP notifies the VTAM
application program that the Initiate has been received by sending a Control
Initiate (CINIT) request on the SSCP-to-application program LU session.
Information derived from the original Initiate that requested the session is
transmitted in the CINIT request and includes session parameters and, optionally,
a user logon message. The user logon message contains particular user data that
the terminal operator or LU that initiated the session wants to be passed to the
VTAM application program. Session parameters and the user logon message are
available in the CINIT for inspection by the program. Session parameters indicate
the communication rules that the initiating LU wants used for the session that is
about to be established. Parameters specify whether chained or unchained requests
are sent, what kinds of responses are requested, which LU starts and ends
brackets, and so on. These session protocols are described in Chapter 6,
“Communicating with logical units,” on page 151.

LOGON exit routine
5

6 z/OS V2R1.0 Communications Server: SNA Programming

VTAM notifies the application program that the CINIT has been received by
scheduling execution of the program's LOGON exit routine. During processing of
the CINIT, the application program determines whether the session parameters in
the CINIT are the right parameters for the session or whether a different set of
session parameters should be used. The LOGON exit routine then either accepts or
rejects the CINIT by issuing an OPNDST or CLSDST macroinstruction.

Establishing the LU-LU session (OPNDST macroinstruction)

6

To establish a session with the LU, the application program issues an OPNDST
macroinstruction. As a result of the OPNDST macroinstruction, VTAM builds a
BIND request and sends it to the LU. To reject the CINIT, the application program
issues a CLSDST macroinstruction, and the session is not established.

BIND request
7

The BIND request establishes the LU-LU session. The BIND request contains the
session parameters used for the session. The two types of BIND requests are
non-negotiable and negotiable. When you use the non-negotiable type, the BIND
request contains the session parameters that the PLU decided to use for the
session. These parameters might be the same as those suggested in the CINIT. If
the SLU agrees with the session parameters, it sends a positive response to the
BIND to establish a session. If the SLU does not agree with the session parameters,
it rejects the request, and the LU-LU session is not established.

When the negotiable type BIND is used, if the SLU does not agree with the session
parameters provided by the PLU, it can change them and return the modified
parameters with its positive response. If the PLU agrees with the changes, the
session has been established, and communication can begin. Otherwise, the PLU
must issue a CLSDST macroinstruction to terminate the session; this causes VTAM
to send an UNBIND request to the SLU and the session is terminated.

Completing the LU-LU session establishment

8

When VTAM receives a positive response to the BIND request, it completes the
establishment of the LU-LU session and the LUs are ready to communicate. In
some cases, the exchange of requests and responses might not begin until a Start
Data Traffic (SDT) request is sent from the PLU to the SLU. The need for the SDT
request is determined by the transmission services profile in the session
parameters.

Major programming elements in a VTAM application program

Figure 3 on page 8 shows the major functions that any VTAM application program
performs:
v Opening and closing the program (associating the program with and

dissociating it from VTAM)
v Establishing and terminating sessions with other LUs
v Communicating with LUs with which the program is in session.

Chapter 1. VTAM application program concepts 7

Figure 4 on page 9 and Figure 5 on page 10 show these major functions in more
detail in the approximate order in which the functions occur. Although not every
VTAM facility is shown, the facilities that are shown give a general idea of a
VTAM application program. (In particular, the application program is the PLU; a
different set of macroinstructions and exits is used to establish and terminate a
session in which the application program is the SLU.) Following Figure 4 on page 9
and Figure 5 on page 10, the numbers beneath the section headings correspond to
the numbers in Figure 4 on page 9 and Figure 5 on page 10.

Processing parts

VTAM application program

VTAM

Communication part

Network

Opening and closing the program

Establishing and terminating
sessions with logical units

Communicating with logical units

Figure 3. Major functions of the communication part of a VTAM application program

8 z/OS V2R1.0 Communications Server: SNA Programming

VTAM Application Program

Processing
Parts

Communication
Part

VTAM

START

Exit Routines

CINIT request

OPEN ACB1

LOGON exit routine

SETLOGON....,OPTCD=START,...

RECEIVE RPL=(2), OPTCD=ANY,
AREA=AREA1

OPNDST ...,OPTCD=ACCEPT,
NIB=NIB1,...

RECEIVE RPL=(2), OPTCD=SPEC

SEND ...,POST=RESP,...

SEND ...,POST=SCHED,...
SEND ...,POST=SCHED,...
SEND ...,POST=SCHED,...

SEND ...,STYPE=RESP,...

(1)

(2)

(3)

(4)

(5)

(6)

(7)

BR R14

(logon request)

Request

Request

RequestRequest

Request

Request

Request

Response

Response

Figure 4. Major programming elements in the communication part of a VTAM application
program (Part 1 of 2)

Chapter 1. VTAM application program concepts 9

Opening the program

1

Assume that an application program has been started. The program issues an
OPEN macroinstruction to open an access method control block (ACB). The ACB,
in the data declarations area of the program, enables VTAM to relate the
application program to the name of the APPL definition statement used by the
system programmer to define the application program to VTAM.

VTAM verifies that a user is authorized to open a VTAM application ACB. VTAM
does this by invoking the System Authorization Facility (SAF) router, which directs
control to the installed security management product, such as the Resource Access
Control Facility (RACF®), to perform the requested task. For information on how to
use RACF for this security feature and what restrictions apply, refer to the z/OS
Security Server RACF Security Administrator's Guide. For additional information
on how SAF is invoked, refer to “Opening an application program” on page 55.

When the OPEN macroinstruction processing is completed, an SSCP-LU session is
established between the SSCP and the application program LU. The SETLOGON
macroinstruction is required to enable the LOGON exit routine to be driven when
a CINIT is received.

Response to a request

CLSDST RPL=(2)

RESP exit routine

Other exit routines

CLOSE ACB1

Defined constants and storage

ABC Points to APPL name
RPL(s)

END

ACB1

AREA1

NIB(s)
EXLST
DC CL100

(10)

(11)

(8)

(9)

(12)

Post ECB

Figure 5. Major programming elements in the communication part of a VTAM application
program (Part 2 of 2)

10 z/OS V2R1.0 Communications Server: SNA Programming

Establishing a session with an LU

2

A common way to establish a session with an LU is to have the LU send an
Initiate request, which asks for a session with a particular application program. A
VTAM application program might have a LOGON exit routine that is
automatically entered when a CINIT request resulting from the Initiate request is
received. The LOGON exit routine establishes the session with the LU by issuing
OPNDST OPTCD=ACCEPT. The OPNDST points to a node initialization block
(NIB). The NIB contains information that VTAM associates with the session. When
the OPNDST processing is completed, the application program and the LU can
exchange requests and responses.

When an application program establishes a session with another LU, a 32-bit
communication identifier (CID) is returned in two control blocks used in
establishing the session (the request parameter list (RPL) and the node
initialization block (NIB)). The CID identifies the session. Whenever the application
program sends a request or response unit (RU) to the LU on a particular session,
the CID of that session must be in the RPL used to send the RU.

Receiving requests from LUs

3 4

After the VTAM application program establishes one or more sessions, the
program can issue the RECEIVE macroinstruction to receive input on a session
with an LU.

The RECEIVE and most other VTAM application program macroinstructions must
furnish the address of a request parameter list (RPL), shown in the data
declarations area of Figure 4 on page 9. Fields in the RPL contain parameters that
tell VTAM exactly how to perform the requested operation. On completion of a
requested operation, VTAM places feedback information in the RPL, where it can
be examined by the application program.

Each request that a VTAM application program sends or receives can contain data
or control information or both. Data is information that is meaningful only to the
processing portion of an application program. If a request contains data, the
RECEIVE operation moves the data from VTAM to a designated area in the
application program, for example to AREA1 shown in the data declarations area of
Figure 4 on page 9. The application program uses control information to direct the
further exchange of requests and responses on the session. The application
program puts control information into, or receives the control information from,
the RPL that is specified on the SEND or RECEIVE macroinstruction.

A RECEIVE macroinstruction can be issued to receive input on a specific session,
or on any session. To receive a request sent on any session, a RECEIVE
OPTCD=ANY is issued, as shown at 3 in Figure 4 on page 9. Such a RECEIVE is
completed if VTAM is holding a request received on any session or is completed
when such a request is received. (A facility exists to preclude selected sessions
from completing such a RECEIVE.)

A RECEIVE macroinstruction can also be issued in such a way that only a request
received on a specific session satisfies the RECEIVE. To do this, a program issues a

Chapter 1. VTAM application program concepts 11

RECEIVE OPTCD=SPEC with the RPL indicating the session from which the input
is desired, as shown at 4 in Figure 4 on page 9.

Completion of RECEIVE OPTCD=ANY might be followed by execution of a
processing routine of the program and, subsequently, by having the processing part
of the program call the communication part with individual requests for input and
output. The communication part issues RECEIVE OPTCD=SPEC at 4 or it issues
one or more SENDs at 5 or 6.

As implied by the preceding description, a RECEIVE is not completed until VTAM
receives a request from an LU and passes it to the application program.

Sending a request

5 6

In contrast to a RECEIVE macroinstruction, a SEND macroinstruction can be
completed at either of two different times:
v When the request is scheduled (that is, when VTAM has accepted the request,

moved the data to its own output area, and prepared everything for the
transmission)

v When the request has been responded to (that is, after VTAM has sent the
request and received a response from the LU at the other end of the session).

To specify completion upon receipt of a response, the programmer uses a SEND
POST=RESP (as at 5), meaning that the results of the operation are immediately
available in the RPL when SEND is completed. With POST=RESP, the application
program cannot reuse the RPL or output buffer associated with the SEND until the
operation is completed.

As an alternative to POST=RESP, a request can be scheduled for output (SEND
POST=SCHED). On completion of the SEND 6, the data has been accepted by
VTAM, and the application program can reuse the RPL and the output buffer. The
application program itself must determine if a schedule request actually arrives at
its destination and is processed successfully. One way is to request the LU to send
back a response, which is an indication of whether and how a request arrives and
is processed. A response can be requested in each SEND POST=SCHED. When the
response arrives, VTAM either completes a RECEIVE that can receive responses
(not shown) or enters a VTAM application program's RESP exit routine, such as
the one at 8.

Sending a response

7

The SEND requests in 5 and 6 specify the sending of a request. The application
program might also want to send a response to a request that it had previously
obtained with RECEIVE. This is done by specifying STYPE=RESP instead of
STYPE=REQ in the SEND macroinstruction and by specifying other parameters to
indicate the type of response (for example, positive or negative) to be sent. A
response is sent because the LU requested it; it is a special kind of RU that is
identified as a response to a particular preceding request. Each request is given a
sequence number by the sender's access method (VTAM or the LU); the receiver of
a request puts the same sequence number in a response for that request, thus
indicating within the response which request is being responded to.

12 z/OS V2R1.0 Communications Server: SNA Programming

Receiving a response

8

When an application program uses SEND POST=SCHED macroinstructions, the
application program can take direct action to receive each response; that is, for
each response, it can issue RECEIVE RTYPE=RESP. Instead, a program can contain
a RESP exit routine (at 8), which is scheduled each time a response is received. The
RESP exit routine can notify the mainline program of receipt of the response,
perhaps by posting an event control block (ECB). The mainline program must then
correlate the response with the SEND operation that produced it.

Other exit routines

9

In addition to the LOGON and RESP exit routines, VTAM provides automatic
scheduling of other special-purpose exit routines. For example, VTAM schedules
the LERAD and SYNAD exit routines when the application program issues a
macroinstruction that uses an RPL (such as SEND or RECEIVE) and when that
macroinstruction results in an error or a special condition. The addresses of these
special-purpose exit routines are identified to VTAM in an EXLST macroinstruction
(in the data declarations area). The ACB, NIB, or both point to the EXLST.

VTAM also provides another general kind of exit routine, the RPL exit routine. An
RPL exit routine is identified in the EXIT operand of an RPL-based
macroinstruction (any macroinstruction that uses an RPL). A different RPL exit
routine can be identified in each RPL-based macroinstruction, or some
macroinstructions can use the same exit routine. When the operation requested in
the macroinstruction is completed, control is automatically given to the exit routine
specified in the EXIT operand. Having an RPL exit routine scheduled upon
completion of a request is an alternative to having VTAM post an ECB upon
completion.

Terminating a session with an LU

10

The application program terminates a session with an LU by issuing a CLSDST
macroinstruction. If the LU can support only one session at a time, that session
must end before the LU can enter into a session with another application program.

Closing the program

11

An application program can be closed when the program determines it should be
or when the VTAM operator requests it. To close an application program, the
program issues a CLOSE macroinstruction. This terminates any sessions the
application program has with other LUs and disassociates the program from
VTAM (that is, the SSCP-LU session is terminated).

Chapter 1. VTAM application program concepts 13

Constants and control blocks

12

In addition to buffers (data areas) required for input and output messages, and
other areas such as status flags for LUs, each VTAM application program must
define (or generate dynamically) the following control blocks:
v One ACB to define several facts about the program itself.
v One EXLST (list of exit routine names) if any exit routines are to be written.

Although not strictly required, certain exit routines, such as TPEND, NSEXIT,
SCIP, and LOSTERM are strongly recommended.

v At least one RPL for each request that is pending concurrently with other
requests.

v At least one NIB for each concurrent session-establishment procedure. It is
possible to use only one NIB if sessions are established one at a time.

VTAM macroinstructions

VTAM provides a macroinstruction (the GENCB macroinstruction) that allows you
to create control blocks and initialize certain fields during program execution.
VTAM also provides macroinstructions (the MODCB, SHOWCB, and TESTCB
macroinstructions) that allow you to test and change certain control block fields. In
addition, macroinstructions are provided that generate DSECTs for the control
blocks. These DSECTs enable control block fields to be located and tested with
assembler language instructions. VTAM application program macroinstructions and
control blocks are discussed in more detail in Chapter 2, “VTAM language,” on
page 19.

VTAM application program as part of an SNA network

Figure 6 on page 15 shows an example of a VTAM application program as part of
an SNA network. (An SNA network is the part of a user-application network that
conforms to the formats and protocols of SNA. It enables you to transfer data
reliably among end users and provides protocols for controlling the resources of
various network configurations.) The numbers in Figure 6 on page 15 refer to
major parts of the system and are described in the text that follows.

A VTAM application program can communicate with the following:
v Other VTAM application programs
v SNA devices (channel-attached and SDLC link-attached)
v Non-SNA 3270 devices (channel-attached and BSC link-attached)
v Non-SNA devices in conjunction with the Network Terminal Option (NTO)

licensed program
v LUs controlled by another VTAM

When the unqualified term logical unit is used in this book, it refers to any or all of
the above. In general, the term device-type LU refers to any LU other than an
application program.

14 z/OS V2R1.0 Communications Server: SNA Programming

VTAM application program

1

A VTAM application program can contain two types of instructions:
communication instructions and processing instructions. The application program
always contains communication instructions. These instructions send and receive
SNA messages, called request/response units (RUs), and control other aspects of
communication between the application program and other elements in the
network. The application program can also contain processing instructions. These
optional instructions manipulate data before it is sent or after it is received.

If a VTAM application program is small and contains processing instructions, those
processing instructions can be blended with communication instructions. More
commonly, however, the processing instructions are written separately, with an
interface defined between one or more processing parts of the program and the
communication part of the program. This separation of function enables each part
to be created separately and means that changes or additions to one part do not
affect other parts.

VTAM application programs can share the resources of the SNA network; that is,
multiple application programs can use the same communication controllers, cluster

Host Processor

Communication
Controller

NCP

Device Device

To other SDLC
Cluster Controller

SDLC
Link

SDLC Cluster
Controller

SDLC Cluster
Controller

LU LU

VTAMVTAM application program A

VTAM application program B

Figure 6. VTAM application programs in an SNA network

Chapter 1. VTAM application program concepts 15

controllers, and communication lines to reach LUs. For example, in Figure 6 on
page 15, VTAM application programs A and B use the same communication
controller (at 5) and the same SDLC links to reach LUs (at 6). The application
programs, however, are not aware that they are sharing these resources because
VTAM, the network control program (NCP), and other programming elements in
the network handle communication in such a way that the programs do not know
they are sharing the resources.

Processing part
2

The instructions in the processing parts of an application program can be written
in assembler language or in a higher-level language, such as PL/I or COBOL. If
written in assembler language, the instructions can be blended with the
communication instructions in the program. But more commonly, as shown in
Figure 6 on page 15, the processing parts 2 are separate and request data
communication services by calling or branching to the communication part 3 of the
program. Many programs contain several processing parts (routines or modules)
that use a common communication part.

Communication part
3

The communication part of a VTAM application program contains
macroinstructions and associated control blocks used to communicate with LUs.
The communication part must be written in assembler language.

VTAM part
4

The part of an SNA network controlled by VTAM is called its domain. LUs are
normally defined as part of the domain during VTAM definition and are then
activated by start procedures or VTAM operator commands. The VTAM
application program, which is itself an LU, then establishes sessions with one or
more other LUs (on its own initiative or as the result of session-initiation requests
by other LUs). A session is a logical connection between two LUs that allows an
orderly series of communications between the LUs. Once a session is established,
the program requests VTAM to perform data-transfer operations. In addition to
managing the domain and building channel programs, VTAM performs such
services as input and output data buffering, automatic scheduling of application
program exit routines, and sequence numbering of outbound requests. VTAM
requests the operating system to execute channel programs that it has built; the
channel programs result in communication with channel-attached communication
controllers or cluster controllers, which in turn forward the information toward its
ultimate destination. For processors with a communication adapter, the channel
programs can be used to communicate directly with terminals, in addition to
cluster controllers and communication controllers.

Network control program
5

On receiving the input or output requests and associated data, the network control
program (NCP) in the communication controller does what is required to
communicate with LUs on data communication lines. Many functions previously

16 z/OS V2R1.0 Communications Server: SNA Programming

performed by a host-processor access method (for example, basic
telecommunications access method, BTAM) or application program are now
performed by the communication controller (for example, the communication
controller schedules line activity, retries operations after transmission errors, and
collects error statistics).

Logical unit

6

A VTAM application program communicates with other LUs. In this example, the
LUs with which the application program is communicating are associated with an
SNA cluster controller.

In general, for programmable SNA devices, the user defines which processing
functions take place in a program in the programmable device (such as a cluster
controller) and which take place in the VTAM application program in the host
processor. The user must coordinate the cluster controller program and the VTAM
application program to enable them to work together.

Terminal operator and devices

7

If the VTAM application program communicates with a cluster controller program
rather than with a non-programmable terminal, the VTAM application program
might not need to know about the terminal operator or device actions. The LU
(implemented by the cluster controller program) determines whether and how data
received from a terminal operator or device goes to the VTAM application program
and whether and how data received from the VTAM application program goes to
the terminal operator or device.

A VTAM application program can also communicate with a batch-transmission or
batch-reception program in a cluster controller (such as the 3791 batch function).
The VTAM application program does not need to know the original source of, or
the eventual disposition of, data received from or sent to the subsystem batch
program.

Another VTAM application program

8

A VTAM application program can also communicate with another VTAM
application program. The two application programs can be in the same host
processor or in different host processors.

LU 6.2 components are an addition to VTAM. They perform many, but not all,
LU 6.2 functions. LU 6.2 components enable an LU representing one application to
hold a conversation with an LU representing another application. The applications
participating in the conversation can be in the same domain or in different
domains. LU 6.2 initiates and terminates conversations between LUs using
normally established sessions. Although there can be multiple conversations using
one LU 6.2-initiated session, they cannot be concurrent.

Chapter 1. VTAM application program concepts 17

LU 6.2 associates resources with application programs. The application programs
must further associate the resources with the appropriate transaction programs.

LU 6.2 components of VTAM together with the application program form a type
6.2 LU. VTAM supports most of the functions defined in the LU 6.2 architecture,
but not all of them. For further information on LU 6.2, refer to the z/OS
Communications Server: SNA Programmer's LU 6.2 Guide.

Using a VTAM application program to manage the network

VTAM provides two independent facilities through which properly authorized
application programs can manage a network. With the first facility, a program
operator application program can issue most of the VTAM operator commands
and can receive VTAM messages normally delivered to a VTAM operator console.
Chapter 2, “VTAM language,” on page 19, describes the SENDCMD and RCVCMD
macroinstructions. Refer to Appendix L, “Program operator coding requirements,”
on page 875, for information on program operator coding requirements.

With the second facility, an authorized application program can use the
communication network management (CNM) interface. Such an application
program can collect data related to SNA sessions from VTAM and NCP, collect
maintenance-related information from a PU, or load a PU type 2 within its domain.
This capability, described in Chapter 12, “Coding for the communication network
management interface,” on page 337,

18 z/OS V2R1.0 Communications Server: SNA Programming

Chapter 2. VTAM language

An application program uses VTAM macroinstructions to request VTAM services.
VTAM provides assembler language macroinstructions to:
v Associate an application program with or disassociate it from VTAM
v Establish and terminate sessions between the application program and specific

LUs
v Communicate with logical units (LUs)
v Build and initialize control blocks used when the application program requests

session establishment, communication, or other services from VTAM
v Manipulate a control block (for example, to test the value of a field in a control

block)
v Communicate with the SSCP to perform communication network management

(CNM) functions
v Transfer VTAM operator commands and messages between an application

program and VTAM.

VTAM macroinstructions have the same format as assembler instructions and
follow the same rules. See “How the macroinstructions are described” on page 371
for coding rules that apply to these instructions.

Characteristics of the language

The following sections describe some characteristics of the VTAM language.

Keyword operands
The operands in VTAM macroinstructions, with the exception of OPEN and
CLOSE, are keyword operands rather than positional operands. Keyword operands
make the coding easier to read. The keywords themselves identify control block
fields. Most keyword operands are optional.

Manipulative macroinstructions

These macroinstructions provide an easy way to build control blocks and gain
access to particular control block fields, usually to test or display values after a
requested operation. Because you specify fields symbolically, you do not have to
know field displacements.

Exit routines
The VTAM application program specifies that VTAM schedule special-purpose exit
routines automatically. These routines handle conditions such as receiving a
request for session establishment from the SSCP or receiving a certain type of
control request on an LU-LU session. In addition, a VTAM application program
can specify that VTAM complete a particular operation by scheduling an
RPL-specified exit routine instead of posting an ECB. RPL exit routines provide
several advantages over posting an ECB. These advantages include additional
programming flexibility and convenience, as well as greater priority in handling an
event's completion.

© Copyright IBM Corp. 2000, 2013 19

Summary description of the VTAM macroinstructions

The following sections provide a summary description of the VTAM application
program macroinstructions. For a complete description of each macroinstruction,
refer to “Description of the VTAM macroinstructions” on page 375.

In the descriptions of VTAM macroinstructions, you encounter the terms
declarative, manipulative, ACB-based, and RPL-based. These terms refer to
categories of VTAM macroinstructions that have related functions. Figure 7 shows
these categories and identifies the macroinstructions that are included in each one.

Declarative Macroinstructions

When the application program
acts as an SLU

Communication Macroinstructions

Macroinstructions that Assist in Session Establishment
or Communication:

Program Operator Macroinstructions

When the application program
acts as a PLU:

Session-Establishment Macroinstructions

RPL-Based Macroinstructions

ACB-Based Macroinstructions

Manipulative Macroinstructions

ACB
EXLST
RPL
NIB

GENCB
MODCB
SHOWCB
TESTCB

CLOSE
OPEN

These build control blocks during program
assembly. (DSECT-creating macroinstructions
are available for these and other data areas.
The ISTGLBAL macroinstruction is also provided
to set macro global variables at assembly time.)

These request session establishment, data
transfer, and program operator control. They
all use an RPL and, with the exception of CHECK,
permit RPL modification to be specified in the
macroinstruction itself.

These are build and manipulative control blocks
during program execution.

These open and close the application
program's ACB.

OPNDST
CLSDST
SIMLOGON

REQSESS
OPNSEC
TERMSESS
SESSIONC (to reject a BIND request)

SEND
RECEIVE
RESETSR
SESSIONC (for other than rejecting a BIND request)

CHANGE
CHECK
EXECRPL
INQUIRE
INTRPRET
SETLOGON

SENDCMD
RCVCMD

Figure 7. Macroinstructions by category

20 z/OS V2R1.0 Communications Server: SNA Programming

Declarative macroinstructions

Control blocks are built and initialized by coding a macroinstruction for each ACB,
EXLST, NIB or RPL control block. The operation codes of the macroinstructions are
identical to the names of the control blocks that they build and initialize. The
following macroinstructions build control blocks:

ACB

Builds and initializes an access method control block (ACB). An ACB contains
information that the application program provides VTAM about the application
program in its entirety. Primarily, it names the application program and the list of
exit routines associated with the application program. The ACB contains
information about the application program.

EXLST

Builds and initializes an exit list (EXLST). An EXLST contains the addresses of
application program exit routines that VTAM schedules when certain conditions
occur (for example, when a CINIT request resulting from an Initiate request by an
LU is received). The EXLST contains the addresses of exit routines.

NIB

Builds and initializes a node initialization block (NIB). An NIB contains
information that the application program provides VTAM about general
communication characteristics that exist on a session. This information is provided
to VTAM as part of a session-establishment request and it remains in effect for the
duration of the session. The NIB contains information about a session.

RPL

Builds and initializes a request parameter list (RPL). An RPL contains information
(parameters) that the application program provides VTAM when requesting session
establishment, communication, or any other RPL-based operation. On completion
of the requested action, the RPL contains information that VTAM has put there for
the application program. The RPL contains information about a request for an
operation.

An ACB, EXLST, NIB, or RPL control block can be assembled in the application
program by using the appropriate control-block-building macroinstruction
described in the preceding sections, or the control block can be created and
initialized during program execution by using the GENCB macroinstruction
described in “Manipulative macroinstructions” on page 22.

DSECT-creating macroinstructions are provided by VTAM to generate maps for the
ACB, EXLST, NIB and RPL control blocks. The DSECT-creating macroinstructions
are designated IFGACB, IFGEXLST, ISTDNIB and IFGRPL. See “Using
DSECT-creating assembler instructions and macroinstructions” on page 272 for
details.

Also, at assembly time, the ISTGLBAL macroinstruction can be used to declare and
set macro global variables that describe the VTAM product installed. For further
information on ISTGLBAL macro global variables, refer to “ISTGLBAL
macroinstruction” on page 274.

Chapter 2. VTAM language 21

Manipulative macroinstructions

VTAM provides a group of macroinstructions that manipulate certain control block
fields. These macroinstructions are more convenient than assembler language
instructions because they refer to fields symbolically rather than by specific
control-block field location. The manipulative macroinstructions are:

GENCB

Builds an ACB, EXLST, NIB, or RPL during program execution and can initialize
certain fields with specified values. GENCB can also generate the control blocks in
dynamically allocated storage. One GENCB can build multiple copies of one
control block.

SHOWCB

Obtains the values from certain fields of a control block and places them in an area
in the application program where they can be examined. In addition to fields that
are set by the application program's use of macroinstruction keyword operands, a
number of control block fields can be shown that are set by VTAM.

TESTCB

Tests the contents of certain fields against a value and sets the condition code in
the program status word (PSW).

MODCB

Changes the contents of certain fields by inserting specified values in the fields.

Several different forms of the manipulative macroinstructions exist. In addition to
the standard form, there are the following:
v List form
v Generate form
v Remote list form
v Execute form.

These alternate forms can be used by reentrant programs or by programs sharing
with other programs the parameter lists created when the macroinstructions are
executed. See Appendix K, “Forms of the manipulative macroinstruction,” on page
865, for the other forms of the manipulative macroinstructions.

Rather than using the manipulative macroinstructions, the program can include
macroinstructions that are supplied by IBM to generate DSECTs for each kind of
control block. Each DSECT shows the field names and possible values that each
field can contain. These names and values can be used in assembler language
instructions to set and test designated fields. See “Using DSECT-creating assembler
instructions and macroinstructions” on page 272 for details.

ACB-based macroinstructions

The OPEN and CLOSE macroinstructions fall into this category. These
macroinstructions inform VTAM that an application program is beginning or
ending its use of VTAM services.

22 z/OS V2R1.0 Communications Server: SNA Programming

OPEN

Identifies an application program to VTAM and allows it to issue VTAM
macroinstructions. After the program is identified, VTAM can schedule exit
routines associated with the program, and accept requests for sessions with the
application program.

CLOSE

Indicates to VTAM that an application program is terminating its association with
VTAM and the SNA network.

RPL-based macroinstructions

These macroinstructions request session establishment, data transfer, and VTAM
program operator control. They all use an RPL and, with the exception of CHECK,
permit you to specify RPL modifications in the macroinstruction itself. See the
following sections for a description of the RPL-based macroinstructions:
v “Session-establishment macroinstructions”
v “Session-termination macroinstructions”
v “Communication macroinstructions” on page 24
v “Macroinstructions that assist in session establishment or communication” on

page 25
v “Program operator macroinstructions” on page 26

Session-establishment macroinstructions

OPNDST:

Requests VTAM to establish a session with a designated LU in which the
application program acts as the PLU or requests VTAM to restore sessions pending
recovery.

OPNSEC:

Informs VTAM that the application program accepts the session parameters or
wishes to change the session parameter transmitted to it in a BIND request, and
that VTAM should complete establishing the session in which the application
program acts as the SLU.

REQSESS:

Requests VTAM to initiate a session with a designated LU in which the application
program acts as the SLU. The designated LU cannot be an independent LU.

SIMLOGON:

Requests VTAM to initiate a session with a designated LU in which the application
program acts as the PLU.

Session-termination macroinstructions

CLSDST:

Requests VTAM to terminate a session or reject a request for a session (CINIT)
between the application program acting as the PLU and an LU.

Chapter 2. VTAM language 23

SESSIONC:

Used by an application program to reject a BIND request, thus indicating that the
application program does not wish to establish the session.

TERMSESS:

Requests VTAM to terminate a session between the application program acting as
the SLU and an LU.

Communication macroinstructions

RECEIVE:

Requests VTAM to transfer a request or response to the application program's data
area (if the input is data), or to appropriate fields of the RPL (if the input is control
information or a response), or to both. A particular RECEIVE can be restricted to
get input from a specific session or to get input from any of a group of sessions.

The RECEIVE macroinstruction allows the application program to receive
unsolicited formatted requests that contain maintenance data from physical units
(PUs) in the SSCP's domain, or to receive replies from PUs about requests for
maintenance data.

RESETSR:

Changes the mode of receiving input for a particular session. The modes are
continue-any (have input for the session satisfy an outstanding RECEIVE that
accepts input from any session) and continue-specific (have input satisfy an
outstanding RECEIVE that specifies only that particular session). RESETSR can also
be used to cancel outstanding RECEIVEs for the specified session.

SEND:

Requests VTAM to transmit a request or response on a specific session. Data in a
request is transferred from an output area in the application program; control
information in a request or response is specified symbolically in the SEND
macroinstruction.

When used by a communication network management application program, the
SEND macroinstruction allows the application program to send formatted request
units to the SSCP requesting maintenance data from PUs with which the SSCP is in
session.

SESSIONC:

When it is used by an application program acting as a PLU, SESSIONC requests
VTAM to send to an SLU those session control requests that do at least one of the
following:
v Start or stop the exchanging of requests and responses with the SEND and

RECEIVE macroinstructions
v Clear out all pending requests and responses for that session
v Assist in synchronizing request sequence numbers.

When used by an application program acting as an SLU, SESSIONC does the
following:

24 z/OS V2R1.0 Communications Server: SNA Programming

v Requests the PLU application program to begin recovery action
v Sends a response to a sequence number request
v Sends a response to a request to start (or resume) request and response exchange

with SEND and RECEIVE macroinstructions
v Sends a negative response to the BIND.

Macroinstructions that assist in session establishment or
communication

CHANGE: Allows a generic resource to end the association between a session
partner (LU) and an application program of the generic resource.

CHECK:

Checks and, if necessary, awaits completion of a previously requested RPL-based
operation; marks as inactive the RPL associated with the operation, thus freeing it
for further use; and, if a logic or other error or special condition is detected, and a
LERAD or SYNAD exit routine exists, causes the appropriate routine to be entered.

EXECRPL:

Reissues a specified request. One use of this macroinstruction is to re-execute a
request without changing any fields in the RPL. This is done, for example, in a
SYNAD exit routine when the return code from the first attempt to perform the
operation indicates that an error has occurred and that a retry is possible.

INQUIRE:

Obtains certain information that the application program might need and places it
in a specified area of the program. That information includes:
v User data associated with a session-initiation request
v Session parameters associated with a particular logon mode name or with a

pending active session
v Session cryptography key and initial chaining value, if cryptography is

supported
v Number of active sessions and queued CINIT requests
v Status of another application program (whether it is active or inactive and

whether it is accepting CINITs)
v The network-qualified name for an LU
v The name of a generic resource's application program that is associated with a

specified partner LU.
v Sessions pending recovery.

INTRPRET:

Translates a character string into another character string by using an
installation-defined table. For example, INTRPRET can be used to obtain the real
symbolic name of an application program when the program is identified in a
logon by a character string other than the name of the application program.

SETLOGON:

Chapter 2. VTAM language 25

The forms of this macroinstruction are START, STOP, HOLD, QUIESCE, NPERSIST,
PERSIST, GNAMEADD, GNAMEDEL, and GNAMESUB. Descriptions of these
forms follow:
v START tells VTAM that the application program LOGON exit routine is

scheduled upon the receipt of a CINIT request, and that BIND requests are sent
to the application program to establish sessions in which the application
program acts as the SLU.

v STOP indicates that the application program temporarily does not receive
CINITs.

v HOLD paces session-establishment requests by holding the LOGON and SCIP
exits from CINIT and BIND requests until a SETLOGON OPTCD=START
request is issued.

v QUIESCE indicates that the application program wants to stop establishing
sessions.

v The application uses PERSIST to enable persistence and NPERSIST to disable
persistence.

v The application uses GNAMEADD to create an association between the network
name and the generic name. It uses GNAMEDEL to delete that association. An
application can be a subordinate of another application that is using a generic
name. In this case, the subordinate application uses GNAMESUB to have its
sessions included in the other application's session count for workload
balancing.

Program operator macroinstructions

The following program operator macroinstructions allow an authorized application
program (called a program operator) to do the following:
v Issue VTAM operator commands (except START and HALT) and the operating

system reply command
v Receive operator messages from VTAM.

RCVCMD:

Receives an unsolicited VTAM operator message or receives replies to commands
that are issued using SENDCMD.

SENDCMD:

Enters a VTAM operator command or the operating system reply command.

Refer to Appendix L, “Program operator coding requirements,” on page 875, for
information on the program operator interface.

Relationship between the executable macroinstructions and control
blocks

The relationships among the VTAM control blocks, as well as their relationship to
the macroinstructions that refer to them, are described in the context in which they
are used. To establish that context, the following sections describe the relationships
and use of the control blocks in terms of the operations that every application
program must perform:
v Opening and closing the application program
v Establishing and terminating sessions

26 z/OS V2R1.0 Communications Server: SNA Programming

v Communicating over sessions

Opening the application program

The OPEN macroinstruction associates an application program with VTAM so the
application program can use VTAM facilities. The OPEN macroinstruction specifies
an ACB; the ACB, in turn, points to a location in the program that contains the
name of the application program as specified in an APPL definition statement
during VTAM definition. The ACB can also point to an EXLST control block
containing the names of exit routines that are to be associated with the application
program. An EXLST can also be pointed to when a session is established with an
LU. See “Establishing sessions with LUs” in this chapter. When the open process
has completed, exit routines specified in the EXLST are eligible for scheduling by
VTAM.

Because a program can open multiple ACBs, a program that performs related
functions (for example, communicating with LUs or acting as a program operator
application program) can be defined in such a way that VTAM views the program
as being more than one application program. However, most VTAM users might
find it satisfactory to open only one ACB for each program.

Establishing sessions with LUs

Before communicating with an LU, an application program must be in session with
the LU. A session can be initiated by the LU, by the VTAM operator, by VTAM, or
by an application program. Regardless of how the session is initiated, if the
application program is to be the PLU in the session, it formally establishes the
session by issuing an OPNDST macroinstruction. The OPNDST macroinstruction
specifies an RPL that contains the address of an NIB. The NIB contains information
that applies to subsequent communication with the LU for that session. If
necessary, the address of a unique storage area to be associated with the session
can be specified in the NIB. This area could include an I/O area and a place for
flags that keep track of communications on the session. If a number of sessions are
to be initiated by an application program, a single SIMLOGON or a single
OPNDST OPTCD=ACQUIRE can be used, and the RPL can point to a list of NIBs
instead of to a single NIB.

Optionally, for certain types of exit routines (DFASY, RESP, and SCIP), an NIB can
point to a list of exit-routine names in an EXLST control block. For the session
being established, these exit routines are generally used in preference to the
corresponding exit routines identified for the entire application program when the
ACB was opened.

When a session is established as the result of an OPNDST macroinstruction, VTAM
returns information about the session in the RPL and the NIB. In both the RPL
(usually) and the NIB (always), VTAM places a communication identifier (CID)
that it has assigned to the session with the LU. On all subsequent communication
requests for the session, the application program must be sure that this CID is
present in the RPL. In addition to the CID, VTAM also places the LU name (for an
OPNDST OPTCD=(ACCEPT,ANY)) and other information in the NIB; if desired,
the application program can use this information to determine how to
communicate on this session. Once an NIB is used for session establishment, it can
be reinitialized and reused to establish another session.

Chapter 2. VTAM language 27

SIMLOGON and OPNDST initiate and establish sessions in which the application
program acts as the PLU. REQSESS and OPNSEC initiate and establish sessions in
which the application program acts as the SLU. In general, REQSESS and OPNSEC
use the RPL and NIB in the same manner as do SIMLOGON and OPNDST.

Communicating with LUs

After opening its ACB and establishing sessions with one or more LUs, the
application program can communicate on each session by issuing SEND, RECEIVE,
SESSIONC, and RESETSR macroinstructions. VTAM obtains the name of the
application program that made the request and the identity of the session (if a
specific session is being addressed) from the RPL. The communication
macroinstruction specifies an RPL; the RPL contains the address of an ACB and the
identity of the session.

The SEND and RECEIVE macroinstructions write and read requests and responses.
A request contains data or control information or both. A response contains
information that tells whether a request requiring a response arrived at the
destination LU and was processed successfully or unsuccessfully.

Only data is written from or read into an application program data area. Control
information is sent by being specified symbolically in a SEND macroinstruction or
its associated RPL. Control information and responses that are received are not
read into a data area, but are detected by analyzing fields in the RPL associated
with a RECEIVE macroinstruction or in an RPL associated with the scheduling of a
special exit routine that handles the receipt of responses and control requests.

SESSIONC is used to send session control requests and responses. The RESETSR
macroinstruction is used to control the continue-any and continue-specific modes
of a session. Both macroinstructions use the RPL and ACB control blocks in the
same way as SEND and RECEIVE to identify the session and application program
LU.

Terminating sessions with LUs

When a session is no longer needed, the application program terminates it by
issuing the appropriate macroinstruction. If the application program is the PLU, it
issues CLSDST. If the application program is the SLU, it issues TERMSESS.

Closing the application program

The application program issues a CLOSE macroinstruction to disassociate itself
from VTAM. CLOSE specifies the same ACB that was originally used with OPEN.
If all sessions are to be terminated at the same time, the program can issue a single
CLOSE macroinstruction instead of first issuing a series of CLSDST and
TERMSESS macroinstructions to terminate sessions individually. As a result of the
CLOSE macroinstruction, VTAM terminates each application program session.

Exit routines
VTAM allows use of exit routines by which a VTAM application program can gain
control to handle certain conditions. An exit routine handles a specific event. When
that event occurs, VTAM gives control to the exit routine as soon as possible.

Following are two kinds of application program exit routines:

28 z/OS V2R1.0 Communications Server: SNA Programming

Exit-list (EXLST) exit routines
These are special-purpose exit routines that VTAM schedules as needed.
The exit list, created with the EXLST macroinstruction, specifies the
exit-routine addresses (entry points). A program can have more than one
exit list. An exit list can be specified in an ACB and thus be used by VTAM
when an exit-routine event occurs for any session with the program. For
certain exit routines—DFASY, RESP, and SCIP—an exit list can be specified
in an NIB and can be used by VTAM only when an exit-routine event
occurs for the session associated with the NIB. See Figure 40 on page 180
and Figure 41 on page 181 for more information.

RPL-specified exit routines
These are exit routines that contain instructions to be executed when
particular RPL-based operations are completed. In any individual
session-establishment, communication, or other RPL-based
macroinstruction, if an RPL exit-routine address is specified, the exit
routine is scheduled as an alternative to VTAM's posting an ECB when the
requested action is completed. A program can use a mixture of
ECB-posting and RPL exit routines, or it can use solely one or the other.

The names of the special-purpose exit routines and the events that schedule them
are summarized in Table 1.

Table 1. Summary of special-purpose exit routines

Exit routine
name Event

ATTN One of the following LU 6.2 events has occurred:

v VTAM receives an FMH-5 for the application program.

v VTAM processes a CNOS request for the application program.

v The last LU 6.2 session, or all LU 6.2 sessions, with another LU
using a given mode name group is lost.

DFASY An expedited data-flow-control request has been received on a
session.

LERAD A logic error has been detected following an RPL-based request.

LOGON An application program is being requested to establish a session as
a PLU.

LOSTERM A session with an LU has been temporarily interrupted or
permanently lost; the LU or VTAM operator requested that the
session be terminated; or an event occurred that can affect future
operation of the session.

NSEXIT A network services request unit has arrived for the application
program, indicating, for example, that:

v A session with an LU has been terminated because of a
disruption of the path used by the session

v A session-establishment procedure has completed or failed.

RELREQ Another application program has requested a session with an LU
that is presently in session with this program.

RESP A response has been received.

Chapter 2. VTAM language 29

Table 1. Summary of special-purpose exit routines (continued)

Exit routine
name Event

SCIP One of the following session-control requests has been received:

v Clear (CLEAR)

v Start Data Traffic (SDT)

v Request Recovery (RQR)

v Set and Test Sequence Numbers (STSN)

v Bind Session (BIND)

v Unbind Session (UNBIND).

SYNAD An error other than a logic error has been detected for an
RPL-based request.

TPEND The VTAM operator is shutting down the network or shutting
down this application, VTAM has abended, or an alternate
application is taking over sessions from an application that has
enabled persistence.

Normal operating system environment for a VTAM application program

A VTAM application program directly relates to an ACB for which an OPEN
macroinstruction successfully issues. A program which runs under the control of a
host operating system can open several ACBs and thus appear as multiple VTAM
application programs.

On the other hand, a VTAM application program can be divided among several
tasks controlled by the operating system. This is discussed further in Chapter 10,
“Operating system facilities,” on page 295.

The operating systems under which VTAM runs offer several facilities (for
example, multitasking and service request blocks (SRBs)) that allow you to
structure your programs for more efficient operation.

By using the 31-bit addressing facility, you can use virtual storage more efficiently.

However, for most VTAM application programs, a less complicated operating
system environment, called the normal environment, is sufficient. The following
sections describe the normal environment. This book assumes that the environment
is the normal environment, except where explicitly stated otherwise. Some of the
ways an application program can use the special operating system facilities are
described in Chapter 10, “Operating system facilities,” on page 295. That chapter
also describes how the environment is changed from the normal environment by
the use of the special facilities.

Use of a single task

In the normal operating system environment, a VTAM application program runs
under a single operating system task. All of the mainline application program
instructions and all of the VTAM exit routine application program instructions run
under that task. When performing services for the application program, VTAM
itself executes at times under the application program task, and at times under the
control of system tasks that are created by VTAM.

30 z/OS V2R1.0 Communications Server: SNA Programming

Mainline program
The mainline part of the application program issues the OPEN and CLOSE
macroinstructions. The mainline program executes until an event occurs that gives
control to an exit routine. Exit routines are either inline exit routines (LERAD and
SYNAD) or asynchronous exit routines (all RPL exit routines and all EXLST exit
routines except LERAD and SYNAD). The following sections give an overview of
exit routines in the normal environment. See Chapter 7, “Using exit routines,” on
page 219, for more information on exit routines.

The normal operating system environment described in this book is a VTAM
application program running in 24-bit addressing mode and resident in 24-bit
storage. See Chapter 10, “Operating system facilities,” on page 295, for special
considerations when an application program uses 31-bit addressing.

Inline exit routines
An inline exit routine is considered to be an extension of the part of the application
program (either mainline or asynchronous exit routine) that is executing when the
inline exit routine is invoked. Effectively, an inline exit routine is entered through a
branch from an RPL-based or CHECK macroinstruction just before that
macroinstruction returns to the next sequential instruction in the application
program.

After it completes processing, an inline exit routine can return to VTAM. If it is
coded to return to VTAM, the application program receives control at the next
sequential instruction immediately after the RPL-based or CHECK
macroinstruction that caused the inline exit routine to be invoked. If the inline exit
routine is coded not to return, the application program branches to another
location after issuing the RPL-based or CHECK macroinstruction.

Asynchronous exit routines
Asynchronous exit routines, in contrast to inline exit routines, do not act as
extensions to the part of the application program that was executing when the
event associated with the exit routine occurred. The events that cause invocation of
asynchronous exit routines are unpredictable, whereas inline exit routines can be
invoked only at predictable points (that is, immediately after the associated
CHECK or RPL-based macroinstruction).

Asynchronous exit routines can interrupt the mainline program at any time, even if
the mainline program is currently suspended (for example, because it issued a
CHECK or WAIT macroinstruction). However, with the exception described in the
next paragraph (TPEND with reason code 8), no asynchronous exit routine can
interrupt another asynchronous exit routine; thus, each asynchronous exit routine
must return to VTAM before the next asynchronous exit routine can be given
control. When an asynchronous event occurs, the associated exit routine (if defined
by the application program) is scheduled by VTAM. If the mainline program is
currently in control, execution of the mainline program is suspended and control is
immediately given to the exit routine. If another asynchronous exit routine is in
control, that exit routine must return to VTAM before the next exit routine can be
given control. If the asynchronous exit routine currently in control suspends
execution (for example, by issuing CHECK or WAIT), it prevents other
asynchronous exit routines from gaining control. When the final asynchronous exit
routine returns to VTAM, the mainline program resumes control at the point where
it was interrupted.

Chapter 2. VTAM language 31

The TPEND exit routine does not obey the preceding rules. It can interrupt any
part of the application program, including another asynchronous exit routine, at
any time. It must return to VTAM before the interrupted asynchronous exit routine
or mainline program can resume control.

Dispatching priorities

The order of dispatching priority in the normal operating system environment is:
v TPEND exit routine with reason code 8
v All other asynchronous exit routines (RPL and EXLST exit routines, except

LERAD and SYNAD)
v Mainline program.

Inline exit routines assume the dispatching characteristics of the part of the
application program from which they were invoked.

32 z/OS V2R1.0 Communications Server: SNA Programming

Chapter 3. Organizing an application program

The organization of a VTAM application program affects how much storage it uses,
how well it performs, how easy it is to write, and how easy it is to migrate the
application program to another release of VTAM, if required. Before you begin
writing a VTAM application program, it might be helpful to understand some of
the ways in which an application program can be organized. This chapter
discusses:
v General coding guidelines to consider when writing an application program
v Coding guidelines to facilitate migration of application programs
v Whether the application program should be single-thread or multithread
v Whether the application program operation should be synchronous or

asynchronous and what posting mechanism should be used
v VTAM and user control block decisions to be made that affect application

program organization

Chapter 10, “Operating system facilities,” on page 295, discusses additional options
available to the application program.

Coding guidelines for application programs

When writing a VTAM application program, use the guidelines in “Program
structure recommendations” to minimize the programming changes needed when:
v The application program is moved to another release of VTAM.
v The application program is moved from a single-domain environment to a

multiple-domain environment.
v New SNA products or other SNA enhancements are introduced into the

network.
v The VTAM application program is updated (for instance, when program

temporary fixes (PTFs) are applied).

Note: A detailed description of migration considerations is contained in
Appendix N, “Application program migration,” on page 893.

Program structure recommendations

When coding the application program or changing application-program code,
follow these recommendations:
v Code SCIP, NSEXIT, and LOSTERM exit routines for the application program. If

the application program does not have the applicable exit routines, notification
of session outage or session disruption might not occur, and you might no
longer be able to communicate with the network resource. See “Exit routines
related to session establishment and termination” on page 100 and “Session
outage notification” on page 110 for information about these exit routines.

v When using multinode persistent sessions (MNPS), structure the application so
that the OPEN ACB macroinstruction is done early in the application processing.
This allows VTAM, during recovery OPEN processing, to begin the recovery
process (rebuilding sessions) in parallel with application setup processing.

© Copyright IBM Corp. 2000, 2013 33

v Reinitialize all VTAM control blocks to the values provided by VTAM before
reusing the control block. Failure to do so can result in the application program
not being able to complete macroinstructions issued later that reference one of
the control blocks. For example, if you are reusing an RPL or NIB for another
session, reinitialize the control block fields before issuing the OPNDST
macroinstruction to open the session.

v Code an NSEXIT exit routine (see Chapter 7, “Using exit routines,” on page 219)
in application programs that issue SIMLOGON, REQSESS, TERMSESS, or
CLSDST OPTCD=PASS macroinstructions. This exit routine receives Notify or
NSPE request units. These macroinstructions are posted as complete when
processing is started; however, processing might fail later, particularly in a
cross-domain environment. The only notification of such an error is through the
NSEXIT exit routine. Without an NSEXIT exit routine, the session-initiation or
termination request cannot be completed until VTAM is terminated.

v When using this system, specify the following program attributes: an addressing
mode (AMODE) of 31 and a residence mode (RMODE) of ANY. These
specifications allow the application program to run in 31-bit addressing mode
and to reside anywhere in 31-bit storage, wherever space is available. See
Chapter 10, “Operating system facilities,” on page 295, for more information
about 31-bit addressing. For coding or referencing application programs with
programming attributes other than those recommended above, see z/OS MVS
Programming: Assembler Services Guide.

v When your application program shares printers with other IBM subsystems (for
example, CICS® and IMS™) or other application programs, make provisions
within the application program to end the printer session without operator
intervention. This can be accomplished by one of the following procedures:
– Terminate the session with the printer when there is no output waiting to be

printed (or when there has been no output requested for a given length of
time).

– Include a RELREQ exit routine (described in Chapter 7, “Using exit routines,”
on page 219) in the application program.

– If the subsystem has a generation procedure, specify that the printer resource
is (or is not) released when the application program's RELREQ exit routine is
driven.

– Use the SIMLOGON macroinstruction with OPTCD=RELRQ,Q options to
initiate the session with the printer resource. RELREQ does not apply if the
primary logical unit (PLU) is an independent LU.

v Whether the PLU application program receives a session-initiation request or
initiates a session, specific session parameters might need to be requested. To
specify a session parameter, use the rules in Table 2.

Table 2. Rules for specifying a session parameter

Program action
Session initiated by
PLU application program

Session not initiated
by PLU application program

PLU application
program modifies
default parameters

Allow generated name or name in master
terminal requirements. Issue OPNDST
OPTCD=ACCEPT with BNDAREA.

Issue an INQUIRE OPTCD=SESSPARM in the
LOGON exit routine. Then issue OPNDST
OPTCD=ACCEPT with the new parameters.

PLU application
program accepts
default parameters

Allow generated name or name in master
terminal requirements. Issue OPNDST
OPTCD=ACQUIRE. Or, issue SIMLOGON
with name and then issue OPNDST
OPTCD=ACCEPT with LOGMODE=0.

Issue an INQUIRE OPTCD=SESSPARM in the
LOGON exit routine. Then issue OPNDST
OPTCD=ACCEPT.

34 z/OS V2R1.0 Communications Server: SNA Programming

Table 2. Rules for specifying a session parameter (continued)

Program action
Session initiated by
PLU application program

Session not initiated
by PLU application program

PLU application
program uses CLSDST
OPTCD=PASS

Specify the name to establish a new COS. Issue SIMLOGON for the desired resource
and interrogate the session parameters in the
LOGON exit routine. Then issue CLSDST
OPTCD=PASS with AREA containing the
appropriate session parameter.

Simplifying migration and network upgrades

In addition to the program structure recommendations listed in the preceding
section, the following guidelines help to ease future migrations and network
upgrades.
v Leave reserved fields in VTAM control blocks set to the value given to them by

VTAM. The control blocks are described in Appendix E, “Control block formats
and DSECTs,” on page 739.

v Do not reference the labels or contents of reserved fields in VTAM control
blocks. Such fields do not contain information for the application program.

v Do not create application program dependencies on internal VTAM functions,
such as SVCs, macroinstruction expansions, or internal VTAM control blocks.
Use only the VTAM facilities described in this book.

v Code the application program to allow for fields to be added to the end of
VTAM control blocks. Use the IBM-supplied DSECTs to determine control block
size at assembly time. Use the GENCB and SHOWCB or TESTCB manipulative
macroinstructions to determine control block size at execution time.

v Use the IBM-supplied DSECTs and manipulative macroinstructions to access
control block fields, rather than coding actual displacements into control blocks.

v Code the application program to allow for fields to be added to the end of the
SNA RUs that can be presented to the application program (BIND, UNBIND,
CINIT, NOTIFY, NSPE, CLEANUP).

v Code the application program so that it is not dependent upon the sequence of
vectors or the length of vectors (for example, the access-method-support vector
list).

v Code the application program's NSEXIT exit routine to handle unrecognized
input. See “NSEXIT exit routine” on page 244 for a description of this routine.
Check for specific input (for example, reason code, RU type, and sense data),
and avoid assuming that the input has a certain value or type, when a test for
another value or type fails.

v Code the application program to allow for new ERROR codes for OPEN and
CLOSE, new feedback codes (RTNCD,FDB2) for RPL-based macroinstructions,
and new SNA sense codes. If an unknown code is received, it can be saved for
program debugging; the associated operation should be considered to have had
a permanent failure.
The OPEN macroinstruction is discussed in detail in “OPEN—Open one or more
ACBs” on page 444. The CLOSE macroinstruction is discussed in
“CLOSE—Close one or more ACBs” on page 390. A summary of the valid
feedback codes can be found in Figure 104 on page 652.

v Code the application program to allow for new UNBIND type codes. Refer to
Chapter 5, “Establishing and terminating sessions with logical units,” on page 81

Chapter 3. Organizing an application program 35

81, for a complete description of the UNBIND function. You should treat any
unknown type code as a normal UNBIND (X'01').

v Use the function-list vector and macro global variables to determine the presence
or absence of specific VTAM facilities. These can be found in Chapter 4,
“Opening and closing an application program,” on page 55, and Chapter 8,
“Setting and testing control blocks and macro global variables,” on page 267
respectively.

v Code the application program to allow for a multiple-domain network. This
facilitates possible future migration from a single-domain network. Appendix N,
“Application program migration,” on page 893, contains detailed information
about coding considerations related to migration.

v Code the application program to handle all LU type 0 3270 terminals the same;
do not become dependent on attachment and implementation differences among
the various 3270 terminals. See “Summary of differences among LU type 0 3270
terminals” on page 335 for suggestions about how to accomplish this.

v Code the application program to handle UNBIND with control vector hex 35.
The UNBIND that is received can contain a control vector hex 35 that contains a
sense code that reflects why a session was terminated or why the session was
not established. Also, control vector hex 35 identifies the failing node.

Single-thread or multithread operations
A VTAM application program is either a single-thread program—capable of
processing the request of only one session at a time—or a multithread
program—capable of processing the requests of many sessions concurrently. These
terms describe how the application program works in general. In practice, many
single-thread programs can do some overlapping of processing, and many
multithread programs can do some processing that momentarily ties up the
application program for an action on behalf of only one session. In general, a
single-thread program requests synchronous operations and waits until each
operation is completed before continuing. A multithread program requests
asynchronous operations and continues processing on behalf of other sessions
while waiting for an operation for a particular session to be completed.

Using a single-thread program

A single-thread program is easier to design and code than a multithread program.
Sample Program 1 in Chapter 14, “Logic of a simple application program,” on page
573, is basically a single-thread program.

You should use a single-thread design when the application program never
handles more than a few sessions at a time or when, if it handles more than a few,
response time is not a consideration. Additionally, use a single-thread design for an
application program that does nothing more than send a continuous series of
requests to an LU (which might in turn forward the data to a printer or to a data
base on a disk) or receive a continuous series of requests from an LU (perhaps
from the disk associated with an LU) and write them to a database on disk storage
at the host processor.

Using a multithread program

You should use a multithread design for any VTAM application program that must
communicate concurrently on a number of sessions. This implies the use of

36 z/OS V2R1.0 Communications Server: SNA Programming

asynchronous operations—determining completion of operations either by having
VTAM post an ECB or by having it schedule an RPL exit routine.

In a multithread program, the control blocks for each session must be managed
efficiently. The control blocks reflect the status of the session (for example, whether
the LU has begun to communicate on that session, what address is to be branched
to when a requested output operation is completed on that session, or whether the
LU has sent in a logoff message for that session). Sample Program 2 in Chapter 16,
“Logic of a more complicated application program,” on page 605, shows the
general logic of a multithread program.

You can use multitasking to transfer control between the communication and data
processing parts of an application program. See Chapter 10, “Operating system
facilities,” on page 295, for more information on data separation using the
multitasking facility. It is also possible for the same routines to be shared among
what VTAM perceives as more than one VTAM application program. This
arrangement can be used for communicating with two different types of LUs. Two
ACBs can be defined in an application program. One kind of LU is associated with
control blocks that point to one ACB while another kind of LU is associated with
the other ACB. Because VTAM sees each ACB as an application program, each type
of LU can have separate logic associated with it, including its own exit routines
and its own I/O routines. Data processing parts of the application program, a wait
routine, and other routines can be shared.

Multithreading facilities

In addition to the asynchronous handling of input and output requests, VTAM also
provides the following facilities as aids to handling sessions in a multithread
program:
v A special field that is used to associate a unique storage area with each session
v The ability to schedule the sending of a request
v The ability to receive input from any session except those sessions that are

specifically precluded.

These facilities are discussed in more detail in the following sections.

USERFLD field of the NIB

In handling a series of input and output actions for a particular session, the
application program might need some way of associating a particular piece of
information with the session. For example, the application program might need to
know:
v The LU associated with the session
v The city in which the LU is located
v The LU type
v The symbolic name that the application program uses
v The storage area containing the input buffer and other application-program-

manipulated control information about operations with this LU.

If this information does not change (for example, the city in which the LU is
located), the information can always be available, and assembled into the
application program. More frequently, however, the information that the
application program wants to associate with the LU is not available until after the

Chapter 3. Organizing an application program 37

application program starts execution or it changes during program execution. For
the dynamic information, the application program needs a mechanism for
associating the desired piece of information with the session.

The mechanism provided by VTAM involves the user field of the NIB, which
contains space for 4 bytes of information. Whatever information is in the user field
of the NIB at the time the session with the LU is established is saved by VTAM,
and whenever input is subsequently received on the session, that 4 bytes of
information is provided in the user field of the RPL used for the operation. This
mechanism has many uses, including those described in the following paragraphs:
v Identifying the session from which input has been received. Each time the

application program establishes a session with a logical unit, the application
program puts its own version of the identification of the session into the
USERFLD field of the NIB before the OPNDST or OPNSEC macroinstruction is
issued. Later, the application program issues RECEIVE OPTCD=ANY, which
accepts an input request from any session. When an input request is received,
the application program examines the user field of the RPL to determine the
session from which the input request came.

v Associating a storage area with a session. For each session, the application
program might want to have a session-associated storage area that contains an
RPL, possibly an ECB (if ECB-posting is used), a data area (to be used as a
buffer for input and output requests), and a status information area. When the
application program establishes a session, it specifies in the USERFLD field of
the NIB the address of the storage area it wants to be associated with that
session. VTAM saves this address and, when input is received on the session,
VTAM places the address in the user field of the RPL. The application program
can use the user field contents to process the input rather than having first to
identify the session.

v Identifying the specific REQSESS or SIMLOGON in a SCIP or LOGON exit
routine. Application programs can issue multiple SIMLOGON requests for the
same secondary logical unit (SLU); likewise, an application program can issue
multiple REQSESS macroinstructions for the same PLU. Each time an application
program issues a REQSESS or SIMLOGON macroinstruction, VTAM saves the
NIB's USERFLD contents. The USERFLD is made available to the application
program in the exit parameter list for the corresponding SCIP, LOGON, or
NSEXIT exit routine. The application program can then associate the USERFLD
contents with a previously issued REQSESS or SIMLOGON macroinstruction,
and thus associate the session with the original request for that session.

Scheduling output

VTAM allows an application program to ask that a request be scheduled for
sending, and that the operation be considered complete as soon as the request has
been scheduled for output rather than when the request is actually sent with
arrival confirmed by the receiving LU. If the application program wants to
determine whether the request actually arrived, it can, as part of the output
scheduling request, specify that a definite response be returned by the LU. On
receiving the response, the application program knows that the request arrived
successfully or unsuccessfully. (For many LUs, the return of a positive response
indicates not only that the request arrived successfully but also that it was
processed successfully.) Because scheduling output usually takes relatively little
time, a request to schedule the sending of a request can often be specified as a
synchronous operation. However, because, under some circumstances, the
scheduling might take a long time (for example, waiting for pacing responses),
synchronous operation should not be used if you do not want the sending task or

38 z/OS V2R1.0 Communications Server: SNA Programming

SRB to wait. Scheduled output can also be specified as an asynchronous operation
with ECB-posting or RPL exit-routine scheduling specified.

A good approach is to request ECB posting and to test the ECB immediately upon
return from VTAM; usually the ECB is already posted complete, so the RPL can be
checked right away. Under unusual circumstances, the ECB might not yet have
been posted; however, because only a test was done (no WAIT), the application
program is free to continue with other work and to test or WAIT on the ECB at
some later time.

In scheduling output, the application program might not require that a response be
returned to every request; it might require that a response be returned only to the
last in a series of requests. Receipt of a positive response confirms successful
arrival and processing of the request or series of requests, while receipt of a
negative response indicates an error. Successful arrival and processing of a request
can also be assumed if the resultant input request contains what the application
program expects or, in the event of an error, it can be assumed that a terminal
operator notifies the application program that he or she is waiting for a request
that has not arrived.

By scheduling the sending of a request, the application program reserves for itself
the determination of whether confirmation of arrival and processing is necessary.
When fewer responses are requested, greater request throughput is possible. The
user, however, does not have complete control, because SNA protocols dictate
when some responses must be requested.

Receiving input on any session except those already in
communication

About this task

VTAM provides a way of receiving input on any session. To do this, RECEIVE
OPTCD=ANY is issued. On completion, the identity (the CID) of the session from
which input has been received is in the RPLARG field associated with the
RECEIVE request. (The INQUIRE macroinstruction with the CIDXLATE option can
be used to translate the CID into the symbolic name of the LU with which the
application program has that session.) Typically, RECEIVE OPTCD=ANY is issued
to receive the initial input that leads to communication in a particular session with
a LU.

Once RECEIVE OPTCD=ANY has been used to get initial input on a session, that
session can be switched to another mode called continue-specific mode. When a
session is in this mode, a request on that session does not satisfy RECEIVE
OPTCD=ANY; the request can satisfy only a RECEIVE OPTCD=SPEC whose RPL
identifies the session on which the request was received. While the session is in
continue-specific mode, the application program maintains specific control over
each request sent or received on the session.

Thus, an application program can consist of a single RECEIVE OPTCD=ANY that
is reissued each time it is completed, and of sets of specific RECEIVE and SEND
macroinstructions, with each set of specific macroinstructions controlling
communication on a particular session. To obtain the continue-specific facility,
OPTCD=CS is specified in the request at the point at which the session is to be
switched to continue-specific mode. For example, the RECEIVE that reads input on
any session (except those already in continue-specific mode) specifies
OPTCD=(ANY,CS). This places the session whose input satisfied RECEIVE in

Chapter 3. Organizing an application program 39

continue-specific mode; the next issuance of RECEIVE OPTCD=ANY excludes this
session from being able to complete RECEIVE. Chapter 16, “Logic of a more
complicated application program,” on page 605, shows use of RECEIVE
OPTCD=(ANY,CS).

How a synchronous operation works
In a synchronous program, operations are performed serially. A request for
synchronous operation (for example, SIMLOGON, SEND, or RECEIVE
OPTCD=SYN) means that VTAM does not return control to the next sequential
instruction in the application program task or SRB (under MVS) from which the
macroinstruction was issued until after the requested operation is completed. See
“Serialization of execution” on page 309 for information about running several
parts of an application concurrently. Figure 8 illustrates a synchronous operation.

Note: While the application program is waiting for the event to be completed, an
asynchronous event such as a HALT command could cause the application
program's TPEND exit routine to be entered. Only the application program task or
SRB (under MVS) from which the macroinstruction was issued is suspended while
waiting for completion of a synchronous operation. The exit routines associated
with the application program are scheduled and executed regardless of whether
the mainline program logic is awaiting completion of a synchronous operation.

In general, avoid issuing a synchronous request in a task because it suspends all
execution under the task until that request completes. Also avoid issuing a
synchronous request within an exit routine identified in an ACB exit list. For more
information on ACB EXLST exit routines, see Chapter 7, “Using exit routines,” on
page 219.

Designing an application program to use synchronous requests while running
under an SRB is more reasonable because the number of system resources forced to
wait for the completion of the operation is more limited. Refer to “Synchronous
versus asynchronous operations” on page 169 for further information. The
differences between the TCB and SRB modes of execution are described in detail in
“Execution of exit routines” on page 307.

When a synchronous operation is completed, the application program must
determine whether the operation was successful or unsuccessful. The application
program does this by testing values in registers 15 and 0 and by examining fields
in the RPL used for the operation. For more information on testing return codes

Application Program

SEND RPL=RPL1,OPTCD=SYN

SEND completed

Request accepted

VTAM

Code tests register to determine whether
operation was successful

Figure 8. Synchronous operation

40 z/OS V2R1.0 Communications Server: SNA Programming

from RPL-based macroinstructions, see Chapter 9, “Handling errors and special
conditions,” on page 277, and Appendix B, “Return codes and sense fields for
RPL-based macroinstructions,” on page 651.

How an asynchronous operation works
In an asynchronous operation, VTAM returns control to the next sequential
instruction as soon as it has accepted the request, not when the requested
operation has been completed. Accepting a request consists of screening the
request for errors and scheduling the parts of VTAM that eventually carry out the
operation. While the operation is being performed, the application program is free
to initiate other data-transfer operations or do other processing. For example, an
application program can issue a RECEIVE macroinstruction and indicate that the
operation is to be handled asynchronously (OPTCD=ASY). While the input
operation is being performed, the application program can begin to write to a
direct-access storage device or receive input on another session.

When an asynchronous operation is specified, there are two ways that VTAM can
notify the application program that the requested operation has been completed. If
the application program associates an event control block (ECB) with the request,
VTAM posts the ECB when the operation is completed. Alternatively, the
application program can designate that a particular RPL exit routine is to be
executed as soon as the operation is completed. When the operation is completed,
VTAM schedules the exit routine. The method of notification is controlled by the
setting of the ECB operand or EXIT operand in the RPL used for the request.
Figure 9 on page 42 illustrates asynchronous processing in an application program
using ECBs; Figure 10 on page 43 illustrates the use of an RPL exit routine.

Regardless of whether an application program waits on an ECB or uses an RPL
exit routine, a CHECK macroinstruction must be issued after an asynchronous
operation to mark the RPL inactive and to make it available for another operation.
The CHECK macroinstruction also clears the ECB. Prior to CHECK, the RPL active
flag is still on. The RPL and associated data areas (for example, NIB, RPLAREA,
and ECB) cannot be freed, altered, or reused.

Using ECBs

By using ECBs, the application program can issue one WAIT macroinstruction for a
combination of VTAM requests and any non-VTAM requests that use ECBs.

For example, an application program can issue three VSAM requests and three
VTAM requests. By issuing one WAIT for all six ECBs, the application program
resumes processing when any one of the six operations is completed.

Chapter 3. Organizing an application program 41

Using ECBs, the application program can test ECBs itself and continue to wait only
if no ECB has been posted. The application program can prioritize requested
operations for LUs by testing some ECBs before testing others. The order of
checking can be varied during program execution as circumstances change.

The ECB and RPL exit routines are different. The RPL exit routine schedules
automatically when the requested operation completes, thereby saving the
application program the trouble of testing ECBs and branching to subroutines.
ECBs provide the application program with greater control over the order in which
events are handled.

If neither an ECB address nor an RPL exit-routine address is specified in the
RPL-based macroinstruction, VTAM uses the ECB-EXIT field of the RPL as an
internal ECB, and VTAM (for synchronous operations) or the user (for
asynchronous operations) checks and clears it. The ECB-EXIT field can be set to
point to an external ECB by using an RPL-based macroinstruction that specifies
ECB=ecb address. Once set, it can be reset to an internal ECB by using an
RPL-based macroinstruction that specifies ECB=INTERNAL.

Using RPL exit routines

Instead of having VTAM post an ECB when a request for an asynchronous
operation is completed, the application program might have VTAM schedule and
cause control to be given to an RPL-specified asynchronous exit routine. The RPL
exit routine can supply the logic that would have been branched to by the
mainline program after discovering a posted ECB. An RPL exit routine is any exit
routine whose symbolic name has been provided in the EXIT operand of the
macroinstruction or in the RPL used for the request.

SEND RPL=RPL1,OPTCD=ASY,ECB=ECB1

CHECK RPL=RPL1 (which tests and clears the ECB)
(or WAIT and then CHECK)

SEND is completed

ECB is posted

interruption

Request is accepted

Application Program VTAM

Figure 9. Asynchronous operation with an ECB posted

42 z/OS V2R1.0 Communications Server: SNA Programming

One advantage to using an RPL exit routine instead of an ECB is that it is easier to
code for that type of processing than it is to code the logic associated with
discovering a posted ECB and relating the ECB to a branch address. Also, the RPL
exit routine is given control almost immediately after the associated RPL-based
operation completes, and thus has priority over the mainline program. A
disadvantage of an RPL exit routine is that more system instructions must be
executed to schedule an exit routine than must be executed to post an ECB. Also,
as discussed in the previous section, RPL-exit scheduling does not provide as
much flexibility as ECB-posting for giving a higher priority to selected operations.
An application program can use a combination of ECB-posting and RPL exit
routines. See Chapter 16, “Logic of a more complicated application program,” on
page 605, for more information on the general logic of a multithread program.

An RPL exit routine can itself issue asynchronous requests, continue executing, and
return to VTAM. The asynchronous request in an RPL exit routine can specify that,
upon completion of the request, an ECB is to be posted or an RPL exit routine is to
be scheduled. If the RPL exit routine option is chosen, the exit routine might be the
same one in which the request was issued. (This is also shown in Sample Program
2 in Chapter 16, “Logic of a more complicated application program,” on page 605.)
Figure 11 on page 44 shows a possible pattern of asynchronous requests within
RPL exit routines. Further information about RPL exit routine operation is given in
“Normal operating system environment for a VTAM application program” on page
30 and in “RPL exit routines” on page 309.

SEND RPL=RPL2,OPTCD=ASY,EXIT=ASYNCEND

SEND is completed,
RPL exit routine is
schreduled

Control is returned

interruption

ASYNCEND
(RPL exit routine)

Request is accepted

CHECK
RPL=RPL2

Application Program VTAM

Figure 10. Asynchronous operation with an RPL exit routine scheduled

Chapter 3. Organizing an application program 43

Initializing a session

During session initiation, error recovery procedure (ERP) processing can cause an
application program task to be indefinitely suspended. This happens when an RPL
exit routine is not coded and either SIMLOGON OPTCD=ASY or
OPNDST OPTCD=(ACQUIRE,ASY) is followed by a CHECK macroinstruction for
the associated RPL. Neither the SIMLOGON nor the OPNDST operation completes
until ERP processing is finished. The CHECK macroinstruction causes the task that
issued CHECK to be suspended for as long as it takes to complete the ERP
processing.

To avoid suspension, use SIMLOGON OPTCD=ASY, and code an RPL exit routine
to handle its completion. Then use OPNDST OPTCD=ACCEPT after the LOGON
exit routine has been scheduled.

Advantages and disadvantages of different forms of operation

Table 3 on page 45 summarizes the advantages and disadvantages of synchronous
operations and the two general forms of asynchronous operations, ECB-posting
and RPL exit-routine scheduling.

(with EXIT=EXIT1) from any session.
EXIT1 is scheduled when
the RECEIVE is completed.

Continue with other
processing

RECEIVE

EXIT2 (RPL exit routine)

EXIT1 (RPL exit routine)

RPL used for RECEIVE
(with EXIT=EXIT2) on the same
session; EXIT1 then returns to
VTAM. EXIT2 is scheduled
when the SEND is completed.

RPL used for SEND in EXIT1
(with EXIT=EXIT1) from the same
session if communication on that
session is to be continued; otherwise,
RECEIVE from any session. EXIT2
then returns to VTAM. EXIT1
is scheduled when RECEIVE is completed.

CHECK
SEND

Return to
VTAM

CHECK

Application Program

Figure 11. Possible pattern of asynchronous requests in RPL exit routines

44 z/OS V2R1.0 Communications Server: SNA Programming

Table 3. Relative advantages of synchronous and asynchronous requests

Type of
request Performance

Storage requirements
for RPLs and
data areas

Programming
complexity

Synchronous
(OPTCD=SYN)

Adequate for batch-type program or for
programs serving few simultaneous sessions.

Small, because only
one request can be
outstanding at a time.
Can reuse RPL and
data areas.

Simplest to code.

Asynchronous
(OPTCD=ASY)

v ECB posting (ECB=
address or
INTERNAL)

Requires fewer system instructions than
scheduling an RPL exit routine. The
application can issue one WAIT for a
combination of VTAM and non-VTAM
requests. ECBs are not automatically
scheduled when the requested operation is
complete.

Might require more
storage because many
pending requests can
be outstanding, tying
up RPLs and data
areas.1

Most complex.

Asynchronous
(OPTCD=ASY)

v RPL exit routine
scheduling (EXIT=
address)

Requires more system instructions than
posting an ECB. The RPL is automatically
scheduled when the requested operation is
complete. Some advantages if used to give
priority of handling to a session (for
example, first input after logon).

About the same as
ECB posting.1

Less complex than
ECB posting.

Note:

1. While an asynchronous request is outstanding, the RPL and associated data areas (for example, NIB, RPLAREA,
EXTERNAL ECB, etc.) cannot be freed, altered, or reused.

Some questions that affect program organization

Table 4 lists some of the questions that must be answered when deciding how to
design and code a VTAM application program.

Table 4. Some questions that affect program design and coding

Program
function Questions to answer

Opening the program v Is there one or more than one ACB?

v In which addressing mode should the application program run? (Ensure
that the application program is in the same mode as it is when you open
the ACB.)

v Is the application capable of persistence? (See “Opening the ACB during
recovery from an application failure” on page 68.)

v Is the application multinode persistent capable? (See “Response to an
application failure with MNPS” on page 70.)

Chapter 3. Organizing an application program 45

Table 4. Some questions that affect program design and coding (continued)

Program
function Questions to answer

Establishing sessions with LUs v Who initiates sessions? (The program logic might not have to be aware of
this.)

– Automatic logon (network operator procedure) that automatically
initiates sessions on behalf of certain LUs?

– Dependent LU (that is, an Initiate Self sent from the LU)?

– Independent LU (that is, a BIND sent from the LU)?

– Terminal operator associated with an LU (the LU forwards request from
the terminal operator after perhaps modifying it in some way)?

– The application program itself, by issuing OPNDST or SIMLOGON?

– Another application program, by issuing CLSDST OPTCD=PASS?

– An application program, by issuing REQSESS?

– More than one of the preceding?

v Does something other than the application program initiate the session?

– Analyze the user logon message and session parameter before session
establishment. (Use LOGON exit routine, INQUIRE to obtain the user
logon message and session parameters, and OPNDST OPTCD=ACCEPT
to establish the session.)

– If no analysis is required, use OPNDST OPTCD=ACCEPT in the main
program logic.

v Does the application program always initiate the session?

– Identity of LUs known to program? (Use OPNDST or SIMLOGON to
establish sessions with the LUs).

- Are you using network-qualified names? If so, put the name in
NIBSYM and the network identifier in NIBNET.

- Acquire as many as are available? (Use OPNDST
OPTCD=(ACQUIRE,CONALL).

- Acquire any (single) one of them? (Use OPNDST
OPTCD=(ACQUIRE,CONANY).)

- Simulate a logon so that all LUs appear to be logging on to the
application program and thus can be handled by the same logic?
(Issue SIMLOGON OPTCD=(CONALL or CONANY) and then issue
OPNDST OPTCD=ACCEPT in the LOGON exit routine or in the
main program.)

v Identity of LUs not known to the program? (Use INQUIRE
OPTCD=TERMS to obtain the identities of the defined LUs, then issue
OPNDST or SIMLOGON.)

v Are sessions pending recovery?

– Application program can use INQUIRE OPTCD=PERSESS to determine
whether there are sessions pending recovery.

– Use OPNDST OPTCD=RESTORE to restore the session pending
recovery.

– Use CLSDST or TERMSESS to terminate the session pending recovery.

46 z/OS V2R1.0 Communications Server: SNA Programming

Table 4. Some questions that affect program design and coding (continued)

Program
function Questions to answer

Establishing sessions
with LUs
(continued)

v Is a session parameter used?

– Is a session parameter specified by the Initiate (logon mode name)?

- Is an INQUIRE macroinstruction needed to investigate the session
parameter?

- Does the application program ever have to modify the parameters?

v Is the session parameter always supplied solely by the primary application
program?

– Is a logon mode name to be provided in the LOGMODE field of the
NIB?

– Is a BIND area address to be provided in the NIB?

– Are negotiable BINDs used?

v Does the program share LUs with another program? (Use the RELREQ exit
routine to handle requests from other programs for your LUs. RELREQ
does not apply if the PLU is an independent LU.)

v Is it advantageous for identical, multiple applications to be defined to a
single generic name for workload balancing (using SETLOGON
OPTCD=GNAMEADD)?

If yes and LU 6.1 or 6.2 protocols are used or your program issues
SETLOGON GNAMEADD specifying AFFIN=APPL or your program
issues OPNDST and/or OPNSEC and specifies LUAFFIN=APPL, use of
the CHANGE macroinstruction might be in order.

v Is it necessary to pace the processing of session-establishment requests
(with SETLOGON OPTCD=(START or HOLD)) to prevent storage
shortages?

Closing the program v Is there more than one ACB?

v Does the application program send final request on sessions before closing
the program, or does it simply terminate the sessions?

v How is the application program to terminate normally?

– By VTAM operator closing down the network? (Use a TPEND exit
routine.)

– By special request from one or more LUs?

– By some internal logic, such as time-of-day?

– By system operator message (for example, through WTOR)?

v Are sessions terminated normally prior to CLOSE ACB?

Chapter 3. Organizing an application program 47

Table 4. Some questions that affect program design and coding (continued)

Program
function Questions to answer

Communicating with LUs

v Receiving
v Identity of session known (CID of session in the RPLARG field)? (Use

RECEIVE OPTCD=SPEC.)

v Identity of session unknown? (Use RECEIVE OPTCD=ANY to read input,
then RECEIVE OPTCD=SPEC.)

v Exclude session from having its input complete an any-mode RECEIVE
while it is in the midst of a transaction? (Specify OPTCD=CS.)

v Expect to receive responses to requests (using SENDs with other than
POST=RESP)? Can use either:

– An RESP exit routine (for other than DFSYN responses)

– RECEIVE RTYPE=RESP (for other than DFSYN responses)

– RECEIVE RTYPE=DFSYN (for DFSYN responses only).

v Expect to receive expedited-flow requests? Can use either:

– RECEIVE RTYPE=DFASY

– A DFASY exit routine.

v Want to be able to receive session-control requests? (Use a SCIP exit
routine.)

v Can length of input request vary greatly? (Use PROC=KEEP in
establishing the session and reissue RECEIVEs until the entire request is
read.)

v Expect that the LU might quiesce your application program (temporarily
stop it from sending)? Have logic to receive QEC and RELQ requests as a
result of DFASY input?

v In which addressing mode should RPL exit routines run? (The exit routine
enters in the mode of the caller at the time the RPL request issues.)

48 z/OS V2R1.0 Communications Server: SNA Programming

Table 4. Some questions that affect program design and coding (continued)

Program
function Questions to answer

Communicating with LUs

v Sending
v Send all of a request at once?

– Wait for the request to arrive at its destination before proceeding? (Use
SEND OPTCD=SYN, POST=RESP.)

– Start the request on its way and have VTAM post an ECB or schedule
an RPL exit routine when VTAM receives a response to the request?
(Use SEND OPTCD=ASY, POST=RESP.)

– Have VTAM schedule the sending of the request and determine its
arrival yourself? (Use SEND OPTCD=ASY (or SYN),
POST=SCHED,RESPOND=values.)

- Have the LU return a definite response that causes completion of
RECEIVE RTYPE=RESP specified or that causes entry to an RESP exit
routine? (Specify RESPOND=(NEX,FME,NRRN), (NEX,FME,RRN), or
(NEX,NFME,RRN), according to SNA protocols.)

- Have the LU return only an exception (negative) response and either
assume successful arrival or determine from the next received request
that the input arrived successfully? (Specify
RESPOND=(EX,FME,RRN), (EX,FME,NRRN), or (EX,NFME,RRN),
according to SNA protocols.)

- Have the LU return no response and determine successful arrival
yourself? (Specify RESPOND=(NEX,NFME,NRRN).)

v Send an element in a chain of elements? (Specify SEND POST=SCHED
CHAIN=(FIRST,MIDDLE, LAST) with RESPOND=EX on all but the last
SEND.)

– Request a definite response on the last SEND (to determine that the
entire chain arrived successfully)? (Specify RESPOND=(NEX,FME,RRN),
(NEX,FME,NRRN), or (NEX,NFME,RRN), according to SNA protocols,
and receive the response with RECEIVE RTYPE=RESP or with a RESP
exit routine, or specify POST=RESP on the last element and the
operation is not posted complete until the response comes back.)

– Request only a negative response and assume by subsequent action of
the receiver that the chain was received successfully? (Specify
RESPOND=(EX,FME,RRN), (EX,FME,NRRN), or (EX,NFME,RRN),
according to SNA protocols.)

v Send a long message with a single SEND? (Employ the large-message
performance-enhancement outbound option, SEND OPTCD=LMPEO.)

v Send a message from a set of non-contiguous buffers? (Use the buffer list
option, SEND OPTCD=BUFFLST.)

v Specify the RH indicators for each request? (Use SEND OPTCD=USERRH
to specify your own RH.)

Handling errors and special conditions v What kind of information should be saved in a LERAD exit routine? Does
the logic error affect only one session or the entire program?

v Which physical errors can be retried in a SYNAD exit routine? Which
require that the session be terminated? Which require sending a system
operator message? Which require that the program terminate?

v What action should be taken in the SCIP, NSEXIT, and LOSTERM exit
routines?

v What action should be taken if VTAM abnormally terminates while
running under a user's task?

– Should the application program have a STAE, or ESTAE exit routine to
investigate and clean up its own files?

Chapter 3. Organizing an application program 49

Table 4. Some questions that affect program design and coding (continued)

Program
function Questions to answer

Interfacing with the z/OS operating
system and VTAM

v What kind of interface is offered by z/OS and VTAM?

Handling control blocks and work
areas

v For session establishment

v Acquiring a session with one in a list of known LUs? Decide whether to:

– Assemble an NIB or a list of NIBs and an RPL (for OPNDST) into the
application program.

– Generate and initialize the NIB or list of NIBs and the RPL dynamically
using the GENCB macroinstruction or DSECTs.

– Obtain the NIB or list of NIBs and the RPL from a pool, assembled or
created dynamically, and initialize them. If you are using a pool, you
cannot use a negotiable BIND.

v Acquiring a session with one or a list of unknown LUs? (Use INQUIRE
OPTCD=TERMS to create and initialize NIBs and use an assembled,
generated, or pool-obtained RPL.)

v Are parallel sessions established?

v Accepting a session? Decide whether to:

– Have a LOGON exit routine and reuse the same NIB and RPL for each
session-establishment request

– Have one or more OPNDSTs in the mainline program, each of which
requires an RPL and an NIB.

v Do you need to create a buffer (RPLAAREA) to contain a negotiable BIND
response?

v Do you need to create a BIND area for a session parameter?

v An SCIP exit is recommended for receipt of UNBIND. (A negative
response to BIND is not returned by a higher-level node.)

Handling control blocks and work
areas

v For communication

v Simple program with synchronous requests? (Assemble RPLs and data
areas in the program and reuse them for each request.)

v Asynchronous program?

v Assemble, generate, or obtain from an assembled or generated pool one
RPL, one ECB (if an ECB is posted), and one work area (data area and
flags) for each concurrent session? Decide whether to use this storage for
the duration of the following:

– The session with the LU

– A receive and a related SEND

– A series of RECEIVEs and SENDs.

v Put the address of session-related storage in the USERFLD of the NIB if
the storage was obtained for the session?

Application programming interface

Be aware of the interface an application program has with the operating system
and with VTAM. For example, VTAM depends on the MVS Data Facility Storage
Management System (DFSMS) for initial processing of OPEN and CLOSE
macroinstructions.

General requirements

You can write application programs that execute in either 24- or 31-bit addressing
mode. However, to maintain an interface with existing programs, your 31-bit

50 z/OS V2R1.0 Communications Server: SNA Programming

addressing mode application program may need subroutines or portions of code
that execute in 24-bit addressing mode. If your 31-bit addressing mode application
program resides in 24-bit storage, it can change to 24-bit addressing mode when
necessary.

When developing an application program that executes in 31-bit addressing mode,
consider the following:
v Mode of the caller
v Desired mode of a routine being called
v Location of control blocks passed to other routines
v Location of routines whose addresses are passed as parameters
v Length of the address parameter fields

VTAM receives control from the macroinstruction in the addressing mode of the
application program that issued the macroinstruction and returns control to the
application program in that same mode.

Specific requirements

The application programming interface (API) of VTAM supports application
programs in 31-bit as well as 24-bit addressing mode. Control blocks that use the
API can reside in either 24-bit or 31-bit storage but must be consistent with the
addressing mode of the application program. For example, an application program
running in 24-bit addressing mode should not reference control blocks allocated
(that is, resident) in 31-bit storage.

Further considerations for an application program interfacing with VTAM include:
v All EXLST exit routines except LERAD and SYNAD are given control in the

addressing mode of the application program at the time the ACB was opened.
v LERAD and SYNAD exit routines are given control in the mode of the

application program at the time the CHECK macroinstruction was issued. The
application program is responsible for issuing the CHECK macroinstruction in
the same addressing mode as the addressing mode of the application program at
the time the original request was made.

v RPL-specified exit routines are entered in the mode of the application program
at the time the RPL request was issued.

For more information about 31-bit addressing, see “31-bit addressing” on page 319.
For detailed descriptions of each exit routine and macroinstruction, see Chapter 7,
“Using exit routines,” on page 219, and Chapter 13, “Conventions and descriptions
of VTAM macroinstructions,” on page 371, respectively.

Handling control blocks and work areas
About this task

The application program handles control blocks and session-related work areas
(data areas and status flags) in a number of ways. It can:
v Define RPLs, NIBs, or EXLSTs in the application program during assembly or

generate them during program execution by using the GENCB macroinstruction
or DSECTs

v Define RPLs, NIBs, or EXLSTs that reside in 31-bit storage

Chapter 3. Organizing an application program 51

v Assign one RPL or NIB to a specific session during assembly, or assemble or
generate RPLs and NIBs that are to be available for any session as the need
arises

v Retain the RPL used in establishing the session for all further communication on
the session

v Use one RPL for all session-establishment requests and use another RPL or
group of RPLs for all communication requests

v Define the RPLs, NIBs, and any other control blocks associated with sessions as
a pool so that a limited amount of control block storage is not exceeded.

In application programs that must handle many sessions concurrently, it might be
useful to have a control block other than the RPL or NIB associated with a
particular session. VTAM provides a way of associating a storage area with a
particular session. See “USERFLD field of the NIB” on page 37 for more
information on associating specific information with a session.

Techniques for handling control blocks and work areas

The following techniques are useful for handling control blocks and work areas.

Element per LU at assembly

This method works well if a known set of LUs is placed in session with the
program, and each LU has only a single session with the application program.
Each LU session uses a separate, predefined RPL. The RPL points to an NIB and to
a data area. The USERFLD field of the NIB can be set to point to a status save area
for the LU.

52 z/OS V2R1.0 Communications Server: SNA Programming

To do this, a correspondence can be set up between each session and its RPL. For
example, a session table can be constructed that matches a session with its RPL.
Because fixed session establishment is being used, a separate OPNDST
macroinstruction can be coded for each session; each OPNDST can be coded to use
a specific RPL. When a data-transfer request completes, the RPL's USER field
points to the status save area. The RPL continues to point to the data area.

Element per session at session establishment

This method can be used if the application program accepts logons from LUs
whose names are not known at assembly. A pool of RPLs, NIBs, data areas, and
status save areas can be set up as needed. The pool can consist of elements; each
element contains one RPL, one NIB, one data area, and one status save area. As
each CINIT is received, the application program selects an available element from
the pool and uses some technique to associate the element with the session.

One technique is to put the address of the element in the USERFLD field of the
NIB prior to issuing the OPNDST macroinstruction. Subsequently, whenever
execution of an RPL-based macroinstruction is completed, the address is available
in the USER field of the RPL.

After selecting a pool element for a session, that element can be used with the
same session for all subsequent requests. When the session is terminated, the
element is returned to the pool.

Element per transaction

Here again, a pool is used for storage management. However, instead of assigning
an element to a session for the life of the session, a new element is obtained for
each transaction. A transaction is a two-way interchange: data goes both from and
to the LU. An element is obtained for establishing a session and returned when the
session is established. A new element is obtained for each transaction and returned
when the transaction is completed. Using this technique, an NIB does not have to
be included in the elements used for the transactions.

Element per request

This is a more dynamic version of the element-per-transaction method. Here, you
use a new element for each request. As you complete each request, the element
returns to the pool. As a modification to this method, you can use one NIB and
one RPL for all session-establishment and termination requests, and obtain
additional pool elements for subsequent data-transfer requests. You can assemble
the NIB and RPL for session establishment and termination in the application
program; they do not need to come from a pool.

To maintain a strict “element per request” technique, the data area portion of an
element can be used to hold an NIB for session-establishment and termination

RPL NIB

Data area

Status save area

Figure 12. Element per LU at assembly

Chapter 3. Organizing an application program 53

requests, and as a data area for data transfer. To do this, one NIB can be set up in
the application program. For each request, the contents of the NIB can be moved
into the data area in the pool element, or a GENCB can be used to build a
complete NIB in the data area. This reduces the size of the pool elements.

Combinations

These techniques can be combined to suit particular needs. Here are two ways to
combine storage management techniques:
v At assembly, establish a fixed status save area for each session to be established.

Each status save area can contain a user identification to be compared to one
contained in a CINIT, or the save area can be used to count the number of times
a particular session has been established with an LU during the day. At session
establishment, a pool element is obtained (containing RPL, NIB, and data area)
and retained for the duration of the session. The fixed save area provides a
permanent place to keep session information.

v Assign one status save area per session at session establishment. This is more
dynamic than method 1 because the programmer does not have to know at
assembly which session is created. One RPL and data area per request or per
transaction can be used. Again, the status save area can be used to keep track of
session status, but only for the life of the session. The RPL and data area,
selected from a pool, allow dynamic data-transfer requests.

Note: It is good programming practice to set control block fields in user-written
application programs to 0 after they are used if the control block is to be reused.
Desired operands should be specified or reset to the system default. ACB, NIB, and
RPL fields that are not used by a macroinstruction should be set to 0 unless
otherwise indicated.

54 z/OS V2R1.0 Communications Server: SNA Programming

Chapter 4. Opening and closing an application program

This chapter describes aspects of the OPEN, CLOSE, and ACB macroinstructions
that apply to all application programs. If the application program uses special
functions that require authorization or that are operating system dependent,
additional considerations apply. See Chapter 10, “Operating system facilities,” on
page 295, and Chapter 12, “Coding for the communication network management
interface,” on page 337, for additional information.

For multiple, identical application programs that provide the same function and
that are known and accessed by a single generic name, see “Opening and closing
an application program as a generic resource” on page 78.

Opening an application program

After a VTAM application program starts, it issues an OPEN macroinstruction to
notify VTAM that it is an active element in the network.

VTAM uses the RACROUTE macroinstruction to verify user authority for opening
an application. RACROUTE invokes the System Authorization Facility (SAF) MVS
router, which conditionally directs control to the security management product. For
additional information on RACROUTE, refer to the z/OS Security Server RACF
Security Administrator's Guide.

VTAM grants the application access to the network when:
v SAF indicates that the application is authorized to become an element in the

network. VTAM then bypasses the password checking, and the security
management product provides resource access control.

v SAF cannot make a decision, and VTAM successfully performs VTAM password
verification.

During the OPEN processing, VTAM establishes an SSCP-LU session with the
application program logical unit (LU). VTAM can now accept requests for LU-LU
sessions with this application program. In addition, the application program can
now make further requests of VTAM. Normally, the application program remains
open until it issues a CLOSE macroinstruction.

VTAM considers each open access method control block (ACB) to be a separate
LU. Therefore, if an application program opens more than one ACB, VTAM sees
each open ACB as a different LU, even though the ACBs are related to the same
application program.

Opening an application program requires the following:
v An ACB defined with an ACB or GENCB macroinstruction
v An OPEN macroinstruction

Because an ACB can point to a list of exit routines, defined with an EXLST
macroinstruction, an EXLST macroinstruction is usually also required.

© Copyright IBM Corp. 2000, 2013 55

Access method control block (ACB)

The ACB contains the following information that describes the application program
to VTAM:
v The name of the access method used in operating the ACB (VTAM).
v The address of an application program identifier. The application program

identifier must match the name that is specified on the APPL definition
statement provided as part of the VTAM definition. When the application
program opens an ACB, VTAM verifies that the ACB name is defined to VTAM.
If the name is not defined, VTAM does not process the ACB.
If an application program name is not specified on the APPLID operand of the
ACB macroinstruction, VTAM uses a name supplied by the operating system. If
the name supplied by the operating system does not match a name on the APPL
definition statement, VTAM does not process the ACB. The following indicate
what name is used for each operating system:
If the application program is started by a job step that is a procedure invocation,
the name is the procedure step name in the job control language (JCL) for the
application program. Otherwise, it is the job step name in the JCL.

v Optionally, the address of a password associated with the application program.
When an ACB is opened, VTAM compares the ACB password with a password
that is defined on the APPL definition statement. If the passwords do not match,
VTAM does not process the OPEN macroinstruction. If a password is not
specified on the APPL statement, you do not need to specify a password on the
ACB macroinstruction.

v The address of an exit list (EXLST control block) containing the names of exit
routines written in the VTAM application program to handle specific events.
These are described in detail in Chapter 7, “Using exit routines,” on page 219.

v An indication of whether the application program accepts sessions that it has not
initiated (MACRF=LOGON). If MACRF=NLOGON is specified, an application
must use OPNDST OPTCD=ACQUIRE to establish sessions.
If the application program is to establish sessions in which it acts as the SLU,
you must code MACRF=LOGON.

v An NIB, if the application program is an authorized CNM application program,
to establish access to an SSCP-LU session between the SSCP and the application
program.

v Indicates whether the application program supports LU 6.2 architecture protocol
extensions for full-duplex and expedited data transmission.

v An indication of whether the application program is capable of persistent LU-LU
session support.

v An indication of whether the OPEN associated with this ACB is to be considered
a multinode persistent sessions forced takeover request.

v An indication of whether the application program is authorized to use the
performance monitor interface.

v A 4-byte field set by the application program to provide the address of the
Application-ACB vector list.

v A 4-byte field that can be set by the application program and used for any
application program purpose. VTAM ignores this field. For example, the field
can be set with the address of a control block to be used by the application
program when an exit routine is invoked.

v A 4-byte field containing the address of the access-method support vector list.
During the OPEN processing, VTAM fills in this field. The vector list contains

56 z/OS V2R1.0 Communications Server: SNA Programming

the release-level, component-identification, and function-list vectors and is
described in “The access-method-support vector list” on page 62.

v A 4-byte field containing the address of the resource-information vector list.
During the OPEN processing, VTAM fills in this field. The vector list contains
information about the application program that opened the ACB and is
described in “Resource-information vector list” on page 63.

The ACB and its related storage (APPLID, password, EXLST, NIB, and
Application-ACB vector list) must be allocated in the same storage key. This key
can be the storage key of the program status word (PSW) at the time the OPEN
macroinstruction was issued, or the storage key of the task control block (TCB).

For each ACB opened to VTAM, there is approximately X'250' bytes of storage
used as a VTAM work area. This work area is released when CLOSE ACB
processing completes.

The following sample ACB macroinstruction is used to build an access method
control block:
ACB1 ACB AM=VTAM,APPLID=APID1, C

PASSWD=PSWD1,EXLST=EXIT,MACRF=LOGON, C
PARMS=(USERFLD=A(MYLU))

.

.

.
APID1 DC AL1(L’AP1NAME)
AP1NAME DC C’MYPROG’
PSWD1 DC AL1(L’PASSCHAR)
PASSCHAR DC C’JOE007’
EXIT EXLST AM=VTAM,NSEXIT=NSRTN,SCIP=SESSCTL, C

LOGON=CINIT, C
LOSTERM=LTRTN

MYLU DS XL100

v ACB1, the symbolic name for this ACB, is included in the OPEN
macroinstruction that is used to open this ACB.

v AM=VTAM identifies VTAM as the access method for this ACB.
v APID1 is the address of the application program identification (MYPROG). A

request to initiate a session with this application program can specify MYPROG.
v MYLU is a control block to be associated with the ACB. It might contain the

status flags and other variables associated with the application program LU.
v PSWD1 is the address of the password (JOE007).
v EXIT is the name of the exit list created by the EXLST macroinstruction.
v MACRF=LOGON specifies that:

– Other LUs can initiate a session with this application program
– VTAM schedules the SCIP exit routine when a BIND request is received by

the application program.

An ACB can also be created when VTAM issues a GENCB macroinstruction to
execute an application program.

OPEN macroinstruction

Having created an ACB, the application program opens it by issuing an OPEN
macroinstruction. For example:
OPENPROG OPEN ACB1

Chapter 4. Opening and closing an application program 57

This macroinstruction opens an ACB with the name ACB1.

Note: The OPEN and CLOSE macroinstructions use a positional rather than a
keyword operand.

Vector lists

Vector lists provide an open-ended interface for application programs to exchange
information with VTAM. Each vector list contains a 2-byte length field followed by
a set of contiguous vectors in random order, as shown in Figure 13.

Each vector in the vector list is a set of contiguous data containing a length field,
an identifier, and a value field containing vector data. The fields containing vector
data can have trailing blanks. Some vector lists are built before or during OPEN
processing, while others are built during processing of the APPCCMD
macroinstruction. Table 5 shows the vector lists available to VTAM applications,
the macroinstruction with which they are associated, and their function.

Table 5. Vector lists

Name Pointer Macroinstruction DSECT Purpose Page

Access- Method-
Support

ACBAMSVL
field in the ACB

OPEN ACB ISTAMSVL Supplies information
to the application
about the VTAM
that opened the ACB

For more
information about
this vector list, see
“The
access-method-
support vector list”
on page 62.

Resource-
Information

ACBRIVL field
in the ACB

OPEN ACB ISTRIVL Supplies information
to the application
about the resources
available to the
application.

For more
information about
this vector list, see
“Resource-
information vector
list” on page 63.

Application- ACB ACBAVPTR field
in the ACB

OPEN ACB ISTVACBV Supplies information
to VTAM about the
application's
capabilities.

For more
information about
this vector list, see
“Vector lists
supplying
information to
VTAM” on page 59.

0Byte

Total
Length
Including
This
Field

First
Vector

Last
Vector

1 2 x

Figure 13. Format of a vector list

58 z/OS V2R1.0 Communications Server: SNA Programming

Table 5. Vector lists (continued)

Name Pointer Macroinstruction DSECT Purpose Page

VTAM- APPCCMD VTRINA field in
the RPL
extension

APPCCMD ISTAPCVL Supplies information
to the application
about a particular
conversation with a
partner LU.

For more
information about
this vector list, refer
to z/OS
Communications
Server: SNA
Programmer's LU
6.2 Guide.

Application-
APPCCMD

VTROUTA field
in the RPL
extension

APPCCMD ISTAPCVL Supplies information
to VTAM about a
particular request on
a conversation with
a partner LU

There are two types of vector lists associated with OPEN processing:
v Those used by the application program to supply information to VTAM
v Those used by VTAM to supply information to the application program.

Vector lists supplying information to VTAM

The application program can pass information to VTAM for OPEN processing
through the application-ACB vector list (pointed to by the ACBAVPTR field in the
ACB). The IBM-supplied DSECT ISTVACBV enables you to refer to the fields in
the application-ACB vector list symbolically.

OPEN processing vector lists built by the application have a 2-byte length field.
The format of the application-capabilities vector is shown in Figure 14 on page 60.

Chapter 4. Opening and closing an application program 59

The application-ACB vector list consists of the following vectors:
v Application-capabilities vector:

This vector is used by VTAM applications to provide the following information
about the application's capabilities. The vector ID is X'81'.

Field Capability

VAC81MLE (X'80')
LU 6.2 application supports having its logon exit driven multiple times
per session request. Applications with LOGON exits must set this
indicator to benefit from verification reduction. For more information
about this function, refer to the z/OS Communications Server: SNA
Network Implementation Guide.

VAC81FPR (X'40')
LU 6.2 application can receive data directly into CSM buffers by
specifying OPTCD=XBUFLST on the APPCCMD macroinstruction.

VAC81PWS (X'20')
LU 6.2 application can use password substitution.

VAC81ESS (X'10')
LU 6.2 application can handle extended security sense codes.

VAC81FPS (X'08')
LU 6.2 application can send data directly from CSM storage by
specifying OPTCD=XBUFLST on the APPCCMD macroinstruction.

VAC81EOM (X'04')
Programmed operator application can handle the command-complete
message (IST1746I) after completion of the DISPLAY, VARY, and
MODIFY commands. IST1746I is issued to a program operator
application and does not go to the VTAM operator console. This
message is not issued when command completion is not apparent to
VTAM (for example, when a VARY command is successful).

VAC81ACO (X'02')
Application indicates that it requests AUTOSES for CNOS only (that is,
it will not attempt to automatically restart AUTOSES sessions following
session outage).

VAC81FAA (X'01')
Application indicates that it requests ATNLOSS=ALL (that is, it
overrides specification of the ATTNLOSS parameter on the APPL
definition statement).

VAC81UCV (X'0080')
Application indicates that it supplies user control vectors with the
SETLOGON OPTCD=START macroinstruction. See “Supplying control
vectors with the SETLOGON START” on page 64 for more information.

0Byte

Total Length
Including
This Field

Vector
ID

Vector
Data

Vector
Data

1 2 3 x

Figure 14. Format of each vector within the application-ACB vector list

60 z/OS V2R1.0 Communications Server: SNA Programming

v Local-application's-DCE-capability vector: This vector is used by LU 6.2
applications to inform VTAM about the application's DCE security capabilities.
During session establishment, VTAM passes this information to the partner LU
in byte 22 of the BIND.
The vector ID is X'82'.

To supply the application-ACB vector list, an application specifies
PARMS=(APPLVCTR=address) on the OPEN ACB macroinstruction, where address
is the location of the application-built vector list. To build the ACB vector list, the
application program:
1. Obtains storage for the vector list
2. Initializes the fields using the ISTVACBV DSECT and the DSECTs contained

within the ISTVACBV DSECT.

For the complete layout of the ISTVACBV DSECT, see “Application-ACB vector list
(ISTVACBV)” on page 789.

Vector lists supplying information to the application

When the application program's OPEN macroinstruction successfully completes,
each of two address fields in the ACB is set with a pointer to a variable-length
storage area. These areas are located in storage that is read-only for the application
program. The storage is addressable from the MVS address space in which OPEN
is issued.

Each address field contains the address of a vector list. The two vector lists are:
v The access-method-support vector list (pointed to by the ACBAMSVL field in

the ACB DSECT). This list describes the VTAM that processed the OPEN
macroinstruction.

v The resource-information vector list (pointed to by the ACBRIVL field in the
ACB DSECT). This list specifies resource identifiers which might be unknown to
the application program.

The format for vectors contained in the access-method-support vector list and the
resource-information vector list is shown in Figure 15 on page 62.

Chapter 4. Opening and closing an application program 61

You can reference the vector lists any time after the OPEN macroinstruction
completes, and until the CLOSE macroinstruction or equivalent terminations, such
as an ABEND, occurs. Information similar to this in the access-method-support
vector list is also available at assembly time. See “ISTGLBAL macroinstruction” on
page 274 for a description of the information available at assembly time.

Applications that use the APPCCMD macroinstruction can also request information
from VTAM in the APPCCMD vector list. Refer to the z/OS Communications
Server: SNA Programmer's LU 6.2 Guide for more information.

The access-method-support vector list: The access-method-support vector list is
pointed to by the ACB's ACBAMSVL field in the ACB DSECT. This list describes
the global variables for the VTAM program that processed the OPEN
macroinstruction.

For the complete layout of the ISTAMSVL DSECT, see “Access-method-support
vector list (ISTAMSVL)” on page 781.

The access-method-support vector list consists of the following vectors:

Release-level vector
This vector contains the access method version and release number. The
vector ID is X'01'.

Component-identification vector
This vector contains product identification information about a major
component or feature of the VTAM licensed program. This information is
used by IBM for VTAM program maintenance. When a vector list contains
multiple component-identification vectors, the first vector designates the
base VTAM product; subsequent vectors designate features or other major
components of VTAM. The vector ID is X'04'.

Function-list vector
This vector contains a variable-length bit string in which each bit
corresponds to a particular VTAM function. If a bit is on, the
corresponding function is present in the particular release of VTAM. If a
bit is off, the function is not available. If the vector is not present, or if it is
shorter than expected, you can assume the missing bits to be 0. The vector
ID is X'05'.

The information contained in the function-list vector is also available at
assembly time in global variables created with the ISTGLBAL
macroinstruction. “ISTGLBAL macroinstruction” on page 274 describes the
use of global variables.

LU 6.2-support-function-list vector
This vector is provided to indicate which LU 6.2 options are supported by

0Byte

Total
Length
Including
This
Field

Vector ID Vector
Data

Vector
Data

1 2 x

Figure 15. Format of vectors built by VTAM during OPEN processing

62 z/OS V2R1.0 Communications Server: SNA Programming

this release of VTAM. This vector is not present for application's that do
not use VTAM's APPC API. The vector ID is X'06'.

Each subvector in this vector list can have one of the following values that
correspond one-to-one with LU 6.2 global variables:

X'00' Option is not supported

X'01' Option is supported

X'02' Pass-through (VTAM offers support for the function, but the
application program must implement the function.)

The vector list information is not available until execution time. Refer to
the z/OS Communications Server: SNA Resource Definition Reference.

Resource-information vector list: The resource-information vector list provides
information about the application program that opened an ACB at execution time.
The ACB's ACBRIVL field points to the list. The application program must search
the vector list to find a particular vector.

For the complete layout of the ISTRIVL DSECT, see “Resource-information vector
list (ISTRIVL)” on page 785.

The resource-information vector list provides the following vectors:

Application-network name vector
This vector contains the network name of the application program LU.
This name is specified by the name field of the APPL definition statement.
The vector ID is X'02'.

Application-ACB-name vector
This vector contains the ACBNAME of the application program. This is the
name specified by the APPLID operand of the ACB statement; if the
ACBNAME operand is not present, the network name of the application
program LU is used. The vector ID is X'03'.

Network-name vector
This vector contains the name of the network in which the host resides.
This name is specified by the NETID start option; if the NETID start option
is not specified, this vector contains 8 bytes of blanks. The vector ID is
X'06'.

SSCP-name vector
This vector contains the name of the SSCP. This name is specified by the
SSCPNAME start option. The name contained in this vector is used to
identify the SSCP to the NetView® program. The vector ID is X'07'.

Host-subarea-PU-network-name vector
This vector contains the network name of the host subarea physical unit
(PU) contained in this host. This name is specified by the HOSTPU start
option; if the HOSTPU start option is not specified, this vector contains the
default host subarea PU name, ISTPUS. This name is part of the session
awareness data provided to the NetView program or session monitor when
a resource is contained within the subarea of the host PU. The vector ID is
X'08'.

Host-subarea-PU-network-address vector
This vector contains the network address of the host subarea PU. The
vector ID is X'09'.

Chapter 4. Opening and closing an application program 63

Maximum-subarea vector
This vector contains the maximum subarea number (in binary) that is valid
for this host's domain. This is obtained from the MAXSUBA start option.
The vector ID is X'0A'.

LU 6.2-application-definition vector
This vector is present in this list for LU 6.2 application programs. The LU
6.2 application program may use this vector to determine the values coded
on the APPL definition statement.

For more information about the APPL definition statement, refer to the
z/OS Communications Server: SNA Resource Definition Reference. The
vector ID is X'0B'.

Common-application-definition vector
This vector is present in this list for all application programs. The
application program may use this vector to determine the values coded on
the APPL definition statement.

For more information about the APPL definition statement, refer to the
z/OS Communications Server: SNA Resource Definition Reference. The
vector ID is X'0C'.

The APPCCMD-vector-area-length vector
This vector is present in this list for LU 6.2 application programs. It
contains the absolute minimum length and the recommended minimum
length for full use of the APPCCMD vector area. The vector ID is X'11'.

Application-to-VTAM-vector-keys vector
This vector contains a list of all ACB vector keys presented by the
application program on the Application-ACB vector. The vector ID is X'12'.

Performance monitor vector
This vector, if present, identifies any fields in the performance data
parameter list of the installation-wide performance monitor exit routine
(ISTEXCPM) that are no longer supported. The vector points to a table of
field entries, each of which contains information needed to locate the
position of the unsupported field within the affected vector. Refer to z/OS
Communications Server: SNA Customization for more information. The
vector ID is X'13'.

Supplying control vectors with the SETLOGON START

If VTAM indicates (by the ISTAMSVL DSECT) that it supports applications
supplying user vectors on the SETLOGON START and if the application turns on
VAC81UCV when it issues its OPEN ACB, the application can provide a TCP/IP
Information Control Vector (CV64) when it issues the SETLOGON OPTCD=START
macroinstruction. The CV64 contains IP address and port information, as well as
other IP characteristics. After this information is associated with the application, it
can be propagated to the PLU of a session with this application and some of it can
be displayed by a VTAM operator, depending on the settings of the IPINFO start
option.

To pass the CV64, the application needs to turn on RPLNIB and set RPLARG in
the SETLOGON RPL to point to a NIB and the application needs to set NIBUCVA
in that NIB to point to a vector list. The format of vector list is shown in Figure 16
on page 65.

64 z/OS V2R1.0 Communications Server: SNA Programming

The lengths and the subvectors of the CV64 will be checked. If all is fine, the CV64
will be stored and associated with the SETLOGON issuer for later use in a session
setup or a display.

If the application issues another SETLOGON START with CV64 information, the
old CV64 information stored by VTAM will be deleted and it will be replaced with
the new CV64.

If the application attempts to pass the CV64 on the SETLOGON START without
having indicated that it will exploit the new function, the CV64 information will be
ignored. Likewise, if the application attempts to pass the CV64 on the SETLOGON
START to a VTAM that does not support the function, the CV64 information will
be ignored.

Using multiple ACBs in a VTAM application program

Normally, a VTAM application program has only one ACB; the program is known
to VTAM by only one APPL identification. However, a program might be known
under two or more different APPL identifications, and each requires that a separate
ACB be opened. One OPEN macroinstruction can be used. For example:

OPENPROG OPEN (ACB1,,ACB2)

Using network-qualified names

Network-qualified names provide an alternative to alias name translation if there
are duplicate resource names within interconnected networks. By using
network-qualified names for resources that are session-capable, such as LUs,
control points (CPs), and application programs, resource names can be duplicated
among networks in a multiple-network environment.

With network-qualified names, only names for session-capable resources have to be
unique within a single network. Names can be duplicated in SNA interconnected
networks because they are network-qualified. A network-qualified name is in the
form of netid.resource_name. VTAM automatically appends the network identifier to
each resource name so that an LU name LU1 in NETA would be known as
NETA.LU1 and an LU named LU1 in NETB would be known as NETB.LU1.

A name that is not network-qualified has from 1 to 8 characters. A
network-qualified name, netid.resource_name, has from 3 to 17 characters, where
netid has from 1 to 8 characters and name has from 1 to 8 characters. The
application program will pass the network-qualified name across the API as an
8-byte NETID and an 8-byte name.

0Byte

Total Length
Including
This Field

Vector
ID
(X'64')

Vector
Length

Vector
Data

1 2 3 x

Figure 16. Format of the CV64 Vector List to supply with SETLOGON START

Chapter 4. Opening and closing an application program 65

Establishing network-qualified names capability

An application indicates that it can support network-qualified names by specifying
PARMS=(NQNAMES=YES) on the ACB macroinstruction. See “ACB—Create an
access method control block” on page 375 for more information.

Where OPEN can be issued

Normally, the communication part of the VTAM application program issues the
OPEN macroinstruction. The OPEN macroinstruction cannot be issued from an exit
routine.

When using persistent LU-LU session support, the recovering application program
can issue the OPEN ACB from the same or a different address space. With MNPS,
the ACB can be OPENed on another VM within the sysplex.

See Chapter 10, “Operating system facilities,” on page 295, for additional
information pertaining to ACBs.

Using persistent LU-LU session support

Persistent LU-LU session support can be used by a VTAM application program to
facilitate session recovery following a failure.

Single-node persistent sessions (SNPS) is used to help recover sessions that are
disrupted by an application failure. Single-node persistent session support can also
be used to manage a planned takeover. When a VTAM application program fails
after it has enabled persistence, VTAM retains the LU-LU sessions. In order for the
sessions to be retained, VTAM and the operating system must remain active. See
“Application program recovery with single-node persistence enabled” on page 67
for information about how VTAM and the application react to application failures.

Multinode persistent sessions (MNPS) is used to help recover sessions that are
disrupted by a node failure, such as a failure in the hardware, operating system, or
VTAM. Multinode persistant sessions can also be used to move an application to
another VTAM, either after an application failure, or as part of a planned takeover,
or as part of a forced takeover. Multinode persistent session support is available in
a sysplex environment. Information used to re-establish the session is maintained
in the coupling facility. For information about setting up an environment that
supports mulitnode persistent sessions, refer to the z/OS Communications Server:
SNA Network Implementation Guide. See “Application program recovery with
multinode persistence enabled” on page 69 for information about how the sysplex
and the application react to node failures.

There are no differences in the programming interface for applications using
single-node or multinode persistent sessions, with one exception discussed in
“Response to an application failure with MNPS” on page 70. For both functions,
the application must enable persistence as described in “How an application
establishes persistence” on page 67.

When an application closes its ACB or terminates (whichever occurs first), VTAM
terminates its sessions unless the application is both capable of persistence and
enabled for persistence.

66 z/OS V2R1.0 Communications Server: SNA Programming

Following the recovery of the application program, the sessions must be restored to
permit continued use. See “Restoring sessions pending recovery” on page 137 for
more information.

How an application establishes persistence
An application indicates that it is capable of persistence by specifying
PARMS=(PERSIST=YES) on the ACB macroinstruction. The application enables
persistence by specifying OPTCD=PERSIST on the SETLOGON macroinstruction.
At any time the application program can disable persistence by issuing
SETLOGON OPTCD=NPERSIST.

Note: An application program must be capable of persistence before it can enable
persistence. Throughout this book, the term enabled (relative to persistence) implies
that the application program is also capable of persistence.

Applications that are capable of, but not enabled for, persistence cannot recover
sessions disrupted by application or node failures.

Session recovery states
Following a failure, a VTAM application program that has enabled persistent
LU-LU session support is in one of three states:

Recovery pending
The application program or node has failed with persistence enabled, and
the recovering application has not opened its ACB.

Recovery-in-progress
The recovering application has opened its ACB and there are sessions
pending recovery. The application remains in this state until the last
session is either restored or terminated.

Recovery complete
The application has either restored or terminated all sessions pending
recovery.

Application program recovery with single-node persistence
enabled

About this task

Single-node persistence is used to facilitate session recovery after an application
failure. When a failure occurs, the application program has two ways to manage
the recovery:
v Another instance of the failing application program can restart, recover the

connection to VTAM, and restore sessions. VTAM reconnects the failed
application when the recovering application issues an OPEN ACB using the
original ACBNAME.

v An alternate application program that has been started already can recover the
connection to VTAM and restore sessions. See “Takeover OPEN” on page 69 for
more information.

Response to an application failure with single-node persistence

When a failure occurs that involves an application program that has enabled
persistence, VTAM closes the ACB on behalf of the application program but retains
the LU-LU sessions. The application program enters the recovery pending state

Chapter 4. Opening and closing an application program 67

until a recovering application issues OPEN ACB. VTAM changes the primary
logical unit (PLU) state and secondary logical unit (SLU) state to inhibited. The
PLU and SLU states determine whether the application program can accept new
sessions. (See Table 6 on page 82 for more information.) All resources that will be
needed if the sessions are restored remain allocated to that application program.

If an application program has enabled persistence and an operator issues a VARY
INACT, ID=appl_name, TYPE=FORCE command for that application, VTAM
overrides persistence and terminates the application and its sessions normally.
With SNPS persistence is also overridden by a HALT command.

If the application has set a persistent session timer (PSTIMER) on the SETLOGON
macroinstruction, VTAM ensures that recovery occurs within the specified time
limit. The timer is started by application failure and continues until either the time
limit expires or the recovering application issues the OPEN ACB. If the timer
expires, VTAM terminates the retained sessions as if persistence had not been
enabled and releases the held resources. If PSTIMER is not set, the application
remains in pending recovery state until the application reopens its ACB. See
“SETLOGON—Modify an application program's capability to establish sessions”
on page 543 for more information about application programs'
session-establishment capability.

Opening the ACB during recovery from an application failure

During the recovery process, the application program issues the OPEN ACB, using
the original ACBNAME, to reconnect to VTAM. Upon return of the OPEN ACB
macroinstruction, VTAM will indicate that this application is a persistent instance
(the opening application program has taken over or recovered an ACB that was
previously used by an application program that was enabled for persistence).

During the OPEN processing, VTAM verifies that the following conditions are true.
v Original application had enabled persistence
v Recovering application is capable of persistence
v Recovering application's MACRF value matches the original application's

MACRF value.
v Recovering application's support for network-qualified names matches that of

the original application.

If any of the preceding requirements are not met, the OPEN ACB fails. The state of
the application and sessions remains unaltered. If all requirements are met, VTAM
begins the recovery process.

The recovering application does not need to re-establish persistence (SETLOGON
OPTCD=PERSIST). When the application program opens an ACB for which
persistence had been previously enabled, persistence remains enabled.

During the application recovery process, VTAM ensures that the allocated
resources will be available during session recovery. VTAM then cancels the
persistent session timer and completes the OPEN processing. After processing the
OPEN ACB, VTAM changes the application's state from inhibited to the
appropriate state as shown in Table 6 on page 82.

68 z/OS V2R1.0 Communications Server: SNA Programming

Takeover OPEN

The OPEN ACB macroinstruction also allows an alternate application to take over
an active application that has enabled persistence. VTAM requires that the opening
and original applications have the same ACBNAME.

When a takeover occurs, the takeover application program connects to VTAM and
restores sessions, even though the original application has not failed. The takeover
application program opens its ACB (PARMS=(PERSIST=YES)), and VTAM
schedules the TPEND exit of the original application program and closes the
application program. If the original application program does not have a TPEND
exit, VTAM closes it without any notification. Any sessions are placed in the
recovery pending state. The alternate application program must restore or
terminate these sessions.

An application can indicate that it can be the target of an SNPS takeover attempt
by specifying PARMS=(FORCETKO=ALL), or PARMS=(FORCETKO=SINGLE), on
a SETLOGON OPTCD=PERSIST macroinstruction invocation. In addition, by
default, an application is considered to support SNPS takeover attempts, but not
MNPS forced takeover attempts, until the application indicates otherwise. If the
original application has not indicated its support of an SNPS takeover request, and
a takeover OPEN ACB is processed, then the OPEN ACB will be failed with an
OPEN error code X'7C'.

Requirement: If the original application supports network-qualified names, the
recovery application also must support network-qualified names.

Application program recovery with multinode persistence
enabled

Multinode persistent sessions is used to facilitate session recovery after a node
failure. It can also be used to move applications to another VTAM in the event of
an application failure or as part of an MNPS takeover. The application can recover
on the same VTAM (if that VTAM is restarted) or any other VTAM that is part of
the sysplex and that is connected to the MNPS coupling facility structure. Refer to
z/OS Communications Server: SNA Network Implementation Guide for complete
information about setting up a sysplex that supports multinode persistent sessions.

Note: If both session partners are on the same VTAM prior to node failure, the
sessions will not be recovered. If the application recovers on the same VTAM as its
session partner, those sessions will be terminated.

For an application to be capable of multinode persistent sessions, PERSIST=MULTI
must be coded on the APPL definition statement for this application progam. There
are no differences in the programming interface for applications using single-node
or multinode persistent sessions, with one exception. For both functions, the
application must enable persistence as described in “How an application
establishes persistence” on page 67, and for both functions the application can
indicate support of forced takeover processing by using the SETLOGON
OPTCD=PERSIST macroinstruction. The exception in the interfaces between the
two types of persistence is that in order to initiate MNPS forced takeover, an
application needs to specify an additional parameter on the ACB macroinstruction,
as described in “Response to an application failure with MNPS” on page 70.

Chapter 4. Opening and closing an application program 69

If one of the following operator commands is issued prior to a node failure,
multinode persistent sessions support is overridden:
v HALT QUICK
v Normal HALT
v VARY INACT, TYPE=FORCE, ID=appl_name, where appl_name is the name of a

persistence-enabled application.

A HALT CANCEL command does not override multinode persistent sessions and
the session remain recoverable.

Response to a node failure

When a node failure occurs that affects an application program with persistence
enabled, information required to restore the session has been saved in the
multinode persistent sessions coupling facility structure. Other VTAM nodes in the
sysplex detect the failure and the application enters recovery pending state.

The persistent session timer (PSTIMER), if specified on the application's
SETLOGON macroinstruction, is started on all VTAMs connected to the multinode
persistent sessions structure. The PSTIMER indicates the amount of time an
application can remain in recovery pending state. If the timer expires, one of the
VTAMs in the sysplex performs cleanup of the coupling facility structure for the
application program data. If PSTIMER is not set, the application remains in
recovery pending state until the ACB is reopened by a VTAM in the sysplex.

Response to an application failure with MNPS

Opening the ACB during recovery from a node failure:

During the recovery process, the application program issues an OPEN ACB, using
the application network name of the original application, to reconnect to VTAM.
Applications using multinode persistent sessions should be structured so that the
OPEN macroinstruction is issued early in the application's processing. This allows
VTAM to perform recovery processing in parallel with other application start-up
work. Upon return of the OPEN ACB macroinstruction, the recovery VTAM
indicates that this application is a persistent instance (the opening application
program has recovered an ACB that was previously used by an application
program that was capable of persistence). Recovery can occur on the same VTAM
that the application program resided on (if that VTAM has been restarted) or a
different VTAM.

If the recovery VTAM does not have connectivity to the coupling facility, OPEN
processing continues as if it were an initial OPEN. If VTAM regains connectivity to
the multinode persistent sesions coupling facility structure and determines that the
application of the same name has opened its ACB in this sysplex, VTAM schedules
the TPEND exit of the recovering application with a return code of 12.

During multinode persistent sessions recovery OPEN processing, the recovery
VTAM obtains information needed to re-establish sessions from the coupling
facility and updates the coupling facility to show this VTAM as the owning CP of
the application program. The coupling facility is updated to show that the
application is enabled for persistence and the application enters recovery in progress
state. The recovery VTAM cancels its persistent sessions timer. Other VTAMs in the
sysplex will not clean up the coupling facility structure data when their persistent
sessions timers expire.

70 z/OS V2R1.0 Communications Server: SNA Programming

During OPEN processing, VTAM verifies that the following conditions are true.
v Original application is in a multinode persistent sessions recovery pending state
v Recovering application is capable of persistence
v Application's MACRF value matches the original application's MACRF value.
v Recovering application's APPC characteristics are identical to the original

application's APPC characteristics. The following operands on the APPL
definition statement are checked 1:
– SECLVL
– VERIFY
– SYNCLVL
– LIMQSINT

v Recovering application's full-duplex capability (as specified on the ACB) is
identical to the original application's full-duplex capability.

v Recovering application program's application-capabilities vector matches the
original application program's application-capabilities vector. See “Vector lists”
on page 58 for more information about this vector.

v If the original application was a generic resource, then the recovery VTAM can
provide the generic resource function and is connected to the same generic
resource structure (for example, STRGR specification matches).

v Recovery application program cryptographic support level is at least at the same
level, or higher, than the cryptographic support level used by the original
application. See “How VTAM determines the level of cryptography for a
cryptographic session” on page 133 for information about the ranked levels of
support for cryptography.

v Recovering application's support for network-qualified names matches that of
the original application.

v Recovery application program Triple DES encryption support requirement is the
same or higher than the original application program's requirement.

The recovering application does not need to re-establish persistence (SETLOGON
OPTCD=PERSIST). When the application program opens an ACB for which
persistence had been previously enabled, persistence remains enabled. The
application can issue the SETLOGON OPTCD=PERSIST nonetheless to ensure that
the proper setting for the FORCETKO PARMS operand is in effect.

Planned Takeover OPEN:

Multinode persistent session support allows an alternate application, on a different
VTAM node, to take over an application that is in a “SNPS recovery pending” state
(entered when CLOSE ACB is issued or the application abends while in the
enabled MNPS state). If OPEN ACB is issued in this state, VTAM will proceed as
normal until the point where VTAM as about to initiate recovery.

At that time, the takeover VTAM will signal the current owning VTAM, informing
it that the application wants to move. The owning VTAM will prevent any further
updates to the application data in the coupling facility from the original
application program, and will prevent any new data from flowing across RTP
pipes associated with the application. The current owner then replies to the

1. For SECLVL, VERIFY, and SYNCLVL, the recovery VTAM verifies that the values of these parameters are the same as what was
coded at the original VTAM. For LIMQSINT, the recovery VTAM verifies that LIMQSINT is defined if it was also defined at the
original VTAM. Different intervals for LIMQSINT are allowed at the two VTAMs.

Chapter 4. Opening and closing an application program 71

takeover VTAM, and initiates a non-persistent CLOSE ACB operation for the
original application program (as if the PSTIMER had expired) to clean up
awareness of the application at the original owner.

When the reply signal arrives at the takeover owner, an OPEN ACB response is
returned to the application program, and recovery continues as in the case of a
node failure.

If, for some reason, the MNPS takeover request was rejected by the current owning
VTAM, the recovery OPEN ACB would be failed with an OPEN error code of
X'58'. The recovering application does not need to reestablish persistence
(SETLOGON OPTCD=PERSIST). If the application program opens an ACB for
which persistence had been previously enabled, persistence remains enabled;
however, the application can issue the SETLOGON OPTCD=PERSIST to ensure
that the correct setting for the FORCETKO PARMS operand is in effect.

VTAM treats failure of an MNPS-capable application in the same manner as
described for SNPS applications (see “Application program recovery with
single-node persistence enabled” on page 67), with the addition of changing the
state of application in the coupling facility to SNPS recovery pending. If the
application reopens its ACB on the same VTAM, processing would again be
identical to the processing of VTAM for SNPS applications, with the addition of
changing the coupling facility state back to enabled.

Forced Takeover OPEN:

A second variation of MNPS takeover OPEN does not require that the current
active application image enter the SNPS recovery pending state before allowing
another node in the sysplex to attempt acquisition of the application. The takeover
node can signal to the current owning node that the application wants to move in
a much wider range of states (enabled, takeover in progress, and the suspect state
being the additional acceptable states).

When the current owning VTAM receives a forced takeover request, it will first
initiate a persistent CLOSE ACB for the application, which generate a steady state
image of the application and its sessions for the takeover node. After the steady
state image of the application is completed and the application has successfully
closed, the owning node signals the takeover VTAM, much as is done in the
planned takeover processing, that ownership has been be transferred. If the
ownership is transferred, the former owning VTAM initiates a non-persistent
CLOSE ACB, as planned takeover, to clean up the local image of the application.
Recovery processing at the takeover VTAM is identical, after ownership has been
successfully transferred.

An application must indicate that it wants to participate in forced takeover
processing, and the takeover OPEN ACB must be specifically marked as being a
forced takeover OPEN ACB. An OPEN ACB is denoted as being capable of
initiating an MNPS forced takeover OPEN ACB by specifying
(PARMS=(FORCETKO=YES)) on the ACB macroinstruction. The application
indicates a willingness to be a recipient of an MNPS forced takeover by specifying
PARMS=(FORCETKO=ALL) or PARMS=(FORCETKO=MULTI) on the SETLOGON
OPTCD=PERSIST macroinstruction.

Guideline: After MNPS recovery processing, even though persistence is enabled
by default for the application, you should issue SETLOGON OPTCD=PERSIST

72 z/OS V2R1.0 Communications Server: SNA Programming

with PARMS=(FORCETKO=ALL) or PARMS=(FORCETKO=MULTI) specified to
ensure that the application indicates support of forced takeover processing while
on this node.

Tip: An application that accepts MNPS forced takeover requests must consider
carefully the PSTIMER setting chosen, if one is used at all. A persistent CLOSE
ACB for the application is driven by VTAM as part of the forced takeover logic,
and after that has completed successfully a non-persistent CLOSE ACB is driven.
The application PSTIMER interval value should be at least long enough to allow
the internal VTAM processing to occur between the completion of the persistent
CLOSE and the start of the non-persistent CLOSE. An interval of 30 seconds or
more is necessary for this situation.

Restoring the sessions pending recovery

For information pertaining to how an application identifies and restores sessions
pending recovery, see “Restoring sessions pending recovery” on page 137. For
multinode persistent sessions, any sessions that involve partners on the same
VTAM that recovers a persistence-enabled application are not maintained. Also
note that the CID of a session recovered after a node failure is not the same as the
CID of the session before the failure.

If the application is going to just clear, (for example, reset by way of SESSIONC
CONTROL=CLEAR and SESSIONC CONTROL=SDT), the session after doing a
OPNDST RESTORE, rather than resuming the session traffic transparently, then
consider setting NIBTRNCK when establishing the session with the OPNDST
(ACQUIRE or ACCEPT) or OPNSEC. This will reduce the overhead required to
write the session state date to the coupling facility during session traffic.

Closing an application program

A VTAM application program closes itself by issuing a CLOSE macroinstruction
that specifies the program's ACB. The CLOSE macroinstruction is used in the same
way as the OPEN macroinstruction. Normally, the CLOSE macroinstruction is
issued in the communication part of the VTAM application program and cannot be
issued from an exit routine. The CLOSE request informs VTAM to terminate the
SSCP-LU session with the application program and to mark the application
program as no longer active in the VTAM network. For example:
CLOSPRG CLOSE ACB1

When a program closes, VTAM terminates all sessions and posts any outstanding
operations as complete. In addition, the application program can neither issue the
SENDCMD or RCVCMD macroinstructions nor access the vector lists that the ACB
points to.

For additional information on the use of CLOSE by a program operator application
(POA), refer to Appendix L, “Program operator coding requirements,” on page 875.

For information on the use of CLOSE with persistent LU-LU session support, see
“Using persistent LU-LU session support” on page 66.

The application program can learn that it should close its ACB in any of the
following ways:
v The application program can determine for itself that it should close (perhaps by

determining the time of day).

Chapter 4. Opening and closing an application program 73

v The application program can receive a special text or data request, either from
an LU or from the VTAM operator, indicating that the application program
should close operations.

v The TPEND exit routine of the program can be entered, either because the
VTAM operator has issued a HALT or VARY NET,INACT command or some
abnormal event has caused VTAM to end, or because another instance of the
application is being opened and this application needs to end as part of forced
takeover processing.

Program initiates closing

For a normal end to operations, the application program can send a final request
on all sessions. For an error or special condition, it can send the final request as
well as store information about the nature of the error.

A VTAM application program closes itself by issuing a CLOSE macroinstruction
that specifies its ACB. The CLOSE request notifies VTAM to terminate the
SSCP-LU session with the application program and to mark the program as no
longer active in the VTAM network. When VTAM processes a CLOSE ACB, and
that application is not enabled for persistence, it terminates all of the sessions
related to that ACB. If the application is enabled for persistence, then the sessions
are maintained for the duration of the time specified by the persistent sessions
timer (PSTIMER on the SETLOGON).

Note: For the extended recovery facility (XRF) sessions, during a normal end to
operations:
v If the primary application program issues CLOSE to terminate its sessions, it

also closes the backup extended recovery facility (XRF) sessions.
v If the primary application program issues CLSDST, it terminates an individual

backup XRF session.
v If the backup application program issues CLOSE, it terminates the backup

sessions and closes the backup application program.

Program receives a closedown message

The application program can close as the result of a special request from some
element in the network. This occurs if closing the application program depends on
a situation remote from the host processor (and the VTAM operator cannot be
informed about the situation). For example, suppose a terminal operator at an LU
in Chicago knows that Chicago is always the last user of an application program
that is in the host processor in New York. When all terminal operators in Chicago
have finished using the application program, a terminal operator in Chicago sends
a special request to the VTAM application program in New York, telling it to close
its operations. The VTAM application program then closes in an orderly fashion,
notifying the VTAM operator at the host processor.

TPEND exit routine is entered

The TPEND exit routine is entered when the VTAM operator deactivates the
application program or issues a HALT command or when, because of an internal
error or problem, VTAM stops or abnormally ends.

In addition, for SNPS processing, VTAM schedules the TPEND exit in response to
an OPEN ACB from an alternate application that wants to take over sessions from

74 z/OS V2R1.0 Communications Server: SNA Programming

an application that has enabled the persistent LU-LU session support. The TPEND
exit routine may also be scheduled if an active application program with the same
name has enabled persistence on another VTAM when this VTAM connects to the
multinode persistent sessions coupling facility structure. Specifically, this occurs
when a persistence-enabled application program is open and VTAM is not
connected to the coupling facility. Later, when VTAM connects to the coupling
facility, it detects an open application program with the same name that is already
enabled for persistence.

VTAM might also drive the TPEND exit upon receipt of an MNPS forced takeover
request from another node in the sysplex. The requested CLOSE ACB in this
situation is treated as a persistent CLOSE ACB, allowing this VTAM to create a
stable image of the application session and underlying HPR pipe data for the
recovering node to use for rebuilding the sessions and pipes remotely.

VTAM can schedule the TPEND exit in response to three kinds of HALT
commands:
v A standard HALT command, which contains neither the QUICK nor the

CANCEL operand
v A HALT NET,QUICK command, which initiates a quick closedown

v A HALT NET,CANCEL command, which initiates a cancel closedown.

A VTAM operator can choose to simultaneously end all application programs
running under VTAM. To do this, the operator issues a standard HALT command
or a HALT NET,QUICK command. Neither command, however, is completed (that
is, VTAM is not halted) until all application programs have closed their ACBs. The
following sections describe the specific actions taken by the TPEND exit routine in
response to the different HALT commands.

When the TPEND exit routine is entered, register 1 contains the address of a
2-word parameter list in which:
v Word 1 of this parameter list contains the address of the ACB of the application

program being shut down.
v Word 2 contains one of the following codes that indicates the reason for entry to

the exit routine:

0 The VTAM operator issued a standard HALT command.

4 The VTAM operator deactivated the application program or issued a
HALT NET,QUICK command, or VTAM is halting itself in an orderly
fashion because of an internal problem.

8 The VTAM operator issued a HALT NET,CANCEL command, or VTAM
is being abnormally terminated.

12 An alternate application has issued an OPEN ACB for the same
application network name that this application has opened. The new
application image is either located on this VTAM, or is on a different
VTAM in the sysplex and has notified this VTAM of the request using
an MNPS forced takeover signal. Because the alternate application has
taken over, the original application must issue CLOSE ACB.

See “TPEND exit routine” on page 263 for complete descriptions of the reason
codes that may be present in word 2 of the parameter list.

Chapter 4. Opening and closing an application program 75

For codes 0 and 4, the TPEND exit routine should take action as indicated in the
following sections. For codes 8 and 12, the exit routine should immediately return
control to the mainline program, where a CLOSE macroinstruction should be
issued.

If an application program does not have a TPEND exit routine or if that exit
routine cannot be scheduled, the application program is abnormally terminated.

For more information on the TPEND exit routine, see its description in Chapter 7,
“Using exit routines,” on page 219.

Action for a standard HALT command

The VTAM application program responds to a notification of a HALT command
(HALT NET without the QUICK or CANCEL operand) as a request from VTAM to
close the application's operations. Additionally, the standard HALT command
indicates that VTAM waits for the application program to close operations in an
orderly manner. VTAM does not complete the standard HALT processing until all
application programs have issued a CLOSE macroinstruction.

While VTAM is halting (because of a standard HALT command, a HALT command
with the QUICK or CANCEL operand, or an abend), it stops new sessions from
being established. During HALT processing, the application program need not
issue a SETLOGON OPTCD=HOLD macroinstruction to prevent new sessions from
being established.

When VTAM receives a standard HALT command, it prevents any new application
programs from associating themselves with VTAM (by opening their ACBs) and
prevents application programs from establishing new sessions. VTAM allows the
application programs to continue communications on active sessions. For each
application program, VTAM schedules the TPEND exit routine (if the program has
one) and passes code 0 in the parameter list.

Under these conditions, the application program does not have to immediately
close its ACB. The TPEND exit routine can inform other parts of the application
program that the standard HALT command has been issued. It can do this by
posting an ECB or by setting a switch that is checked by other parts of the
application program. The application program can continue communications but
should end them as soon as it can. It should then issue a CLOSE macroinstruction.

Note: The CLOSE macroinstruction cannot be issued in an exit routine; it must be
issued in the mainline program.

If the application program has no TPEND exit routine and the VTAM operator
issues a standard HALT, the application program has no immediate way of
knowing that the HALT command has been issued. The application program
continues communicating with LUs until the VTAM operator cancels the
application program or until VTAM terminates (because the VTAM operator has
entered a HALT NET,QUICK command).

Action for HALT NET,QUICK command or for VTAM-initiated
HALT

An application also enters its TPEND exit routine when the VTAM operator
deactivates the application program or issues a HALT NET,QUICK command or

76 z/OS V2R1.0 Communications Server: SNA Programming

when VTAM enters halt-quick processing because of an internal error. In these
cases, VTAM closes down the network rapidly.

After it receives a HALT NET,QUICK command or after it enters halt-quick
processing, VTAM does not allow any new application programs to associate
themselves with VTAM (by opening their ACBs), nor does it allow application
programs to establish new sessions. For application programs already in session
with LUs, VTAM does not complete any new RPL-based communication requests.
Any pending communication request is marked complete, with
(RTNCD,FDB2)=(X'10',X'03') to indicate that the operation was canceled because of
a quick closedown.

When an application program determines that a quick closedown is in progress, it
should close its ACB as soon as possible. The TPEND exit routine learns of the
quick closedown by finding code 4 in the parameter list when it is entered. That
exit routine should do a minimum of closedown processing and return control to
VTAM as soon as possible so that the mainline program can issue the CLOSE
macroinstruction.

The user should be aware that, after the TPEND exit routine returns control to
VTAM, the halt-quick situation does not prevent VTAM from scheduling the
application program's other exit routines (such as the LOSTERM exit routine).
Because of that, the TPEND exit routine should set a quick-halt-in-progress switch,
which the application program should test at the beginning of each exit routine.
When the switch is on, each exit routine should immediately return control to
VTAM. The TPEND exit routine should also set a switch or post an ECB to signal
the mainline program to close the ACB as soon as possible.

Action for HALT NET,CANCEL command or abnormal termination

VTAM's receipt of a HALT NET,CANCEL command or a VTAM abnormal
termination also causes entry to the TPEND exit routine. For either event, VTAM
interrupts any RPL-based operation and does not complete it (that is, the RPL is
not marked as complete and no ECB is posted or RPL exit routine scheduled).
VTAM rejects any RPL-based VTAM macroinstruction with
(RTNCD,FDB2)=(X'10',X'03') or (X'14,'X'10'). Only CLOSE can be issued. Therefore,
when the TPEND exit routine detects code 8 in the parameter list it receives, the
exit routine should set a switch or post an ECB to inform the mainline program
that it should immediately issue the CLOSE macroinstruction. The exit routine
should then return control to VTAM so that control can be given to the mainline
program.

Action for a takeover OPEN

An application program that is enabled for persistence enters its TPEND exit
routine under the following conditions:
v For single-node persistent sessions, an alternate application program that is

capable of persistence issues OPEN ACB to takeover the sessions from the
original application.

v For multinode persistent sessions, an application program with the same
network name has enabled persistence on another VTAM when this VTAM
connects to the multinode persistent sessions coupling facility structure.
Specifically, this occurs when a persistence-enabled application program is open
and VTAM is not connected to the coupling facility. Later, when VTAM connects
to the coupling facility, it detects an open application program with the same
name that is already enabled for persistence.

Chapter 4. Opening and closing an application program 77

v For multinode persistent sessions, an additional reason for the TPEND exit to be
driven is the receipt of a forced takeover request from another node in the
sysplex. Specifically, a copy of this same application has issued OPEN ACB on
another node, and has specified FORCETKO=YES on the ACB macroinstruction.
This setting indicates that the new copy of the application has reason to acquire
ownership of the existing sessions, so this image of the application must be
cleaned up before the new image can successfully acquire the sessions.

Tip: An application can prevent this final form of TPEND exit usage by
specifying PARMS=(FORCETKO=NONE) or PARMS=(FORCETKO=SINGLE) on
its SETLOGON OPTCD=PERSIST macroinstruction.

In all cases, VTAM closes the application program by scheduling the TPEND exit
routine with reason code 12.

For all TPEND conditions, VTAM does not allow the application program to
respond to any operator commands, nor does it allow the application program to
establish any new sessions. The original application program must issue CLOSE.
Any RPL macroinstructions issued by the original application program will fail.
Any pending or future communication request is marked with
(RTNCD,FDB2)=(X'10',X'0D') to indicate that VTAM is inactive for that ACB.
VTAM places any sessions in the recovery pending state and holds the allocated
resources for future availability during session recovery.

Opening and closing an application program as a generic resource

The generic resource function enables multiple application programs that provide
the same function to be known and accessed by a single generic name. LUs can
initiate sessions using the generic name; VTAM determines which application
program is used to establish the session. The LU knows the application program
by its generic name only. This function enables VTAM to provide workload
balancing by distributing incoming session initiations among a number of identical
application programs, instead of overwhelming one application program.

An application program that is acting as a generic resource can have sessions with
many LUs. One LU can have multiple sessions with a generic resource name;
however, to maintain parallel session integrity, these sessions must be established
with the same application.

VTAM maintains an awareness of the identity of the LU and the identity of the
application that is acting as the generic resource for this session. This ensures that
all subsequent session initiations from an LU that is in session with a generic
resource resolve to the same application program.

Identifying an application program as a generic resource
member

An application program must “associate” itself with a generic resource name
before establishing LU-LU sessions. This association is accomplished when an
application program identifies itself as a generic resource member by issuing
SETLOGON OPTCD=GNAMEADD after OPEN ACB, but before SETLOGON
OPTCD=START.

An application program can terminate the association with a generic resource
name by issuing SETLOGON OPTCD=GNAMEDEL. Termination of the association

78 z/OS V2R1.0 Communications Server: SNA Programming

can occur even after the application program establishes LU-LU sessions.
GNAMEDEL indicates to VTAM to stop using this generic resource member when
distributing new LU-LU session initiations.

An application that is enabled for persistence in a sysplex that supports multinode
persistent sessions will have its association with its generic resource name
terminated during recovery of that application from a node failure. In this case, the
application must issue the SETLOGON OPTCD=GNAMEADD macroinstruction to
be associated with a generic resource name.

Initiating a session using a generic resource name

When an LU initiates a session with a generic resource, VTAM determines whether
that LU is currently in session with a generic resource. If it is, VTAM ensures that
subsequent sessions resolve to the same application program. If the LU is not in
session with a generic resource, VTAM resolves the generic resource to the next
available application program. VTAM then tracks the affinity created between the
LU and the application program. VTAM maintains the affinity to ensure that all
session requests from an LU to a generic resource name resolve to the same
application.

Initiating a session using the name of an application that is a
member of a generic resource

If an LU requests sessions using the application network name instead of using the
generic resource name, VTAM establishes the session. However, if the LU later
uses the generic name, session initiation resolves to another application known by
that generic name.

Closing an application program that is a member of a generic
resource

Before an application (that is a member of a generic resource) issues CLOSE ACB,
all LU sessions should be terminated. The application program issues CHANGE
OPTCD=ENDAFFIN, which allows VTAM to end the affinity between the
application program and the LU. After all sessions with LUs have been terminated,
and the generic resource application program has terminated affinities with all
LUs, the application can issue CLOSE ACB. If the application issues CLOSE ACB
without terminating the LU-to-application affinities, the affinities may persist.

VTAM also provides the CHANGE macro with OPTCD=ENDAFFNF (End Affinity
Force). This option allows the affinity with a specific LU to be terminated
immediately, even if sessions are still active.

Ownership of affinities between LUs and application programs

An LU-to-application program affinity is controlled by either VTAM or the
application program. An application program using generic resources can only use
the CHANGE macroinstruction, to terminate the affinity between an LU and itself,
if the application is the owner of the affinity. The application program controls this
affinity if any of the following are true:
v LUAFFIN=NOTAPPL was not specified during session establishment and the

session uses LU 6.2 sync point services.

Chapter 4. Opening and closing an application program 79

v LUAFFIN=NOTAPPL was not specified during session establishment and the
session uses LU 6.2 limited resource support.

v LUAFFIN=NOTAPPL was not specified during session establishment and the
session uses LU 6.1 protocols.

v LUAFFIN=NOTAPPL was not specified during session establishment and the
application program specified SETLOGON OPTCD=GNAMEADD with
AFFIN=APPL specified on the NIB.

v LUAFFIN=APPL was specified during session establishment.

VTAM controls the affinities in all other situations.

See “NIB—Create a node initialization block” on page 433 for more information.

Terminating affinities that are application-owned

A generic resource application, acting as the PLU or the SLU, terminates the
affinity with an LU by issuing the CHANGE OPTCD=ENDAFFIN
macroinstruction. However, termination of the affinity cannot occur until all
sessions between the LU and the application program are terminated. If CHANGE
OPTCD=ENDAFFIN is issued and there is at least one active session with that LU,
the CHANGE is rejected.

A generic resource application, acting as the PLU or the SLU, can also force the
termination of the affinity with an LU by issuing the CHANGE
OPTCD=ENDAFFNF macroinstruction. When using the force option
(OPTCD=ENDAFFNF), the affinity will immediately be terminated without regard
to sessions.

If there is a new session pending, VTAM is given ownership of the affinity. If the
pending session fails, VTAM terminates the affinity between the LU and the
application program. If the pending session becomes active, the application is
notified and control of the affinity is determined by the factors listed in
“Ownership of affinities between LUs and application programs” on page 79.

Terminating VTAM-owned affinities

VTAM owns and controls all affinities that are not controlled by a generic resource
application. In all cases, VTAM owns and controls this affinity before an
application is notified that a session is being established. For example, if an LU 6.1
session fails prior to the application program being notified of that session, VTAM,
as owner, terminates the affinity between the LU and the application program.

After the last session between the LU and an application of the generic resource
ends, VTAM terminates the affinity between the LU and the application.

In a sysplex that supports multinode persistent sessions, affinities are maintained
for a generic resource application that has enabled persistence, even after the
VTAM (or operating system) that owns the application fails. This is true as long as
the application remains in recovery pending state, which typically is the duration
of the persistent sessions timer (PSTIMER). The application's partner LUs still
maintain their affinities with the application, even though that application is not
available for new sessions and is not processing any existing session traffic.

80 z/OS V2R1.0 Communications Server: SNA Programming

Chapter 5. Establishing and terminating sessions with logical
units

Before two LUs can communicate, VTAM must establish a session between them.
In any session between logical units (LUs), one LU, the primary logical unit (PLU),
acts as the primary end of the session (also called the primary half-session); and
the other LU, the secondary logical unit (SLU), acts as the secondary end of the
session (also called the secondary half-session). For some LU types, the PLU has
more control over communications than does the SLU. “Sessions” on page 3 shows
an example of the SNA session-initiation procedure.

The type of macroinstruction issued by the initiator of a session determines which
LU is to be the PLU and which LU is to be the SLU in that session. If the
application program issues a REQSESS macroinstruction to initiate the session, that
application program becomes the SLU in the established session. If an application
program issues a SIMLOGON macroinstruction, it becomes the PLU in the session.
The PLU actually establishes the session by sending a BIND request to the SLU.

The system services control point (SSCP) assists the LUs in establishing and
terminating sessions. Although only one SSCP (a single-domain network) is
discussed in the following sections, the session-establishment and termination
procedures involved for a multiple-domain network are very similar, with the
SSCPs cooperating to give the appearance of a single SSCP to the LUs involved.

Defining LUs

Before you can establish a session, both LUs must be active, connected, enabled,
and available.

An LU is active after a VARY ACT command applied to it completes successfully.
The command can be for the LU specifically, or for a set of resources including the
LU. The VTAM operator can explicitly issue the command, or the command can be
issued implicitly within the list of resources activated upon initialization of VTAM.
Refer to z/OS Communications Server: SNA Operation for further information
about the VARY ACT command.

An LU is connected when a physical path exists from the node containing the
SSCP to the node containing the LU, and a session between the SSCP and the LU
is established on this path (not applicable for independent LUs).

LUs on nonswitched lines are always connected if they are active. LUs on switched
lines are connected only when a link is established over the switched network. For
LUs belonging to physical units (PUs) that can only dial in to the network, dial-in
must occur before a session can be established. If dial-out capability is supported,
VTAM dials out to the PU if the PU is not connected and if a session is being
initiated with an LU belonging to the PU. Channel-attached peripheral PUs exhibit
some of the characteristics of switched PUs and can be connected or disconnected
while they are active.

LUs can indicate whether they are willing to have sessions. An enabled LU is
willing to have sessions. A disabled LU does not currently want a session, but it
might in the future. Therefore, if the session-initiation request specifies that the

© Copyright IBM Corp. 2000, 2013 81

session can be queued until the LU is enabled, it is appropriate to queue the
session. An inhibited LU does not want a session in the foreseeable future, and no
session should be queued for it.

Separate enabled states exist for LUs acting as PLUs and as SLUs. For example, an
application program LU that has opened its ACB with MACRF=LOGON, but has
not yet issued SETLOGON OPTCD=START, can act as a PLU, but cannot act as an
SLU. While in this state, the application program must issue OPNDST
OPTCD=ACQUIRE to establish any sessions. When SETLOGON OPTCD=START is
issued, the application program can act as both a PLU and an SLU. An application
program LU that has opened its ACB with MACRF=NLOGON is enabled as a PLU
and is inhibited as an SLU. It cannot act as the SLU. Table 6 summarizes the
interaction between SETLOGON and the ACB's MACRF operand.

An LU is available if it is active, connected, enabled, and not at its session limit.
The session limit is the maximum number of concurrent LU-LU sessions that the
LU can support. For LUs that support LU 6.2 protocols, session limits can be
dynamically defined. For dependent LUs, the session limit is one. VTAM
application program LUs and independent LUs can support an unlimited number
of sessions.

Note: These notes relate to the following table. SETLOGON OPTCD=STOP does
not cause the SSCP or VTAM, on behalf of the LU issuing SETLOGON
OPTCD=STOP, to take any action to prevent session initiation. It does cause the
SSCP to set an indicator that can be queried by another application issuing
INQUIRE OPTCD=APPSTAT.

Table 6. Interaction between SETLOGON and the ACB MACRF operand

Application
program's
ability
to act: MACRF=NLOGON MACRF=LOGON MACRF=LOGON MACRF=LOGON

(SETLOGON
OPTCD=START,
QUIESCE, or STOP, if
issued, is rejected
with (RTNCD,FDB2)=
(X'14', X'61')).

(Before SETLOGON
OPTCD=START)

(After SETLOGON
OPTCD=START, but
before SETLOGON
OPTCD= QUIESCE)

(After SETLOGON
OPTCD= QUIESCE)

As an SLU Inhibited

SSCP rejects Initiate
requests (sense code=
X'083A0000') for
sessions in which this
LU acts as an SLU.

Disabled

If queuing is
requested in Initiates,
SSCP queues requests
for sessions in which
this LU acts as an
SLU; otherwise, it
rejects the Initiates
(with sense
code=X'083A0002').

Enabled

SCIP exit routine
scheduled with BIND
for the requested
session.

Inhibited

SSCP rejects Initiate
request (sense code=
X'0801000F') for
sessions in which this
LU acts as an SLU.

82 z/OS V2R1.0 Communications Server: SNA Programming

Table 6. Interaction between SETLOGON and the ACB MACRF operand (continued)

Application
program's
ability
to act: MACRF=NLOGON MACRF=LOGON MACRF=LOGON MACRF=LOGON

As a PLU
Enabled

VTAM rejects all
CINITs (except those
immediately
completing OPNDST
OPTCD= ACQUIRE)
(sense code=
X'08010000') by
VTAM for the LU.

Enabled

CINIT either
immediately
completes OPNDST
OPTCD= ACQUIRE
or ACCEPT, or is
queued at LU to
await OPNDST
OPTCD= ACCEPT.

Enabled

CINIT does one of the
following:

1. Completes
OPNDST
OPTCD=
(ACQUIRE,
ACCEPT)

2. Schedules the
LOGON exit
routine

3. If there is no
LOGON exit
routine, is queued
at LU to await
OPNDST
OPTCD=
ACCEPT.

Inhibited

SSCP rejects Initiate
requests (sense code =
X'0801000A') for
sessions in which this
LU acts as a PLU.

Stages of session establishment
Creating a session between two LUs (an LU-LU session) is a three-stage process.
The first stage begins when an LU requests that a session be established. This
request is in the form of an SNA Initiate request sent to the SSCP. The SSCP
determines whether the LUs are available for sessions. If both LUs are available, a
pending active session is created between them. If both LUs are active and
connected, and at least one of them is not available (not enabled or at its session
limit), and the session-initiation request indicates the session can be delayed until
the LUs are available, then a queued session is created. When both LUs are
available, the oldest queued session between them becomes a pending active
session. Normally, sessions are queued in the order in which the Initiate requests
are received. However, the Initiate request can indicate that the session should take
priority over other queued sessions, and be put at the head of the queue. The
queued session represents a request to establish a session. Queued sessions are not
counted against the session limits for the LUs, so there can be many queued
sessions waiting for a particular LU to become available.

The second stage begins when the pending active session is created (that is, both
LUs are now available for the requested session). The SSCP sends a Control Initiate
(CINIT) request to the LU that acts as the PLU in the session being established.
The CINIT request is a request sent to the PLU to establish a session by sending a
BIND request to the SLU. Pending active sessions are counted against the session
limits for the LUs. Therefore, the number of active and pending active sessions for
each LU cannot exceed the LU's session limit.

Chapter 5. Establishing and terminating sessions with logical units 83

The third stage begins when the BIND request is sent from the PLU to the SLU.
The BIND carries information concerning session protocols. The SLU examines the
session parameter and if it is acceptable (or in the case of a negotiable BIND, if the
SLU wishes to return a set of modified parameters), the SLU sends a positive
response to the BIND. When the PLU receives the positive response, the session is
considered to be active.

Note: Use the SETLOGON HOLD/START macroinstruction to control the number
of session requests currently being processed. Refer to the SETLOGON
macroinstruction, “SETLOGON—Modify an application program's capability to
establish sessions” on page 543, for more information on SETLOGON
HOLD/START.

Stages of session termination
Unlike session initiation, session termination can occur with or without SSCP
assistance.

The SSCP assists directly when it is sent a Terminate request (which ends the
session). The originator of the request can be either of the two LUs involved in the
session or a third party (for example, the VTAM operator). The three types of
Terminate requests are orderly, forced, and cleanup. Following are the descriptions
of these types:
v Terminate Orderly causes a Control Terminate (CTERM) Orderly request to be

sent from the SSCP to the PLU of the affected session. The session is not
disrupted, and communication can continue. The PLU decides when, if ever, to
end the session. It can start an application-program-dependent takedown
procedure to end the session in an orderly manner, or it can ignore the request.

Note: Terminate Orderly does not apply if the PLU is an independent LU.
v Terminate Forced causes a CTERM Forced request to be sent from the SSCP to

the PLU of the affected session. In this case, UNBIND is sent automatically from
the PLU and immediately terminates the session. Further session communication
is impossible.

v Terminate Cleanup causes Cleanup Session (CLEANUP) requests to be sent
from the SSCP to the PLU and SLU of the affected session. These requests
inform the LUs that the session has been terminated and that further
communication is impossible. When an LU receives a CLEANUP, it
automatically sends an UNBIND to the other LU in the session. This ensures
that the other LU is notified that the session has been ended (possibly because of
a network outage) even if CLEANUP cannot be sent to it from the SSCP. The
cleanup processing for a peripheral LU differs slightly from that done for a
subarea LU, but the result in both cases is that the half-session at the LU
(including any boundary function support of that LU) is reset and that UNBIND
is sent to the session partner (the other LU in the session) to cause its
half-session to be reset. The SSCP is notified when each half-session is reset so
that the SSCP might reduce the session count for each LU.

A session can also terminate without the direct assistance of the SSCP. Either LU
can send an UNBIND at any time to the other LU in the session. Each LU notifies
the SSCP when its half-session is reset so that the LU's session count can be
reduced.

In addition, certain network outages or VTAM operator actions (such as
deactivating a link) can cause a session to be terminated. In this case, VTAM
notifies the LU of the loss of the session. The LU then informs the SSCP so that the

84 z/OS V2R1.0 Communications Server: SNA Programming

LU's session count can be reduced. See “Session outage notification” on page 110
for a detailed discussion of session outage termination.

Sources of SNA Initiate and Terminate requests

Session-initiation requests can come from any of the following sources:

Device-type LU Initiate

Some device-type LUs can send formatted (bit-encoded) Initiate requests to VTAM
as a result of some action, such as pressing a key on a terminal. Other device-type
LUs allow terminal operators to enter a character-coded LOGON that is translated
into a formatted Initiate request by the SSCP. Thus, the device-type LU Initiate
permits a terminal or its operator to initiate a session; the application program
need not have previously known of the device-type LU's existence.

Application program LU Initiate

A VTAM application program can initiate a session in which it acts as the PLU by
issuing an OPNDST OPTCD=ACQUIRE or SIMLOGON macroinstruction. This
permits an application program to initiate a session and is useful, for example, if a
device-type LU (such as an unattended printer) cannot itself initiate the session, or
if the time when a session is needed is known only by the application program.
This requires that the application program have previous knowledge of the LU's
existence. An application program can also initiate a session (for example, an
LU-LU session between programs) in which it acts as the SLU by issuing a
REQSESS macroinstruction. (REQSESS cannot be used when the requested PLU is
an independent LU.)

Third party Initiate

A session can be initiated by an LU that is not one of the session partners, or by
the SSCP. In VTAM there are two ways this can happen:
v CLSDST OPTCD=PASS. An application program acting as a PLU in a session

can “pass” its session partner (the SLU) to another LU which acts as the PLU in
a new session with that session partner. This permits the SLU to be passed from
application program to application program in a sequence strictly controlled by
the application programs involved. The types of session initiation previously
discussed do not allow this; instead, for them, sessions are established in the
order in which the corresponding Initiate requests are received by the SSCP.

v Network Definition or VTAM Operator Command. The VTAM operator can
cause a session to be established with a particular application program (called
the controlling application program) by issuing a VARY LOGON command for a
device-type LU. This means that whenever the device-type LU has no LU-LU
session, or for an independent LU that has no LU-LU session with the
controlling application program but can have other LU-LU sessions, a session is
automatically initiated between the controlling application program and the
device-type LU; this automatic session initiation is not done if the last session
that the device-type LU had is with the controlling application program and the
session ended normally, for example, with CLSDST. A similar session is
established by VARY ACT if the device-type LU is defined to have a controlling
application program (by the LOGAPPL keyword on the LU definition
statement). These techniques allow a session to be initiated without requiring
either the application program or the device-type LU to do the session initiation.
To each of the LUs, it appears almost as if the other LU had initiated the session.

Chapter 5. Establishing and terminating sessions with logical units 85

Refer to z/OS Communications Server: SNA Operation for more information on
the VARY LOGON and VARY ACT commands.
Application programs that support LU 6.2 protocols can request automatic
activation of a specified number of sessions used for LU 6.2 conversations. Refer
to z/OS Communications Server: SNA Programmer's LU 6.2 Guide for more
information on the definition of LU 6.2 application programs.

Session-termination requests can come from the following sources:

Device-type LU Terminate

Some device-type LUs can send formatted Terminate requests to VTAM as a result
of some action, such as pressing a key on a terminal. Other device-type LUs allow
terminal operators to enter a character-coded LOGOFF that is translated into a
formatted Terminate request by the SSCP. Terminate Orderly, Forced, or Cleanup
can be used depending on what the specific LU supports.

Application program LU Terminate

VTAM application programs that are acting as PLUs can terminate the session by
issuing the CLSDST macroinstruction to send an UNBIND request to the SLU.

Programs that are acting as SLUs can terminate the session by issuing the
TERMSESS OPTCD=UNBIND to send an UNBIND request to the PLU. (If you use
TERMSESS OPTCD=UNBIND, you must specify the CID in either the ARG or NIB
operand. If you use the NIB operand, you cannot use NAME.)

SLU application programs can issue a TERMSESS macroinstruction to send a
Terminate request (Orderly or Forced) to the SSCP. If an application program closes
its ACB while it still has sessions, those sessions are terminated by sending a
Terminate request (Cleanup) to the SSCP.

Third party Terminate

Something other than one of the session partners, such as the following, can
terminate a session:
v Network Outage. If a break occurs in the communication path for the session,

the session terminates.
v VARY INACT. If one of the LUs in a session is deactivated by the VTAM

operator, the session terminates. Terminate Forced is used for immediate
deactivation (VARY INACT,I) and Cleanup is used for forced deactivation
(VARY INACT,F).

v VARY TERM. The VARY TERM command sends a Terminate request to the
SSCP. The TYPE operand on the VARY TERM command determines which type
of Terminate request is sent. Terminate Orderly is sent for TYPE=COND,
Terminate Forced is sent for TYPE=UNCOND, and Terminate Cleanup is sent for
TYPE=FORCE.

v Request Discontact. A PU can request that it be discontacted by the network. The
PU can specify how existing sessions are terminated prior to the discontact.

For further details about the way a session can be terminated, see “Session outage
notification” on page 110. “NSPE request” on page 105 and “Notify request” on
page 106 discuss two requests that an application program can receive if that
application program initiates a session that is then terminated before it is fully
established.

86 z/OS V2R1.0 Communications Server: SNA Programming

Macroinstructions related to session establishment and termination

VTAM provides macroinstructions to establish and terminate sessions under
specific circumstances. These include:
v SIMLOGON initiates sessions in which the application program acts as the PLU.
v OPNDST establishes a session between the application program and an LU.
v CLSDST terminates sessions in which the application program is acting as the

PLU.
v REQSESS initiates a session in which the application program acts as the SLU.
v OPNSEC establishes a session in response to a BIND request from a PLU.
v SESSIONC with CONTROL=BIND is used by a SLU to reject a BIND request.
v TERMSESS terminates sessions in which the application program is acting as the

SLU.

For more information on each macroinstruction, see Chapter 13, “Conventions and
descriptions of VTAM macroinstructions,” on page 371.

SIMLOGON macroinstruction

The application program that is functioning as a PLU uses the SIMLOGON
macroinstruction to initiate sessions. SIMLOGON is also used to supply dial
parameters when an application functioning as a PLU initiates a session with an
LU associated with a PU that is coded in a switched major node.

SIMLOGON processing sends an Initiate request to the SSCP. After successfully
receiving the Initiate request, the SSCP sends a CINIT request to the application
program. VTAM can then schedule the LOGON exit routine. See “LOGON exit
routine” on page 101 for a description of how the application program receives the
CINIT request.

An application program must be authorized to issue the SIMLOGON
macroinstruction (AUTH=ACQ on the APPL definition statement).

The SIMLOGON macroinstruction uses the RPL to pass information to VTAM. The
RPL points to a list of NIBs which contain the names of the LUs with which
sessions should be initiated. The RPL indicates whether sessions should be
initiated for as many NIBs in the list as possible, or just one of them. The RPL also
indicates whether the session-initiation request can be queued.

The RPLAREA field can point to a user area containing up to 255 bytes of user
data to be sent with the session-initiation request. The AREALEN field in the RPL
must contain the length of the data. This user data is passed to the PLU in the
CINIT request.

The NIBs, pointed to in the RPL, must be in contiguous storage with
LISTEND=NO specified in all the NIBs except the last one, which must specify
LISTEND=YES. The NAME field of each NIB contains the name of the LU with
which to initiate a session.

In addition, if network-qualified names are being used, the NETID field of each
NIB can contain the name of the network where the LU is located. The LOGMODE
field of each NIB contains the logon mode name of a session parameter set and
class of service suggested for use in establishing the session. If the application

Chapter 5. Establishing and terminating sessions with logical units 87

program is supplying the dial parameters, the NIB contains the address of the
application program's dial parameter list. See “Establishing parameters for
sessions” on page 122 for more information about session communication.

If the USERFLD in the NIB is not 0, it is a correlator for the Initiate procedure, and
is passed to the LOGON exit routine with a CINIT request if the procedure is
successful. If the procedure fails, the USERFLD in the NIB is passed to the NSEXIT
exit routine with a Notify request. If the USERFLD is 0, a Network Services
Procedure Error (NSPE) request is passed to the NSEXIT routine if the procedure
fails. The correlator permits the application program to determine if a CINIT or
Notify is caused by SIMLOGON and, if so, which one. If the application program
and the SLU support parallel sessions, multiple concurrent SIMLOGONs can be
outstanding for the same SLU. In that case, a unique correlator for each
SIMLOGON would be needed, if the application program wanted to match the
CINIT request or Notify request with the SIMLOGON that caused it. That is
because the PLU and the SLU names passed to the LOGON exit routine do not
uniquely identify the session-initiation request if the same PLU and SLU are
involved in multiple CINIT requests.

Note: When using OPTCD=ASY during session initiation, an application program
task can be suspended unless provided with an RPL exit routine. See “Initializing a
session” on page 44 for information about using SIMLOGON OPTCD=ASY during
session initiation.

Initiating sessions with all LUs in a list

When OPTCD=CONALL is specified, SIMLOGON attempts to initiate sessions
with every LU in the list. SIMLOGON is considered successful if at least one
session is initiated. If an LU appears several times in the list and both the
application program and the LU support parallel sessions, SIMLOGON attempts to
initiate parallel sessions between the application program and the LU.
OPTCD=CONALL is posted complete only after an Initiate has been sent and a
response (positive or negative) has been received for every NIB in the list.

Initiating a session with the first LU in a list

When OPTCD=CONANY is specified, SIMLOGON initiates a session with each LU
in the list, in turn, until the SSCP indicates that the Initiate is successful. Thus,
SIMLOGON creates one queued or pending active session with the first LU in the
list for which that is possible. SIMLOGON is considered successful if a session is
initiated. OPTCD=CONANY is posted complete as soon as a positive response is
received for an Initiate or when the end of the NIB list has been reached.

Queuing Initiates

If OPTCD=NQ is specified, each Initiate request sent to the SSCP indicates sessions
cannot be queued, and the Initiate succeeds only if the LU is immediately
available. If OPTCD=Q is specified, then each Initiate request sent to the SSCP
indicates a session can be queued if the LU is disabled or at its session limit.

When OPTCD=Q, OPTCD=QALL or QSESSLIM or QNOTENAB determines how
and when requests are queued. If the Initiate request is queued and the LU is
active, connected, and not inhibited for sessions as an SLU, the Initiate succeeds. If
the LU is disabled as an SLU or is at its session limit, a session is queued until the
LU is available. If the LU is available, a pending active session is created
immediately. If OPTCD=Q is specified, an additional OPTCD is available to qualify
the conditions for which the Initiate is queued within VTAM. If OPTCD=QALL is

88 z/OS V2R1.0 Communications Server: SNA Programming

specified, VTAM indicates in the Initiate that the SSCP can queue the request if the
LU is at session limit or is not enabled. If, however, queuing is desired in only one
of these cases, OPTCD=QSESSLIM (LU at session limit) or OPTCD=QNOTENAB
(LU is not enabled) can be coded. In each case, the Initiate request sent to the SSCP
indicates the appropriate queuing conditions.

Notification to the session partner of a request for a session

SIMLOGON causes VTAM to notify the session partner of an SLU that is at its
session limit that another PLU wants to establish a session with the SLU. To obtain
this function, issue OPTCD=(Q,RELRQ). If the SLU is available, the session is
initiated. If the SLU is at its session limit, the session is queued to wait for SLU
availability; and the current session partner of the SLU, if it is a VTAM application
program, is notified in its RELREQ exit routine that a session is queued for the
SLU. The current session partner can terminate the session to make the SLU
available, or it can ignore the RELREQ request (RELREQ does not apply if the PLU
is an independent LU). For further information on the RELREQ exit routine, see
“RELREQ exit routine” on page 253.

OPNDST macroinstruction

The OPNDST macroinstruction requests VTAM to establish a session between the
application program and an LU, with the application program acting as the PLU.
No matter how a session is initiated, OPNDST is used to accept the resulting
pending active session in which the application program acts as the PLU.
Additionally, OPNDST can be used to initiate a session with an LU and to accept
the resulting pending active session in one operation. This is known as acquiring a
session. Finally, the OPNDST macroinstruction is used to supply dial parameters
when an application program functioning as a PLU initiates a session with an LU
associated with a PU that is coded in a switched major node.

The NIB used for OPNDST specifies options regarding the processing of the
session, such as whether a RESP exit routine should be scheduled when a response
is received. The USERFLD in the NIB contains a 4-byte value to be associated with
the session. This value is returned to the application program, in the USER field of
the RPL used for a SEND, RECEIVE, RESETSR, or SESSIONC macroinstruction,
when the associated communication operation is complete. This value might be a
pointer to a user control block representing the session. Refer to “Node
initialization block (NIB)” on page 115 for more information about what the NIB
contains.

Accepting and establishing a single pending active session

OPNDST OPTCD=ACCEPT is used to accept a single pending active session in
which the application program acts as the PLU, and thus establishes an active
session without regard to the source of the pending active session. The application
program is notified of a pending active session in its LOGON exit routine, if
available, or by the completion of a queued OPTCD=ACCEPT that was waiting for
a pending active session to accept. If the LOGON exit routine is available, the
CINIT is included with the input parameters.

The RPL and the NIB identify which pending active session to accept. If
OPTCD=ANY is specified in the RPL, the oldest pending active session is accepted.
If OPTCD=SPEC is specified, the NIB identifies the pending active session. If the
application program supports parallel sessions (PARSESS=YES is coded on the
APPL definition statement), and the NIBCID field is not 0, the pending active

Chapter 5. Establishing and terminating sessions with logical units 89

session identified by the CID is accepted. (The CID can be obtained from the
LOGON exit parameter list.) If the NIBCID field is 0, or the application program
does not support parallel sessions, the oldest pending active session between the
application program and the LU named in the NIBSYM field is accepted.

If network-qualified names are used, the NETID field in the NIB (NIBNET) is used
with NIBSYM to locate a network-qualified LU. If the SIMLOGON specifies a
network-qualified name, the corresponding OPNDST OPTCD=ACCEPT should
also specify a network-qualified name.

If the specified pending active session does not exist, action is dependent on the
RPL queuing option. If OPTCD=NQ is specified, the OPNDST is rejected with
(RTNCD,FDB2)=(X'00',X'09'). If OPTCD=Q is specified, OPNDST processing is
suspended until a pending active session that can be accepted is created. If
OPTCD=ANY is specified in the RPL, OPNDST waits for the first pending active
session to be created. If OPTCD=SPEC is specified in the RPL, OPNDST waits for a
pending active session with the LU identified in the NIBSYM field. In this case, the
setting of the NIBCID field is ignored. Because the CID is assigned arbitrarily, it is
not necessary to wait for a pending active session with a particular CID.

Once the application program identifies the pending active session to be accepted,
a BIND request is sent from the application program to the SLU to establish the
session. The BIND request carries the session parameters used to establish the
protocols to be used for the session. See “BIND request” on page 91 for more
information. If the SLU wants to go into session, it sends a positive response to the
BIND; the session is established and OPNDST is posted complete. If the session
cannot be established (for example, the SLU rejects the BIND request, or the path
between the application program and the SLU is lost), OPNDST is posted complete
indicating this exception condition with, for example, (RTNCD,FDB2)=(X'10',X'01').

Acquiring sessions

Initiating, accepting, and establishing an active session:
About this task

OPNDST OPTCD=ACQUIRE is used to initiate sessions with a set of LUs and then
to accept the resulting pending active sessions and establish active sessions. This is
equivalent to issuing a SIMLOGON macroinstruction and then accepting the
resulting pending active sessions with OPNDST OPTCD=ACCEPT, except that the
two operations are combined into one. The LOGON exit routine is not used for
OPNDST OPTCD=ACQUIRE.

Use of OPNDST OPTCD=ACQUIRE requires authorization for the issuing
application program (AUTH=ACQ on the APPL definition statement).

The NIBSYM field identifies the LU with which a session is desired.

The NIBNET field identifies the network that contains the LU if
PARMS=(NQNAMES=YES) is specified at OPEN. OPNDST OPTCD=ACQUIRE
supports lists of NIBs in contiguous storage with the LISTEND=NO option
specified in all except the last NIB, which has LISTEND=YES. The RPL points to
the first NIB in the list. The action taken with an NIB list depends on whether
CONALL or CONANY is specified. If only one NIB is in the list, CONALL and
CONANY have the same meaning.

Initiating, accepting, and establishing active sessions with all LUs in a list:

90 z/OS V2R1.0 Communications Server: SNA Programming

About this task

When OPNDST OPTCD=(ACQUIRE,CONALL) is specified, VTAM attempts to
establish sessions with every LU in the list. OPNDST is posted complete only
when an attempt (successful or unsuccessful) has been made to establish a session
with every LU in the list. OPNDST is considered successful if at least one session
is established. The same LU name can appear several times in the list, in which
case an attempt is made to establish parallel sessions between the application
program and the LU. This does not succeed unless both the application program
and the LU support parallel sessions.

Initiating, accepting, and establishing an active session with the first LU in a
list:
About this task

When OPNDST OPTCD=(ACQUIRE,CONANY) is specified, VTAM establishes a
session with the first available LU in the list. OPNDST is successful and the
OPNDST is posted complete if a session is established. If no session can be
established with any LU in the list, OPNDST is posted complete, indicating this
exception condition.

Note: When using OPNDST OPTCD=ACQUIRE during session initiation, an
application program task could be suspended unless provided with an RPL exit
routine. See “Initializing a session” on page 44 for information about OPNDST
OPTCD=ACQUIRE during session initiation.

Restoring sessions

Restoring sessions pending recovery:
About this task

OPNDST OPTCD=RESTORE is used to restore sessions pending recovery. See
“Restoring sessions pending recovery” on page 137 for more information.

Extended recovery facility session requests

The VTAM application program must specify, during OPNDST processing,
whether the session request is for a primary extended recovery facility (XRF) or
backup XRF session. This is accomplished by using the correct parameters on the
OPNDST macroinstruction command, setting the appropriate BIND indicator
specifying “control vectors included”, and completing the XRF session-activation
control vector using the NIB BNDAREA field when OPNDST is issued.

The XRF control vector must be appended to the end of the user data field in the
BIND. The control vector indicator is the BINCTLV bit in the BINCMNP2 field.

For more information concerning the structure of the XRF session-activation control
vector, see “XRF session activation control vector” on page 845.

BIND request

A BIND request is sent from the application program (which acts as the PLU) to
the SLU to establish a session. The BIND includes the session parameters which
define the protocols to be used on the session. The session parameters can be
suggested by the initiator of the session (code BNDAREA=0 and LOGMODE=0 in
the NIB to get the session parameters), another set of session parameters identified
by a logon mode name (code BNDAREA=0 and LOGMODE=logon mode name [or

Chapter 5. Establishing and terminating sessions with logical units 91

=C' ' for the default] in the NIB), or a set built by the application program (code
BNDAREA= address of the session parameter). Refer to “Establishing parameters
for sessions” on page 122 for more information about session communication.

You can use the OPNDST macroinstruction to pass a BIND image to VTAM. If the
BIND contains user-data-structured subfields and you need to specify the network
qualified PLU name, you can obtain the network ID from the network-name
vector. This vector is part of the Resource-Identification Vector List, which is
returned by VTAM after the PLU's ACB has successfully opened.

The BIND request can be negotiable or non-negotiable. A negotiable BIND permits
the SLU the option of modifying the session parameters if they are unsuitable. If
the BIND is non-negotiable and the session parameters are unacceptable to the
SLU, the SLU must reject the BIND request to prevent the session from being
established. To specify whether a BIND or BIND response is to be negotiable or
non-negotiable, the application program must use the PROC=NEGBIND or
PROC=NNEGBIND parameters in the NIB.

To send a negotiable BIND, specify PROC=NEGBIND in the NIB. In this case, the
RPLAAREA field should point to an area into which the BIND response can be
placed, and AAREALN must be the length of this area. Only one NIB in an NIB
list can specify negotiable BIND, as there is only one alternate area field in which
to put the BIND response. If OPNDST is successful, VTAM places the BIND
response into the location pointed to by AAREA and sets the RPL's ARECLEN
field to the actual length of the response. The response is truncated if ARECLEN is
greater than AAREALN. The PLU application program should examine any
changes made to the session parameters by the SLU. If they are acceptable,
communication can begin. If not, the application program must issue CLSDST to
terminate the session. The SLU can send a non-negotiable BIND response to a
negotiable BIND request. This implies that no changes are desired by the SLU (the
SLU has found the parameters in the BIND to be acceptable and agrees to establish
the session). The PLU can examine the BIND type field in the BIND response to
determine whether the response is negotiable or non-negotiable.

To send a non-negotiable BIND, specify PROC=NNEGBIND in the NIB. If the SLU
sends a negotiable BIND response to a non-negotiable BIND request, VTAM
automatically terminates the session and OPNDST fails with
(RTNCD,FDB2)=(X'10',X'01') and sense code = X'084E0000'. This same return code
and sense code are set for any other VTAM-detected errors in a received BIND
response (for example, a transmission services profile that is not valid).

CLSDST macroinstruction

The CLSDST macroinstruction is used to terminate sessions in which the
application program is acting as the PLU. CLSDST sends UNBIND requests from
the PLU to the SLU to terminate sessions for which BIND has been sent (active
and pending active sessions), and rejects any CINIT requests for which OPNDST
OPTCD=ACCEPT has not yet been issued. CLSDST will also terminate a queued
session by sending a Terminate. Additionally, CLSDST can be used to initiate the
next session for the SLU.

Scope of CLSDST
The scope of a CLSDST operation is the set of sessions to be terminated. The
CLSDST macroinstruction uses the RPL, and optionally, an NIB to identify the
scope of the CLSDST. If no NIB is supplied, then the RPLARG field contains a CID
which uniquely identifies the session to be terminated. If there is an NIB, then the

92 z/OS V2R1.0 Communications Server: SNA Programming

NIBCID field is checked. The NIBCID field is used only if PARSESS=YES is coded
on the APPL definition statement. If the NIBCID field is not 0, it uniquely
identifies the session to be terminated. (The CID for a pending active session can
be obtained from the LOGON exit parameter list.) If the NIBCID field is 0, then the
scope of CLSDST is all the sessions between the application program and the SLU
whose name is in the NIBSYM field is specified on the ACB macroinstruction.

If the NIBCID field is 0, the scope of CLSDST is all the sessions between the
application program and the network-qualified name of the SLU and the NIBNET
field, if PARMS=(NQNAMES=YES) is specified on the ACB macroinstruction. If
PARMS=(NQNAMES=NO) is specified on the ACB macroinstruction, or if
PARMS=(NQNAMES) is not specified, all sessions to the SLU or SLUs specified in
the NIBSYM are to be terminated. In other words, if this application program is in
session with multiple LUs with the same name in separate networks, all sessions
are terminated. However, LU 6.2 sessions maintained by VTAM LU 6.2 support
(APPC=YES on the APPL definition statement) are unaffected by this
macroinstruction.

CLSDST OPTCD=RELEASE
For OPTCD=RELEASE, VTAM sends an UNBIND request on each session for
which BIND has been sent and rejects any outstanding CINIT requests that have
been received. If this causes the SLU's session count to drop below its session limit,
VTAM automatically turns the oldest queued session for the SLU, if any, into a
pending active session. If there are no queued sessions or if the LU is independent,
and if the SLU has a controlling application program (established with VARY
LOGON or the LOGAPPL operand on the LU definition statement), which is not
the application program issuing CLSDST, a session is initiated between the
controlling application program and the SLU.

Sense codes on negative response to CINIT:

When VTAM processes a OPTCD=RELEASE for a pending active session (BIND
not yet sent), it rejects the associated CINIT with a negative response. The
application program can indicate the sense value to use with the negative response
to CINIT by specifying OPTCD=SENSE and putting application-program-specified
sense values into the SSENSEO, SSENSMO, and USENSEO fields of the RPL.
Otherwise, VTAM rejects the CINIT with a sense code of X'08010000'. Only a
nonzero sense code is allowed. If you specify OPTCD=SENSE and a sense code of
X'00000000', CLSDST is rejected with (RTNCD,FDB2)=(X'14',X'50').

Session outage notification (SON) codes on UNBIND:

When the application program issues OPTCD=RELEASE to terminate an active
session or pending active session (BIND sent, BIND response not received), VTAM
sends an UNBIND to the SLU, terminating the session. The UNBIND type code (as
specified by the SONCODE parameter) indicates the cause of the session outage.
The application program can set the UNBIND SON code by specifying
OPTCD=SONCODE and PARMS=(SONCODE=code) on CLSDST. The application
program can also include sense information on the UNBIND by specifying
PARMS=(SONCODE=X'FE') and putting the sense values into the SSENSEO,
SSENSMO, and USENSEO fields of the RPL.

CLSDST OPTCD=PASS
CLSDST OPTCD=PASS is used to initiate a session between the SLU and a new
PLU before terminating the sessions between the application program and the

Chapter 5. Establishing and terminating sessions with logical units 93

SLU. Use of OPTCD=PASS requires authorization for the issuing application
program (AUTH=PASS on the APPL definition statement).

When OPTCD=PASS is issued, the RPLAAREA field must point to the name of the
PLU with which the SLU is to have a session. The RPL's AREA field can point to
up to 255 bytes of user data to be sent with the session-initiation request. The
RPL's AREALEN field must contain the length of the data. This user data is passed
to the new PLU in the CINIT request. If the RPL points to an NIB, the LOGMODE
field in the NIB specifies a logon mode name which is used to select a set of
session parameters and a class of service for the new session. The USERFLD field
in the NIB, if not 0, is used as a correlator for the session-initiation request. This
correlator appears in the NSEXIT exit routine parameter list, if it is scheduled with
a Notify request, to indicate that the initiate procedure failed or completed
successfully. If the USERFLD field in the NIB is 0, then the NSEXIT routine is
scheduled with a Network Services Procedure Error (NSPE) request if the
procedure fails.

The name of the PLU in RPLAAREA can be either network-qualified or not, if
PARMS=(NQNAMES=YES) on the ACB macroinstruction. If the name is
network-qualified:
v AREALEN must be greater than 16
v RPLAAREA points to the 8-byte network identifier (padded with blanks, if

necessary) followed by the 8-byte name of the LU (padded with blanks, if
necessary).

OPTCD=PASS first initiates a session between the session partner in the sessions
being terminated, and the new PLU. The initiate operation specifies priority
queuing, so that if the SLU is at its session limit, the new session is placed at the
front of the queue. Then, the sessions within the scope of CLSDST are terminated.
The type of UNBIND sent by OPTCD=PASS is an UNBIND with an UNBIND SON
code of BIND forthcoming. This type of UNBIND indicates that another PLU is
expected to BIND a session and, therefore, the LU should not go into a mode that
would reject the new session. (An example of such a mode is the IBM 3790
Communication System offline operation mode, called local mode.)

If the SLU is at its session limit when OPTCD=PASS is issued, the queued session
between the new PLU and the SLU becomes a pending active session after any of
the SLU's sessions are terminated, and session establishment continues. The effect
for dependent LUs is that the application program determines which session the
SLU has next, even if other PLUs have been waiting longer for a session with that
SLU.

The CLSDST macroinstruction can specify PARMS=(THRDPTY=NOTIFY) to
indicate that the application program wants to be notified when the target session
is established (that is, when a positive response is received to the BIND for that
session). If this parameter is specified, and the session is established, the
application program receives a Notify request in its NSEXIT routine. If the session
setup fails, the application program receives an NSPE or Notify request in its
NSEXIT routine, regardless of the setting of this parameter. See “NSEXIT exit
routine” on page 244 for more information about the Notify request.

CLSDST OPTCD=TERMQ
CLSDST OPTCD=TERMQ is used to terminate a queued session in which this
application is acting as the PLU. For example, if SIMLOGON OPTCD=Q is issued
and the session is queued (CINIT not yet sent), OPTCD=TERMQ could be used to
terminate this session.

94 z/OS V2R1.0 Communications Server: SNA Programming

When OPTCD=TERMQ is used, the session partner name must be specified via the
NIB (NIBSYM, and possibly, NIBNET). All sessions that are queued between the
PLU APPL and the specified SLU will be terminated. VTAM will send a
TERMINATE RU for this case.

REQSESS macroinstruction

The REQSESS macroinstruction initiates a session in which the application
program acts as the SLU. (If the PLU is an independent LU, REQSESS cannot be
used.) REQSESS sends an Initiate request to the SSCP which, in turn, sends a
CINIT request to the desired PLU. If the PLU accepts the session and sends a
BIND request, the application program's SCIP exit routine is scheduled with the
BIND. The application program can then examine the BIND area and decide
whether to establish a session. Before an application program can issue the
REQSESS macroinstruction, it must have issued SETLOGON OPTCD=START, or
REQSESS fails with (RTNCD,FDB2)=(X'10',X'02').

The REQSESS macroinstruction uses an RPL and an NIB to pass information. The
RPL's AREA and RECLEN fields specify up to 255 bytes of user data which are
passed in the Initiate request. The data is available to the PLU in the CINIT
request. You must specify OPTCD=NQ in the RPL because queuing is not
supported for REQSESS. The RPL's NIB field points to the NIB. You should specify
LISTEND=YES in the NIB because REQSESS does not support NIB lists. The
NIBSYM field contains the name of the PLU with which the application program
wants a session. The LOGMODE field in the NIB contains the name of a set of
session parameters suggested for use in establishing the session; the logon mode
name also implies a particular class of service. This logon mode name applies to
the logon mode table associated with the application program issuing the
REQSESS macroinstruction. See “Establishing parameters for sessions” on page 122
for more information about the REQSESS macroinstruction in relation to session
parameters.

If the USERFLD field in the NIB is not 0, it is a correlator for the Initiate
procedure, and is passed to the SCIP exit routine when BIND is received. If the
procedure fails, the USERFLD field in the NIB is passed to the NSEXIT routine
with a Notify request. If the USERFLD field is 0, then a Network Services
Procedure Error (NSPE) request is passed to the NSEXIT routine if the procedure
fails. The correlator permits the application program to determine whether a BIND
or Notify request is caused by a REQSESS and, if so, which REQSESS. If the
application program and the PLU both support parallel sessions, multiple
concurrent REQSESS requests can be outstanding for the same PLU. In that case, a
unique correlator for each REQSESS is needed if the application program wants to
match the BIND in the SCIP exit routine or the Notify request in the NSEXIT exit
routine with the REQSESS that caused it. This is because the PLU and the SLU
names passed to the SCIP and NSEXIT exit routines do not uniquely identify the
session-initiation request.

In order for a nonzero user field to be used, both the PLU and its SSCP must
support the user-request correlation facility; if they do not, REQSESS is rejected
with (RTNCD,FDB2)=(X'10',X'12') and sense code=X'10030000'. REQSESS can be
reissued if the NIB's USERFLD is zero; however, this means that an NSPE rather
than a Notify request is received if an error occurs, and that the user correlator
passed in the SCIP exit routine (if the BIND request is received) is zero.

Chapter 5. Establishing and terminating sessions with logical units 95

OPNSEC macroinstruction

The OPNSEC macroinstruction is issued by a VTAM application program that has
received a BIND request from a PLU and wishes to respond positively to the BIND
and establish the session. The application program is the SLU in the session. The
application program receives the BIND in its SCIP exit routine. See “Exit routines
related to session establishment and termination” on page 100 for more
information about the SCIP exit routine.

OPNSEC uses the RPL and the NIB to identify the BIND for the session to be
established, and to specify options for the session. The RPL's NIB field points to
the NIB to be used. If the application program supports parallel sessions
(PARSESS=YES is coded on the APPL definition statement) and the NIBCID field is
not zero, the CID uniquely identifies the BIND to be accepted. (The CID can be
obtained from the SCIP exit parameter list.) If the NIBCID field is zero, or if the
application program does not support parallel sessions, the NIBSYM field must
contain the name of the PLU from which a BIND has been received and that is to
be accepted. If more than one BIND has been received from the named PLU, the
oldest is accepted.

The name supplied can be network-qualified if PARMS=(NQNAMES=YES) is
specified on the ACB macroinstruction. If a BIND cannot be found to accept, the
OPNSEC is rejected with (RTNCD,FDB2)=(X'10',X'00').

It is possible for the pending active session created by the BIND to end before the
application program issues the OPNSEC macroinstruction. For example, if the PLU
is a VTAM application program, it might issue OPNDST, which would cause the
BIND to be sent, and then issue CLSDST before the OPNDST completed. This
would cause an UNBIND to be sent, which could purge the BIND. If this happens,
OPNSEC is posted with (RTNCD,FDB2)=(X'10',X'12'), and sense code=X'08060000'
in the SSENSEI, SSENSMI, and USENSEI fields. This is not an error on the part of
the application program, but is a situation the application program should be
prepared to handle.

The PLU name in the BIND request presented to this application program can be
the network name of the PLU or an uninterpreted name as follows:
v If the PLU is a VTAM application program whose APPL definition statement

includes either a network name or an ACBNAME name, and if this program
issues CLSDST OPTCD=PASS to initiate the session, the network name is used
in the BIND.

v If SIMLOGON, OPNDST OPTCD=ACQUIRE, or automatic logon is used to
initiate the session, the network name is used in the BIND.

v If the SLU initiated the session (for example, by issuing REQSESS, or LOGON),
the uninterpreted name can be used in the BIND. The same name that is used in
the original session-initiation request from the SLU is returned in the BIND.

When the BIND flows in the network, the name fields (NS_PLU and NS_SLU) can
be network-qualified. As the BIND is presented to the application, this name, if it
were network-qualified, is changed from network-qualified to an 8-byte name. The
8-byte name can differ from the LU portion of the network-qualified name. If it
does, name translation has occurred. For details of the names available to the
application, see Table 34 on page 240 and Table 45 on page 262.

Use of the network name, as opposed to the ACBNAME, in the BIND permits the
SLU to unambiguously relate a BIND to a particular PLU. The network name can

96 z/OS V2R1.0 Communications Server: SNA Programming

also be used by the SLU to reinitiate a session (for example, after a session outage),
even if the original session is initiated by the PLU or a third party.

The NIB used for OPNSEC specifies options regarding the processing of the
session, such as whether a RESP exit routine should be scheduled when a response
is received. The USERFLD in the NIB contains a 4-byte value to be associated with
the session. This value is returned to the application program in the USER field of
the RPL used for a SEND, RECEIVE, RESETSR, or SESSIONC macroinstruction,
when the associated communication operation is complete. This value might be a
pointer to a user control block representing the session.

When OPNSEC successfully completes, VTAM indicates in the NIB the type of
encryption (selective or required) that is specified by the application program.
Refer to “Node initialization block (NIB)” on page 115 for more information about
the contents of the NIB.

BIND response

The BIND request from the PLU includes session parameters that specify the
protocols to be used on the session. The BIND can be negotiable or non-negotiable.
If it is non-negotiable, the SLU application program must accept the BIND as it is,
or reject it. It cannot modify the session parameters. If the BIND is negotiable, the
application program can modify the session parameters and return them to the
PLU in a negotiable BIND response. To send a negotiable BIND response, the
application program must issue OPNSEC with PROC=NEGBIND specified in the
NIB, with the BNDAREA field in the NIB pointing to the session parameters and
user data to send to the PLU. The ISTDBIND DSECT can be used to map this area.
If no changes to the BIND are required, then PROC=NNEGBIND, or BNDAREA=0
can be specified in the NIB to send a non-negotiable response to the BIND,
indicating to the PLU that the original BIND session parameters are acceptable.
The application program cannot send a negotiable BIND response to a
non-negotiable BIND request. If PROC=NEGBIND is specified on the OPNSEC
macroinstruction for a non-negotiable BIND request, the OPNSEC macroinstruction
is rejected with (RTNCD,FDB2)=(X'14',X'74'); a BIND request rejected response with
sense code=X'08010000' is sent to the PLU. See Table 7 for a description of OPNSEC
macroinstruction PROC options used to send the BIND response. See Appendix F,
“Specifying a session parameter,” on page 793, to determine which session
parameters can be modified in a negotiable BIND response.

Table 7. OPNSEC macroinstruction PROC options used to send BIND response

BIND
received

OPNSEC PROC
option set by SLU
application program Action taken

Non-negotiable NNEGBIND Valid. A non-negotiable BIND response is sent.

Non-negotiable NEGBIND Not valid. OPNSEC is rejected with (RTNCD,FDB2)=(X'14',X'74').
The BIND is rejected with sense code=X'08010000'.

Negotiable NNEGBIND A non-negotiable response is sent. BNDAREA is ignored. Values
from the BIND request are used for the session.

Negotiable NEGBIND Negotiable response is sent. New parameters in the BNDAREA are
used if BNDAREA is supplied. If BNDAREA is not supplied, a
non-negotiable response is sent. If session parameters that are not
valid are supplied, OPNSEC is rejected with
(RTNCD,FDB2)=(X'14',X'75'), and a request rejected response is sent
to the BIND (sense code=X'08010000').

Chapter 5. Establishing and terminating sessions with logical units 97

SESSIONC macroinstruction with CONTROL=BIND

The SESSIONC macroinstruction with CONTROL=BIND is used to reject a BIND
request from a PLU if the application program does not wish to establish the
session. For example, if the BIND request is non-negotiable and the session
parameters are unacceptable, the application program would have to reject the
BIND.

The SESSIONC macroinstruction uses the RPL and, optionally, an NIB to identify
the BIND to be rejected. If the RPL contains a CID, the CID uniquely identifies the
BIND to be rejected. (The CID can be obtained from the SCIP exit routine
parameter list when the SCIP exit is scheduled with the BIND request.) If the RPL
points to an NIB and the application program is capable of parallel sessions
(PARSESS=YES is coded on the APPL definition statement) and the NIBCID field is
not zero, then the CID identifies the BIND to be rejected. Otherwise, the NIBSYM
field contains the name of the PLU from which the BIND came.

The name supplied can be network-qualified by using NIBNET if
PARMS=(NQNAMES=YES) is specified on the ACB macroinstruction. If there is
more than one BIND outstanding from the named PLU, the oldest is rejected.

If the queued BIND to be rejected cannot be found (for example, if the PLU sent
UNBIND that purged the BIND), SESSIONC is posted with
(RTNCD,FDB2)=(X'14',X'13') if a CID is specified, or with
(RTNCD,FDB2)=(X'14',X'60') if only a name is specified.

The PLU name in the BIND request presented to the application program can be
either the network name of the PLU or an uninterpreted name as follows:
v If the PLU is a VTAM application program whose APPL definition statement

includes either a network name or an ACBNAME name, and if this program
issues CLSDST OPTCD=PASS to initiate the session, the network name is used
in the BIND.

v If SIMLOGON, OPNDST OPTCD=ACQUIRE, or automatic logon is used to
initiate the session, the network name is used in the BIND.

v If the SLU initiated the session (for example, by issuing REQSESS, INIT-SELF, or
LOGON), the uninterpreted name is used in the BIND. The same name that is
used in the original session-initiation request from the SLU is returned in the
BIND.

When the BIND flows in the network, the name fields (NS_PLU and NS_SLU) can
be network-qualified. As the BIND is presented to the application, this name, if it
were network qualified, is changed from network-qualified to an 8-byte name. The
8-byte name can differ from the LU portion of the network-qualified name. If it
does, name translation has occurred. For details of the names available to the
application, see Table 34 on page 240 and Table 45 on page 262.

Use of the network name, as opposed to the ACBNAME, in the BIND permits the
SLU to unambiguously relate a BIND to a particular PLU. The network name can
also be used by the SLU to reinitiate a session (for example, after a session outage),
even if the original session is initiated by the PLU or a third party.

The SSENSEO, SSENSMO, and USENSEO fields of the RPL specify the sense data
to be returned in the BIND response when the request is rejected.

98 z/OS V2R1.0 Communications Server: SNA Programming

TERMSESS macroinstruction

The TERMSESS macroinstruction terminates sessions in which the application
program acts as the SLU.

The RPL OPTCD operand specifies the type of session termination desired by the
application program:
v OPTCD=COND causes a Terminate Orderly request to be sent to the SSCP.
v OPTCD=UNCOND causes a Terminate Forced request to be sent to the SSCP.
v OPTCD=UNBIND causes an UNBIND to be sent to the PLU.
v OPTCD=TERMQ causes a Terminate Forced request to be sent to the SSCP for a

queued or pending active session.

When it receives an UNBIND in its SCIP exit routine or a CLEANUP in its NSEXIT
exit routine, VTAM notifies the application program that the session ends.
Otherwise, if you specify OPTCD=UNBIND, VTAM directly ends the session by
sending an UNBIND to the PLU.

The scope of a TERMSESS is the set of sessions terminated. The TERMSESS
macroinstruction uses the RPL, and optionally, an NIB to identify the scope of the
TERMSESS. If no NIB is supplied, then the RPLARG field contains a CID which
uniquely identifies the session to be terminated. If there is an NIB, then the
NIBCID field is checked. The NIBCID field is used only if PARSESS=YES is coded
on the APPL definition statement. If the NIBCID field is not 0, it uniquely
identifies the session to be terminated. If the NIBCID field is 0, the scope of the
TERMSESS is all the sessions in which the application program issuing TERMSESS
is the SLU, and the network-qualified name of the PLU named in NIBSYM and the
NIBNET field if PARMS=(NQNAMES=YES) is specified on the ACB
macroinstruction. If PARMS=(NQNAMES=NO) is specified on the ACB
macroinstruction or if PARMS=(NQNAMES) is not specified, all sessions to the
PLU or PLUs specified in NIBSYM are to be terminated. In other words, if this
application program is in session with multiple LUs with the same name in
separate networks, all sessions are terminated.

Note:

1. OPTCD=COND has no effect if the PLU is an independent LU.
2. Under some network outage conditions, the SSCP cannot cause the sending of

a CTERM Forced to the PLU; under these conditions, the SSCP treats the
Terminate Forced as if it had been Terminate Cleanup. See “Stages of session
termination” on page 84 for a description of the actions that result from these
types of terminations.

3. LU 6.2 sessions maintained by VTAM LU 6.2 support (APPC=YES on the APPL
definition statement) are unaffected by this macroinstruction.

TERMSESS OPTCD=UNBIND
TERMSESS OPTCD=UNBIND causes an UNBIND to flow to the PLU. This
UNBIND can contain sense information and an UNBIND SON (UNBIND type)
code specified by the SLU. When the SLU application program issues TERMSESS
OPTCD=UNBIND to terminate an active session or pending active session (BIND
received, BIND response not sent), VTAM sends an UNBIND to the PLU identified
by the CID in the RPLARG or NIBCID field. The application program can set the
UNBIND SON code by specifying OPTCD=SONCODE and
PARMS=(SONCODE=code) in the RPL. The application program can also include

Chapter 5. Establishing and terminating sessions with logical units 99

sense information on the UNBIND by specifying PARMS=(SONCODE=X'FE') and
putting application-specified sense values into the SSENSEO, SSENSMO, and
USENSEO fields of the RPL.

VTAM performs the same functions for ending sessions as it does when the PLU
sends UNBIND. That is, session services are informed of session-ended, or
UNBIND failed, and so forth. When VTAM receives the UNBIND response from
the PLU (whether positive or negative), it completes the TERMSESS processing and
posts the request complete.

Refer to “TERMSESS—Request session termination, application program is SLU”
on page 560 for details on how to specify sense code fields.

TERMSESS OPTCD=TERMQ
TERMSESS OPTCD=TERMQ is used to terminate a queued session or pending
active session in which the application program is acting as the SLU. For example,
if REQSESS has been issued and completed successfully, but the subsequent BIND
has not been received, OPTCD=TERMQ could be used to terminate this session.
When this OPTCD code is used a name must be provided via the NIB. All sessions
that match this name pair and are queued or pending active will be terminated.
Active sessions are not affected.

Note:

1. The SLU application program that issues TERMSESS OPTCD=UNBIND must
process the RTNCD, FDB2, and possibly sense information in the RPL to
determine if it can discard its representation of the session, or perform some
other process (retry the TERMSESS, ABEND, or issues other appropriate
macroinstruction).

2. If the SLU application program issues TERMSESS in lieu of SESSIONC to reject
a pending active session (BIND received, BIND response not sent), then
OPTCD=UNBIND must be used.

3. If you are using OPTCD=UNBIND with the TERMSESS macroinstruction, you
must specify the CID address in either the ARG or NIB operand. The NIBCID
field is only used if PARSESS=YES is coded on the APPL definition statement.
If you use the NIB operand, NAME cannot be used.

4. The PLU can examine the SON code and the SENSE information on the
UNBIND only if it has an SCIP exit and if SONSCIP=YES is specified on its
APPL definition statement.

5. The SCIP exit routine is strongly recommended.

Exit routines related to session establishment and termination

Several exit routines notify a VTAM application program of requests that affect
sessions. This section describes the following four exit routines that are designed
for common use and are included in an application program:
v When a CINIT request is received, VTAM schedules the LOGON exit routine to

request that the application program establish a session in which it acts as the
PLU.

v When session-control requests, including BIND and UNBIND requests, are
received, VTAM schedules the SCIP exit routine.

v When certain network-services requests are received from the SSCP, VTAM
schedules the NSEXIT routine. These requests can indicate the state of a session
or of a session-initiation or termination procedure.

100 z/OS V2R1.0 Communications Server: SNA Programming

v When a CTERM (or similar) request is received, VTAM schedules the LOSTERM
exit routine to request termination of a session in which the application program
acts as the PLU.

The following sections describe the purpose of these exit routines and the
information available to them. For further information about how some of these
exit routines are used for session outage notification, see “Session outage
notification” on page 110. For a summary of exit routines involved in session
outage or disruptions, see Table 10 on page 108. For a description of the interfaces
to the exit routines and of other general considerations that apply to exit routines,
as well as alternative exit routines, see Chapter 7, “Using exit routines,” on page
219.

LOGON exit routine

VTAM schedules the LOGON exit routine to inform the application program that it
should establish a session in which it acts as the PLU. VTAM schedules the
LOGON exit when a CINIT request is received unless:
v The ACB is opened with MACRF=NLOGON.
v The ACB is opened with MACRF=LOGON, but SETLOGON OPTCD=START

has not been issued (CINIT is queued).
v The CINIT results from the application program issuing OPNDST

OPTCD=ACQUIRE.
v The application program has a matching outstanding OPNDST

OPTCD=ACCEPT to accept that CINIT.
v A SETLOGON OPTCD=HOLD request holds the exit (CINIT is queued).

If a CINIT has been queued, the LOGON exit routine is scheduled when
SETLOGON OPTCD=START is issued.

The LOGON exit parameter list provides the name of the SLU and the CID of the
established session. These items can be used to identify the CINIT request to be
accepted with OPNDST OPTCD=ACCEPT or rejected with CLSDST.

The exit parameter list provides the user-request correlator. Unless the application
program initiates the session with the SIMLOGON macroinstruction, this field is 0.
If the application program uses the SIMLOGON macroinstruction, the field
contains the contents of the NIB's USERFLD field at the time SIMLOGON is
issued. The field also provides a means of determining whether SIMLOGON
caused the CINIT request and, if so, which one. A read-only RPL is also provided
to the exit routine. The AREA field in this RPL points to a read-only copy of the
CINIT request. The RPL RECLEN field contains the length of the CINIT request.
Refer to SNA Formats for a description of the CINIT request.

Because different network components manage the network addresses and the
addresses can vary, the application program should ignore any network addresses
that appear in the CINIT request unit.

Certain information can appear in control vectors appended to the CINIT RU.

Vector Description

X'0D' Class-of-service and virtual route list

X'0E' Network-name control vector or network-qualified name of the PLU if
present

Chapter 5. Establishing and terminating sessions with logical units 101

X'0E' Network-name control vector or network-qualified name of the SLU if
present

X'15' Network-qualified address pair control vector

X'2C' COS and TPF control vector

X'2D' Mode-name control vector

X'2F' Model-terminal-information control vector

X'59' Session authorization data control vector

X'5F' Extended fully qualified PCID control vector

X'60' Fully qualified PCID control vector

X'64' TCP information control vector

X'66' Data compression control vector

For a detailed description of these control vectors, refer to SNA Formats.

The LOGON exit routine can include a procedure to obtain a copy of the
information in the CINIT request. This information can be interrogated for session
parameters and also for the logon mode name and the class-of-service (COS) name.
For example, the logon mode name must be saved by the application program for
use with a subsequent CLSDST OPTCD=PASS macroinstruction if the same COS is
to be used in the second session. A procedure for obtaining the session parameters
is demonstrated in Example 1 of “Examples of how an application program
processes session parameters” on page 127. Example 2 of the same section
demonstrates a procedure for obtaining the logon mode name.

SCIP exit routine

The SCIP exit routine is scheduled whenever a session-control request is received
for the application program. In this section, we shall consider only BIND, which is
a request to establish a session, and UNBIND, which is a request to terminate a
session. Other session-control requests are discussed in “SCIP exit routine” on page
256.

Receiving a BIND request

When a BIND request is received, VTAM schedules the SCIP exit routine unless
the SCIP exit routine is being held by SETLOGON OPTCD=HOLD. If SCIP exits
are being held, an exit for the BIND request is scheduled after the next
SETLOGON OPTCD=START.

The exit parameter list provides the CID of the session to be established. This CID
can be used to identify the BIND that is to be accepted by OPNSEC or rejected by
SESSIONC CONTROL=BIND. The BIND request that is passed to the SCIP exit
routine contains the PLU name. For information about uninterpreted PLU names,
see “OPNDST macroinstruction” on page 89 and “SESSIONC macroinstruction
with CONTROL=BIND” on page 98.

The exit parameter list also provides a user-request correlator. If the application
program initiates the session with the REQSESS macroinstruction, the correlator
field has the same value as the USERFLD field in the NIB at the time REQSESS is

102 z/OS V2R1.0 Communications Server: SNA Programming

issued. Otherwise, the field is 0. The field provides a means for the application
program to determine if the BIND is caused by a REQSESS macroinstruction and if
so, which one.

A read-only RPL is also provided to the exit routine. The AREA field in this RPL
points to a read-only copy of the BIND request. The RPL's RECLEN field contains
the length of the request. For a description of the BIND request unit, refer to SNA
Formats. BIND session parameters are also discussed in Appendix F, “Specifying a
session parameter,” on page 793.

Certain information can appear in control vectors appended to the BIND RU.

Vector Description

X'0E' Network-name control vector or network-qualified name of the PLU

X'0E' Network-name control vector or network-qualified name of the SLU

X'27' XRF session-activation control vector

X'2B' Route selection-control vector

X'2C' COS and TPF control vector

X'2D' Mode-name control vector

X'5F' Extended fully-qualified PCID control vector

X'60' Fully-qualified PCID control vector

X'66' Data compression control vector

Receiving an UNBIND request

When an UNBIND request is received by an SLU application program or is
received by a PLU application program for which SONSCIP=YES is coded on the
APPL definition statement, the SCIP exit routine is scheduled. The CID of the
terminated session is provided in the exit parameter list. Because VTAM
automatically sends a positive response to the UNBIND, the application program
needs only to clean up its representation of the session; no CLSDST or TERMSESS
should be issued.

The exit parameter list provides the USERFLD field specified in the NIB when the
session is established by OPNDST or OPNSEC. The USERFLD can be used by the
application program to identify the session. A read-only RPL is also provided to
the exit routine. The AREA field in the RPL points to a read-only copy of the
UNBIND request. The RPL's RECLEN field contains the length of the request. The
UNBIND SON code in the request indicates the reason for the session termination
and can be used by the application program to determine what recovery action to
take. UNBIND parameters are discussed in the section titled “Session outage
notification (SON) codes on UNBIND” on page 93.

An SLU application program must have an SCIP exit routine. If a PLU application
program does not have an SCIP exit routine or if SONSCIP=NO is coded on the
APPL definition statement, the NSEXIT exit routine (if it exists) is scheduled with
CLEANUP when UNBIND is received by the PLU application program; if the
NSEXIT exit routine does not exist either, the LOSTERM exit routine is scheduled.
See Table 8 on page 105 for information on exit routine scheduling.

Certain information can appear in control vectors appended to the UNBIND RU.

Vector Description

Chapter 5. Establishing and terminating sessions with logical units 103

X'35' Extended-sense data control vector

X'60' Fully-qualified PCID control vector

NSEXIT exit routine

The NSEXIT exit routine is scheduled when certain network services requests are
received from the SSCP. The requests that can currently be received are: Clean Up
Session, Network Services Procedure Error, and Notify.

The NSEXIT parameter list includes a pointer to a read-only RPL. The RPL's AREA
field points to a read-only copy of the request that is received. The RPL's RECLEN
field contains the length of the request. For a description of the request unit
formats, refer to “NSEXIT exit routine” on page 244.

CLEANUP request

The Clean Up Session (CLEANUP) request is sent from the SSCP when a session
has been terminated (perhaps because of a network outage). Any outstanding RPLs
will still be completed by VTAM. The parameter list includes the CID for the
session and the USERFLD field from the NIB used to establish the session. A
CLSDST or TERMSESS macroinstruction should not be used after receipt of
CLEANUP for the session because the session is gone; if issued, they fail.

CLEANUP can be received by both the PLU and the SLU. If the CLEANUP request
is received by a PLU application program and the application program does not
have an NSEXIT exit routine, the LOSTERM exit routine (if it exists) is scheduled.
See Table 8 on page 105 for information about session outage notification.
Application programs that intend to act as SLUs in any sessions must have an
NSEXIT exit routine, or they might not be notified of the loss of those sessions.

If UNBIND is received by a PLU application program which does not have an
SCIP exit routine or for which SONSCIP=NO is coded on the APPL definition
statement, the NSEXIT exit routine (if it exists) is scheduled with CLEANUP. See
Table 8 on page 105 for information about session outage notification.

There are several instances where a lost session is reported to the application in the
LOSTERM Exit with a reason code of 12 or 20. In the past, if the LOSTERM Exit
had already been scheduled with a reason code of 32, this more recent indication
of 12 or 32 would be discarded.

If the LOSTERM Exit has already been scheduled with a reason code of 32, this
more recent indication of 12 or 20 is promoted to a CLEANUP. Therefore, the
NSEXIT, if available, is scheduled with a CLEANUP RU. If the NSEXIT is not
available, the indication is discarded and whatever caused the attempt to notify the
LOSTERM Exit and then the NSEXIT is discarded.

104 z/OS V2R1.0 Communications Server: SNA Programming

Table 8. Session outage notification summary

Application program is Receives

Exit routine scheduling priority (read left to right)

SCIP NSEXIT LOSTERM

Primary Logical Unit CTERM
Orderly

Not
applicable

Not
applicable

Reason code 32

CTERM
Forced

Not
applicable

Not
applicable

Reason code 12 or 20

CLEANUP Not
applicable

CLEANUP Reason code 12 or 24, followed
by 16 or, if APPL definition
statement includes
LOSTERM=SECOND|IMMED,
reason code 48

UNBIND UNBIND CLEANUP Reason code 12 or 24, followed
by 16

Notify or
NSPE

Not
applicable

Notify or
NSPE

No exit routine scheduled

Secondary Logical Unit CLEANUP Not
applicable

CLEANUP No exit routine scheduled

UNBIND UNBIND Not
applicable

Not applicable

Notify or
NSPE

Not
applicable

Notify or
NSPE

No exit routine scheduled

Note:

1. The SCIP exit routine (if available) schedules for a PLU (for UNBIND) only if you code SONSCIP=YES on the
APPL definition statement. For SONSCIP=NO, UNBIND is handled as if the SCIP exit routine were not available.
(We strongly recommend the SCIP exit routine for support of independent LUs.) An application program acting
as an SLU must have an SCIP exit routine.

2. If the LOSTERM exit routine is not available, and is the last choice in the scheduling priority, an exit routine is
not scheduled.

NSPE request

The Network Services Procedure Error (NSPE) request informs the application
program of an error in an Initiate or Terminate procedure started by the
application program. This can happen after a successful SIMLOGON, REQSESS,
TERMSESS, or CLSDST OPTCD=PASS macroinstruction executes. These
macroinstructions post complete after the Initiate or Terminate procedure
successfully starts; however, the procedure can fail later. The NSPE request
contains the names of the LUs involved in the session-initiation or termination
request. If the USERFLD field in the NIB used for the macroinstruction is not 0,
then NSPE is not sent. In that case, the USERFLD field is a correlator for the
procedure, and a Notify request is sent instead.

NSPE can also occur for OPNDST OPTCD=ACQUIRE. (Notify is not possible.)
NSPE occurs if a session terminates after the SSCP responds to the Initiate from
OPNDST OPTCD=ACQUIRE, but before it is notified by the PLU that the session
is established. In this case, the OPNDST operation is normally posted complete
with error feedback information. In some rare outage situations, however, OPNDST
can be posted complete with (RTNCD,FDB2)=(X'00',X'00'), and NSPE can be
received as well as session outage notification as described in “Session outage
notification” on page 110. The receipt of NSPE can occur before or after the

Chapter 5. Establishing and terminating sessions with logical units 105

OPNDST posting. Because either OPNDST is posted complete with error feedback
information or session outage notification occurs, the NSPE request can be ignored.

Notify request

The Notify request using control vector hex 3 informs the application program of
the completion of an Initiate procedure started by the application program through
a SIMLOGON, REQSESS, or CLSDST OPTCD=PASS macroinstruction. When a
third application program requires notification of the Initiate procedure being
complete, use the CLSDST OPTCD=PASS macroinstruction and specify
PARMS=(THRDPTY=NOTIFY). The Notify request, rather than NSPE, is also used
for procedure errors if the USERFLD field in the NIB for the macroinstruction is
not 0. In that case, the USERFLD is a correlator for the procedure that enables the
application program to determine which procedure failed. The exit parameter list
contains this 4-byte correlator.

LOSTERM exit routine

The LOSTERM exit routine is scheduled to inform the application program that
one of the following events has occurred for a session with this application
program:
v Request/response units have been discarded because the application program

would not accept them and there is no buffer space to queue them in VTAM;
session data recovery or session termination is required. This is the only reason
that LOSTERM can be scheduled for an SLU application program.

v A CTERM Conditional has been received by a PLU application program,
perhaps because the other end of the session issued TERMSESS OPTCD=COND;
the application program determines the appropriate response or action.

v A CTERM Forced has been received by a PLU application program whose
LOSTERM Exit has not already been scheduled for a CTERM conditional,
perhaps because the other end of the session issued TERMSESS
OPTCD=UNCOND; CLSDST is required for this session.

v A Test Request message has been received from a BSC 3270 terminal; CLSDST is
required for this session.

v A session outage has occurred that normally would have been reported through
the NSEXIT or SCIP exit routines, but these exit routines are not available. See
Table 8 on page 105 for a summary of session outage notification. CLSDST might
be required for this session.

v A request to suspend or resume a synchronous cross-memory SRB-mode
macroinstruction request has been unsuccessful. The LOSTERM exit is used to
notify the application program because normal request completion notification
cannot be performed.

See “Stages of session termination” on page 84 for further information about these
exits.

The CID of the affected session is provided in the LOSTERM exit routine
parameter list. The contents of the USERFLD field from the NIB used when the
session is established are also provided. The exit parameter list contains a code
indicating the reason the LOSTERM exit routine is scheduled.

106 z/OS V2R1.0 Communications Server: SNA Programming

Summary tables of exit routines

The following tables summarize the exit routines that are discussed in the
preceding sections.

Table 9. Summary of exit routines involved in session initiation

Action or event causing
session-initiation request

Exit routine ¹ for event that occurs...

...in application program named
PLUAPPL

...in application program named
SLUAPPL

LU sends Initiate request or
character-coded logon requesting
session with PLUAPPL.

LOGON exit routine is scheduled
with CINIT.

(Not applicable)

SLUAPPL issues REQSESS requesting
session with PLUAPPL.

LOGON exit routine is scheduled
with CINIT.

If PLUAPPL accepts CINIT by issuing
OPNDST OPTCD=ACCEPT, BIND is
received in SCIP exit routine.

If, after SSCP responds positively to
Initiate resulting from REQSESS, the
session cannot be established (for
example, PLUAPPL rejects the
CINIT), NSEXIT exit routine is
scheduled with NSPE or Notify RU.

PLUAPPL issues OPNDST
OPTCD=ACCEPT for session with
SLUAPPL.

(Not applicable) BIND received in SCIP exit routine.

PLUAPPL issues OPNDST
OPTCD=ACQUIRE for session with
SLUAPPL.

(Not applicable) BIND received in SCIP exit routine.

PLUAPPL issues SIMLOGON for
session with SLUAPPL.

LOGON exit routine is scheduled
with CINIT.

If, after the SSCP responds positively
to Initiate resulting from SIMLOGON,
the session cannot be established,
NSEXIT exit routine is scheduled with
NSPE or Notify RU.

If PLUAPPL accepts CINIT by issuing
OPNDST OPTCD=ACCEPT, BIND is
received in SCIP exit routine.

PLUAPPL is the controlling
application program for a device-type
LU (LOGAPPL=PLUAPPL in the LU's
definition statement), and another
PLU releases the LU for which there
are dependent queued sessions.

LOGON exit routine is scheduled
with CINIT.

(Not applicable)

VTAM operator issues VARY LOGON
command to make PLUAPPL the
controlling application program for a
dependent LU and the LU is now
available.

LOGON exit routine is scheduled
with CINIT.

(Not applicable)

Application program named PASSER
issues CLSDST OPTCD=PASS to pass
SLUAPPL to PLUAPPL.

LOGON exit routine is scheduled
with CINIT. (If the requested session
cannot be established, PASSER's exit
routine is scheduled with an NSPE or
Notify RU.)

The SCIP exit routine is entered twice;
once by the UNBIND received from
PASSER, again by the BIND received
from PLUAPPL.

Application program named GETTER
issues SIMLOGON OPTCD=RELRQ
requesting PLUAPPL to release an LU
with which it is currently in session.

RELREQ exit routine is scheduled. (Not applicable)

Chapter 5. Establishing and terminating sessions with logical units 107

Table 9. Summary of exit routines involved in session initiation (continued)

Action or event causing
session-initiation request

Exit routine ¹ for event that occurs...

...in application program named
PLUAPPL

...in application program named
SLUAPPL

Note:

1. If the program does not have the exit routine, no notification occurs, or the specified function is not supported.

Table 10. Summary of exit routines involved in session outages or disruption

Action or event causing session
outage ¹ or session disruption

Method of notification

...for application program acting as
PLU ²

...for application program acting as
SLU ²

Session outage occurs (for example,
because of a link failure, a virtual
route deactivation, an RU received
exceeding maximum RU size, an NCP
failure, or a switched line
disconnection).

If SONSCIP=YES is coded on the PLU
application program's APPL definition
statement, UNBIND is received in the
SCIP exit routine.

If SONSCIP=NO and the application
program has an NSEXIT exit routine,
that exit routine is scheduled with
CLEANUP.

Otherwise, the LOSTERM exit routine
is scheduled.

SCIP exit routine is scheduled with
UNBIND or, depending on the type
of outage, NSEXIT exit routine can be
scheduled with CLEANUP.

VTAM operator issues a
VARY NET,INACT,I (immediate)
command to deactivate an LU in the
same domain or to deactivate a
resource representing an LU in
another domain.

LOSTERM exit routine is scheduled. UNBIND is received in the SCIP exit
routine. If the normal communication
paths are not available, NSEXIT exit
routine is scheduled with CLEANUP.

VTAM operator issues a
VARY NET,TERM,TYPE=UNCOND
command to terminate one or more
sessions.

LOSTERM exit routine is scheduled. UNBIND is received in the SCIP exit
routine. If normal communication
paths are not available, NSEXIT exit
routine is scheduled with CLEANUP.

VTAM operator issues a
VARY NET,INACT,F or R command
to deactivate an LU in the same
domain or to deactivate a resource
representing an LU in another
domain.

If the application program has an
NSEXIT exit routine, that exit routine
is scheduled with CLEANUP.
Otherwise, the LOSTERM exit routine
is scheduled. ³

NSEXIT exit routine is scheduled with
CLEANUP. For some race
(contention) conditions, SCIP exit
routine can be scheduled with
UNBIND instead.

VTAM operator issues a
VARY NET,TERM,TYPE=FORCE
command to terminate one or more
sessions.

If the application program has an
NSEXIT exit routine, that exit routine
is scheduled with CLEANUP.
Otherwise, the LOSTERM exit routine
is scheduled.

NSEXIT exit routine is scheduled with
CLEANUP. For some race
(contention) conditions, SCIP exit
routine can be scheduled with
UNBIND instead.

VTAM operator issues a
VARY NET,TERM,TYPE=COND
command to terminate one or more
sessions.

LOSTERM exit routine is scheduled. UNBIND is received in SCIP exit
routine if PLU terminates session.

Session-type error detected (RUs
discarded because of lack of buffer
space).

LOSTERM exit routine is scheduled. LOSTERM exit routine is scheduled.

108 z/OS V2R1.0 Communications Server: SNA Programming

Table 10. Summary of exit routines involved in session outages or disruption (continued)

Action or event causing session
outage ¹ or session disruption

Method of notification

...for application program acting as
PLU ²

...for application program acting as
SLU ²

One of the following situations
occurs:

v VTAM is being terminated.

v VTAM recognizes an internal error.

v VTAM receives a HALT command
or VARY NET,INACT command
for the application program from
the operator.

v An alternate application has issued
an OPEN ACB to take over
sessions from an application
program that has enabled
persistence.

TPEND exit routine is scheduled. TPEND exit routine is scheduled.

Note:

1. A session outage is any action or event that causes a path between a PLU and an SLU to break or that causes loss
of one of the participants in the session.

2. If the program does not have an applicable exit routine, notification does not occur. Certain error conditions are
indicated only through a LOSTERM exit routine.

3. Specify either exit routine, or both. If you do not specify either exit routine, the VARY INACT command hangs.

Table 11. Summary of exit routines involved in session termination by session participant

Action or event causing session
termination

Method of notification

...for application program acting as
PLU ¹

...for application program acting as
SLU ¹

Device-type LU requests session
termination (forced or orderly).

LOSTERM exit routine is scheduled. ² (Not applicable)

Application program issues
TERMSESS OPTCD=UNBIND.

SCIP exit routine with UNBIND. ² ³ (Not applicable)

Application program issues
TERMSESS OPTCD=COND or
UCOND.

LOSTERM exit routine is scheduled. UNBIND received in SCIP exit
routine.

Application program issues CLSDST. (Not applicable) UNBIND received in SCIP exit
routine.

Application program acting as SLU
issues CLOSE or device-type LU
requests session termination
(CLEANUP).

SCIP exit routine with UNBIND,
NSEXIT exit routine with CLEANUP,
or LOSTERM exit routine is
scheduled.

(Not applicable)

Application program acting as PLU
issues CLOSE.

(Not applicable) SCIP exit routine with UNBIND or
NSEXIT exit routine with CLEANUP
is scheduled.

Note:

1. If the program does not have the required exit routine, notification does not occur.

2. For forced termination, if the normal communication paths are unavailable, the SCIP exit routine with UNBIND
or NSEXIT exit routine with CLEANUP is scheduled.

3. For the PLU's SCIP to be driven with an UNBIND, you must code SONSCIP=YES on the APPL definition
statement.

Chapter 5. Establishing and terminating sessions with logical units 109

Session outage notification

“Stages of session termination” on page 84 gives an overview of certain events that
can lead to session termination. Usually, an application program includes SCIP,
NSEXIT, and LOSTERM exit routines. These routines are scheduled to notify the
application program of various types of session outages and related events. “Exit
routines related to session establishment and termination” on page 100 describes
these exit routines. Table 12 on page 111 provides a more detailed list of session
outage notification (SON) reasons.

If the relevant exit routines are not coded in the application program, the program
might not be informed of certain key events in a timely manner (if at all). Thus,
the exit routines should be coded.

Note: Normally, when an outage occurs for a session, outstanding RPL-based
operations for the session are posted complete with appropriate feedback
information; this is not always possible if the outage is because of a VTAM
abnormal termination. For a given session outage, the order in which the RPL exit
routine and the SCIP, NSEXIT, or LOSTERM exit routines are scheduled is
unpredictable.

The exit routine chosen depends upon:
v The type of session outage event
v Whether the application program is the PLU or the SLU in the session
v The availability of the various exit routines

Note: An exit routine is available if it is specified in an EXLST for the application
program. In some cases, if the exit routine normally scheduled for an event is not
available, an alternate exit routine schedules. See Table 8 on page 105 for
information about session outage notification and Table 12 on page 111 for a more
detailed list of session outage notification reason codes. For information on exit
routines and their availability, see “SCIP exit routine” on page 102, “NSEXIT exit
routine” on page 104, and “LOSTERM exit routine” on page 106.

It is possible for one session outage to generate multiple session outage notification
signals to an LU (along different paths through the network) for the same
disrupted session. For example, CLEANUP and UNBIND can both be sent to an
LU.

Queuing a request for a session with an SLU

When a session is requested with a particular SLU, that LU might not be available
to act as the SLU in the requested session. This might be because the LU is either
at its session limit, or is not currently enabled to act as an SLU.

Table 6 on page 82 shows how an SLU application program can change from the
disabled state to the enabled state by using SETLOGON OPTCD=START. Some
terminals also have the ability to switch back and forth between enabled and
disabled states. For example, for certain IBM 3274 control units, if a printer or
display is powered off, the control unit notifies the SSCP that the terminal is
disabled for sessions. If the terminal is then powered on, the control unit notifies
the SSCP that the terminal is enabled for sessions. Thus, the SSCP is able to keep
track of the session capability of these LUs.

110 z/OS V2R1.0 Communications Server: SNA Programming

If an application program requests a session with such an LU by using
SIMLOGON OPTCD=Q and the LU is available, the session is established at that
time. However, if the LU is currently disabled for sessions as an SLU, or if the LU
is at its session limit, then SIMLOGON is posted complete, but the session is not
established until sometime after the LU becomes available (for example, by
powering on).

The LU can change from an enabled to a disabled state (for example, by powering
off) just before the BIND reaches the LU. In this case, VTAM rejects the BIND
request. The SNA sense code in the response can be used to determine the
appropriate recovery procedure. This sense code is made available in the SSENSEI
and SSENSMI fields of the RPL that issued OPNDST OPTCD=ACCEPT.

Sense code X'08450000' indicates that the LU notifies the SSCP when it is again
enabled. For this sense code, SIMLOGON OPTCD=Q can be reissued immediately
and the SSCP queues the request for the session until the LU becomes available.

Sense code X'080A0000' indicates that the LU does not notify the SSCP when it
becomes available for a session. This code is used if either the LU or its SSCP does
not support the required notification facility. In this case, the application program
should not immediately reissue SIMLOGON OPTCD=Q because another BIND
rejection results. Manual intervention is required. For example, when the terminal
operator powers on the terminal, the operator can notify the host operator, who in
turn can send a message to the program to issue SIMLOGON at that time.

Table 12. Session outage notification UNBIND type codes and reason codes

Session outage notification signals

SCIP UNBIND RU with type code

NSEXIT
CLEANUP RU (CU)

LOSTERM
reason code

(Type and reason codes shown in decimal)

“ns” means “exit routine not scheduled”

Session outage notification reasons

If LU is PLU If LU is SLU

SCIP NSEXIT LOSTERM SCIP NSEXIT LOSTERM

UNBIND type=01 received by PLU

v UNBIND 01 sent by SLU.

01 CU 24, then 16 ns ns ns

UNBIND type=01 received by SLU

v CLSDST OPTCD=RELEASE by PLU

v See “CTERM Forced received by PLU” in
the following rows

v CLOSE by PLU.

ns ns ns ns 01 ns

UNBIND type=02 received by SLU

v CLSDST OPTCD=PASS by PLU.

ns ns ns ns 02 ns

UNBIND type=12 received by this LU

v Unrecoverable failure of other LU.

12 CU 12 ns 12 ns

Chapter 5. Establishing and terminating sessions with logical units 111

Table 12. Session outage notification UNBIND type codes and reason codes (continued)

Session outage notification signals

SCIP UNBIND RU with type code

NSEXIT
CLEANUP RU (CU)

LOSTERM
reason code

(Type and reason codes shown in decimal)

“ns” means “exit routine not scheduled”

Session outage notification reasons

If LU is PLU If LU is SLU

SCIP NSEXIT LOSTERM SCIP NSEXIT LOSTERM

UNBIND type=TC received by this LU for
any UNBIND type not listed above,
including (but not restricted to):

v TC=07 Virtual route inoperative

v TC=08 Route extension inoperative

v TC=09 Hierarchical reset because of SSCP
session activation

v TC=10 SSCP session deactivated or failed

v TC=11 Virtual route deactivated

v TC=14 Recoverable failure of other LU

v TC=15 Cleanup done by other LU

v TC=254 session protocol is not valid or
user-supplied sense code.

TC CU 24, then 16 ns TC ns

CTERM Forced received by PLU

(PLU sends UNBIND type=01 to SLU. No
action is taken if PLU is an independent LU.)

v VARY INACT,I of either LUs, CDRSC,
CDRM, or associated component

v HALT NET,QUICK

v REQDISCONT Immediate from PU

v Cross-Domain Takedown (Forced).

ns ns 12 ns ns ns

CTERM Forced received by PLU

(PLU sends UNBIND type=01 to SLU. No
action is taken if PLU is an independent LU.)

v Terminate Forced by SLU

v LOGOFF UNCOND by SLU

v TERMSESS UNCOND by SLU

v VARY TERM,UNCOND of session.

ns ns 20 ns ns ns

112 z/OS V2R1.0 Communications Server: SNA Programming

Table 12. Session outage notification UNBIND type codes and reason codes (continued)

Session outage notification signals

SCIP UNBIND RU with type code

NSEXIT
CLEANUP RU (CU)

LOSTERM
reason code

(Type and reason codes shown in decimal)

“ns” means “exit routine not scheduled”

Session outage notification reasons

If LU is PLU If LU is SLU

SCIP NSEXIT LOSTERM SCIP NSEXIT LOSTERM

CLEANUP received by this LU

(UNBIND type=0C sent to other LU)

v VARY INACT,F or R of LU, CDRSC,
CDRM, or associated component

v VARY TERM,FORCE of session

v Cross-Domain Takedown Cleanup

v CLOSE or ABEND by other LU

v RU received larger than maximum size
specified in BIND

v Route extension inoperative

ns CU 24 then 16
or 48

ns CU ns

CLEANUP received by this LU

(UNBIND type=01 sent to other LU)

v Terminates Cleanup by this or other LU
(includes Terminate Forced changed to
Terminate Cleanup by the SSCP).

ns CU 12 ns CU ns

Global failure of this LU

(UNBIND type=01 sent to other LU)

(TPEND exit routine with reason code 8)

v HALT NET,CANCEL

v ABEND of application program

v VTAM failure

ns ns ns ns ns ns

Failure of this LU for this session

(UNBIND type=14 sent to other LU)

14 CU 24, then 16 14 ns ns

Buffer overflow at this LU

(Does not cause session termination)

ns ns 36 ns ns 36

Test Request message received by PLU

(UNBIND type=01 sent to the SLU)

v From BSC 3270 attached to NCP

ns ns 12 ns ns ns

Chapter 5. Establishing and terminating sessions with logical units 113

Table 12. Session outage notification UNBIND type codes and reason codes (continued)

Session outage notification signals

SCIP UNBIND RU with type code

NSEXIT
CLEANUP RU (CU)

LOSTERM
reason code

(Type and reason codes shown in decimal)

“ns” means “exit routine not scheduled”

Session outage notification reasons

If LU is PLU If LU is SLU

SCIP NSEXIT LOSTERM SCIP NSEXIT LOSTERM

CTERM Orderly received by PLU

(No action taken if PLU is an independent
LU)

(Does not cause session termination)

v VARY TERM,COND of session

v Terminate Orderly by SLU

v TERMSESS COND by SLU

v LOGOFF COND by SLU

v Cross-Domain Takedown Orderly.

ns ns 32 ns ns ns

Control blocks used for session establishment and termination

The two control blocks used for session establishment and termination are the
request parameter list (RPL) and the node initialization block (NIB). The
application-supplied operands for dial connections function provides a third
control block, the application-supplied dial-parameter control block (ASDP), that is
used only during session initiation.

Request parameter list (RPL)
The request parameter list, built with the RPL or the GENCB macroinstruction,
contains information that describes a request for VTAM services. After the request
has been completed and the event has been posted, the RPL can be used for
another request.

When used for session establishment or termination, an RPL contains information
that describes the session and how to establish or terminate it. A sample RPL
which could be used with an OPNDST macroinstruction follows:
RPL1 RPL AM=VTAM,ACB=ACB1,OPTCD=(ACCEPT,SPEC,ASY), C

NIB=NIB1,ECB=ECB1

where:
v RPL1 is the label for the macroinstruction and serves as the name of the RPL.
v AM=VTAM specifies the access method.
v ACB=ACB1 specifies that the request is being issued by the application program

identified by the ACB labeled ACB1.

114 z/OS V2R1.0 Communications Server: SNA Programming

v OPTCD=(ACCEPT,SPEC,ASY), when used with an OPNDST macroinstruction,
specifies that asynchronous processing is to be used to accept a CINIT for a
session with the LU identified in the NIB.

v NIB=NIB1 specifies the address of the NIB containing the name of the SLU.
v ECB=ECB1 specifies that ECB1 is posted when the request defined by the RPL

completes.

Node initialization block (NIB)
A node initialization block (NIB) describes a session that is to be established or
terminated. After a session is established, VTAM supplies the communication
identifier (CID), session, which is VTAM's means of identifying the session. VTAM
also supplies a limited set of “device characteristics” for the LU.

An NIB can contain:
v The symbolic name of the LU
v The network identifier of the LU
v The generic resource name
v The communication identifier (CID) of the target session
v The processing options to be used when the application program communicates

on the session being established
v The user data to be associated with the session
v The logon mode name
v The Start Data Traffic indication
v The address of a BIND area in which the application program can construct a set

of session parameters
v The level of cryptography (required or selective) for the session, if cryptography

is supported
v An indication of whether the application program specified required or selective

encryption
v The address of the application-supplied dial parameter list
v An indication of the end user's national language.
v An indication not to do some MNPS data tracking. This is to reduce the

performance impact of writing to the coupling facility for each send and receive
on MNPS sessions.

The symbolic name of an LU is assigned at network definition. It is the name in
the name field of the definition statement (for example, LU statement, APPL
statement, LOCAL statement) used to describe the LU to VTAM. This symbolic
name is generally used only when the application program establishes a session
with an LU. After a session is established, the application program uses the CID to
communicate on the session. For initiating a session, the symbolic name is placed
in the NIB before the session-initiation request (OPNDST, SIMLOGON, or
REQSESS) is issued. For accepting a CINIT, a symbolic name is coded only if you
are accepting a session with a specific LU. For accepting a CINIT for a session with
any LU, a symbolic name is not specified in the NIB; when the session is
established, VTAM puts the symbolic name of the LU in the NIB.

The CID is a 32-bit number assigned by VTAM when a session is established. It is
used to identify that session. The application program subsequently places the CID
in an RPL or NIB control block to specify a particular session to VTAM. The

Chapter 5. Establishing and terminating sessions with logical units 115

application program should not be written to be dependent on the internal
structure of the CID, which should be treated as an unstructured 32-bit number.

The processing options (PROC) determine which characteristics VTAM assigns to
the session (for example, whether certain input on the session causes VTAM to
schedule a DFASY or an RESP exit routine). See Chapter 6, “Communicating with
logical units,” on page 151, for a description of the DFASY or the RESP exit
routines.

The user data is a 4-byte field (USERFLD) that permits some relevant data to be
associated with the session-initiation request or the session itself.

When a nonzero USERFLD is specified on certain requests that initiate a session
(SIMLOGON, REQSESS, or CLSDST OPTCD=PASS), it becomes a correlator for the
session-initiation request. This enables the application program to recognize events
associated with a specific initiate procedure. Therefore, if a session-initiation fails
after the request is accepted, a Notify request that includes the correlator from the
NIB's USERFLD is presented to the application program's NSEXIT routine, to allow
the application program to determine which session-initiation procedure failed. If
the user field is 0, an NSPE request (rather than a Notify request) is presented to
the NSEXIT routine. The correlator is also passed on to the requests to establish a
session. Thus, when the LOGON exit routine is scheduled, as a result of a
SIMLOGON macroinstruction, the CINIT request presented in the exit routine
includes the correlator from the NIB used with SIMLOGON. When the SCIP exit
routine is scheduled with a BIND request resulting from a REQSESS
macroinstruction, the BIND request includes the correlator from the NIB used with
REQSESS. The correlator is arbitrarily assigned by the application program and is
meaningful only to the application program. Therefore, it is passed only to the
application program that created it. For example, if application program A issues a
REQSESS macroinstruction for a session with application program B and specifies
a correlator, that correlator would not be passed to application program B's
LOGON exit routine. However, when program B establishes the session by issuing
OPNDST OPTCD=ACCEPT, the resulting BIND request (received in an SCIP exit
routine in application program A) includes that correlator, thus enabling program
A to recognize that the BIND resulted from issuing the REQSESS macroinstruction.

On a session-establishment request, (OPNDST OPTCD=ACQUIRE, OPNDST
OPTCD=ACCEPT, or OPNSEC), the USERFLD is associated with the session. This
USERFLD value is placed in the USER field of the RPL upon completion of each
communication request (SEND, RECEIVE, RESETSR, and SESSIONC) on the
session. For OPNDST OPTCD=ACQUIRE, the USERFLD supplies only the user
data to be associated with the session being established, and is not used as a
correlator for the session initiation request generated by OPNDST
OPTCD=ACQUIRE.

The logon mode name is the name of an entry in a logon mode table. The entry
contains the session parameters to be passed to the PLU in the CINIT. The logon
mode name also indirectly specifies the class of service to be used for the session.

The BNDAREA operand can be specified in the NIB macroinstruction to give the
location of the BIND area where an application program at the primary end of a
session can predefine or dynamically construct a set of session parameters to be
used for the session. When the BNDAREA operand contains an address, the
LOGMODE operand (logon mode name) is ignored. (The ISTDBIND DSECT can be
used to set up session parameters in the BIND area.) Similarly, BNDAREA can be

116 z/OS V2R1.0 Communications Server: SNA Programming

used to designate an area in which a secondary application program can build the
session parameters for a negotiable BIND response.

The Start Data Traffic indicator (the SDT operand) specifies whether the application
program acting as the PLU issues the Start Data Traffic request (SDT=APPL) or
whether VTAM should issue that request automatically as part of OPNDST
processing (SDT=SYSTEM). The transmission services profile in the session
parameters indicates whether the Start Data Traffic (SDT) request is used in the
session. When you indicate use of the SDT request in the transmission services
profile, you must send the request:
v During initial session-establishment processing
v After you send a Clear request
v After sequence number resynchronization to inform the SLU that the flow of

requests and responses can begin.

For many application programs, it is convenient and adequate to let VTAM issue
the Start Data Traffic request during initial OPNDST processing (that is, allow
SDT=SYSTEM to take effect by default when defining the NIB). However, the PLU
must still send an SDT request after a Clear request is sent.

For an application program acting as the SLU, the SDT indication is used to
specify whether the application program wants VTAM to respond automatically to
SDT, or to allow the application program to respond. If SDT=APPL is specified, the
application program must respond to SDT requests received in the SCIP exit
routine by issuing a SESSIONC macroinstruction with CONTROL=SDT and
STYPE=RESP.

The level of cryptography for a session can be required or selective. In a required
cryptographic session, all data requests are enciphered before they are sent. In a
selective cryptographic session, data requests are enciphered based on the setting
of the RPLCRYPT bit in the RPL, which can be set by the RPL's CRYPT keyword.
Even though no cryptography is specified, either end of the session can still
require cryptography because of system definition requirements. In this case,
enciphering occurs transparently to the application program. See “How VTAM
determines the level of cryptography for a cryptographic session” on page 133 for
further information on the levels of cryptography, and “Sending and receiving
enciphered data requests” on page 218 for level of cryptography information that
applies to MVS-only systems.

The Programmed Cryptographic Facility (PCF) and the Cryptographic Unit
Support Program (CUSP) do not support network-qualified names. If the
application program is using cryptographic facilities, the 8-byte LU name of the
partner using cryptography must be unique in all interconnected networks. VTAM
uses 8-byte names on the interface to the PCF and CUSP.

The application-supplied operands for dial connections function enables an
application to supply certain parameters that are coded on the PATH definition
statement and PU definition statement. For more information refer to
“Application-supplied dial parameter control block (ASDP)” on page 119.

The NIB also contains a coded value that specifies the end user's national
language. The application program receives this value from the device
characteristics area of the NIB. The hex code can be specified on the LANG
parameter in the mode table entry (MODEENT macroinstruction) that is associated
with an LU.

Chapter 5. Establishing and terminating sessions with logical units 117

The end user can override this code by specifying the language code on the LANG
or LANGTAB parameters on a USS command. The hex code that is available in
DEVLANG is determined when the LU-LU session is established and cannot
change during the session.

Table 13 shows the language codes that can be specified using the LANG or
LANGTAB parameters and the corresponding hex values that are provided in the
NIB. The application program must determine whether an LU can display the
selected language of an end user. Sending double-byte character sets (DBCS) or
other invalid characters to a terminal that does not support the character set can
result in errors. Many IBM 3270 type terminals can be queried for character sets
and DBCS support. The query bit, DEVQUERY, is determined by the LANG
parameter of the MODEENT macroinstruction. Refer to the z/OS Communications
Server: SNA Resource Definition Reference for more information.

Table 13. Language code settings (MVS only)

Hex
code

Language
code

Language name Original name Principal country

X'02' ARA Arabic ¹ Arabi Arab Countries

X'03' CHT Traditional Chinese Zhongwen R.O.C.

X'04' CHS Simplified Chinese P.R.C.

X'05' DAN Danish Dansk Denmark

X'06' DEU German Deutsch Germany

X'07' DES Swiss German Schweizer-Deutsch Switzerland

X'08' ELL Greek Ellinika Greece

X'09' ENG UK English English United Kingdom

X'00' US English (default) United States

X'01' ENU US English (specified) United States

X'0A' ESP Spanish Espanol Spain

X'0B' FIN Finnish Suomi Finland

X'0C' FRA French Francais France

X'0D' FRB Belgian French Belgium

X'0E' FRC Canadian French Canada

X'0F' FRS Swiss French Suisse-Francais Switzerland

X'10' HEB Hebrew ¹ Ivrith Israel

X'12' ISL Icelandic Islensk Iceland

X'13' ITA Italian Italiano Italy

X'14' ITS Swiss Italian Italiano svizzero Switzerland

X'11' JPN Japanese Nihongo Japan

X'15' KOR Korean Choson-o; Hanguk-o Korea

X'16' NLD Dutch Nederlands Netherlands

X'17' NLB Belgian Dutch Belgium

X'18' NOR Norwegian Norsk Norway

X'19' PTG Portuguese Portugues Portugal

X'1A' PTB Brazil Portuguese Brazil

118 z/OS V2R1.0 Communications Server: SNA Programming

Table 13. Language code settings (MVS only) (continued)

Hex
code

Language
code

Language name Original name Principal country

X'1B' RMS Rhaeto-Romanic Romontsch Switzerland

X'1C' RUS Russian Russkij USSR

X'1D' SVE Swedish Svenska Sweden

X'1E' THA Thai Thai Thailand

X'1F' TRK Turkish Turkce Turkey

X'3F' Unknown language code²

Note:

1. Language is written from right to left and is not supported by MVS Message Service.

2. Language specified on LANG or in the second parameter of LANGTAB is not found in this table. You can use
this value to support a language not currently in the table.

OPNDST OPTCD=ACQUIRE and SIMLOGON allow lists of NIBs to be used. If
OPTCD=CONANY is specified on the request, OPNDST or SIMLOGON is done
for each NIB in the list until the operation is successful. In this case, one session at
the most is established or initiated. If OPTCD=CONALL is specified, the operation
is performed, in turn, for each NIB in the list, and continues until the end of the
list is reached. The request is considered successful if at least one session is
established or initiated.

To define an NIB list, you use the NIB or GENCB macroinstructions or an
IBM-provided DSECT to define a series of contiguous NIBs. You can have any
number of NIBs, but the last NIB in the list must have the LISTEND indicator
(LISTEND=YES in the NIB macroinstruction). Other NIBs in the list must have
LISTEND=NO.

The coding might look like this:
RPL1 RPL AM=VTAM,ACB=ACB1,NIB=NIB1,OPTCD=ACQUIRE
NIB1 NIB NAME=LU1,LISTEND=NO
NIB2 NIB NAME=LU2,LISTEND=NO
NIB3 NIB NAME=LU3,LISTEND=YES

If all the NIBs in a program are in one list, you might want to specify a working
subset of the list for one operation. To do this, code the RPL to point to any one
NIB in the list. The subset includes all NIBs from (and including) the NIB pointed
to by the RPL through (and including) the next NIB in which the LISTEND
indicator is set (LISTEND=YES).

This list form can be used only in the SIMLOGON, OPNDST OPTCD=ACQUIRE,
and OPNDST OPTCD=RESTORE macroinstructions. The LISTEND indicator
(LISTEND=YES) should be set in the NIB used with any other macroinstruction.

Application-supplied dial parameter control block (ASDP)
The ASDP, used only during session initiation, enables an application to provide
dial parameters and other signal information. The application can indicate that
VTAM temporarily replace the dial number, direct call line name, and DLCADDR
values that are coded on the PATH definition statement. Additionally, if the ASDP's

Chapter 5. Establishing and terminating sessions with logical units 119

no NODEID check flag is set to 0, the application can temporarily replace the
following values that are coded on the PU definition statement in a switched major
node:
v IDBLK and IDNUM
v CPNAME
v All of the preceding values

To retain network security, two operands, one on the APPL definition statement
and one on the PU definition statement, restrict the application program's authority
to provide the dial parameters.

Operand
Definition

AUTH=ASDP|NOASDP
This operand, coded on the APPL definition statement, specifies whether
the application program has the authority to provide dial parameters
during session initiation.

Use of the application-supplied operands for dial connections function
requires authorization for the issuing application (AUTH=ASDP on the
APPL definition statement).

ASDP=YES|NO
This operand, coded on the PU definition statement in a switched major
node, specifies whether an application program can supply dial parameters
for that PU.

Both operands must enable authority before the application program can supply
the dial parameters for a specific PU. For example, if an authorized application
program (AUTH=ASDP) supplies parameters for an unauthorized switched PU
(ASDP=NO), session initiation fails.

The dial parameter list contains a header block followed by a maximum of six
unique subfields. The header block contains a length field and a flag byte. The
length field defines the length of the parameter list, including the length field, flag
byte, and subfields. The subfields include:

Dial number
This subfield can contain up to a 32-byte (in EBCDIC) dial number that
replaces the dial number that is coded on the PATH definition statement of
a PU in a switched major node.

Direct call line name
This subfield can have a maximum of 8 bytes (in EBCDIC). The subfield
contains a direct call line name that replaces the direct call line name that
is coded on the PATH definition statement of a PU in a switched major
node.

IDBLK and IDNUM
This 4-byte subfield provides an IDBLK and IDNUM that are compared to
the IDBLK and IDNUM that are returned by the connected PU.

DLCADDR
This ASDP subfield contains up to 250 bytes of expanded signal
information in the form of one or more DLCADDR data strings. Each
DLCADDR data string contains:
v A 1-byte subfield_id that specifies a value in the range 1–96

120 z/OS V2R1.0 Communications Server: SNA Programming

v A 1-byte length field that indicates the amount of signal information
contained in the DLCADDR data string

v DLCADDR signal information in hexadecimal format.

This information can replace the DLCADDR information that is coded on
the PATH definition statement in a switched major node.

CPNAME
This subfield contains a CPNAME that is compared to the CPNAME that
is returned by the attached PU. The subfield contains 1–17 bytes of data
consisting of an optional 1–8 byte network qualifier concatenated with a
period to a 1–8 byte CPNAME.

Connection name
This subfield contains a GRPNM that allows the application program to
override the GRPNM operand value coded on the PATH definition
statement in a switched major node.

The supplied dial parameters can have varied effects. The following conditions
apply to the no NODEID check flag, IDBLK, IDNUM, and CPNAME values:
v If the no NODEID check flag is set to 1, VTAM establishes the LU session

without checking the IDBLK, IDNUM, or CPNAME of the attached PU.
v If the no NODEID check flag is set to 0 and the application does not supply an

IDBLK, IDNUM or CPNAME, VTAM performs current NODEID checking. Refer
to z/OS Communications Server: SNA Resource Definition Reference for
information pertaining to the current NODEID checking procedures.

v If the application supplies the IDBLK and IDNUM, or CPNAME or both, the
dialed PU must return at least one value that matches the supplied values. If no
value matches, session initiation fails.

The coded values on the PATH definition statement limit the types of dial
parameters that can be provided by the application. Be aware of the following:
v If both the application and the PATH definition statement supply a dial number,

DLCADDR value, or a direct call line name, VTAM dials the one that is
specified by the application.

v If the application specifies a dial number or DLCADDR, but not a direct call line
name, VTAM restricts session initiation to PATH definition statements coded
with dial numbers or DLCADDRs.

v If the application specifies a direct call line name, but not a dial number or a
DLCADDR, VTAM restricts session initiation to PATH definition statements
coded with direct call line names.

v If the application specifies all three values (dial number, direct call line name,
and DLCADDR), VTAM attempts session initiation using any available PATH
statement.

v If the application does not supply a dial number, DLCADDR, or a direct call line
name, VTAM uses the PATH definition statement values.

The following conditions apply when an application program initiates subsequent
sessions.
v If the existing connection is initiated without using the application-supplied

operands for dial connections function, the application cannot supply dial
parameters for any additional session requests.

v If the existing connection is initiated with the application-supplied operands for
dial connections function, the application can either supply no dial parameters

Chapter 5. Establishing and terminating sessions with logical units 121

for additional session requests or supply the same dial parameters as supplied
for the original request. If the application provides a type or value that differs,
session initiation fails.

Be aware of the following:
v If the application specifies an application-supplied operand when initiating a

session with a nonswitched device, the session fails.
v During dial processing, VTAM uses the supplied dial number, DLCADDR, or

direct call line name as though it has been coded directly on the PATH definition
statement.

VTAM uses the SIMLOGON, OPNDST OPTCD=ACQUIRE and NIB
macroinstructions to locate and retrieve the dial parameters. The SIMLOGON and
OPNDST OPTCD=ACQUIRE macroinstructions provide the specific NIB that
contains the address of the application's dial parameter list. The NIB
macroinstruction contains a keyword, ASDPAREA, that identifies the application's
dial parameter list. ASDPAREA sets the NIBASDP indicator and the NIBASDPA
field. NIBASDP is set to 1 when the application is providing the dial parameters.
NIBASDPA defines the address of the application's dial parameter list.

Establishing parameters for sessions

As part of the session-establishment process, the PLU and the SLU must agree on
the communication rules to be followed during the session. These communication
rules, which are governed by session parameters, enable each end of the session to
know what the other end of the session does and does not do in different
communication situations.

Session parameters are indicators and numeric values that specify such things as
“the PLU requires responses to requests” or “the SLU does not send end brackets
if brackets are used.” See “What is communicated: Requests and responses” on
page 151, for a description of session parameters, and Appendix F, “Specifying a
session parameter,” on page 793, for an example of session parameter fields.

General pattern of agreement on session parameters

A session-establishment request reaches the PLU in the form of a CINIT request. A
set of session parameters is included in the CINIT. These parameters are available
for inspection by the PLU when it processes the CINIT.

During processing of the CINIT, the PLU can decide to use the session parameters
suggested by the initiator of the session, or the PLU can choose a different set of
parameters. In either case, when the application program issues an OPNDST
macroinstruction to accept the session, it must designate a set of session
parameters for the session. The session parameters are sent as part of the BIND
request, which is created by VTAM as a result of the OPNDST macroinstruction.
(Whether the application program uses the suggested parameters or different ones
can be determined by user conventions. For example, the application program
might always use the session parameters that accompany a CINIT or might always
disregard the suggested parameters and select session parameters on the basis of
some criteria chosen by the user.)

When the BIND request reaches the SLU, the SLU can examine the session
parameters in the request. If the BIND is non-negotiable, the SLU must either

122 z/OS V2R1.0 Communications Server: SNA Programming

accept or reject the whole set of parameters. It cannot accept some and reject
others. The SLU accepts the session parameters by sending a positive response to
the BIND. If it rejects the parameters, the session is not established.

When the BIND is negotiable, the SLU can modify the parameters, and return the
modified parameters in a positive response to the BIND. These parameters are then
examined by the PLU, and data traffic within the session commences if the PLU
accepts the changes made by the SLU. If the PLU does not accept the parameters,
it must terminate the session, for example by issuing CLSDST.

Defining and naming a set of session parameters (logon mode
and class of service)

In many cases, it is convenient to predefine a set of session parameters that could
be sent in the BIND. When a set is defined, a name is associated with the set. That
name is known as the logon mode name. The logon mode name is used in Initiate
requests, and in the LOGMODE operand of certain macroinstructions and VTAM
operator commands to identify the set of session parameters.

Additionally, in VTAM, a logon mode name implies a particular class of service used
for the session. Class of service is a set of characteristics used to construct a route
between session partners.

Several session parameter sets, each with its own logon mode name, can group
into a table known as a logon mode table. There is a logon mode table, a default
logon mode name, and an associated default set of session parameters associated
with each LU that can act as the secondary end of a session,

Instead of using a predefined session parameter set, an application program can
build a set of parameters at the time it is needed. The set of parameters is built in
an area of the application program known as a BIND area, whose address is
placed in the NIB used for the OPNDST or OPNSEC macroinstructions.

Refer to the z/OS Communications Server: SNA Network Implementation Guide
for information about logon mode tables, class of service, and other aspects of the
session parameter definition process.

How logon mode names and session parameters are used
A logon mode name is used to suggest a particular set of session parameters and
class of service (COS) that is used between session partners. The logon mode name
can be specified by one of the session partners or the VTAM operator at different
points in the session-initiation and session-establishment process. Table 14 shows
how a logon mode name can be specified.

Table 14. How to specify a logon mode name

Sent by Negotiation Specified in

LU Suggested Initiate Request

SLU APPL Suggested LOGMODE field of the NIB during REQSESS

PLU APPL Suggested LOGMODE field of the NIB during SIMLOGON

Set With the OPNDST macroinstruction

VTAM
Operator

Suggested LOGMODE operand of the VARY LOGON
command

Chapter 5. Establishing and terminating sessions with logical units 123

The following steps describe how a logon mode name is used:
1. The logon mode name is supplied by a session partner or operator as part of

an Initiate request.
2. The VTAM that owns the SLU maps the logon mode name in the logon mode

table and translates it into session parameters and a COS name.
3. If necessary, the logon mode name is passed from the domain in which the

Initiate request originates to the domain of the VTAM that owns the SLU and is
then translated in that domain. If no logon mode name is supplied as part of
the Initiate request, the appropriate default session parameters and COS name
are determined in the VTAM that owns the SLU.

Note: If the logon mode name supplied as part of the intitate request cannot be
translated in the VTAM that owns the SLU, VTAM might use the default logon
mode entry ISTCOSDF. For additional information regarding the ISTCOSDF
start option, refer to z/OS Communications Server: SNA Resource Definition
Reference.
For the OPNDST macroinstruction, the COS is not specified in this field
(because it is associated with a queued CINIT that cannot be overridden) unless
it is an OPNDST OPTCD=ACQUIRE operation.

4. The session parameters and COS name are then passed to the VTAM that owns
the PLU. VTAM uses the COS name to determine a set of COS parameters.

5. The session parameters and COS parameters are sent to the PLU in the CINIT.

NIB LOGMODE and BNDAREA operands

The NIB LOGMODE and BNDAREA operands are used with a number of
macroinstructions to specify, directly or indirectly, a set of session parameters. The
following text and Table 15 through Table 19 on page 125 show how these
operands are used for each macroinstruction.

Table 15. Determining session parameters for an INQUIRE macroinstruction

NIB specifies
LOGMODE=

NIB specifies
BNDAREA=

INQUIRE OPTCD=SESSPARM issued for
an LU in the same domain A different domain

0 Reserved The session parameters associated with a
queued CINIT are placed in the RPL's AREA
field. See the INQUIRE macroinstruction
(OPTCD=SESSPARM) for a description of
when queued CINIT is used.

Same as same domain

C' ' Reserved The default session parameters associated
with the LU are placed in the RPL's AREA
field.

Option not valid

Logon mode name Reserved The session parameters associated with the
specified logon mode name are placed in the
RPL's AREA field.

Option not valid

124 z/OS V2R1.0 Communications Server: SNA Programming

Table 16. Determining session parameters for an OPNDST OPTCD=ACCEPT macroinstruction

NIB specifies
LOGMODE=

NIB specifies
BNDAREA=

OPNDST OPTCD=ACCEPT issued for an
LU in the same domain A different domain

0 0 The session parameters associated with a
queued CINIT are used. See the
OPNDST OPTCD=ACCEPT
macroinstruction for a description of which
queued CINIT is used.

Same as same domain

C' ' 0 The default session parameters associated
with the LU are used.

Option not valid

Logon mode name 0 The session parameters associated with the
specified logon mode name are used.

Option not valid

Reserved ISTDBIND area
address

The session parameters associated with the
specified BIND area are used.

Same as same domain

Note: In all uses of OPNDST OPTCD=ACCEPT, the class-of-service parameters specified in the queued CINIT are
used.

Table 17. Determining session parameters for an OPNDST OPTCD=ACQUIRE macroinstruction

NIB specifies
LOGMODE=

NIB specifies
BNDAREA=

OPNDST OPTCD=ACQUIRE issued for an LU in the same
domain or in a different domain

0 0 The default session parameters and class-of-service name associated
with the LU are used.

C' ' 0 Same as specifying LOGMODE=0 and BNDAREA=0.

Logon mode name 0 The session parameters and class-of-service name associated with
the specified logon mode name are used.

Any of the preceding ISTDBIND area
address

The session parameters associated with the specified BIND area are
used. The class-of-service parameters used are those associated with
the default logon mode name.

Table 18. Determining session parameters for a SIMLOGON or CLSDST OPTCD=PASS macroinstruction

NIB specifies
LOGMODE=

NIB specifies
BNDAREA=

SIMLOGON or CLSDST OPTCD=PASS issued for an LU in the
same domain or in a different domain

0 Reserved The default session parameters associated with the LU are used.

C' ' Reserved Same as specifying LOGMODE=0 and BNDAREA=0.

Logon mode name Reserved The session parameters associated with the specified logon mode
name are used.

Table 19. Determining session parameters for a REQSESS macroinstruction

NIB specifies
LOGMODE=

NIB specifies
BNDAREA=

REQSESS issued for an application program in the same domain
or in a different domain

0 Reserved The default session parameters associated with the application
program issuing the REQSESS macroinstruction are used.¹

C' ' Reserved Same as specifying LOGMODE=0 and BNDAREA=0.

Logon mode name Reserved The session parameters associated with the specified logon mode are
used.

Note:

1. The logon mode name and session parameters are associated with the application program that issued the
REQSESS macroinstruction (the SLU) and not the LU named in the NIB (the PLU).

Chapter 5. Establishing and terminating sessions with logical units 125

When used by the INQUIRE OPTCD=SESSPARM macroinstruction:
v LOGMODE=0 indicates that VTAM is to take the session parameters associated

with a queued CINIT (including any user data field, if present) and place them
in the field pointed to by the AREA field of the RPL. The AREALEN field of the
RPL must specify the length of AREA. If CINIT is not queued,
(RTNCD,FDB2)=(X'14',X'4C') is set.

v LOGMODE=C' ' indicates to VTAM that the default session parameters for the
LU are to be returned in the field pointed to by the AREA field. The AREALEN
field of the RPL must specify the length of AREA. If a match is not found,
(RTNCD,FDB2)=(X'14',X'4B') is set.

v LOGMODE=logon mode name indicates to VTAM the logon mode name with
which it is to search the logon mode table defined for the LU named in the NIB.
If a match is found, the session parameters are returned in the field pointed by
the AREA field of the RPL. The AREALEN field of the RPL must specify the
length of AREA. If a match is not found, (RTNCD,FDB2)=(X'14',X'4B') is set.

Note: For details on the use of the NIBSYM and NIBCID fields, see the
OPTCD=SESSPARM parameter in the INQUIRE macroinstruction description in
“INQUIRE—Obtain logical unit information or application program status” on
page 412.

When used by the OPNDST OPTCD=ACCEPT macroinstruction:
v LOGMODE=0 and BNDAREA=0 indicate that VTAM is to take the session

parameters from a queued CINIT and construct a BIND request that is sent to
the LU. If CINIT is not queued, (RTNCD,FDB2)=(X'14',X'4C') is set.

v LOGMODE=C' ' and BNDAREA=0 indicate that VTAM is to take the default
session parameters for the LU named in the NIB and construct a BIND request
that is sent to the LU. If CINIT is not queued, (RTNCD,FDB2)=(X'14',X'4C') is
set.

v LOGMODE=logon mode name and BNDAREA=0 indicate to VTAM the logon
mode name with which it is to search the logon mode table defined for the LU
named in the NIB. The LU must be in the same domain as the application
program that issued the OPNDST macroinstruction. If a match is found, the
session parameters associated with that logon mode name are used to construct
a BIND request that is sent to the LU. If a match is not found, or if the LU is in
another domain, (RTNCD,FDB2)=(X'14',X'4B') is set, or if CINIT is not queued,
(RTNCD,FDB2)=(X'14',X'4C') is set.

v LOGMODE=0 or C' ' or logon mode name and BNDAREA=BIND area address
indicate that the session parameters in the specified BIND area are to be used to
construct the BIND request. If CINIT is not queued, (RTNCD,FDB2)=(X'14',X'4C')
is set.

v In all cases, the class-of-service parameters used are those specified in the
queued CINIT.

When used by the OPNDST OPTCD=ACQUIRE macroinstruction:
v LOGMODE=0 or C' ' and BNDAREA=0 indicate to VTAM that default session

parameters and the associated class-of-service parameters (defined for the LU
named in the NIB) are to be used to construct the BIND, which is sent to the
LU.

v LOGMODE=logon mode name and BNDAREA=0 indicate to VTAM the logon
mode name with which it is to search the logon mode table defined for the LU
named in the NIB. If a match is found, the session parameters and

126 z/OS V2R1.0 Communications Server: SNA Programming

class-of-service parameters associated with that logon mode name are used to
construct a BIND, which is sent to the LU. If a match is not found,
(RTNCD,FDB2)=(X'14',X'4B') is set.

v LOGMODE=0 or C' ' or logon mode name and BNDAREA=BIND area address
indicate that the session parameters in the specified BIND area are to be used to
construct the BIND. The class-of-service parameters used are those associated
with the default logon mode name.

When used by the SIMLOGON or CLSDST OPTCD=PASS macroinstruction:
v LOGMODE=0 or C' ' indicates to VTAM that the default session parameters and

associated class-of-service parameters for the LU are to be used as part of the
CINIT that eventually results from the request. If a match is not found,
(RTNCD,FDB2)=(X'14',X'4B') is set.

v LOGMODE=logon mode name indicates to VTAM the logon mode name with
which it is to search the logon mode table for the LU named in the NIB. If a
match is found, the session parameters and class-of-service parameters
associated with that logon mode name are to be used as part of the resulting
CINIT. If a match is not found, (RTNCD,FDB2)=(X'14',X'4B') is set.

When used by a REQSESS macroinstruction:
v LOGMODE=0 or C' ' indicates to VTAM that the default session parameters and

associated class-of-service parameters for the application program issuing
REQSESS are to be used as a part of the CINIT that eventually results from the
REQSESS macroinstruction. If a match is not found, (RTNCD,FDB2)=(X'14',X'4B')
is set.

v LOGMODE=logon mode name indicates to VTAM the logon mode name with
which it is to search the logon mode table for the application program that
issued the REQSESS macroinstruction. If a match is found, the session
parameters and class-of-service parameters associated with that logon mode
name are to be used as part of the resulting CINIT. If a match is not found,
(RTNCD,FDB2)=(X'14',X'4B') is set.

Examples of how an application program processes session
parameters

The following examples show how an application program processes session
parameters.

Example 1: Using session parameters associated with CINIT

In this example, the application receives a CINIT for a session with an LU named
LU1. VTAM then schedules the LOGON exit routine. The exit routine coding
might be as follows:
INQ1 INQUIRE RPL=RPL1,OPTCD=SESSPARM

(Test for (RTNCD,FDB2)=
(00,05) in the RPL.)
(Load value in RECLEN field of the RPL into
register 7 and check that it does not
exceed the length of AREA1.)
.
.
.

MODCB AM=VTAM,RPL=RPL1,AREALEN=(7)
(Test return codes from execution of the MODCB macro.)
.
.

Chapter 5. Establishing and terminating sessions with logical units 127

.
INQ2 INQUIRE RPL=RPL1,OPTCD=SESSPARM

.

.

.
(Check session parameters placed in AREA1 and
determine that they are appropriate.)
.
.
.

OPNDST RPL=RPL1,OPTCD=ACCEPT
.
.
.

RPL1 RPL AM=VTAM,NIB=NIB1,AREA=AREA1,AREALEN=0
NIB1 NIB NAME=LU1,LOGMODE=0,BNDAREA=0
AREA1 DS XL100

The INQUIRE macroinstruction at INQ1 attempts to get the session parameters
(from the CINIT) with the RPL's AREALEN field set to 0. The macroinstruction
fails with (RTNCD,FDB2)=(X'00',X'05') (insufficient length). Upon return from the
macroinstruction, however, the RPL's RECLEN field contains the number of bytes
needed for the session parameters (and any user data). The required length is
loaded into register 7, and the MODCB macroinstruction is issued to put the value
into the AREALEN field of the RPL. Then, at INQ2, the INQUIRE macroinstruction
is issued again, causing VTAM to put the session parameters into AREA1. (The
session parameters are those that are received with the CINIT.) The logic of the
LOGON exit routine checks the session parameters and determines that they are
appropriate for the LU and for the type of session that the application program has
with that LU. Therefore, the application program issues the OPNDST
OPTCD=ACCEPT macroinstruction to generate the BIND request, using the NIB
whose BNDAREA and LOGMODE fields are set to 0. Because the LOGMODE and
BNDAREA fields are set to 0, VTAM uses the session parameters associated with
the CINIT to build the BIND that is sent to the LU. (An area of 100 bytes is shown
in the example for the amount of storage reserved for AREA1; that might not be
the correct value for your application program. The value should be equal to the
maximum size of the session parameters plus any user data from the Initiate.)

Example 2: Locating the logon mode name in the CINIT RU

In this example, the application program transfers the LU-LU session to another
application program in the same host by issuing CLSDST OPTCD=PASS. To keep
the same class of service as specified for this session, the logon mode name is
obtained from the CINIT RU and specified later with the CLSDST OPTCD=PASS.

This is an example of code that accesses the COS/LOGMODE/LIST vector
containing the logon mode name:

* EXAMPLE: GET LOGON MODE NAME FROM CINIT RU (FOR CLSDST PASS) *
* *
* REGISTER 1: ADDRESS OF LOGON EXIT INPUT PARAMETER LIST *
* REGISTERS 2, 3, 4: WORK REGISTERS *
* *
* LOCAL VARIABLES: CINITVEC, CINITEND, LOGMODE *

*
* GET CINIT ADDRESS
*

L REG04,16(,REG01) GET ADDRESS OF READ ONLY RPL
L REG03,RPLAREA(,REG04) GET ADDRESS OF CINIT

*

128 z/OS V2R1.0 Communications Server: SNA Programming

* GET ADDRESS OF END OF CINIT
*

LR REG02,REG03 GET CINIT ADDRESS
AL REG02,RPLRLEN(,REG04) ADD LENGTH OF CINIT
ST REG02,CINITEND SAVE ADDRESS OF CINIT END

*
* GET ADDRESS OF SLU NAME FIELDS
*

LA REG04,12(,REG03) GET ADDRESS OF BIND IMAGE
SLR REG02,REG02 CLEAR FOR LENGTH
ICM REG02,3,10(REG03) GET LENGTH OF BIND IMAGE
ALR REG04,REG02 GET ADDRESS OF SLU NAME FIELDS

*
* REGISTER 4 NOW HAS THE ADDRESS OF THE SLU NAME TYPE
*
* GET ADDRESS OF RESERVED FIELD (FORMERLY REQUESTOR ID)
*

LA REG03,2(,REG04) GET ADDRESS OF SLU NAME
SLR REG02,REG02 CLEAR FOR LENGTH
IC REG02,1(,REG04) GET LENGTH OF SLU NAME
ALR REG03,REG02 GET ADDRESS OF NEXT FIELD

* (FORMERLY REQUESTOR ID, NOT
* USED BY VTAM, NOW RESERVED)
*
* REGISTER 3 NOW HAS ADDRESS OF RESERVED FIELD (FORMERLY REQUESTOR ID)
*
* GET ADDRESS OF RESERVED FIELD (FORMERLY PASSWORD)
*
RESERV1 LA REG04,1(,REG03) GET ADDRESS OF OLD REQ ID

SLR REG02,REG02 CLEAR FOR LENGTH
IC REG02,0(,REG03) GET LENGTH OF DATA
ALR REG04,REG02 GET ADDRESS OF NEXT FIELD

* (FORMERLY PASSWORD, NOT USED
* BY VTAM, NOW RESERVED)
*
* REGISTER 4 NOW HAS ADDRESS OF RESERVED FIELD (FORMERLY PASSWORD)
*
* GET ADDRESS OF USER AREA
*
RESERV2 LA REG03,1(,REG04) GET ADDRESS OF OLD PASSWORD

SLR REG02,REG02 CLEAR FOR LENGTH
IC REG02,0(,REG04) GET LENGTH OF DATA
ALR REG03,REG02 GET ADDRESS OF USER AREA

*
* REGISTER 3 NOW HAS ADDRESS OF USER AREA
*
* GET ADDRESS OF DEVICE INFORMATION (NOT USED BY APPLICATIONS)
*

LA REG04,1(,REG03) GET ADDRESS OF USER AREA
SLR REG02,REG02 CLEAR FOR LENGTH
IC REG02,0(,REG03) GET LENGTH OF USER AREA
ALR REG04,REG02 COMPUTE ADDRESS OF DEVICE INFO

*
* REGISTER 4 NOW HAS ADDRESS OF DEVICE INFORMATION
*
* GET ADDRESS OF KEY (NOT USED BY APPLICATIONS)
*

LA REG03,2(,REG04) GET ADDRESS OF DEVICE INFO
ICM REG04,12,0(REG04) GET LENGTH OF DEVICE INFO
SRA REG04,16 SHIFT RIGHT
ALR REG03,REG04 COMPUTE ADDRESS OF KEY

*
* REGISTER 3 NOW HAS ADDRESS OF KEY
*
* GET ADDRESS OF CONTROL VECTORS
*

LA REG04,1(,REG03) GET ADDRESS OF KEY

Chapter 5. Establishing and terminating sessions with logical units 129

SLR REG02,REG02 CLEAR FOR LENGTH
IC REG02,0(,REG03) GET LENGTH OF KEY
ALR REG04,REG02 COMPUTE ADDRESS OF VECTORS

*
* REGISTER 4 NOW HAS ADDRESS OF VECTOR (IF PRESENT)
*
* IS VECTOR WITHIN CINIT (IS THERE A VECTOR)?
*

C REG04,CINITEND COMPARE TO CINIT END ADDRESS
BNL NOVECTOR BRANCH IF NOT IN CINIT

*
* LOOP TO LOOK FOR COS/LOGMODE/LIST VECTOR
*
CHECKVEC CLI 0(REG04),X’0D’ COS/LOGMODE/LIST VECTOR?
* (REG 4 HAS ADDRESS OF VECTOR)

BNE NEXTVECT NO, TRY NEXT VECTOR
*
* COS/LOGMODE/LIST VECTOR FOUND
* STORE DATA NEEDED
*

MVC LOGMODE,2(REG04) SAVE 8-BYTE LOGON MODE NAME
B VECFOUND CONTINUE PROCESSING (OUT OF LOOP)

*
NEXTVECT LA REG03,2(,REG04) GET ADDRESS OF VECTOR DATA
* (REG 4 HAS ADDRESS OF VECTOR)

SLR REG02,REG02 CLEAR FOR LENGTH
IC REG02,1(,REG04) GET LENGTH OF VECTOR DATA
ALR REG03,REG02 COMPUTE ADDRESS OF NEXT VECTOR
LR REG04,REG05 SAVE ADDRESS OF NEXT VECTOR

*
* CHECK FOR END OF CINIT
*
ENDCHECK C REG04,CINITEND COMPARE TO END ADDRESS

BL CHECKVEC VECTOR WITHIN CINIT, PROCESS IT
*
NOVECTOR CONTINUE PROCESSING
*
VECFOUND CONTINUE PROCESSING
*

.

.
CINITEND DS A
LOGMODE DS CL8

Beginning with the BIND image at byte 12 of the CINIT RU, the fields and vectors
are variable in length. See SNA Formats for a description of the CINIT RU. Each
variable length field contains a 1- or 2-byte length field, followed by data. If a
particular data item is not present, its length field contains zeros. To compute the
address of the next variable length field (or vector), add the length of the data item
to its address.

The coded example permits for multiple vectors, does not require a particular
order of the vectors, and does not assume that a particular vector is present. At
labels RESERV1 and RESERV2, variable length fields that are not used by VTAM
are bypassed in the same way that the other fields are processed, by adding the
length to the address of the data. In this way, the code is not dependent on these
fields being reserved.

Example 3: Building and using session parameters in a BIND
area

In this example, the application program initiates a session with an LU named LU2
in the same domain. A logon mode table is defined and was identified by the

130 z/OS V2R1.0 Communications Server: SNA Programming

system programmer in the MODETAB operand of the LU definition statement for
LU2. The application program wants to get the default-session parameters from the
logon mode table, modify them, and then send the modified parameters to the LU
in the BIND when it acquires the LU. Negotiable BIND is used. The coding could
look like this:

.

.

.
INQUIRE RPL=RPL2,OPTCD=SESSPARM

.

.

.
(Test and modify the session parameters in SPAREA2.)
.
.
.

MODCB AM=VTAM,NIB=NIB2,BNDAREA=SPAREA2
OPNDST RPL=RPL2,OPTCD=ACQUIRE,

AAREA=NBNDAREA,AAREALN=L’NBNDAREA
.
.
.

RPL2 RPL AM=VTAM,NIB=NIB2,AREA=SPAREA2,AREALEN=L’SPAREA2
NIB2 NIB NAME=LU2,LOGMODE=C’ ’,PROC=NEGBIND
SPAREA2 DS XL(BINUSE-ISTDBIND)
NBNDAREA DS XL256

Because the NIB's LOGMODE field contains blanks, the INQUIRE macroinstruction
causes the default session parameters from the logon mode table to be moved into
SPAREA2. The application program then modifies the session parameters to fit the
way it wants to communicate with LU2. The MODCB macroinstruction puts the
address of SPAREA2 into the NIB's BNDAREA field. When the OPNDST
macroinstruction is executed, the modified session parameters are transmitted to
LU2 in the BIND request. The response to the negotiable BIND is returned in
NBNDAREA. Example 4 shows how the response might have been sent.

Example 4: Responding to a negotiable BIND request

In this example, the application program, called LU2 and defined in “Example 3:
Building and using session parameters in a BIND area” on page 130 receives a
negotiable BIND request in its SCIP exit routine. It moves the CID obtained from
the SCIP-exit-parameter list to the CID field of NIBR and moves the session
parameters of the received BIND to AREAR. It can then modify the session
parameters to make them suitable for the negotiable BIND response. The response
is sent using the OPNSEC macroinstruction.

OPNSEC RPL=RPLR
.
.
.

RPLR RPL AM=VTAM,NIB=NIBR
*
NIBR NIB PROC=NEGBIND,BNDAREA=AREAR
*
AREAR DS XL256 BIND RESPONSE AREA

Establishing cryptographic sessions

VTAM supports single-domain and cross-domain cryptographic sessions.

Chapter 5. Establishing and terminating sessions with logical units 131

Establishing single-domain cryptographic sessions
About this task

Before a cryptographic session can be established, VTAM must recognize a request
for a cryptographic session, determine whether both ends of the session are
capable of cryptography, verify that the levels of cryptographic sessions specified
for both ends of the session are compatible, and get a cryptographic session key.

Compatible cryptographic levels are not necessarily the same type. For example, if
one partner LU specifies selective encryption and the second LU specifies required
encryption, the established session uses required encryption. VTAM rejects the
cryptographic session request if one end of the session is not capable of
cryptography and the other end of the session requires cryptography.

After determining that both ends of the session are capable of cryptography,
VTAM issues a request to the cryptographic service to get a session cryptography
key. The cryptographic service could be one of the following:
v IBM Programmed Cryptographic Facility (PCF)
v IBM Cryptographic Unit Support (CUSP)
v IBM Integrated Cryptographic Service Facility (ICSF/MVS)

In this request, VTAM specifies the name of the SLU. This name is not
network-qualified.

If there is no SLU key for the SLU in the cryptographic key data set (CKDS) and if
the session is to be selective or required, VTAM rejects the session-initiation
request.

If there is an SLU key, VTAM gets a session-cryptography key enciphered under
the SLU key and gets another copy enciphered under the host master key. VTAM
saves the latter key. Then it puts the former key in the BIND request, and sends
the BIND request to the SLU, which stores the session-cryptography key. Then the
SLU generates an 8-byte random bit string (called the initial chaining value), saves
it, enciphers it (under the session-cryptography key), puts it in the BIND response,
and transmits the response to the PLU.

When VTAM receives the BIND response, it uses the session-cryptography key to
decipher the initial chaining value and saves this deciphered value. To verify that
both ends of the session are using the same session-cryptography key and initial
chaining value, VTAM inverts the first 4 bytes of the initial chaining value,
enciphers the value (under the session-cryptography key), and returns it to the
SLU in a Cryptography Verification (CRV) request.

The SLU deciphers the value of the CRV request (using the session-cryptography
key), inverts the first 4 bytes, and compares this value with the initial chaining
value that it saved earlier. If the values are the same, both ends of the session are
confirmed to be using the same session-cryptography key and initial chaining
value, so the SLU sends a positive response to the CRV request. If the two values
do not match, it sends a negative response to the CRV request.

When the PLU receives a positive response to its CRV request, normal VTAM
session-establishment processing continues. If VTAM receives a negative response
to its CRV request, it sends an UNBIND request to the SLU to terminate the
session. At the PLU, the OPNDST macroinstruction fails with
(RTNCD,FDB2)=(X'10',X'01').

132 z/OS V2R1.0 Communications Server: SNA Programming

The level of cryptography cannot be set by the application program in the
negotiable BIND response; it must be specified in the NIB, using the ENCR
operand of the NIB macroinstruction.

Establishing cross-domain cryptographic sessions
About this task

To establish an LU-LU cross-domain cryptographic session, VTAM must first
establish a session between the SSCPs in each domain. When VTAM receives a
request to establish a cryptographic session with a resource in another domain (at
the secondary end of the requested LU-LU session), VTAM obtains a
session-cryptography key. One copy of this key is enciphered under the
cross-domain key of the SSCP of the primary end of the requested LU-LU session,
and one copy is enciphered under the SLU key. VTAM then puts the latter copy in
the BIND image in the CDCINIT request, the former copy in the CDCINIT request
after the BIND image, and sends the CDCINIT request to the SSCP of the primary
end of the requested session.

The VTAM at the primary end of the requested session processes the CDCINIT
request by using the cross-domain key of the other SSCP to translate the
session-cryptography key that is enciphered under the cross-domain key, so that it
is enciphered under the host master key in its domain. VTAM then schedules the
application program's LOGON exit routine; the application program then issues an
OPNDST macroinstruction. VTAM processes the OPNDST macroinstruction by
moving the session-cryptography key (enciphered under the SLU key) into a BIND
request and by saving the session-cryptography key (enciphered under the host
master key). The BIND request is then sent either to the host processor at the SLU
(if the secondary end is an application program) or directly to the cryptographic
device (if the secondary end is a cryptographic device). If the SLU is a
cryptographic device, the cryptographic session-establishment processing is the
same from this point as that for a single-domain cryptographic session. See
“Establishing single-domain cryptographic sessions” on page 132 for information
about single-domain sessions.

If the SLU is an application program, VTAM at the SLU takes the
session-cryptography key sent in the BIND request, translates it using the
application program's SLU key so that it is enciphered under the local host master
key, and saves it. Then VTAM generates an initial chaining value, saves a copy of
it, enciphers it (under the session-cryptography key), and passes it to the primary
end of the session in the BIND response. From this point, the cryptographic
session-establishment processing is the same as that for a single-domain
cryptographic session. See “Establishing single-domain cryptographic sessions” on
page 132 for information about single-domain sessions.

The level of cryptography cannot be set by the application program in the
negotiable BIND response; it must be specified in the NIB, using the ENCR
operand of the NIB macroinstruction.

How VTAM determines the level of cryptography for a
cryptographic session

For an OPNDST request, VTAM determines the level of cryptography to be used in
a cryptographic session by examining:

Chapter 5. Establishing and terminating sessions with logical units 133

v The cryptographic requirements of the primary and secondary ends of the
session as established at VTAM definition or by the VTAM MODIFY operator
command

v The logon mode table entry
v The NIB value for the PLU

Table 20 shows the combination of values and the levels of sessions established.
Table 21 on page 135 shows how one part of the cryptographic requirement is
determined using both the logon mode table entry and the higher cryptographic
level specified in the system definition for either end of the session.

For an OPNSEC request, VTAM determines the level of cryptography to be used in
a cryptographic session by examining:
v The cryptographic requirements of the SLU as established at VTAM definition or

by the VTAM MODIFY operator command
v The BIND request operands
v The NIB value for the SLU

Table 22 on page 136 shows the combination of values and the levels of sessions
established.

For information pertaining to LU 6.2 sessions, refer to the z/OS Communications
Server: SNA Programmer's LU 6.2 Guide.

Table 20. Level of cryptography for OPNDST requests

Primary end of the
session, from VTAM
definition or VTAM
operator command (See
note)

Cryptographic
requirement for the
SLU

NIB value
for the
primary
end of the
session

Level of the cryptographic session requested in
BIND

Required Required
Required
Selective
None

A required session is established.

Selective
Required
Selective
None

None, but capable of
cryptography Required

Selective
None

None, and not capable
of cryptography Required

Selective
None

The request for session establishment fails.

134 z/OS V2R1.0 Communications Server: SNA Programming

Table 20. Level of cryptography for OPNDST requests (continued)

Primary end of the
session, from VTAM
definition or VTAM
operator command (See
note)

Cryptographic
requirement for the
SLU

NIB value
for the
primary
end of the
session

Level of the cryptographic session requested in
BIND

Selective Required
Required
Selective
None

A required session is established.

Selective Required A required session is established.

Selective
None

A selective session is established.

None, but capable of
cryptography

Required A required session is established.

Selective
None

A selective session is established.

None, and not capable
of cryptography Required

Selective
None

The request for session establishment fails.

Optional or no
specification

Required
Required
Selective
None

A required session is established.

Selective Required A required session is established.

Selective
None

A selective session is established.

None, but capable of
cryptography

Required A required session is established.

Selective A selective session is established.

None A session is established without encryption.

None, and not capable
of cryptography Required

Selective

The request for session establishment fails.

None A session is established without encryption.

Note: The cryptographic requirements specified on the VTAM definition statement and VTAM operator command
for the PLU are compared. The higher of the two cryptographic levels is used.

Table 21. Establishing cryptographic requirements using logon mode entry and definition for secondary end of session

System definition

(See note)
Logon mode table
entry Resulting cryptographic requirement

Required Required Required

Selective

None

Chapter 5. Establishing and terminating sessions with logical units 135

Table 21. Establishing cryptographic requirements using logon mode entry and definition for secondary end of
session (continued)

System definition

(See note)
Logon mode table
entry Resulting cryptographic requirement

Selective Required Required

Selective Selective

None

Optional (but capable of
cryptography)

Required Required

Selective Selective

None None

None (not capable of cryptography) Required The request for session establishment fails.

Selective

None None

Note: The cryptographic requirements specified on the VTAM definition statement and VTAM operator command
for the SLU are compared. The higher of the two cryptographic levels is used.

Table 22. Level of cryptography for OPNSEC requests

Secondary end of the session,
from VTAM definition or
command

BIND command
operands

NIB value for the
secondary end of the
session

Level of the cryptographic
session in the BIND response

Required Required
Required
Selective
None

A required session is established.

Selective
Required
Selective
None

The request for session
establishment fails.

None
Required
Selective
None

Selective Required
Required
Selective
None

A required session is established.

Selective Required For non-negotiable BIND: the
request for session establishment
fails. For negotiable BIND: a
required session is established.

Selective
None

A selective session is established.

None
Required
Selective
None

The request for session
establishment fails.

136 z/OS V2R1.0 Communications Server: SNA Programming

Table 22. Level of cryptography for OPNSEC requests (continued)

Secondary end of the session,
from VTAM definition or
command

BIND command
operands

NIB value for the
secondary end of the
session

Level of the cryptographic
session in the BIND response

Optional Required
Required
Selective
None

A required session is established.

Selective Required For non-negotiable BIND: the
request for session establishment
fails. For negotiable BIND: a
required session is established.

Selective
None

A selective session is established.

None
Required
Selective

The request for session
establishment fails.

None A clear session is established.

Restoring sessions pending recovery

Persistent LU-LU session support permits an application program to restore
sessions following a failure and recovery. Single-node persistent sessions can be
used to restore sessions disrupted by an application failure. Multinode persistent
sessions can be used to restore sessions disrupted by a node failure, such as a
failure in the hardware, operating system, or VTAM. MNPS can also be used to
move applications to other VTAMs without the benefit of a node failure. See
“Using persistent LU-LU session support” on page 66 for more information about
the difference between single-node and multinode persistent sessions and how an
application enables persistence.

An application enabled for single-node persistence can also use this function to
allow an alternate application program to take over sessions from an original.

When the application restarts or an alternate application takes over, VTAM avoids
session re-establishment flows by allowing the application program to restore any
sessions that are pending recovery.

The recovering application can use INQUIRE OPTCD=PERSESS to identify the
sessions pending recovery and must use OPNDST OPTCD=RESTORE to restore
the sessions pending recovery. The application also has the option of terminating
individual sessions.

Data tracking

When VTAM opens an ACB that is capable of persistence, regardless of whether
persistence is enabled, VTAM begins tracking data about the RUs that flow across
each session. This data tracking permits the recovering application to
resynchronize the restored sessions.

The recovering application's ability to restore the sessions pending recovery and
resynchronize RU flow depends on complete data tracking information. By

Chapter 5. Establishing and terminating sessions with logical units 137

providing information about the most recent RUs that are processed, VTAM
enables the application to determine which RUs were not processed and to
resynchronize the sessions appropriately. VTAM tracks data for all applications that
are capable of persistence. VTAM tracks data through the life of the session,
including the time when the session is pending recovery. In a sysplex that supports
multinode persistent sessions, this data is maintained in the multinode persistent
sessions coupling facility structure for access by other VTAM end nodes in the
sysplex.

When an application begins restoring the sessions, VTAM reconnects the sessions
and sends information to the recovering application about the last RUs that were
received on the sessions. The information is returned in the OPNDST
OPTCD=RESTORE command and is in the format of the session state control
vector (control vector hex 29). A copy of the BIND (as mapped by ISTDBIND) is
also provided. See Table 110 on page 747 for more information pertaining to control
vector hex 29 and Table 123 on page 819 for more information pertaining to the
BIND. A 4-byte pointer in the NIB (NIBRPARM) indicates where the recovery
information is stored.

VTAM tracks additional information for recovery of LU 6.1 and LU 6.2 sessions
supported through the record application program interface (RAPI) as shown in
Table 23.

Table 23. Information tracked for recovery of LU 6.1 and LU 6.2 sessions

INFORMATION LU 6.1 LU 6.2

BID X X

BIS X X

FMH-5 X

MODENAME X

Session Instance Identifier X

Session Qualifier Pair X

BID data
VTAM tracks the sequence number, the request header, and the first 5 bytes of the
last BID or BID response to flow on LU 6.1 and LU 6.2 sessions. The BID data is
cleared following the transmission of a non-BID FMH-5 from the contention loser
to the contention winner. This data is returned to the application program
following an OPNDST RESTORE. The application program can then derive the BID
status from this data in conjunction with the control vector hex 29 data.

BIS data
VTAM tracks the sequence number, the request header, and the first 5 bytes of the
last BIS request to flow from the PLU to the SLU on an LU 6.1 or LU 6.2 session.
VTAM also copies this data for the last BIS request to flow from the SLU to the
PLU. This data is returned to the application program following an OPNDST
RESTORE.

FMH-5
VTAM tracks the sequence number, the request header, and the first 16 bytes of the
last FMH-5 request unit that flowed from the PLU to the SLU or the SLU to the
PLU on an LU 6.2 session. This data is returned to the application program
following an OPNDST RESTORE.

138 z/OS V2R1.0 Communications Server: SNA Programming

MODENAME
VTAM tracks the MODENAME from the user data field of an LU 6.2 BIND or
BIND response and returns it to the application program following an INQUIRE
PERSESS.

Session instance identifier
VTAM tracks the session instance identifier from the user data field of an LU 6.2
BIND response and returns it to the application program following an INQUIRE
PERSESS.

Session qualifier pair
VTAM tracks the primary and secondary resource qualifiers from the user data
field of an LU 6.1 BIND and BIND response and returns them to the application
program following an INQUIRE PERSESS.

Restoring sessions

A recovering application program can use the INQUIRE macroinstruction to
identify all sessions that are pending recovery. The application program handles
each session on an individual basis. The OPNDST macroinstruction enables the
application program to restore a session or sessions. It can be used for both PLU
and SLU sessions. CLSDST permits an application program, acting as a PLU, to
terminate a session pending recovery. A recovering application program that is
acting as an SLU uses the TERMSESS macroinstruction to terminate a session
pending recovery.

INQUIRE OPTCD=PERSESS builds an NIB or an NIB list that describes any
sessions pending recovery. Following an INQUIRE OPTCD=PERSESS, VTAM
indicates in the NIB whether the application is a PLU or an SLU.

Note: It is recommended that the application program use INQUIRE
OPTCD=PERSESS to ensure that it recovers all existing sessions.

The INQUIRE coding might look like:
INQUIRE RPL=rpl address, X

OPTCD=PERSESS, X
AREA=address of data area, X
AREALEN=length of data area

When OPTCD=PERSESS is specified, VTAM builds an NIB for each session
pending recovery and stores the NIB or the NIB list in the data area that is
provided by the application program. AREA contains the address of the data area
used to hold the information for the sessions pending recovery. AREALEN
specifies the length of this area.

Each NIB has a bit that indicates whether the application is the PLU or SLU. In
addition, the NIB provides a pointer (NIBRPARM) to the restore parameter list.
This parameter list contains the address of the BIND data for that particular
session. The INQUIRE data includes the NIB, the restore parameter list, and the
copy of the BIND for that session. Following the BIND for LU 6.1 and LU 6.2
sessions, selected user data structured subfields were passed on the original BIND.
This information is present if the user data length field in the BIND (BINUSEL) is
non zero and if the user data key is zero. For LU 6.1 sessions, the session qualifier
pair structured subfield is returned. For LU 6.2 sessions, the modename pointer,
session instance ID pointer, and the PLU or SLU network-qualified name
structured subfields are returned. All of the structure subfields include the

Chapter 5. Establishing and terminating sessions with logical units 139

preceding length and key fields. The restore parameter list points to the session
qualifier pair for LU 6.1, and to the modename and session instance ID pointers for
LU 6.2. You can obtain the LU 6.2 PLU or SLU network-qualified name structured
subfield by parsing the vector. Recovery data that is available following INQUIRE
OPTCD=PERSESS is shown in Figure 17, Figure 18 on page 141, and Figure 19 on
page 142.

BIND pointer

null

BIND pointer

null

BIND pointer

null

PL n

PL 2

PL 1

NIBRPARM

NIB 1

NIB 2

NIBRPARM

NIB n

NIBRPARM

AREA BIND 1

BIND 2

BIND n

Parameter ListsRPL NIBLIST BIND Data

Figure 17. Recovery data for INQUIRE OPTCD=PERSESS for sessions other than LU 6.1
and LU 6.2

140 z/OS V2R1.0 Communications Server: SNA Programming

AREA

NIB 1

NIBRPARM

NIB 2

NIBRPARM

NIB n

NIBRPARM

PL 1

null

null

null

null

PL 2

null

null

null

null

PL n

null

null

null

null

MODENAME
1

BIND 1

SESSION
INSTANCE
ID 1

RPL NIBLIST Parameter Lists

BIND 2

MODENAME
2

SESSION
INSTANCE
ID 2

MODENAME
n

SESSION
INSTANCE
ID n

BIND n

BIND Data

MODENAME
STRUCTURED SUBFIELD
POINTER OR NULL

BIND POINTER

SESSION ID
STRUCTURED SUBFIELD
POINTER OR NULL

SESSION ID
STRUCTURED SUBFIELD
POINTER OR NULL

SESSION ID
STRUCTURED SUBFIELD
POINTER OR NULL

BIND POINTER

MODENAME
STRUCTURED SUBFIELD
POINTER OR NULL

MODENAME
STRUCTURED SUBFIELD
POINTER OR NULL

BIND POINTER

Figure 18. Recovery data for INQUIRE OPTCD=PERSESS for LU 6.2 sessions

Chapter 5. Establishing and terminating sessions with logical units 141

If AREALEN in the INQUIRE macroinstruction is insufficient to hold the
information for at least one session pending recovery, VTAM sets the return code
(RTNCD,FDB2)=(X'00',X'05') along with a length field that shows the amount of
storage needed to INQUIRE on at least one session. If AREALEN is insufficient to
hold the information for all sessions pending recovery, VTAM builds as many NIBs
as possible and sets the return code (RTNCD,FDB2)=(X'00',X'0D') along with a
length field that shows the amount of storage that is used to build the partial list.
To identify and recover the outstanding sessions, continue reissuing the INQUIRE

AREA

NIB 1

NIBRPARM

NIB 2

NIBRPARM

NIB n

NIBRPARM

PL 1

null

null

null

null

null

PL 2

null

null

null

null

null

PL n

null

null

null

null

null

SESSION
QUALIFIER
PAIR 1

BIND 1

SESSION
QUALIFIER
PAIR 2

SESSION
QUALIFIER
PAIR n

BIND 2

BIND n

RPL NIBLIST Parameter Lists BIND Data

BIND POINTER

BIND POINTER

BIND POINTER

SESSION
QUALIFIER PAIR
STRUCTURED SUBFIELD
POINTER OR NULL

SESSION
QUALIFIER PAIR
STRUCTURED SUBFIELD
POINTER OR NULL

SESSION
QUALIFIER PAIR
STRUCTURED SUBFIELD
POINTER OR NULL

Figure 19. Recovery data for INQUIRE OPTCD=PERSESS for LU 6.1 sessions

142 z/OS V2R1.0 Communications Server: SNA Programming

macroinstruction until VTAM sets either (RTNCD,FDB2)=(X'00',X'00'), which
indicates that VTAM has processed all sessions pending recovery, or
(RTNCD,FDB2)=(X'00',X'07'), which indicates that there are no more sessions
pending recovery.

To restore the sessions represented by the NIBs in AREA, the application program
issues OPNDST OPTCD=RESTORE. VTAM then puts the session state control
vectors that correspond to the sessions in an alternate data area that is specified by
the OPNDST macroinstruction. When all sessions pending recovery have been
restored or terminated, the application recovery is complete.

The OPNDST coding might look like:
OPNDST RPL=rpl address, X

OPTCD=RESTORE, X
NIB=NIB address, X
AAREA=address of alternate data area, X
AAREALN=length of alternate data area

The application can point to the NIB list that is created by the INQUIRE
OPTCD=PERSESS macroinstruction and stored in AREA, or the application
program can point to its own NIB list. AAREA is an alternate area that is provided
by the application program to hold the recovery information provided by
OPNDST. AAREALN specifies the length of this area. If the area supplied is not
large enough to hold all the OPNDST data, VTAM sets the return code
(RTNCD,FDB2)=(X'00',X'05') and indicates the amount of space needed. VTAM
does not recover any of the sessions until AAREALN is sufficient.

The recovery data that is provided following OPNDST OPTCD=RESTORE depends
on whether NIBRPARM from a previous INQUIRE OPTCD=PERSESS was used. If
the NIB pointed to the restore parameter list at the time the application program
issued OPNDST (NIBRPARM from INQUIRE was used), the OPNDST data
includes the control vector hex 29 data for the session pending recovery. In this
case, as shown in Figure 20 on page 144, Figure 21 on page 145, and Figure 22 on
page 146, VTAM does not modify the NIBRPARM, the BIND pointer, or the BIND
data that was received from INQUIRE OPTCD=PERSESS. VTAM adds to each
parameter list a pointer to the control vector hex 29 data that is located in AAREA.

Chapter 5. Establishing and terminating sessions with logical units 143

BIND pointer

CV29 pointer

BIND pointer

CV29 pointer

BIND pointer

CV29 pointer

PL n

PL 2

PL 1

NIBRPARM

NIB 1

NIB 2

NIBRPARM

NIB n

NIBRPARM

ARG

AAREA

BIND 1

BIND 2

BIND n

Parameter ListsRPL NIBLIST

CV29 1

CV29 2

CV29 n

AAREA StorageBIND Data

Figure 20. Recovery data for OPNDST OPTCD=RESTORE for sessions other than LU 6.1
and LU 6.2 (NIBRPARM from INQUIRE is used)

144 z/OS V2R1.0 Communications Server: SNA Programming

ARG

NIB 1

NIBRPARM

NIB 2

NIBRPARM

NIB n

NIBRPARM

MODENAME
1

BIND 1

RPL NIBLIST Parameter Lists BIND Data

BIND 2

MODENAME
2

MODENAME
n

BIND n

SESSION
INSTANCE ID

SESSION
INSTANCE ID

AAREA Storage

AAREA

SESSION
INSTANCE ID

BIS DATA n

BID DATA n

FMH-5

CV29 n

BIS DATA 2

BID DATA 2

FMH-5

CV29 2

BIS DATA 1

BID DATA 1

FMH-5

CV29 1

SESSION INSTANCE
ID STRUCTURED
SUBFIELD POINTER
OR NULL

PL 1

BIND POINTER

CV29 POINTER

MODENAME
STRUCTURED
SUBFIELD POINTER
OR NULL

BID POINTER

BIS POINTER

FMH-5 POINTER

SESSION INSTANCE
ID STRUCTURED
SUBFIELD POINTER
OR NULL

PL 2

BIND POINTER

CV29 POINTER

MODENAME
STRUCTURED
SUBFIELD POINTER
OR NULL

BID POINTER

BIS POINTER

FMH-5 POINTER

SESSION INSTANCE
ID STRUCTURED
SUBFIELD POINTER
OR NULL

PL n

BIND POINTER

CV29 POINTER

MODENAME
STRUCTURED
SUBFIELD POINTER
OR NULL

BID POINTER

BIS POINTER

FMH-5 POINTER

Figure 21. Recovery data for OPNDST OPTCD=RESTORE for LU 6.2 sessions (NIBRPARM from INQUIRE is used)

Chapter 5. Establishing and terminating sessions with logical units 145

If the NIB did not point to the restore parameter list at the time the application
program issued OPNDST (NIBRPARM = 0 when OPNDST OPTCD=RESTORE was
issued), the OPNDST data includes the restore parameter list and the control
vector hex 29 data. In this case, as shown in Figure 23 on page 147, Figure 24 on
page 148, and Figure 25 on page 149, VTAM provides NIBRPARM. NIBRPARM
points to a parameter list that contains a pointer to the control vector data only.

ARG

NIB 1

NIBRPARM

NIB 2

NIBRPARM

NIB n

NIBRPARM

SESSION QUALIFIER
PAIR STRUCTURED
SUBFIELD POINTER
OR NULL

SESSION QUALIFIER
PAIR STRUCTURED
SUBFIELD POINTER
OR NULL

SESSION QUALIFIER
PAIR STRUCTURED
SUBFIELD POINTER
OR NULL

PL 1

BIND POINTER

BIND POINTER

BIND POINTER

CV29 POINTER

CV29 POINTER

CV29 POINTER

null

null

null

null

null

null

BID POINTER

BID POINTER

BID POINTER

BIS POINTER

BIS POINTER

BIS POINTER

PL 2

PL n

BIND 1

RPL NIBLIST Parameter Lists BIND Data

BIND 2

BIND n

CV29 1

CV29 2

CV29 n

AAREA Storage

SESSION
QUALIFIER
PAIR

SESSION
QUALIFIER
PAIR

SESSION
QUALIFIER
PAIR

AAREA

BIS DATA n

BIS DATA 2

BIS DATA 1

BID DATA 1

BID DATA 2

BID DATA n

Figure 22. Recovery data for OPNDST OPTCD=RESTORE for LU 6.1 sessions (NIBRPARM from INQUIRE is used)

146 z/OS V2R1.0 Communications Server: SNA Programming

AAREA storage

null

CV29 pointer

null

CV29 pointer

null

CV29 pointer

PL n

PL 2

PL 1

NIBRPARM

NIB 1

NIB 2

NIBRPARM

NIB n

NIBRPARM

ARG

AAREA

Parameter ListsRPL NIBLIST

CV29 1

CV29 2

CV29 n

Figure 23. Recovery data for OPNDST OPTCD=RESTORE for sessions other than LU 6.1
and LU 6.2 (NIBRPARM from INQUIRE is not used)

Chapter 5. Establishing and terminating sessions with logical units 147

ARG

NIB 1

NIBRPARM

NIB 2

NIBRPARM

NIB n

NIBRPARM

null

null

null

PL 1

CV29
POINTER

null

null

FMH-5
POINTER
BID
POINTER
BIS
POINTER

PL 2

CV29
POINTER

null

null

FMH-5
POINTER
BID
POINTER
BIS
POINTER

PL n

null

CV29
POINTER

null

FMH-5
POINTER
BID
POINTER
BIS
POINTER

RPL NIBLIST Parameter Lists

CV29 2

CV29 n

FMH-5
DATA n

BID DATA n

BIS DATA n

AAREA

FMH-5
DATA 2

BID DATA 2

BIS DATA 2

AAREA Storage

CV29 1

FMH-5
DATA 1

BID DATA 1

BIS DATA 1

Figure 24. Recovery data for OPNDST OPTCD=RESTORE for LU 6.2 sessions (NIBRPARM
from INQUIRE is not used)

148 z/OS V2R1.0 Communications Server: SNA Programming

Extended recovery facility (XRF) programming

The USERVAR, or user variable, maps a generic application name specified in a
terminal logon to a specific application, based on the value of the variable. The
specific application can be the active application program in an extended recovery
facility (XRF) complex. An XRF complex consists of an application program and a
backup copy of the application program. The USERVAR routes logon requests to

AAREA Storage

ARG

NIB 1

NIBRPARM

NIB 2

NIBRPARM

NIB n

NIBRPARM

null

null

null

PL 1

CV29
POINTER

null

null

null

BID
POINTER
BIS
POINTER

PL 2

CV29
POINTER

null

null

null

BID
POINTER
BIS
POINTER

PL n

null

CV29
POINTER

null

null

BID
POINTER
BIS
POINTER

CV29 1

RPL NIBLIST Parameter Lists

CV29 2

CV29 n

BID DATA n

BIS DATA n

AAREA

BID DATA 1

BIS DATA 1

BID DATA 2

BIS DATA 2

Figure 25. Recovery data for OPNDST OPTCD=RESTORE for LU 6.1 sessions (NIBRPARM
from INQUIRE is not used)

Chapter 5. Establishing and terminating sessions with logical units 149

the active copy. This function is used by Information Management System (IMS)
and Customer Information System (CICS) XRF complexes to map user logons to
the IMS or CICS subsystem that is currently active.

Application programs communicate with an XRF complex through the USERVAR.
This means that the application can use USERVAR names in place of LU names.
VTAM automatically translates USERVAR names into LU names. The actual
macroinstruction invocation always returns a successful RTNCD,FDB2 and returns
as the translated name, the same name passed as input. You can use
OPTCD=APPSTAT in place of OPTCD=USERVAR.

After an alternate subsystem takes over, the name of the VTAM application
associated with the USERVAR must be changed to indicate the currently active
application. This is done by the VTAM network operator, IMS, the NetView
program, Network Communications Control Facility (NCCF), or any other program
operator.

The primary XRF session is started with a BIND specifying XRF and carrying a
subsystem-generated correlation ID. The NCP uses the correlation ID to verify that
the primary and backup XRF sessions are related. This BIND flows through the
NCP to the terminal. When a session is established with the active subsystem, the
active subsystem informs the alternate. The primary XRF session then continues as
usual. The alternate is given all relevant information about the active application's
session with the LU, including the correlation ID. This must include BIND
information, user name, and security information. The alternate subsystem then
establishes a backup session using a BIND for the backup XRF session, which
includes the same correlation ID used by the primary XRF session.

The activation of the primary and backup XRF sessions must be coordinated by the
subsystem so that a BIND(BACKUP) is sent only after the primary XRF session has
been established (that is, after the active PLU has sent a BIND and received the
positive response). The BIND is intercepted and validated by the NCP to insure
that a primary XRF session with the same correlation ID exists. The NCP then
sends back the response to the BIND which informs VTAM and the subsystem that
the session established is a backup XRF session. The Start Data Traffic (SDT) is sent
as usual. The alternate subsystem then waits to be directed either to take over or
UNBIND the session.

When the alternate subsystem takes over, it sends SESSIONC
CONTROL=SWITCH. This RU informs the NCP that it is taking over the session.
The NCP then terminates the original session, establishes the backup XRF session,
and passes stored-session status back on the response. VTAM and the subsystem
update any related control blocks from this response. The alternate subsystem then
reads the active system's log and performs the necessary recovery.

Note: During a session takeover, VTAM does not provide responses for expedited
flow requests to the failed active subsystem. The alternate subsystem is responsible
for providing these responses, and PROC=APPLRESP must be coded on the NIB
macroinstruction for all XRF sessions.

150 z/OS V2R1.0 Communications Server: SNA Programming

Chapter 6. Communicating with logical units

This chapter provides a general description of communication facilities. The
chapter assumes that you use the operating system environment described in
“Normal operating system environment for a VTAM application program” on page
30. Chapter 10, “Operating system facilities,” on page 295, describes additional
considerations if certain optional operating system facilities are used. Chapter 11,
“Programming for the IBM 3270 Information Display System,” on page 327,
discusses some special considerations for communicating with selected SNA and
non-SNA 3270 terminals.

Who is communicating: The VTAM application program and LUs
Both a VTAM application program, which is itself an LU, and the LUs with which
it communicates can contain program logic. Because of this, communication
between VTAM application programs and LUs have the following characteristics:
v The design and coding of the parts of an LU and of a VTAM application

program that communicate with each other must be coordinated. In some cases,
for example, both the application program and the LU can be designed by the
same person; perhaps one is designed first and the other designed to
complement it. This is a probable approach for application programs designed to
service a particular kind of LU (for example, a 3600 logical work station). Or the
application program can be designed as a standard program with which all LUs
must conform, and LUs might be required to meet the application program's
interface. In either case, both ends of the session must be coordinated.

v The existence of program logic in a terminal or cluster controller makes it
possible to remove work from the host processor. The data that is exchanged
between an application program and an LU can vary considerably, depending
on what data processing (including the addition and deletion of device-control
and format characters and data editing) can be performed by the LU rather than
by the application program in the host processor.

What is communicated: Requests and responses

A VTAM application program and an LU exchange requests and responses to
requests. A request normally contains data. In addition to data, or instead of data,
a request can contain control information (described in VTAM publications as
control requests or indicators). A response normally contains information about
whether a particular request arrived and was processed successfully or
unsuccessfully. The response can also contain control information. As explained
later in this chapter, a response does not have to be returned for every request; it is
possible for an application program and an LU to communicate without either side
ever sending a response. (In this book, a request corresponds to an SNA request
unit [RU] and associated request header [RH]. A response corresponds to an SNA
response unit [RU] and associated response header [RH].)

In this chapter, the legend in Figure 26 on page 152 is used in figures that depict
request and response flows:

© Copyright IBM Corp. 2000, 2013 151

Figure 27 illustrates an exchange of requests and responses between an application
program and an LU.

What a request contains
A request contains:
v Data
v Control information
v Combinations of the preceding (for example, data and indicators)

Data consists of information sent from or received in a VTAM application
program's input/output area. Because both an application program and an LU
contain program logic, each has the ability to insert, interpret, and extract
information before forwarding it to a terminal operator, a recording medium, or
some other destination.

Legend

Request

Response

Exception request

Negative response

Figure 26. Legend for request and response flows

Application Program

SEND

SEND

RECEIVE

RECEIVE

Request

Request

Response

Response

Logical Unit

Figure 27. Exchange requests and responses

152 z/OS V2R1.0 Communications Server: SNA Programming

Example of data exchange

This data, from a banking application, might be exchanged between an application
program and an LU. An application program receives data on a session as the
result of issuing RECEIVE. When RECEIVE completes, the input area specified in
the AREA operand of RECEIVE contains data. For instance, after completion of
RECEIVE, the input area might contain data in this format:

Code Account Amount

Number Deposited

The code might have been typed in by an operator at a terminal associated with
the LU. The code is interpreted by the application program as a request for
passbook update processing, and control is passed to the routine that handles that
processing. The application program might prepare a data reply in this format:

Code Account Amount New

Number Deposited Balance

The application program sends the reply to the LU with a SEND macroinstruction,
specifying the output area in the AREA operand. Any device-control or format
information required to print the data at a printer or keyboard-display unit is
furnished by the LU when the data arrives.

In addition to the transaction data, the LU can also send certain control indicators.
For example, the application program and the LU can use change-direction
indicators to ensure that only one of them at a time is sending (this method of
communication is described in more detail later in this chapter). On receiving the
request that contains data, the application program also checks the
change-direction field of the RPL associated with the completed RECEIVE request:
TESTCB RPL=(2),CHNGDIR=CMD

TESTCB tests whether a change-direction indicator is set on as part of the request.
If not, the program prepares to receive a further request. If the indicator is on in
the request, the program can send the reply. When a data reply, such as the
preceding passbook update reply, is prepared, the program can indicate in the
reply that the next request is to come from the LU. To do this, the program sets the
change-direction indicator by specifying SEND CHNGDIR=CMD to send the reply.

The I/O area of the application program sends data only. The LUs specify all
control and response information symbolically and receive this information by
examining the appropriate fields of the RPL.

Certain control information can be sent only in requests that do not contain data.
Examples are given later in this chapter.

What a response contains
A response to a request contains information about the success or failure of
transmission and processing of a particular request. In sending a request, the
VTAM application program or LU specifies the circumstances under which it
expects a response to the request. When sending a response from a VTAM
application program, control information is specified symbolically in a SEND
macroinstruction. When receiving a response, VTAM makes response information

Chapter 6. Communicating with logical units 153

available in appropriate fields of the RPL associated with the completed RECEIVE
or in a read-only RPL provided by VTAM on scheduling the VTAM application
program's RESP exit routine.

Definite, exception, or no response indication

In our banking example, the request sent by the LU (requesting a passbook
update) might indicate that:
v No response is returned, whether the request arrived and was processed

successfully or not (no response requested).
v A response is returned only if the request encountered a transmission error or

could not be processed successfully (exception response requested). Such a
response is called a negative response.

v A response is returned, whether the request arrived successfully or not and was
processed successfully or not (definite response requested). A positive response
is returned for a successful operation; a negative response is returned for an
unsuccessful operation.

A request for no response is feasible if the LU has its own means of determining
failure of the request's transmission, such as using a timer or assuming that the
terminal operator resends the request if there is no reply to it from the host
processor after a certain length of time. In these cases, neither VTAM nor the host
application program sends a response, because the LU cannot receive it.

Frequently, an LU requests that a response be returned only if the request is not
received and processed successfully. If the request is received and processed
successfully, no response is returned by the application program. However, if the
request is not received successfully, VTAM indicates this in a return code and in
additional information provided in RPL fields upon completion of the RECEIVE;
the application program then sends a negative response. Even when the request
arrives successfully, the VTAM application program, for its own reasons (for
example, because it discovers the format of the request is improper), can send back
a negative response, using SEND STYPE=RESP. The negative response is indicated
by specifying RESPOND=EX; sense information can be provided by using the
SSENSEO, SSENSMO, and USENSEO field of the RPL.

In our passbook-update example, if the request is received and processed
successfully and a definite response was requested, the VTAM application program
sends a positive response, using a SEND macroinstruction and specifying
STYPE=RESP (a response) and RESPOND=NEX (positive). If some requests require
a definite response and others do not, the application program determines whether
to send a response by testing for a NEX indication in the RESPOND field of the
RPL associated with a completed RECEIVE.

Figure 28 on page 155 illustrates the LU requesting (A) that a response be returned
in either case and (B) that a response be returned only if the request does not
arrive or is not processed successfully. Figure 28 on page 155 also shows (C) how
the application program receives an exception request from VTAM.

154 z/OS V2R1.0 Communications Server: SNA Programming

Again, in the passbook-update example, when the application program sends the
request that it prepares after performing the passbook update, the application
program indicates the type of response it wants (no response, a response to an
unsuccessful request only, or a response to every successful and unsuccessful
request). The application program does this by specifying an appropriate indication
in the RESPOND operand of the SEND macroinstruction. If a response is
requested, it is usually received by the application program either by RECEIVE

Logical Unit Requests a Definite ResponseA
VTAM

Application Program

If the request is received and processed normally,

the application program returns a positive response.

Positive response

the application program returns a negative response.

Logical Unit Requests Only an Exception ResponseB
Application Program

VTAM

Logical Unit
Request

Application Program: Send only a negative
response, if appropriate.

If the request is received and processed normally,
the application program returns nothing.

But if the application program detects an error in the
request or cannot process the request successfully,

the application program returns a negative response.

Negative response

Application Program Receives an Exception Request (VTAM Detected)C
Application Program

the application program returns a negative response.

Negative response

Logical Unit
Request

Logical Unit
Request

VTAM

But if the application program detects an error in the
request or cannot process the request sucessfully,

Negative response

If VTAM detects an error and
notifies application program,

Figure 28. Receiving requests from an LU

Chapter 6. Communicating with logical units 155

RTYPE=RESP or by VTAM's scheduling the program's RESP exit routine. When the
RESPOND field of the SEND RPL is set to NEX and the SEND macroinstruction
includes the POST=RESP option, the SEND is not completed until the response is
received. In this case, RECEIVE is not used to obtain the response; the response
information is available in the SEND RPL when the operation is complete.

Definite response 1 and 2 indication

Besides being positive or negative, responses also differ as response type 1
(formerly known in SNA as an FME response) or response type 2 (formerly known
in SNA as an RRN response). Every response, independent of being positive or
negative, is designated by its sender as a response type 1, response type 2, or both.
The meanings of the types of responses are agreed upon by the application
program and the LU involved in the session, and can be determined by SNA
protocols for the particular type of LU.

The application program indicates on each request whether it expects a definite
response 1, a definite response 2, or both, to be returned. Combining these types of
responses with the positive and negative response types described in the preceding
section yields seven possible combinations of response types that can be indicated
for a given request:
v Return a definite response 1 (either positive or negative)
v Return a definite response 2 (either positive or negative)
v Return definite responses 1 and 2 (either positive or negative)
v Return only a negative response 1
v Return only a negative response 2
v Return only negative responses 1 and 2
v Return no response of any kind.

When definite responses 1 and 2 are requested, it is possible that the responses
might not be returned to the application program together. If the responses are
returned to VTAM together, VTAM indicates that both responses have been
received. However, if the responses are returned to VTAM separately, VTAM
passes them to the application program as two separate responses.

The user should be aware that SNA protocols dictate when responses should be
requested and what responses are returned. For example, returning the definite
response 1 and 2 indicators in the same response is allowed by SNA, but returning
them in two separate responses (that is, having multiple responses to the same
request) is not allowed by SNA.

Another indicator that can be set in requests and responses is the queued response
indicator, QRESP. It is described in detail in “Queued response notification” on
page 182.

The LU, like the application program, also specifies, for each request, the types of
responses it wants.

Three key elements in a RESPOND operand
When an application program that sends a request specifies the type of response it
wants to receive, it either sets the RESPOND fields of the RPL before issuing the
macroinstruction or specifies parameters in the RESPOND operand of the
macroinstruction when the macroinstruction is issued. Three potential parameters
can be specified in the RESPOND field or operand for each request:

156 z/OS V2R1.0 Communications Server: SNA Programming

v Nature of response desired for the request:

NEX Positive or negative response

EX Negative response only.
v Type of response desired for the request:

FME Response type 1

RRN Response type 2

FME, RRN
Both response types 1 and 2.

v Handling of a normal-flow response desired for the request when
PROC=ORDRESP was set in the NIB:

NQRESP
Regular handling

QRESP
Handling as though the response is a normal-flow request from the LU.

Thus, an example of a RESPOND operand in which all three parameters are
specified is:
RESPOND=(NEX,FME,NQRESP)

These parameters indicate that a positive or negative response is to be returned;
the response is to be type 1; and the response is not to receive any special handling
by VTAM.

How requests and responses are exchanged
Requests and responses are exchanged with an LU on a session by using SEND,
RECEIVE, and SESSIONC macroinstructions and by using certain exit routines.
Using SEND/RECEIVE communication, requests can be sent simultaneously by the
application program and by the LU. Certain control requests can be sent ahead of
other control requests and requests that contain data. Requests can be queued and
responses correlated by using sequence numbers (a sequence number is
automatically assigned to each request). This flow of requests and responses
between a VTAM application program and an LU can be synchronized, if
necessary, by stopping the flow, resetting sequence numbers at one or both ends of
the session, and then restarting the flow. See “SEND, RECEIVE, and SESSIONC
macroinstructions” for more information about these concepts.

Using the large message performance enhancement outbound (LMPEO) option, an
application program can send data that exceeds the maximum RU size (for
outbound RUs) with a single SEND operation. VTAM splits the data into multiple
request units, which form a chain or partial chain of RUs. Refer to “Large message
performance enhancement outbound (LMPEO) option” on page 183 for details
about LMPEO.

SEND, RECEIVE, and SESSIONC macroinstructions

The VTAM application program sends and receives most requests and responses
on a session by using SEND and RECEIVE and by using certain exit routines. A
VTAM application program can receive some requests (expedited-flow
data-flow-control requests) and some responses by having VTAM schedule an exit
routine designed to handle these requests (a DFASY exit routine) and responses (a

Chapter 6. Communicating with logical units 157

RESP exit routine). Alternately, requests and responses can be handled by
RECEIVE RTYPE=DFASY or RECEIVE RTYPE=RESP, respectively. See Appendix A,
“Summary of control block field usage,” on page 633 for information on which
RPL fields are automatically set by VTAM.

If the Start Data Traffic (SDT) indicator is required by the transmission-services
(TS) profile in the session parameters, the sending and receiving of most requests
and responses on a session cannot begin until an SDT request has been sent from
the primary logical unit (PLU) to the secondary logical unit (SLU). See Appendix F,
“Specifying a session parameter,” on page 793, for more information on the TS
profile. When required, the SDT request must be sent at the beginning of a session,
and it must be sent within a session if the request flow is to be restarted after
being stopped (with a Clear request). At the beginning of a session, either VTAM
or the PLU application program sends the SDT request, depending on how the
SDT field of the NIB is set when OPNDST is issued. If the SDT field indicates
SYSTEM, the SDT request is sent by VTAM as part of the OPNDST processing. If
the SDT field indicated APPL, the SDT request must be sent by the PLU
application program, using SESSIONC. SESSIONC CONTROL=CLEAR can also be
used to halt the flow of requests and responses. To resume request flow after it has
been stopped, the PLU application program issues SESSIONC to send the SDT
request.

If the SLU is an application program, VTAM or the SLU application program can
send a response to that SDT request, depending upon how the SDT field of the
NIB is set when the SLU application program issues the OPNSEC
macroinstruction. If the SDT field indicates SYSTEM, VTAM sends the SDT
response when the SLU receives the SDT request from the PLU. If the SDT field
indicates APPL, the response must be sent by the SLU application program (using
a SESSIONC macroinstruction).

Normal-flow and expedited-flow requests and responses

The normal-flow traffic between an application program and an LU includes
requests containing data, requests that contain certain control information (called
normal-flow data requests), and the responses to such data requests and control
requests. Normal-flow requests are sent sequentially, one after the other, through
the network, and a normal-flow request that is sent before another such request
arrives sooner. Figure 29 on page 159 illustrates this principle.

158 z/OS V2R1.0 Communications Server: SNA Programming

Similarly, responses to normal-flow requests (called normal-flow responses) keep
their order as they travel through the network. However, VTAM does not maintain
the exact sequence relationship between requests and responses in relation to each
other; that is, a response sent by an LU after a request can be presented to the
application program before the request. The only way that an application program
can be sure of receiving normal-flow requests and responses in the exact order that
they are sent by the LU is by specifying RESPOND=QRESP (and POST=SCHED)
on the macroinstruction or in the RPL used to send the request. See “Controlling
the handling of normal-flow responses” on page 161 for more information about
how VTAM handles responses. (Using the authorized path affects the order in
which asynchronous operations complete, and because of this, the sequence in
which requests are received can be affected. See “Additional coding considerations
for authorized path” on page 302 for more information about authorized path
usage.)

Certain control requests (called expedited-flow data-flow-control-requests) and
responses to those requests (called expedited-flow traffic) are sent in a separate
flow (called expedited flows) from the normal-flow requests and responses. These,
together with all session-control requests and their responses, form the
expedited-flow traffic in the network. The expedited-flow requests tell the receiver
to do something that has higher priority than receiving normal-flow requests (for
example, to stop sending normal-flow requests or to prepare to shut down
communication with the other end of the session). Because of this, VTAM sends an
expedited-flow request immediately, before sending any normal-flow traffic that

Logical Unit

Note: No response for request 22 was required.

Request 21

Request 22

Request 23

Response to Request 21

Response to Request 23

Application Program

Figure 29. Normal-flow requests are sent sequentially

Chapter 6. Communicating with logical units 159

might be waiting to be sent. Normal-flow traffic is handled separately from the
expedited-flow traffic. Figure 30 illustrates how VTAM gives priority to
expedited-flow traffic.

The requests and responses that are sent on the normal flow and the expedited
flow are listed in Table 24 on page 161. Only one expedited-flow data-flow-control
request can be sent at a time by each LU in the session; a response must be
received to one such request before another can be sent. Similarly, only one
session-control request can be sent at a time with the SESSIONC macroinstruction.

DFSYN, DFASY, and RESP types of RUs
VTAM classifies the data and data-flow-control request and response units that can
be received by an application program into three types:
v DFSYN RUs, the normal-flow request units for both data and data-flow-control

requests
v DFASY RUs, the expedited-flow data-flow-control requests
v RESP RUs, normal-flow response units for both data and data-flow-control

requests.

Table 24 on page 161 describes these three types in more detail. Optionally, as
described in “Normal operating system environment for a VTAM application
program” on page 30, certain normal-flow response units can be treated as DFSYN

Scheduled for
output but not
yet seen.

Application Program VTAM Logical Unit

Normal-flow request 101

Normal-flow request 102

Normal-flow request 103

101

102

103

Expedited-flow request

The expedited-flow request
is sent immediately. It
contains a control request
but no data. There is no
queuing of expedited-flow
requests; a response must be
received before the next
expedited-flow request
can be sent.

Figure 30. Difference between normal-flow and expedited-flow requests

160 z/OS V2R1.0 Communications Server: SNA Programming

RUs instead of as RESP RUs. These special responses are called DFSYN responses.
The application program cannot receive expedited data-flow-control responses.
These are intercepted by VTAM.

Table 24. Summary of requests and responses transmitted on normal flow and expedited flow

Normal-flow Expedited-flow

Data Session Control: BIND CLEAR Request
Recovery (RQR) Set and Test Sequence
Numbers (STSN) Start Data Traffic (SDT)
UNBIND SWITCH

Data Flow Control: BID Bracket Initiation
Stopped (BIS) CANCEL CHASE Logical
Unit Status (LUSTAT) Quiesce Complete
(QC) Ready to Receive (RTR)

Data Flow Control: Quiesce at End of Chain
(QEC) Release Quiesce (RELQ) Request
Shutdown (RSHUTD) Shutdown (SHUTD)
Shutdown Complete (SHUTC) Stop Bracket
Initiation (SBI)

This classification of RUs is useful because it allows the application program to
have separate routines to handle RUs of each type. On each RECEIVE, the
application program can specify which RU type will satisfy the RECEIVE. More
than one type can be specified as eligible. Also, exit routines instead of RECEIVE
macroinstructions can be used to receive DFASY RUs and to receive RESP RUs.
Finally, the three types are handled independently for eligibility to satisfy a
RECEIVE OPTCD=ANY macroinstruction, as described in “Receiving input from
any session versus from a specific session” on page 174.

For more information about RECEIVE and about the DFASY and RESP exits, see
“Explicit RECEIVEs and EXLST exit routines” on page 178.

Controlling the handling of normal-flow responses

The macroinstruction that sends a normal-flow request can be used to control how
VTAM handles the response to that request. The ability to exercise that control
depends on whether PROC=NORDRESP or PROC=ORDRESP was specified in the
NIB when the session was established.

If PROC=ORDRESP was in effect in the NIB when the session was established, the
programmer establishes, at the time the normal-flow request is sent, the way in
which VTAM handles the response, as follows:
v When the request is sent with RESPOND=NQRESP in the RPL, the response is

handled as an ordinary normal-flow response—meaning that it can cause
completion of a POST=RESP operation, scheduling of a RESP exit routine, and
completion of RECEIVE RTYPE=RESP.

v When the request is sent with RESPOND=QRESP, the response is not handled as
a response, but instead is handled almost as if it is an incoming normal-flow
request from the LU. Such a response is called a DFSYN response. A DFSYN
response does not cause scheduling of a RESP exit routine and does not cause
completion of a RECEIVE RTYPE=RESP. It does, however, cause completion of
the original SEND operation if the operation specified POST=RESP. If
POST=RESP was not specified in the original operation, the application program
can get the response by using a RECEIVE RTYPE=DFSYN and testing the
RTYPE field of the RPL upon completion. If RTYPE=(DFSYN,RESP) after
completion, the program knows it has received a normal-flow response instead
of a normal-flow request.

Chapter 6. Communicating with logical units 161

If PROC=NORDRESP was in effect when the session was established, the
programmer has no control over how VTAM handles the responses. In this case, all
normal-flow responses (regardless of the QRESP setting) are handled as if NQRESP
had been specified in the original SEND. Thus, PROC=NORDRESP is specified in
the NIB when a user wants the application program to be executed in VTAM.

Additionally, the PROC=NORDRESP or PROC=ORDRESP setting controls how
VTAM interprets the RPL POST and RESPOND operands for normal-flow
requests.

The NQRESP response and QRESP response differ in that the NQRESP response is
handled as a regular normal-flow response and is presented to the application
program in sequence with other normal-flow responses; the QRESP response is
treated as an incoming normal-flow request and is presented to the application
program in sequence with those requests. A response that satisfies a SEND
macroinstruction that specifies POST=RESP and either QRESP or NQRESP is
always delivered immediately by VTAM. This response could, therefore, get ahead
of other normal-flow responses.

An application program sends most of its normal-flow requests with
RESPOND=NQRESP. However, you might want to use QRESP with bracket
protocol. See “The Chase request” on page 216 for a description of QRESP in
relation to the Chase request. See “Special use of RESPOND=QRESP with bracket
protocol” on page 216 for a description of the bracket protocols and how they are
used with QRESP. All requests of a chain should have the same QRESP or
NQRESP setting.

When an application program receives a series of requests and responses on a
session and either the NIB specifies PROC=NORDRESP or the requests from the
application program specify RESPOND=NQRESP, all of the requests arrive in the
same order that they are sent, and all of the responses arrive in the same order that
they are sent, but the order of the combination of requests and responses can be
changed. For example, request 1 always arrives before request 2, and response 2
always arrives before response 3; however, a response sent after a particular
request can arrive before it. As an example, the LU sends the following on a
session:
Response 1, Request 1, Request 2, Request 3,
Response 2, Response 3, Request 4

They could arrive at the application program as follows:
Response 1, Response 2, Request 1, Response 3,
Request 2, Request 3, Request 4

If the NIB specifies PROC=ORDRESP and the requests from the application
program specify RESPOND=QRESP, all the responses (which are now DFSYN
responses) and normal-flow requests arrive in the same order in which they are
sent. (In effect, VTAM handles a DFSYN response as it does a normal-flow
request.) For example, if the LU sends the following:
Response 1, Request 1, Request 2, Request 3,
Response 2, Response 3, Request 4

They arrive in the same order at the application program as follows:
Response 1, Request 1, Request 2, Request 3,
Response 2, Response 3, Request 4

162 z/OS V2R1.0 Communications Server: SNA Programming

When a program sends a normal-flow request on a session established with the
NIB PROC=ORDRESP, the POST operand in the macroinstruction can be set to
SCHED or RESP, and the completion of the macroinstruction is based on that
setting. If NORDRESP is specified in the NIB, when a normal-flow
data-flow-control request (as opposed to a data request) is sent, VTAM ignores the
POST operand and automatically establishes POST=RESP (meaning that the
operation is not completed until the response has been received). Similarly, if
ORDRESP is specified, the application program must specify the correct RESPOND
setting for normal-flow data-flow-control requests (ordinarily (NEX,FME)). For
NORDRESP (unless OPTCD=USERRH), the (NEX,FME) value of RESPOND is
assumed automatically by VTAM. For USERRH considerations, see “Relationship
to NIB PROC=ORDRESP or NORDRESP operand” on page 199.

Sequence numbers

The transmission services (TS) profile might indicate that the session is to use
sequence numbers. If so, each normal-flow request sent by an application program
to an LU is assigned a sequence number by VTAM.

The sender knows this number as the outbound sequence number; the receiver
knows the number as the inbound sequence number. The numbering begins with 1
for the first normal-flow request sent after BIND and is increased by 1 for each
subsequent request. This process continues until the session is terminated.
Sequence numbers can be reset during the session. See “Controlling flow” on page
164 for a description of session-control requests. (Also, either the application
program or VTAM assigns an identification number to each expedited-flow request
sent in a session, but those numbers are handled separately from the normal-flow
sequence numbers.)

Similarly, an LU in session with an application program assigns a sequence
number to each normal-flow request it sends to the application program. The
numbering begins with 1 and is increased by 1 for each subsequent normal-flow
request that the LU sends. To the LU, this number is known as the outbound
sequence number. To the application program, the number is known as the
inbound sequence number. VTAM checks the inbound sequence numbers on the
normal-flow requests it receives that are destined for an application program. If a
request arrives out of sequence (that is, its sequence number is not 1 greater than
that of the last normal-flow request received on the session), VTAM considers this
to be a transmission error and indicates to the application program that an
out-of-sequence request has been received by passing an exception request to the
application program.

When a normal-flow response is sent (either a positive or a negative response), the
response sender usually assigns to it the sequence number of the request being
responded to. This provides the request sender (the response receiver) a way to
match the response with its request. For example, an application program can send
a group of requests, with each request indicating that only exception responses
should be returned. If the session partner returns a negative response, the
application program can use the sequence number to determine where in the
group the error occurred. However, for certain situations, the error can be localized
only to a chain. Sequence numbers are also useful for LUs that log each request
that is received or sent. Figure 31 on page 164 illustrates how sequence numbers
are used. Other examples in this chapter show more specific examples of their use.

Chapter 6. Communicating with logical units 163

The SEQNO field of the RPL is used to convey sequence numbers between VTAM
and the application program. The application program can determine the sequence
number that VTAM assigned to an outbound normal-flow request by checking the
SEQNO field after completion of the SEND macroinstruction. For an inbound
request or response, the application program determines the sequence number that
was contained in the request or response by examining the SEQNO field after
completion of the RECEIVE macroinstruction. To assign a sequence number to an
outgoing response, the application program puts the sequence number into the
SEQNO field before issuing the SEND macroinstruction.

For a description of how sequence numbers are assigned when OPTCD=LMPEO is
used, refer to “LMPEO sequence number handling” on page 189. When
OPTCD=LMPEO is specified, the OBSQVAL RPL field is also used.

The application program can also assign sequence numbers when sending
expedited data-flow-control requests (such as a Signal request). For these requests,
VTAM uses the current setting of the SEQNO field of the SEND RPL instead of
generating a sequence number. This allows the application program to use the
SEQNO field as another data field (for example, to relate a Signal request to a
particular bracket). VTAM generates sequence numbers for all session-control
requests whether sent by VTAM (such as UNBIND), or by the application program
(such as RQR).

In summary, when sending a response or an expedited data-flow-control request,
the application program specifies the sequence number. When sending a
normal-flow request or a session-control request, VTAM generates the sequence
number.

Controlling flow

The Start Data Traffic (SDT) and Clear requests
The PLU can start and stop the flow of all data and data-flow-control requests and
responses on a session, if the TS profile indicates that the session supports the Start
Data Traffic (SDT) session-control request. In most cases, the flow begins when the
PLU sends the SDT at the beginning of a session. Depending on how the SDT field
of the NIB is set, the SDT can be sent automatically by VTAM as part of the

The logical unit must specify the
sequence number of the request
being responded to, if a response is
requested.

VTAM assigns the
sequence number for
outbound requests.

Request 21

Response to Request 21

Application Program Logical Unit

SEND

The program can determine the sequence
number that assigned by
examining the field of the RPL.

VTAM
SEQNO

RECEIVE

The program can use the sequence
number to determine which response was
received and to post an ECB for the SEND
that was used to send request 21.

The logical unit can use the sequence
number to keep track of requests if
they are being logged.

Figure 31. How sequence numbers are used

164 z/OS V2R1.0 Communications Server: SNA Programming

OPNDST processing, or it might have to be sent by the application program by
using the SESSIONC macroinstruction. The flow of requests and responses is
stopped when the PLU sends a Clear session-control request by using the
SESSIONC macroinstruction. This not only prohibits any further transmission of
such requests and responses, but also causes the sequence numbers of the LU and
VTAM to be reset to 0. The first data request or normal-flow data-flow-control
request sent is assigned the sequence number 1. Clear also causes all incoming and
outgoing data and data-flow-control requests and responses in the network
pertaining to the session to be discarded. Any SEND OPTCD=LMPEO request that
is being processed for the session when Clear is issued is also terminated prior to
normal completion; one or more RUs might have been sent for each SEND
OPTCD=LMPEO before it is terminated by Clear. Clear is sent whenever it is
needed to stop the flow of data and data-flow-control requests and to clean up
traffic flowing in session. (Under some error conditions VTAM automatically sends
a Clear.) When Clear is sent by the PLU in the middle of a session, the flow can be
restarted with SDT. The flow of requests and responses can be started and stopped
any number of times, as illustrated in Figure 32 on page 166.

Chapter 6. Communicating with logical units 165

For sessions that support SDT, (1) after a session is established and before the first
SDT response is sent or received and (2) during the time after Clear is sent or
received and before a subsequent SDT response is sent or received, the session is
said to be in a data-traffic-reset state. After an SDT response is sent or received, but
before Clear is sent or received, the session is in a data-traffic-active state. Requests
and responses for data and data-flow-control can be sent only when the session is
in a data-traffic-active state.

Pending I/O is canceled;
data flow ceases.

PLU Application Program Secondary Logical Unit

SEND/RECEIVE
communication is
possible. Data
traffic active state.

(Clear request)

(Clear request)

(Start Data Traffic request)

(Start Data Traffic request)

Data flow can begin.

CLSDST

OPNDST (Start Data Traffic request
can be sent by VTAM)

Only SESSIONC
communication is
possible. Data
traffic reset state.

Only SESSIONC
communication is
possible. Data
traffic reset state.

SEND/RECEIVE
communication is
possible. Data
traffic active state.

SEND/RECEIVE
communication is
possible. Data
traffic active state.

Figure 32. Starting and stopping the flow of requests and responses

166 z/OS V2R1.0 Communications Server: SNA Programming

The Set and Test Sequence Numbers (STSN) and Request
Recovery (RQR) Requests
About this task

Another session-control request sent with the SESSIONC macroinstruction is Set
and Test Sequence Numbers (STSN). This request allows the PLU to reset the
normal-flow sequence numbers and to communicate with the SLU to establish the
proper sequence numbers. For example, an attempt to resynchronize sequence
numbers can begin when one of the LUs recognizes that the sequence number of a
request it has received on the session is not 1 greater than the sequence number of
the previous request it received. When the SLU recognizes the sequence number
error, it sends the Request Recovery (RQR) session-control request to ask the PLU
to take recovery action. When the VTAM application program PLU receives the
request, its SCIP exit routine is scheduled.

Another use of STSN is for restarting request flow, where the PLU that periodically
checks normal-flow requests that it sends to an SLU on a session wants to inform
the SLU of the sequence numbers at which it is restarting after a system, session,
application program, or LU failure.

Procedure

A VTAM application program acting as the PLU in a session normally uses the
following procedure to resynchronize sequence numbers with the SLU:
1. The PLU issues SESSIONC CONTROL=CLEAR to stop the request/response

flow and to remove all requests not delivered and all responses pertaining to
its session.

2. The PLU then issues SESSIONC CONTROL=STSN to question the LU about
normal-flow sequence numbers on the session. With this macroinstruction, the
PLU can do one of the following tasks:
v Send sequence number values to the SLU and, from the response, determine

whether the SLU “agrees” with those numbers
v Request that the SLU return whatever values it considers to be the correct

sequence numbers.
v Tell the SLU to set its sequence numbers to particular values.

To reach agreement with the SLU, the PLU might have to send several STSN
requests, with the SLU responding to each request. When agreement is finally
reached, either session partner or both, might have to return to a previous
point in their operations and resend one or more normal-flow requests.

3. After agreement on sequence numbers is reached, the PLU issues SESSIONC
CONTROL=SDT to restart the flow of requests and responses.

Results

For examples of the use of SESSIONC CONTROL=STSN, see Figure 109 on page
696 and Figure 119 on page 706. For details about the options available with STSN,
refer to “SESSIONC—Send a session-control request or response” on page 532.

Data-flow-control requests and indicators
SNA defines protocols for controlling the flow of data within a session (for
example, specifying which end of the session can send data at a particular time).
Data-flow-control requests and indicators are used in these protocols, some of
which are summarized in “Using SNA protocols” on page 201. These requests and
indicators can be specified with a SEND macroinstruction and are made available

Chapter 6. Communicating with logical units 167

with a RECEIVE macroinstruction, or in an exit routine. For additional information,
refer to the SEND and RECEIVE macroinstruction descriptions in Chapter 13,
“Conventions and descriptions of VTAM macroinstructions,” on page 371.

Identifying LUs and sessions
After a session has been established, the application program has both the
communication identifier (CID) that identifies the session and the symbolic name
of the LU (the session partner). For details, refer to the sections on the LOGON
and SCIP exit routines and on the OPNDST and OPNSEC macroinstructions in
Chapter 5, “Establishing and terminating sessions with logical units,” on page 81.

The CID must be specified in the RPL for all communications directed to a
particular session.

When a RECEIVE macroinstruction issued in the any-mode (described in the
following) is completed, VTAM provides the CID of the session on which the
request or response is received. If the application program requires the LU's
symbolic name, the application program has three ways to relate the CID to the
LU's symbolic (user-supplied) name:
v The application program can use an INQUIRE OPTCD=CIDXLATE

macroinstruction to translate the CID into a symbolic name.
v The application program can maintain a table of CIDs and their symbolic

equivalents. Applications that are enabled for persistence should be capable of
rebuilding this table during recovery. This is because the CID of a particular
session is different after VTAM recovers.

v When the application program establishes a session with the LU, the application
program can initially assign a 4-byte value to the session (by putting the value
in the USERFLD field of the NIB), and VTAM returns the value each time that
session's data satisfies RECEIVE. The 4-byte value can be anything the
application program chooses to associate with the session. For example, it can be
used to identify the session (and thus the LU), or it can contain the address of a
subroutine that is to handle that session's data.

Using VTAM to communicate with LUs

Using VTAM to communicate with LUs requires an understanding of these major
alternatives:
v VTAM can perform an operation synchronously or asynchronously with respect

to execution of the VTAM application program (OPTCD=SYN or ASY on SEND
or RECEIVE).

v For asynchronous operations, VTAM can post an ECB or schedule an exit
routine when the operation completes (OPTCD=ASY and either ECB=address or
EXIT=address are specified in the SEND or RECEIVE macroinstruction).

v VTAM can schedule a request to be sent or can send a request and confirm its
arrival (SEND POST=SCHED or RESP).

v Input from any session can satisfy RECEIVE, or input from a specific session can
satisfy RECEIVE (RECEIVE OPTCD=ANY or SPEC).

v A session can be in continue-any (CA) mode or in continue-specific (CS) mode
(OPTCD=CA or CS on certain RPL-based macroinstructions).

v RECEIVE RTYPE=DFASY can be satisfied or a DFASY exit routine can be
scheduled when an expedited-flow (DFASY) request is received.

v RECEIVE RTYPE=RESP can be satisfied, or an RESP exit routine can be
scheduled when a response is received.

168 z/OS V2R1.0 Communications Server: SNA Programming

v The application program request can be notified of responses queued.
v VTAM can retain or discard portions of an incoming request that is too long to

fit in the program's input area (PROC=KEEP or TRUNC).
v VTAM can split any function management (FM) data that exceeds the maximum

RU size into a chain (or partial chain).
v VTAM can send FM data from a number of discontiguous buffers.
v VTAM can refrain from enforcing particular RH indicator settings related to data

flow control and FM data.

Major alternatives

Some of these alternatives are also discussed in Chapter 3, “Organizing an
application program,” on page 33. Here they are discussed specifically in relation
to communicating on a session.

Synchronous versus asynchronous operations:

Synchronous requests:

A VTAM application program can specify that a communication operation be
performed synchronously with respect to the execution of the program. For
example:
SEND RPL=(2),STYPE=REQ,AREA=AREA1,RESPOND=(NEX,FME), C

OPTCD=SYN,POST=SCHED

This SEND specifies that a request (STYPE=REQ) be sent from AREA1 and that a
definite response be returned whether or not the request arrives and is processed
successfully (RESPOND=(NEX,FME)). Execution of the VTAM application program
(or at least execution of the task or SRB from which the macroinstruction is issued)
is suspended because the application program has specified OPTCD=SYN, and the
next instruction is not executed until VTAM has determined that the requested
operation has been performed. In this case, however, the requested operation is the
scheduling of a SEND (POST=SCHED) rather than the actual transmission. Certain
circumstances can delay the actual scheduling. For example, the scheduling can be
delayed until the LU has returned a session-level pacing response indicating that it
is ready to receive the next request on the session. Another example is scheduling
being delayed while waiting for a virtual-route-pacing response for the route
associated with the session. The ASY option is preferable because it will not cause
the application program to be delayed.

Here is another example of a synchronous SEND:
SEND RPL=(2),STYPE=REQ,AREA=AREA1,RESPOND=(NEX,FME), C

OPTCD=SYN,POST=RESP

For this SEND, the VTAM application program has to wait until VTAM receives a
response to the request (POST=RESP). A program that communicates on a few
sessions and waits for each communication request to be completed before doing
any further processing might use this kind of synchronous operation; for most
programs, however, this is not efficient.

POST=RESP cannot be specified unless a definite response is requested; that is,
no-response or exception-response-only cannot be specified with POST=RESP,
because VTAM would never know that the request had arrived at the LU.

Chapter 6. Communicating with logical units 169

Here is an example of a RECEIVE for input on a specific session with
OPTCD=SYN:
RECEIVE RPL=(2),RTYPE=DFSYN,AREA=AREA1,AREALEN=100, C

OPTCD=(SYN,SPEC)

Here, execution of the VTAM application program is suspended until input arrives
on the session (whose CID is located in the RPLARG field). This is efficient only in
simple programs where batch input is being received, or in programs where a
request is known to be in VTAM buffers. If a request received in VTAM's buffers is
larger than the amount of data read each time a RECEIVE is issued, the KEEP
option (described in “Handling overlength input data” on page 182) is used.

Here is an example of a RECEIVE for input from any session with OPTCD=SYN:
RECEIVE RPL=(2),RTYPE=DFSYN,AREA=AREA1,AREALEN=200, C

OPTCD=(SYN,ANY)

Here, execution of the VTAM application program is suspended until input arrives
on any session that is not in the CS mode. This type of request is most likely to be
used in a program that communicates on a few sessions. It can also be used with a
large number of sessions if response time is not important.

Asynchronous requests:

A VTAM application program can also request that a communication operation be
performed asynchronously with respect to the execution of the program. For
example:
SEND RPL=(2),AREA=AREA1,STYPE=REQ,RESPOND=(NEX,FME), C

OPTCD=ASY,POST=SCHED,ECB=ECB1

This SEND requests that VTAM schedule the sending of the data from AREA1 and
immediately return control to the program. As soon as scheduling of the output
has been completed, VTAM notifies the program either by posting an ECB (shown
here) or by scheduling an RPL exit routine. (The relative advantages of posting
ECBs and scheduling RPL exit routines are discussed in Chapter 3, “Organizing an
application program,” on page 33, and in “ECBs versus RPL exit routines.”) The
actual sending of a request can be requested to another type of asynchronous
request. For example:
SEND RPL=(2),AREA=AREA1,STYPE=REQ,RESPOND=(NEX,FME), C

OPTCD=ASY,POST=RESP,EXIT=RPLEXIT

This SEND specifies that VTAM begin sending the request at AREA1 and
immediately return control to the program. When VTAM receives a response
indicating the success or failure of the transmission and processing, VTAM
schedules an RPL exit routine at RPLEXIT. The program continues processing; the
RPLEXIT exit routine automatically gets control when this operation is completed.
Or, if ECB-posting is specified instead of the exit routine, the program continues
processing (minus the time VTAM takes to get control and post the ECB) until it
discovers the ECB is posted or until the program issues a WAIT or a CHECK
macroinstruction.

While synchronous operations are easier to program, they are inefficient with
regard to the amount of processing that the program can do. Asynchronous
operations are more difficult to program, but are required to handle
communication with a reasonably large number of sessions.

ECBs versus RPL exit routines:

170 z/OS V2R1.0 Communications Server: SNA Programming

If asynchronous operations are requested, each macroinstruction can specify that
VTAM do either of two things when the operation is completed: post an ECB or
schedule an RPL exit routine.

Here is an example of a SEND macroinstruction that specifies that an ECB be
posted upon completion:
SEND RPL=(2),AREA=AREA1,STYPE=REQ,RESPOND=(NEX,FME), C

OPTCD=ASY,POST=RESP,ECB=ECB1

Figure 33 shows the sequence of events that might occur following the issuance of
this macroinstruction.

Here is an example of a SEND macroinstruction that specifies that an RPL exit
routine be scheduled upon completion:
SEND RPL=(2),AREA=AREA1,STYPE=REQ,RESPOND=(NEX,FME), C

OPTCD=ASY,POST=RESP,EXIT=RPLEXIT

Figure 34 on page 172 shows the sequence of events that might occur following the
issuance of this macroinstruction.

SEND
Program continues with
other processing.

Application Program VTAM

VTAM forwards the request to
the logical unit, returning control
to the program (OPTCD=ASY).

When the program discovers the ECB
has been posted, either by testing the
ECB itself, or by receiving control
following a WAIT or CHECK macro,
it knows the operation is completed.

When the response arrives,
VTAM posts the ECB
specified in the SEND.

1

4

2

3

Figure 33. General sequence of events when ECB-posting is specified

Chapter 6. Communicating with logical units 171

Scheduled versus responded output operations:

The VTAM application program specifies the sending of a request to an LU in one
of two ways:
v The application program can indicate that as soon as the request has been

scheduled for transmission and transferred to a VTAM buffer area, thus freeing
the application program's output data area, VTAM is to consider the output
operation completed. This is called scheduled output and is illustrated in
Figure 35 on page 173.

v The application program can indicate that VTAM is not to consider the
operation completed until the request has been received by the LU and a
response has been returned. This is called responded output and is illustrated in
Figure 36 on page 174.

Note: This alternative is also discussed as an example in “Synchronous versus
asynchronous operations” on page 169. Certain details are given under the POST
operand in the description of the SEND macroinstruction, refer to “SEND—Send
output on a session” on page 514.

SEND
Program continues with
other processing.

The mainline program continues.

Application Program VTAM

VTAM forwards the request to
the logical unit, returning control
to the program (OPTCD=ASY).

The RPL exit routine is executed
without interruption, performing
the next step in communicating
with the logical unit (perhaps
issuing a RECEIVE or posting an
ECB so that the mainline program
can issue a RECEIVE). It then
returns control to VTAM.

When the response arrives,
VTAM schedule the
exit routine specified in
the RPL.

VTAM returns control to the
mainline program at the point where
it was interrupted.

1

6

4

2

3

5

Figure 34. General sequence of events when an RPL exit routine is specified

172 z/OS V2R1.0 Communications Server: SNA Programming

Responded output is easier to use, but requires that the output data area not be
reused until a response has been received by VTAM. If the response indicates that
an error occurred, the data is still available for retransmission. Scheduled output
allows the application program to send a series of requests that all use the same
RPL and, possibly, the same output area. It also allows the program to decide
whether a response to the request must be returned. If request chaining is used
(see “Chaining” on page 201), a definite response is not required for every request
that is sent.

With responded output, response information is returned as part of the operation.
With scheduled output, the operation is completed when the request is scheduled,
before any response information is available. To determine how the output was
processed, the application program can issue an input request to obtain a response.
This is why the application program in Figure 35 issues three input requests in
addition to the three output requests. Alternatively, responses can be received
through a response exit routine.

RECEIVE
completes or
RESP exit
routine is
scheduled.

RECEIVE
completes or
RESP exit
routine is
scheduled.

RECEIVE
completes or
RESP exit
routine is
scheduled.

Response 2

Response 3

Response 1

SEND 3

SEND 3 completed,
output area is free.

SEND 2

SEND 1

Request 1

Request 2 Request 2

Request 1

SEND 1 completed,
output area is free.

SEND 2 completed,
output area is free.

Request 3

Application Program VTAM Logical Unit

Request 3

Figure 35. Scheduled output

Chapter 6. Communicating with logical units 173

Receiving input from any session versus from a specific session:

The VTAM application program can ask for input from a specific session or it can
ask for input from any one of its sessions. The application program designates the
desired mode (specific or any) with each RECEIVE macroinstruction. These two
modes are called, respectively, the specific-mode, and the any-mode. The two
modes apply independently to DFSYN, DFASY, and RESP types of input. See
“DFSYN, DFASY, and RESP types of RUs” on page 160. The discussion and
examples in this and the following sections apply to data requests (DFSYN).
However, the specific-mode and any-mode also apply to the normal-flow
data-flow-control requests (DFSYN) and to the DFASY and RESP types of input.

In general, an application program initially asks for input on a session in the
any-mode, and then communicates on the session in the specific-mode until the
transaction, inquiry, or conversation is completed. While communication proceeds
on one session, the application program keeps a RECEIVE macroinstruction (issued

Application Program Logical Unit

SEND 1

SEND 2

SEND 3

Request 1 Request 1

Request 2

Request 2

Request 3

Request 3

Response 1

Response 2

Response 3

SEND 1 completed

SEND 2 completed

SEND 3 completed

VTAM

Figure 36. Responded output

174 z/OS V2R1.0 Communications Server: SNA Programming

in the any-mode) pending so that a new transaction, inquiry, or conversation can
be handled from another session while the previous ones continue in
specific-mode.

A disadvantage of the any-mode is that the application program does not know
the identity of the session until RECEIVE completes. Because the session is initially
unknown, the amount of incoming data might also be unknown. This means that
the application program must either reserve an input area large enough to hold the
largest possible amount of incoming data or execute additional instructions to
handle overlength data. The advantage of the any-mode is that it allows the
application program to use just one input area for data from all of its sessions
rather than using a separate input area for each of its sessions.

With the specific-mode, the application program must specify the identity of the
session supplying the data. Because the identity of the session is known, the size of
the input data is more predictable than with any-mode. However, because any
given session might not supply data for some time, the application program might
have to contend with unused data areas. The simplest way to avoid this problem is
not to issue RECEIVE requests in the specific-mode unless data has already arrived
in VTAM's buffers or is expected to arrive in a relatively short time.

The application can more efficiently manage input data areas by using a
combination of specific-mode and any-mode. As an example, consider an
application program that obtains an inquiry from any of its LUs, handles that
inquiry with a series of SEND and RECEIVE macroinstructions, and then obtains a
new inquiry. Part of such a program is illustrated in Figure 37 on page 176.

Chapter 6. Communicating with logical units 175

Continue-any mode versus continue-specific mode:

In the example in Figure 37, the communication macroinstructions are issued
synchronously. The application program handles each inquiry serially, never
accepting a new inquiry until it has completed the previous one. Although this
procedure might be suitable for application programs that deal with short inquiries
and a few sessions, most application programs require handling inquiries in
parallel.

An application program that handles more than one inquiry concurrently can use
asynchronous request handling and issue new RECEIVEs in the any-mode before
the previous inquiry is completed. For an example, see Sample Program 2 in
Chapter 16, “Logic of a more complicated application program,” on page 605. This,
however, raises the possibility that both a RECEIVE for a specific session and a
RECEIVE for any session (which includes the specific session as well) might be
waiting for data at the same time. Consequently, data that is meant to satisfy the
subroutine's RECEIVE might instead be intercepted by RECEIVE in the mainline
program, which is meant only to receive new inquiries.

To eliminate this sort of problem, VTAM allows the application program to
indicate when a particular session's input can be received by a RECEIVE

Application Program

The application program begins by accepting data
in the any-mode. When an inquiry is eventually
received, the data and the identity of the session
(CID) are passed to the application program, and the
RECEIVE request is completed. The application
program can now call the subroutine that handles
the type of inquiry or handles the particular
session that made the inquiry.Call appropriate subroutine

RECEIVE OPTCD = ANY,
RTYPE = DFSYN

The subroutine sends data on the session and receives data
from it in specific-mode (output requests are always
directed to a specific session; the CID in the CIDREG
register identifies the session for RECEIVE). The
size of the subroutine's input area may be limited
because the identity of the session is known. The
input area probably does not remain unused for long
because the subroutine is in the midst of a conversation
with the logical unit on this session.

After the inquiry has been satisfied, the application program
returns to the mainline program to issue the RECEIVE
in the any-mode and waits for the next inquiry
to arrive.

SEND (Specific)

RECEIVE OPTCD = SPEC,
RTYPE = DFSYN,
ARG = (CIDREG)

SEND (Specific)

RECEIVE OPTCD = SPEC,
RTYPE = DFSYN,
ARG = (CIDREG)

SEND (Specific)

RETURN

Figure 37. Example of using any-mode and specific-mode to handle an inquiry on a session

176 z/OS V2R1.0 Communications Server: SNA Programming

macroinstruction issued in the any-mode, and when the input must be received by
a RECEIVE macroinstruction issued in the specific-mode. The former is called
continue-any mode (CA), and the latter is called continue-specific mode (CS). The
desired mode for a session is designated when a communication macroinstruction
is issued, but does not become effective until the operation is completed.

Although the CA-CS option code affects only RECEIVE operations, you can switch
a session from one mode to the other by specifying the CA or CS option code in
any OPNDST, OPNSEC, SEND, RECEIVE, or RESETSR macroinstruction for the
session. The change from one mode to another is effective for the next
communication operation on the session after this macroinstruction completes, not
when the macroinstruction itself is executed. The session that is the object of the
macroinstruction is the one whose CA-CS mode is changed. (For RECEIVE
OPTCD=ANY, the session whose mode is changed is the one whose input is
received by the RECEIVE operation.) If an error occurs and a macroinstruction that
specifies a change in a session's CA-CS mode is not completed successfully (that is,
(RTNCD,FDB2) does not equal (X'00',X'00'), (X'04',X'03') or (X'04',X'04')), the mode
is not changed.

Continue-any and continue-specific modes can be set individually for the three
types of input. For example, a session can be placed in a continue-specific mode
for DFSYN RUs while it is in continue-any mode for DFASY and RESP RUs. The
RTYPE operand on the macroinstruction specifies which type of input RU is to
have its continue-mode changed. Any combination of input types, including
NDFSYN, NDFASY, and NRESP (meaning no change is to be made), is valid.

Figure 38 on page 178 illustrates how the various modes described in the preceding
section relate to one another.

Chapter 6. Communicating with logical units 177

Explicit RECEIVEs and EXLST exit routines:

A VTAM application program can receive expedited-flow data-flow-control
requests (for example, a Quiesce at End of Chain request) or responses in a
number of ways. A RECEIVE can specify RTYPE=DFASY (for data-flow-control
requests) or RTYPE=RESP (for responses) or both. In addition, data input can
complete the same RECEIVE (for example, RTYPE=(DFSYN,DFASY,RESP) can be
specified). When the RECEIVE is posted complete, the program examines the
RTYPE field of the RPL to determine which kind of input was received and
branches to an appropriate routine. Alternatively, RECEIVEs can be used only for
normal-flow requests, and the addresses of the special input routines can be
designated (the DFASY and RESP exit routines) in an EXLST macroinstruction to
handle responses and expedited-flow data-flow-control requests.

Using exit routines requires execution of more system instructions than checking
the RTYPE field. On the other hand, using RECEIVE requires the use of an RPL to
await the input. See Figure 39 on page 179 through Figure 42 on page 182 for the
detailed logic used by VTAM to classify input RUs, to complete RECEIVEs, and to
schedule EXLST exit routines.

Note: If an application program issues multiple RECEIVE OPTCD=ANY
macroinstructions that can be satisfied by a given input RU, it is unpredictable
which particular RECEIVE macroinstruction is posted complete with the RU. A
similar statement can be made if multiple RECEIVE OPTCD=SPEC

Application Program

The application program begins by issuing three s in any-mode.
Continue-specific (CS) mode is also designated for each one; this means that
once data is received on a session and causes one of the RECEIVEs to be
completed, subsequent data on that session may only be obtained with
RECEIVEs issued in specific-mode. Meanwhile, data from other sessions might
cause the remaining RECEIVE OPTCD = ANY macroinstructions to complete.

RECEIVE

Wait for data to arrive.
Call appropriate subroutine.

RECEIVE OPTCD =(ANY,CS),RTYPE=DFSYN
RECEIVE OPTCD =(ANY,CS),RTYPE=DFSYN
RECEIVE OPTCD =(ANY,CS),RTYPE=DFSYN

When the data arrives, the appropriate subroutine deter-
mines if the inquiry is completed. If it is not, the sub-
routine exchanges data in specific-mode. The session
is kept in continue-specific mode so that the
arriving data may only satisfy the RECEIVEs issued in
any-mode, not one of the RECEIVEs issued in any-mode..

If, however, the subroutine determines that the inquiry
is at an end, a final record is sent to the session partner.
The subroutine specifies continue-any (CA) mode on
the SEND; this ensures that the session being sent to,
like all other sessions in continue-any mode, will
be able to satisfy the RECEIVE macroinstruction in any-mode
in the mainline program and begin a new inquiry.

End of inquiry?

No

Yes

SEND OPTCD =CS,RTYPE=DFSYN,
ARG = (CIDREG)

RECEIVE OPTCD = (SPEC,CS) RTYPE = DFSYN,
ARG = (CIDREG)

Return to mainline program.

SEND OPTCD =CS,RTYPE=DFSYN,
ARG = (CIDREG)

Return to mainline program.

Figure 38. Example of using continue-any and continue-specific modes to handle concurrent inquiries

178 z/OS V2R1.0 Communications Server: SNA Programming

macroinstructions are issued for a session and then an RU arrives that could satisfy
any one of them.

Satisfies:
RECEIVE
RTYPE=
(DFASY,x,x)

Satisfies:
RECEIVE
RTYPE=
(DFSYN,x,x)

Satisfies:
RECEIVE
RTYPE=
(DFSYN,x,x)

Satisfies:
RECEIVE
RTYPE=
(RESP,x,x)

RU
a response

or
a request

?

RU
on normal

or
on expedited

flow
?

NIB
PROC=

?

Response NORDRESP

Normal NQRESP

Request ORDRESP

Expedited QRESP

or
RESP exit
routine

NIB
PROC=

?

SYSRESP

APPLRESP

Sets:
RTYPE=
DFSYN

Can switch CA/CS
mode for
DFSYN data

Sets:
RTYPE=
DFSYN

Can switch CA/CS
mode for
DFSYN data

or
DFASY exit
routine

2

3

(These are DFSYN
responses.)

Sets:
RTYPE=
DFASY

Can switch CA/CS
mode for
DFASY data

Sets:
RTYPE=
RESP

Can switch CA/CS
mode for
RESP data

1

If multiple types of input RUs that could satisfy a RECEIVE are concurrently queued when the RECEIVE is issued, the following
order is used to attempt to match the RECEIVE with input: DFASY, RESP, and then DFSYN.

Because VTAM intercepts and processes all expedited-flow responses, the application program only receives normal-flow
responses. If the application program has for the response an associated pending SEND POST=RESP macroinstruction specified,
the response information is set in the SEND's RPL fields and does not satisfy any RECEIVE macroinstruction or cause entry
to any RESP exit routine.

When returning a response, the other end of the session should return the same value (QRESP or NQRESP) that was contained
in the original request.

3

2

1

RESPOND
(in original

SEND
RPL)

?

Input RU received

Application program
must send the appropriate
response.

VTAM responds
to this request.

Figure 39. How input RUs are classified by VTAM

Chapter 6. Communicating with logical units 179

For DFASY input, see also Figure 39 on page 179.

Is there
a NIB DFASY

exit?

Is there a
RECEIVE SPEC

DFASY?

Is
DFASYX in

NIB?

Is there
an ACB DFASY

exit?

Yes

Yes

Yes Yes

Yes

No

No

No

NoNo

Invoke
NIB DFASY
exit

Input will
satisfy the
RECEIVE
SPEC
DFASY

Queue input
for the next
RECEIVE

Input will
satisfy the
RECEIVE

Invoke
ACB
DFASY
exit

CS CA

1

2

3

4

Is there a
RECEIVE ANY

DFASY?

4

(A)
(B)
(C)

Logic flow if NIB exit technique is used.
Logic flow if RECEIVE technique is used.
Logic flow if ACB exit technique is used.

Queue input
for the next
RECEIVE
SPEC DFASY

1

2

3

(A) (B) (C)

Queue input
for the next
RECEIVE
SPEC DFASY

or
ANY DFASY

DFASY input

What is
CA/CS mode

of the session
for DFASY

input?

The exit routine is entered if no other exit routine (including the NIB DFASY exit routine) is currently running. If
another exit routine is running, the input is queued for the NIB DFASY exit routine. This queued input cannot satisfy a
RECEIVE.

The input will satisfy a RECEIVE SPEC DFASY. The response can also be obtained by a RECEIVE ANY DFASY (only
if NDFASYX is specified in the NIB) if the mode is switched to CA mode for DFASY input on the session. The ACB DFASY
exit is not scheduled if the session mode is changed to CA.

The exit routine is entered if no other exit routine (including the ACB DFASY exit routine) is currently running. If
another exit routine is running, the input is queued for the ACB DFASY exit routine. This queued input cannot satisfy
a RECEIVE.

If the session mode for DFASY input is subsequently changed to CS mode, only RECEIVE SPEC DFASY can be satisfied.

Figure 40. How VTAM handles DFASY (expedited-flow data-flow-control request) input

180 z/OS V2R1.0 Communications Server: SNA Programming

For RESP input, see Figure 39 on page 179.

Is there
a NIB RESP

exit?

Is there a
RECEIVE SPEC

RESP?

Is
RESPX in

NIB?

Is there
an ACB RESP

exit?

Yes

Yes

Yes Yes

Yes

No

No

No

NoNo

Invoke
NIB RESP
exit

Input will
satisfy the
RECEIVE
SPEC
RESP

Queue input
for the next
RECEIVE

Input will
satisfy the
RECEIVE

Queue input
for the next
RECEIVE
SPEC RESP

or
ANY RESP

Invoke
ACB
RESP
exit

CS CA

1

2

3

4

Is there a
RECEIVE ANY

RESP?

RESP input

(A)
(B)
(C)

Logic flow if NIB exit technique is used.
Logic flow if RECEIVE technique is used.
Logic flow if ACB exit technique is used.

Queue input
for the next
RECEIVE
SPEC RESP

(A) (B) (C)

The exit routine is entered if no other exit routine (including the NIB RESP exit routine) is currently running. If another
exit routine is running, the input is queued for the NIB RESP exit routine. This queued input cannot satisfy a RECEIVE.

If the session mode for RESP input is subsequently changed to CS mode, only RECEIVE SPEC RESP can be satisfied.

1

2

3

4

What is
CA/CS mode

of the session
for RESP

input?

The exit routine is entered if no other exit routine (including the ACB RESP exit routine) is currently running. If another
exit routine is running, the input is queued for the ACB RESP exit routine. This queued input cannot satisfy a RECEIVE.

The input will satisfy a RECEIVE SPEC RESP. The response can also be obtained by a RECEIVE ANY RESP (only if
NDFASYX is specified in the NIB) if the mode is switched to CA mode for RESP input on the session. The ACB RESP exit
is not scheduled if the session mode is changed to CA.

Figure 41. How VTAM handles RESP (normal-flow response) input

Chapter 6. Communicating with logical units 181

For DFSYN input, see Figure 39 on page 179.

Queued response notification:

The application might specify that when SEND completes, the RPL indicates
whether any responses are queued. If SEND OPTCD=RSPQUED is specified,
VTAM sets RPLRSPNM if any responses are on the normal-flow inbound-response
queue, and RPLRSPQR if any responses are on the normal-flow inbound-data
queue. The application must use DSECT references to examine the RPL flags
named in the preceding section to determine if there are any queued responses.

Note: Responses to SEND requests specifying RESPOND=QRESP are put in the
normal-flow inbound-data queue.

Handling overlength input data:

When an application program issues a RECEIVE macroinstruction, the length of
the incoming data is often unpredictable. As noted earlier, this is particularly true
of RECEIVE macroinstructions issued in the any-mode. VTAM provides two ways
of handling data that is too large for the input area:

DFSYN input

Is there a
RECEIVE SPEC

DFSYN?

Input will
satisfy the
RECEIVE SPEC
DFSYN

Queue input
for the next
RECEIVE

Input will
satisfy the
RECEIVE

Queue
input for the
next RECEIVE
SPEC DFSYN

or
ANY DFSYN

1

2

Is there a
RECEIVE ANY

DFSYN?

Yes

Yes

No

No

CS CA

1

If the session mode for DFSYN input is subsequently changed to CS mode, only RECEIVE SPEC DFSYN can be satisfied.2

What is
CA/CS mode

of the session
for DFSYN

input?

The input will satisfy a RECEIVE SPEC DFSYN. The request or DFSYN response can also be obtained by a RECEIVE ANY DFSYN
if the mode is switched to CA mode for DFSYN input on the session.

Figure 42. How VTAM handles DFSYN (normal-flow request and DFSYN response) input

182 z/OS V2R1.0 Communications Server: SNA Programming

v VTAM can discard the overlength data. The excess data is lost. This facility,
called the truncate (TRUNC) option, is useful in application programs that must
impose rigid size limitations on input data. For example, an inventory control
application program might require the session partner to supply an account
number no more than 10 bytes in length.

v VTAM can keep the data. VTAM fills the input area, saves the remainder, and
completes the input request. Additional input requests must be issued to obtain
the excess data. This facility is called the KEEP option.

When the data request read by VTAM is larger than the number of bytes specified
in the AREALEN operand of a RECEIVE macroinstruction, the RECLEN field of
the RPL indicates, after completion of the RECEIVE, the number of bytes that are
available before the RECEIVE was executed. This characteristic of the RECLEN
field is shown in Figure 43.

The application program can select the appropriate option when the session with
the LU is established (PROC=TRUNC or KEEP specified in the NIB). Or it can
select it when RECEIVE is issued (OPTCD=TRUNC or KEEP specified in the RPL).

Large message performance enhancement outbound (LMPEO) option:

The large message performance enhancement outbound (LMPEO) option simplifies
the task of writing an application program by significantly reducing the
considerations of outbound chaining and maximum RU-size enforcement. LMPEO
support is available only for sessions between SNA LUs that support SNA
chaining.

LMPEO operating considerations:

(OPTCD=KEEP was specified in the
NIB when the session was established)

RECEIVE ...,AREALEN=80,...
After completion of this RECEIVE,
RECLEN field of RPL=200

RECEIVE ...,AREALEN=80,...
After completion of this RECEIVE,
RECLEN field of RPL=120

RECEIVE ...,AREALEN=80,...
After completion of this RECEIVE,
RECLEN field of RPL=40

Application
Program Buffers

80 bytes

80 bytes

40 bytes

200-byte request
in VTAM buffer

200-byte request received
by VTAM on the session

Figure 43. Example showing values in the RECLEN field of an RPL

Chapter 6. Communicating with logical units 183

When an application program issues SEND OPTCD=LMPEO, it passes FM data to
VTAM and also passes information for an initial RH. VTAM reformats the FM data
into one or more request units which form a chain or partial chain of RUs, and
then sends each generated request to the other LU in the session as seen in
Figure 44. None of these generated requests is larger than the maximum RU size
specified in the BIND for sending in that direction on the session (that is, from the
application program to the other LU in the session). If there is sufficient data, the
first RU generated by VTAM has the maximum RU size allowed. If the amount of
data specified by SEND is less than the maximum RU size, or if the maximum RU
size in the BIND is 0, only a single request unit is generated. A maximum RU size
of 0 specified in the BIND is inconsistent with the purpose of LMPEO, because
VTAM does not break the data into multiple RUs if 0 is specified, no matter how
large the message is.

The field in the BIND that specifies the maximum RU size is described in “Request
unit size” on page 797. There are two such fields, one for each direction of data
flow in the session (PLU to SLU and SLU to PLU). If the application program is
the SLU, LMPEO uses the first field (byte 9) as the maximum RU size; if the
application program is the PLU, LMPEO uses the second field (byte 10) as the
maximum RU size.

The location of the FM data to be sent by LMPEO varies depending upon whether
the buffer-list option (OPTCD=BUFFLST) is used with LMPEO. BUFFLST also
allows the application program to influence how LMPEO splits the FM data to be
sent. Without the BUFFLST option (OPTCD=NBUFFLST), LMPEO sends the FM
data from the area pointed to directly by the RPL AREA field, and splits the FM
data (if necessary) into multiple RUs without regard for the data content. See “The
buffer-list (BUFFLST) option” on page 191 for information on using BUFFLST with
LMPEO.

If SEND OPTCD=NLMPEO is issued, then VTAM does not split the data into
separate RUs and does not enforce the maximum RU size restriction. In that case,
the application program must ensure that each RU is within the size limits agreed
upon at BIND time.

If OPTCD=LMPEO and the RU being sent is not an FM data request (for example,
CONTROL is not DATA), then SEND is rejected with (RTNCD,FDB2)=(X'14',X'77').

Application Program

SEND
OPTCD=LMPEO

VTAM LMPEO Function

The request units (RUs)
form a chain or partial
chain. No RU generated by
VTAM is larger than the
maximum allowed RU size.

RU1

RU2

RUn

Large message in
application program

storage area

Figure 44. LMPEO operation on a message sent to an SNA LU

184 z/OS V2R1.0 Communications Server: SNA Programming

If the VTAM encrypt/decrypt facility is used, each of the requests generated by
VTAM for a SEND is enciphered, if appropriate. For each SEND, all or none of the
FM data is enciphered. This is under the control of the RPL CRYPT operand and
the NIB ENCR operand. See “Sending and receiving enciphered data requests” on
page 218 for information on cryptographic requirements.

Handling request headers (RH):

The initial RH is obtained from one of the following places as summarized in
Table 25:
v RPL flags, if OPTCD=(NUSERRH,NBUFFLST) or OPTCD=(NUSERRH,BUFFLST)
v RPL user-RH field, if OPTCD=(USERRH,NBUFFLST)
v First buffer-list entry for each buffer group, if OPTCD=(USERRH,BUFFLST).

Table 25. Location of the initial RH

BUFFLST
selected

LMPEO
selected

USERRH
selected

Number of
RUs
generated Location of initial RH

no no no 1 RPL flags

no no yes 1 RPL user-RH field

no yes no 1 or more RPL flags

no yes yes 1 or more RPL user-RH field

yes no no 1 RPL flags

yes no yes 1 First entry of buffer list

yes yes no 1 or more RPL flags

yes yes yes 1 or more First entry of buffer list
associated with each buffer
group

The initial RH is used as a model to build the RH for each generated request. The
initial RH indicates one of the following: only-in-chain (OIC), first-in-chain (FIC),
middle-in-chain (MIC), or last-in-chain (LIC). See “Chaining” on page 201. VTAM
generates requests as shown in Table 26. All generated requests are part of the
same chain. If the initial RH specified OIC, a whole chain is generated. If the initial
RH specified FIC, MIC, or LIC, a partial chain is generated.

The indicators that VTAM puts into the RH of each generated request depend on
the initial RH and on whether the generated request is OIC, FIC, MIC, or LIC. See
Figure 45 on page 187 and Figure 46 on page 188 for the rules VTAM uses to set
the RH of each generated request.

Note: For OPTCD=NLMPEO, the RH propagation rules shown in Figure 45 on
page 187 and Figure 46 on page 188 do not apply. The initial RH is used for the
single request sent.

Table 26. Possible chain indicators resulting from initial RH-chain indicator settings

Initial RH-chain indicators Resultant RH-chain indicators

OIC OIC or FIC,LIC or FIC,MIC,...,MIC,LIC

FIC FIC or FIC,MIC,...,MIC

MIC MIC,...,MIC

LIC LIC or MIC,...,MIC,LIC

Chapter 6. Communicating with logical units 185

Table 26. Possible chain indicators resulting from initial RH-chain indicator
settings (continued)

Initial RH-chain indicators Resultant RH-chain indicators

Note: In this table MIC,...,MIC represents a single MIC request or multiple MIC requests.

In summary, for SEND OPTCD=LMPEO, the input request results in one or more
output requests as follows:
v All chains are standard SNA chains, requesting no response (RQN), exception

response (RQE), or definite response (RQD) as shown in Figure 45 on page 187
and Figure 46 on page 188.

v POST=SCHED or RESP can be used with SEND OPTCD=LMPEO. The SEND
macroinstruction is posted complete when the last request generated from the
message has been handled. The POST operand applies to this last request. Thus,
posting occurs when the RPL is no longer needed for the request
(POST=SCHED) or when the response asked for by the last request has been
returned (POST=RESP).

v The normal session-level pacing and virtual-route pacing rules apply to requests
generated by LMPEO. A large message can take a long time to transmit;
therefore, OPTCD=ASY rather than OPTCD=SYN should be used if it is
undesirable to suspend the task issuing SEND for that length of time. With
OPTCD=ASY, the application program regains control while VTAM is sending
the requests generated from the large message.

Additional considerations for posting of SEND are discussed in “Exception
conditions” on page 190.

186 z/OS V2R1.0 Communications Server: SNA Programming

Legend:

Indicator Meaning Indicator Meaning
BBI Begin Bracket Indicator FIC First-in-Chain
CDI Change Direction Indicator LIC Last-in-Chain
CEBI Conditional End Bracket

Indicator
MIC Middle-in-Chain

CSI Code Selection Indicator OIC Only-in-Chain
EBI End Bracket Indicator QRI Queued Response Indicator
EDI Enciphered Data Indicator RCDI Request Change Direction

Indicator
FI Format Indicator SDI Sense Data Included Indicator

Notes:

1. Any LMPEO request is rejected with (RTNCD,FDB2)=(X'14',X'7B'), if the pacing
indicator (PI), padded data indicator (PDI), or reserved bits (byte 0, bit 3,
byte 1, bits 1, 4, or 5) are set.

2. Output RH has the same setting as the initial RH.
3. Indicator is set to 0.
4. Output RH cannot be created from initial RH.
5. Warning: These lines show what VTAM currently implements if the specified

input is given. This input is not valid in SNA, and the VTAM implementation
is subject to change. The application program should not specify this input.

6. Sense Data Included (SDI) requests are not split. FM data exception requests
can contain only 4 bytes of data which VTAM gets from the SSENSEO,
SSENSMO, and USENSEO fields of the RPL. The SDI indicator is set on the
first and only output request.

7. If no MICs are generated, the output request has the same setting as the input
request.

Initial RH settings RHs generated by LMPEO

FIC + MIC + MIC + . . . + MIC + LIC OIC

See Notes:

BBI or EBI in: OIC 2 3 3 3 3 2
FIC 2 3 3 3 4 4

(Note 5) MIC 4 2 3 3 4 4
(Note 5) LIC 4 2 3 3 3,7 4

QRI, CSI or OIC 2 2 2 2 2 2
EDI in: FIC 2 2 2 2 4 4

MIC 4 2 2 2 4 4
LIC 4 2 2 2 2 4

FI, RCDI, or OIC 2 3 3 3 3 2
SDI (Note 6) FIC 2 3 3 3 4 4
in: MIC 4 2 3 3 4 4

LIC 4 2 3 3 3,7 4

CDI or CEBI in: OIC 3 3 3 3 2 2

(Note 5) FIC 3,7 3 3 2 4 4
(Note 5) MIC 4 3 3 2 4 4

LIC 4 3 3 3 4 4

Figure 45. LMPEO handling of selected RH indicators

Chapter 6. Communicating with logical units 187

Legend:

* 1, 2, or 3

RQN No response requested

RQE Exception response requested

RQD Definite response requested

RQX Invalid combination in SNA

Notes:

1. RQN = (¬ER,¬DR1,¬DR2) and RESPOND = (NEX,NFME,NRRN)
2. RQE* = RQE1 or RQE2 or RQE3 where:
v RQE1 = (ER,DR1,¬DR2) and RESPOND = (EX,FME,NRRN)
v RQE2 = (ER,¬DR1,DR2) and RESPOND = (EX,NFME,RRN)
v RQE3 = (ER,DR1,DR2) and RESPOND = (EX,FME,RRN)

3. RQD* = RQD1 or RQD2 or RQD3 where:
v RQD1 = (¬ER,DR1,¬DR2) and RESPOND = (NEX,FME,NRRN)
v RQE2 = (¬ER,¬DR1,DR2) and RESPOND = (NEX,NFME,RRN)
v RQE3 = (¬ER,DR1,DR2) and RESPOND = (NEX,FME,RRN)

4. RQX = (ER,¬DR1,¬DR2) and RESPOND = (EX,NFME,NRRN)
5. The output request cannot be created from input request.
6. Warning: These lines show what VTAM currently implements if the specified

input is given. This input is not valid in SNA and the VTAM implementation is
subject to change. The application program should not specify this input.

Initial RH settings RHs generated by LMPEO

FIC + MIC + MIC + . . . + MIC + LIC OIC

RQN (Note 1) in: See Notes:

OIC RQN RQN RQN RQN RQN RQN
FIC RQN RQN RQN RQN Note 5 Note 5
MIC Note 5 RQN RQN RQN Note 5 Note 5
LIC Note 5 RQN RQN RQN RQN Note 5

RQE* (Note 2) in:

OIC RQE* RQE* RQE* RQE* RQE* RQE*
FIC RQE* RQE* RQE* RQE* Note 5 Note 5
MIC Note 5 RQE* RQE* RQE* Note 5 Note 5
LIC Note 5 RQE* RQE* RQE* RQE* Note 5

RQD* (Note 3) in:

(Note 6) OIC RQE* RQE* RQE* RQE* RQD* RQD*
(Note 6) FIC RQE* RQE* RQE* RQE* Note 5 Note 5
(Note 6) MIC Note 5 RQE* RQE* RQE* Note 5 Note 5
(Note 6) LIC Note 5 RQE* RQE* RQE* RQD* Note 5

RQX (Note 4) in:

(Note 6) OIC RQN RQN RQN RQN RQN RQN
(Note 6) FIC RQN RQN RQN RQN Note 5 Note 5
(Note 6) MIC Note 5 RQN RQN RQN Note 5 Note 5
(Note 6) LIC Note 5 RQN RQN RQN RQN Note 5

Figure 46. LMPEO handling of selected RH-chain indicators

188 z/OS V2R1.0 Communications Server: SNA Programming

LMPEO sequence number handling:

Each request unit generated by VTAM during an LMPEO operation is assigned a
sequence number just as if the application program had passed that request
directly to VTAM with a SEND macroinstruction. When the SEND
OPTCD=LMPEO macroinstruction is posted complete, the RPL OBSQVAL field
contains the sequence number of the first generated request unit and the RPL
SEQNO field contains the sequence number of the last generated request unit. If a
large amount of data is specified for SEND OPTCD=LMPEO, it is possible for
duplicate sequence numbers to be generated (because of sequence number
wraparound) before SEND is posted complete. This can occur for SNA LUs only if
more than 65535 requests are generated for SEND OPTCD=LMPEO.

If a response is returned containing the sequence number of one of the generated
requests, the application program can usually determine the message involved by
noting that the sequence number falls in the range between and including the
OBSQVAL and SEQNO values posted for the SEND of that message.

Data-stream considerations:

When generating request units from a message sent with OPTCD=LMPEO, VTAM
gives no consideration to the contents of the data. In general, the points at which
VTAM splits the data, the RU boundaries, can occur anywhere in the data. VTAM
ensures only that no RU is larger than the applicable maximum RU size, and that
the first generated RU is equal to the maximum RU size, if there is enough FM
data to make this possible.

Because VTAM does not consider data content when splitting a message into RUs,
LMPEO should not be used where RU boundaries imposed by LMPEO are
significant relative to the data. Use of the buffer-list option, in combination with
LMPEO, allows the application program to specify RU boundaries and, therefore,
to minimize any adverse effects of RU boundary selection by LMPEO. Refer to
“The buffer-list (BUFFLST) option” on page 191 for information about how the
buffer-list option is used with LMPEO.

Some cases in which data-stream architectures or device implementations place
restrictions on the use of LMPEO are as follows:
1. For LU type 1, if card data streams are to be used, the data stream profile

(DSP) in the BIND must specify that cards can span RUs; otherwise, LMPEO
might place an RU boundary in the middle of a card image. If an LU type 1
implementation does not support this DSP, do not use LMPEO.

2. FM headers cannot span RUs for LU type 1. For LU type 1, all FM headers are
contiguous and begin with the first byte of the chain. If the maximum RU size
is equal to or greater than the largest concatenated set of FM headers sent by
the application program to the LU, there is no problem with using LMPEO
because the first RU generated for LMPEO data splitting is always equal to the
maximum RU size. However, if the FM headers are larger, the application
program can define RU boundaries for the part of the chain that has FM
headers through use of the buffer-list option and LMPEO control flags.
Alternatively, the application program can use multiple SENDs. It can send the
FM header RUs with OPTCD=NLMPEO and send the rest of the chain using
OPTCD=LMPEO.

3. For LU type 1, the string control byte (SCB) must be at the front of each RU.
This is not guaranteed by VTAM when using LMPEO. Therefore, compression

Chapter 6. Communicating with logical units 189

cannot be used with LMPEO unless the application program uses the buffer-list
option and LMPEO control flags to define its own RU boundaries.

Exception conditions:

It may happen that a negative response is received by VTAM for a chain that is
generated by a SEND OPTCD=LMPEO. If the response is received before SEND is
posted complete, then OPTCD=CONTCHN or NCONTCHN and POST=SCHED or
RESP on the SEND control what action is taken. Table 27 and the following
paragraphs describe how these operands are used. VTAM either continues to send
the remainder of the chain (OPTCD=CONTCHN), or aborts the chain if there is
any part of the message not yet sent (OPTCD=NCONTCHN). Normally, an
application program should use NCONTCHN, the default.

Table 27. Negative-response handling by VTAM for SEND OPTCD=LMPEO

POST=SCHED POST=RESP

OPTCD=CONTCHN Last or Not Last (see Note):

v Deliver response to application program.

v Send rest of chain.

v Post SEND with
(RTNCD,FDB2)=(X'0C',X'0D').

Not Last:

v Deliver response to application program.

v Send rest of chain.

v Post SEND with
(RTNCD,FDB2)=(X'0C',X'0D').

Last:

v Post SEND with (RTNCD,FDB2)=
(X'04',X'04') and negative response.

OPTCD=NCONTCHN Last or Not Last:

v Deliver response to application program.

v Send zero-length LIC RU if SEND specified
CHAIN=ONLY or LAST.

v Post SEND with
(RTNCD,FDB2)=(X'0C',X'0D').

Not Last:

v Deliver response to application program.

v Send zero-length LIC RU if SEND specified
CHAIN=ONLY or LAST.

v Post SEND with
(RTNCD,FDB2)=(X'0C',X'0D').

Last:

v Post SEND with
(RTNCD,FDB2)=(X'04',X'04') and negative
response.

Note:

Last means that unless there is a negative response received, this is the last request sent for this SEND. Deliver
response to application program means that the application program must issue a RECEIVE RPL (RTYPE=RESP) or
use a RESP exit routine.

When VTAM receives a negative response, VTAM ends the chain by immediately
posting the SEND complete with (RTNCD,FDB2)=(X'0C',X'0D') and by not sending
the remaining data of the message. Additionally, when a chain ends, if the last
request normally sent for the message is an LIC request, then an LIC zero-length
RU is sent to end the chain. This request has the same RH that would have been
sent with the final request for that message if no error occurred.

When SEND fails with (RTNCD,FDB2)=(X'04',X'04'), the sense information is
available in RPLFDBK2. However, when SEND fails with
(RTNCD,FDB2)=(X'0C',X'0D'), then the application program must issue the
RECEIVE RPL (or an available RESP exit routine) to obtain the failing sense code.

190 z/OS V2R1.0 Communications Server: SNA Programming

In all cases, the negative response is passed back to the application program (by
means of a RESP exit routine, a RECEIVE, or by posting SEND POST=RESP). For
SEND POST=RESP, if the sequence number of the negative response is the same as
the sequence number of the last request sent, and if that request was the last
request for the message (that is, no data remains to be sent for the message), then
SEND is posted complete with (RTNCD,FDB2)= (X'04',X'04') instead of
(X'0C',X'0D').

The OBSQVAL and SEQNO fields always indicate the sequence numbers of the
first and last requests (including the zero-length RU discussed above) that are
actually sent by VTAM.

An outstanding SEND is posted complete when a Clear request is sent or received
or when the associated session ends. This is independent of whether
OPTCD=LMPEO is used. For OPTCD=LMPEO, part of the chain might have been
sent. In general, if any part of the data to be sent, including the address of any
buffer list or buffer-list entry, is found to be not valid (cannot be referenced) when
VTAM tries to send it, SEND fails with (RTNCD,FDB2)= (X'14',X'1E'). VTAM
verifies that the data address is read/write capable.

VTAM does not verify the data address area if you use the authorized path facility
described in Chapter 10, “Operating system facilities,” on page 295. The application
program is responsible for terminating the chain if one has begun.

Performance considerations for LMPEO:

The major performance advantage in using OPTCD=LMPEO to SEND large
messages is the significant reduction in path length (the number of instructions
executed) achieved when compared to the application program itself splitting a
large message and issuing individual SENDs. This advantage should be weighed,
however, against the possibility of less efficient use of application program storage
by LMPEO.

Application program storage might be used less efficiently because SEND is not
posted complete (indicating that the output area is now available) until the whole
message has been handled by VTAM. Pacing might delay the completion of the
LMPEO SEND. With OPTCD=NLMPEO, the application program can reuse each
SEND's output area as soon as that SEND completes. This assumes that the data is
available elsewhere (for example, on a disk) if it must be present.

It is somewhat less efficient to use OPTCD=LMPEO instead of OPTCD=NLMPEO
to SEND a message that does not require splitting (if the size of the message to be
sent is less than or equal to the maximum RU size). The application program could
pretest the size of a message to be sent to decide whether to use OPTCD=LMPEO.

The buffer-list (BUFFLST) option:

The buffer-list (BUFFLST) option simplifies the task of writing an application
program by eliminating the need for data to be sent from one contiguous storage
area.

BUFFLST operating considerations:

SEND OPTCD=BUFFLST allows FM data to be sent from a number of
discontiguous buffers; this can result in more efficient use of application program
storage areas. The RPLAREA field points to a buffer list, which is a contiguous set

Chapter 6. Communicating with logical units 191

of 16-byte control blocks called buffer-list entries. Each buffer-list entry points to a
buffer that contains part of the data to be sent.

Note: If LMPEO is used to split data into RUs, the RU boundaries do not usually
correspond to the buffer boundaries. There may be more or fewer RUs than the
buffer-list entries.

If the message to be sent using OPTCD=BUFFLST is not an FM data request or a
set of FM data requests, SEND is rejected with (RTNCD,FDB2)=(X'14',X'77').

The RPL RECLEN field specifies the length (in bytes) of the buffer list. If RECLEN
does not specify a nonzero multiple of 16, SEND is rejected with
(RTNCD,FDB2)=(X'14',X'79'). Each buffer-list entry is mapped in the ISTBLENT
DSECT described in Appendix E, “Control block formats and DSECTs,” on page
739.

If OPTCD=(BUFFLST,LMPEO), then each buffer-list entry contains LMPEO control
flags which govern whether the buffers associated with adjacent buffer-list entries
should be grouped together as a single RU, or whether the data is eligible to be
split into multiple RUs. See “Buffer-list LMPEO states” on page 193 for a
description of how LMPEO control flags are used to govern RU boundary settings.
See also Table 25 on page 185 for information about using combinations of the
BUFFLST, LMPEO, and USERRH options. The format of the buffer list follows. A
buffer list consists of one or more contiguous buffer list entries aligned on a
fullword boundary.

Application Program VTAM

SEND
OPTCD=BUFFLST

R
E
C
L
E
N

RU

RUs in a chain
if LMPEO is used;
otherwise,a single
RU. (See note.)

Note: If LUMPEO is used to split data into RUs, the RU boundaries
do not usually correspond to the buffer boundaries.
There may be more or fewer RUs than the buffer list-entries.

Buffer List

Buffer List Entry

Buffer List Entry

Buffer List Entry

Data

Data

Data

RU1

RU2

RUn

RPL

AREA

RECLEN

Figure 47. Buffer-list operation

192 z/OS V2R1.0 Communications Server: SNA Programming

Table 28. Buffer-list entry format

Word Contents

1
Byte 0 Flag Byte. The first two flags are LMPEO control flags. They are used

only if OPTCD=LMPEO is specified. Otherwise, they must be set to
0. ¹

v Bit 0

The Begin RU flag (BLEBEGRU) in the ISTBLENT DSECT. If on, it
indicates that the data in the associated buffer begins an RU.
VTAM does not split this data into multiple RUs.

v Bit 1

The End RU flag (BLEENDRU) in the ISTBLENT DSECT. If on, it
indicates that the data in the associated buffer ends an RU.

v Bits 2–7

Reserved. Bits must be set to 0.

Bytes 1-3
Request header. If either OPTCD=NUSERRH or this buffer-list entry
does not contain a user RH (it is not the first entry of a buffer group),
these bytes are reserved and must be set to 0.

2 Reserved. Must be set to 0.

3 Pointer to the beginning of the data buffer.

4 Length of the data in the buffer. If 0 is specified, the third word is ignored.
However, the flags in byte 0 of the first word are processed and can change
the LMPEO states. For RUs whose boundaries are specified by the application
program (using the Begin RU and End RU flags), the total RU length must
not be larger than 65 535 bytes. If the LMPEO option is used to split the data
into RUs, a length greater than 65 535 may be specified.

Note:

1. These flags are discussed in detail, see “(Begin RU, End RU)=(1,1)” on page 195,
“(Begin RU, End RU)=(1,0)” on page 195, “(Begin RU, End RU)=(0,1)” on page 196, and
“(Begin RU, End RU)=(0,0)” on page 196.

Buffer-list LMPEO states:

The LMPEO and BUFFLST options can be used in combination for a SEND
macroinstruction. In this case, LMPEO control flags in each buffer-list entry allow
the application program to either explicitly specify RU boundaries for the
associated data or let VTAM determine the RU boundaries. As indicated in

Byte: 0 1 4 8 12 16

Flags

Flags

Flags

RH

RH

RH

Reserved

Reserved

Reserved

Data Pointer

Data Pointer

Data Pointer

Data Length

Data Length

Data Length

R
P
L

R
E
C
L
E
N

Figure 48. Buffer-list entry format

Chapter 6. Communicating with logical units 193

“Data-stream considerations” on page 189, it is sometimes necessary for an
application program to specify where RUs should begin and end in the data
stream.

One or more adjacent entries in a buffer list form a buffer-list-entry group. The
associated buffers form a buffer group. The data in such a buffer group can be
designated either as data that should be accumulated, that is, considered as a
single RU and thus should not be split by LMPEO, or as data that can be split into
multiple RUs by LMPEO.

Processing of a buffer list by VTAM involves three states: the reset state, the split
state, and the accumulate state.

The reset state is entered at the beginning and end of processing the buffer list,
and whenever an entry flagged as End RU is processed.

In the split state, VTAM is allowed to split the data into RUs based on the
maximum RU size for the session. See “LMPEO operating considerations” on page
183 for further information.

In the accumulate state, VTAM accumulates data into a single RU.

Figure 49 on page 195 shows the state transitions that occur when each buffer-list
entry is processed. For those transitions in which a new buffer group begins, the
data from the previous group is sent as one or more RUs, and the data from the
new group forms one or more separate RUs. Therefore, data from the two groups
is never part of the same RU.

Within a buffer group, the number of buffers and the way the data is divided
among the buffers does not affect the final result. If a buffer-list entry specifies a
length of zero for the buffer data, the associated buffer pointer is ignored.
However, the LMPEO control flags are still used to delimit buffer groups and to
determine the state transitions (discussed below).

If OPTCD=USERRH is used with OPTCD=(LMPEO,BUFFLST), the initial RH is
taken from the first buffer-list entry associated with the buffer group. The RH
fields of the other buffer-list entries associated with the buffer group are reserved.
For an example, see “Example of using LMPEO, BUFFLST, and USERRH” on page
200.

194 z/OS V2R1.0 Communications Server: SNA Programming

Possible combinations of the Begin RU and End RU LMPEO control flags are
shown in the following sections. The numbers in parentheses represent the values
of the corresponding control flags.

(Begin RU, End RU)=(1,1): All the data pointed to by this entry forms a single RU.
The buffer group consists solely of the buffer pointed to by this entry. If this entry
is encountered while in split or accumulate state, the previous buffer group is
ended and the RUs from the data in that group are completed and sent. Then the
RU associated with this entry is sent and reset state is entered. If a (1,1) entry is
encountered in reset state, the single associated RU is sent, and reset state is
maintained.

(Begin RU, End RU)=(1,0): The data pointed to by this entry forms the initial part
of a single RU. Subsequent entries in this group can add data to the RU. If this
entry is encountered while in split or accumulate state, the previous buffer group
is ended and the RUs from the data in that group are completed and sent;

Figure 49. Buffer-list LMPEO-state transitions

Chapter 6. Communicating with logical units 195

accumulate state is then entered. If a (1,0) entry is encountered in reset state,
accumulate state is entered and no RU is sent at this time.

(Begin RU, End RU)=(0,1): The data pointed to by this entry forms the final part of
the RU or RUs associated with the current buffer group, and is appended to data
accumulated from previous entries (if any) in this buffer group. This entry ends
that buffer group. If this entry is encountered in split or accumulate state, the
current buffer group is ended and the associated RUs are sent; reset state is then
entered. If a (0,1) entry is encountered in reset state, this entry begins and ends a
group. The associated data is eligible to be split into multiple RUs; the RUs are
sent and reset state is maintained.

(Begin RU, End RU)=(0,0): The data pointed to by this entry is appended to the
data pointed to by previous entries (if any) in this buffer group. If a (0,0) entry is
encountered in accumulate state, the data becomes part of the single RU being
accumulated; accumulate state is maintained. If a (0,0) entry is encountered in split
state, the data is added to the data that is split by VTAM when a sufficient amount
is gathered; split state is maintained. If a (0,0) entry is encountered in reset state,
this entry begins a new buffer group and split state is entered. The data is the
initial part of the data that is split by VTAM when a sufficient amount is gathered.

End of buffer list: This condition acts as the implicit end of the current buffer
group. The last entry in the buffer list is handled as if the End RU flag were set.
Thus, the last entry is handled as described above for the (0,1) or (1,1) values of
(Begin RU, End RU). In all cases, when the end of the buffer list has been reached,
all remaining data is formed into RUs and sent. Data is never carried forward to
be used with the next SEND.

The user RH (USERRH) option:

When an application program issues a SEND macroinstruction, it has the option
(OPTCD=USERRH) of specifying a 3-byte RH (request header or response header)
for each RU sent. The header to be sent is specified in an RPL field (RPLURH) or
in a buffer-list entry if the buffer-list option is used.

If the user RH option is not used (OPTCD=NUSERRH), VTAM translates the RH
indicators from the contents of other RPL fields associated with RPL operands such
as STYPE=REQ and RESPOND=(EX,FME). In this case, VTAM also enforces certain
SNA rules governing combinations of RH indicators and specifying which
indicators are sent with certain data-flow-control RUs. (This is consistent with
earlier levels of VTAM.)

USERRH operating considerations:

With the user RH option, the application program specifies the RH in the SEND
RPL or in a buffer-list entry. This user RH field has the same format as the SNA
RH. The ISTRH DSECT, described in Appendix E, “Control block formats and
DSECTs,” on page 739, can be used as a map for this field.

The USERRH option can be used when sending any function-management-data or
data-flow-control request or response. It can be used either with or without the
LMPEO and BUFFLST options. See Table 25 on page 185 for the location of the
initial RH. If the buffer list option is used, each buffer-list entry that defines the
beginning of an RU (or group of RUs created by an LMPEO splitting operation)
must contain an RH field.

196 z/OS V2R1.0 Communications Server: SNA Programming

With the user-RH option, VTAM does not enforce particular settings of RH
indicators related to data flow control and FM data. However, VTAM does control
the settings of RH indicators related to transmission services, session control, and
network control; and also prevents the setting of those indicators reserved by SNA,
except RH byte 2, bit 3, the request change direction indicator. Table 29 lists the RH
indicators to which the user RH option is applicable.

The RH for a request or response inbound to the application program is made
available in the RECEIVE RPL or in the read-only RPL of the RESP, DFASY, SCIP,
and NSEXIT exit routines.

Operation for outbound RUs:

The application program invokes the user-RH option for outbound flow by issuing
SEND OPTCD=USERRH. Both FM data and data-flow-control requests and
responses can be sent. The RPL CONTROL operand must specify DATA or one of
the valid data-flow-control RUs (either expedited-flow or normal-flow). VTAM
rejects SEND with (RTNCD,FDB2)=(X'14',X'7B') if the user-RH RU-category flags
are inconsistent with CONTROL (for example, CONTROL=SIGNAL, but the RU
category indicates FMD instead of DFC).

If OPTCD=NBUFFLST, the user-RH field from the SEND RPL is used. If
OPTCD=LMPEO, this RH defines the initial RH from which are derived the RHs
of the request units generated by the LMPEO operation. If
OPTCD=(BUFFLST,NLMPEO), a single request unit is being sent and the RH is
obtained from the first buffer-list entry.

If OPTCD=(BUFFLST,LMPEO), the LMPEO control flags in the buffer-list entries
are used to define RU boundaries. For any buffer group that is specified as not to
be split by LMPEO, the associated RH for that RU comes from the first buffer
list-entry for the RU. For any buffer group that can be split by LMPEO, the first
buffer list entry for the group defines the initial RH from which are derived the
RHs of the RUs generated by the LMPEO operation.

If the pacing indicator (PI), padded data indicator (PDI), or reserved indicators are
set in the user-RH for SEND OPTCD=USERRH, SEND is rejected with
(RTNCD,FDB2)=(X'14',X'7B'). The indicators that cannot be set are the indicators
with “no” specified in the fourth column of Table 29.

Table 29. Relationship of the user RH field to the request/response header

Byte Bit SNA name
RH bits applicable to user
RH field

RPL operands related to RH-bit
settings1

0 0 RRI Yes STYPE=RESP or REQ

1,2 RUCAT Yes2 Implied by CONTROL

3 Reserved No None

4 FI Yes OPTCD=FMH

5
SDI

Yes Implied by SSENSO, SSENSMO,
USENSEO

6,7 BCI, ECI Yes RESPOND=EX for responses CHAIN

Chapter 6. Communicating with logical units 197

Table 29. Relationship of the user RH field to the request/response header (continued)

Byte Bit SNA name
RH bits applicable to user
RH field

RPL operands related to RH-bit
settings1

1 0 DR1I Yes RESPOND=FME

1 Reserved No None

2 DR2I Yes RESPOND=RRN

3 ERI/RTI Yes RESPOND=EX

4 Reserved No None

5 Reserved No None

6 QRI Yes RESPOND=QRESP

7 PI No None

2 0 BBI Yes BRACKET=BB

1 EBI Yes BRACKET=EB

2 CDI Yes CHNGDIR=CMD

3 Reserved Yes None

4 CSI Yes CODESEL

5 EDI Yes CRYPT

6 PDI No None

7 CEBI Yes BRACKET=CEB

Note:

1. These are the RPL operands used to set the RH bits when OPTCD=NUSERRH.

2. Only the data-flow-control and FM data categories can be set by the application program.

Legend

Indicator Meaning Indicator Meaning
BBI Begin Bracket Indicator ERI Exception Response Indicator
BCI Begin Chain Indicator FI Format Indicator
CDI Change Direction Indicator PI Pacing Indicator
CEBI Conditional End Bracket Indicator PDI Padded Data Indicator
CSI Code Selection Indicator QRI Queued Response Indicator
DR1I Definite Response 1 Indicator RRI Request/Response Indicator
DR2I Definite Response 2 Indicator RTI Response Type Indicator
EBI End Bracket Indicator RUCAT RU Category
ECI End Chain Indicator SDI Sense Data Included Indicator
EDI End Data Indicator

Operation for inbound RUs:

With one exception noted in “Relationship to POST=RESP” on page 199, the RPL
user RH field is always set when a request or response is delivered to an
application program. Therefore, setting OPTCD=USERRH is not necessary for an
inbound operation. The RH field that is set is the one in the RECEIVE RPL or in
the read-only RPL of the RESP, DFASY, SCIP, or NSEXIT exit routine in which the
request or response is received. When the RPL RH field is set, the other RPL fields
related to RH indicators (for example, those associated with STYPE and
RESPOND) are also set.

198 z/OS V2R1.0 Communications Server: SNA Programming

The RH of the input request or response is moved directly to the RPL's user-RH
field. Those indicators related to transmission services (the PI and PDI) and the
currently reserved SNA indicators are set to 0, except for byte 2, bit 3, which is set
as received in the input RH.

Relationship to POST=RESP:

The exception to the preceding description occurs when a response is received that
completes the posting of an outstanding POST=RESP output operation. In this
case, the input RH of the response is not placed in the user-RH field of the SEND
or SESSIONC RPL. Thus, the original setting of the RPL's user-RH field is
preserved. This applies whether the POST=RESP is explicit, for example:
SEND POST=RESP,STYPE=REQ,CONTROL=DATA,RESPOND=(NEX,FME)

or implicit, for example:
SESSIONC STYPE=REQ,CONTROL=SDT

Refer to the description of the SEND and SESSIONC macroinstructions in
Chapter 13, “Conventions and descriptions of VTAM macroinstructions,” on page
371 and “Synchronous versus asynchronous operations” on page 169, in this
chapter, for details about the POST operand.

Relationship to NIB PROC=ORDRESP or NORDRESP operand:

The NIB PROC=ORDRESP or NORDRESP operand controls how VTAM handles
the receipt of responses in which the queued response indicator (QRI) is turned on.
Refer to “Controlling the handling of normal-flow responses” on page 161 for a
description of the PROC=ORDRESP or NORDRESP operands. This handling of
responses is independent of the user-RH option. PROC=ORDRESP or NORDRESP
also controls the setting of the RPL RESPOND operand for the sending of
normal-flow data-flow-control (DFC) requests and responses, except when
OPTCD=USERRH.

PROC=ORDRESP or NORDRESP is ignored for outbound flow when SEND
OPTCD=USERRH is used. It still applies for any inbound flow. For SEND
OPTCD=USERRH, the user-RH settings are used for all DFC requests and
responses. It is the application program's responsibility to ensure that the
indicators are set in accordance with the SNA protocols being used for that session.

Handling the sense data included (SDI) indicator:

If the sense data included (SDI) indicator is on in the user RH field for SEND
OPTCD=USERRH, then the associated 4 bytes of sense data are obtained from the
SSENSEO, SSENSMO, and USENSEO fields of the RPL. This is applicable to
sending requests (exception requests) and responses (negative responses), both FM
data and DFC. If the SDI indicator is on for an FM data RU, the RU consists only
of those 4 bytes of sense data. For a DFC RU, VTAM appends the DFC request
code to the sense data. If the SDI indicator is on, the data length (RECLEN or the
fourth word of the corresponding buffer-list entry) must be 0. If the length is not
zero, the SEND operation fails with (RTNCD,FDB2)=(X'14',X'1E'). The data pointer
(AREA or the third word of the buffer list entry) is ignored.

When sending a negative response using OPTCD=USERRH, the application
program must ensure that both the SDI and response type (RTI) indicators are

Chapter 6. Communicating with logical units 199

turned on. For OPTCD=NUSERRH, VTAM automatically turns on the SDI
indicator when sending a negative response (for example, SEND
STYPE=RESP,RESPOND=(EX,FME)).

Example of using LMPEO, BUFFLST, and USERRH:

The example contained in Figure 50 shows the results of a SEND
OPTCD=(LMPEO,BUFFLST,USERRH) in which the application program has
specified a buffer list of 12 entries, pointing to 12 discontiguous data areas. For
some of the data, the application program wishes to define the RU boundaries. For
the rest of the data, VTAM splits the data into RUs based on a maximum RU size
of 100 bytes, which was obtained from the appropriate maximum RU size field in
the BIND.

1 00 MIC rsv addr 202

2 00 rsv rsv addr 30

3 C0 MIC rsv addr 37

4 C0 MIC rsv addr 17

5 80 MIC rsv addr 2

6 00 rsv rsv addr 40

7 40 rsv rsv addr 25

8 00 MIC rsv addr 98

9 40 rsv rsv addr 5

10 80 MIC rsv addr 80

11 40 rsv rsv addr 27

12 00 LIC rsv addr 117

Buffer Request/
List Response
Entry Flag Header Buffer
Number (Note 1) (RM) Reserved Address Length

111. . .111

222. . .222

333. . .333

444. . .444

55

666. . .666

777. . .777

888. . .888

99999

AAA. . .AAA

BBB. . .BBB

CCC. . .CCC

multiple
RUs

multiple
RUs

multiple
RUs

single
RU

single
RU

single RU

single RU

103

103

35

40

20

70

103

6

110

103

20

MIC

MIC

MIC

MIC

MIC

MIC

MIC

MIC

MIC

MIC

LIC

111.111

111.111

112. . .222

333.333

444. .444

556.777

888.899

999

AAA.BBB

CCC.CCC

CCC. .CCC

Request/
Response
Header
(RM)

Request Unit
(RU)
Data
(Note 3)

(Note 4)

Transmission
Header (TH)
Data Count

Field (Note 2)

Buffer List Buffers Generated Requests

Notes:
1. Flags (in ISTBLENT DSECT: BLEBEGRU EQU X ‘80’and

BLEENDRU EQU X ‘40’) are defined (in hex) as follows:
80 = Marks the beginning of a user-defined RU.
40 = Marks the end of a user-defined RU.
C0 = Marks a user-defined RU.
00 = If accumulating a user-defined RU, marks a continuation of that RU.

If not accumulating a user-defined RU, marks a buffer whose data is
to be combined with the data from previous buffers; VTAM will split
the resulting data into RUs.

2. Total number of bytes (RH + data).
3. The number of RU data bytes is never greater than the maximum RU size

specified in the BIND when VTAM does the data splitting.
4. The application program may (but should not) specify an RU size greater

than the maximum RU size agreed to in BIND. Specifying a larger RU size is
in violation of SNA protocols, and will cause unpredictable results.

Figure 50. Example of a SEND operation, OPTCD=(LMPEO,BUFFLST,USERRH) with a maximum RU size of 100

200 z/OS V2R1.0 Communications Server: SNA Programming

Buffer-list entries 1 and 2 point to data that is split by VTAM. Entry 1 has the
initial RH. Because the RH specifies MIC, all three generated RUs are marked as
MIC. This chain is assumed to have been started by a previous SEND. Even
though entry 2 does not explicitly end the RU, VTAM recognizes that because
entry 3 begins another RU, entry 2 must end the current RU.

Entry 3 points to a single RU. This data is not split and is not accumulated with
data associated with another entry. Entry 3 has the RH, and is sent as MIC.

Entry 4 points to another single RU. It is handled the same as the preceding entry.
Entry 4 has the RH, and is sent as MIC.

Entries 5, 6, and 7 point to data that is accumulated into a single RU. The RU is
sent as MIC. Entry 5 has the RH. Entry 7 explicitly ends the current RU. This
allows VTAM to recognize that entry 8 begins a new RU.

Entries 8 and 9 point to data that is split by VTAM. Entry 8 has the initial RH.
Because the RH specifies MIC, both RUs are marked as MIC. Entry 9 explicitly
ends this RU. This is optional because entry 10 begins a new RU.

Entries 10 and 11 point to data that is accumulated by VTAM into a single RU.
Entry 10 has the RH. The data is combined into a single RU and sent as MIC. The
application program defines this RU in such a way that it exceeds the maximum
allowed RU size for the session. Although VTAM does not prevent this, it is a
violation of the RU size agreement reached by the two LUs when the session was
established, and should not be done by the application program. Depending upon
the action taken by the other LU in the session, unpredictable results can occur.

Entry 12 points to data that is split by VTAM. Entry 12 contains the initial RH.
Because the RH specifies LIC, the first RU is marked as MIC, and the next (last)
RU is marked as LIC.

Using SNA protocols

The major alternatives previously described are of interest to all VTAM application
program designers. Here are some additional facilities that not every user requires,
but should be considered:
v The chaining of requests so that the number of responses required is minimized

(CHAIN=ONLY or FIRST or MIDDLE or LAST)
v The quiescing of requests so that a sender may be told to temporarily stop

sending when, for example, an input buffer is about to overflow
(CONTROL=QEC)

v A method of communication that ensures that only the VTAM application
program or the LU in session with it can be sending at one time, using either:
– Quiesce protocol
– Change-direction protocol.

v A method of communication that ensures that unexpected output from a VTAM
application program is postponed until completion of an existing transaction
(bracket protocol).

For further details about the session parameters discussed in the following
sections, refer to Appendix F, “Specifying a session parameter,” on page 793.

Chaining:

Chapter 6. Communicating with logical units 201

LUs can group any number of data requests into a set called a chain. The sender
can indicate which part of a chain is being transmitted—the first request of the
chain, the last request of the chain, neither (the request is somewhere in the
middle), or both (the request is the only request in the chain).

SNA allows you to use only three types of chains:
v No-response chain, in which each request in the chain asks for no response
v Exception-response chain, in which each request in the chain asks only for an

exception response
v Definite-response chain, in which the last request in the chain asks for a definite

response and all other requests ask only for an exception response.

The sender of a chain that has not yet been completely sent can at any time send a
Cancel request to the receiver (the sender might send this request because the
receiver has returned a negative response). The Cancel request informs the receiver
that the current chain is abnormally terminated, that the receiver will not receive
further requests in the chain, and that the receiver might want to discard the chain
requests it has already received.

The actual unit of work that the chain represents is determined entirely by the PLU
and SLU. When the session is established, the PLU and the SLU determine what
chaining protocols are to be used.

Figure 51 on page 203 illustrates a possible use of chaining. In this example, an LU
submits an inquiry to the application program. The application program can obtain
various pieces of information from data files and send them to the LU as each
becomes available. By chaining the output requests, the application program has a
convenient way of telling the LU whether any given piece of data represents the
beginning, middle, or end of a reply to an inquiry.

Figure 52 on page 204 and Figure 53 on page 205 show in more detail the use of
chaining illustrated by Figure 51 on page 203. Chaining is also shown in Figure 114
on page 701.

202 z/OS V2R1.0 Communications Server: SNA Programming

Application Program Logical Unit
Ask for
information
from data
base

Display
data in
chain

DASD
I/O
Requests

Response

Response

Response

Response only if an error is detected.

Response only if an error is detected.

Last request of chain

Second request of chain

First request of chain

Request
(Inquiry)

Figure 51. Example of request chaining

Chapter 6. Communicating with logical units 203

Application Program Logical Unit

The data for the chain may be passed all at
once to an output routine by a processing
routine, or it may be passed in sections by
the processing routine, which is doing multiple
disk reads. This example assumes the data is
passed all at once to the output routine, which
sends it in a 5-request chain.

The logical unit receives
the first chain request and
saves the data in a buffer.

The logical unit receives
the third request and puts it
in the buffer.

The logical unit receives
the second chain request
and puts it in the buffer.

Sequence number 50

Sequence number 51

Sequence number 52

3. The output area address is updated and the
second request is sent with
SEND

4. The output area address is updated and the
third request is sent as in step 3.

RPL=RPLLU1,AREA=(2),
RECLEN=15,STYPE=REQ,
CONTROL=DATA,OPTCD=SYN,
POST=SCHED,
RESPOND=(EX,FME),
CHAIN=FIRST

RPL=RPLLU1,AREA=(2),
RECLEN=15,
CHAIN=MIDDLE

March 30, 1980

John Smith

Normal Sequence

1. The output routine first issues
SEND

March 30, 1980

March 30, 1980

John Smith

$90.22

2. When the SEND is scheduled, the output
routine obtains the sequence number of
the first request sent from the SEQNO
field of the RPL and saves it.

Figure 52. Example of sending a chain of requests to an LU that is buffering data (Part 1 of 2)

204 z/OS V2R1.0 Communications Server: SNA Programming

Request and response modes: The session parameters sent as part of session
establishment contain combinations of protocol bits which establish certain request
and response modes. The bits indicate, among other things, whether chaining is
permitted, how often a response is asked for, and in what order the responses
must be returned.

The sender (application program or LU) may be in either of two modes:

If an exception occurs:

Errors or special conditions are detected
by a negative response returned to a request
in the chain.

A sequence-number-error indication in a
negative response indicates some unrecoverable
error and requires either terminating the
session or using the CLEAR, STSN, and SDT
operands of the SESSIONC macroinstruction
to resynchronize communications.

The logical unit receives
the fourth request and puts
it in the buffer.

5. The output area address is updated and the
fourth request is sent as in step 3.

March 30, 1980

John Smith

$90.22

Ninety

March 30, 1980

John Smith

$90.22

Ninety

Account 9

The logical unit
successfully receives the
last request and puts it in
the buffer.

The logical unit then sends
the buffer of data to the
printer or other device.

The logical unit sends a
positive response 1 to the
last request in the chain.

Sequence number 53

Sequence number 54

Response to
sequence number 54

Application Program Logical Unit

6. The output area address is updated and the
last request is sent with
SEND RPL=RPLLU1,AREA=(2).

RECLEN=15,CHAIN=LAST,
RESPOND=(NEX,FME)

7. The application program receives the
response (for example, in a RESP exit routine
or by completion of a RECEIVE RTYPE=RESP).
An ECB associated with completion of sending
the chain is posted.

Figure 53. Example of sending a chain of requests to an LU that is buffering data (Part 2 of 2)

Chapter 6. Communicating with logical units 205

Immediate request mode
Using this mode, the sender can send a series of requests constituting one
or more complete chains and ask for a definite response only in the last
request in the series. After asking for a definite response, the sender does
not send another normal-flow request until it receives the definite
response. Thus, if the sender is sending a series of single-request chains,
only the last request asks for a definite response; the other requests ask for
an exception response only. If the sender is sending a multiple-request
chain, only the last request in the chain asks for a definite response. If the
sender is sending multiple chains, only the last request in the last chain
asks for a definite response; all preceding requests ask for an exception
response only.

Delayed request mode
Using this mode, the sender can insert requests asking for definite
responses to the series of requests it is sending; it is not required to wait
for any of those responses. This mode can be used to send multiple chains,
with a definite response requested in the last request of each chain (all
other requests in each chain would request an exception response only),
and the sender can send any number of chains before stopping to wait for
responses.

The receiver (application program or LU) can be in either of two modes:

Immediate response mode
The request receiver sends responses in the same order as the request
sender asked for them. Thus, when the request sender receives a response
to a request, it can infer that the request receiver has received and
completed processing all preceding requests, and that no negative
responses are forthcoming for those preceding requests.

Delayed response mode
The request receiver need not return responses in the same order as they
were asked for. A response for one request can be delayed beyond the
response for a subsequent request. There is one restriction, however, on the
receiver. The receiver must send responses for normal-flow requests
preceding a Chase request before it sends the response to the Chase
request.

Quiescing:

SNA provides a set of data-flow-control requests that the application program can
use to ask an LU to stop sending normal-flow requests (data requests and
normal-flow data-flow-control requests) to the program. An LU can also ask that
the VTAM application program stop sending normal-flow requests on a session.

One use of this facility is to ensure that, at a given time, only one session partner
can send normal-flow requests. (This use of the quiesce requests is described later
as “quiesce protocol.”)

Another use of quiescing is to stop the other end of the session from sending
because of a temporary condition or problem. This action is usually needed when
the sender is sending a long chain or a series of chains and the receiver wants the
transmission to be stopped temporarily. Often, the receiver needs to halt the
transmissions because the receiver is running out of buffer space in which to store
the incoming data. Another reason is to stop the incoming requests long enough to
allow the receiver to send an informational request of its own.

206 z/OS V2R1.0 Communications Server: SNA Programming

To understand how quiescing works, consider the situation in which the receiver is
running out of buffer space. Assume that this condition develops at the LU while
the application program is in the middle of sending a chain to the LU. To tell the
application program that it should stop sending data, the LU sends a Quiesce at
End of Chain (QEC) request to the application program. The exact meaning of that
request must have been worked out between the LU and the application program
before the programs were coded. The request might mean “stop sending
immediately and do not complete the chain normally” or it might mean “stop
sending after you complete the current chain normally.”. If it means “stop sending
immediately,” the application program can send a Cancel request or a special
request (ending the chain) to tell the LU to discard the beginning of the chain. If
the QEC request means “complete the chain normally before stopping,” the
application program continues sending requests until the chain is completed. In
either case, the application program signals its compliance with the QEC request
by sending a Quiesce Complete (QC) request to the LU. The LU then continues
processing the previously received requests (perhaps by printing them or by
writing them to disk storage).

When buffers are available to hold more incoming data, the LU sends a
Release-Quiesce (RELQ) request to the application program. Upon receipt of that
request, the application program recommences sending (either at the beginning of
the aborted chain or at the beginning of a new chain, depending upon the
agreed-upon protocol). Figure 54 on page 208 and Figure 55 on page 209 illustrate
the use of quiescing to prevent buffer overflow.

Chapter 6. Communicating with logical units 207

The VTAM application program is sending
continuous chains of data to the logical unit for
a printout. Each chain contains five requests.
Each request is sent with a SEND macro-
instruction. A processing routine passes the data
for each chain to the output routine. This
example begins with a new chain being sent by
the output routine.

Expedited-flow request; no
normal-flow sequence
number

1. Sends the first chain request with
SEND RPL=RPL1,AREA=(2),

Updates the data area address in register 2
and sends the third chain request with
SEND RPL=RPL1,AREA=(2),

CHAIN=MIDDLE

Updates the data area address in register 2
and sends the fourth chain request with
SEND RPL=RPL1,AREA=(2),

CHAIN=MIDDLE

VTAM schedules the program's DFASY
exit routine or completes a RECEIVE that
specifies RTYPE=DFASY. The RPL contains
QEC in the CONTROL field. (If requested by
the application program, VTAM will have sent
a response to the QEC command.)

2.

3.

4.

Application Program Logical Unit

VTAM schedules the
output but has not yet
sent it when . . .

Receives first chain request
successfully and stores it in a
buffer. (No response is
required.)

Receives second chain request
successfully and stores it in a
buffer.

Receives third chain request
successfully and stores it in a
buffer.

The program sets a program-defined flag
indicating that, for this session the next
output request after sending the present
chain is to be held in abeyance until the
quiesce is released.

Chaining is shown in this example. However, quiescing can also be performed when continuous sending does not
involve chaining (each SEND specifies CHAIN=ONLY).

5.

6.

7.

Sequence number 26

Sequence number 27

Sequence number 28

Updates the data area address in register 2
and sends the second chain request with
SEND RPL=RPL1,AREA=(2),

CHAIN=MIDDLE

RECLEN=120,STYPE=REQ,
CONTROL=DATA,
CHAIN=FIRST,OPTCD=SYN,
POST=SCHED,
RESPOND=(EX,FME)

The program updates the data area address
and schedules the sending of the fifth and
last request in the chain with
SEND RPL=RPL1,AREA=(2),

CHAIN=LAST,
RESPOND=(NEX,FME)

. . . the logical unit recognizes
that it is running low on buffer
space because it is receiving
data faster than it can process it.
The logical unit must tell the
application program to stop
sending on this session. This
will give the logical unit time to
clean out the buffer. It sends a
quiesce at end of chain (QEC)
command.

Figure 54. Example of an LU quiescing an application program in order to interrupt continuous sending (Part 1 of 2)

208 z/OS V2R1.0 Communications Server: SNA Programming

Protocols for ensuring orderly communications:

Certain types of LUs are limited in their communication with each other to specific
directions of traffic flow. Some LUs can both send and receive, but can operate
only in one direction at a time (half-duplex). Others can send and receive
simultaneously (full duplex). These characteristics affect the selection of session
parameters, which are sent by the PLU to the SLU when the session is established
(see “Establishing parameters for sessions” on page 122). Other factors that affect

. . . Meanwhile, the logical unit
continues printing data and
thereby emptying buffer units until
it reaches a point at which
sufficient buffer units are available
to accept more input.

Expedited-flow request,
no normal-flow
sequence number

Since a definite response was
requested, a definite response is
sent. Note that for this session,
the designers of the application
program and the logical unit have
defined a definite response to
mean 'request received', not
'request processed (printed)'.

Application Program Logical Unit

(Meanwhile, VTAM sends the fourth
chain request scheduled at step 4.)

Receives fourth chain request
successfully and stores it in the buffer.

(The last chain request scheduled at
step 7 is sent.)

Receives last request of chain success-
fully, puts it in the buffer, and sends the
entire buffer to the printer.

Receives a positive response to the last
chain request, for example, in an RESP
exit routine or with a RECEIVE
RTYPE=RESP. Posts an ECB associated
with sending the chain.

Receives the QC.

Has the ECB associated with the QC SEND
posted by VTAM.

Sends a response to the QC.

The application program refrains from
sending any normal-flow request on
this session. The program does other
processing or relinquishes the host
processor to another program . . .

Receives the RELQ in a DFASY exit
routine or by completion of a RECEIVE
RTYPE=DFASY. Turns off the hold
sending flag associated with the session,
sets the address of the output routine to
be branched to, and posts an ECB (if using
a DFASY exit routine).

Sends the first request in a new chain, as at
step 1 on the preceding page.

The output routine resumes sending at the
request of the processing routine. The first
request of the chain is sent with
SEND RPL=RPL1,AREA=(2),

RECLEN=120,STYPE=REQ,
CONTROL=DATA,
CHAIN=FIRST,
OPTCD=SYN,POST=SCHED,
RESPOND=(EX,FME)

Receive the first chain request
successfully and store it in a buffer.
(No response is required.)

Sequence number 29

Sequence number 30

Response to
sequence number 30

Sequence number 31

Response to
sequence number 31

Sequence number 33

8.

9.

10.

11.

12.

13.

14.

15.

16.

Sends a quiesce complete (QC) control
command to the logical unit with
SEND RPL=RPL1,STYPE=REQ,

CONTROL=QC,POST=RESP

Sends a release quiesce (RELQ)
command meaning that the logical
unit is ready to resume receiving
chain for printout.

Figure 55. Example of an LU quiescing an application program in order to interrupt continuous sending (Part 2 of 2)

Chapter 6. Communicating with logical units 209

the selection of the session parameters are (1) the type of communication that takes
place (interactive versus batch, for example) and (2) particular conventions that are
agreed upon between programmers before the host application program and the
LU program are written.

SNA provides several protocols that enable the application program and the LU to
coordinate and control the direction of flow and their exchanges of requests and
responses. None of these protocols are enforced by VTAM; VTAM sends the
data-flow-control requests and indicators specified by the sender without checking
them and without comparing them to the current status of communications. It is
the responsibility of the application program and the LU to abide by the
communication rules (the session parameters) they agreed upon when the session
was established.

Quiesce protocol: As described in the preceding section, the quiesce requests can be
used to temporarily stop the sender from sending when the receiver encounters a
problem or special condition. Another use of the quiesce requests is to ensure that,
at any one time, only one session partner can send normal-flow requests. This
second use of the quiesce requests is called quiesce protocol.

In this protocol, one session partner controls the direction of flow by using the
quiesce request to “turn off” normal-flow transmission by the other session
partner. For example, assume that the application program is to control the
direction of flow. When the application program has not quiesced the session, the
LU is free to send normal-flow requests on the session. When the application
program wants to start sending, it informs the LU by transmitting the Quiesce at
End of Chain request on the expedited flow. On receipt of that request, the LU
knows that it must stop sending normal-flow requests on the session when it
completes sending the current chain. The LU also knows that the next normal-flow
transmission comes from the application program. The application program then
starts sending normal-flow requests and continues until it sends the Release
Quiesce request to the LU. On receipt of that request, the LU knows that it can
again start sending normal-flow requests on the session. In this way, the
application program alternately grants the LU permission to send (by transmitting
the Release Quiesce request) and stops the LU from sending (by transmitting the
Quiesce at End of Chain request). The direction of flow can similarly be controlled
by the LU.

Quiesce state applies only to normal-flow traffic. While a session partner is in
quiesce state, it can send responses and expedited-flow requests on the session.
Figure 56 on page 211 shows an example of quiesce protocol. See also Figure 115 on
page 702.

210 z/OS V2R1.0 Communications Server: SNA Programming

Half-duplex protocols: There are two forms of half-duplex communication:
half-duplex flip-flop communication and half-duplex contention communication. In
half-duplex flip-flop communication, one session partner is designated in the
session parameters as the first to send a normal-flow request after a session is
established; thereafter, the program and the LU notify each other, in turn, by
sending a change-direction indicator whenever the other side can begin sending
normal-flow requests. In half-duplex contention communication, after the session
has been established, the application program and the LU can both attempt to start
sending a normal-flow request at the same time (called contention). The one that is
allowed to proceed is the one that was designated in the session parameters as the
one that would always win in a contention situation. Similarly, in contention
communication, when either session partner finishes sending a chain of
normal-flow requests, both session partners can attempt at the same time to start
sending a new request. Again, the winner of the contention is the one designated
as such in the session parameters.

Release Quiesce request

Application Program Logical Unit

Note: Responses are not shown.

Both nodes can send and
receive.

As soon as the logical unit
replies to the Quiesce
request by sending a
Quiesce Complete request,
it can no longer send
normal-flow data request,
or control requests on the
session. The logical unit
can receive data requests
and control requests, but
can send only responses
and expedited-flow
requests on the session.
As soon as a Release Quiesce
request is received, the
logical unit can again send
normal-flow data requests
and control requests.

Quiesce Complete request

Quiesce request

Figure 56. Quiesce protocol

Chapter 6. Communicating with logical units 211

One bit in the common protocol portion of the session parameters controls priority
for initial sending in half-duplex communication. One setting of the bit indicates
that the PLU has priority for sending; that is, in half-duplex flip-flop
communication, the PLU is the first to send a normal-flow request in the session,
or is the first to send a normal-flow request after a Clear request. Another bit in
the common protocol portion of the session parameters governs whether the PLU
or the SLU wins in a half-duplex contention race in which both try to send at the
same time.

Change-direction protocol must be used in half-duplex flip-flop communication;
the protocol can optionally be used in half-duplex contention communication.

Change-direction protocol works like this: The LU that is the first to send
continues sending normal-flow requests until it reaches the end of the data it
wants to send. In the last request of the last chain it sends, the sender turns on the
change-direction indicator (CD). (A VTAM application program does this by
issuing SEND CHNGDIR=CMD.) Upon receipt of this CD request, the other LU
then sends normal-flow requests until it relinquishes its ability to send by
including the CD in the last request of a chain.

Communication continues to alternate in this fashion indefinitely, as shown in
Figure 57 on page 213.

212 z/OS V2R1.0 Communications Server: SNA Programming

While the receiver is awaiting CD, it can transmit to its session partner a Signal
data-flow-control request with a Signal code that requests that CD be sent.

The LU that is awaiting CD (like the LU that has been quiesced in quiesce
protocol) is prohibited only from sending normal-flow request traffic. It is free to
send responses and expedited-flow requests.

As mentioned previously, VTAM does not enforce the change-direction protocol.
Should the side waiting for CD begin sending data anyway, VTAM does not
prevent the transmission. Compliance with the change-direction protocol is entirely
the responsibility of the application program and the LU.

Bracket protocols: A bracket is any “uninterruptible” unit of work that an
application program and an LU have been programmed to accomplish. A bracket
can consist of any combination of data requests and data replies, ranging from a
single request in one direction to an elaborate exchange of requests and replies.
(Reply is used here to mean a data request sent in answer to a previously received
data request.) But, no matter how simple or complex the series of requests and

Application Program Logical Unit

Note: Responses are not shown.

Request containing CD

Request containing CD

Request containing CD

Request containing CD

The logical unit now
becomes the sender. The
application program is
expected to refrain from
sending normal-flow
requests on the session
until it receives CD.

The application program
sends data. The last request
is sent with the change
direction indicator (CD)
turned on. The logical unit
is expected to refrain from
sending normal-flow requests
on the session until CD is
received.

Figure 57. Change-direction protocol

Chapter 6. Communicating with logical units 213

replies can be, the characteristic that makes them all part of the same bracket is
that they all pertain to the same unit of work.

A database inquiry transaction is a typical example of a bracket. In such a
transaction, the LU sends an inquiry to the host processor asking for some piece or
body of information stored in the database. For example, an insurance agent at a
terminal asks the processor to provide information on all insurance policies issued
to a particular client. In answer to the inquiry, the application program in the host
processor sends a single request or a series of requests containing the requested
information. At this point, the bracket might end. Or, as the result of one of the
replies, the LU might ask for further details. In that case, the bracket does not end
until the application program has acquired the details from the database and sent
them to the LU.

Bracket protocols are used when one, or both, of the ends of the session cannot
begin processing a new unit of work on the session until the current one has been
completed. For example, it can be used if the LU or application program cannot
start handling a new inquiry on the session until the replies to the current inquiry
have been completed. Bracket protocols provide a way of ensuring that a new unit
of work is not started until the preceding one has been finished.

The application program and LU that are using bracket protocols indicate for each
chain whether that chain is the beginning, middle, or end of the bracket. This
allows the receiving LU to determine whether a new bracket can be started. A
begin bracket (BB) indicator is turned on in the first request of the first chain in a
bracket. The end bracket (EB) indicator is turned on in the first request of the last
chain in the bracket; alternatively, the conditional end bracket (CEB) indicator is
turned on in the last request in the last chain in a bracket. (CEB can be specified
only if FM profile 19 is used in the session.) A VTAM application program turns
on these indicators by issuing SEND BRACKET=BB, SEND BRACKET=EB, and
SEND BRACKET=CEB, respectively.

When a session is established, bits in the session parameters determine who wins
bracket contention when both sides want to begin a bracket simultaneously, who
can end a bracket, and whether bracket termination is conditional (the session
partner sending EB does not consider the bracket ended until it receives a positive
response to the chain that includes EB) or unconditional (termination occurs when
the chain containing EB is sent). Figure 58 on page 215 shows an example of
bracket protocol.

214 z/OS V2R1.0 Communications Server: SNA Programming

One bracket-related bit in the session parameters determines the winner of bracket
contention by assigning the role of first speaker to one LU and the role of bidder
to the other participant. The first speaker is the LU that is given the ability to
begin a bracket without asking permission from the other LU in the session. The
bidder is the LU that must ask for and receive permission from the first speaker to
begin a bracket. The bit in the session parameters designates whether the PLU or
the SLU is to be the first speaker; the other LU is automatically the bidder.

When a bracket is ended, the first speaker can start a new bracket if needed. The
bidder, however, must ask permission to begin a bracket. The bidder can do this in
either of two ways:
v The bidder can ask permission by sending a Bid data-flow-control request to the

first speaker. A positive response to the Bid request indicates that the first
speaker has granted permission. A negative response indicates that permission is
denied. The negative response, however, can be accompanied by sense data that
indicates whether the first speaker will or will not later grant the permission by
sending a Ready to Receive data-flow-control request. On receipt of that request,
the bidder can begin a bracket.

v The bidder can ask permission by starting to send a chain in which the first
request contains BB. The response indicates whether the bidder can continue
with the bracket, with a positive response indicating that it can continue and a

The application program
processes the inquiry. This
results in transmission of a
chain that ends with a
query regarding the
adequacy of the data.

The application program
transmits the additional
data.

The logical unit receives
an inquiry from one
of its input devices.

The logical unit transmits a
request to the application
program indicating begin
bracket.

The logical unit replies with
a request for more data.

The logical unit determines
that it has the data needed
to satisfy the inquiry and
notifies the application
program that the bracket
is ended.

The logical unit displays
the requested information.

Note: In this example, the logical unit determines the
beginning and the end of the bracket. In other
applications, the application program could
determine the beginning and the end of the
bracket, or one node could determine the
beginning and the other node could determine
the end.

Continue bracket

Continue bracket

Request containing EB

Logical UnitApplication Program

Continue bracket,
first request of chain,
containing neither BB nor EB

Request containing BB

Middle request of middle chain

Last request of chain

Figure 58. Bracket protocol

Chapter 6. Communicating with logical units 215

negative response indicating that the attempt was rejected. The negative
response, however, can be accompanied by sense data that indicates whether the
first speaker does or does not later send the Ready to Receive request. There are
restrictions on attempting to begin a bracket by starting to send a chain with BB:
– If the bidder is sending only a single chain, the first request in the chain must

specify BB and EB.
– If the bidder is sending multiple chains, the first request in the first chain

must specify BB and the bidder must ask for a definite response to the first
chain. If the bidder gets a negative response, it knows that its
bracket-initiation request was rejected and that it must terminate the chain
(either by sending the Cancel request or by sending a request marked last in
chain).

Like quiesce and change-direction protocol, bracket protocol is not enforced by
VTAM. It must be adhered to by the participants.

Special use of RESPOND=QRESP with bracket protocol:

Consider the following situation. The application program (which is the bidder)
and the LU (the first speaker) are in a session involving half-duplex contention and
the use of brackets. At this point, assume that they are within a bracket. They have
agreed in the session parameters to conditional bracket termination; that is, a
bracket is not terminated until the sender of EB gets a response to the chain
containing EB.

The application program then sends a chain containing EB. Simultaneously, the LU
sends a data request that was meant to be within the current bracket. If
RESPOND=NQRESP is used for the EB chain in VTAM, it is possible for the
application program to get the response to the EB chain before it gets the data
request. If that happens, the application program fails to know that the LU meant
for the data request to be within the bracket.

To avoid this problem, the application program should specify NIB
PROC=ORDRESP and send the EB chain with SEND RESPOND=QRESP. That
parameter causes VTAM to treat the response as if it were a normal-flow request.
Because the LU must send the response to the request specifying EB after it sends
the in-bracket request, and because the response is treated as a normal-flow
request, the application program gets the in-bracket request and the response in
that order, which is the correct order.

Because the response to the EB request is treated as a normal-flow request, it does
not cause scheduling of an RESP exit routine, nor can it cause completion of
RECEIVE RTYPE=RESP. The SEND macroinstructions used to send the chain
containing EB and RESPOND=QRESP must specify POST=SCHED. The response
itself (because it is treated as a normal-flow request) must be obtained with
RECEIVE RTYPE=DFSYN (not RTYPE=RESP).

For more information on the QRESP and NQRESP parameters in the RESPOND
operand, see “Controlling the handling of normal-flow responses” on page 161.

The Chase request:

The Chase data-flow-control request can be used by a PLU or an SLU at any point
in its processing to ensure that it has received all responses from the session
partner. When the session partner receives the Chase request, it must send any
unsent responses to previous data requests or normal-flow data-flow-control

216 z/OS V2R1.0 Communications Server: SNA Programming

requests before it sends the response to the Chase request. Thus, when the Chase
sender receives the response to the Chase request, the sender knows there are no
outstanding responses for the session partner on that session.

The Chase request is frequently used before a session-termination request. For
example, an SLU that has received a Shutdown request might issue a Chase
request to get any outstanding responses from the PLU before issuing the
Shutdown Complete request. For an example of this Shutdown Complete request,
see Figure 122 on page 709. The Chase request can also be issued by a PLU before
it issues a CLSDST macroinstruction.

Using the Chase request can cause a problem. When a response cannot be passed
immediately to the application program, it is placed on a queue to await
presentation to the program. If the application program sends a Chase request with
POST=RESP, the SEND operation is posted complete as soon as the response to the
Chase request is received by VTAM. If any responses were previously queued for
the program, it can no longer be prepared to process them, having interpreted the
response to the Chase request as an indication that all responses were received.

To avoid this problem, the session should be established with PROC=ORDRESP
specified in the NIB, and the Chase request should be sent with a macroinstruction
that specifies POST=SCHED:
SEND RPL=RPL1,STYPE=REQ,CONTROL=CHASE,POST=SCHED, C

RESPOND=(FME,NEX)

The response to the Chase is thus handled in order with respect to other
normal-flow responses. If any outstanding responses might have the QRESP
indicator on, then the Chase must also be sent with RESPOND=(NEX,FME,QRESP)
to ensure that the Chase response is received in order with other responses having
QRESP on.

For more information on the QRESP and NQRESP parameters, see “Controlling the
handling of normal-flow responses” on page 161.

Function management headers: The function management (FM) header option is
specified through the RPL or SEND macroinstruction. Specifying OPTCD=FMHDR
indicates that a user-defined or SNA-defined FM header is included in a data
request sent to an LU. This option indicates to VTAM how the format bit in the
request header (RH) of a specific data request or response is to be set. If FMHDR is
coded, the format bit is set on in the RH and sent to the receiver of the request or
response.

Similarly, if the format bit is on in the RH of a received request or response
(indicating the presence of an FM header), it causes FMHDR to be set in the RPL
used for the exit or RECEIVE operation. OPTCD=FMHDR is set in the RPL by
VTAM whenever a data-flow-control request or data-flow-control response is sent
or received. FMHDR can be tested with the TESTCB macroinstruction or by using
the IFGRPL DSECT.

When the session is established, the application program and LU determine
whether FM headers can be used for data requests. This is specified in the BIND
session parameters. SNA protocols do not use the FM header indicator on data
responses for LU-LU sessions. As with other data-flow-control protocols described
in this chapter, VTAM does not enforce the way indicators are used.

Additional SNA protocol information:

Chapter 6. Communicating with logical units 217

In addition to the protocols described earlier in this chapter, the following
protocols can be specified in the session parameters:
v Whether an LU can remove redundant characters (for example, blanks) before

data is transmitted (compression)
v Who has error recovery responsibility
v Whether an alternate character code is acceptable (for example, ASCII instead of

EBCDIC)

Sending and receiving enciphered data requests:

Sessions using cryptography can use selective, required, or private cryptography.
VTAM determines the level of cryptography by examining the cryptographic
requirements:
v Established by the VTAM operator in a MODIFY command
v In the logon mode table entry
v In the BIND request operands
v Specified by the ENCR parameters in the NIBs used by the PLU and the SLU to

establish the session

See Table 20 on page 134 and Table 21 on page 135 for the relationships between
the various methods of specifying the cryptography requirements.

For selective cryptographic sessions, data requests are enciphered on the basis of
the CRYPT operand of the SEND macroinstruction. If CRYPT=YES is specified,
VTAM enciphers the data request sent to the other LU of the session, and sets the
request header RH-enciphered data bit on for the request. When VTAM receives an
enciphered data request (one with the RH-enciphered data bit set), VTAM sets
CRYPT=YES in the RPL specified by the RECEIVE macroinstruction and deciphers
the data before passing it to the application program. If a SEND macroinstruction
specifies selective data encryption, but the session does not support encryption, the
macroinstruction will fail.

For required cryptographic sessions or conditional sessions (with the SLU capable
of cryptography), the CRYPT operand is ignored; on SEND, all data requests are
enciphered, and the RH-enciphered data bit is set for each one. VTAM sets CRYPT
to YES in the RECEIVE RPL for each received data request and deciphers each
request before passing it to the application program.

For a session that is not using selective or required cryptography, if CRYPT=YES is
specified in a SEND macroinstruction, VTAM assumes that the sender is using a
private (user-defined) form of enciphering and VTAM sends the data request to the
other LU of the session without further enciphering; the RH-enciphered data bit is
set. Similarly, on receipt of a request having the RH-enciphered data bit set, VTAM
sets CRYPT=YES in the RECEIVE RPL. VTAM does not decipher such requests.

Note: This same CRYPT=YES bit is used by VTAM for selective or required
cryptographic sessions. Therefore, if an application program also uses it for private
cryptographic protocols, misleading results can occur. For example, the bit can be
set because of a required level of session cryptography, yet the application program
can interpret this as having been set because of private cryptographic protocols.
Thus, the bit should not be used for private protocols if conflicts can occur with
session-level cryptography.

218 z/OS V2R1.0 Communications Server: SNA Programming

Chapter 7. Using exit routines

This chapter discusses how exit routines work, presents some of their advantages
and disadvantages, and describes procedures to follow in using them. Additional
detailed considerations related to exit routines are discussed in Chapter 5,
“Establishing and terminating sessions with logical units,” on page 81, Chapter 6,
“Communicating with logical units,” on page 151, and Chapter 10, “Operating
system facilities,” on page 295. An overview of exit routines is given in Chapter 2,
“VTAM language,” on page 19. In particular, “Normal operating system
environment for a VTAM application program” on page 30 should be read as
background information for this chapter (for example, for definitions of inline exit
routine, asynchronous exit routine, and mainline program).

How exit routines work

VTAM provides two general kinds of exit routines for use in a VTAM application
program: RPL exit routines and exit-list (EXLST) exit routines. The two kinds of
exit routines work somewhat differently, as described in the following sections.
Additionally, the TESTCB manipulative macroinstruction provides an exit routine,
which is described in “TESTCB—Test the contents of a control block field” on page
565. Other VTAM-supplied exit routines are not executed as part of an application
program and are referred to as installation-wide exit routines rather than
application program exit routines. Installation-wide exit routines (for example,
those relating to session management, authorization and accounting) are described
in z/OS Communications Server: SNA Customization.

RPL exit routines

The instructions executed when an RPL-based operation completes are written as a
separate routine. This routine, called an RPL exit routine, is specified in the
RPL-based macroinstruction that requests the operation. The address of the exit
routine specified in the EXIT operand of the macroinstruction is placed in the EXIT
field of the RPL. When the requested operation completes, VTAM schedules and
eventually causes entry to the RPL exit routine. The RPL exit routine has control in
the addressing mode of the application program at the time the request is issued.
See Chapter 10, “Operating system facilities,” on page 295, for information about
addressing mode.

When VTAM gives control to the RPL exit routine, the routine usually cannot be
interrupted even though other pending events are completed; the exit routine must
return control to VTAM before VTAM can return control to other parts of the
application program, including other RPL or EXLST exit routines that VTAM might
have scheduled. However, when the following special conditions occur, another
part of the program can be given control before the currently running RPL exit
routine completes:
v A LERAD or SYNAD exit routine can be entered if an error or special condition

occurs for an RPL-based request that either is issued and not accepted in the
RPL exit routine or is checked in the RPL exit routine.

v An RPL exit routine can be interrupted to allow the TPEND exit routine to be
entered with reason code 8.

© Copyright IBM Corp. 2000, 2013 219

v An application program can use certain operating system facilities (multiple
tasks and SRBs) to allow the application program to have several parts that can
run concurrently.

See Chapter 10, “Operating system facilities,” on page 295 for more information
about the LERAD, SYNAD, and TPEND exit routines and SRBs.

Designating a routine as an RPL exit routine is an alternative to having VTAM post
an ECB when an asynchronous event is completed. A program can use either
technique exclusively, or it can use a mixture of ECB-posting and RPL exit
routines. Sample Program 1 in Chapter 14, “Logic of a simple application
program,” on page 573, shows an example of an RPL exit routine. The same RPL
exit routine can be designated by more than one macroinstruction; that is, an RPL
exit routine can be established as a common exit routine.

If the application program also uses ECBs, the RPL exit routine can post an ECB
related to the associated event so that the mainline program later discovers that an
operation has been completed. Because it might be necessary to reuse the RPL
associated with the request whose completion caused entry to the exit routine (for
example, for reissuance of a RECEIVE request within the exit routine), and because
it is a means of causing entry to a LERAD or SYNAD exit routine if an error
occurs, a CHECK macroinstruction can be required in the exit routine. If the RPL
does not have to be reused in the exit routine, the CHECK macroinstruction can be
in the mainline program, perhaps following the discovery of a posted ECB
associated with the RPL. Figure 59 on page 221 illustrates the use of an RPL exit
routine.

220 z/OS V2R1.0 Communications Server: SNA Programming

The following items match the steps indicated in Figure 59:
1. The VTAM application program issues an asynchronous RECEIVE request,

which the program passes to VTAM. The request specifies the scheduling of the
RPLEX exit routine when the operation completes. VTAM accepts the request
and returns control to the program at the next sequential instruction.

2. The program continues execution until input arrives.
3. VTAM interrupts the program when input arrives and schedules RPLEX as the

next routine. Because an asynchronous exit routine is not currently executing,
RPLEX is immediately given control (4).

4. RPLEX executes without any other part of the program gaining control. RPLEX
issues a CHECK macroinstruction to mark the RPL inactive. RPLEX then issues
a RECEIVE macroinstruction to read input again. It is an asynchronous request
specifying that RPLEX be scheduled when the operation completes. (If more
input arrives and the operation completes, VTAM schedules RPLEX, but it is
not reentered until after it finishes the current invocation and returns control to
VTAM.)

5. Once RPLEX completes its job, control returns to VTAM.
6. If input to satisfy the receive in RPLEX has not yet arrived, VTAM returns

control to the mainline program interrupted at 3. If input has arrived, the
RECEIVE in RPLEX completes, and control is given to RPLEX.

EXLST exit routines

This type of exit routine differs from the RPL exit routine in that it is a
special-purpose exit routine. The special purpose is understood by both the VTAM
application program and VTAM. Instead of being specified in a particular
RPL-based macroinstruction request, the identity of an EXLST exit routine is
established only when the exit list in which its name is specified is identified to
VTAM, either when the program is opened or, for certain types of exit routines,
when a session is established. In general, EXLST exit routines are special-purpose
exit routines, entered only when a somewhat unusual event occurs, such as the
VTAM operator's issuance of a HALT command to shut down the network.

Figure 59. Example of using an RPL exit routine

Chapter 7. Using exit routines 221

Here is how EXLST exit routines work:
1. A VTAM application program contains a number of exit routines written for

different purposes (for example, a LOGON exit routine and a TPEND exit
routine).

2. The program names the special-purpose exit routines and puts their names in
an exit list. The exit list is created with the EXLST macroinstruction. Each
exit-routine name is specified with an appropriate VTAM-provided keyword,
such as LOGON and TPEND.

3. This exit list, identified by the name of the EXLST macroinstruction, can be
specified in the EXLST operand of the program's ACB. When the ACB is
opened, the list of exit routines becomes available to VTAM.

4. Alternatively, certain types of exit routines—DFASY, SCIP, and RESP—can be
listed in the EXLST macroinstruction specified in the EXLST operand of the
NIB that is used when a session is established. After the session is established
(that is, after OPNDST or OPNSEC has been completed), VTAM uses an exit
routine identified in the NIB exit list in preference to the corresponding exit
routine specified in the ACB exit list. The preference applies only for the
session. If an appropriate exit routine is not in the exit list established for the
session, VTAM looks in the ACB-specified exit list that is specified when the

222 z/OS V2R1.0 Communications Server: SNA Programming

ACB is opened. (For more qualifying details, see “Specifying the DFASY, RESP,
and SCIP exit routines in an ACB or NIB” on page 229.) An NIB EXLST cannot
be altered or freed until the last session using it terminates. An ACB EXLST
cannot be altered or freed until the ACB is closed.

5. When an event occurs for which a related EXLST exit routine exists, VTAM
schedules the appropriate exit routine, using the exit routine provided in
EXLST. As soon as no other asynchronous exit routine is being executed, the
EXLST exit routine is given control (if necessary, interrupting the mainline
portion of the program). As described in “TPEND exit routine” on page 263,
the TPEND exit routine, with reason code 8, is handled in a special way.

Note: The scheduling of the LOGON exit (for CINITs) or SCIP exit (for BINDs) can
be delayed by using the SETLOGON macroinstruction.

When the ACB opens, control is given to an asynchronous EXLST exit routine in
the addressing mode of the application program. (Asynchronous EXLST exit
routines include all EXLST exit routines except SYNAD and LERAD.)

When VTAM gives control to an asynchronous EXLST exit routine, the routine
usually cannot be interrupted even though other pending events are completed;
the exit routine must return control to VTAM before VTAM can give control to
other parts of the application program, including other EXLST or RPL exit routines
that VTAM might have scheduled. However, when the following special conditions
occur, another asynchronous exit routine can be given control before the currently
running EXLST exit routine completes:

Chapter 7. Using exit routines 223

v A LERAD or SYNAD exit routine can be entered if an error or special condition
occurs for an RPL-based request that either is issued and not accepted in the
asynchronous EXLST exit routine or is checked in the asynchronous EXLST exit
routine.

v An asynchronous EXLST exit routine can be interrupted to allow the TPEND
exit routine to be entered with reason code 8.

v An application program can use certain operating system facilities (multiple
tasks, and SRBs) to allow the application program to have several parts that can
run concurrently.

See Chapter 10, “Operating system facilities,” on page 295 for more information
about the LERAD, SYNAD, and TPEND exit routines and SRBs.

The SYNAD and LERAD exit routines, called inline exit routines, obey different
rules than the asynchronous EXLST exit routines. SYNAD and LERAD operate
under the same operating system scheduling control block (for example, a TCB or
SRB) as the part of the program that issued the RPL-based or CHECK
macroinstruction whose issuance caused the SYNAD or LERAD exit routine to be
invoked. Thus, SYNAD and LERAD operate essentially as extensions to that part
of the program, and are subject to exactly the same interruption conditions as that
part of the program.

When the application program issues CHECK, the SYNAD and LERAD exit
routines are entered in the addressing mode of the application program. For
requests with OPTCD=SYN, the addressing mode is in the same mode as the
application program that issued the original request.

Summary of exit routines

Table 30 summarizes exit routines by showing the purpose of each type of exit
routine and showing how the address of each type is specified to VTAM. Table 31
on page 226 summarizes the parameter list pointed to by register 1 upon
invocation of each EXLST exit routine.

Table 30. Summary of exit routines

Type of exit
routine

Purpose How the exit routine's address is
specified

Type of exit list
in which that
routine's name
can appear

RPL exit routine Notify the application program of the
completion of an RPL-based
macroinstruction.

Code the address in the EXIT
operand of an RPL macroinstruction
or in the request that uses the RPL.

Not applicable

EXLST exit
routines (Each
type is listed in
the following.)

Special purposes. Code the names and addresses of the
exit routines in an EXLST
macroinstruction. The list that is
created is then identified in the
EXLST operand of an ACB or NIB
macroinstruction.

ATTN
Note: Scheduled
only for
applications that
use VTAM's API
for LU 6.2

Handle LU 6.2 events such as
receiving notification of VTAM's
negotiation of a CNOS or
deactivating an LU 6.2 session.

Code the address in the ATTN
operand of the EXLST
macroinstruction.

ACB only

224 z/OS V2R1.0 Communications Server: SNA Programming

Table 30. Summary of exit routines (continued)

Type of exit
routine

Purpose How the exit routine's address is
specified

Type of exit list
in which that
routine's name
can appear

DFASY Receive expedited-flow
data-flow-control input (for example,
a Quiesce at End of Chain request)
without requiring an outstanding
RECEIVE RTYPE=DFASY.

Code the address in the DFASY
operand of the EXLST
macroinstruction.

ACB or NIB

LERAD Handle logic errors that can occur as
the result of an RPL-based
macroinstruction.

Code the address in the LERAD
operand of the EXLST
macroinstruction.

ACB only

LOGON Handle a request for a session with
the application program (a CINIT
request in which the application
program acts as the primary logical
unit (PLU)).

Code the address in the LOGON
operand of the EXLST
macroinstruction.

ACB only

LOSTERM Handle the situation of a session
being unexpectedly lost to the
program, or notify the application
program of other unusual conditions
that can affect the session.

Code the address in the LOSTERM
operand of the EXLST
macroinstruction.

ACB only

NSEXIT Handle a situation in which:

1. A request for a procedure has
been positively responded to, but
the procedure cannot be
completed

2. VTAM has initiated session
termination because of a session
outage

3. Some other kind of network
services request unit is received.

Code the address in the NSEXIT
operand of the EXLST
macroinstruction.

ACB only

RELREQ Handle a request from another
application program for an LU that is
presently in session with the program
that contains the RELREQ exit
routine.

Code the address in the RELREQ
operand of the EXLST
macroinstruction.

ACB only

RESP Receive a response without requiring
an outstanding RECEIVE
RTYPE=RESP.

Code the address in the RESP
operand of the EXLST
macroinstruction.

ACB or NIB

SCIP Receive and process one of the
following session-control requests:

v Clear

v Start Data Traffic (SDT)

v Request Recovery (RQR)

v Set and Test Sequence Number
(STSN)

v Bind Session (BIND)

v Unbind Session (UNBIND).

Code the address in the SCIP
operand of the EXLST
macroinstruction.

ACB or NIB

SYNAD Handle a physical error or special
condition that occurs as the result of
an RPL-based macroinstruction.

Code the address in the SYNAD
operand of the EXLST
macroinstruction.

ACB only

Chapter 7. Using exit routines 225

Table 30. Summary of exit routines (continued)

Type of exit
routine

Purpose How the exit routine's address is
specified

Type of exit list
in which that
routine's name
can appear

TPEND Notify the application program when
the VTAM operator halts VTAM or
deactivates the application program,
when VTAM terminates abnormally,
or when an alternate application
takes over the sessions of an
application that has enabled
persistence.

Code the address in the TPEND
operand of the EXLST
macroinstruction.

ACB only

Table 31. Parameter list for the EXLST exit routines

Exit routine Register 1 parameter list

1st word 2nd word 3rd word 4th word 5th word 6th word 7th word

ATTN ⁵ ACB address Reserved Reserved Event for
which exit
routine is
being driven

Address of
read-only
RPL

Reserved Address of
network
identifier
parameter
list ⁸

DFASY ACB address CID USERFLD
data ⁴

Reserved Address of
read-only
RPL

Reserved Reserved

LERAD None (Register 1 contains the RPL address for the request that failed.)

LOGON ACB address Address of
the SLU's
symbolic
name ⁶

USERFLD
data or zeros
²

Length of
logon
message

Address of
read-only
RPL (RPL
contains the
address of
the CINIT
RU)

CID Address of
network
identifier
parameter
list ⁸

LOSTERM
(session
notification)

ACB address CID USERFLD
data ⁴

Reason code Reserved Reserved Reserved

LOSTERM
(cross
memory
macro
request
failure
notification)

ACB address Address of
the user RPL

Reserved Reason code Reserved Reserved Reserved

NSEXIT (for
CLEANUP
RU)

ACB address CID USERFLD
data ⁴

Reserved Address of
read-only
RPL (RPL
contains the
address of
the
CLEANUP
RU)

Reserved Reserved

226 z/OS V2R1.0 Communications Server: SNA Programming

Table 31. Parameter list for the EXLST exit routines (continued)

Exit routine Register 1 parameter list

1st word 2nd word 3rd word 4th word 5th word 6th word 7th word

NSEXIT (for
Notify RU)

ACB address Reserved USERFLD
data ³

Reserved Address of
read-only
RPL (RPL
contains the
address of
the Notify
RU)

Reserved Address of
network
identifier
parameter
list ⁸

NSEXIT (for
NSPE RU)

ACB address Reserved Reserved Reserved Address of
read-only
RPL (RPL
contains the
address of
the NSPE
RU)

Reserved Reserved

RELREQ ACB address Address of
the SLU's
symbolic
name

Reserved Reserved Reserved Reserved Address of
network
identifier
parameter
list ⁸

RESP ACB address CID USERFLD
data ⁴

Reserved Address of
read-only
RPL

Reserved Reserved

SCIP (for
BIND RU)

ACB address CID USERFLD
data or zeros
¹

Address of
the session
parameters

Address of
read-only
RPL (RPL
contains the
address of
the BIND
RU)

Address of
the PLU's
symbolic
name ⁷

Address of
network
identifier
parameter
list ⁸

SCIP (for
other than
BIND RU)

ACB address CID USERFLD
data ⁴

Reserved Address of
read-only
RPL (for
UNBIND,
RPL contains
the address
of UNBIND
RU)

Reserved Reserved

SYNAD None (Register 1 contains the RPL address for the request that failed.)

TPEND ACB address Reason code Reserved Reserved Reserved Reserved Reserved

Chapter 7. Using exit routines 227

Table 31. Parameter list for the EXLST exit routines (continued)

Exit routine Register 1 parameter list

1st word 2nd word 3rd word 4th word 5th word 6th word 7th word

Notes:

1. If the BIND request is a result of a REQSESS macroinstruction, word 3 contains the USERFLD data from the NIB
used with REQSESS; otherwise, word 3 contains zeros.

2. If the LOGON exit routine is entered as a result of a SIMLOGON macroinstruction, word 3 contains the
USERFLD data from the NIB used with SIMLOGON; otherwise, word 3 contains zeros.

3. Word 3 contains the USERFLD data from the NIB used with REQSESS, SIMLOGON, or CLSDST OPTCD=PASS.

4. Word 3 contains the USERFLD data from the NIB used with OPNDST or OPNSEC.

5. For more information, refer to the z/OS Communications Server: SNA Programmer's LU 6.2 Guide.

6. This name is the LUALIAS name or the 8–byte name of the SLU taken from the CINIT.

7. This name is the LUALIAS name or the name in the NSPLU name field of the BIND.

8. The network identifier parameter list is mapped by the ISTNRIPL DSECT. For more information, see Table 117 on
page 762.

Deciding whether and how to use exit routines

In general, the use of exit routines is optional. An RPL exit routine is an alternative
to having a routine that is branched to in the mainline program following the
posting of an ECB by VTAM. Refer to “Using RPL exit routines” on page 42 for a
discussion of these two alternatives. Most EXLST exit routines are optional, though
some are designed for common use and should be included in an application
program. The LOSTERM, NSEXIT, SCIP, and TPEND exit routines are strongly
recommended because, without them, the application program might not be
notified of certain important events. The SCIP exit routine is required by any
application program that acts as a secondary logical unit (SLU).

The following EXLST exit routines are designed for common use:
v LERAD
v LOGON
v LOSTERM
v NSEXIT
v SCIP
v SYNAD
v TPEND.

The RELREQ exit routine is required only if the application program is to be
notified when another logical unit (LU) requests a session with an LU that is in
session with the application program and is at its session limit.

These EXLST exit routines are optional alternatives to other facilities:
v DFASY, rather than having to issue RECEIVE RTYPE=DFASY in the mainline

program and branching to a related routine on completion
v RESP, rather than having to issue RECEIVE RTYPE=RESP in the mainline

program and branching to a related routine on completion.

If an EXLST exit routine is not provided and the event or condition that the exit
routine would handle does occur, the application program may never be informed

228 z/OS V2R1.0 Communications Server: SNA Programming

about the event or condition. In some cases, the application program might learn
of the event or condition through return codes or information in an RPL when it is
posted complete.

Note: Only exit routines that can be recognized by VTAM can be specified in the
EXLST macroinstruction. Non-VTAM exit routines (such as VSAM exit routines)
cannot be specified in the macroinstruction.

Specifying the DFASY, RESP, and SCIP exit routines in an ACB or NIB

The DFASY, RESP, and SCIP EXLST exit routines can be in an exit list that is
associated either with an ACB (identified by the EXLST operand of an ACB) or
with a NIB (identified by the EXLST operand of an NIB). VTAM uses
ACB-specified exit routines for all sessions with the program represented by the
ACB. VTAM uses NIB-specified exit routines only for each session whose NIB
specifies the exit routine when the session is established. With one exception, the
DFASY, RESP, and SCIP exit routines identified in an NIB exit list are scheduled
instead of corresponding exit routines identified in an ACB exit list. This exception
is in the processing of a BIND request; the ACB-specified SCIP exit routine is
always scheduled in this case. For details on how VTAM classifies DFASY and
RESP input, and decides to schedule a RESP or DFASY (NIB or ACB) exit routine
instead of completing RECEIVE, see Figure 39 on page 179 through Figure 42 on
page 182. Several sessions can share the same list of DFASY, SCIP, and RESP exit
routines, or the list can be unique for each session.

Figure 60 on page 230 shows two sets of NIB-specified exit routine addresses.
When input from the session associated with NIB1 arrives, the appropriate EXLST1
exit routine is scheduled. When input from the session associated with NIB2
arrives, VTAM checks EXLST2 for the appropriate exit routine. If no exit routine is
specified (which in this example would be true if the input is a response, because
EXLST2 has no RESP entry), VTAM satisfies any pending RECEIVE
macroinstructions or checks for an ACB-specified exit routine address in EXLSTA.
When input from any other session arrives, VTAM uses EXLSTA.

Chapter 7. Using exit routines 229

Special requirements for LERAD and SYNAD exit routines

The optional LERAD and SYNAD exit routines improve a program's
error-handling capabilities. After a macroinstruction that specifies an RPL is issued,
one of these two exit routines, if present, is entered if an error occurs. If the exit
routine does not exist, VTAM, in any case, provides feedback information in
registers 0 and 15 and in appropriate RPL fields. The return code in register 0
enables the next sequential instruction in the program to determine whether a logic
error or one of several other general types of errors occurred; the program can
itself then branch to an appropriate routine. The chief advantage of using LERAD
and SYNAD exit routines is that they provide a convenient way to organize sets of
error and special-condition-handling logic that serve all requests in the program.

The same name can be specified for the program's LERAD and SYNAD exit
routines. The common exit routine can determine, after it is entered, whether a
logic error or some other error or special condition occurred.

“Procedures to follow in writing exit routines” on page 231 discusses re-entrance
requirements for LERAD and SYNAD exit routines.

A discussion of the kinds of logic that these routines might contain, as well as a
detailed flow of how they are invoked, is provided in Chapter 9, “Handling errors
and special conditions,” on page 277.

Figure 60. ACB-oriented and NIB-oriented exit routines

230 z/OS V2R1.0 Communications Server: SNA Programming

Exit scheduling versus ECB posting

An asynchronous exit routine runs at a higher dispatching priority than the
mainline part of the application program. Thus, if an application program uses
ECB posting for a macroinstruction (OPTCD=SYN), the program can be notified of
an event that causes exit routine scheduling before it recognizes that the
macroinstruction has been posted complete. This can happen even though the
event causing the exit routine to be scheduled occurs after the macroinstruction is
posted complete. Here are a few examples of this condition:
1. SIMLOGON is issued and its ECB is posted complete with

(RTNCD,FDB2)=(X'00',X'00') set in the RPL. However, before the application
program recognizes this, the LOGON exit routine (CINIT received) or NSEXIT
exit routine (Notify or NSPE received) starts to execute.

2. SESSIONC is issued to send SDT; the ECB is posted complete with
(RTNCD,FDB2)=(X'00',X'00') set in the RPL. However, before the application
program recognizes this, the DFASY exit routine receives a SIGNAL request.

3. OPNDST OPTCD=ACQUIRE is issued and its ECB is posted complete with
(RTNCD,FDB2)=(X'00',X'00') in the RPL. However, before the application
program recognizes this, the NSEXIT exit routine starts to run because a
CLEANUP RU is received, perhaps because of a path outage in the session just
established.

Either the application program must be prepared to handle situations like these or
else it should be coded to avoid them. One such way to code, in the normal
operating system environment, is to use an RPL exit routine instead of an ECB
post; then, the RPL exit routine runs before the exit routine that notifies the
application program of the second event. Another useful facility is the user
correlation field available with SIMLOGON and certain other macroinstructions;
this allows the application program to relate certain exit routine events (such as
receipt of CINIT or Notify) with the original macroinstruction, even though the
macroinstruction completion posting has not yet been recognized.

Procedures to follow in writing exit routines

Figure 61 on page 232 summarizes addressability and save-area requirements for
the mainline program and exit routines. In most cases, LERAD and SYNAD exit
routines do not have to be reentrant. See Figure 62 on page 233 for those cases. See
Figure 63 on page 234 for the situations in which exit routines must be reentrant.

Chapter 7. Using exit routines 231

Asynchronous exit routines
(for example, LOGON, TPEND,
or RPL exit routine).

Establish addressability for exit routine.
Must save register 14 (that is, save return
address).

Mainline Program

PROG

BASE

BASESAVE
SAVEO

DS
DS

F
18F

USING
L
DROP
USING

LR

L A
SEND

LR
BR

DS

L
LR
BR

DS

SAVEA

LS

SAVELS

R14,R3
R14

18F

R13,SAVELS+4
R14,R3
R14

18F

Must establish global addressability.

Do not have to save VTAM registers.
Must save register 14 (that is save, return
address).
If going to issue an executable macroinstruction
or make other external calls, it must put the
the address of its own save area in register 13.

Do not have to restore VTAM's registers.
Must restore register 14 (that is, restore
return address).
Must return to address initially provided in
register 14.

CSECT
USING
SAVE
BALR
EQU
DROP
USING
ST

ST
L A
OPEN

*,R15
R12,BASESAVE
R15
BASE,R12

R3,R14

R13,SAVEA

R12,0
*,R12
R3,R14

BALR
USING
LR

ST
L A

R13,SAVELS+4
R13,SAVELS

Must save registers.
Must establish addressability.

If going to issue an executable macroinstruction
or made other external calls, it must save the
address that was in register 13 (upon entry) in
the second word of its own save area, and then put
the address of its own save area in
register 13.
If register 13 was changed (to issue an
executable macroinstruction or make other
external calls), the address that was in
that register upon entry must be restored.
Must restore register 14 (that is, restore
return address).
The BR 14 returns control to VTAM, which
restores all user registers except register
0 and 15. The LERAD/SYNAD exit routine
puts return codes in register 0 and 15.

LERAD/SYNAD exit routines

Save global addressability point.
Before issuing an executable macroinstruction or making other external calls,
it must save the address that was in register 13 (upon entry) in the second
word of its own save area, and then put the address of its own save area in
register 13.

*,R15
(R14,R12)
R12,0
*
R15
*,R12
R12,BASESAVE

R13,SAVEO+4
R13,SAVEO
ACB1

Figure 61. Summary of addressability and save-area requirements for the mainline program

232 z/OS V2R1.0 Communications Server: SNA Programming

Figure 62. Situations in which LERAD and SYNAD exit routines do not have to be reentrant

Chapter 7. Using exit routines 233

Entry procedures

In general, when an exit routine is entered, the following apply:
v Register 1 contains the address of a parameter list. (Table 31 on page 226

summarizes the parameter list for the EXLST exit routines.) This parameter list is
freed when the exit routine returns control to VTAM.

v Register 14 contains an address for returning control after the exit routine
completes. Unless stated otherwise in the discussions of the specific exit
routines, VTAM returns control to the instruction in the application program that
is about to be executed when the exit routine interruption occurs.
If the exit routine is running under an SRB, different conditions apply for return.
See “Execution of exit routines” on page 307.

v VTAM's registers do not have to be saved; register 13 does not contain the
address of a VTAM save area. However, when a LERAD or SYNAD exit routine
is entered, register 13 does contain the address of an 18-word save area supplied
by the application program.

v VTAM does not provide a save area for the application program's general
registers. If any executable VTAM macroinstruction is issued in the exit routine,
the address of the exit routine's own 18-word save area must be in register 13
when the macroinstruction is issued.

Asynchronous exit routines (RPL exit
routine or EXLST exit routine, except
SYNAD and LERAD)

2 Error occurs and exit
routine entered or 6
re-entered.

3 Event occurs causing
asynchronous exit routine
to get control to NSI

•
•
•

•
•

Mainline Program

LERAD/SYNAD

•
•
•

1 RPL-based request
11 VTAM returns control

to NSI.

•
•
•

7 and 10 Returns to VTAM

4 Entered.

5 RPL-based request
8 VTAM returns control to

NSI

9 Returns to VTAM

•
•
•

•
•
•

Figure 63. Situations in which LERAD and SYNAD exit routines must be reentrant

234 z/OS V2R1.0 Communications Server: SNA Programming

Cautions, restrictions and techniques

When writing exit routines, consider these cautions, restrictions, and techniques:
v Establish addressability for each exit routine and for all of the storage that the

exit routine uses. The two techniques for addressing control blocks are:
– Define constants and literals that are within the range of the USING

statement by using LTORG.
– Use A-type address constants for storage that must be shared among the

mainline program and exit routines or that cannot economically be duplicated
(for example, save areas and the ACB).

v Do not use the OPEN and CLOSE macroinstructions in an exit routine.
v Do not use the MIBConnect or MIBDisconnect functions in an exit routine.
v Although most exit routines cannot be interrupted to be reentered, some

exceptions exist (see “How exit routines work” on page 219). A LERAD or
SYNAD exit routine, in some cases, must be reentrant (see Figure 63 on page
234). In a reentrant exit routine, storage must be obtained dynamically for
control blocks (an RPL, for example) and data.

v Do not reuse save areas still in use by other parts of the application program.
For example, the save area used by the mainline program when an RPL-based
macroinstruction is issued is in use until VTAM returns to the mainline program;
it should not be used by an asynchronous exit routine in the meantime.

v If a VTAM macroinstruction is issued within an exit routine identified in an ACB
exit list, the macroinstruction should be issued asynchronously to avoid delays.

v If an RPL-based macroinstruction (such as CLSDST, SEND or EXECRPL) is
issued in a LERAD or SYNAD exit routine, a flag should be set to ensure that,
in the event of an error or special condition, the LERAD or SYNAD exit routine
recognizes that it has been re-entered, thereby avoiding a loop. This flag can be
set in the leftmost bit of any register, between register 2 and register 12
inclusively, that is used to point to the RPL when the request is issued. The flag
is returned to the SYNAD or LERAD exit routine in register 1 along with the
RPL address. For example:
O R2,=80000000 SET RECURSION FLAG
SEND RPL=(R2)

v In the normal operating system environment, if the exit routine issues a
macroinstruction, and is waiting for completion in the same routine (for
example, by using CHECK or WAIT), the mainline program, as well as the exit
routine, waits until the requested operation is completed. To avoid such delays,
consider using an RPL exit routine for notification of completion.

v Be aware of the addressing mode in which the exit routine is given control. The
exit routine must use addresses (either 24- or 31-bit) that are consistent with this
addressing mode.

v Chapter 10, “Operating system facilities,” on page 295, discusses a number of
additional considerations for application programs that make use of certain
operating system facilities.

Exit procedures

In the normal operating system environment, an exit routine can branch to any
location in the program. When the exit routine is finished, the following
conventions must be observed:

Chapter 7. Using exit routines 235

v Except for LERAD and SYNAD, exit routines must return control with a BR 14
after register 14 has been restored with the address it contained when the exit
routine is entered (an address within VTAM).

v For LERAD and SYNAD exit routines, if the program returns control with a BR
14, it must not issue any macroinstruction that would change the contents of the
18-word save area whose address is in register 13 on entry. Then, when ready to
return control, it puts the address of the old save area back in register 13. In
other words, when the program returns control with a BR 14, register 13 must be
pointing to the same save area it is pointing to at the time the LERAD or
SYNAD exit routine is entered.

v A LERAD or SYNAD exit routine can use registers 0 and 15 to pass information
to the mainline program.

v Chapter 10, “Operating system facilities,” on page 295, discusses a number of
additional considerations for application programs that make use of certain
special operating system facilities.

DFASY exit routine
The DFASY exit routine provides a way for VTAM to notify an application
program that an expedited-flow data-flow-control request has arrived. The requests
that can be received by an application program in a DFASY exit are:
v Quiesce at End of Chain (QEC)
v Release Quiesce (RELQ)
v Request Shutdown (RSHUTD)
v Shutdown Complete (SHUTC)
v Shutdown (SHUTD)
v Signal (SIG)
v Stop Bracket Initiation (SBI)

For information on all of these requests, see Appendix C, “Summary of control
requests and indicators,” on page 681. See “DFSYN, DFASY, and RESP types of
RUs” on page 160 for information on the DFSYN, DFASY, and RESP types of RUs.

If a DFASY exit routine is specified in an NIB EXLST or in an ACB EXLST
applicable to the session whenever an expedited-flow data-flow-control request
arrives, VTAM can schedule that DFASY exit routine. The detailed manner in
which VTAM handles DFASY input is shown in Figure 39 on page 179 and
Figure 40 on page 180. If an NIB exit routine is specified, it is always scheduled,
whereas a specified ACB exit routine is scheduled only if the following conditions
exist:
1. No NIB exit routine is specified.
2. The NIB for the session specified DFASYX.
3. The session is in CA mode for DFASY input.
4. RECEIVE OPTCD=SPEC,RTYPE=DFASY is not currently queued.

Using a DFASY exit routine is an alternative to getting each expedited-flow
data-flow-control request with RECEIVE RTYPE=DFASY. The advantages and
disadvantages of the two alternatives are discussed in “Explicit RECEIVEs and
EXLST exit routines” on page 178.

236 z/OS V2R1.0 Communications Server: SNA Programming

For a DFASY exit routine, information about the request that has been received is
available in a read-only RPL provided by VTAM. This RPL resides in read-only
VTAM storage and that cannot be used by RPL-based macroinstructions. The
following are also true for this RPL:
v The application program uses SHOWCB, TESTCB, or assembler instructions with

the IFGRPL DSECT to examine the RPL fields
v 3-byte user RH field is set in the read-only RPL (see “Operation for inbound

RUs” on page 198 for more information)
v All feedback fields (except REQ) are set exactly as they would be following

RECEIVE RTYPE=DFASY (see Figure 92 on page 522)
v CHECK must not be issued for the RPL
v RPL is freed when control returns to VTAM.

The location of the read-only RPL is provided in the parameter list passed to the
exit routine when the routine is scheduled.

Table 32. DFASY exit routine: Registers upon entry

Reg Contents

0, 2-13 Unpredictable

1 Address of a parameter list that includes the following:

Word 1—address of ACB for application program to which the
expedited-flow data-flow-control request is sent

Word 2—CID of the session

Word 3—USERFLD data from NIB that is used to establish the session

Words 4, 6—reserved

Word 5—address of a VTAM-supplied, read-only RPL

14 VTAM address that is branched to when DFASY exit routine completes
processing

15 Address of DFASY exit routine

LERAD exit routine
A LERAD exit routine is identified in an ACB exit list when the application
program wants a routine to be automatically invoked when a logic error (in
contrast to a physical error) is detected.

Generally, a logic error results when an RPL-based request is made that is
inherently contradictory, for example, when attempting to use an CID that is not
valid. The SYNAD exit routine handles physical errors (such as hardware
malfunctions). The LERAD exit routine, if specified, is entered for recovery action
return codes of 20 and 24 (decimal). Chapter 9, “Handling errors and special
conditions,” on page 277, discusses the use and logic of LERAD exit routines in
detail.

When the LERAD exit routine returns control to VTAM, VTAM leaves registers 0
and 15 intact so that the routine can pass information in these registers back to the
part of the application program from which LERAD is invoked.

VTAM returns control to the next sequential instruction in the application program
following the RPL-based request. Because the routine is executed under the same
system scheduling control block as the part of the program that issues the
RPL-based or CHECK macroinstruction, LERAD can branch to other parts of the

Chapter 7. Using exit routines 237

program. If LERAD is entered from an RPL-based request or if the CHECK is
issued in an asynchronous exit routine, the program must eventually branch to
register 14. If the routine returns control to the next sequential instruction by
branching to the register 14 address, VTAM restores the register from the save area
whose address is in register 13.

If the exit routine is running under an SRB, different conditions apply for return.
See “Execution of exit routines” on page 307.

Table 33. LERAD exit routine: Registers upon entry

Reg Contents

0 Recovery action return code (refer to Chapter 9, “Handling errors and special
conditions,” on page 277).

1 Address of RPL associated with the request. The values in register 0 and register
1 are related in the following ways:

v If register 0 is set to 24 (decimal), VTAM cannot place a value in the FDB2
field to specify the reason for the error. This occurs for one of the following
reasons:

– Issued macroinstruction's RPL is in use.

– CHECK is issued for a request whose RPL exit routine has not yet been
scheduled.

– RPL that is not valid is specified.

If the CHECK or RPL-based macroinstruction that caused entry into LERAD
exit routine used one of the registers 2–12 inclusively, bit 0 of that register is
returned in bit 0 of register 1. You can use this to detect recursive entries of
LERAD.

2-12 Unmodified

13 Address of an 18-word save area supplied by the programmer when the
macroinstruction that causes the logic error is issued. Be aware of the following:

v If the exit routine returns control through register 14, it must not change
anything in the save area. If any macroinstruction is issued in the exit routine,
register 13 must first be loaded with the address of a new save area.

v Before control is returned through register 14, register 13 must be restored
with the value it has when the exit routine is invoked.

14 VTAM address that is branched to when LERAD exit routine completes
processing

15 Address of LERAD exit routine

LOGON exit routine
An application program can receive a request (through a CINIT request from the
SSCP) to establish a session with another LU and act as the PLU of that session.
The application program can handle each CINIT either by having VTAM complete
a previously issued OPNDST or schedule a LOGON exit routine. The LOGON exit
routine technique enables the program to examine the CINIT or make other
inquiries of VTAM using INQUIRE before establishing the session with OPNDST
OPTCD=ACCEPT. OPNDST OPTCD=ACCEPT to accept the session or CLSDST to
reject the session can be issued either in the LOGON exit routine or in another part
of the program, after the LOGON exit routine returns to VTAM. If the session is
rejected, sense data can be included on the negative response to the CINIT with
CLSDST OPTCD=SENSE.

238 z/OS V2R1.0 Communications Server: SNA Programming

Note: When a CINIT is received, VTAM first checks for an outstanding OPNDST
request that has not yet been completed. If there is no appropriate outstanding
OPNDST request, VTAM then schedules a LOGON exit routine if one exists and
the scheduling is allowed (see the following discussion of MACRF and
SETLOGON). Therefore, a CINIT does not cause a LOGON exit routine to be
scheduled if there is a pending OPNDST for the session. If no LOGON exit routine
exists, and there is no outstanding OPNDST for the session, the CINIT is queued.

Regardless of the mechanism by which the LOGON exit routine is scheduled, the
routine is asked to establish a session in which the application program acts as the
PLU. The routine's principal task, therefore, is to determine whether it should
honor the request and, when it determines that it should, issue OPNDST
OPTCD=ACCEPT to establish the session. If the request is not honored, the routine
issues CLSDST to reject the CINIT. If neither OPNDST nor CLSDST is issued, the
CINIT remains queued, which can prevent the LU from establishing other sessions.
If MACRF=LOGON is specified in the ACB and SETLOGON OPTCD=QUIESCE
has not been issued, CINITs are queued for the application program regardless of
whether a LOGON exit routine is available. A CINIT remains queued until the
program issues OPNDST or CLSDST for the session unless a termination RU
occurs. For example, a VARY TERM is issued or DACTLU/INOP flows. Queuing a
CINIT does not necessarily mean that the CINIT is queued for eventual scheduling
of the LOGON exit routine; it merely means that the CINIT is queued for an
eventual OPNDST OPTCD=ACCEPT (or CLSDST). The LOGON exit routine is
scheduled only if MACRF=LOGON is specified for the ACB and if the application
program issued SETLOGON OPTCD=START. For further information about CINIT
handling, see Table 6 on page 82.

You can use SETLOGON OPTCD=HOLD and OPTCD=START to synchronize
session setup requests. SETLOGON OPTCD=HOLD causes all subsequent CINIT
requests to be queued and prevents the scheduling of the LOGON exit for session
setup requests. When SETLOGON OPTCD=START is issued after SETLOGON
OPTCD=HOLD, VTAM schedules the LOGON exit request. VTAM continues to
drive the LOGON exit as usual until the application issues SETLOGON
OPTCD=HOLD or SETLOGON OPTCD=QUIESCE. If a LOGON exit routine exists,
SETLOGON OPTCD=START must be issued to cause session reallocation. If a
LOGON exit routine exists and SETLOGON OPTCD=START is not issued, sessions
are not reallocated as part of application activation.

A LOGON exit routine may be entered multiple times if the application supports
this function. (Only an LU 6.2 application can support this function.) The
application-capabilities vector specifies if the application program's LOGON exit
routine can be entered multiple times during a session initiating processing for the
same two session partners.

For a LOGON exit routine, information about the request that has been received is
available in a read-only RPL provided by VTAM. This RPL resides in read-only
VTAM storage and cannot be used by RPL-based macroinstructions. The following
are also true for the RPL:
v Read-only RPL (see Figure 92 on page 522) can be examined by IFGRPL DSECT

or by SHOWCB or TESTCB
v RPL and the copy of the CINIT RU are freed when the exit routine returns to

VTAM; any information needed from these areas must be copied before then.

Certain information can appear in control vectors appended to the CINIT RU.

Vector Description

Chapter 7. Using exit routines 239

X'0D' Class-of-service and virtual route list

X'0E' Network-name control vector or network-qualified name of the PLU

X'0E' Network-name control vector or network-qualified name of the SLU

X'15' Network-qualified address pair control vector

X'2C' COS and TPF control vector

X'2D' Mode-name control vector

X'2F' Model-terminal-information control vector

X'59' Session authorization data control vector

X'5F' Extended fully qualified PCID control vector

X'60' Fully qualified PCID control vector

X'64' TCP information control vector

X'66' Data compression control vector

The read-only RPL's AREA field points to the beginning of a read-only copy of the
CINIT RU. The RECLEN and AREALEN fields contain the length of the CINIT
RU. The logon mode name and class-of-service name used to initiate the session
are present in the CINIT. The following should be ignored:
v The session key field containing network addresses
v Any fields in the BIND image field in CINIT beyond the user data field.

Also, the lengths of the password and requester ID fields in CINIT are 0 because
VTAM does not support these fields. The read-only RPL's AAREA field points to
the beginning of the control vectors attached to the CINIT. Refer to SNA Formats
for a list of control vectors on CINIT and their formats.

Table 34. LOGON exit routine: Registers upon entry.

Reg Contents

0, 2-13 Unpredictable

1 Address of a parameter list that includes the following:

v Word 1—address of ACB for application program

v Word 2—address of 8-byte symbolic name of SLU 1

– Name is placed in NAME field of NIB used for session

– Area is freed when exit routine returns to VTAM.

v Word 3—If LOGON exit routine is entered by SIMLOGON, this word contains
USERFLD data from NIB used by SIMLOGON, otherwise this word is 0

v Word 4—length of user data from the LU (this data can be accessed by
INQUIRE OPTCD=LOGONMSG or examined in CINIT RU)

v Word 5—address of a VTAM-supplied, read-only RPL

v Word 6—CID of session to be established with LU 2

v Word 7—address of the network identifier parameter list 3

14 VTAM address that is branched to when LOGON exit routine completes
processing

15 Address of LOGON exit routine

240 z/OS V2R1.0 Communications Server: SNA Programming

Table 34. LOGON exit routine: Registers upon entry (continued).

Reg Contents

Note:

1. This name is the LUALIAS name or the 8-byte name of the SLU taken from the CINIT.

2. The application program should use the CID to identify the session for a particular
logical unit.

3. The network identifier parameter list is mapped by the ISTNRIPL DSECT. For more
information, see Table 117 on page 762.

TSO/VTAM Katakana and double-byte character set (DBCS)
support

TSO/VTAM's LOGON exit has been modified to support the LANG operand of
the MODEENT macroinstruction.

If the BIND indicates that the Query command is not supported, TSO/VTAM
determines which characters are valid by examining the language byte.

If the BIND indicates that the Query command is supported, TSO/VTAM
determines which characters are valid according to the language specifications in
the reply to the Query command.

LOSTERM exit routine
VTAM can schedule a LOSTERM exit routine when a session with an application
program is terminated or potentially disrupted, or when a conditional terminate
request for a session is received. Alternatively, for some of these conditions, an
SCIP exit routine is scheduled with UNBIND, or an NSEXIT exit routine is
scheduled with CLEANUP. See “Session outage notification” on page 110 for
details. The application program might issue CLSDST to end the session. (If the
application program fails to issue CLSDST, the LU with which the application
program is, or was, in session might be unavailable for a session with any other
application program. This occurs if the LU is at its session limit as a result of this
session.)

If a session outage occurs, VTAM posts any outstanding requests associated with
the affected session with an appropriate return code. If there are no outstanding
requests, whenever the program makes the next request, it is posted with an
appropriate return code.

A LOSTERM exit routine is especially recommended for an application program
that does not issue specific-mode communication requests for its sessions, but is
driven instead by input arriving as the result of RECEIVE macroinstructions issued
in any-mode. Use of the exit routine is also recommended for an application
program when there is the possibility that the LU can fill VTAM's buffers (obtained
from application program storage) faster than the application program is emptying
them with RECEIVE macroinstructions.

An example of a coded LOSTERM exit routine is shown in Chapter 15, “Sample
code of a simple application program,” on page 579.

Chapter 7. Using exit routines 241

Table 35. LOSTERM exit routine: Registers upon entry

Reg Contents

0, 2-13 Unpredictable

1 Address of a parameter list that includes the following:

Word 1—address of ACB of application program whose session has been
affected

Word 2—address of RPL if reason code 44; for all other reason codes, CID of
the session

Word 3—reserved if reason code 44; for all other reason codes, USERFLD
data from NIB that is used to establish the session

Word 4—reason code value indicating why LOSTERM is entered (unless
indicated otherwise, the reason code is reported only to the PLU application)

Words 5, 6—reserved

14 VTAM address that is branched to when LOSTERM exit routine completes
processing

15 Address of LOSTERM exit routine

LOSTERM reason codes
The following section describes the different reason codes that are found in register
1.

Reason code
Meaning

0 (X'00')
Reserved.

4 (X'04')
Reserved.

8 (X'08')
Reserved.

12 (X'0C')
Session has been terminated; immediate recovery is unlikely. The
application program must issue CLSDST if it has not already done so. The
cause of the session termination might preclude the session from being
reestablished immediately; for example, the VTAM operator might have
deactivated the LU or the LU might have had an unrecoverable failure (for
example, an abend).

For a list of possible causes of reason code 12, see “Session outage
notification (SON) codes on UNBIND” on page 93.

As discussed in Chapter 5, “Establishing and terminating sessions with
logical units,” on page 81, some of the types of session outages that cause
it are reported instead through an SCIP exit routine (if SONSCIP=YES on
the APPL definition statement) or otherwise through an NSEXIT routine (if
one exists).

16 (X'10')
The session has been terminated. This reason code is reported immediately
after, and only after, reason code 24 (unless CLSDST has been issued). The
application program can try to reinitiate the session, for example, by
issuing SIMLOGON or OPNDST OPTCD=ACQUIRE; however, the
application program must issue CLSDST if it has not already done so.

242 z/OS V2R1.0 Communications Server: SNA Programming

If the LU has a controlling APPL, that is, if the original session is a result
of a LOGAPPL parameter on a definition statement, or of a VARY LOGON
command, VTAM attempts to reestablish the session by scheduling the
LOGON exit.

Note: Once CLSDST has been issued, session initiation is subject to the
normal rules. Therefore, if another LU has a queued session with the LU,
the new session requested by the application program whose LOSTERM
exit routine is invoked cannot be immediately established.

As discussed in Chapter 5, “Establishing and terminating sessions with
logical units,” on page 81, many of the types of session outages that cause
it are reported instead through an SCIP exit routine (if SONSCIP=YES on
the APPL definition statement) or otherwise through an NSEXIT exit
routine (if one exists).

20 (X'14')
A CTERM Forced request has been received. Perhaps the LU issued a
Terminate Forced request, using TERMSESS OPTCD=UNCOND, for
example. For a list of possible causes of reason code 20, see “Session
outage notification (SON) codes on UNBIND” on page 93. The application
program must issue CLSDST. When this completes, the application
program can attempt to reinitiate the session.

24 (X'18')
The session has been terminated. The LOSTERM exit routine is
immediately rescheduled with reason code 16 for this session. (See the
preceding description of reason code 16.) The application program can
issue CLSDST at this time, which in turn might cancel the execution of the
LOSTERM exit routine with reason code 16. The session outage can instead
be reported through an SCIP or NSEXIT exit routine as described under
reason code 16.

28 (X'1C')
Reserved.

32 (X'20')
A CTERM Conditional request has been received. Perhaps the LU issued a
Terminate Orderly request, using TERMSESS OPTCD=COND, for example.
For a list of possible causes of reason code 32, see “Session outage
notification (SON) codes on UNBIND” on page 93. The application
program can issue CLSDST at any time. The interpretation of the receipt of
CTERM Conditional is not defined by SNA or VTAM.

36 (X'24')
Received request or response units for this session have been discarded
because of a lack of buffer space. The session has not been terminated, but
session data recovery procedures are required (for example, CLEAR, SDT,
and STSN as described in Chapter 6, “Communicating with logical units,”
on page 151). This reason code can be reported to either a PLU or SLU
application program. For further details, see the description of
(RTNCD,FDB2)=(X'10',X'0F') in Appendix B, “Return codes and sense fields
for RPL-based macroinstructions,” on page 651.

44 (X'2C')
A cross-memory macroinstruction request failure has occurred. VTAM
attempted to SUSPEND or RESUME the execution thread of the requestor,
but the operation was not successful, possibly because the cross-memory
address space has failed. The user RPL (pointed to by Word 2 of the exit

Chapter 7. Using exit routines 243

parameter list) contains return code and feedback information describing
the failures, but VTAM cannot perform normal completion notification. The
RPL is now available for reuse.

48 (X'30')
A CLEANUP RU has been received. No NSEXIT is available to issue the
CLSDST macroinstruction. VTAM will close the session.

Note: For any of the LOSTERM reason codes that require or recommend a
CLSDST macroinstruction, do not issue a second CLSDST if one has been issued
for the same session, but possibly for a different reason.

NSEXIT exit routine
The NSEXIT exit routine is entered whenever certain network services RUs arrive
for an application program. Network services RUs are sent to the application
program on the SSCP-to-application program LU session. (If the program is a
communication network management program, any network services RUs having
a management-services category are sent to the application program as data. For
more information, refer to Chapter 12, “Coding for the communication network
management interface,” on page 337. In this case, the application program must
issue a RECEIVE macroinstruction; the NSEXIT exit routine is not scheduled for
management services requests.) The action taken by the exit routine depends on
the type of network services request unit received by the program.

An application program can receive any of three types of network services request
units:
v The program receives a Clean Up Session (CLEANUP) request unit (RU) when a

session of which the application program is a part is terminated.
v The program receives a Notify request unit (containing control vector hex 3) if,

after the program has issued a session-initiation request (other than through
OPNDST OPTCD=ACQUIRE) with a nonzero NIB USERFLD and the request
has been responded to positively by the SSCP, something happens that makes it
impossible to ensure that the session is set up successfully. The program also
receives a Notify RU (containing control vector hex 3) after the session initiated
by CLSDST OPTCD=PASS is established if PARMS=(THRDPTY=NOTIFY) is
specified.

v The program receives a Network Services Procedure Error (NSPE) request unit if,
after the program has issued a session-initiation request with a zero NIB
USERFLD and the request has been responded to positively by the SSCP,
something happens that makes it impossible to ensure that the session is set up
successfully. (See “Network services procedure error or Notify” on page 245 for
more information.)

When the exit routine is entered, VTAM provides it with the address of a read-only
RPL in the fifth word of the parameter list. The fields of this RPL that are filled in
by VTAM are shown in Figure 181 on page 851. The AREA field of the RPL
contains the address of the RU that is received, and the RECLEN field (as well as
the AREALEN field) of the RPL specifies the number of bytes in the RU. The exit
routine examines the RU to determine which type of network services RU is
received; this determines what action it should take. The following are also true for
this RPL:
v The application program uses SHOWCB, TESTCB, or IFGRPL DSECT to examine

the RPL fields (see Figure 92 on page 522).

244 z/OS V2R1.0 Communications Server: SNA Programming

v The 3-byte user RH field is set (see “Operation for inbound RUs” on page 198
for more information).

v CHECK must not be issued for the RPL.
v RPL and RU pointed to by AREA are freed when control returns to VTAM.

In the event that other types of network services request units are passed to the
NSEXIT exit routine in the future, the exit routine must test the 3-byte network
services header to determine the particular type of request received and take action
for each type. The exit routine must also take particular action when it receives a
request unit other than one of the types it expects to receive. If the exit routine
receives an RU other than an NSPE, Notify, or CLEANUP RU, the exit routine
should set register 0 to 0 and register 15 to 4 and then return control to VTAM.
Otherwise, it must set register 0 to 0 and register 15 to 0 before returning. This
allows VTAM to determine whether the application program understands the
network services request and to take appropriate action for that RU if the
application program does not understand it. (VTAM does not take any special
action if values other than 0 are returned in registers 0 and 15.) Similarly, certain
other fields within the network services request units must be checked; if the
values of these fields are not understood, register 0 must be set to 0 and register 15
must be set to 4. See Figure 64 on page 247, Table 36 on page 247 to Table 40 on
page 251, and Figure 65 on page 252 for the fields that must be checked.

Network services procedure error or Notify

As indicated in the preceding section, an NSPE or Notify RU can arrive at an
application program when, after having received a positive response to a
session-initiation request, the program is awaiting the next event in the
session-establishment procedure. Here are some examples of conditions that cause
an NSPE or Notify RU to be generated and delivered to an application program:
v An application program issues REQSESS, and the macroinstruction is completed

successfully (indicating that SSCP returned a positive response to the request).
The PLU then rejects the resulting CINIT (for example, by issuing CLSDST)
which causes an NSPE or Notify RU to be sent to the application program that
issued REQSESS.

v An application program issues REQSESS, and the macroinstruction is completed
successfully. The PLU is then abnormally terminated before it can process the
CINIT that resulted from the REQSESS. VTAM sends an NSPE or Notify request
unit to the application program that issued REQSESS.

v An application program issues SIMLOGON for an LU, and the macroinstruction
is completed successfully (indicating that a CINIT for a session with the LU is
created by VTAM and sent to the application program that issued the
macroinstruction). Before the CINIT can be processed, the VTAM operator
deactivates the LU. This causes VTAM to send the application program an NSPE
or Notify request unit.

v An application program issues SIMLOGON, and the LOGON exit routine is
entered. If CLSDST is issued, an NSPE or Notify results.

v Application program A issues CLSDST OPTCD=PASS to pass an LU to
application program B, and the macroinstruction completes successfully. When
application program B processes the resulting CINIT, it either (1) rejects the
CINIT by issuing CLSDST or (2) issues OPNDST to the LU, but the LU rejects
the BIND request by sending a request-rejected response. In either case, VTAM
sends an NSPE or Notify request unit to application program A. The request
unit signals application program A that, even though the CLSDST OPTCD=PASS
is posted complete, the session that was requested cannot be established.

Chapter 7. Using exit routines 245

v Application program A issues CLSDST OPTCD=PASS to pass an LU to
application program B, and specifies PARMS=(THRDPTY=NOTIFY). Application
program B issues OPNDST OPTCD=ACCEPT to accept the resulting CINIT and
send BIND to the LU; OPNDST is successful. VTAM sends a Notify request unit
to application program A to indicate that the session is established successfully.

v An application program issues OPNDST OPTCD=ACQUIRE. Before the session
is completely established, the VTAM operator issues VARY INACT,FORCE for
the SLU. NSPE is sent to the application program.

The format of the NSPE request unit is shown in Figure 64 on page 247. The
format of the Notify request is shown in tables from Table 36 on page 247 to
Table 40 on page 251.

If parallel sessions are initiated, the network-name pair in NSPE and Notify is
insufficient to determine which Initiate failed. Notify, however, contains a user
request correlation field that is transformed by VTAM into a user correlator, and
passed in word 3 of the exit routine parameter list. This can be used to isolate the
failing Initiate. NSPE does not contain a user request correlation field. Thus, if it is
critical to determine the failing request, SIMLOGON, rather than OPNDST
OPTCD=ACQUIRE, should be used by a PLU because Notify cannot be requested
for OPNDST, but can be requested for SIMLOGON. For further details, see
“SIMLOGON macroinstruction” on page 87.

In general, if an NSPE or Notify is received indicating that VTAM cannot ensure
the establishment of a requested session, either the session has not been established
or it is in the process of being terminated. Therefore, if the application program
issues TERMSESS or CLSDST referencing that session, a return code indicating that
the session does not exist is usually (but not always) returned.

In some situations, such as the first two conditions described in the preceding
discussion, the application program can issue another session-initiation request
immediately, or can wait and issue the request at a later time. Even if no other
action is taken, the NSEXIT exit routine should set registers 0 and 15 to 0 before
returning control to VTAM.

246 z/OS V2R1.0 Communications Server: SNA Programming

Table 36. Format of a Notify request unit (Part 1 of 5)
Byte Contents Description
0-2 X'810620' Network service header (must be checked) for SSCP-LU and for LU-SSCP.
3-n* One NOTIFY vector described in the following
3 4-n* Control vector key (must be checked) vector data

Note: The body of a NOTIFY Request Unit consists of one of the following NOTIFY vectors.

ILU/TLU or third-party SSCP notification NOTIFY vector (X'03').

v ILU/TLU notification informs the sender of an INIT or TERM request of the status of the
session.

v Third-party notification informs a third-party SSCP (the SSCP whose LU issued an
INIT-OTHER) of the status of the setup procedure.

3 X'03' Control vector key (must be checked)

Byte
0-2

3

4-7

+This value represents a variable-length field.

X is the length, in binary,
(number of characters) of the
symbolic name of the PLU.

Y is the length, in binary,
(number of characters) of the
symbolic name of the PLU.

1 Byte

X F3

X'010604'

Comprehensive Format

Reason code; (See also sense data below.)

Setup Procedure Error

0123 4567

0123 4567

1...

1...

....

....

An error occurred sending CINT to the PLU.

An error occurred sending CTERM to the PLU.

.1..

.1..

....

....

An error occurred sending BIND to the SLU.

An error occurred sending UNBIND to the SLU.

..1

..1

....

....

Session establishment was rejected at the PLU.

Session takedown was rejected at the PLU.

...1

...1

....

....

Session establishment was rejected at the SLU.

Session takedown was rejected at the SLU.

....

....

0...

0...

A session setup procedure error occurred.

A session takedown procedure error occurred.

....

....

.0..

.0..

Reserved

Session takedown was rejected at the SSCP.

....

....

..1.

..1.

Session establishment was rejected at the SSCP.

The bit combination of 11 for bits 4 and 6 is set aside for implementation internal use and is not
otherwise defined.

....

....

Takedown Procedure Error

Sense Data

Session key for network name pair (must be checked if the following field is examined)8 X'06'

Identification of the LUs involved in failed procedure, as follows:9-n+

The sense data, if applicable, is from the step in the program that caused the session setup or takedown failure.
For the meaning of the sense data, see SNA Formats.

...1

...1

This RU is in the comprehensive format.

This RU is in the comprehensive format.

If bit 4 is 0, then the reason byte is coded for a setup procedure error.
If bit 4 is 1, then the reason byte is coded for a takedown procedure error.

Note: In the comprehensive format, the reason byte is coded for two different uses.

Note: The remainder of this RU is in one of two formats, comprehensive or condensed, depending on the setting of bit 7 of the
reason byte (byte 3). The implementation determines when each format is used.

Network service header. (Must be checked.)
Contents Description

X YSymbolic name of the
PLU (1-8 characters)

Symbolic name of the
PLU (1-8 characters)

X F3

1 Byte 1 Byte 1 Byte1-8 Bytes 1-8 Bytes

Figure 64. Format of a Network Services Procedure Error request unit

Chapter 7. Using exit routines 247

Table 36. Format of a Notify request unit (Part 1 of 5) (continued)
Byte Contents Description
4 Status (must be checked) The following lists the currently supported values.

X'00' SSCP (OLU) and SSCP (DLU) not logically connected. No session (or session
setup path if rerouting is required) exists between them.

X'01' Session terminated
X'02' Session set up (In the same-domain case, +RSP (SESSST) has been sent, or,

in the cross-domain case, +RSP (CDSESSST) has been sent or received).
X'03' Procedure error

5-12 PCID, a unique value used as a session identifier
13 Reason (defined for a status field value of X'03' only)

Note: The reason byte is coded for two different uses:

If bit 4 is 0, the reason byte is coded for a setup procedure error.

If bit 4 is 1, the reason byte is coded for a takedown procedure error.
Setup procedure error

0123 4567

1...
An error occurred sending CINIT to the PLU.

.1..
An error occurred sending BIND to the SLU.

..1.
Session establishment was rejected at the PLU.

...1
Session establishment was rejected at the SLU.

.... 0...
A session setup procedure error occurred.

.... .X..
Reserved.

.... ..1.
Session establishment was rejected at the SSCP.

.... ...X
Reserved.

248 z/OS V2R1.0 Communications Server: SNA Programming

Table 36. Format of a Notify request unit (Part 1 of 5) (continued)
Byte Contents Description

Takedown procedure error

0123 4567

1...
An error occurred sending CTERM to the PLU.

.1..
An error occurred sending UNBIND to the SLU.

..1.
Session takedown was rejected at the PLU.

...1
Session takedown was rejected at the SLU.

.... 1...
A session takedown procedure error occurred.

.... .1..
Session takedown was rejected at the SSCP.

.... ..0.
The bit combination of 11 for bits 4 and 6 is set aside for
implementation internal use and is not otherwise defined.

.... ...X
Reserved.

14-17 Sense data (defined for a status value of X'03' only)

The sense data, if applicable, is from the step in the procedure that caused
the session setup or takedown failure. For the meaning of the sense data,
refer to SNA Formats

*This value represents a variable-length field.

Table 37. Format of a Notify request unit (Part 2 of 5)
Byte Contents Description
18-m Session key for network name pair (Must be checked if the following field is

examined.)
One of the
following keys is
used:

X'06' Network name pair (The first name of the pair is a PLU, OLU, LU1; the
second name of the pair is an SLU, DLU, or LU2.)

X'07' Network address pair (PLU and SLU, respectively)
X'0C' User request correlation (URC) field

Note: This session key is applicable within a NOTIFY only for SSCP-LU; it
is the URC carried in the session key field (rather than the value from the
URC field) in TERM, and differs from the URC in bytes m+1 through n
below.

X'15' Network-qualified address pair (PLU and SLU, respectively)
X'1C' Network-qualified name pair (The first name of the pair is a PLU, OLU, or

LU1, the second name of the pair is an SLU, DLU, or LU2.)
m+1-n* User request correlation (URC) field
m+1 Length, in binary, (number of characters) of the URC name
m+2-n* URC name The LU-defined identifier specified in an INIT or TERM request

(It is used to correlate the NOTIFY to the initiating request.)
Note: The URC length is 0 for SSCP-SSCP.

*This value represents a variable-length field.

Chapter 7. Using exit routines 249

Resource available NOTIFY vector (X'06') (replaces NOTIFY vector key X'01'). It is
used to inform the current users (LUs) or actively controlling SSCPs of a resource
(LU) that another LU wishes to use the resource. It is sent by an SSCP that
supports NOTIFY NS key X'06', as specified in the CDRM (X'06') control vector, to
an SSCP with the same capabilities or to an LU in its domain.

Table 38. Format of a Notify request unit (Part 3 of 5)
Byte Contents Description
3 X'06' Control vector key (must be checked)
4-n* Three X'19' control vectors are used to identify the LUs involved in the

resource request: X'19' resource identifier control vector identifying the
current session partner of the requested LU and the target LU X'19' resource
identifier control vector identifying the requested LU X'19' resource
identifier control vector identifying the requesting LU.
Note: If the length of one of the resource identifier control vectors is 0, the
indicated LU name is unavailable.

*This value represents a variable-length field.

LU-LU session services capabilities NOTIFY vector (X'0C'). It is used to inform
the SSCP having an active session with the sending LU of the current LU-LU
session services capabilities of that LU.

Table 39. Format of a Notify request unit (Part 4 of 5)
Byte Contents Description
3 X'0C' Control vector key (must be checked)
4 Vector length
5-n* Vector data
5 Bits 0-3, PLU capability (reserved for Type 2.1 nodes):

0123 4567

0000
PLU capability is inhibited. Sessions can be neither queued nor
started.

0001
PLU capability is disabled. Sessions can be queued or started.

0010
Reserved.

0011
PLU capability is enabled. Sessions can be queued or started.

Bits 4-7, SLU capability:

0123 4567

.... 0000
SLU capability is inhibited. Sessions can be neither queued nor
started.

.... 0001
SLU capability is disabled. Sessions can be queued or started.

.... 0010
Reserved

.... 0011
SLU capability is enabled. Sessions can be queued or started.

6-7 LU-LU session limit (A value of 0 means that no session limit is specified.)

250 z/OS V2R1.0 Communications Server: SNA Programming

Table 39. Format of a Notify request unit (Part 4 of 5) (continued)
Byte Contents Description
8-9 LU-LU session count: the number of LU-LU sessions for this LU that are not

reset, and for which SESSEND is sent to the SSCP
10 Flags

0123 4567

1... Parallel sessions capability. Parallel sessions supported

.1.. Retired

..1. SESSST capability in RSP(ACTLU) (reserved in NOTIFY). SESSST
RU is sent if for an SLU

...1 XRF session activation (X'27') control vector support in
RSP(ACTLU) (reserved in NOTIFY and for peripheral nodes). XRF
session activation (X'27') control vector supported on BIND.

.... 1... Peripheral node extended BIND support indicator (used between a
dependent LU and its BF, but otherwise reserved). Dependent LU
does support receipt of extended BINDs.

.... .1.. Network-qualified names support indicator in bytes k+2-m and
p+2-r. A BIND received by this LU can contain network-qualified
LU names in bytes k+2-m and p+2-r.

.... ..1. Subarea node extended BIND support indicator (used between a
subarea LU or BF and its SSCP, but otherwise reserved). Subarea
LU or BF(LU) does support sending and receiving extended BIND.

.... ...1 Boundary function (BF) network address pair (X'15') session key
support (reserved for peripheral nodes). BF does support session
key X'25'.
Note: Boundary function support for session key X'25' cannot be
changed after RSP(ACTLU); in NOTIFY, the sender sets bit 7 to 0,
which is then ignored by the receiver.

11 Vector extension
12-18 Retired

LU-LU session services capabilities NOTIFY vector (X'0C'). It is used to inform
the SSCP having an active session with the sending LU of the current LU-LU
session services capabilities of that LU.

Table 40. Format of a Notify request unit (Part 5 of 5)
Byte Contents Description
19 Additional capabilities:

0123 4567

1... Receipt of unrecognized control vectors on CINIT supported.

.111 Reserved

.x11 1

..xx xxxx
Reserved

Chapter 7. Using exit routines 251

Cleanup session

For certain types of session outages, see “Session outage notification (SON) codes
on UNBIND” on page 93. VTAM sends the application program a CLEANUP
request unit.

Arrival of the CLEANUP request unit at an application program causes the
program's NSEXIT exit routine to be scheduled (if one exists). Because VTAM has
completely terminated the session, the exit routine does not take any action to end
the session (that is, it does not issue a CLSDST or TERMSESS macroinstruction).
The exit routine can clean up application program control blocks for the session.
The exit routine can also attempt to reestablish the session, and the attempt can be
successful if the cause of the session outage has been repaired or bypassed, and the
desired LU is available. The format of the CLEANUP request unit is shown in
Figure 65.

If a PLU application program does not have an SCIP exit routine or has
SONSCIP=NO coded on its APPL definition statement, any UNBIND it receives is
converted to a CLEANUP for processing by the NSEXIT exit routine.

When the application program involved in a disrupted session is acting as the PLU
and does not have an NSEXIT exit routine, that program's LOSTERM exit routine
(if one exists) can be scheduled to report loss of the session. See “Session outage
notification” on page 110. An application program acting as an SLU must have an
NSEXIT exit routine or else it receives no notification of sessions being cleaned up.

Even if no other action is taken, the NSEXIT exit routine should set registers 0 and
15 to 0 before returning to VTAM.

Figure 65. Format of a Cleanup Session request unit

252 z/OS V2R1.0 Communications Server: SNA Programming

Table 41. NSEXIT exit routine: Registers upon entry

Reg Contents

0, 2-13 Unpredictable

1 Address of a parameter list that includes the following:

v Word 1—address of ACB for application program to which the network
services RU is sent

v Word 2—contents depend on the type of RU:

– CLEANUP RU - CID of the session

– NSPE or Notify (control vector hex 3) RU - reserved.

v Word 3—contents depend on the type of RU:

– CLEANUP RU - USERFLD data of NIB when the session referred to by the
CID is established (using OPNDST or OPNSEC)

– NSPE - reserved

– Notify RU - USERFLD field contents of NIB associated with the issued
SIMLOGON, REQSESS, or CLSDST OPTCD=PASS. If another exit has
already been scheduled reporting this failure, this word can be zero.

v Words 4, 6—reserved

v Word 5—address of a VTAM-supplied, read-only RPL that resides in read-only
VTAM storage and that cannot be used by RPL-based macroinstructions.

v Word 7—contents depend on the type of RU:

– CLEANUP or NSPE RU - reserved

– NOTIFY RU - address of network identifier parameter list 1

14 VTAM address that is branched to when NSEXIT exit routine completes
processing

15 Address of NSEXIT exit routine

Note:

1. The network identifier parameter list is mapped by the ISTNRIPL DSECT. For more
information, see Table 117 on page 762.

RELREQ exit routine
VTAM schedules the RELREQ exit routine when one application program requests
a session with an LU that is in session with another application program, and the
LU is at its session limit. The requesting program requests a session with
SIMLOGON OPTCD=(RELRQ,Q). As a result, VTAM schedules the RELREQ exit
routine of the PLU application program currently in session with the LU. The PLU
can either ignore the request (that is, remain in session with the LU and make the
requesting program wait) or can take action to end the session.

An application program LU can have a session limit of one or have no session
limit. If there is no session limit for an application acting as SLU in an active
session, subsequent session initiation requests result in additional active sessions
with the SLU. Therefore, it is not possible to use the RELREQ exit in this case. If
however, the application acting as SLU in an active session has a session limit of
one, subsequent session initiation requests can be queued, and the RELREQ exit
can be used. An application has a session limit of one if SESSLIM=YES is coded on
the APPL definition statement.

If the application program decides to end the session, it might want to determine
whether there are any pending (incomplete) communication requests for the
session, and wait for those communication operations to complete. To end the

Chapter 7. Using exit routines 253

session, the application program issues CLSDST OPTCD=RELEASE. After
execution of CLSDST, the LU is made available to the PLU that has the oldest
queued session for the LU. If there are still one or more queued sessions for the
LU when the PLU has established its session, the RELREQ exit routine of the new
PLU is driven (one time only).

If the exit routine decides to ignore the RELREQ request, it takes no action and
continues communication on the session. The queued session (from the
SIMLOGON OPTCD=Q from the other application program) remains queued until
the LU is available or until the queued session is purged (for example, by a VARY
TERM for the SLU).

If an application program does not have a RELREQ exit routine, the program
cannot be notified of another program's request. The RELREQ exit routine is
scheduled at least once for each SLU for which a queued session (specifying
RELRQ notification) exists; multiple notifications are possible, but not guaranteed.
This means that the PLU to which the LU is made available (when the LU is
released) can be different from the PLU whose SIMLOGON caused the current
entry to the RELREQ exit routine of the controlling application program.

If the application program shares printers with other IBM subsystems (for example,
CICS and IMS) or other application programs, the RELREQ exit routine can be
used to end the printer session without operator intervention. See “Program
structure recommendations” on page 33 for more information about printer
sharing.

Table 42. RELREQ exit routine: Registers upon entry

Reg Contents

0, 2-13 Unpredictable

1 Address of a parameter list that includes the following:

Word 1—address of ACB for application program with which the LU is
currently in session

Word 2—address of an 8-byte symbolic name of the requested LU (the name
is padded on the right with blanks, if necessary)

Word 3-6—reserved

Word 7—address of the network identifier parameter list

14 VTAM address that is branched to when RELREQ exit routine completes
processing

15 Address of RELREQ exit routine

RESP exit routine
The RESP exit routine provides a way for VTAM to notify an application program
when a response to a normal-flow request (data or data-flow-control) has arrived.

The RESP exit routine is one of three ways an application program can be notified
of receipt of a normal-flow response (other than a DFSYN response). The other two
ways are:
v Specifying POST=RESP in the macroinstruction used to send the normal-flow

request. If this is done, the macroinstruction is not completed until the response
is received.

v Maintaining an active RECEIVE RTYPE=RESP that is completed when a
normal-flow response is received.

254 z/OS V2R1.0 Communications Server: SNA Programming

Using an RESP exit routine is an alternative to getting each normal-flow response
with a RECEIVE RTYPE=RESP macroinstruction. The advantages and
disadvantages of the two alternatives are discussed in “Explicit RECEIVEs and
EXLST exit routines” on page 178.

If an RESP exit routine is specified in an NIB or ACB EXLST applicable to the
session, whenever a normal-flow response arrives, VTAM can schedule that RESP
exit routine. The detailed manner in which VTAM handles RESP input is shown in
Figure 39 on page 179 and Figure 41 on page 181. Certain normal-flow responses
are considered DFSYN input instead of RESP input and therefore do not schedule
an RESP exit. For normal-flow responses other than DFSYN responses, if a NIB
RESP exit routine is specified, it is always scheduled; however, a specified ACB
exit routine is scheduled only if:
v No NIB exit routine is specified.
v The NIB for the session specified RESPX.
v The session is in CA mode for RESP input.
v No RECEIVE OPTCD=SPEC,RTYPE=RESP macroinstruction is queued.

For an RESP exit routine, information on the normal-flow response that has been
received is available in a read-only RPL provided by VTAM. This RPL resides in
read-only VTAM storage and cannot be used by RPL-based macroinstructions. The
following are also true for this RPL:
v The application program uses SHOWCB, TESTCB, or IFGRPL DSECT to examine

the RPL fields.
v The 3-byte user RH field is set (see “Operation for inbound RUs” on page 198

for more information).
v All feedback fields (except REQ) are set exactly as they would be following

RECEIVE RTYPE=RESP.
v CHECK must not be issued for the RPL.
v RPL is freed when control returns to VTAM.

The location of the read-only RPL is provided in the parameter list passed to the
exit routine when the routine is scheduled.

Note: Be aware that an RESP exit routine, which is scheduled for execution before
the application program issues CLSDST, cannot be executed until after the CLSDST
completes.

Table 43. RESP exit routine: Registers upon entry

Reg Contents

0, 2-13 Unpredictable

1 Address of a parameter list that includes the following:

Word 1—address of ACB of application program to which the response is
sent

Word 2—CID of the session

Word 3—USERFLD contents from NIB that is used to establish the session

Word 4—reserved

Word 5—address of a VTAM-supplied, read-only RPL

Words 6, 7—reserved

14 VTAM address that is branched to when RESP exit routine completes processing

15 Address of RESP exit routine

Chapter 7. Using exit routines 255

RPL exit routine
An RPL exit routine is entered after an RPL-based operation completes if the RPL
or the macroinstruction using it specified the exit routine address in the EXIT
operand.

Table 44. RPL exit routine: Registers upon entry

Reg Contents

0, 2-13 Unpredictable

1 Address of RPL whose RPL operation has just completed

14 VTAM address that is branched to when RPL exit routine completes processing

15 Address of RPL exit routine

SCIP exit routine
The SCIP exit routine is entered when an application program receives any of the
following session-control requests by an application program:
v CLEAR
v Start Data Traffic (SDT)
v Request Recovery (RQR)
v Set and Test Sequence Numbers (STSN)
v BIND
v UNBIND.

For CLEAR, RQR, and UNBIND, VTAM automatically sends a response before the
request is presented to the exit routine. For STSN and BIND, the application
program must send its own response. For SDT, either the application program or
VTAM sends the response, depending on the SDT operand specified on the
OPNSEC's NIB. For all these requests except UNBIND, if the application program
has no SCIP exit routine, VTAM automatically sends a negative response; for
UNBIND, VTAM sends a positive response.

Four of the requests—CLEAR, SDT, STSN, and BIND—are sent only from the PLU
to the SLU. Thus, in an application program, those four requests can be received
and processed only in an SCIP exit routine at the SLU. RQR is sent only from the
SLU to the PLU. Thus, that request is received and processed only in an SCIP exit
routine at the PLU. UNBIND can be sent from either the PLU or the SLU. The
SCIP exit routine at the PLU is entered on receipt of UNBIND only if the APPL
definition statement for the PLU application program is coded with
SONSCIP=YES.

You can use SETLOGON OPTCD=HOLD and OPTCD=START to synchronize
session setup requests. SETLOGON OPTCD=HOLD causes all BIND requests to be
queued and prevents the scheduling of the SCIP exit for session setup requests.
When SETLOGON OPTCD=START is issued after SETLOGON OPTCD=HOLD,
VTAM schedules the SCIP exit for each queued BIND request. VTAM continues to
drive the SCIP exit as usual until the application issues
SETLOGON OPTCD=HOLD or SETLOGON OPTCD=QUIESCE.

Note: The SCIP exit is driven for all requests other than BIND regardless of the
use of SETLOGON OPTCD=HOLD.

256 z/OS V2R1.0 Communications Server: SNA Programming

For an SCIP exit routine, information on the request that has been received is
available in a read-only RPL provided by VTAM. The RPL resides in read-only
VTAM storage and cannot be used by RPL-based macroinstructions. The following
are also true for the RPL:
v The application program uses SHOWCB, TESTCB, or IFGRPL DSECT to examine

the RPL fields (see Figure 92 on page 522).
v The 3-byte user RH field is set (see “Operation for inbound RUs” on page 198

for more information).
v The CONTROL field identifies the particular session-control request that caused

scheduling of the SCIP exit routine.
v If SCIP is entered as result of BIND or UNBIND request, AREA contains the

address of the BIND or UNBIND RU, and RECLEN and AREALEN fields
contain the length of the RU (refer to SNA Formats for a description of the
contents of the BIND or UNBIND RU).

v CHECK must not be issued for the RPL.

The read-only RPL and any RU pointed to by the AREA field are freed when the
exit routine returns to VTAM; any information needed from these areas must be
copied before then.

The location of the read-only RPL is provided in the parameter list passed to the
exit routine when the routine is scheduled.

Clear

The Clear request is sent by the PLU when the flow of data requests,
data-flow-control requests, and responses is to be stopped, either because the PLU
is terminating the session or because the PLU wants to take some recovery action.
Clear can be sent only if the transmission services profile for the session indicates
that Clear is supported.

For more information on Clear, see “Controlling flow” on page 164. For the role of
Clear in various sequences, see Appendix D, “Request and response exchanges for
typical communication operations,” on page 693.

Start Data Traffic (SDT)
When required by the transmission services profile in the session parameters, Start
Data Traffic (SDT) is sent from the PLU to the SLU at the beginning of the session
and within a session after successful sequence-number resynchronization has
occurred. In both cases, SDT informs the SLU that the flow of data requests,
data-flow-control requests, and responses can be started (or resumed).

For more information on SDT, see “Controlling flow” on page 164. For the role of
SDT in various sequences, see Appendix D, “Request and response exchanges for
typical communication operations,” on page 693.

Request Recovery (RQR)
The SLU sends Request Recovery to the PLU to request sequence number
resynchronization or other recovery operations. In most cases, RQR is sent when
the SLU discovers (1) a discrepancy in the sequence numbers of incoming requests
or (2) a discrepancy between the sequence numbers it assigned to outgoing
requests and the sequence numbers of the responses it is receiving to those

Chapter 7. Using exit routines 257

requests. It might also send RQR if it loses or is forced to discard some incoming
requests before it can process them. (For example, input buffers are too full to hold
the incoming requests.)

For a description of the procedure used to resynchronize sequence numbers, see
“Controlling flow” on page 164. For examples of the use of Request Recovery, see
Figure 119 on page 706, Figure 132 on page 719, and Figure 133 on page 720.

Set and Test Sequence Numbers (STSN)
Set and Test Sequence Numbers is used by the PLU to resynchronize sequence
numbers. For more information on STSN, see:
v “Controlling flow” on page 164
v “SESSIONC—Send a session-control request or response” on page 532
v Figure 109 on page 696 and Figure 110 on page 697
v Figure 119 on page 706
v Figure 132 on page 719 and Figure 133 on page 720

BIND
BIND is sent from the PLU to the SLU during session establishment. BIND
indicates that the PLU wants to start a session with the SLU, and the request
contains the session parameters that the PLU proposes to use for the session. The
application program can issue OPNSEC to accept the session or SESSIONC
CONTROL=BIND or TERMSESS OPTCD=UNBIND to reject the session. These
macroinstructions can be issued either in the SCIP exit routine or in another part of
the program after the SCIP exit routine returns to VTAM. For more information on
BIND, see Chapter 5, “Establishing and terminating sessions with logical units,” on
page 81, especially “BIND request” on page 91, and “BIND response” on page 97.
See Appendix D, “Request and response exchanges for typical communication
operations,” on page 693, for examples of BIND in various sequences, and
Appendix F, “Specifying a session parameter,” on page 793, for a description of the
session parameters in BIND.

Certain information can appear in control vectors appended to the BIND RU:

Vector Description

X'0E' Network-name control vector. Network-qualified name of the PLU.

X'0E' Network-name control vector. Network-qualified name of the SLU.

X'27' XRF session-activation control vector.

X'2B' Route selection-control vector.

X'2C' COS and TPF control vector.

X'2D' Mode-name control vector.

X'5F' Extended fully qualified PCID control vector.

X'60' Fully qualified PCID control vector.

X'66' Data compression control vector.

Refer to SNA Formats for a list of control vectors on BIND and their formats.

The read-only RPL's AAREA field points to the beginning of the control vectors
attached to the BIND. The AAREA field is zero if there are no attached control
vectors.

258 z/OS V2R1.0 Communications Server: SNA Programming

The length of the control vectors is determined as follows:

Length of CV=RPLRLEN-(RPLAAREA-RPLAREA)

The RU pointed to by word 4 of the parameter list, and mapped by ISTDBIND, is
not the same RU as the one pointed to by RPLAREA (see Figure 66). Differences
exist in the:
v PLU name field
v Crypto fields
v User data.

RPL

RPLAAREA

RPLAREA

RPLBUFL

RPLRLEN

X'31' BIND RU Extended BIND
Control Vectors

Register 1

Word 1

Word 2

Word 3

Word 4

Word 5

Word 6

Word 7

ISTDBIND Image (No control vectors present)

Length of CV=(RPLRLEN-(RPLAAREA-RPLAREA)

NOTE: There are two different BIND Images passed to the SCIP Exit.

Figure 66. BIND information presented to SCIP exit

Chapter 7. Using exit routines 259

UNBIND
UNBIND is sent by an LU, either a PLU or an SLU, to its session partner in an
LU-LU session to end that session. Additionally, UNBIND can be sent on an
LU-LU session on behalf of an LU by other network components; this is typically
done to notify each LU in the session that a session outage has occurred (for
example, because of a network or LU failure).

UNBIND received by an SLU application program is always presented through an
SCIP exit routine. UNBIND received by a PLU is presented through an SCIP exit
routine only if such an exit routine exists and if SONSCIP=YES is coded on the
APPL definition statement for that application program; otherwise, either an
NSEXIT exit routine is scheduled with CLEANUP, or a LOSTERM exit routine is
scheduled with a reason code. See “Session outage notification” on page 110 for
details.

If an SCIP exit routine is scheduled, the AREA field in the read-only RPL provides
the address of an UNBIND RU in read-only storage. This RU contains a 1-byte
request code and a 1-byte type code. Additional data may be available for certain
type codes. Many of the currently defined UNBIND SON (UNBIND type) codes
follow. Additional codes are listed in SNA Formats. If an application program
receives an UNBIND SON code that it does not recognize, it should act as if
UNBIND SON type 1 had been received. VTAM terminates the session and
attempts to notify the application program for any UNBIND SON code.

UNBIND
Type code meaning

1 (X'01')
Normal end of session. (For example, the PLU application program issued
CLSDST OPTCD=RELEASE for this session.)

2 (X'02')
BIND forthcoming. (For example, the PLU application program issued
CLSDST OPTCD=PASS for this session.) The LU receiving the UNBIND
should retain resources associated with this session because a BIND arrives
shortly to establish another session which can use those resources.

7 (X'07')
Virtual route inoperative. The virtual route used by this session has
become inoperative, possibly because of a link or network node failure.
You can try to reinitiate the session (for example, by using SIMLOGON or
REQSESS) using the same class of service or a different class of service
(class of service is specified indirectly through a logon mode name); this
attempts to reestablish the session on a virtual route within that class of
service. The virtual route used can be the same as the original virtual route
(if it has recovered) or can be another virtual route within the chosen class
of service.

8 (X'08')
Route extension inoperative. The route extension used by this session has
become inoperative. (The route extension is the connection, including the
link, between a peripheral node associated with one end of the session and
the subarea node supplying boundary function for that peripheral node.)
The session cannot be reestablished until the route extension has been
made operative again. You can attempt to reinitiate the session by using
SIMLOGON OPTCD=(Q,ASY). This fails if the SSCP has detected a

260 z/OS V2R1.0 Communications Server: SNA Programming

permanent route extension failure. If a recovery procedure is under way to
reestablish contact with the peripheral node, SIMLOGON cannot be posted
complete for a long time; it is posted complete with
(RTNCD,FDB2)=(X'00',X'00') if the recovery procedure succeeds; it is posted
complete with an error return code if a permanent error is detected.

9 (X'09')
Hierarchical reset. The current LU-LU session is being terminated because
an SSCP established an SSCP-LU (or SSCP-PU) session with the other LU
in this session (or the PU associated with that LU) and that LU (or PU)
could not accept the SSCP session without terminating all of its associated
LU-LU sessions. An immediate attempt to reinitiate the LU-LU session (for
example, by using SIMLOGON) is likely to succeed.

10 (X'0A')
SSCP gone. The current LU-LU session is being terminated because the
SSCP-PU or SSCP-LU session associated with the other LU in the session
has been intentionally or unintentionally terminated. For example, a VTAM
operator has used the VARY command to deactivate that PU or LU, or the
virtual route used by the SSCP sessions with the PU and LU has failed and
the node providing boundary function support for the PU and LU has
been coded to end LU-LU sessions when this occurs. An immediate
attempt to reinitiate the LU-LU session is unlikely to succeed because the
other LU is currently unavailable.

11 (X'0B')
Virtual route deactivated. The current LU-LU session is being terminated
because the virtual route used by that session has been intentionally
deactivated. You can try to reinitiate the session (for example, by using
SIMLOGON or REQSESS) using the same class of service or a different
class of service (class of service is specified indirectly through a logon
mode name); this attempts to reestablish the session on a virtual route
within that class of service. The virtual route used can be the same as the
original virtual route (if it can be reactivated), or a new virtual route can
be used.

12 (X'0C')
Unrecoverable LU failure. The current LU-LU session is being terminated
because of a permanent failure of one of the LUs involved in the session.
An attempt to reinitiate the session probably fails.

14 (X'0E')
Recoverable LU failure. The current LU-LU session is being terminated
because of a temporary failure of one of the LUs involved in the session.
An attempt to reinitiate the session might be successful.

15 (X'0F')
Cleanup. The current LU-LU session is being terminated because one of the
LUs in the session is being cleaned up, usually because an SSCP issued a
CLEANUP request to that LU. An attempt to reinitiate the session might
succeed.

254 (X'FE')
Session protocol or user-supplied sense code that is not valid. One of the
LUs in the session has detected a protocol violation. Four bytes of sense
data following the UNBIND SON code indicate the specific violation.
Depending on the violation, an attempt to reestablish the session might
succeed.

Chapter 7. Using exit routines 261

Code X'FE' can also be coded in an application program to indicate that 4
bytes of user-defined sense data are supplied in the UNBIND.

Certain information can appear in control vectors appended to the UNBIND RU:

Vector Description

X'35' Extended-sense data control vector.

X'60' Fully qualified PCID control vector.

For the role of the UNBIND request in various sequences, see Appendix D,
“Request and response exchanges for typical communication operations,” on page
693.

Table 45. SCIP exit routine: Registers upon entry

Reg Contents

0, 2-13 Unpredictable

1 Address of a parameter list that includes the following:

v Word 1—address of ACB for application program to which the session-control
request is sent

v Word 2—CID of the session 1

v Word 3—USERFLD data of NIB at time the session is initiated or established;
be aware of the following:

– If session has been established, word 3 contains USERFLD field contents
from NIB used by OPNDST or OPNSEC

– For receipt of BIND request resulting from the application program issuing
a REQSESS, word 3 contains USERFLD contents from NIB used by
REQSESS, else, word 3 is 0 for BIND

– For receipt of UNBIND, word 3 can contain the user field data for the
session if it still exists, else, word 3 will be 0. This user field data was
originally obtained from the USERFLD contents in the NIB.

v Word 4—contents depend on the type of request:

– BIND request - contains beginning address of the session parameters (see
Appendix F, “Specifying a session parameter,” on page 793); the area is
freed when both of the following have occurred:

- Exit routine has returned to VTAM

- OPNSEC, SESSIONC, or TERMSESS has been issued for session

v Other types of requests—contains no meaningful data

v Word 5—address of a VTAM-supplied, read-only RPL

v Word 6—address of the PLU's symbolic name 2 (BIND RU only)

v Word 7—address of the network identifier parameter list 3 (BIND RU only)

14 VTAM address that is branched to when SCIP exit routine completes processing

15 Address of SCIP exit routine

Notes:

1. The application program should use the CID to identify the session for a particular
logical unit.

2. This name is the LUALIAS name, USERVAR name, or the name in the NSPLU name
field of the BIND.

3. The network identifier parameter list is mapped by the ISTNRIPL DSECT. For more
information, see Table 117 on page 762.

262 z/OS V2R1.0 Communications Server: SNA Programming

SYNAD exit routine
A SYNAD exit routine is identified in an ACB exit list when a routine is to be
automatically invoked when a physical error is detected. A physical error is an
unrecoverable input or output error or other unusual condition that occurs during
an operation. The SYNAD exit routine, if specified, is entered for all recovery
action return codes of 4, 8, 12, and 16 (decimal). Chapter 9, “Handling errors and
special conditions,” on page 277, discusses the use and logic of SYNAD exit
routines in detail.

When the SYNAD exit routine returns control to VTAM, VTAM leaves registers 0
and 15 intact; this enables the routine to pass information in those registers back to
the part of the application program from which SYNAD is invoked. VTAM returns
control to the next sequential instruction in the application program following the
RPL-based request (or CHECK). Because the routine is executed under the same
system scheduling control block as the part of the program that issued the
RPL-based or CHECK macroinstruction, SYNAD can branch to other parts of the
program. If SYNAD is entered from an RPL-based request, or if the CHECK is
issued in an asynchronous exit routine, the program must eventually branch to
register 14. If the routine returns control to the next sequential instruction by
branching to the register 14 address, VTAM restores the register from the save area
whose address is in register 13.

If the exit routine is running under an SRB, different conditions apply for return.
See “Execution of exit routines” on page 307 for more information.

Table 46. SYNAD exit routine: Registers upon entry

Reg Contents

0 Recovery action return code (refer to Chapter 9, “Handling errors and special
conditions,” on page 277).

1 Address of RPL associated with the request

If the CHECK or RPL-based macroinstruction that caused entry into SYNAD exit
routine used one of the registers 2–12 inclusively, bit 0 of that register is returned
in bit 0 of register 1. You can use this to detect recursive entries of SYNAD.

2-12 Unmodified

13 Address of an 18-word save area supplied by the programmer when the
macroinstruction that caused the error is issued. Be aware of the following:

v If the exit routine is going to return control through register 14, it must not
change anything in the save area. If any macroinstruction is issued in the exit
routine, register 13 must first be loaded with the address of a new save area.

v Before control is returned through register 14, register 13 must be restored
with the value it had when the exit routine is invoked.

14 VTAM address that is branched to when SYNAD exit routine completes
processing

15 Address of SYNAD exit routine

TPEND exit routine
VTAM invokes the TPEND exit routine when any of the following occurs:
v VTAM operator issues a HALT command.
v VTAM halts itself in an orderly fashion because of an internal problem.
v VTAM terminates abnormally.

Chapter 7. Using exit routines 263

v The operator issues a VARY INACT command for the application program.
v VTAM schedules the TPEND exit in response to an OPEN ACB from an

alternate application that wants to take over the sessions from the original
application.

v VTAM receives notification of a multinode persistent session (MNPS) forced
takeover request for this application.

A reason code in the second word of the parameter list passed to the exit routine
indicates the reason for entry to the exit routine.

Reason code
Meaning

0 indicates a standard HALT command (a HALT command without the
QUICK or CANCEL operand). The program is allowed to continue
communications on existing sessions or CMIP connections, but the
program should end those communications in an orderly fashion as soon
as it can. No new sessions can be established. For CMIP application
programs, the MIBConnect function cannot be issued. The exit routine
should have the mainline program issue a CLOSE macroinstruction or for
CMIP application programs, call the MIBDisconnect function. (A CLOSE
macroinstruction or for CMIP application programs, a MIBDisconnect
function, cannot be issued in an exit routine.)

4 indicates a a HALT QUICK command, when VTAM is halting itself, or
when the operator issues a VARY INACT command for the application
program. The pending RPL-based operations are canceled. For reason code
4 (as for reason code 0), the application program should issue the CLOSE
macroinstruction or for CMIP application programs, the MIBDisconnect
function, in the mainline program.

8 indicates a HALT CANCEL command or VTAM abnormal termination. The
pending operations are interrupted (without being marked as completed or
canceled), and no VTAM macroinstruction except CLOSE is accepted. For
CMIP application programs, only the MIBDisconnect function is accepted.
The TPEND exit routine should return to the mainline program for
immediate issuance of the CLOSE macroinstruction or for CMIP
application progams, the MIBDisconnect function, without any attempt to
issue other VTAM requests.

Note: The TPEND exit routine with reason code 8 can interrupt any other
exit routine.

12 indicates that VTAM has scheduled the TPEND exit in response to an
OPEN ACB from an alternate application that wants to take over the
sessions from the original application. VTAM drives the TPEND exit and
suspends the sessions. See “Restoring sessions pending recovery” on page
137 for information on how to restore sessions following an application
program failure and recovery.

This reason code also indicates that an active application program with the
same network name has enabled persistence on another VTAM when this
VTAM connects to the multinode persistent sessions coupling facility
structure. Specifically, this occurs when a persistence-enabled application
program is open and VTAM is not connected to the coupling facility. Later,
when VTAM connects to the coupling facility, it detects an open
application program with the same name that is already enabled for
persistence. See “Opening the ACB during recovery from a node failure”
on page 70 for more information.

264 z/OS V2R1.0 Communications Server: SNA Programming

This reason code might also indicate that VTAM has scheduled the TPEND
exit in response to an OPEN ACB from an alternate application on a
different node in the sysplex that is requesting MNPS forced takeover
processing. VTAM drives the TPEND exit to inform the application that
VTAM is generating a CLOSE ACB for the application while the
application is in persistence enabled state. This mechanism allows the
sessions to be maintained long enough for the MNPS takeover to be
performed by the other application instance.

Note: CMIP application programs do not receive this return code.

See “TPEND exit routine is entered” on page 74 for more information on actions
taken when the TPEND exit routine is invoked.

Table 47. TPEND exit routine: Registers upon entry

Reg Contents

0, 2-13 Unpredictable

1 Address of a parameter list that includes the following:

Word 1—address of ACB of application program being shut down

Word 2—reason code for shutdown

Words 3-7—reserved.

14 VTAM address that is branched to when TPEND exit routine completes
processing

15 Address of TPEND exit routine

Chapter 7. Using exit routines 265

266 z/OS V2R1.0 Communications Server: SNA Programming

Chapter 8. Setting and testing control blocks and macro
global variables

The VTAM application program places values in control blocks (ACB, EXLST, NIB,
ASDP, and RPL) used by VTAM when the application program requests VTAM to
perform actions on its behalf. When the request is accepted or completed, VTAM
places values in the ACB, NIB, or the RPL control block as appropriate. The
application program tests these values to determine the outcome of the request.
This chapter discusses the ways in which the VTAM application program sets and
tests these control block values.

Also discussed is certain VTAM information that is made available at assembly
time in the form of macro global variables.

Setting and testing control block values
About this task
v Control block values can be set by:

– Defining them in an ACB, EXLST, NIB, or RPL macroinstruction
– Specifying values in operands of RPL-based macroinstructions
– Using the manipulative macroinstructions GENCB and MODCB for certain

fields
– Using the INQUIRE OPTCD=TERMS macroinstruction to generate an NIB or

list of NIBs
– Using the DSECT-creating macroinstructions and assembler instructions to

move values into specified fields.
v Control block values can be tested by:

– Using the manipulative macroinstructions TESTCB and SHOWCB for certain
fields

– Using the DSECT-creating macroinstructions and assembler instructions to
test values in specified fields.

Using manipulative macroinstructions

The macroinstructions that manipulate application program control blocks are:
v GENCB
v MODCB
v SHOWCB
v TESTCB

The advantages of these macroinstructions are that they:
v Provide in one instruction what would require several assembler language

instructions
v Allow symbolic references to be made to control blocks and their fields without

having to be concerned with their relative storage locations
v Can create control blocks in storage obtained dynamically, thereby allowing the

application program to be reentrant.

© Copyright IBM Corp. 2000, 2013 267

The disadvantages of these macroinstructions are that they:
v Do not support newer parameters
v Are not efficient and expend CPU cycles.

For details about syntax and return codes for manipulative macroinstructions, refer
to:
v Appendix I, “Return codes for manipulative macroinstructions,” on page 855
v Appendix J, “Summary of operand specifications,” on page 857
v Appendix K, “Forms of the manipulative macroinstruction,” on page 865.

GENCB macroinstruction

GENCB builds and initializes an NIB, ACB, RPL, or EXLST. To use GENCB, this
information is specified:
v The kind of control block built: ACB, NIB, RPL, or EXLST.
v The fields initialized and the values set in each field. For example, to build an

RPL and initialize the OPTCD field to SYN, specify:
GENCB BLK=RPL,AM=VTAM,OPTCD=SYN

v The number of copies of the control block built. Each copy initializes with the
same values and can later modify with the onset of particular requests.

v Where the control block is built. The program defines an area where VTAM
builds the control block. If an area is not specified, VTAM gets the storage from
the system dynamically. VTAM returns the address of the created control block
in register 1 and the length in register 0.

For application programs, any control block allocated using the GENCB
macroinstruction resides in 24-bit storage.

Example 1

Build an ACB dynamically; initialize the EXLST field.
GENCB BLK=ACB,AM=VTAM,EXLST=MYLST

When GENCB is completed, register 1 contains the address of the new ACB;
register 0 contains its length.

Example 2

Build 50 copies of an NIB dynamically. Initialize the processing options field to
DFASYX and RESPX so that expedited-flow messages and response input on the
sessions established with the NIBs causes a DFASY or RESP exit routine to be
scheduled.
GENCB BLK=NIB,AM=VTAM,PROC=(DFASYX,RESPX), C

COPIES=50

The program can calculate the length of each NIB by dividing the length in register
0 by the number of copies, and use this value to refer to each NIB from an RPL.

Example 3

A storage management technique is used whereby, for each LU, the program
obtains a storage area to contain an RPL, an LU work area, and a data area. It
issues GETMAIN to get storage for the entire area. Then, using a DSECT to map
the area, it issues a GENCB to build an RPL.

268 z/OS V2R1.0 Communications Server: SNA Programming

The WAREA operand of the GENCB macroinstruction uses an S-type constant to
point to a real storage area using the DSECT as a map:

GETMAIN R,LV=LEN
LR 2,1
USING TWA,2
GENCB BLK=RPL,AM=VTAM,WAREA=(S,XRPL), C
LENGTH=XRPLLEN
.
.
.

TWA DSECT
CHAIN DS F CHAINING POINTER
XRPL DS 0F

IFGRPL AM=VTAM,DSECT=NO
XRPLEND EQU *
WORKAREA DS 10F LOGICAL UNIT WORK-AREA
DATA DS CL100 DATA AREA
END EQU *
LEN EQU END-TWA LENGTH OF ELEMENT
XRPLLEN EQU XRPLEND-XRPL LENGTH OF RPL

The SHOWCB macroinstruction can be used to examine the fields of this RPL:
SHOWCB AREA=SHOWAREA,RPL=(S,XRPL), C

FIELDS=FDBK2,LENGTH=4,AM=VTAM
.
.
.

SHOWAREA DS F

MODCB macroinstruction

MODCB modifies the contents of an existing ACB, NIB, RPL, or EXLST. To use
MODCB, this information is specified:
v The access method (VTAM)
v The kind of control block to be modified
v The symbolic name of the control block or a register that contains the address of

the control block
v The fields to be modified.

A common use of MODCB is to modify an NIB during execution of a LOGON exit
routine. Here are some examples:

Example 1

A LOGON exit routine has been entered, and it is necessary to put the symbolic
name of the SLU into the NIB prior to session establishment. A pointer to the
symbolic name of the SLU is in the parameter list pointed to by register 1 when
the exit routine is entered. Because the NIB NAME field must have the symbolic
name itself and not its address, the programmer codes:

L R4,4(R1) POINT TO THE SYMBOLIC NAME
* OF THE LOGICAL UNIT

MODCB AM=VTAM,NIB=NIB1,NAME=(*,0(R4)) PUT IN NIB

Example 2

The entry for the LOGON exit routine in an exit list (labeled EX1) is to be changed
to point to a routine named LOGON1:
MODCB AM=VTAM,EXLST=EX1,LOGON=LOGON1

Chapter 8. Setting and testing control blocks and macro global variables 269

Example 3

A pool of 50 RPLs has been created using GENCB. The address of that pool is in
register 6. Later, to modify the OPTCD field in the first RPL, this macroinstruction
is issued:
MODCB AM=VTAM,RPL=(6),OPTCD=SYN

To modify the second RPL in the same way, the program divides the number of
copies (50) into the total length (contained in register 0) to obtain the length of one
RPL (assume that register 4 contains the length of one RPL):
ALR 6,4 GET TO NEXT RPL
MODCB AM=VTAM,RPL=(6),OPTCD=SYN

Two restrictions govern the use of MODCB.
v An open ACB or an RPL or an NIB for a request that is being processed cannot

be modified.
v New entries cannot be added to an EXLST; only addresses of existing entries can

be changed.

SHOWCB macroinstruction

SHOWCB copies the values of selected fields in an ACB, NIB, RPL, or EXLST into
a designated area. In using SHOWCB, this information is specified:
v The access method (VTAM)
v The kind of control block: ACB, NIB, RPL, or EXLST
v The symbolic name of the particular control block or a register that contains the

address of the control block
v The fields to be copied. For example, FDBK and FDBK2 fields in an RPL, the

CID field in an NIB, or the ERROR field in an ACB can be specified. The fields
must be in the same control block.

v The name and length of a storage area in which VTAM places the contents of
the named fields. This area must begin on a fullword boundary.

Example 1

Extract the 4-byte CID from an NIB whose address is in register 2; put the CID in
an area defined as CIDAREA:
SHOWCB AM=VTAM,AREA=CIDAREA,NIB=(2),FIELDS=CID, C

LENGTH=4

Example 2

Extract the 4-byte address of the application program identification from the ACB
labeled ACB1 and put it into an area labeled MYID:
SHOWCB AM=VTAM,AREA=MYID,ACB=ACB1,FIELDS=APPLID, C

LENGTH=4

Example 3

Extract the contents of the RTNCD and FDBK2 fields from the RPL whose address
is in register 7 and store the contents contiguously at HERE:
SHOWCB AM=VTAM,AREA=HERE,RPL=(7),FIELDS=(RTNCD,FDB2), C

LENGTH=2

270 z/OS V2R1.0 Communications Server: SNA Programming

Example 4

This example shows how to build an ACB by using the SHOWCB macroinstruction
to determine the length of the ACB. Using this method, the program issues a
SHOWCB to obtain the 4-byte length of the ACB in an area labeled LENAREA. It
then stores the length of the ACB in register 10 and issues a storage
macroinstruction for the required amount of storage. Finally, it issues a GENCB to
build the ACB at the address contained in register 5.

SHOWCB AM=VTAM,FIELDS=ACBLEN,AREA=LENAREA,LENGTH=4
L 10,LENAREA
GETMAIN R,LV=(10)
LR 5,1
GENCB AM=VTAM,BLK=ACB,WAREA=(5),LENGTH=(10)

LENAREA DS F

TESTCB macroinstruction

TESTCB tests the value of a specific field in an ACB, NIB, RPL, or EXLST. In using
TESTCB, this information is specified:
v The access method (VTAM)
v The kind of control block: ACB, NIB, RPL, or EXLST
v The name of the control block or register that contains the address of the control

block
v The keyword for the field to be tested
v The value against which the field is to be tested
v Optionally, the name of a routine to be given control if VTAM cannot compare

the two values.

To test the results of a TESTCB, the TESTCB macroinstruction can be followed with
a branching instruction such as BE or BNE.

Some common uses of TESTCB are to test the ACB error flags when an ACB does
not open properly and to test the FDBK2 field in the RPL after a data-transfer
operation.

Example

If an ECB within the RPL is specified for posting, TESTCB can be used to
determine which RPL has had its request completed. Use TESTCB to test the IO
field of each RPL:
TEST TESTCB AM=VTAM,RPL=(8),IO=COMPLETE

BE OUT

Using INQUIRE OPTCD=TERMS to generate NIBs

The INQUIRE OPTCD=TERMS macroinstruction can be used to build a single NIB
or a list of NIBs. When the INQUIRE macroinstruction is issued, the RPL must
point to an NIB whose NAME field contains the name of a resource known to
VTAM. An NIB is built for each dependent LU belonging to the set defined by the
name in the NIB. For example, if the name of a PU is in the NIB, NIBs are built for
all the dependent LUs belonging to that PU; the independent LUs are no longer
considered to be subordinate to the PU and are not returned in the NIB list.

Chapter 8. Setting and testing control blocks and macro global variables 271

When the macroinstruction is issued, the AREA and AREALEN fields in the RPL
must designate the location and length of the work area where the NIBs are to be
built. Before the macroinstruction is issued, the work area must be set to binary
zeros.

If the application program wants the NIBs to be built in dynamically-allocated
storage (storage obtained by the application program during execution), INQUIRE
should be issued twice. For the first INQUIRE, set AREALEN to 0. This INQUIRE
is completed with (RTNCD,FDB2)=(X'00',X'05') (insufficient length), and RECLEN
indicates the required length. Obtain the required storage and then issue INQUIRE
again with AREALEN set to the proper length.

After the macroinstruction is completed, the RECLEN field in the RPL contains the
total length (number of bytes) for all NIBs generated by the macroinstruction. The
NAME field of each NIB contains the symbolic name of the LU for which the NIB
was generated, and each NIB contains the device characteristics for the LU it
represents.

The LISTEND indicator is YES in the last NIB generated; all preceding generated
NIBs are LISTEND=NO. Using the symbolic names and device characteristics, the
application program can set PROC options and the MODE field in each NIB, and it
can set other fields to desired values. The NIBs are then ready to be used for
session establishment.

For further details, see “INQUIRE—Obtain logical unit information or application
program status” on page 412.

Using DSECT-creating assembler instructions and macroinstructions

VTAM provides macroinstructions that generate a map of the fields and possible
field values for each of the application program control blocks. Each
macroinstruction generates a DSECT instruction (this can be optionally suppressed
for some control blocks, as discussed in the following), a DS instruction for each
field, and EQU instructions for certain predefined values. These macroinstructions
and associated assembler instructions can be used as an alternative to or in
combination with the manipulative macroinstructions. The DSECT-creating
macroinstructions and assembler instructions that use the generated labels require
execution of fewer instructions than using manipulative macroinstructions.

Defining the DSECTs

Appendix E, “Control block formats and DSECTs,” on page 739, and Appendix F,
“Specifying a session parameter,” on page 793, show the DSECT fields and
equated values generated by the macroinstructions. These are the DSECT-creating
macroinstructions:

Table 48. DSECT—Creating macroinstructions

Control block/data area DSECT name and operands Appendix

ACB IFGACB
AM=VTAM[,DSECT=YES|NO]

E

EXLST IFGEXLST
AM=VTAM[,DSECT=YES|NO]

E

RPL IFGRPL
AM=VTAM[,DSECT=YES|NO]

E

272 z/OS V2R1.0 Communications Server: SNA Programming

Table 48. DSECT—Creating macroinstructions (continued)

Control block/data area DSECT name and operands Appendix

Device characteristics field in NIB ISTDVCHR [DSECT=YES|NO] E

Processing options field in NIB ISTDPROC [DSECT=YES|NO] E

Reason codes for
RTNCD-FDB2-FDBK fields in RPL

ISTUSFBC E

NIB ISTDNIB E

Session parameter ISTDBIND F

Program operator message and
command header

ISTDPOHD L

Request/response header ISTRH E

Buffer-list entry ISTBLENT E

Application-supplied dial
parameters

ISTASDP E

Access-method-support vector list ISTAMSVL E

Resource-information vector list ISTRIVL E

Application-ACB vector list ISTVACBV E

In coding these macroinstructions, follow these rules:
v Specify AM=VTAM as an operand for IFGACB, IFGRPL, and IFGEXLST. This

distinguishes these DSECTs from similar DSECTs generated for VSAM.
v Code DSECT=NO as an operand if the DSECT assembler instruction is to be

suppressed for IFGACB, IFGEXLST, IFGRPL, ISTDPROC, or ISTDVCHR. This
allows the fields generated by these macroinstructions to be concatenated to the
current CSECT or DSECT. See Example 3 in “GENCB macroinstruction” on page
268.

v Follow the macroinstruction with a CSECT assembler instruction or another
DSECT assembler instruction unless it is the last instruction before ending the
program or unless the map is to be extended intentionally. (A terminal work
area could be mapped following IFGRPL, for example.)

v Ensure that no labels that are generated or reserved for future use are used
elsewhere in the program.
Other areas of the program use the following labels. Therefore, the application
program should not use them:
ACB DEV NIB RPL
ASD EXL POH RSV
BIN IFG PRO USF
BLE IST RHASD

Using the DSECTs

Having used the DSECT-creating macroinstructions to define one or more
control-block maps, the program can obtain storage for a control block from an
assembled pool or dynamically from the system. The address of this storage
should be placed in a register and specified in a USING statement before setting or
testing values using the statements generated by the macroinstruction. For
example, suppose the address of an RPL is in register 5 and that, after a request
containing data has been received, it is necessary to determine the value of the
RECLEN field of the RPL.

Chapter 8. Setting and testing control blocks and macro global variables 273

If IFGRPL AM=VTAM is coded, the statement:
USING IFGRPL,5

allows assembler language instructions to refer to the label RPLRLEN to obtain the
record length. Further information is in the introductory section of Appendix E,
“Control block formats and DSECTs,” on page 739.

ISTGLBAL macroinstruction

A VTAM macroinstruction available for use in making assembly-time decisions is
ISTGLBAL. ISTGLBAL declares and sets a group of macro global variables that
describe the VTAM product associated with the macroinstruction definition library
containing the ISTGLBAL macroinstruction. Once declared and set, the variables
can be interrogated during assembly of the application program to determine
whether specific functions or options of VTAM are supported.

ISTGLBAL can be invoked directly, or by either IFGRPL or IFGACB as an inner
macroinstruction.

The three types of macro global variables set by ISTGLBAL are:
v Release-level macro global variable (&ISTGLRL)
v Component-ID macro global variable (&ISTGLCI)
v Function-list macro global variables (&ISTGLxywhere x and y denote a specific

variable).

Details on the macro global variables are provided in this section. A description of
the ISTGLBAL macroinstruction is in “ISTGLBAL” on page 639.

Release-level and component-ID macro global variables

When ISTGLBAL, IFGRPL AM=VTAM, or IFGACB AM=VTAM is assembled as
part of an application program module, the &ISTGLRL macro global variable is
declared and set with a character string that specifies the release level of the
library containing ISTGLBAL. The &ISTGLCI macro global variable is declared and
set with a character string that specifies the component identifier of VTAM. Later
in the assembly of that module, these GBLC variables can be accessed by other
macroinstructions and by open code.

The character string with which &ISTGLRL is set indicates the following:

Table 49. Release-level macro global variables for VTAM V6R1.2
Byte no. Contents Code indication
0 0 Product (0=VTAM)
1 6 Version 6
2 1 Release 1
3 2 Modification Level 2

The following example shows how the variable might be used in a
macroinstruction defined by an application program for V6R1.2:

MACRO
WHATVTAM
GBLC &ISTGLRL
AIF (’&ISTGLRL’ EQ ’0612’).LABEL1

VTAMLEVL DC C’THIS IS NOT V6R1.2 OF VTAM’

274 z/OS V2R1.0 Communications Server: SNA Programming

MEXIT
.LABEL1 ANOP
VTAMLEVL DC C’THIS IS V6R1.2 OF VTAM’

MEND

If the V6R1.2 level of either ISTGLBAL, IFGRPL, or IFGACB is coded, the
WHATVTAM macroinstruction causes the generation of the first DC statement at
assembly time. If you use an earlier release of ISTGLBAL, IFGRPL, or IFGACB, or
if none of these three macros are issued in the assembly, the second DC statement
is generated, indicating that the level of VTAM used is not VTAM V6R1.2.

Function-list macro global variables

ISTGLBAL, IFGRPL AM=VTAM, and IFGACB AM=VTAM also declare and set
the list of GBLB global variables to indicate specific functions supported by your
release. These variables have names of the form ISTGLxy, where x specifies a byte
in the function-list vector and y specifies a bit in that byte. See “The
access-method-support vector list” on page 62 for information about how the bits
in the function-list vector are initialized for the base operating system and for
features supported by VTAM. The corresponding macro global variables are set to
the same values when ISTGLBAL, IFGRPL AM=VTAM, or IFGACB AM=VTAM is
issued.

If a variable has a value of 1, the corresponding function is present; a value of 0
means the function is not present. The information to be contained in the
function-list vector can, therefore, be determined at assembly time or at execution
time.

To examine the information, the source code for the application program must first
issue ISTGLBAL, IFGRPL AM=VTAM, or IFGACB AM=VTAM, and then declare
the variable to be tested with a GBLB statement naming the variable. (See
“Release-level and component-ID macro global variables” on page 274 for an
example of how a GBLC variable can be used; a similar macroinstruction or open
code could be written to test one or more of the GBLB variables.)

Chapter 8. Setting and testing control blocks and macro global variables 275

276 z/OS V2R1.0 Communications Server: SNA Programming

Chapter 9. Handling errors and special conditions

This chapter discusses how to analyze information for errors and special conditions
and what to do, in general, when the error or special condition is identified.
Identifying and acting upon errors and special conditions are discussed separately
for:
v OPEN or CLOSE macroinstructions
v Manipulative macroinstructions
v RPL-based requests (for example, SEND, RECEIVE, and CHECK).

Note: For a description of the software error analysis that is operating-system-
dependent, refer to “Error handling” on page 322.

The information that VTAM returns to the application program is organized so that
a minimum amount of checking is required. For most macroinstructions, if register
15 contains 0 on return to the program, no further checking is necessary; the
program proceeds normally. If register 15 contains a value other than 0, checking
proceeds until the condition is defined and appropriate action is taken. For certain
RPL-based macroinstructions, register 0 must be examined for a special condition
even if register 15 contains 0.

OPEN and CLOSE errors and special conditions

Most ERROR settings indicate an error in program logic or some failure to match
the name of an ACB as specified in the program with its name as specified during
VTAM definition. A dump, program termination, and debugging are required. If
multiple ACBs are being opened and only some have been opened successfully, it
might be possible to continue with the programs whose ACBs are opened.

Register 15 should be tested after the OPEN or CLOSE macroinstruction. If the
return code in register 15 is 0, all ACBs have been opened or closed as requested.
If the return code does not equal 0, one or more ACBs were not properly opened
or closed. When this occurs, the TESTCB macroinstruction can be used to test the
OFLAGS field of each ACB to see if it is open:
TESTCB AM=VTAM,ACB=(3),OFLAGS=OPEN

In this example, the address of an ACB is in register 3. If an OPEN
macroinstruction failed (except for the error that occurs when the ACB is opened
prior to this OPEN), the failing ACB does not have OFLAGS=OPEN, and the ACB
is still closed. If a CLOSE macroinstruction failed (except for the error that occurs
when the ACB is closed prior to this CLOSE), the failing ACB has OFLAGS=OPEN
because the ACB is not closed. Once the failing ACB has been located, the
SHOWCB macroinstruction can be used to look at the error bits in the ERROR
field of the ACB. Of course, neither the OFLAGS nor the ERROR field can be
examined if OPEN originally pointed to an area that did not contain an ACB.

See Chapter 13, “Conventions and descriptions of VTAM macroinstructions,” on
page 371, for the description of the format and contents of the ERROR field in the
OPEN and CLOSE macroinstruction. Figure 67 on page 278 shows how
OPEN/CLOSE error and special-condition information is organized.

© Copyright IBM Corp. 2000, 2013 277

Manipulative macroinstruction errors and special conditions
Table 50. Manipulative macroinstructions: Return code values and meanings

Reg Contents Meaning

0 X'08' GENCB can fail because of insufficient storage; request can be reissued later

15 X'00' Manipulative macroinstruction operation is successful

15 X'04' Specific error in register 0 (examining return code for SHOWCB or TESTCB does
not require examining a control block). Appendix I, “Return codes for
manipulative macroinstructions,” on page 855 shows the possible register 0
settings and their meanings.

15 X'08' Attempt is made to use execute form of the macroinstruction to enter a new item
in parameter list being modified (only existing items can be modified)

Figure 68 on page 279 shows how manipulative macroinstruction error and
special-condition information is organized. All other manipulative macroinstruction
errors and special conditions are due to faulty logic and require program
termination and debugging.

Register 15

Whether this ACB is currentloy opened or closed.

The reason the ACB is not opened or closed (if it
was not).

X'00'

Nonzero

OFLAGS

ERROR

Successful

Unsuccessful

For OPEN/CLOSE Macroinstructiions

After OPEN or CLOSE, the next sequential instruction of a VTAM application program finds in:

If unsuccessful, each ACB whose address was specified contains:

ACB

Figure 67. How OPEN/CLOSE error and special-condition information is organized

278 z/OS V2R1.0 Communications Server: SNA Programming

RPL-based macroinstruction errors and special conditions

There are two kinds of RPL-based operations: synchronous and asynchronous.
Chapter 3, “Organizing an application program,” on page 33, provides an overview
of these modes of operation. For synchronous RPL-based operations, a single
macroinstruction is issued. On return to the VTAM application program, error or
special-condition information about the requested operation is available.

For asynchronous RPL-based operations, two RPL-based macroinstructions are
required: a request macroinstruction and a CHECK (completion) macroinstruction.
Error and special-condition information can be returned at two different stages: as
a result of the request for the operation being accepted or not accepted and, if the
request is accepted, as a result of the operation completing successfully or
unsuccessfully.

Following an RPL-based macroinstruction, information is available to the
application program about the acceptability of the request or about the completion
of the operation. This information can be provided by VTAM; or, if an error or
special condition was detected and VTAM invoked the program's LERAD or
SYNAD exit routine, register information is provided by the LERAD or SYNAD
exit routine. The information consists of a return code in register 15 (termed a
general return code), in some cases a return code in register 0 (termed either a
recovery action return code or a conditional completion return code), and
information in the RPL (termed feedback information). Feedback information
includes the RPL RTNCD field, which contains the recovery action return code,
and the RPL FDB2 field, which contains either a conditional completion return
code or a specific error return code; other RPL fields can be set depending upon
the individual RPL-based macroinstruction. Table 51 on page 280, Figure 69 on
page 281, and Table 52 on page 280 show how this information is organized.

Register 15

See appendix H for possible return codes and their meanings..

*Alternately, for TESTCB, if an error occurs, control can be passed to the specified address of an ERET
(error return code) routine. See the TESTCB macroinstruction description in Chapter 13.

X'00'

X'04'

X'08'

Error Return Code

Successful.

Error. See register 0.

Error. No code in register 0. See appendix H for the meaning of X'08'.

For Manipulating Macroinstructiions

After a GENCB, MODCB, SHOWCB, or TESTCB,
the next sequential instruction*
finds in:

If unsuccessful with X'04' in register 15, register 0 contains:
Register 0

Figure 68. How manipulative-macroinstruction error and special-condition information is
organized

Chapter 9. Handling errors and special conditions 279

Table 51. Summary of register and RPL feedback return codes following an RPL-based request

Register 15
(General return
code) Meaning Register 0

RPL feedback information

RTNCDFDB2

LERAD/SYNAD
entered (if
specified)

X'00' Normal
acceptance,
normal or
conditional
completion

Conditional
completion return
code (X'00' means
normal
completion)

Recovery action
return code
(=X'00')

Conditional
completion return
code

No

X'04' Request not
accepted or
request completed
abnormally

Recovery action
return code (or
user-defined
value)

Recovery action
return code

Specific error
return code

Yes

X'20' ACB not open RPL request code RPL not changed RPL not changed No

Notes:

1. If a LERAD or SYNAD exit routine is specified, it can exit with user-defined values in registers 15 and 0. These
are then the registers returned to the part of the program that issues the synchronous RPL-based request or
CHECK macroinstruction.

2. If the RPL is not valid (recovery action return code = X'18'), there is no RPL feedback information.

Table 52. Recovery action return codes and their general meanings

Recovery action return
code (in RPL RTNCD
field)

LERAD or SYNAD exit
scheduled

Type of completion Programmer action

X'00' No exit scheduled Normal or conditional Continue normal or
conditional processing.

X'04' SYNAD Exceptional condition Analyze RPL to choose
logic path.

X'08' SYNAD Retriable completion Use EXECRPL
macroinstruction to retry if
desired.

X'0C' SYNAD Data integrity damage Execute user program error
recovery coding.

X'10' SYNAD Environment error Call for external
intervention.

X'14' LERAD Logic error Dump program status and
continue or abend.

X'18' (in register 0 but not
in RTNCD field)

LERAD Logic error; RPL not valid Dump program status and
continue or abend. Do not
reuse this RPL.

Others LERAD or SYNAD RPL overwritten Dump program status and
continue or abend. Do not
reuse this RPL.

See Table 53 on page 286 and Table 54 on page 288 for more information about
completion types.

280 z/OS V2R1.0 Communications Server: SNA Programming

For recovery action return codes, see Table 52 on page 280. If an error or special
condition occurred, it can be analyzed and handled in either the mainline program
or exit routine where the RPL-based request was issued, or in a designated LERAD
or SYNAD exit routine.

Register 15

Recovery action return code.

System-sense information.

System-sense modifier information.

User-sense information.

Specific error return code; or conditional
completion return code if RTNCD-0
(equivalently, if register 15-0).

Only set for certain
macroinstructions for
certain RTNCD-FDB2
combinations.

The request was successful; or, for a synchronous request (including CHECK),
the operation was successful.

The request or the operation was not successful.

If register 15 is X 00 , register 0 indicates (with a conditional completion return code)
for certain macroinstructions whether success was conditional. If register 15 is not X 00 ,
register 0 can contain a return code from a LERAD or SYNAD exit routine or, if there
is no LERAD/SYNAD exit routine, register 0 can contain a recovery action return code
(generally the code from the RTNCD field of the RPL.)

' '

' '

In addition, other RPL fields that contain feedback information (such as SEQNO, CHAIN, and CHNGDIR), normally
used following the completion of a requested operation, can be used in determining jow to handle an error or special
condition.

RPL fields are described under the RPL and other macroinstruction descriptions and are summarized in Appendix A.

Possible RPL RTNCD, FDB2, and sense information settings and their meanings are in Appendix B.

For certain macroinstructions with certain options set (see Appendix B), if register 15 contains X 00 , success
might be conditional. Register 0 should be examined to see if there is a condition (and what it is).

If an error occurred for an RPL-based macroinstruction and no LERAD or SYNAD exit routine is available, register
15 contains X 04 , and register 0 contains a recovery action return code.

If a LERAD or SYNAD exit routine is available, it can set register 15 to X 00 to indicate "Error corrected-request
or operation successful." If the error is not corrected, register 15 should be a value other than 0 and a return code
be passed from LERAD or SYNAD in register 0.

If the ACB was not opened, register 0 contains the RPL request code.

' '

' '

' '

After receiving input with a RECEIVE specifying RTYPE = (DFSYN, NRESP) and CONTROL = LUS, the RPL inbound sense
fields (SSENSEI, SSENSMI, and USENSEI) contain error or special condition information from the LU.

*Register 0 is of interest in these circumstances:

For Arrival of a Logical Unit (LU) Status Request

If a request or operation was unsuccessful or conditionally successful, these RPL fields can be examined
(in either the issuing routine or in a LERAD or SYNAD exit routine) to determine the cause of the exeption.

X 00

some other value

' '

RTNCD

FDB2

SSENSEI

SSENSMI

USENSEI

For RPL-Based Macroinstructions

After a SEND, RECEIVE, CHECK, or other RPL-based macroinstruction, the next sequential instruction finds in:

Depending on the request and whether it is successful, it might be necessary to test:

Register 0*

Figure 69. How RPL-based macroinstruction error and special-condition information is organized.

Chapter 9. Handling errors and special conditions 281

It is convenient to use LERAD and SYNAD exit routines to handle error and
special conditions for all RPL-based requests in a program. A LERAD or SYNAD
exit routine can be entered for an asynchronous operation at two different times:
when the initial request for the operation fails and, if the request is accepted, after
the operation fails. The LERAD or SYNAD exit routine can set register 15 to 0 so
that the request-issuing part of the program is not aware that an error or special
condition occurred and continues normally. If the request-issuing part of the
program must be made aware that an error or special condition occurred, register
15 can be set to a value other than 0 and a user-specified return code placed in
register 0 (in this case, register 15 can also be used as a return code register
between the LERAD or SYNAD exit routines and the issuing part of the program).

If a LERAD or SYNAD exit routine is not used, errors and special conditions can
be handled in the inline coding that follows the request or CHECK, or it can be
processed in a common subroutine.

Figure 70 on page 283, Figure 71 on page 284, and Figure 72 on page 285 show the
relationship between the requesting part of the program and LERAD and SYNAD
exit routines, if present. These figures can also be used to code the instructions that
check the results of requests in the requesting parts of the program. Table 53 on
page 286 and Table 54 on page 288 list in detail the completion conditions for
RPL-based macroinstructions.

282 z/OS V2R1.0 Communications Server: SNA Programming

Application Program VTAM

LERAD or SYNAD
exit routine

REG 15=
X'00'?

REG 0=
X'00'?

REG 15=
X'20'?

REG 0=
(Note 2)

1

3

NSI4

No

Yes

Yes

Yes

Note 1

No

Take
action

Take action

Continue
normally

(ACB not
open)

Dump and
terminate
the program

SEND, RECEIVE,
or other RPL-based
request (OPTCD=SYN)

VTAM tries to complete the operation.2

ACB not open?
Sets register 15 to X'20'.
Sets register 0 to RPL request code.
Passes control to the next sequential instruction.

Test to see if register 0
is set to X'18'(invalid
RPL); if so, do not
reference RPL fields.
Analyze RPL. Attempt
to recover.
If recovery is successful,
may set register 15 to 0.
Register 0 can be set to
some user-defined value.
If recovery is not
successful, set user-
defined return code in
register 0 and/or reg-
ister 15. Register 15
should be set to non-
zero and not to X'20'.
Return to VTAM.

2. Register 0 can contain:
A user-defined value set by the LERAD or SYNAD
exit routine. Register 15 can also be used to
pass information from LERAD or SYNAD.
A recovery action return code, if the issuer is
handling error inline (no LERAD or SYNAD is
specified).
X'04' Exception condition
X'08' Retriable completion
X'0C' Data integrity damaged
X'10' Environment error
X'14' Logical error
X'18' Logical error RPL

1. For certain macroinstructions with certain options set
(see Appendix B), if register 15 contains X'00', suc-
cess may be conditional. Register 0 should be exam-
ined to see if there is a condition (and what it is).

Notes:

Operation successful?
Sets register 15 to X'00'.
Sets register 0 to X'00'.
Sets RPL feedback field (including RTNCD=X'00'
and FDB2=X'00').
Passes control to the next sequential instruction.

Operation conditionally successful?
Sets register 15 to X'00'.
Sets register 0 to conditional completion return code.
Sets RPL feedback fields (including RTNCD=X'00"
and FDB2=conditional completion return code).
Passes control to the next sequential instruction.

The FDB2 field of
the RPL will
contain a specific
error return code.

No FDB2 field is set.

Operation unsuccessful?
Sets register 0 to recovery action return code.
Sets RPL feedback fields unless RPL is invalid
(including RTNCD= recovery action return code and
FDB2= specific error return code).
LERAD/SYNAD specified?
Schedules it. Passes control to the next
sequential instruction as soon
as LERAD or SYNAD returns control to VTAM.
LERAD/SYNAD not specified?
Sets register 15 to X'04'.
Passes control to the next sequential instruction.

Figure 70. Summary of error and special-condition handling with synchronous operations

Chapter 9. Handling errors and special conditions 283

Application Program VTAM

LERAD or SYNAD
exit routine

VTAM tries to complete the operation.2

2. The CHECK macroinstruction can be issued (1)
following discovery of a posted ECB for the RPL, (2) to
wait for the ECB to be posted, or (3) after an RPL exit
routine has been invoked. CHECK can be issued within

X'04' Exception condition
X'08' Retriable completion
X'0C' Data integrity damaged
X'10' Environment error
X'14' Logical error
X'18' Logical error RPL

A recovery action return code, if the issuer is handling
error inline (no LERAD or SYNAD is specified).

A user-defined value set by the LERAD or SYNAD exit
routine. Register 15 can also be used to pass
information from LERAD or SYNAD.

1. Register 0 can contain:

Notes:

Request for Operation

an exit routine (for example, in the RPL exit routine
for this RPL) or the main program. However, CHECK
cannot be issued before the RPL exit routine (if
specified) has been invoked. The logic of this figure
applies whether ECB posting or RPL exit scheduling
is used to notify the program of operation complet-
ion. Rather than issuing CHECK immediately after it
is notified of operation completion, the program can
first look at the RPL feedback fields. CHECK is re-
quired sooner or later, however, to set the RPL in-
active and to schedule the LERAD or SYNAD exit (if
specified) for error conditions.

-
-
-

ACB not open?
Sets register 15 to X'20'.
Sets register 0 to RPL request code.
Passes control to the next sequential instruction.

Schedules it. Passes control to the next sequential
instruction as soon as LERAD or SYNAD returns
control to VTAM
LERAD/SYNAD not specified

Sets register 15 to X'04'.
Passes control to the next sequential instruction.

-
-
-

-

-
-

-

-

3.

Accepted?
Sets register 15 to X'00'
Sets register 0 to X'00'.
Sets RPL feedback field (including RTNCD=X'00'
and FDB2=X'00').
Passes control to the next sequential instruction.

Not accepted?
Sets register 0 to conditional completion return code.
Sets RPL feedback fields (including RTNCD=X'00'
and FDB2=conditional completion return code).
LERAD/SYNAD specified

The FDB2 field
of the RPL will
contain a specific
error return code.

No FDB2 field is set.

No

REG 15=
X'20'?

Yes

No

Dump and
terminate
the program

(ACB not
open)

REG 0=
(Note 1)

Request
accepted
continue

Yes

4 NSI

For certain macroinstructions with certain options
set (see Appendix B), if register 15 contains X'00',
success may be conditional. Register 0 should be
examined to see if there is a condition (and what it is).

SEND, RECEIVE,
or other RPL-based
request (OPTCD=ASYNC)

1

REG 15=
X'00'?

Test to see if register 0 is set to
X'18' (invalid RPL); if so, do not
reference RPL fields.
Analyze RPL. Attempt to recover.
If recovery is successful, may set
register 15 to 0. Register 0 can be
set to some user-defined value.
If recovery is not successful, set
user-defined return code in register
0 and/or register 15. Register 15
should be set to non-zero and not
to X'20'.
Return to VTAM.

Take appropriate action

3

Figure 71. Summary of error and special-condition handling with asynchronous operations (Part 1 of 2)

284 z/OS V2R1.0 Communications Server: SNA Programming

LERAD or SYNAD
exit routine

Test to see if register 0
is set to X'18'(invalid
RPL); if so, do not
reference RPL fields.
Analyze RPL. Attempt
to recover.
If recovery is successful,
may set register 15 to 0.
Register 0 can be set to
some user-defined value.
If recovery is not
successful, set user-
defined return code in
register 0 and/or reg-
ister 15. Register 15
should be set to non-
zero and not to X'20'.
Return to VTAM.

Application Program VTAM

REG 15=
X'00'?

REG 0=
X'00'?

REG 15=
X'20'?

REG 0=
(Note 2)

1

3

NSI4

No

Yes

Yes

Yes

Note 1

No

Take
action

Take action

Continue
normally

(ACB not
open)

Dump and
terminate
the program

Issue
check

Note 2
Completion
of Operation

After CHECK is issued (and the operation has
completed). VTAM notifies the program of the
operation completion status.

2

-
-
-

-
-
-

-
-
-

-

-
-

-

-

-

ACB not open?
Sets register 15 to X'20'.
Sets register 0 to RPL request code.
Passes control to the next sequential instruction.

After the operation has completed (which may be before
or after CHECK is issued), VTAM sets RPL feedback fields
(including RTNCD and FDB2 as specified below) unless
the RPL is invalid, then posts an ECB and schedules an
RPL exit routine.

Operation successful?
Sets register 15 to X'00'.
Sets register 0 to X'00'.
(RPL feedback fields (including RTNCD=X'00'
and FDB2=X'00') were set when the operation
completed.)
Passes control to the next sequential instruction.

Operation conditionally successful?
Sets register 15 to X'00'.
Sets register 0 to conditional completion return code.
(RPL feedback fields (including RTNCD=X'00'
and FDB2=conditional completion return code)
were set when the operation completed.)
Passes control to the next sequential instruction.

Operation unsuccessful?
Sets register 0 to recovery action return code.
(RPL feedback fields (including RTNCD=recovery
action return code and FDB2=specific error
return code) were set when the operation completed.)
LERAD/SYNAD specified?
Schedules it. Passes control to the NSI as soon as
LERAD or SYNAD returns control to VTAM.
LERAD/SYNAD not specified?
Sets register 15 to X.
Passes control to the next sequential instruction.

Figure 72. Summary of error and special-condition handling with asynchronous operations (Part 2 of 2)

Chapter 9. Handling errors and special conditions 285

Table 53. Completion conditions acceptance stage of asynchronous requests

Completion
condition Explanation Example

Registers at
NSI when
SYNAD-
LERAD not
available

Registers at
entry to
SYNAD-
LERAD
when
SYNAD-
LERAD are
available

Registers at
NSI when
SYNAD-
LERAD are
available

RPL
feedback
fields set

Suggested
programmer
action (in
LERAD,
SYNAD, or
after next
sequential
instruction)

Request
accepted
(general
return
code=0,
recovery
action return
code=0).

VTAM has
accepted the
asynchronous
request and
processes it.
Completion
information is
available
when the
request is
completed.

Reg 15 = 0
Reg 0 = 0

(LERAD-
SYNAD not
entered)

Reg 15 = 0
Reg 0 = 0
(LERAD-
SYNAD not
entered)

RTNCD=0
FDB2=0

Request not
accepted
(general
return
code=4)

Retriable
completion
(recovery
action return
code=8)

VTAM has
rejected the
asynchronous
request
because of a
temporary
situation.

A
temporary
storage
shortage
has
occurred.

Reg 15 = 4
Reg 0 = 8

Reg 15 =
Address of
SYNAD exit
routine Reg
0 = 8

Reg 15 Reg 0
Set by
SYNAD exit
routine

RTNCD=8
FDB2=0

Issue an
EXECRPL
macro to
retry the
request.

Environment
error
(recovery
action return
code=16)

VTAM has
rejected the
asynchronous
request
because of an
environmental
condition
beyond the
control of the
application
program.

VTAM not
active.

Reg 15 = 4
Reg 0 = 16

Reg 15 =
Address of
SYNAD exit
routines Reg
0 = 16

Reg 15 Reg 0
Set by
SYNAD exit
routine

RTNCD=16
FDB2=
specific error
return code

Request
external
intervention
(from the
VTAM
operator, for
example) or
suspend
processing.

Logical error
(recovery
action return
code=20)

VTAM has
rejected the
asynchronous
request
because the
request
violates the
requirements
defined in this
book.

NIB's
MODE
field not
set to
RECORD.

Reg 15 = 4
Reg 0 = 20

Reg 15 =
Address of
LERAD exit
routine Reg
0 = 20

Reg 15 Reg 0
Set by
LERAD exit
routine

RTNCD=20
FDB2=
specific error
return code

Obtain a
program
dump and
correct the
program.

286 z/OS V2R1.0 Communications Server: SNA Programming

Table 53. Completion conditions acceptance stage of asynchronous requests (continued)

Completion
condition Explanation Example

Registers at
NSI when
SYNAD-
LERAD not
available

Registers at
entry to
SYNAD-
LERAD
when
SYNAD-
LERAD are
available

Registers at
NSI when
SYNAD-
LERAD are
available

RPL
feedback
fields set

Suggested
programmer
action (in
LERAD,
SYNAD, or
after next
sequential
instruction)

Logical error
with RPL
that is not
valid
(recovery
action return
code=24)

VTAM has
rejected the
asynchronous
request
because the
RPL address
points to an
active RPL or
does not point
to any RPL or
request is
issued from an
asynchronous
exit routine.

An attempt
was made
to reuse an
RPL to
which no
CHECK
had been
issued.

Reg 15 = 4
Reg 0 = 24

Reg 15 =
Address of
LERAD exit
routine Reg
0 = 24

Reg 15 Reg 0
Set by
LERAD exit
routine

RPL not set
and should
not be
examined.

Obtain a
program
dump and
correct the
program.

Request not
accepted
because of a
prior OPEN
failure
(general
return
code=32; no
recovery
action return
code).

The RPL
points to an
ACB that has
not been
properly
opened or that
has been
closed.

Reg 15 = 32
Reg 0 =
Request code
(see
description
of RPL's
REQ field)

LERAD-
SYNAD not
entered

Reg 15 = 32
Reg 0 =
Request code
(see
description
of RPL's
REQ field)
(LERAD-
SYNAD not
entered)

RPL not set Obtain a
program
dump and
correct the
program.

Chapter 9. Handling errors and special conditions 287

Table 54. Completion conditions completion of synchronous requests or for CHECK of asynchronous requests

Completion
condition

Explanation Example Registers at
NSI when
SYNAD-
LERAD not
available

Registers at
entry to
SYNAD-
LERAD
when
SYNAD-
LERAD are
available

Registers at
NSI when
SYNAD-
LERAD are
available

RPL
feedback
fields set

Suggested
programmer
action (in
LERAD,
SYNAD, or
after next
sequential
instruction)

Normal
completion
(general
return
code=0)

The request
has been
completed
successfully.
For some
macros (see
right-most
column),
register 0
contains
additional
information.

INQUIRE
was issued
and the
input area
was too
small.

Reg 15 = 0
Reg 0 =
Conditional
completion
return code

LERAD-
SYNAD not
entered

Reg 15 = 0
Reg 0 =
Conditional
completion
return code
(LERAD-
SYNAD not
entered)

RTNCD=0
FDB2=
conditional
completion
return code

INQUIRE,
INTRPRET,
OPNDST,
RCVCMD,
RECEIVE,
and
SIMLOGON
can be
completed
normally
with special
conditions
preset. If
these
conditions
are
meaningful
to the
application
program,
check
register 0 or
FDB2.

Abnormal
completion
(general
return
code=4)

Exception
condition
(recovery
action return
code=4)

An exception
request or a
negative
response has
been received.

An
exception
request has
been
received.

Reg 15 = 4
Reg 0 = 4

Reg 15 =
Address of
SYNAD exit
routine Reg
0 = 4

Reg 15 Reg 0
Set by
SYNAD exit
routine

RTNCD=4
FDB2=
specific error
return code

Take
whatever
action is
appropriate
for the FDB2
return code.

Retriable
completion
(recovery
action return
code=8)

VTAM cannot
complete the
request
because of a
temporary
condition.

A
temporary
storage
shortage
has
occurred.

Reg 15 = 4
Reg 0 = 8

Reg 15 =
Address of
SYNAD exit
routine Reg
0 = 8

Reg 15 Reg 0
Set by
SYNAD exit
routine

RTNCD=8
FDB2=
specific error
return code

Issue an
EXECRPL
macro to
retry the
request.

288 z/OS V2R1.0 Communications Server: SNA Programming

Table 54. Completion conditions completion of synchronous requests or for CHECK of asynchronous
requests (continued)

Completion
condition

Explanation Example Registers at
NSI when
SYNAD-
LERAD not
available

Registers at
entry to
SYNAD-
LERAD
when
SYNAD-
LERAD are
available

Registers at
NSI when
SYNAD-
LERAD are
available

RPL
feedback
fields set

Suggested
programmer
action (in
LERAD,
SYNAD, or
after next
sequential
instruction)

Data
integrity
damage
(recovery
action return
code=12)

VTAM cannot
complete the
request. The
session has
been lost or
the request
was reset by
another
operation on
the session.

A hardware
error
occurred
that
disrupted
the session
path.

Reg 15 = 4
Reg 0 = 12

Reg 15 =
Address of
SYNAD exit
routine Reg
0 = 12

Reg 15 Reg 0
Set by
SYNAD exit
routine

RTNCD=12
FDB2=
specific error
return code

Take
whatever
action is
appropriate
for the FDB2
return code.
In general,
the process
that was
interrupted
should be
restarted.

Environment
error
(recovery
action return
code=16)

VTAM cannot
complete the
request. The
problem
cannot be
resolved
without
external
intervention.

VTAM not
active

Reg 15 = 4
Reg 0 = 16

Reg 15 =
Address of
SYNAD exit
routine Reg
0 = 16

Reg 15 Reg 0
Set by
SYNAD exit
routine

RTNCD=16
FDB2=
specific error
return code

Take
whatever
action is
appropriate
for the FDB2
return code.
In general,
the LU is
unavailable
and any
session with
it should be
terminated
or VTAM
operator
intervention
should be
requested.

Logic error
(recovery
action return
code=20)

VTAM cannot
complete the
request
because it
violates the
requirements
defined in this
book.

The RPL
does not
indicate a
valid RPL
request
code.

Reg 15 = 4
Reg 0 = 20

Reg 15 =
Address of
LERAD exit
routine Reg
0 = 20

Reg 15 Reg 0
Set by
LERAD exit
routine

RTNCD=20
FDB2=
specific error
return code

Obtain a
program
dump and
correct the
program.

Chapter 9. Handling errors and special conditions 289

Table 54. Completion conditions completion of synchronous requests or for CHECK of asynchronous
requests (continued)

Completion
condition

Explanation Example Registers at
NSI when
SYNAD-
LERAD not
available

Registers at
entry to
SYNAD-
LERAD
when
SYNAD-
LERAD are
available

Registers at
NSI when
SYNAD-
LERAD are
available

RPL
feedback
fields set

Suggested
programmer
action (in
LERAD,
SYNAD, or
after next
sequential
instruction)

Logic error
with RPL
that is not
valid
(recovery
action return
code=24)

VTAM cannot
complete the
request
because the
RPL address
does not point
to any RPL, or
because the
address points
to an active
RPL and this
macro is
synchronous
(not CHECK),
or because the
RPL exit
routine
specified for
this RPL has
not been
scheduled and
CHECK was
issued, or a
request was
issued from
an
asynchronous
exit routine.

The RPL
address was
destroyed
before the
request was
executed.

Reg 15 = 4
Reg 0 = 24

Reg 15 =
Address of
LERAD exit
routine Reg
0 = 24

Reg 15 Reg 0
Set by
LERAD exit
routine

RPL not set
and should
not be
examined

Obtain a
program
dump and
correct the
program.

Abnormal
completion
because of a
prior OPEN
failure
(general
return
code=32, no
recovery
action return
code).

VTAM cannot
complete the
request
because the
RPL points to
an ACB that
has not been
properly
opened or that
has been
closed.

Reg 15 = 32
Reg 0 =
Request
code (see
description
of RPL's
REQ field)

LERAD-
SYNAD not
entered

Reg 15 = 32
Reg 0 =
Request
code (see
description
of RPL's
REQ field)
LERAD-
SYNAD not
entered

RPL not set Obtain a
program
dump and
correct the
program.

Coding LERAD and SYNAD exit routines

The following display shows the use of registers on entering and leaving a LERAD
or SYNAD exit routine. Addressability, save area, and re-entrance requirements are
described in “Procedures to follow in writing exit routines” on page 231. Examples

290 z/OS V2R1.0 Communications Server: SNA Programming

of LERAD and SYNAD exit routines are shown in the sample VTAM application
program in Chapter 15, “Sample code of a simple application program,” on page
579.

On entering a LERAD or SYNAD exit routine:

Register
Contains

0 Recovery action return code (RTNCD field of RPL)

1 Address of the RPL

2–13 Contents as they are when RPL-based request was issued

14 Address at which control can be returned to VTAM

15 Address of the LERAD or SYNAD exit routine.

On leaving a LERAD or SYNAD exit routine:

Register
Contains

0 User return code from LERAD or SYNAD

1 Address of the RPL (although VTAM restores it)

2–12 Any value (VTAM restores the contents as they were when request was
issued)

13 Address of the save area from the request-issuing part of the program

14 Address to which control is being passed

15 Optional user return code (in addition to register 0).

LERAD and SYNAD exit routines can have a common entry point; the logic at the
common entry point can determine whether the error is a logic error or a physical
error, and branch to the appropriate error-handling instructions.

The recovery action return code in register 0 (and in the RTNCD field of the RPL
when the RPL is valid) can be used to branch to separate subroutines in the
LERAD or SYNAD exit routine. This might be coded:

LR R2,Register 0 SINCE Register 0 NOT USABLE AS INDEX REG
B *(R2) BRANCH TO APPROPRIATE BRANCHING

* INSTRUCTION
B EXCEPTN EXCEPTION CONDITION (R2=’04’)
B REISSUE RETRIABLE COMPLETION (R2=’08’)
B DINTDAM DATA INTEGRITY DAMAGE (R2=’0C’)
B ENVERR ENVIRONMENT ERROR (R2=’10’)
B USLOGIC USER LOGIC ERROR (R2=’14’)
B NOTINRPL USER LOGIC ERROR BUT INFORMATION

* IS NOT IN THE RPL (R2=’18’)

The logic that these subroutines, each representing a general category of recovery
action, might contain is discussed in the following sections.

Handling exception conditions (register 0=04)

If a request arrives from the other end of the session for which VTAM detects an
error (for example, the request arrived with a sequence number that was not one
greater than the previous sequence number), VTAM puts X'04' in register 0, X'04' in

Chapter 9. Handling errors and special conditions 291

the recovery action return code field (RTNCD) of the RPL, and X'03' in the specific
error return code field (FDB2) of the RPL. It also puts values in the SSENSEI,
SSENSMI, and USENSEI fields of the RPL. Unless the other end of the session
does not want a response (the RESPOND field contains NFME,NRRN), the VTAM
application program, either in the SYNAD exit routine or perhaps later in some
other part of the program, must send a response. An exception to this rule is this:
if a chain of requests is being received, and a negative response has been returned
to a request that was received as part of the chain, and remaining requests of the
chain are being received as exception requests, only the first negative response
should be sent and the remaining requests should be disregarded.

Before sending the negative response, the values in the SSENSEI, SSENSMI, and
USENSEI fields must be transferred to the SSENSEO, SSENSMO, and USENSEO
fields of the RPL used to send the response.

Sense codes are discussed in “System-sense information” on page 680.

Further action by a PLU application program
In addition to transferring these values for sending response information, the PLU
application program can analyze these fields to determine what to do next. It can:
v Begin sequence number resynchronization, using the SESSIONC

macroinstruction.
v Await a Request Recovery (RQR) request from the LU (which would cause

scheduling of the program's SCIP exit routine) and then begin sequence number
resynchronization. In this case, the LU must be capable of deciding whether to
shut down or to request recovery.

v If in the process of receiving a chain of requests, set a flag to purge the buffer
that contains requests in this chain that have been previously received. It can set
a flag to indicate to itself that the rest of the requests in this chain are to be
disregarded. When the last request arrives, the program can turn off this flag.

Further action by an SLU application program
When an SLU application program learns of an error in an incoming request, it
also transfers the values in the SSENSEI, SSENSMI, and USENSEI fields to the
SSENSEO, SSENSMO and USENSEO fields of the RPL used to send the negative
response. In addition, the SLU application program can:
v Send a Request Shutdown (RSHUTD) request to the PLU application program, if

sequence number resynchronization is required but is not possible.
v Send a Request Recovery (RQR) request to ask the PLU application program to

begin sequence number resynchronization, if required. In this case, the SLU
application program awaits a Clear request followed by a Set and Test Sequence
Numbers (STSN) request from the PLU application program.

v If in the process of receiving a chain of requests, set a flag to purge the buffer
that contains requests in this chain that have been previously received. It can set
a flag to indicate to itself that the rest of the requests in this chain are to be
discarded. When the last request arrives, the program can turn off this flag.

The exact action to be taken by each end of the session in the event of receiving an
exception request error must be agreed upon by the programmers coding the PLU
and SLU application programs before they are coded.

Further information on sequence number resynchronization action can be found in:
v “Controlling flow” on page 164
v Figure 109 on page 696

292 z/OS V2R1.0 Communications Server: SNA Programming

v Figure 119 on page 706
v Figure 128 on page 715.

Chapter 6, “Communicating with logical units,” on page 151, discusses the various
ways that a response can be received by an application program. If the response is
negative, the SSENSEI, SSENSMI, and possibly the USENSEI fields must be
analyzed to determine what recovery action is possible. Appendix B, “Return codes
and sense fields for RPL-based macroinstructions,” on page 651, describes in
general the possible settings of these fields. Appendix E, “Control block formats
and DSECTs,” on page 739, shows the DSECT labels of these fields. In general,
certain settings require that the session with the LU be terminated; other settings
indicate that the situation is recoverable and that either sequence number
synchronization or some other action can be taken.

Handling retriable completion (register 0=08)

This return code indicates that an operation was not successful but should be
requested again. The RPL does not contain any further information. The program
should issue an EXECRPL macroinstruction using the same RPL. The parameters
in the RPL do not apply to the EXECRPL request itself but to the original request
already specified in the REQ field of the RPL (in other words, the RPL associated
with the request that is to be retried). The EXECRPL simply retries the request.

An error on retrying an operation can cause LERAD or SYNAD to be entered
again. So that this situation can be recognized, a flag can be set before issuing the
EXECRPL or other RPL-based macroinstruction. See “Procedures to follow in
writing exit routines” on page 231.

Handling data integrity damage (register 0=0C)

Several errors fall into this category; the action to be taken depends on conditions
that are unique to each program. For example, a program that has no means of
recovering data that is lost on its way to an LU can decide that the LU has to
revert to some earlier point in communications or inquiry (might have to reenter
its inquiry), and sends a request to that effect. The LU can then reenter its request
and start the process at an initial stage. On the other hand, a program can always
keep a copy of its latest transmission to an LU so that it can retransmit it, if
required.

Handling environment errors (register 0=10)

In general, this category requires action by a VTAM operator or terminal operator
or program support representative because the LU, or some communication
element between the application program and the LU, is permanently or
temporarily unavailable. One or more of the following might be done:
v Send a message to the VTAM operator.
v Send a message to any log that is being kept in addition to the error logs being

kept by VTAM.
v Send a request to a master LU.
v Send a request to an LU that is associated with the LU for which action is

required.

If the error is temporary, the program can set a flag and retry the operation at a
later time or set up an ECB that, when posted, indicates that external action has

Chapter 9. Handling errors and special conditions 293

taken place and the operation can be resumed. If the error is permanent, the
session with the LU (and perhaps other LUs associated with the failing LU) must
be terminated. If the program is dependent on the LU, the program must
terminate.

Handling logic errors (register 0=14 and register 0=18)

Most return codes that cause entry to a LERAD exit routine are likely to occur only
when the program is being debugged. These errors require that the program save
as much information as necessary for debugging, perhaps request a dump of
storage, and terminate the program at that point. After the program is debugged, a
message to the operator can be substituted for program termination in the event
that a logic error occurs.

294 z/OS V2R1.0 Communications Server: SNA Programming

Chapter 10. Operating system facilities

This chapter describes a number of operating-system-dependent facilities to use
when writing a VTAM application program. It is assumed that the reader is
knowledgeable about the particular operating system involved. Read “Normal
operating system environment for a VTAM application program” on page 30 to
understand how an application program appears if these special facilities are not
used.

VTAM macroinstruction differences across operating systems

Operating system differences are stated in the individual macroinstructions.

If you are planning to migrate application programs from a non-ESA operating
system to a z/OS operating system, several differences exist because of the increase
in operating system capability in z/OS. These differences result from services
available under z/OS (primarily for authorized application programs) that are not
available in non-ESA operating systems. Additionally, if you are planning to use
the 31-bit addressing capabilities available to application programs, further
considerations exist (primarily for addressing mode and residence mode).

The main VTAM macroinstruction differences to consider are summarized here,
with references to the parts of this book where they are described in detail. The list
can be used as a checklist of VTAM macroinstruction language considerations
when converting a VTAM application program from one operating system to
another, or when changing a VTAM application program to use additional
operating system capabilities. There are many other considerations in such a
conversion, such as operating-system-dependent storage management and data
management macroinstructions that can be used by the application program:
v OPEN and CLOSE macroinstruction operand specifications, register 15 return

code handling, and ACB error code values. See Chapter 9, “Handling errors and
special conditions,” on page 277, and Chapter 13, “Conventions and descriptions
of VTAM macroinstructions,” on page 371, for details on how to handle error
information and macroinstruction coding.

v Use of operating-system-dependent information for application program
identification for OPEN processing if no identification is specified through the
ACB. See Chapter 4, “Opening and closing an application program,” on page 55,
for more information related to the ACB. See “OPEN—Open one or more ACBs”
on page 444, for details on OPEN processing for application program
identification.

v TPEND exit routine reason codes. See “TPEND exit routine is entered” on page
74, for more information on the TPEND exit routine. See Chapter 7, “Using exit
routines,” on page 219, for details on how to use the TPEND exit routine.

v Manipulative macroinstruction return codes. See Chapter 9, “Handling errors
and special conditions,” on page 277, and Appendix I, “Return codes for
manipulative macroinstructions,” on page 855, for information on handling
return codes.

v DSECT and control block differences. See Appendix E, “Control block formats
and DSECTs,” on page 739.

v VTAM operator message formats for program operators. See Appendix L,
“Program operator coding requirements,” on page 875.

© Copyright IBM Corp. 2000, 2013 295

v Cryptographic capabilities. See Chapter 5, “Establishing and terminating sessions
with logical units,” on page 81, for information on single and cross-domain
sessions. See Chapter 6, “Communicating with logical units,” on page 151, for
information on how to identify sessions. See Chapter 13, “Conventions and
descriptions of VTAM macroinstructions,” on page 371, for details on VTAM
macroinstructions.

v Multitasking capabilities. See “Multitasking” for information about multitasking
and dividing communication activity.

v Authorized path for macroinstructions and SRB capability for exit routines (see
“Authorized path” on page 300 for information on authorized path for
macroinstructions). The user should be familiar with certain limitations when
running under control of an SRB. (Refer to the z/OS MVS Programming:
Authorized Assembler Services Guide)

v Serialized versus concurrent processing by different parts of an application
program, described in “Serialization of execution” on page 309.

v Component ID vectors, function list vectors, and macro global variables are
different for different operating systems. See Chapter 4, “Opening and closing an
application program,” on page 55, for more information on vectors and variables
for each operating system. See Chapter 8, “Setting and testing control blocks and
macro global variables,” on page 267, for more information on how to set and
test control block values.

v Multiple-address-space capabilities, described in “Multiple address spaces” on
page 312.

v 31- versus 24-bit addressing capability, described in “31-bit addressing” on page
319.

v Software error handling, described in “Error handling” on page 322.

Assigning operating system authorization

The use of several of the facilities described in this chapter requires the application
program to be authorized by the operating system. VTAM determines whether an
application program is an authorized program when OPEN ACB is issued for that
program.

Authorization criteria
z/OS considers the program authorized if one or more of the following are true:
v The program is an authorized program facility (APF) designated program.
v The program is in supervisor state.
v The program is executing with a protection key 0–7 inclusive.

For further information about operating system authorization, refer to the z/OS
MVS Programming: Authorized Assembler Services Guide. This manual also
describes the use of the operating system MODESET macroinstruction, which is
used to enter supervisor state.

Multitasking

In addition to the multithreading facilities provided by VTAM (described in
“Single-thread or multithread operations” on page 36), the operating system
provides multitasking facilities that can be used when writing a VTAM application
program to improve performance and availability. Multitasking can be used to

296 z/OS V2R1.0 Communications Server: SNA Programming

separate communication activity from other activity (such as disk I/O), to divide
communication activity among several tasks, or to do both.

Separating data communication activity from other activity

Multitasking can be used so that communication activity can occur while waiting
for other activity, such as disk I/O processing, to be completed (see Figure 73). For
example, a VTAM application program can be organized into a task that opens and
closes the ACB and performs VTAM requests, and a task that performs disk I/O
requests (using VSAM, for example). In such a program, a page fault in the task
that performs disk I/O requests does not prevent the task that performs
communication requests from getting control during the time that the system is
waiting for the required page to arrive in main storage. For a single-task VTAM
application program, a page fault in that task would require that the entire
program wait.

Dividing data communication activity among several tasks

Further efficiency might be possible by issuing VTAM requests in more than one
task. For example, a program can use one task to open and close the ACB and to
establish and terminate sessions. The program can use a number of other tasks,
each containing a RECEIVE that specifies OPTCD=ANY and additional RPL-based
communication requests, to communicate on sessions. Whenever one such VTAM
communication task has to wait, the system can schedule another VTAM
communication task.

There are two basic ways to use multitasking to divide communication activity
among several tasks:

Task 1

Task 2

OPEN ACB1

Communication
request using
ACB1

CLOSE ACB1

ACB1

DISK I/O

Figure 73. Multitasking a program

Chapter 10. Operating system facilities 297

v You can write a program so that the first task attaches subtasks and all tasks use
the same ACB.

v You can write a program so that the first task attaches subtasks and each task
uses a separate ACB.

Multiple tasks, using the same ACB

When multiple tasks created by a program use the same ACB (see Figure 74), the
following considerations apply:
v The macroinstructions (OPEN and CLOSE) that open and close the ACB must be

in the same task.
v A subtask that did not open the ACB should not intentionally terminate if it has

outstanding VTAM requests for that ACB.
v The task that closes the ACB should ensure that other tasks refrain from issuing

VTAM requests during and after CLOSE processing.
v An exit routine can run under a different task (or SRB) than a communication

task. See “Task association” on page 310. If any of the VTAM communication
tasks are dependent on information that can be detected in such an exit routine,
the exit routine must be able to communicate with that task (perhaps by posting
an ECB located in a common area).

v Any abnormal termination in an asynchronous exit routine associated with the
task that opened the ACB results in the abnormal termination of that task as
well as all of its subtasks.

Multiple tasks, each with its own ACB

In a VTAM application program consisting of more than one task, each task can
open its own ACB (see Figure 75 on page 299). In such a structure, the
macroinstructions (OPEN and CLOSE) that open and close a particular ACB must
be issued in the same task.

OPEN ACB1
CLOSE ACB1

Communication
requests using
ACB1

Communication
requests using
ACB1

ACB1

Task 1

Task 2

Task 3

Figure 74. Multiple tasks using the same ACB

298 z/OS V2R1.0 Communications Server: SNA Programming

Using multiple ACBs within one task
About this task

A program can open more than one ACB (see Figure 76 on page 300), and thus
become multiple VTAM application programs. This can be done under multiple
tasks as discussed in the preceding section; it can also be done under a single task.
Some ACB exit routines can be used in common by multiple ACBs, while other
exit routines can be associated with only one particular ACB. A possible use of
multiple ACBs is to code multiple programs which can be brought online at
different times of the day, yet which can share many common routines.

Note: Subsequent OPEN ACBs under the same task should ignore the SRBEXIT
parameter.

OPEN ACB1

Communication
request using

ACB1

CLOSE ACB1

OPEN ACB2

Communication
requests using
ACB2

CLOSE ACB2

OPEN ACB3

Communication
requests using
ACB3

CLOSE ACB3

ACB1

ACB2

ACB3

Task 1

Task 2

Task 3

Figure 75. Multiple tasks, each with its own ACB

Chapter 10. Operating system facilities 299

Authorized path
A VTAM application program can specify that RPL-based macroinstructions be
executed by VTAM in a manner that generally requires fewer instructions than the
normal mode of operation. The path length (number of executed instructions) is
significantly decreased for the SEND, RECEIVE, RESETSR, and SESSIONC
macroinstructions. This facility, called authorized path, can be used to improve the
performance of a VTAM application program. Such an application program must
be authorized as described in “Assigning operating system authorization” on page
296. Macroinstructions that can use authorized path are listed in Figure 77 on page
301. The OPEN, CLOSE, and manipulative macroinstructions cannot use
authorized path; they cannot be issued under an SRB, but instead must run under
a task control block (TCB mode).

DISK I/O

ACB1

ACB2
Task 2

OPEN ACB1

OPEN ACB2

Communication
request using
ACB1

Communication
request using
ACB2

CLOSE ACB1

CLOSE ACB2

Task 1

Figure 76. Single task with multiple ACBs

300 z/OS V2R1.0 Communications Server: SNA Programming

Specifying authorized path macroinstructions

The VTAM authorized path macroinstructions can be executed asynchronously
(OPTCD=ASY) or synchronously (OPTCD=SYN) under control of a service request
block (SRB), or a task control block (TCB). Table 55 on page 302 shows the coding
requirements for VTAM authorized path, including the VTAM authorized path

ACB-Based Macroinstructions (cannot use authoroized path)

Declarative Macroinstructions (can be referenced by authorized path macroinstructions)

ACB
EXLST
RPL
NIB

These build control blocks during program
assembly. (DSECT-creating macroinstructions
are available for these and other data areas. The
ISTGLBAL macroinstruction is also provided to set
macro global variable at assembly time.)

Manipulative Macroinstructions (cannot use authoroized path)

GENCB
MODCB
SHOWCB
TESTCB

These build and manipulate control blocks
during program execution.

OPEN
CLOSE

These open and close the application
program's ACB.

RPL-Based Macroinstructions (can use authorized path, except as noted in the following)

Session-Establishment Macroinstructions
When the Application Program acts
as a PLU

These request session establishment, data transfer,
and program operator control. They all use an RPL
and, with the exception of CHECK, permit RPL
modifications to be specified in the macroinstruction
itself.

THE CHECK macroinstruction can be
issued under an SRB if the RPL being
checked has already been posted
complete. Authorized path does not
apply to CHECK.

OPNDST
CLSDST
SIMLOGON

When the Application Program acts as an SLU

REQSESS
OPNSEC
TERMSESS
SESSIONC (to reject a BIND request)

Communication Macroinstructions

SEND
RECEIVE
RESETSR
SESSIONC (for other than BIND request rejected)

Macroinstructions that assist in Session Establishment
of Communication

CHANGE
CHECK
EXECRPL
INQUIRE
INTRPRET
SETLOGON

Program Operator Macroinstructions

SENDCMD
RCVCMD

Figure 77. Categories of VTAM macroinstructions versus the authorized path function

Chapter 10. Operating system facilities 301

macroinstructions and the supervisor macroinstructions needed to execute the
authorized path through VTAM. Consult the z/OS MVS Programming: Authorized
Assembler Services Guide for information on coding the supervisor
macroinstructions described in Table 55.

To use authorized path while running under a TCB, the authorized program,
having put itself into supervisor state, specifies BRANCH=YES on any RPL-based
macroinstruction that is to be executed using authorized path.

Subsequently, to issue any macroinstruction that is not to use authorized path and
that uses the same RPL, the RPLBRANC flag in the RPL must be turned off by one
of the following:
v Coding BRANCH=NO on a MODCB macroinstruction
v Referring to the field by using the IBM-supplied DSECT and turning it off with

an assembler language instruction
v Coding BRANCH=NO on the subsequent macroinstruction that is not to use

authorized path.

Authorized path is always used when an RPL-based macroinstruction is issued
under the control of an SRB. A task identification and address space identification
should be specified in the SRB as discussed in “Task association” on page 310;
otherwise (RTNCD,FDB2)=(X'14',X'55') could result. One way to gain control under
an SRB is for the authorized program, while running under a TCB, to specify an
RPL exit routine when issuing (in supervisor state) an RPL-based macroinstruction
that specifies BRANCH=YES. On entry to the RPL exit routine, the program is
running under an SRB. Any RPL-based macroinstruction issued under an SRB is
automatically executed using authorized path; BRANCH=YES need not be
specified. An alternative way to create the SRB environment is to use the MVS
SCHEDULE macroinstruction.

Table 55. Coding requirements for authorized path

Method of program execution (OPTCD=ASY or SYN operand specified on
VTAM RPL and RPL-based macroinstructions)

Method of dispatching Synchronous Asynchronous

TCB 1. MODESET MODE=SUP

2. BRANCH=YES operand on
authorized path VTAM
macroinstruction

1. MODESET MODE=SUP

2. BRANCH=YES operand on
authorized path VTAM
macroinstruction

3. EXIT or ECB operand on VTAM
RPL or other VTAM RPL-based
macro instruction

SRB 1. MODESET EXTKEY=ZERO

2. SCHEDULE with operands

3. SETFRR with operands

1. MODESET EXTKEY=ZERO

2. SCHEDULE with operands

3. SETFRR with operands

4. EXIT or ECB operand on VTAM
RPL or other VTAM RPL-based
macroinstruction

Additional coding considerations for authorized path

When an application program executes two or more asynchronous authorized path
macroinstructions for the same session, the requests might not be satisfied by

302 z/OS V2R1.0 Communications Server: SNA Programming

VTAM in the order that the macroinstructions are issued. To ensure that VTAM
processes requests in order, wait until one macroinstruction is posted complete
before executing the next.

Here are some examples of how requests can be processed out of order:
v If two SEND POST=RESP,OPTCD=ASY macroinstructions are executed on a

given session without an intervening CHECK macroinstruction, the second
request could arrive at the logical unit before the first request. This can happen
if both authorized path macroinstructions are issued under two different SRBs.

v Similarly, if multiple RECEIVE macroinstructions are outstanding for a session,
SRB scheduling can make it appear that input arrived on the session out of
order. For example, the RECEIVE EXIT SRB for the input data request with a
sequence number of 8 can execute prior to the RECEIVE EXIT SRB scheduled for
input data request number 7. This can be avoided by having no more than one
RECEIVE outstanding at a time for a session and issuing another RECEIVE only
when the first completes.

RPL exit routines for authorized path macroinstructions are always scheduled
under SRBs (in supervisor state and key 0), even if the authorized path
macroinstruction was invoked under a TCB. On entry to such an RPL exit routine:
v Register 1 contains the address of the RPL.
v Register 13 does not contain a save area address because no save area is

provided. (This is also true for an RPL exit routine running under a TCB.)
v Register 14 contains the return address of the dispatcher.
v Register 15 contains the entry-point address of the exit routine.

The SRB under which an RPL exit routine is run or under which control is
returned to an application program is not necessarily the same SRB under which
the original RPL-based macroinstruction was issued. For synchronous SRB-mode
macroinstruction requests, the application optionally can request that VTAM retain
the SRB of the issuer's processing thread throughout the processing of the request.
This is accomplished by specifying OPTCD=(SYN,KEEPSRB) on the RPL-based
macroinstruction request. This permits the processing environment established by
the application, including FRRs, BAKR stacks, and other SRB-related resources, to
be kept intact.

CAUTION:
To provide this function, VTAM utilizes SUSPEND and RESUME. Suspending
the SRB (as opposed to exiting and returning under a different SRB) allows the
environment to be preserved. However, SUSPEND and RESUME may impact
performance. Take this into account when making use of this parameter for
performance sensitive API invocations (such as SEND or RECEIVE).

When part of an application program is executed under the control of an SRB, that
part of the application program cannot issue a WAIT macroinstruction or any other
SVC except ABEND, SVC 13. VTAM does any suspension and resumption of
processing for that part of the application program without using WAIT or POST
macroinstructions (for example, when OPTCD=SYN is issued).

A CHECK macroinstruction can be issued if asynchronous ECB posting is used,
but it can usually be issued only under the control of a TCB. A CHECK
macroinstruction cannot be issued under an SRB unless it is certain that the
associated RPL has been posted complete; for example, CHECK for an RPL can be
issued in the RPL-exit routine scheduled for that RPL because the RPL is posted

Chapter 10. Operating system facilities 303

complete before the exit routine is scheduled. If CHECK is issued under an SRB
before the RPL has been posted complete, the CHECK issues a WAIT, but the
WAIT SVC is not allowed under an SRB.

When an RPL exit routine is executing under the control of an SRB, the exit routine
should establish a functional recovery routine (FRR) by using the supervisor
macroinstruction SETFRR. For additional information about the use of functional
recovery routines, see “Functional recovery routines” on page 324.

To ensure that VTAM serializes its references to VTAM control blocks, VTAM
authorized users should not execute the SEND, RECEIVE, SESSIONC, or RESETSR
macroinstructions while a CLSDST or TERMSESS macroinstruction for the same
session is in progress.

An authorized program that holds system locks should release those locks before
invoking VTAM to avoid conflicts with VTAM's use of the locks. Otherwise, if a
conflict occurs, z/OS abnormally terminates the VTAM function being processed
for that program.

SYNAD and LERAD exit routines are scheduled in the same mode (TCB or SRB)
as the program that issued the macroinstruction giving control to the exit routine.
For asynchronous requests, the SYNAD or LERAD exit routine can be entered
either when the authorized path macroinstruction is issued or when a CHECK
macroinstruction is issued.

Rules relating to the reentrance of certain VTAM exit routines are described in
Chapter 7, “Using exit routines,” on page 219. When the RPL, SYNAD, and
LERAD exit routines are scheduled as a result of authorized path and
corresponding CHECK macroinstructions being issued, the following two
additional rules apply:
v RPL exit routines must be reentrant, because VTAM schedules RPL exit routines

in parallel under different SRBs. If the RPL exit routine invokes any authorized
path or CHECK macroinstructions, the SYNAD and LERAD exit routines must
also be reentrant.

v If the application program itself schedules parallel processing under different
SRBs, and if these SRBs invoke any authorized path or CHECK
macroinstructions, the SYNAD and LERAD exit routines must be reentrant.

Simple example of authorized path usage

See Chapter 15, “Sample code of a simple application program,” on page 579, for a
coded example of an application program that uses authorized path
macroinstructions.

304 z/OS V2R1.0 Communications Server: SNA Programming

Figure 78 illustrates the basic logic for using authorized path when running under
a TCB and under an SRB. The program in Figure 78 is highly simplified. The
program establishes and handles input from only one session; an actual program
would establish and handle input from many sessions. In addition, the logic
associated with input/output requests would be more complex in an actual
program. The following notes are related to the numbers in Figure 78.

1 The application program begins processing as a task running under the

Receive a request
on any session

Enter

Open the ACB

Establish the
session

Change to
supervisor state

Wait on own ECB

Is
logoff indicator

set?

Close the ACB

Return

Running under the
control of a TCB

Turn on
logoff
indicator

Post ECB

Return

Running under the control of an SRB

AUTHPATH

AUTHEXIT

Yes

No Yes

Return

Post ECB

Send reply to
logical unit

Build reply

Process
request

Is
this a logoff

request?

Check status
of RECEIVE

Enter

No

Terminate
the session

Figure 78. Example of the use of authorized path

Chapter 10. Operating system facilities 305

control of a TCB. As part of normal VTAM processing, it issues an OPEN
macroinstruction to open an ACB. The OPEN might look like this:
OPEN AUTHACB

In this example, AUTHACB contains:
AUTHACB ACB AM=VTAM,APPLID=APPL5ID,PASSWD=APPL5ID

2 The application program issues an OPNDST macroinstruction to establish a
session with a logical unit. The OPNDST might be coded:
OPNDST RPL=AUTHRPL,OPTCD=SYN

The RPL, named AUTHRPL, contains the rest of the information needed
for OPNDST.

3 The application program uses the MODESET macroinstruction to change
into supervisor state. This is coded:
MODESET MODE=SUP

4 The RECEIVE macroinstruction conforms to the coding rules for
authorized path running under the control of a TCB. The BRANCH=YES
operand is specified. The RECEIVE macroinstruction might be coded:
RECEIVE RPL=AUTHRPL,RTYPE=DFSYN,AREA=INPUT00, C

AREALEN=100,OPTCD=(ASY,ANY,CS),EXIT=AUTHEXIT, C
BRANCH=YES

It is known that a request received on the session never exceeds 100 bytes.

5 Because the RECEIVE was specified as an asynchronous operation
(OPTCD=ASY), the mainline program, AUTHPATH, can continue
execution until an input request on the session completes the receive-any
operation. In a more elaborate program, meaningful processing could be
done here. But in AUTHPATH, the program immediately enters a wait
state, waiting on its own ECB.

6 When a request is received on the session, control goes to the RPL exit
routine named AUTHEXIT. This exit routine runs under the control of an
SRB. VTAM processing is completed with the scheduling of the exit
routine; VTAM itself is not suspended. For example, VTAM could
immediately schedule another RPL exit under an SRB.

The CHECK macroinstruction frees the RPL for reuse and causes entry to a
LERAD or SYNAD exit routine if necessary. The CHECK macroinstruction
is coded:
CHECK RPL=AUTHRPL

7 The exit routine then tests the input request to see if it is a logoff request (a
request in a special format that indicates the logical unit wants to end the
session with the program AUTHPATH).

8 If the request is a logoff request, the exit routine turns on a logoff indicator,
posts the ECB (as in step 11), and exits, thus returning control to the
mainline program, AUTHPATH.

9 If the request is not a logoff request, the exit routine analyzes the request
and builds a reply.

10 The exit routine is running under the control of an SRB because it is an
RPL exit routine entered from a macroinstruction using authorized path.
The SEND macroinstruction, therefore, automatically uses authorized path.
The SEND looks like this:

306 z/OS V2R1.0 Communications Server: SNA Programming

SEND RPL=AUTHRPL,OPTCD=(SYN,CA),CONTROL=DATA, C
STYPE=REQ,RTYPE=DFSYN,RECLEN=95,AREA=OUTPUT00, C
POST=SCHED,RESPOND=(NEX,NFME,NRRN)

The macroinstruction specifies that the SEND operation is to be performed
synchronously (SYN in OPTCD), meaning that the exit routine surrenders
control until the SEND operation is scheduled. The macroinstruction also
specifies that no response is returned, which assumes that failure of the
request to arrive is detected by analyzing the next request entered by the
terminal operator.

11 After the SEND operation has been scheduled, the exit routine posts the
ECB on which the mainline program (AUTHPATH) has been waiting. This
must be done by a branch entry to the supervisor POST routine, because
SVCs cannot be issued in SRB mode. The exit routine then exits and thus
returns control to AUTHPATH.

12 Because the ECB has been posted, the wait at 5 is satisfied and
AUTHPATH continues execution. It tests to determine whether the logoff
indicator has been set. If the indicator has not been set, it returns to 4 to
reissue the RECEIVE macroinstruction. Thus, execution continues using
steps 4 through 12 for as long as input requests other than logoff are
received on the session.

When the logoff indicator has been set (indicating that the request received
from the logical unit was a logoff request), execution continues at 13.

13 The program terminates the session by using the CLSDST
macroinstruction. The CLSDST might be coded:
CLSDST RPL=AUTHRPL,BRANCH=NO,OPTCD=SYN

14 The CLOSE macroinstruction closes the ACB.

If desired, both the OPNDST and CLSDST macroinstructions could have been
coded to use authorized path. This could have been done by interchanging steps 2
and 3, and by coding BRANCH=YES on the RPL macroinstruction.

Authorized asynchronous exit routines
For authorized application programs, VTAM optionally gives control to
asynchronous exit routines in supervisor state. The exit routines are branch entered
from VTAM instead of being entered through the SYNCH macroinstruction. This
allows for more efficient operation than if the exit routines were entered normally.
The routines are entered in the storage protection key of the authorized program.
This type of entry is provided only if SRBEXIT=YES is specified on the APPL
definition statement. See “Assigning operating system authorization” on page 296
for the definition of an authorized VTAM application program.

Execution of exit routines

EXLST and RPL exit routines might execute in either SRB mode or TCB mode. See
“Task association” on page 310 for information related to error handling.

EXLST exit routines other than LERAD and SYNAD

The following EXLST exit routines can be specified to run in either SRB mode or
TCB mode:

Chapter 10. Operating system facilities 307

v DFASY
v LOGON
v LOSTERM
v NSEXIT
v RELREQ
v RESP
v SCIP
v TPEND.

Selection of the mode of execution is made by coding the ACB macroinstruction
PARMS= keyword operand value, or the APPL definition statement operand
SRBEXIT=YES or NO. In either case, the exit routine must return to VTAM upon
completion.

When SRBEXIT=YES is specified, SRB processing is used for the EXLST exit
routines listed in the preceding section. The exit routines are branch entered in SRB
mode, supervisor state, and key 0. The application program must be authorized in
order to open an ACB that has a corresponding APPL definition statement that
specifies SRBEXIT=YES; otherwise, the OPEN request is rejected with an OPEN
error field value of 244 (hex F4), “application program not authorized.” See
“Assigning operating system authorization” on page 296 for further information
about authorized paths.

If SRBEXIT=NO is specified, or if SRBEXIT is not specified on either the ACB
macroinstruction or the APPL definition statement, the exit routines in the
preceding list are entered in TCB mode, in problem state, using the key associated
with the TCB.

If an exit routine runs in SRB mode, the program environment that existed when
the exit routine was entered must be maintained when the exit routine returns to
VTAM. This includes returning under the same SRB used for entry, running in
supervisor state, with key 0, and with the same control registers and FRR stack. If
changes occurred in the exit routine, the application program must restore these
variables to their original state before returning to VTAM. Also, any system locks
set by the exit routine must be released before returning to VTAM.

Note: If multiple applications open an ACB under one task, the SRBEXIT operand
is recognized for the first application opening the ACB. Therefore, the first open
ACB determines the exit routines execute in SRB or TCB mode. The SRBEXIT
operand is ignored for all subsequent applications opening the ACBs under the
same task. If SRBEXIT=YES is specified on the first application opening the ACB,
the subsequent applications opening ACBs under the same task must be
authorized.

LERAD and SYNAD exit routines
LERAD and SYNAD operate in the same mode (TCB or SRB), state (problem or
supervisor), and key as the part of the program that issued the RPL-based or
CHECK macroinstruction whose issuance caused the LERAD or SYNAD exit
routine to be invoked. Thus, LERAD and SYNAD operate essentially as extensions
to that part of the program, and are subject to exactly the same interrupt
conditions and other operating system rules as that part of the program.

LERAD and SYNAD need not directly return to VTAM. Instead, they can branch to
another part of the application program, still operating as an extension to the

308 z/OS V2R1.0 Communications Server: SNA Programming

original part of the program from which they were invoked. If they do return to
VTAM, VTAM then gives control to the next sequential instruction after the
original RPL-based or CHECK macroinstruction.

RPL exit routines
The TCB or SRB mode of execution of an RPL exit routine is determined primarily
by whether the associated RPL-based request uses authorized path. See
“Authorized path” on page 300, for further information on authorized paths. The
SRBEXIT parameter on the APPL definition statement determines the execution
mode only if authorized path is not used.

If authorized path is used for an RPL-based request, the RPL exit routine always
runs under an SRB, independently of the specification of the SRBEXIT parameter.
The exit routine need not return to VTAM.

If authorized path is not used for an RPL-based request, SRB mode is used for the
RPL exit routine only if SRBEXIT=YES: TCB mode is used if SRBEXIT=NO. In
either case, the exit routine must return to VTAM upon completion. If
SRBEXIT=YES is specified, the application program must be authorized as
described in “EXLST exit routines other than LERAD and SYNAD” on page 307.
The program environment must be maintained for return to VTAM.

In all cases, if SRB mode is used for an RPL exit routine, the exit routine is entered
in supervisor state with key 0. In TCB mode, problem state and the key associated
with the TCB are used.

Serialization of execution

In “Normal operating system environment for a VTAM application program” on
page 30, a simple environment is described as one in which asynchronous exit
routines and the mainline program run serially; that is, only one asynchronous exit
routine runs at one time and the mainline program cannot run when an
asynchronous exit routine has been invoked. The operating system facilities of
multitasking (and SRB mode) allow concurrent execution of various parts of the
same application program. This section describes the conditions under which
several parts of an application program can run concurrently, and the conditions
under which serial execution must take place. If several parts of an application
program can run concurrently, the application program design must ensure that
resources (for example, control blocks and save areas) are properly handled.

When authorized path is used for an RPL-based macroinstruction and an RPL exit
routine is specified, that exit routine runs under an SRB. Also, the non-exit parts of
a z/OS application program can be written to run under SRBs. Any number of
these exit and non-exit SRBs can run concurrently. In all the operating systems, an
application program can be written to use multitasking, and multiple tasks can run
concurrently. Also, SRB parts of a z/OS application program can run concurrently
with task parts of the same program.

All asynchronous exit routines, except authorized path RPL exit routines, are
dispatched through a user exit queue.

Multiple user exit queues can exist, one for the task that opens the ACB (the ACB
task) and one for each task that issues any RPL-based macroinstruction other than
a communication macroinstruction. If multiple user exit queues exist, then,
potentially, multiple asynchronous exit routines can run concurrently, one from

Chapter 10. Operating system facilities 309

each queue. Only a single asynchronous exit routine can be run at one time from
each user exit queue; that exit routine must return to VTAM before the next
asynchronous exit routine from that user exit queue can be given control. (TPEND
with reason code 8 is an exception because it is always immediately invoked.)

The particular user exit queue used for a given asynchronous (non-authorized
path) exit routine is determined by the task association of that exit routine. Task
association is also used for error isolation and is described in “Task association.”
When an asynchronous exit routine is dispatched from a task's user exit queue, the
task is normally used to process the exit routine, thus suspending any part of the
mainline program associated with that task.

However, if SRB mode is used for the exit routine, the exit routine and task can
run concurrently. For further information on the SRB and TCB modes, see
“Execution of exit routines” on page 307.

If multiple VTAM application programs use the same task, they all share the same
user exit queue for that task; consequently, it is important that each exit routine
using the user exit queue return to VTAM, because it is possible for an application
program's exit routine to hold up the queue and prevent scheduling of exit
routines for another application program.

The LERAD and SYNAD exit routines are not serialized directly and are not
associated with any user exit queue. They run as extensions of the part of the
program that issued the RPL-based or CHECK macroinstruction that caused them
to be invoked. Thus, they are serialized only to the extent that the part of the
program from which they were invoked is serialized.

Task association
When an application program issues a VTAM macroinstruction or when an
application program exit routine is invoked by VTAM, that particular part of the
program is explicitly or implicitly associated with an operating system task. A
session can also be associated with a task; the task associated with a session is
either the task associated with the OPNDST or OPNSEC macroinstruction used to
establish the session or, for LU 6.2 applications, the task that opened the ACB. Task
association is used to isolate errors to a particular task, as described in “Isolation of
errors” on page 322. It is also used to determine which user exit queue is used to
dispatch certain asynchronous exit routines; user exit queues are discussed in
“Serialization of execution” on page 309.

The associated task can be:
v The ACB task—the task that opened the application program's ACB
v The issuing task—the task associated with the macroinstruction being issued
v The session task—the task associated with the OPNDST or OPNSEC

macroinstruction that originally established the session for which another
macroinstruction is now being issued. A VTAM LU 6.2 application's session task
is associated with the task that opens the ACB.

Exit routine task association
The associated task is the ACB task when the following exit routines are
dispatched:
v ACB exit routines–NSEXIT, LOGON, LOSTERM, RELREQ, TPEND

310 z/OS V2R1.0 Communications Server: SNA Programming

v SCIP exit routine (either ACB or NIB specified) for BIND and UNBIND
processing

v ACB-specified session exit routines–DFASY, RESP, SCIP
v NIB-specified session exit routines if authorized path OPNDST or OPNSEC was

not used to establish the session–DFASY, RESP, SCIP
v RPL exit routine for an RPL-based macroinstruction that does not use authorized

path (additionally for communication macroinstructions, an authorized path
OPNDST or OPNSEC macroinstruction was not used to establish the session).

The associated task is the session task when the following exit routines are
dispatched:
v NIB-specified session exit routines if authorized path OPNDST or OPNSEC was

used to establish the session–DFASY, RESP, SCIP (for other than BIND and
UNBIND processing)

v RPL exit routine for an RPL-based communication macroinstruction if
authorized path OPNDST or OPNSEC was used to establish the session

v RPL exit routine for an RPL-based communication macroinstruction that does
use authorized path.

The associated task is the issuing task when the following exit routine is
dispatched:
v RPL exit routine for an RPL-based non-communication macroinstruction that

does use authorized path.

The associated task for a LERAD or SYNAD exit routine is the task associated with
the corresponding RPL-based or CHECK macroinstruction.

The associated task for a RECEIVE OPTCD=ANY RPL exit routine can be the ACB
task or the session task, depending on when the exit routine is scheduled. For
LERAD or SYNAD exit routines invoked because of RECEIVE OPTCD=ANY, the
associated task can be the issuing task, the ACB task, or the session task.

Macroinstruction task association

OPEN and CLOSE macroinstructions are always associated with the issuing task.
RPL-based macroinstructions issued in TCB mode are usually associated with the
issuing task; however, for communication macroinstructions, VTAM does most of
its processing under the session task and so switches the task association to that
task. (For RECEIVE OPTCD=ANY, intermediate processing is also done under the
ACB task, which thereby becomes the associated task for a certain period of time.)

SRB requirements

RPL-based macroinstructions issued in SRB mode must specify their task
association in the SRB by using the task identification and address space
identification fields, with the address space being that of the issuing
macroinstruction. Failure to do this for non-communication RPL-based
macroinstructions results in an error with (RTNCD,FDB2)=(X'14',X'55'). (For
compatibility with previous releases of VTAM, if no task association is specified in
the SRB used by SESSIONC in the ACB-address space when sending a
request-rejected response to BIND, the ACB task is assumed by default.) For
communication macroinstructions (other than RECEIVE OPTCD=ANY), the session
task association must be specified in the SRB; for RECEIVE OPTCD=ANY, the

Chapter 10. Operating system facilities 311

issuing task association must be specified. Failure to specify the correct task
association for communication macroinstructions produces unpredictable results.

Multiple address spaces
The multiple-address-space facility under z/OS allows VTAM RPL-based
macroinstructions that are issued in different address spaces to reference one ACB.
The parts of the application program executing in the address spaces selected are
logically grouped into a single logical unit associated with the ACB. Thus, the
application program can be thought of as spanning multiple address spaces. The
multiple-address-space facility can provide increased flexibility and error isolation
for application programs. Improved operation can be achieved by running one
session for each address space to maximize isolation or protection, or by grouping
a number of sessions in one address space, based on the installation's
requirements.

See “Isolation of errors” on page 322 for further information about error isolation.

When using the multiple-address-space facility, sessions associated with an ACB
can reside in any available address space in addition to the address space used for
opening the ACB. When not using the multiple-address-space facility, all sessions
associated with a particular ACB must reside in the address space used for
opening the ACB.

Types of address spaces
The three types of address spaces are the ACB address space, the associated
address space, and the session address space. These are defined in the following
sections. Examples of multiple-address-space assignments using one ACB address
space, and others using more than one ACB address space are shown in Figure 79
on page 313 and Figure 80 on page 314. Figure 81 on page 315 summarizes the use
of VTAM macroinstructions within multiple address spaces.

ACB address space
An ACB address space is an address space in which an ACB is opened. The ACB
must reside in common storage if multiple address spaces are to be used for the
application program. An ACB address space has the following characteristics:
v It can use the full set of VTAM macroinstructions.
v It can have more than one ACB.
v It can issue VTAM macroinstructions in TCB mode (authorized path or

non-authorized path), or in SRB mode.
v It can be an associated address space (defined in the following) with respect to

another ACB.
v It can be a session address space (defined in the following).
v It is the address space where certain EXLST exits are executed.
v It is the only address space in which the ACB can be closed.

If the ACB address space terminates or the ACB is closed, all sessions associated
with the ACB are terminated, no matter which address space each session uses.

312 z/OS V2R1.0 Communications Server: SNA Programming

Note:

1. The ACB must reside in commonly addressable storage if VTAM requests
specify that the ACBs are issued in address spaces other than that which issued
the OPEN ACB (that is, if multiple address spaces are used for the application
program).

2. One or more sessions can be associated with each session address space.

Common service area (CSA)

ACB
(Note 1)

Address space Address space Address space

OPEN ACB1 OPNDST ACB=ACB1 OPNDST ACB=ACB1
OPNSEC ACB=ACB1

ACB
address
space

Session
address
space
(Note 2)

Session
address
space
(Note 2)

Figure 79. Example of a multiple-address-space configuration with one multiple-address-space ACB

Chapter 10. Operating system facilities 313

Common service area (CSA)

ACB1 ACB2

ACB address space
(with respect to
ACB1)

Session address space
(with respect to
ACB1)

Session address space
(with respect to
ACB1)

OPEN ACB1 OPNDST ACB=ACB1 OPNDST ACB=ACB1

Session address
space
(with respect to
ACB2)

ACB address space
(with respect to
ACB2)

Session address space
(with respect to
ACB2)

OPNDST ACB=ACB2

OPEN ACB2 OPNDST ACB=ACB2

Figure 80. Example of a multiple-address-space configuration with more than one multiple-address-space ACB

314 z/OS V2R1.0 Communications Server: SNA Programming

Declarative Macroinstructions (must be in the address space of any macroinstructions that reference the control blocks)

ACB
EXLST
RPL
NTB

These build control blocks during program
assembly. (DSECT-creating macroinstructions are
available for these and other data areas. The
ISTGLBAL macroinstruction is also provided to set
macro global variable at assembly time.)

Manipulative Macroinstructions (must be issued in the address space of the control blocks that they reference)

GENCB
MODCB
SHOWCB
TESTCB

These build and manipulate control blocks during
program execution.

ACB-Based Macroinstructions (can be issued from any address space, except as noted)

OPEN
CLOSE

These open and close the application program's
ACB. CLOSE must be issued in the address space
from which OPEN was issued.

RPL-Based Macroinstructions (can be issued from any address space, except as noted))

Session-Establishment Macroinstructions
When the Application Program acts
as a PLU

These request session establishment, data transfer,
and program operator control. They all use an RPL
and, with the exception of CHECK, permit RPL
modifications to be specified in the macroinstruction
itself.

OPNDST
CLSDST
SIMLOGON

When the Application Program acts as a SLU

REQSESS
OPNSEC
TERMSESS
SESSIONC (for negative response to BIND)

Communication Macroinstructions (must be in the session
address space, except as noted)

SEND
RECEIVE (1)

RESETSR
SESSIONC (for other than negative response to BIND)

Macroinstructions that assist in Session
Establishment of Communication

CHANGE
CHECK (1,2)
EXECRPL (3)
INQUIRE
INTRPRET
INTRPRET
SETLOGON

Program Operator Macroinstructions

SENDCMD
RCVCMD

Note:

1. See “Address space used for exit routine execution” on page 316 for RECEIVE OPTCD=ANY considerations.

2. Except for RECEIVE OPTCD=ANY, CHECK must be issued in the address space used to issue the RPL-based
macroinstruction.

3. Follows the same rules as the RPL-based macroinstruction it replaces.

Figure 81. Categories of VTAM macroinstructions versus the multiple-address-space functions

Chapter 10. Operating system facilities 315

Associated address space
An address space that issues VTAM macroinstructions specifying an ACB that was
opened in another address space is an associated address space with respect to the
ACB. An associated address space can reference only an ACB that resides in
common storage. An associated address space has the following characteristics:
v It can be associated with more than one ACB.
v For an ACB in another address space, it can issue only authorized path VTAM

macroinstructions using either SRB mode or authorized path TCB mode.
v It cannot issue a CLOSE macroinstruction for an ACB that was opened in

another address space.
v It can OPEN an ACB and thus also be an ACB address space.

Termination of an ACB address space also results in removal of the VTAM
structures through which other address spaces are associated with the ACB address
space. This includes termination of any sessions or RPL-based operations in the
associated address spaces that relate to the ACB.

Session address space
A session address space is an address space used to issue VTAM macroinstructions
that establish sessions (OPNDST or OPNSEC). A session address space is either an
ACB address space or an associated address space. The RECEIVE OPTCD=SPEC,
RESETSR, SESSIONC (except when used to send a request rejected response to
BIND), and SEND macroinstructions can be issued only in a session address space.
If one of these macroinstructions is issued in an address space other than the
address space in which the corresponding session was established, the
macroinstruction is posted complete with (RTNCD,FDB2)=(X'14',X'24'), indicating a
logic error and an address space ID (ASID) mismatch.

Rules for coding macroinstructions and exit routines

The following rules apply with a multiple-address-space application program:
v The ACB must reside in the common service area (CSA). The APPLID and

PASSWD data areas referenced by the ACB must reside in the ACB address
space. Similarly, for a communication network management application
program, the NIB and all data areas referenced by it must be in the ACB address
space.

v The EXLST referenced by the ACB or NIB must reside in the CSA.
v The RPL and data areas referenced by the RPL must be addressable from the

address space issuing an RPL-based macroinstruction. For RECEIVE
OPTCD=ANY, the RPL and data areas must also be addressable from the ACB
and session address spaces.

v It is recommended that any exit routine that might run in more than one
address space be reentrant and placed in the link pack area (LPA).

Address space used for exit routine execution

With a few exceptions, the address space in which an asynchronous exit routine
runs is the ACB address space. The exceptions are:
v If a session is established by using authorized path for an OPNDST or OPNSEC

macroinstruction, then any RESP, DFASY, or SCIP exit routine specified in the
NIB EXLST for that session runs in the session address space. (BIND and
UNBIND processing by a SCIP exit routine is always done in the ACB address
space.)

316 z/OS V2R1.0 Communications Server: SNA Programming

v An RPL exit routine runs in the issuing macroinstruction's address space.
CHECK must be issued in that address space. (RECEIVE OPTCD=ANY is
handled as described next.)

BIND is always processed by the SCIP exit routine specified in the ACB EXLST; the
exit routine runs in the ACB address space. UNBIND processing by an SCIP exit
routine (either ACB or NIB EXLST specified) is also done in the ACB address
space; if an NIB SCIP exit routine was specified for the session, that exit routine is
used, but it runs in the ACB address space and thus might require that the NIB
SCIP exit routine be in the operating system's LPA.

RECEIVE OPTCD=ANY processing occurs partially in the issuing
macroinstruction's address space, partially in the ACB address space, and partially
in the address space of the session for which the RECEIVE OPTCD=ANY
operation is posted complete (that is, the address space of the session for which
input is received). An RPL exit routine can be invoked in either the ACB or session
address space. Thus, the application program might need to be written to have
such an RPL exit routine in LPA, or to issue RECEIVE OPTCD=ANY only from the
ACB address space, and to restrict the sessions that can run in continue-any mode
to be those for which the session address space is the ACB address space.

LERAD and SYNAD exit routines are normally executed in the address space used
by the CHECK or RPL-based macroinstruction for which the LERAD or SYNAD
exit routine was invoked. LERAD and SYNAD exit routines for RECEIVE
OPTCD=ANY are exceptions in that they can also execute in the ACB address
space or the session address space, as well as in the issuing macroinstruction's
address space. The program design considerations described for RPL EXIT routines
in the preceding paragraph apply also to LERAD and SYNAD exit routines.

Cross-memory application program interface (API) support

The cross-memory API support enables application programs to issue VTAM API
macroinstructions from an address space other than the application's home address
space. A program that is executing in one address space uses the PROGRAM
CALL (PC) instruction to branch to an entry point in another address space.

When the program is first dispatched, the home address space and the primary
address space are the same. After the PC instruction occurs, the two address spaces
are different, though linked. In cross-memory mode, z/OS treats the primary
address space as a session address space. See “Session address space” on page 316
for more information about the session address space. Figure 82 on page 318 shows
an example of an application program operating in cross-memory mode.

Chapter 10. Operating system facilities 317

The PROGRAM CALL dispatchable unit of work must exist as a TCB or SRB.
Refer to the z/OS MVS Programming: Extended Addressability Guide for more
information about z/OS capabilities and restrictions.

VTAM places the following constraints on the application that is in cross-memory
mode:
v OPEN and CLOSE macroinstructions must be issued in non-cross-memory mode

by mainline processing under TCB control.
v OPEN and CLOSE macroinstructions must be issued in the address space that

becomes the primary address space during a cross-memory VTAM API request.
v The application must be in SRB mode or authorized TCB mode.
v The application program must be in supervisor state, enabled, unlocked, and in

primary addressing mode.
v Specific data passed to VTAM must be addressable in the primary address

space. This data includes:
– RPL, including the RPL extension ISTRPLEX
– RPL6
– ACB
– NIB
– User data to be passed to VTAM
– RPL exit or ECB
– ACB EXLST and NIB EXLST.

AS1 AS2

TASK2

TASK2

PT

(1)

(1)

(2)

(3)

(4)

A TCB-mode task (TASK1) opens the VTAM application program's ACB (ACB1)

A program executing in AS1 issues a PC instruction to request a service from a function
located in AS2. TASK2 now enters cross-memory mode with AS2 as the primary address
space and AS1 as the home and secondary address space.

The function in AS2 issues the VTAM macroinstruction which references the ACB opened by
TASK1. All data passed in the VTAM macroinstruction must be addressable in the primary
address space (AS2 in this example).

The function in AS2 issues the PT (program transfer) to return control to the program in
AS1.

(3)
(2)

(4)

PC OPNDST ACB=ACB1

OPEN ACB1

Figure 82. Example of an application program operating in cross-memory mode

318 z/OS V2R1.0 Communications Server: SNA Programming

31-bit addressing

Instruction and data addresses can be treated as 24- or 31-bit values. Addressing
mode describes the size of addresses being used. Application programs executing
while the system is in 24-bit addressing mode can address up to 16 megabytes of
virtual storage; programs executing in 31-bit mode can address up to 2 gigabytes
(approximately 2 billion bytes) of virtual storage.

Every application program is assigned two new attributes, an AMODE (addressing
mode) and an RMODE (residence mode). (Existing application programs are
assigned default AMODE and RMODE attributes of 24.) AMODE specifies the
addressing mode in which the program is designed to receive control. RMODE
indicates where in virtual storage the program can reside.

Generally, an application program is designed to execute in the same addressing
mode in which it receives control. However, a program can switch modes and can
have different AMODE attributes for different entry points within a load module.

The valid AMODE and RMODE specifications are shown in Table 56.

Table 56. Valid AMODE and RMODE specifications

AMODE and RMODE AMODE and RMODE specifications

AMODE=24 Specifies 24-bit addressing mode

AMODE=31 Specifies 31-bit addressing mode

AMODE=ANY Specifies either 24- or 31-bit addressing mode

RMODE=24 Indicates that the module resides in 24-bit mode. The
RMODE=24 specification can be used for 31-bit programs
that have 24-bit dependencies.

RMODE=ANY Indicates that the module can reside anywhere in virtual
storage

If the application program does not specify AMODE and RMODE, the operating
system assigns the following defaults: AMODE=24 and RMODE=24. To override
the defaults, specify AMODE or RMODE or specify AMODE and RMODE on one
or more of the following:
v AMODE and RMODE statements within the assembler source code for an

application program. For example:
XYZ CSECT

AMODE xxx
RMODE xxx

v The EXEC statement of a link-edit step:
//LKED EXEC PGM=HEWLH096,PARM=’AMODE=xxx,RMODE=xxx,...’

v The linkage editor MODE control statement (one per load module):
MODE AMODE(xxx),RMODE (xxx)

v The LINK or LOADGO TSO commands:
LINK AMODE(xxx),RMODE (xxx)
LOADGO AMODE(xxx),RMODE (xxx)

In the preceding examples, xxx is one of the valid specifications for AMODE and
RMODE listed in Table 56.

Chapter 10. Operating system facilities 319

Opening by the Application Program

VTAM supports an application program in either 24- or 31-bit addressing mode,
depending upon the addressing mode of the application program at the time the
ACB is opened. The OPEN macroinstruction is used to identify the application
program to VTAM.

Control block fields referenced by the OPEN and CLOSE macroinstruction can
reside in either 24-bit or 31-bit storage. Use of 31-bit storage should be consistent
with the addressing mode of the application program. MODE=31 must be coded
on the OPEN and CLOSE macroinstructions if the ACB or other control blocks
reside in 31-bit storage.

For an application program defined with an RMODE attribute of 24, the OPEN
macroinstruction creates a parameter list in 24-bit storage; for an application
program defined with an RMODE attribute of ANY or 31, the application program
must build a parameter list in 24-bit storage and then issue the execute form of the
OPEN macroinstruction. See “OPEN—Open one or more ACBs” on page 444, for a
detailed description of the OPEN macroinstruction.

Specifying macroinstructions

Special considerations apply when issuing the different types of macroinstructions.
The following sections explain the considerations for the declarative, manipulative,
ACB-based, and RPL-based macroinstructions.

Declarative macroinstructions

The declarative macroinstructions (ACB, EXLST, NIB, and RPL) build control
blocks during program assembly.

ACB macroinstruction:

Generates an access method control block (ACB) that conforms to the requirements
for full 31-bit addressing.

EXLST, NIB, and RPL macroinstructions:

Generate control blocks (EXLST, NIB, and RPL control blocks, respectively) that
conform to the requirements for full 31-bit addressing.

ACB-based macroinstructions

The ACB-based macroinstructions (OPEN and CLOSE) open and close the
application program's ACB. See “Opening by the Application Program” and
“Closing by the Application Program” on page 321 for considerations when issuing
these macroinstructions. Descriptions of the OPEN and CLOSE macroinstructions
are located in Chapter 13, “Conventions and descriptions of VTAM
macroinstructions,” on page 371.

RPL-based macroinstructions

All RPL-based macroinstructions except the CHECK macroinstruction execute in
the addressing mode of the application program that issued the macroinstruction,
and return control to the application program in the same mode.

320 z/OS V2R1.0 Communications Server: SNA Programming

CHECK macroinstruction:

Must be issued in an addressing mode consistent with the addressing mode of the
application program at the time the original request was made. For example, if an
asynchronous RECEIVE with EXIT=RECVEXIT was issued in 24-bit addressing
mode, the code in procedure RECVEXIT must be in 24-bit addressable storage.
Issuing the CHECK macroinstruction in 24-bit addressing mode for a request that
was issued in 31-bit addressing mode can have unpredictable results. In addition,
all control blocks used by the CHECK macroinstruction must reside in storage
consistent with the application program's addressing mode.

Executing exit routines

VTAM allows the use of exit routines so a VTAM application program can gain
control to handle a specific event. When the event occurs, VTAM gives the exit
routine control as soon as possible.

Exit routines can receive control in either 24-bit or 31-bit addressing mode,
depending on the type of exit routine. For some exit routines, the addressing mode
is determined when the application issues a request. For other exit routines, the
addressing mode is determined when the application first opens its ACB. Table 57
shows how the addressing mode is determined for each exit routine.

Table 57. Addressing mode for each kind of exit routine

Exit routine Addressing mode used

RPL Mode that the application was using when it issued
the RPL request

LERAD and SYNAD for
synchronous operations

Mode that the application was using when it issued
the synchronous request

LERAD and SYNAD for
asynchronous operations

Mode that the application was using when it issued
the CHECK macroinstruction

ACB exit routines and session-level
exit routines identified by the
EXLST macroinstruction

Mode that the application was using when it opened
its ACB

Closing by the Application Program
About this task

An application program issues a CLOSE macroinstruction to disassociate itself
from VTAM. The CLOSE macroinstruction specifies the same ACB that was
originally used by the OPEN macroinstruction to identify the application program
to VTAM.

Control block fields referenced by the OPEN and CLOSE macroinstruction can
reside in either 24-bit or 31-bit storage. Use of 31-bit storage should be consistent
with the addressing mode of the application program. MODE=31 must be coded
on the OPEN and CLOSE macroinstructions if the ACB or other control blocks
reside in 31-bit storage.

For an application program defined with an RMODE attribute of 24, the CLOSE
macroinstruction automatically creates a parameter list in 24-bit storage; for an
application program defined with an RMODE attribute of ANY or 31, the
application program must build a parameter list in 24-bit storage and then issue

Chapter 10. Operating system facilities 321

the execute form of the CLOSE macroinstruction. See “CLOSE—Close one or more
ACBs” on page 390, for a detailed description of the CLOSE macroinstruction.

Error handling

If an abnormal termination occurs while VTAM is processing under an application
program task, the degree of recovery is operating system dependent.

The abnormal termination might be restricted to affect only a part of the
application program, as described in “Isolation of errors.”

When VTAM abnormally terminates, VTAM rejects application program requests,
including CLOSE ACB.

If possible, the TPEND exit routine is scheduled with reason code 8.

Isolation of errors
To minimize the disruption caused by an error detected while VTAM is processing,
an attempt is made to isolate the error to the failing request, session, task, or
application program, in that order. Additionally, if a task or address space is
terminated while processing for other than VTAM (for example, if an abend occurs
in the data processing part of an application program task), VTAM attempts to
isolate the disruption to the task structure or address space involved. Only failure
of the ACB task or ACB address space abends the whole application program.

Request level isolation
If VTAM can isolate an error to a specific RPL-based request, that request is posted
complete with (RTNCD,FDB2)=(X'10',X'0E'). However, if damage was done to a
session while processing the request, the error is considered to be at the session
level or task level and is handled as described in the following sections.

For non-communication macroinstructions processed under the VTAM task, certain
errors might result only in a VTAM operator message; it might not be possible to
post the request complete.

Session level isolation
If VTAM can isolate the error to a single session, an UNBIND request (usually
with type code X'0E'— Recoverable LU Failure) is sent to both logical units in that
session. The manner in which this session outage notification is presented to the
application program depends on whether the application program is the primary
or secondary logical unit; whether SCIP, NSEXIT, or LOSTERM exit routines were
specified; and whether the SONSCIP parameter was used on the APPL definition
statement. See “Session outage notification” on page 110 for a description of these
options.

“SCIP exit routine” on page 256 provides a brief description of the potential
UNBIND type codes.

VTAM also attempts to post any outstanding requests for the session with
(RTNCD,FDB2)=(X'10',X'0E'). Depending on the error that caused the original
outage, this posting might not always be possible.

The application program can attempt to reestablish the session after performing
any specific user application cleanup procedures that might be necessary.

322 z/OS V2R1.0 Communications Server: SNA Programming

Task level isolation
If VTAM is unsuccessful in isolating an error to a session, it attempts to isolate the
error to a task. The task in error is abended, all sessions associated with it are
terminated, and outstanding task-associated requests are posted complete, if
possible. The next section describes VTAM procedures if the failing task is the ACB
task. See “Task association” on page 310 for a discussion of how sessions and
requests are associated with a task.

The task's abend exit routine can attempt to recover the task; however, VTAM
independently cleans up its association with the failing task.

VTAM terminates all sessions associated with the failing task. For each session,
each logical unit in the session receives session outage notification, either in the
form of an UNBIND request or a CLEANUP request. The manner in which this
session outage notification is presented to the application program depends on
whether the application program is the primary or secondary logical unit; whether
SCIP, NSEXIT, or LOSTERM exit routines were specified; and whether the
SONSCIP parameter was used on the APPL definition statement. See “Session
outage notification” on page 110 where these options are described. If the task in
error is the one in which the SCIP, NSEXIT, or LOSTERM exit would run, the exit
cannot be scheduled.

Application program (ACB) level isolation
If a task level failure (as described in the previous section) occurs for the task that
opened the ACB for the application program (the ACB task), then the application
program is disassociated from VTAM.

If multiple address spaces are being used for the application program, VTAM's
disassociation from the application program also occurs from all associated address
spaces for the application program.

All sessions with the application program are terminated. The other end of each
session is notified with either a CLEANUP (from its SSCP) or an UNBIND (from
the abending application program). “Session outage notification (SON) codes on
UNBIND” on page 93 discusses how such notification is received by a VTAM
application program if it is the other end of the session.

The ACB name of the failing application program cannot be reused in another
OPEN ACB until VTAM has completed its cleanup for the failing application
program.

Note: If an application program has enabled persistence, an application that is
capable of persistence can reuse the ACB name. An attempt can be made to open
an ACB using the same name; however, the OPEN fails with an error code of 112
(X'70') if VTAM has not finished the cleanup. If VTAM successfully finishes, all
resources associated with the previous application program (for example, logical
units in session with it) are freed. If a failure occurs during the VTAM cleanup,
some resources can remain unavailable. VTAM operator commands (VARY TERM
and VARY NET INACT,APPL=) can be used to free these resources. If this is
unsuccessful, restart VTAM to free the resources.

Task termination and address space termination

If a VTAM application program task abends while processing for other than VTAM
(for example, while doing disk I/O or because the application program itself
issued ABEND) and the task does not recover from the abend by a retry, then

Chapter 10. Operating system facilities 323

VTAM is notified. VTAM then does the task level or application program level (for
an ACB task) cleanup processing described in the preceding sections.

If an address space in which a VTAM application program resides is terminated,
VTAM is notified of whether the reason for termination was related to VTAM
processing. VTAM then cleans up that address space for VTAM processing related
to that application program. If the failing address space is an associated address
space, the ACB address space and other associated address spaces are not
disrupted (see “Multiple address spaces” on page 312).

Functional recovery routines
Functional recovery routines can be provided by the application program, or the
application program may opt to use VTAM's recovery routine.

Application program functional recovery routines:

If an SRB-mode application provides FRR coverage before issuing an RPL-based
macroinstruction, several factors control whether the recovery environment of the
issuer is maintained:
v PARMS=(KEEPFRR=YES|NO) on ACB macroinstruction
v OPTCD=ASY|SYN processing for RPL-based request
v Cross-memory vs. non-cross-memory request mode
v Issuer's SRB kept or exited during VTAM processing
v Whether control will be returned under the same SRB provided by the issuer.

If the application program provides its own FRR coverage, and if these FRRs
should be retained through VTAM's processing for requests and subsequent return
to the issuer, specify PARMS=(KEEPFRR=YES) on the program's ACB
macroinstruction. This causes VTAM to keep any user-provided FRRs in place
during VTAM's macroinstruction request processing for:
v All asynchronous (OPTCD=ASY) requests
v All cross-memory synchronous (OPTCD=SYN) requests
v Non-cross-memory synchronous requests when the issuer's SRB is suspended

during VTAM processing and resumed at completion to return to the issuer
(OPTCD=(SYN,KEEPSRB)).

If the application provides FRR coverage but it is not retained during VTAM
processing, the application will have to reestablish its FRR coverage when control
returns to the program after the macroinstruction. This is the case if
PARMS=(KEEPFRR=NO) is coded on the ACB macroinstruction, or if KEEPFRR=
is omitted, or for non-cross-memory synchronous requests that do not use
OPTCD=KEEPSRB.

VTAM recovery routine:

When an application program issues an RPL-based macroinstruction while running
under an SRB, VTAM subsequently returns control to the application program
under an SRB, either at the next sequential instruction or at the entry to the
LERAD or SYNAD exit routine.

In this case, a functional recovery routine (FRR) can be optionally supplied by
VTAM to gain control if an abnormal termination occurs. Also, the RPL exit
routines for macroinstructions using authorized path have optional FRR coverage.
In both cases, if VTAMFRR=YES is coded on the APPL definition statement, FRR

324 z/OS V2R1.0 Communications Server: SNA Programming

coverage is supplied; if VTAMFRR=NO is coded, the FRR stack is purged before
the application program is given control in SRB mode.

In all other cases (that is, all asynchronous exit routines other than authorized path
RPL exit routines), when VTAM gives control to the application program in SRB
mode, FRR coverage is automatically supplied by VTAM.

If the VTAM-supplied FRR gains control during an abnormal termination, it causes
the associated task's ESTAE routine to be invoked if an ESTAE routine has been
specified. If VTAMFRR=NO is specified, no such notification by an ESTAE takes
place.

Chapter 10. Operating system facilities 325

326 z/OS V2R1.0 Communications Server: SNA Programming

Chapter 11. Programming for the IBM 3270 Information
Display System

This chapter describes VTAM application programming for sessions that use LU
type 0 protocols. Other 3270 protocols (for example, for LU types 1, 2, and 3) are
not described here; refer to the 3270 manuals for these protocol descriptions.

Before using the information in this chapter, you should be familiar with the 3270
system in the IBM 3270 Information Display System Description and Programmer's
Guide applicable to your control unit. Some of the SNA protocols mentioned (for
example, brackets) are further described in Chapter 6, “Communicating with
logical units,” on page 151.

Types of 3270 terminals
The following types of 3270 terminals are directly supported by VTAM in its
domain:

SNA 3270 terminals:

Local (PU type 2)
3270 terminal attaches to a PU type 2 cluster controller, which in turn
attaches to the VTAM host processor by a System/370 channel. Example:
3278 Display Station on 3274-1A Control Unit.

Remote SDLC (PU type 2)
3270 terminal attaches to a PU type 2 cluster controller, which in turn
attaches by an SDLC link to a communication controller containing an
NCP, or directly to a processor through a communication adapter.
Example: 3278 Display Station on 3276 Control Unit.

Remote SDLC (PU type 1)
3270 terminal attaches to a PU type 1 cluster controller, which in turn
attaches by an SDLC link to a communication controller containing NCP,
or directly to a processor through a communication adapter. Examples:
3288 Line Printer on 3271-12 Control Unit or a 3767 terminal.

Non-SNA 3270 terminals:

Local 3270 terminal attaches to a non-SNA cluster controller, which in turn
attaches to the VTAM host processor by a System/370 channel. Example:
3277 Display Station on 3272 Control Unit. A 3270 terminal attached to a
4331 Display/Printer adapter also presents this appearance.

Remote BSC
3270 terminal attaches to a non-SNA cluster controller, which in turn
attaches by a BSC link to a communication controller containing NCP, or
directly to a processor through a communication adapter. Example: 3286
Printer on 3271-2 Control Unit.

In addition, VTAM supports sessions between application programs in the VTAM
host processor and 3270 terminals in another domain in which each cross-domain
terminal provides the appearance of one of the types of 3270s listed in the
preceding discussion.

© Copyright IBM Corp. 2000, 2013 327

Characteristics of LU type 0 for 3270 terminals

The SNA protocols and other considerations for PU type 2 3270 terminals are
described in the 3270 manuals and are not further described in this chapter.

In general, VTAM makes each non-SNA 3270 terminal appear to a VTAM
application program as though it were a PU type 1 3270 terminal. In doing this,
VTAM also masks the attachment differences between BSC and channel-attached
non-SNA terminals. To the application program, each terminal acts as if it were a
device-type LU. The application program does not consider line control protocols
because they are completely handled by the network.

Except as noted, the same VTAM facilities are available for these LUs as are
available for LUs associated with SNA devices. Thus, for example, a session can
initiate with SIMLOGON and establish with OPNDST OPTCD=ACCEPT.
Communication then occurs using SEND, RECEIVE, RESETSR, and SESSIONC.
The session finally terminates with CLSDST.

In general, the SNA protocols supported for non-SNA 3270 terminals and PU type
1 3270 terminals are more limited than the protocols supported by other LUs. The
term LU type 0, used in the 3270 context, denotes this limited set of protocols.
Note that LUs associated with PU type 2 3270s support LU types 1, 2, and 3
(described in the component description manual) and do not support LU type 0.
The LU type 0 protocols are described here.

Data stream

The data stream (request unit contents) sent to or received from an LU type 0 3270
logical unit is further described in the component description manual. The data
stream sent from an application program, using the SEND macroinstruction,
consists of a 3270 command code and associated control information, followed
optionally by 3270 orders and data. Note that the application program does not
specify any line control information such as STX (start of text) and ETX (end of
text) and does not specify an ESC (escape character). VTAM supplies any
information required to communicate with the particular terminal involved in each
session. The data stream received from the logical unit, using the RECEIVE
macroinstruction, consists of an AID (attention identifier) byte, usually followed by
cursor information, orders, and data. As mentioned for output, no line control
information is present in the RUs passed to the application program. Therefore, the
basic data stream is the same for all LU type 0 3270s, independent of BSC, SDLC,
or channel modes of attachment. Of course, specific device capabilities (such as a
selector pen or a magnetic card reader) that each terminal has can make data
streams differ from terminal to terminal.

Other information received from a 3270 terminal does not pass directly to the
application program. It is, instead, intercepted by the network. It can map into an
RU before passing to the application program, or can be used to cause an action,
such as the scheduling of the LOSTERM exit routine. Refer to “Exception
conditions and sense information” on page 332, for information about how
exception requests and negative responses are received by the application program.
Refer to “Test request” on page 335, for information about the purpose of the test
request within the network.

An EBCDIC character set is normally used for LU type 0. For these terminals, the
application program must set the code-selection indicator to

328 z/OS V2R1.0 Communications Server: SNA Programming

CODESEL=STANDARD for SEND; VTAM sets CODESEL=STANDARD when
RECEIVE completes. For each byte of the data stream, the code point (hexadecimal
representation) used by VTAM is the one defined in the component description
manual for communicating with an EBCDIC BSC 3270 terminal. Note that an
ASCII BSC terminal can attach to a communication controller; however, the
communication controller must translate the terminal's ASCII input into EBCDIC
before sending the data to the host processor and must translate EBCDIC output
data from the host processor into ASCII before sending it to the BSC terminal.

Certain PU type 1 3270 terminals support an ASCII character set. For these
terminals, CODESEL=ALT is used for SEND and RECEIVE. The communication
controller does not translate the data stream for these terminals; ASCII data is
passed between the application program and the terminal.

Function management headers are not used by LU type 0, so the application
program must set OPTCD=NFMHDR for SEND; VTAM sets OPTCD=NFMHDR
when RECEIVE processing is completed.

An RU sent to a 3270 terminal can cause data to be returned to the application
program. For example, the RU can contain a 3270 command such as Read
Modified. The data returned by the 3270 in reply to such an RU is obtained by the
application program by using a RECEIVE macroinstruction. The 3270 can also send
data asynchronously without having been sent a request for input. For example,
pressing the ENTER key causes the 3270 to send an RU to the application program.

A 0-length RU can be sent to an LU type 0 3270 LU. This is usually done to begin
or end a bracket when no data is available to be sent at the same time. SEND
RECLEN=0, with BRACKET set to the desired values, accomplishes this function.

An application program cannot send just the Erase/Write command to function as
a no-operation at a BSC 3270. When a data stream is sent to a BSC or non-SNA
channel-attached 3270, VTAM adds a null Write Control Character (WCC) to the
data stream following the command code. Therefore, when the command arrives at
the 3270, it is no longer just the command code and it can no longer function as a
no-operation.

Data flow control

LU type 0 uses function management profile 2.

Data-flow-control requests

No data-flow-control requests can be used. Thus, only CONTROL=DATA applies
for SEND and RECEIVE.

Chaining

Every request must be a single-request chain. Thus, CHAIN=ONLY applies for
each SEND and RECEIVE.

Normal-flow Send/Receive mode

Full duplex is used. No change-direction protocol is allowed. Thus, for each RU,
the RPL is set to CHNGDIR=(NCMD).

Chapter 11. Programming for the IBM 3270 Information Display System 329

Responses

Requests received from the 3270 LU always specify no response,
RESPOND=(NEX,NFME,NRRN). Requests sent to the 3270 LU can specify
exception response, RESPOND=(EX,FME,NRRN), or definite response,
RESPOND=(NEX,FME,NRRN). However, when sending data to a printer, or when
sending a begin-bracket or end-bracket indicator, the application program must ask
for a definite response. For all requests sent to the LU, only response type 1 is
allowed; thus, NRRN must always be specified. The queued-response indicator is
not supported by the PU 3270 PU type 1. You should specify it as
RESPOND=(NQRESP) for the application program to work with all LU type 0
3270s.

Brackets

An LU type 0 session can operate either with or without bracket protocols. The
choice is specified in the BIND session parameter.

In the following discussion, BB denotes that the begin-bracket indicator is set on in
a request, and EB denotes that the end-bracket indicator is set on in a request.

Note: The conditional end bracket indicator is not supported by LU type 0 3270
terminals.

If brackets are used, the bracket state after the BIND request (sent by OPNDST)
and after the SNA Clear request (sent by SESSIONC) is the between-brackets state.
The between-brackets state also occurs when a bracket is ended by sending a
request specifying EB. The first data RU sent when the session is in the
between-brackets state must specify BB. The application program cannot send BID
to begin a bracket, because no data-flow-control requests are allowed for LU type
0. The 3270 LU is always the first speaker; that is, the LU is always the winner if
both the LU and the application program try to begin a bracket at the same time. If
the session is in the between-brackets state and the 3270 operator sends data to the
application program, the program receives a request specifying BB. If the
application program was trying to begin a bracket at the same time, the application
program's request is rejected with a negative response (SNA sense code =
X'08130000').

After a bracket has been started and until it is ended by the application program,
all requests from either the LU or the application program are sent with both the
begin-bracket and end-bracket indicators set off. Only the application program can
send a request specifying EB. The unconditional bracket termination rule is used;
this means that the bracket is ended immediately when a request specifying EB is
sent (it is not necessary to receive a positive response to the request).

The bracket can also be ended by sending an SNA Clear request using the
SESSIONC macroinstruction. The Clear request is useful to establish
synchronization of bracket states between the 3270 LU and the application
program. After Clear completes, both ends of the session are in the
between-brackets state no matter what state they were in previously.

The application program should not begin or end a bracket with data that contains
a 3270 command that causes input to occur (for example, Read Modified).

The bracket state transitions that can occur at the 3270 LU, which is always the
SLU, and the bracket-protocol first speaker, are shown in Figure 83 on page 331.

330 z/OS V2R1.0 Communications Server: SNA Programming

Sequence numbering

Sequence numbering of normal-flow RUs is done for each direction of flow for an
LU type 0 session. For certain types of 3270 LUs, the sequence number wraps to 0
after it reaches 255; for all other LUs, the sequence number wraps to 0 only after it
reaches 65 535. The application program must always use the full 2-byte sequence
number field for any comparisons (for example, when trying to match a response
with a previously sent request) and should not be coded to be sensitive to the
point at which the sequence number wraps.

Transmission control

Transmission services profile 2 is used with LU type 0. Pacing is supported from
the application program to the 3270 LU, but not from the LU to the application
program. The only session-control request that can be used is Clear, which resets
bracket and pacing states, purges any outstanding requests and responses, and also
sets the session sequence numbers to 0. After SESSIONC CONTROL=CLEAR has
been posted complete, either the application program or the 3270 LU can attempt
to send data; if the optional bracket protocol is being used, the begin-bracket

If a request is received
in this state, it is held
until one of the other
two states is entered and
is then processed as if it
had just been received in
the new state.

Between-Brackets
State

R RQD, BB, XEB1

S +RSP

R RQ, XBB, XEB
or

R RQ, XBB, XEB

S RQ, BB, XEB

R RQ, BB, XEB

causes
S +RSP, SENSE
=X'08130000'

R RQ

S -RSP2

R RQ, BB, EB

causes
S -RSP, SENSE,
= X 20030000' '

R RQ, XBB, *EB

SR RQ, BB, XEB

R RQ, XBB, EB

S +RSP or -RSP S +RSP or -RSP

Pending-in-Bracket
State

In-Bracket
State

1

2

The PLU is required to specify RQD if BB and XEB are indicated. If this rule is disobeyed
and the SLU received RQE, BB, XEB when in between-bracket state, it immediately enters
in-bracket state. If the SLU then returns an -RSP for the BB request, the SLU will usually
return to between-bracket state. See also .

2 An -RSP sent for a BSC 3270 terminal attached to a communication controller can cause
entry into in-bracket state instead of between-bracket state; this then causes a
subsequent BB request to be rejected with sense=X'08130000'. If this happens, the
begin-bracket can be turned off and the request can be resent.

BB = Begin-bracket indicator on
XBB = Begin-bracket indicator off
EB = End-bracket indicator on
XEB = End-bracket indicator off
*EB = End-bracket indicator

either on or off

S = RU send from SLU
R = RU received by SLU
RQ = Request unit
RQD = Request unit asking for definite

response
+RSP = Positive response
-RSP = Negative response

Figure 83. Bracket-state transitions at the 3270 SLU

Chapter 11. Programming for the IBM 3270 Information Display System 331

indicator must be set on in the first data request sent after Clear. The Start Data
Traffic request is not required or allowed. Only a non-negotiable BIND can be
specified to start an LU type 0 session. Cryptography is not allowed.

Exception conditions and sense information

The application program can receive exception requests and negative responses
from the 3270 LU or from other network components on behalf of the LU. These
RUs contain 4 bytes of SNA sense information as described in “SNA sense fields”
on page 679. VTAM makes this information available in the SSENSEI, SSENSMI,
and USENSEI fields of the RPL. The SSENSMI field is usually set to 0, in contrast
to SNA LUs. For some (but not all) of the 3270 devices, the SSENSMI field is not 0
as indicated in Table 58.

The USENSEI field can contain information derived from a 3270 BSC status and
sense message, or from the CSW status byte and sense bytes associated with a
non-SNA channel-attached 3270 terminal. Such information is sent directly from a
PU type 1 3270 terminal. The USENSEI format is the same for all LU type 0 3270
terminals. Associated error recovery procedures are described in detail in the
component description manual. The bits in the 2-byte field can be set in
combination and should be tested individually. They are defined in Table 59 on
page 333.

An exception request is received typically when a stand-alone device end is
generated by the 3270 terminal (for example, when a terminal powers on or when
intervention is supplied to a terminal that had previously indicated “intervention
required”; in this case, the SNA sense is X'00000200'). Exception requests can also
indicate other conditions such as an SNA sequence number error (X'20010000'), or
unit specify in combination with data check (X'00000404'). An exception request
with all zero sense (X'00000000') can also occur; this exception should be ignored.
However, this RU and any other exception request has the begin-bracket indicator
on if bracket protocols are being used in the session, and the session had just
previously been in the between-brackets state. These RUs can cause a bracket to be
started.

Table 58. SNA sense information received at the application program

SNA
sense

SNA definition Cause for exception

80xxyyyy Path error Request could not be delivered ¹

400A0000 No-response not allowed RESPOND=(NEX,NFME,NRRN)

400B0000 Chaining not supported CHAIN=(FIRST or MIDDLE or LAST)

20030000 Bracket state error BRACKET=NBB and no bracket currently exists ²

20010000 Sequence number error Session sequence number error

10030000 Function not supported CONTROL=(DATA or CLEAR)

10000020 Request error Command rejected

08210000 Session parameter not
valid

Parameters not valid in BIND

08130000 Bracket bid reject—No
RTR Forthcoming

BRACKET=BB and a bracket already exists ²

0000zzzz Other exception Device exception—USENSEI values are defined in
Table 59 on page 333.

332 z/OS V2R1.0 Communications Server: SNA Programming

Table 58. SNA sense information received at the application program (continued)

SNA
sense

SNA definition Cause for exception

Notes:

1. xx is defined in SNA Formats For a PU type 1 3270 terminal, yyyy can be set to 0010
(intervention required). For a BSC 3270 terminal attached to a communication controller,
yyyy represents the NCP system response byte and extended response byte returned for
some path error conditions. For information on how these bytes are defined, refer to
NCP and EP Reference Summary and Data Areas.

2. This sense code applies only if bracket protocols are being used in the session.

Table 59. Explanation of USENSEI information

USENSEI byte 0 USENSEI byte 1 Meaning

0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7

. . . . x Device busy

. x Unit specify

. x Device end

. x Transmission check

. x Command rejected

. x Intervention required

. x . . . Equipment check

. x . . Data check or bus-out check

. x . Control check

. x Operation check

x x x x x x Reserved

Note: Transmission check is indicated for a channel-related error (such as PCI, channel
program check, protection check, channel data check, channel control check, interface control
check, or chaining check) for a channel-attached non-SNA 3270.

The application program can disobey the LU type 0 protocols by attempting to
send:
v A data-flow-control request
v A response
v A request indicating other than a single-request chain
v A request that does not ask for a definite or exception response type 1 (FME).

If you attempt any of the preceding items, the following results occur, depending
upon the actual type of terminal used in the session:
v The SEND macroinstruction is rejected with (RTNCD,FDB2)=(X'14',X'47').
v VTAM returns a negative response.
v VTAM ignores the protocol violation, and unpredictable results can occur.

Session parameter

VTAM defines a standard session parameter set for LU type 0 3270 sessions. This
set of parameters specifies with the following MODEENT macroinstruction in the
IBM-supplied default logon mode table:

Chapter 11. Programming for the IBM 3270 Information Display System 333

IBMS3270 MODEENT LOGMODE=S3270, C
FMPROF=02, C
TSPROF=02, C
PRIPROT=71, C
SECPROT=40, C
COMPROT=2000

If desired, the system programmer can replace this entry in the default logon mode
table or define a different entry for each 3270 terminal as described in the z/OS
Communications Server: SNA Resource Definition Reference. Do this to specify
that you should not use brackets. The following table indicates the required and
optional bit settings of certain session parameter fields. The definitions of these bits
are in Appendix F, “Specifying a session parameter,” on page 793, in the
ISTDBIND DSECT.
FMPROF: 0000 0010
TSPROF: 0000 0010
PRIPROT: 0DRR 000B
SECPROT: 0100 0000
COMPROT: 00B0 0000 0000 0000

where:
D can be 0 or 1.
RR can be 01, 10, or 11.
B is 1 if brackets are used in the session.

Also, the system programmer can specify the PSERVIC parameter on MODEENT
to convey information, such as display screen size or Query support, to the
application program. SNA does not define the format of the presentation-services
field for LU type 0; however, a good convention is to use the same format as used
for LU types 2 and 3. See Appendix F, “Specifying a session parameter,” on page
793 for information on LU types 2 and 3.

Device characteristics field

The device characteristics field (see IDSDVCHR in Appendix E, “Control block
formats and DSECTs,” on page 739) contains only limited information about a 3270
LU. It contains the model number specified in the FEATUR2 network definition
operand for the 3270 terminal (refer to z/OS Communications Server: SNA
Resource Definition Reference for information on operands). Use this model
number to derive a default display screen size or the buffer size for the terminal.
The preferable way to determine this default, however, is to use information that
can be supplied in the presentation-services field of the session parameter as
described in the preceding section.

Also usually available in the device characteristics field is the physical device
address needed as the “from” address for the 3270 copy function. Also, the copy
function is not supported by channel-attached 3270s.

The field labeled DEVTCODE in the device characteristics field should not be used
to attempt to determine the device type of the terminal. All 3270 terminals should
be considered to be LUs and the DEVTCODE field must be ignored.

334 z/OS V2R1.0 Communications Server: SNA Programming

Logon message

The logon message obtained with INQUIRE OPTCD=LOGONMSG is the user data
field from the logon or Initiate that requested the session. This is exactly the same
as for LUs other than LU type 0.

Logoff

Terminal operators of the 3270 should be advised that, unless they enter a logoff
prior to actually shutting off the device, under certain circumstances, unauthorized
users could gain access to the application program with which the terminal has
been in session.

Test request

The message that results from pressing the TEST REQ key is intercepted by the
network and is not received as an RU by the application program. The test request
message is usually sent to the SSCP. The action taken by the network depends on
the attachment of the terminal issuing the test request message. In Table 60,
“<xxxxx>” means that the terminal operator typed the information represented by
“xxxxx” and then pressed the TEST REQ key; “poll” is the specific poll address of a
terminal on a BSC cluster controller. The poll address can be entered in either
uppercase or lowercase. The action taken as a result of an unformatted system
services (USS) request depends on the data in the request. For example, a LOGOFF
causes the scheduling of the LOSTERM exit routine.

Table 60. Actions taken by the network when a test request message is received

Terminal attached to Terminal input Action

Channel on this host CLEAR key, then
<data>

“data” is treated as a
USS request.

BSC line attached to a communication
controller

CLEAR key, then
<poll, poll> with no
data allowed

LOSTERM is
scheduled with reason
code 12.

BSC line attached to a communication
adapter (in another domain)

CLEAR key, then
<poll, poll, data>

“data” is treated as a
USS request.

SDLC line attached to a communication
controller

CLEAR key, then
<data>

“data” is treated as a
USS request.

Note: If a 3270 attention other than Test request occurs and if no LU-LU session currently
exists with that 3270 LU, then the associated input is sent to the SSCP. Such input, if created
using the ENTER key or a magnetic card reader, is treated as a USS request (for example, a
logon can be entered). Input associated with any other type of 3270 attention is rejected by
the SSCP with an error message.

Summary of differences among LU type 0 3270 terminals

Although VTAM masks most of the differences that exist among the various LU
type 0 3270 terminals, situations exist in which an application program can detect
terminal differences. Normally, you should write application programs to be
independent of the terminal differences; otherwise, the program might have to be
modified later when additional LU type 0 3270 terminals must be supported by the
program. This is particularly important in a multiple-domain environment, in
which the application program can be in one domain and the terminals can be in
other domains. The types of terminal attachment can change in the other domains

Chapter 11. Programming for the IBM 3270 Information Display System 335

with little or no notice to the person maintaining the application program.
Application programs should be coded in the first place to avoid being sensitive to
such changes.

The following items are discussed in more detail earlier in this chapter. For each
item, a suggested coding technique is given.
v The queued-response indicator is not supported by the PU type 1 3270. See

“Responses” on page 330. Do not use QRI for LU type 0 3270 terminals.
v The sequence number wraps at 255 for some 3270 LUs and at 65 535 for others.

See “Sequence numbering” on page 331 and “Sequence number dependencies
for LU type 0 3270 terminals” on page 894. Always use the full 2-byte sequence
number for comparisons. Do not become dependent on when the sequence
number wraps, for example, by trying to predict what the sequence number is
when SEND completes.

v Sometimes a negative response for a BB request which was sent to a BSC 3270
terminal causes entry to the in-bracket state instead of the between-brackets
state. See Figure 83 on page 331 which also describes a recovery procedure to
use if a subsequent BB request is rejected. This procedure should be used for all
terminals.

v Not all terminals return the same SNA sense codes for particular error
situations. See “Exception conditions and sense information” on page 332.
Application programs should be coded to handle all of the listed codes from any
LU type 0 3270 terminal. The recovery procedure used for each sense code
should be independent of which type of terminal sent the code.

v If an application program disobeys LU type 0 3270 protocols, the results depend
on the terminal involved. See “Exception conditions and sense information” on
page 332. Always obey the LU type 0 3270 protocols.

v The copy function is not available for non-SNA channel-attached 3270 terminals.
Do not become dependent on the use of the copy function.

v Do not use the model number to determine screen size; instead, use information
from the presentation-services field of the session parameter described in the
next item.

v Different 3270 terminals can support different screen sizes and might support
other extended 3270 data stream facilities such as Query. For further
information, see “Session parameter” on page 333. Application programs can use
the presentation-services field of the session parameter for the terminal to
determine such capabilities for the terminal. Note that this requires the system
programmer to code a logon mode table for the terminal to specify this
information. If a terminal supports Query, that facility can, in turn, be used to
determine details about the capabilities of the terminal. (Refer to 3174 functional
description.)

336 z/OS V2R1.0 Communications Server: SNA Programming

Chapter 12. Coding for the communication network
management interface

This chapter describes the coding required for an application program to function
on the communication network management (CNM) interface. You can also refer to
z/OS Communications Server: SNA Customization for information related to the
CNM routing table and the z/OS Communications Server: SNA Network
Implementation Guide for information about authorizing application programs to
use the CNM interface.

CNM interface

Using the CNM interface, an application program can communicate with the
VTAM SSCP to acquire information from physical units (or to send information to
physical units) in session with the SSCP. This communication is made possible by
two processes:
v The SSCP and the PU exchange information through an SSCP-PU session.
v The application program and the SSCP exchange information over the CNM

interface.

In most cases, the application program and the SSCP communicate over the CNM
interface by using Forward and Deliver request units (RUs). A Forward RU places
in a “data envelope” all data or requests for data that the application program
wants sent to the PU in session with the SSCP. The SSCP transmits the data or the
request for data to the PU through the SSCP-PU session. Similarly, the PU replies
with the requested information (or provides unsolicited information) through the
PU-SSCP session. A Deliver RU places the data provided by the PU in a “data
envelope.” The SSCP then sends the Deliver RU to the application program over
the CNM interface.

Some communication between the application program and the SSCP over the
CNM interface can use a group of request units that are not embedded in Forward
or Deliver RUs. For example, the TR-INQ (Translate Inquiry) RU and the
TR-REPLY (Translate Reply) RU can be passed to or sent by the CNM application
program without embedding Deliver RUs. See “Types of network services request
units not embedded” on page 350 for more information about these RUs.

Functions of the application program
With the SSCP transmitting information between an application program and a PU,
an application program can request data from a PU or send data to a PU.
Specifically, an application program can:
v Request maintenance-related information from a PU and receive

maintenance-related information from a PU
v Request session data from VTAM and NCP
v Request performance data from VTAM
v Receive a load request from a PU and send load data to a PU
v Receive hardware alerts from a PU

© Copyright IBM Corp. 2000, 2013 337

Gathering maintenance-related information from a PU
About this task

An application program, using VTAM facilities, can request and receive status and
maintenance-related information from physical units within the same domain. This
type of application program is called a CNM application program. For example,
the NetView program is a CNM application program that receives error detection
data through the CNM interface.

Gathering session data from VTAM and NCP
About this task

A VTAM application program can request and receive session-related data from
VTAM and NCP. A VTAM application program can also collect session information
about cross-network sessions and information about the explicit route being used
for a session. A VTAM application program uses the CNM interface to do the
following:
v Gather information about subarea nodes and about the transmission groups that

comprise an explicit route
v Initiate and terminate the collection of session data from the SSCP.

Some examples of IBM-supplied VTAM application programs that use the CNM
interface to gather session data are:
v The NetView program
v NLDM Release 2 or 3.

Gathering performance data from VTAM

The performance monitor interface provides a means by which certain CNM
application programs, called monitors, can request and receive information from
VTAM pertaining to internal performance activity and resource utilization. Based
on the raw data received over this interface, monitors can then report information
on a real-time, interactive basis to their end users. Monitors use the CNM interface
to control their data collections.

Loading a PU

An application program, using VTAM facilities, can load a PU within its domain
and return the completion status of the load operation to VTAM. For example, the
Downstream Load Utility (DSLU) licensed program receives load requests and
sends load data over the CNM interface.

Receiving hardware alerts

Specific alert RUs can be routed to a specific CNM application. These alerts are
generated by devices in the network in response to hardware, software, or line
failures.

338 z/OS V2R1.0 Communications Server: SNA Programming

Request unit flow

An application program establishes a session with the VTAM SSCP when it opens
its ACB. Communication then proceeds through the exchange of formatted
Forward and Deliver request units. Both RUs contain network services request
units (NS RUs) and, if appropriate, the name of the resource to receive the NS RU.

Figure 84 shows an example of Forward and Deliver RU flow. The application
program (using the SEND macro) sends VTAM a formatted Forward RU. The
Forward RU contains an NS RU (indicated in parentheses in Figure 84) and the
name of the SSCP or the name of a PU to receive the NS RU. If the Forward RU
contains the name of a PU, the VTAM SSCP sends the embedded NS RU to the
specified PU over an SSCP-PU session. If the Forward RU contains the name of the
SSCP, then the embedded NS RU is routed to the application program specified in
the CNM routing table.

If the NS RU is not within a Forward RU, the NS RU is also processed by the
SSCP.

The application program uses the RECEIVE macroinstruction to receive Forward
responses and formatted Deliver request units from the VTAM SSCP. The Deliver
RU contains an embedded NS RU (indicated in parentheses in Figure 84). This NS
RU might have originated within the SSCP or it might have been sent to the SSCP
by the PU over a PU-SSCP session. The PU can send an NS RU to reply to an NS
RU (contained in a Forward RU), to transmit unsolicited data, or to request a load.

The application programmer must know the format of the Forward and Deliver
RUs, how to specify network names within the network name fields of these RUs,
and the types and formats of embedded NS RUs that can be placed within the
Forward and Deliver RUs. VTAM internal CNM RUs should only be sent from the
CNM application that is currently in session with ISTPDCLU. See “Requirements
for receiving session-awareness and trace data” on page 355 for more information.

SSCP

PU
Application
Program

Figure 84. Example of Forward and Deliver request unit flow

Chapter 12. Coding for the communication network management interface 339

Application program coding requirements for the CNM interface

For an application program to use the CNM interface, AUTH=CNM must be
specified on its APPL definition statement.

To receive unsolicited RUs, an application program must be authorized to use the
CNM interface and be designated in the CNM routing table (with the name
specified in the name field of the APPL definition statement). Refer to z/OS
Communications Server: SNA Customization for more information about
authorizing application programs to use the CNM interface and designating the
application program name in the CNM routing table.

If a VTAM application program has been authorized to use the CNM interface, the
program can gain access to the SSCP-LU session by specifying
PARMS=(NIB=nib address) in its ACB. This NIB contains parameters describing the
session to be established (the SSCP-LU session) just as an NIB does when it is used
to establish an LU-LU session with OPNDST or OPNSEC. After OPEN completes
processing for the ACB, the NIB contains the CID of the SSCP-LU session that was
established.

The application program uses a subset of the RPL-based macroinstructions (SEND,
RECEIVE, RESETSR, EXECRPL, and CHECK) to communicate on the SSCP-LU
session just as it uses these macroinstructions to communicate on LU-LU sessions.
Because the SSCP-LU session uses FM profile 6, it uses only a very limited set of
data-flow-control functions; for example, the SSCP sends no data-flow-control
requests and sends and receives only single-request chains. Refer to SNA Formats
for details about FM profile 6. Similarly, because you use TS profile 1 on the
SSCP-LU session, you do not send or receive session-control requests. Thus, do not
use SESSIONC.

The NIB macroinstruction specified by PARMS=(NIB=nib address) has the
permissible values listed here. See “NIB—Create a node initialization block” on
page 433 for details.
NAME=blanks
USERFLD=user data
LISTEND=YES
SDT=SYSTEM
EXLST=exit list address
ENCR=NONE
RESPLIM=response limit
LOGMODE=0
BNDAREA=0
PROC=(CA or CS or RPLC,
NDFASYX or DFASYX,
NRESPX or RESPX,
NCONFTXT or CONFTXT,
KEEP or TRUNC,
SYSRESP or APPLRESP,
ORDRESP or NORDRESP,
NNEGBIND or NEGBIND)

RPL, SEND, RECEIVE, RESETSR, and EXECRPL macroinstructions used to access
the SSCP-LU session can have the following subset of RPL operands specified. See
the macroinstruction descriptions in Chapter 13, “Conventions and descriptions of
VTAM macroinstructions,” on page 371 for details.

2. FM profile 6 does not allow any expedited data-flow-control requests to be sent to or from the SSCP.

340 z/OS V2R1.0 Communications Server: SNA Programming

ACB=acb address

ARG=(register containing CID of SSCP-LU session)
AREA=data area address

AREALEN=data area length

RECLEN=data length

ECB=INTERNAL
ECB=event control block address

EXIT=rpl exit routine address

BRANCH=YES or NO
SEQNO=sequence number

POST=SCHED or RESP
RESPOND=(EX or NEX,FME,NRRN,QRESP or NQRESP)
CONTROL=DATA
CHAIN=ONLY
CHNGDIR=(NCMD)
BRACKET=(NBB,NEB,NCEB)
RTYPE=(DFSYN or NDFSYN,DFASY or NDFASY,RESP or NRESP)
STYPE=REQ or RESP
SSENSEO=0 or CPM or STATE or FI or RR
SSENSMO=system-sense modifier value

USENSEO=user-sense value

CRYPT=NO
CODESEL=STANDARD
OPTCD=(TRUNK or KEEP or NIBTK, FMHDR, SPEC or ANY, SYN or ASY, CS
or CA, Q or NQ, BUFFLST or NBUFFLST, NLMPEO, USERRH or NUSERRH)

CNM interface requests and responses
The structure and operation of the CNM interface is based on Systems Network
Architecture protocols and procedures. Communication of a request embedded
within another request is a function of management services. An application
program embeds both SSCP-PU and LU-SSCP network services requests; the
VTAM SSCP embeds both PU-SSCP and SSCP-LU network services requests,
which are routed by the SSCP to the application program.

The Forward RU, which the SSCP receives from the application program, contains
an embedded NS RU and a destination name. If the destination name is the name
of one of the SSCP's PU resources, the SSCP sends the embedded NS RU to the PU
using the destination's SSCP-PU session and session rules. If the destination name
is the SSCP's name, the embedded request is processed by the SSCP. Responses to
an application program LU-SSCP Forward request can return a 4-byte sense field,
which is placed in the user's RPL field.

When an SSCP either originates a request or receives one from a PU and
determines that the request is for an application program, it embeds the RU
(without change) into a Deliver request, translates appropriate network addresses
into network names, places them in the Deliver request, and then sends the
completed request to the application program.

Chapter 12. Coding for the communication network management interface 341

Protocols and procedures

An application program SSCP-LU session uses TS profile 1 and FM profile 6.

For each destination PU, the application program must adhere to the request mode
supported by that PU on the SSCP-PU session; otherwise, the request is rejected
with a negative response (sense code = X'08510000'). For example, a PU that
operates in immediate request mode should not be sent a new request until it has
responded to the last request.

A procedure-related identifier (PRID) is available for use by the application
program for request/reply correlation in some types of RUs. The PRID, if present,
is contained in bytes 5–6, bits 4–15, in the CNM standard header (described in
“Standard CNM headers” on page 343).

The application program generates a PRID if it is sending a Forward request that
solicits a reply. The destination PU, which receives the request, saves the PRID
(which was possibly translated by the SSCP) and returns it in all replies that
correspond to the request. The PRID value (retranslated by the SSCP, if necessary)
is returned to the application program within the embedded reply RU of the
Deliver request.

The application program must determine (usually through use of its own timer)
that the Deliver RU is not received for a PRID value. No notification is given to the
application program if the PU to which the embedded NS RU was sent becomes
inoperative before the reply RU can be sent by the PU.

A CNM application program is responsible for proper operation when a Deliver
RU is not received for its corresponding Forward RU. A CNM application can
cancel the correlation between the Deliver and Forward RUs. The Deliver RU that
would have been correlated to the Forward RU is discarded.

A CNM RU (X'810814') with a subtype indicating cancel can be sent to VTAM by a
CNM application to cancel a Deliver RU. The Cancel RU contains the PRID
assigned to the Forward RU, and the name of the destination used in the Forward
RU. The CNM application must be able to receive the Deliver RU until the
response to the CNM RU is received.

If the reply from the PU consists of multiple requests, the PU inserts the same
PRID into each request. To handle this, each such reply has a “not last” bit defined
as part of its format. This bit is used by the PU that is sending the requested data
to indicate that at least one additional request RU is still to be sent. A flag is set in
the Deliver RU by the SSCP when the embedded request contains a standard CNM
header with a defined PRID field. A solicited flag is set in the CNM header by the
replying PU whenever the PU generates a reply. Unsolicited Deliver requests have
the solicited flag set off in the embedded RU. A PRID value can be reused after the
application program receives the last reply RU using that PRID.

Request unit (RU) formats

The following sections describe the formats of the RUs that can be used on the
CNM interface.

342 z/OS V2R1.0 Communications Server: SNA Programming

Standard CNM headers
The CNM headers, shown in Table 61 and Table 62, allow a standard method of
routing replies to requesting application programs; this routing is based on PRID
correlation. The header format also allows a standard correlation scheme for the
application program. When an NS RU, embedded in a Deliver request, contains a
standard CNM header, a CNM header bit is set in the flag field of the Deliver RU
that is sent to the application program. When an NS RU, embedded in a Forward
request, follows the standard format and has reply data associated with it, the
application program can set the reply-requested field of the Forward request to
receive the requested reply data. Failure to set this flag causes reply data to be
treated as unsolicited data by the SSCP and to be routed to the application
program assigned to receive such an unsolicited NS RU. For details on the routing
table, refer to z/OS Communications Server: SNA Customization.

Table 61. Standard CNM header, SSCP-PU request format

Byte Bit Value Description

0–2 Network service header

3–7 CNM Header is bytes 3–7

3–4 CNM target ID; refer to CNM target ID descriptor
field in byte 5

5–6 0–1 Reserved

2–3 CNM target ID descriptor

B‘01’ Network address of target resource is in bytes 3
and 4

B‘00’ Local address of target resource is in byte 4; byte
3 is reserved

4–15 PRID

7 0 Limited usage (See the following note)

1 Reserved

2–7 Type, specifies the format of request-specific data
when present in bytes 8–n

Note: Bit 0 in byte 7 is used as a set/reset indicator in certain requests, for example,
REQMS. Specific requests can use this bit where required. Whenever a central data base is
used, requests to reset counters recorded by the data base must come only from the
application program that updates the data base with the reset information; otherwise, the
data base contains misleading information.

Table 62. Standard CNM header, PU-SSCP request format

Byte Bit Value Description

0–2 Network service header

3–7 CNM header is bytes 3–7

3–4 CNM target ID; refer to CNM target ID descriptor
field in byte 5

5–6 0–1 Reserved

2–3 CNM target ID descriptor

B‘01’ Network address of target resource is in bytes
3–4. Network address information should not be
used by application programs, because this
network-specific data is subject to change.

Chapter 12. Coding for the communication network management interface 343

Table 62. Standard CNM header, PU-SSCP request format (continued)

Byte Bit Value Description

B‘00’ Local address of target resource is in byte 4; byte
3 is reserved

4–15 PRID

7 0–1 Reply Flags:

0 Solicitation Indicator Reply Flag

B‘0’ Unsolicited request

B‘1’ Solicited (reply) request

1 Not-Last-Request Indicator

B‘0’ No more data (for example, last reply)

B‘1’ More data (for example, not-last reply)

2–7 Type (Specifies the format of the data in bytes
8–n)

Forward request unit
The format of the Forward RU is shown in Table 63. The Forward request flows
from the application program to the VTAM SSCP. The embedded NS RU is
contained in bytes 8–n. The NS RU is removed from the Forward RU and sent to
the destination named in the Forward request. Network names are required in the
Forward RU. A Forward request includes the name of the destination, which is
changed to an address by the SSCP for transmission purposes. The name of the
target resource that the embedded NS RU applies to is also placed in the Forward
request. Usually, this target-resource name is changed to an address and placed in
the CNM target ID field of the embedded NS RU by the SSCP. For those NS RUs
without CNM headers, such as NS-IPLFINAL, NS-IPLINIT, NS-IPLTEXT, and
NS-LOADSTAT, the target name is resolved into a network address, but it is not
placed in the embedded NS RU.

The category field in an embedded NS RU specifies a session within the same
domain.

Table 63. Forward request unit format 0 request format

Byte Bit Value Description

0 X'81' Network services, logical services

1 X'08' Management services

2 X'10' Request code

3 X'00' Format 0

4 0–4 Reserved, flags

5 NMVT X'04' subvector processing required

0 For NMVT, ignore the target names; for the other
RUs, place the translated target names in bytes
3–4 of the embedded request

1 Place the translated addresses in the X'04' vector

6 0 Embedded NS RU contains a PRID

1 Embedded NS RU contains no PRID

7 0 Embedded NS RU contains a CNM header

1 Embedded NS RU contains no CNM header

344 z/OS V2R1.0 Communications Server: SNA Programming

Table 63. Forward request unit format 0 request format (continued)

Byte Bit Value Description

5 Reserved

6–7 NS RU length

8–n NS RU

n+1–p Network name of destination PU:

n+1 Type:

X'F1' PU

n+2 Destination PU name's length in binary

n+3–p Destination PU name

p+1–q Network name of target resource:

p+1 Type:

X'F1' PU

X'F3' LU

X'F7' Adjacent link station

X'F9' Link

p+2 Length, in binary, of target resource

p+3–q Target resource name

q X'00' End of record for single targets. For additional
targets (if any): repeat the preceding structure
from p+1 as required. The list of targets is ended
by a type code of X'00'.

Deliver request unit
The format of the Deliver RU is shown in Table 64. The Deliver request contains an
embedded NS RU and flows from the VTAM SSCP to an application program
within the same host. The SSCP does not modify any information within the
embedded NS RU.

Table 64. Deliver request unit format 0

Request
format: Byte Bit Value Description

0 X'81' Network services, logical services

1 X'08' Management services

2 X'12' Request code

3 0–7 X'00' Format 0

4 0–4 Reserved, flags

5 0 Only one target resource name is included.

1 Multiple target resource names are
included.

6 0 Embedded NS RU does not relate to
resources in a secondary network.

1 Embedded NS RU relates to resources in a
secondary network.

Chapter 12. Coding for the communication network management interface 345

Table 64. Deliver request unit format 0 (continued)

Request
format: Byte Bit Value Description

7 0 Embedded NS RU contains a CNM header

1 Embedded NS RU does not contain a CNM
header

5 Reserved

6–7 NS RU length

8–n NS RU

n+1–p Network Name of Origin PU

n+1 Type:

X'F1' PU

n+2 Length, in binary, of origin PU name

n+3–p Origin PU name

p+1–q Network name of target resource

p+1 Type:

X'F1' PU

X'F3' LU

X'F7' Adjacent link station

X'F9' Link

p+2 Length, in binary, of target resource

p+3–q Target resource name

q+1–r Configuration hierarchy name 1 (Note:
This name is in the same format as the
target resource name.)

. .

r+1–s Configuration hierarchy name M

s+1 X'00' End of configuration hierarchy name fields

s+2–t Additional target resource name

. .

. .

. .

. .

. .

(See Table 65 on page 348 for format of
target names)

. .

t+1–u

. .

t+1–u

. .

t+1–u Additional target resource name k

u+1 X'00' End of additional target resource name
fields.

346 z/OS V2R1.0 Communications Server: SNA Programming

The Deliver RU includes the name of the originator of the embedded NS RU. The
name of the originator is derived from the origin network address contained in the
transmission header (TH) in the path information unit (PIU) that provided the NS
RU.

Target resource names: For NMVT RUs, multiple target resource names are
allowed.

The target-resource name field contains the name of the first network component
described by the embedded NS RU.
v If the flag byte (byte 4, bit 5) in the Deliver RU indicates that only one

target-resource name is included, the target-resource name field contains the
name of the first and only target resource. The target-resource name is derived
from the resource address in the NS RU. The target resource name is the same as
the name of the originator of the embedded NS RU when the RU does not
contain a resource address.
When only one target-resource name is included in the Deliver RU, the Deliver
RU ends with the X'00' type byte that indicates the end of the configuration
hierarchy list.

v If the flag byte in the Deliver RU indicates that multiple target-resource names
are included, the target-resource name field contains the name of the first target
resource, and subsequent names (1–M additional names) follow the X'00' type
byte that indicates the end of the configuration hierarchy list.
When multiple target-resource names are included in the Deliver RU, the
configuration hierarchy list is provided only for the first target resource. The
Deliver RU ends with the X'00' type byte that indicates the end of the additional
target-resource name fields.

On all the operating systems, the configuration-hierarchy name fields provide a list
of PU and link configuration information. The number of names varies. See
Table 61 on page 343 for standard CNM headers. The configuration-hierarchy list
contained in the Deliver request is generated by using one of the following
algorithms. The hierarchy contains the list of addressable nodes between the
target-resource name and the PU that contains the boundary function for the
resource.
v When the resource is a PU or an LU at a PU type 1 or PU type 2 node, the

configuration hierarchy is an ordered list of the network names of each
component in the connection, starting from the resource and including the name
of the PU containing the boundary function. The resource name is not included
in the list.

v When the resource is an LU, PU, or link that does not require boundary function
support at a PU type 4 or PU type 5, there is no list.

v When the resource is a link station, the configuration hierarchy is an ordered list
of names consisting of the link and PU type 4 or 5 node to which the line is
attached (and which is the originator of the embedded RU).

v When the resource is a PU for which a load is being requested, there is no list.

Single target names: The target-resource name field contains the name of the
network component described by the imbedded NS RU. The target-resource name
is derived from the resource address in the NS RU. Because a resource address
does not appear in the NS RU sent by a PU type 1 or a PU type 2, the resource
name is the same as the name of the originator of the embedded NS RU.

Chapter 12. Coding for the communication network management interface 347

NMVT (Network Management Vector Transport) considerations:

When multiple network or local addresses are included in an NMVT RU, the
additional target-resource name fields provide a list of information about each
target resource other than the first target resource. The additional target-resource
name fields in the Deliver RU are derived from multiple network or local
addresses that are contained in the SNA address list (hex 04) subvector of the
embedded NMVT RU. If the SNA address list subvector indicates that groups of
two addresses are session partners, the procedure correlation identifier (PCID) that
is associated with the session is placed in the Deliver RU as part of the
target-resource name field. Refer to SNA Formats for the meaning of and the types
of information that are contained in the NMVT RU.

Request unit names
The application program uses only network names in all requests. Network name
fields in the Forward and Deliver requests use the format shown in Table 65. The
SSCP changes these names into addresses. The destination name in a Forward RU
is changed to a destination network address by the SSCP prior to sending the
embedded NS RU to the destination. When an embedded NS RU is to contain a
target-resource address, the SSCP resolves the target-resource name in the Forward
request into an address, and places the address into the NS RU. This address is
either a local address or a network address, depending upon the PU type of the
destination resource. If the destination resource is a PU type 1 or 2, the target
resource must be the PU itself. The SSCP does not validate the network name type
field in the Forward RU.

NS RUs are delivered to the application program with their address fields
unchanged by the SSCP. The application program should not use the address fields
because they are subject to change. The SSCP, however, resolves each address in
the embedded NS RU to a network name and inserts the network name into the
Deliver RU. If the origin PU is a PU type 1 or 2 or if no SNA address list subvector
is present in an NMVT RU, only local address 0 (that is the address of the PU
itself) is supported.

If multiple network addresses are included in an NMVT RU, and the groups of
two addresses are indicated as session partners, the PCID associated with the
session is part of the network name field in the Deliver RU.

Table 65. Format of additional targets in Deliver requests

Byte Value Description

0–i Network name/PCID of target N

0 X'B3' Procedure correlation identifier (PCID) for the session
defined by preceding F3-E3 pair

X'2D' Group name

X'E3' Session partner name

X'F1' Physical unit or link station name

X'F3' Logical unit name

X'F4' SSCP name

X'F5' Procedure name

X'F7' Link station name

X'F9' Link name

X'FC' Channel-link locally defined name

348 z/OS V2R1.0 Communications Server: SNA Programming

Table 65. Format of additional targets in Deliver requests (continued)

Byte Value Description

X'FF' Error code indicating that address to name translation is
not possible

1 Length, in binary, of target name

2–i Symbolic name of target in EBCDIC characters

Examples of embedded network services request units

Examples of permissible types of embedded network services request units are
described in Table 66.

SNA Formats does not include the formats for the NS-INITLOAD and
NS-LOADSTAT RUs; these two RU formats are shown in Table 67 on page 350 and
Table 68 on page 350.

Table 66. Examples of embedded network services request units

Request NS header PRID correlation

FORWARD X'810810'

NMVT X'41038D'
Yes This RU is unsolicited, or is a solicited

request requiring a reply.

NS-IPL-FINAL X'410245'
N/A The RU does not contain a standard CNM

header.

NS-IPL-INIT X'410243'
N/A The RU does not contain a standard CNM

header.

NS-IPL-TEXT X'410244'
N/A The RU does not contain a standard CNM

header.

NS-LOADSTAT X'3F0234'
N/A The RU does not contain a standard CMM

header.

REQMS X'410304'
Yes The embedded reply is an RECFMS RU.

DELIVER X'810812'

NMVT X'41038D'
Yes This RU is unsolicited, or a solicited request

requiring a reply.

NS-INITLOAD X'3F0233'
N/A The RU is sent unsolicited and does not

contain a standard CNM header.

RECMS X'010381'
N/A This RU is sent unsolicited by the PU, and

does not contain a standard CNM header.

RECFMS X'410384'
Yes This RU is unsolicited or is solicited by an

embedded REQMS RU.

ROUTE-INOP X'410289'
No The RU is sent unsolicited to the CNM

application program to provide information
about failing routes within this network or
another network. It does not contain a
standard CNM header.

Chapter 12. Coding for the communication network management interface 349

Table 67. Initiate load request (NS-INITLOAD) request unit format

Byte Bit Value Description

0 X'3F' Network services, access method RU

1 X'02' Configuration services

2 X'33' Request code

3–6 Reserved

7–8 Reserved

9 Load request state:

X'00' Load requested during PU activation

X'01' Load requested during PU activation

10–17 IPL load module name

Table 68. Load status request (NS-LOADSTAT) request unit format

Byte Bit Value Description

0 X'3F' Network services, access method RU

1 X'02' Configuration services

2 X'34' Request code

3–6 Reserved

7–8 Reserved

9 Load request state:

X'00' Load requested during PU activation

X'01' Load failed—unable to activate

10 Load status:

X'00' Load successful

X'01' Load failed—unable to process load
request. Bytes 11–17 set to zero.

X'02' Load failed during the load procedure.
Bytes 11–17 contain additional information.

11–13 Request code of the failing NS RU

14–17 Sense data returned in the negative
response for the failing NS RU.

Types of network services request units not embedded

Each of the request units described in Table 69 on page 351 can be either sent or
received by the application program without embedding it in a Forward or Deliver
RU. The formats of these Network Services RUs are shown in Table 70 on page 351
through Table 79 on page 354.

Alias application
The ALIAS application translates LU, class-of-service, owning SSCP, and logon
mode names when the names are duplicated or have other meanings in other
networks. VTAM requests translation with a Translate Inquire RU. The ALIAS
returns the translated name in a Translate Reply RU. For further details on the
translated name, see Planning for NetView, NCP, and VTAM.

The requirements for an ALIAS application are:

350 z/OS V2R1.0 Communications Server: SNA Programming

v Authorized as a CNM application
v Authorized by the CNM routing table (refer to z/OS Communications Server:

SNA Customization) to receive Translate Inquire RU
v Able to receive unsolicited Translate Inquire RUs
v Able to send Translate Reply RUs as solicited data
v Able to correlate the procedure relation ID received in the Translate Inquire RU

with the Translate Reply RU.

The sense code in Table 79 on page 354 shows whether the ALIAS translation was
unsuccessful.

The sense code in Table 83 on page 355 represents completion of the translation for
the specific element or name. Translation can occur for fewer than all items on the
Translate Inquire RU.

Table 69. Types of network services request units not embedded

Request NS header
PRID
correlation Description

CNM (X'810814') Yes The RU is sent by the CNM application
program to control session-awareness and
trace processing within VTAM. Depending
on the CNM RU type field, a reply can be
returned by the SSCP.

TR-INQ (X'3F0814') Yes The request is sent to the CNM application
program to request name translations. The
reply is a TR-REPLY RU.

TR-REPLY (X'3F0816') Yes This RU is solicited with a TR-INQ RU. It is
sent by the CNM application program and
contains either translated names or a sense
code indicating that the translation could
not be done.

Table 70. CNM request unit format

Byte Bit Value Description

0 X'81' Network services, access method RU

1 X'08' Management services

2 X'14' Request code

3–4 Reserved

5–6 CNM identifier. (A local address or network
address, depending on value of bits 2 and 3
of byte 5.)

0–3 Reserved

4–15 Procedure Relation Identifier (PRID)

7 0 0 Unsolicited request

1 Reply request

1 0 Last request

1 Not last request

2–7 Reserved

8 Subtype code

Chapter 12. Coding for the communication network management interface 351

Table 70. CNM request unit format (continued)

Byte Bit Value Description

9–n CNM data

Table 71. Timeout CNM request unit format

Byte Bit Value Description

0 X'81' Network services, access method RU

1 X'08' Management services

2 X'14' Request code

3–4 Reserved

5–6 Correlator field

0–3 Reserved

4–15 The CNM PRID that is being canceled
(from the Forward RU)

7 0 0 Reserved

8 Subtype code (X'1C' for a timeout request)

9–16 Destination name from the Forward RU for
the request being canceled

The following tables show the Inquiry, Reply, and Constant formats for the ALIAS
application translation.

Inquiry data
Table 72. Translate-inquiry request (TR-INQ) request unit format

Byte Bit Value Description

0 X'3F' Network services, access method RU

1 X'08' Management services

2 X'14' Request code

3–4 Reserved

5–6 0–3 Reserved

4–15 Procedure relation identifier (PRID)

7 0 0 Unsolicited request

1 Solicited request

1 0 Last request

1 Not last request

2–7 Reserved

8–9 Count of translate-inquiry requests

10–13 Reserved

14–n Translate-inquiry data¹

Note:

1. Bytes 14–n represent each byte in this Translate-Inquiry Data table.

352 z/OS V2R1.0 Communications Server: SNA Programming

Table 73 represents one translate inquiry data record. This record, and possibly
additional records, are contained in bytes 14–n of the Translate-Inquiry Request
(see Table 72 on page 352). The total number of records is equal to the count value
shown in bytes 8–9 of Table 72 on page 352.

Table 73. Translate inquiry data

Byte Description

0 Length of request data

1 Input name characteristics

1 Reserved

2 Class of input name

3 Input name type code

4 Length of input name

5 Input name to be translated

Table 74. Network ID 1—ID in which the name to be translated was used

Byte Description

0 Network ID type code (X'FE')

1 Length of network ID (maximum 8)

2 Network ID

Table 75. Network ID 2—ID of the network in which the translated name is used

Byte Description

0 Network ID type code (X'FE')

1 Length of network ID (maximum 8)

2 Network ID

Constant values

Table 76 shows the value of the class-of-input names for bytes 2 of Table 73 and
Table 80 on page 354.

Table 76. Class-of-input names

Value Meaning

X'00' Input name is an alias name

X'01' Input name is real name

Table 77 shows the value of the input name type code (translate inquiry only) for
byte 3 of Table 73.

Table 77. Input name type code (TR-INQ)

Value Meaning

X'F3' LU

X'FB' Class-of-service name

X'FD' Logon mode name

Chapter 12. Coding for the communication network management interface 353

Table 78 shows the value of the input name type code (translate-reply) for Table 80
byte 3.

Table 78. Input name type code (TR-REPLY)

Value Meaning

X'F3' LU

X'F4' SSCP

X'FB' Class-of-service name

X'FD' Logon mode name

Reply data
Table 79. Translate reply request (TR-REPLY) request unit format

Byte Bit Value Description

0 X'3F' Network services, access method RU

1 X'08' Management services

2 X'16' Request code

3–4 Reserved

5–6 0–3 Reserved

4–15 Procedure relation identifier (PRID)

7 0 0 Unsolicited request

1 Solicited request

1 0 Last request

1 Not last request

2–7 Reserved

8–9 Count of translate-reply requests

10–13 Sense code

14–n Translate reply data ¹

Note:

1. Bytes 14–n represent each byte in this Translate-Reply Data table.

Table 73 on page 353 represents one translate inquiry data record. This record, and
possibly additional records, are contained in bytes 14–n of the Translate-Inquiry
Request (see Table 72 on page 352). The total number of records is equal to the
count value shown in bytes 8–9 of Table 72 on page 352.

Table 80. Translate reply data

Byte Description

0 Length of reply data

1 Reply name characteristics

1 Reserved

2 Class of input name

3 Input name type code

4 Length of input name (maximum 8)

5 Input name to be translated

354 z/OS V2R1.0 Communications Server: SNA Programming

Table 81. Network identifier 1

Byte Description

0 Network ID type code (X'FE')

1 Length of network ID

2 Network ID

Table 82. Network identifier 2

Byte Description

0 Network ID type code (X'FE')

1 Length of network ID (maximum 8)

2 Network ID

Table 83. Translated name data

Byte Description

0 Sense code for this reply

4 Translated name type code (maximum 8)

5 Length of translated name

6 Translated name

Requirements for receiving session-awareness and trace data

Session-awareness and access method trace data are requested from VTAM using
the CNM requests sent over the CNM interface to the SSCP. For an application
program to receive session-awareness and trace data, the application program must
initiate two sessions with a VTAM application LU named ISTPDCLU: one for
session-awareness data and one for trace data.

VTAM definition requirements

Because the ISTPDCLU application program is a subtask within the VTAM
licensed program, no definition is required for its use. However, the user's
application program must be defined to VTAM using an APPL definition
statement. The operands of the APPL definition statement that must be specified
(not defaulted) are:
v AUTH=ACQ
v VPACING=value determined by the user
v AUTH=CNM.

Interfaces and interactions

The two sessions that the application program must initiate with ISTPDCLU use
the following LU-LU session type 0 protocols:
v The user's application program initiates the sessions and acts as the primary

logical unit.
v No error recovery exists for the sessions.
v The user's application program must restart any failed session.

Chapter 12. Coding for the communication network management interface 355

v The user's application program only receives data over the sessions; it might
never send data.

v The ISTPDCLU application program sends data to the user's application
program.

v No responses are requested from the primary logical unit.
v The session uses function management profile 2 and transmission profile 3.

The session parameter contained in the BIND must specify the following:
v No brackets and no chaining of RUs are permitted.
v Inbound data to the user's application program is paced.
v No responses are requested from the primary session end.
v The secondary session end runs in delayed request mode.
v Normal flow is specified.
v No compression is allowed.
v Data flow control RUs are not allowed.
v There are no function management headers.
v The SEND/RECEIVE mode is full-duplex.
v The LU type is 0.
v Cryptography is not supported for the session.
v Negotiable BIND is not supported.

When the trace data session is bound, the BIND user data area must contain the
EBCDIC characters TRACE. When the session-awareness data session is bound, the
BIND must contain the EBCDIC characters SESSA. The ISTPDCLU application
program's SCIP exit routine ensures a session limit of two and rejects any BIND
requests after the limit is exceeded.

Session-awareness data buffer

The format in Table 84 defines the layout of the session-awareness data buffer. This
buffer is built by VTAM and is passed to the user's application program through
the ISTPDCLU session that is established with SESSA in the user field of the BIND.

Table 84. Session-awareness data buffer header

Byte Description

0–15 Data routing information

0–1 Binary number representing the total buffer size (in bytes)

2–3 Process identifier

4–7 Data-type identifier = X'00040001' (FUNC=CONFIG,SUBFUNC=SESSA)

8–15 Reserved

16–23 Buffer eyecatcher = 'NLDM SAW'

24–25 Buffer sequence number (0≤n≤X'FFFF')

26–29 Length of session notification entries

30–35 Reserved

36–47 Access method work area (not used by user's application program)

48–p One or more session notification entries

356 z/OS V2R1.0 Communications Server: SNA Programming

Session notification data format

Session notification data is placed in buffers that might contain multiple entries of
variable length. Each variable-length entry contains information about one session.
The session information is presented in a series of vectors.

Trace data buffer

Table 85 and Table 86 define the format of the PIU trace data buffer. This buffer is
built by VTAM and is passed to the user's application program through the
ISTPDCLU session established with TRACE in the BIND user data field.

Table 85. PIU trace data buffer header

Byte Description

0–15 Data routing information

0–1 Binary number representing the total buffer
size (in bytes)

2–3 Process identifier

4–7 Data-type identifier

8–15 Reserved

16–25 Buffer eyecatcher = 'NLDM TRACE'

26–27 Buffer sequence number

28–29 Total number of PIU trace data buffer entries

30–35 Reserved

36–47 Access method work area

Table 86. PIU trace data buffer entry

Byte Bit Value Description

0–6 Time stamp (high-order 7 bytes of STCK)

7 0 0 PIU truncated to 40 bytes maximum

1 PIU is not truncated and requires multiple
PIU trace data buffer entries. An integral
number of 40-byte trace buffer entries is
always used. The size of the PIU can be
calculated using the data count field in the
TH of the PIU.

1-7 Buffer entry type:

X'00' Normal PIU

X'01' Normal PIU — inbound

X'02' Normal PIU — outbound

X'03' Access method specified symptom
string

X'04' Discard PIU — session active

X'05' Discard PIU — session inactive

X'06' Internally generated PIU

8–47 Trace data

Chapter 12. Coding for the communication network management interface 357

Requirements for receiving performance data

Performance data can be requested and received using the performance monitor
interface. This interface involves two-way communication between VTAM and the
monitor as follows:
v Monitor to VTAM

The monitor sends data collection requests to VTAM over the CNM interface.
The monitor sends requests to VTAM over the program operator interface to
modify an installation-wide performance monitor exit (ISTEXCPM) associated
with the monitor.

v VTAM to monitor
VTAM reports data to the performance monitor exit, which forwards this data to
the monitor.

Performance monitor definition requirements for initialization
About this task

The following steps are necessary for VTAM to honor the data collection requests
issued over the CNM interface:
v You must define your monitor as a CNM application, and as a secondary or

primary programmed operator. This authorization can be specified on the APPL
definition statement for the monitor as AUTH=CNM and AUTH=SPO|PPO,
respectively. Refer to z/OS Communications Server: SNA Resource Definition
Reference for more information on coding the APPL definition statement.

v You must open the monitor with PARMS=(PERFMON=YES) coded on the ACB
macroinstruction. See “Access method control block (ACB)” on page 56 for
details about coding the ACB. Failure to properly define your monitor will result
in an open ACB error code of X'8C'. See “OPEN macroinstruction” on page 57
for details.
Upon open ACB completion, you should test bit X'51' of the
access-method-support vector list (mapped by the ISTAMSVL DSECT) to verify
that VTAM supports the performance monitor interface. The
performance-monitor vector may also be returned in the resource-information
vector list (mapped by the ISTRIVL DSECT). See “The access-method-support
vector list” on page 62 for details.

An installation-wide performance monitor exit for your monitor must also be
active in order to retrieve performance data from VTAM. The exit must be coded
and installed according to the requirements in z/OS Communications Server: SNA
Customization.

Data collection mechanism

The performance monitor interface provides a method to control the collection of
performance data. The CNM RUs provided to support this process are:
v Start Performance Data Collection (X'22')
v Stop Performance Data Collection (X'23')
v Stop All Performance Data Collection (X'24')
v Collect Performance Data (X'25')

358 z/OS V2R1.0 Communications Server: SNA Programming

A monitor initiates a data collection by issuing a Start Performance Data Collection
CNM RU. This signals VTAM to begin gathering the specified performance data.
While the data is being gathered, the monitor can issue Collect Performance Data
CNM RUs to retrieve the data. When a request to collect data is issued, VTAM
copies the performance data into a parameter list and invokes the monitor's
performance monitor exit in VTAM's address space. The performance monitor exit
then passes a copy of the parameter list to the monitor. The response to the Collect
Performance Data CNM RU is not synchronized with the exit invocation. A Stop
Performance Data Collection CNM RU should be issued when the monitor no
longer requires the data to be gathered.

Categorization of data

The data available through the performance monitor interface is organized into
major categories and subcategories as shown in Table 87. Typically, collection
requests are made at the major category level, with the option of specifying
multiple subcategories. Collect Performance Data CNM RUs can also combine
major category requests, with some restrictions. Stop All Performance Data
Collection CNM RU allows the monitor to stop all collections with one request. For
virtual route data requests, specification of the resources to be controlled, or target
resource set, is specified as follows:
v A single VR (all Transmission Priorities included)
v All virtual routes to a destination subarea
v All routes.

For RTP connection data requests, the target resource set consists of all RTPs
between the host VTAM and a given CP in the network.

Table 87. Data categorization for performance monitor interface

Subcategory code Description

VTAM global data

Environment data Data related to this VTAM's characteristics

Installation-wide data Data related to installation-wide exits

Storage data Data related to this VTAM's usage of storage

Session data Data related to sessions and resource
definitions

APPN directory services data Data related to directory services search
requests

APPN topology data Data related to APPN topology and route
calculations

CSM data Data related to the use of CSM storage and
CSM buffer pools

Virtual route data

Basic route data Data related to individual virtual routes

RTP connection data

Basic RTP connection data Data related to individual RTP connections

Application data

Application data Data related to applications recovering from
node failures, doing an MNPS planned
takeover, or enabled for persistence in a
sysplex that supports multinode persistent
sessions

Chapter 12. Coding for the communication network management interface 359

Table 87. Data categorization for performance monitor interface (continued)

Subcategory code Description

MNPS coupling facility structure data

MNPS coupling facility structure data Data related to the multinode persistent
sessions coupling facility structure

To minimize the overhead incurred in data gathering, monitors should limit their
collections to only those subcategories of interest and stop collections once they are
no longer desired. However, data can only be retrieved while a collection is in
progress.

Automatic data delivery

A monitor does not have to issue a Collect Performance Data CNM RU to receive
performance data from VTAM. VTAM may deliver unrequested data to the
monitor for resource inactivation events or when automatic data delivery is
enabled for other events. The performance monitor can enable automatic data
delivery for SMF intervals or for non-inactivation events on the Start Performance
Data Collection CNM RU. Automatic data delivery can also be turned on or off for
SMF intervals or non-inactivation events by issuing a switching request. See
“Switching requests” on page 361 for more information.

Resource inactivation

VTAM automatically reports the following events to the performance monitor
when collection is in progress for the event.
v Directory services border node data for the affected node is reported when an

adjacent non-native network node is no longer in use (the CP-CP session is lost).
For the exit to receive this data, the VTAM in which the exit resides must be a
border node.

v Basic route data is reported when a virtual route transitions into the inactive
state. To distinguish this record from block/unblock records, the virtual route
state passed within the basic route data is inactive (X'01').

v RTP connection data is reported when an RTP connection is deleted. To
distinguish this record, byte 8 of the RTP data vector is set to B'0100 0000'. For
more information, refer to z/OS Communications Server: SNA Customization.

v Multinode persistent session data is reported when a persistence-enabled
application closes its ACB in a sysplex that supports multinode persistent
sessions.

Non-inactivation events
For the events described in this section, the performance monitor can enable
automatic data delivery on byte 5, bit 6 of the Start Performance Data Collection
CNM RU for the event.
v Virtual route blockages

Basic route data is reported for an individual virtual route when it becomes
blocked and again when it is subsequently unblocked. The flow control state
passed within the basic route data distinguishes the two cases.

v HPR path switch

360 z/OS V2R1.0 Communications Server: SNA Programming

RTP connection data is reported when an HPR path switch occurs. To
distinguish this record, byte 8 of the RTP data vector is set to B'1000 0000' or
B'0010 0000'. For more information, refer to z/OS Communications Server: SNA
Customization.
When an HPR path switch occurs with a CP name change, a ‘resource
inactivation’ is delivered if the old CP name is being monitored. Collection
occurs for the new CP name only if a ‘start collection’ has been issued for the
endpoint.

v Application recovery data is reported when an application recovers on a VTAM
in a sysplex that supports multinode persistent sessions.

System Management Facility (SMF) intervals

The performance monitor can automatically receive collection data at the
expiration of SMF intervals by setting byte 5, bit 4 of the Start Performance Data
Collection CNM RU for the event.

Potential exception conditions relating to SMF-based collections may arise that
prevent VTAM from delivering the data as expected. In each case, VTAM notifies
the monitor as follows:
v If one SMF interval expires before the previous interval can be processed, VTAM

indicates this condition to the performance monitor exit when SMF data is
finally delivered. The SMF time stamp, which could be for either interval, is also
passed to the exit. Data for the missed interval is not produced.

v If VTAM abends while processing an SMF interval, notification is not given until
a subsequent collection request is processed by VTAM. The monitor is notified
through the performance monitor exit that VTAM can no longer provide data
automatically at SMF intervals. No collection data accompanies this particular
invocation.
Upon notification, all SMF collections are disabled but VTAM continues to
gather the data. Monitors can then attempt to retrieve the data in the following
ways:
– Issuing Collect Performance Data CNM RU requests for the data.
– Re-enabling their SMF collections with Start Performance Data Collection

CNM RU requests. See “Switching requests” for details.

Note: Start Performance Data Collection CNM RUs enabling SMF collections
that are outstanding at the point of notification should be reissued.

Refer to z/OS Communications Server: SNA Customization for information on
how to distinguish the various reasons for exit invocation.

Switching requests

When a collection is started using a Start Performance Data Collection CNM RU,
enablement indicators determine whether data should be delivered automatically
for SMF intervals or non-inactivation events. A monitor can also dynamically
enable or disable automatic data delivery during a collection without modifying
the monitor's current set of collections. This is known as a switching request.

A switching request is performed by issuing a Start Performance Data Collection
CNM RU with a switching indicator specified. The enablement indicators along
with their corresponding switching indicators determine whether non-inactivation
event notification or SMF data delivery will be enabled or disabled for the
collections specified on the request. If the enablement indicator is specified on the

Chapter 12. Coding for the communication network management interface 361

request, non-inactivation event notification or SMF data delivery will be enabled.
Otherwise, non-inactivation event notification or SMF data delivery will be
disabled. If both switching indicators are on, both switching functions are
performed for the same request.

Data collection dynamics

When starting and stopping collections, a start/stop collection request can override
a previous request so that the overall set of collections can be refined over time.
For example, collections may be started for all resources in a major category, then
be overridden by stopping collection on an individual resource. In this case,
collections are in effect for all resources except the resource that is explicitly
stopped.

VTAM tracks the following information for each RTP connection, virtual route,
destination subarea, or VTAM Global subcategory:
v Collection enablement (whether VTAM should gather data)
v SMF enablement (whether data should be delivered at SMF intervals)
v Blocked route enablement (whether data should be delivered when the virtual

route becomes blocked or unblocked).

For each VTAM Global Data subcategory:
v Collection enablement is determined by the most recent request to start or stop

data collection of the subcategory.
v SMF enablement is determined by the most recent Start Performance Data

Collection CNM RU specifying the subcategory.
v Blocked route enablement does not apply.

For each virtual route:
v Collection enablement is determined by the most recent request to start or stop

data collection which includes the route within its target resource set.
v SMF enablement is determined by the most recent Start Performance Data

Collection CNM RU (except those specifying blocked route switching only)
which includes the route within its target resource set.

v Blocked route enablement is determined by the most recent Start Performance
Data Collection CNM RU (except those specifying SMF switching only) which
includes the route within its target resource set.

The information tracked for virtual routes is also tracked for destination subareas,
except when specified on a single virtual route request. Tracking information is
kept so it can be applied to any virtual route that is defined dynamically under a
destination subarea. For each RTP connection:
v Collection enablement is determined by the most recent request to start or stop

data collection which includes the connection within its target resource set.
v SMF enablement is determined by the most recent Start Performance Data

Collection CNM RU which includes the connection within its target resource set.
v Path switch enablement is determined by the most recent Start Performance

Data Collection CNM RU (except those specifying SMF switching only) which
includes the connection within its target resource set.

362 z/OS V2R1.0 Communications Server: SNA Programming

Performance monitor interface termination

In order to terminate the performance monitor interface normally, you should
perform the following termination sequence:
v Stop all collections your monitor may have in progress using the Stop All

Performance Data Collection CNM RU.
v Inactivate the Performance Monitor Exit.
v Close the ACB if communication with VTAM is no longer desired.

If the monitor terminates abnormally, VTAM performs the termination sequence on
behalf of the monitor.

When VTAM terminates, VTAM will drive your monitor's TPEND exit, if one is
supplied, to notify the monitor to close its ACB. See “TPEND exit routine” on page
263 for more details.

Performance data types
The data available through the performance monitor interface can be one of the
following general types:
v Static data

Static data refers to data that does not change frequently. It is not of a statistical
nature. Static data can be, for example, a storage address, a resource name or
address, or a configuration option.

v Current usage data
Current usage data represents the current usage of a resource. For example, it
might be the number of active sessions, or number of buffers in use.

v Highwater/Low water mark data
Highwater mark data represents the maximum value that a particular statistic
reaches during a collection interval, while low water mark data represents the
minimum value.
Highwater and low water mark data maintained on an interval basis by VTAM
is reset to the current value when a Collect Performance Data CNM RU
specifying the reset option is processed or when an SMF interval expires.
In some cases, the highwater mark or low water mark data is time stamped so
that the monitor can determine when the mark was reached within the collection
interval.

v Counter data
Counter data is data that is increased by some amount as activity occurs. It can
be used to measure the rate of activity over a time interval. Counters kept for
use by the VTAM performance monitor interface are maintained as rolling
counters. That is, the data is never reset to zero, but rather, rolls over to zero
when the counter reaches its capacity.

Note: The monitor should send a Collect Performance Data CNM RU to VTAM
at the beginning of a collection to determine the initial value of the rolling
counter. The initial value returned should be regarded as a baseline number to
be used with data received after subsequent retrievals.

Implications of the multiple monitor environment

When multiple monitors are open concurrently, VTAM maintains only one internal
value for each resettable statistic. However, each monitor must be able to maintain

Chapter 12. Coding for the communication network management interface 363

the highwater and low water marks for their interval. To provide this capability,
VTAM allows multiple active instances of the performance monitor exit routine.
When the exit routine is invoked, all the instances are driven so that each open
monitor can receive the data as it is reset.

Monitors might receive data for collections that they are not tracking. The data
received for a given invocation, depends on the reason for data delivery:
v For a Collect Performance Data CNM RU, the data delivered is the specified

data for which the requesting monitor has collection enabled.
v For SMF interval data, the data delivered is the union of all monitors'

SMF-enabled collections.
v For VTAM event notification, data for the affected resource is delivered if at

least one monitor has appropriately enabled this notification.

For more information about multiple exit support, refer to z/OS Communications
Server: SNA Customization.

Request unit formats for the performance monitor interface
This section describes the general format of the performance monitor CNM request
units that are supported by the performance monitor interface. Only monitor
applications can issue these CNM request units.

A typical request unit begins with the CNM request unit format described in
Table 70 on page 351 which contains a subtype code identifying the desired
function, as follows:
v Start Performance Data Collection (X'22')

Sent by the performance monitor to start the collection of performance data as
specified in this CNM RU or to dynamically enable or disable SMF and blocked
route data collection.

v Stop Performance Data Collection (X'23')
Sent by the performance monitor to stop the collection of specified performance
data that has been previously started via the Start Performance Data Collection
CNM RU.

v Stop All Performance Data Collection (X'24')
Sent by the performance monitor to stop all performance data collections that
have been previously started via the Start Performance Data Collection CNM
RU.

v Collect Performance Data (X'25')
Sent by the performance monitor to retrieve performance data as specified in
this CNM RU.

Following the subtype code byte are eleven reserved bytes.

For all the above RUs except Stop All Performance Data Collection (X'24'), the
CNM request unit format and the reserved 11 bytes must be followed by a request
packaged in the following manner:
v The request code vector must be first, as shown in Table 88 on page 365. It

identifies both the categories of data and the set of resources targeted by the
CNM RU. Specify one major category, one or more subcategories within that
major category, and the desired resource, if applicable, that should be processed
for the request.

v The request code vector may be followed by a resource data description
(presented in Table 89 on page 367) that supplies the name for a resource that

364 z/OS V2R1.0 Communications Server: SNA Programming

the request is targeting. It is comprised of a prefix vector and an identifier
vector. The identifier vector is where the resource is actually named. The prefix
vector provides necessary information about the identifier format or the resource
itself.

Note: The prefix vector is a reserved field.
The resource data description must only be included when applicable, as
indicated by the target resource set field in the request code vector.

There is a limit of one request per CNM RU, except for Collect Performance Data
(X'25') RUs, where combining is allowed so long as none of the requests require a
resource data description. When more than one request follows a CNM RU, the
last request must be flagged.

Table 88. Request code vector format

Byte Bit Value Description

00-01 Length of request code vector (including length
field)

02-03 Request flags (common)

01-14 Reserved

15 Last request (Collect Performance Data subtype
only)

0 Yes

1 No

04-05 Request flags (based on CNM RU subtype code)

0-11 Reserved

Start Performance Data Collection

12 SMF data enablement

1 Enable

0 Disable

13 SMF switching function indicator

1 SMF switch requested

0 SMF switch not requested

14 Non-inactivation event enablement

1 Enable

0 Disable

15 Non-inactivation event switching function
indicator

1 Non-inactivation event switch requested

0 Non-inactivation event switch not requested

Collect Performance Data

12-14 Reserved

15 Reset requested

1 Yes

0 No

Stop Performance Data Collection

Chapter 12. Coding for the communication network management interface 365

Table 88. Request code vector format (continued)

Byte Bit Value Description

12-15 Reserved

06-07 Reserved

08-09 Major category code

X'0001' VTAM global data

X'0002' Virtual route data

X'0003' RTP connection data

X'0004' Application data

X'0005' Coupling facility structure data

10-11 Reserved

12-19 Subcategory code (based on specified major
category code):
Note: One or more valid subcategories can be
specified.

VTAM global data

0 Environment data

1 Installation-wide exit data

2 Storage data

3 Session data

4 APPN directory services data

5 APPN topology data

6 CSM data

7-63 Reserved

Virtual route data

0 Basic route data

1-63 Reserved

RTP connection data

0 Basic RTP connection data

1-63 Reserved

MNPS data

0 Basic application data

1-63 Reserved

MNPS coupling facility structure data

0 Basic MNPS coupling facility data

1-63 Reserved

20-23 Reserved

24 Target resource set (based on specified major
category code):

VTAM global data

Reserved

Virtual route data

366 z/OS V2R1.0 Communications Server: SNA Programming

Table 88. Request code vector format (continued)

Byte Bit Value Description

X'00' Single virtual route—resource data description for
single virtual route must be attached to request
code vector

X'80' By destination subarea—resource data description
for destination subarea must be attached to
request code vector

X'FF' All routes

RTP connection data

X'80' Destination CP name - resource data description
for destination CP must be attached to request
code vector

X'FF' All RTP connections (Note that this value is not
valid for start performance data collection)

25-27 Reserved

Table 89. Format of all possible resource data descriptions

Byte Bit Value Description

Destination subarea: Prefix

00-01 Length of prefix including length field

02-03 Reserved

Destination subarea: Identifier

00-01 Length of identifier including length field

02-m Destination subarea number (EBCDIC, numeric
only, leading zeroes allowed)

Single virtual route: Prefix

00-01 Length of prefix including length field

02-03 Reserved

Single virtual route: Identifier

00-01 Length of identifier including length field

02-03 Virtual route number (EBCDIC, numeric only,
leading zero required)

04-m Destination subarea number (EBCDIC, numeric
only, leading zeroes allowed)

Destination CP: Prefix

00-01 Length of prefix including length field

02-03 Reserved

Destination CP: Identifier

00-01 Length of resource data including length field

02-09 Network ID (EBCDIC, left justified)

10-17 CP name (EBCDIC, left justified)

Chapter 12. Coding for the communication network management interface 367

Sense codes for the performance monitor CNM RUs

This section identifies the conditions that generate a negative response to the
performance monitor CNM RUs. For these conditions, the RPL RTCD/FDBK is
always X'0404'.

Protocol violations

Conditions in this category cause the entire request to be rejected before the
desired function is executed, without impact on subsequent processing. The
following table shows the protocol violations for all the RUs collectively. Sense
Codes marked with ‘+’ do not apply to Stop All Performance Data Collection CNM
RUs.

Sense code Description Reason(s)

X'10010000' RU Data Error NS Header or CNM control key not
recognized because the VTAM is down
level.

X'080E0000' LU Not Authorized Issuer of request is not known to VTAM as a
monitor application.

X'10020000' RU Length Error One of the required support components is
omitted or is not long enough.

X'10050000'+ Parameter Error Specification error within a required request
code vector:

v Major category value specified is not valid

v Target resource set value specified for the
major category or subtype code is not
valid

v No valid subcategories specified for the
major category

X'08060000'+ Resource Unknown Specification error within required Resource
Data Description:

v Specified VR number or DSA number is
not strictly numeric or is out of range.

v Specified VR number is not currently
defined for the destination subarea.

v Network ID and CP name are not valid.

v Switching request is for an unknown
resource (A “start collect” has not been
issued for this resource).

X'08400000'+ Procedure not allowed Combination of request code vectors is not
valid

Process exceptions

Conditions in this category only occur once the desired function begins execution.
The impact of processing up to the point of detection is described for each case.
The following apply to all requests:

Sense code Description Reason(s) Impact

X'081C0000' Request Not Executable An abend occurred
within VTAM while
processing the request.

Unknown

368 z/OS V2R1.0 Communications Server: SNA Programming

The following process exceptions apply to Start Performance Data Collect CNM
RUs only. Those marked with “+” are not applicable to VTAM global data requests
or when any switching function is specified.

Sense code Description Reason(s) Impact

X'08090027'+ Mode
inconsistency
—function not
enabled

No virtual routes defined
within the specified target
set.

Collections will
automatically
start for
subsequent
dynamic VR
definitions falling
within the target
resource set; the
blocked route
and SMF
enablement
specifications
will also be
propagated.

X'08120011'+ Insufficient
storage

Storage shortage occurred
prior to completion

Impact is as if
the request were
issued with both
blocked route
and SMF
enablement
specified.

X'084F0000' Service not
available

Attempt to register to
ENF failed for a request
that is enabling SMF
collections.

None

The following process exceptions apply to Collect Performance Data CNM RUs
only.

Sense code Description Reason(s) Impact

X'08090027' Mode
inconsistency
—function not
enabled

No data was collected due to
one of the following:

v Collection is not in
progress for any of the
requested data.

v No virtual routes defined
within specified target
resource set.

v All defined virtual routes
within specified target
resource set are either
reset, inactive, or pending
active (collections might
be in progress).

v No RTP connection
defined.

For combined requests on a
single RU, this condition is
reported only when
encountered for all Request
Code Vectors.

The performance monitor
exit is not driven in this case.

Chapter 12. Coding for the communication network management interface 369

370 z/OS V2R1.0 Communications Server: SNA Programming

Chapter 13. Conventions and descriptions of VTAM
macroinstructions

This chapter describes the format of the macroinstructions and then presents each
macroinstruction in alphabetical order.

You should be familiar with the concepts of the VTAM application program
described in previous chapters.

How the macroinstructions are described

The following example shows the syntax for the macroinstruction:

�� ACB Required and optional operands
name

��

How the macroinstructions are coded
The macroinstructions are coded in the same format as assembler instructions,
using name, operation, and operand fields.
v The optional 1–8 character name field provides a label for the macroinstruction.

If you use a name, it must begin in column 1 and be followed by at least one
blank.

v The operation identifier (such as ACB or SEND) begins in column 10 and must
be followed by at least one blank.

v Operands can occupy columns 16 through 71 and must be separated by
commas. The last operand on a line must be followed by at least one blank. If
the operands require more than one line, you must place a non-blank
continuation character in column 72.

© Copyright IBM Corp. 2000, 2013 371

Each macroinstruction has its own section that contains a brief description of its
function and use. The remainder of each section contains:
v A syntax diagram
v An operand-by-operand description
v Examples (if applicable)
v A summary of status information.

Name
The macroinstruction name provides a label for the macroinstruction. The name, if
used, can be specified as any symbolic name valid in the assembler language.

Operation
This field contains the mnemonic operation code of the macroinstruction. It is
always coded exactly as shown.

Operands
The operands provide information for the macroinstruction expansion program in
the assembler. Generally, the information provided by the operands is made part of
a parameter list provided to VTAM during program execution. All of the
macroinstruction's operands are indicated in the operands column of the assembler
format table.

Types of operands

All operands are either keyword or positional operands. Most of the VTAM
macroinstruction operands are keyword operands.

Keyword operands consist of a fixed character string (called the operand keyword),
an equal sign, and a single or multiple operand value. The equal sign distinguishes
the keyword from positional operands. Keyword operands do not have to be
coded in the order shown in the operands column. For example, a
macroinstruction having the operands AREALEN=data_length and
AREA=data_area_address could be coded as either:
AREALEN=132,AREA=WORK

or
AREA=WORK,AREALEN=132

Keyword operands must be separated by commas. If a keyword operand is
omitted, the commas that would have been included with it are also omitted.

In some cases, keyword operands and their values are themselves sub-operands,
such as PARMS=(USERFLD=user_data,NIB=nib_address).

Figure 85. How to code comments and continuation lines

372 z/OS V2R1.0 Communications Server: SNA Programming

There are a few instances in the VTAM macroinstructions when more than one
value can be coded after the keyword, but parentheses are required to do this. For
example, an operand specified as:

��

�

FIELDS = field_name
,

(field_name)

��

can be coded as either:
FIELDS=RECLEN

or
FIELDS=(RECLEN)

when only one field name is used. When more than one field name is used,
however, the names must be enclosed in parentheses:
FIELDS=(RECLEN,RTNCD,FDB2)

The field names must be separated by commas. If a field name is omitted, the
comma that would have been included with it is also omitted. For example,
omitting the first field name from the previous example would result in:
FIELDS=(RTNCD,FDB2)

Positional operands (used in OPEN and CLOSE macroinstructions only) must be
coded in the exact order shown in the operands column. Positional operands are
separated by commas, as are all operands, but if a positional operand is omitted,
the surrounding commas must still be entered. For example, consider a
macroinstruction that has three positional operands DCB1, INOUT, and ACB1. If
all three are used, they are coded as:
DCB1,INOUT,ACB1

but if only DCB1 and ACB1 are wanted, they are coded as:
DCB1,,ACB1

If the last positional operand or operands are omitted, the trailing comma or
commas should not be coded.

Comments and continuation lines
Comments can contain any characters valid in the assembler language. Comments
can be continued on more than one line by placing an asterisk in column 1 as
shown in the following example. In this book, the comments field is not shown in
the macroinstruction's assembler format table.

Operands can also be continued on additional lines as shown in the following. If
the operands are not extended to column 71, they must be separated after a
comma. The continuation character in column 72 can be any nonblank character,
but it cannot be a character of an operand. Comments must be separated from
operands by at least one blank. The following table shows where continuation
characters appear; these characters are omitted from other examples in this book.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 373

Operand descriptions
Following the assembler format table, each operand is named and described. Every
operand description begins with an explanation of the operand's function. If the
operand has more than one fixed value that can be supplied with it, the operand
description also explains the effect that each value has on the action performed by
the macroinstruction.

Operand format:

The operand description can include a description of the format in which the
operand should be coded. This description is provided when the format is an
exception to these general rules:
v When a quantity is indicated (for example, RECLEN=data length), you can

specify the value with either unframed decimal integers, or an expression that is
equated to such a value (for example, RECLEN=TEN, where TEN EQU 5*2), or
the number of the register (enclosed by parentheses) that contains the value
when the macroinstruction is executed. Register notation is restricted to registers
2–12 when specifying a quantity.

v When an address is indicated (for example, ACB=acb address) and the
macroinstruction is a declarative macroinstruction, you can specify any
relocatable expression that is valid for an A-type address constant. If the
macroinstruction is an RPL-based or ACB-based macroinstruction, you can use
any expression that is valid for an RX-type assembler instruction (such as an LA
instruction). Registers 1–12 can be specified for any operand that designates the
address of an RPL. Register notation for all other address operands is restricted
to registers 2–12.

The valid notation for the operands of the manipulative macroinstructions
(GENCB, MODCB, SHOWCB, and TESTCB) is not as straightforward. The rules of
syntax for the manipulative macroinstructions are defined and tabulated in
Appendix J, “Summary of operand specifications,” on page 857.

If the operand is unusually complex or if its function can be better explained with
an example, the operand description can contain an example that shows how the
operand is coded.

Examples

Following the operand descriptions are one or more examples. These examples
show possible ways that the macroinstruction and its operands might be coded.

The way a macroinstruction can be specified can often be understood more readily
from an example than it can from the assembler format table, because the latter

Figure 86. How to code comments and continuation lines

374 z/OS V2R1.0 Communications Server: SNA Programming

must show all possible ways to specify the macroinstruction. A macroinstruction
that appears to be complex in the assembler format table usually appears much
simpler when it is actually coded.

Completion information
All of the executable macroinstructions pass return codes in registers, and most
indicate status information in various control block fields when they are posted
complete. Descriptions of this status information can be found at the end of the
macroinstruction description.

Description of the VTAM macroinstructions

The following sections provide detailed coding information for each VTAM
macroinstruction. The macroinstruction descriptions are in alphabetical order.

Figure 7 on page 20 shows the categories of macroinstructions and identifies the
macroinstructions included in each category.

ACB—Create an access method control block
Purpose

The ACB control block identifies the application program to VTAM and to the
SNA network as a logical unit.

Usage

You must define each application program before the program can use VTAM to
communicate with logical units throughout the network. You define an application
program by coding an APPL definition statement for the program. The application
program must then create an ACB that points to the same symbolic name of the
program as the name specified by the APPL statement. When the ACB is opened,
VTAM finds the APPL information for the program and associates that information
(that is, associates the application program) with the ACB.

Each application program that uses VTAM must define and open an ACB. An
application program can contain more than one ACB (thus breaking itself down
into “subapplications”), but each ACB must indicate a different application
program name (that is, identify a separate APPL definition statement).

After the ACB has been opened, requests for VTAM services, such as requests for
session establishment, requests for communication operations, and requests for
network management (if the application program is authorized), can be made.
When the ACB is closed (with the CLOSE macroinstruction) such requests can no
longer be made, and any sessions that were established are terminated.

Using the ACB, the application program can provide an address of a list of exit
routine addresses. The routines represented in this list are invoked by VTAM when
special events occur, such as error conditions or session-establishment requests.

Using the ACB, the application program can also cause VTAM to prevent or allow
certain session-establishment requests that are directed to the ACB.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 375

If this application program is an authorized communication network management
(CNM) program, the ACB can identify an NIB to be used to allow access to the
SSCP-LU session established when the ACB is opened.

The application program can also specify 4 bytes of user data placed in the ACB.
This data is not examined by VTAM.

An ACB macroinstruction causes an ACB to be built during program assembly on
a fullword boundary. The ACB can also be built during program execution with
the GENCB macroinstruction. The ACB is modified during program execution with
the MODCB macroinstruction, or by using the DSECT created by the IFGACB
mapping macroinstruction, but only before the ACB opens. Do not modify the ACB
while it is open. Not all ACB fields can be created or accessed by the manipulative
macroinstructions.

The ACB control block referenced by the OPEN and CLOSE macroinstructions can
reside in either 31-bit or 24-bit storage but must be consistent with the addressing
mode of the application program. The MODE parameter is used to set the
addressing mode of the ACB control block for these macroinstructions.

The ACB and its related storage (APPLID, password, EXLST, NIB, and
Application-ACB vector list) must be allocated in the same storage key. This key
can be the storage key of the program status word (PSW) at the time OPEN was
issued, or the storage key of the task control block (TCB).

For each ACB opened to VTAM, there is approximately X'250' bytes of storage
used as a VTAM work area. This work area is released when CLOSE ACB
processing completes.

An application program can indicate its capacity to support persistent sessions by
specifying (PARMS=(PERSIST=YES)). In addition, the application can indicate that
the OPEN ACB associated with this ACB should be permitted to initiate MNPS
forced takeover processing, if necessary, by specifying
(PARMS=(FORCETKO=YES)).

For additional information about the ACB, see Chapter 4, “Opening and closing an
application program,” on page 55.

Syntax

376 z/OS V2R1.0 Communications Server: SNA Programming

�� ACB AM = VTAM
name , APPLID = application_program's_symbolic_name_address , EXLST = exit_list_address

, MACRF = LOGON

, MACRF = LOGON
NLOGON

�

�
, PARMS = (FDX = NO , KEEPFRR = NO , NQNAMES = NO , PERFMON = NO , PERSIST = NO , SRBEXIT = NO , FORCETKO = NO)

(1)
, PARMS = ()

APPLVCTR = vector_address
FDX = NO

FDX = NO
YES

FORCETKO = NO

FORCETKO = NO
YES

KEEPFRR = NO

KEEPFRR = NO
YES

NIB = nib_address
NQNAMES = NO

NQNAMES = NO
YES

PERFMON = NO

PERFMON = NO
YES

PERSIST = NO

PERSIST = NO
YES

SRBEXIT = NO

SRBEXIT = NO
YES

USERFLD = user_data

�

�
, PASSWD = password_address

��

Notes:

1 You can code more than one suboperand on PARMS, but code no more than
one from each group.

Input parameters

AM=VTAM
Identifies the ACB built by this macroinstruction as a VTAM ACB. This
operand is required.

APPLID=application_program's_symbolic_name_address
During OPEN processing, links the ACB with a particular entry in VTAM's
configuration tables that was created by an APPL definition statement. This
both identifies the application program to VTAM and associates the application
program with any options that might be indicated on the APPL statement.

If APPLID is coded, the symbolic name must match either the ACBNAME
parameter (if coded) or the name field on the APPL definition statement. If
ACBNAME has not been coded, APPLID must match the APPL statement's
name field.

If the ACBNAME operand has been omitted, APPLID (and the name field of
the APPL statement) must be a network-unique name for the application to
have cross-domain sessions. If ACBNAME is coded, ACBNAME and APPLID
must be unique only to their domain.

If an application program name is not specified on the APPLID operand of the
ACB macroinstruction, VTAM uses a name supplied by the operating system.
If the name supplied by the operating system does not match a name on the
APPL definition statement, VTAM does not process the ACB.

If the application program is started by a job step that is a procedure
invocation, the name is the procedure step name in the job control language
(JCL) for the application program. Otherwise, it is the job step name in the
JCL.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 377

Format: Expressions involving registers cannot be used with the ACB
macroinstruction.

Note: The area pointed to by this operand must begin with a 1-byte length
field followed by the application program's symbolic name in EBCDIC. This is
the symbolic name that appears in an APPL statement (name or ACBNAME
operand), and must conform to the rules for coding this operand described in
the z/OS Communications Server: SNA Resource Definition Reference. The
length field specifies the length of the name. Any name that is longer than 8
bytes is truncated to 8 bytes. You can either pad the name to the right with
enough blanks to form an 8-byte name (length field of 8), or you can set the
length field to the actual length of the name you are providing and let VTAM
do the padding. In the example at the end of this macroinstruction description,
the first method is used.

The area pointed to by this operand must reside in 24-bit addressable storage.

EXLST=exit_list_address
Links the ACB to an exit list containing addresses of routines to be entered
when certain events occur. This list is created by an EXLST (or GENCB)
macroinstruction. See “EXLST—Create an exit list” on page 404 for a more
complete description of this macroinstruction. You can also refer to Chapter 7,
“Using exit routines,” on page 219, for descriptions of these events.

More than one ACB can indicate the same exit list. For more information, see
“EXLST—Create an exit list” on page 404. If no exit list is used, the application
program is not notified that all the events described in the EXLST
macroinstruction occurred.

The exit list identified in an ACB applies to all sessions with the application
program. A separate exit list can be identified in the NIB used when the
session is established to specify a DFASY, RESP, or SCIP exit routine (or any
combination) to be used for that particular session. For details, refer to
“Specifying the DFASY, RESP, and SCIP exit routines in an ACB or NIB” on
page 229.

Format: Expressions involving registers cannot be used with the ACB
macroinstruction.

MACRF
Indicates whether the application program can act (1) as the PLU in any
LU-LU session other than those that it initiates itself through
OPNDST OPTCD=ACQUIRE and (2) as the SLU in any LU-LU session.

An application program that is recovering for a failing application program
must have the same MACRF value as the failing application program.

MACRF=LOGON
Indicates whether the application program can act (1) as the PLU in any
LU-LU session other than those that it initiates itself through
OPNDST OPTCD=ACQUIRE and (2) as the SLU in any LU-LU session.

MACRF=NLOGON
If NLOGON is specified, the only LU-LU sessions allowed for the
application program are those initiated by the application program itself
using OPNDST OPTCD=ACQUIRE. Thus, if NLOGON is specified, the
application program cannot issue SIMLOGON or REQSESS, cannot have its
SCIP exit routine scheduled with BIND requests sent by other LUs, and
cannot receive CINITs (for instance, in a LOGON exit routine) because of
sessions initiated by other LUs. NLOGON also prevents the operation of

378 z/OS V2R1.0 Communications Server: SNA Programming

SETLOGON OPTCD=START, STOP, and QUIESCE. See also Table 6 on
page 82 for a summary of the interaction between SETLOGON and the
ACB's MACRF operand.

Other application programs can interrogate for the setting of the MACRF
operand by using INQUIRE OPTCD=APPSTAT. See the description of the
INQUIRE macroinstruction.

PARMS=(APPLVCTR=vector_address)
Specifies the address of the application-ACB vector list. The application-ACB
vector list contains a collection of vectors provided by the application to VTAM
on the ACB macroinstruction. See “Vector lists” on page 58 for more
information.

If the application is recovering after a node failure, its application-ACB vector
list must be identical to that of the original application program. See “Opening
the ACB during recovery from a node failure” on page 70 for more
information.

PARMS=(FDX=YES|NO)
Specifies whether the application program supports LU 6.2 architecture
protocol extensions for full-duplex and expedited data transmission. When
starting the first session with a partner LU, the support or non-support
information is used when negotiating LU-LU session support capabilities. If
YES is specified, the application program handles requests for full-duplex
conversations and receipt of expedited data RUs. If omitted, or if NO is
specified, the full-duplex/expedited data extensions are not used on sessions
with this application program.

If the application is recovering after a node failure, its support for LU 6.2
full-duplex protocols must match that of the original application. See “Opening
the ACB during recovery from a node failure” on page 70 for more
information.

PARMS=(FORCETKO)
Indicates whether the application wants the OPEN ACB that is associated with
this ACB to trigger MNPS takeover processing when the existing application
image within the sysplex is not pending some form of MNPS recovery. This
parameter is valid only if PARMS=(PERSIST=YES) is also specified.

PARMS=(FORCETKO=YES)
The application wants MNPS forced takeover processing to be performed
when the existing application image in the sysplex does not require MNPS
recovery processing.

PARMS=(FORCETKO=NO)
The application does not require MNPS forced takeover processing to be
performed. Normal OPEN ACB (which could include MNPS planned
takeover processing) logic should be performed for this ACB.

PARMS=(KEEPFRR)
Specifies whether VTAM maintains the FRR stack for an application-
dispatchable unit of work while VTAM processes the work.

PARMS=(KEEPFRR=YES)
VTAM does not disturb the contents of the FRR stack when VTAM API
gains control. VTAM returns the FRR stack intact when VTAM returns
control to the application.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 379

PARMS=(KEEPFRR=NO)
VTAM purges the FRR stack and adds its own FRRs. VTAM removes the
added FRRs before returning control to the application.

VTAM must have at least one slot on the FRR stack; otherwise, z/OS abends
the SRB.

Note: In order to use the KEEPFRR function for macroinstructions issued with
OPTCD=SYN under control of an SRB that is not running in cross-memory
mode, use OPTCD=(SYN,KEEPSRB). For more information, see “Additional
coding considerations for authorized path” on page 302.

PARMS=(NIB=nib_address)
Points to an NIB used to allow access to the SSCP-LU session. PARMS is
initialized by a CNM application program prior to execution of the OPEN
macroinstruction. This suboperand must be omitted for an application program
that is not authorized for communication network management; in this case,
the address field is set to 0. PARMS must specify a valid NIB address for an
application program authorized for CNM. Refer to the OPEN macroinstruction
ERROR field description of error codes 246 and 250 for further details. When
an ACB is generated during program assembly for a CNM application
program, the PARMS operand and the NIB suboperand initialize the ACBTNIB
field with the NIB address.

When an ACB is generated during program execution, the GENCB
macroinstruction allocates an ACB that includes the ACBTNIB field. However,
manipulative macroinstructions cannot be used to initialize or modify the
ACBTNIB field. Instead, the application program that dynamically initializes
the ACB requires the IFGACB BAL mapping macroinstruction to map the ACB;
the ACBTNIB label declared by the IFGACB macroinstruction is then used by
the application program to initialize the field to the desired NIB address.

For more information about CNM application programs, see Chapter 9,
“Handling errors and special conditions,” on page 277.

PARMS=(NQNAMES)
Specifies whether the application program understands and is using
network-qualified names.

If the application program is recovering after a node or application failure, it
must have the same PARMS=(NQNAMES) value as the original application
program. See “Opening the ACB during recovery from an application failure”
on page 68 or “Opening the ACB during recovery from a node failure” on
page 70 for more information.

PARMS=(NQNAMES=YES)
For application programs that also specify APPC=NO, and for all non
LU6.2 sessions, if PARMS=(NQNAMES=YES), the application program
supports network qualified names, and can use both network-qualified
names and non-network-qualified names. For example, an OPNDST with a
non-network-qualified name works regardless of whether the application
program has specified that it supports network-qualified names.

VTAM examines the NIBNET field (the same field previously used by
NIBMODE) in the ISTDNIB control block. If the contents on NIBNET are
not equal to "RECORD ", and the field has not been set to blanks (X'40) or
null (X'00), the value of NIBNET is used as the network identifier of the
network qualified name (netid.luname). The luname is obtained from the
field NIBSYM of ISTDNIB.

380 z/OS V2R1.0 Communications Server: SNA Programming

For application programs that specify APPC=YES then for all LU 6.2
sessions the following applies: the application program must provide
network qualified names. That is, the PRL6NET field (NETID=) must be
filled in with the network identifier of the target on all APPCCMDs that
also specify RPL6LU (LUNAME=).

PARMS=(NQNAMES=NO)
The application program does not support network-qualified names and
can use only non-network-qualified names. If a network identifier is
provided in the NIB, it is ignored.

PARMS=(PERFMON)
Indicates whether the application is authorized to use the performance monitor
interface.

PARMS=(PERFMON=YES)
The application is authorized to use the performance monitor interface.

PARMS=(PERFMON=NO)
The appplication is not authorized to use the performance monitor
interface.

PARMS=(PERSIST)
Indicates whether the application can support persistent LU-LU sessions.

PARMS=(PERSIST=YES)
The application is capable of persistence, and VTAM tracks each request
unit flowing on any LU-LU sessions established by the application.

PARMS=(PERSIST=NO)
The application is not capable of persistence. The latest RU information is
kept.

PARMS=(SRBEXIT)
Specifies whether the application is authorized to use SRB processing in its exit
routines. The SRBEXIT option enables an application to dynamically control
whether SRB dispatching schedules user exits in SRB mode. SRBEXIT overrides
what is coded on the APPL statement. If this operand is not specified, VTAM
uses the APPL statement.

Note: If multiple applications open an ACB under one task, VTAM recognizes
the SRBEXIT operand for the first application that opens the ACB. Therefore,
the first open ACB determines whether exit routines operate in SRB or task
control block (TCB) mode. This operand is ignored for subsequent applications
opening ACBs under the same task. If you code SRBEXIT=YES on the first
application opening the ACB, the subsequent applications opening ACBs under
the same task must be authorized.

PARMS=(SRBEXIT=YES)
The application is authorized to use SRB processing in its exit routines.

PARMS=(SRBEXIT=NO)
The application is not authorized to use SRB processing in its exit routines.

PARMS=(USERFLD=user_data)
Can be any 4 bytes of data that the application program wants to associate
with the ACB. The ACB macroinstruction stores this data in the ACBUSER
field of the control block that the macroinstruction creates. The field can be
referenced or changed at any time by the application program. VTAM does not
examine this field.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 381

The data can be coded in either character, fixed-point, or hexadecimal format,
or, if an address is desired, it can be coded as an A-type or V-type address
constant. Register notation cannot be used. If the operand is omitted, the user
field is set to 0.

When an ACB is generated during program assembly, the PARMS operand and
the USERFLD suboperand initialize the ACBUSER field with the user data.
When an ACB is generated during program execution, the GENCB
macroinstruction allocates an ACB that includes the ACBUSER field. However,
manipulative macroinstructions cannot be used to initialize or modify the
ACBUSER field. Instead, the application program that dynamically initializes
the ACB requires the IFGACB BAL mapping macroinstruction to map the ACB;
the ACBUSER label declared by the IFGACB macroinstruction is then used by
the application program to initialize the field to the desired user data.

PASSWD=password_address
Allows an application program to associate its ACB with an APPL entry that is
password protected. If a password is included in an APPL entry, any
application program wanting to link its ACB to that entry must specify the
entry's password in the ACB. The two passwords are compared when the
application program opens the ACB. If the passwords do not match, the ACB
is not opened. (The purpose of this password protection is to prevent a
program from running as one of the installation's predefined application
programs without the authorization of the installation.) If you omit this
operand, the PASSWD address field is set to 0.

Note: The area pointed to by this operand must begin with a 1-byte length
field followed by the EBCDIC password (in alphanumeric characters only).
This is the password that is specified using the PRTCT operand of the APPL
definition statement. It must conform to the rules for coding this operand
described in the z/OS Communications Server: SNA Resource Definition
Reference. The maximum length is 8 bytes. The truncation and use of the
length field are the same as for the APPLID operand.

Format: Expressions involving registers cannot be used with the ACB
macroinstruction.

Examples
ACB1 ACB AM=VTAM,APPLID=NAME,PASSWD=PASFLD, C

MACRF=LOGON,EXLST=EXLST1, C
PARMS=(USERFLD=A(MYLU))

.

.

.

.

.

.
NAME DC AL1(L’NAMEF)
NAMEF DC C’PAYROLL’
PASFLD DC AL1(L’PASFLDF)
PASFLDF DC C’SECRET’
MYLU DS XL100

ACB1 generates an ACB that is associated with the PAYROLL APPL entry when
the ACB is opened. SECRET is the password protecting that APPL entry.
MACRF=LOGON means that once the application program has issued SETLOGON
OPTCD=START, the LOGON and SCIP exit routines indicated in EXLST1 can be
scheduled to establish sessions with the application program known as PAYROLL.

382 z/OS V2R1.0 Communications Server: SNA Programming

MYLU is a control block that the application program uses to keep status about
itself.

Completion information

The following ACB fields are set by VTAM and can be examined by the
application program during program execution.

Field name
Contents

ACBAMSVL
3 Indicates the address of the access-method-support vector list. The vector
list is located in read-only storage for the application program. This storage
area is addressable from the address space in which the OPEN
macroinstruction was issued. VTAM sets this field when the OPEN
macroinstruction has completed successfully. For a description of the
access-method-support vector list, refer to “Vector lists” on page 58.

ACBRIVL
3 Indicates the address of the resource-information vector list. The vector
list is located in read-only storage for the application program. This storage
area is addressable from the address space in which the OPEN
macroinstruction was issued. VTAM sets this field when the OPEN
macroinstruction has completed successfully. For a description of the
resource-information vector list, refer to “Vector lists” on page 58.

ERROR
Indicates why the ACB has not been opened or closed successfully. VTAM
uses this field to return information to the application program upon
completion of OPEN or CLOSE processing. You can use either SHOWCB
or TESTCB to examine the codes in this field. The possible codes, along
with their meanings, appear in the OPEN and CLOSE macroinstruction
descriptions. See the description of the OPEN and CLOSE
macroinstructions and Chapter 9, “Handling errors and special conditions,”
on page 277, for more information on this field.

OFLAGS
Indicates whether the ACB is opened or closed. VTAM uses this field to
return information to the application program upon completion of OPEN
or CLOSE processing. By specifying OFLAGS=OPEN on a TESTCB
macroinstruction, you can determine whether the ACB is open. See the
description of the OPEN and CLOSE macroinstructions and Chapter 9,
“Handling errors and special conditions,” on page 277, for more
information on this field.

ACBPSINS
Indicates to opening applications that are capable of persistence that the
opening application has taken over or recovered an application program
that had enabled persistence.

3. This is a label in the IFGACB DSECT (shown in Appendix E, “Control block formats and DSECTs,” on page 739), rather than a
field name. An ACB operand does not exist for this field.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 383

CHANGE—Terminate affinity between LU and generic resource
application

Purpose

When VTAM establishes sessions between application programs and LUs, VTAM
keeps track of the LUs that are currently in session with a generic resource
application. VTAM can distinguish which applications are acting as generic
resources, and is aware of the affinity between an application and any LU that has
established a session with it.

The affinity between an LU and an application program is controlled by either
VTAM or the application program; the controlling party owns the affinity. When
the affinity is owned by the application program and there are no sessions with the
partner LU, the CHANGE OPTCD=ENDAFFIN macroinstruction causes VTAM to
terminate the affinity. When the affinity is owned by the application program and
there are sessions with the partner LU, the CHANGE OPTCD=ENDAFFNF
macroinstruction causes VTAM to terminate the affinity. See “Ownership of
affinities between LUs and application programs” on page 79 for more
information.

Usage

The CHANGE OPTCD=ENDAFFIN|ENDAFFNF macroinstruction uses the NIB to
identify the name of the partner LU and the generic resource name.

Before issuing the CHANGE macroinstruction, the application program must
perform the following steps:
v Set register 13 to the address of an 18-word save area. Refer to Appendix H,

“Summary of register usage,” on page 853 for information about the register
contents upon return of control.

v Terminate all sessions with partner LUs, unless using OPTCD=ENDAFFNF for a
forced termination.

VTAM receives control from the CHANGE macroinstruction in the addressing
mode of the application program that issued the macroinstruction, and returns
control to the application program in that same mode.

Syntax

384 z/OS V2R1.0 Communications Server: SNA Programming

�� CHANGE RPL = rpl_address
name , ACB = acb_address

�

�
, BRANCH = NO

YES
, NIB = nib_address

�

�
(1) (2)

, OPTCD = (ASY)
SYN

ENDAFFIN
ENDAFFNF

��

Notes:

1 Operand value can be placed in its RPL field either by specification on an
RPL macroinstruction operand or by explicitly setting the field using the
IFGRPL DSECT.

2 You can code more than one suboperand on OPTCD, but code no more than
one from each group.

ECB:

, ECB = INTERNAL
ecb_address_field
(ecb_address_register)

Chapter 13. Conventions and descriptions of VTAM macroinstructions 385

EXIT:

, EXIT = exit_routine_address_field
(exit_routine_address_register)

Input parameters

RPL=rpl_address
Indicates the address of the RPL that contains information to be used during
the processing of this request.

ACB=acb_address
Indicates the ACB that identifies the application program issuing CHANGE.

BRANCH
For application programs running in supervisor state under a TCB, BRANCH
indicates whether authorized path processing is to be used. See “Authorized
path” on page 300.

BRANCH=YES
When the macroinstruction is issued, VTAM processes the macroinstruction
using authorized path. For programs running under an SRB rather than
under a TCB, the macroinstruction is processed in this manner
automatically, regardless of the actual setting of the BRANCH field.

BRANCH=NO
When the macroinstruction is issued, VTAM does not process the
macroinstruction using authorized path.

ECB
Indicates that an ECB is posted when an asynchronous (OPTCD=ASY)
CHANGE operation is posted as being complete. You cannot specify both ECB
and EXIT on a single macroinstruction.

ECB=event_control_block_address
Specifies that VTAM is to post an event control block (ECB).
Event_control_block_address is the location of the ECB to be posted. The ECB
can be any fullword of storage aligned on a fullword boundary.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB.

EXIT=exit_routine_address
Indicates the address of an RPL exit routine that is scheduled when an
asynchronous (OPTCD=ASY) CHANGE operation is posted as being complete.
You cannot specify both ECB and EXIT on a single macroinstruction. For
details about the EXIT operand, refer to the RPL macroinstruction description
in this chapter.

OPTCD

OPTCD=SYN|ASY
If the SYN option code is set, control is returned to the application
program when the CHANGE operation has been completed. If the ASY
option code is set, control is returned as soon as VTAM has accepted the
request. After the CHANGE operation has been completed, the ECB is
posted or the RPL exit routine is scheduled, depending on the setting of
the ECB-EXIT field. Refer to the RPL macroinstruction description in this
chapter for details about OPTCD=SYN or OPTCD=ASY.

386 z/OS V2R1.0 Communications Server: SNA Programming

Because it might take VTAM a relatively long time to complete the
CHANGE operation, you should not use the SYN option if suspending the
CHANGE-issuing task or SRB for this time is undesirable. Use the ASY
option code, instead.

ENDAFFIN
Indicates that the association between the issuing application and the
specified network resource is to be terminated.

This OPTCD value requires specification of an NIB containing the name
and network ID of the associated LU and the generic resource name under
which the association was created.

ENDAFFNF
Indicates that the association between the issuing application and the
specified network resource is to be terminated. ENDAFFNF will terminate
the affinity even if sessions are currently active with this partner LU.

This OPTCD value requires specification of an NIB containing the name
and network ID of the associated LU and the generic resource name under
which the association was created.

NIB=nib_address
Specifies the address of a NIB whose NAME and NETID fields designate a
partner LU and a GNAME= field that contains the generic name. These fields
identify the association that is to be terminated.

Examples
CHANGE ACB=CICS03,NIB=NIBGNRS,OPTCD=ENDAFFIN,......

NIBGNRS NIB NAME=NTWKLU,NETID=NETA,GNAME=CICS

This CHANGE macroinstruction will remove the association between an LU
named NETA.NTWKLU and CICS03 using the generic name CICS.

Note: If the NAME=* is specified on the NIB, the CHANGE macroinstruction will
remove all associations with the application program. This function is only
intended for use by an application that is in the process of shutting down.

Completion information

The CHANGE operation is successfully complete when the LU-to-application
association has been terminated.

After the CHANGE operation is completed, the following RPL fields are set:
v The value 25 (decimal) is set in the REQ field, indicating a CHANGE request.
v The RTNCD and FDB2 fields are set as indicated in Appendix B, “Return codes

and sense fields for RPL-based macroinstructions,” on page 651.

Registers 0 and 15 are also set as indicated in Chapter 9, “Handling errors and
special conditions,” on page 277.

CHECK—Check request status
Purpose

When asynchronous handling is specified for an RPL-based request (ASY option
code in effect), the application program receives control when VTAM accepts the

Chapter 13. Conventions and descriptions of VTAM macroinstructions 387

request, and the requested operation is scheduled. A CHECK macroinstruction
must subsequently be issued for the RPL used for the request. CHECK cannot be
issued for synchronous requests, because VTAM performs an internal operation
analogous to CHECK before returning to the next sequential instruction.

Usage

The CHECK macroinstruction must be issued in an addressing mode consistent
with the addressing mode of the application program at the time the original
request is initiated. For example, issuing the CHECK macroinstruction in 24-bit
addressing mode for a request issued in 31-bit addressing mode might have
unpredictable results. The application program must ensure that the CHECK
macroinstruction is issued in a consistent manner. All control blocks used by the
CHECK macroinstruction must reside in 24-bit storage.

A CHECK macroinstruction can be issued if asynchronous ECB posting is used
and, usually, only under the control of a TCB. A CHECK macroinstruction can be
issued under an SRB only if the associated RPL has been posted complete. For
example, CHECK for an RPL can be issued in the RPL user exit routine scheduled
for that RPL because the RPL is posted complete before the user exit is scheduled.
If CHECK is issued under an SRB before the RPL has been posted complete, the
CHECK issues a WAIT, but the WAIT SVC is not allowed under an SRB. You can
issue a CHECK macroinstruction in cross-memory mode against the ECB only after
the request is complete and the ECB is posted. If the request is incomplete or the
ECB is not posted, the user must issue the CHECK macroinstruction in
non-cross-memory TCB mode.

Before issuing the CHECK macroinstruction, the application program must set
register 13 to the address of an 18-word save area. Refer to Appendix H,
“Summary of register usage,” on page 853, for information pertaining to the
register contents upon return of control.

When CHECK executes for an RPL specifying an ECB, the following actions occur:
v If the operation checked does not complete, execution of the application

program task under which the CHECK is issued suspends until the operation
completes. (Asynchronous exit routines associated with this task can still run, as
discussed in “Normal operating system environment for a VTAM application
program” on page 30.)

v If the operation checked completes successfully (RTNCD,FDB2)=(X'00',X'00'),
control returns to the next sequential instruction after CHECK.

v If the operation checked completes unsuccessfully, the LERAD or SYNAD exit
routine is invoked, if available; otherwise, control returns to the next sequential
instruction after CHECK.

v The ECB (internal or external) is cleared before control returns to the application
program. (Clearing the ECB is necessary before an RPL-based macroinstruction
using this RPL is issued.)

Note: Do not clear the ECB specified in the RPL-based macroinstruction
between the time the RPL-based macroinstruction is issued and the
corresponding CHECK is issued. If the ECB is cleared during this interval,
control cannot be returned to the application program after the CHECK is
issued.

v The RPL checked is marked available for reuse by another request. (CHECK is
the only way this can be done for asynchronous requests.)

388 z/OS V2R1.0 Communications Server: SNA Programming

When CHECK executes in an RPL exit routine for the associated RPL, the
following actions occur:

v The RPL checked is marked available for reuse by another request.
v If the operation checked completes successfully (RTNCD,FDB2) = (X'00',X'00'),

control returns to the next sequential instruction after CHECK.
v If the operation checked completes unsuccessfully, the LERAD or SYNAD exit

routine is invoked, if available; otherwise, control returns to the next sequential
instruction after CHECK.

Notes:

1. When you use an RPL exit routine, issue the CHECK macroinstruction only in
the RPL exit routine. If the CHECK is issued outside of the exit routine and the
CHECK executes before the RPL exit routine is invoked, the CHECK fails with
a return code of X'18' in register 0.

2. When a synchronous request is issued, VTAM uses the ECB-EXIT field to
perform an internal function analogous to CHECK.

For detailed information on the use of the CHECK macroinstruction, refer to
Chapter 3, “Organizing an application program,” on page 33, and Chapter 4,
“Opening and closing an application program,” on page 55.

Syntax

�� CHECK RPL = rpl_address
name

��

Input parameters

RPL=rpl_address
Indicates the address of the RPL associated with the request whose completion
status is being checked.

Format: Register notation (for registers 2–12) is valid.

Note: See the ECB and EXIT operands in the RPL macroinstruction description
for more information about the RPL exit routine and the ECB.

Examples
CHK1 CHECK RPL=RPL1

If CHK1 is in the routine indicated by RPL1's EXIT field, and the operation
requested through RPL1 ends with a logic or other error, the LERAD or SYNAD
exit routine is scheduled.

If there is no RPL exit routine for RPL1, CHK1 causes program execution to stop
until the operation requested through RPL1 has ended. If the operation ends with
a logic or other error, CHK1 causes the LERAD or SYNAD exit routine to be
invoked.

Completion information

When CHECK processing has completed, registers 0 and 15 are set as indicated in
Chapter 9, “Handling errors and special conditions,” on page 277. If an error
occurred and an LERAD or SYNAD exit routine was invoked, these registers

Chapter 13. Conventions and descriptions of VTAM macroinstructions 389

contain the values set in them by the exit routine. Otherwise, VTAM places a
general return code in register 15 and a recovery action return code in register 0.

CLOSE—Close one or more ACBs
Purpose

The following are the significant results of successfully executing the CLOSE
macroinstruction (when persistence is not enabled):
v VTAM no longer accepts any requests that refer to the ACB specified in the

CLOSE macroinstruction. This ACB is effectively disassociated from VTAM.
Outstanding requests are posted complete.

v VTAM no longer maintains the association between the APPL entry known to
VTAM and the ACB specified in this macroinstruction.

v VTAM terminates every session that exists between the application program
logical unit (represented by the ACB) and other logical units. Before CLOSE
terminates a session, all communication activity is stopped and all pending
communication requests are canceled.

The preceding conditions do not apply when persistence is enabled. Instead, the
following occurs:
v VTAM puts all active sessions in the recovery pending state.
v VTAM terminates all queued and pending active sessions and, if PSTIMER is set

on SETLOGON OPTCD=PERSIST, VTAM starts timing. If doing MNPS, the
MNPS state in the coupling facility is set to "SNPS recovery pending".

The CLOSE macroinstruction can be applied to more than one ACB. CLOSE must
be issued in the mainline program. VTAM prevents attempts to issue CLOSE in an
RPL exit routine or in any of the asynchronous EXLST exit routines, such as the
TPEND exit routine.

For cross-memory API users, the following conditions must be met:
v CLOSE must be issued in non-cross-memory mode by mainline processing

under TCB control.
v CLOSE must be issued in the address space that becomes the primary address

space during a cross-memory VTAM API request.

See “Cross-memory application program interface (API) support” on page 317 for
more information.

Usage

The ACB and its related storage (APPLID, password, EXLST, NIB, and
application-ACB vector list) must be allocated in the same storage key. This key
can be the storage key of the program status word (PSW) at the time OPEN was
issued, or the storage key of the task control block (TCB).

The access-method-support and resource-information vector lists (described in
“Vector lists” on page 58) must not be referenced after the CLOSE macroinstruction
is issued.

For general information about the CLOSE macroinstruction, refer to Chapter 4,
“Opening and closing an application program,” on page 55. For multitasking and
multiple address space considerations involving the CLOSE macroinstruction, refer
to Chapter 10, “Operating system facilities,” on page 295.

390 z/OS V2R1.0 Communications Server: SNA Programming

Control block fields referenced by the CLOSE macroinstruction can reside in either
31-bit or 24-bit storage but must be consistent with the addressing mode of the
application program. The MODE parameter is used to set the addressing mode of
the ACB control block for these macroinstructions.

Because further considerations apply, VTAM must issue the list or execute form of
the CLOSE macroinstruction.

The standard form of the CLOSE macroinstruction expands at assembly time into
(1) nonexecutable code that represents the parameters you specified on the
macroinstruction and (2) executable code that causes the access method to be
entered when the macroinstruction is executed. The nonexecutable code, called the
parameter list, is assembled at the point in your application program where the
macroinstruction appears.

List and execute forms of the CLOSE macroinstruction cause the assembler to:
v Build the parameter list where the macroinstruction appears in your source code,

but assemble no executable code (list form)
v Assemble code that modifies a parameter list and causes the access method to be

entered during program execution (execute form).

Table 90 summarizes the actions of these various forms. It also indicates the types
of programs that would use each form and shows the use of the MF operand.
Below the table is the list and execute form of the close macroinstruction.

Table 90. Forms of the CLOSE macroinstruction

Form During assembly During execution Useful for Coded with

Standard Parameter list built
where
macroinstruction
appears in source
code.

Access method
entered.

Non-reentrant
programs that are not
sharing or modifying
parameter lists.

No MF operand

List Parameter list built
where
macroinstruction
appears in source
code.

No executable code
(execute form
required).

Non-reentrant
programs that are
sharing or modifying
parameter lists.

MF=L

Execute Code assembled
(where
macroinstruction
appears in the source
code) to modify the
parameter list whose
address you supply.

Parameter list
modified and the
access method
entered.

Programs using the
list form.

MF=(E,address)

Syntax

Chapter 13. Conventions and descriptions of VTAM macroinstructions 391

�� CLOSE (acb_address)
name (acb_address)

�

�
, MF = (E)

, parameter_list_address
(register)

L

�

�
, MODE = (24)

, MODE = (31)
��

Input parameters

acb_address
Indicates the ACB disassociated from VTAM.

Format: If you code only one address, you can omit the parentheses. You can
code up to 255 addresses. Separate each ACB address with two commas.

Note: Issue one CLOSE macroinstruction to close VSAM ACBs in addition to
VTAM ACBs. Include DCBs.

MF=E
Indicates use of the execute form of the CLOSE macroinstruction and existing
parameter list.

parameter_list_address
Indicates the location of the parameter list used by the access method.

The execute form allows you to modify the parameter list between the
generation of that parameter list and the invocation of the access method
routines that use the parameter list. Only the execute form provides a
means for you to modify the parameter list after it is built.

(register)
Indicates the number of the register that will contain the parameter list
address when the macroinstruction is executed.

MF=L
Indicates that the CLOSE macroinstruction creates a parameter list referred to
by an execute-form instruction.

MODE
specifies the format of the CLOSE parameter list being generated.

24 specifies that a standard form (24-bit) parameter list address be generated.
The parameter list must reside below 16 megabytes and point to an ACB
residing below 16 megabytes.

31 specifies that a long form (31-bit) parameter list address be generated. This
parameter value must be coded if the parameter list or the ACB control
block resides above 16 megabytes.

Examples
CLOSE123 CLOSE (ACB1,,ACB2,,(7))

392 z/OS V2R1.0 Communications Server: SNA Programming

CLOSE123 closes ACB1, ACB2, and the ACB whose address is in register 7. All
sessions with the application program logical units represented by these ACBs are
terminated.

Completion information

When control is returned to the instruction following the CLOSE macroinstruction,
register 15 indicates whether the CLOSE processing has been completed
successfully.

Successful completion (meaning that all ACBs specified in the macroinstruction
have been disassociated from VTAM) is indicated by a return code of 0.

Unsuccessful completion is indicated by the following register 15 values:

Value Meaning

4 (X'04')
One or more ACBs were not successfully closed. Depending on the type of
error, the OFLAGS field can indicate that the ACB is closed even though
the CLOSE has failed (for example, the ACB might never have been
opened).

8 (X'08')
One or more ACBs were not successfully closed. Inspect the ERROR field
for the cause of the failure. Another CLOSE macroinstruction can be used.

12 (X'0C')
One or more ACBs were not successfully closed. Another CLOSE
macroinstruction cannot be issued.

Use the following guidelines to determine whether the CLOSE was successful:
1. Put 0 in register 15 before issuing CLOSE.
2. Issue CLOSE for only one VTAM ACB at a time.
3. If register 15 is 0, consider the CLOSE successful. If register 15 is not 0,

consider the CLOSE unsuccessful, and examine the contents of the ACBs
ERROR field.

If unsuccessful completion is indicated, the application program can examine the
OFLAGS field in each ACB to determine which ACB was not closed. If you use the
OFLAGS=OPEN operand on a TESTCB macroinstruction, an “equal” PSW
condition code results if the previously opened ACB was not closed.

For each ACB, you can use either the SHOWCB or TESTCB macroinstruction to
check the ERROR field and determine the cause of the error. For example:
SHOWCB
AM=VTAM,ACB=ACB1,FIELDS=ERROR,AREA=SHOWIT, C

LENGTH=4

Note: If the ACB address specified in the CLOSE macroinstruction does not
indicate an ACB, or lies beyond the addressable range of your application
program, the ERROR and OFLAGS fields in the ACB are unchanged.

The value set in the ERROR field of the ACB specified in the CLOSE
macroinstruction indicates the specific nature of the error (if any) found.

ERROR field
Meaning

Chapter 13. Conventions and descriptions of VTAM macroinstructions 393

0 (X'00')
CLOSE successfully closed the ACB.

4 (X'04')
A CLOSE macroinstruction has been successfully issued for this ACB (or
the ACB has never been opened in the first place).

20 (X'14')
CLOSE cannot be processed because of a temporary shortage of storage.

64 (X'40')
Outstanding OPNDST OPTCD=ACQUIRE is not released.

66 (X'42')
The ACB has been closed, but an apparent system error has prevented the
successful termination of one or more of the sessions that the application
program has. There is a logic error in VTAM; consult IBM Service. The LUs
that have not had their sessions terminated are not available to other
application programs, and LUs with which you were requesting a session
when the CLOSE macroinstruction was issued are likewise unavailable.
You can notify the VTAM operator (while the program is running) of the
situation so that the operator can make the LUs available to other
application programs.

70 (X'46')
CLOSE was not issued in the mainline program. OPEN and CLOSE cannot
be issued in any exit routine.

76 (X'4C')
This application program is authorized to issue VTAM operator commands
and receive VTAM messages. A CLOSE was issued, but messages are still
queued for it, or VTAM is waiting for a reply, or both. See “Orderly closing
of a program operator” on page 882 for more information.

80 (X'50')
VTAM is no longer included as part of the operating system.

96 (X'60')
An apparent system error occurred. Either there is a logic error in VTAM;
or there is an error in your use of OPEN or CLOSE that VTAM did not
properly detect. Save all applicable program listings and storage dumps,
and consult IBM Service.

112 (X'70')
CLOSE was issued while the program was in the process of terminating
abnormally. The CLOSE is not necessary because the ACB is closed by
VTAM when the task terminates.

188 (X'BC')
The ACB is in the process of being opened or is in the process of being
closed by another request.

CLSDST—Terminate sessions, application program is the PLU
Purpose

The CLSDST macroinstruction is used to terminate sessions in which the
application program is acting as the PLU. CLSDST sends UNBIND requests from
the PLU to the SLUs to terminate active sessions (sessions for which BIND has
been sent). CLSDST sends TERMINATE for sessions which are queued. CLSDST
also rejects CINIT requests received at the PLU for the specified SLU. The CLSDST

394 z/OS V2R1.0 Communications Server: SNA Programming

macroinstruction can also be used to initiate the next session the SLU has. In
addition, the CLSDST macroinstruction can be used to terminate a queued session
when OPTCD=TERMQ is used.

Usage

Before issuing the CLSDST macroinstruction, the application program must set
register 13 to the address of an 18-word save area. Refer to Appendix H,
“Summary of register usage,” on page 853, for information pertaining to the
register contents upon return of control.

The CLSDST macroinstruction employs the RPL, and optionally the NIB, to
identify the set of sessions to be terminated. A detailed description of the
parameters and operation of the CLSDST macroinstruction is contained in
Chapter 5, “Establishing and terminating sessions with logical units,” on page 81.

VTAM receives control from the CLSDST macroinstruction in the addressing mode
of the application program that issued the macroinstruction and returns control to
the application program in that same mode.

Syntax

�� CLSDST RPL = rpl_address
name

�

�
(1)

, AAREA = target_plu's_symbolic_name_address

�

�
(1)

, ACB = acb_address
(1)

, AREA = user_data_address

�

�
(1)

, ARECLEN = target_plu's_name_length

�

�
(1)

, ARG = (register)
(1)

, NIB = nib_address

(1)
, BRANCH = NO

YES

�

�
(1)

, ECB = INTERNAL
, ECB = ecb_address

(1)
, EXIT = exit_routine_address

�

Chapter 13. Conventions and descriptions of VTAM macroinstructions 395

�
(1) (2)

, OPTCD = (ASY)
SYN
MTS
NMTS
PASS
RELEASE
TERMQ
SENSE
NSENSE
SONCODE
NSONCODE

�

�
(3) (1)

, PARMS = (SONCODE = code)
THRDPTY = NONOTIFY

NOTIFY

�

�
(1)

, RECLEN = user_data_length
(1)

, SSENSEO = 0
CPM
FI
RR
STATE

�

�
(1)

, SSENSMO = system–sense_modifier_value

�

�
(1)

, USENSEO = user–sense_value

��

Notes:

1 Operand value can be placed in its RPL field either by specification on an
RPL macroinstruction operand or by explicitly setting the field using the
IFGRPL DSECT.

2 You can code more than one suboperand on OPTCD, but code no more than
one from each group.

3 You can code more than one suboperand on PARMS, but code no more than
one from each group.

Input parameters

RPL=rpl_address
Indicates the RPL that specifies which kind of processing CLSDST is to
perform.

The following RPL operands apply to the CLSDST macroinstruction:

AAREA=target_plu's_symbolic_name_address
Indicates the name of the target PLU of a CLSDST OPTCD=PASS. If
NQNAMES=NO, the name must be 8 bytes long, padded to the right with
blanks. If NQNAMES=YES, the name can be 8 bytes long, padded to the right
with blanks or it can be an 8-byte long network identifier padded to the right

396 z/OS V2R1.0 Communications Server: SNA Programming

with blanks, followed by an 8-byte name padded with blanks to the right. The
target PLU cannot be the application program that is issuing the CLSDST
OPTCD=PASS.

ACB=acb_address
Indicates the ACB that identifies the application program issuing CLSDST.

AREA=user_data_address
Indicates the location of the user data to be sent to the target PLU of CLSDST
OPTCD=PASS. The contents and format of the user data are determined by the
logical units. The user data is equivalent to the user data field of an Initiate
request or a character-coded logon. User data is sent only if OPTCD=PASS is
set.

ARECLEN=target_plu's_name_length
Indicates the length (in bytes) of the data contained in the area indicated by
the AAREA parameter.

ARG=(register)
Indicates the register containing the CID of the session to be terminated.

Note:

1. The NIB and the ARG operands occupy the same physical field (RPLARG)
in the RPL. If the last macroinstruction operand used to set or modify this
field was ARG=(register), or if the field has been left unchanged since
VTAM inserted a CID into it, VTAM recognizes that this field contains a
CID. If the last operand used to set or modify this field was NIB=address,
VTAM recognizes that the field contains an NIB address.

2. If your application uses the RPL DSECT, IFGRPL, you must clear the
RPLNIB bit if a CID is being inserted into the RPLARG field.

BRANCH
For application programs running in supervisor state under a TCB, BRANCH
indicates whether authorized path processing is to be used. See “Authorized
path” on page 300.

BRANCH=YES
When the macroinstruction is issued, VTAM processes the macroinstruction
using authorized path. For programs running under an SRB rather than
under a TCB, the macroinstruction is processed in this manner
automatically, regardless of the actual setting of the BRANCH field.

BRANCH=NO
When the macroinstruction is issued, VTAM does not process the
macroinstruction using authorized path.

ECB
Indicates that an ECB is posted when an asynchronous (OPTCD=ASY) CLSDST
operation is posted as being complete. You cannot specify both ECB and EXIT
on a single macroinstruction.

ECB=event_control_block_address
Specifies that VTAM is to post an event control block (ECB).
Event_control_block_address is the location of the ECB to be posted. The ECB
can be any fullword of storage aligned on a fullword boundary.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB.

EXIT=exit_routine_address
Indicates the address of an RPL exit routine that is scheduled when an

Chapter 13. Conventions and descriptions of VTAM macroinstructions 397

asynchronous (OPTCD=ASY) CLSDST operation is posted as being complete.
You cannot specify both ECB and EXIT on a single macroinstruction. For
details about the EXIT operand, refer to the RPL macroinstruction description
in this chapter.

NIB=nib_address
Indicates the NIB whose NAME field identifies the sessions to be terminated.
(See “Scope of CLSDST” on page 92 for details.) If the NIB operand is not
specified, the RPLARG field must contain the CID of the session.

If OPTCD=PASS is specified, the NIB optionally has a LOGMODE field which
specifies the name of the session parameter set to be used in establishing a
new session.

If OPTCD=TERMQ is specified, a NIB must be supplied, which identifies the
NAME of the session partner, which identifies the session to be terminated.

If the application program issues CLSDST OPTCD=PASS with
PARMS=(THRDPTY=NOTIFY), the USERFLD contents are passed as a
correlator to the application program's NSEXIT exit routine, if it is scheduled.

Note: If your application uses the RPL DSECT, IFGRPL, you must set the
RPLNIB bit if an NIB address is being inserted into the RPLARG field.

OPTCD=MTS
OPTCD=NMTS

If you code OPTCD=MTS, VTAM expects to find valid model terminal support
(MTS) override data in an area pointed to by NIBMTSAR and formatted to
match the ISTMTS DSECT. OPTCD=MTS is valid only in combination with
OPTCD=PASS and requires the specification of the NIB operand. If you code
OPTCD=NMTS, VTAM does not expect any MTS override data, and the NIB
operand remains optional.

If you do not code either OPTCD=MTS or OPTCD=NMTS on this
macroinstruction, VTAM uses the value left over from the previous use of the
RPL.

Note: NIBMTSAR is an alternate name for the NIBNDAR field used by the
OPNDST and OPNSEC macroinstruction to point to BIND image data.
Therefore, do not code both MTSAREA and BNDAREA on the same
macroinstruction.

OPTCD=NSENSE
OPTCD=SENSE

When a CLSDST macroinstruction is issued with OPTCD=RELEASE to reject a
CINIT request, OPTCD=NSENSE or OPTCD=SENSE indicates whether values
were specified with the SSENSEO, SSENSMO, and USENSEO operands. If
OPTCD=NSENSE is coded, VTAM rejects the CINIT with a sense value of
X'08010000'. If OPTCD=SENSE is specified, VTAM rejects the CINIT with the
application-specified sense values in the SSENSEO, SSENSMO, and USENSEO
fields of the RPL.

Note: Only a nonzero sense is allowed for OPTCD=SENSE. If you specify
OPTCD=SENSE, and a sense code of X'00000000', CLSDST is rejected with
RTNCD/FDB2=X'14',X'50' (RPL field not valid).

OPTCD=NSONCODE

398 z/OS V2R1.0 Communications Server: SNA Programming

OPTCD=SONCODE
If OPTCD=NSONCODE, VTAM uses an UNBIND SON code of X'01'. If
OPTCD=SONCODE, VTAM uses the SON code specified in the RPL with the
PARMS=(SONCODE=code) operand.

OPTCD=PASS
OPTCD=RELEASE
OPTCD=TERMQ

For CLSDST (PASS), two names can be network-qualified: the name of the LU
whose session is to be terminated, and the name of the primary LU that the
session is being passed to.
v If PARMS=(NQNAMES=NO) on the ACB macroinstruction and ARECLEN is

greater than or equal to 8, the 8-byte name in AAREA is used as the target
of the primary LU that the session is being passed to.

v If PARMS=(NQNAMES=YES) on the ACB macroinstuction and ARECLEN is
greater than or equal to 16, the network-qualified name in AAREA is used as
the target of the primary LU that the session is being passed to.

v If PARMS=(NQNAMES=YES) on the ACB macroinstuction and ARECLEN is
greater than or equal to 8 but less than 16, the 8-byte name in AAREA is
used as the target of the primary LU that the session is being passed to.

The format of the network-qualified name in AAREA is the 8-byte network
identifier (padded with blanks, if necessary) followed by the 8-byte resource
name (padded with blanks, if necessary).

If AAREA contains a network-qualified name, VTAM initiates a session
between the PLU, specified as a network-qualified name in RPLAAREA, and
the SLU this application program is currently in session with. The name of the
SLU is specified as described under “Network-qualified names with CLSDST”
on page 402.

When the session setup is completed, regardless of whether the setup is
successful, the NSEXIT is scheduled, and the NOTIFY request or the NSPE
request is presented to the exit. The control vectors X'0E' are removed from the
NOTIFY request that is presented to the initiating application program;
therefore, the NOTIFY request appears no different from the NOTIFY request
in previous releases of VTAM. However, the network-qualified names are
available and are pointed to by Word 7 on the parameter list passed to the
NSEXIT.

The control vector X'59' for session authorization data, if present in the original
CINIT, may not be passed to the initiating LU. This action is determined by
settings for the SMEAUTH start option and the structure of the control vector
as it is built by the session management exit. The SMEAUTH start option can
override the session management exit's setting. For more information, refer to
z/OS Communications Server: SNA Resource Definition Reference and z/OS
Communications Server: SNA Customization.

If AAREA contains a non-network-qualified name, VTAM initiates a session
between the PLU, specified as a non-network-qualified name in RPLAAREA,
and the SLU this application program is currently in session with. The name of
the SLU is specified as described under “Network-qualified names with
CLSDST” on page 402. The name translations that occur for other
non-network-qualified names (for example, for names in SIMLOGON) also
occur for the name in RPLARREA.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 399

If (PARMS=(THRDPTY=NOTIFY)) is specified, when the session setup is
completed, regardless of whether the setup is successful, the NSEXIT is
scheduled, and the NOTIFY request or the NSPE request is presented to the
exit.

When RELEASE is set, VTAM determines the identity of the logical unit's next
session partner (if any). When PASS is set, the application program determines
the identity of the logical unit's next session partner; an Initiate request is sent
to the SSCP to request a session between the SLU and the target PLU whose
symbolic name is indicated in the AAREA field of the RPL used by CLSDST. If
the AREA and RECLEN fields are also set, user data is sent to the target PLU
in the CINIT request.

If OPTCD=TERMQ is coded, VTAM only terminates queued sessions (active
sessions are not terminated). When TERMQ is specified, the session partner
name must be used via the NIB. CID cannot be used for this option. VTAM
sends a TERMINATE for this option.

OPTCD=SYN
OPTCD=ASY

If SYN option code is set, control is returned to the application program when
the CLSDST operation has completed. If ASY option code is set, control is
returned as soon as VTAM has accepted the request. Once the CLSDST
operation has completed, the ECB is posted or the RPL exit routine is
scheduled, depending on the setting of the ECB-EXIT field. Refer to the RPL
macroinstruction description in this chapter for details about OPTCD=SYN or
OPTCD=ASY.

Because it might take VTAM a relatively long time to complete the CLSDST
operation, you should not use the SYN option if you are suspending the
CLSDST-issuing task or if SRB for this time is undesirable. Use the ASY option
code, instead.

PARMS=(SONCODE=code)
The application program sets the UNBIND SON code by specifying
PARMS=(SONCODE=code) and OPTCD=SONCODE, where code is the 1-byte
UNBIND type code used by VTAM on an UNBIND RU. See SNA Formats ,
which contains a description of the UNBIND RU, for definitions of the
UNBIND type codes (SON codes). VTAM does not validate the code specified
in this parameter.

If PARMS=(SONCODE=X'FE') is specified, system-sense and user-sense are set
with the existing SSENSEO, SSENSMO, and USENSEO RPL fields.

PARMS=(THRDPTY=NOTIFY)
PARMS=(THRDPTY=NONOTIFY)

Indicates for CLSDST OPTCD=PASS whether the application program receives
notification when the new session is established between the target PLU and
the SLU (that is, when a positive response is received to the BIND for that
session). If THRDPTY=NOTIFY is specified, and the session is established, the
application program receives a Notify request in its NSEXIT exit routine. If the
session setup fails, the application program receives an NSPE or Notify in its
NSEXIT exit routine, regardless of the setting of this parameter.

RECLEN=user_data_length
Indicates how many bytes of user data are to be sent to the target PLU of a
CLSDST OPTCD=PASS. The value in RECLEN can be no larger than 255. If
RECLEN is set to 0, the AREA field is ignored and no user data is sent.

SSENSEO=0

400 z/OS V2R1.0 Communications Server: SNA Programming

SSENSEO=CPM
SSENSEO=FI
SSENSEO=RR
SSENSEO=STATE

.

This field can be used to provide application-specified sense values for
negative responses to CINIT or for UNBIND. See the section on the TERMSESS
macroinstruction for more information.

SSENSMO=system-sense_modifier_value
This field can be used to provide application-specified sense values for
negative responses to CINIT or for UNBIND. See the TERMSESS
macroinstruction for more information.

Specify any decimal integer 0–255 inclusive, or specify a 1-byte hexadecimal
constant.

USENSEO=user-sense_value
This field can be used to provide application specified sense values for
negative responses to CINIT or for UNBIND. See the TERMSESS
macroinstruction for more information.

Specify any decimal integer 0–65535 inclusive, or specify a 2-byte hexadecimal
or character constant.

Examples
CL1 CLSDST RPL=RPL1, C

ACB=ACB1, C
NIB=NIB3, C
AAREA=APPLNAME, C
AREA=LGNMSG,RECLEN=60, C
ECB=POSTIT1,OPTCD=(ASY,PASS), C
PARMS=(THRDPTY=NOTIFY)

.

.

.

.

.

.
POSTIT1 DS F
NIB3 NIB NAME=LU1,LOGMODE=BATCH
APPLNAME DC CL8’PLOTTER’
LGNMSG DC CL60’LOGON FROM LU1’

CL1 terminates the session with the logical unit represented in NIB3 (LU1) after
initiating a session between LU1 and the application program named PLOTTER.
This macroinstruction also specifies a logon mode name (BATCH) and 60 bytes of
information containing a user data field (LGNMSG). The user data field and the
session parameters that VTAM derives from the logon mode name can be accessed
(using INQUIRE) by the application program receiving the CINIT resulting from
the Initiate before it issues OPNDST. The logon mode name (BATCH in this
example) and class-of-service name are contained in the CINIT request and can be
accessed by the target PLUs LOGON exit routine. The application program's
NSEXIT routine is driven with a Notify request when the session between LU1 and
PLOTTER has been established.
CL2 CLSDST RPL=RPL2, C

ARG=(3), (SESSION TO BE TERMINATED) C
ECB=POSTIT2, C
OPTCD=(ASY,RELEASE,SENSE), C
SSENSEO=5,SSENSMO=6 C

Chapter 13. Conventions and descriptions of VTAM macroinstructions 401

CL2 terminates the session whose CID has been placed in register 3. Unlike the
first example, CL2 does not initiate a session with a specified PLU.
CL3 CLSDST RPL=RPL3, C

ACB=ACB1, C
NIB=NIB6, (SESSION TO BE TERMINATED) C
AAREA=APPLNAME, (APPLICATION TO RECEIVE CINIT C

REQUEST) C
RECLEN=0, (NO USER DATA) C
ECB=POSTIT3,OPTCD=(ASY,PASS)

.

.

.

.

.

.
APPLNAME DC CL8’PLOTTER’
POSTIT3 DC F’0’
NIB6 NIB NAME=LU3

CL3 terminates the session with the logical unit represented by NIB6 (LU3), and
initiates a session between LU3 and the application program named PLOTTER.
Because the RECLEN field is being set to 0, no user data field is sent to PLOTTER.
The default logon mode name of 8 blanks is assumed.

Completion information

The CLSDST operation is successfully completed when either:
v The SSCP responds to the Terminate request generated by CLSDST for CLSDST

OPTCD=TERMQ.
v The current session terminates for CLSDST OPTCD=RELEASE or PASS. For

CLSDST OPTCD=PASS, completion does not depend on the action (accepting or
rejecting the session) of the target PLU.

After the CLSDST operation is completed, the following RPL fields are set:
v The value 31 (decimal) is set in the REQ field, indicating a CLSDST request.
v The RTNCD and FDB2 fields are set as indicated in Appendix B, “Return codes

and sense fields for RPL-based macroinstructions,” on page 651.

If CLSDST is issued for a session that has been terminated, a return code
(RTNCD,FDB2)=(0C,0B) can be posted.

If the macroinstruction returns an error code, the SSENSEI, SSENSMI, and
USENSEI fields can be set indicating system-sense information, system-sense
modifier, and user-sense information. See Appendix B, “Return codes and sense
fields for RPL-based macroinstructions,” on page 651 for more information about
these fields.

Registers 0 and 15 are also set as indicated in Chapter 9, “Handling errors and
special conditions,” on page 277.

Network-qualified names with CLSDST

If the NIB is specified and if it contains a network identifier in ISTNIB, the
network identifier is used along with the LU name in NIBSYM to create a
network-qualified name that represents the name of the LU whose sessions are to
be terminated. However, if APPC=YES, the sessions terminated do not include LU
6.2 sessions controlled by VTAM.

402 z/OS V2R1.0 Communications Server: SNA Programming

If no NIB is supplied, the RPLARG contains the CID of the one and only session to
be terminated.

If the application program is specified with PARSESS=YES and a NIB is supplied,
and if NIBCID in not equal to zero, NIBCID contains the CID of the one and only
session to be terminated.

If the application program is specified with PARSESS=YES and a NIB is supplied,
and if NIBCID is equal to zero, all sessions to the SLU or SLUs specified in
NIBSYM are to be terminated. This can include sessions to multiple networks.
However, if APPC=YES, the sessions terminated do not include LU 6.2 sessions
controlled by VTAM.

EXECRPL—Execute a request
Purpose

When an RPL-based request fails for a temporary reason and the request might
succeed if reissued, VTAM returns a recovery action return code of 8 in register 0
and in the RPL's RTNCD field. The portion of the application program receiving
control (the SYNAD exit routine or the next sequential instruction) has the address
of the RPL available to it in register 1. The program can issue an EXECRPL
macroinstruction to retry the request without having to modify the request's RPL.

Usage

The operation performed by EXECRPL depends on the request code that is set in
the RPLs REQ field. If the REQ field indicates a RECEIVE request, for example, the
effect of EXECRPL is identical to that of a RECEIVE macroinstruction. (The REQ
field is described in the RPL macroinstruction.) EXECRPL can be used to execute
any RPL-based request except CHECK or another EXECRPL macroinstruction.

When EXECRPL is used for its intended purpose—that is, to re-execute a request
that has failed with a recovery action return code of 8—the application program
need not concern itself with the RPL contents when EXECRPL is issued. But if
EXECRPL is used to retry a request that has failed with some other recovery action
return code (or to repeat a request that has not failed at all), close attention must
be paid to RPL fields that can be set by the application program and then modified
by VTAM while the request is being processed.

For example, the RPL's RESPOND field for a SEND request is set by the
application program (to indicate whether a response is to be returned) and is then
reset by VTAM (to indicate the type of response returned). EXECRPL should not be
issued for this RPL unless the RESPOND field is reset to its intended setting.

The following tables identify those fields that can be set by the application
program and then reset by VTAM. These fields are identified with an “AV” under
the appropriate macroinstruction.
v Figure 89 on page 512 and Figure 90 on page 513
v Figure 178 on page 848, Figure 179 on page 849, and Figure 180 on page 850
v Figure 181 on page 851 and Figure 182 on page 852

We recommend that the application program establish a suitable limit on the
number of times it uses the EXECRPL macroinstruction in an error recovery
attempt.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 403

Before issuing the EXECRPL macroinstruction, the application program must set
register 13 to the address of an 18-word save area. Refer to Appendix H,
“Summary of register usage,” on page 853, for information pertaining to the
register contents upon return of control.

VTAM receives control from and returns control to the EXECRPL macroinstruction
in the addressing mode of the application program that issued the
macroinstruction.

Syntax

�� EXECRPL RPL = rpl_address
name

�

�
, rpl_field_name = new_value

��

Input parameters

RPL=rpl_address
Indicates the location of the RPL defining the request to be reexecuted.

rpl field name=new_value
Indicates a field of the RPL to be modified and the new value that is contained
or represented within it.

Format: For rpl_field_name, code the keyword of the RPL macroinstruction
operand that corresponds to the RPL field to be modified. The new_value can
be any value that could have been supplied with the keyword had the operand
been issued in an RPL macroinstruction, or it can indicate a register that
contains such a valid value.

Examples
RETRY1 EXECRPL RPL=(1)

A SYNAD exit routine has been entered for a retrievable error (register 0 is set to
8). The request is reexecuted as defined by the current contents of the RPL.

Completion information

After the EXECRPL operation is completed, the action taken by VTAM depends on
the type of request that EXECRPL has processed. The manner in which the
application program is notified of completion (ECB or EXIT), the RPL fields and
return codes that are returned, and the data areas (if any) that are used depend on
the contents of the RPL when EXECRPL was executed. If the request is successfully
accepted, then registers 0 to 15 at the next sequential instruction after EXECRPL
are set exactly as expected when the original macroinstruction was issued.

EXLST—Create an exit list
Purpose

The EXLST macroinstruction builds a list of exit routine addresses. Each operand
in this macroinstruction represents a class of events for which an exit routine can
be invoked by VTAM. The address supplied for each operand indicates the
user-written routine to be given control when an event that it handles occurs. For

404 z/OS V2R1.0 Communications Server: SNA Programming

example, the SYNAD operand supplies the address of a routine that handles
exception conditions (other than logic errors) for RPL-based macroinstructions, and
the NSEXIT operand supplies the address of a routine that handles certain network
services requests from VTAM. Refer to Chapter 7, “Using exit routines,” on page
219, for detailed information about each of the exit routines that can be specified
by EXLST, including the parameter lists passed to the exit routines and register
usage for each exit routine.

Usage

The application program places the address of the exit list created by the EXLST
macroinstruction in the EXLST field of an ACB or of an NIB. See the ACB and NIB
macroinstructions for details.

An EXLST macroinstruction causes an EXLST control block to be built during
program assembly. The control block is built on a fullword boundary. The EXLST
control block can also be built during program execution with the GENCB
macroinstruction. The EXLST control block can be modified during program
execution by using the MODCB macroinstruction or by using the DSECT created
by the IFGEXLST mapping macroinstruction. After OPEN is done for an ACB that
specifies an EXLST, or after OPEN (for a CNM application program), OPNDST, or
OPNSEC is done for an NIB that specifies an EXLST, the exit routines defined by
that EXLST cannot be modified or freed for the application program represented
by the ACB or for the session represented by the NIB.

When you examine your program listing, you might discover that the assembler
has reserved space for exit list addresses that you never specified. Unspecified exits
are not, however, used by VTAM, and you cannot use MODCB to insert an
address in a field you never specified in the EXLST (or GENCB) macroinstruction.
An address of 0 can never be specified.

Note: Only exit routines that VTAM recognizes can be specified with the VTAM
EXLST macroinstruction. For example, VSAM exit routines are not allowed.

The expansion of the EXLST macroinstruction is identical for 24- and 31-bit
addressing mode application programs.

Syntax

Chapter 13. Conventions and descriptions of VTAM macroinstructions 405

�� EXLST AM = VTAM ,
name

EXLST AM = VTAM ,
name

��

Input parameters

AM=VTAM
Identifies the exit list generated by this macroinstruction as a VTAM exit list
(as distinguished from a VSAM exit list). This operand is required.

ATTN=exit_routine_address
Indicates the address of a routine to be entered to notify a VTAM LU 6.2
application program of the occurrence of the following LU 6.2 related events:
v Session limit changes
v Incoming conversation requests
v Session deactivation.

Refer to the z/OS Communications Server: SNA Programmer's LU 6.2 Guide
for information on the use of the ATTN exit routine.

DFASY=exit_routine_address
Indicates the address of a routine to be entered when an expedited-flow
data-flow-control request is received. Data-flow-control requests received by
the primary end of the session are SBI, QEC, RELQ, SIG, RSHUTD, and
SHUTDC. Data-flow-control requests received by the secondary end of the
session are SBI, QEC, RELQ, SIGNAL, and SHUTD.

The EXLST containing a DFASY exit routine address can be pointed to by an
NIB, as well as by an ACB (see the EXLST operand of the NIB
macroinstruction).

LERAD=exit_routine_address
Indicates the address of a routine to be entered when the application program
makes an RPL-based request that results in a logic error. Before the LERAD
exit routine is given control, VTAM sets a recovery action return code. These
codes are explained in Chapter 9, “Handling errors and special conditions,” on
page 277. The LERAD exit routine is entered for all recovery action return
codes of 20 and 24 (decimal).

LOGON=exit_routine_address
Indicates the address of a routine to be entered when a CINIT request is sent
to the application program as a result of a session-initiation request (such as a
logon from a device-type logical unit).

LOSTERM=exit_routine_address
Indicates the address of a routine to be entered when, for example, a logical
unit has requested that a session be terminated, or when there are not enough
buffers available to queue data that has been received.

NSEXIT=exit_routine_address
Indicates the address of a routine to be entered when the application program
receives certain network services request units.

RELREQ=exit_routine_address
Indicates the address of a routine to be entered when another application
program requests a session with a device-type logical unit that is currently in
session with your application program. This can occur when the other
application program issues a SIMLOGON macroinstruction (with the RELRQ
and Q options specified) for the device-type logical unit.

406 z/OS V2R1.0 Communications Server: SNA Programming

RESP=exit_routine_address
Indicates the address of a routine to be entered when certain normal-flow
responses arrive on a session.

The EXLST containing the RESP exit routine address can be pointed to by an
NIB, as well as by an ACB (see the EXLST operand of the NIB
macroinstruction).

SCIP=exit_routine_address
Indicates the address of a routine to be entered when a BIND, UNBIND, Clear,
STSN, SDT, or RQR request is received by an application program.

The EXLST containing the SCIP exit routine address can be pointed to by an
NIB, as well as by an ACB (see the EXLST operand of the NIB
macroinstruction).

Note: A BIND request does not cause an NIB-specified SCIP exit routine to be
scheduled. Any application program that is to receive a BIND request (that is,
acts as an SLU application program) must, therefore, have a SCIP exit routine
defined in the EXLST associated with the program's ACB.

SYNAD=exit_routine_address
Indicates the address of a routine to be entered if an unrecoverable input or
output error (physical error) or other unusual condition occurs during the
processing of an RPL-based request. (Errors that result from requests that are
not valid are handled by the LERAD exit routine.) Before the SYNAD exit
routine is given control, VTAM sets a recovery action return code. These codes
are explained in Chapter 9, “Handling errors and special conditions,” on page
277. The SYNAD exit routine is entered for all recovery action return codes of
4, 8, 12, and 16 (decimal).

TPEND=exit_routine_address
Indicates the address of a routine to be entered when any of the following
occur:
v A VTAM operator issues a HALT command (or VARY INACT command for

the application program).
v VTAM detects an internal problem that necessitates halting itself.
v VTAM abnormally ends
v An alternate application takes over sessions from an application that has

enabled persistence.

GENCB—Generate a control block
Purpose

The GENCB macroinstruction builds an ACB, EXLST, RPL, or NIB. The advantage
of using the GENCB macroinstruction is that the control blocks are generated
during program execution. (With the ACB, EXLST, RPL, and NIB
macroinstructions, the control blocks are built during program assembly.)

GENCB not only builds the control block during program execution, but can also
build the control block in dynamically allocated storage. One advantage of this
technique is that it can remove application program dependencies on the length of
each control block.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 407

Usage

The GENCB user specifies the type of control block to be built and the contents of
some of its fields. The operands used to specify the field contents are exactly the
same as those used in the declarative macroinstruction that builds the control block
during assembly. For example, these macroinstructions build the same exit list:
GENCB BLK=EXLST,SYNAD=SYNADPGM,AM=VTAM
EXLST SYNAD=SYNADPGM,AM=VTAM

To build the control block in the application program's storage, the application
program should either reserve enough storage during program assembly to
accommodate the control block or issue an operating system storage manipulation
macroinstruction to get the necessary storage. If an operating system
macroinstruction is used, the location and length of this storage must be coded in
the GENCB macroinstruction. Dynamic storage allocation for the control block
occurs automatically if the location and length operands (WAREA and LENGTH)
are omitted.

To free the storage obtained by the GENCB macro, the application program can
issue the appropriate operating system instruction.

Ordinarily, the storage should be returned to subpool 0. However, if GENCB is
issued in a task running in privileged state, return the storage to subpool 252.

Dynamic storage allocation can be successful only if (1) the program is operating in
virtual mode and (2) enough unallocated virtual storage remains in the program's
partition or address space to build the control block. See the description of the
LENGTH operand for an explanation of how control block lengths are determined.

List, generate, and execute forms of the GENCB macroinstruction are available;
they are designated by the MF operand. (See Appendix K, “Forms of the
manipulative macroinstruction,” on page 865, for more information.) These forms
must be used if the invoking routine is reentrant.

Because the GENCB operands can be specified in a large variety of formats, format
specifications have been tabulated in Appendix J, “Summary of operand
specifications,” on page 857, and do not appear in this macroinstruction
description.

Note: Not all control block fields can be initialized by using GENCB. See
Appendix J, “Summary of operand specifications,” on page 857, for those
supported. You can initialize other fields at execution time by using the
appropriate control block DSECTs described in Appendix E, “Control block formats
and DSECTs,” on page 739.

The GENCB macroinstruction can be issued by an application program running in
either 24- or 31-bit addressing mode. Refer to “31-bit addressing” on page 319 for
information on 31-bit addressing. To use 31-bit addressing, the application must
use the VTAM mapping macroinstructions as well as GETMAIN and FREEMAIN.

Syntax

408 z/OS V2R1.0 Communications Server: SNA Programming

�� GENCB BLK = ACB , AM = VTAM
name EXLST

NIB
RPL

�

�
, COPIES = 1

, COPIES = quantity , keyword = value
�

�
, MF = (E , parameter_list_address)

(G , parameter_list_address)
, label

L
(L , parameter_list_address)

, label

�

�
, WAREA = work_area_address , LENGTH = work_area_length

��

Input parameters

AM=VTAM
Identifies this macroinstruction as a VTAM macroinstruction. This operand is
required.

BLK
Indicates the type of control block to be generated.

BLK=ACB
An ACB control block is to be generated.

BLK=EXLST
An EXLST control block is to be generated.

BLK=NIB
An NIB control block is to be generated.

BLK=RPL
An RPL control block is to be generated.

COPIES=quantity
Indicates the number of control blocks to be generated.

The copies are identical in form and contents. They are placed contiguously in
storage, whether that storage is the area indicated by the WAREA operand or
in dynamically allocated storage.

The length returned in register 0 is the total length of the generated control
blocks. The length of each block (the total length divided by the number of
copies) can be used to determine the location of the beginning of each block.

Note: If this operand is not used, one control block is built.

keyword=value
Indicates a control block field and the value that is to be contained or
represented within it.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 409

For keyword, code a GENCB-supported keyword (see Appendix J, “Summary of
operand specifications,” on page 857) that can be used in the macroinstruction
corresponding to the BLK operand. If BLK=ACB is used, for example, code the
keyword of any GENCB-supported operand that can be used in the ACB
macroinstruction. There is one exception: ARG=(register) can also be coded if
BLK=RPL.

For value, indicate a register, or code any value that could be used if the
operand were being specified in the ACB, EXLST, RPL, or NIB
macroinstruction, or use one of the formats indicated in Appendix J, “Summary
of operand specifications,” on page 857.

Note: If no keywords are included, the following types of control blocks are
built.
v ACB: All fields are set to their default values as indicated in the ACB

macroinstruction description, except MACRF which is set to NLOGON.
v RPL: All fields are set to their default values as indicated in the RPL

macroinstruction description.
v EXLST: All fields are set to 0.
v NIB: All fields are set to their default values as indicated in the NIB

macroinstruction description.

LENGTH=work_area_length
Indicates the length (in bytes) of the storage area designated by the WAREA
operand. If this length is insufficient, register 15 contains the value 4, and
register 0 contains the value 9.

Warning: To avoid having to recode your application program should you
wish to run it under a different operating system or a different release of
VTAM, use the manipulative macroinstructions to obtain the control block
lengths. You do this by specifying ACBLEN, EXLLEN, RPLLEN, or NIBLEN in
either a SHOWCB or TESTCB macroinstruction.

GENCB fails if LENGTH specifies a smaller value than the length of the
control block to be generated. For example, if you use the IFGACB DSECT to
determine the length of the ACB, and if your program is assembled on one
release of VTAM but is executed on a subsequent release in which the ACB is
larger, the GENCB fails.

To obtain the length of an ACB, the following SHOWCB could be coded:
SHOWCB FIELDS=ACBLEN,AREA=WORKAREA,LENGTH=4,AM=VTAM

To test the length of an exit list in your particular operating system, the
following TESTCB could be coded:
TESTCB EXLLEN=(7),AM=VTAM

If you are generating more than one control block, remember that the total
length of each control block is the length indicated by the control block's
length field (ACBLEN, EXLLEN, RPLLEN, NIBLEN) plus the number of bytes
required for fullword alignment. (EXLSTs are variable in length; when no
specific EXLST is specified, the length returned by SHOWCB or tested by
TESTCB is the maximum possible length for your operating system.)

MF=E, G, or L
Indicates that an execute, generate, or list form of GENCB is to be used.
Omitting this operand causes the standard form of GENCB to be used. See
Appendix K, “Forms of the manipulative macroinstruction,” on page 865, for a
description of the execute, generate, and list forms of GENCB.

410 z/OS V2R1.0 Communications Server: SNA Programming

WAREA=work_area_address
Indicates the location of the storage area in the application program where the
control block is to be built. The work area must be aligned on a fullword
boundary. If this operand is specified, the LENGTH operand must also be
specified.

If the WAREA and LENGTH operands are omitted, VTAM obtains dynamically
allocated storage from the operating system and builds the control block there.
Assuming that GENCB is completed successfully (this is indicated by a return
code of 0 in register 15), the address of the generated control block (or blocks)
is placed in register 1, and their total length is placed in register 0.

Examples
GEN1 GENCB AM=VTAM,BLK=ACB, C

APPLID=(3),EXLST=(6), C
WAREA=BLOKPOOL,LENGTH=(4)

.

.

.
BLOKPOOL DS 32D

GEN1 builds an ACB in statically reserved storage (BLOKPOOL). When GEN1 is
executed, register 3 must contain the address of an application program's symbolic
name, and register 6 must contain the address of the exit list to be pointed to by
the ACB.

L 10,WORKAREA (REG10=ACB LENGTH)
GETMAIN R,LV=(10)
LR 5,1 (REG5=ACB ADDRESS)

GEN2 GENCB AM=VTAM,BLK=ACB, C
WAREA=(5),LENGTH=(10)

In this example, the application program is building an ACB in dynamically
allocated storage obtained by itself. Using the procedure described in the preceding
LENGTH operand description, the application program has obtained the length of
an ACB and placed it in a fullword called WORKAREA. The instructions
preceding GEN2 obtain the correct amount of storage, and GEN2 builds the ACB
in that storage.
GEN3 GENCB BLK=RPL,COPIES=10,AM=VTAM

GEN3 creates 10 RPLs in dynamically allocated storage. The address of the
beginning of these RPLs is returned in register 1, and the total length is returned in
register 0. This length includes all padding for fullword alignment; the RPLLEN
field indicates the length of each unpadded RPL. Each RPL is built as though an
RPL macroinstruction with no operands had been issued.

Completion information

After GENCB processing is finished and control is returned to the application
program, register 15 indicates whether the operation is completed successfully. If
the operation is completed successfully, register 15 is set to 0. If it is completed
unsuccessfully, register 15 is set to either X'04', X'08', or X'0C'. If register 15 is set to
X'04' or X'0C', register 0 is also set indicating the specific nature of the error (see
Appendix I, “Return codes for manipulative macroinstructions,” on page 855).
After successful completion, register 1 has the address of the generated control
blocks, and register 0 has their total length (including padding to a fullword
boundary).

Chapter 13. Conventions and descriptions of VTAM macroinstructions 411

INQUIRE—Obtain logical unit information or application program
status

Usage

Several types of INQUIRE exist. The setting of the RPL's option code determines
which one is used.

The following descriptions indicate the purpose and use of these options; see the
operand descriptions for details regarding how each is specified. For restrictions on
the use of the operands, see Table 91. Also, for large networks, see INQUIRE
OPTCD=APPSTAT on page 413.

Table 91. Permissible option codes in the INQUIRE macroinstruction

OPTCD= keyword
Same-domain
request

Cross-domain
request Issued by primary Issued by secondary

APPSTAT (Note 3) YES YES YES YES

CIDXLATE YES YES YES YES

COUNTS YES YES YES YES

DEVCHAR YES YES (Note 1) YES YES

LOGONMSG (Note
1)

YES YES YES NO (Note 2)

NQN (Note 3) YES YES YES YES

PERSESS YES YES YES YES

SESSKEY (Note 4) YES YES YES YES

SESSNAME YES YES YES YES

SESSPARM (Note 1) YES YES YES NO

STATUS YES YES YES YES

TERMS YES YES YES YES

TOPLOGON (Note 1) YES YES YES NO (Note 2)

USERVAR YES NO YES YES

The following notes refer to the preceeding table.

Notes:

1. Application program can issue only after the CINIT is queued and before the
OPNDST or CLSDST macroinstruction is issued to accept or reject the pending
active session.

2. Application program can issue, but VTAM can return
(RTNCD,FDB2)=(X'00',X'07') indicating that the requested information is not
available.

3. These operands are the only options that could cause an external RU to flow
into the network.

4. Application program can issue only after the session is established. If the
session is not established, VTAM can return (RTNCD,FDB2)=(X'00',X'07')
indicating that the requested information is not available.

412 z/OS V2R1.0 Communications Server: SNA Programming

Before issuing the INQUIRE macroinstruction, the application program must set
register 13 to the address of an 18-word save area. Refer to Appendix H,
“Summary of register usage,” on page 853, for information pertaining to the
register contents upon return of control.

VTAM receives control from the INQUIRE macroinstruction in the addressing
mode of the application program that issued the macroinstruction and returns
control to the application program in that same mode.

Note: The INQUIRE macroinstruction for OPTCD=NQN differs from other VTAM
macroinstructions in that whether a network-qualified name is presented or not is
not always dependent on the value specified for PARMS=(NQNAMES=YES) on the
ACB macroinstruction. Therefore, an application program can use this type of
INQUIRE to translate names without having to change the entire application
program to use network-qualified names. Translation is performed on this type of
INQUIRE macroinstruction by examining the NIBNET field in the NIB. If NIBNET
is not zeros, blanks, or “RECORD ”, the network identifier of the NIB is used in
the INQUIRE macroinstruction (real-to-symbolic translation).

APPSTAT
INQUIRE checks a specified application program and determines its
capability to establish sessions. In addition, if AREA and AREALEN are
included, the network-qualified name of the specified application program
is returned. This option can be used to determine the name of the VTAM
application currently associated with a USERVAR.

CIDXLATE
Given a session CID, INQUIRE provides the symbolic name of the logical
unit that has this session with the application program. Conversely, given
the symbolic name of a logical unit with which this application program
has one or more sessions, INQUIRE provides the CID of a session with
that logical unit.

COUNTS
For the ACB specified, INQUIRE provides the number of active sessions
and the number of queued CINIT requests for the application program.

DEVCHAR
INQUIRE obtains certain predefined device characteristics of a logical unit.
In general, however, session parameter information (obtained, for example,
by INQUIRE OPTCD=SESSPARM) should be used to determine the way to
operate a session with the logical unit.

LOGONMSG
INQUIRE obtains the user data (logon message) portion of a queued
CINIT that resulted from an initiation of a session between a logical unit
and this application program. The user data was part of the original
session-initiation request (such as a logon).

NQN Provides name translation for either a symbolic-to-real or real-to-symbolic
request.

PERSESS
INQUIRE enables VTAM to create an NIB for each session pending
recovery. The NIB provides the information needed to restore the
individual session.

SESSKEY
This provides the session cryptography key and the initial chaining value
of a session.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 413

SESSNAME
Allows you to determine the network qualified name of the real instance
that a specified LU is currently in session with.

SESSPARM
INQUIRE obtains either a set of session parameters from the logon mode
table associated with the specified logical unit, or obtains the session
parameter from a CINIT queued for the application program.

STATUS
INQUIRE returns the status of an LU or an application program; it checks
the LU or application and determines its capability to establish sessions. In
addition, if AREA and AREALEN are included, it returns the
network-qualified name of the LU or application program.

TERMS
For a given resource known to VTAM, INQUIRE builds an NIB or list of
NIBs for associated logical units. Examples of resources that can be
specified are: logical units, physical units, lines, local terminals, application
programs, resources in other domains, NCPs, non-SNA major nodes,
channel-attached major nodes, switched major nodes, and CDRSC major
nodes. Refer to the z/OS Communications Server: SNA Resource
Definition Reference for more information on these resources. During
VTAM definition, the user can define a resource (such as a PU) that has
one or more logical units subordinate to it. These definitions create entries
for the resource and the dependent LUs that are subordinate to the
resource that is defined to VTAM. If the application program builds one
NIB that indicates such an entry in its NAME field, it can then issue
INQUIRE to generate NIBs for all of the logical units associated with the
entry. Thus, the application program need not be aware of the identities or
the number of these logical units before establishing sessions with them.
This allows the user, through the VTAM operator or VTAM definition
procedures, to change the set of logical units after the application program
has been assembled. For additional information, refer to “Using INQUIRE
OPTCD=TERMS to generate NIBs” on page 271.

TOPLOGON
Returns the name of the session partner and the CID for the pending
active session represented by the oldest queued CINIT received by the
application program.

USERVAR
Although USERVAR is allowed to be issued , the actual macroinstruction
invocation always returns a successful RTNCD,FDB2 and returns the
translated name as the same name passed as input. OPTCD=NQN is the
suggested option to be used for name translation requests.

Syntax

414 z/OS V2R1.0 Communications Server: SNA Programming

�� INQUIRE RPL = rpl_address
name (1)

, ACB = acb_address

�

�
(1)

, AREA = data_area_address

�

�
(1)

, AREALEN = data_area_length
(1)

, ARG = (register)
(1)

, NIB = nib_address

�

�
(1)

, BRANCH = NO
YES

(1)
, ECB = INTERNAL
, ECB = ecb_address

(1)
, EXIT = exit_routine_address

�

�
(2) (1)

, OPTCD = (ASY)
SYN
APPSTAT
CIDXLATE
COUNTS
DEVCHAR
LOGONMSG
NQN
PERSESS
SESSKEY
SESSNAME
SESSPARM
STATUS
TERMS
TOPLOGON
USERVAR

��

Notes:

1 Operand value can be placed in its RPL field either by specification on an
RPL macroinstruction operand or by explicitly setting the field using the
IFGRPL DSECT.

2 You can code more than one suboperand on OPTCD, but code no more than
one from each group.

Input parameters

RPL=rpl_address
Indicates the RPL that specifies which kind of processing INQUIRE is to
perform.

The following RPL operands apply to the INQUIRE macroinstruction:

ACB=acb_address
Indicates the ACB that identifies the application program issuing INQUIRE.

AREA=data_area_address
Indicates where the information produced by INQUIRE is to be placed.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 415

The AREA operand must be coded with each INQUIRE macroinstruction and
must contain a valid storage pointer regardless of OPTCD except for
OPTCD=APPSTAT.

AREALEN=data_area_length
Indicates the maximum number of bytes of data that the data area can hold; if
the data to be placed there exceeds this value, a special condition results,
(RTNCD,FDB2)=(X'00',X'05'), and the RECLEN field indicates the required
length (except when OPTCD=APPSTAT). INQUIRE can be reissued using the
correct length.

With OPTCD=APPSTAT, AREALEN must be defined to be at least 16 bytes to
hold the network-qualified name.

ARG=(register)
Indicates the register containing the CID of the session. Register notation must
be used if the CID is to be placed in the ARG field with this INQUIRE
macroinstruction. This operand applies to the DEVCHAR, CIDXLATE,
SESSPARM, LOGONMSG, and SESSKEY forms of INQUIRE.

Note:

1. The NIB and the ARG operands occupy the same physical field (RPLARG)
in the RPL. If the last macroinstruction operand used to set or modify this
field was ARG=(register), or if the field has been left unchanged since
VTAM inserted a CID into it, VTAM recognizes that this field contains a
CID. If the last operand used to set or modify this field was NIB=address,
VTAM recognizes that the field contains an NIB address.

2. If your application uses the RPL DSECT, IFGRPL, you must clear the
RPLNIB bit if a CID is being inserted into the RPLARG field.

BRANCH
For application programs running in supervisor state under a TCB, BRANCH
indicates whether authorized path processing is to be used. See “Authorized
path” on page 300.

BRANCH=YES
When the macroinstruction is issued, VTAM processes the macroinstruction
using authorized path. For programs running under an SRB rather than
under a TCB, the macroinstruction is processed in this manner
automatically, regardless of the actual setting of the BRANCH field.

BRANCH=NO
When the macroinstruction is issued, VTAM does not process the
macroinstruction using authorized path.

ECB
Indicates that an ECB is posted when an asynchronous (OPTCD=ASY)
INQUIRE operation is posted as being complete. You cannot specify both ECB
and EXIT on a single macroinstruction.

ECB=event_control_block_address
Specifies that VTAM is to post an event control block (ECB).
Event_control_block_address is the location of the ECB to be posted. The ECB
can be any fullword of storage aligned on a fullword boundary.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB.

EXIT=exit_routine_address
Indicates the address of an RPL exit routine that is scheduled when an

416 z/OS V2R1.0 Communications Server: SNA Programming

asynchronous (OPTCD=ASY) INQUIRE operation is posted as being complete.
You cannot specify both ECB and EXIT on a single macroinstruction. For
details about the EXIT operand, refer to the RPL macroinstruction description
in this chapter.

NIB=nib_address
Indicates the NIB whose NAME field identifies the session or logical unit. This
operand applies to the LOGONMSG, DEVCHAR, TERMS, APPSTAT,
SESSPARM, SESSKEY, and CIDXLATE forms of INQUIRE. See the OPTCD
descriptions of these forms of INQUIRE for information about whether the
NAME (NIBSYM) or CID fields in the NIB can be used. For DEVCHAR,
LOGONMSG, SESSPARM, SESSKEY, and CIDXLATE, NIB=address and
ARG=(register) are mutually exclusive methods of identifying the logical unit,
or specific session.

Note: If your application uses the RPL DSECT, IFGRPL, you must set the
RPLNIB if an NIB address is being inserted into the RPLARG field.

OPTCD
See Table 91 on page 412 for possible restrictions on the use of the OPTCD
operand. The following describes each of the possible parameters to OPTCD.
Only one of the following options can be specified.

OPTCD=APPSTAT
INQUIRE checks the status of a given application program and returns a value
in the RPL's FDBK field which gives information about that application
program's capability to establish sessions. INQUIRE can also return
information about the application program's capability to establish
cross-network sessions. Refer to the SETLOGON macroinstruction for further
information.

The following are the RPL FDBK flag values indicating the status of the
specified application program.

RPLFDB3 value
Explanation

X'00' The application program is active. The application program has opened
its ACB with MACRF=LOGON and has issued SETLOGON
OPTCD=START. It has not subsequently issued SETLOGON
OPCTD=QUIESCE or SETLOGON OPCTD=STOP. Therefore, the
application program can act as the PLU in a session.

X'04' The application program is inactive. If this is a same-domain request,
the application program's ACB is not open. If this is a cross-domain
request, the application program's ACB is not open, or an inactive
CDRSC, representing the application, was found in the host of the
program that issued the INQUIRE request. No sessions can be
established with the application program.

X'08' The application program has opened its ACB with MACRF=NLOGON.
Therefore, it does not accept sessions that it did not itself initiate by
OPNDST OPTCD=ACQUIRE, and it cannot act as the SLU in a session.

X'0C' The application program has opened its ACB with MACRF=LOGON
and has not yet issued SETLOGON OPTCD=START or has issued a
subsequent SETLOGON OPCTD=STOP. If SETLOGON OPCTD=START
has not yet been issued, the application program is not yet enabled for
sessions in which it acts as the SLU and attempts to initiate such
sessions are rejected.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 417

If SETLOGON OPCTD=STOP is issued, the program requests to
temporarily stop establishing sessions. This indicator is by convention
only; that is, the SSCP does not take any action to prevent the initiation
of sessions with this application program just because this indicator is
set. The effect of SETLOGON OPTCD=STOP can be reversed by
issuing SETLOGON OPTCD=START.

X'10' VTAM returns this code in two cases. The application either issued
SETLOGON OPTCD=QUIESCE, or the application is pending recovery.
In either case, no new sessions can be established. To reverse
SETLOGON OPTCD=QUIESCE, the application program closes and
reopens the ACB.

To leave the recovery pending state, the application program issues
OPEN ACB.

RPLRTNCD/ RPLFDB2
Explanation

X'000A'
Application program not connectable

X'144C'
Search argument for INQUIRE or INTRPRET not valid

X'1453'
Logical unit not found

Note: For more information on RPL fields, see Appendix B, “Return codes and
sense fields for RPL-based macroinstructions,” on page 651, or Appendix E,
“Control block formats and DSECTs,” on page 739.

The RPL's ACB field must contain the address of an opened ACB. This is the
ACB of the application program issuing the INQUIRE.

The RPL's NIB field must point to a NIB whose NAME field contains the
symbolic name of the application program whose status is desired.

If PARMS=(NQNAMES=YES), and if the NIB is specified and it contains a
network identifier in the NIBNET field, the network identifier is used along
with the LU name in NIBSYM to find the application.

If AREA and AREALEN are specified with OPTCD=APPSTAT, VTAM will
attempt to give the network-qualified name (network identifier and real name)
for the specified application program. If a USERVAR or ALIAS is given as
input, the name of the application associated with the USERVAR will be
returned. The network-qualified name will be placed in RPLAREA. RPLRLEN
will contain the number of bytes placed in RPLAREA.

Note: The preferred function for symbolic-to-real name translation is INQUIRE
OPTCD=NQN.

When VTAM is able to process the request successfully, RPLAREA will contain
the network identifier followed by the real name of the application. The netid
will be in the first 8 bytes, followed by the real name in the second 8 bytes.
Blanks (X'40') are appended to the right of the network identifier or name, if
needed, to guarantee the 8-byte length of each field. AREA/AREALEN should
be defined to hold at least 16 bytes of data.

The network-qualified name is not returned when AREA and AREALEN are
included with INQUIRE OPTCD=APPSTAT in the following cases:

418 z/OS V2R1.0 Communications Server: SNA Programming

v The work area designated by AREA is not large enough (AREALEN must be
at least 16 bytes to hold the network identifier and real name)

v An error was encountered while processing INQUIRE (RPLRTNCD=X'00')
v The named resource is an inactive CDRSC and the real network identifier or

name is not available
v The named resource was found but is not an application.

In these cases, RPLAREA will not contain the network-qualified name. In
addition, RTNCD/FBD2 will not report any new or additional error codes. If
RPLRTNCD=X'00', the RPL will still contain information about the application's
status. The INQUIRE will complete as if AREA had never been specified as
part of the invocation.

OPTCD=ASY
Control is returned to the application program as soon as VTAM has accepted
the INQUIRE operation request. Once the INQUIRE operation has been
completed, the ECB is posted or the RPL exit routine is scheduled, depending
on the setting of the ECB-EXIT field. Refer to the RPL macroinstruction
description in this chapter for details about OPTCD=ASY.

OPTCD=CIDXLATE
To determine the name of the logical unit associated with a CID, the RPLARG
field must contain the CID when the INQUIRE macroinstruction is executed.
v If PARMS=(NQNAMES=NO) on the ACB macroinstruction and AREALEN

is greater than or equal to 8, the 8-byte name is stored in AREA.
v If PARMS=(NQNAMES=YES) on the ACB macroinstruction and AREALEN

is greater than or equal to 16, the network-qualified name is stored in AREA.

The format of the returned data is the 8-byte network identifier (padded with
blanks, if necessary) followed by the resource name (padded with blanks, if
necessary).

To use INQUIRE to determine the CID of a session with a logical unit, the
RPL's NIB field must contain the address of an NIB. The NAME field of that
NIB must in turn contain the symbolic name to be converted. The CID is
placed in the data area indicated by the RPL's AREA field. The AREALEN field
must be set to 4. If the logical unit is not currently in session, a CID is not
returned, and an error code is set (RTNCD,FDB2)=(X'00',X'07').

If the INQUIRE macroinstruction specifies the name of a logical unit with
which the application program has established parallel sessions, the CID
returned identifies one of the current parallel sessions. The exact session whose
CID is returned is unpredictable.

If PARMS=(NQNAMES=YES), then the following logic is used in finding the
CID:
v If NIBNET is zeros, blanks, or “RECORD ”, the LU name in the NIB field

NIBSYM is used to find the CID.
v If NIBNET is not zeros, blanks, or “RECORD”, the LU name in the NIB field

NIBSYM and the network identifier in the NIB field NIBNET are used to
find the CID.

OPTCD=COUNTS
For the ACB specified in the RPL, INQUIRE provides the number of active
sessions and the number of queued CINIT requests for the application
program.

The RPL's ACB field must contain the address of the ACB. The AREA and
AREALEN fields must indicate a 4-byte area where the information is to be

Chapter 13. Conventions and descriptions of VTAM macroinstructions 419

placed. VTAM places the number of active sessions in the first 2 bytes and the
number of queued CINITs in the second 2 bytes.

OPTCD=DEVCHAR
The logical unit (which can be a non-SNA device) for which the device
characteristics are to be retrieved is specified either by placing the CID of an
active or pending active session into the RPL's ARG field or by specifying an
NIB in the RPL. For application programs not capable of parallel sessions
(PARSESS=NO on the APPL definition statement), if a NIB is specified, the
NIBSYM field must specify the name of the logical unit. For application
programs capable of parallel sessions, if an NIB is specified, the operation of
the DEVCHAR option depends on the setting of the NIBCID field. If the
NIBCID field contains 0, the NIBs NAME (NIBSYM) field must specify the
name of the logical unit. If the NIBCID field is not 0, the logical unit is the one
associated with the specified session.

The device characteristics are placed in an 8-byte program storage area whose
location is set in the AREA field. The AREALEN field must be set to 8. See the
description of the ISTDVCHR DSECT in Appendix E, “Control block formats
and DSECTs,” on page 739, for a complete description of the DEVCHAR
information.

OPTCD=LOGONMSG
The RPL's ACB field must indicate the ACB to which the CINIT is directed.
The AREA and AREALEN fields must indicate the location and length of the
storage area where the user data field (the logon message) from the Initiate
that led to the CINIT is to be placed. The particular user data field to be
retrieved is specified either by placing the CID of the associated pending active
session into the RPLARG field or by specifying an NIB in the RPL.

For application programs not capable of parallel sessions (PARSESS=NO on the
APPL definition statement), if an NIB is specified, the NIBSYM field must
specify the name of the logical unit associated with the pending active session
(and thus uniquely identifies the queued CINIT containing the user data).

For application programs capable of parallel sessions (PARSESS=YES on the
APPL definition statement), if an NIB is specified, the operation of the
LOGONMSG option depends upon the setting of the NIBCID field. If the
NIBCID field contains a value of 0, INQUIRE obtains the data associated with
the oldest queued CINIT for a session with the named logical unit; if the
NIBCID field contains a value other than 0, INQUIRE obtains the data from
the specific queued CINIT represented by the CID.

If PARMS=(NQNAMES=YES), then the following logic is used in finding the
CINIT:
v If NIB is specified and if it contains a network identifier in the NIBNET

field, the network identifier is used along with the LU name in NIBSYM to
find the CINIT.

v If NIBNET is zeros, blanks, or “RECORD ”, then only NIBSYM is used to
find the CINIT.

Note: The information necessary to be supplied for the ACB, NAME, CID, and
AREALEN fields can be obtained from the LOGON exit routine's parameter
list. Refer to “LOGON exit routine” on page 238 for further information.

VTAM indicates the actual length of the user data in the RPL's RECLEN field.
If the length of data is AREALEN, RECLEN is posted with the required length;
conditional completion is indicated, (RTNCD,FDB2)=(X'00',X'05'); and no data

420 z/OS V2R1.0 Communications Server: SNA Programming

is supplied to the application program. INQUIRE OPTCD=LOGONMSG can
then be reissued specifying a larger AREALEN.

Note: The user data portion of a CINIT cannot be obtained after an OPNDST
or CLSDST has been issued for the pending active session with which CINIT is
associated.

OPTCD=NQN
If a symbolic-to-real translation request is made, the application program
supplies a non-network-qualified symbolic name and asks VTAM to translate
the symbolic name into a real network identifier and a resource name. If a
real-to-symbolic translation request is made, the application program supplies
a network-qualified name (a network identifier and a resource name) and asks
VTAM to translate the real name into a non-network-qualified symbolic name
if one is defined to that VTAM.

VTAM performs a symbolic-to-real translation if NIBNET is filled in with
“RECORD ”, blanks, or null. In other words, VTAM translates the symbolic
name into a network-qualified name. The AREALEN field must be greater than
or equal to 16.

VTAM performs a real-to-symbolic translation if NIBNET is filled in with a
network identifier. In other words, VTAM translates the network-qualified
name into a symbolic name. The AREALEN field must be greater than or equal
to 8.

OPTCD=PERSESS
This option causes VTAM to create an NIB for each record application program
interface session that is pending recovery in the area provided by the user
(RPLAREA). The NIB provides the application with information that is used to
restore the session. This information includes:
v The network ID of the LU
v The VTAM CID

Note: The CID of a session restored for persistent sessions is different from
the CID of the original session.

v The value of the previous NIB USERFLD
v An indication of whether the application is the PLU or the SLU
v An indication of whether this is the last NIB in the list
v The setting of the session's continue-any mode and continue-specific mode

for the three data types: DFSYN, DFASY, and RESP
v A pointer to the restore parameter list.

The restore parameter list indicates where to locate:
– BIND information and user data structure subfields if BINUSEL is

non-zero (for LU 6.1 and LU 6.2)
– Session qualifier pair (for LU 6.1)
– MODENAME (for LU 6.2)
– Session instance identifier (for LU 6.2).

When INQUIRE OPTCD=PERSESS is issued, AREA indicates where the
information produced by the macroinstruction is placed. See “Restoring
sessions pending recovery” on page 137 for more information.

If the data to be provided exceeds the AREALEN value, one of two special
conditions results, (RTNCD,FDB2)=(X'00',X'05') or (RTNCD,FDB2)=(X'00',X'0D').
VTAM sets the return code to (RTNCD,FDB2)=(X'00',X'05') if AREALEN is

Chapter 13. Conventions and descriptions of VTAM macroinstructions 421

insufficient to hold the information for at least one session pending recovery
(in this case, RPLAREA will not contain any data). VTAM sets the return code
to (RTNCD,FDB2)=(X'00',X'0D') if AREALEN is insufficient to hold the
information for all sessions pending recovery. See “Restoring sessions” on page
139 for more information. The RECLEN field indicates the length that was
used (in this case, RPLAREA will contain the NIBs for as many sessions as the
RPLAREA is capable of holding). If AREALEN is large enough to hold the
data, a different condition results, (RTNCD,FDB2)=(X'00',X'00'). If INQUIRE
OPTCD=PERSESS is issued and no sessions are pending recovery, another
condition results, (RTNCD,FDB2)=(X'00',X'07').

VTAM builds NIBs and returns them to the issuer of the macroinstruction.
v If PARMS=(NQNAMES=YES) on the ACB macroinstruction, the field

NIBSYM contains the LU name and the field NIBNET contains the network
identifier.

v If PARMS=(NQNAMES=NO) on the ACB macroinstruction, the field
NIBSYM contains the LU name and the field NIBNET contains zeros.

OPTCD=SESSKEY
For a particular session, INQUIRE returns cryptographic session information
which consists of a 16-byte field containing the session cryptography key (the
first 8 bytes) and the initial chaining value (ICV) (the second 8 bytes). The
AREA field indicates the location of this 16-byte field. The AREALEN field
must be set to 16. The session is specified by either the CID in the RPLARG
field or by a CID or NAME field in the NIB.

For application programs not capable of parallel sessions (PARSESS=NO on the
APPL definition statement), if an NIB is specified, the NIB's NAME (NIBSYM)
field must specify the name of the logical unit. For application programs
capable of parallel sessions, if an NIB is specified, the operation of the
SESSKEY option depends on the setting of the NIBCID field. If the NIBCID
field contains 0, the NIB's NAME (NIBSYM) field must specify the name of the
logical unit, and the session cryptography information is retrieved for a session
with the named logical unit; if multiple sessions exist with the logical unit, the
session for which the information is retrieved is unpredictable. If the NIBCID
field is not 0, the session cryptography information is retrieved for the session
identified by the CID.

If PARMS=(NQNAMES=YES), then the following logic is used in finding the
session:
v In the NIBNET field, the network identifier is used along with the LU name

in NIBSYM to find the session.
v If NIBNET is zeros, blanks, or “RECORD ”, only NIBSYM is used to find the

session.

OPTCD=SESSNAME
Allows you to determine the network-qualified name of the generic resource
application that is associated, using the generic name, with a specific LU.

The NIBSYM field contains the name of the LU; NIBNET is the network
identifier of the LU. NIBGENN provides the generic resource name used to
establish the session.

VTAM determines which application is associated with the specified LU and
generic resource name and returns the name and netid of the application in the
AREA field. The AREALEN field must be set to 16.

422 z/OS V2R1.0 Communications Server: SNA Programming

If the logical unit initiates its sessions using the application network names,
rather than the generic resource name, error code (RTNCD,FDB2)=(X'14',X'88')
is set indicating that no LU-to-application associations match the given criteria.

If the application program does not support network-qualified names and
NETID is not specified, VTAM will use the first occurrence of the partner
name.

OPTCD=SESSPARM
To determine the session parameters associated with a specified logon mode
name, the NIB field of the RPL must point to an NIB whose LOGMODE
operand identifies the logon mode name used. The logon mode name that is
specified in the NIB is used to search the logon mode table defined for the
logical unit named in the NIB. If a match is found, the session parameters
associated with the logon mode name are returned in the AREA field of the
RPL. The AREALEN field must be set to at least 36 (decimal).

To determine the session parameters associated with a queued CINIT, either
the RPLARG field can specify the CID of the pending active session or the
RPL's NIB field can specify an NIB that in turn specifies the pending active
session. In either case, the session parameters (including the user data field
from Initiate) from the queued CINIT are returned in the AREA field.
AREALEN must be large enough to contain the session parameters from the
queued CINIT. If the NIB technique is used, the LOGMODE field must be set
to 0 (indicating that the session parameters of a queued CINIT are requested).
For application programs not capable of parallel sessions (PARSESS=NO on the
APPL definition statement), if an NIB is specified, the NIB's NAME (NIBSYM)
field must specify the name of the logical unit. For application programs
capable of parallel sessions, if a NIB is specified, the operation of the
SESSPARM option depends on the setting of the NIBCID field. If the NIBCID
field contains 0, the NIBSYM field must specify the name of the logical unit,
and the session parameters are retrieved from the CINIT for the oldest pending
active session with that logical unit. If the NIBCID field is not 0, the session
parameters are retrieved from the CINIT identified by the CID.

See the description of the LOGMODE operand of the NIB macroinstruction for
more information. For more information on session parameters, refer to
Appendix F, “Specifying a session parameter,” on page 793.

OPTCD=STATUS
INQUIRE checks the status of an application or LU and returns a value in the
RPL's FDBK field. Specify this option code to receive the status of an LU. If the
requested resource is an application, or if an error is detected, the result is the
same as though an INQUIRE OPTCD=APPSTAT was issued. If the resource is
an LU, one of the following RPL FDBK values is returned:

RPLFDB3 value
Explanation

X'80' The resource is active. For an independent LU, the PU is either active
or connectable.

X'84' The resource is not active. The resource currently has a status other
than active.

OPTCD=SYN
Control is returned to the application program when the INQUIRE operation
has been completed. Once the INQUIRE operation has been completed, the

Chapter 13. Conventions and descriptions of VTAM macroinstructions 423

ECB is posted or the RPL exit routine is scheduled, depending on the setting of
the ECB-EXIT field. Refer to the RPL macroinstruction description in this
chapter for details about OPTCD=SYN.

Because it might take VTAM a relatively long time to complete the INQUIRE
operation, you should not use the SYN option if suspending the INQUIRE
issuing task or SRB for this time is undesirable. Use the ASY option code,
instead.

OPTCD=TERMS
The RPL's NIB field must point to a NIB whose NAME field contains the name
of a resource known to VTAM at the time INQUIRE is executed. If the name in
the NIB is an LU, an NIB is built for that LU. If the name is for a resource
other than an LU, an NIB is built for that resource and all dependent LUs that
are subordinate to that resource.

The AREA and AREALEN fields designate the location and length of the work
area where the NIBs are built. The work area must be set to binary zeros by
the application program before INQUIRE is issued.

VTAM indicates the total length of the NIBs in the RPL's RECLEN field.

If the application program wants the NIBs to be built in dynamically allocated
storage (obtained by the application program), INQUIRE should be issued
twice. For the first INQUIRE, set AREALEN to 0. This INQUIRE is completed
with (RTNCD,FDB2)=(X'00',X'05') (insufficient length), and RECLEN indicates
the required length. Obtain the storage and reissue INQUIRE with AREALEN
set to the proper length.

Each NIB contains the symbolic name of a logical unit, with flags for the
LISTEND field set in such a way as to group the NIBs together into an NIB
list. In addition, except for a cross-domain LU, the same device characteristics
are placed in each NIB as would be obtained for each logical unit by issuing
INQUIRE OPTCD=DEVCHAR for that logical unit. The device characteristics
field in the NIB might not always be set for a cross-domain LU.

After you have set the NIB fields to their desired values, the NIBs are ready to
be used for session establishment.

If PARMS=(NQNAMES=YES), then the following logic is used in finding the
LU:
v If the NIB is specified and if it contains a network identifier in the NIBNET

field, the network identifier is used along with the LU name in NIBSYM to
find the LU.

v If NIBNET is zeros, blanks, or “RECORD ”, only NIBSYM is used to find the
LU.

OPTCD=TOPLOGON
The ACB field of the INQUIRE's RPL must indicate the ACB whose CINIT
queue is to be examined. The symbolic name of the logical unit associated with
the oldest queued CINIT is returned in the data area indicated by you in the
RPL's AREA field. The AREALEN field must be set to 8. The CID of this
pending active session is returned in the RPLARG field.

If no CINITs are queued, INQUIRE is posted complete with
(RTNCD,FDB2)=(X'00',X'07').
v If PARMS=(NQNAMES=NO) and AREA is greater than or equal to 8, the

non-network-qualified name is returned. The format of the returned data in
RPLAREA is an 8-byte name, (padded with blanks if necessary).

424 z/OS V2R1.0 Communications Server: SNA Programming

v If PARMS=(NQNAMES=YES) and AREA is greater than or equal to 16, the
network-qualified name is returned. The format of the returned data in
RPLAREA is an 8-byte network identifier, (padded with blanks if necessary),
followed by the resource name, (padded with blanks if necessary).

OPTCD=USERVAR
Use OPTCD=NQN in place of OPTCD=USERVAR. Although
OPTCD=USERVAR can be issued, the actual macroinstruction invocation
always returns a successful RTNCD,FDB2 and returns the translated name as
the same name passed as input. NQN is the suggested option to be used for
name translation requests.

RPLAREA points to an 8-byte field that is the name of the USERVAR. Set RPL
AREALEN to 8 for a USERVAR name.

Examples
INQ1 INQUIRE RPL=RPL1,OPTCD=APPSTAT,NIB=NIB1

.

.

.
TST1 TESTCB RPL=RPL1,FDBK=0

BE ACTIVE
.
.
.

NIB1 NIB NAME=PGM1

INQ1 determines whether PGM1 is active and accepting session-establishment
requests. The answer is returned in RPL1's FDBK field. TST1 and the branch
instruction cause a branch to ACTIVE if the application program is active and
accepting session-establishment requests.
INQ2 INQUIRE RPL=RPL2,OPTCD=LOGONMSG, C

ACB=ACB1,NIB=NIB2, C
AREA=LGNMSG,AREALEN=100

.

.

.
NIB2 NIB NAME=LU2
LGNMSG DS CL100

INQ2 obtains the user data portion of the Initiate that was sent from or on behalf
of the logical unit whose symbolic name is contained in NIB2 and that requested a
session with the application program represented by ACB1. This data is placed in
the area designated as LGNMSG.

Completion information

The INQUIRE operation is successfully completed when the information has been
placed into the application program's storage area.

When the INQUIRE operation completes, the following RPL fields are set:
v The value 26 (decimal) is set in the REQ field indicating an INQUIRE request.
v If INQUIRE OPTCD=APPSTAT completes normally, as indicated in register 15,

VTAM sets the FDBK field to one of the values listed under APPSTAT, discussed
earlier in this macroinstruction description.

v If INQUIRE (all versions except OPTCD=APPSTAT) has been completed
normally, the RECLEN field indicates the number of bytes of data that are
placed in the work area designated by the AREA field. If INQUIRE completed

Chapter 13. Conventions and descriptions of VTAM macroinstructions 425

successfully, but the FDB2 field indicates that the work area is too small,
(RTNCD,FDB2)=(X'00',X'05'), RECLEN indicates the required length.

v If INQUIRE OPTCD=TOPLOGON completes normally, as indicated in register
15, VTAM sets the ARG field with the CID of the oldest queued CINIT.

v If the macroinstruction returns an error code, the SSENSEI, SSENSMI, and
USENSEI fields might be set indicating system-sense information, system-sense
modifier, and user-sense information. See Appendix B, “Return codes and sense
fields for RPL-based macroinstructions,” on page 651 for more information about
these fields.

v The RTNCD and FDB2 fields are set as indicated in Appendix B, “Return codes
and sense fields for RPL-based macroinstructions,” on page 651. VTAM also sets
registers 0 and 15 as indicated in Chapter 9, “Handling errors and special
conditions,” on page 277.

INTRPRET—Interpret an input sequence
Purpose

For each device-type logical unit, INTRPRET allows an application program to use
interpret tables to convert an input character sequence into an output character
sequence.

Usage

This function uses interpret tables that are specified by the user and maintained by
VTAM, rather than tables that are created and maintained by each application
program.

During VTAM definition, the user identifies each device-type logical unit in the
domain and optionally associates an interpret table with each one. The interpret
table contains one or more variable-length sequences that the device-type logical
unit is capable of sending—such as graphic characters, tab characters, or program
function key characters. With each of these sequences, the user specifies a
corresponding 8-byte sequence (or the address of a user-written routine that
generates an 8-byte sequence). An application program issuing INTRPRET
identifies the device-type logical unit and provides a particular sequence received
from the logical unit; VTAM, if it finds that sequence in the interpret table for that
logical unit, returns the corresponding sequence to the application program.

Note: Do not define an interpret table for other application programs, or use it to
interpret data from a logical unit in another domain. Refer to the z/OS
Communications Server: SNA Resource Definition Reference for details on interpret
tables.

As an example, assume that the user defines the following interpret table for
logical unit T3270:

Symbol T3270 interpret table

LGN LOGON

REPEATLT

@ LIST

426 z/OS V2R1.0 Communications Server: SNA Programming

If the application program specifies T3270 and provides any sequence beginning
with # to INTRPRET, INTRPRET would return the corresponding sequence—in
this case, REPEATLT—to the application program.

Before issuing the INTRPRET macroinstruction, the application program must set
register 13 to the address of an 18-word save area. Refer to Appendix H,
“Summary of register usage,” on page 853, for information pertaining to the
register contents upon return of control.

VTAM receives control from the INTRPRET macroinstruction in the addressing
mode of the application program that issued the macroinstruction and returns
control to the application program in that same mode.

For output, the name placed in the AAREA field depends on whether
PARMS=(NQNAMES=YES) or PARMS=(NQNAMES=NO) on the ACB
macroinstruction:
v If PARMS=(NQNAMES=NO) on the ACB macroinstruction, the 8-byte name is

returned.
v If PARMS=(NQNAMES=YES) on the ACB macroinstruction, the 16-byte

network-qualified name is returned. The format of the returned data is the
8-byte network identifier (padded with blanks if necessary) followed by the
8-byte resource name (padded with blanks if necessary).

Syntax

�� INTRPRET RPL = rpl_address
name

�

�
(1)

, AAREA = alternate_data_area_address

�

�
(1)

, AAREALN = alternate_data_area_length

�

�
(1)

, ACB = acb_address
(1)

, AREA = user_data_address

�

�
(1)

, ARG = (register)
(1)

, NIB = nib_address

(1)
, BRANCH = NO

YES

�

�
(1)

, ECB = INTERNAL
, ECB = ecb_address

(1)
, EXIT = exit_routine_address

(1)
, OPTCD = ASY

SYN

�

�
(1)

, RECLEN = user_data_length

��

Chapter 13. Conventions and descriptions of VTAM macroinstructions 427

Notes:

1 Operand value can be placed in its RPL field either by specification on an
RPL macroinstruction operand or by explicitly setting the field using the
IFGRPL DSECT.

Input parameters

RPL=rpl_address
Indicates the RPL that specifies which kind of processing INTRPRET is to
perform.

The following RPL operands apply to the INTRPRET macroinstruction:

AAREA=alternate_data_area_address
Indicates the data area where VTAM is to place the interpreted sequence.

AAREALN=alternate_data_area_length
Indicates the length of the data area where VTAM is to place the interpreted
sequence. If NQNAMES=NO, this value should be at least 8. If
NQNAMES=YES, this value should be at least 16.

ACB=acb_address
Indicates the ACB that identifies the application program issuing INTRPRET.

AREA=user_data_address
Indicates the data area containing the sequence being submitted to VTAM for
interpretation.

ARG=(register)
Indicates the register containing the CID of the session with the device-type
logical unit. VTAM searches for an interpret table for the associated
device-type logical unit. If the ARG operand is not specified, the RPLARG field
must contain an NIB address.

BRANCH
For application programs running in supervisor state under a TCB, BRANCH
indicates whether authorized path processing is to be used. See “Authorized
path” on page 300.

BRANCH=YES
When the macroinstruction is issued, VTAM processes the macroinstruction
using authorized path. For programs running under an SRB rather than
under a TCB, the macroinstruction is processed in this manner
automatically, regardless of the actual setting of the BRANCH field.

BRANCH=NO
When the macroinstruction is issued, VTAM does not process the
macroinstruction using authorized path.

ECB
Indicates that an ECB is posted when an asynchronous (OPTCD=ASY)
INTRPRET operation is posted as being complete. You cannot specify both
ECB and EXIT on a single macroinstruction.

ECB=event_control_block_address
Specifies that VTAM is to post an event control block (ECB).
Event_control_block_address is the location of the ECB to be posted. The ECB
can be any fullword of storage aligned on a fullword boundary.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB.

428 z/OS V2R1.0 Communications Server: SNA Programming

EXIT=exit_routine_address
Indicates the address of an RPL exit routine that is scheduled when an
asynchronous (OPTCD=ASY) INTRPRET operation is posted as being
complete. You cannot specify both ECB and EXIT on a single macroinstruction.
For details about the EXIT operand, refer to the RPL macroinstruction
description in this chapter.

NIB=nib_address
Indicates the NIB whose NAME field identifies the device-type logical unit and
if using NQNAMES, indicates the NIB whose NIBNET field contains the
network identifier of the logical unit. VTAM searches for an interpret table for
this device-type logical unit. If the NIB operand is not specified, the RPLARG
field must contain a CID.

Note: If your application uses the RPL DSECT, IFGRPL, you must set the
RPLNIB bit if an NIB address is being inserted into the RPLARG field.

OPTCD=SYN
OPTCD=ASY

If the SYN option code is set, control is returned to the application program
when the INTRPRET operation has been completed. If the ASY option code is
set, control is returned as soon as VTAM has accepted the request. After the
INTRPRET operation has been completed, the ECB is posted or the RPL exit
routine is scheduled, depending on the setting of the ECB-EXIT field. Refer to
the RPL macroinstruction description in this chapter for details about
OPTCD=SYN or OPTCD=ASY.

Because it might take VTAM a relatively long time to complete the INTRPRET
operation, you should not use the SYN option if suspending the
INTRPRET-issuing task or SRB for this time is undesirable. Use the ASY option
code, instead.

RECLEN=user_data_length
Indicates how many bytes are being submitted to VTAM for interpretation. If a
sequence in the interpret table is shorter than the value in RECLEN, and yet is
identical to the corresponding initial part of the data pointed to by AREA, the
sequences are considered matched. Refer to the z/OS Communications Server:
SNA Resource Definition Reference for coding information on the
logon-interpret routine. RECLEN must be set to 255 (decimal) or less.

Examples
INT1 INTRPRET RPL=RPL1, C

NIB=NIB6,AREA=INSEQ,RECLEN=(3), C
AAREA=OUTSEQ,AAREALN=8

.

.

.
RPL1 RPL
INSEQ DS CL180
NIB6 NIB NAME=LU1
OUTSEQ DS CL8

An application program has read a block of data from LU1 and issues INT1 to
interpret that data. NIB6 identifies the LU (and therefore, the interpret table to be
used), AREA indicates the data area containing the data to be interpreted (INSEQ),
and RECLEN indicates that the amount of data to be interpreted is in register 3. If
INTRPRET uses the same RPL that was used to read the data, the NIB-ARG field,
the AREA field, and the RECLEN field are already correctly set.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 429

Upon completion of INT1, the corresponding sequence is placed in the data area
identified by the AAREA field (OUTSEQ). Although two separate data areas have
been provided in this example for the “input” data (INSEQ) and the “output” data
(OUTSEQ), there is no reason why the same data area could not be used.

Completion information

The INTRPRET operation is successfully completed as soon as the output character
sequence has been placed in the application program's storage area.

When the INTRPRET operation is completed, these RPL fields are set:
v The value 27 (decimal) is set in the REQ field, indicating an INTRPRET request.
v If the FDB2 field indicates that INTRPRET failed because the data to be placed

in the AAREA work area, (RTNCD,FDB2)=(X'00',X'05'), does not fit, the
ARECLEN field contains the number of bytes required to hold the data. If
INTRPRET is completed successfully, the ARECLEN field indicates how many
bytes of data have actually been placed in the AAREA work area.

v The RTNCD and FDB2 fields are set as indicated in Appendix B, “Return codes
and sense fields for RPL-based macroinstructions,” on page 651.

v If the macroinstruction returns an error code, the SSENSEI, SSENSMI, and
USENSEI fields can be set indicating system-sense information, system-sense
modifier, and user-sense information. See Appendix B, “Return codes and sense
fields for RPL-based macroinstructions,” on page 651 for more information about
these fields.

Registers 0 and 15 are also set as indicated in Chapter 9, “Handling errors and
special conditions,” on page 277.

ISTGLBAL—Declare and set macro global variables
Purpose

Use the ISTGLBAL macroinstruction when assembling an application program to
allow the program to discover the characteristics of the VTAM product associated
with the macroinstruction definition library that contains ISTGLBAL.

Usage

Invoke ISTGLBAL by the IFGRPL and IFGACB macroinstructions as an inner
macroinstruction.

The ISTGLBAL macroinstruction declares and sets two types of global variables:
v GBLC variable, which indicates the release level of VTAM
v GBLB variables, which provide a list of functions available for this release of

VTAM.

To use the ISTGLBAL macroinstruction, you must be familiar with the GBLB,
GBLC, SETB, and SETC assembler language instructions.

Instructions for coding the ISTGLBAL macroinstruction, with examples, are
contained in “ISTGLBAL macroinstruction” on page 274.

Syntax

430 z/OS V2R1.0 Communications Server: SNA Programming

�� ISTGLBAL
name

��

MODCB—Modify the contents of control block fields
Purpose

MODCB modifies the contents of one or more fields in an ACB, EXLST, RPL, or
NIB control block. MODCB works with control blocks created either with
declarative macroinstructions or with the GENCB macroinstruction.

Usage

The user of the MODCB macroinstruction indicates the location of the control
block, the fields within the control block to be modified, and the new values that
are to be placed or represented in those fields.

Most fields whose contents can be set with the ACB, EXLST, or NIB
macroinstruction can also be modified by the MODCB macroinstruction. The
operands used to do this are the same as those used when the control block is
created.

The following restrictions apply to the use of MODCB:
v An ACB cannot be modified after an OPEN macroinstruction has been issued for

it.
v An exit list (EXLST) cannot have exits added to it with the MODCB

macroinstruction. If an exit list field is not specified in the EXLST
macroinstruction, do not attempt to modify that field with a MODCB
macroinstruction. MODCB can, however, be used to change dummy exit
addresses to valid addresses. This must be done before OPEN is issued for the
ACB that references the EXLST control block, or before an OPEN (for a CNM
application program), OPNDST, or OPNSEC is issued using the NIB for
referencing the EXLST.

v An RPL cannot be modified while a request using the RPL is pending, that is,
while the RPL is active.

v An NIB should not be modified if it was referenced by an RPL that is still active.
v The AM field of the ACB, EXLST, and RPL control blocks cannot be modified.

Once a control block has been generated in a VTAM-compatible form, it cannot
later be modified for use with another access method.

List, generate, and execute forms of the MODCB macroinstruction are available;
they are designated by the MF operand. (See Appendix K, “Forms of the
manipulative macroinstruction,” on page 865, for more information.)

Because the various MODCB operand values can be specified in a large variety of
formats, the operand format specifications have been tabulated in Appendix J,
“Summary of operand specifications,” on page 857, and do not appear here.

Note: Not all control block fields can be modified by using MODCB. Refer to
Appendix J, “Summary of operand specifications,” on page 857, to determine fields
that are modifiable. Other fields can be modified at execution time by use of the
appropriate control block DSECTs as described in Appendix E, “Control block
formats and DSECTs,” on page 739.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 431

An application program running in either 24- or 31-bit addressing mode can issue
the MODCB macroinstruction. To use 31-bit addressing, the application program
must use the VTAM mapping macroinstructions as well as GETMAIN and
FREEMAIN. Refer to “31-bit addressing” on page 319 for information about 31-bit
addressing.

Syntax

�� MODCB AM = VTAM
name

, ACB = acb_address
, EXLST = exit_list_address
, NIB = nib_address
, RPL = rpl_address

�

�
, field_name = new_value

�

�
, MF = (E , parameter_list_address)

(G , parameter_list_address)
, label

L
(L , parameter_list_address)

, label

��

Input parameters

AM=VTAM
Identifies this macroinstruction as a VTAM macroinstruction. This operand is
required.

ACB=acb_address

EXLST=exit_list_address
NIB=nib_address
RPL=rpl_address

Indicates the type and location of the control block whose fields are to be
modified.

field_name=new_value
Indicates a field in the control block to be modified and the new value that is
to be contained or represented within it.

For field_name, code the keyword of any MODCB-supported operand (see
Appendix J, “Summary of operand specifications,” on page 857, for more
information) that can be coded in the macroinstruction corresponding to the
ACB, EXLST, RPL, or NIB operand. If RPL=RPL1 is coded, for example, the
keyword of any MODCB-supported operand in the RPL macroinstruction can
be coded. ARG=(register) can also be coded.

For new_value, code any value that could be used in an ACB, EXLST, RPL, or
NIB macroinstruction, or use one of the formats indicated in Appendix J,
“Summary of operand specifications,” on page 857.

MF=E, G, or L
Indicates that an execute, generate, or list form of MODCB is used. Omitting
this operand causes the standard form of MODCB to be used. See Appendix K,
“Forms of the manipulative macroinstruction,” on page 865, for a description
of the execute, generate, or list forms of MODCB.

432 z/OS V2R1.0 Communications Server: SNA Programming

Examples
MOD1 MODCB RPL=(5),OPTCD=(ASY,SPEC,CS),AM=VTAM

MOD1 activates the ASY, SPEC, and CS option codes in an RPL. The settings for
the other option codes are not affected. The address of this RPL must be in register
5 when MOD1 is executed.

Completion information

After MODCB processing is completed, register 15 indicates whether the operation
completed successfully. If the operation completed successfully, register 15 is set to
0; if it completed unsuccessfully, register 15 is set to either X'04', X'08', or X'0C'. If
register 15 is set to X'04' or X'0C', register 0 is also set indicating the specific nature
of the error (see Appendix I, “Return codes for manipulative macroinstructions,”
on page 855, for more information).

NIB—Create a node initialization block
Purpose

The NIB is used during the initiation and establishment of LU-LU sessions to
identify and define those sessions. Similarly, it is used to define the SSCP-LU
session for a CNM application program. The NIB is also used to identify queued,
pending active, or active sessions that the application program wants to terminate.
Finally, it is used by the INQUIRE and INTRPRET macroinstructions to specify
parameters that cannot be specified in the RPL.

Usage

For certain macroinstructions, NIBs can be grouped together into lists. When
requests are directed to an NIB that is the first in an NIB list, VTAM considers all
of the logical units (LUs) represented in the NIB list to be the objects of the
request, not just the LU represented by the first NIB.

The NIB macroinstruction causes the NIB control block to be built during program
assembly; it is built on a fullword boundary. The NIB macroinstruction is not
executable. An NIB can be built during program execution with a GENCB
macroinstruction. It can be subsequently modified using the ISTDNIB and
ISTDPROC DSECTs, and by the MODCB macroinstruction. MODCB does not,
however, support all NIB fields.

The expansion of the NIB macroinstruction is identical for 24- and 31-bit
addressing mode application programs.

Syntax

Chapter 13. Conventions and descriptions of VTAM macroinstructions 433

�� NIB
name

, AFFIN = VTAM

, AFFIN = VTAM
APPL

, ASDAREA = dial_parameter_list_address
�

�
, BNDAREA = 0

, BNDAREA = bind_area_address
, MTSAREA = mts_area_address

, ENCR = NONE

, ENCR = NONE
REQD
SEL

, EXLST = exit_list_address
�

�
, LISTEND = YES

, LISTEND = NO
YES

, LOGMODE = 0

, LOGMODE = 0
C' '
logon_mode_name

, GNAME = generic_name

, LUAFFIN = APPL
NOTAPPL

�

�
, MODE = RECORD
, NETID = network_identifier

, NAME = name_in_vtam_configuration_list
�

�
, PROC = (KEEP , NCONFTXT , NDFASYX , NNEGBIND , NORDRESP , NRESPX , RPLC , SYSRESP)

(1)
, PROC = (APPLRESP)

SYSRESP
CA
CS
RPLC
CONFTXT
NCONFTXT
DFASYX
NDFASYX
KEEP
TRUNC
NEGBIND
NNEGBIND
NORDRESP
ORDRESP
NRESPX
RESPX

(2)
STOKEN

�

�
, RESPLIM = 1

, RESPLIM = response_limit

, SDT = SYSTEM

, SDT = APPL
SYSTEM

, USERFLD = user_data
��

Notes:

1 You can code more than one suboperand on PROC, but code no more than
one from each group.

2 PROC=STOKEN and the NAME parameter are mutually exclusive.

Input parameters

AFFIN
Indicates whether VTAM or the application program is to be the owner of any
affinities that are established for this instance of a generic resource being
established by the SETLOGON OPTCD=GNAMEADD macroinstruction. The
AFFIN parameter is mutually exclusive with the LUAFFIN parameter.

AFFIN=VTAM
Indicates that VTAM is to be the owner of any affinities not explicitly
owned by the application program.

AFFIN=APPL
Indicates that the application program is to be the owner of all affinities
that are established.

ASDAREA=dial_parameter_list_address
Specifies the address of the dial parameter list that is supplied by the
application. The ASDAREA operand sets the NIBASDP and NIBASDPA fields.
The NIBASDP field indicates that during session establishment the application
supplies the dial parameters. The NIBASDPA field holds the dial parameter list

434 z/OS V2R1.0 Communications Server: SNA Programming

address. You must use a fully initialized NIB for each established session. For
additional information see Appendix E, “Control block formats and DSECTs,”
on page 739.

Note: VTAM can overwrite the NIBASDPA field during certain
macroinstruction calls that use the NIB. For example, the persistent LU-LU
session function uses the same 4-byte field as NIBASDPA to store the address
of the recovery data when restoring sessions pending recovery.

BNDAREA=BIND_area_address
Permits the application program to explicitly specify a set of session
parameters VTAM uses in constructing a BIND request or BIND response that
is sent to establish a session.

BNDAREA=bind_area_address
Indicates the location of a BIND area containing session parameters to be
used by OPNDST and OPNSEC macroinstructions. Session parameters
specified in a BIND area generally override session parameters available
from any other source. See Figure 177 on page 818 for details. See also
“NIB LOGMODE and BNDAREA operands” on page 124 for details.

Note: BNDAREA and MTSAREA are mutually exclusive keywords on this
macroinstruction.

BNDAREA=0
BNDAREA=0 must be specified, explicitly or by default, in the NIB used
by a CNM application program to gain access to the SSCP-LU session.

ENCR
Indicates the level of cryptography that the application program requests for
the session being established by OPNDST or OPNSEC. If either REQD or SEL
is specified, the session is not established unless both ends of the session are
capable of cryptography. Note that the actual level of cryptography used on
the session can be higher than that specified by the ENCR operand, because
the VTAM operator, the VTAM network definition, and the other LU in the
session can all request upgrading of the cryptography level. See “Establishing
cryptographic sessions” on page 131 for more information.

ENCR=NONE
No enciphering is requested. ENCR=NONE must be specified, explicitly or
by default, in the NIB used to give a CNM application program access to
the SSCP-LU session.

ENCR=REQD
All data requests (STYPE=REQ, CONTROL=DATA) are sent enciphered.

ENCR=SEL
Data requests are to be enciphered on the basis of the RPL's CRYPT field
setting. See the RPL macroinstruction description for further information
on the CRYPT field.

EXLST=exit_list_address
Indicates an EXLST control block that contains the address of a DFASY, RESP,
or SCIP exit routine (or contains the addresses of any combination of these exit
routines).

Exit routines indicated by an NIB (NIB-oriented exit routines) are scheduled
when VTAM receives input (of the appropriate type) from the session
established by means of the NIB through an OPNDST, OPNSEC, or OPEN
macroinstruction. If input is received and no appropriate NIB-oriented exit

Chapter 13. Conventions and descriptions of VTAM macroinstructions 435

routine was specified, VTAM then satisfies any appropriate pending RECEIVE
macroinstructions or schedules the appropriate ACB-oriented exit routine (if
any). For details, refer to “Specifying the DFASY, RESP, and SCIP exit routines
in an ACB or NIB” on page 229, and refer to Figure 39 on page 179 through
Figure 42 on page 182.

Note: If you omit this operand, the NIB's EXLST field is set to 0.

GNAME=generic_name
is used to specify the generic name of the application. This field is used by the
SETLOGON OPTCD=GNAMEADD, GNAMEDEL, or GNAMESUB, INQUIRE
OPTCD=SESSNAME, and CHANGE OPTCD=ENDAFFIN macros. This name
must be unique.

Note:

1. The NAME operand is required with SETLOGON OPTCD=GNAMESUB.
2. The GNAME parameter and the LOGMODE parameter are mutually

exclusive.

LISTEND
Allows the application program to group NIBs into lists.

LISTEND=NO
Iindicates that this NIB and the NIB immediately following it in storage
are part of an NIB list. Any number of NIBs can be grouped together by
specifying LISTEND=NO for each one except the last. NIB lists can only be
used with OPNDST OPTCD=ACQUIRE, or with SIMLOGON.

LISTEND=YES
Indicates that this NIB is the last in a list (or is an isolated NIB not part of
a list).

Example: The following use of the LISTEND operand effectively groups the
Boston NIBs into one group, the Chicago NIBs into another, and defines the
Portland NIB as a “list” of one.
BOSTON NIB NAME=BOSTON1,LISTEND=NO

NIB NAME=BOSTON2,LISTEND=YES
CHICAGO NIB NAME=CHICAGO1,LISTEND=NO

NIB NAME=CHICAGO2,LISTEND=NO
NIB NAME=CHICAGO3,LISTEND=YES

PORTLAND NIB NAME=PORTLAND,LISTEND=YES

LOGMODE
is used to specify the logon mode name. If this operand is either omitted or
specified as 0, the LOGMODE field of the NIB is set to binary zeros.

The LOGMODE parameter and the GNAME parameter are mutually exclusive.

LOGMODE=logon_mode_name
The LOGMODE field in an NIB is used by the INQUIRE
OPTCD=SESSPARM, OPNDST, REQSESS, CLSDST OPTCD=PASS, and
SIMLOGON macroinstructions to indirectly specify a set of session
parameters. See “NIB LOGMODE and BNDAREA operands” on page 124
for details.

LOGMODE=0
must be specified, explicitly or by default, in the NIB used to give a CNM
application program access to the SSCP-LU session.

LUAFFIN
Indicates a specific affinity ownership condition between the application and a

436 z/OS V2R1.0 Communications Server: SNA Programming

specific partner LU for the session that is being started by the OPNDST or
OPNSEC macroinstruction. The LUAFFIN parameter is mutually exclusive
with the AFFIN parameter.

LUAFFIN=NOTAPPL
Indicates that VTAM is to be the owner of the affinity for a specific LU on
the OPNDST or OPNSEC macroinstruction. This option is not honored if a
session already exists with this LU, with the application already
established as the owner of the affinity.

LUAFFIN=APPL
Indicates that the application program is to be the owner of the affinity for
a specific LU on the OPNDST or OPNSEC macroinstruction. This option is
not honored if a session already exists with this LU, with VTAM already
established as the owner of the affinity.

MODE=RECORD
This operand is allowed by VTAM for migration purposes.

MODE=RECORD is optional and can only be specified if NETID is not
specified on the NIB macroinstruction. MODE=RECORD is not valid when
NETID is specified on the NIB macroinstuction.

MTSAREA=MTS_area_address
Specifies the address of an area containing MTS override data. This data is
required when you specify OPTCD=MTS on a REQSESS or CLSDST PASS
macroinstruction. You must format the specified area to match the ISTMTS
DSECT. For additional information about the ISTMTS DSECT, see Appendix E,
“Control block formats and DSECTs,” on page 739.

Note: MTSAREA and BNDAREA are mutually exclusive keywords on this
macroinstruction. The MTSAREA keyword is an alternate name for the
BNDAREA keyword. The NIBMTSAR field set by the MTSAREA keyword is
an overlay of the NIBNDAR field set by the BNDAREA keyword.

NAME=session_parameter_name
Associates the NIB with its session parameter.

Example:
NAME=LU13

Although this operand is sometimes optional, the NAME field generally
should be set by the time a CLSDST, OPNDST, SIMLOGON, INTRPRET,
REQSESS, TERMSESS, SESSIONC, OPNSEC, or INQUIRE or SETLOGON
OPTCD=GNAMESUB macroinstruction is issued that uses this NIB. When
OPNDST OPTCD=(ACCEPT,ANY) is issued, the NAME field need not be set,
because VTAM places the name of the LU in this field. See the individual
macroinstruction descriptions to determine whether alternatively the RPLARG
or whether the NIBCID field is used.

If you omit this operand, the entire 8-byte NAME field is set to EBCDIC
blanks.

This operand must be omitted in the NIB used by a CNM application program
to gain access to the SSCP-LU session.

If this application uses NQNAMES=YES, this name is used with the NETID
operand.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 437

If this application uses NQNAMES=NO and NETID is not specified, VTAM
will use the first located instance of the name provided associated with the
application program.

If CHANGE OPTCD=ENDAFFIN|ENDAFFNF is issued using this NIB, you
can specify NAME=* to end all affinities associated with the issuing
application program. This function is intended for use by an application only
immediately prior to closing its ACB.

When issuing SETLOGON OPTCD=GNAMESUB, this operand should be set
to the application program network name of the generic resource instance
specified in the VTAM node identification block (NIB).

Note: The NAME parameter and PROC=STOKEN are mutually exclusive.

NETID=network_identifier
Specifies an optional 1–8 character network name, (padded with blanks), that
identifies the network in which the partner LU, identified by the NAME
operand, resides. If you do not code NETID, no network identifier is associated
with this application program. The value for NETID is stored in the NIBNET
field in ISTDNIB.

The NETID operand and the MODE operand are mutually exclusive.

PROC=processing_option
Indicates options that VTAM is to follow for subsequent RPL-based requests
involving the session established by an OPEN (for a CNM application
program), OPNDST, SETLOGON, or OPNSEC using this NIB.

Format: Code as indicated in the preceding assembler format table. The
parentheses can be omitted if only one option code is selected:
NIB NAME=LU3,NETID=NETA,PROC=(DFASYX,RESPX,CONFTXT)

The following describes each of the possible parameters for PROC.

PROC=CA
CA, CS, and RPLC apply for a session when input received from that
session satisfies a RECEIVE. These PROC options override the CS and CA
option codes that might have been specified in the RECEIVE
macroinstruction or the RPL referred to by the RECEIVE macroinstruction,
but not the CS and CA option of any other type of macroinstruction.

With PROC option CA, the session should be put into continue-any mode
after this RECEIVE is completed for the type of input that satisfies the
RECEIVE. It can be used as long as a session responds to a RECEIVE
OPTCD=ANY macroinstruction. This might be the case if the session
normally sends no more than one request per transaction.

PROC=CS
The session should be put into continue-specific mode after this RECEIVE
is completed for the type of input that satisfies the RECEIVE. It can be
used when a session is to be prevented from completing any subsequent
RECEIVE OPTCD=ANY macroinstructions. This might be the case if the
session normally sends multiple requests per transaction.

PROC=CONDCS
The session should be put into continue-specific mode after this RECEIVE
OPTCD=ANY is completed for the type of input that satisfies the RECEIVE
only if more input data remains. More input data is considered to be
remaining if RECLEN > AREALEN and KEEP was indicated (see
PROC=KEEP). If no input data remains, the session is to be prevented

438 z/OS V2R1.0 Communications Server: SNA Programming

from completing any subsequent RECEIVE OPTCD=ANY
macroinstructions for the remaining data. This might be the case if the
session normally sends multiple requests per transaction and all the input
data can normally be contained in the RECEIVE's buffer. Specifying this
options can allow the application the application to avoid the overhead of
a RESETSR macroinstruction after every RECEIVE OPTCD=ANY.

In order to ensure that the application receives the input data in the correct
order, EXIT should be specified on the RECEIVE. Also note that if a session
does send in multiple requests per transaction, a single session can use up
a greater number of RECEIVE OPTCD=ANY macros. Consequently, an
application that utilizes this function may want to increase the number of
RECEIVE OPTCD=ANY macros it has outstanding.

PROC=RPLC
The CS, CA or CONDCS option code in the RECEIVE macroinstruction or
the RPL referred to the RECEIVE macroinstruction should be used when
switching continue modes.

PROC=KEEP
VTAM fills the input data area and saves any remaining data for
subsequent RECEIVE macroinstructions.

PROC=TRUNC
VTAM fills the input data area and discards any remaining data. No error
condition is indicated.

The presence of excess data can be determined by comparing the RPL's
AREALEN field (input area size) with the RECLEN field (amount of
incoming data). If the value in RECLEN exceeds the value in AREALEN,
excess data has been kept (and is used to satisfy the next appropriate
RECEIVE). An example is shown in “Handling overlength input data” on
page 182.

The NIB's TRUNC-KEEP processing option is effective only if the NIBTK
option code is set in the RPL. If the KEEP or TRUNC option codes are set
in the RPL, then the NIB's TRUNC-KEEP processing option is overridden.

PROC=CONFTXT
The buffers used to hold data are cleared before they are returned to their
buffer pools. The data is considered as “confidential”.

PROC=NCONFTXT
The buffers used to hold data are not cleared before they are returned to
their buffer pools.

PROC=DFASYX
When DFASYX is set for the sessions' NIB and no other restrictions prevent
the scheduling of the ACB-oriented DFASY exit-routine, the exit routine is
scheduled. If the exit routine cannot be scheduled or the session is
established with PROC=DFASYX, a RECEIVE OPTCD=ANY,
RTYPE=DFASY is not valid. See Figure 40 on page 180 for more
information about the DFASY exit routine.

PROC=NDFASYX
The DFASY exit routine is not scheduled.

PROC=NEGBIND
When a PLU application program specifies NEGBIND in an OPNDST
macroinstruction, VTAM sends a negotiable BIND request to the SLU.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 439

PROC=NNEGBIND
When a PLU application program specifies NNEGBIND in an OPNDST
macroinstruction, VTAM sends non-negotiable BIND request.

When an SLU application program receives a negotiable BIND request in
its SCIP exit routine, the session parameters can be checked to determine if
the suggested parameters are agreeable. If the application program agrees
with the session parameters sent by the PLU, the application program
issues an OPNSEC macroinstruction that refers to an NIB with
NNEGBIND specified, or with NEGBIND specified and BNDAREA=0. If
the application program wants to suggest new session parameters, it issues
an OPNSEC macroinstruction with the NIB specifying NEGBIND and
BNDAREA containing the address of the new session parameters.

If a list of OPNDST OPTCD=ACQUIRE is used, only one of the NIBs in
the list can specify PROC=NEGBIND.

PROC=RESPX
When RESPX is set for the sessions' NIB and no other restrictions prevent
the scheduling of the ACB-oriented RESP exit routine, the exit routine is
scheduled. If the exit routine cannot be scheduled or the session is
established with PROC=RESPX, a RECEIVE OPTCD=ANY, RTYPE=RESP is
not valid. See Figure 41 on page 181 for more information about the RESP
exit routine.

PROC=NRESPX
The RESP exit routine is not scheduled.

PROC=ORDRESP

PROC=NORDRESP
Indicate whether certain designated normal-flow responses are to be
handled by VTAM in a manner similar to the handling of normal-flow
(DFSYN) requests. The ORDRESP and NORDRESP options are used in
conjunction with the QRESP and NQRESP options in the RPL. For SEND
of normal-flow data-flow-control requests, this operand also controls
whether the POST and RESPOND fields are examined. Refer to
“Controlling the handling of normal-flow responses” on page 161 for
details.

PROC=APPLRESP
The application program must respond to the expedited-flow
data-flow-control request using a SEND STYPE=RESP macroinstruction.
While either a positive or negative response can be sent, a definite
response type 1 (FME) must be used in either case. The sequence number
and request code (CONTROL) used in the response can be obtained from
the RECEIVE RPL or the VTAM read-only RPL supplied in the application
exit routine.

For XRF only, during a session takeover, VTAM does not provide reasons
for expedited flow requests to the failed active subsystem. The alternate
application is responsible for providing these responses, and
PROC=APPLRESP must be coded for all XRF sessions.

PROC=STOKEN
specifies that, for SETLOGON OPTCD=GNAMEADD processing, VTAM is
to pass the value of the NIBSTKN field in ISTDNIB to the operating
system for generic resource workload balancing. Be sure that NIBSTKN is
set when specifying PROC=STOKEN.

440 z/OS V2R1.0 Communications Server: SNA Programming

When specified, the PROSTOKN indicator will be set on in the generated
NIB.

Note: The NAME parameter and PROC=STOKEN are mutually exclusive.

PROC=SYSRESP
VTAM responds to the request.

RESPLIM=response_limit
Indicates the maximum number of responded output requests that can be
pending at one time for a session. (A responded output request is a SEND
POST=RESP, STYPE=REQ, and CONTROL specifying data or a normal-flow
data-flow-control request.) If RESPLIM=0 is coded, VTAM imposes no limit on
the number of pending responded output requests. The maximum value that
can be coded is decimal 65535. RESPLIM=1 is the default.

SDT
For an application program acting as the primary end of a session, this
operand indicates whether the application program or VTAM is to send the
first SDT request on the session.

For an application program acting as the secondary end of a session, this
operand when coded for an OPNSEC macroinstruction indicates whether the
application program or VTAM responds to an SDT request (by issuing
SESSIONC CONTROL=SDT, STYPE=RESP).

The use of this operand is determined by the transmission services profile
specified in the session parameters used for the session (see Appendix F,
“Specifying a session parameter,” on page 793). The operand is ignored if the
transmission services profile does not include SDT.

For the NIB used to give a CNM application program access to the SSCP-LU
session, SDT=SYSTEM must be specified, explicitly or by default.

SDT=SYSTEM
VTAM automatically sends an SDT request as part of the
session-establishment process before posting the OPNDST RPL complete.

SDT=APPL
VTAM does not send an SDT request until the application program tells it
to do so (by issuing SESSIONC CONTROL=SDT,STYPE=REQ).

USERFLD=user_data
Indicates any 4 bytes of data that the application program wants to associate
with a session-initiation request, or with the session itself.

The USERFLD in the NIB associated with a SIMLOGON, REQSESS, or
CLSDST OPTCD=PASS is retained by VTAM and is subsequently returned to
the application program that issued the session-initiation request in the exit
parameter list for the LOGON exit routine (for SIMLOGON), SCIP exit routine
(for REQSESS), or NSEXIT exit routine (for SIMLOGON, REQSESS, or CLSDST
OPTCD=PASS). Refer to “Exit routines related to session establishment and
termination” on page 100.

The USERFLD in the NIB associated with an OPEN (for a CNM application
program), OPNDST, or OPNSEC macroinstruction is saved by VTAM for the
session established by one of these macroinstructions and is returned in the
RPL USER field whenever an RPL-based operation (for example, RECEIVE)
completes for that session or an exit routine (for example, RESP) is entered for
that session.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 441

Note: The USERFLD associated with an OPNDST or OPNSEC
macroinstruction overrides that field specified in a SIMLOGON or REQSESS
macroinstruction. Thus, if the same 4 bytes of user data are to be saved by
VTAM for the session as were saved for the session-initiation request, the
OPNDST or OPNSEC macroinstruction must specify the same value originally
specified in the corresponding SIMLOGON or REQSESS macroinstruction.

Format: Code the 4 bytes of data in either character, fixed-point, or
hexadecimal format, or, if an address is desired, code it as an A-type or V-type
address constant. Register notation cannot be used.

Example:
USERFLD=C’LU01’
USERFLD=F’100’
USERFLD=00043E0
USERFLD=A(RTN1)
USERFLD=V(EXTRTN)

If you omit this operand, the USERFLD field is set to 0.

Examples
NIB1 NIB NAME=LUABC,NETID=NETA,USERFLD=A(LUABCV), C

PROC=(RESPX,TRUNC),LISTEND=YES

NIB1 represents a device-type LU named NETA.LUABC. When OPNDST is issued
referencing this NIB, a session is established with LUABC and the processing
options RESPX and TRUNC apply for that session. The address of LUABCV
(which can be an application program storage area representing LUABC) is saved
by VTAM and is returned to the application program whenever an operation
related to that session completes.

NIB fields set by VTAM

The NIB operands already described are supplied by the application program and
cause the NIB fields to be set when the NIB macroinstruction is assembled.
Additional NIB fields are set by VTAM; these fields can be examined by the
application program during program execution. (Some of these fields can also be
set by the application program.) VTAM uses these fields to return information to
the application program upon completion of processing for OPNDST, OPNSEC,
and OPEN (for a CNM application program). These fields are:

Field name
Contents

CID A field containing a 32-bit value identifying the session established by
using this NIB. This communication ID (CID) is also placed in the ARG
field of the RPL used by the OPNDST or OPNSEC macroinstruction (if
one, and only one, session was established). When NIB lists are used, the
CID placed in the ARG field is not meaningful. The CID can be examined
with the SHOWCB and TESTCB macroinstructions or with the ISTDNIB
DSECT. See Appendix E, “Control block formats and DSECTs,” on page
739, for more information. (If the session is not established, the CID field is
not modified.) This field can be set by VTAM or the application program.

Note: The algorithm used to construct the CID can vary between releases
of VTAM. Therefore, the application program should not become
dependent on any perceived values.

442 z/OS V2R1.0 Communications Server: SNA Programming

CON An indicator that is set to show that the session represented by this NIB
has been established. You can examine this field following OPNDST or
OPNSEC by coding CON=YES in a TESTCB macroinstruction; an “equal”
PSW condition code indicates that the CON field is set to YES, and the
session is established. This field is useful if you are using OPNDST with a
list of NIBs to establish more than one session. Examination of each
NIBCON field tells you which sessions were successfully established and
which were not. This field is set to NO if the session is not established.
This field is set only by VTAM.

Note: You must check the CON field to determine if the session was
actually established. A return code indication is not sufficient.

DEVCHAR
An 8-byte field describing certain characteristics of the SLU in the session
established by OPNDST. (If the session is not established, the DEVCHAR
field is not modified.) This field can be examined with either the SHOWCB
or TESTCB macroinstruction or with the ISTDVCHR DSECT. The
ISTDVCHR DSECT is described in Appendix E, “Control block formats and
DSECTs,” on page 739. This field is set only by VTAM.

NIBNACLQ
An indicator that is set to show whether a CINIT is still queued after an
OPNDST OPTCD=ACCEPT macroinstruction fails to accept that queued
CINIT. If this bit is on (1), it means that the queued CINIT was canceled by
VTAM. The session-initiation request must be repeated; for example, a
terminal operator has to log on again. If the bit is off (0), an error was
detected prior to finding a pending active session with a matching CINIT.
Refer to RPLRTNCD and RPLFDB2 for specific error recovery actions.

NAME
An 8-byte field containing the name of the secondary logical unit with
which OPNDST OPTCD=(ACCEPT,ANY) has established a session. The
NAME field is also filled in if OPNDST or OPNSEC uses the NIB CID field
to identify a pending active session; in this case also, the name is that of
the session partner LU. This field can be set by VTAM or the application
program.

NETID
The name in the network where the session parameter LU resides.

NIBPSPLU
An indicator that shows whether the application is a PLU or an SLU for a
particular session. A setting of 1 indicates that the application program is a
PLU; 0 indicates that the application program is an SLU. INQUIRE
OPTCD=PERSESS and OPNDST OPTCD=RESTORE provide the
information.

NIBPSRSP
An indicator that shows the RESP data mode of the session pending
recovery. A setting of 0 indicates that the RESP data mode is continue any
at the time that the session is retained. A setting of 1 indicates the data
mode is continue specific. INQUIRE OPTCD=PERSESS and OPNDST
OPTCD=RESTORE provide the information.

NIBPSDFS
An indicator that shows the DFSYN data mode of the session pending
recovery. A setting of 0 indicates that the DFSYN data mode is continue
any at the time the session is retained. A setting of 1 indicates the data

Chapter 13. Conventions and descriptions of VTAM macroinstructions 443

mode is continue specific. INQUIRE OPTCD=PERSESS and OPNDST
OPTCD=RESTORE provide the information.

NIBPSDFA
An indicator that shows the DFASY data mode of the session pending
recovery. A setting of 0 indicates that the DFASY data mode is continue
any at the time the session is retained. A setting of 1 indicates the data
mode is continue specific. INQUIRE OPTCD=PERSESS and OPNDST
OPTCD=RESTORE provide the information.

NIBRPARM
An address that points to the restore parameter list. The first word points
to the portion of the BIND for the session being recovered that is mapped
by ISTDBIND. The second word of this parameter list points to the session
state control vector information for the session being recovered.

NIBSLWRK
Indicates SIMLOGON was successful for this NIB.

NIBNNAMS
Indicates that the association established with a partner LU is known by
the application's network name.

NIBAFFIN
When the LUAFFIN parameter has been specified on the NIB for an
OPNDST RPL or an OPNSEC RPL, the value NIBAFFIN will be set upon
completion of the RPL to indicate whether VTAM owns the affinity or the
application owns the affinity. If NIBAFFIN is set on, it indicates that the
application owns the affinity.

OPEN—Open one or more ACBs
Purpose

The OPEN macroinstruction opens an ACB so that the ACB and all subsequent
requests referring to it can be identified by VTAM as applying to a specific
application program. During OPEN processing, the application program cannot
issue requests that reference the ACB. You indicate the ACB that is to be opened in
the OPEN macroinstruction coding.

Usage

After the OPEN macroinstruction completes successfully, VTAM sets the fields of
the ACB that point to the access-method-support and resource-information vector
lists. The application program can reference these fields until a CLOSE
macroinstruction or equivalent (for example, ABEND) occurs. “Vector lists” on
page 58 describes the vector lists.

Because an application program can start before VTAM starts, an application
program might issue an OPEN macroinstruction before VTAM is active. In this
case, OPEN fails and the application program is informed that VTAM is not active.
This is the only way an application program can determine whether VTAM is
active.

An application that has enabled persistence can use OPEN to recover sessions
pending recovery. See “Using persistent LU-LU session support” on page 66 for
more information.

444 z/OS V2R1.0 Communications Server: SNA Programming

OPEN must be issued in the mainline program.

For cross-memory API users, the following conditions must be met:
v OPEN must be issued in non-cross-memory mode by mainline processing under

TCB control.
v OPEN must be issued in the address space that becomes the primary address

space during a cross-memory VTAM API request.

See “Cross-memory application program interface (API) support” on page 317 for
more information.

The ACB and its related storage (APPLID, password, EXLST, NIB and
Application-ACB vector list) must be allocated in the same storage key. This key
can be the storage key of the program status word (PSW) at the time OPEN was
issued, or the storage key of the task control block (TCB).

VTAM prevents attempts to issue OPEN in an RPL exit routine or in any of the
other asynchronous exit routines. For additional information about the OPEN
macroinstruction, see Chapter 4, “Opening and closing an application program,” on
page 55.

VTAM supports application programs in 31-bit addressing mode and residing in
31-bit storage. Control block fields referenced by the OPEN macroinstruction can
reside in either 31-bit or 24-bit storage but must be consistent with the addressing
mode of the application program. The MODE parameter is used to set the
addressing mode of the ACB control block for these macroinstructions.

Because further considerations apply, you must issue the list or execute forms of
the OPEN macroinstruction.

The standard form of the OPEN macroinstruction expands at assembly time into
(1) nonexecutable code that represents the parameters you specified on the
macroinstruction and (2) executable code that causes the access method to be
entered when the macroinstruction is executed. The nonexecutable code, called the
parameter list, is assembled at the point in your application program where the
macroinstruction appears.

The list and execute forms of the OPEN macroinstruction cause the assembler to:
v Build the parameter list where the macroinstruction appears in your source code,

but assemble no executable code (list form).
v Assemble code that modifies a parameter list and cause the access method to be

entered during program execution (execute form).

Table 92 summarizes the actions of these various forms. It also indicates the types
of programs that would use each form and shows how the MF operand is used for
each form.

Table 92. Forms of the OPEN macroinstruction

Form During assembly During execution Useful for Coded with

Standard Parameter list built
where macroinstruction
appears in source code

Access method entered Non-reentrant programs
that are not sharing or
modifying parameter
lists

No MF operand

Chapter 13. Conventions and descriptions of VTAM macroinstructions 445

Table 92. Forms of the OPEN macroinstruction (continued)

Form During assembly During execution Useful for Coded with

List Parameter list built
where macroinstruction
appears in source code

No executable code
(execute form required)

Non-reentrant programs
that are sharing or
modifying parameter
lists

MF=L

Execute Code assembled (where
macroinstruction
appears in the source
code) to modify the
parameter list whose
address you supply

Parameter list modified
and the access method
entered

Programs using the list
form

MF=(E,address)

The OPEN macroinstruction can specify up to 255 ACB addresses and is used to
construct a data management parameter list. The parameter list is assembled where
the macroinstruction appears in the source code.

The list consists of a one-word entry for each ACB in the parameter list; the three
low-order bytes are used for the ACB address. The end of the list is indicated by a
1 in the high-order bit of the last entry's high-order byte. The length of a list
generated by a list-form instruction must be equal to the maximum length required
by an execute-form instruction that refers to the same list.

Syntax

This standard form of OPEN is valid.

�� OPEN (acb_address)
name (acb_address)

, MODE = (24)

, MODE = (31)
��

This is the list and execute form.

446 z/OS V2R1.0 Communications Server: SNA Programming

�� OPEN (acb_address)
name (acb_address)

�

�
, MF = (E)

, parameter_list_address
(register)

L

�

�
, MODE = (24)

, MODE = (31)
��

Input parameters

acb_address
Indicates the ACB that is to be associated with an APPL entry.

Format: If you specify more than one ACB, separate each with two commas.
No more than 255 ACB addresses may be specified.

You can omit the parentheses if you code only one address.

Note: VSAM ACB addresses can also be used in the OPEN macroinstruction.
Users can code DCB addresses. You can combine the addresses of different
types of control blocks in one OPEN macroinstruction.

MF=E
Indicates that the execute form of the OPEN macroinstruction and an existing
parameter list are used. The execute form allows you to modify the parameter
list between the generation of that parameter list and the invocation of the
access method routines that use the parameter list. Only the execute form
provides a means for you to modify the parameter list after it has been built.

parameter_list_address
Indicates the location of the parameter list to be used by the access
method.

(register)
Indicates the number of the register that will contain the parameter list
address when the macroinstruction is executed.

MF=L
Indicates that the OPEN macroinstruction is used to create a parameter list
referred by an execute-form instruction.

MODE
specifies the format of the OPEN parameter list being generated.

24 specifies that a standard form (24-bit) parameter list address be generated.
The parameter list must reside below 16 megabytes and point to an ACB
residing below 16 megabytes.

31 specifies that a long form (31-bit) parameter list address be generated. This
parameter value must be coded if the parameter list or the ACB control
block resides above 16 megabytes.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 447

Examples

OPEN123 OPEN (ACB1,,ACB2,,(7))

OPEN123 opens ACB1, ACB2, and the ACB whose address is contained in register
7. Each of these ACBs is linked with an APPL definition statement.

Completion information

When control is returned to the instruction following the OPEN macroinstruction,
register 15 indicates whether the OPEN processing was completed successfully.
Successful completion means that all ACBs specified in the OPEN macroinstruction
were opened; unsuccessful completion means that at least one ACB was not
opened. Successful completion is indicated by a return code of 0 in register 15. The
following register 15 values indicate unsuccessful completion:

4 (X'04')
All ACBs were successfully opened, but warning messages were issued for
one or more VSAM ACBs.

8 (X'08')
One or more ACBs were not successfully opened. If the error condition
indicated by the unopened ACB's ERROR field can be eliminated, another
OPEN macroinstruction can be issued for the unopened ACBs.

12 (X'0C')
One or more ACBs were not successfully opened. Another OPEN
macroinstruction cannot be issued for the unopened ACBs.

If unsuccessful completion is indicated, the application program should examine
the OFLAGS field in each ACB to determine which one (or ones) could not be
opened. Test each OFLAGS field by coding an ACB address and OFLAGS=OPEN
in a TESTCB macroinstruction; if the resulting PSW condition code indicates an
equal comparison, that ACB has been opened:
TESTCB ACB=ACB4,OFLAGS=OPEN

If an unequal comparison is indicated, meaning that the ACB has not been opened,
the ERROR field can be checked to determine the reason. Like OFLAGS, ERROR is
not a field that the application program should modify (that is, there is no ERROR
operand for the ACB macroinstruction, and thus none for the MODCB
macroinstruction), but the application program can obtain the contents of this field
with the SHOWCB or TESTCB macroinstruction. For example:
SHOWCB ACB=ACB1,FIELDS=ERROR,AREA=SHOWIT, C

LENGTH=4,AM=VTAM

Note: If the ACB is open, or if the address specified in the OPEN macroinstruction
either does not indicate an ACB or lies beyond the addressable range of your
application program, the ERROR and OFLAGS fields in the ACB are unchanged.
Thus, if you find one of the following return codes in the ACB's ERROR field and
none of the specified causes apply, perhaps you are actually examining a field
whose contents have not been modified by OPEN. An open ACB or an ACB
address that is not valid results in register 15 being set to a nonzero value,
however.

A list of the values that can be set in the ERROR field of an ACB follow
(ACBERFLG is the actual field name). Because most of these error conditions result
from an error in your application program or in the system programmer's

448 z/OS V2R1.0 Communications Server: SNA Programming

definition of VTAM, little can be done during program execution when these
return codes are encountered. If, however, you are attempting to open more than
one ACB, you might want to check the ERROR field of each ACB. All ACBs whose
ERROR fields are set to 0 have been opened successfully, and your application
program can proceed using those ACBs.

The value set in the ERROR field of the ACB specified in the OPEN
macroinstruction indicates the specific nature of the error (if any) found. Except
where noted, all values apply to all operating systems.

ERROR field
Meaning

0 (X'00')
OPEN successfully opened this ACB.

4 (X'04')
The ACB has been opened.

20 (X'14')
OPEN cannot be processed because of a temporary shortage of storage.

36 (X'24')
The OPEN ACB failed for one of the following reasons:
v The password specified by the ACB did not match the corresponding

password in the APPL entry.
v The ACB did not specify a password and the APPL contains one.
v The security management product determined that the user is not

authorized to open the ACB.

70 (X'46')
OPEN was issued in an exit routine.

80 (X'50')
VTAM has not been included as part of the operating system. The fault lies
in the system definition procedures.

82 (X'52')
VTAM is included as part of the operating system, but the VTAM operator
issued a HALT command, and VTAM has shut down. You cannot attempt
to establish a session or communicate with any LUs.

84 (X'54')
Either the address supplied in the ACB's APPLID field lies beyond the
addressable range of your application program, or no entry is found in the
VTAM configuration tables that matches the name indicated by the ACB's
APPLID field (or supplied by the operating system). If the OPEN
macroinstruction is specified correctly, your system programmer might
have:
v Failed to include your application program's symbolic name during

VTAM definition
v Improperly handled the symbolic name.

Refer to the description of the APPLID operand in “ACB—Create an access
method control block” on page 375.

86 (X'56')
A match for your application program's symbolic name is found, but it is
for an entry other than an APPL. If you specified this name in the ACB's
APPLID field, verify that you have the correct name and handled this

Chapter 13. Conventions and descriptions of VTAM macroinstructions 449

name properly (see the APPLID operand of the ACB macroinstruction). If
the symbolic name is supplied by the operating system, the supplied name
is suspect.

88 (X'58')
Another ACB, already opened by VTAM, indicates the same application
program symbolic name that this ACB does. The system programmer
might have assigned the same symbolic name to two application programs.
This is valid only if the programs are not open concurrently. Possibly the
system operator initiated your program at the wrong time.

90 (X'5A')
No entry is found in the VTAM configuration tables that matches the name
indicated by the ACB's APPLID field (or supplied by the operating
system). This error might have occurred for one of the following reasons:
v The VTAM operator deactivated the APPL entry.
v The APPL entry was never created.
v If VTAM is trying to recover for persistent sessions, the application is

not in pending recovery state.

92 (X'5C')
VTAM is included as part of the operating system but inactive.

94 (X'5E')
The address supplied in the ACB's APPLID field lies beyond the
addressable range of your application program.

95 (X'5F')
The VTAM transient being used by the application for an OPEN ACB does
not match the level of VTAM.

96 (X'60')
An apparent system error occurred. Either there is a logic error in VTAM,
or there is an error in your use of OPEN or CLOSE that VTAM did not
properly detect. Save all applicable program listings and storage dumps,
and consult IBM Service.

98 (X'62')
The APPLID length byte is incorrectly specified.

100 (X'64')
The address supplied in the ACB's PASSWD field lies beyond the
addressable range of your application program.

102 (X'66')
The PASSWD length byte is incorrectly specified.

104 (X'68')
The APPLID field in the ACB identifies an application program that is
defined with AUTH=PPO in its APPL definition statement. Another
program with the same authorization is active. Only one program defined
with AUTH=PPO can be active at a time.

106 (X'6A')
The address supplied in the ACB's vector list field lies beyond the
addressable range of your application program.

108 (X'6C')
The VTAM ACB vector list length byte is incorrectly specified.

112 (X'70')
You attempted to open an ACB that is in the process of being closed. This

450 z/OS V2R1.0 Communications Server: SNA Programming

can occur when a VTAM application program job step or subtask is
canceled or terminates abnormally. The process of closing the ACB can
continue after the job step or subtask has actually terminated.
Subsequently, if the job step is restarted or the subtask is reattached before
the ACB closing process has been completed, an OPEN macroinstruction
that is then issued for that ACB fails.

114 (X'72')
This code occurs when an OPEN ACB fails for an LU 6.2 application with
VERIFY=OPTIONAL or VERIFY=REQUIRED for one of the following
reasons:
v The security management product is not installed.
v The security management product is not active.
v The security management product resource class APPCLU is not active.
v The application represented by the ACB is not in the security

management product Started Procedures Table.

116 (X'74')
VTAM rejected the takeover by an alternate application because the
original application did not enable persistence, although it is capable of
persistence.

118 (X'76')
OPEN failed because the specified application is in a recovery pending
state and PERSIST=YES is not specified on the ACB that is being opened.
The OPEN may also fail if the application is in pending terminate state
and an active CDRSC with the same name has been found in the sysplex.

120 (X'78')
ACB option mismatch between original application and opening takeover
or recovery application. One or more of the following can apply:
v MACRF mismatch—both values must be either LOGON or NLOGON;

they cannot differ.
v NQNAMES mismatch—both applications must be specified as

NQNAMES=YES or NQNAMES=NO; they cannot differ.
v PERSIST mismatch—both applications must be specified as

PERSIST=YES.
v FDX mismatch—both applications must be specified as FDX=YES or

FDX=NO; they cannot differ.
v LIMQSINT mismatch—both application APPL statements must agree in

their specification of a LIMQSINT parameter; either both must specify a
value or neither may. (The actual timer values specified do not need to
be identical, however.)

v APPC mismatch — both application APPL statements must specify
either APPC=YES or APPC=NO; they cannot differ.

v ENCR or MAC mismatch—the recovering application APPL statement
must specify a security level equal to or higher than the setting in effect
for the original application

v GNAME capability mismatch—the original application was supporting a
generic name but the VTAM node of the recovering application is not
connected to a generic resource structure or its structure name differs
from the original structure name.

v SECLVL mismatch—both application APPL statements must specify the
same SECLVL setting values; they cannot differ.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 451

v VERIFY mismatch—both application APPL statements must specify the
same VERIFY setting values; they cannot differ.

122 (X'7A')
The OPEN ACB by this performance monitor application failed because a
performance monitor application was already active, and only one
performance monitor application can be active.

124 (X'7C')
SNPS takeover request denied because the active application does not
allow itself to be taken over when it is still active.

140 (X'8C')
PERFMON=YES is coded on the ACB but the application is not CNM and
POA authorized.

188 (X'BC')
The ACB is in the process of being opened or closed by another request.

244 (X'F4')
The application program is not authorized for SRBEXIT=YES. A request to
open an ACB whose corresponding APPL definition statement specifies
SRBEXIT=YES is rejected unless the application program is APF
authorized, or using key 0–7, or in supervisor state.

246 (X'F6')
NIB storage address not valid. A CNM authorized application program
either failed to supply an NIB pointer in the NIB field of the ACB, or the
NIB address supplied lies beyond the addressable range of the application
program.

250 (X'FA')
NIB options not valid. Either an application program without CNM
authorization (specified in its associated VTAM resource definition)
supplied an NIB pointer in its ACB; or, if CNM authorized, the application
program failed to supply valid NIB options on the NIB macroinstruction.

254 (X'FE')
Duplicate unsolicited RU routing requested. The CNM routing table
indicated that this application program was to receive the same unsolicited
formatted requests that were already being routed to another active CNM
authorized application program. Only one application program can be
actively receiving a particular type of RU (for example, RECFMS) at a time.

The OFLAGS field in the ACB is set to B'xxx1xxxx' if the ACB opens successfully.

Use the following guidelines to produce a system-independent determination of a
successful or unsuccessful OPEN:
v Put 0 in register 15 before issuing OPEN.
v Issue OPEN for only one VTAM ACB at a time.
v If register 15 is 0, consider the OPEN successful.
v If register 15 is not zero, consider the OPEN unsuccessful, and examine the

contents of the ACB's ERROR field.

For a CNM application program, the CID of the SSCP-LU session is returned in the
CID field of the NIB specified in the ACB's PARMS=(NIB=nib address) operand.

452 z/OS V2R1.0 Communications Server: SNA Programming

OPNDST—Establish sessions (application as PLU) or recover sessions
Purpose

The OPNDST macroinstruction requests VTAM to establish a session between the
application program (operating as the PLU) and an LU.

Usage

No matter how a session is initiated, OPNDST is used to accept the resulting
pending-active session in which the application program acts as the PLU. OPNDST
is also used to initiate a session with an LU and accept the resulting
pending-active session in one operation. This is known as acquiring a session.

Additionally, OPNDST is used by an application program (operating as a PLU or
an SLU) to restore sessions pending recovery.

OPNDST OPTCD=ACQUIRE can establish more than one session if a list of NIBs
is supplied. For a detailed description of the parameter specification and operation
of the OPNDST macroinstruction, refer to “OPNDST macroinstruction” on page 89.

Before issuing the OPNDST macroinstruction, the application program must set
register 13 to the address of an 18-word save area. Refer to Appendix H,
“Summary of register usage,” on page 853, for information pertaining to the
register contents upon return of control.

VTAM receives control from the OPNDST macroinstruction in the addressing
mode of the application program that issued the macroinstruction and returns
control to the application program in that same mode.

The target of this macroinstruction might be a network-qualified name. For more
details see “NIB—Create a node initialization block” on page 433.

The OPNDST macroinstruction can specify whether a session request is for a
primary or backup XRF session. It must also specify a correlation ID in the NIB
BNDAREA for OPNDST ACQUIRE on a primary XRF session. This correlation ID
allows VTAM to pair up a primary XRF with a backup XRF session. Note that the
negotiable BIND is not supported for XRF sessions.

When the application is participating as a member of a generic resource, it can
specify whether it wants to own the affinity for the new session. The application
does this using the LUAFFIN keyword of the NIB macroinstruction. For more
details see “NIB—Create a node initialization block” on page 433.

Syntax

Chapter 13. Conventions and descriptions of VTAM macroinstructions 453

�� OPNDST RPL = rpl_address
name

�

�
(1)

, AAREA = alternate_input_area_address

�

�
(1)

, AAREALN = alternate_input_area_length

�

�
(1)

, ACB = acb_address
(1)

, BRANCH = NO
YES

�

�
(1)

, ECB = INTERNAL
, ECB = ecb_address

(1)
, EXIT = exit_routine_address

(1)
, NIB = nib_address

�

�
(1) (2)

, OPTCD = (ACCEPT)
ACQUIRE
RESTORE
ANY
SPEC
ASY
SYN
BACKUP
NBACKUP
CA
CS
CONALL
CONANY
Q
NQ

��

Notes:

1 Operand value can be placed in its RPL field either by specification on an
RPL macroinstruction operand or by explicitly setting the field using the
IFGRPL DSECT.

2 You can code more than one suboperand on OPTCD, but code no more than
one from each group.

Input parameters

RPL=rpl_address
Indicates the RPL that specifies which kind of processing OPNDST is to
perform.

The following RPL operands apply to the OPNDST macroinstruction:

AAREA=alternate_input_area_address
Specifies an address into which a response to a negotiable BIND is placed.
AAREA is ignored if AAREALN is 0 or if PROC=NNEGBIND in the NIB.

454 z/OS V2R1.0 Communications Server: SNA Programming

When OPTCD=RESTORE, AAREA points to the area that the application
program allocates to hold the recovery data that an application may use to
resynchronize the sessions during session recovery.

AAREALN=alternate_input_area_length
Specifies the length of the address pointed to by AAREA. A valid BIND
response can be up to 255 bytes in length.

When OPTCD=RESTORE, the area obtained must be large enough to hold all
the recovery data. If it is not, a special condition results
(RTNCD,FDB2)=(X'00',X'05'). OPNDST calculates the length needed and returns
that value to the RECLEN field. The sessions are not restored until the
supplied area is large enough.

ACB=acb_address
Indicates the ACB that identifies the application program issuing OPNDST.

BRANCH
For application programs running in supervisor state under a TCB, BRANCH
indicates whether authorized path processing is to be used. See “Authorized
path” on page 300.

BRANCH=YES
When the macroinstruction is issued, VTAM processes the macroinstruction
using authorized path. For programs running under an SRB rather than
under a TCB, the macroinstruction is processed in this manner
automatically, regardless of the actual setting of the BRANCH field.

BRANCH=NO
When the macroinstruction is issued, VTAM does not process the
macroinstruction using authorized path.

ECB
Indicates that an ECB is posted when an asynchronous (OPTCD=ASY)
OPNDST operation is posted as being complete. You cannot specify both ECB
and EXIT on a single macroinstruction.

ECB=event_control_block_address
Specifies that VTAM is to post an event control block (ECB).
Event_control_block_address is the location of the ECB to be posted. The ECB
can be any fullword of storage aligned on a fullword boundary.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB.

EXIT=exit_routine_address
Indicates the address of an RPL exit routine that is scheduled when an
asynchronous (OPTCD=ASY) OPNDST operation is posted as being complete.
You cannot specify both ECB and EXIT on a single macroinstruction. For
details about the EXIT operand, refer to the RPL macroinstruction description
in this chapter.

NIB=nib_address
Indicates the address of the NIB whose parameters are to be associated with
the session to be established. Refer to the NIB macroinstruction description in
this chapter to see which NIB parameters are valid for OPNDST.

When OPTCD=RESTORE, the address points to the NIB list created by either
the INQUIRE command or the application. The OPNDST macroinstruction
uses this information to determine which sessions to restore.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 455

OPTCD=ACCEPT
When ACCEPT is set, a session is established with a logical unit with which a
pending active session exists.

If PARMS=(NQNAMES=YES) on the ACB macroinstruction, and if the NIB is
specified with a network identifier in the NIBNET field, the network identifier
is used along with the LU name in NIBSYM to find the queued CINIT.

OPTCD=ACQUIRE
VTAM issues session-initiation requests for the LUs indicated in the NIBs
specified by the RPL's NIB field. Only sessions with available LUs are
established.

If PARMS=(NQNAMES=YES) on the ACB macroinstruction, and if the NIB is
specified with a network identifier in the NIBNET field, the network identifier
is used along with the LU name in NIBSYM to build a session initiation
request.

OPTCD=RESTORE
The PLU and SLU applications that are capable of persistence use the
RESTORE option to recover sessions pending recovery. The application
program can use the information found in control vector hex 29 to recover the
individual sessions.

The NIB will contain a pointer to the restore parameter list. The restore
parameter list indicates where to locate:
v Control vector 29, see Table 110 on page 747 for more information.
v BIS data (for LU 6.1 and LU 6.2)
v BID data (for LU 6.1 and LU 6.2)
v FMH-5 data (for LU 6.2).

For more information about BIS, BID, and FMH-5, data see “Data tracking” on
page 137.

For XRF requests, the NIB BNDAREA field must point to a BIND specifying a
control vector or vectors included with the XRF session activation control
vector (including correlation ID) initialized appropriately. In addition,
OPTCD=BACKUP must be specified on the OPNDST OPTCD=ACQUIRE if the
session establishment request is for a backup XRF session. The request fails if
the SLU cannot support XRF.

OPTCD=BACKUP and OPTCD=NBACKUP do not apply for OPNDST
OPTCD=ACCEPT and are ignored. However, if a SIMLOGON
OPTCD=BACKUP is issued, it drives a LOGON exit routine that contains
OPNDST OPTCD=ACCEPT.

Note: When using OPNDST OPTCD=(ACQUIRE,ASY) an application program
task could be suspended if an RPL exit routine is not provided. See
“Initializing a session” on page 44 for details.

OPTCD=BACKUP
OPTCD=NBACKUP

This parameter applies only when trying to initiate an XRF backup session. A
backup XRF session must not be requested by the application until the
OPNDST for the primary XRF session has been posted complete. BACKUP
indicates that the OPNDST request is to initiate a backup XRF session.
OPTCD=NBACKUP is the default and results in a session initiation request
that does not specify a backup XRF session.

OPTCD=CONALL

456 z/OS V2R1.0 Communications Server: SNA Programming

OPTCD=CONANY
When CONANY is set and OPNDST OPTCD=ACQUIRE is issued, a session is
established with the first available logical unit of the NIB list indicated in the
RPL's NIB field. When CONALL is set, a session is established for all the
available LUs in the list.

OPTCD=CA
OPTCD=CS

Specifies the initial setting of the session's CS-CA mode for all data types
(DFSYN, DFASY, and RESP). When CA is set, data obtained on a session can
satisy a RECEIVE OPTCD=ANY or RECEIVE OPTCD=SPEC macroinstruction.
When CS is set, only RECEIVE (OPTCD=SPEC) macroinstructions can obtain
data.

OPTCD=Q
OPTCD=NQ

This option applies only when OPTCD=ACCEPT is in effect. When
OPTCD=ACQUIRE is in effect, this option is ignored. When Q is set, VTAM
queues the OPNDST until a session is initiated that results in a CINIT that
OPNDST can accept. When NQ is set, VTAM terminates the OPNDST
macroinstruction immediately if there is no suitable pending active session to
accept.

OPTCD=SPEC
OPTCD=ANY

When SPEC is set (used only in conjunction with ACCEPT), a specific session
(designated by the NIB's NAME or CID field) is established after the session
becomes pending active. When ANY is set, a session is established for any
pending active session that is created.

OPTCD=SYN
OPTCD=ASY

If SYN option code is set,control is returned to the application program when
the OPNDST operation has completed. If ASY option code is set, control is
returned as soon as VTAM has accepted the request. Once the OPNDST
operation has completed, the ECB is posted or the RPL exit routine is
scheduled, depending on the setting of the ECB-EXIT field. Refer to the RPL
macroinstruction description in this chapter for details about OPTCD=SYN or
OPTCD=ASY.

Because it might take VTAM a relatively long time to complete the OPNDST
operation, you should not use the SYN option if suspending the
OPNDST-issuing task or SRB for this time is undesirable. Use the ASY option
code, instead.

Examples

Note: To avoid obscuring the differences between the different types of OPNDST,
the same technique is used to set the RPL fields in each example (namely, inserting
RPL-modifiers on the OPNDST macroinstruction). RPL fields could just as well
have been set with the MODCB macroinstruction, with assembler instructions, or
with the RPL macroinstruction itself.

Case 1: This is an “ACQUIRE CONALL” OPNDST.
ACQALL OPNDST RPL=RPL1,NIB=NIBLST1,ACB=ACB1, C

OPTCD=(ACQUIRE,CONALL)
.
.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 457

.
NIBLST1 NIB NAME=LU1,LISTEND=NO

NIB NAME=LU2,LISTEND=NO
NIB NAME=LU2,LISTEND=YES

ACQALL establishes sessions between each of the available logical units of
NIBLST1 and the application program represented by ACB1.

Note: Two sessions are established with LU2 only if both the application program
and LU2 are capable of parallel sessions.

Case 2: This is an “ACQUIRE CONANY” OPNDST.
ACQANY OPNDST RPL=RPL2,NIB=NIBLST2,ACB=ACB1, C

OPTCD=(ACQUIRE,CONANY)
.
.
.

NIBLST2 NIB NAME=LUX,LISTEND=NO
NIB NAME=LUY,LISTEND=NO
NIB NAME=LUZ,LISTEND=YES

ACQANY establishes a session between one of the LUs of NIBLST2 (LUX, LUY, or
LUZ) and the application program. The CON and CID fields are set in the NIB
representing the established session. RPLARG field also contains the CID of the
established session.

Case 3: This is an “ACQUIRE One NIB” OPNDST.
ACQONE OPNDST RPL=RPL3,NIB=NIB3,ACB=ACB1, C

OPTCD=ACQUIRE
.
.
.

NIB3 NIB NAME=LU35,LISTEND=YES

ACQONE establishes a session with LU35, if LU35 is available.

Case 4: This is an “ACCEPT ANY” OPNDST.
ACPTANY OPNDST RPL=RPL4,NIB=NIB6,ACB=ACB1, C

OPTCD=(ACCEPT,ANY,NQ)
.
.
.

NIB6 NIB LISTEND=YES

ACPTANY establishes a session with any one LU for which a session-initiation
request has been issued that resulted in a CINIT queued to the application
program. The symbolic name of this LU (along with the CID of the session) is
placed in NIB6. Because NQ is specified, the request is posted complete with
(RTNCD,FDB2)=(X'00',X'06') if no such queued CINIT exists.

Case 5: This is an “ACCEPT SPEC” OPNDST.
ACPTSPC OPNDST RPL=RPL5,NIB=NIB7,ACB=ACB1, C

OPTCD=(ACCEPT,SPEC,Q)
.
.
.

NIB7 NIB NAME=LU77,LISTEND=YES

ACPTSPC establishes a session between LU77 and the application program when a
CINIT is received for such a session.

458 z/OS V2R1.0 Communications Server: SNA Programming

Completion information

The OPNDST operation is successfully completed when the specified sessions are
established. (For selective and required cryptographic sessions, this is after the
receipt of the response to CRV.)

After the OPNDST operation is completed, the following NIB fields are set:
v The CID of the session is placed in the CID field. If recovering for persistent

sessions, the CID will be different than the CID of the session before the failure.
v The CON field is set to YES if the session was established; otherwise, it is set to

NO. This field can be examined by coding CON=YES on a TESTCB
macroinstruction.

Note: You must check the CON field to determine whether the session was
actually established. A return code indication is not sufficient.

v If the ACCEPT option was in effect, the symbolic name of the SLU is placed in
the NAME field.

v If the ACCEPT option was in effect and NQNAMES=YES is specified, the
symbolic name of the network containing the SLU is placed in the NETID field.

v Certain characteristics of the SLU are indicated in the DEVCHAR field. The
DEVCHAR codes are explained in Appendix E, “Control block formats and
DSECTs,” on page 739.

v An indicator (NIBNACLQ) is set indicating whether the pending active session
still exists. See the description of (RTNCD,FDB2)=(X'08',X'00') in Appendix B,
“Return codes and sense fields for RPL-based macroinstructions,” on page 651,
for an example of the use of this indicator.

The following fields are set in the RPL:
v The value 23 (decimal) is set in the REQ field, indicating an OPNDST request.
v If only one session has been established, the CID is placed in the ARG field.
v The address of the NIB or NIB list (as supplied by you in the NIB field) is

returned in the AREA field. The NIB field is overlaid when the CID is placed in
the ARG field, because the NIB and ARG fields occupy the same physical
location in the RPL.

v If a negotiable BIND had been sent (PROC=NEGBIND in the NIB), ARECLEN
specifies the length of the received positive response to that BIND, which has
been moved into the area pointed to by AAREA. If ARECLEN is larger than
AAREALN, the response is truncated to fit into AAREA.

v The RTNCD and FDB2 fields are set as indicated in Appendix B, “Return codes
and sense fields for RPL-based macroinstructions,” on page 651. If the return
codes indicate that the OPNDST has failed, do not issue a CLSDST for the
session, as it is not established. However, if OPNDST OPTCD=ACCEPT was
used, and the NIB indicates that a pending active session still exists, then the
OPNDST should be retried, or CLSDST should be issued to terminate the
pending active session.

v The SSENSEI, SSENSMI, and USENSEI fields are set if
(RTNCD,FDB2)=(X'10',X'01') (OPNDST for a logical unit failed).

Note: The USERFLD field is not set for OPNDST.

Registers 0 and 15 are also set as indicated in Chapter 9, “Handling errors and
special conditions,” on page 277.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 459

OPNSEC—Establish a session, application program acts as the SLU
Purpose

The OPNSEC macroinstruction is issued by a VTAM application program that has
received a BIND request in a SCIP exit routine, and wants to respond positively to
the BIND and thus establish a session with the PLU that sent the BIND. The
application program that issues OPNSEC is the SLU in the session.

For a detailed description of the operation of the OPNSEC macroinstruction, refer
to “OPNSEC macroinstruction” on page 96.

Usage

Before issuing the OPNSEC macroinstruction, the application program must set
register 13 to the address of an 18-word save area. Refer to Appendix H,
“Summary of register usage,” on page 853, for information pertaining to the
register contents upon return of control.

VTAM receives control from the OPNSEC macroinstruction in the addressing mode
of the application program that issued the macroinstruction and returns control to
the application program in that same mode.

When the OPNSEC successfully completes, VTAM indicates in the NIB the type of
encryption (selective or required) that is specified by the application.

When the application is participating as a member of a generic resource, it can
specify whether it wants to own the affinity for the new session. The application
does this using the LUAFFIN keyword of the NIB macroinstruction. For more
details see “NIB—Create a node initialization block” on page 433.

Syntax

460 z/OS V2R1.0 Communications Server: SNA Programming

�� OPNSEC RPL = rpl_address
name (1)

, ACB = acb_address

�

�
(1)

, BRANCH = NO
YES

(1)
, ECB = INTERNAL
, ECB = ecb_address

(1)
, EXIT = exit_routine_address

�

�
(1)

, NIB = nib_address

�

�
(1) (2)

, OPTCD = (ASY)
SYN
CA
CS

��

Notes:

1 Operand value can be placed in its RPL field either by specification on an
RPL macroinstruction operand or by explicitly setting the field using the
IFGRPL DSECT.

2 You can code more than one suboperand on OPTCD, but code no more than
one from each group.

Input parameters

RPL=rpl_address
Indicates the RPL that specifies which kind of processing OPNSEC is to
perform.

The following RPL operands apply to the OPNSEC macroinstruction:

ACB=acb_address
Indicates the ACB that identifies the application program issuing OPNSEC.

BRANCH
For application programs running in supervisor state under a TCB, BRANCH
indicates whether authorized path processing is to be used. See “Authorized
path” on page 300.

BRANCH=YES
When the macroinstruction is issued, VTAM processes the macroinstruction
using authorized path. For programs running under an SRB rather than
under a TCB, the macroinstruction is processed in this manner
automatically, regardless of the actual setting of the BRANCH field.

BRANCH=NO
When the macroinstruction is issued, VTAM does not process the
macroinstruction using authorized path.

ECB
Indicates that an ECB is posted when an asynchronous (OPTCD=ASY)
OPNSEC operation is posted as being complete. You cannot specify both ECB
and EXIT on a single macroinstruction.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 461

ECB=event_control_block_address
Specifies that VTAM is to post an event control block (ECB).
Event_control_block_address is the location of the ECB to be posted. The ECB
can be any fullword of storage aligned on a fullword boundary.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB.

EXIT=exit_routine_address
Indicates the address of an RPL exit routine that is scheduled when an
asynchronous (OPTCD=ASY) OPNSEC operation is posted as being complete.
You cannot specify both ECB and EXIT on a single macroinstruction. For
details about the EXIT operand, refer to the RPL macroinstruction description
in this chapter.

NIB=nib_address
Indicates the NIB whose parameters are to be associated with the session
requested by the BIND request. Refer to the NIB macroinstruction description
in this chapter to see which NIB parameters are valid for OPNSEC.

OPTCD=CA
OPTCD=CS

Specifies the initial CA-CS setting of all input types (DFSYN, DFASY, and
RESP) for the session. When CA is set, input received satisfies a RECEIVE
OPTCD=ANY or OPTCD=SPEC. When CS is set, input received satisfies only a
RECEIVE OPTCD=SPEC.

OPTCD=SYN
OPTCD=ASY

When SYN option code is set, control is returned to the application program
when the OPNSEC operation has been completed. If ASY option code is set,
control is returned as soon as VTAM has accepted the request. After the
OPNSEC operation has been completed, the ECB is posted or the RPL exit
routine is scheduled, depending on the setting of the ECB-EXIT field. Refer to
the RPL macroinstruction description in this chapter for details about
OPTCD=SYN or OPTCD=ASY.

Because it might take VTAM a relatively long time to complete the OPNSEC
operation, you should not use the SYN option if suspending the
OPNSEC-issuing task or SRB for this time is undesirable. Use the ASY option
code, instead.

Examples
OPNS1 OPNSEC RPL=RPL1,OPTCD=CA,NIB=NIB1 C...
RPL1 RPL AM=VTAM
NIB1 NIB NAME=APPLPRI

Executing OPNS1 signifies acceptance of the session parameters received as a
result of a BIND request and agreement to act as the secondary end of the session
with APPLPRI.

Completion information

For selective and required cryptographic sessions, the OPNSEC operation is
completed when the response to CRV is sent. For other sessions, completion occurs
when the positive response to BIND is sent. Be aware that the RPL exit routine can
be driven after other exit routines dealing with the same session are driven (for
example, SCIP with start data traffic).

462 z/OS V2R1.0 Communications Server: SNA Programming

After the OPNSEC macroinstruction is completed, the following fields in the NIB
are set:
v The CID field contains the 4-byte communication identifier.
v The CON field is set to YES if the session is established; otherwise, it is set to

NO.
v The NAME field contains the symbolic name of the PLU from the BIND request.
v If NQNAMES=YES, the NETID field contains the network identifier of the PLU

from the BIND request.

After the OPNSEC operation is completed, the following RPL fields are set:
v The value 42 (decimal) is set in the REQ field, indicating an OPNSEC request.
v The CID is placed in the RPLARG field.
v The address of the NIB that was specified in the NIB field is returned in the

AREA field. The NIB field is overlaid by the ARG field that contains the CID.
The NIB and the ARG fields occupy the same space in the RPL.

v The RTNCD and FDB2 fields are set as indicated in Appendix B, “Return codes
and sense fields for RPL-based macroinstructions,” on page 651.
If the macroinstruction returns an error code, the SSENSEI, SSENSMI, and
USENSEI fields can be set indicating system-sense information, system-sense
modifier, and user-sense information. More information about these fields can be
found in Appendix B, “Return codes and sense fields for RPL-based
macroinstructions,” on page 651.

Note: The USERFLD is not set for OPNSEC.

Registers 0 and 15 are also set as indicated in Chapter 9, “Handling errors and
special conditions,” on page 277.

RCVCMD—Receive a message from VTAM
Purpose

After an application program issues a VTAM operator command (VARY, DISPLAY,
MODIFY, or REPLY) using a SENDCMD macroinstruction, a RCVCMD
macroinstruction is used to receive the requested information. In addition,
unsolicited VTAM messages, such as those indicating an unexpected failure in the
network, can be received with this macroinstruction.

Usage

Before issuing the RCVCMD macroinstruction, the application program must set
register 13 to the address of an 18-word save area. Refer to Appendix H,
“Summary of register usage,” on page 853, for information pertaining to the
register contents upon return of control.

For information on writing an application program that can issue VTAM operator
commands and receive VTAM messages, see Appendix L, “Program operator
coding requirements,” on page 875.

VTAM receives control from the RCVCMD macroinstruction in the addressing
mode of the application program that issued the macroinstruction and returns
control to the application program in that same mode.

Syntax

Chapter 13. Conventions and descriptions of VTAM macroinstructions 463

�� RCVCMD RPL = rpl_address
name (1)

, ACB = acb_address

�

�
(1)

, AREA = input_message_address

�

�
(1)

, AREALEN = input_message_area_length

�

�
(1)

, BRANCH = NO
YES

(1)
, ECB = INTERNAL
, ECB = ecb_address

(1)
, EXIT = exit_routine_address

�

�
(1) (2)

, OPTCD = (ASY)
SYN
Q
NQ

TRUNC

��

Notes:

1 Operand value can be placed in its RPL field either by specification on an
RPL macroinstruction operand or by explicitly setting the field using the
IFGRPL DSECT.

2 You can code more than one suboperand on OPTCD, but code no more than
one from each group.

Input parameters

RPL=rpl_address
Indicates the RPL that specifies which kind of processing RCVCMD is to
perform.

The following RPL operands apply to the RCVCMD macroinstruction:

ACB=acb_address
Indicates the ACB that identifies the application program issuing RCVCMD.

AREA=input_message_address
Must contain the address of the area in the application program where the
incoming message header, optional message identification, and the message
text are to be placed. After the message has been moved to this area, the RPL's
RECLEN field is set by VTAM with the total number of bytes of received data
that have been moved into the AREA field. The AREA field is ignored if
AREALEN=0.

AREALEN=input_message_area_length
Contains the length (in bytes) of the message area pointed to by AREA. The
length specified should be 8 bytes longer than the longest message text
anticipated to provide enough space for the message header and optional reply
ID. The AREA field must be at least 4 bytes and no longer than 130 bytes.

464 z/OS V2R1.0 Communications Server: SNA Programming

BRANCH
For application programs running in supervisor state under a TCB, BRANCH
indicates whether authorized path processing is to be used. See “Authorized
path” on page 300.

BRANCH=YES
When the macroinstruction is issued, VTAM processes the macroinstruction
using authorized path. For programs running under an SRB rather than
under a TCB, the macroinstruction is processed in this manner
automatically, regardless of the actual setting of the BRANCH field.

BRANCH=NO
When the macroinstruction is issued, VTAM does not process the
macroinstruction using authorized path.

ECB
Indicates that an ECB is posted when an asynchronous (OPTCD=ASY)
RCVCMD operation is posted as being complete. You cannot specify both ECB
and EXIT on a single macroinstruction.

ECB=event_control_block_address
Specifies that VTAM is to post an event control block (ECB).
Event_control_block_address is the location of the ECB to be posted. The ECB
can be any fullword of storage aligned on a fullword boundary.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB.

EXIT=exit_routine_address
Indicates the address of an RPL exit routine that is scheduled when an
asynchronous (OPTCD=ASY) RCVCMD operation is posted as being complete.
You cannot specify both ECB and EXIT on a single macroinstruction. For
details about the EXIT operand, refer to the RPL macroinstruction description
in this chapter.

OPTCD=Q
OPTCD=NQ

Indicates the action to be taken if no input is available when the RCVCMD
macroinstruction is executed. OPTCD=Q means that the macroinstruction is
completed when the requested input eventually arrives. OPTCD=NQ means
that the macroinstruction is completed immediately with
(RTNCD,FDB2)=(X'00',X'06') if the input is not available.

Note: After a CLOSE macroinstruction fails because operator messages are still
queued for the application program, RCVCMD macroinstructions can still be
issued, but they are not queued. After the last message is received, RCVCMD
is posted with (RTNCD,FDB2)=(X'14',X'70') if OPTCD=Q is specified, or
(RTNCD,FDB2)=(0,6) if OPTCD=NQ is specified. This indicates that no more
messages are queued. CLOSE can be reissued.

OPTCD=SYN
OPTCD=ASY

If SYN option code is set, control is returned to the application program when
the RCVCMD operation has completed. If ASY option code is set, control is
returned as soon as VTAM has accepted the request. Once the RCVCMD
operation has completed, the ECB is posted or the RPL exit routine is
scheduled, depending on the setting of the ECB-EXIT field. Refer to the RPL
macroinstruction description in this chapter for details about OPTCD=SYN or
OPTCD=ASY.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 465

Because it might take VTAM a relatively long time to complete the RCVCMD
operation, you should not use the SYN option if suspending the
RCVCMD-issuing task or SRB for this time is undesirable. Use the ASY option
code, instead.

OPTCD=TRUNC
Indicates that input data that is too lengthy is truncated whenever the
RCVCMD macroinstruction is issued.

Examples
RCVCMD1 RCVCMD RPL=RPL1,AREA=MSGBUF,AREALEN=126, C

OPTCD=(TRUNC,Q)

RCVCMD1 is completed when an incoming message is received from VTAM. After
RCVCMD1 is completed, the application program can examine the contents of
MSGBUF to determine the message received. Any messages that exceed 126 bytes
are truncated to 126 bytes.

Completion information

The RCVCMD operation is successfully completed when the message or reply is
received, the data (if any) is placed in the input area, and the appropriate
information is set in the RPL. If NQ is specified and no input is available,
RCVCMD is completed immediately.

After the RCVCMD operation is completed, the following RPL fields can be set by
VTAM:
v The value 40 (decimal) is set in the REQ field, indicating an RCVCMD request.
v The RECLEN field indicates the length of the message placed in the input area

pointed to by the AREA field. The length specified includes 4 bytes for the
header and 4 additional bytes (if required) for the reply identifier. The
reply-requested bits in the status field of the header can be tested to determine if
this field is present.
If a reply is requested for this message, the AAREALN field indicates the
maximum length the reply can be. This reply length includes header, message
ID, and text.

v The RTNCD and FDB2 fields are set as indicated in Appendix B, “Return codes
and sense fields for RPL-based macroinstructions,” on page 651.

Registers 0 and 15 are also set as indicated in Chapter 9, “Handling errors and
special conditions,” on page 277.

RECEIVE—Receive input on a session
Purpose

The RECEIVE macroinstruction moves a data request received by VTAM into an
input area in the application program or sets RPL fields to indicate receipt of a
data-flow-control request or receipt of a response. The data request,
data-flow-control request, or response was previously sent from a logical unit (on
an LU-LU session) or from the SSCP (on the SSCP-LU session, if using the CNM
interface). If data is received, it is placed in the input area designated by the
application program.

466 z/OS V2R1.0 Communications Server: SNA Programming

Usage

Figure 87 illustrates the major options for a RECEIVE macroinstruction. Figure 39
on page 179 illustrates how RECEIVE macroinstructions are completed by VTAM.
See Appendix A, “Summary of control block field usage,” on page 633 for
information about which RPL fields are automatically set by VTAM.

The application program designates which types of input (DFSYN, DFASY, or
RESP) can cause the RECEIVE macroinstruction to be completed (any combination
can be selected). Refer to “DFSYN, DFASY, and RESP types of RUs” on page 160
for details of which RUs are included in each of these types of input. Only one
type of input can satisfy a particular RECEIVE macroinstruction.

Before issuing the RECEIVE macroinstruction, the application program must set
register 13 to the address of an 18-word save area. Refer to Appendix H,
“Summary of register usage,” on page 853, for information pertaining to the
register contents upon return of control.

Receive Normal-Flow Requests or DFSYN Responses
RTYPE=DFSYN

Discard excess data:
OPTCD=TRUNC

Retain excess data:
OPTCD=KEEP

Discard or retain as
indicated in NIB:

OPTCD=NIBTK

Receive Expedited-Flow Requests
RTYPE=DFASY

Positive or Negative response

Definite response 1 or Definite response 2

Definite response 1 & 2

Receive Normal-Flow Responses other than DFSYN Responses
RTYPE=RESP

Data requests DATA

Bid requests BID

Bracket Initiation Stopped requests BIS

Cancel requests CANCEL

Chase requests CHASE

Logical Unit Status Requests LUS

Quiesce Complete requests QC

Ready to Receive requests RTR

DFSYN requests Any of the above

Quiesce at End-of-Chain requests QEC

Release Quiesce requests RELQ

Request Shutdown requests RSHUTD

Stop Bracket Initiation requests SHUTC

Shutdown requests SHUTD

Signal requests SIGNAL

From any session:
OPTCD=ANY

From a specific
session:
OPTCD=SPEC

Wait until input
is available:
OPTCD=Q

Terminate RECEIVE
if input is not
available
OPTCD=NQ

Figure 87. Major options for a RECEIVE macroinstruction

Chapter 13. Conventions and descriptions of VTAM macroinstructions 467

VTAM receives control from the RECEIVE macroinstruction in the addressing
mode of the application program that issued the macroinstruction and returns
control to the application program in that same mode.

Syntax

�� RECEIVE RPL = rpl_address
name (1)

, ACB = acb_address

�

�
(1)

, AREA = input_data_area_address

�

�
(1)

, AREALEN = input_data_area_length

�

�
(1)

, ARG = (register)
(1)

, BRANCH = NO
YES

�

�
(1)

, ECB = INTERNAL
, ECB = ecb_address

(1)
, EXIT = exit_routine_address

�

�
(1) (2)

, OPTCD = (ANY)
SPEC
ASY
SYN
CA
CS
KEEP
NIBTK
TRUNC
Q
NQ

�

�
(3) (1)

, RTYPE = (DFASY)
NDFASY
DFSYN
NDFSYN
RESP
NRESP

��

Notes:

1 Operand value can be placed in its RPL field either by specification on an
RPL macroinstruction operand or by explicitly setting the field using the
IFGRPL DSECT.

468 z/OS V2R1.0 Communications Server: SNA Programming

2 You can code more than one suboperand on OPTCD, but code no more than
one from each group.

3 You can code more than one suboperand on RTYPE, but code no more than
one from each group.

Input parameters

RPL=rpl_address
Indicates the RPL that specifies which kind of processing RECEIVE is to
perform.

The following RPL operands apply to the RECEIVE macroinstruction:

ACB=acb_address
Indicates the ACB that identifies the application program issuing RECEIVE.

AREA=input_data_area_address
The AREA field must contain the address of the area in the application
program where an incoming data request is to be placed. The associated
request header (RH) is not put in this area, but instead is set in various RPL
fields. If a data-flow-control request or data-flow-control response is received
instead of a data request or data response, the CONTROL field is posted with
a value other than CONTROL=DATA, and the input data area is not used.
Also, if a data response is received, the AREA field is not used. After a data
request has been moved, the RPL's RECLEN field is set by VTAM with the
total number of bytes of data received by VTAM. The AREA field is ignored if
AREALEN=0.

AREALEN=input_data_area_length
The AREALEN field contains the length (in bytes) of the data area pointed to
by AREA. VTAM uses this value to determine if there is too much incoming
data to fit. If there is too much, the action indicated by the
TRUNC-KEEP-NIBTK option code is taken. (Refer to the TRUNC-KEEP-NIBTK
option code described in this section.)

AREALEN=0 with OPTCD=KEEP can be used to determine the amount of
incoming data (the total length is set in RECLEN). A data area can be obtained
and the RECEIVE macroinstruction reissued. AREALEN=0 with
OPTCD=TRUNC can be used to eliminate unwanted data requests that are
queued for the application program.

ARG=(register)
If a specific session is to be read (OPTCD=SPEC), that session must be
identified by a CID. The ARG operand specifies the register containing the CID
of the session. If the ARG operand is not specified, the CID in the RPLARG
field is used.

Note: If your application uses the RPL DSECT, IFGRPL, you must clear the
RPLNIB bit if a CID is being inserted into the RPLARG field.

BRANCH
For application programs running in supervisor state under a TCB, BRANCH
indicates whether authorized path processing is to be used. See “Authorized
path” on page 300.

BRANCH=YES
When the macroinstruction is issued, VTAM processes the macroinstruction
using authorized path. For programs running under an SRB rather than

Chapter 13. Conventions and descriptions of VTAM macroinstructions 469

under a TCB, the macroinstruction is processed in this manner
automatically, regardless of the actual setting of the BRANCH field.

BRANCH=NO
When the macroinstruction is issued, VTAM does not process the
macroinstruction using authorized path.

ECB
Indicates that an ECB is posted when an asynchronous (OPTCD=ASY)
RECEIVE operation is posted as being complete. You cannot specify both ECB
and EXIT on a single macroinstruction.

ECB=event_control_block_address
Specifies that VTAM is to post an event control block (ECB).
Event_control_block_address is the location of the ECB to be posted. The ECB
can be any fullword of storage aligned on a fullword boundary.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB.

EXIT=exit_routine_address
Indicates the address of an RPL exit routine that is scheduled when an
asynchronous (OPTCD=ASY) RECEIVE operation is posted as being complete.
You cannot specify both ECB and EXIT on a single macroinstruction. For
details about the EXIT operand, refer to the RPL macroinstruction description
in this chapter.

OPTCD=CA
OPTCD=CS

When the RECEIVE operation is completed successfully (that is,
(RTNCD,FDB2)=(X'00',X'00'), normal completion, or
(RTNCD,FDB2)=(X'04',X'03'), exception request received, or
(RTNCD,FDB2)=(X'04',X'04'), negative response received) and the NIB used to
establish the session specifies PROC=RPLC, the session is placed into
continue-any mode (CA) or into continue-specific mode (CS) based on the
setting of the option. This mode determines whether the next RECEIVE
OPTCD=ANY can be satisfied by the next input on the session.

This option code has no effect for any other RTNCD and FDB2 settings. In
particular, (RTNCD,FDB2)=(X'00',X'06'), no input available, does not cause any
change to the session's CA-CS mode.

With the exception of a RECEIVE that is completed with
RTYPE=(DFSYN,RESP), the switch of continue-any and continue-specific
modes applies only to the type of input (specified by the RTYPE field) that
actually satisfied the RECEIVE. In a RECEIVE that is completed with
RTYPE=(DFSYN,RESP), the mode switch applies only to DFSYN input.

OPTCD=CONDCS
When the RECEIVE operation is completed successfully (that is,
(RTNCD,FDB2)=(X'00',X'00'), normal completion, or
(RTNCD,FDB2)=(X'04',X'03'), exception request received, or
(RTNCD,FDB2)=(X'04',X'04'), negative response received) and the NIB used to
establish the session specifies PROC=RPLC, the session is placed into
continue-any mode (CA) or into continue-specific mode (CS), or conditionally
into CS mode (CONDCS) if more of the input data remains based on the
setting of the option. This mode determines whether the next RECEIVE
OPTCD=ANY can be satisfied by the next input on the session.

For VM CONDCS, more of the input data is considered to be remaining if
RECLEN > AREALEN and KEEP was indicated (see OPTCD=KEEP). If no

470 z/OS V2R1.0 Communications Server: SNA Programming

input data remains, the session is left in continue-any mode. To ensure that the
application receives the input data in the correct order, EXIT should also be
specified on the RECEIVE.

This option code has no effect for any other RTNCD and FDB2 settings. In
particular, (RTNCD,FDB2)=(X'00',X'06'), no input available, does not cause any
change to the session's CA-CS mode.

With the exception of a RECEIVE that is completed with
RTYPE=(DFSYN,RESP), the switch of continue-any and continue-specific
modes applies only to the type of input (specified by the RTYPE field) that
actually satisfied the RECEIVE. In a RECEIVE that is completed with
RTYPE=(DFSYN,RESP), the mode switch applies only to DFSYN input.

OPTCD=Q
OPTCD=NQ

Indicates the action to be taken if no input (of the type specified by the RTYPE
operand) is available when the macroinstruction is executed. OPTCD=Q means
the macroinstruction is to be completed when the appropriate input eventually
arrives. OPTCD=NQ means that the macroinstruction is to be completed
immediately with (RTNCD,FDB2)=(X'00',X'06') if the input is not available. No
CA-CS switch is done in this case.

OPTCD=SPEC
OPTCD=ANY

Indicates whether the RECEIVE macroinstruction can be satisfied only by input
from a specific session (SPEC) or whether it can be satisfied by input from any
session that is in continue-any mode (ANY).

When OPTCD=SPEC is used, the session's CID must be in the RPL when the
macroinstruction is executed. When OPTCD=ANY is specified, input from a
session in continue-any mode can satisfy a RECEIVE issued with
RTYPE=DFASY or RTYPE=RESP only if PROC=NDFASYX or PROC=NRESPX
(respectively) is specified in the NIB and if there is no outstanding RECEIVE
OPTCD=SPEC for this session. See the descriptions of DFASY and RESP exit
routines in “Explicit RECEIVEs and EXLST exit routines” on page 178.

RECEIVE OPTCD=ANY can be issued even when no LU-LU sessions have
been established with the application program if the application program has
opened an ACB. The RECEIVE is queued until one or more sessions are
established and input arrives on any of the sessions in continue-any mode. If
an outstanding RECEIVE OPTCD=ANY has not been completed and the
application program issues CLSDST and TERMSESS macroinstructions
terminating its LU-LU sessions but does not close the ACB, the RECEIVE does
not have to be reissued after a subsequent OPNDST or OPNSEC is issued.

At the completion of the RECEIVE macroinstruction, the ARG field contains
the CID of the session whose input satisfied the RECEIVE.

OPTCD=SYN
OPTCD=ASY

If the SYN option code is set, control is returned to the application program
when the RECEIVE operation has been completed. If the ASY option code is
set, control is returned as soon as VTAM has accepted the request. Once the
RECEIVE operation has been completed, the ECB is posted or the RPL exit
routine is scheduled, depending on the setting of the ECB-EXIT field. Refer to
the RPL macroinstruction description in this chapter for details about
OPTCD=SYN or OPTCD=ASY.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 471

Because it might take VTAM a relatively long time to complete the RECEIVE
operation, you should not use the SYN option if suspending the
RECEIVE-issuing task or SRB for this time is undesirable. Use the ASY option
code, instead.

OPTCD=TRUNC
OPTCD=KEEP

Indicates whether overlength input data is to be truncated (TRUNC) or kept
(KEEP), or whether the PROC=TRUNC or PROC=KEEP setting in the session's
NIB is to be used to determine whether the input is to be truncated or kept.

Overlength input data is a data request unit whose length exceeds the value
set in the AREALEN field of the RECEIVE macroinstruction's RPL. When
overlength data is truncated, the macroinstruction is completed and the excess
data is lost.

When overlength data is kept, the macroinstruction is completed normally, and
RECLEN is set to indicate the total amount of data received by VTAM. One or
more additional RECEIVE macroinstructions are required to obtain the excess
data. After each RECEIVE, the value of RECLEN is decreased by the amount of
data received. When AREALEN=0 is set and OPTCD=KEEP is specified, the
entire input is kept. For an example of OPTCD=KEEP, see “Handling
overlength input data” on page 182.

RTYPE
Indicates the types of input that can satisfy this RECEIVE macroinstruction.
Refer to “DFSYN, DFASY, and RESP types of RUs” on page 160 for a detailed
explanation of these types of input. They are summarized in Figure 39 on page
179.

The negative settings (NDFSYN, NDFASY, and NRESP) indicate that the
corresponding type of input cannot satisfy the RECEIVE macroinstruction.

Examples
RCV1 RECEIVE RPL=RPL1,AREA=INBUF,AREALEN=128, C

RTYPE=(DFSYN,DFASY,NRESP), C
OPTCD=(ANY,Q,NIBTK)

RCV1 is completed when an incoming request (normal-flow or expedited-flow) is
available from any session that is in CA mode for that RTYPE. Assuming that the
NIB specifies PROC=ORDRESP, RCV1 can be also completed by a response that
causes the RECEIVE to be completed with RTYPE=(DFSYN,RESP) and
RESPOND=(x,x,x,QRESP). Other responses cannot cause RCV1 to be completed.
After RCV1 is completed, the application program can examine the control field of
RPL1 to determine the type of input received. If data is received
(CONTROL=DATA and RTYPE=DFSYN), the data is placed in INBUF. The
TRUNC-KEEP setting in the NIB used to establish the session determines what is
done with any data that exceeds 128 bytes.

Completion information

A RECEIVE operation is successfully completed when the request or response has
been received, the data (if any) has been placed in the input data area, and the
appropriate information has been set in the RPL. If NQ is specified and no input is
available, RECEIVE is completed immediately with (RTNCD,FDB2)=(X'00',X'06').

After the RECEIVE operation is completed, the following RPL fields can be set by
VTAM:

472 z/OS V2R1.0 Communications Server: SNA Programming

v The value 35 (decimal) is set in the REQ field indicating a RECEIVE request.
v If RECEIVE was issued with OPTCD=ANY, the ARG field contains the CID of

the session whose input caused the macroinstruction to be completed
successfully: (RTNCD,FDB2)=(X'00',X'00'), (X'04',X'03'), or (X'04'X'04'). No CID is
available if the RECEIVE OPTCD=ANY did not complete successfully. If
RECEIVE was issued with OPTCD=SPEC, the ARG field still contains the CID
that was placed there prior to the execution of the macroinstruction.

v The RTYPE field indicates the type of input that satisfied the RECEIVE
macroinstruction. RTYPE can be set to DFSYN, DFASY, RESP, or (DFSYN, RESP).
Other RPL fields can be set depending on the type of received input, as
summarized in Figure 181 on page 851. When the macroinstruction is completed,
the RPL's RTYPE field indicates the type actually received.

v The 3-byte RH field in the RPL (labeled RPLURH in the RPL DSECT) and the
RPL fields related to RH indicators (for example, those associated with STYPE
and RESPOND) are set from the input RH. Refer to “Operation for inbound
RUs” on page 198 for details.

v The RECLEN field indicates the number of bytes of data (CONTROL=DATA)
received by VTAM. This same value is set in RECLEN whether KEEP or TRUNC
is in effect. VTAM has moved as much of this data as possible into the input
data area pointed to by the AREA field. If KEEP is in effect and the value in the
RECLEN field exceeds the value in the AREALEN field, excess data present can
be obtained with more RECEIVE macroinstructions. The value in RECLEN
decreases by an amount equal to the amount of data moved by each RECEIVE
macroinstruction.

v The SEQNO field contains the sequence number of the request or response.
v The RESPOND field indicates the type of response that has been received (if

RTYPE=RESP or (DFSYN,RESP)) or the type of response that the LU expects in
return (if RTYPE=DFSYN or RTYPE=DFASY).
When a response is received, the RESPOND field for each RPL used to receive
the request (if more than one is used) indicates the following:

RESPOND=(x,x,x,QRESP) and, in the NIB,
PROC=ORDRESP

All normal-flow (DFSYN) requests sent by
the LU before this response have been
received by the application program.

RESPOND=(x,x,x,NQRESP) or, in the NIB,
PROC=NORDRESP

This response can be received out of order
with previously sent normal-flow requests.

RESPOND=(EX,FME,RRN,x) This is a negative response with response
type 1 and 2 set.

RESPOND=(EX,FME,NRRN,x) This is a negative response with response
type 1 set.

RESPOND=(EX,NFME,RRN,x) This is a negative response with response
type 2 set.

RESPOND=(EX,NFME,NRRN,x) Not valid.

RESPOND=(NEX,FME,RRN,x) This is a positive response with response
type 1 and 2 set.

RESPOND=(NEX,FME,NRRN,x) This is a positive response with response
type 1 set.

RESPOND=(NEX,NFME,RRN,x) This is a positive response with response
type 2 set.

RESPOND=(NEX,NFME,NRRN,x) Not valid.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 473

When a request is received, the RESPOND field indicates the type of response
that is required (the value in the RTNCD field indicates whether the request was
received by the application program successfully). For certain LU types, other
rules (not detailed here) can apply.

RESPOND=(x,x,x,QRESP) A DFSYN response is required. Return the
appropriate response along with other
normal-flow (DFSYN) requests. The QRESP
indicator must be set on in the response.

RESPOND=(x,x,x,NQRESP) A RESP response is required. Return the
appropriate response along with other
responses. NQRESP must be set on in the
response.

RESPOND=(EX,FME,RRN,x) If the request is processed successfully, no
response is sent; if the request is not
processed successfully, return a negative
response with response type 1 and 2 set.

RESPOND=(EX,FME,NRRN,x) If the request is processed successfully, no
response is sent; if the request is not
processed successfully, return a negative
response with response type 1 set.

RESPOND=(EX,NFME,RRN,x) If the request is processed successfully, no
response is sent; if the request is not
processed successfully, return a negative
response with response type 2 set.

RESPOND=(EX,NFME,NRRN,x) Not valid.

RESPOND=(NEX,FME,RRN,x) Return a positive or negative response, as
appropriate, with response type 1 and 2 set.

RESPOND=(NEX,FME,NRRN,x) Return a positive or negative response, as
appropriate, with response type 1 set.

RESPOND=(NEX,NFME,RRN,x) Return a positive or negative response, as
appropriate, with response type 2 set.

RESPOND=(NEX,NFME,NRRN,x) Return no response.

For details about the RESPOND operand, refer to “What a response contains” on
page 153.

v The USER field contains the value that was originally set in the USRFLD field of
the NIB used to establish the session. This field is set only if the CID field is set.

v The CRYPT field indicates whether the normal-flow data request received was
sent through the network in an enciphered format.

v The CODESEL field indicates whether the input is in the standard (STANDARD)
or in some other code (ALT) agreed upon by each end of the session (such as
EBCDIC or ASCII). It has meaning only for CONTROL=DATA; however, the
value of the CODESEL indicator (which should be STANDARD) in any received
data or data-flow-control request is set in the RECEIVE RPL.

v If VTAM receives either a data request or data response that indicates an FM
header is present, OPTCD=FMHDR is set. This indicator is also set for all
data-flow-control requests and their responses.

v The CHNGDIR field indicates whether the change-direction indicator is set:

474 z/OS V2R1.0 Communications Server: SNA Programming

CHNGDIR=(CMD,NREQ) The change-direction indicator is set; the LU
at the other end of the session was the
sender and it has changed direction so that
the application program can now transmit
normal-flow requests.

CHNGDIR=(NCMD,REQ) The meaning of this indicator is not defined
by SNA. It should not be used because such
use could produce unpredictable results.

CHNGDIR=(CMD,REQ) Both indicators are set.

CHNGDIR=(NCMD,NREQ) Neither indicator is set.

v The value of the CHNGDIR CMD indicator is set in the RECEIVE RPL for all
received data and data-flow-control requests. The value of the CHNGDIR REQ
indicator is set in the RECEIVE RPL for all received data and data-flow-control
requests and responses.

v The BRACKET field indicates whether the current bracket is beginning, ending,
or continuing. For example, for FM profiles in which BB and EB are used:

BRACKET=(BB,NEB) The chain is the first of a new bracket.

BRACKET=(NBB,NEB) The chain is a continuation of the current
bracket. This setting is also present when
brackets are not being used and for all
requests that are not the first or only request
of a chain.

BRACKET=(NBB,EB) The chain is the end of the current bracket.

BRACKET=(BB,EB) The chain itself constitutes an entire bracket.

v In FM profile 19, the CEB indicator is used instead of the EB indicator to
indicate end-of-bracket. CEB can occur only on a last-in-chain request or
only-in-chain request. For only-in-chain requests, it can be used in combination
with the BB indicator in a similar fashion to EB shown in the preceding section.
For last-in-chain requests, it is used alone because BB cannot be sent on a
last-in-chain request.

v The BRACKET field has meaning only for data requests and certain normal-flow
data-flow-control requests. However, the values in the field for any received data
or data-flow-control request are set in the RECEIVE RPL.

v The CHAIN field indicates the request's relative position within the chain being
sent to the application program (DFSYN requests only):

CHAIN=FIRST The request is the first of a new chain.

CHAIN=MIDDLE The request is a continuation of the current
chain.

CHAIN=LAST The request is the last of the current chain.

CHAIN=ONLY The request itself constitutes an entire chain.

This field is set when the RECEIVE is completed with CONTROL=SIGNAL.
v The SIGDATA field contains 4 bytes of signal information.
v The CONTROL field indicates whether the received request or response was

data, or whether it was a data-flow-control request or response. In the latter
case, CONTROL is set to the request code of the received data-flow-control
request or response.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 475

The following table shows the meanings of the allowed combinations of
CONTROL and RTYPE values.

CONTROL= RTYPE= Meaning

DATA DFSYN A data request has been received.

DATA RESP or
(DFSYN,RESP)

The response to a data request has been received.

BID DFSYN A bid request has been received.

BID RESP or
(DFSYN,RESP)

The response to a Bid request has been received.

BIS DFSYN A Bracket Initiation Stopped request has been
received.

BIS RESP or
(DFSYN,RESP)

The response to a Bracket Initiation Stopped
request has been received.

CANCEL DFSYN A Cancel request has been received.

CANCEL RESP or
(DFSYN,RESP)

The response to a Cancel request has been
received.

CHASE DFSYN A Chase request has been received.

CHASE RESP or
(DFSYN,RESP)

The response to a Chase request has been
received.

LUS DFSYN An LU Status request has been received.

LUS RESP or
(DFSYN,RESP)

The response to an LU Status request has been
received.

QC DFSYN A Quiesce Complete request has been received.

QC RESP or
(DFSYN,RESP)

The response to a Quiesce Complete request has
been received.

RTR DFSYN A Ready to Receive request has been received.

RTR RESP or
(DFSYN,RESP)

The response to a Ready to Receive request has
been received.

QEC DFASY A Quiesce at End-of-Chain request has been
received.

RELQ DFASY A Release Quiesce request has been received.

RSHUTD DFASY A Request Shutdown request has been received.

SBI DFASY A Stop Bracket Initiation request has been
received.

SHUTC DFASY A Shutdown Complete request has been received.

SHUTD DFASY A Shutdown request has been received.

SIGNAL DFASY A Signal request has been received.

v When a negative response, an exception request, or an Logical Unit Status
(LUSTAT) request has been received, the SSENSEI, SSENSMI, and USENSEI
fields are set indicating system-sense information, system-sense modifier, and
user-sense information. More information about these fields can be found in
Appendix B, “Return codes and sense fields for RPL-based macroinstructions,”
on page 651.

v The RTNCD and FDB2 fields are set as indicated in Appendix B, “Return codes
and sense fields for RPL-based macroinstructions,” on page 651.

v Registers 0 and 15 are set as indicated in Chapter 9, “Handling errors and
special conditions,” on page 277.

476 z/OS V2R1.0 Communications Server: SNA Programming

Example:
RCV1 RECEIVE RPL=RPL1,AREA=INBUF,AREALEN=128, C

RTYPE=(DFSYN,DFASY,NRESP), C
OPTCD=(ANY,Q,NIBTK)

RCV1 is completed when an incoming request (normal-flow or expedited-flow) is
available from any session that is in CA mode for that RTYPE. Assuming that the
NIB specifies PROC=ORDRESP, RCV1 can be also completed by a response that
causes the RECEIVE to be completed with RTYPE=(DFSYN,RESP) and
RESPOND=(x,x,x,QRESP). Other responses cannot cause RCV1 to be completed.
After RCV1 is completed, the application program can examine the control field of
RPL1 to determine the type of input received. If data is received
(CONTROL=DATA and RTYPE=DFSYN), the data is placed in INBUF. The
TRUNC-KEEP setting in the NIB used to establish the session determines what is
done with any data that exceeds 128 bytes.

REQSESS—Initiate a session, application program acts as the SLU
Purpose

The REQSESS macroinstruction is used to initiate a session in which the
application program acts as the SLU.

Usage

REQSESS sends an Initiate request to the SSCP which in turn sends a CINIT
request to the desired PLU. If the PLU accepts the session and sends a BIND, the
application program's SCIP exit routine is scheduled with the BIND. The
application program can then choose to establish the session or not. Before an
application program can issue the REQSESS macroinstruction, it must have issued
a SETLOGON OPTCD=START, or the REQSESS fails. Also, the ACB of the
application program must specify MACRF=LOGON.

Before issuing the REQSESS macroinstruction, the application program must set
register 13 to the address of an 18-word save area. Refer to Appendix H,
“Summary of register usage,” on page 853, for information pertaining to the
register contents upon return of control.

VTAM receives control from the REQSESS macroinstruction in the addressing
mode of the application program that issued the macroinstruction and returns
control to the application program in that same mode.

If PARMS=(NQNAMES=YES) on the ACB macroinstruction, and the NIB is
specified with a network identifier in the NIBNET field, the network identifier is
used along with the LU name in NIBSYM to build a session initiation request.

Syntax

Chapter 13. Conventions and descriptions of VTAM macroinstructions 477

�� REQSESS RPL = rpl_address
name (1)

, AAREA = 0

�

�
(1)

, ACB = acb_address
(1)

, AREA = user_data_address

�

�
(1)

, BRANCH = NO
YES

(1)
, ECB = INTERNAL
, ECB = ecb_address

(1)
, EXIT = exit_routine_address

�

�
(1)

, NIB = nib_address

�

�
(1) (2)

, OPTCD = (ASY)
SYN
MTS
NMTS

NQ

�

�
(1)

, RECLEN = user_data_length

��

Notes:

1 Operand value can be placed in its RPL field either by specification on an
RPL macroinstruction operand or by explicitly setting the field using the
IFGRPL DSECT.

2 You can code more than one suboperand on OPTCD, but code no more than
one from each group.

Input parameters

RPL=rpl_address
Indicates the RPL that specifies which kind of processing REQSESS is to
perform.

The following RPL operands apply to the REQSESS macroinstruction:

AAREA=0
The AAREA field must be set to 0 whenever the REQSESS macroinstruction is
issued. If a value other than 0 is present in this field, the REQSESS
macroinstruction fails, (RTNCD,FDB2)=(X'14',X'50').

ACB=acb_address
Indicates the ACB that identifies the application program issuing REQSESS.

AREA=user_data_address
Indicates the location of the user data that is to be sent to the PLU in the user
data field of the CINIT. If this field is used, the RECLEN field must also be
specified.

478 z/OS V2R1.0 Communications Server: SNA Programming

BRANCH
For application programs running in supervisor state under a TCB, BRANCH
indicates whether authorized path processing is to be used. See “Authorized
path” on page 300.

BRANCH=YES
When the macroinstruction is issued, VTAM processes the macroinstruction
using authorized path. For programs running under an SRB rather than
under a TCB, the macroinstruction is processed in this manner
automatically, regardless of the actual setting of the BRANCH field.

BRANCH=NO
When the macroinstruction is issued, VTAM does not process the
macroinstruction using authorized path.

ECB
Indicates that an ECB is posted when an asynchronous (OPTCD=ASY)
REQSESS operation is posted as being complete. You cannot specify both ECB
and EXIT on a single macroinstruction.

ECB=event_control_block_address
Specifies that VTAM is to post an event control block (ECB).
Event_control_block_address is the location of the ECB to be posted. The ECB
can be any fullword of storage aligned on a fullword boundary.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB.

EXIT=exit_routine_address
Indicates the address of an RPL exit routine that is scheduled when an
asynchronous (OPTCD=ASY) REQSESS operation is posted as being complete.
You cannot specify both ECB and EXIT on a single macroinstruction. For
details about the EXIT operand, refer to the RPL macroinstruction description
in this chapter.

NIB=nib_address
Indicates the NIB whose NAME field contains the symbolic name of the PLU
with which the application program wants to be in session and if
NQNAMES=YES, whose NIBNET field contains the network identifier in
which the PLU resides. The LOGMODE field specifies the logon mode name to
be used in the session being initiated. The USERFLD field can be used to
specify a correlator to relate network services requests to the REQSESS.
LISTEND must be set to YES. For further details, refer to “REQSESS
macroinstruction” on page 95.

OPTCD=MTS
OPTCD=NMTS

If you set the MTS option code, VTAM expects to find valid MTS override data
in an area pointed to by NIBMTSAR and formatted to match the ISTMTS
DSECT. If you set the NMTS option code, VTAM does not expect any MTS
override data.

If you do not code either OPTCD=MTS or OPTCD=NMTS on this macro,
VTAM uses the value left over from the previous use of the RPL.

Note: NIBMTSAR is an alternative name for the NIBNDAR field used by the
OPNDST and OPNSEC macros to point to BIND image data. Therefore, do not
code both MTSAREA and BNDAREA on the same macroinstruction.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 479

OPTCD=NQ
OPTCD=NQ is an optional parameter. If OPTCD=Q is specified (or is present
in the RPL from a previous operation), an error results,
(RTNCD,FDB2)=(X'14',X'50').

If the PLU with which the REQSESS requests a session is not available (for
example, (1) a VTAM PLU application program has not opened its ACB, (2)
has opened an ACB that specified MACRF=NLOGON, (3) is in the process of
closing its ACB, (4) has issued SETLOGON OPTCD=QUIESCE, or (5) is
unavailable because of an error condition), the REQSESS macroinstruction is
rejected with, for example, (RTNCD,FDB2)=(X'10',X'02'). If the PLU application
program has opened an ACB that specifies MACRF=LOGON but has not
issued a SETLOGON OPTCD=START, the session-initiation request is accepted
and the REQSESS macroinstruction is completed successfully. The resulting
CINIT is queued at the PLU application program until it does a SETLOGON
OPTCD=START, OPNDST OPTCD=ACCEPT, or CLSDST OPTCD=RELEASE.

OPTCD=SYN
OPTCD=ASY

When the SYN option code is set, control is returned to the application
program when the REQSESS operation has completed. If the ASY option code
is set, control is returned as soon as VTAM has accepted the request. After the
REQSESS operation has completed, the ECB is posted or the RPL exit routine is
scheduled, depending on the setting of the ECB-EXIT field. Refer to the RPL
macroinstruction description in this chapter for details about OPTCD=SYN or
OPTCD=ASY.

Because it might take VTAM a relatively long time to complete the REQSESS
operation, you should not use the SYN option if suspending the
REQSESS-issuing task or SRB for this time is undesirable. Use the ASY option
code, instead.

RECLEN=user_data_length
Indicates the number of bytes of user data (located at the AREA address) to be
sent to the receiving PLU. The value in RECLEN must be 255 (decimal) or less.
If the RECLEN field is set to 0, the AREA field is ignored.

Examples
CALLPRI REQSESS RPL=RPLA1,NIB=NIBPA1,OPTCD=(ASY,NQ), C

EXIT=RQEXRTN,AREA=LOGMSG, C
RECLEN=L’LOGMSG,AAREA=0

.

.

.
RPLA1 RPL ACB=ACB1,AM=VTAM
NIBPA1 NIB NAME=GRACIE,LISTEND=YES, C

LOGMODE=MODE1
LOGMSG DC C’LOGON REQUEST FROM USER 09’

CALLPRI requests a session between the application program associated with
ACB1, which acts as the secondary end of the session, and application program
GRACIE, which acts as the primary end of the session. When the REQSESS
macroinstruction is completed, RQEXRTN is scheduled.

Completion information

A REQSESS operation is successfully completed when the SSCP responds to the
Initiate request. This can be before or after BIND has been received for the
requested session.

480 z/OS V2R1.0 Communications Server: SNA Programming

After the REQSESS macroinstruction is completed, the following RPL fields are set:
v The value 41 (decimal) is set in the REQ field, indicating a REQSESS request.
v The RTNCD and FDB2 fields are set as indicated in Appendix B, “Return codes

and sense fields for RPL-based macroinstructions,” on page 651.
v If the macroinstruction returns an error code, the SSENSEI, SSENSMI, and

USENSEI fields can be set indicating system-sense information, system-sense
modifier, and user-sense information. More information about these fields is in
Appendix B, “Return codes and sense fields for RPL-based macroinstructions,”
on page 651.

Registers 0 and 15 are also set as indicated in Chapter 9, “Handling errors and
special conditions,” on page 277.

RESETSR—Cancel RECEIVE operations and switch a session's CA-CS
mode

Purpose

The RESETSR macroinstruction is used to change the continue-any or
continue-specific modes of a specified session and to cancel certain RECEIVE
OPTCD=SPEC macroinstructions that are outstanding for the session.

Usage

Figure 88 on page 482 summarizes the functions of RESETSR and their associated
operands. For detailed information about the RUs contained in the input types,
refer to “DFSYN, DFASY, and RESP types of RUs” on page 160.

Before issuing the RESETSR macroinstruction, the application program must set
register 13 to the address of an 18-word save area. Refer to Appendix H,
“Summary of register usage,” on page 853, for information pertaining to the
register contents upon return of control.

VTAM receives control from the RESETSR macroinstruction in the addressing
mode of the application program that issued the macroinstruction and returns
control to the application program in that same mode.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 481

Changing CA-CS mode

RESETSR changes a session's continue-any (CA) or continue-specific (CS) mode in
the same manner as do SEND and RECEIVE macroinstructions.

When the CA-CS option code is set to CA, RESETSR places the session into
continue-any mode if it is not already in that mode. Continue-any mode means
that RECEIVE macroinstructions issued in the any-mode (OPTCD=ANY) as well as
in the specific-mode (OPTCD=SPEC) can be satisfied by input from the session.

When the CA-CS option code is set to CS, RESETSR places the session into
continue-specific mode if it is not already in that mode. Continue-specific mode
means that only RECEIVE macroinstructions issued in the specific-mode can be
satisfied by input from the session.

Figure 88. Major RESETSR options

482 z/OS V2R1.0 Communications Server: SNA Programming

A session's CA-CS mode does not apply to all input from the session, but applies
individually for the three types of input from the session—DFSYN, DFASY, and
RESP. Refer to “Normal-flow and expedited-flow requests and responses” on page
158 for information about these types. The application program selects the type or
types of input by setting the RPL's RTYPE field.

For example, suppose that RESETSR is issued with the CA-CS option set to CS
(change to CS mode), and the RTYPE field set to DFASY. When the RESETSR
macroinstruction is completed, the session is placed in continue-specific mode for
DFASY requests. This would mean that DFASY requests sent on the session could
not satisfy a RECEIVE issued in the any-mode; they could satisfy only a RECEIVE
macroinstruction issued in the specific-mode.

If a RESETSR, issued to change a session's CA-CS mode, completes successfully
(that is, actually changes the mode) and a pending SEND or RECEIVE for that
session also specifies OPTCD=CA or OPTCD=CS. the SEND or RECEIVE might
not complete successfully. The mode specified in the RESETSR can conflict with the
OPTCD=CA or CS operand that is specified in the pending SEND or RECEIVE.

Note: If program performance is a critical factor, it might be more efficient to
change the CA-CS mode by using the OPTCD=CA or OPTCD=CS operand on the
SEND macroinstruction used for the last response or request sent.

Canceling receive requests

The RTYPE field of the RESETSR's RPL indicates, for the designated session, the
type or types of RECEIVE requests that are canceled. For every RTYPE specified in
the RESETSR macroinstruction, VTAM sets the corresponding RTYPE operand to
its negative value (NDFSYN, NDFASY, NRESP) in each pending RECEIVE
OPTCD=SPEC for the session. A RECEIVE is canceled if the combination of input
types specified in its RPL is included in those specified in the RESETSR
macroinstruction.

For example, suppose that these three specific RECEIVE macroinstructions are
pending for a session:
RCV1 RECEIVE RPL=RPL1,RTYPE=(DFSYN,NDFASY,NRESP),OPTCD=SPEC
RCV2 RECEIVE RPL=RPL2,RTYPE=(DFSYN,DFASY,NRESP),OPTCD=SPEC
RCV3 RECEIVE RPL=RPL3,RTYPE=(DFSYN,DFASY,RESP),OPTCD=SPEC

The following RESETSR macroinstruction would change all DFSYN values to
NDFSYN and all DFASY values to NDFASY:
RST RESETSR RPL=RPL4,RTYPE=(DFSYN,DFASY),OPTCD=CA

Because the three RECEIVE macroinstructions would, in effect, now be set as
follows, RCV1 and RCV2 would be canceled (all three RTYPE operands are
negative), but RCV3 would not be canceled:
RCV1 RECEIVE RPL=RPL1,RTYPE=(NDFSYN,NDFASY,NRESP),OPTCD=SPEC
RCV2 RECEIVE RPL=RPL2,RTYPE=(NDFSYN,NDFASY,NRESP),OPTCD=SPEC
RCV3 RECEIVE RPL=RPL3,RTYPE=(NDFSYN,NDFASY,RESP),OPTCD=SPEC

When a RECEIVE is canceled, its RPL is posted complete with
(RTNCD,FDB2)=(X'0C',X'0A'). The OPTCD=CA or CS setting of each canceled RPL
is ignored.

Because a CA-CS mode is also specified on RESETSR, either explicitly on the
RESETSR macroinstruction, or indirectly in the RPL used by the RESETSR, it can

Chapter 13. Conventions and descriptions of VTAM macroinstructions 483

change the CA-CS mode of the session as described in the previous section.

Syntax

�� RESETSR RPL = rpl_address
name (1)

, ACB = acb_address

�

�
(1)

, ARG = (register)
(1)

, BRANCH = NO
YES

�

�
(1)

, ECB = INTERNAL
, ECB = ecb_address

(1)
, EXIT = exit_routine_address

�

�
(1) (2)

, OPTCD = (ASY)
SYN
CA
CS

�

�
(3) (1)

, RTYPE = (DFASY)
NDFASY
DFSYN
NDFSYN
RESP
NRESP

��

Notes:

1 Operand value can be placed in its RPL field either by specification on an
RPL macroinstruction operand or by explicitly setting the field using the
IFGRPL DSECT.

2 You can code more than one suboperand on OPTCD, but code no more than
one from each group.

3 You can code more than one suboperand on RTYPE, but code no more than
one from each group.

Input parameters

RPL=rpl_address
Indicates the RPL that specifies which kind of processing RESETSR is to
perform.

The following RPL operands apply to the RESETSR macroinstruction:

ACB=acb_address
Indicates the ACB that identifies the application program issuing RESETSR.

ARG=(register)
The RESETSR macroinstruction is always directed to a specific session. The

484 z/OS V2R1.0 Communications Server: SNA Programming

ARG operand specifies the register containing the CID of that session. If the
ARG operand is not specified, the CID in the RPLARG field is used.

Note: If your application uses the RPL DSECT, IFGRPL, you must clear the
RPLNIB bit if a CID is being inserted into the RPLARG field.

BRANCH
For application programs running in supervisor state under a TCB, BRANCH
indicates whether authorized path processing is to be used. See “Authorized
path” on page 300.

BRANCH=YES
When the macroinstruction is issued, VTAM processes the macroinstruction
using authorized path. For programs running under an SRB rather than
under a TCB, the macroinstruction is processed in this manner
automatically, regardless of the actual setting of the BRANCH field.

BRANCH=NO
When the macroinstruction is issued, VTAM does not process the
macroinstruction using authorized path.

ECB
Indicates that an ECB will be posted when an asynchronous (OPTCD=ASY)
RESETSR operation is posted as being complete. You cannot specify both ECB
and EXIT on a single macroinstruction.

ECB=event_control_block_address
Specifies that VTAM is to post an event control block (ECB).
Event_control_block_address is the location of the ECB to be posted. The ECB
can be any fullword of storage aligned on a fullword boundary.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB.

EXIT=exit_routine_address
Indicates the address of an RPL exit routine that is scheduled when an
asynchronous (OPTCD=ASY) RESETSR operation is posted as being complete.
You cannot specify both ECB and EXIT on a single macroinstruction. For
details about the EXIT operand, refer to the RPL macroinstruction description
in this chapter.

OPTCD=CA
OPTCD=CS

This option code determines whether the session is placed in continue-any
(CA) or continue-specific (CS) mode upon successful completion of the
RESETSR, (RTNCD,FDB2)=(X'00',X'00').

The new CA-CS mode applies to the type of input specified in the RTYPE
field.

OPTCD=SYN
OPTCD=ASY

If the SYN option code is set, control is returned to the application program
when the RESETSR operation has completed. If the ASY option code is set,
control is returned as soon as VTAM has accepted the request. After the
RESETSR operation has completed, the ECB is posted or the RPL exit routine is
scheduled, depending on the setting of the ECB-EXIT field. Refer to the RPL
macroinstruction description in this chapter for details about OPTCD=SYN or
OPTCD=ASY.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 485

Because it might take VTAM a relatively long time to complete the RESETSR
operation, you should not use the SYN option if suspending the
RESETSR-issuing task or SRB for this time is undesirable. Use the ASY option
code, instead.

RTYPE
The RTYPE operand indicates the type of input to be affected by the resetting
of the session's continue-any or continue-specific mode and which outstanding
RECEIVE macroinstructions are canceled.

RTYPE=DFASY
RTYPE=NDFASY

The session's CA-CS mode applies to expedited-flow data-flow-control
requests; NDFASY means that the session's CA-CS mode for expedited-flow
data-flow-control requests is not affected.

RTYPE=DFSYN
RTYPE=NDFSYN

The session's CA-CS mode applies to normal-flow requests or to DFSYN
responses; NDFSYN means that the session's CA-CS mode for normal-flow
requests and DFSYN responses is not affected.

RTYPE=RESP
RTYPE=NRESP

The session's CA-CS mode applies to response units (other than DFSYN
responses); NRESP means that the session's CA-CS mode for responses (other
than DFSYN responses) is not affected.

The RTYPE operand also designates the type of pending RECEIVEs to be
canceled. A RECEIVE request is canceled, however, only if all the input types
specified for the RECEIVE request's RTYPE field are also included among
those specified on the RESETSR request's RTYPE field. When the RECEIVE
request is canceled, its RPL is posted complete with
(RTNCD,FDB2)=(X'0C',X'0A').

The following are for outstanding RECEIVE macroinstructions:

RTYPE=DFASY
RTYPE=NDFASY

Any pending RECEIVE macroinstructions that would receive expedited-flow
data-flow-control requests are canceled; NDFASY means that RECEIVE
requests for this type of input are not canceled.

RTYPE=DFSYN
RTYPE=NDFSYN

Any pending RECEIVE macroinstructions that would receive normal-flow
requests and DFSYN responses are canceled; NDFSYN means that RECEIVE
requests for this type of input are not canceled.

RTYPE=RESP
RTYPE=NRESP

Any pending RECEIVE macroinstructions that would receive responses (other
than DFSYN responses) are canceled; NRESP means that RECEIVE requests for
responses (other than DFSYN responses) are not canceled.

Examples
RST1 RESETSR RPL=RPL1,OPTCD=CA, C

RTYPE=(DFSYN,NDFASY,NRESP)

486 z/OS V2R1.0 Communications Server: SNA Programming

RST1 cancels pending RECEIVE OPTCD=SPEC,RTYPE=DFSYN macroinstructions
for the session identified in RPL1's ARG field. RST1 also switches the session's
CA-CS mode for DFSYN input to continue-any (CA) mode. That is, a RECEIVE
OPTCD=ANY macroinstruction (RTYPE=DFSYN) can obtain normal-flow input
from the session. The session's CA-CS mode for DFASY and RESP input is not
affected; RECEIVE macroinstructions for these request types are also not affected.

Completion information

A RESETSR operation is successfully completed when the appropriate
macroinstructions are canceled and the session's CA-CS mode is set.

After the RESETSR operation completes, the following RPL fields are set:
v The value 36 (decimal) is set in the REQ field, indicating a RESETSR request.
v The USER field contains the value that is set in the USERFLD field of the NIB

when the session is established.
v The RTNCD and FDB2 fields are set as indicated in Appendix B, “Return codes

and sense fields for RPL-based macroinstructions,” on page 651.

Registers 0 and 15 are also set as indicated in Chapter 9, “Handling errors and
special conditions,” on page 277.

RPL—Create a request parameter list
Purpose

Every request that an application program makes for session establishment or
communication must refer to a request parameter list (RPL). See Figure 7 on page
20 for the list of macroinstruction categories.

Usage

The application program uses the RPL to describe most of the requests that it
makes to VTAM. The application program can, for example, issue a RECEIVE and
indicate an RPL. The RPL shows VTAM which session to obtain input from, where
to place the input data, how to notify the application program once the operation
is completed, and other options to be followed during processing of the request. If
the RPL contains a request code in its REQ field, an EXECRPL macroinstruction
can be used in place of the RPL-based macroinstruction indicated in REQ.

An application program can create many RPLs; a separate RPL can, in fact, be
created for every RPL-based request in the application program. At the other
extreme, one RPL can serve for all RPL-based requests in the program (assuming
that all the requests are synchronous—that is, issued with OPTCD=SYN set). This
multiple use is possible because each RPL-based request can itself modify fields of
the RPL to which it points. You can think of the RPL as a list form of all RPL-based
macroinstructions.

If the same RPL is used for multiple requests, it is good programming practice to
reset the RPL control block fields after the request has completed. All ACB, NIB,
and RPL fields that are not used by a particular macroinstruction should be set to
0 unless otherwise indicated.

The RPL macroinstruction builds an RPL during assembly. The RPL is built on a
fullword boundary. Also, the GENCB macroinstruction can generate an RPL during

Chapter 13. Conventions and descriptions of VTAM macroinstructions 487

program execution. Requests for RPL modification can be made as part of an
RPL-based request or by the MODCB macroinstruction. Either way involves
naming an RPL field and specifying its new value. Also, the IFGRPL DSECT can
alter RPL field values. Be aware that every operand of the RPL macroinstruction
represents a field in the RPL it generates. Subsequent requests to modify any RPL
field use the keyword of the operand corresponding to the field being modified.

VTAM sets default values for most of the RPL fields when the RPL is initially
assembled or generated. These values are underlined in the operand descriptions.
After an RPL-based macroinstruction uses an RPL, VTAM might modify some of
the RPL's fields. These fields are listed at the end of each macroinstruction
description in this chapter and are summarized in Figure 89 on page 512.

Although all of the RPL operands are optional (with the exception of AM=VTAM)
and can be specified with any of the RPL-based macroinstructions, each of the
RPL-based macroinstructions requires that certain RPL fields be set when the
macroinstruction is executed. These fields are identified in Figure 89 on page 512 at
the end of this macroinstruction description.

Note: For detailed descriptions about the use of the RPL operands by each
RPL-based macroinstruction, see the associated macroinstruction description in this
chapter.

The expansion of the RPL macroinstruction is identical for 24- and 31-bit
addressing mode application programs.

Syntax

488 z/OS V2R1.0 Communications Server: SNA Programming

�� RPL AM = VTAM
name

, AAREA = 0

, AAREA = alternate_data_area_address
�

�
, AAREALN = 0

, AAREALN = alternate_data_area_length

, ACB = 0

, ACB = acb_address
�

�
, AREA = 0

, AREA = data_area_address

, AREALEN = 0

, AREALEN = data_area_length
�

�
, ARECLEN = alternate_data_area_data_length

�

�
, BRACKET = (NBB , NCEB , NEB)

(1)
, BRACKET = (BB)

NBB
CEB
NCEB
EB
NEB

, BRANCH = NO

, BRANCH = NO
YES

�

�
, CHAIN = ONLY

, CHAIN = FIRST
MIDDLE
LAST
ONLY

, CHNGDIR = NCMD

, CHNGDIR = CMD
NCMD

�

�
, CODESEL = STANDARD

, CODESEL = ALT
STANDARD

, CONTROL = DATA

, CONTROL = BID
BIND
BIS
CANCEL
CHASE
CLEAR
DATA
LUS
QC
QEC
RELQ
RQR
RSHUTD
RTR
SBI
SDT
SHUTC
SHUTD
SIGNAL
STSN
SWITCH
UNBIND

�

�
, CRYPT = NO

, CRYPT = NO
YES

, ECB = INTERNAL
, ECB = ecb_address
, EXIT = exit_routine_address

�

Chapter 13. Conventions and descriptions of VTAM macroinstructions 489

�
, IBSQAC = SET

, IBSQAC = IGNORE
INVALID
RESET
SET
TESTNEG
TESTPOS
TESTSET

, IBSQVAL = 0

, IBSQVAL = inbound_sequence_number
�

�
, NIB = 0

, NIB = nib_address

, OBSQAC = SET

, OBSQAC = IGNORE
INVALID
RESET
SET
TESTNEG
TESTPOS
TESTSET

�

�
, OBSQVAL = 0

, OBSQVAL = outbound_sequence_number
�

�
, PARMS = (PSTIMER = 0 , SONCODE = 0 , THRDPTY = NONOTIFY)

(2)
, PARMS = (PSTIMER = value)

SONCODE = code
THRDPTY = NOTIFY

NONOTIFY

�

�
, POST = RESP

, POST = RESP
SCHED

, RECLEN = 0

, RECLEN = data_length
�

�
, RESPOND = (NEX , FME , NRRN , NQRESP)

(3)
, RESPOND = (EX)

NEX
FME
NFME
RRN
NRRN
QRESP
NQRESP

�

�
, RTYPE = (DFSYN , NDFASY , NRESP)

(4)
, RTYPE = (DFASY)

NDFASY
DFSYN
NDFSYN
RESP
NRESP

, SEQNO = 0

, SEQNO = sequence_number
�

�
, SIGDATA = 0

, SIGDATA = signal_data

, SSENSEO = 0

, SSENSEO = 0
CPM
FI
RR
STATE

�

�
, SSENSMO = 0

, SSENSMO = system–sense_modifier_value

, STYPE = REQ

, STYPE = REQ
RESP

�

490 z/OS V2R1.0 Communications Server: SNA Programming

�
, USENSEO = 0

, USENSEO = user–sense_value

, OPTCD = (Default values)

(5)
, OPTCD = (ACCEPT)

ACQUIRE
ANY
SPEC
APPSTAT
CIDXLATE
COUNTS
DEVCHAR
LOGONMSG
SESSKEY
SESSPARM
STATUS
TERMS
TOPLOGON
USERVAR
ASY
SYN
BACKUP
NBACKUP
BUFFLST
NBUFFLST
CA
CS
CONALL
CONANY
COND
UNBIND
UNCOND
CONTCHN
NCONTCHN
FMHDR
NFMHDR
HOLD
QUIESCE
START
STOP
KEEP
TRUNC
NIBTK
KEEPSRB
NKEEPSRB
LMPEO
NLMPEO
MTS
NMTS
NQ
Q
NRELRQ
RELRQ
PASS
RELEASE
QALL
QNOTENAB
QSESSLIM
RSPQUED
NRSPQUED
SENSE
NSENSE
SONCODE
NSONCODE
USERRH
NUSERRH

��

Default values for RPL's OPTCD operand:

ACCEPT , CA , CONALL , COND , LOGONMSG , NBACKUP , �

Chapter 13. Conventions and descriptions of VTAM macroinstructions 491

� NRSPQUED , NSENSE , NSONCODE , NUSERRH , Q , QALL ,

Notes:

1 You can code more than one suboperand on BRACKET, but code no more
than one from each group.

2 You can code more than one suboperand on PARMS, but code no more than
one from each group.

3 You can code more than one suboperand on RESPOND, but code no more
than one from each group.

4 You can code more than one suboperand on RTYPE, but code no more than
one from each group.

5 You can code more than one suboperand on OPTCD, but code no more than
one from each group.

Input parameters

Format: Expressions involving registers cannot be used with the RPL
macroinstruction.

ACB=acb_address
Associates the request that uses this RPL with an ACB. If you omit this
operand, the ACB field is set to 0.

AM=VTAM
Indicates that a VTAM RPL is built. This operand is required.

AAREA=alternate_data_area_address
When used by a CLSDST OPTCD=PASS macroinstruction, AAREA indicates
the location of an 8-byte area containing the symbolic name of the target PLU.
When used by an INTRPRET macroinstruction, AAREA indicates a work area
where VTAM places the interpreted data sequence. When used by a REQSESS
macroinstruction, AAREA must be set to 0. When used by an OPNDST
macroinstruction, AAREA indicates a work area where VTAM places a
negotiable BIND response if the NIB specified PROC=NEGBIND.

When used by OPNDST OPTCD=RESTORE, AAREA points to the area
allocated by the application to hold the recovery data that is used during
session recovery.

If you omit this operand, the AAREA field is set to 0.

For XRF, the AAREA field in the RPL is initialized by the application program
to provide the address of the input area where the SWITCH response
information should be placed.

AAREALN=alternate_data_area_length
Indicates the length (in bytes) of the data area identified by the AAREA
operand. When AAREA is used as an input area for an INTRPRET or OPNDST
(for a negotiable BIND response) macroinstruction, VTAM uses this length to
determine whether the data to be placed there is too long to fit.

When used by OPNDST OPTCD=RESTORE, the area obtained must be large
enough to hold all the recovery data.

If you omit this operand, the AAREALN field is set to 0.

492 z/OS V2R1.0 Communications Server: SNA Programming

For XRF, the AAREALN field in the RPL is initialized by the application
program to contain the length of the input area pointed to by AAREA. The
AAREA field is ignored if AAREALN=0 (no switch response information is
returned).

AREA=data_area_address
When used by a SIMLOGON, REQSESS, or a CLSDST OPTCD=PASS
macroinstruction, AREA indicates the address of an area containing user data
that is to be sent to the PLU (through the SSCP) in the user data field of the
CINIT request.

When used by a RECEIVE macroinstruction, AREA indicates the address of the
area into which data is to be read. When used by a SEND OPTCD=NBUFFLST
macroinstruction, AREA indicates the address of the area from which data is to
be written. When used by a SEND OPTCD=BUFFLST macroinstruction, AREA
indicates the address of a buffer list which further indicates the data to be sent.

When used by an INQUIRE macroinstruction, AREA indicates where the data
obtained by INQUIRE is to be placed.

When used by an INTRPRET macroinstruction, AREA indicates the address of
an area containing data to be interpreted by VTAM.

When used by an RCVCMD macroinstruction, AREA contains the address of
an area into which a header and a VTAM operator message is placed.

When used by a SENDCMD macroinstruction, AREA contains the address of
an area containing a header and a VTAM operator command.

If you omit this operand, the AREA field is set to 0.

AREALEN=data_area_length
Indicates the length (in bytes) of the data area identified by the AREA operand.
The AREALEN operand is meaningful only for RECEIVE, RCVCMD, and
INQUIRE macroinstructions; VTAM uses this length to determine whether the
data it is placing in the area is too long to fit. AREALEN=0 means that no
input data area is available. If you omit this operand, the AREALEN field is set
to 0.

ARECLEN=data_length
Indicates the length (in bytes) of the data area identified by the AAREA
parameter, provided by a CLSDST OPTCD=PASS macroinstruction.

BRACKET
This operand is used when a normal-flow request is sent by SEND on a
session.

BRACKET=(BB)
The begin-bracket indicator is set in the request.

BRACKET=(NBB)
The begin-bracket indicator is not set in the request.

BRACKET=(EB)
The end-bracket indicator is set in the request.

BRACKET=(NEB)
The end-bracket indicator is not set in the request.

BRACKET=(CEB)
The conditional-end-bracket indicator is set in the request.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 493

BRACKET=(NCEB)
The conditional-end-bracket indicator is not set in the request. For details,
see “Bracket protocols” on page 213.

When the session is the SSCP-LU session for a CNM application program,
BRACKET=(NBB,NEB) must be specified, explicitly or by default.

BRANCH
For application programs running in supervisor state under a TCB, BRANCH
indicates whether authorized path processing is to be used. See “Authorized
path” on page 300.

BRANCH=YES
When the macroinstruction is issued, VTAM processes the macroinstruction
using authorized path. For programs running under an SRB rather than
under a TCB, the macroinstruction is processed in this manner
automatically, regardless of the actual setting of the BRANCH field.

BRANCH=NO
When the macroinstruction is issued, VTAM does not process the
macroinstruction using authorized path.

CHAIN
This field is set when a request is sent by SEND on a session. It denotes the
request's relative position within the chain currently being sent.

CHAIN=FIRST
The request is first within the current chain.

CHAIN=MIDDLE
The request is in the middle of the current chain.

CHAIN=LAST
The request is last within the current chain.

CHAIN=ONLY
The request is the only request of the chain.

When the session is the SSCP-LU session for a CNM application program,
CHAIN=ONLY must be specified, explicitly or by default.

CHNGDIR
This field is set when a normal-flow request is sent by SEND on a session.

CHNGDIR=CMD
A change-direction indicator is set in the request. For details, see
“Half-duplex protocols” on page 211.

CHNGDIR=NCMD
When the session is the SSCP-LU session for a CNM application program,
CHNGDIR=(NCMD) must be specified, explicitly or by default.

CODESEL
Indicates which data code is used in data requests being sent by SEND.

CODESEL=ALT
The alternate data code is used.

CODESEL=STANDARD
The standard data code is used.

When the session is the SSCP-LU session for a CNM application program,
CODESEL=STANDARD must be specified explicitly, or by default.

494 z/OS V2R1.0 Communications Server: SNA Programming

CONTROL
Indicates whether data, data-flow-control, or session-control requests and
responses are to be sent on a session. Data and data-flow-control requests (BID,
BIS, CANCEL, CHASE, LUSTAT, QC, RTR, QEC, RELQ, RSHUTD, SBI,
SHUTC, SHUTD, SIGNAL) are sent with the SEND macroinstruction. The
session-control requests (CLEAR, RQR, SDT, STSN) are issued by the
SESSIONC macroinstruction. Session-control responses (BIND, SDT, and STSN)
are also sent using the SESSIONC macroinstruction. CONTROL=UNBIND is
specified in a read-only RPL when the SCIP exit routine is scheduled with
CONTROL=UNBIND. See Chapter 6, “Communicating with logical units,” on
page 151, and the SEND and SESSIONC macroinstructions for an explanation
of the requests designated by CONTROL.

CONTROL=DATA is the default.

When the session is the SSCP-LU session for a CNM application program,
CONTROL=DATA must be specified, explicitly or by default.

CONTROL=SWITCH causes the backup XRF session to become the primary
XRF session. The former primary XRF session, if it is still active, is terminated
with an UNBIND(CLEANUP). This command can be issued only on a backup
XRF session. If issued on a primary XRF session, it is rejected.

CRYPT
Indicates whether data is to be enciphered before it is sent by SEND on a
session.

CRYPT=YES
Data is to be enciphered.

CRYPT=NO
Data is not to be enciphered.

When the session is an SSCP-LU session for a CNM application program,
CRYPT=NO must be specified or defaulted.

For details about the use of this operand, see "Redbooks".

ECB

ECB=event_control_block_address
Indicates the location of an event control block (ECB) to be posted by
VTAM when the request associated with this RPL is completed. The ECB
can be any fullword of storage aligned on a fullword boundary.

The ECB field and the EXIT field share the same RPL field. If
asynchronous handling of the request has been specified (ASY option code
in the RPL), the ECB-EXIT field is used in this manner:
v If you specify ECB=address, VTAM uses the field as the address of an

external ECB; you check and clear this ECB yourself (for example, with
CHECK for the RPL).

v If you specify EXIT=address, VTAM uses the field as the address of the
RPL exit routine, and schedules the routine as indicated under the EXIT
operand description.

ECB=INTERNAL
If you specify ECB=INTERNAL, VTAM uses the ECB-EXIT field as an
internal ECB; you must issue CHECK for the RPL to check and clear this
ECB.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 495

If synchronous handling has been specified (SYN option code in the RPL),
VTAM flags the RPL to be processed as if ECB=INTERNAL were specified.
VTAM uses the ECB-EXIT field as an ECB which is cleared and checked
automatically.

VTAM clears internal ECBs when:
v It begins processing any RPL-based macroinstruction
v The RPL is checked.

However, VTAM clears external ECBs only when the RPL is checked. (RPL
checking is done at request completion by VTAM for synchronous request
handling, and is done by the user issuing CHECK for asynchronous
request handling.) Users of external ECBs must, therefore, be sure that the
external ECB is cleared (with CHECK for the RPL or with assembler
instructions) before the next RPL-based macroinstruction is issued.

For further information about asynchronous processing, refer to Chapter 9,
“Handling errors and special conditions,” on page 277.

EXIT=rpl_exit_routine_address
Indicates the address of a routine to be scheduled when the request
represented by this RPL is completed.

If the SYN option code has been specified, the exit routine is not used; should
you specify an address anyway, the address is overwritten before the
synchronous request completes. (VTAM uses the ECB-EXIT field as an internal
ECB in this situation—see the ECB operand discussion on page ECB.) The RPL
exit routine is scheduled only if asynchronous handling of the request has been
specified.

If the EXIT operand is specified, the ECB operand must not be specified. (The
EXIT field and the ECB field occupy the same field in the RPL.)

For further information about asynchronous processing, refer to Chapter 9,
“Handling errors and special conditions,” on page 277.

IBSQAC=SET
IBSQAC=TESTSET
IBSQAC=INVALID
IBSQAC=IGNORE
IBSQAC=TESTPOS
IBSQAC=TESTNEG
IBSQAC=RESET
OBSQAC=SET
OBSQAC=TESTSET
OBSQAC=INVALID
OBSQAC=IGNORE
OBSQAC=TESTPOS
OBSQAC=TESTNEG
OBSQAC=RESET

These fields are used by a SESSIONC macroinstruction to designate which
type of Set and Test Sequence Numbers (STSN) request or response is
being sent on a session. The setting of the IBSQAC field relates to the
inbound sequence number. The setting of the OBSQAC field relates to the
outbound sequence number. SET is the default.

IBSQVAL=inbound_sequence_number
OBSQVAL=outbound_sequence_number

When SESSIONC is used to send certain STSN requests or responses, the

496 z/OS V2R1.0 Communications Server: SNA Programming

inbound and outbound sequence numbers can be specified by these fields.
Specify any decimal integer 0 - 65535 inclusive, or any hexadecimal value that
does not exceed X'FFFF'.

If either of these operands is omitted, the associated field is set to 0.

NIB=nib_address
Identifies the NIB whose NAME or CID field indicates the resource that is to
be the object of an RPL-based macroinstruction. It is used with the CLSDST,
INQUIRE, INTRPRET, OPNDST, OPNSEC, REQSESS, SESSIONC, SIMLOGON,
and TERMSESS macroinstructions.

The CID and the NIB address occupy the same physical field (RPLARG) in the
RPL control block. VTAM can distinguish between an NIB address and a CID
only through a particular bit (RPLNIB). For this reason, this book calls the field
the NIB field when an NIB address is being inserted into it and the ARG field
when a CID is being inserted into it. When NIB=address appears on a
SIMLOGON macroinstruction, for example, the bit is set to indicate that the
field contains an NIB address. When ARG=(register) is coded on a SEND
macroinstruction, for example, the bit is cleared to indicate that the field
contains a CID. (Register notation must be used with ARG, because CIDs are
not available until program execution.)

When dealing with the NIB and ARG operands, remember if only one physical
field is involved, always use the NIB keyword to insert an NIB address and
always use the ARG keyword to insert a CID. This rule also applies to the
GENCB and MODCB macroinstructions.

Note: If your application uses the RPL DSECT, IFGRPL, you must set the
RPLNIB bit if an NIB address is being inserted into the RPLARG field, and
clear RPLNIB if a CID is being inserted into RPLARG.

If you omit this operand, the NIB field is set to 0.

OPTCD=option code or (option code, . . .)
Indicates options that are to affect the requests made using this RPL.

Code as indicated in the assembler format table. If only one option code is
specified, the parentheses can be omitted.
RPL ACB=ACB1,OPTCD=(SPEC,SYN,CS),AM=VTAM
RPL ACB=ACB1,OPTCD=SPEC,AM=VTAM

Note: The MODCB macroinstruction can be used to change some option codes
set in the RPL after it has been built.

OPTCD=ACCEPT
OPTCD=ACQUIRE

Indicates whether OPNDST is being issued to accept a
session-establishment request or to acquire a session by issuing a
session-initiation request.

For XRF requests, the NIB BNDAREA field must point to a BIND
specifying a control vector or vectors included with the
XRF-session-activation control vector (including correlation ID) initialized
appropriately. OPTCD=BACKUP must be specified on the OPNDST
OPTCD=ACQUIRE if the session establishment request is for a backup
XRF session. The request fails if the secondary logical unit cannot support
XRF. OPTCD=BACKUP or OPTCD=NBACKUP does not apply for

Chapter 13. Conventions and descriptions of VTAM macroinstructions 497

OPNDST OPTCD=ACCEPT and is ignored. However, if a SIMLOGON
OPTCD=BACKUP is issued, it drives a LOGON exit routine that contains
OPNDST OPTCD=ACCEPT.

OPTCD=CA
OPTCD=CS

The CA (continue-any) and CS (continue-specific) option codes determine
which type of RECEIVE is required to obtain input from the session. This
operand is used with the RTYPE operand for SEND, RECEIVE, and
RESETSR. It is also used with OPNDST and OPNSEC. For further
information, refer to “Continue-any mode versus continue-specific mode”
on page 176.

CA places the session in a mode for a particular type of input wherein that
input is subject to a RECEIVE OPTCD=ANY as well as a RECEIVE
OPTCD=SPEC macroinstruction. This mode is called continue-any mode.

CS places the session into a mode for a particular type of input wherein
only RECEIVEs for that type of input that are directed specifically to the
session can be used to obtain input from it. This mode is called
continue-specific mode.

OPTCD=CONALL
OPTCD=CONANY

Used with SIMLOGON and with OPNDST OPTCD=ACQUIRE to control the
number of sessions established by these macroinstructions when an NIB is
used. When CONANY is set, a session is initiated for the first available logical
unit in the NIB list. Control is passed to the application program's LOGON exit
routine, if one exists, when the resulting CINIT has been generated. When
CONALL is set, a session is initiated for each available logical unit in the NIB
list.

OPTCD=COND
OPTCD=UNCOND
OPTCD=UNBIND

Indicates the action to be taken when a TERMSESS macroinstruction is issued.
If OPTCD=COND, the application program acting as the primary end of the
session determines if and when to terminate the session. If OPTCD=UNCOND,
VTAM terminates the session. If OPTCD=UNBIND, an UNBIND request is sent
from the SLU to the PLU to terminate the session; control returns to the
application program when the response to the UNBIND request is received.

OPTCD=APPSTAT
OPTCD=CIDXLATE
OPTCD=COUNTS
OPTCD=DEVCHAR
OPTCD=LOGONMSG
OPTCD=SESSKEY
OPTCD=STATUS
OPTCD=TERMS
OPTCD=TOPLOGON
OPTCD=USERVAR

Indicates the action that VTAM is to take when an INQUIRE macroinstruction
is issued.

OPTCD=MTS
OPTCD=NMTS

The MTS option code only applies to the REQSESS and CLSDST OPTCD=PASS
macroinstructions. If you code OPTCD=MTS, VTAM expects valid MTS

498 z/OS V2R1.0 Communications Server: SNA Programming

override data in an area pointed to by NIBMTSAR and formatted to match the
ISTMTS DSECT. The NMTS option code tells VTAM not to expect any MTS
override data.

OPTCD=NBACKUP
OPTCD=BACKUP

This parameter applies only when trying to initiate an XRF backup session.
NBACKUP means that the session establishment request is for a primary XRF
session or a non-XRF session. BACKUP indicates that the OPNDST request is
to initiate a backup XRF session.

A backup XRF session must not be requested by the application until the
OPNDST for the primary XRF session has been posted complete.

OPTCD=NBUFFLST
OPTCD=BUFFLST

Indicates, when a SEND macroinstruction is issued, whether FM data is sent
by VTAM from a number of discontiguous buffers. See “The buffer-list
(BUFFLST) option” on page 191 for more information.

OPTCD=NCONTCHN
OPTCD=CONTCHN

Indicates, when a SEND macroinstruction is issued with OPTCD=LMPEO,
whether VTAM continues to send a chain upon receipt of a negative response.

OPTCD=NFMHDR
OPTCD=FMHDR

Indicates to VTAM how the format bit in the request header (RH) is to be set.
This option applies only to SEND for data requests and data responses, and
should be used to notify the logical unit that the request or response contains
or does not contain (FMHDR and NFMHDR, respectively) a function
management header. If FMHDR is set, the format bit is set on in the request
header and is delivered to the receiver.

When the session is the SSCP-LU session for a CNM application program,
FMHDR must be specified.

Note: VTAM does not prevent setting FMHDR for sending responses on
LU-LU sessions; however, because this is not an SNA protocol, it should not be
used. Because the format indicator is on in all data-flow-control requests and
responses, the application program must ensure that the desired value is in the
RPL used for SEND. (It might have been set by a previously received
data-flow-control request or response.)

OPTCD=NIBTK
OPTCD=TRUNC
OPTCD=KEEP

Indicates the action to be taken when a RECEIVE macroinstruction is
completed with input that is too large to fit in the input data area. TRUNC
causes the excess data to be discarded. KEEP causes the excess data to be
saved for subsequent RECEIVE macroinstructions. NIBTK causes the
PROC=TRUNC or PROC=KEEP setting in the NIB to be used either to truncate
or keep the data. RCVCMD must specify TRUNC.

OPTCD=NKEEPSRB
OPTCD=KEEPSRB

Indicates whether VTAM should return to the application under the same SRB
in which VTAM was invoked. This parameter is meaningful only for
synchronous SRB (non cross-memory) invocations. Asynchronous SRB and

Chapter 13. Conventions and descriptions of VTAM macroinstructions 499

synchronous cross-memory SRB invocations return under the same SRB.
Preserving the SRB provides the following environmental advantages to the
invoker:
v The FRR stack is maintained if KEEPFRR=YES is specified on the ACB.
v The linkage stack is maintained, thus preserving any existing linkage stack

entries. Refer to the z/OS MVS Programming: Extended Addressability
Guide for additional details regarding linkage stack considerations.

Note: To provide this function, VTAM utilizes SUSPEND and RESUME.
Suspending the SRB (as opposed to exiting and returning under a different
SRB) allows the environment to be preserved. However, SUSPEND and
RESUME may impact performance. Take this into account when making use of
this parameter for performance sensitive API invocations (such as SEND or
RECEIVE).

OPTCD=NLMPEO
OPTCD=LMPEO

Indicates, when a SEND macroinstruction is issued, whether the large message
performance enhancement outbound option is to be used. The effect of this
option is to allow VTAM to split the FM data being sent into a chain of RUs.
See “Large message performance enhancement outbound (LMPEO) option” on
page 183 for more information.

OPTCD=NRSPQUED
OPTCD=RSPQUED

Indicates, when a SEND macroinstruction is issued, whether VTAM searches
for any queued responses. When a SEND OPTCD=RSPQUED macroinstruction
is posted complete, the RPL flag RPLRSPNM is set if there are any responses
on the normal flow inbound response queue and the RPL flag RPLRSPQR is
set if there are any responses on the normal flow inbound data queue. When
the SEND is posted complete, the application program must test these RPL
flags explicitly to see whether there are any queued responses.

OPTCD=NSENSE
OPTCD=SENSE

When a CLSDST macroinstruction is issued with OPTCD=RELEASE to reject a
CINIT request, OPTCD=NSENSE or SENSE indicates whether sense values
were specified with the SSENSEO, SSENSMO, and SSENSEO operands. If
OPTCD=NSENSE is specified, VTAM rejects the CINIT with a sense value of
X'08010000'. If OPTCD=SENSE is specified, VTAM rejects the CINIT with the
application-specified sense values in the SSENSEO, SSENSMO, and SSENSEO
fields of the RPL.

Note: Only a nonzero sense code is allowed for OPTCD=SENSE. If you specify
OPTCD=SENSE, and a sense code of X'00000000', VTAM rejects the CLSDST
with RTNCD/FDB2=X'14',X'50'. (This return code indicates that the RPL field is
not valid).

OPTCD=NSONCODE
OPTCD=SONCODE

In the following cases, indicates whether an UNBIND type code is specified in
the RPL with the PARMS=(SONCODE=code) operand:
v When a TERMSESS macroinstruction is issued with OPTCD=UNBIND
v When a CLSDST macroinstruction is issued with OPTCD=RELEASE.

500 z/OS V2R1.0 Communications Server: SNA Programming

If OPTCD=NSONCODE, VTAM uses a SON code of hex 01. If
OPTCD=SONCODE, VTAM uses the SON code specified in the RPL with the
PARMS=(SONCODE=code) operand.

OPTCD=NUSERRH
OPTCD=USERRH

Indicates, when a SEND macroinstruction is issued, whether the application
program specifies the RH when sending FM data or data-flow-control requests
and responses. See “The user RH (USERRH) option” on page 196 for more
information.

Note: The RH field can be set up by using the RPLURH DSECT label.

OPTCD=Q
OPTCD=NQ

Indicates the action VTAM is to take when the application program issues
RECEIVE, RCVCMD, SIMLOGON, REQSESS, or OPNDST OPTCD=ACCEPT
and the operation cannot be completed immediately.

OPTCD=QALL
OPTCD=QSESSLIM
OPTCD=QNOTENAB

Indicates the action to be taken when a SIMLOGON OPTCD=Q is issued and
the logical unit that is the object of this simulated logon request is at its session
limit or not enabled for sessions. This option determines whether the
SIMLOGON is queued for both or just one of these conditions.

OPTCD=QUIESCE
OPTCD=STOP
OPTCD=START
OPTCD=HOLD

Indicates the action VTAM takes when a SETLOGON macroinstruction is
issued. QUIESCE causes VTAM to indicate that the application program is
inhibited for any new sessions. The STOP version of SETLOGON causes any
application program issuing INQUIRE OPTCD=APPSTAT to be told that new
sessions should not be initiated with the application program that issued
SETLOGON STOP. The START version of SETLOGON causes any application
program issuing INQUIRE OPTCD=APPSTAT to be told that your application
program is active. START can also be used in conjunction with
SETLOGON=HOLD to pace session requests. HOLD causes CINIT and BIND
requests to be queued, and the LOGON and SCIP exits not to be driven for
session requests until a subsequent SETLOGON OPTCD=START is issued.
SETLOGON OPTCD=STOP does not stop the scheduling of the LOGON or
SCIP exit routines. STOP can be used only for private application program
protocols and is not enforced by VTAM.

OPTCD=RELEASE
OPTCD=PASS

Indicates whether a session-initiation request is generated when a CLSDST
macroinstruction is issued to terminate a session.

OPTCD=RELRQ
OPTCD=NRELRQ

Indicates the action to be taken when a SIMLOGON macroinstruction is issued
and the logical unit that is the object of this simulated logon request has an
established session or pending active session with another PLU, and is at its
session limit. The effect of this option is to determine whether the application
program that is in session with the logical unit is to be notified of your
request.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 501

Note the difference in spelling between the RELRQ-NRELRQ RPL option, and
the related exit routine. The latter is coded in the EXLST macroinstruction as
RELREQ.

OPTCD=SPEC
OPTCD=ANY

When the RPL is used by an OPNDST OPTCD=ACCEPT macroinstruction, this
option code indicates whether any session or a specific session can be
accepted.

When the RPL is used by a RECEIVE macroinstruction, this option code
indicates whether input from any session or a specific session can complete the
RECEIVE.

OPTCD=SYN
OPTCD=ASY

Indicates whether VTAM should synchronously or asynchronously handle any
request made using this RPL. For further information, refer to:
v “How a synchronous operation works” on page 40
v “How an asynchronous operation works” on page 41
v “Advantages and disadvantages of different forms of operation” on page 44
v “Cautions, restrictions and techniques” on page 235
v “Synchronous versus asynchronous operations” on page 169.

SYN
Synchronous handling means that when a request is made, control is not
returned to the application program until the requested operation has
completed (successfully or otherwise). The application program should not
use the CHECK macroinstruction for synchronous requests: VTAM
automatically performs this checking (which includes clearing the internal
ECB; the ECB-EXIT field in the RPL is used as an internal ECB) as
discussed in the RPL ECB and EXIT operand descriptions. When control is
returned to the application program, registers 0 and 15 contain completion
codes. See Chapter 9, “Handling errors and special conditions,” on page
277, for further information.

Some macroinstructions can take a relatively long time to complete.
Because the SRB or task issuing the macroinstruction with the SYN option
code is suspended until processing completes, use the ASY option code if
the SRB or task cannot be allowed to be suspended for that long. Also use
the ASY option when the macroinstruction is issued within an exit
identified in an ACB exit list.

ASY
Asynchronous handling means that after VTAM schedules the requested
operation, control is immediately passed back to the application program.
When the event has completed, VTAM does one of the following:
v If an ECB address is specified for the RPL, VTAM posts a completion

indicator in the event control block. The application program must issue
a CHECK or a system WAIT macroinstruction to determine whether the
ECB has been posted. If a system WAIT or similar technique is used, the
application program must still issue a CHECK on the RPL to mark the
RPL inactive so that it can be reused and to cause entry to the SYNAD
or LERAD exit routine if the requested operation ends with a logic or
other error.

v If the EXIT operand is in effect for the RPL, VTAM schedules the exit
routine indicated by this operand. This exit routine should issue the

502 z/OS V2R1.0 Communications Server: SNA Programming

CHECK macroinstruction so that the RPL can be reused, and also to
cause automatic entry into a LERAD or SYNAD exit routine if the
requested operation ends with a logic or other error. CHECK should be
issued in the exit routine even if the application program has no LERAD
or SYNAD routine, because CHECK returns a code indicating whether
an error occurred. See Chapter 9, “Handling errors and special
conditions,” on page 277, for further information.

Note: After an asynchronous request is accepted and before it is
completed, do not modify the RPL used by the request. A modification
during this interval could cause VTAM to be unable to complete the
request in a normal manner, which in turn causes VTAM to terminate the
application program.

ASY is recommended for CONTROL=SWITCH.

PARMS=(SONCODE=code)
The application program can set the UNBIND SON code by specifying
OPTCD=SONCODE and PARMS=(SONCODE=code), where code is the 1-byte
UNBIND type code to be used by VTAM on an UNBIND RU. See the
description of the UNBIND RU in SNA Formats for definitions of those SON
codes. VTAM does not validate the code specified in this parameter.

If PARMS=(SONCODE=X'FE') is specified, system and user sense codes are set
with the existing SSENSEO, SSENSMO, and USENSEO RPL fields.

PARMS=(THRDPTY=NONOTIFY)
PARMS=(THRDPTY=NOTIFY)

Indicates for CLSDST OPTCD=PASS whether the application program receives
notification when the new session is established between the target PLU and
the SLU.

POST
This field is used with the SEND macroinstruction to determine when the
SEND of a request is to be posted as being complete.

POST=RESP
Post the SEND as being complete when a response is received for the
request.

POST=SCHED
Post the SEND as being complete as soon as the RPL and buffer area are
available for reuse.

RECLEN=data_length
When used by a REQSESS, SIMLOGON, INTRPRET, or CLSDST OPTCD=PASS
macroinstruction, RECLEN indicates the length (in bytes) of the user data or
sequence contained in the area indicated by the AREA operand.

When used by a SEND OPTCD=NBUFFLST or SENDCMD macroinstruction,
RECLEN indicates the length (in bytes) of the data that begins at the address
indicated by AREA. RECLEN tells VTAM how much data to transfer. When
used by a SEND OPTCD=BUFFLST macroinstruction, RECLEN indicates the
length of the buffer list.

If you omit this operand, the RECLEN field is set to 0.

RESPOND
When a response is sent by SEND or SESSIONC, the RESPOND field indicates

Chapter 13. Conventions and descriptions of VTAM macroinstructions 503

the characteristics of the response. When a request is sent by SEND or
SESSIONC, the RESPOND field indicates characteristics of the expected
response to that request.

For details about the RESPOND field, refer to “What a response contains” on
page 153.

When the session is the SSCP-LU session for a CNM application program, FME
and NRRN are required.

RTYPE
When a RECEIVE macroinstruction is issued, the RTYPE field designates the
type or types of input eligible to satisfy the macroinstruction (only one type
can actually satisfy the RECEIVE). When a SEND or RESETSR
macroinstruction is issued, the RTYPE field indicates the type or types of input
for which the session's CA-CS mode is to be switched.

DFSYN, NDFASY, and NRESP are the defaults.

For further information about these input types, see “DFSYN, DFASY, and
RESP types of RUs” on page 160.

SEQNO=sequence_number
Indicates the 2-byte sequence number of a response or of an expedited-flow
DFC request.

If an application program responds to a request, it must set the SEQNO field
for the SEND STYPE=RESP or SESSIONC STYPE=RESP with the appropriate
sequence number to identify the request it is responding to.

The SEQNO field can be set to any value by the application program for the
sending of an expedited data-flow-control request. VTAM uses the contents of
this field for the TH sequence number of the request. Specify any decimal
integer 0 - 65535 inclusive. If you omit this operand, the SEQNO field is set to
0.

For certain non-SNA 3270 logical units, the sequence number field wraps to 0
after it reaches 255. The high-order byte of the field is always set to 0. The
application program should always set both bytes in the SEQNO field for all
sessions, including sessions with those non-SNA 3270 logical units.

SIGDATA=signal_data
When the SEND macroinstruction is used to send a SIGNAL request to a
logical unit, this field contains the signal data to be sent.

Specify a decimal, hexadecimal, or character constant of 1-4 bytes. If fewer
than 4 bytes are specified, the value is padded to 4 bytes as if the constant
were an assembler language DC statement with a length attribute of 4.

SSENSEO
This field is set by VTAM for a Logical Unit Status (LUSTAT) request and
informs the logical unit of the type of error that caused the exception
condition. These error types are described in Appendix B, “Return codes and
sense fields for RPL-based macroinstructions,” on page 651. SSENSEO=0 is the
default.

This field can also be used to provide application-specified sense values for
negative responses to CINIT or for UNBIND.

SSENSMO=system-sense_modifier_value
This field is set by VTAM for a Logical Unit Status (LUSTAT) request. The
value set in this field is used in conjunction with the SSENSEO setting to
describe the specific type of error that caused the exception condition. The

504 z/OS V2R1.0 Communications Server: SNA Programming

meanings assigned to the SSENSMO values are described in detail in SNA
Formats If this operand is omitted, the SSENSMO field is set to 0.

This field can also be used to provide application-specified sense values for
negative responses to CINIT or for UNBIND. Refer to the TERMSESS
macroinstructions in this chapter.

Specify any decimal integer 0–255 inclusive, or specify a 1-byte hexadecimal
constant.

STYPE=REQ
STYPE=RESPONSE

This field designates the type of output to be sent on a session by SEND or
SESSIONC. The application program uses STYPE=REQ to send a request.
STYPE=RESP is used when a response is to be sent. Only REQ applies to
CONTROL=SWITCH.

USENSEO=user-sense_value
This field is set by VTAM for a Logical Unit Status (LUSTAT) request. In most
instances the user-sense field is user-defined and can be used to inform the
logical unit that an exception condition is being indicated for an
application-program-related error that is not an SNA-defined error, or it can be
used to further modify the SNA-defined system-sense and system-sense
modifier values. See Appendix B, “Return codes and sense fields for RPL-based
macroinstructions,” on page 651, for more information. If this operand is
omitted, the USENSEO field is set to 0.

This field can also be used to provide application specified sense values for
negative responses to CINIT or for UNBIND. Refer to the TERMSESS
macroinstructions in this chapter.

Specify any decimal integer 0 - 65535 inclusive, or specify a 2-byte hexadecimal
or character constant.

Examples
RPL1 RPL ACB=ACB1,NIB=NIB1,AM=VTAM, C

OPTCD=(SPEC,ASY), C
EXIT=EXITPGM

RPL1 can be used by an OPNDST macroinstruction to establish a session between
the application program (represented by ACB1) issuing OPNDST and the logical
unit represented in NIB1. When the operation is complete, the application program
is interrupted, and the routine at EXITPGM is invoked.
RPL2 RPL ACB=ACB1,AM=VTAM,AREA=SOURCE,POST=RESP, C

RECLEN=132,ECB=ECBWORD,OPTCD=ASY

RPL2 can be used by a SEND macroinstruction to write a data request (132 bytes
from SOURCE) on a session with a logical unit. When the request is accepted,
control is returned. When the request is completed, ECBWORD is posted. (The
CHECK macroinstruction used to check the SEND operation points to RPL2.)

RPL fields set by VTAM

All of the RPL operands described in the preceding section can be supplied by the
application program and cause the RPL fields to be set when the RPL
macroinstruction is assembled or when the RPL-based macroinstruction is
executed. Some of the fields described in the preceding section that are initially set
by the application program can be (for certain macroinstructions) reset by VTAM
before the macroinstruction is completed. Additional RPL fields cannot be set by

Chapter 13. Conventions and descriptions of VTAM macroinstructions 505

the application program but can be examined by it during program execution.
VTAM uses both types of fields to return information to the application program
upon completion of RPL-based macroinstruction processing. See Figure 89 on page
512 and Figure 90 on page 513 for a description of these fields.

In some cases, fields set by VTAM upon the completion of one macroinstruction
cause erroneous results if the application program reuses the same RPL for another
macroinstruction without again initializing the field. (Only the SSENSEI, SSENSMI,
USENSEI, SSENSEO, SSENSMO, USENSEO, FDBK, FDB2, and RTNCD fields are
cleared by VTAM, and no fields are reset to their original values by VTAM.)

For example, before a RECEIVE is issued, the RTYPE field is set by the application
program to indicate the types of input (DFSYN, DFASY, RESP) that are eligible to
satisfy the RECEIVE. The application program might indicate all three. When the
RECEIVE is completed, VTAM uses the same field to indicate the type of input
that actually satisfied the RECEIVE; if a RESP response was received, for instance,
VTAM would reset the RTYPE field to RTYPE=(NDFSYN, NDFASY, RESP). Should
the application program issue another RECEIVE with the same RPL and fail to
reset the RTYPE field to its intended setting, the second RECEIVE could receive
only responses.

VTAM can alter the following RPL fields prior to posting an RPL-based
macroinstruction complete. These RPL fields are listed in alphabetical order.
Additional information about the particular operation to which the field
modifications apply is found in the following tables:
v Figure 89 on page 512 and Figure 90 on page 513
v Figure 178 on page 848, Figure 179 on page 849, and Figure 180 on page 850
v Figure 181 on page 851 and Figure 182 on page 852

See individual macroinstruction descriptions in this chapter for details. Figure 181
on page 851 and Figure 182 on page 852 show which fields are set up by VTAM in
the read-only RPL supplied in various exits. Further information can be found
under the exit routine descriptions given in Chapter 7, “Using exit routines,” on
page 219. The read-only RPL information is similar to that which would have been
placed into the RPL of a RECEIVE that had just received the RU that caused the
exit routine to be scheduled.

Field name
Contents

AREA When an OPNDST or OPNSEC macroinstruction completes, AREA is set to
the address of an NIB or a list of NIBs. (The NIB field is replaced by the
CID). If the RPL for the OPNDST or OPNSEC is to be reused for
subsequent RPL-based operations, the AREA field must be reset to indicate
the data area to be used for the operation.

ARECLEN
The number of bytes of data returned by OPNDST with a NIB specifying
PROC=(NEGBIND) or by INTRPRET.

ARG The communication identifier (CID) for the session is provided by the
OPNDST or OPNSEC macroinstruction that establishes the session. The
CID, a 32-bit value, is generated by VTAM when the session is established
and is used by the application program to indicate the identity of the
session for subsequent requests. It is also returned by VTAM when a
RECEIVE OPTCD=ANY completes successfully. The ARG field is also used
to return the CID of the session determined by INQUIRE
OPTCD=TOPLOGON.

506 z/OS V2R1.0 Communications Server: SNA Programming

BRACKET
When a request is received, the BRACKET field indicates the status of
bracket indicators.

CHAIN
When a RECEIVE RTYPE=DFSYN macroinstruction has received a request,
the CHAIN field indicates the request's relative position within the chain.

CHNGDIR
When a request or response is received, the CHNGDIR field indicates the
status of a change-direction indicator (CMD).

CODESEL
When a RECEIVE macroinstruction is completed, the CODESEL field
indicates whether the data received is in standard or alternate code.

CONTROL
After a RECEIVE macroinstruction has completed, CONTROL is set to
indicate which data or data-flow-control RU was received. The CONTROL
field is also set after a SEND POST=RESP or SESSIONC STYPE=REQ
completes. If the logical unit obeys SNA protocols, the CONTROL field is
the same as in the original SEND or SESSIONC.

CRYPT
When a RECEIVE macroinstruction for a data request is completed, this
indicates whether the RH enciphered data indicator was present for the
request.

ECB/EXIT
This field has been used as an internal ECB if ECB=INTERNAL was
specified, or if OPTCD=SYN was specified.

FDBK Status information for INQUIRE OPTCD=APPSTAT. This field is cleared by
VTAM when the processing of the macroinstruction begins.

FDB2 A specific error return code returned by all RPL-based macroinstructions.
This is one of the feedback fields described in Chapter 9, “Handling errors
and special conditions,” on page 277, and in Appendix B, “Return codes
and sense fields for RPL-based macroinstructions,” on page 651. A DSECT
containing labeled EQU instructions for each FDB2 return code is described
in Appendix E, “Control block formats and DSECTs,” on page 739
(ISTUSFBC). These DSECT labels can be used instead of the numerical
values that are cited for FDB2 throughout this book.

IBSQAC
When a SESSIONC STYPE=REQ,CONTROL=STSN is completed, the
IBSQAC field contains the logical unit's response regarding the inbound
sequence number for this session.

IBSQVAL
When a SESSIONC STYPE=REQ,CONTROL=STSN is completed and
IBSQAC is set to TESTPOS or TESTNEG, the IBSQVAL field contains the
logical unit's version of the inbound sequence number for this session.

OBSQAC
When a SESSIONC STYPE=REQ,CONTROL=STSN is completed, the
OBSQAC field contains the logical unit's response regarding the outbound
sequence number for this session.

OBSQVAL
When a SESSIONC STYPE=REQ,CONTROL=STSN is completed and
OBSQAC is set TESTPOS or TESTNEG, the OBSQVAL field contains the

Chapter 13. Conventions and descriptions of VTAM macroinstructions 507

logical unit's version of the outbound sequence number for the session.
When SEND is used with OPTCD=LMPEO, the OBSQVAL field is set by
VTAM with the sequence number of the first RU generated.

OPTCD
When a RECEIVE macroinstruction for data is completed and a function
management header is present, the OPTCD field is set to indicate FMHDR.
The OPTCD field is also set when data-flow-control requests or their
responses are received. Therefore, the field corresponds to the format
indicator in the request header of the received request or response.

RECLEN
After an INQUIRE macroinstruction has completed, RECLEN contains the
length of the requested information (such as the session parameters). After
a SETLOGON OPTCD=QUIESCE macroinstruction has completed,
RECLEN contains the number of CINIT requests queued for the
application program. After a RCVCMD macroinstruction has completed,
RECLEN contains the amount of input data. After a RECEIVE
macroinstruction has completed, RECLEN contains the total length of data
in VTAM's buffers (prior to the discarding of the data if TRUNC is in
effect) plus the length of data already moved by that RECEIVE
macroinstruction. This value might be greater than AREALEN, indicating
the presence of excess data (the value in RECLEN represents the total
length of excess data plus the data in AREA).

REQ A value returned by all RPL-based macroinstructions (except EXECRPL
and CHECK) that identifies the type of macroinstruction. This field shows
which type of macroinstruction last used the RPL. These are the values
that are set:

Value Macroinstruction

21 (X'15')
SETLOGON

22 (X'16')
SIMLOGON

23 (X'17')
OPNDST

25 (X'19')
CHANGE

26 (X'1A')
INQUIRE

27 (X'1B')
INTRPRET

31 (X'1F')
CLSDST

34 (X'22')
SEND

35 (X'23')
RECEIVE

36 (X'24')
RESETSR

508 z/OS V2R1.0 Communications Server: SNA Programming

37 (X'25')
SESSIONC

39 (X'27')
SENDCMD

40 (X'28')
RCVCMD

41 (X'29')
REQSESS

42 (X'2A')
OPNSEC

44 (X'2C')
TERMSESS

RESPOND
When a SESSIONC STYPE=REQ, a SEND POST=RESP, or a RECEIVE
macroinstruction has received a response, the RESPOND field indicates the
characteristics of the response. When a RECEIVE macroinstruction has
received a request, the RESPOND field indicates the characteristics of the
expected response.

RPLURH
4 When a RECEIVE macroinstruction is completed, the 3-byte RPLURH
field is set with the contents of the RH used for the input operation.

RTNCD
A general return code returned by all of the RPL-based macroinstructions.
This is one of the feedback fields described in Appendix B, “Return codes
and sense fields for RPL-based macroinstructions,” on page 651, and in
Chapter 9, “Handling errors and special conditions,” on page 277.

RTYPE
When a RECEIVE macroinstruction is completed, the RTYPE field indicates
the type of input that caused the completion.

SEQNO
When a RECEIVE macroinstruction has received a request or a response,
the SEQNO field contains the sequence number of that RU. When a SEND
or SESSIONC macroinstruction is used to send a request (STYPE=REQ),
the SEQNO field contains the VTAM-supplied sequence number of the
request. When using SEND OPTCD=LMPEO, SEQNO is set by VTAM with
the sequence number of the last RU sent.

SIGDATA
When a Signal request is received, the SIGDATA field contains the signal
information sent on the session.

SSENSEI
When a SEND POST=RESP, RECEIVE, or SESSIONC STYPE=REQ
macroinstruction receives a negative response, or when a RECEIVE
receives an exception request or an LUSTAT data-flow-control request, the
SSENSEI, SSENSMI, and USENSEI fields are set with sense information.
Similarly, under some circumstances, the INQUIRE, INTRPRET, CLSDST,
OPNDST, OPNSEC, REQSESS, SIMLOGON, SETLOGON, and TERMSESS
macroinstructions can be posted complete with sense information. For

4. This is a label in the ISTRH DSECT (shown in Appendix E, “Control block formats and DSECTs,” on page 739), rather than a field
name. No RPL operand exists for this field.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 509

further details about these fields, refer to Appendix B, “Return codes and
sense fields for RPL-based macroinstructions,” on page 651. VTAM clears
these fields when the processing of the macroinstruction begins.

SSENSEO
This field is always set to 0 when an RPL-based macroinstruction is
completed.

SSENSMI
When a SEND POST=RESP, RECEIVE, or SESSIONC STYPE=REQ
macroinstruction receives a negative response, or when a RECEIVE
receives an exception request or an LUSTAT data-flow-control request, the
SSENSEI, SSENSMI, and USENSEI fields are set with sense information.
Similarly, under some circumstances, the INQUIRE, INTRPRET, CLSDST,
OPNDST, OPNSEC, REQSESS, SIMLOGON, SETLOGON, and TERMSESS
macroinstructions can be posted complete with sense information. For
further details about these fields, refer to Appendix B, “Return codes and
sense fields for RPL-based macroinstructions,” on page 651. VTAM clears
these fields when the processing of the macroinstruction begins.

SSENSMO
This field is always set to 0 when an RPL-based macroinstruction is
completed.

USENSEI
When a SEND POST=RESP, RECEIVE, or SESSIONC STYPE=REQ
macroinstruction receives a negative response, or when a RECEIVE
receives an exception request or an LUSTAT data-flow-control request, the
SSENSEI, SSENSMI, and USENSEI fields are set with sense information.
Similarly, under some circumstances, the INQUIRE, INTRPRET, CLSDST,
OPNDST, OPNSEC, REQSESS, SIMLOGON, SETLOGON, and TERMSESS
macroinstructions can be posted complete with sense information. For
further details about these fields, refer to Appendix B, “Return codes and
sense fields for RPL-based macroinstructions,” on page 651. These fields
are cleared by VTAM when the processing of the macroinstruction begins.

USENSEO
This field is always set to 0 when an RPL-based macroinstruction is
completed.

USER Upon the completion of a SEND, RECEIVE, RESETSR, or SESSIONC
macroinstruction, this field contains whatever value you previously placed
in the USERFLD field of the NIB used to establish the session. See the
description of the USERFLD operand of the NIB macroinstruction for more
information.

RPL fields and RPL-based macroinstructions

Figure 89 on page 512 and Figure 90 on page 513 show all of the VTAM
macroinstructions that allow RPL modifications to be indicated when the
macroinstruction is coded. It also shows all of the RPL fields, including the option
codes of the OPTCD field, that might be modified by the application program or
by VTAM. The symbols in the table indicate, for a given macroinstruction, the RPL
fields that are set by VTAM or by the application program. The programmer
coding the macroinstruction should be aware of each field's effect by checking the
description of that macroinstruction in this chapter. The absence of an A or V
means that the contents of that field are ignored by VTAM when that
macroinstruction is issued.

510 z/OS V2R1.0 Communications Server: SNA Programming

Note: When issuing an RPL-based macroinstruction, the value remaining in an
RPL field after its last use is reused unless the application program explicitly alters
the field. Default values for the operands of RPL-based macroinstructions do not
exist. The programmer must ensure that the current contents of each RPL field
applicable to this macroinstruction are properly set.

Figure 178 on page 848, Figure 179 on page 849, and Figure 180 on page 850
provide detailed information about the SEND, SESSIONC, and RECEIVE
macroinstructions for various inputs, outputs, and modes of operation. This figure
lists information set in the read-only RPL supplied in exit routines. For further
information about exit routines, refer to Chapter 7, “Using exit routines,” on page
219.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 511

A

A

A

A

A

A

A

V

V

V

A

A

A

V

V

V

A

A

A

A

V

V

V

A

AV

A

AV

A

AV

A

AV

V

A

V

V

V

V

V

AV

A

AV

AV

AV

AV

AV

AV

A

A

A

A

V

V

V

AV

AV

A

AV

A

A

A

V

A

V

V

V

V

V

V

V

A

A

A

A

A

A

A

V

A

V

V

V

V

V

V

A

V3

A3

V

A

A

V

A

V

V

V

V

V

V

A

V3

A3

V

A

A

V

A

V

V

V

V

V

V

A

V3

A3

V

A

V

V

V

V

V

V

A

A

A

V

V

A

V

V

V

A

A

A

A

A

A

V

V

V

V

V

V

A

AV

A

V

V

V

V

A

A

AV

A

A

A

V

V

V

V

AV

A

AV

AV

A

A

A

A

A

A

A

A

V

V

V

A

A

A

A

A

A

V

V

V

A

V

A

V

V

V

V

V

V

A

A

A

A

A

V

V

V

V

V

V

A

A

A

A

V

V

V

A

A

A

V

V

V

CLSDST OPNDST

A

AV

A

A

V

A

V

V

V

V

V

V

V

V

V

V

AV

V

V

V

V

V

For all macros: A

For all macros: If OPTCD=ASY,A; OPTCD=SYN,AV

For all macros: V

A

A

A

V

A

V
V

V

A3

V3

AV

AV

AV

AV

AV

AV

IBSQAC

OBSQAC

IBSQVAL

OBSQVAL

SIGDATA

CODESEL

(R
E

S
TO

R
E

)
O

P
N

S
E

C
R

C
V

C
M

D
R

E
C

E
IV

E
R

E
Q

S
E

S
S

R
E

S
E

TS
R

S
E

N
D

S
E

N
D

C
M

D
S

E
S

S
IO

N
C

S
E

TL
O

G
O

N
S

IM
LO

G
O

N
TE

R
M

S
E

S
S

C
H

A
N

G
E

(P
A

S
S

)
(R

E
LE

A
S

E
)

E
X

E
C

R
P

L
IN

Q
U

IR
E

IN
TR

P
R

E
T

(A
C

Q
U

IR
E

)
(A

C
C

E
P

T)

ACB

ARG/NIB (when ARG specified)

ARG/NIB (when NIB specified)

AREA

AREALEN

RECLEN

AAREA

AAREALN

ARECLEN

BRANCH

EXIT/ECB (when ECB specified)

EXIT/ECB (when EXIT specified)

EXIT/ECB (when internal ECB is used)

REQ

RTNCD1

FDB21

FDBK1

USER

SEQNO

POST

RESPOND

CONTROL

CHAIN

CHNGDIR

BRACKET

RTYPE

STYPE

SSENSEO2

SSENSMO2

USENSEO2

SSENSEI1

SSENSMI1

USENSEI1

CRYPT

RPLURH4

V

V

V

V

V

Applicable RPL Fields:

RPL - Modifying Macro-
instructions

A

A

AV

AV

AV

AV

A

AV

A

A

A

A

V

V

V

V

AV

AV

AV

V

A

A

A

A

V

V

V

AV5

A

Figure 89. RPL fields applicable to the macroinstructions that can modify RPLs (Part 1 of 2)

512 z/OS V2R1.0 Communications Server: SNA Programming

Applicable RPL Fields:

RPL - Modifying Macro-
instructions

OPTCD:

THRDPTY=NOTIFY

SONCODE=code

PSTIMER=value

FORCETKO

KEEPSRB-NKEEPSRB

OPNDST

PARMS

C
H

A
N

G
E

(P
A

S
S

)
(R

E
LE

A
S

E
)

E
X

E
C

R
P

L
IN

Q
U

IR
E

IN
TR

P
R

E
T

(A
C

Q
U

IR
E

)
(A

C
C

E
P

T)
(R

E
S

TO
R

E
)

O
P

N
S

E
C

R
C

V
C

M
D

R
E

C
E

IV
E

R
E

Q
S

E
S

S
R

E
S

E
TS

R
S

E
N

D
S

E
N

D
C

M
D

S
E

S
S

IO
N

C
S

E
TL

O
G

O
N

S
IM

LO
G

O
N

TE
R

M
S

E
S

S

ENDAFFIN-ENDAFFNF

TRUNC-KEEP-NIBTK

FMHDR-NFMHDR

CONANY-CONALL

ACQUIRE-ACCEPT-RESTORE

SPEC-ANY

QUIESCE-START-STOP-HOLD-

PERSIST-NPERSIST

GNAMEADD-GNAMEDEL

PASS-RELEASE-TERMQ

-

LOGONMSG-DEVCHAR-

COUNTS-TERMS-APPSTAT-

CIDXLATE-TOPLOGON-

SESSPARM-SESSKEY-PERSESS-USERVAR-

SESSNAME-NQN-STATUS

SYN-ASY

CS-CA

COND-UNCOND-UNBIND-TERMQ

RELRQ-NRELRQ

Q-NQ

LMPED-NLMPEO

CONTCHN-NCONTCHN

BUFFLST-NBUFFLST

USERRH-NUSERRH

SENSE-NSENSE

SONCODE-NSONCODE

RSPQUED-NRSPQUED

QALL-QSESSLIM-QNOTENAB

MTS-NMTS

BACKUP-NBACKUP

CLSDST

A

A A A A A A A A A A A A A A A A A A A A

A

A A

A A

A

A

A

A A A A A A AAA

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A A

A

A

V

A

A

A

A

A

A

A

A

AV

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A

A A A

A

A

A

A

A A

A A

VTAM sets this field to 0 when the macroinstruction is accepted; a non zero value may be set by VTAM when the macroinstruction is posted
complete.

VTAM sets this field to 0 when the macroinstruction is posted complete.

The NIB-ARG is specified as a NIB field by the application program, but VTAM may change it into an ARG field before returning control to the
application program.

RPLURH is a label in the ISTRH DSECT (Appendix E), rather than a field name. There is no operand for this field.

This field is set by VTAM when SEND OPT=LIMPEO is posted complete.

The presence of a symbol means that the RPL field or option code is set by the macroinstruction in one of three ways;

The field or option code is set by the application program to supply VTAM information about the request.

The field is set by VTAM when the request has been completely processed.

The field is set by the application program and then reset by VTAM. Users intending to reissue requests that use these fields should reinitialize
them first.

1

4

5

A

V

AV

2

3

A

Figure 90. RPL fields applicable to the macroinstructions that can modify RPLs (Part 2 of 2)

Chapter 13. Conventions and descriptions of VTAM macroinstructions 513

SEND—Send output on a session
Purpose

The SEND macroinstruction transmits a request or a response for data or
data-flow-control on a session with a logical unit. SEND can also be used by a
CNM application program to send a request or a response to the SSCP on the
SSCP-LU session. The major options for a SEND macroinstruction are illustrated in
Figure 91 on page 517.

Usage

Before issuing the SEND macroinstruction the application program must set
register 13 to the address of an 18-word save area. Refer to Appendix H,
“Summary of register usage,” on page 853, for information pertaining to the
register contents upon return of control.

For further information about the SEND macroinstruction, refer to “Using VTAM
to communicate with LUs” on page 168.

VTAM receives control from the SEND macroinstruction in the addressing mode of
the application program that issued the macroinstruction and returns control to the
application program in that same mode.

Syntax

�� SEND RPL = rpl_address
name (1)

, ACB = acb_address

�

�
(1)

, AREA = output_data_address
(1)

, ARG = (register)

�

�
(1)

, BRANCH = NO
YES

�

�
(2) (1)

, BRACKET = (BB)
NBB
CEB
NCEB
EB
NEB

�

514 z/OS V2R1.0 Communications Server: SNA Programming

�
(1)

, CHAIN = FIRST
LAST
MIDDLE
ONLY

(1)
, CHNGDIR = CMD

NCMD

�

�
(1)

, CODESEL = ALT
STANDARD

, CONTROL = BID
BIS
CANCEL
CHASE
DATA
LUS
QC
QEC
RELQ
RSHUTD
RTR
SBI
SHUTC
SHUTD
SIGNAL

�

�
(1)

, CRYPT = NO
YES

(1)
, ECB = INTERNAL
, ECB = ecb_address

(1)
, EXIT = exit_routine_address

�

�
(3) (1)

, OPTCD = (ASY)
SYN
BUFFLST
NBUFFLST
CA
CS
CONTCHN
NCONTCHN
FMHDR
NFMHDR
LMPEO
NLMPEO
RSPQUED
NRSPQUED
USERRH
NUSERRH

�

�
(1)

, POST = RESP
SCHED

(1)
, RECLEN = output_data_length

�

Chapter 13. Conventions and descriptions of VTAM macroinstructions 515

�
(4) (1)

, RESPOND = (EX)
NEX
FME
NFME
RRN
NRRN
QRESP
NQRESP

�

�
(5) (1)

, RTYPE = (DFASY)
NDFASY
DFSYN
NDFSYN
RESP
NRESP

�

�
(1)

, SEQNO = sequence_number
(1)

, SIGDATA = signal_data

�

�
, SSENSEO = 0

, SSENSEO = 0
CPM
FI
RR
STATE

�

�
(1)

, SSENSMO = system–sense_modifier_value

�

�
(1)

, STYPE = REQ
RESP

(1)
, USENSEO = user–sense_value

��

Notes:

1 Operand value can be placed in its RPL field either by specification on an
RPL macroinstruction operand or by explicitly setting the field using the
IFGRPL DSECT.

2 You can code more than one suboperand on BRACKET, but code no more
than one from each group.

3 You can code more than one suboperand on OPTCD, but code no more than
one from each group.

4 You can code more than one suboperand on RESPOND, but code no more
than one from each group.

5 You can code more than one suboperand on RTYPE, but code no more than

516 z/OS V2R1.0 Communications Server: SNA Programming

one from each group.

Send a data request

Scheduled output:

STYPE=REQ, CONTROL=DATA

Responded output: Receipt of a response included as part of the SEND macroinstruction.
POST = RESP

Receipt of a response as soon as output data area
is free; response (if any) obtained with a RECEIVE macroinstruction

or RESP exit routine. POST = SCHED

Send a data-flow-control request STYPE = REQ.

CONTRO L=

Positive or Negative responses

Definite response 1 or Definite response 2

Definite response 1 & 2

Only required if the NIB associated with the logical unit specifies PROC=APPLRESP.1

Positive response

Definite response1

Negative response

Definite response1

Send a response to a normal-flow (DFSYN) data request or to a Bid, Bracket Initiation Stopped,
Cancel, Chase, Logical Unit Status, Quiesce Complete, or Ready to Receive normal-flow data-
flow-control request.

STYPE=RESP, CONTROL+DATA|BID|BIS|CANCEL|CHASE|LUS|QC|RTR

Send a response to a Quiesce at End-of-Chain, Release Quiesce, Request Shutdown, Stop Bracket
Initiation, Shutdown Complete, Shutdown, or Signal Expedited Data-Flow-Control request.

STYPE=RESP, CONTROL=QREC RELQ RSHUTD SBI SHUTC SHUTD SIGNAL

1

| | | | | |

BID Send a Bid request

BIS Send a Bracket Initiation Stopped request

CANCEL Send a Cancel request

CHASE Send a Chase request

LUS Send a Logical Unit Status request

QC Send a Quiesce Complete request

RTR Send a Ready to Receive request

QEC Send a Quiesce at End-of-Chain request

RELQ Send a Release Quiesce request

RSHUTD Send a Request Shutdown request

SBI Send a Stop Bracket Complete request

SHUTC Send a Shutdown Complete request

SHUTD Send a Shutdown request

SIGNAL Send a Signal request

Figure 91. Major SEND options

Chapter 13. Conventions and descriptions of VTAM macroinstructions 517

Input parameters

RPL=rpl_address
Indicates the RPL that specifies which kind of processing SEND is to perform.

The following RPL operands apply to the SEND macroinstruction:

ACB=acb_address
Indicates the ACB that identifies the application program issuing SEND.

AREA=output_data_address
If OPTCD=NBUFFLST, CONTROL=DATA, and STYPE=REQ, AREA specifies
the address of the data to be sent. If OPTCD=BUFFLST, CONTROL=DATA,
and STYPE=REQ, AREA specifies the address of a buffer list which in turn
specifies the data to be sent. This storage can be reused as soon as VTAM has
transferred the data to its own buffers (see the following POST=SCHED
discussion).

ARG=(register)
The SEND macroinstruction is always directed to one session. The ARG
operand specifies the register containing the CID of the session being
transmitted to. If the ARG operand is not specified, the CID that is already in
the RPLARG field is used.

Note: If your application uses the RPL DSECT, IFGRPL, you must clear the
RPLNIB bit if a CID is being inserted into the RPLARG field. For application
programs running in supervisor state under a TCB, BRANCH indicates
whether authorized path processing is to be used. See “Authorized path” on
page 300.

BRANCH
If the macroinstruction is issued in an application program that is running in
supervisor state under a TCB, set BRANCH to YES to specify that you should
use authorized path processing.

BRANCH=YES
When the macroinstruction is issued, VTAM processes the macroinstruction
using authorized path. For programs running under an SRB rather than
under a TCB, the macroinstruction is processed in this manner
automatically, regardless of the actual setting of the BRANCH field.

BRANCH=NO
When the macroinstruction is issued, VTAM does not process the
macroinstruction using authorized path.

BRACKET
This field indicates whether a chain is the beginning, middle, end, or the only
chain in a bracket. This operand is meaningful only when bracket protocols are
being used on the session. Refer to “Bracket protocols” on page 213.
v BRACKET=(BB,NEB) This chain is the beginning of a bracket.
v BRACKET=(NBB,NEB) This chain is the middle of a bracket.
v BRACKET=(NBB,EB) This chain is the end of a bracket.
v BRACKET=(BB,EB) This chain is the only chain of a bracket.

For all requests in a chain except the first and last requests, (NBB,NEB) is set.

BRACKET=CEB is used to set the conditional end bracket indicator. This can
be used only for the last or for the only request in a chain.

518 z/OS V2R1.0 Communications Server: SNA Programming

CHAIN
Indicates the position of the request within the chain of requests currently
being transmitted. For additional information, see “Chaining” on page 201.

CHAIN=FIRST
The request is first within the current chain.

CHAIN=MIDDLE
The request is in the middle of the current chain.

CHAIN=LAST
The request is last within the current chain.

CHAIN=ONLY
The request is the only request of the chain. Also, see “Large message
performance enhancement outbound (LMPEO) option” on page 183 to
understand how VTAM splits a message sent with SEND OPTCD=LMPEO
into chained request units.

CHNGDIR
Indicates whether the change-direction indicator is set on in the request sent.
Refer to “Half-duplex protocols” on page 211 for an explanation of the
change-direction indicator.

CHNGDIR=(CMD)
Turn on the change-direction indicator in the request to be sent (valid only
for a last-of-chain DFSYN request). This corresponds to the SNA-defined
change-direction indicator.

CHNGDIR=(NCMD)
Turn off the change-direction indicator in the request to be sent. This is the
setting for all requests of the chain except the last of chain.

CODESEL
Indicates whether the request being sent on the session is encoded in the
standard code (STANDARD) or in some other code (ALT). The application
program and the logical unit must have previously agreed what type of code is
recognized as the standard code (such as EBCDIC) and what code is
recognized as the alternate code (such as ASCII). This operand is meaningful
only for CONTROL=DATA,STYPE=REQ.

CODESEL=STANDARD
Indicates that the request being sent on the session is encoded in the
standard code (STANDARD).

CODESEL=ALT
Indicates that the request being sent on the session is encoded in some
other code (ALT).

CRYPT
This operand applies only if CONTROL=DATA and STYPE=REQ.

CRYPT=YES
Indicates that the data at the location specified by AREA is to be
enciphered before it is sent on the session.

CRYPT=NO
Indicates that the data at the location specified by AREA is not to be
enciphered before it is sent on the session.

See "Redbooks" for details and a warning about the use of this operand.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 519

ECB
Indicates that an ECB is posted when an asynchronous (OPTCD=ASY) SEND
operation is posted as being complete. You cannot specify both ECB and EXIT
on a single macroinstruction.

ECB=event_control_block_address
Specifies that VTAM is to post an event control block (ECB).
Event_control_block_address is the location of the ECB to be posted. The ECB
can be any fullword of storage aligned on a fullword boundary.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB.

EXIT=exit_routine_address
Indicates the address of an RPL exit routine that is scheduled when an
asynchronous (OPTCD=ASY) SEND operation is posted as being complete. You
cannot specify both ECB and EXIT on a single macroinstruction. For details
about the EXIT operand, refer to the RPL macroinstruction description in this
chapter.

OPTCD=BUFFLST
OPTCD=NBUFFLST

Specifies whether the buffer list option is used. OPTCD=BUFFLST allows FM
data to be sent from a number of discontiguous buffers. The RPL AREA field
points to a buffer list which is a contiguous set of 16-byte control blocks, called
buffer list entries. The RPL RECLEN field must specify a buffer list length that
is a nonzero multiple of 16 bytes. For a detailed description of the use of the
BUFFLST option, refer to “The buffer-list (BUFFLST) option” on page 191.

OPTCD=CA
OPTCD=CS

When the SEND operation is completed successfully,
(RTNCD,FDB2)=(X'00',X'00') or (X'04',X'04'), the session is placed in
continue-any mode (OPTCD=CA) or continue-specific mode (OPTCD=CS) for
the types of input specified by the RTYPE field. More than one type of input
can be specified. VTAM switches the modes for all specified types of input. No
switching occurs if RTYPE=(NDFSYN,NDFASY,NRESP) is in effect for the
SEND. The SEND is posted complete when the last request unit associated
with the SEND is handled by VTAM; for OPTCD=LMPEO and
OPTCD=BUFFLST, more than one request unit can be sent by SEND.

OPTCD=CONTCHN
OPTCD=NCONTCHN

Specifies the action VTAM should take on receipt of a negative response to a
chain being sent with OPTCD=LMPEO. VTAM either continues to send the
chain (OPTCD=CONTCHN) or aborts the chain, (OPTCD=NCONTCHN)
possibly by sending a zero-length LIC request unit. (Refer to “Exception
conditions” on page 190 for details.)

OPTCD=FMHDR
OPTCD=NFMHDR

When OPTCD=FMHDR is used, the receiver is notified that the data contains a
function management header.

OPTCD=LMPEO
OPTCD=NLMPEO

Specifies whether the large message performance enhancement outbound
option is to be used. OPTCD=LMPEO allows VTAM to reformat FM data into
one or more request units to form a chain or partial chain of RUs. (A detailed
description of LMPEO is contained in “Large message performance

520 z/OS V2R1.0 Communications Server: SNA Programming

enhancement outbound (LMPEO) option” on page 183.) When
OPTCD=(LMPEO,BUFFLST) is specified, the FM data to be sent is pointed to
indirectly by the RPL AREA field which points to a buffer list. If
OPTCD=(LMPEO,NBUFFLST) is specified, the RPL AREA field points directly
to the FM data to be sent. (See “The buffer-list (BUFFLST) option” on page 191
for a detailed description of buffer list operation.) POST=SCHED or
POST=RESP can be used with OPTCD=LMPEO. If a negative response is
received before a SEND is posted complete, the POST=SCHED or POST=RESP
and OPTCD=CONTCHN or OPTCD=NCONTCHN operands determine what
action is to be taken. For a detailed description, refer to “Exception conditions”
on page 190.

OPTCD=RSPQUED
OPTCD=NRSPQUED

Specifies whether VTAM should search for any queued responses. When the
SEND is posted complete, if OPTCD=RSPQUED is specified, the RPL flag
RPLRSPNM is set if there are any responses on the normal-flow inbound
response queue. The RPL flag RPLRSPQR is set if there are any responses on
the normal-flow inbound data queue.

The application program can test these RPL flags when the SEND is posted
complete to see if there are any queued responses.

OPTCD=SYN
OPTCD=ASY

If the SYN option code is set, control is returned to the application program
when the SEND operation has completed. If the ASY option code is set, control
is returned as soon as VTAM has accepted the request. After the SEND
operation has completed, the ECB is posted or the RPL exit routine is
scheduled, depending on the setting of the ECB-EXIT field. The SEND is
posted complete when the last request unit associated with the SEND is
handled by VTAM; for OPTCD=LMPEO and OPTCD=BUFFLST, more than
one request unit can be sent by SEND. Refer to the RPL macroinstruction
description in this chapter for details about OPTCD=SYN or OPTCD=ASY.

It might take VTAM a relatively long time to complete the SEND operation.
Because the SEND-issuing task or SRB issuing the macroinstruction with the
SYN option code is suspended until processing completes, use the ASY option
code if the SEND-issuing task or SRB cannot be allowed to be suspended for
that long.

OPTCD=USERRH
OPTCD=NUSERRH

Specifies whether the user RH option is used. If OPTCD=USERRH is specified,
VTAM includes a 3-byte user RH header from the RPL (RPLURH) or from a
buffer list entry for each RU sent. FM data and data-flow-control requests and
responses can be sent using OPTCD=USERRH. The RPL CONTROL operand
must be set to the type of request or response unit being sent. The RUCAT
field in the user RH must be set to FMD or DFC. If
OPTCD=(USERRH,BUFFLST), the initial RH is specified in the RH field of
certain buffer list entries. For a detailed description of the user RH option,
refer to “The user RH (USERRH) option” on page 196.

Note: The RH field in the RPL can be set up using the RPLURH DSECT label.

POST
Defines at what point in the output operation the SEND macroinstruction is to
be completed. The OPTCD=SYN or OPTCD=ASY, ECB, and EXIT operands
govern the action to be taken when the macroinstruction completes. Figure 92
on page 522

Chapter 13. Conventions and descriptions of VTAM macroinstructions 521

on page 522 summarizes the use of the POST operand, including defaults
assumed. See also “Scheduled versus responded output operations” on page
172.

For OPTCD=LMPEO, the POST operand applies to the last generated request
unit for the SEND. For OPTCD=BUFFLST, this operand applies to the last
request unit associated with the buffer list.

POST=RESP
Indicates that the macroinstruction generally completes only when VTAM
returns a response for the request on the session. (The macroinstruction is
posted complete under certain exception conditions, such as the processing of
a Clear, or the receipt of a negative response to an earlier request in the chain,
or session termination. A RECEIVE does not obtain the response; the response

STYPE
=

CONTROL
=

RESPOND
=

POST=
SCHED is
assumed

POST=
SCHED is
assumed

POST=
RESP is
assumed

POST=
RESP is
assumed

NIB
PROC

=

POST=SCHED
or RESP is
valid

POST=
SCHED or
RESP is
valid

RESP REQ

DATA
QEC,RELQ,RSHUTD,
SBI,SHUTC,SHUTD,SIGNAL

BID,BIS,CANCEL,
CHASE,LUS,
QC,RTR

NORDRESP

Definite
response

No response or
exception response

ORDRESP

1

1

1

1
2

2

1 The actual value of the field is
ignored.
The same rules apply as if
CONTROL=DATA had
been specified.

SEND

SEND
macroinstruction

used

Figure 92. How the POST operand in the SEND macroinstruction is used

522 z/OS V2R1.0 Communications Server: SNA Programming

information posts in the SEND RPL. The RESPLIM field of the NIB, used to
establish the session, limits the number of SEND POST=RESP
macroinstructions for normal-flow requests that can be outstanding at one time
on the session. If the limit is exceeded, VTAM posts the SEND complete with
(RTNCD,FDB2)=(X'14',X'44'). When you specify asynchronous handling (ASY
option code in effect) you must use a CHECK macroinstruction before you can
reuse the output data area (pointed to by the AREA field).

POST=SCHED
Indicates that the macroinstruction completes as soon as the output data area
(pointed to by the AREA field) and the RPL are available for reuse. This occurs
prior to the actual transmission of the data. A RECEIVE macroinstruction (or
an RESP exit routine) is required to obtain the response. Only one SEND
POST=SCHED macroinstruction can be outstanding for a given session at one
time. A second SEND POST=SCHED macroinstruction issued before the first
has been completed is rejected by VTAM with (RTNCD,FDB2)= (X'14',X'3C').
The limit of one SEND POST=SCHED macroinstruction outstanding at a time
for a session does not apply to the sending of responses.

RECLEN=output_data_length
If OPTCD=NBUFFLST, CONTROL=DATA, and STYPE=REQ, RECLEN
specifies the number of bytes of data to be sent from the field pointed to by
AREA. The maximum number that can be set is decimal 65532, unless
OPTCD=LMPEO is specified. If OPTCD=LMPEO and the maximum RU size
specified in BIND is not 0 (that is, VTAM splits the message if required), then a
larger amount of data can be sent. If the RECLEN field is set to 0, the AREA
field is not examined.

If OPTCD=BUFFLST, CONTROL=DATA, and STYPE=REQ, RECLEN specifies
the length of the buffer list whose address is in AREA; this must be a nonzero
multiple of 16.

RECLEN must be set to 0 for sending exception requests. Refer to “Exception
conditions” on page 190.

RESPOND
Details about the RESPOND operand are given in “What a response contains”
on page 153. When a request is sent (STYPE=REQ), this field indicates the
desired response:

RESPOND=(x,x,x,QRESP) and the NIB used to establish the session
specified PROC=ORDRESP

The response is sent in order with respect to normal-flow (DFSYN)
requests.

RESPOND=(x,x,x,NQRESP) or the NIB used to establish the session
specified PROC=NORDRESP

The response is sent in order with respect to other responses and not
necessarily in order with respect to normal-flow (DFSYN) requests.

RESPOND=(EX,FME,RRN,x)
Only negative responses type 1 and 2 are expected (see the following
note).

RESPOND=(EX,FME,NRRN,x)
Only a negative response type 1 is expected.

RESPOND=(EX,NFME,RRN,x)
Only a negative response type 2 is expected.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 523

RESPOND=(EX,NFME,NRRN,x)
Invalid. Should not be specified. VTAM assumes
(NEX,NFME,NRRN,x).

RESPOND=(NEX,FME,RRN,x)
Definite response type 1 or 2 is expected (see the following note).

RESPOND=(NEX,FME,NRRN,x)
Definite response type 1 is expected.

RESPOND=(NEX,NFME,RRN,x)
Definite response type 2 is expected.

RESPOND=(NEX,NFME,NRRN,x)
No response expected.

If a normal-flow data-flow-control request is sent,
RESPOND=(NEX,FME,NRRN,NQRESP) is assumed unless NIB
PROC=ORDRESP is specified in the NIB used to establish the session. In that
case, the value in RESPOND is used.

Note: Although VTAM and certain logical units permit response types 1 and 2
to be sent separately, sending multiple responses per chain is not allowed by
SNA protocols and should not be used.

If response types 1 and 2 are returned and POST=RESP for the SEND RPL, the
first response completes the SEND operation. If the two responses are returned
together, both are received as one response; that is, the second response is also
reflected in the completed RPL. If the second response does not accompany the
first, however, the second response must be received by a separate RECEIVE
macroinstruction or by an RESP exit routine.

When a response is sent (STYPE=RESP), this field indicates the response type:

RESPOND=(x,x,x,QRESP or NQRESP)
The queued response indicator must be set to the same value as
received in the request.

RESPOND=(EX,FME,RRN,x)
This is a negative response type 1 or 2.

RESPOND=(EX,FME,NRRN,x)
This is a negative response type 1.

RESPOND=(EX,NFME,RRN,x)
This is a negative response type 2.

RESPOND=(EX,NFME,NRRN,x)
Invalid. Rejected with (RTNCD,FDB2)=(X'14',X'3B').

RESPOND=(NEX,FME,RRN,x)
This is a positive response type 1 or 2.

RESPOND=(NEX,FME,NRRN,x)
This is a positive response type 1.

RESPOND=(NEX,NFME,RRN,x)
This is a positive response type 2.

RESPOND=(NEX,NFME,NRRN,x)
Invalid. Rejected with (RTNCD,FDB2)=(X'14',X'3B').

RTYPE
When a SEND is issued, the RTYPE field indicates the type or types of input

524 z/OS V2R1.0 Communications Server: SNA Programming

for which the session's CA-CS mode is to be switched. For a description of
input types, see “DFSYN, DFASY, and RESP types of RUs” on page 160.

SEQNO=sequence_number
Specifies the sequence number sent with a request or response. The number
specified by this operand is used when sending a normal-flow response or
when sending an expedited DFC request or response. The number is not used
when sending a normal-flow request; VTAM generates the sequence number in
that case.

Usually the sequence number received for a request (and placed into the
SEQNO field of the RPL used to receive the request) is the sequence number
that should be sent with any response to that request. The correct sequence
number to use is dictated by SNA protocols.

SIGDATA=signal_data
Contains the signal data that is to be sent when CONTROL=SIGNAL,
STYPE=REQ is specified. The signal data can be a decimal, hexadecimal, or
character constant of 1–4 bytes or a register (the value in the register is used).
If fewer than 4 bytes are specified, the value is padded to 4 bytes as if the
constant were an assembler language DC statement with a length attribute of
4.

SSENSEO
This field is set by VTAM for a Logical Unit Status (LUSTAT) request and
informs the logical unit of the type of error that caused the exception
condition. These error types are described in Appendix B, “Return codes and
sense fields for RPL-based macroinstructions,” on page 651. If you omit this
operand, the SSENSEO field defaults to 0.

This field can also provide application-specified sense values for negative
responses to CINIT or for UNBIND. Refer to the sections on the CLSDST or
TERMSESS macroinstructions in this chapter for additional information.

SSENSMO=system-sense_modifier_value
The value set in this field is used in conjunction with the SSENSEO setting to
describe the specific type of error that caused the exception condition. The
meanings assigned to the SSENSMO values are described in detail in SNA
Formats If this operand is omitted, the SSENSMO field is set to 0.

This field can also be used to provide application-specified sense values for
negative responses to CINIT or for UNBIND. Refer to the TERMSESS
macroinstructions in this chapter.

Specify any decimal integer 0–255 inclusive, or specify a 1-byte hexadecimal
constant.

STYPE
Designates whether a request (STYPE=REQ) or a response (STYPE=RESP) is to
be sent. The CONTROL field governs the request code if a data-flow-control
request or response is sent. Some of these requests are described in more detail
in Chapter 6, “Communicating with logical units,” on page 151.

STYPE=REQ
Must be specified if OPTCD=LMPEO or OPTCD=BUFFLST.

If OPTCD=USERRH is specified, the RPL flag set by the STYPE operand is
ignored. However, the user RH must specify that the RU is a request unit
for OPTCD=LMPEO or OPTCD=BUFFLST.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 525

STYPE=RESP
Sends a response indicating whether a normal or expedited flow has been
processed successfully. The response can be either positive or negative.

STYPE=REQ,CONTROL
The following operands show the types of control data requests:

CONTROL=BID
Sends a Bid request. The receiver interprets this as a request on the part of
the sender for permission to begin a new bracket on the session.

CONTROL=BIS
Sends a Bracket Initiation Stopped request to indicate that the sender stops
initiating any new brackets on the session.

CONTROL=CANCEL
Sends a Cancel request. The receiver might interpret this request as an
indication that the receiver should discard the chain that it is receiving on
the session. A Cancel request is sent instead of a request indicating
CHAIN=LAST when a chain is canceled.

CONTROL=CHASE
Sends a Chase request. When the sender receives a response to this
request, it can be certain that no normal-flow requests were previously sent
on the session (before CHASE) for which the session partner later returns a
response.

CONTROL=DATA
Sends a Data request. This must be specified if OPTCD=LMPEO or
OPTCD=BUFFLST is coded.

CONTROL=LUS
Sends a Logical Unit Status (LUSTAT) request. An LUSTAT request can
convey the same type of information as does a negative response. It can
also convey information about the availability of the sender or its
components on this session. An LUSTAT is sent when the sender wants to
indicate an exception or a change-of-status condition, but cannot do so
with a negative response (for example, the session-partner is sending
requests and asking for no responses). The SSENSEO, SSENSMO, and
USENSEO fields are used for LUSTAT indicators.

CONTROL=QC
Sends a Quiesce Complete request. This informs the receiver that the
sender no longer transmits normal-flow requests on the session. Once this
request is sent, no other normal-flow requests can be transmitted to the
session partner until the session partner returns a Release Quiesce (RELQ)
request.

CONTROL=QEC
Sends a Quiesce at End-of-Chain request. This informs the receiver that
when it is through transmitting the current chain, it is to stop transmitting
further normal-flow requests on the session and return a Quiesce Complete
(QC) request.

CONTROL=RELQ
Sends a Release Quiesce request. This informs the receiver that it can begin
transmitting normal-flow requests on the session.

526 z/OS V2R1.0 Communications Server: SNA Programming

CONTROL=RSHUTD
Sends a Request Shutdown request to the primary end of the session. This
requests the primary logical unit to terminate the session (for example,
issue a CLSDST macroinstruction).

CONTROL=RTR
Sends a Ready to Receive request. This indicates that the sender is now
willing to receive a new bracket on the session.

CONTROL=SBI
Sends a Stop Bracket Initiation request to request that the receiver not
begin any new brackets on the session.

CONTROL=SHUTC
Sends a Shutdown Complete request to the primary end of the session.
This acknowledges the receipt of a SHUTD request and indicates the
secondary logical unit is ready to accept session termination.

CONTROL=SHUTD
Sends a Shutdown request to the secondary end of the session. The
secondary logical unit interprets this as an indication that the primary
logical unit is about to terminate the session. When a secondary logical
unit is ready to accept session termination, it returns a Shutdown (SHUTC)
request.

CONTROL=SIGNAL
Sends a Signal request containing the 4 bytes of signal data in the
SIGDATA field of the RPL.

STYPE=RESP,CONTROL
Sends a response indicating whether a previously received normal-flow request
has been processed successfully. A positive or negative response of any type
(definite response 1, 2, or both) can be sent; however, only certain
combinations are valid within SNA protocols. The CONTROL field operands,
DATA, BID, BIS, CANCEL, CHASE, LUS, QC, and RTR, are explained in the
preceding section.

STYPE=RESP,CONTROL
Sends a response indicating whether a previously received expedited-flow
data-flow-control request has been processed successfully. Only a positive or
negative definite response 1 is allowed. The CONTROL field operands, QEC,
RELQ, RSHUTD, SBI, SHUTC, SHUTD, and SIGNAL, are explained in the
preceding section.

Note: A response to an expedited-flow data-flow-control request on a session
can be sent only if the NIB used to establish the session specified
PROC=APPLRESP; otherwise, VTAM sends the response on behalf of the
application program. Sending or receiving a Clear request eliminates the
requirement to send a response to a previously received expedited-flow
data-flow-control request.

USENSEO=user-sense_value
This field is set by VTAM for a Logical Unit Status (LUSTAT) request. In most
instances, the user-sense field is user-defined and can be used to inform the
logical unit that an exception condition is being indicated for an
application-program-related error that is not an SNA-defined error, or it can be
used to further modify the SNA-defined system-sense and system-sense
modifier values. See Appendix B, “Return codes and sense fields for RPL-based
macroinstructions,” on page 651, for more information. If this operand is
omitted, the USENSEO field is set to 0.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 527

This field can also be used to provide application-specified sense values for
negative responses to CINIT or for UNBIND. Refer to the TERMSESS
macroinstructions in this chapter.

Specify any decimal integer 0–65535 inclusive or specify a 2-byte hexadecimal
or character constant.

Examples
SEND1 SEND RPL=RPL1,STYPE=REQ,CONTROL=DATA, C

AREA=OUTBUF,RECLEN=60,CHAIN=ONLY, C
RESPOND=(EX,FME,NRRN,NQRESP),POST=SCHED

SEND1 sends a 60-byte data request on the session identified in RPL1's ARG field.
SEND1 is completed as soon as VTAM has scheduled the output operation and
OUTBUF and RPL1 are available for reuse. The RESPOND field indicates that only
negative response type 1 should be returned; that is, if the request is processed
normally, no response is returned. A RECEIVE RTYPE=RESP macroinstruction (or
RESP exit routine) is required to obtain the negative response, if one is returned.

Completion information

The actual or implied setting of the POST field governs what constitutes the
“completion” of the SEND operation. Refer to the description of the POST operand
in the preceding section for details.

After the SEND operation is completed, the following RPL fields are set:
v The value 34 (decimal) is set in the REQ field, indicating a SEND request.
v The sequence number is placed in the SEQNO field except when

OPTCD=LMPEO. For OPTCD=LMPEO, SEQNO is set by VTAM with the
sequence number of the last RU generated from the message, and OBSQVAL is
set by VTAM with the sequence number of the first RU generated from the
message.

v The USER field contains the value that was set in the USERFLD field of the NIB
when the session was established.

v The RTNCD and FDB2 fields are set as indicated in Appendix B, “Return codes
and sense fields for RPL-based macroinstructions,” on page 651.

The following fields can also be set when a response has been received
(POST=RESP):
v The RESPOND field indicates the type of response that has been returned. This

field is set in exactly the same manner as indicated in the preceding discussion
for sending a response.

v The control field is set to the request code value received in the response.
However, this should be the same value as was in the original SEND if the
logical unit obeys SNA protocols.

v If a negative response has been returned, the SSENSEI, SSENSMI, and USENSEI
fields are set indicating system-sense information, system-sense modifier, and
user-sense information. For additional information about these fields, refer to
Appendix B, “Return codes and sense fields for RPL-based macroinstructions,”
on page 651.

Registers 0 and 15 are also set as indicated in Chapter 9, “Handling errors and
special conditions,” on page 277.

528 z/OS V2R1.0 Communications Server: SNA Programming

SENDCMD—Send a VTAM operator command to VTAM
Purpose

It is possible for an application program to send VTAM operator commands to
VTAM and to reply to messages sent to the application program by VTAM. The
SENDCMD macroinstruction permits an authorized application program to send
the following commands: VARY, DISPLAY, MODIFY, and REPLY.

Note: The HALT and START commands cannot be issued using the SENDCMD
macroinstruction. They can be issued only by the VTAM operator at the system
console.

Usage

Before issuing the SENDCMD macroinstruction the application program must set
register 13 to the address of an 18-word save area. Refer to Appendix H,
“Summary of register usage,” on page 853, for information pertaining to the
register contents upon return of control.

For information on writing an application program that can issue VTAM operator
commands and receive VTAM messages, see Appendix L, “Program operator
coding requirements,” on page 875.

VTAM receives control from the SENDCMD macroinstruction in the addressing
mode of the application program that issued the macroinstruction and returns
control to the application program in that same mode.

Syntax

Chapter 13. Conventions and descriptions of VTAM macroinstructions 529

�� SENDCMD RPL = rpl_address
name (1)

, ACB = acb_address

�

�
(1)

, AREA = command_address
(1)

, BRANCH = NO
YES

�

�
(1)

, ECB = INTERNAL
, ECB = ecb_address

(1)
, EXIT = exit_routine_address

�

�
(1)

, OPTCD = (ASY)
SYN

(1)
, RECLEN = command_length

��

Notes:

1 Operand value can be placed in its RPL field either by specification on an
RPL macroinstruction operand or by explicitly setting the field using the
IFGRPL DSECT.

Input parameters

RPL=rpl_address
Indicates the RPL that specifies which kind of processing SENDCMD is to
perform.

The following RPL operands apply to the SENDCMD macroinstruction:

ACB=acb_address
Indicates the ACB that identifies the application program issuing SENDCMD.

AREA=command_address
Indicates the address of the header and command to be sent to VTAM.

BRANCH
For application programs running in supervisor state under a TCB, BRANCH
indicates whether authorized path processing is to be used. See “Authorized
path” on page 300.

BRANCH=YES
When the macroinstruction is issued, VTAM processes the macroinstruction
using authorized path. For programs running under an SRB rather than
under a TCB, the macroinstruction is processed in this manner
automatically, regardless of the actual setting of the BRANCH field.

BRANCH=NO
When the macroinstruction is issued, VTAM does not process the
macroinstruction using authorized path.

ECB
Indicates that an ECB is posted when an asynchronous (OPTCD=ASY)
SENDCMD operation is posted as being complete. You cannot specify both
ECB and EXIT on a single macroinstruction.

530 z/OS V2R1.0 Communications Server: SNA Programming

ECB=event_control_block_address
Specifies that VTAM is to post an event control block (ECB).
Event_control_block_address is the location of the ECB to be posted. The ECB
can be any fullword of storage aligned on a fullword boundary.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB.

EXIT=exit_routine_address
Indicates the address of an RPL exit routine that is scheduled when an
asynchronous (OPTCD=ASY) SENDCMD operation is posted as being
complete. You cannot specify both ECB and EXIT on a single macroinstruction.
For details about the EXIT operand, refer to the RPL macroinstruction
description in this chapter.

OPTCD=SYN
OPTCD=ASY

If the SYN option code is set, control is returned to the application program
when the SENDCMD operation has been completed. If the ASY option code is
set, control is returned as soon as VTAM has accepted the request. After the
SENDCMD operation has completed, the ECB is posted or the RPL exit routine
is scheduled, depending on the setting of the ECB-EXIT field. Refer to the RPL
macroinstruction description in this chapter for details about OPTCD=SYN or
OPTCD=ASY.

Because it might take VTAM a relatively long time to complete the SENDCMD
operation, the SYN option should not be used if suspending the
SENDCMD-issuing task or SRB for this time is undesirable. Instead, the ASY
option code should be used.

RECLEN=command_length
Indicates the number of bytes to be sent to VTAM. The number specified must
be equal to the length of the header and command pointed to by the AREA
field. If the RECLEN field is set to 0, the AREA field is not examined. The
maximum length is 130.

Examples
SENDCMD1 SENDCMD RPL=RPL1,AREA=VARYCMD1,RECLEN=CMDLEN

.

.

.
VARYCMD1 DC 00 HEADER

DC 03 STATUS FIELD
DC 0001 IDENTIFICATION NUMBER
DC C’VARY NET,ACT,ID=LU1’ COMMAND

CMDEND EQU *
CMDLEN EQU CMDEND-VARYCMD1

SENDCMD1 sends a message to VTAM, consisting of the area between
VARYCMD1 and CMDEND, instructing it to activate logical unit LU1. The status
field indicates that a reply is returned to the application program. See “Data
exchanged between a program operator and VTAM” on page 883 for information
pertaining to the header and status field settings.

Completion information

A SENDCMD operation is successfully completed when the command is passed to
VTAM for subsequent processing.

After the SENDCMD operation is completed, the following RPL fields are set:

Chapter 13. Conventions and descriptions of VTAM macroinstructions 531

v The value 39 (decimal) is set in the REQ field, indicating a SENDCMD request.
v The RTNCD and FDB2 fields are set as indicated in Appendix B, “Return codes

and sense fields for RPL-based macroinstructions,” on page 651.

Registers 0 and 15 are also set as indicated in Chapter 9, “Handling errors and
special conditions,” on page 277.

SESSIONC—Send a session-control request or response
Purpose

SESSIONC sends a Start Data Traffic (SDT), Clear, or Set and Test Sequence
Numbers (STSN) request on a session from an application program acting as a
PLU. SESSIONC is also used to send a Request Recovery (RQR) request as well as
responses to rejected BIND requests, SDT requests, and STSN requests on a session
from an application program acting as an SLU.

Usage

For XRF, the SESSIONC macroinstruction initiates the switch from backup session
status to primary session status. SESSIONC uses a CONTROL operand to specify
this “switch.”

Material from “Send a Start Data-Traffic request to the SLU” on page 540 through
“Send a Switch request initiating the switch from backup to primary session
status” on page 541 shows the SESSIONC options. The transmission services
profile that is in use determines the use of these requests. See Appendix F,
“Specifying a session parameter,” on page 793, for a description of the profiles and
the requests that can be used. Examples of the use of session-control requests and
responses sent by SESSIONC are given in Appendix D, “Request and response
exchanges for typical communication operations,” on page 693, and in “Controlling
flow” on page 164.

Before issuing the SESSIONC macroinstruction, the application program must set
register 13 to the address of an 18-word save area. Refer to Appendix H,
“Summary of register usage,” on page 853, for information pertaining to the
register contents upon return of control.

SESSIONC -RSP(BIND): If PARMS=(NQNAMES=YES) on the ACB
macroinstruction, and if the NIB is specified with a network identifier in the
NIBNET field, the network identifier is used along with the LU name in NIBSYM
to determine the target of the UNBIND or BIND response.

Syntax

532 z/OS V2R1.0 Communications Server: SNA Programming

�� SESSIONC RPL = rpl_address
name

�

�
(1)

, AAREA = alternate_data_area_address

�

�
(1)

, AAREALN = alternate_data_area_length

�

�
(1)

, ACB = acb_address
(1)

, ARG = (register)
(1)

, NIB = nib_address

�

�
(1)

, BRANCH = NO
YES

(1)
, CONTROL = BIND

CLEAR
RQR
SDT
STSN
SWITCH

�

�
(1)

, ECB = INTERNAL
, ECB = ecb_address

(1)
, EXIT = exit_routine_address

, IBSQAC = IGNORE
INVALID
RESET
SET
TESTNEG
TESTPOS
TESTSET

�

�
(1)

, IBSQVAL = inbound_sequence_number

�

�
, OBSQAC = IGNORE

INVALID
RESET
SET
TESTNEG
TESTPOS
TESTSET

�

Chapter 13. Conventions and descriptions of VTAM macroinstructions 533

�
(1)

, OBSQVAL = outbound_sequence_number

�

�
(1)

, OPTCD = (ASY)
SYN

�

�
(1)

, RESPOND = (FME)
(EX , FME)
(NEX , FME)

�

�
(1)

, SEQNO = sequence_number

, SSENSEO = 0

, SSENSEO = 0
CPM
FI
RR
STATE

�

�
(1)

, SSENSMO = system–sense_modifier_value

�

�
(1)

, STYPE = REQ
RESP

(1)
, USENSEO = user–sense_value

��

Notes:

1 Operand value can be placed in its RPL field either by specification on an
RPL macroinstruction operand or by explicitly setting the field using the
IFGRPL DSECT.

Input parameters

RPL=rpl_address
Indicates the RPL that specifies which kind of processing SESSIONC performs.

The following RPL operands apply to the SESSIONC macroinstruction:

AAREA=alternate_data_area_address
For XRF, the AAREA field in the RPL is initialized by the application program
to provide the address of the input area where the SWITCH response
information should be placed.

AAREALN=alternate_data_area_length
For XRF, the AAREALN field in the RPL is initialized by the application
program to contain the length of the input area pointed to by AAREA. The
AAREA field is ignored if AAREALN=0 (no switch response information is
returned).

534 z/OS V2R1.0 Communications Server: SNA Programming

ACB=acb_address
Indicates the ACB that identifies the application program issuing SESSIONC. If
not specified, the ACB address already in RPLDACB is used.

ARG=(register)
The SESSIONC macroinstruction is always directed to one specific session. The
ARG operand specifies the register containing the CID of the session. If the
ARG operand is not specified, the CID already in the RPLARG field is used.
The RPL form of SESSIONC can be used for rejecting a BIND by specifying
RPLARG equal to the CID, as provided in the SCIP exit when the BIND
request was received.

Note: If your application uses the RPL DSECT, IFGRPL, you must clear the
RPLNIB bit if a CID is being inserted into the RPLARG field. For application
programs running in supervisor state under a TCB, BRANCH indicates
whether authorized path processing is to be used. See “Authorized path” on
page 300.

BRANCH
If the macroinstruction is issued in an application program that is running in
supervisor state under a TCB, set BRANCH to YES to specify that you should
use authorized path processing.

BRANCH=YES
When the macroinstruction is issued, VTAM processes the macroinstruction
using authorized path. For programs running under an SRB rather than
under a TCB, the macroinstruction is processed in this manner
automatically, regardless of the actual setting of the BRANCH field.

BRANCH=NO
When the macroinstruction is issued, VTAM does not process the
macroinstruction using authorized path.

CONTROL

CONTROL=BIND
Sends a BIND request-rejected response to a primary logical unit to
indicate a rejection of the BIND request.

CONTROL=CLEAR
Sends a Clear request on the session. All SEND, RECEIVE, RESETSR, and
SESSIONC requests in progress for the session are completed normally or
with (RTNCD,FDB2)=(0C,0C). If the transmission services profile supports
SDT, all subsequent SEND, RECEIVE, and RESETSR requests are rejected
with (RTNCD,FDB2)=(14,41) until SDT is sent and a positive SDT response
is received. Before SESSIONC is completed, VTAM sets the inbound and
outbound sequence numbers to 0.

CONTROL=RQR
Sends a Request Recovery request to the primary logical unit. This operand
asks the primary logical unit to take recovery action for this session (for
example, issue Clear, STSN, and SDT).

CONTROL=SDT
Sends a Start Data Traffic request or a response to an SDT on the session.
When SDT=SYSTEM is coded as part of the NIB used to establish the
session, VTAM automatically sends a Start Data Traffic request or an SDT
response as part of the session-establishment process. If SDT=APPL is
coded instead, it is the application program's responsibility to send the
request or response when data traffic is to begin.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 535

CONTROL=STSN
Sends a Set and Test Sequence Numbers request (if STYPE=REQ) to the
logical unit acting as the secondary end of the session or returns
information (if STYPE=RESP) to the primary logical unit in response to an
STSN request.

CONTROL=SWITCH
Causes the backup XRF session to become the primary XRF session.

The former primary XRF session, if still “active,” is terminated with an
UNBIND (CLEANUP). This command can be issued only on a backup XRF
session. If issued on a primary XRF session, it is rejected.

After the positive response to the SWITCH is received by VTAM and the
operation is posted complete, the session recovery can proceed.

The SWITCH response contains the status of the session at the time the
SWITCH is completed. The application program uses this information
(found in control vector hex 29) to recover the session. See Table 110 on
page 747 for more information.

ECB
Indicates that an ECB is posted when an asynchronous (OPTCD=ASY)
SESSIONC operation is posted as being complete. You cannot specify both ECB
and EXIT on a single macroinstruction.

ECB=event_control_block_address
Specifies that VTAM is to post an event control block (ECB).
Event_control_block_address is the location of the ECB to be posted. The ECB
can be any fullword of storage aligned on a fullword boundary.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB.

EXIT=exit_routine_address
Indicates the address of an RPL exit routine that is scheduled when an
asynchronous (OPTCD=ASY) SESSIONC operation is posted as being
complete. You cannot specify both ECB and EXIT on a single macroinstruction.
For details about the EXIT operand, refer to the RPL macroinstruction
description in this chapter.

IBSQAC and OBSQAC
The IBSQAC (inbound sequence number action code) and the OBSQAC
(outbound sequence number action code) fields designate the type of STSN
request to be sent on the session. The application program can set either or
both of these fields. The effect of setting one is identical to the effect of setting
the other, except that one applies to incoming requests and the other to
outgoing requests. Table 93 on page 542 summarizes the STSN request types
(SET, TESTSET, INVALID and IGNORE) and the responses they can elicit from
the logical unit at the other end of the session.

IBSQAC
OBSQAC

The IBSQAC (inbound sequence number result code) and the OBSQAC
(outbound sequence number result code) fields designate the type of STSN
response to be sent on the session. The result codes are set in response to the
action codes set in a previously received STSN request as shown in Table 93 on
page 542. The STSN request types are: TESTPOS, TESTNEG, INVALID, and
RESET.

536 z/OS V2R1.0 Communications Server: SNA Programming

IBSQVAL=inbound_sequence_number
Indicates a value that is one less than the new value that VTAM is to begin
assigning to inbound requests. This value must be a decimal integer 0—65535
inclusive. This field can be sent on either an STSN request or a STSN response,
as shown in Table 93 on page 542.

Note: Inbound refers to requests that are transmitted from the terminal to the
application.

NIB=nib address
When an application program wants to return a request-rejected response to a
BIND request, the NIB address indicates the NIB whose NAME field identifies
a pending active session to be terminated, and if using network-qualified
names, whose NIBNET field contains the network identifier of the logical unit.
Alternatively, the ARG operand can be used to identify the session.

For a detailed description of the use of the SESSIONC macroinstruction to send
a BIND request rejected response, refer to “SESSIONC macroinstruction with
CONTROL=BIND” on page 98.

Note: If your application uses the RPL DSECT, IFGRPL, you must set the
RPLNIB bit if an NIB address is being inserted into the RPLARG field.

OBSQVAL=outbound_sequence_number
Indicates a value that is one less than the new value that VTAM is to begin
assigning to outbound (from the application program) requests. This value
must be between a decimal integer 0–65535 inclusive. This field can be sent on
either a STSN request or a STSN response as shown in Table 93 on page 542.

Note: Outbound refers to requests that are transmitted from the application
program to a device.

OPTCD=SYN
OPTCD=ASY

If the SYN option code is set, control is returned to the application program
when the SESSIONC operation has completed. If the ASY option code is set,
control is returned as soon as VTAM has accepted the request. After the
SESSIONC operation has completed, the ECB is posted or the RPL exit routine
is scheduled, depending on the setting of the ECB-EXIT field.

Refer to the RPL macroinstruction description in this chapter for details about
OPTCD=SYN or OPTCD=ASY.

Because it might take VTAM a relatively long time to complete the SESSIONC
operation, you should not use the SYN option if suspending the SESSIONC
issuing task or SRB for this time is undesirable. Use the ASY option code,
instead.

For XRF, ASY is recommended for CONTROL=SWITCH.

RESPOND
Indicates whether a negative or positive response is to be sent for a
session-control request. See “How requests and responses are exchanged” on
page 157 for possible responses that can be sent.

SEQNO=sequence_number
Indicates the sequence number of a response. The application program using
SESSIONC to respond to any session-control request must set this field with

Chapter 13. Conventions and descriptions of VTAM macroinstructions 537

the sequence number of that request. The sequence number was made
available in the SCIP exit routine when the session-control request was
received.

SSENSEO
This field is set by VTAM for a Logical Unit Status (LUSTAT) request and
informs the logical unit of the type of error that caused the exception
condition. These error types are described in Appendix B, “Return codes and
sense fields for RPL-based macroinstructions,” on page 651. SSENSEO=0 is the
default.

This field can also provide application-specified sense values for negative
responses to CINIT or for UNBIND. Refer to the sections on the CLSDST or
TERMSESS macroinstructions in this chapter for additional information.

SSENSMO=system-sense_modifier_value
The value set in this field is used in conjunction with the SSENSEO setting to
describe the specific type of error that caused the exception condition. The
meanings assigned to the SSENSMO values are described in detail in SNA
Formats If this operand is omitted, the SSENSMO field is set to 0.

This field can also be used to provide application-specified sense values for
negative responses to CINIT or for UNBIND. Refer to the TERMSESS
macroinstructions in this chapter.

Specify any decimal integer 0–255 inclusive, or specify a 1-byte hexadecimal
constant.

STYPE
This field designates the type of output to be sent on the session.

STYPE=REQ
The application program uses this to send a request.

STYPE=RESP
Is used when a response is to be sent.

For XRF, only REQ applies to CONTROL=SWITCH.

USENSEO=user-sense_value
Indicates sense information related to a negative response to an SDT, STSN
request, or a BIND request rejected response. Refer to the RPL macroinstruction
description of these operands for format information. Additionally, register
notation can be used for SSENSMO and USENSEO; the low-order 1 or 2 bytes,
respectively, are used from the register.

Examples
SESSC1 SESSIONC RPL=RPL1,
CONTROL=STSN,OBSQAC=TESTSET, C

OBSQVAL=(3),IBSQAC=IGNORE

SESSC1 sends an STSN request to a logical unit on a session and sets the
VTAM-supplied outbound (from the application program) sequence number to the
value contained in the low-order 2 bytes of register 3. The logical unit, noting that
the type of STSN request is TESTSET, can indicate TESTPOS, TESTNEG, INVALID,
or RESET with its response. The response information is available in RPL1 when
SESSC1 is completed. If OBSQAC is found by the application program to be set to
TESTPOS or TESTNEG, the OBSQVAL field contains the logical unit's version of
the outbound sequence number. No action is taken by either end on the inbound
(to the PLU) sequence number.

538 z/OS V2R1.0 Communications Server: SNA Programming

Completion information

If STYPE=REQ, the SESSIONC operation is successfully completed when the
request has been sent and a response has been returned and posted in the RPL
(similar to SEND POST=RESP). If STYPE=RESP, the SESSIONC operation is
successfully completed when the response is moved to VTAM buffers and the RPL
is available for reuse (similar to SEND POST=SCHED).

After the SESSIONC operation is completed, the following RPL fields are set:
v The value 37 (decimal) is set in the REQ field, indicating a SESSIONC operation.
v The value originally set in the USERFLD field of the NIB used to establish the

session is set in the USER field of the RPL. The USER field is not set when
SESSIONC is used to send a request rejected response to BIND.

v The RTNCD and FDB2 fields are set as indicated in Appendix B, “Return codes
and sense fields for RPL-based macroinstructions,” on page 651.

Registers 0 and 15 are also set as indicated in Chapter 9, “Handling errors and
special conditions,” on page 277.

If a CONTROL value of other than BIND, RQR, SDT, CLEAR, STSN, or SWITCH is
used, then return code (RTNCD,FDB2) “CONTROL not valid” is issued.

If the SESSIONC is issued for a session that has been terminated, a return code
(RTNCD,FDB2)=(0C,0B) can be posted.

For unauthorized application programs for which CONTROL=SWITCH is
specified, if AAREALN is not zero and the area pointed to by AAREA and
delimited by AAREALN is not entirely within user storage, then return code
(RTNCD,FDB2)= (14,1E) is posted.

If CONTROL=SWITCH is specified and AAREALN specifies a length greater than
zero but less than the length of control vector hex 29, then the returned data is
truncated and return code (RTNCD,FDB2)=(00,05) is posted.

If SESSIONC is used to send a session-control request, when the macroinstruction
is posted complete, the following RPL fields are set:
v The SEQNO field is set to the sequence number assigned to the session-control

request.
v The CONTROL field is set to the value received in the response; however, this

should be the same request code value as was in the original SESSIONC.
v Additionally, if SESSIONC was originally used to send a STSN request, either

the IBSQAC or OBSQAC fields (or both) are usually set to TESTPOS, TESTNEG,
INVALID, or RESET depending on the action codes initially set in these fields
when SESSIONC was issued. Table 93 on page 542 lists the result codes that can
be returned for each action code initially set. Either the IBSQVAL or OBSQVAL
fields (or both) contain a sequence number when the corresponding IBSQAC or
OBSQAC result code is set to TESTPOS or TESTNEG.

v If the macroinstruction returns an error code, the SSENSEI, SSENSMI, and
USENSEI field can be set indicating system-sense information, system-sense
modifier, and user-sense information. See Appendix B, “Return codes and sense
fields for RPL-based macroinstructions,” on page 651 for more information about
these fields.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 539

Send a Start Data-Traffic request to the SLU
About this task

CONTROL=SDT,STYPE=REQ

The application program sends an SDT request to a secondary logical unit to allow
the flow of data or data-flow-control requests or responses to begin (or resume) on
the session.

Send a Clear request to the SLU
About this task

CONTROL=CLEAR,STYPE=REQ

The application program sends a Clear request to a secondary logical unit. This
resets sequence numbers, prevents the flow of data or data-flow-control requests or
responses (if required by the transmission services profile), and discards any such
requests or responses in the network for this session. All pending SEND and
RECEIVE SPEC macroinstructions for the session are canceled with
(RTNCD,FDB2)= (0C,0C).

Send a Request Recovery request to the PLU
About this task

CONTROL=RQR,STYPE=REQ

Request the primary logical unit to take a recovery action appropriate for this
session (such as issuing Clear and STSN).

Send a Set and Test Sequence Number request to the SLU
About this task

CONTROL=STSN,STYPE=REQ

When the SESSIONC macroinstruction is issued, the settings of the IBSQAC and
OBSQAC fields determine what happens to the associated sequence numbers.

Setting of IBSQAC or OBSQAC field on
request

Action on associated sequence number at
application program

SET Set the sequence number for the session
specified value and send it to the logical
unit.

TESTSET Set the sequence number for the session to
the specified value, send it to the logical unit,
and obtain a sequence number from the
logical unit for the session.

INVALID Do not change the current sequence number.
Obtain the sequence number from the logical
unit for the session.

IGNORE Do not change the current sequence number.

540 z/OS V2R1.0 Communications Server: SNA Programming

Send the PLU a response to a Set and Test Sequence Number
(STSN) request
About this task

CONTROL=STSN,STYPE=RESP,RESPOND=(EX or NEX,FME)

The settings of the IBSQAC/OBSQAC fields received by the logical unit cause it to
take the following action on the sequence numbers for the session and respond
appropriately:

Setting of
IBSQAC or
OBSQAC on
request

Action on associated sequence number at secondary
logical unit

Possible
responses to
request

SET Set the sequence number to the specified value for
the session.

TESTPOS

TESTSET Compare the received value to the current sequence
number and respond accordingly. Set the sequence
number to the specified value for the session.

TESTPOS
TESTNEG
INVALID
RESET

INVALID Return sequence number information to the sender of
STSN. TESTNEG

INVALID
RESET

IGNORE Do not change sequence numbers. Ignore this part of
the request.

TESTPOS

Send the PLU a Request-Rejected response to a BIND request
About this task

CONTROL=BIND,STYPE=RESP

Indicates that the BIND request is unacceptable to the application program (for
example, the session parameters are not valid or the application program does not
request a session with the PLU specified in the BIND).

Send the PLU a response to an SDT request
About this task

CONTROL=SDT,STYPE=RESP,RESPOND=(EX or NEX,FME)

Indicates that the application program accepts or rejects an SDT. If a positive
response is sent, requests and responses for data and data-flow-control requests
can now be sent on the session. If a negative response is sent, sense information
can be included to indicate the reason for the rejection.

Send a Switch request initiating the switch from backup to
primary session status
About this task

CONTROL=SWITCH,STYPE=REQ

Chapter 13. Conventions and descriptions of VTAM macroinstructions 541

The application program sends a Switch request that causes the backup XRF
session to become the primary XRF session. The former primary XRF session, if
still “active”, is terminated with an UNBIND(CLEANUP).

Either end of a session has the ability to check its inbound and outbound sequence
numbers and, if necessary, to suspend traffic flow and ask that correct numbers be
reestablished. When the primary logical unit requests to reestablish correct
sequence numbers, it issues a Clear (if allowed in the TS profile for the session)
followed by an STSN request. If the logical unit acting as the secondary end of the
session requests to reestablish correct sequence numbers, it issues an RQR request.
The PLU application program then issues the Clear and STSN requests.

The PLU application program can send four STSN options
(CONTROL=STSN,STYPE=REQ) to the logical unit: SET, TESTSET, INVALID, and
IGNORE. The logical unit acting as the secondary end of the session responds with
an STSN response (CONTROL=STSN, STYPE=RESP) as shown in Table 93. A
SESSIONC macroinstruction can be used to send STSN requests that apply to
either the inbound or the outbound sequence numbers, or that apply to both
independently.

Table 93. Types of STSN requests and their possible responses

PLU STSN
request Meaning

SLU STSN
response(s) Meaning

Set (01) (set) CPMGR sequence number at PLU
and SLU is to be set to value in
IBSQVAL or OBSQVAL field.

TESTPOS (01)
(ignore)

Secondary logical unit accepts value.
No value is returned.

TESTSET (11) (set
and test)

CPMGR sequence number at PLU
and SLU is to be set to value in
IBSQVAL or OBSQVAL field. The
SLU NAU sequence number is to be
tested against the value in the
IBSQVAL or OBSQVAL field; the SLU
NAU sequence number is returned in
the response.

TESTPOS (01) Secondary logical unit agrees with
value. Value (=SLU NAU sequence
number) is returned in IBSQVAL or
OBSQVAL field.

TESTNEG (11) Secondary logical unit disagrees with
value. SLU NAU sequence number is
returned in IBSQVAL or OBSQVAL
field.

INVALID (10) Secondary logical unit does not
maintain or has lost its NAU
sequence number. No value returned.

RESET (00) Meaning depends on LU type.

INVALID (10)
(sense)

Primary logical unit is not setting or
testing the sequence number for the
associated flow. The CPMGR
sequence number is not changed. The
SLU sequence number is to be
returned in the response.

TESTNEG (11) Secondary logical unit returns NAU
sequence number in IBSQVAL or
OBSQVAL field.

INVALID (10) Secondary logical unit does not
maintain or has lost its NAU
sequence number. No value returned.

RESET (00) Meaning depends on LU type.

IGNORE (00) Primary logical unit is not setting or
testing the sequence number for the
associated flow. The CPMGR
sequence number is not changed.

TESTPOS (01) Secondary logical unit ignores this
part of the STSN request. No value is
returned.

542 z/OS V2R1.0 Communications Server: SNA Programming

Table 93. Types of STSN requests and their possible responses (continued)

PLU STSN
request Meaning

SLU STSN
response(s) Meaning

Notes:

1. The numbers in parentheses are the corresponding bit settings for the action and result codes in the STSN
RU. The names in parentheses are the associated SNA names for the action and result codes. Refer to SNA
Formats for the format of the STSN RU. If there is no name in parentheses, SNA does not currently have an
abbreviated name for the result code.

2. Responses to PLU requests are returned in the RPL fields (IBSQAC and OBSQAC) originally used to contain
the request.

3. The term CPMGR sequence number, as used in this table, refers to the sequence number assigned by VTAM
when a normal-flow request is sent or received. This is a number returned to the application program in the
SEQNO field of the SEND or RECEIVE RPL. The term NAU sequence number refers to a related sequence
number kept by the logical unit. For example, for a NAU outbound sequence number, the logical unit might
keep a log on a disk file of the CPMGR outbound sequence number assigned to the last request that the
logical unit sent for which it received a positive response. Similarly, the NAU inbound sequence number
might be the inbound CPMGR sequence number of the last normal-flow request received by the logical unit
for which it sent a positive response. The NAU sequence numbers are of interest during recovery operations,
because they can be used to let each logical unit in the session understand which RUs have been
successfully processed by its session partner.

The inbound and outbound sequence numbers are handled independently by SESSIONC. Either one or both
can be set by a single STSN request.

When an STSN, SDT, or Clear request is sent to the logical unit, a response type 1
is returned as part of the SESSIONC operation. That is, the request is sent as
though POST=RESP and RESPOND=(NEX,FME,NRRN) had been specified on a
SEND macroinstruction. If a negative response is returned, the SSENSEI, SSENSMI,
and USENSEI fields are set as they would be for SEND POST=RESP.

SETLOGON—Modify an application program's capability to establish
sessions

Purpose

The SETLOGON macroinstruction indicates:
v Whether VTAM is to schedule an application program's LOGON exit routine

when a CINIT request is received
v Whether an application program is enabled to act as an SLU
v The application's use of persistent sessions or generic resources.

For further information on some of the terms used in the following paragraphs,
refer to “Defining LUs” on page 81 and to Table 6 on page 82. See also the
OPTCD=APPSTAT section of the INQUIRE macroinstruction description in this
chapter.

Usage

The nine types of SETLOGON requests are START, STOP, QUIESCE, HOLD,
NPERSIST, PERSIST, GNAMEADD, GNAMEDEL, and GNAMESUB. The option
code in SETLOGON's RPL determines which type is used.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 543

Although SETLOGON START, STOP, QUIESCE, HOLD, GNAMEADD,
GNAMEDEL, and GNAMESUB cannot be used if the ACB was opened with
MACRF=NLOGON, SETLOGON PERSIST and NPERSIST can be used.

The START version of SETLOGON causes any application program issuing
INQUIRE OPTCD=APPSTAT to be told that your application program is active.

The first SETLOGON OPTCD=START issued after OPEN has been executed causes
VTAM to schedule the LOGON exit routine for each CINIT request that has been
received. It also allows subsequent CINIT requests to schedule the LOGON exit
routine. The LOGON exit routine cannot be scheduled before the first SETLOGON
OPTCD=START; therefore, any CINITs received prior to SETLOGON
OPTCD=START are queued.

Additionally, the first SETLOGON OPTCD=START causes VTAM to mark the
application program enabled for sessions in which it acts as the secondary logical
unit. Before the first SETLOGON OPTCD=START occurs, the application program
is disabled for sessions in which it is to act as the secondary logical unit. If
queuing is specified by the session initiator, an attempt to initiate such a session is
queued; otherwise, it is rejected. The first SETLOGON OPTCD=START causes any
such queued session to become pending active, which should eventually result in a
BIND request received in the SCIP exit routine. Note that the SCIP exit routine
cannot be scheduled with a BIND request before the first SETLOGON
OPTCD=START occurs.

Subsequent SETLOGON START requests can be used in conjunction with
SETLOGON HOLD to pace session setup requests. (You might want to use pacing
in the event that storage shortages occur.) When SETLOGON START is issued after
SETLOGON HOLD, VTAM schedules the LOGON exit for each queued CINIT
request, and schedules the SCIP exit for each queued BIND request. VTAM
continues to drive the LOGON and SCIP exits as usual until the application issues
SETLOGON HOLD or SETLOGON QUIESCE.

The STOP version of SETLOGON does not stop the scheduling of the LOGON or
SCIP exit routines. However, any application program issuing INQUIRE
OPTCD=APPSTAT for your ACB is told that new sessions should not be initiated
with your application program. Thus, the STOP version can be used only for
private application program protocols and is not enforced by VTAM.

The QUIESCE version of SETLOGON causes VTAM to indicate that the application
program is inhibited for any new sessions. The only way to initiate new sessions is
to close and reopen the ACB. However, any CINIT or BIND requests already
queued at the application program logical unit are unaffected by SETLOGON
OPTCD=QUIESCE. Thus, for these pending active sessions, OPNDST
OPTCD=ACCEPT and OPNSEC can complete normally. An application program
might want to use this type of SETLOGON at the end of a day's work, prior to
closing the ACB; this would give the application program a chance to handle its
current load of active and pending active sessions without any new ones being
initiated. Any application program issuing INQUIRE OPTCD=APPSTAT for your
ACB is told that your application program is shutting down and cannot accept
new sessions. Any attempts to initiate sessions with your application program are
rejected.

You can use the SETLOGON macroinstruction with the option codes,
OPTCD=HOLD and OPTCD=START, to pace session setup requests. SETLOGON
HOLD causes all subsequent CINIT and BIND requests to be queued and prevents

544 z/OS V2R1.0 Communications Server: SNA Programming

the scheduling of the LOGON and the SCIP exits for session setup requests. When
SETLOGON START is issued after SETLOGON HOLD, VTAM schedules the
LOGON exit for each queued CINIT request and the SCIP exit for each queued
BIND request. VTAM continues to drive the LOGON and SCIP exits as usual until
the application issues SETLOGON HOLD or SETLOGON QUIESCE.

Note: An application program should not issue a SETLOGON OPTCD=QUIESCE
to inhibit sessions when VTAM is halting; VTAM automatically prevents any new
sessions from being initiated.

For this application program, GNAMEADD indicates that VTAM recognizes an
association between the network name in the ACB macroinstruction and the
generic name coded on the GNAME parameter of the NIB macroinstruction;
GNAMEDEL causes VTAM to terminate that association. The SETLOGON
OPTCD=GNAMEADD must be issued before SETLOGON OPTCD=START is
issued. The application can specify whether it wants to own the affinities for all the
sessions that are established with it. The application does this by using the AFFIN
keyword of the NIB macroinstruction. For more details, see “NIB—Create a node
initialization block” on page 433.

An application can be a subordinate of another application that is using a generic
name. In this case, the subordinate application uses OPTCD=GNAMESUB to have
its sessions included in the other application's session count for workload
balancing purposes. When GNAMESUB is used, the NIB must indicate the
application network name (NAME parameter) of the generic resource application
to which this application is subordinate and the generic resource name (GNAME
parameter).

An application that is capable of persistence uses SETLOGON OPTCD=PERSIST to
enable persistent LU-LU session support. The application can also indicate support
of receipt of various forced takeover requests by coding the FORCETKO operand
to indicate the required support level on the SETLOGON OPTCD=PERSIST
statement. This same application uses SETLOGON OPTCD=NPERSIST to disable
persistence, but this SETLOGON OPTCD does not affect the setting of whether the
application supports receipt of a forced takeover.

Before issuing the SETLOGON macroinstruction, the application program must set
register 13 to the address of an 18-word save area. Refer to Appendix H,
“Summary of register usage,” on page 853, for information pertaining to the
register contents upon return of control.

VTAM receives control from the SETLOGON macroinstruction in the addressing
mode of the application program that issued the macroinstruction and returns
control to the application program in that same mode.

Syntax

Chapter 13. Conventions and descriptions of VTAM macroinstructions 545

�� SETLOGON RPL = rpl_address
name (1)

, ACB = acb_address

�

�
(1)

, BRANCH = NO
YES

(1)
, ECB = INTERNAL
, ECB = ecb_address

(1)
, EXIT = exit_routine_address

�

�
(2) (1)

, OPTCD = (ASY)
SYN
GNAMEADD
GNAMEDEL
GNAMESUB
HOLD
NPERSIST
PERSIST
QUIESCE
START
STOP

�

�
(3)

, NIB = nib_address

�

�
(4) (1)

, PARMS = (MAXSESS = value)
(5)

PSTIMER = value
(6)

FORCETKO = NONE
SINGLE
MULTI
ALL

��

Notes:

1 Operand value can be placed in its RPL field either by specification on an
RPL macroinstruction operand or by explicitly setting the field using the
IFGRPL DSECT.

2 You can code more than one suboperand on OPTCD, but code no more than
one from each group.

3 NIB is valid only when OPTCD=GNAMEADD, OPTCD=GNAMEDEL, or
OPTCD=GNAMESUB is coded.

4 PARMS=(MAXSESS=value) is valid only when OPTCD=GNAMEADD is
coded.

5 PARMS=(PSTIMER=value) is valid only when OPTCD=PERSIST is coded.
PSTIMER may be specified with FORCETKO on the same SETLOGON
OPTCD=PERSIST invocation.

6 PARMS=(FORCETKO=NONE|MULTI|SINGLE|ALL) is valid only when
OPTCD=PERSIST is coded. FORCETKO can be specified with PSTIMER on
the same SETLOGON OPTCD=PERSIST invocation.

546 z/OS V2R1.0 Communications Server: SNA Programming

Input parameters

RPL=rpl_address
Indicates the RPL that specifies which kind of processing SETLOGON is to
perform.

The following RPL operands apply to the SETLOGON macroinstruction:

ACB=acb_address
Indicates the ACB that identifies the application program issuing SETLOGON.

BRANCH
For application programs running in supervisor state under a TCB, BRANCH
indicates whether authorized path processing is to be used. See “Authorized
path” on page 300.

BRANCH=YES
When the macroinstruction is issued, VTAM processes the macroinstruction
using authorized path. For programs running under an SRB rather than
under a TCB, the macroinstruction is processed in this manner
automatically, regardless of the actual setting of the BRANCH field.

BRANCH=NO
When the macroinstruction is issued, VTAM does not process the
macroinstruction using authorized path.

See the RPL macroinstruction for more information.

ECB
Indicates that an ECB is posted when an asynchronous (OPTCD=ASY)
SETLOGON operation is posted as being complete. You cannot specify both
ECB and EXIT on a single macroinstruction.

ECB=event_control_block_address
Specifies that VTAM is to post an event control block (ECB).
Event_control_block_address is the location of the ECB to be posted. The ECB
can be any fullword of storage aligned on a fullword boundary.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB.

EXIT=exit_routine_address
Indicates the address of an RPL exit routine that is scheduled when an
asynchronous (OPTCD=ASY) SETLOGON operation is posted as being
complete. You cannot specify both ECB and EXIT on a single macroinstruction.
For details about the EXIT operand, refer to the RPL macroinstruction
description in this chapter.

NIB=nib_address
Indicates the NIB that specifies the generic name for the application. For
OPTCD=GNAMESUB, the NIB also contains the application program network
name of the particular generic resource instance. NIB= is valid only with the
use of OPTCD=GNAMEADD, OPTCD=GNAMEDEL, or
OPTCD=GNAMESUB.

OPTCD=GNAMEADD
OPTCD=GNAMEDEL
OPTCD=GNAMESUB
OPTCD=HOLD
OPTCD=QUIESCE
OPTCD=START

Chapter 13. Conventions and descriptions of VTAM macroinstructions 547

OPTCD=STOP
OPTCD=NPERSIST
OPTCD=PERSIST

Indicates information about the application program's session-establishment
capability. Refer to the introductory description of the SETLOGON
macroinstruction for details.

OPTCD=SYN
OPTCD=ASY

If the SYN option code is set, control is returned to the application program
when the SETLOGON operation has completed. If ASY option code is set,
control is returned as soon as VTAM has accepted the request. After the
SETLOGON operation has been completed, the ECB is posted or the RPL exit
routine is scheduled, depending on the setting of the ECB-EXIT field. Refer to
the RPL macroinstruction description in this chapter for details about
OPTCD=SYN or OPTCD=ASY.

Because it might take VTAM a relatively long time to complete the
SETLOGON operation, you should not use the SYN option if suspending the
SETLOGON-issuing task or SRB for this time is undesirable. Use the ASY
option code, instead.

PARMS=(MAXSESS=value)
This code, used only with OPTCD=GNAMEADD, indicates the maximum
number of sessions allowed for the application. The total number of sessions
includes sessions from subordinate generic resources. See 545 for information
about subordinate generic resources.

PARMS=(PSTIMER=value)
This code, used only with OPTCD=PERSIST, indicates how long an application
program can remain pending recovery. The recovering application must
successfully issue an OPEN ACB before the timer expires or the sessions will
be terminated. The initial value is 0, which means the safety timer is not used.
The maximum timeout interval is 86400 seconds (24 hours). A default value
does not exist. If PSTIMER is not specified, the current value is not changed. If
a value is specified, PSTIMER must be coded on the same macroinstruction as
OPTCD=PERSIST.

PARMS=(FORCETKO)
Indicates whether the application accepts some form of persistent sessions
takeover requests when this application image is not pending some form of
recovery currently. This parameter is valid only if OPTCD=PERSIST is also
coded. There is no default for the FORCETKO operand, although an
application will, unless otherwise indicated, support receipt of SNPS takeover
requests only. If FORCETKO is not specified on the SETLOGON
OPTCD=PERSIST, then the current setting for the application is unchanged.

PARMS=(FORCETKO=ALL)
The application accepts either SNPS or MNPS forced takeover requests when
the application does not require some form of recovery processing.

PARMS=(FORCETKO=MULTI)
The application accepts only MNPS forced takeover requests when the
application does not require recovery processing. SNPS forced takeover
requests will be rejected.

PARMS=(FORCETKO=NONE)
The application does not accept SNPS or MNPS forced takeover requests.

548 z/OS V2R1.0 Communications Server: SNA Programming

PARMS=(FORCETKO=SINGLE)
The application accepts only SNPS forced takeover requests when the
application does not require some form of SNPS recovery processing. MNPS
forced takeover requests are rejected. An application, unless it specifies
otherwise using SETLOGON OPTCD=PERSIST, is assumed to support this
level of function.

Examples
OPEN ACB1

ADD SETLOGON OPTCD=GNAMEADD,NIB=NIBGRSC,ACB=ACB1...
BEGIN SETLOGON RPL=RPL1,ACB=ACB1,OPTCD=START...
HOLDEXITS SETLOGON RPL=RPL1,ACB=ACB1,OPTCD=HOLD...
RESUME1 SETLOGON RPL=RPL1,ACB=ACB1,OPTCD=START...
DELETE SETLOGON OPTCD=GNAMEDEL,NIB=NIBGRSC,ACB=ACB1...
TOOMANY SETLOGON RPL=RPL1,ACB=ACB1,OPTCD=STOP...
ADD2 SETLOGON OPTCD=GNAMEADD,NIB=NIBGRSC,ACB=ACB1...
RESUME2 SETLOGON RPL=RPL1,ACB=ACB1,OPTCD=START...
NOMORE SETLOGON RPL=RPL1,ACB=ACB1,OPTCD=QUIESCE...
ACB1 ACB APPLID=APPLNAME,MACRF=LOGON
APPLNAME DC 05

DC CL5’STOCK’...
NIBGRSC NIB GNAME=JOHNDOE

ADD identifies the application program with the application network name
STOCK as a generic resource member using the generic resource name JOHNDOE.
A generic resource member must issue OPTCD=GNAMEADD prior to establishing
any LU-LU sessions.

Before BEGIN is executed, the application program's LOGON exit routine cannot
be scheduled. Once BEGIN has completed, however, STOCK's LOGON exit routine
is scheduled as each CINIT is received. STOCK might then also enter into a session
as the secondary logical unit by issuing a REQSESS macroinstruction.

HOLDEXITS causes all CINIT and BIND requests to be queued and prevents the
scheduling of the LOGON and SCIP exits for session setup requests.

RESUME1 causes VTAM to schedule the LOGON exit for each queued CINIT
request, and schedules the SCIP exit for each queued BIND request.

DELETE removes STOCK as a generic resource member. After DELETE is
completed, VTAM stops using STOCK to resolve session initiations from LUs that
specify the generic resource name JOHNDOE. LUs can continue establishing
sessions using the name STOCK. Additionally, any LU currently in session with
STOCK can continue establishing parallel sessions using the generic resource name
JOHNDOE.

TOOMANY causes VTAM to flag the application program as temporarily
unwilling to accept CINITs. It does not prevent CINITs from being sent to STOCK

Chapter 13. Conventions and descriptions of VTAM macroinstructions 549

and causing STOCK's LOGON exit routine to be scheduled. If an application
program that wants to initiate a session with the STOCK application program first
issues INQUIRE OPTCD=APPSTAT, it receives feedback information indicating
that session-initiation requests should not be issued for STOCK.

ADD2 specifies that VTAM use STOCK as a generic resource member of the
generic resource name JOHNDOE. LUs can continue establishing sessions using
the name STOCK. After ADD2 is completed, VTAM can use STOCK to resolve
session initiations from LUs that specify the generic resource name, JOHNDOE.

RESUME2 reverses the effect of TOOMANY; application programs issuing
INQUIRE OPTCD=APPSTAT receive feedback information indicating that
session-initiation requests are being accepted (the same feedback information that
results if INQUIRE is issued after BEGIN but before TOOMANY).

NOMORE prevents further sessions from being successfully initiated with STOCK.
An INQUIRE issued by another application program would indicate this, and any
attempt to initiate a session with STOCK would fail. If any CINITs are queued at
STOCK when QUIESCE is issued, they remain queued and can be processed
normally.

Completion information

A SETLOGON operation is successfully completed when the SSCP has recorded
the application program's altered session-establishment capability. If ECB posting is
used, the SCIP and LOGON exit routines can be scheduled before the application
program recognizes that the processing of the SETLOGON has been completed
successfully.

After the SETLOGON operation is completed, the following RPL fields are set:
v The value 21 (decimal) is set in the REQ field, indicating a SETLOGON request.
v If OPTCD=QUIESCE, the number of CINIT requests queued for the application

program is set in the RECLEN field.
v If this is the first SETLOGON OPTCD=START request issued after opening the

ACB, and a temporary storage shortage occurs during an attempt to schedule
the LOGON exit routine, the SETLOGON fails (RTNCD,FDB2)=(X'08,'X'00'). The
LOGON exit routine is successfully scheduled for all CINITs prior to the storage
shortage. Any remaining automatic logons are not processed by additional
SETLOGON requests. The application program can request that the VTAM
operator issue a VARY command for each of the logons.

v The RTNCD and FDB2 fields are set as indicated in Appendix B, “Return codes
and sense fields for RPL-based macroinstructions,” on page 651.

v If the macroinstruction returns an error code, the SSENSEI, SSENSMI, and
USENSEI fields can be set indicating system-sense information, system-sense
modifier, and user-sense information. See Appendix B, “Return codes and sense
fields for RPL-based macroinstructions,” on page 651 for more information about
these fields.

Registers 0 and 15 are also set as indicated in Chapter 9, “Handling errors and
special conditions,” on page 277.

550 z/OS V2R1.0 Communications Server: SNA Programming

SHOWCB—Extract the contents of control block fields
Purpose

SHOWCB extracts the contents of one or more ACB, EXLST, RPL, or NIB fields
and places them into an area designated by the application program.

Usage

The SHOWCB user specifies the address of a control block and the names of the
fields whose contents are to be extracted. In general, the field names are the same
as the keywords of the ACB, EXLST, RPL, and NIB macroinstructions. Not all such
field names are supported by SHOWCB. All of the fields applicable for SHOWCB
are shown in Table 94 on page 553 at the end of the SHOWCB macroinstruction
description. See Appendix J, “Summary of operand specifications,” on page 857, for
a list and explanation of the valid formats in which the SHOWCB operands can be
specified.

Control block fields that can be operated on by SHOWCB are not limited, however,
to fields that can be set by the application program in the ACB, EXLST, RPL, and
NIB macroinstructions. Several additional fields whose contents are set only by
VTAM can also be displayed with SHOWCB.

The user of SHOWCB must use the AREA and LENGTH operands to indicate the
location and length of the area where the fields are placed. The contents of each
field are placed there contiguously, in the order indicated by the FIELDS operand.
If the area is too short to hold all of the fields, SHOWCB does not modify the area
but returns error codes in register 0 and 15. Table 94 on page 553 shows the
required lengths for all the control block fields that can be displayed with
SHOWCB.

Note: The FDBK2 parameter on the SHOWCB macroinstruction represents the
RPLFDB2 field.

List, generate, and execute forms of the SHOWCB macroinstruction are available;
they are designated by the MF operand. See “Optional and required operands for
the alternative forms of SHOWCB” on page 870 for more information on this
macroinstruction.

The SHOWCB macroinstruction can be issued by an application program running
in either 24- or 31-bit addressing mode. To use 31-bit addressing, the application
program must use the VTAM mapping macroinstructions as well as GETMAIN
and FREEMAIN.

Syntax

Chapter 13. Conventions and descriptions of VTAM macroinstructions 551

�� SHOWCB AM = VTAM
name

, ACB = acb_address
, EXLST = exit_list_address
, NIB = nib_address
, RPL = rpl_address

�

� , AREA = data_area_address
, FIELDS = field_name

(field_name)

�

� , LENGTH = data_area_length �

�
, MF = (E , parameter_list_address)

(G , parameter_list_address)
, label

L
(L , parameter_list_address)

, label

��

Input parameters

ACB=acb_address
EXLST=exit_list_address
NIB=nib_address
RPL=rpl_address

Indicates the type and location of the control block whose fields are to be
extracted. One of these operands must be specified unless a control block
length (and only the length) is being extracted. That is, if FIELDS=ACBLEN,
FIELDS=EXLLEN, FIELDS=RPLLEN, or FIELDS=NIBLEN is specified, no
specific control block need be specified.

AM=VTAM
Identifies the macroinstruction as capable of manipulating a VTAM control
block. This operand is required.

AREA=data_area_address
Indicates the location of the storage area in the application program where the
contents of the control block field or fields are to be placed. This work area
must begin on a fullword boundary.

FIELDS=field_name
Indicates the control block field or fields whose contents are to be extracted.

For field name, code one of the field names that appear in the first column of
the table that appears at the end of this macroinstruction description (Table 94
on page 553). Most of these field names correspond to keywords of the ACB,
EXLST, RPL, and NIB macroinstructions. Only those fields associated with one
control block (those for the control block whose address is supplied in the first
operand) can be specified.

LENGTH=data_area_length
Indicates the length (in bytes) of the storage area designated by the AREA
operand.

If this length is insufficient, SHOWCB returns a value of 4 in register 15
(unsuccessful completion) and a value of 9 in register 0 (insufficient length).
The required length for each field is shown in the second column of Table 94
on page 553.

552 z/OS V2R1.0 Communications Server: SNA Programming

MF=E, G, or L
Indicates that an execute, generate, or list form of SHOWCB is to be used.
Omitting this operand causes the standard form of SHOWCB to be used. See
Appendix K, “Forms of the manipulative macroinstruction,” on page 865, for a
description of the execute, generate, and list forms of SHOWCB.

Examples
SHOW1 SHOWCB NIB=NIB1,FIELDS=NAME,AREA=NAME1, C

LENGTH=8,AM=VTAM

SHOW1 extracts the contents of NIB1's NAME field and places it in NAME1.
SHOW2 SHOWCB RPL=RPL1,FIELDS=(FDBK,ARG,AREA,RECLEN), C

AREA=(3),LENGTH=16,AM=VTAM

SHOW2 extracts the contents of RPL1's FDBK, ARG, AREA, and RECLEN fields
and places them (in that order) in a storage area. The address of this storage area
must be in register 3 when SHOW2 is executed. Note that LENGTH indicates a
storage area length great enough to accommodate all four fields.

Completion information

After SHOWCB processing is completed, VTAM sets register 15 to indicate
successful or unsuccessful completion. If the operation is completed successfully,
register 15 is set to 0, and register 0 contains the total number of bytes that
SHOWCB extracted and placed in the work area. If the operation completes
unsuccessfully, register 15 is set to either 04 or 08. If register 15 is set to 04 or 0C,
register 0 is also set, indicating the specific nature of the error (see Appendix I,
“Return codes for manipulative macroinstructions,” on page 855, for additional
information).

Control block fields applicable for SHOWCB

The field names shown in the first column of Table 94 are the values that can be
supplied for the FIELDS operand of the SHOWCB macroinstruction. The lengths
shown in the second column are the number of bytes of storage that must be
reserved for each field; the sum of all the fields to be displayed by SHOWCB
should be the value for the LENGTH operand.

Table 94. Control block fields that can be tested with SHOWCB

ACB fields

Field name Length (bytes)
Description

APPLID 4 Address of application program's symbolic name

PASSWD 4 Address of password

EXLST 4 Address of exit list

ACBLEN 4 Length of ACB, in bytes (2 bytes, right-adjusted)

ERROR 4 OPEN and CLOSE completion code (1 byte,
right-adjusted)

EXLST fields

Field name Length (bytes)
Description

Chapter 13. Conventions and descriptions of VTAM macroinstructions 553

Table 94. Control block fields that can be tested with SHOWCB (continued)

ACB fields

LERAD 4 Address of exit routine

SYNAD 4 Address of exit routine

DFASY 4 Address of exit routine

RESP 4 Address of exit routine

SCIP 4 Address of exit routine

TPEND 4 Address of exit routine

RELREQ 4 Address of exit routine

LOGON 4 Address of exit routine

LOSTERM 4 Address of exit routine

NSEXIT 4 Address of exit routine

EXLLEN 4 Length of exit list, in bytes (2 bytes, right-adjusted)

RPL fields

Field name Length (bytes)
Description

ACB 4 Address of ACB

NIB 4 Address of NIB

ARG 4 CID of session

AREA 4 Address of I/O work area

AREALEN 4 Length of AREA work area, in bytes

RECLEN 4 Length of data in AREA work area, in bytes

AAREA 4 Address of alternate I/O work area

AAREALN 4 Length of AAREA work area, in bytes

ARECLEN 4 Length of data in AAREA work area, in bytes

ECB 4 ECB or address of ECB

EXIT 4 Address of RPL exit routine

RTNCD 4 Recovery action return code (1 byte, right-adjusted)

FDBK2 4 Specific error return code (1 byte, right-adjusted)

FDBK 4 Additional status information (1 byte, right-adjusted)

USER 4 The data originally placed in an NIB's USERFLD

REQ 4 Request type code (1 byte, right-adjusted)

RPLLEN 4 Length of RPL, in bytes (1 byte, right-adjusted)

SEQNO 4 Sequence number (2 bytes, right-adjusted)

SSENSMO 4 Outbound system-sense modifier value (1 byte,
right-adjusted)

USENSEO 4 Outbound user-sense value (2 bytes, right-adjusted)

SSENSMI 4 Inbound system-sense modifier value (1 byte,
right-adjusted)

USENSEI 4 Inbound user-sense value (2 bytes, right-adjusted)

554 z/OS V2R1.0 Communications Server: SNA Programming

Table 94. Control block fields that can be tested with SHOWCB (continued)

ACB fields

IBSQVAL 4 Inbound sequence number for STSN request (2 bytes,
right-adjusted)

OBSQVAL 4 Outbound sequence number for STSN request (2
bytes, right-adjusted)

SIGDATA 4 Information included with a signal request

NIB fields

Field name Length (bytes)
Description

NAME 8 Symbolic name of logical unit

USERFLD 4 Arbitrary data associated with session

CID 4 Communication ID

NIBLEN 1 Length of NIB, in bytes

DEVCHAR 8 Device characteristics. See Appendix E, “Control
block formats and DSECTs,” on page 739.

EXLST 4 Address of exit list

RESPLIM 4 Maximum number of concurrent SEND (POST=RESP)
macros

LOGMODE 8 Logon mode name

BNDAREA 4 Address of BIND area.

Note: Refer to the notes in Table 135 on page 857, Table 137 on page 858, and Table 138 on
page 860 for information about fields that are not supported by the SHOWCB
macroinstruction.

SIMLOGON—Initiate a session, application program acts as the PLU
Purpose

The SIMLOGON macroinstruction is used to initiate sessions in which the
application program issuing SIMLOGON acts as the PLU. SIMLOGON processing
sends an Initiate request to the SSCP. If successful, this causes a CINIT request to
be sent from the SSCP to the application program, which might result in the
LOGON exit routine being scheduled. See “LOGON exit routine” on page 101 for a
description of how the application program receives the CINIT request.

Usage

The SIMLOGON macroinstruction uses the RPL to pass information to VTAM. The
RPL points to a list of NIBs which contain the names of the logical units with
which sessions should be initiated. The RPL indicates whether sessions should be
initiated for as many NIBs in the list as possible, or just for one of them. The RPL
also indicates whether the session-initiation request can be queued.

For a detailed description of the operation of the SIMLOGON macroinstruction,
refer to “SIMLOGON macroinstruction” on page 87.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 555

Before issuing the SIMLOGON macroinstruction, the application program must set
register 13 to the address of an 18-word save area. Refer to Appendix H,
“Summary of register usage,” on page 853, for information pertaining to the
register contents upon return of control.

VTAM receives control from the SIMLOGON macroinstruction in the addressing
mode of the application program that issued the macroinstruction and returns
control to the application program in that same mode.

The SIMLOGON macroinstruction is used by the application program to initiate
primary and backup XRF sessions from the PLU.

If PARMS=(NQNAMES=YES) on the ACB macroinstruction, and the NIB is
specified with a network identifier in the NIBNET field, the network identifier is
used along with the LU name in NIBSYM to build a session initiation request.

Syntax

�� SIMLOGON RPL = rpl_address
name (1)

, ACB = acb_address

�

�
(1)

, AREA = user_data_address
(1)

, BRANCH = NO
YES

�

�
(1)

, ECB = INTERNAL
, ECB = ecb_address

(1)
, EXIT = exit_routine_address

(1)
, NIB = nib_address

�

�
(2) (1)

, OPTCD = (ASY)
SYN
BACKUP
NBACKUP
CONALL
CONANY
Q
NQ
QALL
QNOTENAB
QSESSLIM
RELRQ
NRELRQ

�

�
(1)

, RECLEN = user_data_length

��

Notes:

1 Operand value can be placed in its RPL field either by specification on an
RPL macroinstruction operand or by explicitly setting the field using the
IFGRPL DSECT.

556 z/OS V2R1.0 Communications Server: SNA Programming

2 You can code more than one suboperand on OPTCD, but code no more than
one from each group.

Input parameters

RPL=rpl_address
Indicates the RPL that specifies which kind of processing SIMLOGON is to
perform.

The following RPL operands apply to the SIMLOGON macroinstruction:

ACB=acb_address
Indicates the ACB that identifies the application program issuing SIMLOGON.

AREA=user_data_address
Indicates the location of the data that VTAM is to pass to the application
program in the user data field of CINIT. The contents and format of the data
are determined by the application program. They are equivalent to the user
data field of an Initiate or a character-coded logon.

BRANCH
For application programs running in supervisor state under a TCB, BRANCH
indicates whether authorized path processing is to be used. See “Authorized
path” on page 300.

BRANCH=YES
When the macroinstruction is issued, VTAM processes the macroinstruction
using authorized path. For programs running under an SRB rather than
under a TCB, the macroinstruction is processed in this manner
automatically, regardless of the actual setting of the BRANCH field.

BRANCH=NO
When the macroinstruction is issued, VTAM does not process the
macroinstruction using authorized path.

ECB
Indicates that an ECB is posted when an asynchronous (OPTCD=ASY)
SIMLOGON operation is posted as being complete. You cannot specify both
ECB and EXIT on a single macroinstruction.

ECB=event_control_block_address
Specifies that VTAM is to post an event control block (ECB).
Event_control_block_address is the location of the ECB to be posted. The ECB
can be any fullword of storage aligned on a fullword boundary.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB.

EXIT=exit_routine_address
Indicates the address of an RPL exit routine that is scheduled when an
asynchronous (OPTCD=ASY) SIMLOGON operation is posted as being
complete. You cannot specify both ECB and EXIT on a single macroinstruction.
For details about the EXIT operand, refer to the RPL macroinstruction
description in this chapter. For details about these operands, refer to the RPL
macroinstruction description in this chapter.

NIB=nib_address
Indicates the NIB whose NAME field identifies the SLU for the session being
initiated and whose LOGMODE field specifies the logon mode name to be
used, and if NQNAMES=YES, whose NIBNET field contains the network
where the SLU resides. If the NIB field contains the address of a list of NIBs,

Chapter 13. Conventions and descriptions of VTAM macroinstructions 557

that is LISTEND=NO (in the NIB pointed to), processing depends on the
CONALL or CONANY option code. USERFLD can be used to specify a
correlator to relate network services requests to this SIMLOGON.

OPTCD=BACKUP
OPTCD=NBACKUP

OPTCD=BACKUP is used to specify the initiation of a backup XRF session.
Only one backup XRF session can be created per primary XRF session.

OPTCD=BACKUP is used only if either:
v A primary XRF session exists for the same SLU.

This is the “normal” case, when the active XRF application creates the
primary XRF session and then signals the alternate XRF application to start a
backup XRF session.

v A backup XRF session exists for the same SLU.
This is the exceptional case, when the NCP takes down the primary XRF
session, but does not terminate its session with the SLU, keeping the backup
session up pending a switch request state. In this case, if the primary XRF
session desires to “recover” itself, it must first restart itself as a backup by
issuing a SIMLOGON OPTCD=BACKUP, and then issuing a SESSIONC
CONTROL to become the primary XRF session. In this case, the original
backup session remains intact throughout the primary session recovery.

OPTCD=NBACKUP is the default and results in a session initiation request
that does not specify a backup XRF session.

OPTCD=CONANY
OPTCD=CONALL

When CONANY is set, a session is initiated for the first available logical unit
in the NIB list. Control is passed to the application program's LOGON exit
routine, if one exists, when the resulting CINIT has been generated. When
CONALL is set, a session is initiated for each available logical unit in the NIB
list. If there is only one NIB, the setting of this option code does not matter.

OPTCD=Q
OPTCD=NQ

If OPTCD=NQ is specified, then the Initiate requests sent to the SSCP indicate
sessions might not be queued, and the Initiate succeeds only if the logical unit
is immediately available. If OPTCD=Q is specified, then the Initiate requests
sent to the SSCP indicate sessions can be queued if the logical unit is not
enabled or is at its session limit. (OPTCD=QALL or OPTCD=QSESSLIM or
OPTCD=QNOTENAB determines whether both or just one of these conditions
causes the request to be queued.) In that case, the Initiate succeeds if the
logical unit is active, connected, and not inhibited for sessions in which it acts
as the SLU. (See “Defining LUs” on page 81 for the definitions of these states.)
Once the logical unit becomes available, a pending-active session is created
immediately.

OPTCD=QALL
OPTCD=QSESSLIM
OPTCD=QNOTENAB

This option is meaningful only if the Q option is set. IF QALL is set, the
session can be queued if the logical unit is not enabled or is at its session limit.
If QSESSLIM is set, the session can be queued only if the logical unit is at its
session limit. If QNOTENAB is set, the session can be queued only if the
logical unit is not enabled for a session in which it is the SLU.

OPTCD=RELRQ

558 z/OS V2R1.0 Communications Server: SNA Programming

OPTCD=NRELRQ
This option is meaningful only if the Q option code is set. If RELRQ is set and
if the device-type logical unit with which the session is being requested is in
session with another application program, VTAM invokes that application
program's RELREQ exit routine. If NRELRQ is set, the other application
program is not notified of your request for the logical unit. For further details,
see “SIMLOGON macroinstruction” on page 87.

OPTCD=SYN
OPTCD=ASY

If the SYN option code is set, control is returned to the application program
when the SIMLOGON operation has completed. If the ASY option code is set,
control is returned as soon as VTAM has accepted the request. Once the
SIMLOGON operation has completed, the ECB is posted or the RPL exit
routine is scheduled, depending on the setting of the ECB-EXIT field. Refer to
the RPL macroinstruction description in this chapter for details about
OPTCD=SYN or OPTCD=ASY.

Because it might take VTAM a relatively long time to complete the
SIMLOGON operation, you should not use the SYN option if suspending the
SIMLOGON-issuing task or SRB for this time is undesirable. Use the ASY
option code, instead.

Note: When using SIMLOGON OPTCD=ASY, an application program task
could be suspended if an RPL exit routine is not provided. See “Initializing a
session” on page 44 for details.

RECLEN=user_data_length
Indicates how many bytes of user data are to be sent. The value in
RECLEN must be decimal 255 or less. If no user data is to be sent,
RECLEN should be set to 0 and the AREA field is ignored.

Examples
SIM1 SIMLOGON RPL=RPL1,ACB=ACB1,NIB=NIBLIST1, C

AREA=LGNMSG,RECLEN=60,EXIT=CHECKPGM, C
OPTCD=(ASY,CONALL,NRELRQ,Q)

.

.

.
LGNMSG DC CL60’LOGON FROM NIBLIST1 STATION’
ACB1 ACB MACRF=LOGON
NIBLIST1 NIB NAME=STATIONA,LISTEND=NO, C

LOGMODE=BATCH
NIB NAME=STATIONB,LISTEND=NO
NIB NAME=STATIONC,LISTEND=YES

SIM1 initiates sessions between ACB1 and all of the logical units represented in
NIBLIST1. Each Initiate contains a 60-byte user data field taken from LGNMSG.
The logon mode name for STATIONA is BATCH; STATIONB and STATIONC use a
default logon mode name. The CONALL option code indicates that Initiate
requests are to be generated for all the available logical units represented in the
list. NRELRQ indicates that if any of the logical units of NIBLIST1 is in session
with an ACB other than ACB1, that ACB's RELREQ exit routine is not to be
scheduled. After the SIM1 operation is completed, control is transferred to
CHECKPGM.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 559

Completion information

The SIMLOGON operation is successfully completed when the response is received
for the Initiate request sent to the SSCP. This response is sent when a queued or
pending active session is created, or when it is recognized that a session cannot be
initiated. The sending of the CINIT request (and, therefore, the scheduling of the
LOGON exit routine) might not occur immediately after the SIMLOGON
macroinstruction is posted. Also, if ECB posting is used, the LOGON exit routine
or NSEXIT exit routine can be scheduled for the requested session before the
application program recognizes that the SIMLOGON has completed successfully.

When the SIMLOGON operation is completed, the following RPL fields are set:
v The value 22 (decimal) is placed in the REQ field, indicating a SIMLOGON

request.
v The RTNCD and FDB2 fields are set as indicated in Appendix B, “Return codes

and sense fields for RPL-based macroinstructions,” on page 651.
v If the macroinstruction returns an error code, the SSENSEI, SSENSMI, and

USENSEI fields can be set indicating system-sense information, system-sense
modifier, and user-sense information. See Appendix B, “Return codes and sense
fields for RPL-based macroinstructions,” on page 651 for more information about
these fields.

v If the RTNCD and FDB2 fields are zeroes, check NIBSLWRK in each NIB to
determine which is successful.

OPTCD=Q is not allowed when OPTCD=BACKUP is specified, because session
queueing is not supported for backup XRF sessions. An error is posted with return
code (RTNCD,FDB2)= (14,7D) if OPTCD=(BACKUP,Q) is specified.

Registers 0 and 15 are also set as indicated in Chapter 9, “Handling errors and
special conditions,” on page 277.

TERMSESS—Request session termination, application program is SLU
Purpose

The TERMSESS macroinstruction is used to terminate sessions in which the
application program is acting as the SLU.

Usage

If OPTCD=UNBIND is specified with the TERMSESS macroinstruction, then VTAM
ends the session by sending an UNBIND to the PLU. If TERMSESS
OPTCD=COND, OPTCD=UNCOND, or OPTCD=TERMQ is issued, a TERMINATE
request results. The PLU APPL has its LOSTERM EXIT driven for termination of
the session. The SLU APPL is notified that the session has ended when the SCIP or
the NSEXIT exit routine is driven.

Note:

1. If you are using OPTCD=UNBIND with the TERMSESS macroinstruction, you
must specify the CID address in either the ARG or NIB operand. The NIBCID
field is only used if PARSESS=YES is coded on the APPL definition statement.
If you use the NIB operand, NAME cannot be used.

560 z/OS V2R1.0 Communications Server: SNA Programming

2. If the SLU application issues TERMSESS in lieu of SESSIONC to reject a
pending active session (BIND received, BIND response not sent), then
OPTCD=UNBIND or OPTCD=TERMQ must be used.

3. If OPTCD=TERMQ is specified, then a NIB must be supplied, which identifies
the NAME of the session partner, which identifies the session to be terminated.

For a detailed description of the parameters and operation of the TERMSESS
macroinstruction, refer to “TERMSESS macroinstruction” on page 99.

Before issuing the TERMSESS macroinstruction, the application program must set
register 13 to the address of an 18-word save area. Refer to Appendix H,
“Summary of register usage,” on page 853, for information pertaining to the
register contents upon return of control.

VTAM receives control from the TERMSESS macroinstruction in the addressing
mode of the application program that issued the macroinstruction and returns
control to the application program in that same mode.

Syntax

�� TERMSESS RPL = rpl_address
name (1)

, ACB = acb_address

�

�
(1)

, ARG = (register)
(1)

, NIB = nib_address

(1)
, BRANCH = NO

YES

�

�
(1)

, ECB = INTERNAL
, ECB = ecb_address

(1)
, EXIT = exit_routine_address

�

�
(2) (1)

, OPTCD = (ASY)
SYN
COND
TERMQ
UNBIND
UNCOND
SONCODE
NSONCODE

�

�
(1)

, PARMS = (SONCODE = code)
, SSENSEO = 0

CPM
FI
RR
STATE

�

Chapter 13. Conventions and descriptions of VTAM macroinstructions 561

�
(1)

, SSENSMO = system–sense_modifier_value

�

�
(1)

, USENSEO = user–sense_value

��

Notes:

1 Operand value can be placed in its RPL field either by specification on an
RPL macroinstruction operand or by explicitly setting the field using the
IFGRPL DSECT.

2 You can code more than one suboperand on OPTCD, but code no more than
one from each group.

Input parameters

RPL=rpl_address
Indicates the RPL that specifies which kind of processing TERMSESS is to
perform.

The following RPL operands apply to the TERMSESS macroinstruction:

ACB=acb_address
Indicates the ACB that identifies the application program issuing TERMSESS.

ARG=(register)
Indicates the register containing the CID of the session to be terminated.

Note:

1. The NIB and the ARG parameters occupy the same physical field
(RPLARG) in the RPL. If the last macroinstruction operand used to set or
modify this field was ARG=(register), or if the field has been left unchanged
since VTAM inserted a CID into it, VTAM recognizes that this field
contains a CID. If the last operand used to set or modify this field was
NIB=address, VTAM recognizes that the field contains an NIB address.

2. If your application uses the RPL DSECT, IFGRPL, you must clear the
RPLNIB bit if a CID is inserted into the RPLARG field.

BRANCH
For application programs running in supervisor state under a TCB, BRANCH
indicates whether authorized path processing is to be used. See “Authorized
path” on page 300.

BRANCH=YES
When the macroinstruction is issued, VTAM processes the macroinstruction
using authorized path. For programs running under an SRB rather than
under a TCB, the macroinstruction is processed in this manner
automatically, regardless of the actual setting of the BRANCH field.

BRANCH=NO
When the macroinstruction is issued, VTAM does not process the
macroinstruction using authorized path.

See “RPL—Create a request parameter list” on page 487 for more information.

ECB
Indicates that an ECB is posted when an asynchronous (OPTCD=ASY)

562 z/OS V2R1.0 Communications Server: SNA Programming

TERMSESS operation is posted as being complete. You cannot specify both
ECB and EXIT on a single macroinstruction.

ECB=event_control_block_address
Specifies that VTAM is to post an event control block (ECB).
Event_control_block_address is the location of the ECB to be posted. The ECB
can be any fullword of storage aligned on a fullword boundary.

ECB=INTERNAL
Specifies that VTAM is to post an internal ECB.

EXIT=exit_routine_address
Indicates the address of an RPL exit routine that is scheduled when an
asynchronous (OPTCD=ASY) TERMSESS operation is posted as being
complete. You cannot specify both ECB and EXIT on a single macroinstruction.
For details about the EXIT operand, refer to the RPL macroinstruction
description in this chapter.

NIB=nib_address
Indicates the NIB whose NAME field identifies the sessions to be terminated. If
OPTCD=TERMQ is specified, a NIB must be supplied that identifies the
NAME of the session to be terminated, and if NQNAMES=YES a NIB must be
supplied whose NIBNET field contains the network identifier where the logical
unit resides.

Note: If your application uses the RPL DSECT, IFGRPL, you must set the
RPLNIB bit if an NIB address is inserted into the RPLARG field.

OPTCD=COND
OPTCD=UNCOND
OPTCD=UNBIND
OPTCD=TERMQ

If OPTCD=COND is set, the logical unit acting as the primary end of the
session can take any action it desires, including issuing a CLSDST
macroinstruction, if and when it wants to terminate the session.

Normally, if OPTCD=UNCOND is set, the primary logical unit automatically
terminates the session and sends an UNBIND request to the SLU. However, in
some network outage situations, the PLU cannot be ordered to send an
UNBIND; the SLU is then sent a CLEANUP by its SSCP. This in turn causes
the SLU to terminate the session by sending an UNBIND to the PLU.

If OPTCD=UNBIND, an UNBIND request is sent from the SLU to the PLU to
terminate the session; control returns to the application program when the
response to the UNBIND request is received.

If PARMS=(NQNAMES=YES) on the ACB macroinstruction, and the NIB is
specified with a network identifier in the NIBNET field, the network identifier
is used along with the LU name in NIBSYM to determine the target of the
UNBIND.

If OPTCD=TERMQ is coded, VTAM will terminate only queued or pending
active sessions (active sessions will not be terminated). When TERMQ is
specified, the session partner name must be used via the NIB. CID cannot be
used for this option. VTAM will send a TERMINATE for this option.

OPTCD=NSONCODE
OPTCD=SONCODE

If OPTCD=NSONCODE is coded, VTAM uses an UNBIND SON code of 01. If
OPTCD=SONCODE is coded, VTAM uses the SON code specified in the RPL
with the PARMS=(SONCODE=code) operand.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 563

OPTCD=SYN
OPTCD=ASY

If the SYN option code is set, control is returned to the application program
when the TERMSESS operation has been completed. If the ASY option code is
set, control is returned as soon as VTAM has accepted the request. Once the
TERMSESS operation has completed, the ECB is posted or the RPL exit routine
is scheduled, depending on the setting of the ECB-EXIT field.

Refer to the RPL macroinstruction description in this chapter for details about
OPTCD=SYN or OPTCD=ASY.

Because it might take VTAM a relatively long time to complete the TERMSESS
operation, you should not use the SYN option if suspending the
TERMSESS-issuing task or SRB for this time is undesirable. Use the ASY option
code, instead.

PARMS=(SONCODE=code)
VTAM uses the 1-byte UNBIND type code on an UNBIND RU. See the
description of the UNBIND RU in SNA Formats for definitions of the UNBIND
type codes (SON codes). VTAM does not validate the code specified in this
parameter.

If PARMS=(SONCODE=FE) is specified, system-sense and user-sense codes are
set with the existing SSENSEO, SSENSMO, and USENSEO RPL fields.

SSENSEO
This field is set by VTAM for a Logical Unit Status (LUSTAT) request and
informs the logical unit of the type of error that caused the exception
condition. These error types are described in Appendix B, “Return codes and
sense fields for RPL-based macroinstructions,” on page 651. SSENSEO=0 is the
default.

This field can also provide application-specified sense values for negative
responses to CINIT or UNBIND. Refer to the sections on the CLSDST or SEND
macroinstructions in this chapter for additional information.

SSENSMO=system-sense_modifier_value
The value set in this field is used in conjunction with the SSENSEO setting to
describe the specific type of error that caused the exception condition. The
meanings assigned to the SSENSMO values are described in detail in SNA
Formats If this operand is omitted, the SSENSMO field defaults to 0.

This field can also be used to provide application-specified sense values for
negative responses to CINIT or UNBIND. Refer to the SEND macroinstruction
in this chapter.

Specify any decimal integer 0–255 inclusive, or specify a 1-byte hexadecimal
constant.

USENSEO=user-sense_value
This field is set by VTAM for a Logical Unit Status (LUSTAT) request. In most
instances, the user-sense field is user-defined and can be used to inform the
logical unit that an exception condition is being indicated for an
application-program-related error that is not an SNA-defined error, or it can be
used to further modify the SNA-defined system-sense and system-sense
modifier values. See Appendix B, “Return codes and sense fields for RPL-based
macroinstructions,” on page 651, for more information. If this operand is
omitted, the USENSEO field defaults to 0.

564 z/OS V2R1.0 Communications Server: SNA Programming

This field can also be used to provide application-specified sense values for
negatives response to CINIT or UNBIND. Refer to the SEND macroinstruction
in this chapter.

Specify any decimal integer 0–65535 inclusive, or specify a 2-byte hexadecimal
or character constant.

Examples
TERMRTN TERMSESS RPL=RPL1,NIB=NIB2,OPTCD=(ASY,COND), C

EXIT=TERMFINS...
NIB2 NIB NAME=PRIAPPL

If PRIAPPL is a VTAM application program, TERMRTN causes the LOSTERM exit
routine of PRIAPPL to be scheduled with a reason code of 20 (decimal). PRIAPPL
might ignore the request or issue a CLSDST macroinstruction when it wants to
terminate the session with the application program that issued the TERMSESS
macroinstruction. Upon completion of the TERMSESS macroinstruction, the RPL
exit routine, TERMFINS, is scheduled.

Completion information

A TERMSESS operation successfully completes when either:
v The SSCP responds to the Terminate request generated by TERMSESS for

TERMSESS OPTCD=COND or UNCOND or TERMQ. This can be before or after
the UNBIND for the sessions is received in the SCIP exit routine.

v The current session terminates for TERMSESS OPTCD=UNBIND.
After the TERMSESS macroinstruction completes, VTAM sets the following RPL
fields:

v The value 44 (decimal) in the REQ field, indicating a TERMSESS request.
v If the macroinstruction returns an error code, the SSENSEI, SSENSMI, and

USENSEI fields can provide system-sense information, system-sense modifier
information, and user-sense information. See Appendix E, “Control block formats
and DSECTs,” on page 739 for more information about these fields.

v The RTNCD and FDB2 fields are set as indicated in Appendix E, “Control block
formats and DSECTs,” on page 739.

Registers 0 and 15 are also set as indicated in Chapter 9, “Handling errors and
special conditions,” on page 277.

If the TERMSESS is issued for a session that has been terminated, a return code
(RTNCD,FDB2)=(0C,0B) can be posted.

TESTCB—Test the contents of a control block field
Purpose

TESTCB compares the contents of a specified ACB, RPL, EXLST, or NIB field with
a value supplied with the macroinstruction and sets the PSW condition code
accordingly.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 565

Usage

The user of the TESTCB macroinstruction indicates a particular control block,
identifies a single field within that control block, and supplies the value against
which the contents of that field are to be tested. Table 95 on page 568 lists the
control block fields that can be tested.

Note: The FDBK2 parameter on the TESTCB macroinstruction represents the
RPLFDB2 field.

The operands for testing control block fields are used in much the same way as
operands for modifying or setting control block fields in macroinstructions like
MODCB or GENCB. For example, RECLEN=200 in a MODCB macroinstruction
places the value 200 in the RECLEN field of an RPL; if RECLEN=200 is specified in
a TESTCB macroinstruction, the contents of the RECLEN field are compared with
the value 200. See Appendix J, “Summary of operand specifications,” on page 857,
for a list and explanation of the various formats in which the TESTCB operands
can be coded.

The test performed by TESTCB is a logical comparison between the field's actual
contents and the specified value. The condition code indicates a high, equal, or low
result (with the actual contents considered as A in the A:B comparison). The
TESTCB macroinstruction can be followed by any branching assembler instructions
that are valid following a compare instruction.

TESTCB can be used to test most control block fields whose contents can be set by
the application program, as well as some of the control block fields whose contents
are set by VTAM. The explanation of the field name operand indicates the fields
that can be tested.

With the ERET operand of the TESTCB macroinstruction, the application program
can supply the address of an error-handling routine. This routine is invoked if
some error condition prevents the test from being performed correctly.

List, generate, and execute forms of TESTCB are available; they are designated by
the MF operand. (See Appendix K, “Forms of the manipulative macroinstruction,”
on page 865, for more information.)

The TESTCB macroinstruction can be issued by an application program running in
either 24- or 31-bit addressing mode. To use 31-bit addressing, the application
program must use the VTAM mapping macroinstructions as well as GETMAIN
and FREEMAIN.

Syntax

566 z/OS V2R1.0 Communications Server: SNA Programming

�� TESTCB AM = VTAM
name

, ACB = acb_address
, EXLST = exit_list_address
, NIB = nib_address
, RPL = rpl_address

�

�
, ERET = error_exit_routine_address , field_name = test_value

�

�
, MF = (E , parameter_list_address)

(G , parameter_list_address)
, label

L
(L , parameter_list_address)

, label

��

Input parameters

ACB=acb_address
EXLST=exit_list_address
NIB=nib_address
RPL=rpl_address

Indicates the type and location of the control block whose field is to be tested.

This operand is normally required but can be omitted if a control block length
is being tested. (To test the control block lengths, specify ACBLEN, EXLLEN,
RPLLEN, or NIBLEN for the TESTCB macroinstruction.) Because every control
block of a given type is the same length, you do not have to indicate which
ACB, EXLST, RPL, or NIB you are testing.

AM=VTAM
Identifies this macroinstruction as a VTAM macroinstruction. This operand is
required.

ERET=error_exit_routine_address
Indicates the location of a routine to be entered if TESTCB processing
encounters a situation that prevents it from performing the test.

When the ERET routine receives control, register 15 contains a return code. If
this return code indicates an error, register 0 contains an error code that
indicates the nature of the error. These codes, summarized in the following, are
described fully in Appendix I, “Return codes for manipulative
macroinstructions,” on page 855. Register 14 contains the address of the ERET
exit routine and the remaining registers are unchanged.

Note: If this operand is omitted, the program instructions that follow the
TESTCB macroinstruction should check register 15 to determine whether an
error occurred (indicating that the PSW condition code is meaningless) or not.
To make this check without disturbing the condition code, a branching table
based on register 15 can be used.

field_name=test_value
Indicates a control block field and a value that its contents are to be tested
against. For field name, code one of the field names that appear in the table at
the end of this macroinstruction description (Table 95 on page 568).

The rules for coding test value are defined and summarized in Appendix J,
“Summary of operand specifications,” on page 857.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 567

MF=E, G, or L
Indicates that an execute, generate, or list form of TESTCB is to be used.
Omitting this operand causes the standard form of TESTCB to be used. See
Appendix K, “Forms of the manipulative macroinstruction,” on page 865, for a
description of the execute, generate, and list forms of TESTCB.

Examples
TESTCB ACB=ACB1,PASSWD=(6),AM=VTAM
TESTCB EXLST=EXLST1,SYNAD=SYNADPGM,AM=VTAM

RPL option codes or NIB processing options (including combinations of them) can
also be tested. The test results in an equal condition code if all of the specified
options are present. The following example shows how to test for the presence of
the SPEC and CS option codes of an RPL. The second example illustrates how to
code a similar test for the CONFTXT processing option of an NIB.
TESTCB RPL=RPL1,OPTCD=(SPEC,CS),AM=VTAM
TESTCB NIB=NIB1,PROC=(CONFTXT),AM=VTAM

Completion information

After TESTCB processing is finished and control is either passed to the ERET error
routine or returned to the next sequential instruction, register 15 indicates whether
the test was completed successfully. If the test completed successfully, register 15 is
set to X'00'; if it completed unsuccessfully, register 15 is set to either X'04' or X'08'.

If register 15 is set to X'04' or X'0C' register 0 is also set indicating the specific
nature of the error (see Appendix I, “Return codes for manipulative
macroinstructions,” on page 855, for additional information).

Control block fields applicable for TESTCB

The field names shown in the first column of Table 95 are the values that can be
coded for the field name operand of the TESTCB macroinstruction. The second
column indicates the number of bytes that each field occupies. No lengths are
shown for fields that can only be tested using fixed values (for example,
MACRF=LOGON or CONTROL=QEC).

Table 95. Control block fields that can be tested with TESTCB

ACB fields

Field name Length (bytes)
Description

APPLID 4 Address of application program's symbolic name

PASSWD 4 Address of password

EXLST 4 Address of exit list

ACBLEN 2 Length of ACB, in bytes

ERROR 1 OPEN and CLOSE completion codes

OFLAGS — ACB open-closed indicator (OFLAGS=OPEN)

MACRF — Logon request status (MACRF=LOGON or
NOLOGON)

EXLST fields

568 z/OS V2R1.0 Communications Server: SNA Programming

Table 95. Control block fields that can be tested with TESTCB (continued)

ACB fields

Field name Length (bytes)
Description

LERAD 4 Address of exit routine

SYNAD 4 Address of exit routine

DFASY 4 Address of exit routine

RESP 4 Address of exit routine

SCIP 4 Address of exit routine

TPEND 4 Address of exit routine

RELREQ 4 Address of exit routine

LOGON 4 Address of exit routine

LOSTERM 4 Address of exit routine

NSEXIT 4 Address of exit routine

EXLLEN 2 Length of exit list, in bytes

RPL fields

Field name Length (bytes)
Description

ACB 4 Address of ACB

NIB 4 Address of NIB

ARG 4 CID of session

AREA 4 Address of I/O work area

AREALEN 4 Length of AREA work area, in bytes

RECLEN 4 Length of data in AREA work area, in bytes

AAREA 4 Address of alternate I/O work area

AAREALN 4 Length of AAREA work area, in bytes

ARECLEN 4 Length of data in AAREA work area, in bytes

ECB 4 ECB or address of ECB

EXIT 4 Address of RPL exit routine

RTNCD 1 Recovery action return code

FDBK2 1 Specific error return code

FDBK 1 Additional status information

DATAFLG 1 Alias for FDBK

IO — RPL internal ECB post bit on (IO=COMPLETE)

USER 4 USERFLD data

REQ 1 Request type code

RPLLEN 2 Length of RPL, in bytes

BRANCH — SRB indicator (BRANCH=YES or NO)

OPTCD — RPL option code

CRYPT — Enciphered data flag

SEQNO 4 Sequence number

Chapter 13. Conventions and descriptions of VTAM macroinstructions 569

Table 95. Control block fields that can be tested with TESTCB (continued)

ACB fields

SSENSEO — Outbound system-sense value

SSENSMO 1 Outbound system-sense modifier value

USENSEO 2 Outbound user-sense value

SSENSEI — Inbound system-sense value

SSENSMI 1 Inbound system-sense modifier value

USENSEI 2 Inbound user-sense value

IBSQAC — Inbound action code for STSN request

OBSQAC — Outbound action code for STSN request

IBSQVAL 4 Inbound sequence number for STSN request

OBSQVAL 4 Outbound sequence number for STSN request

POST — Scheduled or responded output (POST=SCHED or
RESP)

RESPOND — Response indicator (RESPOND)

CONTROL — Control command (CONTROL=DATA) indicator

CHAIN — Chain indicator (CHAIN)

CHNGDIR — Change-direction indicator (CHNGDIR)

BRACKET — Bracket indicator (BRACKET)

RTYPE — Receive-type indicator (DFSYN, DFASY, RESP)

STYPE — Send-type indicator (STYPE=REQ or STYPE=RESP)

SIGDATA 4 Information included with a signal request

CODESEL — Type of character encoding (CODESEL=STANDARD
or CODESEL=ALT)

NIB fields

Field name Length (bytes)
Description

NAME 8 Symbolic name of logical unit

USERFLD 4 Arbitrary data associated with session

CID 4 Communication ID

NIBLEN 1 Length of NIB, in bytes

DEVCHAR 8 Device characteristics. See Appendix E, “Control
block formats and DSECTs,” on page 739.

EXLST 4 Address of exit list

RESPLIM 4 Maximum number of concurrent SEND (POST=RESP)
macros

LOGMODE 8 Logon mode name

BNDAREA 4 Address of BIND area

MODE — Mode indicator (MODE=RECORD)

LISTEND — NIB list termination flag (LISTEND=YES or
LISTEND=NO)

SDT — Start-data-traffic flag (SDT=APPL or SDT=SYSTEM)

570 z/OS V2R1.0 Communications Server: SNA Programming

Table 95. Control block fields that can be tested with TESTCB (continued)

ACB fields

PROC — Processing option codes

COND — Session-established flag (CON=YES)

ENCR — Cryptographic level indicator
(ENCR=REQD,ENCR=SEL or ENCR=NONE)

Note: Refer to the notes in Table 135 on page 857, Table 137 on page 858, and Table 138 on
page 860 for information about fields that are not supported by the TESTCB
macroinstruction.

Chapter 13. Conventions and descriptions of VTAM macroinstructions 571

572 z/OS V2R1.0 Communications Server: SNA Programming

Chapter 14. Logic of a simple application program

Figure 93 on page 574 shows the logic of a VTAM application program that
receives a request for a session with a logical unit (LU), establishes the session,
reads input from any session, processes the input, prepares a reply for output, and
writes the output on the session.

Logic of Sample Program 1

Sample program 1 demonstrates use of:
v A LOGON exit routine and the acceptance of a request for a session.
v A request to receive input from any session. (It is assumed in this example that

parallel sessions are not used; that is, the application program can have only a
single session with each LU.)

v Synchronous communication requests.
v Continue-any and continue-specific modes.
v A SEND macroinstruction to send a response rather than a data request.
v A request to schedule output.
v A RESP exit routine to handle a response received from the LU each time the LU

receives data.
v A TPEND exit routine.

For simplicity, error recovery routines and other special routines are omitted; these
routines are discussed and shown in coded form in sample program 1. See
Chapter 15, “Sample code of a simple application program,” on page 579 for a
coded VTAM application program that is based on sample program 1's general
logic.

Sample program 1 might be usable for an application program in which each
transaction between the program and the LU consists of a short inquiry and a
short reply. Because the program waits for the processing for one LU to be
completed before issuing a request for input from any other LU in session with it,
the program might not adequately serve a large number of LUs communicating
with the program at the same time.

The following logic flow diagram assumes that either the user logs on from a
terminal device, or the operator uses the VARY LOGON command.

© Copyright IBM Corp. 2000, 2013 573

The following notes are keyed to Figure 93.

1 ACB1, defined in the program with the ACB macroinstruction, is opened
with an OPEN macroinstruction. For example, this might be coded:
OPEN ACB1

YES

NO

Exit Routines

LOGON
exit routine

Valid
request

Return to
VTAM

RESP
exit routine

Positive
response?

Restore session to
continue-any mode
(RESETSR)

Return to
VTAM

NO

YES

NO

YES

Begin

Open the ACB, allow
the LOGON exit
routine to be scheduled
(SETLOGON)

Response
wanted?

Send response to
logical unit
(schedule it
synchronously)

Process input and
prepare reply

Send data reply
(schedule it
synchronously)

TPEND
flag set?

YES

Close the ACB

End

NO

Mainline Program

Receive input from
any session with
this program
(synchronously)

Reject the request
for a session with the
logical unit (CLSDST)

Accept the request
for a session with the
logical unit (OPNDST)

VTAM application
determines next
action

Figure 93. General logic of Sample Program 1

574 z/OS V2R1.0 Communications Server: SNA Programming

ACB1 contains:

ACB1 ACB AM=VTAM,APPLID=APPL1,EXLST=EXLST1, C
MACRF=LOGON

APPL1 contains:

APPL1 DC X’05’
DC C’PROG1’

PROG1 is the name of the APPL statement used to define the program
during VTAM definition.

EXLST1 contains the names of VTAM exit routines used by the application
program; some of these routines are shown in Figure 93 on page 574.

After the OPEN macroinstruction, a SETLOGON macroinstruction is used
to tell VTAM that it can now schedule the LOGON exit routine for the
program. The macroinstruction might be coded:
SETLOGON RPL=RPL1,OPTCD=START

2 The LOGON exit routine, whose address is specified in the LOGON
operand of the EXLST macroinstruction (whose address is in turn specified
in the ACB macroinstruction), is scheduled when VTAM receives a
session-establishment request from or on behalf of an LU. Providing no
other asynchronous exit routine is being executed, the LOGON exit routine
is given control. When the LOGON exit routine is completed, either the
next-scheduled exit routine receives control or the mainline program
regains control at its next sequential instruction.

An INQUIRE macroinstruction can be used to obtain a user logon message
when there is one. The logon message is the user data field of the request
(for example, an Initiate from the LU) that originally requested the session:
INQ1 INQUIRE RPL=RPL1CONN,OPTCD=LOGONMSG, C

ACB=ACB1,NIB=NIB1,AREA=LGNMSG, C
AREALEN=100

By examining the logon message in LGNMSG, the exit routine determines
whether the LU should be in session with the program. If so, an OPNDST
macroinstruction like this can be issued:
OPNDST RPL=RPL1CONN,OPTCD=(ACCEPT,SPEC),NIB=NIB1

An NIB and an RPL are required for the OPNDST request; if the OPNDST
is synchronous, the same NIB and RPL can be reused by the OPNDST each
time the LOGON exit routine is entered. If necessary, the suggested session
parameter can be obtained by using an INQUIRE macroinstruction with
OPTCD=SESSPARM specified; the NIB can then be properly initialized
based on this information prior to issuing the OPNDST macroinstruction.
(The MODCB macroinstruction or the ISTDNIB DSECT can also be used to
initialize the NIB.)

If the LU is not to be allowed to use the program, a CLSDST
macroinstruction must be issued to notify VTAM that the LU's request for
a session is being rejected. PARMS=(SONCODE=code) can be coded on the
CLSDST macroinstruction to provide a 1-byte code explaining why the
session initiation request was rejected. Although not shown in the
flowchart, it might be desirable to establish a session with the LU (using

Chapter 14. Logic of a simple application program 575

OPNDST), write an appropriate request to it explaining to the LU why the
session is being terminated, and then terminate the session.

3 In this example, the first request to receive input from any session with the
program is issued in the mainline program. The request is synchronous;
that is, the program indicates that it waits until input is received from one
of the sessions. In making the request, the program identifies an RPL and
an input area. The macroinstruction can be coded:
RECANY RECEIVE RPL=RPL1,AREA=AREA1,AREALEN=100, C

RTYPE=DFSYN,OPTCD=(SYN,ANY,CS)

or it can be coded:
RECANY RECEIVE RPL=RPL1

where the RPL is coded:
RPL1 RPL AM=VTAM,ACB=ACB1,AREA=AREA1, C

AREALEN=100,RTYPE=DFSYN, C
OPTCD=(SYN,ANY,CS)

The input request can be coded with some operands appearing in the RPL
and others in the macroinstruction. If an operand that appears in the RPL
is also coded in the macroinstruction, the value in the macroinstruction
replaces the value in the RPL and is in effect not only for the current
operation but for subsequent operations that use the RPL (unless changed
by a manipulative macroinstruction, by assembler instructions using a
DSECT, or by a subsequent request using the RPL).

RTYPE=DFSYN is specified to ensure that the receipt of a data request or
of a normal-flow data-flow-control request completes the RECEIVE. (The
receipt of a response in this sample program causes the RESP exit routine
to be entered.)

OPTCD=CS is specified to ensure that the session with the LU whose input
is read by the RECEIVE is put into continue-specific mode until its inquiry
has been successfully answered. Thus, if the session is still in
continue-specific mode when the next RECEIVE OPTCD=ANY is issued,
input from that session does not satisfy the continue-any-mode request.
The session is put back into continue-any-mode when a response has been
received acknowledging that the reply to the inquiry arrived successfully;
in this sample program, this is done in the RESP exit routine.

Assume that an LU sends in the first inquiry to the program. The
synchronous RECEIVE is completed. If register 15 contains 0, the operation
was successful. If register 15 contains some value other than 0, an error or
special condition occurred. A LERAD or SYNAD exit routine in the
program might have been entered, and might have returned a code in
register 15 or register 0 that indicates further action for the program to
take. Whether or not a LERAD or SYNAD was entered, information is
available in various feedback fields of the RPL for analysis. One of the
errors that can occur is that the request arrived as an exception request;
this information is available as one of the feedback return codes in the
RPL.

Assuming that the operation was successful, the identity of the session
whose input was received is provided in the ARG field of the RPL. Data is
located in AREA1, and a SHOWCB or TESTCB or assembler instructions
can be used to determine its length (by examining the RECLEN field of the
RPL).

4 The LU that sends the data can indicate that the program should issue a

576 z/OS V2R1.0 Communications Server: SNA Programming

response to verify that the input has been received. There might be some
occasions when the LU wants a response, perhaps to verify that a data
base update request has been received in order to free its buffers. On other
occasions, such as an inquiry request, the LU might not want a response
(or want a response only if an exception condition occurs); the answer to
its inquiry will be forthcoming soon and will be implicit assurance that the
inquiry arrived. The application program can examine the RESPOND field
of the RPL to determine whether, and under what conditions, a response is
required. If completion information following the RECEIVE indicates that
the input was received normally and the RESPOND field indicates that a
definite response is required, it is sent with a SEND macroinstruction that
can be coded:
SENDRESP SEND RPL=RPL1,STYPE=RESP,OPTCD=SYN

If completion information following the RECEIVE indicates that an
exception request was received (in which case there will be no input data
to process), and the RESPOND field indicates that a response is requested,
it is sent with a SEND macroinstruction that might be coded:
SENDRESP SEND RPL=RPL1,STYPE=RESP,OPTCD=SYN, C

RESPOND=EX

If the LU wants a response only in the event of an exception, the
RESPOND field will be set to EX after the RECEIVE is posted complete
and does not have to be reset in the SEND. Before issuing this SEND, the
application program places sense information defining the exception in the
RPL.

The same RPL used for the RECEIVE request can be reused for the SEND.
Because a response is being sent (STYPE=RESP), no data area or length is
needed. For a response, POST=SCHED is assumed. The operation is
specified to be synchronous. However, because it is only being scheduled,
the operation will usually take a relatively short time. As soon as the
operation has been scheduled and the SEND is completed, the RPL can be
reused.

5 The inquiry is analyzed and a reply is prepared by a processing routine.
Disk I/O might be required. If so, the program waits until the reply is
ready.

6 The reply is then sent with a SEND that requests the transmission of data
(STYPE=REQ). In this sample program, the same area used to receive input
is used for output. The macroinstruction can be coded:
SENDDATA SEND RPL=RPL1,STYPE=REQ,RESPOND=(NEX,FME), C

OPTCD=SYN,POST=SCHED

Because the RPL control block currently contains the value AREA=AREA1,
this operand need not be specified in the SEND macroinstruction. So that
the application program can determine whether the LU receives the data
successfully, a response from the LU is requested (RESPOND=(NEX,FME)).
The macroinstruction requests is completed synchronously (OPTCD=SYN)
as soon as the sending of the output has been scheduled. Completion of
the reply to the inquiry is determined as a result of the program's receiving
the definite response 1 in the RESP exit routine.

With the reply under way, a branch is made back to the RECEIVE so that
input that might have been read into VTAM's buffers from another session
(that is not in continue-specific mode) is read into the application program
for processing.

Chapter 14. Logic of a simple application program 577

7 If the VTAM network is being halted, the program's TPEND exit routine
(not shown) is scheduled and entered by VTAM. This routine can indicate
to the mainline program that the program is to terminate. The TPEND exit
routine or the mainline program later can send final requests to LUs and
do other close processing depending on whether the closedown is
immediate or a routine end-of-day closedown. The mainline program,
discovering the closedown requirement, must issue a CLOSE
macroinstruction to disassociate the application program from the network;
any sessions not yet terminated as a result of the CLOSE are terminated.
The CLOSE macroinstruction must be issued in the mainline program and
not in the TPEND exit routine. The program terminates by returning
control to the operating system.

8 When a response to the data sent in step 6 is received by VTAM, the RESP
exit routine is scheduled and entered. On entry, register 1 points to a
parameter list that points to a read-only RPL in VTAM's storage, whose
feedback fields can be examined to determine the kind of response
received.

9 If a negative response was received, the program can determine from sense
information in the RPL whether to retry the operation, terminate the
session, or take some other action.

10 If a positive response was received, the session can be returned to
continue-any mode so that the next RECEIVE for input from any session
(at step 3) includes this session as one whose input can be read by the
application program. This is done by issuing:
RESETSR RPL=RPL1R,OPTCD=CA,RTYPE=DFSYN

The RESP exit routine must have its own RPL available. The identity of the
session to be returned to continue-any mode must be put in the RPLARG
field of the exit routine's RPL. The RESP exit routine then returns control to
VTAM.

578 z/OS V2R1.0 Communications Server: SNA Programming

Chapter 15. Sample code of a simple application program

This chapter contains the assembler language instructions for a VTAM application
program, SAMP1. The logic for this program is similar to the logic for sample
program 1 discussed in Chapter 14, “Logic of a simple application program,” on
page 573. The program includes DSECTs for the ACB, EXLST, NIB, and RPL
control blocks. You can obtain the same results using manipulative
macroinstructions instead of DSECTS.

Note: The program is presented primarily to provide sets of integrated examples,
showing how the VTAM macroinstructions are used in real coding. The program is
not intended to be coded and used by an installation.

What SAMP1 does
The SAMP1 application communicates with one or more logical units (LUs) in a
network. SAMP1 is activated by input from an LU. (The LU might have created
the input request as the result of terminal operator input received by the LU.)
Depending on the code at the beginning of each request, SAMP1 performs a
simple action, such as sending the request back to the LU.

Although SAMP1 can communicate with a number of different LUs during its
execution, it is synchronous in its operation; that is, a reply is sent to one LU
before a request is accepted from another LU. The use of synchronous processing
simplifies program design but makes LUs unnecessarily interdependent,
particularly during the I/O associated with OPNDST and CLSDST.

A program that would be executed in an LU with which SAMP1 might
communicate is not shown.

How SAMP1 relates to Sample Program 1 (Chapter 14)
SAMP1 is based on the general logic of Sample Program 1 described in Chapter 14,
“Logic of a simple application program,” on page 573.

However, the logic of SAMP1 differs slightly from the logic of Sample Program 1.
The request to receive input from any LU is specified as asynchronous in SAMP1.
This allows the TPEND ECB to be checked following each issuance of a RECEIVE
macroinstruction and the program to be closed if the TPEND ECB has been posted.
In the logic in Sample Program 1 in Chapter 14, “Logic of a simple application
program,” on page 573, there is no opportunity to notice that the TPEND ECB has
been posted while waiting for input to arrive and the synchronously specified
RECEIVE to complete. Although the RECEIVE in SAMP1 is specified as
asynchronous, it is effectively synchronous as far as handling LU input and output
is concerned; the multiple waits wait only for posting of the one RECEIVE ECB or
the TPEND ECB. (A CHECK macroinstruction is required to test for successful
completion of the RECEIVE and to free the RPL for reuse.)

The TPEND, LERAD, SYNAD, and LOSTERM exit routines are not shown in
Chapter 14, “Logic of a simple application program,” on page 573, in order to
simplify the example in that chapter. They are included here because a complete
program requires them. Although SAMP1's LOSTERM, LERAD, and SYNAD exit
routines are not as complete in their ability to handle errors and special conditions

© Copyright IBM Corp. 2000, 2013 579

as some installations can require, they provide an idea of the linkage and
processing instructions that a LOSTERM, LERAD, or SYNAD exit routine might
contain.

Sample Program 1 in Chapter 14, “Logic of a simple application program,” on page
573, demonstrates general logic that a simple program might contain; no data or
request interface is described. Because SAMP1 is a complete program, it requires a
defined data interface.

This version of SAMP1 uses codes in binary rather than hexadecimal in order to
simplify the LU-LU operator interface. This is implemented in SAMP1 by means of
TM and BO instructions in place of CLI and BE instructions.

Data interface between SAMP1 and LUs

Input: SAMP1 expects to receive a data request in this format from any LU with
which it has a session:

The header is in this format:

Figure 94. Data request format

580 z/OS V2R1.0 Communications Server: SNA Programming

The sense information is present on input only if the code is B'xxxx xxx1';
otherwise, the sense information field is reserved. The sense information is in this
format:

The sense information in the header allows the receiving of an exception request
by SAMP1 to be simulated when the LU (or the terminal operator associated with
the LU) requests it. The code contains B'xxxxxxx1' and the sense information in the
header contains what VTAM would place in the SSENSEI, SSENSMI, and USENSEI
fields of the RPL if a real exception request were to be received. To send the
response to the simulated exception request, SAMP1 must move the sense
information from the request header to the SSENSEO, SSENSMO, and USENSEO
fields of the RPL that is used to send the response.

If the code contains B'xxxx x1x1' (that is, deliberate exception and echo), the LU
not only expects a negative response to be returned, but wants a request sent that
includes the sense information in the header of the request that just arrived (the
simulated exception request). This causes the request sent now by SAMP1 to be
interpreted by the LU as a simulated exception request, in turn causing the
program in the LU to return a negative response back to SAMP1, driving the RESP
exit routine (which calls the SYNAD exit routine).

In addition to the header information, up to 94 bytes of data can be received in the
input request (excess data is truncated and ignored).

When SAMP1 receives a response to an output request it has sent, VTAM
schedules its RESP exit routine. Whether the response is positive or negative, no
input area is required; the information is present in fields of the read-only RPL.

Figure 95. Header format

Figure 96. Sense information format

Chapter 15. Sample code of a simple application program 581

Output: SAMP1 sends a request using the same area and format that is used for
input. On output, it sets the code to:

B'1xxx x011'
Means this is the simulated exception request that you requested.

B'1000 0100'
Means forward this request to the terminal operator and then send it back
to me. (This is used only from the LOGON exit routine and ensures that
the mainline program RECEIVE is driven whether or not there is a
terminal operator.)

No output area is required when sending either a positive or a negative response.

Notes on SAMP1

The following notes supplement the general logic description of Sample Program 1
in Chapter 14, “Logic of a simple application program,” on page 573, and the
prologue and comments provided with the source listing of “SAMP1” on page 585.

Mainline program
The request input area, AREA1, is initialized to asterisks to aid in debugging. The
request length as well as the contents are evident if asterisks (rather than blanks)
are printed when the request is presented to the terminal operator who is driving
the program. (Other printable non-alphabetic characters could have been used as
well.)

After the RECEIVE is completed, a CHECK is issued. If an error or special
condition has occurred, the LERAD or SYNAD exit routine is entered. If the exit
routine is able to recover successfully, it sets register 15 to 0; the mainline program
is unaware that the exit routine was entered. If the exit routine is not able to
recover successfully, it terminates the session with the LU or performs a SESSIONC
CONTROL=CLEAR and a SESSIONC CONTROL=SDT, and sets register 15 to
nonzero. The mainline program continues with other input, looping back to reissue
the RECEIVE.

The RECEIVE can be completed by receipt of an expedited-flow (DFASY) or
normal-flow (DFSYN) request. For example, receipt of Request Shutdown (or any
other DFASY request) causes SAMP1 to issue CLSDST for that LU before reissuing
the RECEIVE.

A check is made to see whether a simulated exception request has arrived; if so, a
deliberate negative response must be returned. If a real exception request were to
be received (requiring a negative response), the SYNAD exit routine would be
scheduled as a result of the CHECK. In this case, the SYNAD exit routine would
send a negative response and possibly use the SESSIONC macroinstruction to clear
data traffic, reset the session to CA mode, and set an unsuccessful recovery
indication in register 15 to allow the mainline program to reissue its RECEIVE.

Responses: SAMP1 is intended to handle all the valid combinations of no
responses, exception response only, and definite responses. When instructed to
echo the data (B'xxxx x1xx' in the first byte of the data header), it leaves the
response types (RESPOND=values) unchanged, making it possible to force SAMP1
to send a request to the LU asking for no response or exception response only. In
such a case, SAMP1 makes sure that the LU's session is in continue-any mode on
completion of SEND rather than on receipt of a response by the RESP exit routine.

582 z/OS V2R1.0 Communications Server: SNA Programming

When SAMP1 asks for a definite response, it leaves the LU's session in
continue-specific mode until that response is processed by the exit routine. The
next request (or requests) might be queued in VTAM's pageable buffers, but is
ignored until the response has been handled.

Function management and data-flow-control protocols: SAMP1 does not modify
the settings related to FM protocols in the RPLs, except when requested to send an
exception response. This means that fields like FMHDR, CHAIN, BRACKET,
CODESEL, and CHNGDIR are echoed back to the LU, ignoring the fact that this
can be a protocol violation. In addition, SAMP1 processes (for example, by
echoing) each chain request separately.

Ending the program: Two ways exist to end the program. Either a request can be
sent from the LU that says, “CLOSE ACB,” or the VTAM operator can halt VTAM,
causing the TPEND exit routine to be driven. In the first case, a TPEND flag is set;
in the second, a TPEND ECB is posted. The mainline program checks both of these
during each of its loops, branching to close the ACB if a close indication is found.
Prior to closing the ACB, the TPEND flag is set to X'FF' to prevent any undesired
activity while the CLOSE macroinstruction is being executed by VTAM. The
TPEND flag is checked by the LOGON, RESP, and LOSTERM exit routines when
each is entered to make sure the exit routine has not been scheduled while closing
the ACB is in progress. If the flag is set, the exit routine returns immediately to
VTAM.

LOGON exit routine
Notice in the manipulative macroinstruction version how the symbolic name of the
LU for which a logon request has been received is placed in the NIB prior to
establishing the session. NAME=(*,0(4)) is specified in the MODCB
macroinstruction.

The last 4 bytes of the 8-byte symbolic name are placed in the USERFLD of the
NIB (USERFLD=(*,4(4)) specified in the MODCB macroinstruction) for aid in
debugging. These bytes identify the specific LU more easily than the CID (located
in the RPL ARG field). This part of the symbolic name is available in the USER
field of the RPL, except in the case of the RPL used for OPNDST.

An arbitrary validation of the LU is used: a check that the first 3 characters of the
logon message are XYZ.

The IBM-supplied macroinstruction, ISTDNIB, is used to generate a dummy
control section for the NIB. This enables SAMP1 to move the LU's symbolic name
and associated user field into the NIB. A CSECT statement must follow the
ISTDNIB statement in the constants area to allow SAMP1 CSECT to resume. None
of the field names in SAMP1 begins with any of the reserved combinations (NIB,
RPL, ACB, among others).

A conditional completion code of nonzero following INQUIRE at label INQUIRE,
indicating a logon message that is too long, causes rejection of the session with the
LU.

The session with the LU is established with an OPNDST. (Note that OPTCD=SYN
is used on OPNDST. This, coupled with the fact that the macroinstruction is issued
in an exit routine, means that all processing waits for the responses involved.)
Then SEND is used to send a “logon accepted” message to the LU. This request is
initialized to contain X'84' in the code byte of the header, meaning “Forward this

Chapter 15. Sample code of a simple application program 583

data to the terminal operator and then send it back to the VTAM application
program”. This version of SAMP1 includes the symbolic name of the LU in this
request. This can help in cases where symbolic names are assigned dynamically.

RESP exit routine
Because the read-only RPL whose address is provided on entry to the RESP exit
routine cannot be used to reset the LU to CA mode, an RPL (PRPLR) is reserved in
the RESP exit routine for this purpose. The address of the ACB is obtained from
the parameters passed on entry. Because only one asynchronous exit routine can be
executing at a time and all RPL-based requests in SAMP1's exit routines are
synchronous, one RPL could have been shared among all the exit routines.

In the event a negative response is received, the RESP exit routine sets up the
correct linkage and calls the SYNAD exit routine directly. If the SYNAD exit
routine is able to recover successfully (SAMP1 does not attempt to resend any
requests), it sets register 15 to 0, and the RESP exit routine restores registers 1–12
and resets the session to CA mode. If it is not able to recover successfully, any
necessary action, such as terminating the session with the LU, is taken in the
SYNAD exit routine. The RESP exit routine need only return to VTAM.

LERAD and SYNAD exit routines
SAMP1's LERAD and SYNAD exit routines are re-enterable because the LERAD
and SYNAD exit routines can be entered as the result of RPL-based requests issued
by both the mainline program and exit routines other than LERAD and SYNAD.
For example, the RECEIVE in the mainline program could cause the SYNAD exit
routine to be entered. While the SYNAD is being executed as an extension of the
mainline program, it could be interrupted and the LOGON exit routine given
control. The OPNDST in the LOGON exit routine could cause the SYNAD exit
routine to be re-entered, thus destroying any storage that might have values for the
SYNAD exit routine as an extension of the mainline program. For this reason,
SAMP1's LERAD and SYNAD exit routines obtain unique storage areas each time
they are entered.

If the SYNAD exit routine is scheduled as the result of an RPL-based request that
is issued within the SYNAD exit routine (that is, if the SYNAD exit routine is
entered recursively), SAMP1 terminates with a dump. To determine recursion,
SAMP1 uses the leftmost bit of register 1, which also contains the RPL address on
entry to the SYNAD exit routine. Before issuing any RPL-based macroinstruction in
the exit routine, this bit is set on; on entry, if this bit is found to have been set, the
program terminates.

In the manipulative macroinstruction version, a series of TESTCB and MODCB
macroinstructions is used to determine the SSENSEI setting to allow it to be set in
the SSENSEO field before sending a negative response. This is required because the
value for SSENSEO cannot be specified using register notation or in the FIELDS
parameter of SHOWCB because it is a bit-encoded field.

The LERAD exit routine illustrates three cases that cause entry to LERAD but are
not logic errors in the context of SAMP1, which is programmed to ignore them.
These are cases that can arise due to the use of asynchronous exit routines.

584 z/OS V2R1.0 Communications Server: SNA Programming

LOSTERM exit routine
A LOSTERM exit routine determines why the session with the LU was lost and
takes appropriate action. The SAMP1 LOSTERM exit routine does an immediate
CLSDST for all LOSTERM reason codes.

SAMP1

* SAMP1 (SAMPLE PROGRAM 1) IS DESIGNED TO BE
* RELATIVELY EASY TO UNDERSTAND. IT ILLUSTRATES:
*
* 0 OPENING AND CLOSING A PROGRAM, INCLUDING A TPEND
* EXIT ROUTINE.
*
* 0 ESTABLISHING SESSIONS WITH LOGICAL UNITS IN A LOGON
* EXIT ROUTINE.
*
* 0 RECEIVING AND SENDING REQUESTS AS SYNCHRONOUS OPERATIONS.
* NOTE THAT THE RECEIVE USES OPTCD=ASY AND AN ECB FOLLOWED
* BY A MULTIPLE WAIT, IN ORDER TO ALLOW WHAT TPEND DOES
* (FOR EXAMPLE: SET A CLOSEDOWN SWITCH FOR MAINLINE) TO TAKE
* EFFECT EVEN DURING A LULL IN COMMUNICATION ACTIVITY.
*
* 0 RESETTING A SESSION TO CONTINUE-ANY MODE.
*
* 0 RECEIVING AND SENDING RESPONSES TO REQUESTS.
*
* 0 RESP, TPEND, LOSTERM, LERAD, AND SYNAD EXIT ROUTINES.
*
* 0 THE LINKAGE BETWEEN THE MAINLINE PROGRAM, VTAM, AND
* EXIT ROUTINES.
*
* SAMP1 (SAMPLE PROGRAM 1) UTILIZES THE FOLLOWING MACROS TO REMOVE
* OPERATING SYSTEM DEPENDENCIES
*
* 0 ENTER - ENTRY POINT LINKAGE FOR ROUTINES
* 0 EXIT - EXIT POINT LINKAGE FOR ROUTINES
* 0 GETSTOR - OBTAIN STORAGE FROM OPERATING SYSTEM
* 0 FREESTOR - RETURN STORAGE TO OPERATING SYSTEM
* 0 CHKECB - CHECKS ECB
* 0 ABTERM - HANDLES ABNORMAL TERMINATION
*
* SAMP1 (SAMPLE PROGRAM 1) IS ORGANIZED INTO:
*
* 0 MAINLINE PROGRAM.
* 0 LOGON EXIT ROUTINE.
* 0 RESP EXIT ROUTINE.
* 0 LERAD EXIT ROUTINE.
* 0 SYNAD EXIT ROUTINE.
* 0 TPEND EXIT ROUTINE.
* 0 LOSTERM EXIT ROUTINE.

MACRO
&NAME ENTER &SAVAREA=,&SAVE=,&TPEND=,&XTRA=0,&R14=,&OS=

*
* MACRO: ENTER - ROUTINE ENTRY LINKAGE
*
* PARAMETERS:
* SAVAREA: GET - GET THE STORAGE FOR A SAVEAREA
* NONE - NO SAVEAREA, DO NOT STORE REGISTERS
* SAVEAREA - NAME OR ADDRESS OF SAVEAREA
*
* SAVE: YES - SAVE THE CALLERS REGS IN THE SAVEAREA
* POINTED TO BY R13

Chapter 15. Sample code of a simple application program 585

* NO - DO NOT SAVE THE CALLERS REGS
* MAINLINE - DO NOT SAFE CALLERS REGS AND
* DO NOT DROP REG 12
*
* TPEND: CHECK - CHECK THE TPENDFLG, AND IF IT HAS
* BEEN TURNED ON, THEN EXIT W/O ANY ACTION
* NULL - DO NOT CHECK THE TPENDFLG
*
* XTRA: NUMBER - # OF EXTRA BYTES TO GET WHEN GETTING
* SAVEAREA
*
* R14: (REG) - REGISTER TO SAVE R14 IN FOR RETURN
* ADDRESS - ADDRESS OF PLACE TO SAVE R14
*
* OS: MVS - GENERATE LINKAGE AND MACROS FOR MVS
* VSE - GENERATE LINKAGE AND MACROS FOR VSE
*
* RETURNS:
* NORMAL:
* R12: BASE
* R13: SAVEAREA (IF REQUESTED)
* CALLERS REGS SAVED IN CALLERS SAVEAREA IF REQUESTED
* R2,R3,R6,R15: MAY BE DESTROYED
* R14(P) P CONTAINS R14 IF REQUESTED
*
* ABNORMAL:
* ABEND: CAN’T GET STORAGE, OR PROCESSING ERROR
* IMMEDIATE EXIT: TPEND=CHECK IS SPECIFIED AND TRUE
*
**

GBLC &SYSTEM
LCLC &SAVED
GBLA &TPRET
GBLC &NEEDRET

&NEEDRET SETC ’
AIF (’&SAVE’ EQ ’MAINLINE’).SKIPDRP
DROP R12 FROM PREVIOUS USING

.SKIPDRP ANOP
AIF (’&OS’ EQ ’’).SKIPSYS

&SYSTEM SETC ’&OS’
.SKIPSYS ANOP
&NAME DS 0H
.*

AIF (’&SAVE’ NE ’YES’).SKIPSAV
STM R14,R12,12(R13) SAVE CALLER’S REGS

&SAVED SETC ’YES’
.SKIPSAV ANOP

BALR R12,0 ESTABLISH BASE
USING *,R12 ESTABLISH ADDRESSABILITY
AIF (’&TPEND’ NE ’CHECK’).SKIPCHK
L R6,=A(TPENDFLG)
TM 0(R6),X’FF’ HAS TPEND BEEN DRIVEN?

&TPRET SETA &TPRET+1
&NEEDRET SETC ’YES’

BO RET&TPRET YES, SO JUST EXIT
.SKIPCHK ANOP

AIF (’&R14’ EQ ’’).SKIPR14
AIF (’&R14’(1,1) EQ ’(’).DOLOAD
ST R14,&R14 SAVE RETURN

ADDRESS
AGO .SKIPR14

.DOLOAD ANOP
LR &R14,R14

.SKIPR14 ANOP
AIF (’&SAVAREA’ EQ ’NONE’).SKIPMST
AIF (’&SAVAREA’ NE ’GET’).SKIPGET
LR R2,R0 SAVE R0

586 z/OS V2R1.0 Communications Server: SNA Programming

LR R3,R1 SAVE R1
GETSTOR 72+&XTRA GET SAVEAREA
LTR R15,R15 OK?
BZ ER&SYSNDX YES, CONTINUE
ABTERM 4

ER&SYSNDX DS 0H
LR R15,R1 SETUP R15
LR R0,R2 RESTORE R0
LR R1,R3 RESTORE R1
AGO .SKIPLD

.SKIPGET ANOP
AIF (’&SAVAREA’ EQ ’’).SKIPLD
L R15,=A(&SAVAREA) GET ADDRESS

OF OUR SAVEAREA
.SKIPLD ANOP

AIF (’&SAVE’ EQ ’MAINLINE’).SKIPFOR
ST R13,4(R15) SAVE BACKWARD

POINTER
.*

AIF (’&SAVE’ NE ’YES’).SKIPFOR
ST R15,8(R13) SAVE FORWARD

POINTER
.SKIPFOR ANOP

LR R13,R15 SETUP SAVEAREA
POINTER
.SKIPMST ANOP

MEND**
*
* MACRO: EXIT - ROUTINE EXIT LINKAGE
*
* PARAMETERS:
* SAVEAREA: FREE - FREE THE STORAGE FOR A SAVEAREA
*
* RESTORE: YES - RESTORE THE CALLERS REGS
* NO - DO NOT RESTORE THE CALLERS REGS
*
* XTRA: NUMBER - # OF EXTRA BYTES TO FREE WHEN FREEING
* SAVEAREA
*
* R14: (REG) - REGISTER THAT R14 WAS SAVED IN
* ADDRESS - ADDRESS OF PLACE R14 WAS SAVED
*
* RETURNS:
* NORMAL:
* R15: RETURN CODE IF SPECIFIED
* OTHER REGS RESTORED IF SPECIFIED
*
* ABNORMAL
** ABEND FOR FREEMAIN FAILURES
*
**

MACRO
&NAME EXIT &RESTORE=,&R14=,&SAVAREA=,&RC=YES,&XTRA=0,&EOJ=NO

GBLC &SYSTEM
GBLA &TPRET
GBLC &NEEDRET

&NAME DS 0H
AIF (’&RESTORE’ NE ’YES’).SKIPRS1
L R2,4(R13) GET BACKWARD

SAVEAREA
AIF (’&RC’ NE ’YES’).SKIPRC1
ST R15,16(R2) SAVE RETURN

CODE
AGO .SKIPRC1

.SKIPRS1 ANOP
AIF ((’&RC’ NE ’YES’) OR (’&RESTORE’

NE ’YES’)).SKIPRC1

Chapter 15. Sample code of a simple application program 587

LR R3,R15 SAVE RETURN
CODE
.SKIPRC1 ANOP

AIF (’&SAVAREA’ NE ’FREE’).SKIPFRE
FREESTOR LEN=72+&XTRA,AREA=(R13)

.SKIPFRE ANOP
AIF (’&RESTORE’ NE ’YES’).SKIPRS2
LR R13,R2 SETUP OLD SAVEAREA
LM R14,R12,12(R13) RESTORE ALL

REGS
AGO .SKIPRC2

.SKIPRS2 ANOP
AIF ((’&RC’ NE ’YES’) OR (’&RESTORE’ NE ’YES’)).SKIPRC2
LR R15,R3
AIF ((’&SYSTEM’ EQ ’VSE’) AND (’&EOJ’

EQ ’YES’)).DOEOJ
.SKIPRC2 ANOP

AIF (’&R14’ EQ ’’).DORET
AIF (’&R14’(1,1) NE ’(’).DOLOAD
LR R14,&R14 GET RETURN

ADDRESS
AGO .DORET

.DOLOAD ANOP
L R14,&R14 GET RETURN

ADDRESS
.DORET ANOP

BR R14
AGO .TRYRET

.DOEOJ ANOP
EOJ

.TRYRET ANOP
AIF (’&NEEDRET’ NE ’YES’).SKIPRET

RET&TPRET DS 0H
AIF (’&RESTORE’ NE ’YES’).SKIPRS3
LM R14,R12,12(R13)

.SKIPRS3 ANOP
AIF ((’&SYSTEM’ EQ ’VSE’) AND (’&EOJ’

EQ ’YES’)).DOEOJ2
BR R14
MEXIT

.DOEOJ2 ANOP
EOJ

.SKIPRET ANOP MEND
**
*
* MACRO: GETSTOR - GET STORAGE
*
* PARAMETERS:
* LEN: NUMBER - # OF BYTES OF STORAGE TO GET
*
* RETURNS:
* IF LEN BYTES OF STORAGE ARE SUCCESSFULLY OBTAINED,
* THEN R1 CONTAINS THE ADDRESS OF THE AREA AND R15
* CONTAINS ZERO
*
* IF THE STORAGE CANNOT BE OBTAINED THEN THE PROGRAM
* IS ABNORMALLY TERMINATED
*
*
**

MACRO
&NAME GETSTOR &LEN

GBLC &SYSTEM
AIF (’&SYSTEM’ EQ ’VSE’).GETVSE
GETMAIN R,LV=&LEN
MEXIT

.GETVSE ANOP

588 z/OS V2R1.0 Communications Server: SNA Programming

GETVIS ADDRESS=(R1),LENGTH=&LEN
MEND**

*
* MACRO: FREESTOR - FREE STORAGE
*
* PARAMETERS:
* LEN: NUMBER - # OF BYTES OF STORAGE TO FREE
*
* AREA: ADDR - ADDRESS OF AREA TO FREE
*
* RETURNS:
* IF LEN BYTES OF STORAGE ARE SUCCESSFULLY FREED, THEN
* R15 CONTAINS ZERO
*
* IF THE STORAGE CANNOT BE FREED THEN THE PROGRAM
* IS ABNORMALLY TERMINATED
*
**

MACRO
&NAME FREESTOR &LEN=,&AREA=

GBLC &SYSTEM
AIF (’&SYSTEM’ EQ ’VSE’).FREEVSE
FREEMAIN R,LV=&LEN,A=&AREA
MEXIT

.FREEVSE ANOP
FREEVIS ADDRESS=&AREA,LENGTH=&LEN
MEND**

*
* MACRO: CHKECB - CHECK ECB
*
* PARAMETERS:
* ECB: SPECIFIES ECB TO CHECK
*
* RETURNS:
* TM CONDITION CODE IS SET DEPENDING ON ECB BEING POSTED
*
**

MACRO
&NAME CHKECB &ECB

GBLC &SYSTEM
LCLA &POST
LCLA &BYTE
AIF(’&SYSTEM’ EQ ’VSE’).CKVSE

&POST SETA X’40’
&BYTE SETA 0

AGO .CHECK
.CKVSE ANOP
&POST SETA X’80’
&BYTE SETA 2
.CHECK ANOP
&NAME TM &ECB+&BYTE,&POST

MEND
**
*
* MACRO: ABTERM - ABNORMAL TERMINATE
*
* PARAMETERS:
* 1ST POSITIONAL PARAMETER IS THE ABEND CODE, DEFAULTS TO ZERO
*
* RETURNS:
* (IT DOESN’T)
*
**

MACRO
&NAME ABTERM

GBLC &SYSTEM
LCLC &CODE

Chapter 15. Sample code of a simple application program 589

AIF (N’&SYSLIST EQ 1).SETCODE
&CODE SETC ’0’

AGO .DOIT
.SETCODE ANOP
&CODE SETC ’&SYSLIST(1)’
.DOIT ANOP

AIF (’&SYSTEM’ EQ ’VSE’).ABVSE
&NAME ABEND &CODE,DUMP

MEXIT
.ABVSE ANOP
&NAME LA R10,&CODE

JDUMP
MEND

*
* NAME = MAINLINE PROGRAM
*
* FUNCTION = OPENS THE ACB, ISSUES SETLOGON, RECEIVES INPUT FROM
* ANY ESTABLISHED SESSION, SENDS A RESPONSE IF REQUESTED,
* FORWARDS INPUT TO A PROCESSOR, SENDS A REPLY PREPARED BY THE
* PROCESSOR, AND LOOPS BACK TO RECEIVE MORE INPUT AFTER SENDING
* THE REPLY. CLOSES THE ACB (CLOSES THE PROGRAM) IF A TPEND ECB
* IS POSTED BY VTAM HALT OR IF ’CLOSE ACB’ IS ENTERED AS A
* A REQUEST.
*
* NOTE: THE PROGRAM HANDLES ONE REQUEST OF AN INPUT CHAIN AT A
* TIME. BE CAREFUL WITH HDX-FF PROTOCOLS.
*
* ENTRY POINT = SAMP1
*
* INPUT = REQUESTS RECEIVED FROM SESSIONS ESTABLISHED WITH LOGICAL
* UNITS; A POSTED TPEND ECB. EACH REQUEST CONTAINS A 6-BYTE
* HEADER DESCRIBING THE ACTION TO BE TAKEN. (SEE EQUATES IN
* MAINLINE PROGRAM CONSTANTS.) NOTE THAT DFASY INPUT
* CAUSES A CLSDST. BRACKET PROTOCOL IS NOT SUPPORTED AND
* CAUSES UNPREDICTABLE RESULTS.
*
* OUTPUT = REQUESTS AND RESPONSES SENT TO LOGICAL UNITS AS A RESULT
* OF INPUT REQUESTS. PROGRAM TERMINATION AND A DUMP IF THE
* PROGRAM CANNOT CONTINUE.
*
* EXTERNAL REFERENCES = OPEN, SETLOGON, RECEIVE, CLSDST,
* WAIT(M), CHECK, AND SEND.
*
* EXIT, NORMAL = BR 14
*
* EXIT, ABNORMAL = DUMP (DIRECTLY OR BY SYNAD OR LERAD).
*
* ATTRIBUTES = NOT SERIALLY REUSABLE
*
* REGS USED
*
* 3 = RETURN ADDRESS
* 4 = WORK REG
* 5 = A(PRPL)
* 12 = BASE REG
* 13 = A(SAVE0)
*

**
*
SAMP1 CSECT

ENTER SAVE=MAINLINE,SAVAREA=SAVE0,OS=MVS
**
* *
* OPEN THE ACB *
* *

590 z/OS V2R1.0 Communications Server: SNA Programming

**
GLBC &SYSTEM

OPNACB EQU *
SLR R15,R15
OPEN PACB ASSOCIATE THE PROGRAM WITH VTAM
LTR R15,R15 TEST FOR ERRORS
BZ OPENOK

**
* IT WOULD BE NORMAL HERE TO TEST FOR AN INVALID APPLID AND LET THE *
* VTAM OPERATOR KNOW OF THE PROBLEM RATHER THAN CAUSING AN ABEND. *
**
DUMP ST R1,R1CONTS SAVE THE CONTENTS OF REG 1

ABTERM
VERSION DC C’DATE OF LAST CHANGE 09/16/91’
OPENOK LA R5,PRPL SET UP BASE FOR RPL DSECT

USING IFGRPL,R5
SETLOGON RPL=PRPL,OPTCD=START ALLOW LOGON REQUESTS
LTR R15,R15 TEST FOR ERRORS
BNZ DUMP

**
* SOLICIT INPUT FROM ANY LOGICAL UNIT. *
**
RECANY MVI AREA1,C’*’ SET ASTERISK IN 1ST BYTE OF
* AREA1 (FOR DEBUGGING PURPOSES)

MVC AREA1+1(L’AREA1-1),AREA1 ROLL IT
RECEIVE RPL=PRPL,AREA=AREA1,AREALEN=100,

OPTCD=(ASY,ANY,CS),ECB=RCVECB, RESP HANDLED BY EXIT
RTYPE=(DFSYN,DFASY)

**
* THE PARAMETER OPTCD=CS IS USED ON THE RECEIVE-ANY TO FORCE A *
* ROTATION OF THE SESSIONS WHICH COULD POSSIBLY SATISFY THE RECEIVE. *
* WITHOUT THIS PARAMETER, A BUSY SESSION COULD UNINTENTIONALLY LOCK *
* OUT OTHER SESSIONS SENDING DATA. *
**

LTR R15,R15 TEST FOR ACCEPTANCE
BNZ DUMP DUMP IF NOT ACCEPTED
CHKECB RCVECB
BO CHECK YES, BYPASS WAITM SVC
AIF (’&SYSTEM’ EQ ’VSE’).WAITVSE
WAIT ECBLIST=ECBLST
AGO .COMCODE

.WAITVSE ANOP
WAITM RCVECB,TPENDECB

.COMCODE ANOP
CHKECB TPENDECB
BO RETURN1 YES, GO TO CLOSE ACB

CHECK EQU *
OI RESETCAF,X’FF’ INIT RESETSR CA NEEDED FLAG
CHECK RPL=PRPL NO, CHECK COMPLETION OF RECEIVE
LTR R15,R15 TEST FOR SUCCESSFUL COMPLETION
BNZ RECANY NO, CONTINUE WITH NEXT INPUT

**
* THE SYNAD EXIT ROUTINE WILL EITHER ISSUE A CLSDST TO TERMINATE THE *
* FAILING SESSION OR CLEAR THE EXCEPTION AND RESTORED THE SESSION TO *
* CONTINUE ANY MODE. *
**

TM RPLSRTYP,RPLDFASY DFASY RECEIVED?
BNO TESTRRN NO
CLSDST RPL=PRPL,OPTCD=SYN

**
* IGNORE THE POSSIBLE FAILURE OF THE CLSDST MACRO. THE SYNAD/LERAD *
* ROUTINES WILL HANDLE ANY ERRORS. *
**

B CHCKTPND ALLOW FOR PROGRAM CLOSEDOWN
TESTRRN EQU *

TM RPLVTFL2,RPLRRN RRN RESPONSE WANTED
BO TESTEXCP

Chapter 15. Sample code of a simple application program 591

TM RPLVTFL2,RPLNFME TEST FOR NO RESPONSE
BO PROCESS

TESTEXCP EQU *
TM AREACODE,AEXCEPT EXCEPTION RESPONSE WANTED?

**
* THE PRECEDING TEST WAS CHANGED FROM A ’CLI’ INSTRUCTION TO A ’TM’ *
* INSTRUCTION TO PROCESS EBCDIC HEADERS. *
**

BNO RESPTEST NO, CHECK FOR DEFINITE RESPONSE
MVC RPLSSEO,AREASENS SET SYS SENSE OUTPUT
MVC RPLSSMO,AREASENS+1
MVC RPLUSNSO,AREASENS+2
OI RPLVTFL2,RPLEX
NI RPLOPT5,X’FF’-RPLDLGIN SET OPTCD=CA FOR SENDD
B SENDRESP SEND THE EXCEPTION RESPONSE

RESPTEST TM RPLVTFL2,RPLEX
BNO SENDRESP DEFINITE RESP SO LEAVE OPTCD=CS
NI RPLOPT5,X’FF’-RPLDLGIN SET OPTCD=CA FOR SENDD
B PROCESS

SENDRESP EQU *
SEND RPL=PRPL,STYPE=RESP,OPTCD=(SYN,SPEC) SEND PREPARED RESP
LTR R15,R15 TEST FOR SUCCESSFUL COMPLETION
BNZ DUMP DUMP IF SEND COULD NOT BE

* SCHEDULED
NI RESETCAF,X’00’ TURN OFF RESETSR CA NEEDED FLAG

PROCESS EQU *
TEST1 EQU *
CLOSETST CLC AREADATA(9),=C’CLOSE ACB’ IS CLOSE ACB REQUESTED

BNE TEST2
OI TPENDFLG,X’80’ SET ON TPEND FLAG TO CLOSE ACB

TEST2 EQU *
OI AREACODE,ASAD
TM AREACODE,AECHOB IS TERMINAL ECHO NEEDED?
BNO TEST3
OI AREACODE,AECHO YES, TURN ON ECHO FLAG
NI AREACODE,X’FF’-AECHOB TURN OFF PLEASE ECHO BACK FLAG

SENDDATA EQU *
SENDD SEND RPL=PRPL,STYPE=REQ, NOTE THAT THIS

OPTCD=SYN,POST=SCHED LEAVES CA,CS AS SET ABOVE.
LTR R15,R15 TEST FOR SUCCESSFUL COMPLETION
BNZ DUMP DUMP IF SEND COULD NOT BE SCHED
NI RESETCAF,X’00’ TURN OFF RESETSR CA FLAG

TEST3 EQU *
CLI RESETCAF,X’FF’ IS A RESETSR CA NEEDED
BNE TEST4
RESETSR RPL=PRPL,OPTCD=(CA,SYN)
LTR R15,R15
BNZ DUMP

TEST4 EQU *
CHCKTPND CLI TPENDFLG,X’80’ SEE IF TPEND IS SIGNALLED

BNE RECANY IF NOT, BRANCH BACK TO RECEIVE
RETURN1 MVI TPENDFLG,X’FF’ SIGNAL CLOSE IN PROGRESS TO
**
* *
* CLOSE THE ACB AND EXIT THE PROGRAM *
* *
**

CLOSE PACB CLOSE THE ACB
EXIT SAVAREA=SAVE0,EOJ=YES

*
*
**
**
* *
* VARIABLE DECLARATIONS *
* *
**

592 z/OS V2R1.0 Communications Server: SNA Programming

*
**
* *
* ACB, RPL, AND EXLST *
* *
**
PACB ACB AM=VTAM,APPLID=APPL1,EXLST=EXLST1,MACRF=LOGON
EXLST1 EXLST AM=VTAM,LOGON=LOGON1,SYNAD=SYNAD1,LERAD=LERAD1,

RESP=RESP1,TPEND=TPEND1,LOSTERM=LOSTERM1
PRPL RPL AM=VTAM,ACB=PACB
**
* *
* CONSTANTS *
* *
**
R1CONTS DC F’0’ SAVE AREA FOR REG 1 IN DUMP
ECBLST DC A(RCVECB)

DC X’80’ END OF ECB LIST MARKER
DC AL3(TPENDECB)

RCVECB DC F’0’ ECB USED FOR RECANY
TPENDECB DC F’0’ ECB POSTED BY TPEND EXIT
TPENDFLG DC X’00’ SET BY MAINLINE TO FORCE CLOSE
RESETCAF DC X’00’ RESETSR CA NEEDED IF 00
SAVE0 DC 18F’0’ SAVE AREA NEEDED FOR MAINLINE
* PROGRAM
APPL1 DC X’08’ APPLID FOR ACB

DC CL8’PROG1’
AREAOFLO DC C’*THIS SHOULD NOT BE DISPLAYED: CHECK RECLEN’
**
* *
* LOCAL STORAGE VARIABLES *
* *
**

DS 0H
AREA1 DS 0CL100 I/O DATA AREA
AREAHEAD DS 0CL6 HEADER
AREACODE DS XL1
RSV1 DS XL1 RESERVED
AREASENS DS XL4 SENSE FIELD WHEN AREACODE=’01’
AREADATA DS CL94 DATA FIELD
**
* *
* EQUATES FOR INPUT/OUTPUT *
* *
**
AEXCEPT EQU X’01’ PLEASE RETURN AN EXCEPTION
* RESPONSE AS SPECIFIED IN
* AREASENS
AECHOB EQU X’04’ PLEASE ECHO THIS BACK TO ME
ASAD EQU X’80’ SEND THIS MESSAGE TO THE SCREEN
AECHO EQU X’02’ THIS IS THE ECHO YOU REQUESTED
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

Chapter 15. Sample code of a simple application program 593

LTORG
EJECT
IFGRPL AM=VTAM
EJECT
ISTUSFBC
EJECT
IFGACB AM=VTAM
EJECT
IFGEXLST AM=VTAM

*
*

*
* NAME = LOGON EXIT ROUTINE
*
* FUNCTION = ESTABLISH A SESSION AND SEND A ’LOGON ACCEPTED’
* MESSAGE TO ANY LOGICAL UNIT THAT LOGS ON IF THE LOGON MESSAGE
* STARTS WITH ’XYZ’; OTHERWISE, REJECT THE REQUEST FOR A SESSION.
*
* ENTRY POINT = LOGON1
*
* INPUT
* REGISTERS
* 0 = UNPREDICTABLE
* 1 = POINTER TO A 4-WORD PARAMETER LIST
* 2-13 = UNPREDICTABLE
* 14 = ADDRESS TO RETURN CONTROL TO
* 15 = ENTRY ADDRESS OF THIS ROUTINE
* PARAMETER LIST - 6 WORDS
* 1 = ACB ADDRESS
* 2 = POINTER TO SYMBOLIC NAME OF LOGICAL UNIT
* 3 = ZEROS
* 4 = LENGTH OF LOGON MESSAGE
* 5 = ADDRESS OF READ-ONLY RPL
* 6 = CID OF PENDING ACTIVE SESSION
*
* OUTPUT
* A REQUEST TO VTAM TO ACCEPT OR REJECT THE SESSION; OR PROGRAM
* TERMINATION AND A DUMP IF UNABLE TO CONTINUE. IF SESSION IS
* ESTABLISHED, A ’LOGON ACCEPTED’ MESSAGE IS SENT TO THE LOGICAL
* UNIT SPECIFYING EXCEPTION RESPONSE ONLY.
*
* EXTERNAL REFERENCES = INQUIRE, OPNDST, CLSDST, SEND.
*
*
* EXIT, NORMAL = BR 14
*
* EXIT, ABNORMAL = DUMP
*
* ATTRIBUTES = SERIALLY REUSABLE
*
* REGS USED
*
* 3 = RETURN ADDRESS
* 4 = A(SYMBOLIC NAME OF LU)
* 5 = A(PRPLCONN),IFGRPL
* 6 = A(LOGON EXIT PARM LIST)
* 7 = A(PNIB),ISTDNIB
* 8 = LENGTH OF LOGON MESSAGE
* 9 = ACB ADDRESS
* 12 = BASE REG
* 13 = A(SAVE2)
*

SAMP1 CSECT RESTART CSECT
LOGON1 ENTER SAVE=NO,SAVAREA=SAVE2,TPEND=CHECK,R14=SAVE1
* LOGONS

594 z/OS V2R1.0 Communications Server: SNA Programming

LR R6,R1 SAVE THE PARAMETER LIST ADDRESS
L R9,0(R6) PICK UP ACB ADDRESS
L R4,4(R6) POINT TO THE SYMBOLIC NAME OF

* THE LOGICAL UNIT
LA R5,PRPLCONN SET UP BASE FOR RPL DSECT
LA R7,PNIB LOAD BASE FOR NIB DSECT
USING IFGRPL,R5
USING ISTDNIB,R7
MVC NIBSYM,0(R4)
MVC NIBUSER,4(R4)
MVC NIBCID, 20(R6) PUT CID INTO NIB FOR OPNDST
MVC RPLUSFLD,4(R4) PUT USER FIELD IN OPNDST RPL ...

* VTAM DOES NOT SET IT ON OPNDST
MVC FIRSTMID(8),0(R4) PUT ID IN GOOD MORNING MESSAGE
B VALIDATE

CANCEL2 ST R1,R1CONTS2 SAVE THE CONTENTS OF REGISTER 1
ABTERM

**
* VALIDATE THE LOGON MESSAGE *
**
VALIDATE EQU *

L R8,12(R6) PUT LENGTH OF LOGON MSG IN 8
LTR R8,R8 IS LOGONMSG LENGTH ZERO?
BZ DISCONN YES -- TERMINATE THE SESSION

**
* CLEAR THE LOGON MESSAGE DATA *
**

MVI MSGAREA,C’*’
MVC MSGAREA+1(79),MSGAREA

INQUIRE INQUIRE RPL=PRPLCONN,OPTCD=LOGONMSG,NIB=PNIB, OBTAIN
AREA=MSGAREA,AREALEN=L’MSGAREA, LOGON
ACB=(R9) MESSAGE

LTR R15,R15
BNZ CANCEL2
LTR R0,R0 IS CONDITIONAL COMPLETION CODE 0
BZ COMPARE YES, CHECK MESSAGE
B DISCONN NO, SHOULD NOT OCCUR

COMPARE CLC MSGAREA(3),=C’XYZ’ CHECK PASSWORD IN USER LOGON
* MESSAGE

BNE DISCONN IF NOT, CANNOT GRANT REQUEST
CONNECT OPNDST RPL=PRPLCONN,OPTCD=(SYN,ACCEPT,CA)

LTR R15,R15 SESSION ESTABLISHED SUCCESSFULLY
BZ SNDFIRST
B RETURN2

SNDFIRST EQU *
SEND RPL=PRPLCONN,AREA=FIRSTMSH,ACB=(R9), SEND FIRST MESSAGE

RECLEN=L’FIRSTMSG+6+L’FIRSTMID,OPTCD=CA, STILL SET
RESPOND=(EX,FME) INPUT MAY SATISFY RECANY.

* ABANDON THIS SESSION
* SYNAD WILL HAVE CLSDST FOR US
RETURN2 EXIT RESTORE=NO,R14=SAVE1
*
*TERMINATE THE SESSION
* IT MIGHT BE BETTER TO SEND A REJECTION MESSAGE TO THE VTAM
* OPERATOR BEFORE CLOSING.
DISCONN EQU *

CLSDST RPL=PRPLCONN,OPTCD=SYN,ACB=(R9),NIB=PNIB
* IF CONTROL RETURNS HERE THERE IS NO NEED TO TEST FOR SUCCESS OR
* FAILURE SINCE LERAD OR SYNAD COPE WITH FAILURE.

B RETURN2 IF SO, BRANCH TO RETURN
*
*
**
* *
* VARIABLE DECLARATIONS *
* *
**

Chapter 15. Sample code of a simple application program 595

*
**
* *
* RPL AND NIB *
* *
**
PRPLCONN RPL AM=VTAM
PNIB NIB ALLOW USE OF RESP EXIT FOR LU

PROC=(RESPX,TRUNC) AND TRUNCATE EXCESS INPUT DATA
**
* *
* CONSTANTS *
* *
**
SAVESENS DC F’0’ SENSE FROM FAILED OPNDST
MSGAREA DC CL80’ ’ AREA FOR LOGON MESSAGE
FIRSTMSH DC XL6’840000000000’ HEADER CODE FOR DISPLAY ON
* TERMINAL AND ECHO BACK TO
* PROG1.
FIRSTMID DC CL9’********-’
FIRSTMSG DC C’LOGON ACCEPTED. VTAM PROG READY FOR FIRST INPUT’
**
* *
* LOCAL STORAGE VARIABLES *
* *
**
SAVE1 DS F SAVE REG14 RETURN ADDRESS
SAVE2 DS 18F SAVEAREA FOR VTAM EXITS
R1CONTS2 DS F’0’ SAVEAREA FOR REG 1 FOR DUMP

LTORG
EJECT
ISTDNIB INVOKE NIB, DEVCH, AND PROC

DSECT
*
**
**
* *
* RESP EXIT *
* *
**
SAMP1 CSECT CONTINUE SAMP1 CSECT

*
* NAME = RESP EXIT ROUTINE
*
* FUNCTION = RECEIVE A RESPONSE TO THE REQUEST SENT IN THE MAINLINE
* PROGRAM. IF THE RESPONSE IS NORMAL (POSITIVE), RESET THE SESSION
* TO CONTINUE-ANY MODE SO THAT THE MAINLINE PROGRAM RECEIVE
* OPTCD=ANY SPECIFIED ACCEPTS INPUT FROM IT. IF THE RESPONSE IS
* NEGATIVE, CALL SYNAD1 TO ANALYZE THE EXCEPTION AND TAKE
* WHATEVER ACTION IS POSSIBLE. SYNAD’S ACTION IS EITHER TO CLSDST
* THE FAILING SESSION OR TO PERFORM A SESSIONC CONTROL=CLEAR AND
* SDT. IN BOTH CASES CONTROL IS RETURNED TO THIS EXIT AT LABEL
* SYNRTURN.
*
* ENTRY POINT = RESP1
*
* INPUT
* REGISTERS
* 0 = UNPREDICTABLE
* 1 = ADDRESS OF A 5-WORD PARAMETER LIST
* 2-13 = UNPREDICTABLE
* 14 = ADDRESS TO RETURN CONTROL TO
* 15 = ENTRY ADDRESS TO THIS ROUTINE
* PARAMETER LIST - 5 WORDS
* 1 = ADDRESS OF THE ACB
* 2 = THE CID OF THE LOGICAL UNIT

596 z/OS V2R1.0 Communications Server: SNA Programming

* 3 = THE CONTENTS OF THE USERFLD (FROM
* THE NIB SPECIFIED AT OPNDST)
* 4 = UNPREDICTABLE
* 5 = THE ADDRESS OF A READ-ONLY RPL THAT IS
* USED TO DETERMINE WHAT KIND OF RESPONSE
* HAS BEEN RECEIVED
*
* OUTPUT = A RESETTING TO CONTINUE-ANY MODE FOR ANY SESSION
* FROM WHICH A RESPONSE IS RECEIVED.
*
* EXTERNAL REFERENCES = RESETSR, SYNAD1.
*
* EXIT, NORMAL = BR 14
*
* EXIT, ABNORMAL = DUMP
*
* ATTRIBUTES = SERIALLY REUSABLE
*
* REGS USED
*
* 3 = RETURN ADDRESS
* 4 = A(PRPLR),IFGRPL
* 5 = A(VRPL),IFGRPL
* 6 = WORK,A(RESP1 PARM LIST)
* 8 = CID
* 9 = A(ACB)
* 12 = BASE REG
* 13 = A(SAVE2)

RESP1 ENTER SAVE=NO,R14=SAVE4,TPEND=CHECK
*

LR R6,R1 SAVE PARAMETER LIST ADDRESS
L R9,0(R6) PICK UP ACB ADDRESS
L R5,16(R6) PUT ADDR OF READ ONLY RPL IN R5
LA R4,PRPLR INITIALIZE R4
DROP R5 FROM LOGON EXIT USE
USING IFGRPL,R4 BASE ON PRPLR
MVC RPLARG,4(R6) MOVE CID TO PRPLR FOR RESETSR
NI RPLEXTDS,X’FF’-RPLNIB TURN OFF NIB FLAG
DROP R4
USING IFGRPL,R5 BASE ON READ-ONLY RPL
TM RPLVTFL2,RPLEX NORMAL RESPONSE?
BO EXCEPTN
B RESET

CANCEL3 ST R1,R1CONTS3 OTHERWISE, MUST TERMINATE AND
* ABEND
RESET RESETSR RPL=PRPLR,OPTCD=CA, RESET THE SESSION FOR

RTYPE=DFSYN,ACB=(R9) DFSYN INPUT. OPTCD-(SYN,SPEC)
LTR R15,R15 SEE IF RESETSR REQUEST ACCEPTED
BNZ CANCEL3 IF NOT, GO TO TERMINATE AND DUMP

RETURN3 EXIT RESTORE=NO,R14=SAVE4
*
EXCEPTN EQU * SET UP LINKAGE FOR SYNAD1

STM R14,R12,12(R13) SAVE REGISTERS
LA R0,4 SHOW EXTRAORDINARY COMPLETION
L R15,=A(SYNAD1)
LR R1,R5 POINT TO READ-ONLY RPL
BALR R14,R15 CALL SYNAD ROUTINE

SYNRTURN LM R1,R12,24(R13) RESTORE RESP EXIT REGS
LTR R15,R15 SUCCESSFUL RECOVERY?
BZ RESET YES, ALLOW NEXT TRANSACTION IN

**
* SYNAD SETS R15-R12 IF THE CLSDST MACRO WAS ISSUED TO TERMINATE THE *
* SESSION; IN THIS CASE, NO RESETSR SHOULD BE ISSUED *
**

B RETURN3 RETURN TO VTAM
*

Chapter 15. Sample code of a simple application program 597

*
**
* *
* VARIABLE DECLARATIONS *
* *
**
*
**
* *
* RPL *
* *
**
PRPLR RPL AM=VTAM COULD BE SAME ONE AS PRPLCONN
* SINCE BOTH ARE SYNCHRONOUSLY
* USED IN VTAM EXITS.
**
* *
* CONSTANTS *
* *
**
R1CONTS3 DC F’0’ SAVEAREA FOR REG 1 AT DUMP
**
* *
* LOCAL STORAGE VARIABLES *
* *
**
SAVE4 DS F SAVEAREA FOR EXIT RETURN ADDRESS

LTORG
*
*
**

*
* NAME = LERAD EXIT ROUTINE
*
* FUNCTION = HANDLE TELEPROCESSING-ORIENTED LOGIC ERRORS
*
* ENTRY POINT = LERAD1
*
* INPUT
* REGISTERS
* 0 = RECOVERY ACTION RETURN CODE
* 1 = RPL ADDRESS
* 2-12 = UNPREDICTABLE
* 13 = ADDRESS OF SAVE AREA SUPPLIED TO MACRO THAT
* CAUSED LERAD ENTRY
* 14 = RETURN ADDRESS
* 15 = ADDRESS OF THIS ROUTINE’S ENTRY POINT
*
* OUTPUT = NONE
*
* EXTERNAL REFERENCES = GETMAIN (MVS/VM), FREEMAIN (MVS/VM).
*
* EXIT, NORMAL = BR 14
*
* EXIT, ABNORMAL = DUMP
*
* ATTRIBUTES = REENTRANT
*
* REGS USED
*
* 3 = RETURN ADDRESS
* 6 = A(RPL),IFGRPL
* 12 = BASE REG
* 13 = A(SAVEAREA)

LERAD1 ENTER SAVAREA=GET,SAVE=NO,R14=(R10)

598 z/OS V2R1.0 Communications Server: SNA Programming

DROP R5 USED IN RESP EXIT
USING IFGRPL,R1
CLI RPLFDB2,X’12’
BE IGNORE
CLI RPLFDB2,X’13’
BE IGNORE
CLI RPLFDB2,X’60’ CLSDST W/SYMBOLIC NAME FAILED?
BE IGNORE YES SO IGNORE
B LEOVERID BRANCH AROUND DUMP ID
DC C’LERAD1’ DUMP ID

R1DUMP DC F’0’ REG1 CONTENTS AT DUMP
LEOVERID EQU *

ST R1,R1DUMP SAVE REG 1 FOR DUMP
ABTERM

IGNORE EQU *
SLR R0,R0 INDICATE SUCCESSFUL COMPLETION
SLR R15,R15 INDICATE SUCCESSFUL COMPLETION
EXIT SAVAREA=FREE,RESTORE=YES,R14=(R10)
LTORG

*
* NAME = TPEND EXIT ROUTINE
*
* FUNCTION = SET AN INDICATION FOR THE MAINLINE PROGRAM
* TO CLOSE THE ACB AND TERMINATE
*
* ENTRY POINT = TPEND1
*
* INPUT
* REGISTERS
* 0 = UNPREDICTABLE
* 1 = ADDRESS OF A 2-WORD PARAMETER LIST
* 2-13 = UNPREDICTABLE
* 14 = RETURN ADDRESS
* 15 = ADDRESS OF THIS ROUTINE’S ENTRY POINT
* PARAMETER LIST - 2 WORDS
* 1 = ADDRESS OF THE ACB
* 2 = A VALUE INDICATING WHY TPEND WAS ENTERED
*
* OUTPUT = INDICATION TO CLOSE ACB SET FOR MAIN PROGRAM
*
* EXTERNAL REFERENCES = POST.
*
* EXIT, NORMAL = BR 14
*
* EXIT, ABNORMAL = NONE
*
* ATTRIBUTES = SERIALLY REUSABLE.
*
* REGS USED
*
* 3 = RETURN ADDRESS
* 4 = A(TPENDECB)
* 12 = BASE REG
*

TPEND1 ENTER SAVE=NO,SAVAREA=NONE,R14=TPENDS14

L R4,=A(TPENDECB) POINT TO MAINLINE’S CLOSEDOWN ECB
POST (R4) INDICATE TPEND REQUIRED
EXIT RESTORE=NO,R14,=TPENDS14

TPENDS14 DC F’0’ SAVE AREA FOR VTAM RETURN ADDRESS
LTORG

*
* NAME = SYNAD EXIT ROUTINE
*

Chapter 15. Sample code of a simple application program 599

* FUNCTION = HANDLE ERRORS AND SPECIAL CONDITIONS OTHER THAN
* TELEPROCESSING LOGIC ERRORS. ATTEMPTS TO CLEAR
* THE CONDITION OR TERMINATE THE SESSION.
*
* ENTRY POINT = SYNAD1
*
* INPUT
* REGISTERS
* 0 = RECOVERY ACTION RETURN CODE
* 1 = RPL ADDRESS (HIGH-ORDER BIT ON IF RECURSIVE ENTRY)
* 2-12 = UNPREDICTABLE
* 13 = ADDRESS OF SAVE AREA SUPPLIED PRIOR TO CAUSING
* SYNAD ENTRY
* 14 = RETURN ADDRESS
* 15 = ADDRESS OF THIS ROUTINE’S ENTRY POINT
*
* OUTPUT = A VALUE SET IN REGISTER 15:
* 0 = SUCCESSFUL RECOVERY
* 8 = EXCEPTION REQUEST RECEIVED
* 12 = CLSDST PERFORMED
*
* EXTERNAL REFERENCES = SESSIONC, SEND,
* RESETSR, CLSDST, GETMAIN (MVS/VM), FREEMAIN (MVS/VM),
* AND EXECRPL.
*
* EXIT, NORMAL = BR 14
*
* EXIT, ABNORMAL = DUMP
*
* ATTRIBUTES = QUASI-REENTERABLE. THIS ROUTINE IS REENTERED
* IF A MACROINSTRUCTION IT ISSUES FAILS. AS INDICATED
* BY THE HIGH-ORDER BIT OF REG 1 BEING ON UPON ENTRY
* TO SYNAD1. THE PROGRAM TERMINATES AND A DUMP IS
* REQUESTED. OTHERWISE, IF SYNAD IS REENTERED,
* PROCESSING CONTINUES.
*
* REGS USED
*
* 3 = RETURN ADDRESS
* 4 = ACTION CODE
* 5 = A(RPL),IFGRPL
* 6 = A(GETMAIN RPL),IFGRPL
* 7 = REG0 RETURN CODE
* 8 = REG15 RETURN CODE, A(PARMLIST FOR MANIP MACROS)
* 9 = A(PACB)
* 10 = LINKAGE TO SESSIONC
* 11 = CID
* 12 = BASE REG
* 13 = A(GETMAIN SAVEAREA),SAVE5
*
**
SYNAD1 ENTER SAVAREA=GET,SAVE=NO,XTRA=SDXTRA,R14=(R10)

DROP R1 USED IN LERAD EXIT
LR R5,R1 GET RPL ADDRESS
LR R4,R0 GET ACTION CODE
USING IFGRPL,R5
USING SDSECT,R13 SET BASE FOR REENTRANT WORKAREA

**
* CHECK FOR RECURSIVE ENTRY TO SYNAD *
**

ST R5,REGNWORK
TM REGNWORK,X’80’ IS THIS RECURSIVE ENTRY TO SYNAD?
BO CANCEL4 YES -- CANCEL
OI REGNWORK,X’80’ NO -- INDICATE RECURSION
L R5,REGNWORK SAVE RPL ADDRESS
LA R0,SRPLEND-SRPL SET LENGTH OF RPL IN R0
GETSTOR (R0)

600 z/OS V2R1.0 Communications Server: SNA Programming

LTR R15,R15
BNZ CANCEL4
MVC 0(SRPLEND-SRPL,R1),SRPL COPY SRPL
ST R1,REGNWORK POINT TO SYNAD1’S OWN RPL
OI REGNWORK,X’80’ SET HIGH-ORDER BIT OF R6
L R6,REGNWORK (RPLSYN ADDRESS) FOR RECURSION.
L R9,=A(PACB) PICK UP ADDRESS OF ACB
L R11,RPLARG
CH R4,=H’16’ IS IT OVER MAX FOR SYNAD?
BH CANCEL4 YES,GIVE UP
B *+4(R4) USE ACTION CODE IN BRANCH TABLE
B SNORM CODE=X’00’ SHOULD NOT OCCUR
B SXTRA CODE=X’04’ EXTRAORD. COMPLETION
B SRETRY CODE=X’08’ RETRIABLE
B SDAMAGE CODE=X’0C’ DAMAGE
B SENVIR CODE=X’10’ ENVIRONMENT ERROR

*
SNORM SR R7,R7 INDICATE SUCCESSFUL

SR R8,R8 COMPLETION.
SABNORM L R0,SAVE6 LENGTH OF STORAGE TO BE FREED

SLL R6,1 GET RID OF HIGH-ORDER BIT
FREESTOR AREA=(R6),LEN=(R0)
LTR R15,R15
BNZ CANCEL4
EXIT RESTORE=NO,SAVAREA=FREE,RC=YES

SYNADR1 DC F’0’ SPACE FOR R1
CANCEL4 ST R1,SYNADR1

ABTERM
*
SXTRA EQU * EXTRAORDINARY COMPLETION
SXPATHE TM RPLSSEI,RPLPATHI

BO SDISCONN
CLI RPLFDB2,X’03’
BE EXMSG YES--EXCEPTION REQUEST RECEIVED

* NO--EXCEPTION RESPONSE RECEIVED
LA R10,SNORM PREPARE FOR NORMAL RETURN

*
DROP R5
USING IFGRPL,R6

SESSIONC SESSIONC RPL=(R6),ACB=(R9),ARG=(R11), CLEAR SESSION
CONTROL=CLEAR,STYPE=REQ,OPTCD=SYN

LTR R15,R15
BNZ SDISCONN
SESSIONC RPL=(R6),CONTROL=SDT START DATA TRAFFIC
LTR R15,R15 SUCCESSFUL RECOVERY?
BNZ SDISCONN NO, TERMINATE THE SESSION
BR R10 YES, RETURN TO CALLER
DROP R6
USING IFGRPL,R5

*
EXMSG EQU * THIS CANNOT BE REACHED FROM THE RESP EXIT

TM RPLVTFL2,RPLNFME
BO STBAL

**
* MOVE SSENSEI TO SSENSEO *
**

MVC RPLSSEO,RPLSSEI
STEND EQU *

MVC RPLSSMO,RPLSSMI
SEND RPL=(R5),STYPE=RESP, SEND THE EXCEPTION RESPONSE

OPTCD=SYN
LTR R15,R15
BNZ SDISCONN
DROP R5
USING IFGRPL,R6

STBAL BAL R10,SESSIONC GO THROUGH CLEAR AND SDT
RESETSR RPL=(R6),RTYPE=DFSYN, RESTORE TO CA MODE

Chapter 15. Sample code of a simple application program 601

OPTCD=(SYN,CA)
LTR R15,R15
BNZ CANCEL4
LA R8,8 SIGNAL UNSUCCESSFUL COMPLETION
B SABNORM RETURN TO RECANY

*
SDISCONN EQU * UNRECOVERABLE ERRORS

CLSDST RPL=(R6),ACB=(R9),ARG=(R11)
LTR R15,R15
BNZ CANCEL4
LA R8,12 SIGNAL UNSUCCESSFUL RECOVERY
B SABNORM

*
SRETRY EQU *
**
* RETRY REQUEST *
**

EXECRPL RPL=(R5) RETRY FAILED MACRO
LTR R15,R15
BNZ CANCEL4
B SNORM RETURN TO ORIGINAL NSI

*
SDAMAGE EQU *

CLI RPLREQ,RPLRCVCD
BNE SNORM NO, PRETEND COMPLETION WAS OK
LA R8,16 YES, SET R15 CODE REG NONZERO
B SABNORM RETURN TO NSI, WHICH MAY BE

* ABLE TO IGNORE THE ERROR
*
SENVIR EQU *

CLI RPLREQ,RPLSNDCD
BE SDISCONN ATTEMPT TO CLSDST
CLI RPLREQ,RPLRSRCD
BE SDISCONN ATTEMPT TO CLSDST LU
LA R8,20 SET NONZERO CODE AND ALLOW
B SABNORM IN-LINE CODE TO RECOVER.

* (MAY BE AN OPNDST OR INQUIRE)
*
*
**
* *
* VARIABLE DECLARATIONS *
* *
**
**
* *
* BASED STORAGE AREA AND VARIABLES *
* *
**
SDSECT DSECT
SAVE5 DS 18F NEW SAVEAREA
SHOWWORK DS 0F
SFDBK2 DS F SPECIFIC REASON CODE
SSSENSMI DS F SYSTEM SENSE MODIFIER INPUT
REGNWORK DS F FOR RETRIABLE ERRORS
SAVE6 DS F LENGTH OF RPL
SARG DS F ARG - CID VALUE
SDXTRA EQU *-SHOWWORK
*
**
* *
* RPL *
* *
**
SAMP1 CSECT
SRPL RPL AM=VTAM RPL TO BE COPIED
SRPLEND EQU * END OF SRPL FOR LENGTH CALC.

602 z/OS V2R1.0 Communications Server: SNA Programming

SAMP1 CSECT
LTORG

*
*
**
**
*
* NAME = LOSTERM EXIT ROUTINE
*
* FUNCTION = HANDLE SITUATIONS IN WHICH A LOGICAL UNIT HAS
* UNEXPECTEDLY BECOME UNAVAILABLE
*
* ENTRY POINT = LOSTERM1
*
* INPUT
* REGISTERS
* 0 = UNPREDICTABLE
* 1 = ADDRESS OF A 4-WORD PARAMETER LIST
* 2-13 = UNPREDICTABLE
* 14 = RETURN ADDRESS
* 15 = ADDRESS OF THIS ROUTINE’S ENTRY POINT
* PARAMETER LIST - 4 WORDS
* 1 = ADDRESS OF THE ACB
* 2 = THE CID OF THE LOGICAL UNIT
* 3 = THE CONTENTS OF THE USERFLD (FROM THE NIB
* SPECIFIED AT OPNDST)
* 4 = A VALUE INDICATING WHY LOSTERM WAS ENTERED
*
* OUTPUT = TERMINATION OF THE SESSION
*
* EXTERNAL REFERENCES = CLSDST, DUMP
*
* EXIT, NORMAL = BR 14
*
* EXIT, ABNORMAL = DUMP
*
* ATTRIBUTES = SERIALLY REUSABLE.
*
* REGS USED
*
* 3 = RETURN ADDRESS
* 4 = A(PRPLCONN)
* 5 = A(ACB)
* 6 = CID
* 7 = A(TPENDFLG)
* 12 = BASE REG
* 13 = A(SAVE2)
*
*
**
LOSTERM1 ENTER SAVE=NO,SAVAREA=NONE,TPEND=CHECK,R14=SAVELOST

L R4,=A(PRPLCONN) POINT TO OPNDST/CLSDST RPL
L R5,0(R1) PICK UP ACB ADDRESS
DROP R6
USING IFGRPL,R4 BASE ON PRPLCONN
MVC RPLUSFLD,8(R1) MOVE USER FIELD
L R6,4(R1) PICK UP CID OF LOST TERMINAL
LR R8,R1 POINT TO PARMLIST

LOSTCLOS EQU *
CLSDST RPL=(R4),ACB=(5),ARG=(R6),OPTCD=(RELEASE,SYN)
LTR R15,R15
BZ RETURNL
ABTERM

RETURNL EXIT RESTORE=NO,R14=SAVELOST
*
*
**

Chapter 15. Sample code of a simple application program 603

* *
* VARIABLE DECLARATIONS *
* *
**
*
**
* *
* CONSTANTS *
* *
**
SAVELOST DC F’0’

LTORG
END SAMP1

604 z/OS V2R1.0 Communications Server: SNA Programming

Chapter 16. Logic of a more complicated application program

Sample program 2 is a more typical example of a VTAM application program than
sample program 1.

Sample program 2 communicates with logical units (LUs) associated with 3600
Finance Communication System controllers and SNA PU type 1 3270 Information
Display Systems controllers. Some LUs are associated with physical units (PUs)
that are connected to VTAM by nonswitched remote lines through a
communication controller that contains a network control program. Other LUs are
associated with non-SNA 3270 terminals that are attached to VTAM through a
channel. Additional information about communicating with 3270 terminals is given
in Chapter 11, “Programming for the IBM 3270 Information Display System,” on
page 327. Note that in this sample program all the 3270 terminals use LU type 0
protocols.

Introduction

Figure 97 on page 606 shows a possible configuration with which sample program
2 might communicate.

The application program in the 3601 controller can be written to perform certain
functions that would otherwise have to be performed by the VTAM application
program. For example, the 3601 application program can screen inquiries for the
correct format prior to forwarding them to the VTAM application program for
processing, or it can collect inquiries from several terminals that form a work
station and send them as one transmission to the VTAM application program.

The logic of sample program 2 is described at a high level in Figure 98 on page 608
and accompanying notes. The logic of special routines is described in more detail
in subsequent figures and accompanying notes.

© Copyright IBM Corp. 2000, 2013 605

Sample program 2 uses the posting of ECBs (either by VTAM or within the
program) and a central wait routine that discovers posted ECBs as a mechanism to
handle a number of sessions concurrently without having to suspend all program
execution while waiting for an I/O operation to be completed. After a request has
been issued for an asynchronous operation, control is transferred to the wait
routine, which discovers (or, if necessary, waits for) a posted ECB. The posted ECB
can be associated with another session and the wait routine branches to a point
related to further processing for the session for which an operation has been
completed. An understanding of the details of this technique is assumed in this
discussion.

Although not discussed in detail, it is likely that sample program 2 would use a
separate control block for each session that was established with the program. This
control block can include an input/output area. A separate RPL can also be
associated exclusively with each session. The storage for these control blocks can
be obtained from a fixed pool or can be obtained dynamically and initialized with
the GENCB macroinstruction. This control block and RPL area can be obtained and
related to a session for the duration of that session, for the duration of the
program, for the duration of a transaction, or on some other basis. The ECB
associated with a session can be located in the RPL or outside of it in some fixed

Communication
Routines

Processing
Routines

Sample Program 2

Other VTAM Application Programs

Channel-attached 3270s

3612 3618

3604

Work
Station

3

Work
Station 1

32773277

32723274

3278

NCP

3279

3614 3601
HOST Processor

VTAM Communication
Controller

SDLC
Link

To other
3270s

Work
Station 2

(Other work
stations not
shown)

Application
Program(s)

Branch Office

3275

3277 3277

3271

To other
branch
offices

Figure 97. Possible data communication configuration for sample program

606 z/OS V2R1.0 Communications Server: SNA Programming

relationship, perhaps just in front of it. Chapter 3, “Organizing an application
program,” on page 33, discusses some alternative approaches for control block
storage management. In sample program 2, it is assumed that the storage for an
ECB, RPL, and session-related control block is obtained and initialized in the
LOGON exit routine and retained for the duration of the session with the program.

Organization and flow of Sample Program 2

Figure 98 on page 608 shows the principal routines in sample program 2; the notes
following the figure indicate how sample program 2 works. More detailed logic is
shown and discussed in subsequent figures and notes.

Figure 98 on page 608 shows the mainline program and the exit routines as
separate groups of routines. This is a logical rather than a physical separation; exit
routines are distinctive because they are entered only when an event occurs that
requires handling by an exit routine. When an asynchronous exit routine is
scheduled, VTAM suspends execution of the mainline program until the exit
routine completes its processing and returns to VTAM. In general, only one
asynchronous exit routine can be executed at a time; if an exit routine event occurs
while an exit routine is being executed, the second exit routine is scheduled for
entry only after the first exit routine is completed. The LERAD and SYNAD exit
routines are exceptions to this general rule; they can be entered as the result of an
RPL-based operation, such as OPNDST, RECEIVE, or CHECK in another exit
routine (in which case, they can be viewed as extensions of the exit routine that
caused them to be entered). For details, see “Normal operating system
environment for a VTAM application program” on page 30.

Except for the LERAD and SYNAD exit routines, each exit routine must establish
its own addressability, be executed, and then return to VTAM; VTAM's registers
need not be saved or restored. A temporary branch to part of the mainline routine
can be made from an exit routine and common code can be shared, but the exit
routine would be considered to be in progress until control is returned to VTAM.
The LERAD and SYNAD exit routines are furnished addressability as the result of
loading registers (a user save area address is passed in register 13).

Chapter 16. Logic of a more complicated application program 607

Except for an RPL exit routine, whose address is specified in the RPL or RPL-based
macroinstruction, the addresses of exit routines to be associated with the program

Open the ACB
Issue SETLOGON
OPTCD=START
Issue a RECEIVE
OPTCD=ANY
Branch to wait routine

Initial Routine

Disk I/O Routine
Wait Routine

WAIT
Determine which ECB
was posted or wait for
one to be posted
CHECK RPL
Pass control to address
related to posted ECB

Processing Routine Analyzer

Determine which
processor is needed
and branch to it or
call it

Input Routine

LOGON Exit Routine

Validate request to
establish session
Use INQUIRE
OPTCD=SESSPARM
to determine session
parameters
Use OPNDST OPTCD=
ACCEPT to establish
session with logical unit
Use CLSDST OPTCD=
RELEASE to end
session with invalid
logical unit; return
SEND initial request
Return to VTAM

RPL1
CHECK RPL
Post an ECB so the wait
routine will pass the
input to the processing
routine analyzer
Move input to session
related input area
Re-issue RECEIVE
OPTCD=ANY
Return to VTAM

RESP Exit Routine

Post close ECB
Return to VTAM

LERAD Exit Routine

SYNAD Exit Routine

Analyze situation
Set action code
Return to VTAM

Output Routine

Chaining? Use
chaining sub-
routine
SEND data,
specifying
POST=SCHED
Final output?
Set session to CA
Branch to wait
routine

3270 I/O Routines

Input Routine

Issue a RECEIVE
OPTCD=SPEC to
receive the next
input from the
specific session
Branch to wait
routine

Output Routine

Set session to
CA if last SEND
Issue SEND
POST=SCHED
Branch to wait
routine

Close Routine

Close the ACB
Return to the operating
system (the program
ends)

RPL1 Exit Routine

If exception response,
analyze response
information
Indicate whether to retry
Post ECB related to
request
Return to VTAM

DFASY Exit Routine

Quiesce at End of
Chain received?
Hold sending
Release Quiesce
received? Release
pending SEND
Return to VTAM

Analyze error
Set action code
Return to VTAM

Analyze error
Set action code
Return to VTAM

LOSTERM Exit Routine

Issue a RECEIVE
OPTCD=SPEC to
receive the next
data input from
the specific session
Branch to wait
routine

TPEND Exit Routine

Issue series of SENDs,
specifying chain and
POST=SCHED
Branch to wait routine

Disk I/O?

VTAM I/O?
or

Chaining Subroutine

Processing Routines

3600 I/O Routines

Figure 98. Organization and flow of Sample Program 2

608 z/OS V2R1.0 Communications Server: SNA Programming

are defined in an EXLST macroinstruction. In addition, for DFASY, RESP, and SCIP
exit routines, different exit lists can be defined for different sessions or sets of
sessions. In sample program 2, one exit list is assumed; the address of this exit list
is provided to VTAM in the EXLST operand of the ACB when the ACB is opened.

The following notes are keyed to the numbers in Figure 98 on page 608.

1 The ACB is opened and a SETLOGON OPTCD=START is issued. A
RECEIVE to read input from any session is issued; the operation is to be
completed asynchronously, and an RPL exit routine (RPL1) is designated
for scheduling by VTAM when the operation is completed. The session
whose input is read into sample program 2 is to be put into
continue-specific mode. Thus, subsequent RECEIVEs to read input from
any session, issued in the RPL exit routine, excludes the session whose
input was just read and with whom the program is now in specific
communication. The RECEIVE can be coded:
RECEIVE RPL=RPL1ANY,AREA=AREAANY,AREALEN=100, C

RTYPE=DFSYN,OPTCD=(ASY,ANY,CS),EXIT=RPL1

Issuing more than one RECEIVE OPTCD=ANY at this point can improve
efficiency. If three RECEIVEs are issued using three different RPLs and
data areas, when one RECEIVE is completed (thus causing the RPL1 exit
routine to be scheduled and entered), the two outstanding RECEIVEs can
allow scheduling of RPL1. The RECEIVE that is completed first can be
reissued in the RPL1 exit routine.

The RPLs and input areas can be assembled in the program as fixed areas
and reused each time the program issues a RECEIVE OPTCD=ANY.

A branch is made to the wait routine, which waits for the first input to
arrive from a session. The initial routine is executed only once.

2 Both 3600 and 3270 LUs can cause the LOGON exit routine to be invoked.
INQUIRE is used to determine which type of LU is having a session
established. The particular type of SNA terminal product (3600, 3790, and
3270, for example) need not be identified by the VTAM application
program. Instead, the VTAM application program distinguishes between
types of LUs on the basis of the session parameter set associated with the
LU. In this example, 3600 LUs have a different set of session parameters
than 3270 LUs; the program can relate to an LU that is establishing a
session with one of these sets, and use the appropriate routine to
communicate with the LU. Storage that is to be associated with this session
can be obtained from a pool or can be obtained dynamically from the
system. (The storage can include an ECB, an RPL, and an area for
additional session-related information.) The address of this storage or any
other session-related information can be put in the USERFLD field of the
NIB, using the MODCB macroinstruction; when the session is established,
VTAM saves this address and returns it to the program following
completion of each subsequent RPL-based macroinstruction on the session.

A session with an LU can be established as the result of a
logical-unit-initiated logon, installation-initiated (automatic) logon, VTAM
operator-initiated logon, or application-program-initiated logon. A 3600
logical-unit-initiated logon either could be the result of some
logical-unit-operator action or could be initiated solely by the 3601
application program without involving an LU operator (in either case, the
actual request would be transmitted by the 3601 application program).
Figure 107 on page 694 shows part of the general sequence of events that

Chapter 16. Logic of a more complicated application program 609

occur prior to and during a logon. Here is a sequence of events that can
occur prior to and during a 3600 logical-unit-initiated logon:
1. The 3601 and its LUs, defined to VTAM during VTAM definition, are

made an active part of the VTAM network (perhaps by a VTAM
operator VARY command).

2. As a result of receiving an activation request for the 3601 controller,
VTAM sends an Activate Physical Unit request to the 3601 controller.
The 3601 acknowledges the request and responds that it is ready for
operation. (This request is followed by an Activate Logical Unit request
to one or more of the LUs [logical work stations] associated with that
particular 3601.)

3. After the Activate Logical Unit request is received, the 3601 application
program either can wait for a terminal operator at a 3601 work station
to indicate that the LU (work station) is to be logged on to a host
application program, or can issue a logon on its own initiative. This is
done by sending an Initiate request to VTAM specifying the name of
the VTAM application program with which the LU is to be in session.
The Initiate request can also specify a logon mode name (indirectly
specifying a session parameter set) and a user-defined logon message.

4. VTAM, receiving the Initiate request, schedules sample program 2's
LOGON exit routine.

5. In the LOGON exit routine, after confirming the validity of the logon,
the session is established, using an OPNDST OPTCD=ACCEPT
macroinstruction. OPNDST causes VTAM to send a BIND request
(containing the session parameter) and to issue a Start Data Traffic
(SDT) request to the LU (assuming SDT=SYSTEM was specified in the
NIB used for session establishment). On receipt of a response to the
SDT, the LU is in session with the VTAM application program and the
OPNDST is posted complete. (If SDT=APPL is specified in the NIB
used for session establishment, the VTAM application program must
itself send the initial SDT, using the SESSIONC CONTROL=SDT
macroinstruction.)

OPNDST can be specified as a synchronous operation or an asynchronous
operation. If the latter, OPNDST can identify either an ECB to be posted or
an RPL exit routine to be scheduled as soon as the session is established.

Note: For better system performance, specify OPNDST asynchronously
from EXLST exit routines.

For a synchronous operation, the same RPL and NIB can be used for each
session being established through the LOGON exit routine.

So that the session parameter suggested to be associated with the session
can be obtained (which in this program determines whether the 3600 or the
3270 I/O routines are used with the session), an INQUIRE
OPTCD=SESSPARM macroinstruction can be issued. This allows the
session parameter and user data (logon message) from the original Initiate
to be inspected and perhaps saved in the storage that is to be associated
with the session.

Optionally, the read-only RPL provided as input to the LOGON exit
routine can be used to locate and inspect the CINIT RU. The CINIT
contains the session parameter, user data, and other information.

610 z/OS V2R1.0 Communications Server: SNA Programming

It might be desirable to use the SEND macroinstruction to write an initial
request on the session; this could be done from the LOGON exit routine or
in an RPL exit routine following an asynchronously posted OPNDST
operation.

3 As soon as the first input is received from a session, the operation started
by the RECEIVE OPTCD=ANY issued in the initial routine is completed.
The RPL1 exit routine is then scheduled and entered.

RPL1 can use the USER field or the ARG field of the RPL of the request
just completed to locate the application program session-related control
block. On entry to RPL1, the address of the RPL is in register 1.

A CHECK macroinstruction is required to free the RPL for reuse; it also
causes LERAD or SYNAD exit routines to be entered if any error occurred.

RPL1 posts an ECB so that, subsequently, the wait routine in the mainline
program determines that the input has been received and passes it to the
processing routine analyzer. The RPL1 exit routine then reissues a
RECEIVE OPTCD=ANY. Because a session-related RPL obtained in the
LOGON exit routine is used for subsequent operations with the session,
the RPL causing entry to RPL1 can be continuously reused by the
RECEIVE in RPL1. This RECEIVE OPTCD=ANY operation is to be
asynchronous with respect to the rest of the program and RPL1 is
reentered each time the request is completed. The session whose input
caused entry to RPL1 is now in continue-specific (CS) mode. The RECEIVE
can be coded identically to the RECEIVE in the initial routine.

Although not shown in Figure 98 on page 608, the RPL exit routine sends a
positive response to the request that caused it to be entered if a positive
response is requested by the LU. If a response is to be sent for an
exception condition, sending the negative response is probably performed
in a SYNAD exit routine after a CHECK is issued.

An alternative to having an RPL exit routine for the RECEIVE
OPTCD=ANY and related logic is to have this logic located in the mainline
program and have an ECB posted. In sample program 2, one advantage to
using an RPL exit routine is that input resulting from a RECEIVE
OPTCD=ANY is handled sooner in an RPL exit routine than if an ECB
were to be posted (which would require waiting until the next entry to the
mainline program's wait routine). This gives some preference to handling
the first input of a new transaction over transactions in progress.

4 The wait routine waits on a list of ECBs, with each ECB associated with a
separate RPL. When an ECB is posted, the wait routine is activated, and
the routine searches the ECB list to find the posted ECB and zeros it out.
The routine then issues a CHECK macroinstruction. (The CHECK is
bypassed here for the RECEIVE OPTCD=ANY that caused entry to the
RPL1 exit routine, because CHECK has already been issued for that RPL).
CHECK clears the RPL for reuse in the next request involving the session,
and if an error occurred, the macroinstruction causes the LERAD or
SYNAD routine to be entered. On return from CHECK, the feedback fields
of the RPL contain information provided by VTAM; in addition, the
LERAD or SYNAD routine can indicate action to be taken.

If the operation was successful, the wait routine branches to the address
associated with the ECB. (In the case of the first input of a transaction, that
address is the one for the processing routine analyzer.) When control is
returned to the wait routine, the routine again searches the ECB list to see
if another ECB has been posted. If a posted ECB is found, processing

Chapter 16. Logic of a more complicated application program 611

continues as described above. If not, RECEIVE OPTCD=ANY is issued
again, and the program enters the wait state.

5 The processing routine analyzer, which can consist of separate routines for
different types of LUs, analyzes the input and branches to or calls the
appropriate processor. This processor can be coded in a higher-level
language, such as COBOL or PL/I.

6 The processing routine processes the input and prepares the output. This
might require one or more disk I/O operations, which can be performed
by calling a common disk I/O routine. When output is ready, or during a
communication when the next input is required, the processing routine
requests VTAM I/O, causing control to pass to an appropriate VTAM I/O
routine.

7 The disk I/O routine requests a disk I/O operation asynchronously and
uses the wait routine to wait for completion. This allows processing for
other sessions to continue while a disk I/O operation for one session is
under way.

8 Although not shown, a processing routine can return control to the next
sequential instruction in the mainline program from which it was called; a
branch can then be made to a common I/O routine, which in turn
branches to a 3600 or a 3270 input or output routine. A special routine
might be required to edit 3270 input and format 3270 output.

If the LU has the 3600 session parameter, an input or an output operation
is requested as appropriate. The operation is specified as asynchronous;
completion is determined when the ECB related to the session is posted.
Before issuing the request, the address to which the wait routine should
branch (the return address is the processing routine) is placed in the
ECB-related session control block.

If additional input is requested, the input, when it arrives, is not used to
satisfy the outstanding RECEIVE OPTCD=ANY request in RPL1 because
the session is now in CS mode.

If output is requested, the data can be sent in a chain of requests; this is
useful with output that is passed from the 3601 application program to a
3610 printer. The 3601 application program can store all requests of the
chain in a buffer until the entire chain is received (or print each request as
it arrives). The VTAM application program would ensure arrival of the
entire chain by receiving a single positive response sent by the 3601
application program when the last request of the chain is received. This
notifies the VTAM application program that the data transfer was
successful.

If the output completes a transaction, the session is reset to continue-any
(CA) mode so that input that begins the next transaction satisfies the
RECEIVE OPTCD=ANY request that is issued in RPL1.

Details about the 3600 I/O routine are provided in Figure 99 on page 615
and in accompanying notes.

9 If the LU has the 3270 session parameter, different I/O routines are
required. The size of I/O areas required can be different and the range of
input that arrive can be wider. An additional requirement is the use of
brackets for controlling the overlap of input and output with 3270. Details
about the 3270 I/O routines are provided in Figure 101 on page 620 and in
accompanying notes.

612 z/OS V2R1.0 Communications Server: SNA Programming

10 The RESP exit routine is scheduled and entered when a response arrives
from an LU. A response is received by VTAM because the VTAM
application program requested it in the RESPOND operand of the SEND
macroinstruction. When the response is received, the operation, scheduled
only in the 3270 or 3600 output routine, is now completed and the RESP
exit routine can now post the ECB. If the operation was successful, the
response is positive; if an error occurred, a negative response is indicated
in the RPL. The RESP exit routine can set up parameters and branch to the
SYNAD exit routine which analyzes the error and takes corrective action.
The ECB is posted and control is returned to VTAM.

Details of the RESP exit routine are in Figure 102 on page 623 and
accompanying notes.

11 In sample program 2, two kinds of expedited-flow data-flow-control
requests can be received from a 3601 LU: a request to stop sending to the
LU at the end of the chain that is currently being sent (a Quiesce at End of
Chain [QEC] request) and a request to reinitiate sending after previously
being requested to stop (a Release Quiesce [RELQ] request). The use of
these requests might be desirable if a work station operator wants to
interrupt a long series of printing so that the keyboard input can be
entered. After handling the operator's request, the VTAM application
program can resume printing. When either of these requests is received,
VTAM schedules sample program 2's DFASY exit routine.

This exit routine does not apply to 3270 operation. Details of this routine
are shown in Figure 103 on page 625 and accompanying notes.

12 The TPEND exit routine is scheduled and entered when the VTAM
operator enters a HALT command or when VTAM terminates itself or is
abnormally terminated. In addition to other possible processing, the
TPEND exit routine posts a special close ECB so that, subsequently, the
mainline program's wait routine branches to a CLOSE macroinstruction in
the mainline program.

13 The LERAD, SYNAD, and LOSTERM exit routines handle different
categories of errors or unusual situations. The LERAD or SYNAD exit
routine can be entered as the result of any RPL-based request. The
LOSTERM exit routine is scheduled asynchronously when certain
situations occur, such as the deactivation of an LU by the terminal
operator. Like other parts of the program, the LOSTERM exit routine can
branch to the LERAD or SYNAD exit routine for problem analysis. The
LERAD exit routine primarily handles logic errors; it is most likely for
these to occur during the debugging stages of the program. This exit
routine can gather information, format it, and save it for programmer
analysis after the program ends. The SYNAD exit routine primarily
handles physical errors; it determines what general action should be taken
(for example, retry, end the session with the LU, terminate the program, or
send a request to the VTAM operator) and either takes the action or passes
an action code to the mainline program where the action is taken. The
SYNAD exit routine can also record information related to situations that it
handles for later problem analysis.

A number of error situations must be perceived and analyzed as the result
of receiving a response from an LU; the response is analyzed following a
SEND POST=RESP, following a RECEIVE RTYPE=RESP, or after a RESP
exit routine is entered. Errors or special situations that result in negative
responses cause the SYNAD exit routine to be entered when a synchronous
macroinstruction or a CHECK macroinstruction is issued; the SYNAD exit

Chapter 16. Logic of a more complicated application program 613

routine can determine the cause of the negative response by analyzing
sense information in the RPL and then take appropriate action. The
program, after determining that a negative response has been received, can
also branch directly to the SYNAD exit routine.

Logic of the 3600 finance communication system I/O routine

This routine is entered directly or indirectly (perhaps from a common I/O
branching routine in the mainline program) as the result of a request for input
from a specific terminal with which a processor is currently engaged in a
transaction.

614 z/OS V2R1.0 Communications Server: SNA Programming

Figure 99 shows the logic of the 3600 I/O routines. The following notes are keyed
to this figure.

1 If the processor's request is for input, the information that must be passed
to VTAM is set up and a RECEIVE is issued. The address of the session's

3600 I/O
Routines

Issue RECEIVE
RTYPE=DFSYN,
OPTCD=(ASY,SPEC),
ECB=address

Register
15-0?

From wait routine

Exception
received?

Positive
response
wanted?

Issue SEND
STYPE=RESP

Logoff
request

received?

Branch to
processing routine

Issue SEND
STYPE=RESP,
RESPOND=EX

Branch to
wait routine

Quiesce
condition

exist?

Output to
be chained?

Final SEND in
transaction or
conversation?

Set session to
continue-any

mode (CA)

Issue SEND
POST=SCHED,
CHAIN=ONLY,
STYPE=REQ,
CONTROL=DATA,
RESPOND=NEX,
OPTCD=SYN or ASY

Register
15=0?

Analyze
and take
action

Branch to
wait routine

Branch to
chaining routine

Analyze
and take
action

(request
accepted)

Input
or output
wanted?

Branch to
reissue
RECEIVE
request at step 1

End session using
CLSDST, and
release control
blocks

YES
(request

accepted)

Branch to
wait routine

INPUT OUTPUT

NO

NO

NO

NO

NO

NO

NO

YES

YES

YES

YES

YES

YES

Branch to
routine

YES

Figure 99. Logic of the 3600 I/O routine

Chapter 16. Logic of a more complicated application program 615

RPL is put in a register and the address of the input area associated with
the session and the length of the area are put in other registers. Because
data is to be read, RTYPE=DFSYN is specified. The operation is to be
asynchronous and input is to be read only from the specific session (whose
CID is located in the RPL's ARG field). The ECB associated with the
session is specified for posting by VTAM when the operation is completed.
After issuing the RECEIVE request, register 15 contains 0 if the request is
accepted, or some other return code if it is not. If the request is accepted,
the wait routine is returned to, after setting the next sequential instruction
in this routine as the address to be branched to when the ECB is posted.

Note: For simplicity, most checks of register 15 are not shown in sample
program 2.

2 When data is received from the LU, VTAM posts the ECB associated with
the RECEIVE RPL. When the wait routine discovers the posted ECB, it
branches to the indicated location in the 3600 I/O routine. The RESPOND
field of the RPL can be tested to determine whether the LU wants a
definite response returned to verify that the input was received. If so, a
SEND is issued, indicating that a response is to be sent to the LU
(STYPE=RESP).

The SEND that sends the response, if requested, is scheduled
synchronously. VTAM assumes POST=SCHED. Because no response can be
returned to a response, once the request to send the response is accepted,
the VTAM application program considers the sending of the response as
complete.

If input arrives unsuccessfully or out of sequence (indicating that some
input was lost), VTAM completes the VTAM application program's input
request with an indication that a negative response must be returned; no
input is forwarded to the program. The application program sends the
negative response. The input request can be reissued.

Although not shown, the VTAM application program can also return a
negative response to input that is successfully received. This might be done
when initial processing indicates an error in the format of the received
input. Such a response is understood by both the application program and
the LU. The SSENSEO, SSENSMO, and USENSEO fields of the RPL can be
used to convey exception information.

3 If the input contains a request to log off, the session is ended by issuing a
CLSDST macroinstruction, and the control blocks associated with the
session are returned to the system or to a pool. Optionally, a request can be
sent to the LU, confirming logoff, prior to issuing CLSDST.

The preceding description of the 3600 input routine assumes that a CHECK
macroinstruction is issued in the wait routine upon completion of each
requested input operation; if an error occurs, CHECK causes entry to the
LERAD or SYNAD exit routine which takes appropriate action. This can
include sending the negative response for step 2. The input routine can
issue a request to receive any kind of input: a normal-flow data request or
data-flow-control request (DFSYN), an expedited-flow data-flow-control
request (DFASY), or a response (RESP). In this sample program, DFASY
and RESP-type input are handled by VTAM-scheduled DFASY and RESP
exit routines, but the logic in these routines could have been branched to
after determining in the wait routine or 3600 input routine that DFASY or
RESP information had been received. DFSYN means that either data or
normal-flow data-flow-control requests can be received; although not

616 z/OS V2R1.0 Communications Server: SNA Programming

shown in this example, normal-flow data-flow-control requests such as
Quiesce Complete (QC) might be receivable in some applications, in which
case such requests have to be responded to.

4 When an output request from a processor is received by the 3600 output
routine, the routine does not process the request if the logical unit has
quiesced the VTAM application program; instead, the I/O routine branches
to the wait routine. The processor must wait until the quiesce is released at
which time the ECB for the session is posted, a pending send request
detected, and the routine is reentered. This logic is discussed in “Logic of
the DFASY exit routine of Sample Program 2” on page 624.

5 If the output request is chained to other output requests, a branch is made
to a chaining output routine (see Figure 100 on page 618).

6 If output is not being chained, a SEND is issued that includes the operand
CHAIN=ONLY. If the output completes a transaction, the session is
returned to continue-any mode; its next input satisfies the RECEIVE
OPTCD=ANY request issued in RPL1. The request can specify scheduling
of the operation (POST=SCHED) with completion to be determined as the
result of a positive or negative response (RESPOND=NEX) that causes
scheduling of the RESP exit routine. (The RESP exit routine posts the ECB
associated with the session, notifying the VTAM application program and
the processor that the output request was completed.) The output routine
then branches to the wait routine.

Logic of the 3600 chaining output routine

Figure 100 on page 618 shows the logic of the 3600 chaining output routine. The
following notes are keyed to this figure.

Chapter 16. Logic of a more complicated application program 617

1 The number of requests in the chain might vary. Assuming that it varies in
sample program 2, the number of chain requests must be determined so
that the routine knows when to send the last request. It might be
convenient to picture this routine being entered to send a report to an
administrative line printer; this report can vary in length between 20 and
100 printer lines. Each line is sent to the 3601 LU as a chain request. The
3601 LU determines how many lines (chain requests) it collects before
sending them on to the administrative printer.

This chaining routine can pass all of the data to be sent in a chain or only
part of it. In other words, the routine is not necessarily sending an entire
chain each time it is entered. The logic discussed here, however, assumes
that all or, in a retry situation, the last part of a chain is being sent.

2 Because one of the advantages of chaining output is to reduce the number
of required responses while still breaking output into requests that can be
interspersed on the communication path, all SEND macroinstructions,
other than the last one, specify that a response is to be returned only if an
exception is noted (RESPOND=EX). When the last request is received, a

Chaining
routine

Determine the
number of requests
in the chain

Issue SEND
CHAIN=FIRST,
RESPOND=EX

Save sequence
number using
SHOWCB

Issue SEND
CHAIN=MIDDLE,
RESPOND=EX

Last
request?

Issue SEND
CHAIN=LAST,
POST=SCHED,
RESPOND=NEX

Branch to
wait routine

NO

YES

Figure 100. Logic of the chaining output routine

618 z/OS V2R1.0 Communications Server: SNA Programming

positive response is returned, and the VTAM application program
recognizes that the entire chain arrived successfully. When RESPOND=EX
is specified, the scheduling of output (POST=SCHED) is assumed by
VTAM; it does not have to be specified.

3 In some cases, it might be necessary to save the sequence number of the
first request sent in a chain. This number is available as soon as sending
has been scheduled. It can be obtained from the SEQNO field of the RPL
by using the SHOWCB macroinstruction. In case all or part of the chain
must be resent (a negative response arrives in the RESP exit routine), the
first-of-chain sequence number can be useful in determining where to start
resending. It might also be necessary (not shown here) to reset the
beginning sequence number for the session that is receiving the chain; this
number is altered by using a SESSIONC macroinstruction. The sequence
number can be saved in the control block associated with the session.

4 All requests except the first and last are middle requests
(CHAIN=MIDDLE).

5 For the last request of the chain, the SEND macroinstruction must identify
it as the last (CHAIN=LAST) and ask for the return of a response
(RESPOND=NEX). Either POST=SCHED or POST=RESP can be specified.

When the response is received, if POST=SCHED was specified, the RESP
exit routine posts an ECB, causing the wait routine to return to the
processor that originated the output request. If POST=RESP was specified,
VTAM posts an ECB or schedules an RPL exit routine.

Routine logic of the 3270 I/O routine

Figure 101 on page 620 shows the logic of sample program 2's 3270 I/O routine.
With few exceptions, the VTAM application program need not distinguish between
channel-attached non-SNA, BSC, and SDLC PU type 1 3270s. (All these terminals
use LU type 0 protocols which are described in Chapter 11, “Programming for the
IBM 3270 Information Display System,” on page 327.)

Chapter 16. Logic of a more complicated application program 619

Data received from a 3270 begins with an attention identifier (AID) character. Data
sent to the 3270, whether local or remote, must begin with a 3270 command
character, such as Erase, Erase and Write, or Erase All Unprotected; VTAM inserts
an ESC character for BSC 3270s. The 3270 is different from other LUs in several
ways, including the following:
v Because a 3270 does not contain an application program (a variable program), it

cannot send control requests or responses. However, in some cases, VTAM
provides responses to the VTAM application program on behalf of the 3270 as a
result of receiving BSC responses to transmitted data or as a result of receiving
indications that the 3270 is in a particular bracket state.

3270 I/O
Routine

Input
or output
wanted?

Issue RECEIVE
RTYPE=DFSYN,
OPTCD=(ASY,SPEC),
ECB=address

Final SEND
in transaction or
conversation?

Set session to
continue-any mode

Branch to
wait routine

From wait routine

Logoff
request

received?

Branch to
processing routine

End session using
CLSDST, and release
control blocks

Register
15=0?

Issue SEND
STYPE=REQ,
CONTROL=DATA,
POST=SCHED,
OPTCD=SYN,
RESPOND=(NEX,FME)

Register
15=0?

Branch to
wait routine

Branch to
wait routine

INPUT OUTPUT

NO

NO

NO

NO

YES

YES

YES

YES

Analyze
and take
action

Analyze
and take
action

(request
accepted)

(request
accepted)

Figure 101. Logic of the 3270 I/O routine

620 z/OS V2R1.0 Communications Server: SNA Programming

v The amount of data that can be sent to or received from the 3270 is limited by
the physical characteristics of the 3270, whereas the amount of data that can be
sent to or received from a 3601 is more indefinite.

v Chaining output to the LU type 0 3270 is not possible.
v Responses cannot be requested by LU type 0 3270 terminals.

The following notes are keyed to Figure 101 on page 620.

1 Except that the type and length of data can be different for a 3270
RECEIVE, this request is similar to step 1 discussed for the 3600 input
routine.

2 This logic is similar to that of step 2 for the 3600 input routine except that,
because the 3270 cannot request a response to input it has provided, no
check is made to determine whether to send a response.

3 If 3270 output is requested by a processing routine, the 3270 I/O routine
determines whether this output completes a transaction. If it does, the
session is put back into continue-any mode so that the RECEIVE
OPTCD=ANY specified in the RPL1 exit routine can receive input from
this session when the terminal operator wishes to begin a new transaction.

4 A SEND macroinstruction is issued to send the output. (Although not
shown, this routine might also have to determine from the
processing-routine request what 3270 command character (for example,
Erase and Write) is to precede the output data stream that the processing
routine furnishes.) The sending of the output is scheduled synchronously
(POST=SCHED, OPTCD=SYN); VTAM returns control after it has
scheduled the output operation. A response is requested
(RESPOND=(NEX,FME)) so that the VTAM application program can
determine whether the operation was successful. The 3270 returns
information enabling VTAM to provide the appropriate response in the
RPL and to schedule the RESP exit routine. The RESP exit routine (
Figure 102 on page 623) posts an ECB so that the mainline program's wait
routine can determine that the operation completed, branching back to the
processing routine that requested the output. An output request to a 3270
printer requires a definite response (RESPOND=(NEX,FME)); an output
request to a display can specify either NEX or EX but cannot specify that
neither a positive nor negative response is to be returned
(RESPOND=(NEX,NFME)). After successfully scheduling output to the
3270, the 3270 output routine branches to the wait routine.

Logic of the RESP exit routine

Figure 102 on page 623 shows the logic of the RESP exit routine. This routine is
entered when the response is received to an output request that has POST=SCHED
specified in a 3600 or 3270 output routine. The output operations have been
scheduled with responses to be returned by the LU so that completion of each
operation can be determined. (It is also possible for all output operations to be
specified with POST=RESP. In this case, the response is received by VTAM and its
nature determined by the VTAM application program after ECB posting or RPL
exit routine scheduling. No RESP exit routine is required.)

When the VTAM application program gets control in its RESP exit routine, a
RECEIVE is not issued. The nature of the response is determined by examining the
RESPOND and other fields of an RPL that are in VTAM's storage. The address of
this RPL is in a parameter list whose address is in register 1 when the RESP exit

Chapter 16. Logic of a more complicated application program 621

routine is entered. The session area (the ECB, RPL, and session-related control
block) can be located by the address in the USER field of the VTAM RPL. (It
contains whatever was placed in the USERFLD field of the NIB when the session
was established.)

622 z/OS V2R1.0 Communications Server: SNA Programming

The following notes are keyed to Figure 102.

1 If the response is positive, the appropriate ECB is posted and a return is
made to VTAM. Even if other action must be taken because the response is
negative, the ECB is posted so that the wait routine knows that the
operation has been completed.

Using the sense fields
in the read-only RPL,
determine whether a
retry is possible

Retry?

NO
(unrecoverable)

YES
(recoverable)

Chaining?

NO
(set
retry)

YES

Indicate where to
retry from (sequence
number of exception
response)

Issue SESSIONC to
inform logical unit
of new sequence
number

Post the ECB related
to this response

Return to
VTAM

Positive
response?

NO

YES

RESP Exit
Routine

Figure 102. Logic of the RESP exit routine

Chapter 16. Logic of a more complicated application program 623

2 The RESP exit routine can use the SYNAD exit routine to analyze a
negative response; if so, the user could set up the appropriate registers and
branch directly to the SYNAD exit routine.

3 If the situation is defined by the SYNAD exit routine to be recoverable, the
operation is retried. If it is part of a chaining operation, it might be
necessary to save the sequence number of the output request to which a
negative response was returned so that the chaining routine can determine
the sequence number at which it starts a retry. If the session's inbound
sequence number (outbound from the host) must be reset, a SESSIONC can
be used to synchronize sequence numbers. This logic can also be in the
SYNAD exit routine.

On completion, the RESP exit routine returns control to VTAM.

Logic of the DFASY exit routine of Sample Program 2

Figure 103 on page 625 shows the logic of the DFASY exit routine in sample
program 2. The DFASY exit routine is entered when a request is received from the
LU asking the program to quiesce (stop) sending to the LU or to resume sending,
if sending was previously quiesced.

624 z/OS V2R1.0 Communications Server: SNA Programming

Quiescing can be done for two reasons:
v To ensure that, at a given time, only the LU or the VTAM application program

can be sending. This use of quiescing is not demonstrated in this sample
program. (Quiescing is only one means available to ensure that both sides do
not send at the same time. The change-direction protocol can also be used.) In
many cases, receiving a response ensures that both ends do not send at the same
time.

v To interrupt a steady flow of input data so that an output operation can be
performed. This is the use of quiescing that is demonstrated here. For example, a
teller at a 3600 terminal might wish to temporarily interrupt a long printout so
that an informational request (which does not require a reply) can be sent to the
VTAM application program. As a result of a teller action, the 3601 LU for the
teller's workstation sends a Quiesce-at-End-of-Chain request to the VTAM
application program, which can then agree to stop sending and be ready to read
input from the LU.
The Quiesce-at-End-of-Chain and Release-Quiesce requests are sent as
expedited-flow requests unaccompanied by data. VTAM schedules the VTAM
application program's DFASY exit routine when one of these requests is
received.

The following notes are keyed to Figure 103.

Branch to an
error routine

DFASY
Exit Routine

Quiesce
at End of
Chain?

Release
Quiesce?

Turn on hold
indicator in work
area associated
with the session

Turn off hold
indicator in
work area

Is a SEND
being held?

Put I/O request
address in return-
from-field

If immediate cancel,
tell logical unit to
discard chain

Issue SEND
STYPE=REQ,
CONTROL=QC,
OPTCD=CA

Post ECB so that
pending SEND
can be issued

Indicate all or part
of chain must be
absent

Return to
VTAM

NONO

NO

YES YES

YES

Figure 103. Logic of the DFASY exit routine

Chapter 16. Logic of a more complicated application program 625

1 The type of request that caused the DFASY exit routine to be entered is
available in the CONTROL field of the read-only RPL whose address is
provided by VTAM on entry. If a Quiesce-at-End-of-Chain (QEC) request
was received, this routine sets a hold indicator in the work area associated
with the session. The session-related control block, as in the RESP exit
routine, is located by the address in the USER field of the RPL.

2 If the quiesce is to be immediate, the exit routine can instruct the LU to
discard the chain by issuing a SEND macroinstruction that specifies
CONTROL=CANCEL. Alternatively, the next SEND would be set to
CHAIN=LAST; the LU determines whether to use the chain requests
previously received. If it is in the middle of a chain and not all of the chain
is to be resent, the VTAM application program can note where sending is
to resume when the quiesce condition is released.

3 The QEC request is acknowledged by sending back a Quiesce Complete
(QC) request. So that the LU's input is able to complete the request to
receive input from any session being recurrently issued in the RPL1 exit
routine, the session is put back into continue-any mode (OPTCD=CA).

4 This flag might be required in addition to the hold indicator to determine
where to resume sending. Refer to step 2.

5 If the request is a Release-Quiesce (RELQ) request, the hold indicator is
turned off.

6 If further output is being held, the output routine is rescheduled for this
session, and an ECB is posted so that the wait routine branches to it.
Control is returned to VTAM.

626 z/OS V2R1.0 Communications Server: SNA Programming

Chapter 17. Sample code using authorized path

This sample program, SAMP3, shows an application program using the authorized
path facility under the control of both a task control block (TCB) and a service
request block (SRB). The logic for this sample application program is similar to the
logic for sample program 2 in Chapter 16, “Logic of a more complicated
application program,” on page 605.

SAMP3 uses the authorized forms of the SEND, RECEIVE, and RESETSR
macroinstructions to perform communication processing. SAMP3 shows:
v How to enter supervisor state
v Which operating system macroinstructions to use.

This sample can be used as a guideline for coding application programs that use
the authorized path facility; the sample program is not intended to be coded and
used as it is shown. For further details about authorized path, see “Authorized
path” on page 300.

Notes on SAMP3

SAMP3 physically consists of one application program, but logically consists of
two programs. The first logical program is labeled “AUTHPATH,” and the second
logical program is labeled “AUTHEXIT.”

AUTHPATH begins by opening an ACB and establishing a session with an LU. In
order to use the authorized forms of SEND, RECEIVE, RESETSR, or SESSIONC,
the application program must have authorization to change from problem program
state to supervisor state. See “Assigning operating system authorization” on page
296 for a description of how to become an authorized program.

SAMP3 changes into supervisor state by issuing the operating system
macroinstruction MODESET. MODESET obtains the zero protection key needed to
use authorized path. To schedule an SRB, an application program must be in
supervisor state with a key of zero.

At this point, SAMP3 departs from normal VTAM application programming. It is
now operating as a system program, using a system key. The application program
issues the RECEIVE macroinstruction in its asynchronous form with an exit routine
specified. The operand BRANCH=YES causes authorized path to be used. The exit
routine runs under control of an SRB.

The exit routine, AUTHEXIT, issues the CHECK macroinstruction, which delimits
processing of the RECEIVE macroinstruction issued in the mainline program. Then
the input is tested for three possibilities:
v Echo
v No echo
v An error condition.

© Copyright IBM Corp. 2000, 2013 627

If an echo is desired, the SEND macroinstruction is used to return the data just
received. This SEND uses authorized path because it is issued under control of the
SRB under which the exit routine was scheduled. The mainline program is then
posted to continue issuing the RECEIVE.

If no echo is desired, and an error has not been encountered, the RESETSR
macroinstruction is issued to change the logical unit (LU) back to continue-any
mode to allow it to be addressed by the next issuance of the RECEIVE
macroinstruction. RESETSR uses authorized path because it is issued under control
of the SRB under which the exit routine was scheduled.

If an error condition was encountered, the mainline program is posted to issue
CLSDST and CLOSE ACB after offering the user the option of an ABEND dump.

Otherwise, the mainline program is posted to continue issuing the RECEIVE
OPTCD=ANY to accept data from the LU. Because the exit routine runs under an
SRB, the branch entry to POST, rather than the POST SVC, must be used, which in
turn requires obtaining and releasing the local lock with the SETLOCK
macroinstruction.

The mainline program checks the input for the string “LOGOFF” and, if it finds
this input, issues CLSDST and CLOSE ACB to shut down the application program.
(Notice that the CLSDST macroinstruction uses the BRANCH=NO operand to turn
off the RPLBRANC flag turned on by the RECEIVE which used the BRANCH=YES
operand.) If the “LOGOFF” string is not found, the mainline program continues
issuing the RECEIVE and the exit again gains control.

SAMP3 assembler language code
AUTHPATH CSECT

PRINT NOGEN
R15 EQU 15
R14 EQU 14
R13 EQU 13
R12 EQU 12
R11 EQU 11
R10 EQU 10
R9 EQU 9
R5 EQU 5
R4 EQU 4
R1 EQU 1
R0 EQU 0

SAVE (14,12),T,*
LR R12,R15 * GET BASE
USING AUTHPATH,R12 * COVER
LR R9,R13 * MOVE SAVE PTR
LA R13,SAVE * PT TO SAVE AREA
ST R13,8(0,R9) * FORWARD PTR
ST R9,4(0,R13) * BACKWARD PTR
LA R4,AUTHRPL * BASE FOR RPL
USING IFGRPL,R4 * COVER RPL
WTO ’AUTHPATH APPLICATION ENTERED’ * TELL OPER WE’RE HERE

*
* OPEN THE ACB
*

OPEN AUTHACB * OPEN VTAM ACB
MVI THRU+3,4 * OUTPUT MSG 1, OPEN FAILED
LTR R15,R15 * GOOD
BNZ BAD * NO

*
* ESTABLISH SESSION

628 z/OS V2R1.0 Communications Server: SNA Programming

*
*

OPNDST RPL=AUTHRPL,OPTCD=(SYN,ACQUIRE) * ESTABLISH SESSION
MVI THRU+3,8 * OUTPUT MSG 2, OPEN DEST FAILED
LTR R15,R15 * GOOD

* BNZ BAD * NO
*
* MODESET TO SUP STATE
*

MODESET MODE=SUP * SUPERVISOR STATE
*
* ISSUE RECEIVE MACRO
*
AUTHRECV RECEIVE RPL=AUTHRPL,OPTCD=(ASY,Q,ANY,CS),BRANCH=YES, C

AREA=INPUT00,AREALEN=100,EXIT=AUTHEXIT,RTYPE=DFSYN
MVI THRU+3,12 * OUTPUT MSG 3, RECEIVE VALID CHECK FAIL
LTR R15,R15 * CHECK RETURN CODE FROM RECEIVE
BNZ BAD * NOT 0, GO HANDLE SITUATION

*
* HERE THIS APPLICATION COULD BE DOING SOME TYPE
* OF PROCESSING BEFORE NOTIFICATION FROM AUTHEXIT.
*
*

WAIT 1,ECB=THRU * WAIT FOR AUTH EXIT
CLI THRU+3,0 * EVERYTHING OK IN EXIT?
BNZ BAD * NO, HANDLE IT.
CLC LOGMSG,INPUT00+6 * USER WANT TO LOG OFF?
BE CLOSE1 * USER WANTS TO QUIT
XC THRU,THRU * CLEAR ECB
MVI INPUT00,X’40’
MVC INPUT00+1(99),INPUT00 * CLEAR INPUT AREA
B AUTHRECV * REPEAT RECEIVE

*
* CLOSE SESSION AND ACB AND END PROGRAM
*
CLOSE1 CLSDST RPL=AUTHRPL,OPTCD=SYN,BRANCH=NO * TERMINATE SESSION
CLOSE2 CLOSE AUTHACB * CLOSE ACB
CLOSE3 LA R1,MSG0 * ISSUE ENDED MESSAGE

WTO MF=(E,(1))
L R13,4(0,R13) * POINT
RETURN (14,12),T,RC=0

BAD L R5,THRU * USE POST CODE AS INDEX
L R1,MSGS(R5) * PT TO APPROPRIATE MSG
WTO MF=(E,(1))
WTOR ’ENTER ’Y’’ FOR ABEND DUMP’,REPLY,1,WTORECB
WAIT 1,ECB=WTORECB
CLI REPLY,C’Y’ * DOES USER WANT A DUMP?
BNE CHEKCLOS * DETERMINE PROPER CLOSE
ABEND 100,DUMP,STEP * HALT PROGRAM, DUMP

CHEKCLOS CLI THRU+3,8 * CHECK CLOSING CODE
BH CLOSE1 * CLOSE EVERYTHING
BE CLOSE2 * JUST CLOSE ACB
BL CLOSE3 * CLOSE FAILED

AUTHEXIT DS 0H
USING AUTHEXIT,R15 * TEMPORARY BASE
STM 14,12,SAV2+12 * SAVE CALLERS REGS
LR R12,R15 * LOAD BASE
DROP 15
USING AUTHEXIT,R12
LA R13,SAV3 * VTAM DOES NOT PASS A SAVE AREA

* * SO SKIP STANDARD LINKAGE
CHECK RPL=AUTHRPL * CHECK STATUS OF REQUEST
MVI POSTCODE+3,16 * SET CODE NOT EQUAL 0
LTR R15,R15 * RETURN CODE EQUAL 0?
BNZ GOPOST * NO, GO HANDLE SITUATION

*
* THE SEND BELOW USES THE AUTHORIZED PATH BECAUSE

Chapter 17. Sample code using authorized path 629

* IT IS ISSUED UNDER CONTROL OF THE SRB SCHEDULED BY
* VTAM AS THE EXIT FOR THE AUTHORIZED PATH RECEIVE.
*

MVC OUTPUT01,INPUT00 * MOVE WHAT WE READ TO OUTPUT AREA
TM INPUT00,X’10’ * ERROR RESPONSE REQUESTED?
BC 1,CLOSIT * YES, CLOSE DEST AND QUIT
TM INPUT00,X’04’ * DOES APB WANT AN ECHO?
BC 8,NOECHO * NO

*
* ECHO WAS REQUESTED
*

MVI OUTPUT01,X’82’ * SET ECHO RESPONSE CODE
XC OUTPUT01+1(5),OUTPUT01+1 * CLEAR OTHER CONTROL
CLC LOGMSG,INPUT00+6 * USER WANT TO LOGOFF?
BNE CONTINUE * NO
MVC OUTPUT01+13(35),OUTPUT02 * MOVE IN FINAL MSG

CONTINUE DS 0H
*

SEND OPTCD=(SYN,CA),CONTROL=DATA,STYPE=REQ,RTYPE=DFSYN, C
RECLEN=100,AREA=OUTPUT01,RPL=AUTHRPL,POST=SCHED, C
RESPOND=(NEX,NFME,NRRN) * SEND SOME DATA OUT

MVI POSTCODE+3,20 * SET UP MSG5, SEND VALIDITY FAILED
LTR R15,R15 * RC=0?
BNZ GOPOST * NO, POST MAINLINE
MVI POSTCODE+3,24 * SET MSG6- RPL RETURN CODE
CLI RPLRTNCD,0 * RETURN CODE OF ZERO?
BNE GOPOST * POST MAINLINE
CLI RPLFDB2,0 * CHECK FEEDBACK CODE
BNE GOPOST * POST MAINLINE

AOK XC POSTCODE,POSTCODE * CLEAR POST CODE
*
* BRANCH ENTRY TO POST REQUIRES LOCAL LOCK
*
GOPOST DS 0H
LOCK SETLOCK OBTAIN,TYPE=LOCAL,MODE=UNCOND,REGS=USE, C

RELATED=(LOCAL,AUTHPATH(UNLOCK))
L R10,POSTCODE * GET POST CODE
LA R11,THRU * POINT TO ECB
L R15,16 * CVT PTR
L R15,(CVT0PT02-CVT)(0,R15) * BRANCH ENTRY TO POST
BALR R14,R15 * POST ECB

UNLOCK SETLOCK RELEASE,TYPE=LOCAL,REGS=USE, C
RELATED=(LOCAL,AUTHPATH(LOCK))

AUTHEX0 L R13,4(0,R13) * PT TO SAVE AREA
RETURN (14,12),T,RC=0

NOECHO DS 0H * APB DOES NOT WANT AN ECHO
* MUST ISSUE RESETSR TO SWAP MODE BACK TO CONTINUE ANY

RESETSR RPL=AUTHRPL,OPTCD=(SYN,CA),RTYPE=DFSYN
MVI POSTCODE+3,28 * MESSAGE 7
LTR R15,R15 * RESET OK?
BNZ GOPOST * NO
B AOK * OK, CONTINUE

CLOSIT DS 0H * ERROR RESPONSE- CLOSE DEST
MVI POSTCODE+3,32 * SET SPECIAL CLOSE DEST CODE
B GOPOST * POST MAINLINE

THRU DC F’0’ * ECB TO WAIT ON SRB
WTORECB DC F’0’ * ECB FOR WTOR
SYSDATE DC CL8’&SYSDATE’ * DATE OF ASSEMBLY
SAVE DC 18F’0’
SAV2 DS 0F

DC 2F’0’
DC A(SAV3)
DC 15F’0’

SAV3 DS 0F
DC F’0’
DC A(SAV2)
DC 16F’0’

630 z/OS V2R1.0 Communications Server: SNA Programming

REPLY DC C’ ’ * USER’S REPLY TO DUMP MSG
LOGMSG DC CL7’LOGOFF ’ * USER WANTS TO LOGOFF
POSTCODE DC F’0’ * POST CODE GOES HERE
OUTPUT01 DC CL100’ ’
INPUT00 DC CL100’ ’
OUTPUT02 DC CL35’ *** AUTHPATH WORKS, PASS IT ON ***’
APPL5ID DC X’05’,CL5’APPL5’ * ID AND PASSWORD
MSGS DC A(MSG0,MSG1,MSG2,MSG3,MSG4,MSG5,MSG6,MSG7,MSG8)
MSG0 WTO ’AUTHPATH ENDED’,ROUTCDE=(1),DESC=(5),MF=L
MSG1 WTO ’OPEN ACB FAILED’,ROUTCDE=(1),DESC=(5),MF=L
MSG2 WTO ’OPEN DESTINATION FAILED’,ROUTCDE=(1),DESC=(5),MF=L
MSG3 WTO ’RECEIVE VALIDITY CHECK FAILED’,ROUTCDE=(1),DESC=(5),MF=L
MSG4 WTO ’RECEIVE FAILED, EXIT ENTERED’,ROUTCDE=(1),DESC=(5),MF=L
MSG5 WTO ’SEND VALIDITY CHECK FAILED’,ROUTCDE=(1),DESC=(5),MF=L
MSG6 WTO ’SEND FAILED’,ROUTCDE=(1),DESC=(5),MF=L
MSG7 WTO ’RESETSR FAILED’,ROUTCDE=(1),DESC=(5),MF=L
MSG8 WTO ’APB REQUESTED CLOSE DEST’,ROUTCDE=(1),DESC=(5),MF=L

DS 0H
PATCH DC 10CL8’PATCHES’
AUTHRPL RPL ACB=AUTHACB,AM=VTAM,NIB=AUTHNIB2
AUTHACB ACB AM=VTAM,APPLID=APPL5ID,PASSWD=APPL5ID,MACRF=NLOGON
AUTHNIB2 NIB NAME=CTJ10LU1,USERFLD=C’ NEW’,LISTEND=YES

IFGRPL AM=VTAM
IHASRB
IHAPSA
IHAFRRS
CVT DSECT=YES,LIST=YES
END

Chapter 17. Sample code using authorized path 631

632 z/OS V2R1.0 Communications Server: SNA Programming

Appendix A. Summary of control block field usage

This appendix serves as a reference for the experienced VTAM application
programmer by showing the following information for each executable
macroinstruction discussed in this book:
v The control block fields set by the application program when (or before) the

macroinstruction is used.
v The control block fields and registers set by VTAM upon completion of the

processing started by the macroinstruction.

Note: All of the control block fields that apply to each macroinstruction are
shown, but remember that not all fields apply to every possible variation of a
macroinstruction. See Chapter 13, “Conventions and descriptions of VTAM
macroinstructions,” on page 371, for details about each macroinstruction.

For declarative macroinstructions, the macroinstruction operands and defaults are
shown.

Throughout this appendix, a pointer (→) indicates that a field contains the address
of the given item, and an equal sign (=) indicates that a field contains the item
itself.

Mutually exclusive fields are indicated as such when they occur in a
macroinstruction. For example, NIB and ARG are mutually exclusive in the
CLSDST macroinstruction; only one of the two can be used.

Indented fields are associated with the field preceding them. For example, the
NAME, CID, USERFLD, LOGMODE, and LISTEND fields are all associated with
the NIB field.

Fields that provide information supplied by your program rather than information
provided by the macroinstruction are indicated by bold type. All information
preceding the bold type concerns information that your application program
supplies to the macroinstruction. All information shown in bold type is
information that the macroinstruction passes back to your application program.

ACB
ACB AM operand = VTAM

APPLID field → application program’s symbolic name
PASSWD field → password
EXLST field → exit list
MACRF field = LOGON|NLOGON
PARMS field = (NIB subfield → NIB USERFLD

subfield = userdata)
PARMS field = (APPLVCTR → vector list address)
PARMS=(KEEPFRR = YES|NO)
PARMS=(PERSIST = YES|NO)
PARMS=(FORCETKO = YES|NO)
PARMS=(SRBEXIT = YES|NO)
PARMS=(NQNAMES = YES|NO)
PARMS=(FDX = YES|NO)
PARMS=(PERFMON = YES|NO)

5. Applies only to communication network management application program.

© Copyright IBM Corp. 2000, 2013 633

CHANGE
CHANGE → RPL: ACB field → ACB

NIB field → NIB:
NAME field = [symbolic name of LU whose

association is terminated|*]
GNAME field = generic name
NETID field = symbolic network identifier of LU
LISTEND field = YES

Note: ECB and EXIT are mutually exclusive.
If ECB is used, only one is allowed.
ECB field → external ECB
ECB field = internal ECB
EXIT field → RPL exit routine
BRANCH field = YES|NO
OPTCD field = (ENDAFFIN|ENDAFFNF,

SYN|ASY)

Registers 0 and 15 = return codes

RPL: RTNCD field = recovery action return code
FDB2 field = specific error return code
REQ field = request code (25)

CHECK
CHECK → RPL being checked

RPL set inactive
ECB cleared

Register 0 and 15 = return codes

CLOSE
CLOSE → ACB being closed

MF operand = list or execute form parameters

Register 15 = return code

ACB: OFLAGS field = opened or not-opened
indicator

ERROR field = specific error status
information

CLSDST
CLSDST → RPL: ACB field → ACB

Note: ARG and NIB are mutually exclusive.
ARG field = CID of session terminated
NIB field → NIB:

Note: NAME and CID
are mutually exclusive.
NAME field = symbolic name of LU

whose session
is terminated

NETID field = symbolic network identifier of LU
Note: NETID and MODE
are mutually exclusive.

CID field = CID of session terminated
USERFLD field =correlator returned

in NSEXIT exit routine
LOGMODE field = logon mode name

6. Applies only to CLSDST=PASS.

634 z/OS V2R1.0 Communications Server: SNA Programming

LISTEND field = YES
Note: MTSAREA and BNDAREA
are mutually exclusive.

MTSAREA field = 0|MTS area address
BNDAREA field → 0|BIND area

Note: ECB and EXIT are mutually exclusive.
If ECB is used, only one is allowed.
ECB field → external ECB
ECB field = internal ECB
EXIT field → RPL exit routine
BRANCH field = YES|NO
AAREA field → name of target PLU
AREA field = user data for Initiate
RECLEN field → length of user data
OPTCD field = (PASS|RELEASE|TERMQ,

SYN|ASY,
NSENSE|SENSE,
MTS|NMTS)

PARMS field =(THRDPTY=NOTIFY|NONOTIFY)
PARMS = (SONCODE = code)
SSENSMO field = CPM|STATE|FI|RR|0
SSENSMO field = system-sense modifier value (or 0)
USENSEO field = user-sense value (or 0)

Registers 0 and 15 = return codes

RPL: RTNCD field = recovery action return code
FDB2 field = specific error return code
REQ field = request code (31)
SSENSEI field = CPM|STATE|FI|RR|PATH|0
SSEMSMI field = system-sense modifier value (or 0)
USENSEI field = user-sense value (or 0)

EXECRPL
EXECRPL → RPL: All fields appropriate for the request type

(indicated in the REQ field) are valid.

EXLST
EXLST AM operand = VTAM

LERAD field → LERAD exit routine
SYNAD field → SYNAD exit routine
DFASY field → DFASY exit routine
RESP field → RESP exit routine
SCIP field → SCIP exit routine
TPEND field → TPEND exit routine
RELREQ field → RELREQ exit routine
LOGON field → LOGON exit routine
LOSTERM field → LOSTERM exit routine
NSEXIT field → NSEXIT exit routine

GENCB
GENCB AM operand = VTAM

BLK operand = control block type (ACB|EXLST|RPL|NIB)
control block field name operand = value set in field
COPIES operand = number of copies desired
WAREA operand → work area where blocks are built
LENGTH operand = length of work area
MF operand = list, generate, or execute form parameters

Register 0 = error return code (if register 15 indicates an error)
or
Register 0 = length of generated control blocks (if register 15

Appendix A. Summary of control block field usage 635

indicates successful completion)
Register 1 → generated control blocks (if register 15

indicates successful completion)
Register 15 = general return code

INQUIRE
INQUIRE → RPL: ACB field → ACB

Note: ECB and EXIT are mutually exclusive.
If ECB is used, only one is allowed.
ECB field → external ECB
ECB field = internal ECB
EXIT field → RPL exit routine
BRANCH field = YES|NO
OPTCD field = (LOGONMSG|DEVCHAR|COUNTS|

TERMS|APPSTAT|NQN|CIDXLATE|
TOPLOGON|SESSPARM|SESSKEY|
USERVAR|PERSESS|SESSNAME|
STATUS|SYN|ASY)

If OPTCD = LOGONMSG
Note: ARG and NIB are mutually exclusive.
ARG field = CID of pending active session
NIB field → NIB:

Note: NAME and CID
are mutually exclusive.
NAME field = symbolic name of LU
NETID field = symbolic network identifier of LU
CID field = CID of pending active session
LISTEND field = YES

AREA field → input area for user data from CINIT
AREALEN field = length of input area

If OPTCD = DEVCHAR
Note: ARG and NIB are mutually exclusive.
ARG field = CID of session or pending

active session
NIB field → NIB:

Note: NAME and CID
are mutually exclusive.
NAME field = symbolic name of

logical unit
NETID field = symbolic network identifier of

logical unit
CID field = CID of session or pending

active session
LISTEND field = YES

AREA FIELD → input are for LU characteristics
AREALEN field = 8

If OPTCD = TERMS
NIB field → NIB:

NAME field = symbolic name of resource
in VTAM configuration tables

NETID field = symbolic network identifier of resource
in VTAM configuration tables

LISTEND field = YES
AREA field → work area where NIBs are built
AREALEN field = length of work area

If OPTCD = COUNTS
AREA field → input area for data
AREALEN field = 4

If OPTCD = APPSTAT
NIB field → NIB:

NAME field = symbolic name of

636 z/OS V2R1.0 Communications Server: SNA Programming

application program
NETID field = symbolic network identifier of

application program
LISTEND field = YES

AREA field → network identifier and the real name
for specified application program

AREALEN field = length of output area

If OPTCD = NQN
NIB field → NIB:

NAME field = symbolic name
NETID field = symbolic network identifier
LISTEND field = YES

AREA field → output name (based on type of
translation request)

AREALEN field = length of output area

If OPTCD = CIDXLATE
Note: ARG and NIB are mutually exclusive.
ARG field = CID to be translated
NIB field → NIB:

NAME field = symbolic name of LU
NETID field = symbolic network identifier of LU
LISTEND field = YES

AREA field → input area of symbolic name
AREALEN field = 8 for CID-to-name-translate

= 4 for name-to-CID translate

If OPTCD = TOPLOGON
AREA field → input area for symbolic name
AREALEN field = 8

If OPTCD = SESSNAME
NIB field → NIB:

NAME field = symbolic name of LU
NETID field = symbolic network identifier of LU
GNAME field = generic name of application
LISTEND field = YES

AREA field → area for application network name
AREALEN field = 16

If OPTCD = SESSPARM
Note: ARG and NIB are mutually exclusive.
ARG field = CID of pending active session
NIB field → NIB:

Note: NAME and CID
are mutually exclusive.
NAME field = symbolic name of LU
NETID field = symbolic network identifier of LU
CID field = CID of pending active session
LOGMODE field = |0 C'|'logon mode name
LISTEND field = YES

AREA field → input area for session parameter
AREALEN field = length of input area

If OPTCD = STATUS
NIB field → NIB:

NAME field = symbolic name of LU
NETID field = symbolic network identifier of LU
LISTEND field = YES

AREA field → network identifier and the real name
for specified LU

AREALEN field = length of output area

If OPTCD = SESSKEY
Note: ARG and NIB are mutually exclusive.
ARG field = CID of session

Appendix A. Summary of control block field usage 637

NIB field → NIB:
Note: NAME and CID
are mutually exclusive.
NAME field = symbolic name of LU
NETID field = symbolic network identifier of LU
CID field = CID of session
LISTEND field = YES

AREA field → input area for session
cryptography key and initial
chaining value

AREALEN field = 16
If OPTCD = PERSESS

AREA field → address of recovery data
AREALEN field = length of recovery data

Registers 0 and 15 = return codes

RPL:
RTNCD field = recovery action return code
FDB2 field = specific error return code
REQ field = request code (26)
SSENSEI field = CPM|STATE|FI|RR|PATH|0
SSENSMI field = system-sense modifier value

(or 0)
USENSEI field = user-sense value (or 0)
RECLEN field = length of data received (if

(RTNCD,FDB2) = (X’00’,X’05’),
RECLEN = total required length)
RECLEN = total required length
to identify one session
if OPTCD = PERSESS

FDBK field = status information if
OPTCD = APPSTAT or OPTCD = STATUS

ARG field = CID of oldest pending active
session if OPTCD = TOPLOGON

INTRPRET
INTRPRET → RPL: ACB field → ACB

Note: ARG and NIB are mutually exclusive.
ARG field = CID of session
NIB field → NIB:

NAME field = symbolic name of LU
NETID field = symbolic network identifier of LU
LISTEND field = YES

Note: ECB and EXIT are mutually exclusive.
If ECB is used, only one is allowed.
ECB field → external ECB
ECB field = internal ECB
EXIT field → RPL exit routine
BRANCH field = YES|NO
AREA field → data to be interpreted
RECLEN field = length of data to be interpreted
AAREA field → work area for interpreted data
AAREALN field = 8 or larger number
OPTCD field = SYN|ASY

Registers 0 and 15 = return codes

RPL:
RTNCD field = recovery action return code
FDB2 field = specific error return code
REQ field = request code (27)
SSENSEI field = CPM|STATE|FI|RR|PATH|0
SSENSMI field = system-sense modifier value (or 0)
USENSEI field = user-sense value (or 0)

638 z/OS V2R1.0 Communications Server: SNA Programming

RECLEN field = length of data received (if
(RTNCD,FDB2) = (X’00’,X’05’),
RECLEN = total required length)

ISTGLBAL
&ISTGLRL = release-level macro global character variable

(product, version, release, modification code)
&ISTGLxy = function-list macro global binary variables:
&ISTGL00 = NIB ENCR and RPL CRYPT (cryptography)
&ISTGL01 = ACB PARMS = (NIB=nib address)

(communication network management interface)
&ISTGL02 = Multiple-address-space application programs
&ISTGL03 = Authorized path for communication macros
&ISTGL04 = Authorized path for all RPL-based macros
&ISTGL05 = SRBEXIT (on APPL definition statement)
&ISTGL06 = SONSCIP (on APPL definition statement)
&ISTGL07 = VTAMFRR (on APPL definition statement)
&ISTGL10 = SSCP tracking of device-LU session capability by

means of NOTIFY (enabled/disabled/inhibited)
&ISTGL11 = RPL OPTCD=LMPEO
&ISTGL12 = RPL OPTCD=BUFFLST
&ISTGL13 = RPL OPTCD=USERRH
&ISTGL14 = ACB PARMS=(USERFLD=user data)
&ISTGL15 = RPL BRACKET=CEB
&ISTGL16 = Application program assignment of sequence

numbers for expedited DFC requests
&ISTGL17 = Resource-information vector list
&ISTGL20 = Access-method support vector list
&ISTGL21 = Return of system-response byte and extended-

response byte for BSC 3270 terminals attached
to NCP

&ISTGL22 = INTRPRET
&ISTGL23 = API is XRF-capable
&ISTGL24 = Sense included with a negative response to CINIT

using CLSDST OPTCD=(RELEASE,SENSE)
&ISTGL25 = Session outage notification code and sense included

with UNBIND
&ISTGL26 = Control the scheduling of the LOGON and SCIP

exit routines to process session setup requests
&ISTGL27 = CINIT network addressed in vector key X’15’
&ISTGL30 = 31-bit application program
&ISTGL32 = LU 6.2 is supported
&ISTGL33 = Support for OPTCD=USERVAR for INQUIRE command
&ISTGL34 = Support for VCNS
&ISTGL35 = LAN support through the IBM 3172 Interconnect

Controller for token-bus, token-ring,
CSMA/CD, and FDDI

&ISTGL36 = Cross-memory API is supported
&ISTGL37 = VTAM maintains FRR stack for

application-dispatchable unit of work
while VTAM processes the work
(KEEPFRR on ACB)

&ISTGL40 = Application program can use SRB processing
in exit routines (SRBEXIT on ACB)

&ISTGL41 = Persistent LU-LU sessions supported
(PERSIST on ACB)

&ISTGL43 = Enhanced data collection for NPM
&ISTGL44 = Persistent LU-LU sessions tracking

supported for LU 6.1 and LU 6.2
&ISTGL45 = Reserved
&ISTGL46 = Reserved
&ISTGL47 = Network-qualified names are supported
&ISTGL50 = MS Transport is supported
&ISTGL51 = Performance monitor interface is supported
&ISTGL52 = QUEUED session termination supported (CLSDST

or TERMSESS OPTCD=(TERMQ))

Appendix A. Summary of control block field usage 639

&ISTGL53 = CMIP services is supported
&ISTGL54 = Generic resources supported
&ISTGL55 = KEEPSRB supported
&ISTGL56 = Application vectors supported on ACB macroinstruction
&ISTGL57 = SETLOGON GNAME supported
&ISTGL60 = FORCETKO support
&ISTGL61 = User CV support

MODCB
MODCB AM operand = VTAM

control block type operand → control block
control block field name operand = new value to be set
MF operand = list, generate or execute form parameters

Register 0 = error return code (if register 15 indicates an error)
Register 15 = general return code

NIB
NIB Name field = LU name

AFFIN field = APPL|VTAM
LUAFFIN field = APPL|NOTAPPL
USERFLD field = user data
LISTEND field = YES|NO
NAME field=[session parameter name|*]
NETID field = LU network identifier
SDT field = APPL|SYSTEM
EXLST field → exit list
ENCR field =REQD|SEL|NONE
RESPLIM field = 1|response limit
LOGMODE field = 0|C''|logon mode name
ASDAREA field → dial parameter list address
BNDAREA field → 0|BIND area
MTSAREA field → 0|MTS area address
PROC field = (CA|CS|CONDCS|RPLC,

NDFASYX|DFASYX,
NRESPX|RESPX,
NCONFTXT|CONFTXT,
KEEP|TRUNC,
SYSRESP|APPLRESP,
STOKEN ,
ORDRESP|NORDRESP,
NEGBIND|NNEGBIND)

GNAME field = generic name of application

OPEN
OPEN → ACB being opened

MF operand = list or execute form parameters

Register 15 =return code

ACB: OFLAGS field = opened or not-opened indicator
ERROR field = specific error status information
ACBAMSVL field 10→access-method-support vector list
ACBPSINS field = persistent-instance bit

7. The NAME and PROC=STOKEN specifications are mutually exclusive.

8. Applies to the encryption facility only.

9. The MTSAREA and BNDAREA parameters are mutually exclusive.

10. There is no ACB operand for this field.

640 z/OS V2R1.0 Communications Server: SNA Programming

ACBPLUSC field = persistent capable application bit
ACBFRCTO field = MNPS forced takeover capable bit
ACBRIVL field 10=resource information vector list

OPNDST
OPNDST → RPL: ACB field → ACB

NIB field → NIB|NIB list
Note: NAME and CID
are mutually exclusive.
NAME field: see following discussion of OPTCD
NETID field: see following discussion of OPTCD
CID field: see following discussion of OPTCD
LUAFFIN field: see following discussion of OPTCD

USERFLD field = data to be returned at the
completion of subsequent
RPL-based requests

EXLST field → exit routine list
ENCR field = level of cryptography required

(REQD|SEL|NONE)
SDT field = sender of SDT requests
PROC field = processing options

Note: LOGMODE and BNDAREA
are mutually exclusive.

LOGMODE field = 0|C''|logon mode name
BNDAREA field → 0|BIND area containing

session parameter
LISTEND field: see following discussion of OPTCD
Note: ECB and EXIT are mutually exclusive.
If ECB is used, only one is allowed.
ECB field → external ECB
ECB field = internal ECB
EXIT field → RPL exit routine
BRANCH field = YES|NO
OPTCD field = (SPEC|ANY,

SYN|ASY,
CS|CA,
Q|NQ,
CONANY|CONALL,
ACQUIRE|ACCEPT|RESTORE,
BACKUP|NBACKUP)

If OPTCD = ACQUIRE, then for NIB:
NAME field = symbolic name of LU
NETID field = symbolic network identifier of LU
LUAFFIN field = APPL|NOTAPPL
LISTEND field = YES|NO

If OPTCD = (ACCEPT,SPEC), then for NIB:
Note: NAME and CID
are mutually exclusive.
NAME field = symbolic name of SLU in

pending active session
NETID field = symbolic network identifier of SLU in

pending active session
CID field = CID of pending active session
LUAFFIN field = APPL|NOTAPPL
LISTEND field = YES

If OPTCD = (ACCEPT,ANY), then for NIB:
NAME field not examined
LUAFFIN field = APPL|NOTAPPL
LISTEND field = YES

If OPTCD = RESTORE, then for NIB:
NAME field = symbolic name of partner LU in the

session pending recovery

Appendix A. Summary of control block field usage 641

NETID field = symbolic network identifier of partner LU in the
session pending recovery

CID field = CID of the session pending recovery
LISTEND field = YES|NO
AAREA field → address of recovery data
AAREALN field = length of recovery data

If NIB PROC = NEGBIND, then for RPL:
AAREA field → area to place negotiable

BIND response
AAREALN field = length of AAREA

Registers 0 and 15 = return codes

RPL: RTNCD field = recovery action return code
FDB2 field = specific error return code
REQ field = request code (23)
SSENSEI field = CPM|STATE|FI|RR|PATH|0
SSENSMI field = system-sense modifier value (or 0)
USENSEI field = user-sense value (or 0)
ARG field = CID of session established in effect

value is unpredictable if CONALL is in effect
and if more than one session is established)

AREA field → NIB:
CID field = CID of session established
NAME field = symbolic name of LU in
session (when ACCEPT in effect)

NETID field = symbolic network identifier of LU in
session (when ACCEPT in effect)

DEVCHAR field = LU characteristics
NIBNACLQ field = statue of queues CINIT
CON field = YES|NO (session established or not)
NIBRPARM field = pointer to restore parameter list
(if OPTCD=RESTORE)
NIBPSPLU field = application type (1=PLU, 0=SLU)
(if OPTCD = RESTORE)
NIBPSRSP field = RESP Data Mode (0=Continue Any,
1=Continue Specific) (if OPTCD = RESTORE)
NIBPSDFS field = DFSYN Data Mode (0=Continue Any,
1=Continue Specific) (if OPTCD = RESTORE)
NIBPSDFA field = DFASY Data Mode (0=Continue Any,
1=Continue Specific) (if OPTCD = RESTORE)
NIBAFFIN field = affinity owner (0=VTAM, 1=APPL)
(if NIBLAFFN = 1)

ARECLEN field = length of received BIND response
(if NIB PROC = NEGBIND)

ARECLEN field = total length of the session recovery data
(if OPTCD = RESTORE)

OPNSEC
OPNSEC → RPL: ACB field → ACB

NIB field → NIB:
Note: NAME and CID
are mutually exclusive.
NAME field = symbolic name of PLU in

pending active session
NETID field = symbolic network identifier of PLU in

pending active session
LUAFFIN field = APPL|NOTAPPL
CID field = CID of pending active session
USERFLD field = data to be returned at the

completion of subsequent

11. Applies to the encryption facility only.

642 z/OS V2R1.0 Communications Server: SNA Programming

RPL-based requests
EXLST field → exit routine list
ENCR field =level of cryptography required

(REQD|SEL|NONE)
RESPLIM field = responded-output-limit
SDT field = responder to SDT requests
PROC field = processing options
BNDAREA field (if PROC = NEGBIND) →

0|BIND area containing
session parameter

LISTEND field = YES
Note: ECB and EXIT are mutually exclusive.
If ECB is used, only one is allowed.
ECB field → external ECB
ECB field = internal ECB
EXIT field → RPL exit routine
BRANCH field = YES|NO
OPTCD field = (SYN|ASY,CA|CA)

Register 0 and 15 = return codes

RPL: RTNCD field = recovery action return code
FDB2 field = specific error return code
REQ field = request code (42)
SSENSEI field = CPM|STATE|FI|RR|PATH|0
SSENSMI field = system-sense modifier value (or 0)
USENSEI field = user-sense value (or 0)
ARG field = CID of the established session
AREA field → NIB:

NAME field = symbolic name of the PLU
of established session
NETID field = symbolic network identifier of the PLU
of established session
CID field = CID of the established session
CON field = YES|NO (session established

or not)
NIBAFFIN field = affinity owner (0=VTAM, 1=APPL)
(if NIBLAFFN = 1)

RCVCMD
RCVCMD → RPL: ACB field→ ACB

Note: ECB and EXIT are mutually exclusive.
If ECB is used, only one is allowed.
ECB field → external ECB
ECB field = internal ECB
EXIT field → RPL exit routine
BRANCH field = YES|NO
AREA field → input area for message
AREALEN field = length of input area
OPTCD field = (SYN|ASY,TRUNC,Q|NQ)

Registers 0 and 15 = return codes

RPL: RTNCD field = recovery action return code
FDB2 field = specific error return code
REQ field = request code (40)
AAREALN field = maximum length of reply
allowed (if requested)
RECLEN field = length of input message

Appendix A. Summary of control block field usage 643

RECEIVE
RECEIVE → RPL: ACB field → ACB

ARG field = CID session
Note: ECB and EXIT are mutually exclusive.
If ECB is used, only one is allowed.
ECB field → external ECB
ECB field = internal ECB
EXIT field → RPL exit routine
BRANCH field = YES|NO
AREA field → input data area
AREALEN field = length of input data area
RTYPE field = (DFSYN|NDFSYN,DFASY|NDFASY,

RESP|NRESP)
OPTCD field = (SYN|ASY,

CA|CS|CONDCS
SPEC|ANY,
TRUNC|KEEP|NIBTK,
Q|NQ)

Registers 0 and 15 = return codes

RPL: RTNCD field = recovery action return code
FDB2 field = specific error return code
REQ field = request code (35)
SSENSEI field = CPM|STATE|FI|RR|PATH|0
SSENSMI field = system-sense modifier value (or 0)
USENSEI field = user-sense value (or 0)
USER field = data from USERFLD in NIB used

to establish session
SEQNO field = sequence number of input
RESPOND field = (EX|NEX,FME|NFME,RRN|

NRRN,QRESP|NQRESP)
ARG field = CID of session completing the

RECEIVE
RTYPE field = type of input received
RECLEN field = length of input data
CONTROL field = DATA|BID|BIS|CANCEL|

CHASE|LUS|QC|RTR|QEC|
RELQ|RSHUTD|SBI|SHUTC|
SHUTD|SIGNAL

SIGDATA field = signal data (if CONTROL =
SIGNAL)

CHNGDIR field = (CMD|NCMD,|REQ|NREQ)
BRACKET field = (BB|NBB,EB|NEB,CEB|NCEB)

CHAIN field = FIRST|MIDDLE|LAST|ONLY
CRYPT field = YES|NO
CODESEL field = STANDARD|ALT
OPTCD field = FMHDR|NFMHDR
RPLURH field =3-byte user RH

REQSESS
REQSESS → RPL: ACB field → ACB

NIB field→ NIB:
NAME field = symbolic name of PLU
NETID field = symbolic network identifier of PLU
LOGMODE field = logon mode name
USERFLD field = correlator to be returned in

SCIP or NSEXIT exit routine
LISTEND = YES
Note: MTSAREA and BNDAREA are
mutually exclusive.

12. There is no RPL operand for this field.

644 z/OS V2R1.0 Communications Server: SNA Programming

MTSAREA field = 0|MTS area address
BNDAREA field → 0|BIND area
Note: ECB and EXIT are mutually exclusive.

If ECB is used, only one is allowed.
ECB field → external ECB
ECB field = internal ECB
EXIT field → RPL exit routine
BRANCH field = YES|NO
AREA field → user data for initiate
RECLEN field = user data length
AAREA field = 0
OPTCD field = (SYN|ASY, NQ, MTS|NMTS)

Registers 0 and 15 = return codes

RPL: RTNCD field = recovery action return code
FDB2 field = specific error return code
REQ field = request code (41)
SSENSEI field = CPM|STATE|FI|RR|PATH|0
SSENSMI field = system-sense modifier value (or 0)
USENSEI field = user-sense value (or 0)

RESETSR
RESETSR → RPL: ACB field→ ACB

ARG field = CID of session
Note: ECB and EXIT are mutually exclusive.
If ECB is used, only one is allowed.
ECB field → external ECB
ECB field = internal ECB
EXIT field → RPL exit routine
BRANCH field = YES|NO
RTYPE field = (DFSYN|NDFSYN,DFASY|

NDFASY,RESP|NRESP)
OPTCD field = (SYN|ASY,CA|CS)

Register 0 and 15 = return codes

RPL: RTNCD field = recovery action return code
FDB2 field = specific error return code
REQ field = request code (36)
USER field = data from USERFLD in NIB used

to establish session

RPL
RPL AM operand = VTAM

ACB field → ACB
NIB field → NIB
AREA field → data area
AREALEN field = data area length
RECLEN field = data length
AREA = data area address
AAREA field → alternate data area
AREALEN → data area length
AAREALEN field = alternate data length
Note: ECB and EXIT are mutually exclusive.
If ECB is used, only one is allowed.
ECB field → external ECB
ECB field = INTERNAL
EXIT field → RPL exit routine

13. Applies only to the encryption facility.

Appendix A. Summary of control block field usage 645

BRANCH field = YES|NO
SEQNO field = sequence number
POST field = SCHED|RESP
RESPOND field = (EX|NEX,FME|NFME,RRN|NRRN,

QRESP|NQRESP)
CONTROL field = DATA|BID|BIS|CANCEL|CHASE|LUS|QC

RTR|QEC|RELQ|RSHUTD|SBI|SHUTC|
SHUTD|SIGNAL|BIND|CLEAR|RQR|SDT|
STSN|UNBIND|SWITCH

CHAIN field = FIRST|MIDDLE|LAST|ONLY
CHNGDIR field = (CMD|NCMD,REQ|NREQ)
CRYPT field =YES|NO
BRACKET field = (BB|NBB,EB|NEB,CEB|NCEB)
RTYPE field = (DFSYN|NDFSYN,DFASY|NDFASY,RESP|

NRESP)
STYPE field = REQ|RESP
IBSQAC field = SET|TESTSET|INVALID|IGNORE|TESTPOS|

TESTNEG|RESET
OBSQAC field = SET|TESTSET|INVALID|IGNORE|TESTPOS|

TESTNEG|RESET
IBSQVAL field = inbound sequence number
OBSQVAL field = outbound sequence number
SIGDATA field = signal data
CODESEL field = STANDARD|ALT
PARMS field = (THRDPTY = NOTIFY|NONOTIFY)
PARMS = SONCODE = code
SSENSEO field = CPM|STATE|FI|RR|0
SSENSMO field = system-sense modifier value (or 0)
USENSEO field = user-sense value (or 0)
OPTCD field = (NIBTK|TRUNC|KEEP,

NFMHDR|FMHDR,
CONALL|CONANY,
SYN|ASY,
CA|CS,
COND|UNCOND|UNBIND,
SPEC|ANY,
ACCEPT|ACQUIRE,
QUIESCE|STOP|START|HOLD,
RELEASE|PASS,
RELRQ|NRELREQ,
LOGONMSG|DEVCHAR|COUNTS|TERMS|STATUS|
APPSTAT|CIDXLATE|TOPLOGON|
USERVAR|SESSPARM|SESSKEY,
LMPEO|NLMPEO,
CONTCHN|NCONTCHN,
BUFFLST|NBUFFLST,
USERRH|NUSERRH,
SENSE|NSENSE,
SONCODE|NSONCODE,RSPQUED| NRSPQUED,
NBACKUP|BACKUP,
Q|NQ,
QALL|QSESSLIM|QNOTENAB,
MTS|NMTS,
KEEPSRB|NKEEPSRB)

SEND
SEND → RPL: ACB field → ACB

ARG field = CID of session
Note: ECB and EXIT are mutually exclusive.
If ECB is used, only one is allowed.
ECB field → external ECB
ECB field = internal ECB

14. Applies only to the encryption facility.

646 z/OS V2R1.0 Communications Server: SNA Programming

EXIT field → RPL exit routine
BRANCH field = YES|NO
POST field = SCHED|RESP
AREA field → data to be sent or buffer list
RECLEN field = length of data to be sent or length

of buffer list
RESPOND field = (EX|NEX,FME|NFME,RRN|

NRRN,QRESP|NQRESP)
RTYPE field = (DFSYN|NDFSYN,DFASY|NDFASY,

RESP|NRESP)
CONTROL field = DATA|BID|BIS|CANCEL|

CHASE|LUS|QC|RTR|QEC|
RELQ|RSHUTD|SBI|SHUTC|
SHUTD|SIGNAL

SIGDATA field = signal data (for STYPE=REQ and
CONTROL=SIGNAL)

CHNGDIR field = (CMD|NCMD,REQ|NREQ)
BRACKET field = (BB|NBB,EB|NEB,CEB|NCEB)
CHAIN field = FIRST|MIDDLE|LAST|ONLY
CRYPT field =YES|NO
CODESEL field = STANDARD|ALT
STYPE field = REQ|RESP

If STYPE = RESP,
SEQNO field = sequence number

If STYPE = RESP and RESPOND = EX
SSENSEO field = CPM|STATE|FI|RR|0
SSENSMO field = system-sense modifier field
USENSEO field = user-sense value

OPTCD field = (SYN|ASY,
FMHDR|NFMHDR,
CA|CS,
LMPEO|NLMPEO,
CONTCHN|NCONTCHN,
BUFFLST|NBUFFLST,
USERRH|NUSERRH,
RSPQUED|NRSPQUED)

Register 0 and 15 = return codes

RPL: RTNCD field = recovery action return code
FDB2 field = specific error return code
REQ field = request code (34)
USER field = data from USERFLD in NIB used

to establish session
SEQNO field = sequence number (last sequence

number for LMPEO)
OBSQVAL field = first sequence number for LMPEO

If POST = RESP (and it was not overridden)
CONTROL field = SNA request code returned
on response
RESPOND field = (EX|NEX|FME|NFME,RRN|NRRN)
CHNGDIR field = REQ indicator returned on
response
SSENSMI field = CPM|STATE|GI|RR|PATH|0
USENSEI field = user-sense value (or 0)

SENDCMD

Appendix A. Summary of control block field usage 647

SENDCMD → RPL: ACB field → ACB
AREA field → header and command to be sent
RECLEN field = length of header and command to be sent
Note: ECB and EXIT are mutually exclusive.
If ECB is used, only one is allowed.
ECB field → external ECB
ECB field = internal ECB
EXIT field → RPL exit routine
BRANCH field = YES|NO
OPTCD field = SYN|ASY

Register 0 and 15 = return codes

RPL: RTNCD field = recovery action return code
FDB2 field = specific error return code
REQ field = request code (39)

SESSIONC
SESSIONC → RPL: ACB field → ACB

Note: ARG and NIB are mutually exclusive.
ARG field = CID of session or pending active session
NIB field → NIB: (only to send negative response

to BIND)
Note: NAME and CID
are mutually exclusive.
NAME is required if
the NIB field is used.
NAME field = symbolic name of PLU
NETID field = symbolic network identifier of PLU
CID field = CID of pending active session
LISTEND field = YES

Note: ECB and EXIT are mutually exclusive.
If ECB is used, only one is allowed.
ECB field → external ECB
ECB field = internal ECB
EXIT field → RPL exit routine
BRANCH field = YES|NO
STYPE field = REQ|RESP

If RESPONSE = NEX and CONTROL = STSN,
IBSQVAL field = inbound sequence

number
IBSQAC field = RESET|TSTPOS|

INVALID|TESTNEG
OBSQVAL field = outbound sequence

number
OBSQAC field = RESET|TESTPOS|

INVALID|TESTNEG

SETLOGON
SETLOGON → RPL: ACB field → ACB

Note: ECB and EXIT are mutually exclusive.
If ECB is used, only one is allowed.
ECB field → external ECB
ECB field = internal ECB
EXIT field → RPL exit routine
BRANCH field = YES|NO
OPTCD field = (SYN|ASY,

START|STOP|QUIESCE|HOLD|
PERSIST|NPERSIST|GNAMEADD|
GNAMEDEL|GNAMESUB)

PARMS = (MAXSESS = number of sessions,
FORCETKO= YES|NO,

PSTIMER = time limit)

648 z/OS V2R1.0 Communications Server: SNA Programming

NIB field → NIB
GNAME field = generic name of application
AFFIN = VTAM|APPL
NIBUCVA = address of storage containing a vector list
LISTEND = YES

Register 0 and 15 = return codes

RPL: RTNCD field = recovery action return code
FDB2 field = specific error return code
REQ field = request code (21)
SSENSEI field = CPM|STATE|FI|RR|PATH|0
SSENSMI field = system-sense modifier value (or 0)
USENSEI field = user-sense value (or 0)
RECLEN field = number of queued CINIT requests

(if OPTCD = QUIESCE)

SHOWCB
SHOWCB AM operand = VTAM

control block type operand → control block
FIELDS operand = control block field to be extracted
AREA operand → work area where contacts of blocks

will be placed
LENGTH operand = length of the work area
MF operand = list, generate, or execute form parameters

Register 0 = error return code (if register 15 indicates an error)
or
Register 0 = length of the control block field extracted

(if register 15 indicated successful completion)
Register 15 = general return code

SIMLOGON
SIMLOGON → RPL: ACB field → ACB

NIB field → NIB:
NAME field = symbolic name of LU
NETID field = symbolic network identifier of LU
USERFLD field = correlator to be returned in

LOGON or NSEXIT exit
routine

LOGMODE field = logon mode name
LISTEND field = YES|NO

Note: ECB and EXIT are mutually exclusive.
If ECB is used, only one is allowed.
ECB field → external ECB
ECB field = internal ECB
EXIT field → RPL exit routine

BRANCH field = YES|NO
AREA field → user data for Initiate
RECLEN field = user data length
OPTCD field = (SYN|ASY,Q|NQ,CONANY|

CONALL,RELQ|NRELRQ,
BACKUP|NBACKUP
QALL|QSESSLIM|QNOTENAB)

Registers 0 and 15 = return codes

RPL: RTNCD field = recovery action return code
FDB2 field = specific error return code
REQ field = request code (22)
SSENSEI field = CPM|STATE|FI|RR|PATH|0
SSENSMI field = system-sense modifier value (or 0)
USENSEI field = user-sense value (or 0)

Appendix A. Summary of control block field usage 649

NIB: NIBSLWRK = on if SIMLOGON successful for this NIB
NIBNNAMS = on if the association established with a partner
LU is known by the application’s network name when it has
a generic name.

TERMSESS
TERMSESS → RPL: ACB field → ACB

Note: ARG and NIB are mutually exclusive.
ARG field = CID of session or pending active

session to be terminated
NIB field → NIB:

Note: NAME and CID
are mutually exclusive.
NAME is required if
the NIB field is used.
NAME field = symbolic name of PLU
NETID field = symbolic network identifier of PLU
CID field = CID of session or pending active

session to be terminated
LISTEND field = YES

Note: ECB and EXIT are mutually exclusive.
If ECB is used, only one is allowed.
ECB field → external ECB
ECB field = internal ECB
EXIT field → RPL exit routine
BRANCH field = YES|NO
OPTCD = (SYN|ASY,COND|UNCOND|

UNBIND|TERMQ,SONCODE|NSONCODE)
PARMS = (SONCODE = code)
SSENSEO field = CPM|STATE|FI|RR|0
SSENSMO field = system-sense modifier value (or 0)
USENSEO field = user-sense value (or 0)

Registers 0 and 15 = return codes

RPL: RTNCD field = recovery action return code
FDB2 field = specific error return code
REQ field = request code (44)
SSENSEI field = CPM|STATE|FI|RR|PATH|0
SSENSMI field = system-sense modifier value (or 0)
USENSEI field = user-sense value (or 0)

TESTCB
TESTCB AM operand = VTAM

control block operand → control block
field name operand = test value
ERET operand → error exit routine
MF operand = list, generate, or execute

form parameters

Register 0 = error return code (if register 15
indicates an error)

Register 15 = general return code
PSW condition code = test result

650 z/OS V2R1.0 Communications Server: SNA Programming

Appendix B. Return codes and sense fields for RPL-based
macroinstructions

This appendix provides information about return code posting and explains what
the different return code and feedback field values mean. It also provides
information about SNA sense fields.

Return code posting

VTAM posts return code information in registers 0 and 15, and in certain fields of
the request's RPL. These fields are referred to as feedback fields. The manner in
which registers 0 and 15 and the feedback fields are posted depends on whether
synchronous request handling, asynchronous request handling with an ECB, or
asynchronous request handling with an RPL exit routine is used.

Chapter 3, “Organizing an application program,” on page 33, provides an overview
of these modes of operation. Chapter 9, “Handling errors and special conditions,”
on page 277 describes the way that VTAM and the application program handle
RPL-based macroinstruction errors and special conditions. This appendix lists the
RTNCD and FDB2 feedback field values that are set when those conditions arise.

Note: RTNCD and FDB2 designate RPL DSECT fields (and are not RPL operands).
The RPL DSECT label for RTNCD is RPLRTNCD, and the label for FDB2 is
RPLFDB2. Because of the similarity in spelling between these fields and label
designations and others found in the RPL, refer to Table 112 on page 751,
Figure 169 on page 767, and Figure 170 on page 768 to avoid misinterpreting or
incorrectly designating field names. The FDBK2 parameter on the SHOWCB and
TESTCB macroinstructions represents the RPLFDB2 field.

Figure 104 on page 652, Figure 105 on page 653, and Figure 106 on page 654 show
the RTNCD,FDB2 combinations that are valid for each macroinstruction. Only the
RPL-based macroinstructions are included because feedback posting applies only
to RPL-based macroinstructions. CHECK and EXECRPL are not shown because all
of the indicated RTNCD,FDB2 combinations are possible upon return from them.

Although specific error return codes apply only when RTNCD contains a recovery
action code that is not 0, Figure 104 on page 652, Figure 105 on page 653, and
Figure 106 on page 654 include some FDB2 values for RTNCD=0. These are
additional information codes that apply to certain normally completing requests.
These codes are explained in the section following Figure 104 on page 652,
Figure 105 on page 653, and Figure 106 on page 654.

After you have used Figure 104 on page 652, Figure 105 on page 653, and
Figure 106 on page 654 to determine which RTNCD,FDB2 combinations are
possible for a particular macroinstruction, refer to the return code descriptions for
an explanation of each RTNCD,FDB2 combination.

© Copyright IBM Corp. 2000, 2013 651

RTNCD FDB2

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X'00'(0)

X'04'(4)

X'0C'(12)

X'08'(8)

X'10'(16)

X'00'(0)

X'05'(5)

X'06'(6)

X'07'(7)

X'08'(8)

X'09'(9)

X'0A'(10)

X'0B'(11)

X'0D'(13)

X'03'(3)

X'04'(4)

X'05'(5)

X'00'(0)

X'0A'(10)

X'0B'(11)

X'0C'(12)

X'0D'(13)

X'0E'(14)

X'00'(0)

X'01'(1)

X'02'(2)

X'03'(3)

X'05'(5)

C
H

A
N

G
E

C
LS

D
S

T

IN
Q

U
IR

E

IN
TR

P
R

E
T

O
P

N
D

S
T

O
P

N
S

E
C

R
C

V
C

M
D

R
E

C
E

IV
E

R
E

Q
S

E
S

S

R
E

S
E

TS
R

S
E

N
D

S
E

N
D

C
M

D

S
E

S
S

IO
N

C
S

E
TL

O
G

O
N

S
IM

LO
G

O
N

TE
R

M
S

E
S

S

A
P

P
C

C
M

D

X'07'(7)

X'09'(9)

X'0A'(10)

X'0D'(13)

X'0E'(14)

X'0F'(15)

X'11'(17)

X'12'(18)

X'13'(19)

X'14'(20)

X'15'(21)

X'16'(22)

X'17'(23)

X'18'(24)

X'19'(25)

X'1A'(26)

X'1B'(27)

X'1C'(28)

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Figure 104. RTNCD,FDB2 combinations possible for each macroinstruction (Part 1 of 3)

652 z/OS V2R1.0 Communications Server: SNA Programming

RTNCD FDB2

X'14'(20)

X'00'(0)

X'02'(2)

X'03'(3)

X'04'(4)

X'10'(16)

X'11'(17)

X'12'(18)

X'13'(19)

X'1E'(30)

X'23'(35)

X'24'(36)

X'3B'(59)

X'3C'(60)

X'40'(64)

X'41'(65)

X'42'(66)

X'44'(68)

X'47'(71)

X'48'(72)

X'49'(73)

X'4A'(74)

X'4B'(75)

X'4C'(76)

X'4D'(77)

X'4E'(78)

X'4F'(79)

X'50'(80)

X'51'(81)

X'52'(82)

X'53'(83)

X'55'(85)

X'57'(87)

X'5E'(94)

X'60'(96)

X'61'(97)

X'6C'(108)

X'6D'(109)

X'6E'(110)

X'6F'(111)

X'70'(112)

X'71'(113)

X'73'(115)

X'74'(116)

C
H

A
N

G
E

C
LS

D
S

T

IN
Q

U
IR

E

IN
TR

P
R

E
T

O
P

N
D

S
T

O
P

N
S

E
C

R
C

V
C

M
D

R
E

C
E

IV
E

R
E

Q
S

E
S

S

R
E

S
E

TS
R

S
E

N
D

S
E

N
D

C
M

D

S
E

S
S

IO
N

C
S

E
TL

O
G

O
N

S
IM

LO
G

O
N

TE
R

M
S

E
S

S

A
P

P
C

C
M

D

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

XX

X

X

This code applies only to CHECK

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

Figure 105. RTNCD,FDB2 combinations possible for each macroinstruction (Part 2 of 3)

Appendix B. Return codes and sense fields for RPL-based macroinstructions 653

Should you detect a return code during program execution other than one
described in this appendix, stop session communication. You can use SHOWCB
macroinstructions to extract the contents of the RPL fields. You should then obtain
a program dump. Save your source listings and any program execution output for
IBM program service representatives.

RTNCD FDB2

X'14'(20)

X'75'(117)

X'76'(118)

X'77'(119)

X'78'(120)

X'79'(121)

X'7B'(123)

X'7C'(124)

X'7D'(125)

X'7E'(126)

X'7F'(127)

X'80'(128)

X'81'(129)

X'82'(130)

X'83'(131)

X'84'(132)

X'85'(133)

X'86'(134)

X'87'(135)

X'88'(136)

X'89'(137)

X'8A'(138)

X'8B'(139)

X'8C'(140)

X'8D'(141)

X'8E'(142)

X'8F'(143)

X'90'(144)
X'91'(145)

X'92'(146)

X'93'(147)

C
H

A
N

G
E

C
LS

D
S

T

IN
Q

U
IR

E

IN
T

R
P

R
E

T

O
P

N
D

S
T

O
P

N
S

E
C

R
C

V
C

M
D

R
E

C
E

IV
E

R
E

Q
S

E
S

S

R
E

S
E

T
S

R

S
E

N
D

S
E

N
D

C
M

D

S
E

S
S

IO
N

C
S

E
T

LO
G

O
N

S
IM

LO
G

O
N

T
E

R
M

S
E

S
S

A
P

P
C

C
M

D

X

X

X

X

X

X

XX

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X'94'(148)

X'95'(149)

X'96'(150)

X

X

X

X

X

X

Figure 106. RTNCD,FDB2 combinations possible for each macroinstruction (Part 3 of 3)

654 z/OS V2R1.0 Communications Server: SNA Programming

RPL return code (RTNCD,FDB2) combinations

This section describes all the RTNCD,FDB2 combinations that can be set in an RPL
when it is posted complete. The information posted in registers 0 and 15 is
specified in Chapter 9, “Handling errors and special conditions,” on page 277. The
macroinstruction description in “RPL—Create a request parameter list” on page
487 lists all the RPL fields which can be set when each macroinstruction is posted
complete.

RTNCD FDB2 Explanation

0 0 Normal completion or request accepted

The operation has been completed normally or the request has been accepted.

RTNCD FDB2 Explanation

0 5 Input area too small

You issued INQUIRE, INTRPRET, or OPNDST OPTCD=RESTORE and specified an
input work area that is too small. VTAM has placed the required length (in bytes)
in the RPL's RECLEN field (for INQUIRE) or ARECLEN (for INTRPRET). No data
has been placed in the work area.

Obtain a work area that is at least as long as the value set in RECLEN or
ARECLEN, place the length in the AREALEN field (for INQUIRE) or AAREALN
(for INTRPRET), and reissue INQUIRE or INTRPRET.

RTNCD FDB2 Explanation

0 6 No input available

A RECEIVE OPTCD=NQ was issued and there was no input of the specified
RTYPE available to satisfy the macroinstruction, or a RCVCMD OPTCD=NQ was
issued and there was no input available to satisfy the macroinstruction.

RTNCD FDB2 Explanation

0 7 INQUIRE information not available

One of the following has occurred:
v You issued INQUIRE OPTCD=LOGONMSG to obtain user data (a logon

message) from a queued CINIT and there is no queued CINIT.
v You issued INQUIRE OPTCD=SESSPARM to obtain session parameters from a

queued CINIT and there is no queued CINIT.
v You issued INQUIRE OPTCD=SESSKEY to obtain the session cryptography key,

and there is no session cryptography key.
v You issued INQUIRE OPTCD=DEVCHAR for a cross-domain resource.
v You issued INQUIRE OPTCD=TOPLOGON for queued CINITs, and there are no

queued CINITs.
v You issued INQUIRE OPTCD=CIDXLATE for a session that has not been

established.
v You issued an INQUIRE OPTCD=USERVAR and no USERVAR was defined.

Appendix B. Return codes and sense fields for RPL-based macroinstructions 655

v You issued an INQUIRE OPTCD=PERSESS, and no record application program
interface sessions are pending recovery.

The problem might be due to an incorrectly set NAME field in the NIB, an CID
that is not valid in the NIB or RPL, a failure on the part of the system programmer
to create the appropriate entry during VTAM definition, or a VARY command
issued by the VTAM operator that deactivated the entry.

RTNCD FDB2 Explanation

0 8 OPNDST OPTCD=ACQUIRE, SIMLOGON, or
CLSDST OPTCD=PASS failed

An OPNDST OPTCD=ACQUIRE or SIMLOGON OPTCD=NQ failed for one of the
following reasons: the requested logical unit is at its session limit or is not enabled
for sessions in which it is to be the SLU. See Chapter 5, “Establishing and
terminating sessions with logical units,” on page 81z/OS Communications Server:
SNA Programming for a description of OPNDST and SIMLOGON.

A SIMLOGON OPTCD=Q failed because the requested logical unit is at its session
limit and at least one of its current sessions is with the application program that
issued the SIMLOGON.

A CLSDST OPTCD=PASS failed for one of two reasons. There is already a queued
session between the logical unit being passed and the target primary logical unit,
or you attempted to initiate or pass the session to the same PLU APPL.

RTNCD FDB2 Explanation

0 9 OPNDST OPTCD=ACCEPT denied (no queued
CINITs) or OPNDST OPTCD=RESTORE denied (no
sessions restored)

You attempted to accept a session and indicated that your request should be
rejected if no pending active session is waiting to be accepted (OPTCD=NQ). The
request is rejected because no CINIT is queued for your application program.

An OPNDST OPTCD=RESTORE failed because the sessions that are requested are
not pending recovery. None of the sessions specified by the NIBLIST are restored.

RTNCD FDB2 Explanation

0 10(X'0A') Application program not connectable

You issued INQUIRE OPTCD=APPSTAT to check an application program's ability
to establish sessions. The application program is in an inactive, non-connectable
state because the VTAM operator deactivated it. Therefore, the application program
is not available for sessions.

RTNCD FDB2 Explanation

0 11(X'0B') Conditional Completion for APPCCMD

656 z/OS V2R1.0 Communications Server: SNA Programming

Some type of error might have occurred on an APPCCMD macroinstruction. For
further problem determination, refer to the primary and secondary return codes in
the RPL extension. See the z/OS Communications Server: SNA Programmer's LU
6.2 Reference for further information.

RTNCD FDB2 Explanation

0 13(X'0D') Additional sessions pending recovery

You have issued INQUIRE PERSESS and specified an input work area that is too
small. VTAM fills the work area with as much information as possible and places
the length used in the RPL's RECLEN. The INQUIRE must be reissued to recover
the remainder of the information.

RTNCD FDB2 Explanation

4 3 Exception request received

An exception request has been received. The reason for the exception is contained
in the RPL's SSENSEI, SSENSMI, and USENSEI fields. If a negative response has
not been sent to a request of this chain and if this request (the exception request)
requires a response, move the input sense fields to the output sense fields and
send a negative response. All requests in the current chain that have been received
by the application program should be discarded. If the current request did not end
the chain, issue RECEIVE macroinstructions with OPTCD=TRUNC and
AREALEN=0 until CHAIN=LAST or CONTROL=CANCEL is received. No
responses should be sent for any request in the rest of the chain.

RTNCD FDB2 Explanation

4 4 Negative response received

The logical unit (or some other node in the network) has sent a response indicating
that an exception condition was detected for one of the requests that the
application program sent on this session. The SEQNO field indicates the sequence
number of the request to which the negative response applies. The SSENSEI,
SSENSMI, and USENSEI fields indicate the reason for the exception condition. See
“RPL fields set by VTAM” on page 505 for more information on the SEQNO field,
and “SNA sense fields” on page 679 for more information on the SSENSEI,
SSENSMI, and USENSEI fields.

If the request with which the negative response is associated is part of an
incomplete chain currently being transmitted to the logical unit, the application
program should terminate the chain by issuing a SEND STYPE=REQ,
CONTROL=DATA, CHAIN=LAST or a SEND STYPE=REQ, CONTROL=CANCEL
to indicate that the logical unit can stop discarding the requests it is receiving.
Refer to z/OS Communications Server: SNA ProgrammingChapter 6,
“Communicating with logical units,” on page 151 for information about the use of
STSN and CLEAR to alter sequence numbers. Also see the discussion of
(RTNCD,FDB2)=(12,13) in this section.

RTNCD FDB2 Explanation

4 5 Symbolic name known in this SSCP by its
network-qualified name only

Appendix B. Return codes and sense fields for RPL-based macroinstructions 657

A real-to-symbolic translation request is made, and NIBNET is filled in with a
network identifier, but VTAM cannot provide a symbolic name. VTAM knows this
resource only by its network-qualified name; there is no symbolic name that
represents this resource. Do one of the following:
v Use the network-qualified name
v Define a symbolic name to represent this resource.

RTNCD FDB2 Explanation

8 0 Temporary storage shortage

VTAM is temporarily unable to secure enough storage to process the request. The
request can usually be reissued (with EXECRPL, for example). For applications
running at a priority near to or higher than VTAM's priority, the application
should wait a brief time before retrying this.

In certain cases, the macroinstruction processing has not gotten far enough to have
done significant work, and the request can be reissued. In other cases, the
processing might have gone beyond some irreversible point before failing; as a
result, the request cannot simply be reissued. For example, if the LOGON exit
routine has been scheduled with a CINIT request and OPNDST OPTCD=ACCEPT
is issued, the OPNDST operation can fail before responding to the CINIT, in which
case the OPNDST can simply be reissued. If the response to CINIT had been sent,
however, and then storage could not be obtained, the OPNDST request could not
be reissued as there would no longer be a CINIT to accept. In this case, the
application program might wish to initiate another session between itself and the
LU, perhaps by using SIMLOGON. These two cases can be distinguished by a bit
in the NIB; when the OPNDST OPTCD=ACCEPT is posted, NIBNACLQ is 1 if the
response to CINIT is sent; otherwise it is 0.

RTNCD FDB2 Explanation

12(X'0C') 10(X'0A') Request canceled by RESETSR

This RECEIVE operation has been canceled by a RESETSR macroinstruction issued
by another part of your application program.

RTNCD FDB2 Explanation

12(X'0C') 11(X'0B') Request canceled because the session has been
terminated

The request has been canceled because the session was terminated. Session
termination always cancels any pending requests for the session, and returns this
return code in the RPL. See z/OS Communications Server: SNA
Programming“Session outage notification” on page 110 for a list of the possible
causes of session termination.

This return code is also used when an OPNDST OPTCD=(ACCEPT,SPEC,Q) is
canceled by CLSDST.

RTNCD FDB2 Explanation

12(X'0C') 12(X'0C') Request canceled by CLEAR request

658 z/OS V2R1.0 Communications Server: SNA Programming

While the RPL-based request was being processed, a CLEAR request was sent or
received on the session. This stops all data flow and cancels all pending
communication requests on the session. The CLEAR request might have been sent
by your application program (SESSIONC macroinstruction), or the request might
have been sent on behalf of your application program by VTAM. The CLEAR
request might also have been sent from the other end of the session.

RTNCD FDB2 Explanation

12(X'0C') 13(X'0D') Prior exception in chain detected

A series of chained requests was being sent to the logical unit and a negative
response was returned for one of them. All subsequent SEND macroinstructions
for that chain are posted complete with this return code; however, for each such
SEND, the associated request unit is sent on the session to the session partner
where it should be discarded.

RTNCD FDB2 Explanation

12(X'0C') 14(X'0E') Request cancelled - POA queue limit exceeded

The POA issued a SENDCMD after it reached its queue limit (POAQLIM on the
APPL definition statement). Subsequent SENDCMDs complete with this return
code until you receive all of the messages in the queue. You can empty the
message queue by issuing RCVCMD OPTCD=NQ (no queue) until an RCVCMD
completes with a return code and feedback of X'0006'. A SENDCMD now returns
successfully.

RTNCD FDB2 Explanation

16(X'10') 0 Logical unit not available, application program status
not available, queued BIND not available, or incorrect
dial parameters

This code is set for one of the following reasons:
v You are attempting to establish a session with a logical unit that is not active.
v You are attempting to pass a logical unit to a primary logical unit that is not

active (or is in the process of being deactivated).
v You are attempting to issue an OPNSEC macroinstruction and there is no

queued BIND request to respond to.
v You are attempting to determine the status of an application program that is in

another domain, the status is not available, and your application program has to
proceed without it.

v You issued a SIMLOGON macroinstruction that specifies dial parameters for a
nonswitched PU.

v The dial parameters specified in the SIMLOGON macroinstruction do not match
the original dial parameters.

v You issued a macroinstuction and a resource, such as a network address or
storage, was not available. A sense code is returned in the RPL containing
specific information.

The RPL system-sense (SSENSEI), the system-sense modifier (SSENSMI), and the
user-sense (USENSEI) can contain a more detailed explanation of the failure.

Appendix B. Return codes and sense fields for RPL-based macroinstructions 659

RTNCD FDB2 Explanation

16(X'10') 1 OPNDST failed

OPNDST failed; if a session had been established by the OPNDST, it has now been
terminated. Some reasons for OPNDST failure are as follows:
v No network path could be obtained. For example, there might have been a

failure of the virtual route or route extension, or the operator might have
deactivated a network component along the path.

v A dial connection was not completed.
v A negative response to a CRV request was received.
v A request rejected response to a BIND request was received.
v The logical unit does not exist.
v A BIND response that is not valid was received; for example, a negotiable BIND

response was received for a non-negotiable BIND request.
v OPNDST OPTCD=ACQUIRE specifies dial parameters for a nonswitched PU.
v The dial parameters specified in the OPNDST OPTCD=ACQUIRE do not match

the original dial parameters.

The SSENSEI, SSENSMI, and USENSEI fields are set; these fields are described in
“SNA sense fields” on page 679.

RTNCD FDB2 Explanation

16(X'10') 2 Logical unit inhibited for sessions

You attempted to initiate a session and one of the logical units in the requested
session is inhibited. For example, a VTAM application program is inhibited for
sessions if it issues SETLOGON OPTCD=QUIESCE or has never issued
SETLOGON OPTCD=START. Refer to Chapter 5, “Establishing and terminating
sessions with logical units,” on page 81z/OS Communications Server: SNA
Programming for more information.

RTNCD FDB2 Explanation

16(X'10') 3 HALT issued

The VTAM operator has issued a HALT command. Depending on the type of
HALT, certain macroinstructions can no longer be issued by your application
program. Refer to “TPEND exit routine is entered” on page 74z/OS
Communications Server: SNA Programming for more information.

RTNCD FDB2 Explanation

16(X'10') 5 Request or response encryption failure

Encryption has failed while:
v Sending an FM data request
v Sending the BIND response during OPNSEC processing
v Sending the CRV request during OPNDST processing.

660 z/OS V2R1.0 Communications Server: SNA Programming

RTNCD FDB2 Explanation

16(X'10') 7 Request canceled by VARY command

The communication operation has been canceled because the VTAM operator
deactivated a necessary portion of the path while the macroinstruction was being
processed. If a LOSTERM exit routine is available, it has been scheduled. You can
no longer communicate with the LU, and you should issue CLSDST to terminate
its session with your application program.

RTNCD FDB2 Explanation

16(X'10') 9 Unconditional Terminate or character-coded logoff
received

The logical unit has sent an unconditional Terminate request or a character-coded
logoff that is a request for unconditional session-termination. No further
communication on the session is possible. CLSDST must be issued.

RTNCD FDB2 Explanation

16(X'10') 10(X'0A') VTAM error

An error occurred in VTAM itself. No further attempts to establish or terminate a
session with the logical unit should be made.

RTNCD FDB2 Explanation

16(X'10') 13(X'0D') VTAM inactive for your ACB

The association between VTAM and your application program (ACB) that was
established with OPEN has been broken; the ACB is in the process of being closed.
This might have occurred because you have elsewhere issued a CLOSE that has
not yet completed, or it might have occurred because VTAM has become inactive,
or a VARY INACT was issued for your application program.

RTNCD FDB2 Explanation

16(X'10') 14(X'0E') Request abnormally terminated

VTAM has abnormally terminated a request because of an error detected while
processing the request or because of an error in the associated session, task, or
address space (for example, an abend). See “Isolation of errors” on page 322 for
more information about error isolation and recovery.

RTNCD FDB2 Explanation

16(X'10') 15(X'0F') Buffers filled

Previously VTAM had received an RU; the application program did not have an
appropriate EXLST exit routine or outstanding RECEIVE for the RU and there was
no buffer space left for VTAM to queue the RU. Under these circumstances, VTAM
discards that RU and any other RUs queued for the session and schedules the
LOSTERM exit routine (if there is one) with reason code 36. If appropriate for the
TS Profile for this session, a Clear is sent to the session partner. In all cases, the
end of the session that experienced the buffer shortage is put into data-traffic-reset

Appendix B. Return codes and sense fields for RPL-based macroinstructions 661

state (at least momentarily). Any SEND or RECEIVE issued while the session is in
this state is rejected with (RTNCD,FDB2)=(X'10',X'0F'). This mode of operation
continues until a Start Data Traffic response is processed (or until the Clear
function completes, if SDT is not appropriate for the TS profile).

RTNCD FDB2 Explanation

16(X'10') 17(X'11') SDT failure on OPNDST

A negative response was sent by a logical unit in reply to a Start Data Traffic (SDT)
request. The OPNDST was not completed successfully. The SSENSEI, SSENSMI,
and USENSEI fields are set; these fields are described in “SNA sense fields” on
page 679.

RTNCD FDB2 Explanation

16(X'10') 18(X'12') Macroinstruction failure, sense included

A REQSESS, TERMSESS, or OPNSEC has failed. A sense code (SSENSEI, SSENSMI,
and USENSEI field) is returned in the RPL for the failing macroinstruction.

RTNCD FDB2 Explanation

16(X'10') 19(X'13') Attempt to start LU 6.2 session request rejected

An LU 6.2 application has tried to start an LU 6.2 session independent of VTAM.
No pending sessions have been disturbed. This occurs when an OPNDST is issued
with an LU 6.2 user-specified BIND.

RTNCD FDB2 Explanation

16(X'10') 20(X'14') Attempt to start LU 6.2 session pending session
terminated

An LU 6.2 application has tried to start an LU 6.2 session independent of VTAM.
The pending session has been terminated. This occurs when the LOGMODE
specified on an OPNDST resolves to an LU 6.2 BIND or when OPNSEC is issued
for an LU 6.2 BIND.

RTNCD FDB2 Explanation

16(X'10') 21(X'15') An APPCCMD must be issued

An OPNDST or CLSDST has been issued for a pending LU 6.2 session. An
APPCCMD CONTROL=OPRCNTL, QUALIFY=ACTSESS or QUALIFY=DACTSESS
macroinstruction must be issued for this session. See the z/OS Communications
Server: SNA Programmer's LU 6.2 Reference for more information.

RTNCD FDB2 Explanation

16(X'10') 22(X'16') Specified LU is nonswitched

The application issues a SIMLOGON or OPNDST OPTCD=ACQUIRE
macroinstruction using the application supplied dial-out function. The specified LU
is nonswitched and the request failed.

662 z/OS V2R1.0 Communications Server: SNA Programming

RTNCD FDB2 Explanation

16(X'10') 23(X'17') Encryption not allowed

You attempted to request encryption on a send, but session does not support
encryption.

RTNCD FDB2 Explanation

16(X'10') 24(X'18') Sysplex is inaccessible

You attempted to use either the INQUIRE OPTCD=SESSNAME, SETLOGON
OPTCD=GNAMEADD, SETLOGON OPTCD=GNAMEDEL, SETLOGON
OPTCD=GNAMESUB, OPNDST, OPNSEC, or the CHANGE OPTCD=ENDAFFIN
macroinstruction, but the coupling facility for this host is inaccessible.

RTNCD FDB2 Explanation

16(X'10') 25(X'19') Host is not member of Sysplex

The application issued either the INQUIRE OPTCD=SESSNAME, the CHANGE
OPTCD=ENDAFFIN, or the SETLOGON
OPTCD=GNAMEADD|GNAMEDEL|GNAMESUB macroinstruction, but the
coupling facility for this host is inaccessible. The coupling facility might be
inaccessible because:
v A coupling facility does not exist.
v A CFRM policy for the required coupling facility structure was not active.
v VTAM is not defined as an APPN node.
v VTAM has lost connectivity to the required coupling facility structure.

RTNCD FDB2 Explanation

16(X'10') 26(X'1A') SUSPEND failed

VTAM attempted to SUSPEND an RPL request issued in either cross-memory
mode or in synchronous SRB mode with OPTCD=KEEPSRB specified. The attempt
failed.

RTNCD FDB2 Explanation

16(X'10') 27(X'1B') RESUME failed

VTAM attempted to RESUME an RPL request issued in either cross-memory mode
or in synchronous SRB mode with OPTCD=KEEPSRB specified. The attempt failed.
VTAM is unable to post the request complete. If the application has a LOSTERM
exit, it will be scheduled with a reason code of 44. For more information about the
LOSTERM exit, see “LOSTERM exit routine” on page 241. The RPL is now
available for reuse.

RTNCD FDB2 Explanation

16(X'10') 28(X'1C') OS level does not support requested function

Appendix B. Return codes and sense fields for RPL-based macroinstructions 663

A macroinstruction request required the use of an operating system service which
is not supported by the active operating system level.

RTNCD FDB2 Explanation

16(X'10') 29(X'1D') Security Manager Error

An error was encountered when attempting to invoke the security management
program. The APPL definition statement for this application specifies
VERIFY=REQD or VERIFY=OPTIONAL, indicating that the use of an installed
security manager was required for APPC sessions by this application program.
However, VTAM was unable to successfully invoke the security manager. The
SETLOGON START macroinstruction is rejected.

RTNCD FDB2 Explanation

20(X'14') 0 VSAM request

The RPL contains a VSAM or other non-VTAM request code. No ECB has been
posted and no RPL exit routine has been scheduled.

RTNCD FDB2 Explanation

20(X'14') 2 Zero EXIT field

The RPL indicates that the ECB-EXIT field is being used as an EXIT field, but the
RPL exit routine address in it is 0. No RPL exit routine has been scheduled.

RTNCD FDB2 Explanation

20(X'14') 3 Zero ECB field

The RPL indicates that the ECB-EXIT field is being used to point to an external
ECB, but the address in the field is 0. No ECB has been posted.

RTNCD FDB2 Explanation

20(X'14') 4 Inactive RPL checked

CHECK was issued for an inactive RPL (an RPL that had been posted complete
and for which CHECK has already been issued successfully). All RPL-based
macroinstructions must use an inactive RPL. All CHECK macroinstructions,
however, must use an active RPL; an RPL cannot be checked twice.

RTNCD FDB2 Explanation

20(X'14') 16(X'10') Control block not valid

The RPL's ACB field does not contain the address of a valid ACB or the ACB is
closed. This can mean that the ACB field of the RPL was incorrectly set or the ACB
has been destroyed.

RTNCD FDB2 Explanation

20(X'14') 17(X'11') RTYPE not valid

664 z/OS V2R1.0 Communications Server: SNA Programming

A RECEIVE has been issued with the RTYPE field set to NDFSYN, NDFASY, and
RESP.

RTNCD FDB2 Explanation

20(X'14') 18(X'12') CLSDST in progress

At the time this macroinstruction was executed, a CLSDST request was pending
for the session. The CLSDST request takes priority, and the request that received
this return code cannot be honored.

RTNCD FDB2 Explanation

20(X'14') 19(X'13') CID not valid

The RPLARG field or the NIBCID field does not contain a valid CID, or a valid
CID was issued with the wrong ACB, or INTRPRET is being used for a
cross-domain LU.

You might have inadvertently modified the field, initially failed to set it, or used
the CID of a session that no longer exists.

Another possibility is that you violated the following rule: when placing a CID
into the RPLARG field, always use the ARG keyword (ARG=(6), for example), and
when placing an NIB address into the RPL's NIB field, always use the NIB
keyword (for example, NIB=(6)). Because these two fields occupy the same 4 bytes
in the RPL, VTAM can distinguish between an NIB address and a CID only
through your use of the ARG or NIB keyword. Thus, the presence of this return
code could mean that you placed an NIB address in the RPL with the ARG
keyword, and VTAM has rejected your CID as not valid.

This feedback information is also used when a CID is specified for INTRPRET, and
the LU implied by the CID is in another domain.

RTNCD FDB2 Explanation

20(X'14') 30(X'1E') Data address or length not valid

A request was issued that specified a work area address that is beyond the
addressable range of your application program. Here a work area is defined to be
any storage area addressed by an RPL operand, for example, the areas referenced
by AREA and AAREA.

Check the work area address and work area length fields in the RPL for an
incorrect setting. See the RPL macroinstruction description to determine which
fields must point to valid work areas for each macroinstruction.

If your application program resides in an authorized library, check for correct load
module characteristics.

RTNCD FDB2 Explanation

20(X'14') 35(X'23') Request type not valid

When an RPL-based macroinstruction is issued, VTAM sets the REQ field in the
RPL to indicate the type of macroinstruction that is using the RPL. The presence of

Appendix B. Return codes and sense fields for RPL-based macroinstructions 665

this return code indicates that you modified that code before the requested
operation completed. To avoid this and other related errors, never modify an RPL
while it is in use. Compare with VSAM request, (RTNCD,FDB2)=(X'14',X'00').

RTNCD FDB2 Explanation

20(X'14') 36(X'24') Request for address space not valid

You attempted to issue one of the following macroinstructions in other than the
session address space: RECEIVE OPTCD=SPEC, RESETSR, SEND, or SESSIONC
(except request rejected response to BIND).

RTNCD FDB2 Explanation

20(X'14') 59(X'3B') NFME-NRRN response

You attempted to send a response with the RESPOND field set to NFME and
NRRN. A response must be identified as FME, RRN, or both; in effect, you have
identified the response as neither.

RTNCD FDB2 Explanation

20(X'14') 60(X'3C') Previous macroinstruction outstanding

You issued a SEND POST=SCHED, a SEND for an expedited data-flow-control
request, or a SESSIONC macroinstruction before a previous macroinstruction of the
same type had been completed. Only one macroinstruction of the three preceding
types can be outstanding on a session at a time. After the previous
macroinstruction has been completed, this macroinstruction can be reissued.

RTNCD FDB2 Explanation

20(X'14') 64(X'40') CONTROL not valid

You modified the bits in the CONTROL field, or you used a CONTROL value for a
SESSIONC macroinstruction that was not BIND, RQR, SDT, CLEAR, STSN, or
SWITCH.

RTNCD FDB2 Explanation

20(X'14') 65(X'41') Data traffic not allowed

You attempted to communicate on a session for which no SDT request had been
sent or for which a CLEAR is in progress. For certain TS profiles, until an SDT
request/response exchange has occurred on the session, no traffic flow is possible;
only SDT, Set and Test Sequence Numbers (STSN), Request Recovery (RQR), and
Clear requests can be exchanged. Every time a Clear request is sent on a session, a
new SDT request might be required before traffic flow can resume (this depends
upon the transmission services profile used). For further information, refer to z/OS
Communications Server: SNA Programming“Controlling flow” on page 164.

RTNCD FDB2 Explanation

20(X'14') 66(X'42') STYPE for SESSIONC not valid

666 z/OS V2R1.0 Communications Server: SNA Programming

STYPE=RESP has been specified for a SESSIONC CONTROL=CLEAR or a
SESSIONC CONTROL=RQR macroinstruction. Only STYPE=REQ is valid. Also, if
the NIB used to establish the session specified SDT=SYSTEM, then STYPE=RESP is
not valid for SESSIONC CONTROL=SDT.

RTNCD FDB2 Explanation

20(X'14') 68(X'44') RESPLIM exceeded

The number of outstanding SEND POST=RESP macroinstructions for a session
exceeds the RESPLIM value set in the NIB used to establish the session.

RTNCD FDB2 Explanation

20(X'14') 71(X'47') 3270 SEND option not valid

The RPL specified by your LU type 0 3270 SEND macroinstruction had one or
more of the following fields not valid: STYPE, RESPOND, CHAIN, or CONTROL.
See “Exception conditions and sense information” on page 332z/OS
Communications Server: SNA Programming for more information about exception
conditions.

If the RPL was last used for a RECEIVE for the 3270, check the RESPOND field
first; you might have failed to reset the field following the RECEIVE (RECEIVE
sets the RESPOND field to (NEX,NFME,NRRN) in this case).

RTNCD FDB2 Explanation

20(X'14') 72(X'48') Session-control protocol violation

Protocol violations indicated are as follows:
v The PLU sent an SDT request while not in data-traffic-reset state, or the SDT

sent was not allowed by the TS profile.
v The PLU sent a Clear request, and a previous Clear request has been sent and

has not completed, or the Clear request was not allowed by the TS profile.
v The PLU sent an STSN request while not in data-traffic-reset state, or the STSN

request was not allowed by the TS profile.
v The PLU sent an RQR request, and the RQR request was not allowed by the TS

profile.
v The SLU sent an SDT response and any previously received SDT request had

already been responded to, or an SDT request had not been received.

For more information, refer to “Controlling flow” on page 164z/OS
Communications Server: SNA Programming.

RTNCD FDB2 Explanation

20(X'14') 73(X'49') STSN action/result code not valid

One of the following applies:
v You attempted to send a Set and Test Sequence Numbers (STSN) request and set

the IBSQAC or OBSQAC fields (or both) to some value other than SET,
TESTSET, IGNORE, or INVALID.

Appendix B. Return codes and sense fields for RPL-based macroinstructions 667

v You attempted to send an STSN response and set the IBSQAC or OBSQAC field
(or both), to some value other than TESTPOS, TESTNEG, INVALID, or RESET.

v You attempted to send a result code that is not a valid response to the action
code.

See “SESSIONC—Send a session-control request or response” on page 532
macroinstruction description for more information.

RTNCD FDB2 Explanation

20(X'14') 74(X'4A') Installation-wide exit routine was not available

You issued an INTRPRET macroinstruction; VTAM has located the appropriate
entry in the interpret table, and found that the system programmer has specified a
logon-interpret exit routine to do the interpret function. That routine, however, has
not been loaded.

RTNCD FDB2 Explanation

20(X'14') 75(X'4B') INTRPRET sequence or LOGMODE not valid, or
cryptographic incompatibility

You issued an INTRPRET macroinstruction—one of the following might apply:
v VTAM cannot locate an entry in the interpret table that corresponds to the

sequence you provided.
v You might have inadvertently modified the sequence or the address in the RPL's

AREA field that points to the sequence.
v The system programmer might have failed to properly define the entry in the

interpret table.

After your application program has been tested and debugged and you have
eliminated the possibility of the three situations listed above, you can assume that
the terminal operator or program that initiated the logon must have passed an
invalid logon sequence to your application program.

You issued an INQUIRE, OPNDST, SIMLOGON, REQSESS, or CLSDST
OPTCD=PASS macroinstruction. Either the NIB for this request specified a logon
mode name that could not be found in the logon mode table for the logical unit
named in that NIB, or the SSCP discovered that cryptography had been specified
for the requested session, but at least one of the logical units in the requested
session did not support cryptography.

RTNCD FDB2 Explanation

20(X'14') 76(X'4C') Search argument for INQUIRE or INTRPRET not
valid

You issued INQUIRE or INTRPRET, and failed to properly provide VTAM with the
identity of the pending active session, logical unit, or application program:
v INTRPRET was issued and the name in the NIB was not that of a logical unit.
v INQUIRE (OPTCD=APPSTAT) was issued and one of the following conditions

exists:
– The name is not that of an application program.
– The application program is a cross-domain resource, and the SSCP that owns

the resource does not support INQUIRE (OPTCD=APPSTAT).

668 z/OS V2R1.0 Communications Server: SNA Programming

– The application program is a cross-domain resource, and no active route
exists to the host that owns the application program.

v INQUIRE OPTCD=TERMS was issued and the name was not that of a resource
(such as an LU, PU, CLUSTER, or CDRSC) in the VTAM configuration tables.

v INQUIRE OPTCD=DEVCHAR was issued and the device characteristics were
not available (perhaps because the logical unit was in another domain and there
was no appropriate CINIT queued for the application program).

v INQUIRE OPTCD=LOGONMSG was issued and there was no appropriate
CINIT queued for the application program.

v INQUIRE OPTCD=SESSPARM was issued with LOGMODE=0 in the NIB, and
there was no appropriate CINIT queued for the application program.

v INQUIRE OPTCD=NQN was issued and one of the following applies:
– The resource does not exist.
– The resource is cross-domain an there is no active route to it.

Refer to “INQUIRE—Obtain logical unit information or application program
status” on page 412z/OS Communications Server: SNA Programming for a
description of the INQUIRE macroinstruction.

Assuming that the system programmer properly defined the entry in the VTAM
configuration tables for the logical unit, you have probably: (1) failed to set a valid
symbolic name in the NIB's NAME field or (2) correctly issued INQUIRE
OPTCD=SESSPARM or INQUIRE OPTCD=DEVCHAR but the session has been
terminated.

RTNCD FDB2 Explanation

20(X'14') 77(X'4D') No interpret table

You issued an INTRPRET macroinstruction, but there is no interpret table for the
logical unit. The system programmer might have failed to include an interpret
table for this logical unit during the VTAM definition process or the logical unit
might be in another domain.

RTNCD FDB2 Explanation

20(X'14') 78(X'4E') Use of an NIB list not valid

You issued OPNDST OPTCD=ACCEPT without setting the NIB's LISTEND field to
YES, or you specified a NIB list in which more than one NIB indicated
PROC=NEGBIND.

RTNCD FDB2 Explanation

20(X'14') 79(X'4F') OPTCD setting not valid

The OPNDST or INQUIRE request fails because bits in the OPTCD field have been
incorrectly set. From the OPNDST and the INQUIRE option code settings, you
must specify only one value for the mutually exclusive sets of option codes.
Because you cannot cause the field to be incorrectly set by using VTAM
macroinstructions, you might have inadvertently modified the OPTCD field with
assembler instructions.

Appendix B. Return codes and sense fields for RPL-based macroinstructions 669

RTNCD FDB2 Explanation

20(X'14') 80(X'50') RPL field not valid

The OPNDST, CLSDST, SIMLOGON, or REQSESS failed because the bits in the
RPL's OPTCD or AAREA field were found to be not valid.

If an OPNDST or SIMLOGON failed, the particular bits that have been incorrectly
set are those that form the CONANY-CONALL option code. This return code does
not mean that the CONANY option was erroneously used in place of CONALL, or
vice versa; it means that neither CONALL nor CONANY is indicated in the
OPTCD field. Because you cannot cause the field to be incorrectly set in this
manner by using VTAM macroinstructions, you might have inadvertently modified
the OPTCD field with assembler instructions.

If a REQSESS failed, either OPTCD=NQ was not specified or the AAREA field of
the RPL was not set to zero.

If a CLSDST failed, OPTCD=SENSE was specified and a zero sense was provided
in the SSENSEO, SSENSMO, USENSEO fields of the RPL. A zero sense is not
permitted for CLSDST OPTCD=SENSE.

RTNCD FDB2 Explanation

20(X'14') 81(X'51') OPNDST OPTCD=ACCEPT and SIMLOGON not
allowed

You attempted to issue OPNDST OPTCD=ACCEPT to accept a CINIT for a session
with a logical unit, or to issue SIMLOGON to initiate a session. However, these
operations cannot be performed because of one of the following:
v The ACB was opened with MACRF=NLOGON.
v SETLOGON OPTCD=QUIESCE was issued and CINITs are pending.
v SETLOGON OPTCD=QUIESCE was issued and no matching CINIT was found.

RTNCD FDB2 Explanation

20(X'14') 82(X'52') NIB not valid

The request failed because there is no NIB at the location indicated in the RPL's
NIB field.

RTNCD FDB2 Explanation

20(X'14') 83(X'53') Logical unit not found

The symbolic name you supplied in the NIB's NAME field or indicated by the
RPL's AAREA field does not have a corresponding entry in the VTAM
configuration tables. This can occur for one of the following reasons:
v You failed to set the NAME field correctly.
v The system programmer did not include the entry in the VTAM configuration

tables during VTAM definition.
v The VTAM operator has not activated the major node containing the application

program that issued the macroinstruction.

670 z/OS V2R1.0 Communications Server: SNA Programming

v The VTAM operator has not activated the major node containing the resource
named in the NIB (in a cross-domain environment).

v A dynamically created definition for a cross-domain LU has been deleted after
lack of use for a defined period of time.

v Contact with the resource was lost and the definition of the resource was
subsequently deleted from the VTAM configuration tables.

v You issued either SETLOGON OPTCD=GNAMEADD, SETLOGON
OPTCD=GNAMESUB, SETLOGON OPTCD=GNAMEDEL, INQUIRE
OPTCD=SESSNAME, or CHANGE OPTCD=ENDAFFIN and one of the names
you supplied is not valid.

If you were using an NIB list, no sessions have been established.

RTNCD FDB2 Explanation

20(X'14') 85(X'55') One of the following is true:

v Application program is not authorized.

v Application program name is not available.

v Task association is not specified.

v Application is not authorized to supply dial
parameters.

v PU is not authorized to accept dial parameters.

v You must issue a send RPL.

v You attempted to acquire a logical unit (SIMLOGON or OPNDST), but the
installation has denied you authorization to do so. The system programmer
might have specified during VTAM definition that your application program is
not authorized to acquire any logical units. If you are authorized to acquire
logical units and you still receive this return code, this means that an
authorization exit routine has been invoked and has determined that you cannot
acquire the specific logical unit indicated in your request.

v You attempted to initiate a session, but the authorization exit routine has denied
you authorization.

v You issued an INTRPRET macroinstruction; VTAM located the appropriate entry
in the interpret table and found that the installation has specified an exit routine
to convert the input sequence into an output sequence. That routine was loaded,
but it failed to do the conversion.

v You issued one of the following macroinstructions in SRB mode without
specifying the required task association: CLSDST, INQUIRE, INTRPRET,
OPNDST, OPNSEC, REQSESS, RCVCMD, SENDCMD, SETLOGON,
SIMLOGON, TERMSESS.
Refer to Chapter 13, “Conventions and descriptions of VTAM
macroinstructions,” on page 371z/OS Communications Server: SNA
Programming for more information.

v An application that is not authorized to supply dial parameters attempted to
supply dial parameters, or a PU that is not authorized to accept dial parameters
attempted to accept dial parameters.

Refer to the z/OS Communications Server: SNA Resource Definition Reference for
information about coding an application program major node (the AUTH operand
of the APPL definition statement).

Appendix B. Return codes and sense fields for RPL-based macroinstructions 671

RTNCD FDB2 Explanation

20(X'14') 87(X'57') MODE field not valid

You issued an OPNDST or OPNSEC macroinstruction and failed to set the NIB's
MODE field to RECORD.

RTNCD FDB2 Explanation

20(X'14') 94(X'5E') CLSDST OPTCD=PASS not authorized

CLSDST OPTCD=PASS is a function whose use is authorized by the installation.
You attempted to use this function, but the installation has not authorized you to
pass logical units to other primary logical units. This CLSDST macroinstruction
should have been issued with RELEASE in effect, not PASS.

Refer to the z/OS Communications Server: SNA Resource Definition Reference for
a description of the AUTH operand of the APPL definition statement.

RTNCD FDB2 Explanation

20(X'14') 96(X'60') LU name for CLSDST, SESSIONC, or OPNSEC not
valid

You attempted to terminate a session with a logical unit that is not in session with
your application program, or had no CINIT queued for your application program.
This return code applies to CLSDST used with a logical unit's symbolic name.

You issued a SESSIONC macroinstruction to send a request rejected response to
BIND, but the LU name field in the NIB does not match any BIND currently
queued for the application program.

You issued an OPNSEC macroinstruction and a queued BIND could not be found
for the LU name passed in the NIB.

RTNCD FDB2 Explanation

20(X'14') 97(X'61') SETLOGON not valid

Either you opened the ACB with its MACRF field set to NLOGON, or you issued
SETLOGON OPTCD=QUIESCE and permanently closed the CINIT queue. Because
you attempted to either open a CINIT queue that cannot be opened or close a
CINIT queue that is closed, SETLOGON START, STOP, and QUIESCE are not
valid.

You might have issued a SETLOGON OPTCD=PERSIST or NPERSIST with a
PSTIMER value that is greater than the allowed value (86400 seconds).

Note: You can successfully issue SETLOGON OPTCD=PERSIST or SETLOGON
OPTCD=NPERSIST with the MACRF field set to NLOGON or after a QUIESCE.

RTNCD FDB2 Explanation

20(X'14') 108(X'6C') Exceeded limit on outstanding RCVCMD requests

672 z/OS V2R1.0 Communications Server: SNA Programming

You attempted to issue an RCVCMD macroinstruction while a previous RCVCMD
was outstanding. The limit on outstanding RCVCMD requests is one.

RTNCD FDB2 Explanation

20(X'14') 109(X'6D') Application program not authorized

Your application program is not authorized to issue the SENDCMD and RCVCMD
macroinstructions, or your CNM application program attempted to send something
other than a formatted Forward RU to the SSCP.

Refer to the z/OS Communications Server: SNA Resource Definition Reference for
a description of the AUTH operand of the APPL definition statement.

RTNCD FDB2 Explanation

20(X'14') 110(X'6E') Syntax error in reply to VTAM operator message

In reply to a VTAM operator message, you issued a SENDCMD macroinstruction
that contained a syntax error in the REPLY command.

RTNCD FDB2 Explanation

20(X'14') 111(X'6F') SENDCMD/RCVCMD processor inactive

The portion of VTAM that processes SENDCMD and RCVCMD macroinstructions
is currently inactive for your application program, and the application program
issued a SENDCMD or RCVCMD macroinstruction. The request cannot be
processed because an ACB has not been opened for the portion of the application
program that issued the SENDCMD or RCVCMD, or because a final CLOSE has
been issued for this ACB but has not yet completed.

RTNCD FDB2 Explanation

20(X'14') 112(X'70') Program operator closing ACB with requests
outstanding

Your application program is in the process of closing its ACB, and you (1) issued a
SENDCMD macroinstruction for a command other than REPLY or (2) issued a
RCVCMD OPTCD=Q and there were no VTAM messages available to satisfy the
request.

RTNCD FDB2 Explanation

20(X'14') 113(X'71') Operator command not valid

You attempted to send a VTAM operator command to VTAM using the
SENDCMD macroinstruction; however, the command was not recognized by
VTAM, or it was a command (START or HALT) that cannot be sent by the
application program.

RTNCD FDB2 Explanation

20(X'14') 115(X'73') SEND parameters for CNM not valid

Appendix B. Return codes and sense fields for RPL-based macroinstructions 673

You issued a SEND macroinstruction when using a CNM application program and
you have specified a parameter that is not valid.

RTNCD FDB2 Explanation

20(X'14') 116(X'74') Negotiable response to non-negotiable BIND

You attempted to issue an OPNSEC PROC=NEGBIND to a non-negotiable BIND
request. A request-rejected response to the BIND is sent with a sense code
indicating resource unavailable (X'08010000').

RTNCD FDB2 Explanation

20(X'14') 117(X'75') Negotiable BIND response parameters not valid

You specified negotiable BIND parameters on an OPNSEC macroinstruction that
are not valid. A request rejected response to the BIND is sent with a sense code
indicating resource unavailable (X'0801000').

RTNCD FDB2 Explanation

20(X'14') 118(X'76') Negotiable BIND response size not valid

You specified a negotiable BIND response on OPNSEC that was greater than 256
bytes. A request rejected response to the BIND is sent with a sense code indicating
resource unavailable (X'08010000').

RTNCD FDB2 Explanation

20(X'14') 119(X'77') FMD request unit required

You issued a SEND OPTCD=BUFFLST or a SEND OPTCD=LMPEO and the RU
specified was not an FMD request unit.

RTNCD FDB2 Explanation

20(X'14') 120(X'78') Chain specification not valid

You issued a SEND OPTCD=(BUFFLST,USERRH) in which multiple chains or
multiple partial chains were specified in the buffer list. Only requests from a single
chain might be specified in a buffer list.

RTNCD FDB2 Explanation

20(X'14') 121(X'79') Buffer list length not valid

You issued a SEND OPTCD=BUFFLST, and RECLEN did not contain a nonzero
multiple of 16.

RTNCD FDB2 Explanation

20(X'14') 123(X'7B') User RH not valid

One of the following conditions was detected for a SEND OPTCD=USERRH:

674 z/OS V2R1.0 Communications Server: SNA Programming

v The settings of the CONTROL operand and of the RU category field in the user
RH were inconsistent. If CONTROL=DATA, then the RU category must be FMD.
If CONTROL is not DATA, then the RU category must be DFC. See also
(RTNCD,FDB2)=(X'14',X'77').

v A sense indicator in the user RH field was found to be on with zero sense
provided. For a non LUO session, zero sense is architecturally incorrect.

RTNCD FDB2 Explanation

20(X'14') 124(X'7C') OPTCD=USERRH for SESSIONC not valid

You specified a SESSIONC macroinstruction with OPTCD=USERRH.

RTNCD FDB2 Explanation

20(X'14') 125(X'7D') XRF protocol error

A protocol error has occurred during the processing of a SIMLOGON or OPNDST
macroinstruction.

SIMLOGON for a backup XRF request is processed by setting the “backup XRF
session request” indicator in the INITIATE RU. This indicator is set based on the
setting of the RPL bit indicating OPTCD=BACKUP (RPLBCKUP). If an Initiate is
received specifying a backup XRF session and queue, it is rejected.

The RPL system-sense (SSENSEI), the system-sense modifier (SSENSMI), and the
user-sense (USENSEI) can contain a more detailed explanation of the failure.

RTNCD FDB2 Explanation

20(X'14') 126(X'7E') Conflicting OPTCD on a macroinstruction request

One of the following conditions was detected:
v A TERMSESS macroinstruction has been issued with none or more than one of

the following OPTCDs specified: COND, UNCOND, and UNBIND.
v A SETLOGON request has been issued with none or more than one of the

following OPTCDs specified: HOLD, NPERSIST, PERSIST, QUIESCE,
GNAMEADD, GNAMEDEL, GNAMESUB, START, and STOP.

v A SIMLOGON request has been issued with more than one of the following
OPTCDs specified: QALL, QSESSLIM, and QNOTENAB.

RTNCD FDB2 Explanation

20(X'14') 127(X'7F') Policing error - non-APPC macroinstruction

An application program issued a non-APPCCMD macroinstruction to establish an
LU 6.2 session, or issued a non-APPCCMD macroinstruction against a current LU
6.2 session.

RTNCD FDB2 Explanation

20(X'14') 128(X'80') SETLOGON not valid

You specified SETLOGON OPTCD=NPERSIST or PERSIST for an application that
is not capable of persistence.

Appendix B. Return codes and sense fields for RPL-based macroinstructions 675

RTNCD FDB2 Explanation

20(X'14') 129(X'81') TERMSESS without OPTCD=UNBIND with session
in a pending state

A TERMSESS macroinstruction is issued for a pending active session without
specifying OPTCD=UNBIND.

RTNCD FDB2 Explanation

20(X'14') 130(X'82') Parameter length not valid

The length of an application-supplied dial parameter is not valid. Refer to
“Application-supplied dial parameter control block (ASDP)” on page 119z/OS
Communications Server: SNA Programming for a description of the valid lengths.

RTNCD FDB2 Explanation

20(X'14') 131(X'83') Subfield error

Either a subfield is not supported, or a combination of subfields that is not valid is
specified. Refer to “Application-supplied dial parameter control block (ASDP)” on
page 119z/OS Communications Server: SNA Programming for information about
the valid subfields that can be specified.

RTNCD FDB2 Explanation

20(X'14') 132(X'84') NIBASDPA = 0

The value of NIBASDPA is 0. The NIBASDP indicator was on, indicating that the
application is providing dial parameters; however, no address for the control block
was given. This probably resulted from the application program passing an
address that is not valid to the NIB.

RTNCD FDB2 Explanation

20(X'14') 133(X'85') Session must be restored

A SEND, RECEIVE, RESETSR, or SESSIONC request is rejected because it is issued
for a session that is pending recovery. Use OPNDST OPTCD=RESTORE to restore
the session and reissue the request.

RTNCD FDB2 Explanation

20(X'14') 134(X'86') Existing session prevents successful completion of
this operation

One of the following applies:
v You issued CHANGE OPTCD=ENDAFFIN to terminate the association between

your application program and the specified LU. At least one session exists
between the specified LU and the application program; all sessions with the
partner LU must be ended before the association can be terminated.

v You issued SETLOGON OPTCD=GNAMEADD to register your application as a
generic resource, but a session exists already.

676 z/OS V2R1.0 Communications Server: SNA Programming

RTNCD FDB2 Explanation

20(X'14') 135(X'87') Resource name and generic name are the same

You attempted to issue either SETLOGON OPTCD=GNAMEADD, SETLOGON
OPTCD=GNAMESUB, or SETLOGON OPTCD=GNAMEDEL using a generic name
that was the same as the application network name; they must be different.

RTNCD FDB2 Explanation

20(X'14') 136(X'88') No association matching the given criteria exists.

You issued either CHANGE OPTCD=ENDAFFIN or INQUIRE
OPTCD=SESSNAME, but the values specified in the NIB do not correspond to any
known association.

RTNCD FDB2 Explanation

20(X'14') 137(X'89') Generic name not authorized

The generic name has not been authorized using a security management product
such as RACF.

RTNCD FDB2 Explanation

20(X'14') 138(X'8A') Application program already registered

The application program is registered already as a generic resource, but with a
different name.

RTNCD FDB2 Explanation

20(X'14') 139(X'8B') SETLOGON OPTCD=GNAMEDEL not valid

You used SETLOGON OPTCD=GNAMEDEL to deregister generic resources but
VTAM determined that generic mapping does not exist; no VTAM message is
issued.

RTNCD FDB2 Explanation

20(X'14') 140(X'8C') Network identifiers conflict for this generic resource.

This generic resource exists already with another network identifier.

RTNCD FDB2 Explanation

20(X'14') 141(X'8D') Simultaneous generic resource registration in
progress

Two applications with the same application network name are simultaneously
attempting to register a generic name.

RTNCD FDB2 Explanation

20(X'14') 142(X'8E') APPC capabilities conflict

Appendix B. Return codes and sense fields for RPL-based macroinstructions 677

All applications registering as generic resources must have the same APPC
capabilities specified on their APPL statements.

RTNCD FDB2 Explanation

20(X'14') 143(X'8F') Deletion of VTAM affinity rejected

VTAM owns the affinity. Your application cannot delete it.

RTNCD FDB2 Explanation

20(X'14') 144(X'90') USERVAR conflict while registering generic resources

You issued SETLOGON OPTCD=GNAMEADD to register generic resources.
VTAM detected a conflict (the generic resource exists already as a USERVAR
name).

RTNCD FDB2 Explanation

20(X'14') 145(X'91') TSO GENERIC NAME CONFLICT

Either a non-TSO application is attempting to use the generic name already being
used by TSO, or TSO is attempting to use the generic name already being used by
a non-TSO application.

RTNCD FDB2 Explanation

20(X'14') 146(X'92') SETLOGON GNAMESUB FAILURE

A SETLOGON OPTCD=GNAMESUB macroinstruction failed for one of the
following reasons:
v SETLOGON OPTCD=GNAMEADD was previously issued for this ACB.
v SETLOGON OPTCD=GNAMESUB was previously issued for this ACB.
v The application program network name specified in the VTAM node

identification block (NIB) either was not found or was not an instance of the
generic name specified in the NIB.

RTNCD FDB2 Explanation

20(X'14') 147(X'93') STOKEN not valid.

PROC=STOKEN is specified and the NIBSTKN field contains an invalid STOKEN.

RTNCD FDB2 Explanation

20(X'14') 148(X'94') No LU name passed.

No LU name was passed on the SETLOGON OPTCD=START or on the REQSESS.

RTNCD FDB2 Explanation

20(X'14') 149(X'95') No applicable RDTE found.

No RDTE was found that matched the LU name passed on the SETLOGON
OPTCD=START or on the REQSESS.

678 z/OS V2R1.0 Communications Server: SNA Programming

RTNCD FDB2 Explanation

20(X'14') 150(X'96') Conflict with found RDTE.

An RDTE was found that matched the LU name passed on the SETLOGON
OPTCD=START or on the REQSESS, but its characteristics or state was not
appropriate.

SNA sense fields

When the application program or a logical unit receives an exception request, a
negative response, or a Logical Unit Status (LUSTAT) request, the associated sense
data includes information regarding the reason for the exception condition. The
following three types of information describe the exception condition:
v System-sense information
v System-sense modifier information
v User-sense information.

System sense information indicates one of the five major classes of system-defined
errors. The five major classes are described in Table 96 on page 680.

System-sense modifier information indicates one of many specific causes of the
error indicated by the system-sense information. Like RTNCD and FDB2, the
system-sense and its modifier information together form a specific type of error
condition within a general class of error conditions. See the SNA Formats and z/OS
Communications Server: IP and SNA Codes for more information.

User-sense information is generally used when the error condition is detected by
the user-written program itself. In general, no particular codes or values are
defined by IBM to indicate types of errors. The logical unit must generate its own
user-sense information that is understood by other logical units.

The SNA defined values for the sense fields can be found in SNA Formats
Additional information is contained in SNA Format and Protocol Reference Manual:
Architectural Logic, and SNA Sessions between Logical Units

These three types of sense information—system, system modifier, and user—are set
in RPL fields. Three fields (one for each type of sense information) are set by the
application program when it sends a negative response or LUSTAT request to the
logical unit. Three other fields are set by VTAM when the application program
receives an exception request, a negative response, or LUSTAT request from the
logical unit. These are the names of the six fields, as they would be used on a
manipulative or RPL macroinstruction:

Sense information
Received by the
application program

Sent from the application
program

System-sense information SSENSEI SSENSEO

System-sense modifier
information

SSENSMI SSENSMO

User-sense information USENSEI USENSEO

Appendix B. Return codes and sense fields for RPL-based macroinstructions 679

System-sense information

The values that are set in the system-sense field are predefined by IBM. These
values are as follows (the operands shown here are those used with a MODCB or
TESTCB macroinstruction; the corresponding hexadecimal value is also shown in
parentheses):

Table 96. Sense field values

System-sense values Meaning

SSENSEI=PATH (X'80') A path error occurred. The RU could not be delivered to the
intended receiver because of a physical problem in the
network path or an error in the system-supplied
transmission header that accompanied the RU. If no
recovery action is possible, terminate the session with the
logical unit.

SSENSEI=CPM (X'40') An unrecoverable request header error occurred.

SSENSEO=CPM (X'40') The sender did not correctly enforce the current session
protocols. Terminate the session with the logical unit.

SSENSEI=STATE (X'20')
SSENSEO=STATE (X'20')

A state error occurred in the application program's or logical
unit's use of sequence numbers, chaining indicators, bracket
indicators, or change-direction indicators. A state error can
also occur when a data-flow-control request is issued, data
is sent after a Clear request, or when a session-control
request is issued before a Clear request. This type of error is
recoverable; use Clear, STSN, and SDT requests.

SSENSEI=FI (X'10')
SSENSEO=FI (X'10')

A request error occurred. The application program or logical
unit cannot handle the request because the request itself is
not valid. This error might be recoverable.

SSENSEI=RR (X'08')
SSENSEO=RR (X'08')

A request reject occurred. The request was delivered to the
intended receiver; it was correctly interpreted, but not
handled by the receiver. This might be a recoverable
condition.

680 z/OS V2R1.0 Communications Server: SNA Programming

Appendix C. Summary of control requests and indicators

This appendix contains tables (Table 97 through Table 104 on page 691) that
summarize the SNA control requests and indicators sent and received by VTAM
application programs. The tables summarize:
v Normal-flow data-flow-control requests
v Expedited-flow data-flow-control requests
v Session-control requests
v Change-direction indicator
v Bracket indicators.

For normal-flow data-flow-control requests, expedited-flow data-flow-control
requests, and session-control requests, the following information for sending each
request is provided:
v The purpose of each request
v Who can send it
v The macroinstruction used by an application program to send it
v The RU type of the request
v The next action to be taken by the sender

The following information for receiving each request is also provided:
v Who can receive it
v How it is received by the application program
v Who sends the response to the request
v The next action to be taken by the receiver

For the change-direction and bracket indicators, the information is summarized
with the entry for each indicator providing information on both sending and
receiving the indicator.

The ability to send and receive the indicators and control requests described in this
appendix is determined by the session parameter agreed on by the application
program and the logical unit (LU) when the session is established. For detailed
information on a session parameter, see Appendix F, “Specifying a session
parameter,” on page 793.

Table 97. Summary of sending normal-flow data-flow-control requests

Request
sent Function

Who can
send

Macroinstruction used
by application program
to send RU type Next action by sender

Bid Asks receiver for
permission to begin a
bracket.

Primary or
secondary
logical unit

SEND STYPE=REQ,
CONTROL=BID

DFSYN Expects response from
receiver. Response
indicates whether the
sender can begin a
bracket.

Bracket
Initiation
Stopped
(BIS)

Tells the receiver that
the sender will not
begin any new brackets.

Primary or
secondary
logical unit

SEND STYPE=REQ,
CONTROL=BIS

DFSYN Expects response from
receiver. Refrains from
beginning any new
brackets.

© Copyright IBM Corp. 2000, 2013 681

Table 97. Summary of sending normal-flow data-flow-control requests (continued)

Request
sent Function

Who can
send

Macroinstruction used
by application program
to send RU type Next action by sender

Cancel Tells receiver to purge
request of incomplete
chain it is receiving.

Primary or
secondary
logical unit

SEND STYPE=REQ,
CONTROL=BIS

DFSYN Expects response from
receiver. Positive
response indicates that
chain requests have
been purged.

CHASE Tells receiver to send
response to any data
request or normal-flow
request it has not yet
responded to.

Primary or
secondary
logical unit

SEND STYPE=REQ,
CONTROL=CANCEL

DFSYN Expects response from
receiver. When response
to CHASE request is
received, the sender of
the request knows that
all normal-flow
responses are accounted
for.

Logical
Unit Status
(LUSTAT)

Informs receiver of a
condition encountered
at the sender's end of
the session. Codes
indicating reason for
sending the request are
placed in the SSENSEO,
SSENSMO and
USENSEO fields of the
RPL.

Primary or
secondary
logical unit

SEND STYPE=REQ,
CONTROL=LUS

DFSYN Expects response from
receiver. Subsequent
action depends on the
sense information sent
in LUSTAT.

Quiesce
Complete
(QC)

Tells receiver that the
sender has quiesced
itself (as the result of
receipt of a Quiesce at
End of Chain request)
and will not send any
normal-flow requests
until released.

Primary or
secondary
logical unit

SEND STYPE=REQ,
CONTROL=QC

DFSYN Expects response from
receiver. Refrains from
sending any
normal-flow requests
until a Release Quiesce
request is received.

Ready to
Receive
(RTR)

Tells the receiver that
the receiver can now
send a request to begin
a bracket.

Primary or
secondary
logical unit

SEND STYPE=REQ,
CONTROL=RTR

DFSYN Expects response from
receiver. After receiving
the response, an
application program
issues RECEIVE
RTYPE=DFSYN to
receive a normal-flow
request with the
begin-bracket indicator
set on.

Notes:

An application program can receive the response in one of the following ways, depending on how the program is
coded:

v By specifying POST=RESP in SEND (SEND is not completed until response is received)

v By issuing RECEIVE RTYPE=RESP (a RESP response)

v In a RESP exit routine

v By issuing RECEIVE RTYPE=DFSYN (a DFSYN response).

(See “How requests and responses are exchanged” on page 157 for further details about controlling the handling of
normal-flow requests.)

682 z/OS V2R1.0 Communications Server: SNA Programming

Table 98. Summary of receiving normal-flow data-flow-control requests

Request received Who can receive
How received by
application program

Who sends response
if receiver is a
VTAM application
program Next action by receiver

Bid Primary or secondary
logical unit

RECEIVE
RTYPE=DFSYN
CONTROL field in
RPL will contain BID.

Application program Sends positive response
to indicate bidder can
start a bracket. Sends a
negative response to
deny permission to start
a bracket. Application
program sends response
with SEND
....,STYPE=RESP,
CONTROL=BID,
RESPOND=(response
operands).

Bracket Initiation
Stopped (BIS)

Primary or secondary
logical unit

RECEIVE
RTYPE=DFSYN
CONTROL field in
RPL will contain BIS.

Application program Sends response to
Bracket Initiation chains
that have been received.
Then sends positive
response. Application
SEND ...,STYPE=RESP,
CONTROL=BIS,
RESPOND=(response
operands).

Cancel Primary or secondary
logical unit

RECEIVE
RTYPE=DFSYN
CONTROL field in
RPL will contain
CANCEL.

Application program Purges any requests of
incomplete chains that
have been received.
Then sends positive
response. Application
program sends response
with
SEND ...,STYPE=RESP,
CONTROL=CANCEL,
RESPOND=(response
operands).

Chase Primary or secondary
logical unit

RECEIVE
RTYPE=DFSYN
CONTROL field in
RPL will contain
CHASE.

Application program If any responses to
previously received data
requests or normal-flow
requests have not been
sent, sends those
responses. Then sends
response to Chase
request. Application
program sends response
to Chase request with
SEND ...,STYPE=RESP,
CONTROL=CHASE,
RESPOND=(response
operands).

Appendix C. Summary of control requests and indicators 683

Table 98. Summary of receiving normal-flow data-flow-control requests (continued)

Request received Who can receive
How received by
application program

Who sends response
if receiver is a
VTAM application
program Next action by receiver

Logical Unit Status
(LUSTAT)

Primary or secondary
logical unit

RECEIVE
RTYPE=DFSYN
CONTROL field in
RPL will contain
LUS. Codes
indicating reason for
the request are in the
SSENSEI, SSENSMI,
and USENSEI fields
of the RPL.

Application program Examines codes in
SSENSEI, SSENSMI, and
USENSEI fields of RPL
and takes action based
on those codes. Then
sends response to
LUSTAT request.
Application program
sends response with
SEND ...,STYPE=RESP,
CONTROL=LUS,
RESPOND=(response
operands).

Quiesce Complete
(QC)

Primary or secondary
logical unit

RECEIVE
RTYPE=DFSYN
CONTROL field in
RPL will contain QC.

Application program Sends response to
Quiesce Complete
request. Application
program sends response
with
SEND ...,STYPE=RESP,
CONTROL=LUS,
RESPOND=(response
operands).

Ready to Receive
(RTR)

Primary or secondary
logical unit

RECEIVE
RTYPE=DFSYN
CONTROL field in
RPL will contain
RTR.

Application program Sends response to
Ready to Receive
request by using SEND
....,STYPE=RESP,
CONTROL=RTR,
RESPOND=(response
operands). Then sends a
request that includes
BRACKET=BB.

Note:

If the application program sends a negative response, the SSENSEO, SSENSMO, and USENSEO fields are used.

Table 99. Summary of sending expedited-flow-control requests

Request
sent Function

Who can
send

Macroinstruction used
by application program RU type Next action by sender

Quiesce at
End of
Chain
(QEC)

Tells the receiver to quit
sending normal-flow
requests now, or, if
chaining, at the end of
the chain being sent.

Primary or
secondary
logical unit

SEND STYPE=REQ,
CONTROL=QEC

DFASY Expects response from
receiver. After receiving
positive response, awaits
Quiesce Complete.

Release
Quiesce

Tells the receiver that it
can now resume
sending normal-flow
requests.

Primary or
secondary
logical unit

SEND STYPE=REQ,
CONTROL=RELQ

DFASY Expects response from
receiver. After receiving
positive response,
prepares to receive
normal-flow input. An
application program
issues RECEIVE
RTYPE=DFSYN.

684 z/OS V2R1.0 Communications Server: SNA Programming

Table 99. Summary of sending expedited-flow-control requests (continued)

Request
sent Function

Who can
send

Macroinstruction used
by application program RU type Next action by sender

Request
Shutdown
(RSHUTD)

Asks the primary logical
unit to terminate this
session with the
secondary logical unit.

Secondary
logical unit
only

SEND STYPE=REQ,
CONTROL=RSHUTD

DFASY Expects response from
receiver. Response
indicates that request
has been properly
received. Prepares for
session termination.

Shutdown
Complete
(SHUTC)

Tells the primary logical
unit that shutdown
operations (requested
previously in a
Shutdown request from
the primary logical unit)
have been completed.

Secondary
logical unit
only

SEND STYPE=REQ,
CONTROL=SHUTC

DFASY Expects response from
receiver. Response
indicates that request
has been properly
received.

Shutdown
(SHUTD)

Tells the secondary
logical unit to quiesce
itself and to perform all
preparations for
Shutdown.

Primary
logical unit
only

SEND STYPE=REQ,
CONTROL=SHUTD

DFASY Expects response from
receiver. Response
indicates that request
has been properly
received. Then, expects
to receive Shutdown
Complete request from
the secondary logical
unit.

Signal Passes 4 bytes of Signal
information with an
agreed-upon meaning.
Signal information is
placed in the SIGDATA
field of the RPL.

Primary or
secondary
logical unit

SEND STYPE=REQ,
CONTROL=SIGNAL

DFASY Expects response from
receiver. Response
indicates that request
has been properly
received.

Stop
Bracket
Initiation
(SBI)

Tells receiver not to
begin any new brackets.

Primary or
secondary
logical unit

SEND STYPE=REQ,
CONTROL=SBI

DFASY Expects response from
receiver. Response
indicates that request
has been properly
received.

Note:

An application program receives the response in SEND (SEND is not completed unit response is received).

Table 100. Summary of receiving expedited-flow data-flow-control requests

Request received Who can receive
How received by
application program

Who sends response
if receiver is a VTAM
application program

Next action by
receiver

Quiesce at End of
Chain (QEC)

Primary or secondary
logical unit

Either RECEIVE
RTYPE=DFASY or in
DFASY exit routine.
CONTROL field in
RPL will contain QEC.

Either VTAM or the
program sends the
response.

Halts sending of
normal-flow requests
immediately or at end
of chain. Then sends
Quiesce Complete
(QC) request to
sender of QEC
request.

Appendix C. Summary of control requests and indicators 685

Table 100. Summary of receiving expedited-flow data-flow-control requests (continued)

Request received Who can receive
How received by
application program

Who sends response
if receiver is a VTAM
application program

Next action by
receiver

Release Quiesce
(RELQ)

Primary or secondary
logical unit

Either RECEIVE
RTYPE=DFASY or in
DFASY exit routine.
CONTROL field in
RPL contains RELQ.

Either VTAM or the
program sends the
response.

Sends a normal-flow
request to sender of
RELQ request, if
desired.

Request Shutdown
(RSHUTD)

Primary logical unit
only

Either RECEIVE
RTYPE=DFASY or in
DFASY exit routine.
CONTROL field in
RPL contains
RSHUTD.

Either VTAM or the
program sends the
response.

Terminates the session
with the secondary
logical unit.

Shutdown Complete
(SHUTC)

Primary logical unit
only

Either RECEIVE
RTYPE=DFASY or in
DFASY exit routine.
CONTROL field in
RPL will contain
SHUTC.

Either VTAM or the
program sends the
response.

Issues a Chase request
(if permitted by FM
profile) to ensure that
all responses have
been received. Then
ends the session with
the secondary logical
unit.

Shutdown (SHUTD) Secondary logical unit
only

Either RECEIVE
RTYPE=DFASY or in
DFASY exit routine.
CONTROL field in
RPL will contain
SHUTD.

Either VTAM or the
program sends the
response.

If necessary, stops
normal-flow
transmission to the
primary logical unit.
Performs all
preparations for
shutdown. Then sends
the Shutdown
Complete request to
the primary logical
unit.

Signal Primary or secondary
logical unit

Either RECEIVE
RTYPE=DFASY or in
DFASY exit routine.
CONTROL field in
RPL contains
SIGNAL. Four byes of
information are in the
SIGDATA field of the
RPL.

Either VTAM or the
program sends the
response.

Depends on the
contents of the Signal
information.

Stop Bracket Initiation
(SBI)

Primary or secondary
logical unit

Either RECEIVE
RTYPE=DFASY or in
DFASY exit routine.
CONTROL field in
RPL will contain SBI.

Either VTAM or the
program sends the
response.

Sends a Bracket
Initiation Stopped
(BIS) request to SBI
sender and then
refrains from
initiating any new
brackets.

686 z/OS V2R1.0 Communications Server: SNA Programming

Table 100. Summary of receiving expedited-flow data-flow-control requests (continued)

Request received Who can receive
How received by
application program

Who sends response
if receiver is a VTAM
application program

Next action by
receiver

Notes:

The responder to expedited-flow data-flow-control request is determined by the setting of a PROC option in the NIB
when the session is established:

v If PROC=APPLRESP was specified in the NIB, the application program sends the response using
SEND...,STYPE=RESP,CONTROL=request code or received request, RESPOND=(response operands). If a negative
response is sent the SSENSEO, SSENSMO, and USENSEO fields are used.

v If PROC=SYSRESP was specified in the NIB, VTAM automatically sends the response before presenting the request
to the application program.

The session-control requests, described in the following table, control
session-related functions and are sent separately from normal- and
expedited-flow-control requests and their responses.

Table 101. Summary of sending session-control requests

Request sent Function Who can send

Macroinstruction
used by application
program to send

Next action by
sender

Bind Session (BIND) Informs the receiver
that the sender wants
to go into session
with the receiver. A
session parameter is
sent as part of the
Bind Session request.

Primary logical unit Indirectly, by issuing
the OPNDST
macroinstruction

VTAM handles
response and does not
complete the
OPNDST until
response is received.
Positive response
causes VTAM to
complete setting up
the session. Negative
response negates the
session. After positive
response, either
VTAM or the PLU
application program
sends the Start Data
Traffic request (if
required by TS
profile).

Clear For certain TS
profiles, tells VTAM
and the receiver to
stop sending data and
data-flow-control
requests and
responses. Causes
VTAM to discard any
requests and
responses still in the
network and not yet
delivered. Resets
outbound and
inbound sequence
numbers at both ends
of the session to 0.

Primary logical unit SESSIONC
STYPE=REQ,
CONTROL=CLEAR

Response reflected in
RPL on completion of
SESSIONC
macroinstruction.
VTAM handles
response.

Appendix C. Summary of control requests and indicators 687

Table 101. Summary of sending session-control requests (continued)

Request sent Function Who can send

Macroinstruction
used by application
program to send

Next action by
sender

Request Recovery
(RQR)

Informs primary
logical unit that
recovery action is
needed.

Secondary logical unit SESSIONC
STYPE=REQ,
CONTROL=RQR

In an SLU application
program, response
reflected in RPL on
completion of
SESSIONC
macroinstruction.
After receiving
positive response,
awaits next request
from the primary
logical unit (usually
the Clear request).

Set and Test Sequence
Numbers (STSN)

Exchanges
information with
secondary logical unit
to allow sequence
numbers to be
determined or set or
both.

Primary logical unit SESSIONC
STYPE=REQ,
CONTROL=STSN
and settings in
IBSQAC, OBSQAC,
IBSQVAL, and
OBSQVAL fields

Response reflected in
RPL on completion of
SESSIONC
macroinstruction.
Tests IBSQAC,
OBSQAC, IBSQVAL,
and OBSQVAL fields
to determine answers
to action codes and
values sent in the
request.

Start Data Traffic
(SDT)

Informs secondary
logical unit that
session setup or
recovery is complete
and flow of data and
data-flow-control
requests and
responses can begin.

Primary logical unit SESSIONC
STYPE=REQ,
CONTROL=SDT.
VTAM sends
command at
beginning of session
if SDT=SYSTEM was
set in NIB when the
session was
established.

Depending on the
session parameter,
you may send first
requested or wait for
secondary logical unit
to send a request.

Unbind Session
(UNBIND)

Informs VTAM and
the receiver that the
session is being
terminated.

Primary logical unit,
secondary logical
unit, or other network
component

PLU application
program can send
indirectly by issuing
CLSDST or
TERMSESS.

Continues
communications on
sessions with other
logical units, or closes
program.

688 z/OS V2R1.0 Communications Server: SNA Programming

Table 102. Summary of receiving session-control requests

Request received Who can receive

How received by
application
program

Who sends
response if receiver
is a VTAM
application
program Next action by receiver

Bind Session (BIND) Secondary logical
unit

In SCIP exit Application
program ¹

Examines a session parameter
in BIND request and
determines whether the
complete set of parameters is
acceptable. If acceptable, sends
positive response. (For SLU
application program, positive
response results from issuance
of the OPNSEC
macroinstruction.) If not
acceptable, sends negative
response. (SLU application
program sends negative
response with
SESSIONC ...,STYPE=RESP,
CONTROL=BIND,
RESPOND=(response operands).)

Clear Secondary logical
unit

In SCIP exit VTAM Stops sending requests and
responses, and awaits next
request from the primary
logical unit.

Request Recovery
(RQR)

Primary logical
unit

In SCIP exit VTAM Initiates recovery action,
usually by sending the Clear
request followed by a Set and
Test Sequence Numbers request
and then a Start Data Traffic
request.

Set and Test
Sequence Numbers
(STSN)

Secondary logical
unit

In SCIP exit Application
program ¹

Examines action codes and
sequence number values
provided with the request.
Prepares answering action
codes and values and puts
them in IBSQAC, OBSQAC,
IBSQVAL, and OBSQVAL
fields. Then, sends response
with
SESSIONC ...,STYPE=RESP,
CONTROL=STSN.

Start Data Traffic
(SDT)

Secondary logical
unit

In SCIP exit Depending on the
SDT field in the
NIB used during
OPNSEC
processing, either
the secondary
application program
¹ or VTAM may
respond ²

After response is sent,
depending on session
parameter, you may send first
request or wait for primary
logical unit to send request.

Unbind Session
(UNBIND)

Primary logical
unit or secondary
logical unit

In SCIP exit ³ VTAM Continues communication on
sessions with other logical
units, or closes program.

Appendix C. Summary of control requests and indicators 689

Table 102. Summary of receiving session-control requests (continued)

Request received Who can receive

How received by
application
program

Who sends
response if receiver
is a VTAM
application
program Next action by receiver

Notes:

1. If the application program sends a negative response, the SSENSEO, SSENSMO, and USENSEO fields are used.

2. If the secondary application program specified SDT=APPL for the NIB used in OPNSEC processing, the
secondary application program responds. Otherwise (SDT=SYSTEM), VTAM responds.

3. Alternatively, for a PLU application program, the NSEXIT or LOSTERM exit routines may be invoked. See
“Session outage notification (SON) codes on UNBIND” on page 93.

Change-direction indicator
The change-direction indicator can be set on (designated CD) in a
normal-flow data request or in a Cancel, Chase, Quiesce Complete, or LU
Status request. The request containing the CD must be a single-request
chain (CHAIN=ONLY) or the last request in a chain.

Table 103. Summary of change-direction indicator

Indicator Function

PLU or SLU application
program can
send/receive

Macroinstruction used
or RPL field set RU type Next action expected

Change
Direction
(CD)

Tells the
receiver
that it may
now send.

Send SEND
CHNGDIR=CMD

DFSYN Start receiving from the
opposite end of the
session.

Receive CHNGDIR field in RPL
contains CMD

DFSYN Start sending from the
opposite end of the
session.

Bracket indicators
The normal-flow control requests Bid and Ready to Receive are used by
the VTAM application program to determine whether it can send a request
with the begin-bracket indicator set on (designated BB).

BB and CEB can be sent in a data request or an LU Status request. The
end-bracket indicator can be set on (designated EB) in a data request or in
a Cancel, Chase, Quiesce Complete, or LU Status request. The request
containing the BB or EB must be a single-request chain (CHAIN=ONLY) or
the first request of a chain. The request containing the CEB must be a
single-request chain or the last request in a chain.

690 z/OS V2R1.0 Communications Server: SNA Programming

Table 104. Summary of bracket indicators

Indicator Function

PLU or SLU
application
program can
send/receive

Macroinstruction used
or RPL field set RU type

Next action
expected

Begin Bracket
(BB)

Indicates first
chain in a
bracket.

Send SEND Bracket=BB DFSYN Continues to
send or waits to
receive,
according to
user
conventions.

Receive BRACKET field in RPL
contains BB

DFSYN Accept or reject
the request to
start a bracket.

End Bracket (EB) Indicates last
chain in a
bracket.

Send SEND BRACKET=EB DFSYN Attempts to start
a new bracket,
or waits for
other LU to start
a bracket,
according to
user
conventions.

Receive BRACKET field
in RPL contains
EB

DFSYN Attempts to start a new
bracket, or waits for
other LU to start a
bracket, according to
user conventions.

Conditional End
Bracket (CEB)

Indicates last
chain in a
bracket.

Send SEND BRACKET=CEB DFSYN Attempts to start
a new bracket,
or waits for
other LU to start
a bracket,
according to
user
conventions.

Receive BRACKET field
in RPL contains
CEB

DFSYN Attempts to start a new
bracket, or waits for
other LU to start a
bracket, according to
user conventions.

Appendix C. Summary of control requests and indicators 691

692 z/OS V2R1.0 Communications Server: SNA Programming

Appendix D. Request and response exchanges for typical
communication operations

This appendix contains diagrams that show the sequences in which requests and
responses are exchanged to perform typical data communication operations using
VTAM. The diagrams can be useful in coding application programs that perform
the operations.

Note: A PLU application program is a VTAM application program that acts as the
PLU in the session, and an SLU application program is a VTAM application
program that acts as the SLU in the session.

Figure 107 on page 694 through Figure 127 on page 714 are oriented primarily
toward communication between a PLU application program and a device-type
logical unit, although some of these diagrams apply also when the SLU is a SLU
application program. In Figure 107 on page 694 through Figure 127 on page 714,
the “reads” and “writes” shown in the “Logical Unit” column represent logic that
can be performed by a control program in the logical unit, a user-written program
that operates in the logical unit, or both. It is a general representation of the input
and output from the logical unit. The PLU application program's side of the
exchange is shown in more detail.

Figure 128 on page 715 through Figure 142 on page 728 are oriented toward
operations between a PLU application program and a SLU application program.

Figure 143 on page 729 and Figure 144 on page 730 illustrate a session between the
VTAM SSCP and an application program over the CNM interface.

In any diagram showing a negative response being sent to an application program,
a SYNAD exit routine might be scheduled with an exception condition return code.
SYNAD exit routines are not illustrated in this appendix. See “Coding LERAD and
SYNAD exit routines” on page 290 for details.

© Copyright IBM Corp. 2000, 2013 693

For initiating and establishing a session from a SLU application program, see
Figure 128 on page 715 and Figure 129 on page 716.

SDT=
APPL in
OPNDST

NIB?

Write, specifying the name of
the PLU application program
with which a session is desired
and providing optional user
data (logon message). This
produces an Initiate request
(or logon) for the PLU applica-
tion program. Suggested
session parameters can be sent
with an Initiate request (or
logon).

Error
or unknown
resource?

BIND (including session
parameters)

Determine name of PLU
application program that sent
BIND request and check
session parameters.

Session
parameters

OK?

Accept
logon?

Initiate request

Positive response

Positive response

LOGON exit
routine

CINIT
request

No
(CLSDST)

OPNDST completed
sucessfully.

VTAM sends
SDT (SDT=SYSTEM
in NIB)

SESSIONC
STYPE=REQ,
CONTROL=SDT

OPNDST or SESSIONC
completed successfully.

OPNDST OPTCD=ACCEPT
NAME field in NIB
contains symbolic name
of logical unit that sent
Initiate request.

OPNDST completed
unsuccessfully.

Negative response

Start Data Traffic

Positive response

Read

Read

Read

Read

Write

Write

Write

Yes

Yes

Yes

Yes

No

No

No

12

11

1

3

3

5

7

8

8

2

2

4

6

9

9

10

13

PLU
Application
Program VTAM Request/Response Flow

Request rejected

Notify RU
or NSPE

Logical Unit (can be an
SLU application program)

Figure 107. Device-type LU initiates and establishes a session with a PLU application program.

694 z/OS V2R1.0 Communications Server: SNA Programming

For initiating a session from a PLU to a SLU application program, see Figure 130
on page 717 and Figure 131 on page 718.

Logical Unit (can be an
SLU application program)

PLU
Application
Program

OPNDST OPTCD=ACQUIRE
NAME field in NIB contains
symbolic name of logical
unit.

Determine name of PLU application
program that sent BIND request and
check session parameters.

VTAM Request/Response Flow

Error
or unknown
resource?

Session
parameters

OK?

SDT=
APPL in
OPNDST

NIB?

BIND (including
session parameters)

OPNDST completed
unsuccessfully.

OPNDST completed
successfully.

VTAM sends SDT
(SDT=SYSTEM
in NIB)

SESSIONC
STYPE=REQ,
CONTROL=SDT

OPNDST or SESSIONC
completed successfully.

Positive response

Start Data Traffic

Positive response

Write

Write

Read

1

4

4

5

8

2

3

6

7

Yes

No

YES

NO

No

Request rejected

Yes 3

Figure 108. PLU application program acquires (initiates and establishes) a session with a device-type LU.

Appendix D. Request and response exchanges for typical communication operations 695

Last request sent: 10
Last request received

and successfully
processed (positive
response sent): 90

Status of Request
Sequence Numbers

Set and Test
Sequence Numbers

Set and Test
Sequence Numbers

Positive response

Positive response

Last request sent: 95
Last request received

and successfully
processed (positive
response sent): 10

Status of Request
Sequence Numbers

Read STSN request.

Write positive response to STSN
request with result codes indi-
cating that SLU disagrees with
OBSQVAL and agrees with IBSQVAL.

Read STSN request.
Agrees with OBSQVAL.

Write

Notes:

1

3

7

Session initialization (through response to BIND)
(SDT-APPL must be specified in the NIB.)

Last request sent: 90
Last request received: 10

(See Notes 2 and 3)

Status of Sequence
Numbers

Last request sent: 10
Last request received: 90

(See Notes 2 and 3)

Status of Sequence
Numbers

8

4

Notice that, in this figure, the mnemonic OB stands for outbound from the PLU application program (therefore, inbound to
the device-type logical unit) and the mnemonic IB stands for inbound to the application program (therefore, outbound
from the device-type logical unit).

Outbound requests 91-95 from the application program were lost and will have to be resent.

The positive response sent by the application program for inbound request 10 may never have reached the logical unit,
but it can be inferred from the first Set and Test Sequence Numbers request.

(Italics indicate RPL fields after
receipt of RU)

1.

2.

3.

SESSIONC
STYPE=REQ,
CONTROL=STSN,
OBSQAC=TESTSET,
OBSQVAL=95,
IBSQAC=TESTSET,
IBSQVAL=10 (Note 1)

SESSIONC completed
successfully (POST=
RESP is always assumed
by VTAM) with:

SESSIONC
STYPE=REQ,
CONTROL=STSN,
OBSQAC=SET,
OBSQVAL=90, (Note 2)
IBSQAC=IGNORE
(The inbound sequence
number was set to 10
above.)

SESSIONC completed
successfully (POST=
RESP is always assumed
by VTAM) with:

9

6

5

2

OBSQAC=TESTNEG
OBSQVAL=90
IBSQAC=TESTPOS
IBQVAL =1 0

OBSQAC=TESTPOS
OBSQVAL=90
IBSQAC=TESTPOS
IBSQVAL=unpredic tab le

PLU
Application
Program VTAM Request/Response Flow

Logical Unit (Can Be an
SLU Application Program)

Figure 109. After a warm start, a PLU application program reestablishes a session and resynchronizes sequence
numbers (Part 1 of 2)

696 z/OS V2R1.0 Communications Server: SNA Programming

Logical Unit (can
be an SLU
application program)

PLU
Application
Program VTAM

SESSIONC
STYPE=REQ,
CONTROL=SDT

SESSIONC completed suc-
cessfully (POST=RESP is
always assumed by VTAM).

Start Data Traffic
Read

Write

11

12

10

13
Positive response

Request/Response Flow

Notes:
1. Notice that, in this figure, the mnemonic OB stands for outbound from the PLU application program

(therefore, inbound to the device-type logical unit) and the mnemonic IB stands for inbound to the
application program (therefore, outbound from the device-type logical unit).

2. Outbound requests 91-95 from the application program were lost and will have to be resent.

3. The positive response sent by the application program for inbound request 10 may never have reached
the logical unit, but it can be inferred from the first Set and Test Sequence Numbers request.

Figure 110. After a warm start, a PLU application program reestablishes a session and resynchronizes sequence
numbers (Part 2 of 2)

Appendix D. Request and response exchanges for typical communication operations 697

SEND
STYPE=RESP,
RESPOND=(EX,FME)

SSENSEI and SSENSMI
set by VTAM in
case of VTAM-
detected failures and
moved to SSENSEO
and SSENSMO by
program. Otherwise, in
examining the data, pro-
gram detects error and
sets up SSENSEO and
SSENSMO.
Optionally program
sets USENSEO.

(Don't send response)

SEND
STYPE=REQ,
CONTROL=DATA,
RESPOND=(EX,FME)

(continued)

Sense information

(Italics indicate RPL fields
after receipt of RU)

RECEIVE
RTYPE=DFSYN

RECEIVE
RTYPE=DFSYN

SEND
STYPE=REQ,
CONTROL=DATA,
RESPOND=(NFME,
NRRN)

CONTROL=DATA
RESPOND=(EX,FME)

CONTROL=DATA
RESPOND=(NFME,
NRRN)

Data

PLU Application
Program VTAM Request/Response Flow

Write data

Write data

Read data

Read

Read completes with status
indicated.

Data

Error?

Logical Unit (can be an
SLU application program)

Negative response

Data

Data

An exception request is generated, for example, if the receiving LU detects a sequence number error.Note:

2

3

2

3

1

1

4

1

4

2

Erroneous data or
exception request
(See Note)

Erroneous data or
exception request
(See Note)

Data from PLU

A

B

Figure 111. PLU application program and a secondary logical unit exchange data (Part 1 of 3)

698 z/OS V2R1.0 Communications Server: SNA Programming

SEND
STYPE=RESP,
RESPOND=(EX,FME)

SSENSEI and SSENSMI
set by VTAM in case
of VTAM-detected
failures and moved to
SSENSEO and SSENSMO
by program. Otherwise,
in examining the data,
program detects error
and sets up SSENSEO
and SSENSMO.
Optionally program sets
USENSEO.

SEND
STYPE=RESP,
RESPOND=(NEX,FME)

SEND
STYPE=REQ,
CONTROL=DATA,
RESPOND=(NEX,FME),
POST=(SCHED|RESP)

RECEIVE
RTYPE=RESP
or
RESP exit routine
or upon SEND
completion
if POST=RESP

RECEIVE
RETYPE=RESP
(or) RESP exit routine

RECEIVE
RTYPE=DFSYN

CONTROL=DATA
RESPOND=(EX,FME)

CONTROL=DATA
RESPOND=(NEX,

FME)

(Italics indicate RPL fields
after receipt of RU)

PLU Application
Program VTAM Request/Response Flow

Error?

Logical Unit (can be an
SLU application program)

An exception request is generated, for example, if the receiving LU detects a sequence number error.Note:

4

3

2

1

Read (sense information)

Read

Read

Write

Write

Write

No

Yes

Yes

Data or exception request
(See Note)

Data or exception request
(See Note)

Negative response

Negative response

Negative response

Positive response

Positive response

Received
and processed

OK?

No

3

1

4

2

4

3

3

3

4

B

C

Figure 112. PLU application program and a secondary logical unit exchange data (Part 2 of 3)

Appendix D. Request and response exchanges for typical communication operations 699

A With no responses

B With negative responses only if an exception occurs

C With definite response 1 (positive or negative)

D With definite responses 1 and 2 sent at the same time.

(Italics indicate RPL fields
after receipt of RU)

PLU
Application
Program VTAM Request/Response Flow

Logical Unit (can be an
SLU application program)

3

Data or exception request

No

YesPositive response 1 and 2

NoNegative response 1 and 2
RECEIVE

RTYPE=RESP or
RESP exit routine
or upon SEND
completion
if POST=RESP

Received
and processed

OK?

Write3

Negative response 1 and 2
4

2

SEND
STYPE=RESP,
RESP=(EX,FME,RRN)

SSENSEI and SSENSMI
set by VTAM in case
of VTAM-detected
failures and moved to
SSENSEO and SSENSMO
by program. Otherwise,
in examining the data,
program detects error
and sets up SSENSEO
and SSENSMO.
Optionally program sets
USENSEO.

SEND
STYPE=REQ,
CONTROL=DATA,
RESPOND=(NEX,FME,
RRN),
POST=(SCHED|RESP)

1

SEND
STYPE=RESP
RESPOND=(NEX<FME<
RRN)

Positive response 1 and 2
4 Read

RECEIVE RTYPE=DFSYN

CONTROL=DATA
RESPOND=(NEX,FME,

RRN)

1

Error?

Yes

3

Read2
Data

4

Write

Read (sense information)

D

Figure 113. PLU application program and a secondary logical unit exchange data (Part 3 of 3 about sections A, B, C
and D)

700 z/OS V2R1.0 Communications Server: SNA Programming

A Without a negative response

RECEIVE
RTYPE = DFSYN

Same as 2 except

Same as 2 except

Same as 2 except

Same as 2 except

SEND
STYPE = RESP,
RESPOND = (NEX,FME)

RECEIVE
RTYPE = DFSYN

Same as 2 except

SEND STYPE = RESP,
RESPOND = (EX,FME)
and one or more of
SSENSEO, SSENSMO, and
USENSEO fields set.

This request will be
received and, along with
the first request of the
chain, should be
disregarded.

Part 5 (last) of data

Part 1 of data

Part 2 of data

Part 3 of data

Part 4 of data

Part 5 of data

Part 4 of data

Part 3 of data

Part 2 of data

Part 1 of data

Write

Write

Write

Write

Write

Write

Write

Write

(not sent)

(not sent)

Data (middle request of chain)

Data (middle request of chain)

Data (middle request of chain)

Data (first request of chain)

Data (last request of chain)

Positive response

Chain field contains
FIRST. RESPOND field
contains EX,FME.

CHAIN contains
MIDDLE.

CHAIN contains
MIDDLE.

CHAIN contains
MIDDLE.

CHAIN contains LAST
and RESPOND contains
NEX.

CHAIN contains FIRST,
RESPOND contains EX,
FME.

CHAIN contains MIDDLE
and feedback information
indicates an exception
request; otherwise, in
examining the data, the
application program
detects errors and sets up
SSENSEO and SSENSMO.

A

B

Read

Read

Failure

Writes Cancel request to end the
chain or ends the chain by sending
a request marked last of chain.

PLU
Application
Program VTAM Request/Response Flow

Logical Unit (can be an
SLU application program)

Negative
response

(Italic indicate RPL fields
after receipt of RU)

2

4

6

8

10

11

2

4

5

1

3

5

7

9

12

1

3

6

7

8

Figure 114. Logical unit sends a chain of data to the PLU application program

Appendix D. Request and response exchanges for typical communication operations 701

B With a negative response.

A The application program quiesces the logical unit

B The logical unit quiesces the application program.

(See
Note)

(See
Note)

Note:

(response operands).

The responses to the Quiesce at End of Chain request and the Release Quiesce request (both expedited-
flow-data-flow-control requests) are sent either by VTAM or the application program, depending on the setting
of a PROC option in the NIB when the session was established:

If PROC = APPLRESP was specified in the NIB when the session was established, the application program
sends the response, using SEND ..., STYPE = RESP, CONTROL =
RESPOND =
If PROC = SYSRESP was specified in the NIB when the session was established, VTAM automatically
sends the response before presenting the request to the application program.

SEND
STYPE = REQ,
CONTROL = QEC

SEND completed

RECEIVE
RTYPE = DFSYN

SEND
STYPE = RESP
RESPOND = (NEX,FME)

SEND
STYPE = REQ,
CONTROL = RELQ

SEND completed

RECEIVE
RTYPE = DFASY or
DFASY exit

SEND
CONTROL = QC,
STYPE = REQ

SEND completed

RECEIVE
RTYPE = DFASY

(Italics indicate RPL fields
after receipt of RU)

CONTROL field
contains QC.

CONTROL field
contains QEC.

CONTROL field
contains RELQ.

PLU
Application
Program VTAM Request/Response Flow

A

B

4

6

7

1

9

12

2

3

11

Logical Unit (can be an
SLU application program)

request code of received request,

12

Read

Write

Write

Read

Read

Write

Write

Read

Read

Write

Write

Read

9

7

6

4

1

11

10

8

5

3

10

8

5

2

(See
Note)

(See
Note)

Note:

(response operands).

The responses to the Quiesce at End of Chain request and the Release Quiesce request (both expedited-
flow-data-flow-control requests) are sent either by VTAM or the application program, depending on the setting
of a PROC option in the NIB when the session was established:

If PROC = APPLRESP was specified in the NIB when the session was established, the application program
sends the response, using SEND ..., STYPE = RESP, CONTROL =
RESPOND =
If PROC = SYSRESP was specified in the NIB when the session was established, VTAM automatically
sends the response before presenting the request to the application program.

SEND
STYPE = REQ,
CONTROL = QEC

SEND completed

RECEIVE
RTYPE = DFSYN

SEND
STYPE = RESP
RESPOND = (NEX,FME)

SEND
STYPE = REQ,
CONTROL = RELQ

SEND completed

RECEIVE
RTYPE = DFASY or
DFASY exit

SEND
CONTROL = QC,
STYPE = REQ

SEND completed

RECEIVE
RTYPE = DFASY

(Italics indicate RPL fields
after receipt of RU)

CONTROL field
contains QC.

CONTROL field
contains QEC.

CONTROL field
contains RELQ.

PLU
Application
Program VTAM Request/Response Flow

A

B

4

6

7

1

9

12

2

3

11

Logical Unit (can be an
SLU application program)

request code of received request,

Quiesce at End of Chain

Positive response

Quiesce Complete

Positive response

Release Quiesce

Positive response

Quiesce at End of Chain

Positive response

Quiesce Complete

Positive response

Release Quiesce

Positive response 12

Read

Write

Write

Read

Read

Write

Write

Read

Read

Write

Write

Read

9

7

6

4

1

11

10

8

5

3

10

8

5

2

Figure 115. Application program and logical unit use quiesce protocol

702 z/OS V2R1.0 Communications Server: SNA Programming

BRACKET field
contains BB,NEB.

BRACKET field
contains NBB,NEB.

BRACKET field
contains EB,NBB

RESPOND field
contains NEX,FME

(Italics indicate RPL fields
after receipt of RU)

Begin bracket and data

Data

Data

End bracket and data

Positive response

Begin bracket, end
bracket, and data

Bid

Positive response

Begin bracket and data

PLU
Application
Program VTAM Request/Response Flow

A

B

C

2 Write

Read

Write

Write

Read

Read

Write

Read

1

4

5

7

10

2

3

6

RECEIVE
RTYPE=DFSYN

SEND
STYPE=REQ,
CONTROL=DATA,
BRACKET=(NBB,NEB)

RECEIVE
RTYPE=DFSYN

RECEIVE
RTYPE=DFSYN

SEND
STYPE=RESP,
RESPOND=(NEX,FME)

SEND
STYPE=REQ,
CONTROL=DATA,
BRACKET=(BB,EB)

SEND
STYPE=REQ,
CONTROL=BID,
(POST=RESP assumed
in this example)

SEND completed

SEND
STYPE=REQ,
CONTROL=DATA,
BRACKET=(BB,NEB)

(Application program
continues sending)

Logical Unit (can be an
SLU application program)

5

4

1

1

Read2

9

8

6

3

Figure 116. Application program and logical unit use bracket protocol (Part 1 of 2)

Appendix D. Request and response exchanges for typical communication operations 703

A Where the logical unit begins the bracket

B Where the PLU application program begins the bracket

C Where the PLU application program gets a positive response to its BID and
begins the bracket

D Where BID produces a later Ready-to-Receive request.

For more details on using brackets with a SLU application program, see Figure 134
on page 721 and Figure 135 on page 722.

Logical Unit (can be an
SLU application program)

SEND

Ready to receive

Positive response

VTAM Request/Response Flow

Write

1

3

(Italics indicate RPL fields
after receipt of RU)

STYPE=REQ,
CONTROL=BID,
(POST=RESP assumed
in this example)

Begin bracket, end
bracket, and data

Bid

PLU
Application
Program

Negative response
sense=

SEND completed.

RECEIVE

RECEIVE

SEND

SEND

RTYPE=DFSYN
BRACKET field
contains BB,EB

4

6

RTYPE=DFSYN
CONTROL field
contains RTR

8

STYPE=RESP
CONTROL=RTR,
RESPOND=(NEX,FME)

9

STYPE=REQ
CONTROL=DATA
BRACKET=(BB,NEB)

11

(Application program
continues sending)

Read2

Write5

Write7

Read

Read

10

12

Begin bracket
and data

xxxx

D

Figure 117. Application program and logical unit use bracket protocol (Part 2 of 2)

704 z/OS V2R1.0 Communications Server: SNA Programming

A Where only change-direction indicators are used

B Where in addition, the Signal request (requesting change direction) is used.

(Italics indicate RPL fields
after receipt of RU)

PLU
Application
Program VTAM Request/Response Flow

Data
Write

Write

2

4

1

3

A

Logical Unit (can be an
SLU application program)

RECEIVE
RTYPE=DFSYN

RECEIVE
RTYPE=DFSYN

SEND
STYPE=REQ,
CONTROL=DATA,
CHNGDIR=NCMD

SEND
STYPE=REQ,
CONTROL=DATA,
CHNGDIR=CMD

SEND
STYPE=REQ
CONTROL=DATA,
CHNGDIR=NCMD

SEND
STYPE=REQ
CONTROL=DATA
CHNGDIR=NCMD

SEND
CONTROL=DATA
CHNGDIR=CMD

7

RECEIVE
RTYPE=DFASY

6

3

1

Either VTAM or the application program responds to the Signal request, depending on whether
PROC=SYSRESP or PROC=APPLRESP was specified in the NIB when the session was established.

Note:

Data

CONTROL=SIGNAL
SIGDATA=signal code
which requests change
direct ion

7

Signal request containing
request-for-change-direction
signal code

Read4

5

5a

8

Read

(Logical unit sends next
normal-flow request.)

Write

Read
Positive response

(See
Note)

Data/change direction
(change-direction indicator
set on)

Read6
Data

5

Data/change direction
8

2 Read

Data

ReadData/change direction

B

Figure 118. Application program and logical unit use change-direction protocol

Appendix D. Request and response exchanges for typical communication operations 705

For resynchronization of sequence numbers between PLU and SLU application
programs, see Figure 132 on page 719 and Figure 133 on page 720. For the dialog
between the PLU application program and the logical unit to establish sequence
numbers, see steps 2–9 in Figure 109 on page 696 and Figure 110 on page 697. (Use
STSN and any dialog at your own discretion.)

PLU
Application
Program VTAM Request/Response Flow

Request Recovery

Negative response

Positive response

Positive response

Positive response

Clear

Start Data Traffic

RQR

Yes

No

(Reset
sequence
numbers
to 0)

Write

Write

Write

Read

Read

Read
(Reset sequence numbers to 0.)

9

2

2

12

1

3

3

5

10

11

15

16

(Italics indicate RPL fields
after receipt of RU)

SESSIONC completed.

SESSIONC
STYPE=REQ,
CONTROL=STSN
(Example of values:
OBSQVAL=100
OBSQAC=SET
IBSQVAL=110
IBSQAC=SET)

4

Logical Unit (can be an
SLU application program)

SCIP
exit routine

present?

Set and Test Sequence
Numbers

CONTROL field in
read-only RPL
contains RQR.

SCIP exit routine
scheduled.

SESSIONC
STYPE=REQ,
CONTROL=CLEAR
(POST=RESP assumed)

SESSIONC completed. 7

Positive response

6 Write

Read
(Set logical unit's inbound
sequence number to 100 and
outbound sequence number to
110.)

14 ReadSESSIONC
STYPE=REQ,
CONTROL=SDT

SESSIONC completed.17

13

8

Figure 119. PLU application program resynchronizes sequence numbers with the logical unit.

706 z/OS V2R1.0 Communications Server: SNA Programming

A Sent by the logical unit

B Sent by the PLU application program.

Negative response

Positive response

Positive response

Signal

Signal

Read

Write

(See
Note)

Signal
received

OK?

(See Note)

No

Yes

4

3

3

5

2

5

1

4

4

3
A

B

PLU
Application
Program VTAM Request/Response Flow

(Italics indicate RPL fields
after receipt of RU)

CONTROL field
contains SIGNAL.
SIGDATA field contains
4 bytes of information.

Perform action related to
information.

SEND completes.

SEND completes.

Note: When a Signal request is received by an application program, either VTAM or the application
program sends the response, depending on whether PROC=SYSRESP or PROC=APPLRESP was specified
in the NIB when the session was established.

Logical Unit (can be an
SLU application program)

RECEIVE completes
with RTYPE=DFASY
or DFASY exit routine
is scheduled.

Perform action related to
information.

Need to send user-defined information
ahead of regular data or when quiesced.
Write, specifying a Signal request and
4 bytes of information.

Need to send Signal data-
flow-control request
containing 4 bytes of user-
defined information to
the logical unit. SEND
STYPE=REQ
CONTROL=SIGNAL,
SIGDATA=4 bytes of
information.

Read2

1

Write

Figure 120. Application program and logical unit use the signal request

Appendix D. Request and response exchanges for typical communication operations 707

A Sent by the logical unit

B Sent by the application program.

A situation occurs requiring
VTAM application program
attention, and the VTAM
application program is not
sending or not requesting
responses. Write, specifying
sense information. LUSTAT is
sent in sequence with other
normal-flow requests.

RECEIVE
RTYPE=DFSYN

CONTROL field contains
LUS. SSENSEI and
SSENSMI can contain
status information.
Optionally, USENSEI may
contain 2 bytes of user
status information.

PLU Application
Program VTAM Request/Response Flow

Logical Unit (can be an
SLU application program)

(Italic indicate RPL fields
after receipt of RU)

Write

Write

Read

Read

Read

1

4

4

2

3

3

6

A

B

LUSTAT and sense
information

LUSTAT and sense
information

Negative response

Negative response

Positive response

Positive response

Act based on status information
received.

2

5

1

4

4

No

Yes

3

3

LUSTAT
received and

processed
OK?

LUSTAT
received and

processed
OK?

Act based on status
information.

A situation occurs
requiring logical unit
attention (such as a
resource becoming
available or unavailable).
The logical unit is either
not presently sending or is
not requesting a response.
SEND STYPE=REQ,
CONTROL=LUS, and
information in one or more
of the USENSEO,
SSENSEO, and SSENSMO
fields. (POST=RESP is
assumed in this example.)
(LUSTAT is sent in
sequence with other
normal-flow requests.)

5 SEND completes.

RECEIVE completes.

Figure 121. Application program and logical unit use the LUSTAT request

708 z/OS V2R1.0 Communications Server: SNA Programming

A The logical unit requests shutdown

B The PLU application program orders shutdown.

(See
Note 1)

(See Note 2)

(See Note 2)

RECEIVE
RTYPE = DFASY
or DFASY exit routine.

CLSDST

CLSDST completed.

SEND
STYPE = REQ
CONTROL = SHUTD

SEND completed.

RECEIVE
RTYPE = DFSYN.

SEND
STYPE = RESP
RESPOND =

RECEIVE
RTYPE = DFASY or
DFASY exit routine.

SEND
STYPE = REQ,
CONTROL = CHASE

SEND completed.

CLSDST

CLSDST completed.

Request Shutdown

Positive response

UNBIND

Positive response

Shutdown

Positive response

Chase

Positive response

Shutdown Complete

Positive response

Chase

Positive response

UNBIND

Positive response

CONTROL field
contains RSHUTD.

CONTROL field
contains CHASE.

response operands)

CONTROL field
contains SHUTC.

(positive

2

5

8

1

4

6

7

10

13

16

17

20

Write

Read

Read

Write

Read

Write

Write

Read

Write

Read

Read

Write

Read

Write

1

4

6

7

2

3

5

8

9

12

14

15

18

19

3

B

Notes:
When an application program receives an expedited data-flow-control request (including Request
Shutdown and Shutdown Complete), either VTAM or the application program sends the response to
the request, depending on whether PROC = SYSRESP or PROC = APPLRESP was specified in the NIB
when the session was established.

At this point, any outstanding RECEIVE OPTCD = SPEC is posted complete as "cleared".

1.

2.

PLU Application
Program VTAM Request/Response Flow

Logical Unit (can be an
SLU application program)

(Italic indicate RPL fields
after receipt of RU)

Optional

Optional

11
(See
Note 1)

A

Figure 122. Operations are shut down in an orderly fashion

Appendix D. Request and response exchanges for typical communication operations 709

For termination requests from a SLU application program, see Figure 136 on page
723 and Figure 137 on page 724.

Write specifying VTAM application
program name.

LOSTERM exit
routine scheduled.

At this point, the application program and the logical unit can do cleanup operations,
including exchange of normal-flow requests. The application program does not issue
the CLSDST until it is ready to do so.

Error
or unknown
resource?

Yes Negative response

Error
or unknown
resource?

Because VTAM immediately issues UNBIND, no orderly cleanup operations are possible
between the application program and the logical unit.

LOSTERM exit
routine scheduled.

CLSDST

Return Code
CLSDST
completed.

Builds return
code and does
other process-
ing

Terminate (conditional)

Positive response

Positive response

Positive response

UNBIND

UNBIND

Terminate (unconditional)

Read

Read

Read

Write

Write specifying VTAM application
program name.

Read

Read

Write

Yes Negative response

No

No

A

B

2

4

8

2

7

8

2

5

2

3

6

1

3

3

6

7

1

3

4

5

PLU
Application
Program VTAM Request/Response Flow

CLSDST

CLSDST completed.

(See Note)

(See Note)

Logical Unit (can be an
SLU application program)

Note : At this point, any outstanding RECEIVE OPTCD=SPEC is posted complete as "cleared".

Figure 123. Logical unit terminates a session.

710 z/OS V2R1.0 Communications Server: SNA Programming

For session termination of a SLU application program, see Figure 136 on page 723,
Figure 137 on page 724, Figure 138 on page 725, and Figure 139 on page 726.

PLU
Application
Program VTAM Request/Response Flow

CLSDST

CLSDST
completed.

Note: At this point, any outstanding RECEIVE OPTCD=SPEC is posted complete as "cleared".

Read

Write

(See Note)

Positive response

UNBIND1

5

2 3

4

Logical Unit (can be an
SLU application program)

Figure 124. PLU application program terminates a session with the logical unit.

Appendix D. Request and response exchanges for typical communication operations 711

Was
OPTCD=PASS

specified
on CLSDST?

Initiate a session between the
secondary LU and the specified
PLU application program.

CLSDST

Current session
is terminated
as shown in
Figure 113.

Post
CLSDST
complete.

Secondary logical unit successfully establishes a
session with the specified PLU application program.

PLU
Application
Program VTAM Request/Response Flow

Was
THRDPTY=

NOTIFY speci-
fied on

CLSDST?

The PLU application
program originally issuing the
CLSDST OPTCD=PASS has
its NSEXIT exit routine
notified that the requested
new session was established.

PLU application program
issuing CLSDST is not notified.

Yes

Yes

No

No

1

5

8

2

6

3

7

4

NSEXIT
scheduled
with
NOTIFY.

Figure 125. PLU application program terminates a session with the logical unit with a CLSDST OPTCD=PASS

712 z/OS V2R1.0 Communications Server: SNA Programming

A Where cryptography is specified on the SEND

B Where no cryptography is specified on the SEND.

Note:

Enciphered data

Enciphered data

Enciphered data

Enciphered data

Positive response

Positive response

(Italics indicate RPL fields
after receipt of RU)

PLU
Application
Program VTAM Request/Response Flow

Read

Read

Write

Write

Write

Write

1

4

6

1

4

6

2

3

5

2

3

5

A

B

SEND
STYPE=REQ
CONTROL=DATA<
CRYPT=YES

SEND completed.

RECEIVE
RTYPE=DFSYN
CONTROL field is set
to DATA and CRYPT
is set to YES.

SEND completed.

RECEIVE with
RTYPE=DFSYN
CONTROL field is set
to DATA and CRYPT
is set to YES.

In this example, it is assumed that the session cryptographic level in BIND was specified as
"required"; therefore, VTAM enciphers all data requests, regardless of the setting of CRYPT.

Logical Unit (can be an
SLU application program)

SEND
STYPE=REQ,
CONTROL=DATA,
CRYPT=NO (See Note)

Figure 126. PLU application program and a device-type logical unit use cryptography in a required cryptographic
session

Appendix D. Request and response exchanges for typical communication operations 713

A Where cryptography is specified on the RECEIVE

B Where no cryptography is specified on the RECEIVE.

Logical Unit (can be an
SLU application program)

(Italics indicate RPL fields
after receipt of RU)

PLU
Application
Program VTAM

Note:

Request/Response Flow

Enciphered data

Enciphered data

Positive response

Positive response

Data that is not enciphered

Read

Read

Write

Write

Write

Write

A

B

1

4

6

1

4

6

2

3

5

2

3

5

SEND
STYPE=REQ,
CONTROL=DATA,
CRYPT=YES

SEND completed.

RECEIVE
RTYPE=DFSYN

Data that is not enciphered

CONTROL field is set
to DATA and CRYPT is
set to YES.

SEND
STYPE=REQ,
CONTROL=DATA,
CRYPT=NO

SEND completed.

RECEIVE
RTYPE=DFSYN
CONTROL field is set
to DATA and CRYPT is
set to NO.

In this example, it is assumed that the session cryptographic level was specified in BIND as
"selective"; therefore, the setting of CRYPT indicates whether the request is to be enciphered
(on SEND) or if it was enciphered (on RECEIVE).

Figure 127. PLU application program and a device-type logical unit use cryptography in a selective cryptographic
session

714 z/OS V2R1.0 Communications Server: SNA Programming

Negative
response

Negative
response

Accept
request for
session?

LOGON exit routine
scheduled.

Error
or unknown
resource?

Other problem after
positive response

BIND (including
session
parameters)

Yes
Yes

Yes

Yes

Yes

Yes

SCIP
exit routine
present?

Want
to go into
session?

Change
session

parameters?

Session
parameters
acceptable?

A

A

No

No

No

No

Part 2

Part 2

No

For
negotiable
BIND only.

SESSIONC
STYPE=RESP,
CONTROL=BIND,
RESPOND=(EX,FME)
(optionally, values can be
provided in SSENSEO,
SSENSMO, and USENSEO.)

OPNDST completed
unsuccessfully.

REQSESS name field in NIB
must contain symbolic name
of desired PLU application
program.

OPNDST
OPTCD=ACCEPT
NAME field in NIB
must contain
symbolic name
of SLU application
program that sent
REQSESS.

Initiate request
(accompanied
by session
parameters)

Positive
response

NSPE
or Notify RU

REQSESS completed
unsuccessfully.

REQSESS completed
successfully.

NSEXIT exit routine
scheduled.

SCIP exit routine scheduled.

PLU Application
Program

VTAM for PLU
Application
Program

Request/Response
Flow

VTAM for SLU
Application
Program

SLU Application
Program

1

2

3

3

4

5

6

7

8

9

(shown below)

(shown below)

CINIT

Determines that request for
session has been rejected.

No
(CLSDST issued)

Figure 128. SLU application program requests a session with the PLU application program (Part 1 of 2)

Appendix D. Request and response exchanges for typical communication operations 715

PLU
Application
Program

VTAM
for PLU
Application
Program

Request/Response
Flow

VTAM
for SLU
Application
Program

SLU
Application
Program

OPNSEC
NAME filed in NIB must
be set to symbolic name
of primary application
program that sent BIND
request.

OPNSEC completed
successfully.

OPNDST
completed
successfully.

SCIP exit routine scheduled
again.

Informs mainline program
that data flow can begin.

VTAM
automatically
sends
response.

VTAM
sends SDT
(SDT=
SYSTEM in
NIB)

SESSIONC
STYPE=REQ,
CONTROL=SDT,
RESPOND=(NEX,

FME)

Start Data
Traffic

(May include
session
parameters)

If SDT=APPL was specified
in OPNSEC NIB, send
response to SDT.

SESSIONC
STYPE=RESP,
CONTROL=SDT,
RESPOND=

(NEX,FME)
or

(EX,FME)

SDT=
APPL in
OPNDST

NIB?

SDT=
APPL in
OPNSEC

NIB? Yes

Part 1

No

No

A

12

14

13

10

11

15

Positive
response

Yes

Positive
response

Request
rejected

OPNDST or
SESSIONC completed
successfully.

OPNDST or
SESSIONC completed
unsuccessfully.

16

Figure 129. SLU application program requests a session with the PLU application program (Part 2 of 2)

716 z/OS V2R1.0 Communications Server: SNA Programming

SESSIONC
STYPE=REQ
CONTROL=SDT
RESPOND=(NEX,

FME)

VTAM
sends SDT
(SDT=
SYSTEM in
NIB)

SCIP
exit routine
present?

BIND (including
session
parameters)

SCIP exit routine scheduled.

Want
to go into
session?

Secondary
wishes to change

parameters?

Session
parameters
acceptable

Informs mainline program that
data flow can begin after sending
SDT response, to SDT=APPL.

If SDT APPL in OPNSEC NIB,
send response to SDT.

SESSIONC
STYPE=RESP,
CONTROL=SDT,
RESPOND=
(NEX,FME)

or
(EX,FME)

SESSIONC
STYPE=RESP
CONTROL=BIND,
RESPOND=(EX,FME)

(Values must be provided
in SSENSEO,SSENSMO,
and USENSEO.)

No

No
No

No

No

Yes

Yes
For negotiable
BIND only.

Yes1 2

3

3

4

4

6
7

8

Start Data
Traffic

(possibly
contains
session
parameters)

OPNDST or
SESSIONC completed
successfully.

OPNDST or
SESSIONC completed
unsuccessfully.

Positive
response

Positive
response

Negative
response

If SDT system
in OPNSEC NIB,
VTAM responds
automatically.

OPNSEC
NAME field in NIB must contain
symbolic name of PLU application
program that sent BIND. NIB
specifies BIND area with new
session parameters, if they have
been changed.

SCIP exit routine scheduled
again.

Request
rejected

9

9

OPNSEC or SESSIONC
completed successfully.

SDT=
APPL in
OPNDST

NIB?

VTAM
for PLU

Application
Program

Request/Response
Flow

VTAM
for SLU

Application
Program

SLU
Application
Program

OPNDST
OPTCD=ACQUIRE
NAME field in NIB
must contain symbolic
name of SLU
application.

OPNDST
completed
unsuccessfully.

OPNDST
COMPLETED
successfully.

5 Yes

PLU
Application
Program

Figure 130. PLU application program acquires (initiates and establishes) a session with the SLU application program

Appendix D. Request and response exchanges for typical communication operations 717

11

8

7

1

2

3

4

5

8

9

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

7

PLU
Application
Program

VTAM
for PLU
Application
Program

VTAM
for SLU
Application
Program

SLU
Application
Program

Request/
Response

Flow

SIMLOGON
NAME field in NIB
contains symbolic
name of SLU appli-
cation program with
which a session is
desired.

SIMLOGON completed
unsuccesfuly.

SIMLOGON completed
succesfuly.

LOGON exit routine
scheduled..

OPNDST
OPTCD=ACCEPT
NAME field in NIB
must contain symbolic
name of SLU application
program.

OPNDST completed
unsuccessfully.

OPNDST completed
successfully.

OPNDST or
SESSIONC completed
successfully.

OPNDST or
SESSIONC completed
unsuccessfully.

Secondary
program
known?

Build and queue
CINIT

SDT=
APPL in
OPNDST

NIB?

Request
rejected

Positive
response

Positive
response

Negative
response

BIND
(including
session
parameters) SCIP

exit routine
present?

Want
to go into
session?

For
negotiable
BIND only,

secondary wishes
to change

parameters?

Secondary
parameters
acceptable?

(Possibly
contains
session
parameters)

VTAM
sends SDT
(SDT=SYSTEM
in NIB)

If SDT system
in OPNSEC NIB
VTAM rresponds
automatically.

Start Data
Traffic

6 SCIP exit routine scheduled

10 SCIP exit routine scheduled
again

No

No

No

SESSIONC
STYPE=RESP,
CONTROL=BIND,
(Values must be
provided in
SSENSEO, SSENSMO
amd USENSEO.

OPNSEC
NAME Filed in NIB contains
symbolic name of PLU application
program that sent BIND OPNSEC
completed successfully.

SESSIONC
STYPE=REQ
CONTROL=SDT
RESPOND=(NEX,FME)

Informs mainline program that
data flow can begin (after sending
SDT response, to SDT=APPL).

If SDT=APPL in
OPNSEC NIB, send
response to SDT
SESSIONC
STYPE=RESP
CONTROL=SDT
RESPOND=
(NEX,FME)
or
(EX,FME)

Figure 131. PLU application program issues a SIMLOGON to acquire (initiate a session with) the SLU application
program

718 z/OS V2R1.0 Communications Server: SNA Programming

PLU
Application
Program

VTAM
for PLU
Application
Program

Request/Response
Flow

VTAM
for SLU
Application
Program

SLU
Application
Program

(Italics indicate RPL fields
after receipt of RU)

(Italics indicate RPL fields
after receipt of RU)

(Request 196
never reached
the SLU
application
program.)
Data with
sequence
number 197.

Status of Request
Sequence numbers

Last request sent: 196
Last request received
and successfully
processed (positive
response sent): 70

Status of Request
Sequence numbers

Last request sent: 70
Last request received
and successfully
processed (positive
response sent): 195

SEND
STYPE=REQ,
CONTROL=DATA,
POST=RESP,
RESPOND=(NEX,FME)

SCIP exit routine
scheduled.

1 2

VTAM
recognizes
sequence
number dis-
crepancy and
converts data
request to
exception
request
with sense=

CONTROL field in
read-only RPL
contains RQR.

4

VTAM
automatically
sends response.

SESSIONC completed.

Positive
response

SCIP exit routine scheduled.7

5

CONTROL field in read-
only RPL contains STSN.
Read-only RPL fields
contain:

IBSQAC=TESTSET
IBSQVAL=196
OBSQAC=TESTSET
OBSQVAL =70

SEQNO=sequence number
of STSN request
(Disagrees with IBSQVAL.
Agrees with OBSQVAL.)

SCIP exit routine scheduled
again.

10

(Resets
sequence
numbers to 0.)

Clear

(Resets sequence
numbers to 0.)

SESSIONC
STYPE=REQ,
CONTROL=CLEAR

6

RECEIVE
RTYPE=DFSYN

SLU application program
recognizes sequence
numbers discrepancy.
Sends no response. Instead,
issues...

SESSIONC
STYPE=REQ,
CONTROL=RQR

3

xxxx.

CONTROL field
contains DATA,
RESPOND field contains
NEX,FME.

VTAM
automatically
sends response.Positive

response
SESSIONC completed.8

Set and Test
Sequence
Numbers

SESSIONC

Request
Recovery

9
STYPE=REQ,
CONTROL=STSN,
OBSQAC=TESTSET,
OBSQVAL=196
IBSQAC=TESTSET,
IBSQVAL=70

Figure 132. PLU application program resynchronizes sequence numbers with the SLU application program (Part 1 of
2)

Appendix D. Request and response exchanges for typical communication operations 719

SESSIONC completed

READ-only RPL fields
contain:
OBSQAC=TESTNEG
OBSQVAL=195
IBSQAC=TESTPOS
IBSQVAL=70.

12

PLU application program
decides to accept 195 as
the proper outbound
sequence number and will
resend request 196.

13 SESSIONC
STYPE=REQ,
CONTROL=STSN,
OBSQAC=SET,
OBSQVAL=195
IBSQAC=TESTPOS

(The inbound sequence
number was set to 70 by
the previous SESSIONC
sent by the primary
application program.)

Response
SESSIONC
STYPE=RESP
CONTROL=STSN
IBSQAC=TESTNEG,
IBSQVAL=195
OBSQAC=TESTPOS,
OBSQVAL=70
SEQNO=sequence number
from STSN request

11

SCRIP exit routine scheduled
again.

14

CONTROL field in read-
only RPL contains STSN.
Read-only RPL fields
contain:
IBSQAC=SET
IBSQVAL=195
OBSQAC=IGNORE
SEQNO=sequence
number of STSN request
(Agrees with IBSQVAL.)

SESSIONC
STYPE=RESP,
CONTROL=STSN,
IBSQAC=TESTPOS,
IBSQVAL=195,
OBSQAC=TESTPOS,
SEQNO=sequence number
from STSN request

15

Status of Sequence
numbers
Last request sent: 70
Last request received 195

SESSIONC completed.16
Read-only RPL fields
contain
OBSQAC=TESTPOS
OBSQVAL=195
IBSQAC=TESTPOS.

Set and Test
Sequence
Numbers

Response

(Italics indicate RPL fields
after receipt of RU)

(Italics indicate RPL fields
after receipt of RU)

SCIP exit routine scheduled
again.
CONTROL field in read-
only RPL contains SDT.

18SESSIONC
STYPE=REQ,
CONTROL=SDT

17

If SDT=APPL in
OPNSEC NIB, send
response to SDT.

SESSIONC
STYPE=RESP,
CONTROL=SDT,
RESPOND=
(NEX,FME)

or
(EX,FME)

SESSIONC completed
successfully.

SESSIONC completed
unsuccessfully.

SEND to send
request 196.

20

19

Status of Sequence
numbers
Last request sent: 195
Last request received: 70
(This program will resend
196.)

Start Data
Traffic

Negative
response

Positive
response

VTAM
automatically
responds.

SDT=
APPL in

OPNSEC
NIB?

PLU
Application
Program

VTAM
for PLU
Application
Program

Request/Response
Flow

VTAM
for SLU
Application
Program

SLU
Application
Program

Figure 133. PLU application program resynchronizes sequence numbers with the SLU application program (Part 2 of
2)

720 z/OS V2R1.0 Communications Server: SNA Programming

BRACKET field contains
BB,NEB.

BRACKET field contains
NBB,NEB.

BRACKET field contains
NBB,EB.

2

3

6

7

10

12

13

16

17

RECEIVE
RTYPE = DFASY

SEND
STYPE = REQ,
BRACKET = (NBB,NEB)

RECIEVE
RTYPE = DFSYN

SEND
STYPE = REQ,
CONTROL = BID
(POST = RESP assumed)

SEND completes
(Program finds negative
response, indicating Bid
was rejected.)

RECEIVE
RTYPE = DFSYN

SEND
STYPE = REQ,
CONTROL = BID,
(POST = RESP assumed
in this example)

SEND completed
(Program finds positive
response, indicating Bid
was accepted.)

SEND
STYPE = REQ,
CONTROL = DATA,
BRACKET = (BB,NEB)

(Italics indicate RPL fields
after receipt of RU)

PLU
Application
Program

VTAM
for PLU
Application
Program

Request/
Response

Flow

VTAM
for SLU
Application
Program

SLU
Application
Program

Begin bracket
and data

Data

Data

Bid

Negative response
(sense =
X'08130000')

End bracket
and data

Bid

Positive response

Begin bracket
and data

The CONTROL = BID operand is not needed if the RPL being used for this SEND is the same as the
one that was used to receive the Bid.

1

4

5

8

9

11

14

15

18

SEND
STYPE = REQ,
BRACKET = (NBB,NEB)

RECEIVE
RTYPE = DFASY

SEND
STYPE = REQ,
BRACKET = (NBB,NEB)

RECIEVE
RTYPE = DFSYN

SEND
STYPE = RESP,
CONTROL = BID
RESPOND = (EX,FME)
(See Note)

SEND
STYPE = REQ,
BRACKET = (NBB,EB)

RECEIVE
RTYPE = DFSYN

SEND
STYPE = RESP,
CONTROL = BID,
RESPOND = (NEX,FME)
(See Note)

RECEIVE
RTYPE = DFSYN

(Italics indicate RPL fields
after receipt of RU)

Note:

BRACKET field contains
NBB,NEB.

CONTROL field contains
BID.

CONTROL field contains
BB,NEB.

CONTROL field contains
BB,NEB.

Figure 134. PLU application program and SLU application program use bracket protocol

Appendix D. Request and response exchanges for typical communication operations 721

2 1RECEIVE
RTYPE=DFSYN

SEND
STYPE=REQ,
CONTROL=BID
(POST=RESP assumed)

SEND
STYPE=REQ,
BRACKET=(BB,EB)

RECEIVE
RTYPE=DFSYN

BRACKET field contains
BB,EB.

CONTROL field contains
BID.

4

SEND
STYPE=RESP,
CONTROL=BID,
RESPOND=(EX,FME)
(See Note)

5

RECEIVE
RTYPE=DFSYN

14

BRACKET field contains
BB,NEB.

SEND
STYPE=REQ,
BRACKET=(BB,NEB)

13

SEND
STYPE=RESP
CONTROL=RTR
RESPOND=(NEX,FME)
(PLU application program
now begins bracket.)

11

RECEIVE
RTYPE=DFSYN

10

BRACKET field contains
BB,EB.

RECEIVE
RTYPE=DFSYN

8

SEND completed
(Program finds negative
response, indicating Bid
was rejected.)

6

3
Bid

CONTROL field contains
BB,EB.
(RTR tells this program
that it can begin a
bracket.)

SEND
STYPE=REQ,
BRACKET=(BB,EB)

7

SEND
STYPE=REQ,
CONTROL=RTR
(POST=RESP assumed
in this example)

9

SEND completed.12

Begin bracket
and data

Positive response

Ready to receive

Begin bracket,
end bracket,
and data

Negative response
(sense= xxxx

The CONTROL=BID operand is not needed if the RPL being used forthis SEND is the same as the
one that was used to receive the BID.

Note:

(PLU application program
continues sending.)

Begin bracket,
end bracket,
and data

(Italics indicate RPL fields
after receipt of RU)

(Italics indicate RPL fields
after receipt of RU)

PLU
Application
Program

VTAM
for PLU
Application
Program

Request/Response
Flow

VTAM
for SLU
Application
Program

SLU
Application
Program

).

Figure 135. PLU application program and SLU use-bracket protocol: BID by PLU rejected but Ready-to-Receive
follows

722 z/OS V2R1.0 Communications Server: SNA Programming

5

8

9

2

4

7

3

3

6

PLU
Application
Program

VTAM
for PLU
Application
Program

Request/Response
Flow

VTAM
for SLU
Application
Program

SLU
Application
Program

1

Terminate
(conditional)

VTAM
automatically
sends response.

Error
or unknown
resource?

Positive
response

LOSTERM exit
routine scheduled.

VTAM
build return
code and
does other
processing.

CLSDST

CLSDST completed.

UNBIND

(See Note 1)

Yes

No

Positive
response

Negative
response

TERMSESS
OPTCD=COND
(NAME field in NIB
must contain symbolic
name of PLU
application program.)

TERMSESS completed
unsuccessfully.

TERMSESS completed
successfully.

SCIP exit routine scheduled
(See Note 2).

Cleans up any session
information in the application
program.

Notes: 1.

2.

At this point, any outstanding RECEIVE OPTCD=SPEC is posted complete as "cleared".

The application program should inspect the UNBIND request unit in read-only storage to determine
the type of UNBIND request. For more information, see the description of the UNBIND request in
the section titled "SCIP Exit Routine" in Chapter 7.

Because VTAM immediately issues the UNBIND request, no
cleanup operations are possible between the application
programs.

Figure 136. SLU application program sends a conditional request for session termination

Appendix D. Request and response exchanges for typical communication operations 723

Notes:

TERMSESS completed
successfully.

DFASY exit routine
scheduled (SIGDATA bytes
tell SLU application program
why session is not being
terminated.)

Yes

Yes

No

No

6

2

1

3

3

5

PLU
Application
Program

VTAM
for PLU
Application
Program

Request/Response
Flow

VTAM
for SLU
Application
Program

SLU
Application
Program

TERMSESS
OPTCD=UNCOND
(NAME field in NIB
must contain symbolic
name of PLU
application program.)

TERMSESS completed
unsuccessfully.

Positive
response

Error
or unknown
resource?

Terminate
(unconditional)

Negative
response

Positive
response

Signal

(See Note 1)
CLSDST completed.

VTAM
automatically
sends response.

At this point, the PLU and SLU application programs can do
cleanup operations, including exchange or normal-flow data
and requests. The PLU application program does not issue
the CLSDST until it is ready to do so.

At this point, any outstanding RECEIVE OPTCD=SPEC is posted complete as "cleared".

The application program should inspect the UNBIND request unit in read-only storage to determine
the type of UNBIND request. For more information, see the description of the UNBIND request in
the section titled "SCIP Exit Routine" in Chapter 7.

1.

2.

Cleans up any session
information in the application
program.

SCIP exit routine scheduled
(See Note 2).

5
UNBIND

CLSDST4

4

2 LOSTERM exit
routine scheduled.

(possibility)
SEND
STYPE=REQ,
CONTROL=SIGNAL,
SIGDATA=4 bytes
of code or data

Should
session
end?

Figure 137. SLU application program sends an unconditional request for session termination

724 z/OS V2R1.0 Communications Server: SNA Programming

When an application program receives an expedited data-flow-control request (including the Request
Shutdown request), either VTAM or the application program sends the response to the request,
depending on whether PROC=SYSRESP or PROC=APPLRESP was specified in the NIB when the session
was established.

The application program should inspect the UNBIND request unit in read-only storage to determine
the type of UNBIND request. For more information, see the description of the UNBIND request in
the section titled "SCIP Exit Routine" in Chapter 7.

At this point, any outstanding RECEIVE OPTCD=SPEC is posted complete as "cleared".

Notes:

Request
Shutdown

Positive
response

Positive
response

UNBIND
CLSDST

CLSDST completed.

SEND
STYPE=REQ,
CONTROL=RSHUTD
(POST=RESP is always
assumed by VTAM for
sending DFASY RUs)

SEND completed.

SCIP exit routine scheduled
(See Note 2).

(See Note 3)

(See
Note 1)

2

4

6

(Italics indicate RPL fields
after receipt of RU)

RECEIVE
RTYPE=DFASY

DFASY exit routine
scheduled.
or

CONTROL field
in RPL contains
RSHUTD.

VTAM
automatically
sends
response.

1.

2.

3.

PLU Application
Program

VTAM for PLU
Application
Program

Request/Response
Flow

VTAM for SLU
Application
Program

SLU Application
Program

1

3

5

Figure 138. SLU application program sends a Request Shutdown request

Appendix D. Request and response exchanges for typical communication operations 725

When an application program receives an expedited data-flow-control request (including Shutdown or
Shutdown Complete), either VTAM or the application program sends the response to the request,
depending on whether PROC=SYSRESP or PROC=APPLRESP was specified in the NIB when the session
was established.

The application program should inspect the UNBIND request unit in read-only storage to determine
the type of UNBIND request. For more information, see the description of the UNBIND request in
the section titled "SCIP Exit Routine" in Chapter 7.

At this point, any outstanding RECEIVE OPTCD=SPEC is posted complete as "cleared".

VTAM
automatically
sends
response.

Positive response

Positive response

RECEIVE
RTYPE=DFSYN

SEND
STYPE=RESP
RESPOND=(NEX,FME)

RECEIVE
RTYPE=DFASY
DFASY exit routine

scheduled.

SEND completed.

SEND completed.

SCIP exit routine scheduled
(See Note 2).

Positive response

Shutdown

Chase

UNBIND

(See
Note 1)

(See
Note 1)

(See Note 3)

1

3

6

9

11

13

2

4

7

8

10

12

5

PLU
Application
Program

VTAM
for PLU
Application
Program

Request/Response
Flow

VTAM
for SLU
Application
Program

SLU
Application
Program

(Italics indicate RPL fields
after receipt of RU)

(Italics indicate RPL fields
after receipt of RU)

RECEIVE
RTYPE=DFASY

DFASY exit routine
scheduled.

SEND
STYPE=REQ
CONTROL=CHASE,
(POST=RESP assumed
in this diagram)

1.

2.

3.

SEND
STYPE=REQ
CONTROL=SHUTC,
(POST=RESP is always
assumed by VTAM for
sending DFASY RUs.)

SEND
STYPE=REQ,
CONTROL=SHUTD

SEND completed.

(Steps 4-7 are optional)

CONTROL field
contains CHASE.

or

CONTROL field
contains SHUTC.

or

CONTROL field contains
SHUTD.

Notes:

Figure 139. PLU application program shuts down the SLU application program

726 z/OS V2R1.0 Communications Server: SNA Programming

PLU
Application
Program

VTAM
for PLU
Application
Program

Request/Response
Flow

VTAM
for SLU
Application
Program

SLU
Application
Program

(Italics indicate RPL fields
after receipt of RU)

(Italics indicate RPL fields
after receipt of RU)

SEND
STYPE=REQ,
CONTROL=DATA,
CRYPT=YES

RECEIVE
RTYPE=DFSYN

CONTROL=DATA
CRYPT=YES

Enciphered data

Enciphered data

1

1

2

2

In this example, it is assumed that the session cryptographic level in BIND was specified as "required";
therefore, VTAM enciphers all data requests, regardless of the setting of CRYPT.

Note:

SEND
STYPE=REQ,
CONTROL=DATA,
CRYPT=NO

RECEIVE
RTYPE=DFSYN

CONTROL=DATA
CRYPT=YES

Figure 140. PLU application program and the SLU application program use cryptography in a required cryptographic
session

In this example, it is assumed that the session cryptographic level was specified in BIND as "selective";
therefore, the setting of CRYPT indicates whether the request is to be enciphered (on SEND) or if it was
enciphered (on RECEIVE).

Note:

PLU
Application
Program

VTAM
for PLU
Application
Program

Request/Response
Flow

VTAM
for SLU
Application
Program

SLU
Application
Program

(Italics indicate RPL fields
after receipt of RU)

(Italics indicate RPL fields
after receipt of RU)

CONTROL=DATA
CRYPT=YES
CRYPT field will be set
to indicate that data
has been enciphered.

CONTROL=DATA
CRYPT=NO

RECEIVE
RTYPE=DFSYN

RECEIVE
RTYPE=DFSYN

Enciphered data

Data that is not
enciphered

SEND
STYPE=REQ.
CONTROL=DATA,
CRYPT=YES

SEND
STYPE=REQ.
CONTROL=DATA,
CRYPT=NO

Figure 141. PLU application program and the SLU application program use cryptography in a selective cryptographic
session

Appendix D. Request and response exchanges for typical communication operations 727

PLU
Application
Program

VTAM
for PLU
Application
Program

Request/Response
Flow

VTAM
for SLU
Application
Program

SLU
Application
Program

(Italics indicate RPL fields
after receipt of RU)

(Italics indicate RPL fields
after receipt of RU)

SEND
STYPE=REQ,
CONTROL=SBI

RECEIVE
RTYPE=DFASY or
DFASY exit routine.

Note:

Positive response

Positive response

SBI

BIS

1 2

RECEIVE
RTYPE=DFSYN
CONTROL field
in RPL will
indicate BIS.

SEND
STYPE=RESP
RESPOND=(NEX,FME)

SEND
STYPE=REQ
CONTROL=BIS

SEND completed.

3

4

5

6
7

The response to the Stop Bracket Initiation (SBI) request is sent either by VTAM or the application
program, depending on the setting of a PROC option in the NIB when the session was established.

If PROC=APPLRESP was specified in the NIB, the application program sends the response, using SEND...,
STYPE=RESP, CONTROL=SBI. The application program may send either a positive or negative response.
If PROC=SYSRESP was specified in the NIB, VTAM automatically sends the response before presenting the
request to the application program.

(See Note)
CONTROL field in RPL
will indicate SBI.

Figure 142. PLU application program stops bracket initiation

728 z/OS V2R1.0 Communications Server: SNA Programming

The application program is
identified by the name field in
the APPL definition statement.
To receive unsolicited RUs, this
same name must be placed in
the CNM routing table.

Italics indicate RPL fields after
receipt of RU.

CONTROL=DATA
RESPOND=(NEX,FME)

Deliver
(NS-INITLOAD)

-RSP

+RSP

Application Program
VTAM
SSCP

Request/
Response Flow Type 2 Physical Unit

(See Note 1)

Error
?

No

Yes

5

5

1

2

6

7

8

9

3

Notes:

4

(See Note 2)
NS-IPL-ABORT

+/-RSP

Deactivate Physical
Unit

+/-RSP

SEND
STYPE=RESP,
RESPOND=(EX,FME),
and program sets
up SSENSEO,
SSENSMO, and
USENSEO

SEND
STYPE=RESP,
RESPOND=(NEX,FME)

RECEIVE
RTYPE=DFSYN

Activate Physical Unit

+RSP (load request)

This load request is indicated on the Activate Physical Unit response during SSCP-PU session activation. A
load request can also be made with an NS-LDREQD RU at any time while the PU is in the active state.

If the application program is not available, the SSCP will receive a negative response to the load request.

1.

2.

Figure 143. Application program receives a load request during physical unit activation (Part 1 of 2)

Appendix D. Request and response exchanges for typical communication operations 729

Application Program
VTAM
SSCP

Request/
Response Flow Type 2 Physical Unit

Load
failed.

NS-IPL-ABORT

+/-RSP

Deactivate Physical Unit

+/-RSP

Forward
(NS-LOADSTAT)

Load
complete

?

Forward
(NS-IPL-TEXT)

Forward
(NS-LOADSTAT)

+RSP

+RSP

-RSP

+RSP

NS-IPL-TEXT

+RSP

-RSP

Yes

Yes
No

No

6

9

8

9

8

10

10

12

13

7
1

2

Load
successful.

11

SEND
STYPE=REQ,
CONTROL=DATA,
RESPOND=(NEX,FME),
POST=RESP

SEND
STYPE=REQ
CONTROL=DATA,
RESPOND=(NEX,FME),
POST=RESP

SSENSEI,SSENSMI, and
USENSEI contain sense
information.

SEND
STYPE=REQ,
CONTROL=DATA
RESPOND=(NEX,FME),
POST=RESP

Received
and processed

correctly
?

VTAM may now send Activate Logical Unit.

1. Load data is transmitted in three types of network services requests. The first time load data is sent,
the application program sends a Forward RU containing an embedded NS-IPL-INIT request. All subsequent
load data is sent in Forward RUs containing embedded NS-IPL-TEXT requests. The last time load data is
sent, the application program sends a Forward RU containing an embedded NS-IPL-FINAL request.

2. NS-LOADSTAT may be sent at anytime following an NS-IPL-INIT RU (or instead of NS-IPL-INIT, see part 1)
to indicate that the load module is not available or that the load cannot complete.

Notes:

Figure 144. Application program receives a load request during physical unit activation (Part 2 of 2)

730 z/OS V2R1.0 Communications Server: SNA Programming

For initiating a session from a PLU to a SLU application program, see Figure 130
on page 717 and Figure 131 on page 718.

Error
or unknown
resource?

Session
parameters

OK?

VTAM Request/Response Flow

No

Write

Yes

BIND (including session
parameters)

Request rejected

SDT=
APPL in
OPNDST
NIB?

VTAM sends SDT
(SDT=SYSTEM
in NIB)

Start Data Traffic

Yes

No

Read

Write

Yes

XRF Primary

No

Positive response

Logical Unit (can be an
SLU application program)

OPNDST OPTCD=(ACQUIRE,
BACKUP) NAME field in NIB
contains symbolic name of
logical unit. Include XRF
Session Activation Control
Vector.

OPNDST completed
unsuccessfully.

1

4

OPNDST completed
successfully.

4

OPNDST or SESSIONC
completed successfully.

8

2

3

3

6

7

5

Positive response

SESSIONC
STYPE=REQ,
control=SDT

Determine name of PLU
application program that
sent BIND request and check
session parameters.

Figure 145. PLU application program acquires (initiates and establishes) a session with an XRF backup-session
service-type LU.

Appendix D. Request and response exchanges for typical communication operations 731

For initiating a session from a PLU to a SLU application program, see Figure 130
on page 717 and Figure 131 on page 718.

Yes

Error
or unknown
resource?

Session
parameters

OK?

Determine name of PLU application
program that sent BIND request and
check session parameters.

VTAM Request/Response Flow

No

Yes

2

3

XRF Backup

1

Logical Unit (can be an
SLU application program)

No

Write

BIND (including session
parameters)

OPNDST OPTCD=(ACQUIRE,
BACKUP) NAME field in NIB
contains symbolic name of
logical unit. Include XRF
Session Activation Control
Vector.

OPNDST completed
unsuccessfully.

OPNDST completed
successfully.

4

3

Request rejected

Positive response

Figure 146. PLU application program acquires (initiates and establishes) a session with an XRF backup-session
device-type LU.

732 z/OS V2R1.0 Communications Server: SNA Programming

For initiating a session from a PLU to a SLU application program, see Figure 130
on page 717 and Figure 131 on page 718.

Determine name of PLU
appliaction program that
sent BIND request and
check session parameters.

Session
parameters

OK?

Yes

No

Yes

YES

SIMLOGON, OPTCD=BACKUP
NAME field in NIB contains
symbolic name of SLU appli-
cation program with which
a session is desired.

SIMLOGON completed
unsuccessfully.

SIMLOGON completed
successfully.

LOGON exit routine
scheduled.

OPNDST OPTCD=ACCEPT
NAME field in NIB contains
symbolic name of logical
unit. Include XRF Session
Activation Control Vector.

OPNDST completed
unsuccessfully.

OPNDST completed
successfully.

Secondary
program
known?

No

Build and queue
CINIT with XRF
capable indicated

1

2

3

4

5

8

8

6

7

3

Error
or unknown
resource?

Write

BIND (including session
parameters)

Request rejected

Positive response

Request/Response Flow
Logical Unit (can be an
SLU application program)VTAMXRF Backup

No

Figure 147. PLU application program issues SIMLOGON to acquire (initiate and establish) an XRF session with a
device-type LU.

Appendix D. Request and response exchanges for typical communication operations 733

Error
or unknown
resource?

SDT=
APPL in
OPNDST

NIB?

Session
parameters

OK?

Request/Response Flow

VTAM sends SDT
(SDT=SYSTEM
in NIB)

Secondary
program
known?

No

Yes

Yes

Yes

YES

No

NO

1

2

3

4

5

8

8

12

BIND (including
session parameters)

Positive response

10

11

Start Data Traffic

Positive response

SIMLOGON
NAME field in NIB contains
symbolic name of SLU appli-
cation program with which a
session is desired.

SIMLOGON completed
unsuccessfully.

SIMLOGON completed
successfully.

LOGON exit routine
scheduled.

OPNDST OPTCD=ACQUIRE
NAME field in NIB contains
symbolic name of logical
unit. Include XRF Session
Activation Control Vector.

OPNDST completed
unsuccessfully.

OPNDST completed
successfully.

SESSIONC
STYPE=REQ,
CONTROL=SDT

OPNDST or SESSIONC
completed successfully.

9

6

7

3 Write

Read

Write

Build and queue
CINIT with XRF

capable indicated.

Request rejected

VTAM

Determine name of PLU
application program that
sent BIND request and check
session parameters.

XRF Primary
Logical Unit (can be an
SLU application program)

Figure 148. PLU application program issues SIMLOGON to acquire (initiate and establish) an XRF session with a
device-type LU.

734 z/OS V2R1.0 Communications Server: SNA Programming

For initiating a session from a PLU to a SLU application program, see Figure 130
on page 717 and Figure 131 on page 718.

Determine name of PLU
application program that sent
BIND request and check
session parameters.

CINIT (XRF
Capable) Request

Error
or unknown
resource?

Accept
logon?

No
(CLSDST)

Yes

Yes

No

OPNDST OPTCD=ACCEPT
NAME field in NIB
contains symbolic name
of logical unit that sent
initiate request with XRF
Session Activation Control
Vector.

OPNDST completed
unsuccessfully.

6

9

2

2

1

7

8

10

13

12

No

Session
parameters

OK?

No

Yes

Yes
SDT=

APPL in
OPNDST

NIB?

VTAM sends SDT
(SDT=SYSTEM
in NIB)

11

9

Request rejected

Positive response

Start Data Traffic

Read

Read

Write8

Positive response

Negative response

Initiate Request

3

3

5 Read

Read

BIND (including session
parameters

Notify RU or
NSPE
Procedure Error

LOGON exit
routine
4

Write

XRF Primary Request/Response Flow
Logical Unit (can be an
SLU application program)VTAM

OPNDST completed
successfully.

SESSIONC
STYPE=REQ,
CONTROL=SDT

OPNDST or SESSIONC
completed successfully.

Positive response
Write

Write, specifying the name of
the PLU application program
with which a session is desired
and providing optional user
data (logon message). This
produces an Initiate request
(or logon) for the PLU applica-
tion program. Suggested
session parameters can be sent
with an Initiate request (or
logon).

Figure 149. Device-type LU initiates and establishes a session with an XRF primary-PLU application program.

Appendix D. Request and response exchanges for typical communication operations 735

For initiating and establishing a session from a SLU application program, see
Figure 128 on page 715 and Figure 129 on page 716.

VTAM Request/Response Flow

2

3

5

8

BACKUP
for

SESSION?

Yes

PUT4

XRF Backup
Application
Program

XRF Primary
Application
Program

CLSDST

6
SCIP

SESSIONC
CONTROL=SWITCH

Switch session

XRF (Session State Data
Control Vector)

7

SWITCH
unsuccessful.

4

SWITCH
successful.

4

+RSP

+RSP

UNBIND (XRF Primary Hierarchical Reset)

1

No

Figure 150. Switch without XRF primary failing first

736 z/OS V2R1.0 Communications Server: SNA Programming

VTAM Request/Response Flow

BACKUP
for

SESSION?

PUT4

XRF Backup
Application
Program

SESSIONC
CONTROL=SWITCH

SWITCH
unsuccessful.

SWITCH
successful.

Yes SWITCH

No

1
2

3

Switch session

Session State Data
Control Vector

4

4

+RSP

Figure 151. Switch after XRF primary fails

VTAM Request/Response Flow PUT4

1

8

XRF Primary
Application
Program

XRF Backup
Application
Program

CLSDST

CLSDST
successful.

4

UNBIND

+RSP

+RSP

(XRF Backup
Hierarchical
Reset)

5

Logical Unit

6

2

3

LOSTERM
exit routine

CLSDST
7

Figure 152. Normal XRF primary end of session

Appendix D. Request and response exchanges for typical communication operations 737

VTAM Request/Response Flow PUT4

CLSDST
1

4 3

2

(Backup)

XRF Backup
Application
Program

UNBIND

+RSP

Figure 153. Normal XRF backup end of session with XRF primary

738 z/OS V2R1.0 Communications Server: SNA Programming

Appendix E. Control block formats and DSECTs

The ACB, EXLST, RPL, and NIB can be initialized, modified, and examined either
with manipulative macroinstructions (GENCB, MODCB, SHOWCB, TESTCB) or
with assembler instructions. Manipulation with assembler instructions requires
access to the internal structure of the control block because displacements and bit
settings must be incorporated into the assembler instructions. However, bit settings
and displacements are subject to change from release to release. To avoid recoding
assembler instructions when such changes occur, use a DSECT. A DSECT is an
overlay containing labels that correspond to field displacements, bit settings, and
byte values.

IBM-supplied DSECTs are provided as part of the system macroinstruction library
in SYS1.MACLIB

You will find descriptions in this appendix. See also “Using DSECT-creating
assembler instructions and macroinstructions” on page 272.

A field displacement is the displacement of a field from the beginning of the
control block, as defined by the DS (or ORG) instructions in the DSECT. A bit
setting is an assembler EQU instruction (such as LABEL1 EQU X'80') that
identifies a particular bit or bits. The label could be used as the immediate data
byte in a TM instruction, for example. A byte value is also an assembler EQU
instruction (such as LABEL2 EQU X'23') that identifies a particular value in a byte.
The label could be used as the immediate data byte of a CLI instruction, for
example.

The format maps in this appendix, Figure 154 on page 740 through Figure 165 on
page 753, show the format of the control blocks. They provide a means by which a
dump of the control block can be interpreted, and they make the DSECT
descriptions that accompany the maps more easily understood. The format maps
and the DSECT descriptions identify both the external field name (the declarative
or manipulative macroinstruction keyword as used throughout this book) and the
internal field name (DSECT label) for each control block field. The DSECT
descriptions are arranged in alphabetical order according to the external field
name. Mutually exclusive settings are indicated by indentations in the “Meaning”
column. Related settings all appear under the same external name in the “Field”
column.

Some DSECTs contain maps to other DSECTs. The DSECTs containing the maps are
shown under the following headings:
v “Access-method-support vector list (ISTAMSVL)” on page 781
v “Resource-information vector list (ISTRIVL)” on page 785
v “Application-ACB vector list (ISTVACBV)” on page 789

If you compare listings of the actual DSECTs with the DSECT descriptions
provided here, the actual DSECTs are more extensive. The fields that have been
eliminated here are primarily fields that are set and used by VTAM, not by the
application program. The control block fields that you set or examine should be
limited to those fields that are included in the DSECT descriptions in this book.

© Copyright IBM Corp. 2000, 2013 739

(For this reason, you should not attempt to use a DSECT to initialize a control
block completely; use GENCB or the appropriate ACB, EXLST, RPL, or NIB
macroinstruction instead.)

ACB (IFGACB)

Table 105. ACB DSECT (IFGACB)

Parameter on
RPL-based
macro

DSECT label DSECT EQU
label

Field or
EQU
value

For EQU: Meaning when bit
setting on For DS: Meaning when
byte value set

Offset

Dec Hex

ACBLEN ACBLENG — XL2 ACB length 2 2

AM ACBAM ACBVTAM X'60' AM=VTAM 43 2B

APPLID ACBAPID — A APPLID address 72 48

ERROR ACBERFLG ACBOALR X'04' Already open (OPEN) 49 31

Dec

0

12

32

36

40

48

72

88

92

96

100

104

108

Hex

0

C

20

24

28

30

48

58

5C

60

64

68

6C

Displacement Control Block: ACB

ACBLEN
(ACBLENG)

MACRF
(ACBMACR2)

ERROR
(ACBERFLG)

OFLAGS
(ACBOFLAGS)

PASSWD
(ACBPASSW)

EXLST
(ACBUEL)

APLID
(ACBAPID)

NIB
(ACBTNIB)

(ACBRIVL)

USERFLD
(ACBUSER

(ACBAMSVL)

(ACBAVPTR)

The names in parantheses are the labels for the ACB's DSECT (IFGACB))

AM
(ACBAM)

Figure 154. Format of the ACB

740 z/OS V2R1.0 Communications Server: SNA Programming

Table 105. ACB DSECT (IFGACB) (continued)

Parameter on
RPL-based
macro

DSECT label DSECT EQU
label

Field or
EQU
value

For EQU: Meaning when bit
setting on For DS: Meaning when
byte value set

Offset

Dec Hex

ACBCALR X'04' Already closed (CLOSE) 49 31

ACBONVRT X'14' No virtual memory for VTAM 49 31

— X'24' The password specified by the ACB
did not match the corresponding
password in the APPL entry, or the
ACB did not specify a password
and the APPL contained one, or the
security management product
determined that the user was not
authorized to open the ACB.

49 31

ACBCAQNR X'40' Outstanding OPNDST
OPTCD=ACQUIRE not released

49 31

ACBCDSNR X'42' Destinations not released (CLOSE) 49 31

ACBRNOCF X'4C' Requests are queued or VTAM is
waiting for a reply (CLOSE)

49 31

ACBOANAT X'50' VTAM not specified during system
generation

49 31

ACBOAHLT X'52' VTAM is halting (OPEN) 49 31

ACBOAVFY X'54' APPLID is not valid (OPEN) 49 31

ACBOANSN X'56' APPLID is name of non-APPL
(OPEN)

49 31

ACBOAPAA X'58' APPL is already active (OPEN) 49 31

ACBOAPNM X'5A' No matching APPL found (OPEN) 49 31

ACBOVINA X'5C' VTAM in system but inactive
(OPEN)

49 31

ACBOAPSE X'5E' APPLID not in requestor's space 49 31

ACBOUNDF X'60' Undefined system error 49 31

ACBOAPLE X'62' APPLID length not valid (OPEN) 49 31

ACBOPWSE X'64' Password not in requestor's space
(OPEN)

49 31

ACBOPWLE X'66' Password length not valid (OPEN) 49 31

ACBRNOOF X'68' Two or more VTAM APPL
statements have AUTH=PPO. One
is already open and a second is
trying to open. (OPEN)

49 31

ACBOAVSE X'6A' Application vector not in
requestor's space (OPEN)

49 31

ACBOALSE X'6C' Application vector length invalid
(OPEN)

49 31

ACBTVTCL X'70' OPEN or CLOSE rejected;
application program is being closed
and is unavailable.

49 31

ACBESME X'72' External security manager error
(OPEN)

49 31

Appendix E. Control block formats and DSECTs 741

Table 105. ACB DSECT (IFGACB) (continued)

Parameter on
RPL-based
macro

DSECT label DSECT EQU
label

Field or
EQU
value

For EQU: Meaning when bit
setting on For DS: Meaning when
byte value set

Offset

Dec Hex

ACBOPSNE X'74' Takeover rejected because original
application did not enable
persistence (OPEN)

49 31

ACBOPSNC X'76' Opening application did not
specify PERSIST=YES on the ACB
(OPEN)

49 31

ACBOPSMM X'78' Conflicting parameter values
between the ACB of the opening
application and the ACB of the
application pending recovery
conflict (OPEN)

49 31

ACBMOPEN X'7A' OPEN ACB by monitor application
failed because a monitor
application was already active

49 31

ACMSTONP X'7C' SNPS takeover OPEN ACB failed
because the active application does
not accept takeover requests

49 31

ACBNAUTH X'8C' Monitor application not CNM or
POA authorized (OPEN)

49 31

ACBOACT X'BC' ACB active 49 31

ACBCBUSY X'BC' ACBBUSY 49 31

ACBTANAE X'F4' Not authorized for SRBEXIT=YES
(OPEN)

49 31

ACBTNBSE X'F6' NIB storage address not valid
(OPEN)

49 31

ACBTNBOE X'FA' NIB options not valid (OPEN) 49 31

ACBTRTTE X'FE' Duplicate unsolicited RU routing
requested

49 31

EXLST ACBUEL — A EXLST address 36 24

MACRF ACBMACR2 ACBLOGON X'08' MACRF=NLOGON 13 D

NIB ACBTNIB — A NIB address 88 58

OFLAGS ACBOFLGS ACBOPEN X'10' OFLAGS=OPEN 48 30

PASSWD ACBPASSW — A Password address 32 20

ACBOPT1 ACBPSINS X'08' Persistent recovery or takeover
application instance

82 52

PERSIST ACBPLUSC X'10' Application program is capable of
persistent LU-LU session support

82 52

SRBEXIT ACBSRBSP X'20' Application program specified
SRBEXIT on ACB

82 52

ACBSRBEX X'40' Application program specified on
APPL statement or ACB that exits
are driven under an SRB

82 52

KEEPFRR ACBKPFRR X'80' Application program specified that
VTAM keep the FRR stack

82 52

FDX ACBOPT2 ACBAFDX X'80' APPC full-duplex and expedited
data supported

83 53

742 z/OS V2R1.0 Communications Server: SNA Programming

Table 105. ACB DSECT (IFGACB) (continued)

Parameter on
RPL-based
macro

DSECT label DSECT EQU
label

Field or
EQU
value

For EQU: Meaning when bit
setting on For DS: Meaning when
byte value set

Offset

Dec Hex

FORCETKO ACBFRCTO X'08' OPEN ACB might trigger MNPS
forced takeover processing

83 53

USERFLD ACBUSER — — User field 100 64

ACBAMSVL — — Access-method-support vector-list
address

92 5C

ACBRIVL — — Resource-information vector-list
address

96 60

ACBAVPTR — — Application-ACB vector-list address 104 68

ASDP (ISTASDP)

Dec

0

2

3-n

Hex

0

2

3-n

Displacement Control Block: ASDP

Parameter list subfields (ASDDATA)

Length field (ASDLENTH)

Flag Byte (ASDFLAG1)

NODEID checking 0......
No NODEID checking 1......

The names in parantheses are the labels for the ASDP's DSECT.

Figure 155. Format of ISTASDP

Appendix E. Control block formats and DSECTs 743

Dec

0

1

2-n

Hex

0

1

2-n

Displacement Control Block: ASDSUBFD (Dial Number Subfield)

Subfield type X'00' (ASDSFTYP)

Length of data (ASDSFLEN)

Dial Number (ASDDIALN)

Figure 156. Dial number subfield

Dec

0

1

2-n

Hex

0

1

2-n

Displacement Control Block: ASDSUBFD (Direct Call Line Name Subfield)

Subfield type X'01' (ASDSFTYP)

Length of data (ASDSFLEN)

Direct Call Line Name (ASDDCLNM)

Figure 157. Direct call line name subfield

Dec

0

1

2-5

Hex

0

1

2-5

Displacement Control Block: ASDSUBFD (IDBLK/IDNUM Subfield)

Subfield type X'02' (ASDSFTYP)

Length of data (ASDSFLEN)

IDBLK/IDNUM (ASDIDBKN)

Figure 158. IDBLK/IDNUM subfield

Dec

0

1

2-n

Hex

0

1

2-n

Displacement Control Block: ASDSUBFD (CPNAME Subfield)

Subfield type X'03' (ASDSFTYP)

Length of data (ASDSFLEN)

CPNAME (ASDCPNAM)

Figure 159. CPNAME subfield

744 z/OS V2R1.0 Communications Server: SNA Programming

Table 106. ISTASDP DSECT

DSECT label
DSECT EQU
label

Field or EQU
value

For EQU: Meaning when bit
setting on For DS: Meaning
when byte value set Dec offset Hex offset

ASDLENTH HL1 Parameter List Length 0 0

ASDFLAG1 ASDNIDCK X'80' No NODEID check flag 2 2

ASDDATA 0X Begin subfield data 4-n 4-n

Table 107. ISTASDP subfield DSECT (ASDSUBFD)

DSECT label
DSECT EQU
label

Field or EQU
value

For EQU: Meaning when bit
setting on For DS: Meaning
when byte value set Dec offset Hex offset

ASDSFTYP XL1 Type of subfield 0 0

ASDTDLNM X'00' Dial number subfield type 0 0

ASDTDCLN X'01' Direct call line subfield type 0 0

ASDTIDBN X'02' IDBLK/IDNUM subfield type 0 0

ASDTCPNM X'03' CPNAME subfield type 0 0

ASDTDLCA X'04' Expanded dial information 0 0

ASDTCONN X'05' Connection name 0 0

ASDSFLEN XL1 Subfield data length 1 1

ASDSFDTA 0X Subfield data 2 2

ASDDIALN 0C Dial number 2 2

ASDDCLNM 0C Direct call line name 2 2

Figure 160. Expanded dial information subfield

Dec

0

1

2-n

Hex

0

1

2-n

Displacement Control Block: ASDDLCSF (DLCADDR Subfields)

Subfield type (ASDDLCTY)

Length of data (ASDDLCLN)

DLCADDR subfield (ASDDLCDT)

Figure 161. DLCADDR subfield

Dec

0

1

2

3-n

Hex

0

1

2

3-n

Displacement Control Block: ASDCONSF (Connection Subfields)

Subfield type X'05' (ASDSFTYP)

Length of data (ASDSFLEN)

Connection type (ASDCONTP)

Connection type (ASDCONNM)

Figure 162. Connection name subfield

Appendix E. Control block formats and DSECTs 745

Table 107. ISTASDP subfield DSECT (ASDSUBFD) (continued)

DSECT label
DSECT EQU
label

Field or EQU
value

For EQU: Meaning when bit
setting on For DS: Meaning
when byte value set Dec offset Hex offset

ASDIDBKN F IDBLK/IDNUM 2 2

ASDCPNAM 0C CPNAME 2 2

ASDCONNM 0C Connection name 2 2

ASDCONTP XL1 Connection name type 1 1

ASDCTGPN X'00' GRPNM 0 0

Table 108. ISTASDP DLCADDR subfield DSECT (ASDDLCSF)

DSECT label
DSECT EQU
label

Field or EQU
value

For EQU: Meaning when bit
setting on For DS: Meaning
when byte value set Dec offset Hex offset

ASDDLCHD XL2 Header 0 0

ASDDLCTY XL1 Type 0 0

ASDDLCLN XL1 Length 1 1

ASDDLCDT X'00' Begin DLCADDR 2 2

BLENT (ISTBLENT)

Table 109. Buffer list entry DSECT (ISTBLENT)

DSECT label
DSECT EQU
label

Field or EQU
value

For EQU: Meaning when bit
setting on For DS: Meaning
when byte value set Dec offset Hex offset

BLENT XL16 Buffer list entry 0 0

BLEFLAGS X Flags 0 0

BLELMPEO X'C0' LMPEO control flags 0 0

BLEBEGRU X'80' This entry begins an RU.
LMPEO cannot split the RU.

0 0

BLEENDRU X'40' This entry ends an RU. VTAM
will begin (with the next buffer
list entry) to split the next set
of data unless the next buffer
list entry precludes it.

0 0

X'3F' Reserved 0 0

Dec

0

4

8

12

16

Hex

0

4

8

0C

10

Displacement
Control Block: BLENT

LMPEO flags Request header (RH)

Receive area length

Address of data

Length of data

Figure 163. Format of BLENT

746 z/OS V2R1.0 Communications Server: SNA Programming

Table 109. Buffer list entry DSECT (ISTBLENT) (continued)

DSECT label
DSECT EQU
label

Field or EQU
value

For EQU: Meaning when bit
setting on For DS: Meaning
when byte value set Dec offset Hex offset

BLERH XL3 Request header 1 1

BLEBUFL F Receive area length 4 4

BLEAREA A Address of data 8 8

BLERLEN F Length of data 12 C

Control vector hex 29 (CV29)
Table 110. Control vector hex 29

Name Type Length Description Offsets

Dec Hex

ISTV29 STRUCTURE 91 Session state control vector 0 0

V29KEY CHARACTER 1 VECTOR KEY X'29' 0 0

V29LENTH UNSIGNED 1 LENGTH OF VECTOR DATA 1 1

V29VECDA CHARACTER 89 VECTOR DATA 2 2

V29SWTYP BITSTRING 1 SWITCH TYPE 2 2

V29SWTRQ B'1111' SWITCH REQUEST

V29SWTST B'.... 1111' SWITCH STATE

V29DAFLW BITSTRING 1 DATA FLOW INDICATORS 3 3

V29DFSTP B'1...' LAST REQUEST OR RESPONSE
WAS: 0 = SENT PLU-TO-SLU 1
= SENT SLU-TO-PLU

V29DFLPX B' .1..' LAST REQUEST OR RESPONSE
WAS: 0 = NORMAL-FLOW 1 =
EXPEDITED-FLOW

V29DFLPS B' ..1.' THE LAST PIU 0 = A REQUEST
1 = A RESPONSE

V29DFNXP B' ...1' EXPEDITED RESPONSE
REQUIRED FROM THE SLU 0 =
EXPEDITED RESPONSE WAS
SENT TO THE PLU 1 =
EXPEDITED RESPONSE WAS
NOT SENT TO THE PLU

V29DFNXS B' 1...' EXPEDITED RESPONSE
REQUIRED FROM THE PLU 0 =
EXPEDITED RESPONSE WAS
SENT TO THE SLU 1 =
EXPEDITED RESPONSE WAS
NOT SENT TO THE SLU

V29DFPBF B'1..' IF PACING REQUEST WAS
SENT TO THE PLU 0 =
PACING RESPONSE WAS SENT
TO THE SLU BY THE PLU 1 =
PACING RESPONSE WAS SENT
TO THE SLU BY BOUNDARY
FUNCTION

Appendix E. Control block formats and DSECTs 747

Table 110. Control vector hex 29 (continued)

Name Type Length Description Offsets

Dec Hex

* B'11' RESERVED-NOT AVAILABLE

* CHARACTER 1 FLAGS 4 4

V29EXTFD B' 1...' 1= EXTENDED NORMAL
FLOW FIELDS EXIST AT END
OF CV 0= NO EXTENSION
EXISTS

* B' .111 1111' RESERVED-NOT AVAILABLE

V29PS CHARACTER 43 PRIMARY TO SECONDARY
DATA

5 5

V29PSNFL CHARACTER 24 PLU-TO-SLU NORMAL FLOW
INFORMATION

5 5

V29PSNCH CHARACTER 5 LAST REQUEST SENT
PLU-TO-SLU

5 5

V29PSNCS UNSIGNED 2 SEQUENCE NUMBER OF THE
FOLLOWING RH

5 5

V29PSNCR CHARACTER 3 RH OF FIRST IN CHAIN OR
ONLY IN CHAIN REQUEST
SENT TO SLU

7 7

V29PSNTH CHARACTER 10 NORMAL FLOW REQUEST
INFORMATION FROM THE TH

10 A

V29PSNTS UNSIGNED 2 LAST REQUEST SEQUENCE
NUMBER SENT PLU-TO-SLU

10 A

V29PSNRH CHARACTER 3 RH ASSOCIATED WITH THE
FOLLOWING RU

12 C

V29PSNTU CHARACTER 5 FIRST 5 BYTES OF LAST
NORMAL- FLOW REQUEST RU
SENT PLU-TO-SLU

15 F

V29PSLRP CHARACTER 9 LAST RESPONSE SENT
PLU-TO-SLU

20 14

V29PSLRS UNSIGNED 2 SEQUENCE NUMBER OF THE
LAST RESPONSE SENT

20 14

V29PSLRH CHARACTER 2 FIRST 2 BYTES OF THE RH
ASSOCIATED WITH
FOLLOWING RESPONSE

22 16

V29PSLRU CHARACTER 5 FIRST 5 BYTES OF THE LAST
NORMAL FLOW RESPONSE
SENT PLU-TO-SLU

24 18

V29PSEFL CHARACTER 19 PLU-TO-SLU EXPEDITED
FLOW INFORMATION

29 1D

V29PSERQ CHARACTER 10 LAST EXPEDITED-FLOW
REQUEST SENT PLU-TO-SLU

29 1D

V29PSEQS UNSIGNED 2 LAST REQUEST SEQUENCE
NUMBER SENT PLU-TO-SLU

29 1D

V29PSEQH CHARACTER 3 RH ASSOCIATED WITH THE
FOLLOWING REQUEST RU

31 1F

748 z/OS V2R1.0 Communications Server: SNA Programming

Table 110. Control vector hex 29 (continued)

Name Type Length Description Offsets

Dec Hex

V29PSEQU CHARACTER 5 FIRST 5 BYTES OF LAST
NORMAL- FLOW REQUEST RU
SENT PLU-TO-SLU

34 22

V29PSERP CHARACTER 9 LAST EXPEDITED-FLOW
RESPONSE SENT PLU-TO-SLU

39 27

V29PSEPS UNSIGNED 2 LAST EXPEDITED-FLOW
RESPONSE SEQUENCE
NUMBER SENT TO PLU-SLU

39 27

V29PSEPH CHARACTER 2 BYTE 0 AND 1 OF RH
ASSOCIATED WITH
FOLLOWING RESPONSE RU

41 29

V29PSEPU CHARACTER 5 FIRST 5 BYTES OF LAST
NORMAL- FLOW RESPONSE
RU SENT PLU-TO-SLU

43 2B

V29SP CHARACTER 43 SECONDARY TO PRIMARY
DATA

48 30

V29SPNFL CHARACTER 24 SLU-TO-PLU NORMAL FLOW
INFORMATION

48 30

V29SPNCH CHARACTER 5 LAST REQUEST SENT
SLU-TO-PLU

48 30

V29SPNCS UNSIGNED 2 SEQUENCE NUMBER OF THE
FOLLOWING RH

48 30

V29SPNCR CHARACTER 3 RH OF FIRST IN CHAIN OR
ONLY IN CHAIN REQUEST
SENT TO PLU

50 32

V29SPNTH CHARACTER 10 NORMAL FLOW REQUEST
INFORMATION FROM THE TH

53 35

V29SPNTS UNSIGNED 2 LAST REQUEST SEQUENCE
NUMBER SENT SLU-TO-PLU
FROM THE TH

53 35

V29SPNRH CHARACTER 3 RH ASSOCIATED WITH THE
FOLLOWING RU

55 37

V29SPNTU CHARACTER 5 FIRST 5 BYTES OF LAST
NORMAL- FLOW REQUEST RU
SENT SLU-TO-PLU

58 3A

V29SPLRP CHARACTER 9 LAST RESPONSE SENT
SLU-TO-PLU

63 3F

V29SPLRS UNSIGNED 2 SEQUENCE NUMBER OF THE
LAST RESPONSE SENT

63 3F

V29SPLRH CHARACTER 2 FIRST 2 BYTES OF THE RH
ASSOCIATED WITH
FOLLOWING RESPONSE

65 41

V29SPLRU CHARACTER 5 FIRST 5 BYTES OF THE LAST
NORMAL FLOW RESPONSE
SENT SLU-TO-PLU

67 43

V29SPEFL CHARACTER 19 SLU-TO-PLU EXPEDITED
FLOW INFORMATION

72 48

Appendix E. Control block formats and DSECTs 749

Table 110. Control vector hex 29 (continued)

Name Type Length Description Offsets

Dec Hex

V29SPERQ CHARACTER 10 LAST EXPEDITED-FLOW
REQUEST SENT SLU-TO-PLU

72 48

V29SPEQS UNSIGNED 2 LAST REQUEST SEQUENCE
NUMBER SENT SLU-TO-PLU

72 48

V29SPEQH CHARACTER 3 RH ASSOCIATED WITH THE
FOLLOWING REQUEST RU

74 4A

V29SPEQU CHARACTER 5 FIRST 5 BYTES OF LAST
NORMAL- FLOW REQUEST RU
SENT SLU-TO-PLU

77 4D

V29SPERP CHARACTER 9 LAST EXPEDITED-FLOW
RESPONSE SENT SLU-TO-PLU

82 52

V29SPEPS UNSIGNED 2 LAST EXPEDITED-FLOW
RESPONSE SEQUENCE
NUMBER SENT TO
SLU-TO-PLU

82 52

V29SPEPH CHARACTER 2 BYTE 0 AND 1 OF RH
ASSOCIATED WITH
FOLLOWING RESPONSE RU

84 54

V29SPEPU CHARACTER 5 FIRST 5 BYTES OF LAST
NORMAL- FLOW RESPONSE
RU SENT SLU-TO-PLU

86 56

V29END CHARACTER END OF V29 CONTROL BLOCK 91 5B

Table 111. Control vector hex 29 (constants)

Name Type Length Description Value

V29KEYNO HEX 1 VECTOR KEY IS '29'X 29

V29PLUS BIT 0 PLUS ACTIVE - SESSION
RESUMED PER APPLICATION
REQUEST

0011

EXLST (IFGEXLST)

750 z/OS V2R1.0 Communications Server: SNA Programming

Table 112. EXLST DSECT (IFGEXLST)

Field DSECT label DSECT EQU
label

DSU or EQU
value

For EQU: Meaning when
bit setting on For DS:
Meaning when byte value
set

Dec offset Hex offset

EXLLEN EXLLEN2 — XL2 EXLST length 2 2

DFASY EXLDFASF EXLDFASS X'80' DFASY exit present 30 1E

EXLDFASP — A DFASY exit address 31 1F

LERAD EXLLERF EXLLERS X'80' LERAD exit present 15 F

EXLLGNP — A LERAD exit address 16 10

LOGON EXLLGNF EXLNLGNS X'80' LOGON exit present 25 19

EXLLGNP — A LOGON exit address 26 1A

LOSTERM EXLNLGNF EXLNLGNS X'80' LOSTERM exit present 40 38

Dec

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

70

Hex

0

4

8

C

10

14

18

1C

20

24

28

2C

30

34

38

3C

40

44

46

Displacement

Control Block: EXLST

EXLLEN
(EXLLEN2)

LERAD address
(EXLLERP)

RESP address
(EXLRESPP)

SYNAD
attributes
(EXLSYNF)

SCIP
attributes
(EXLSCIPF)

LOSTERM
attributes
(EXLNLGNF)

TPEND address
(EXLTPNDF cont'd)

TPEND
address
(EXLTPNDF)

TPEND address
(EXLTPNDP)

LOSTERM address
(EXLNLGNP cont'd)

LOSTERM address
(EXLNLGNP)

RELREQ
attributes
(EXLRLRQF)

RELREQ address
(EXLRLRQP cont'd)

RELREQ address
(EXLRLRQP)

RESP
attributes
(EXLRESPF)

SCIP address
(EXLSCIPP
cont'd)

LOGON
attributes
(EXLLGNF)

LOGON address
(EXLLGNP cont'd)

LOGON address
(EXLLGNP)

DFASY
address
(EXLDFASP cont'd)

DFASY
attributes
(EXLDFASF)

DFASY
attributes
(EXLDFASP)

SCIP address
(EXLLGNP)

SYNAD
address
(EXLSYNP)

SYNAD
address
(EXLSYNP cont'd)

NSEXIT address
(EXLTNSEP cont'd.)

NSEXIT address
(EXLTNSEP)

NSEXIT
attributes
(EXLTNSEF)

Figure 164. Format of the EXLST

Appendix E. Control block formats and DSECTs 751

Table 112. EXLST DSECT (IFGEXLST) (continued)

Field DSECT label DSECT EQU
label

DSU or EQU
value

For EQU: Meaning when
bit setting on For DS:
Meaning when byte value
set

Dec offset Hex offset

EXLNLGNP — A LOSTERM exit address 41 29

NSEXIT EXLTNSEF EXLTNSES X'80' NSEXIT exit present 65 41

EXLTNSEP — A NSEXIT address 66 42

RELREQ EXLRLRQF EXLRLRQS X'80' RELREQ exit present 45 2D

EXLRLRQP — A RELREQ exit address 46 2E

RESP EXLRESPF RXLRESPS X'80' RESP exit present 35 23

EXLRESPP — A RESP exit address 36 24

SCIP EXLSCIPF EXLSCIPS X'80' SCIP exit present 20 14

EXLSCIPP — A SCIP exit address 21 15

SYNAD EXLSYNF EXLSYNS X'80' SYNAD exit present 10 A

EXLSYNP — A SYNAD exit address 11 B

TPEND EXLTPNDF EXLTPNDS X'80' TPEND exit present 60 3C

EXLTPNDP — A TPEND exit address 61 3D

MTS override (ISTMTS)

752 z/OS V2R1.0 Communications Server: SNA Programming

Table 113. MTS override DSECT (ISTMTS)

DSECT label
DSECT EQU
label

Field or EQU
value

For EQU: Meaning when bit
setting on For DS: Meaning
when byte value set Dec offset Hex offset

MTSNMCNT FL1 Number of names that follow 0 0

MTSMDL CL8 Model name 1 1

MTSPR1 CL8 Primary printer name 9 9

MTSPR2 CL8 Alternate printer name 17 11

NIB (ISTDNIB)

Dec

0

4

8

12

16

20

Hex

0

4

8

0C

10

14

Displacement Control Block: MTS

of names following Model name

(Model name continued)

Primary printer name

Alternate printer name

(Alternate printer name continued)

(Primary printer name continued)

Figure 165. Format of MTS

Appendix E. Control block formats and DSECTs 753

For ISTDVCHR, see Table 115 on page 756. For ISTDPROC, see Table 116 on page
761. For ISTDBIND, see Figure 177 on page 818 for DSECT pointed to by
BNDAREA.

Table 114. NIB DSECT (ISTDNIB)

Parameter on
RPL-based
macro DSECT label

DSECT EQU
label

Field or
EQU value

For EQU: Meaning
when bit setting on
For DS: Meaning
when byte value set Dec offset Hex offset

AFFIN NIBFLG0 NIBAFFIN X'10' Indicates (on
SETLOGON)
application owns all
affinities

01 01

BNDAREA NIBNDAR — A BIND area address 56 38

MTSAREA NIBMTSAR — A MTS area address
Note: MTSAREA and
BNDAREA are
mutually exclusive.

56 38

64 40

60 3C

56 38

48 30

44 2C

40 28

36 24

32 20

28 1C

20 14

12 C

8 8

4 4

0 0

Displacement
Dec Hex Control Block: NIB

Flags
(NIBFLG0)

NIBLEN
(NIBLEN)

MODE
(NIBMODE)

General
characteristics

Device type Model

PROC1 PROC3PROC2 PROC4

Additional
characteristics

CID
(NIBCID)

USERFLD
(NIBUSER)

NAME (NIBSYM) when NAME is specified on NIB macroinstruction
STOKEN (NIBSTKN) when PROC=STOKEN)

Physical
device
address

NIB
attributes

(NIBFLG1)
RESPLIM
(NIBLIMIT)

EXLST
(NIBEXLST)

BINDAREA
(NIBNDAR)

ASDAREA
(NIBASDPA)

MTSAREA
(NIBMTSAR)

(NIBRPARM)

LOGMODE/GNAME
(NIBLMODE/NIBGENN)

Data
Stream

DEVCHAR
(NIBDEVCH)

PROC (NIBPROCD)

(NIBUCVA)

Figure 166. Format of the NIB

754 z/OS V2R1.0 Communications Server: SNA Programming

Table 114. NIB DSECT (ISTDNIB) (continued)

Parameter on
RPL-based
macro DSECT label

DSECT EQU
label

Field or
EQU value

For EQU: Meaning
when bit setting on
For DS: Meaning
when byte value set Dec offset Hex offset

ASDPAREA NIBFLG1 NIBASDP X'01' Indicates
application-supplied
dial parameters

40 28

ASDPAREA NIBASDPA — A Address of
application-supplied
dial parameters

60 3C

CID NIBCID — XL4 Communication ID 4 4

CON NIBFLG1 NIBCON X'40' CON=YES 40 28

DEVCHAR NIBDEVCH — XL8 (See ISTDVCHR,
Table 115 on page 756)

28 1C

EXLST NIBEXLST — A EXLST address 44 2C

GNAME NIBGENN — CL8 Generic name 48 30

LISTEND NIBFLG1 NIBLAST X'80' LISTEND=NO 40 28

LOGMODE/
GNAME

NIBLMODE/
NIBGENN

— CL8 LOGMODE value 48 30

CINIT request
canceled

NIBFLG1 NIBNACLQ X'08' If OPNDST
OPTCD=ACCEPT
failed, the pending
CINIT request has been
canceled.

40 28

LUAFFIN NIBFLGO NIBAFFIN
NIBLAFFN

X'12' Indicates (on OPNDST
or OPNSEC) the
application owns the
affinity for this LU.

X'02' Indicates (on OPNDST
or OPNSEC) the
application does not
own the affinity for
this LU.

MODE NIBMODE — CL8 MODE value 20 14

NAME or
PROC=
STOKEN

NIBSYM or
NIBSTKN

— CL8 NAME value or
STOKEN

12 C

NIBLEN NIBLEN — X NIB length 3 3

PROC NIBPROCD — XL4 (See ISTDPROC,
Table 116 on page 761)

36 24

RESPLIM NIBLIMIT — XL2 RESPLIM value 42 2A

SDT NIBFLG1 NIBSDAPP X'20' SDT=APPL 40 28

USERFLD NIBUSER — XL4 USERFLD value 8 8

— NIBFLG0 NIBNNAMS X'80' Application network
name used

1 1

NIBFLG2 NIBCSEL X'80' Indicates selective
encryption was used
for session

41 29

Appendix E. Control block formats and DSECTs 755

Table 114. NIB DSECT (ISTDNIB) (continued)

Parameter on
RPL-based
macro DSECT label

DSECT EQU
label

Field or
EQU value

For EQU: Meaning
when bit setting on
For DS: Meaning
when byte value set Dec offset Hex offset

NIBFLG2 NIBCREQ X'40' Indicates required
encryption was used
for session

41 29

NIBFLG2 NIBPSPLU X'20' Indicates that the
application is a PLU

41 29

NIBFLG2 NIBPSDFS X'10' DFSYN data mode
setting

41 29

NIBFLG2 NIBPSDFA X'08' DFASY data mode
setting

41 29

NIBFLG2 NIBPSRSP X'04' RESP data mode
setting

41 29

NIBFLG2 NIBURCTS X'02' Reserved 41 29

NIBFLG2 NIBSLWRK X'80' SIMLOGON successful
for this NIB

41 29

– NIBRPARM – A Restore parameter list
address

60 3C

NIBRBNDP A Pointer to BIND
information

0 0

NIBRC29P A Pointer to control
vector hex 29
information

4 4

NIBRSQPP A Pointer to session
qualifier pair

8 8

NIBRMDNP A Pointer to mode name 8 8

NIBRSIDP A Pointer to session
instance identifier

12 C

NIBRFM5P A Pointer to FMH5 16 10

NIBRBIDP A Pointer to BID 20 14

NIBRBISP A Pointer to BIS 24 18

– NIBUCVA -- A User CV pointer 60 3C

NIBVECL HL2 Length of vector
including this field

0 0

NIBVEC 0X Control vector data 2 2

Note: Certain fields marked “Reserved” can be set to nonzero values; however, no reserved fields should be
examined by an application program.

NIB DEVCHAR (ISTDVCHR)
Table 115. NIB's DEVCHAR DSECT (ISTDVCHR)

DSECT label
DSECT EQU
label

Field or EQU
value

For EQU: Meaning when bit
setting on For DS: Meaning
when byte value set Dec offset Hex offset

DEVSHCH DEVCHAR X Reserved 28 1C

756 z/OS V2R1.0 Communications Server: SNA Programming

Table 115. NIB's DEVCHAR DSECT (ISTDVCHR) (continued)

DSECT label
DSECT EQU
label

Field or EQU
value

For EQU: Meaning when bit
setting on For DS: Meaning
when byte value set Dec offset Hex offset

DEVINPUT X'80' Reserved 28 1C

DEVOTPUT X'40' Reserved 28 1C

DEVCONVR X'20' Reserved 28 1C

DEVSUBND X'10' Reserved 28 1C

DEVSPS X'08' Reserved 28 1C

DEVNNSPT X'04' Reserved 28 1C

DEVCCTL X'02' Reserved 28 1C

DEVSPOLL X'01' Reserved 28 1C

DEVTCODE DEVCHAR2 X Reserved 29 1D

DEV2740 X'01' Reserved 29 1D

DEV2741 X'02' Reserved 29 1D

DEV1050 X'03' Reserved 29 1D

DEVTWX X'04' Reserved 29 1D

DEVWTTY X'05' Reserved 29 1D

DEV115A X'06' Reserved 29 1D

DEV83B3 X'07' Reserved 29 1D

DEV2715 X'08' Reserved 29 1D

DEV2770 X'09' Reserved 29 1D

DEV2780 X'0A' Reserved 29 1D

DEV3725 X'0B' Reserved 29 1D

DEV3780 X'0C' Reserved 29 1D

DEV1130 X'0D' Reserved 29 1D

DEV1800 X'0E' Reserved 29 1D

DEVDAN X'0F' Reserved 29 1D

DEV3125 X'11' Reserved 29 1D

DEV3135 X'12' Reserved 29 1D

DEVSYS3 X'13' Reserved 29 1D

DEV2701 X'14' Reserved 29 1D

DEV2703 X'15' Reserved 29 1D

DEV3704 X'16' Reserved 29 1D

DEV3705 X'17' Reserved 29 1D

DEV2980 X'18' Reserved 29 1D

DEV3277 X'19' Reserved 29 1D

DEV3284 X'1A' Reserved 29 1D

DEV3286 X'1B' Reserved 29 1D

DEV3275 X'1C' Reserved 29 1D

DEV3741 X'1D' Reserved 29 1D

DEV3747 X'1E' Reserved 29 1D

Appendix E. Control block formats and DSECTs 757

Table 115. NIB's DEVCHAR DSECT (ISTDVCHR) (continued)

DSECT label
DSECT EQU
label

Field or EQU
value

For EQU: Meaning when bit
setting on For DS: Meaning
when byte value set Dec offset Hex offset

DEVRSV05 X'1F' Reserved 29 1D

DEVRSV06 X'20' Reserved 29 1D

DEVRSV07 X'21' Reserved 29 1D

DEVRSV08 X'22' Reserved 29 1D

DEVMTA X'28' Reserved 29 1D

DEV2972 X'33' Reserved 29 1D

DEV3271 X'34' Reserved 29 1D

DEVCC X'35' Reserved 29 1D

DEV3272 X'36' Reserved 29 1D

DEV1052 X'64' Reserved 29 1D

DEV1053 X'65' Reserved 29 1D

DEV1054 X'66' Reserved 29 1D

DEV1055 X'67' Reserved 29 1D

DEV1056 X'68' Reserved 29 1D

DEV1057 X'69' Reserved 29 1D

DEV1058 X'6A' Reserved 29 1D

DEV1092 X'6B' Reserved 29 1D

DEV1093 X'6C' Reserved 29 1D

DEVLU X'6D' Reserved 29 1D

DEV545 X'78' Reserved 29 1D

DEV1017 X'79' Reserved 29 1D

DEV1018 X'7A' Reserved 29 1D

DEV2203 X'7B' Reserved 29 1D

DEV2213 X'7C' Reserved 29 1D

DEV2265 X'7D' Reserved 29 1D

DEV2502 X'7E' Reserved 29 1D

DEV50 X'7F' Reserved 29 1D

DEV1255 X'80' Reserved 29 1D

DEV5496 X'81' Reserved 29 1D

DEVMCODE X Device model code 30 1E

DEVMOD1 X'00' Device is designated as Model
1

30 1E

DEVMOD2 X'01' Device is designated as Model
2

30 1E

DEVFLAGS X Flags 31 1F

DEVFCCTL X‘F0’ Reserved 31 1F

DEVCBSC X'80' Reserved 31 1F

DEVCSSL X'40' Reserved 31 1F

DEVCRVB X'20' Reserved 31 1F

758 z/OS V2R1.0 Communications Server: SNA Programming

Table 115. NIB's DEVCHAR DSECT (ISTDVCHR) (continued)

DSECT label
DSECT EQU
label

Field or EQU
value

For EQU: Meaning when bit
setting on For DS: Meaning
when byte value set Dec offset Hex offset

DEVCSWL X'10' LU associated with PU on
switched line

31 1F

DEVCHAR3 X'0F' Reserved 31 1F

DEVCATTN X'08' Reserved 31 1F

DEVCCHEK X'04' Reserved 31 1F

DEVCSTCL X'02' Reserved 31 1F

DEVCSPLN X'01' Reserved 31 1F

DEVPHYSA X Physical device address, for
example, address of 3270
“from” terminal for copy
operation. Valid only for
certain LUs.

32 20

DEVMODE X Reserved 33 21

DEVREC X'80' Reserved 33 21

DEVBASIC X'40' Reserved 33 21

X'3F' Reserved 33 21

DEVADVFE X'01' 3270 extended data stream 33 21

DEVAUXTP Device data stream
compatibility characteristics

34 22

DEVA2780 X'90' 2780 data stream 34 22

DEVA1050 X'80' 1050 data stream 34 22

DEVA2740 X'40' 2740 data stream 34 22

DEVA83B3 X'30' 83B3 data stream 34 22

DEVATWX X'20' TWX data stream 34 22

DEVA115A X'10' 115A data stream 34 22

DEVAWTTY X'08' WTTY data stream 34 22

DEVA2741 X'04' 2741 data stream 34 22

DEVAUND X'00' No additional data stream
characteristics defined

34 22

DEVA3780 X'91' Reserved 34 22

DEVARS05 X'92' Reserved 34 22

DEVARS06 X'93' Reserved 34 22

DEVARS07 X'94' Reserved 34 22

DEVARS08 X'95' Reserved 34 22

DEVLANG X Reserved 35 23

DEVQUERY X'80' Query bit 35 23

DEVLANG X'7F' Language code 35 23

X'02' Code=ARA Arabic (language
is written from right to left
and is not supported by MVS
Message Service)

35 23

Appendix E. Control block formats and DSECTs 759

Table 115. NIB's DEVCHAR DSECT (ISTDVCHR) (continued)

DSECT label
DSECT EQU
label

Field or EQU
value

For EQU: Meaning when bit
setting on For DS: Meaning
when byte value set Dec offset Hex offset

X'03' Code=CHT Traditional
Chinese

35 23

X'04' Code=CHS Simplified Chinese 35 23

X'05' Code=DAN Danish 35 23

X'06' Code=DEU German 35 23

X'07' Code=DES Swiss German 35 23

X'08' Code=ELL Greek 35 23

X'09' Code=ENG UK English 35 23

X'00' No code US English (default) 35 23

X'01' Code=ENU US English 35 23

X'0A' Code=ESP Spanish 35 23

X'0B' Code=FIN Finnish 35 23

X'0C' Code=FRA French 35 23

X'0D' Code=FRB Belgian French 35 23

X'0E' Code=FRC Canadian French 35 23

X'0F' Code=FRS Swiss French 35 23

X'10' Code=HEB Hebrew (language
is written from right to left
and is not supported by MVS
Message Service)

35 23

X'12' Code=ISL Icelandic 35 23

X'13' Code=ITA Italian 35 23

X'14' Code=ITS Swiss Italian 35 23

X'11' Code=JPN Japanese 35 23

X'15' Code=KOR Korean 35 23

X'16' Code=NLD Dutch 35 23

X'17' Code=NLB Belgian Dutch 35 23

X'18' Code=NOR Norwegian 35 23

X'19' Code=PTG Portuguese 35 23

X'1A' Code=PTB Brazil Portuguese 35 23

X'1B' Code=RMS Rhaeto-Romanic 35 23

X'1C' Code=RUS Russian 35 23

X'1D' Code=SVE Swedish 35 23

X'1E' Code=THA Thai 35 23

X'1F' Code=TRK Turkish 35 23

X'3F' No code unknown language
code

35 23

Note: Certain fields marked “Reserved” can be set to nonzero values; however, no reserved fields should be
examined by an application program.

760 z/OS V2R1.0 Communications Server: SNA Programming

NIB PROC (ISTDPROC)
Table 116. NIB's PROC DSECT (ISTDPROC)

Parameter
on
RPL-based
macro DSECT label

DSECT EQU
label

Field or
EQU value

For EQU: Meaning when
bit setting on For DS:
Meaning when byte value
set Dec offset Hex offset

PROC PROPROC1 PROTRUNC X'40' PROC=TRUNC 36 24

PROXPOPT X'20' PROC=BINARY 36 24

PRODFASY X'10' PROC=DFASYX 36 24

PRORESPX X'08' PROC=RESPX 36 24

PROCA X'04' PROC=CA 36 24

PROCS X'02' PROC=CS 36 24

PRORPLC X'01' PROC=RPLC 36 24

PROPROC2 PROERPO X'40' PROC=NERPOUT 37 25

PROLGOT X'20' PROC=NLGOUT 37 25

PROSYSR X'10' PROC=APPLRESP 37 25

PROFIFOR X'08' PROC=ORDRESP 37 25

PRONTFL X'04' PROC=NTMFLL 37 25

PROEMLC X'02' PROC=ELC 37 25

PROCFTX X'01' PROC=CONFTXT 37 25

PRONEGBD X'80' PROC=NEGBIND 37 25

PROPROC3 PROERPI X'40' PROC=NERPIN 38 26

PROLGIN X'20' PROC=NLGIN 38 26

PRONTO X'10' PROC=NTIMEOUT 38 26

PROMONIT X'04' PROC=MONITOR 38 26

PROPROC4 PROEIB X'80' PROC=EIB 39 27

PROCNDCS X'40' PROC=CONDCS 39 27

PROSTOKN X'20' PROC=STOKEN 39 27

PROMODB X'08' PROC=BLOCK 39 27

PROMODM X'04' PROC=MSG 39 27

PROMODT X'02' PROC=TRANS 39 27

PROMODC X'01' PROC=CONT 39 27

NRIPL (ISTNRIPL)

Appendix E. Control block formats and DSECTs 761

Table 117. NRIPL DSECT (ISTNRIPL)

DSECT label
DSECT EQU
label

Field or EQU
value

For EQU: Meaning when bit
setting on For DS: Meaning
when field value Dec offset Hex offset

ISTNRIPL Network Resource Identifier
Parameter List

0 0

NRIFLG0 XL1 Indicators 0 0

NRIASLU X'80' Application PLU/SLU
Indication (not meaningful at
ATTN.CNOS exit) ON -
Application is SLU OFF -
Application is PLU

0 0

NRINCONW X'40' Contention Winner indication
(only at ATTN.FMH5 and
ATTN.LOSS exits) ON - SLU is
Contention Winner OFF - PLU
is Contention Winner

0 0

X'3C' Reserved 0 0

NRINNAMS X'02' Application is using its
Network Name on this session
while supporting a Generic
Name (only at LOGON and
SCIP exits)

0 0

X'01' Reserved 0 0

CL7 Reserved 1 1

NRIPNET CL8 NetID of Primary LU (for
ATTN.CNOS Application
NetID)

8 8

NRINPLU CL8 Primary LU Network Name
(for ATTN.CNOS exit:
Application Network Name)

16 10

NRINSNET CL8 NetID of Secondary LU (for
ATTN.CNOS exit: Partner LU
NetID)

24 18

NRINSLU CL8 Secondary LU Network Name
(for ATTN.CNOS exit: Partner
LU Network Name)

32 20

Dec

0

8

16

24

32

40

Hex

0

8

10

18

20

28

Displacement

Control Block: NRIPL

Indicators
(NRIFLG0)

NetID of Primary LU or Application
(NRINPNET)

Network Name of Primary LU or Application
(NRINPLU)

NetID of Secondary LU or Partner LU
(NRINSNET)

Network Name of Secondary LU or Partner LU
(NRINSLU)

Figure 167. Format of NRIPL

762 z/OS V2R1.0 Communications Server: SNA Programming

Request/response header (ISTRH)

This note lists the meanings of the codes in the following table.

Note: Legend:

(Q) Means applicable to a request header

(S) Means applicable to a response header

(B) Means applicable to either a request or response header.

Table 118. Request/response header DSECT (ISTRH)

DSECT label
DSECT EQU
label

Field or EQU
value

For EQU: Meaning when bit
setting on For DS: Meaning
when byte value set Dec offset Hex offset

RH XL3

RHF0 X RH byte 0 0 0

RHQS X'80' RH type indicator:

(Q) 0 request

(S) 1 response

0 0

RHQSREQ X'00' Request unit 0 0

RHQSRSP X'80' Response unit 0 0

RHRUCAT X'60' RU category indicator:

(B) 00 FM data

(B) 01 network control

(B) 10 data flow control

(B) 11 session control

0 0

RHFMD X'00' Function management data RU 0 0

RHNC X'20' Network control RU 0 0

RHDFC X'40' Data flow control RU 0 0

RHSC X'60' Session control RU 0 0

RHF0B3 X'10' (B) Reserved 0 0

Byte 0 1 2

Control Block: RH

RHF0
(type, category, format,
sense data included,
and chaining indicators)

RHF1
(response and
pacing indicators)

RHF2
(bracket, change direction,
enciphered/padded-data
indicators)

Figure 168. Format of the RH

Appendix E. Control block formats and DSECTs 763

Table 118. Request/response header DSECT (ISTRH) (continued)

DSECT label
DSECT EQU
label

Field or EQU
value

For EQU: Meaning when bit
setting on For DS: Meaning
when byte value set Dec offset Hex offset

RHFI X'08' Format indicator:

(B) 0 no FM header, or
character coded
network services RU

(B) 1 FM header included,
or field formatted
network services RU

0 0

RHSDI X'04' Sense data included indicator:

(B) 0 sense data not
included

(B) 1 sense data included

0 0

RHBCI X'02' Begin chain indicator:

(Q) 0 not beginning of
chain

(B) 1 beginning of chain

0 0

RHECI X'01' End chain indicator:

(Q) 0 not end of chain

(B) 1 end of chain

0 0

RHF1 X RH byte 1 1 1

RHDR1 X'80' Definite response 1 indicator:

(Q) 0 definite response 1
not required

(Q) 1 definite response 1
required

(S) 0 not definite response
1

(S) 1 definite response

1 1

RHCI X'40' Compression indicator:

(Q) 0 RU is not compressed

(Q) 1 RU is compressed

(S) reserved

1 1

RHDR2 X'20' Definite response 2 indicator:

(Q) 0 definite response 2
not required

(Q) 1 definite response 2
required

(S) 0 not definite response
2

(S) 1 definite response 2

1 1

764 z/OS V2R1.0 Communications Server: SNA Programming

Table 118. Request/response header DSECT (ISTRH) (continued)

DSECT label
DSECT EQU
label

Field or EQU
value

For EQU: Meaning when bit
setting on For DS: Meaning
when byte value set Dec offset Hex offset

RHERI X'10' Exception response indicator:

(Q) 0 definite or no
response required

(Q) 1 exception response
required

1 1

RHRTI X'10' (S) 0 positive response (S) 1
negative response

1 1

RHF1B4 X'08' (B) Reserved 1 1

RHRLWS X'04' Request larger window
indicator:

(Q) 0 larger pacing window
not requested

(Q) 1 larger pacing window
requested

(S) reserved

1 1

RHQRI X'02' Queued response indicator:

(B) 0 the response can flow
ahead of the requests

(B) 1 the response cannot
flow ahead of the
requests

Note: The value of this field is
set on a request and checked
on the associated response.

1 1

RHPI X'01' Pacing indicator:

(B) Reserved for VTAM
use

1 1

RHF2 X RH byte 2 2 2

RHBBI X'80' Begin bracket indicator:

(Q) 0 not begin bracket

(Q) 1 begin bracket

(S) Reserved

2 2

RHEBI X'40' End bracket indicator:

(Q) 0 not end bracket

(Q) 1 end bracket

(S) Reserved

2 2

RHCDI X'20' Change direction indicator:

(Q) 0 not change direction

(Q) 1 change direction

(S) Reserved

2 2

RHF2B3 X'10' (B) Reserved 2 2

Appendix E. Control block formats and DSECTs 765

Table 118. Request/response header DSECT (ISTRH) (continued)

DSECT label
DSECT EQU
label

Field or EQU
value

For EQU: Meaning when bit
setting on For DS: Meaning
when byte value set Dec offset Hex offset

RHCSI X'08' Code selection indicator:

(Q) 0 code 0

(Q) 1 code 1

(S) Reserved

2 2

RHEDI X'04' Enciphered data indicator:

(Q) 0 data is not enciphered

(Q) 1 data is enciphered

(S) Reserved

2 2

RHPDI

RHPRI X'02' Padded data indicator:

(B) Reserved for VTAM
use

2 2

RHCEBI X'01' Conditional end bracket
indicator:

(Q) 0 not conditional end
bracket

(Q) 1 conditional end
bracket

(S) Reserved

2 2

RPL (IFGRPL)

766 z/OS V2R1.0 Communications Server: SNA Programming

Displacement Control Block: RPL

ECB-EXIT
(RPLECB)

See ISTUSFBC

See ISTRH

CHAIN
(RPLCHN)

ACB
(RPLDACB)

AREALEN
(RPLBUFL)

RECLEN
(RPLRLEN)

OPTCD
(RPLOPT1)

OPTCD
(RPLOPT5)

OPTCD
(RPLOPT7)

OPTCD
(RPLOPT6)

OPTCD
(RPLOPT8)

OPTCD
(RPLOPT4)

(RPLURH)

(RPLCNTDF) (RPLCNTSC)

PARMS
(RPLSONCD)

NIB-ARG
(RPLARG)

AREA
(RPLAREA)

POST-RESPOND
(RPLOVTFL2)

OBSQVAL
(RPLOBSQV)

IBSQVAL
(RPLIBSQV)

OBSQAC
(RPLOBSQ)

IBSQACL
(RPLIBSQ)

SEQNO
(RPLSEQNO)

POST
(RPLVTFL1)

RTNCD
(RPLRTNCD)

BRACKETT
CHNGDIR-
CODESEL
(RPLRH3)

STYPE-
RTYPE
(RPLSRTYP)

REQ
(RPLREQ)

RPLLEN
(RPLLEN)

RPLFDBK

CONTROL (RPLCNTRL)
(RPLCNTDC)

Dec

0

4

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

Hex

0

4

8

C

10

14

18

1C

20

24

28

2C

30

34

38

3C

40

FDBK2
(RPLFDB2)

FDBK
(RPLFDB3)

Figure 169. Format of the RPL (Part 1 of 2)

Appendix E. Control block formats and DSECTs 767

Note: For ISTUSFBC, see Table 120 on page 774. For ISTRH, see Table 118 on page
763.

Table 119. RPL DSECT (IFGRPL)

Parameter
on
RPL-based
macro

DSECT
label

DSECT EQU
label

Field or
EQU
value

For EQU: Meaning when bit setting on For
DS: Meaning when byte value set

Offset

Dec Hex

AAREA RPLAAREA — A Alternate data area address 76 4C

AAREALN RPLAARLN — F Alternate data area length 80 50

ACB RPLDACB — A ACB address 24 18

AREA RPLAREA — A Data area address 32 20

AREALEN RPLBUFL — F Data area length 52 34

ARECLEN RPLARCLN — F Data length 84 54

ARG RPLEXTDS RPLNIB X'04' RPLARG points to an NIB 68 44

RPLARG — XL4 NIB address if RPLEXTDS=RPLNIB; CID
otherwise (see NIB parameter)

36 24

BRACKET RPLRH3 RPLBB X'80' BRACKET=BB 16 10

RPLEB X'40' BRACKET=EB 16 10

RPLCEB X'01' BRACKET=CEB 16 10

BRANCH RPLEXTDS RPLBRANC X'02' BRANCH=YES 68 44

CHAIN RPLCHN RPLFIRST X'80' CHAIN=FIRST 18 12

RPLMIDLE X'40' CHAIN=MIDDLE 18 12

Displacement Control Block: RPL (cont'd)

OPTCD
(RPLOPT9)

OPTCD
(RPLOPT11)

OPTCD
(RPLOPT10)

OPTCD
(RPLOPT12)

(RPLSAV13)

SIDDATA
(RPLSIGDA)

AAREA
(RPLAAREA)

AAREALN
(RPLAARLN)

ARECLEN
(RPLARCLN)

SSENSEI
(RPLSSEI)

SSENSEO
(RPLSSEO)

SSENSMI
(RPLSSMI)

SSENSMO
(RPLSSMO)

USENSEI
(RPLUSNSI)

USENSEO
(RPLUSNSO)

USER
(RPLUSFLD)

(RPLEXTDS) (RPLACTIV)

(RPLFDBK2)

(RPLOSENS)

Dec

68

72

76

80

84

88

92

96

100

104

108

112

Hex

44

48

4C

50

54

58

5C

60

64

68

6C

70

Figure 170. Format of the RPL (Part 2 of 2)

768 z/OS V2R1.0 Communications Server: SNA Programming

Table 119. RPL DSECT (IFGRPL) (continued)

Parameter
on
RPL-based
macro

DSECT
label

DSECT EQU
label

Field or
EQU
value

For EQU: Meaning when bit setting on For
DS: Meaning when byte value set

Offset

Dec Hex

RPLLAST X'20' CHAIN=LAST 18 12

RPLONLY X'10' CHAIN=ONLY 18 12

CHNGDIR RPLRH3 RPLCMD X'20' CHNGDIR=CMD 16 10

CODESEL RPLRH3 RPLCS1 X'08' CODESEL=ALT 16 10

CONTROL
(settings
mutually
exclusive)

RPLCNTRL — XL3 Request unit control codes 21 15

RPLCNTDF RPLDATA X'80' CONTROL=DATA 21 15

RPLCNCEL X'40' CONTROL=CANCEL 21 15

RPLQC X'20' CONTROL=QC 21 15

RPLQEC X'10' CONTROL=QEC 21 15

RPLCHASE X'08' CONTROL=CHASE 21 15

RPLRELQ X'04' CONTROL=RELQ 21 15

RPLCNTDC RPLBID X'80' CONTROL=BID 22 16

RPLRTR X'40' CONTROL=RTR 22 16

RPLLUS X'20' CONTROL=LUS 22 16

RPLSIGNL X'10' CONTROL=SIGNAL 22 16

RPLTBIND X'08' CONTROL=BIND 22 16

RPLTUNBD X'04' CONTROL=UNBIND 22 16

RPLSBI X'02' CONTROL=SBI 22 16

RPLBIS X'01' CONTROL=BIS 22 16

RPLCNTSC RPLSDT X'80' CONTROL=SDT 23 17

RPLCLEAR X'40' CONTROL=CLEAR 23 17

RPLSTSN X'20' CONTROL=STSN 23 17

RPLSHUTD X'10' CONTROL=SHUTD 23 17

RPLSHUTC X'08' CONTROL=SHUTC 23 17

RPLRQR X'04' CONTROL=RQR 23 17

RPLRSHUT X'02' CONTROL=RSHUTD 23 17

RPLSWTCH X'01' CONTROL=SWITCH 23 17

CRYPT RPLEXTDS RPLCRYP X'08' CRYPT=YES 68 44

ECB RPLOPT1 RPLECBIN X'01' External ECB used 40 28

RPLECB — A Address of external ECB if RPLOPT1 equal
to RPLECBIN and RPLEXTDS equal to
RPLNEXIT and RPLEXTDS not equal to
RPLEXIT (see EXIT parameter)

8 8

EXIT RPLEXTDS RPLNEXIT X'40' No RPL exit specified 68 44

RPLEXIT X'20' RPL exit specified 68 44

Appendix E. Control block formats and DSECTs 769

Table 119. RPL DSECT (IFGRPL) (continued)

Parameter
on
RPL-based
macro

DSECT
label

DSECT EQU
label

Field or
EQU
value

For EQU: Meaning when bit setting on For
DS: Meaning when byte value set

Offset

Dec Hex

RPLECB — A Address of RPL exit if RPLEXTDS not equal
to RPLNEXIT and RPLEXTDS equal to
RPLEXIT and RPLOPT1 not equal to
RPLECBIN (see ECB parameter)

8 8

FDBK RPLFDB3 — XL1 Feedback data flags 15 F

FDBK2 RPLFDB2 — XL1 Feedback reason code (see Appendix B,
“Return codes and sense fields for
RPL-based macroinstructions,” on page 651)

14 E

IBSQAC RPLIBSQ RPLISET X'80' IBSQAC=SET 65 41

RPLITST X'40' IBSQAC=TESTSET 65 41

RPLIRSET X'20' IBSQAC=RESET 65 41

RPLIIGN X'10' IBSQAC=IGNORE 65 41

RPLIPOS X'08' IBSQAC=TESTPOS 65 41

RPLINEG X'04' IBSQAC=TESTNEG 65 41

RPLIINV X'02' IBSQAC=INVALID 65 41

IBSQVAL RPLIBSQV — XL2 STSN inbound sequence number 62 3E

NIB RPLEXTDS RPLNIB X'04' RPLARG points to an NIB 68 44

RPLARG — XL4 NIB address if RPLEXTDS=RPLNIB; CID
otherwise (see ARG parameter)

36 24

OBSQAC RPLOBSQ RPLOSET X'80' OBSQAC=SET 64 40

RPLOTST X'40' OBSQAC=TESTSET 64 40

RPLORSET X'20' OBSQAC=RESET 64 40

RPLOIGN X'10' OBSQAC=IGNORE 64 40

RPLOPOS X'08' OBSQAC=TESTPOS 64 40

RPLONEG X'04' OBSQAC=TESTNEG 64 40

RPLOINV X'02' OBSQAC=INVALID 64 40

OBSQVAL RPLOBSQV — XL2 STSN outbound sequence number 60 3C

OPTCD RPLOPT1 RPLASY X'08' OPTCD=ASY 40 28

OPTCD RPLOPT4 RPLPERS X'80' SETLOGON OPTCD=PERSIST 43 2B

RPLNPERS X'40' SETLOGON OPTCD=NPERSIST 43 2B

RPLINQPS X'20' INQUIRE OPTCD=PERSESS 43 2B

RPLOPRES X'10' OPNDST OPTCD=RESTORE 43 2B

RPLSLTMR X'08' PSTIMER specified on SETLOGON 43 2B

RPLNQN X'04' INQUIRE OPTCD=NQN 43 2B

RPLEXTOP X'01' RPLOPT4 byte holds an extended OPTCD
value, see RPLOPT4X description for byte
value meanings instead of other RPLOPT4
bit definitions.

43 2B

RPLOPT4X Extended OPTCD value byte

RPLSTGNA X'01' SETLOGON OPTCD=GNAMEADD 43 2B

770 z/OS V2R1.0 Communications Server: SNA Programming

Table 119. RPL DSECT (IFGRPL) (continued)

Parameter
on
RPL-based
macro

DSECT
label

DSECT EQU
label

Field or
EQU
value

For EQU: Meaning when bit setting on For
DS: Meaning when byte value set

Offset

Dec Hex

RPLSTGND X'03' SETLOGON OPTCD=GNAMEDEL 43 2B

RPLSTGNS X'05' SETLOGON OPTCD=GNAMESUB 43 2B

RPLIQSNM X'21' INQUIRE OPTCD=SESSNAME 43 2B

RPLCGEAF X'41' CHANGE OPTCD=ENDAFFIN 43 2B

RPLCGEF X'43' CHANGE OPTCD=ENDAFFNF 43 2B

RPLSP_NoTimer
_FTOALL

X'81' SETLOGON OPTCD=PERSIST,
(PARMS=(FORCETKO=ALL))

43 2B

RPLSP_NoTimer
_FTONONE

X'83' SETLOGON OPTCD=PERSIST,
(PARMS=(FORCETKO=NONE))

43 2B

RPLSP_NoTimer
_FTOSNGL

X'85' SETLOGON OPTCD=PERSIST,
PARMS=(FORCETKO=SINGLE))

43 2B

RPLSP_NoTimer
_FTOMULT

X'87' SETLOGON OPTCD=PERSIST,
PARMS=(FORCETKO=MULTI))

43 2B

RPLSP_Timer
_FTOALL

X'89' SETLOGON OPTCD=PERSIST,
PARMS=(FORCETKO=ALL,
PSTIMER=value))

43 2B

RPLSP_Timer
_FTONONE

X'8B' SETLOGON OPTCD=PERSIST,
(PARMS=(FORCETKO=NONE,
PSTIMER=value))

43 2B

RPLSP_Timer
_FTOSNGL

X'8D' SETLOGON OPTCD=PERSIST,
PARMS=(FORCETKO=SINGLE,
PSTIMER=value))

43 2B

RPLSP_Timer
_FTOMULT

X'8F' SETLOGON OPTCD=PERSIST,
PARMS=(FORCETKO=MULTI,
PSTIMER=value))

43 2B

RPLOPT5 RPLDLGIN X'80' OPTCD=CS 56 38

RPLTNFY X'40' PARMS=THRDPTY= NOTIFY 56 38

RPLPSOPT X'20' OPTCD=PASS 56 38

RPLNODE X'02' OPTCD=ANY 56 38

RPLCNDCS X'01' OPTCD=CONDCS (used along with
RPLDLGIN: RPLDLGIN = 1 and
RPLCNDCS = 1 indicates Conditional CS
mode, RPLDLGIN = 1 and RPLCNDCS = 0
indicates normal CS mode)

56 38

RPLOPT6 RPLCOND X'10' OPTCD=COND 57 39

RPLNCOND X'08' OPTCD=UNCOND 57 39

RPLXBUFL X'04' OPTCD=XBUFLST 57 39

RPLBUFFL X'02' OPTCD=BUFFLST 57 39

RPLCONTC X'01' OPTCD=CONTCHN 57 39

RPLOPT7 RPLCNALL X'80' OPTCD=CONALL 58 3A

RPLCNANY X'40' OPTCD=CONANY 58 3A

RPLQOPT X'10' OPTCD=Q 58 3A

RPLRLSOP X'04' OPTCD=RELRQ 58 3A

Appendix E. Control block formats and DSECTs 771

Table 119. RPL DSECT (IFGRPL) (continued)

Parameter
on
RPL-based
macro

DSECT
label

DSECT EQU
label

Field or
EQU
value

For EQU: Meaning when bit setting on For
DS: Meaning when byte value set

Offset

Dec Hex

RPLLMPEO X'01' OPTCD=LMPEO 58 3A

RPLOPT8 RPLODACQ X'80' OPTCD=ACQUIRE 59 3B

RPLODACQ X'40' OPTCD=ACCEPT 59 3B

RPLUSRRH X'01' OPTCD=USERRH 59 3B

RPLOPT9 RPLLOGON X'80' OPTCD=LOGONMSG 96 60

RPLDEVCH X'40' OPTCD=DEVCHAR 96 60

RPLTERMS X'20' OPTCD=TERMS 96 60

RPLCOUNT X'10' OPTCD=COUNTS 96 60

RPLAPPST X'08' OPTCD=APPSTAT 96 60

RPLINQST X'04' OPTCD=STATUS 96 60

RPLCIDE X'02' OPTCD=CIDXLATE 96 60

RPLTOPL X'01' OPTCD=TOPLOGON 96 60

RPLOPT10 RPLSPARM X'20' OPTCD=SESSPARM 97 61

RPLTSKY X'10' OPTCD=SESSKEY 97 61

RPLUNBND X'04' OPTCD=UNBIND 97 61

RPLSONOP X'02' OPTCD=SONCODE 97 61

RPLSENOP X'01' OPTCD=SENSE 97 61

RPLOPT11 RPLQUIES X'80' OPTCD=QUIESCE 98 62

RPLSTART X'40' OPTCD=START 98 62

RPLSTOP X'20' OPTCD=STOP 98 62

RPLHOLD X'10' OPTCD=HOLD 98 62

RPLMTS X'04' OPTCD=MTS 98 62

RPLTERMQ X'02' OPTCD=TERMQ 98 62

RPLKPSRB X'01' OPTCD=KEEPSRB 98 62

RPLOPT12 RPLRSPQD X'80' OPTCD=RSPQUED 99 63

RPLKEEP X'40' OPTCD=KEEP 99 63

RPLTRUNC X'20' OPTCD=TRUNC 99 63

RPLNIBTK X'10' OPTCD=NIBTK 99 63

RPLQSESS X'08' OPTCD=QSESSLIM 99 63

RPLQNOTE X'04' OPTCD=QNOTENAB 99 63

RPLQALL X'02' OPTCD=QALL 99 63

RPLFMHDR X'01' OPTCD=FMHDR 99 63

PARMS RPLSONCD XL1 PARMS=SONCODE=code UNBIND type
code (Son code)

31 1F

POST RPVTFL1 RPLRSPNM X'02' At least one response on normal flow
inbound response queue

19 13

RPLRSPQR X'01' At least one QRI response on normal flow
inbound data queue.

19 13

POST RPLVTFL2 RPLSCHED X'80' POST=SCHED 20 14

772 z/OS V2R1.0 Communications Server: SNA Programming

Table 119. RPL DSECT (IFGRPL) (continued)

Parameter
on
RPL-based
macro

DSECT
label

DSECT EQU
label

Field or
EQU
value

For EQU: Meaning when bit setting on For
DS: Meaning when byte value set

Offset

Dec Hex

RECLEN RPLRLEN — A RECLEN value 48 30

REQ RPLREQ RPLQUISE X'15' SETLOGON 2 2

RPLSMLGO X'16' SIMLOGON 2 2

RPLOPNDS X'17' OPNDST 2 2

RPLCHNG X'19' CHANGE 2 2

RPLINQIR X'1A' INQUIRE 2 2

RPLINTPT X'1B' INTRPRET 2 2

RPLCLOSE X'1F' CLSDST 2 2

RPLSNDCD X'22' SEND 2 2

RPLRCVCD X'23' RECEIVE 2 2

RPLRSRCD X'24' RESETSR 2 2

RPLSSCCD X'25' SESSIONC 2 2

RPLSDCMD X'27' SENDCMD 2 2

RPLRVCMD X'28' RCVCMD 2 2

RPLTREQS X'29' REQSESS 2 2

RPLTOPNS X'2A' OPNSEC 2 2

RPLTRMS X'2C' TERMSESS 2 2

RPL6APPC X'62' APPCCMD 2 2

RESPOND RPLVTFL2 RPLQRI X'08' RESPOND=QRESP 20 14

RPLEX X'04' RESPOND=EX 20 14

RPLNFME X'02' RESPOND=NFME 20 14

RPLRRN X'01' RESPOND=RRN 20 14

RPLLEN RPLLEN — XL1 RPL length 3 3

RTNCD RPLRTNCD — XL1 RPL return code (see Appendix B, “Return
codes and sense fields for RPL-based
macroinstructions,” on page 651 and
ISTUSFBC DSECT in this appendix)

13 D

RTYPE RPLSRTYP RPLRRESP X'08' RTYPE=RESP 17 11

RPLNFSYN X'04' RTYPE=NDFSYN 17 11

RPLDFASY X'02' RTYPE=DFASY 17 11

SEQNO RPLSEQNO — XL2 Sequence number 66 42

RPLEXTDS RPLXSRV X'01' Entire XBUFLST accepted by VTAM 68 44

SIGDATA RPLSIGDA — XL4 Signal data 108 6C

SSENSEI RPLSSEI RPLPATHI X'80' SSENSEI=PATH 88 58

RPLCPMI X'40' SSENSEI=CPM 88 58

RPLSTATI X'20' SSENSEI=STATE 88 58

RPLFII X'10' SSENSAI=FI 88 58

RPLRRI X'08' SSENSEI=RR 88 58

SSENSEO RPLSSEO RPLCPMO X'40' SSENSEO=CPM 100 64

Appendix E. Control block formats and DSECTs 773

Table 119. RPL DSECT (IFGRPL) (continued)

Parameter
on
RPL-based
macro

DSECT
label

DSECT EQU
label

Field or
EQU
value

For EQU: Meaning when bit setting on For
DS: Meaning when byte value set

Offset

Dec Hex

RPLSTATO X'20' SSENSEO=STATE 100 64

RPLFIO X'10' SSENSEO=FI 100 64

RPLRRO X'08' SSENSEO=RR 100 64

SSENSMI RPLSSMI — XL1 System sense modifier input 89 59

SSENSMO RPLSSMO — XL1 System sense modifier output 101 65

STYPE RPLSRTYP RPLSRESP X'80' STYPE=RESP 17 11

USENSEI RPLUSNSI — XL2 User sense input 90 5A

USENSEO RPLUSNSO — XL2 User sense output 102 66

USER RPLUSFLD — XL4 User data field 92 5C

RPLURH — XL3 User RH 28 1C

RPLACTIV — X'FF' RPL is active (cleared by CHECK macro) 69 45

RPL RTNCD-FDB2-FDBK (ISTUSFBC)
Table 120. RPL's RTNCD-FDB2-FDBK DSECT (ISTUSFBC)

Field to which
byte values
apply

DSECT RTNCD
value

DSECT EQU
label

Field or
EQU
value

For EQU: Meaning when
bit setting on For DS:
Meaning when byte value
set

Displacement

in RPL

Dec Hex

RTNCD
(RPLRTNCD in
IFGRPL)

— USFAOK X'00' Normal or conditional
completion

13 D

USFXORDC X'04' Exception condition 13 D

USFRESSU X'08' Retriable completion 13 D

USFDAMGE X'0C' Data integrity damage 13 D

USFENVER X'10' Environment error 13 D

USFLOGIC X'14' Logic error 13 D

USFRLGIC X'18' Logic error; RPL not valid 13 D

FDB2 (RPLFDB2
in IFGRPL)

X'00' USFAOOK X'00' Normal completion or
request accepted

14 E

USFRCWNP X'01' Reset conditional was
deactivated

14 E

USFRCDPR X'02' Reset conditional was
successful– Read-ahead
data present

14 E

USFYTCTN X'03' Yielded to contention 14 E

USFYTCTL X'04' Yielded to
contention–Error Lockset

14 E

USFATSFI X'05' Input area too small 14 E

USFNOIN X'06' No input available 14 E

774 z/OS V2R1.0 Communications Server: SNA Programming

Table 120. RPL's RTNCD-FDB2-FDBK DSECT (ISTUSFBC) (continued)

Field to which
byte values
apply

DSECT RTNCD
value

DSECT EQU
label

Field or
EQU
value

For EQU: Meaning when
bit setting on For DS:
Meaning when byte value
set

Displacement

in RPL

Dec Hex

USFIIINA X'07' INQUIRE information not
available

14 E

USFDSTIU X'08' OPNDST
OPTCD=ACQUIRE
SIMLOGON, or CLSDST
OPTCD=PASS failed

14 E

USFNLGFA X'09' OPNDST
OPTCD=ACCEPT
denied–no queued CINITs
or OPNDST
OPTCD=RESTORE
denied–no sessions
restored

14 E

USFANC X'0A' Application program not
connectable

14 E

USFINQPS X'0D' Input area too small 14 E

USFEXRQ X'03' Exception request received 14 E

USFEXRS X'04' Negative response received 14 E

USFNQN X'05' Symbolic name known by
network-qualified name
only

14 E

X'08' USFSTALF X'00' Temporary storage
shortage

14 E

X'0C' USFDVUNS X'01' Reserved 14 E

USFUNTRM X'02' Reserved 14 E

USFRECIP X'07' Reserved 14 E

USFRTRAF X'08' Reserved 14 E

USFQOPDC X'09' Reserved 14 E

USFUSRES X'0A' Request canceled by
RESETSR

14 E

USFCLOCC X'0B' Request canceled because
the session has been
terminated

14 E

USFCLRED X'0C' Request canceled by
CLEAR request

14 E

USFPREXC X'0D' Prior exception in chain
detected

14 E

USFPOQLE X'0E' Request cancelled - POA
queue limit exceeded

14 E

X'10' USFTANAV X'00' LU not available,
application program status
not available, or queued —
BIND not available

14 E

USFSBFAL X'01' OPNDST failed 14 E

USFTAPUA X'02' LU inhibited for sessions 14 E

Appendix E. Control block formats and DSECTs 775

Table 120. RPL's RTNCD-FDB2-FDBK DSECT (ISTUSFBC) (continued)

Field to which
byte values
apply

DSECT RTNCD
value

DSECT EQU
label

Field or
EQU
value

For EQU: Meaning when
bit setting on For DS:
Meaning when byte value
set

Displacement

in RPL

Dec Hex

USFVTHAL X'03' HALT issued 14 E

USFILRS X'04' Reserved 14 E

USFPCF X'05' Request or Response
encryption failure

14 E

USFANS X'06' Reserved 14 E

USFVOFOC X'07' Request canceled by VARY
command

14 E

USFUTSCR X'09' Unconditional Terminate
or character-coded logoff
received

14 E

USFSYERR X'0A' VTAM error 14 E

USFVTMNA X'0D' VTAM inactive for your
ACB

14 E

USFABNDO X'0E' Request abnormally
terminated

14 E

USFVTBFO X'0F' Buffers filled 14 E

USFCTERM X'10' Reserved 14 E

USFOSDTF X'11' SDT failure on OPNDST 14 E

USFMFF X'12' Macroinstruction failure,
sense included

14 E

USF6APRJ X'13' Attempt to start 6.2
session; request rejected

14 E

USA6APST X'14' Attempt to start 6.2
session; pending session
terminated

14 E

USF6APIS X'15' Must issue APPCCMD 14 E

USFNONSW X'16' Switched operation
attempted on non-switched
device

14 E

USFNOCRY X'17' Reject encryption request;
session does not support
cryptography

14 E

USFNOSES X'18' XES not accessible 14 E

USFNOSYS X'19' Application not resident in
sysplex node

14 E

USFXMEMS X'1A' Suspend failure 14 E

USFXMEMR X'1B' Resume failure 14 E

USFOSLVL X'1C' Operating system level
does not support function

14 E

USFSECME X'1D' Security manager error 14 E

776 z/OS V2R1.0 Communications Server: SNA Programming

Table 120. RPL's RTNCD-FDB2-FDBK DSECT (ISTUSFBC) (continued)

Field to which
byte values
apply

DSECT RTNCD
value

DSECT EQU
label

Field or
EQU
value

For EQU: Meaning when
bit setting on For DS:
Meaning when byte value
set

Displacement

in RPL

Dec Hex

X'14' USFNONVR X'00' VSAM request 14 E

USFNOTAS X'01' Reserved 14 E

USFEXTAZ X'02' Zero EXIT field 14 E

USFEXTEZ X'03' Zero ECB field 14 E

USFCRPLN X'04' Inactive RPL checked 14 E

USFCBERR X'10' Control block not valid 14 E

USFRNORT X'11' RTYPE not valid 14 E

USFCLSIP X'12' CLSDST in progress 14 E

USFCIDNG X'13' CID not valid 14 E

USFIDA X'1E' Data address or length not
valid

14 E

USFJTOJ X'20' Reserved 14 E

USFRILCP X'22' Reserved 14 E

USFCRIRT X'23' Request type not valid 14 E

USFASIDE X'24' Request not valid for
address space

14 E

USFIDAEL X'31' Reserved 14 E

USFDFIBH X'38' Reserved 14 E

USFQSCIE X'3A' Reserved 14 E

USFREXAL X'3B' NFME-NRRN response 14 E

USFSDNP X'3C' Previous macroinstruction
outstanding

14 E

USFSCEM X'3D' Reserved 14 E

USFSCEF X'3F' Reserved 14 E

USFSINVC X'40' CONTROL not valid 14 E

USFSDFR X'41' Data traffic not allowed 14 E

USFSNOS X'42' STYPE for SESSIONC not
valid

14 E

USFSNOUT X'43' Reserved 14 E

USFLIMEX X'44' RESPLIM exceeded 14 E

USFSSEQ X'45' Reserved 14 E

USFSINVS X'46' Reserved 14 E

USFSINVR X'47' 3270 SEND option not
valid

14 E

USFINVRT X'48' Session control protocol
violation

14 E

USFACINV X'49' STSN action/result code
not valid

14 E

USFICNDN X'4A' Installation-wide exit
routine not available

14 E

Appendix E. Control block formats and DSECTs 777

Table 120. RPL's RTNCD-FDB2-FDBK DSECT (ISTUSFBC) (continued)

Field to which
byte values
apply

DSECT RTNCD
value

DSECT EQU
label

Field or
EQU
value

For EQU: Meaning when
bit setting on For DS:
Meaning when byte value
set

Displacement

in RPL

Dec Hex

USFILSIN X'4B' INTRPRET sequence or
LOGMODE not valid, or
cryptographic
incompatibility

14 E

USFIICBE X'4C' Search argument for
INQUIRE or INTRPRET
not valid

14 E

USFINTNA X'4D' No interpret table 14 E

USFILNBL X'4E' Use of an NIB list not
valid

14 E

USFINVOT X'4F' OPTCD setting not valid 14 E

USFINVAP X'50' RPL field not valid 14 E

USFAPNAC X'51' OPNDST
OPTCD=ACCEPT and
SIMLOGON not allowed

14 E

USFINVNB X'52' NIB not valid 14 E

USFSYMNU X'53' LU not found 14 E

USFDSTUO X'54' Reserved 14 E

USFNOPAU X'55' One of the following
applies:

v Application program not
authorized

v Application program
name not available

v Task association not
specified

v You must issue a SEND
RPL.

14 E

USFMDINC X'56' Reserved 14 E

USFINVMD X'57' MODE field not valid 14 E

USFBHSUN X'58' Reserved 14 E

USFMDNAU X'59' Reserved 14 E

USFMBHSS X'5A' Reserved 14 E

USFINVLA X'5B' Reserved 14 E

USFDUPND X'5C' Reserved 14 E

USFNPSAU X'5E' CLSDST OPTCD=PASS not
authorized

14 E

USFRSCNO X'5F' Reserved 14 E

USFRSCNC X'60' LU name for CLSDST,
SESSIONC, or OPNSEC
not valid

14 E

USFINVSL X'61' SETLOGON not valid 14 E

USFMCNVD X'62' Reserved 14 E

778 z/OS V2R1.0 Communications Server: SNA Programming

Table 120. RPL's RTNCD-FDB2-FDBK DSECT (ISTUSFBC) (continued)

Field to which
byte values
apply

DSECT RTNCD
value

DSECT EQU
label

Field or
EQU
value

For EQU: Meaning when
bit setting on For DS:
Meaning when byte value
set

Displacement

in RPL

Dec Hex

USFRNOEL X'6C' Exceeded limit on
outstanding RCVCMD
requests

14 E

USFRNONA X'6D' Application program not
authorized

14 E

USFRNOSE X'6E' Syntax error in reply to
VTAM operator message

14 E

USFRNOIA X'6F' SENDCMD/RCVCMD
processor inactive

14 E

USFRNOCL X'70' Program operator closing
ACB with requests
outstanding

14 E

USFRNOCE X'71' Operator command not
valid

14 E

USFPCIT X'72' Reserved 14 E

USFINVSD X'73' Send parameters not valid
for CNM

14 E

USFNRNBD X'74' Negotiable response to
non-negotiable BIND

USFINBRP X'75' Negotiable BIND response
parameters not valid

14 E

USFINBSZ X'76' Negotiable BIND response
size not valid

14 E

USFNFMDQ X'77' FM data RU required 14 E

USFCHINV X'78' Chain specification not
valid

14 E

USFBLINV X'79' Buffer list length not valid 14 E

USFINVRH X'7B' User RH not valid 14 E

USFSCINV X'7C' OPTCD=USERRH not
valid for SESSIONC

14 E

USFHPINV X'7D' XRF protocol error 14 E

USFCOMR X'7E' Conflicting OPTCD on a
macroinstruction request

14 E

USFPRINV X'80' SETLOGON
OPTCD=PERSIST and
NPERSIST not valid

14 E

USFTSPND X'81' TERMSESS without
OPTCD=UNBIND with
session in a pending state

14 E

USFPARML X'82' Parameter length not valid 14 E

USFSFERR X'83' Subfield or combination of
subfields not valid

14 E

USFASDAZ X'84' NIBASDPA = 0; address of
the application's dial
parameter list not valid

14 E

Appendix E. Control block formats and DSECTs 779

Table 120. RPL's RTNCD-FDB2-FDBK DSECT (ISTUSFBC) (continued)

Field to which
byte values
apply

DSECT RTNCD
value

DSECT EQU
label

Field or
EQU
value

For EQU: Meaning when
bit setting on For DS:
Meaning when byte value
set

Displacement

in RPL

Dec Hex

USFSMBRS X'85' Session currently pending
recovery

14 E

USFSESSA X'86' Sessions active or affinities
exist

14 E

USFSNAME X'87' Resource name and
generic name are same

14 E

USFNOSPT X'88' No LU-to-application
association meets the
criteria for CHANGE
OPTCD=ENDAFFIN or
INQUIRE
OPTCD=SESSNAME
issued

14 E

USFNSECM X'89' Not authorized for generic
resources

14 E

USFDIFNM X'8A' Already registered with
different generic name

14 E

USFNOMAP X'8B' Not registered as generic
resource

14 E

USFNETID X'8C' Already registered with
different network ID

14 E

USFCPNAM X'8D' Mapping exists already on
other sysplex node

14 E

USFCNFAC X'8E' Conflicting APPC
capability

14 E

USFVTAMO X'8F' Lu-to-application
association owned by
VTAM

14 E

USFUSVAR X'90' Generic name conflict with
existing USERVAR

14 E

USFGNUNA X'91' TSO generic name conflict 14 E

USFGGNMA X'92' SETLOGON GNAMESUB
failure

14 E

USFSTKNV X'93' STOKEN not valid 14 E

USFNONAM X'94' No Telnet LU name was
passed

14 E

USFNORDT X'95' No applicable RDTE was
found

14 E

USFCNFNM X'96' Conflict with found RDTE 14 E

FDBK (RPLFDB3
in the ISTRPL
DSECT)

X'00' USFIACT X'00' APPL is active 15 F

USFIINA X'04' APPL is inactive 15 F

USFINA X'08' APPL ACB has
MACRF=NLOGON

15 F

780 z/OS V2R1.0 Communications Server: SNA Programming

Table 120. RPL's RTNCD-FDB2-FDBK DSECT (ISTUSFBC) (continued)

Field to which
byte values
apply

DSECT RTNCD
value

DSECT EQU
label

Field or
EQU
value

For EQU: Meaning when
bit setting on For DS:
Meaning when byte value
set

Displacement

in RPL

Dec Hex

USFITNA X'0C' APPL has issued
SETLOGON STOP

15 F

USFIQUIE X'10' APPL has issued
SETLOGON QUIESCE

15 F

USFILACT X'80' LU is active 15 F

USFILINA X'84' LU is not active 15 F

Access-method-support vector list (ISTAMSVL)
Loc Source Statement

000000 ISTAMSVL DSECT MAPPING FOR RESOURCE INFORMATION
* VECTOR LIST POINTED TO BY ACVAMSVL

000000 AMSLLEN DS HL2 TOTAL LENGTH OF VECTORS
000002 AMSLDATA DS 0X VECTOR DATA

*

*** GENERALIZED MAPPING FOR EXAMINING COMMON FIELDS IN ALL ACB **
*** VECTORS IN THE VECTOR LIST POINTED TO BY ACBAMSVL **

000000 ISTAMSVT DSECT VECTOR FIELDS
000000 AMSVTLEN DS X VECTOR LENGTH
000001 AMSVTKEY DS X VECTOR KEY
000002 AMSVTDAT DS 0X VECTOR DATA

*
*

*** ISTAMS01 - maps the RELEASE LEVEL vector. **
*** - Contains identification codes for the access method **
*** product and its version, release, and modification **
*** level. **

000000 ISTAMS01 DSECT RELEASE LEVEL VECTOR
000000 AMS01LEN DS X VECTOR LENGTH
000001 AMS01KEY DS X VECTOR KEY

AMS01KYC EQU X’01’ KEY IS X’01’
000002 AMS01DTA DS 0CL4 VECTOR DATA
000002 AMS01PRD DS CL1 PRODUCT CODE

AMS01VTM EQU C’0’ VTAM PRODUCT CODE
000003 AMS01VER DS CL1 VERSION CODE
000004 AMS01REL DS CL1 RELEASE CODE
000005 AMS01MDF DS CL1 MODIFICATION CODE

*

*** ISTAMS04 - maps the COMPONENT IDENTIFICATION vector. **
*** - This vector may be repeated. **
*** - Each component identification vector contains product **
*** identification information about a major component or **
*** feature of the VTAM licensed program. When multiple **
*** component identification vectors are present, the **
*** first one designates the base VTAM product and later **
*** vectors are features or other major VTAM components. **
*** - The vector data is in the form: C’xxxx-xxxxx-xxx’. **

000000 ISTAMS04 DSECT COMPONENT IDENTIFICATION VECTOR
000000 AMS04LEN DS X VECTOR LENGTH
000001 AMS04KEY DS X VECTOR KEY

AMS04KYC EQU X’04’ KEY IS X’04’

Appendix E. Control block formats and DSECTs 781

000002 AMS04DTA DS CL14 VECTOR DATA
*

*** ISTAMS05 - maps the FUNCTION LIST vector. **
*** - The vector data is a variable-length bit string, in **
*** which each bit corresponds to a particular VTAM **
*** function. If a bit is on, the corresponding function **
*** is present in the executing release of VTAM. If a **
*** bit is off, the function is not available. If the **
*** vector is not present or if the bit string is shorter **
*** than expected, you may assume that the missing bits **
*** are zero and their corresponding functions are not **
*** available. **
*** - These indicator bits correspond to the compile-time **
*** global indicator bits in the ISTGLBAL macro. **

000000 ISTAMS05 DSECT FUNCTION LIST VECTOR
000000 AMS05LEN DS X VECTOR LENGTH
000001 AMS05KEY DS X VECTOR KEY

AMS05KYC EQU X’05’ KEY IS X’05’
000002 AMS05DTA DS 0X VECTOR DATA
000002 AMS05DT0 DS X BYTE 0 OF INDICATORS

AMS05B00 EQU X’80’ NIB ENCR AND RPL CRYPT
* (CRYPTOGRAPHY)
AMS05B01 EQU X’40’ ACB PARMS=NIB (COMMUNICATION
* NETWORK MANAGEMENT INTERFACE)
AMS05B02 EQU X’20’ MULTIPLE-ADDRESS-SPACE
* APPLICATIONS PROGRAMS
AMS05B03 EQU X’10’ AUTHORIZED PATH FOR
* COMMUNICATIONS MACROS
AMS05B04 EQU X’08’ AUTHORIZED PATH FOR ALL
* RPL-BASED MACROS
AMS05B05 EQU X’04’ SRBEXIT (ON APPL DEFINITION
* STATEMENT)
AMS05B06 EQU X’02’ SONSCIP (ON APPL DEFINITION
* STATEMENT)
AMS05B07 EQU X’01’ VTAMFRR (ON APPL DEFINITION
* STATEMENT)
*

000003 AMS05DT1 DS X BYTE 1 OF INDICATORS
AMS05B10 EQU X’80’ SSCP TRACKING OF DEVICE-LU
* SESSION CAPABILITY VIA NOTIFY
* (ENABLED/DISABLED/INHIBITED)
AMS05B11 EQU X’40’ RPL OPTCD=LMPEO
AMS05B12 EQU X’20’ RPL OPTCD=BUFFLST
AMS05B13 EQU X’10’ RPL OPTCD=USERRH
AMS05B14 EQU X’08’ ACB PARMS=USERFLD
AMS05B15 EQU X’04’ RPL BRACKET=CEB
AMS05B16 EQU X’02’ APPLICATION PROGRAM ASSIGNMENT OF
* SEQUENCE NUMBERS FOR EXPEDITED DFC
AMS05B17 EQU X’01’ RESOURCE-IDENTIFICATION VECTOR LIST
*

000004 AMS05DT2 DS X BYTE 2 OF INDICATORS
AMS05B20 EQU X’80’ ACCESS-METHOD-SUPPORT VECTOR LIST
AMS05B21 EQU X’40’ RETURN OF SYSTEM RESPONSE BYTE AND
* EXTENDED RESPONSE BYTE FOR BSC 3270
* TERMINALS ATTACHED TO ACF/NCP
AMS05B22 EQU X’20’ INTRPRET
AMS05B23 EQU X’10’ VTAM API IS XRF CAPABLE
AMS05B24 EQU X’08’ SENSE ON -RSP(CINIT). CLSDST
* OPTCD=(RELEASE,SENSE)
AMS05B25 EQU X’04’ UNBIND SON CODE AND SENSE.
* CLSDST OPTCD=(RELEASE,SONCODE),
* TERMSESS OPTCD=(UNBIND,SONCODE)
AMS05B26 EQU X’02’ HOLD/RELEASE LOGON/SCIP EXIT FOR
* SESSION SETUP.
* SETLOGON OPTCD=(START|HOLD)

782 z/OS V2R1.0 Communications Server: SNA Programming

AMS05B27 EQU X’01’ CINIT - NETWORK ADDRESSES IN
* VECTOR KEY X’15’
*

000005 AMS05DT3 DS X BYTE 3 OF INDICATORS
AMS05B30 EQU X’80’ 31-BIT API
AMS05B31 EQU X’40’ NOTIFICATION OF QUEUED RESPONSES
* SUPPORTED. SEND OPTCD=(RSPQUED)
AMS05B32 EQU X’20’ APPC IS SUPPORTED
AMS05B33 EQU X’10’ ADD SUPPORT FOR USERVAR
AMS05B34 EQU X’08’ VCNS API SUPPORT FOR X.25
AMS05B35 EQU X’04’ VCNS API SUPPORT FOR TOKEN BUS,
* TOKEN RING,
AMS05B36 EQU X’02’ CROSS-MEMORY API IS SUPPORTED
AMS05B37 EQU X’01’ KEEPFRR SUPPORT (ON ACB STATEMENT)
*

000006 AMS05DT4 DS X BYTE 4 OF INDICATORS
AMS05B40 EQU X’80’ SRBEXIT SUPPORT (ON ACB STATEMENT)
AMS05B41 EQU X’40’ PERSISTENT LU-LU SESSIONS
AMS05B42 EQU X’20’ V.25BIS SUPPORT
AMS05B43 EQU X’10’ VTAM/NPM INTERFACE SUPPORT
AMS05B44 EQU X’08’ LU6 PLUS TRACKING SUPPORTED
AMS05B45 EQU X’04’ EXITFRR SUPPORT (ON ACB STATEMENT)
* @N1C
AMS05B46 EQU X’02’ BYTE 4, BIT 6: RESERVED
AMS05B47 EQU X’01’ NETWORK QUALIFIED NAMES SUPPORTED
*

000007 AMS05DT5 DS X BYTE 5 OF INDICATORS
AMS05B50 EQU X’80’ MS TRANSPORT SUPPORTED
AMS05B51 EQU X’40’ PERFORMANCE MONITOR INTERFACE
* SUPPORTED
AMS05B52 EQU X’20’ QUEUED SESSION TERMINATION
* SUPPPORTED
AMS05B53 EQU X’10’ VTAM AGENT SUPPORTED
AMS05B54 EQU X’08’ GENERIC RESOURCES SUPPORTED
AMS05B55 EQU X’04’ OPTCD=KEEPSRB FOR SYNC SRB
* SUSPEND/RESUME
AMS05B56 EQU X’02’ APPLICATION VECTORS SUPPORTED ON
* ACB MACRO
AMS05B57 EQU X’01’ SETLOGON GNAMESUB SUPPORTED @D2C
*

000008 AMS05DT6 DS X BYTE 6 OF INDICATORS
AMS05B60 EQU X’80’ FORCETKO Support (on ACB and the
* SETLOGON statements)
AMS05B61 EQU X’40’ USER CV Support
AMS05B62 EQU X’20’ BYTE 6, BIT 2: RESERVED
AMS05B63 EQU X’10’ BYTE 6, BIT 3: RESERVED
AMS05B64 EQU X’08’ BYTE 6, BIT 4: RESERVED
AMS05B65 EQU X’04’ BYTE 6, BIT 5: RESERVED
AMS05B66 EQU X’02’ BYTE 6, BIT 6: RESERVED
AMS05B67 EQU X’01’ BYTE 6, BIT 7: RESERVED
*

000009 AMS05DT7 DS X BYTE 7 OF INDICATORS
AMS05B70 EQU X’80’ BYTE 7, BIT 0: RESERVED
AMS05B71 EQU X’40’ BYTE 7, BIT 1: RESERVED
AMS05B72 EQU X’20’ BYTE 7, BIT 2: RESERVED
AMS05B73 EQU X’10’ BYTE 7, BIT 3: RESERVED
AMS05B74 EQU X’08’ BYTE 7, BIT 4: RESERVED
AMS05B75 EQU X’04’ BYTE 7, BIT 5: RESERVED
AMS05B76 EQU X’02’ BYTE 7, BIT 6: RESERVED
AMS05B77 EQU X’01’ BYTE 7, BIT 7: RESERVED
*

*** ISTAMS06 - maps the LU6.2 SUPPORT FUNCTION LIST vector. **
*** - The vector data is a variable-length string of byte **
*** indicators, each byte corresponding to a particular **
*** LU6.2 function. Each byte will have a value showing **
*** that its corresponding function is either supported, **

Appendix E. Control block formats and DSECTs 783

*** not supported, or supported on a "pass-through" basis.**
*** (Pass-through functions are those which VTAM does not **
*** directly provide but provides the ability for the **
*** application to create the support itself.) **
*** If the vector is not present or if the byte string **
*** is shorter than expected, you may assume that the **
*** missing bytes are zero and their corresponding **
*** functions are not supported. **
*** - These indicator bytes correspond to the compile-time **
*** global indicators in the ISTGAPPC macro. **

000000 ISTAMS06 DSECT LU6.2 SUPPORT FUNCTION LIST VECTOR
000000 AMS06LEN DS X VECTOR LENGTH
000001 AMS06KEY DS X VECTOR KEY

AMS06KYC EQU X’06’ KEY IS X’06’
000002 AMS06DTA DS 0X VECTOR DATA
000002 AMS06D01 DS X 01. CONVERSATIONS BETWEEN TPS

* AT SAME LU
000003 AMS06D02 DS X 02. DELAYED SESSION

* ALLOCATION
000004 AMS06D03 DS X 03. IMMEDIATE SESSION

* ALLOCATION
000005 AMS06D04 DS X 04. SYNC POINT SERVICES
000006 AMS06D05 DS X 05. PROGRAM RECONNECT
000007 AMS06D06 DS X 06. RESERVED
000008 AMS06D07 DS X 07. SESSION-LEVEL LU-LU

* VERIFICATION
000009 AMS06D08 DS X 08. USERID VERIFICATION
00000A AMS06D09 DS X 09. PROGRAM SUPPLIED USERID

* AND PASSWORD
00000B AMS06D10 DS X 10. USERID AUTHORIZATION
00000C AMS06D11 DS X 11. PROFILE VERIFICATION AND

* AUTHORIZATION
00000D AMS06D12 DS X 12. RESERVED
00000E AMS06D13 DS X 13. PROFILE PASSTHROUGH
00000F AMS06D14 DS X 14. PROGRAM-SUPPLIED PROFILE
000010 AMS06D15 DS X 15. SEND PERSISTENT

* VERIFICATION
000011 AMS06D16 DS X 16. RECEIVE PERSISTENT

* VERIFICATION
000012 AMS06D17 DS X 17. PIP DATA
000013 AMS06D18 DS X 18. LOGGING OF DATA IN SYSTEM

* LOG
000014 AMS06D19 DS X 19. FLUSH LU SEND BUFFER
000015 AMS06D20 DS X 20. LUW IDENTIFIER
000016 AMS06D21 DS X 21. PREPARE TO RECEIVE
000017 AMS06D22 DS X 22. LONG LOCKS
000018 AMS06D23 DS X 23. POST ON RECEIPT WITH WAIT
000019 AMS06D24 DS X 24. POST ON RECEIPT WITH TEST

* FOR POSTING
00001A AMS06D25 DS X 25. RECEIVE-IMMEDIATE
00001B AMS06D26 DS X 26. TEST FOR REQUEST-TO-SEND

* RECEIVED
00001C AMS06D27 DS X 27. DATA MAPPING
00001D AMS06D28 DS X 28. FMH APPLICATION-DATA
00001E AMS06D29 DS X 29. GET ATTRIBUTES
00001F AMS06D30 DS X 30. GET CONVERSATION-TYPE
000020 AMS06D31 DS X 31. MAPPED CONVERSATION LU

* SERVICES COMPONENT
000021 AMS06D32 DS X 32. CHANGE_SESSION_LIMIT VERB
000022 AMS06D33 DS X 33. MIN_CONWINNERS_TARGET

* PARAMETER
000023 AMS06D34 DS X 34. RESPONSIBLE(TARGET)

* PARAMETER
000024 AMS06D35 DS X 35. DRAIN_TARGET(NO) PARAMETER
000025 AMS06D36 DS X 36. FORCE PARAMETER
000026 AMS06D37 DS X 37. ACTIVATE_SESSION VERB

784 z/OS V2R1.0 Communications Server: SNA Programming

000027 AMS06D38 DS X 38. DEACTIVATE_SESSION VERB
000028 AMS06D39 DS X 39. LU-PARAMETER VERBS
000029 AMS06D40 DS X 40. LU-LU SESSION LIMIT
00002A AMS06D41 DS X 41. LOCALLY-KNOWN LU NAMES
00002B AMS06D42 DS X 42. UNINTERPRETED LU NAMES
00002C AMS06D43 DS X 43. SINGLE-SESSION

* RE-INITIATION
00002D AMS06D44 DS X 44. ALTERNATE CODE PROCESSING
00002E AMS06D45 DS X 45. MAXIMUM RU SIZE BOUNDS
00002F AMS06D46 DS X 46. SESSION-LEVEL MANDATORY

* CRYPTOGRAPHY
000030 AMS06D47 DS X 47. CONTENTION WINNER

* AUTOMATIC ACTIVATION LIMIT
000031 AMS06D48 DS X 48. CONWINNER SESSION

* ALLOCATION
000032 AMS06D49 DS X 49. ENHANCED SECURITY (SAME)
000033 AMS06D50 DS X 50. SESSION-LEVEL SELECTIVE

* CRYPTOGRAPHY
000034 AMS06D51 DS X 51. CONVERSATION GROUP SUPPORT
000035 AMS06D52 DS X 52. ALLOCATE WHEN SESSION FREE
000036 AMS06D53 DS X 53. FULL-DUPLEX
000037 AMS06D54 DS X 54. APPCCMD VECTOR LISTS
000038 AMS06D55 DS X 55. QUEUED RCVFMH5 @D1A
000039 AMS06D56 DS X 56. HIGH PERFORMANCE DATA

* TRANSFER @D3A
00003A AMS06D57 DS X 57. APPCCMD SENDRCV @D1A
00003B AMS06D58 DS X 58. INTRA-LU CONVERSATIONS @D4A
00003C AMS06D59 DS X 59. PASSWORD SUBSTITUTION @D5A
00003D AMS06D60 DS X 60. EXTENDED SECURITY SENSE @D5A
00003E AMS06D61 DS X 61. DCE SECURITY SERVICES @D6A

Resource-information vector list (ISTRIVL)
Loc Source Statement

000000 ISTRIVL DSECT MAPPING FOR RESOURCE INFORMATION
* VECTOR LIST POINTED TO BY ACBRIVL

000000 RIVLLEN DS HL2 TOTAL LENGTH OF VECTORS
000002 RIVLDATA DS 0X VECTOR DATA

*

*** GENERALIZED MAPPING FOR EXAMINING COMMON FIELDS IN ALL ACB **
*** VECTORS IN THE VECTOR LIST POINTED TO BY ACBRIVL **

000000 ISTRIVVT DSECT VECTOR TEMPLATE @Y3A
000000 RIVVTLEN DS X VECTOR LENGTH @Y3A
000001 RIVVTKEY DS X VECTOR KEY @Y3A
000002 RIVVTDAT DS 0X VECTOR DATA @Y3A

*
*

*** ISTRIV02 - maps the application’s network name vector. **
*** - The name is specified by the name field of the **
*** application definition statement. **
*** - This is obtained from the NAME ON APPL STATEMENT. **

000000 ISTRIV02 DSECT APPLICATION NETWORK NAME VECTOR
* (FROM NAME ON APPL STATEMENT)

000000 RIV02LEN DS X VECTOR LENGTH
000001 RIV02KEY DS X VECTOR KEY

RIV02KYC EQU X’02’ KEY IS X’02’
000002 RIV02DTA DS CL8 VECTOR DATA

*

*** ISTRIV03 - maps the application’s ACB name vector. **
*** - This is supplied by the APPLID operand on the ACB **
*** statement or can be supplied by the operating **
*** system. During OPEN ACB, VTAM will search for the **

Appendix E. Control block formats and DSECTs 785

*** application’s characteristics by matching the ACB **
*** APPLID value to an RDTE with the application’s **
*** ACBNAME. If ACBNAME was not coded for the **
*** application, VTAM will search for a match with an **
*** RDTE containing the application’s network name. **
*** - This is obtained from the APPLID on ACB MACRO. **

000000 ISTRIV03 DSECT APPLICATION ACB NAME VECTOR
* (FROM APPLID ON ACB MACRO)

000000 RIV03LEN DS X VECTOR LENGTH
000001 RIV03KEY DS X VECTOR KEY

RIV03KYC EQU X’03’ KEY IS X’03’
000002 RIV03DTA DS CL8 VECTOR DATA

*

*** ISTRIV06 - maps the network name in which the host resides. **
*** - This is obtained from the NETID START OPTION. **
*** If NETID start option is not specified, this value **
*** will be blanks. **

000000 ISTRIV06 DSECT NETWORK NAME VECTOR
* (FROM NETID START OPTION)

000000 RIV06LEN DS X VECTOR LENGTH
000001 RIV06KEY DS X VECTOR KEY

RIV06KYC EQU X’06’ KEY IS X’06’
000002 RIV06DTA DS CL8 VECTOR DATA

*

*** ISTRIV07 - maps the SSCP Name vector. **
*** - This is obtained from the SSCPNAME START OPTION **

000000 ISTRIV07 DSECT SSCP NAME VECTOR
* (FROM SSCPNAME START OPTON)

000000 RIV07LEN DS X VECTOR LENGTH
000001 RIV07KEY DS X VECTOR KEY

RIV07KYC EQU X’07’ KEY IS X’07’
000002 RIV07DTA DS CL8 VECTOR DATA

* (DEFAULT IS ’VTAM’)
*

*** ISTRIV08 - maps the Host Subarea PU Network Name vector. **
*** - This is obtained from the HOSTPU START OPTION **
*** If HOSTPU start option is not specified, the name **
*** will default to ’ISTPUS ’. **

000000 ISTRIV08 DSECT HOST SUBAREA PU NETWORK NAME VECTOR
* (FROM HOSTPU START OPTION)

000000 RIV08LEN DS X VECTOR LENGTH
000001 RIV08KEY DS X VECTOR KEY

RIV08KYC EQU X’08’ KEY IS X’08’
000002 RIV08DTA DS CL8 VECTOR DATA

* (DEFAULT IS ’ISTPUS’)
*

*** ISTRIV09 - maps the Host Subarea PU network address vector. **
*** - It contains the network address of the host **
*** subarea PU. **

000000 ISTRIV09 DSECT HOST SUBAREA PU NETWORK ADDRESS
*

000000 RIV09LEN DS X VECTOR LENGTH
000001 RIV09KEY DS X VECTOR KEY

RIV09KYC EQU X’09’ KEY IS X’09’
000002 RIV09DTA DS XL6 VECTOR DATA

*

*** ISTRIV0A - maps the maximum subarea vector. **

786 z/OS V2R1.0 Communications Server: SNA Programming

*** - Contains the maximum subarea number that is valid **
*** for the host’s domain. **
*** - This is obtained from the MAXSUBA START OPTION **

000000 ISTRIV0A DSECT MAXIMUM SUBAREA NUMBER VECTOR
* (FROM MAXSUBA START OPTION)

000000 RIV0ALEN DS X VECTOR LENGTH
000001 RIV0AKEY DS X VECTOR KEY

RIV0AKYC EQU X’0A’ KEY IS X’0A’
000002 RIV0ADTA DS X VECTOR DATA

*

*** ISTRIV0B - maps the LU 6.2 application definition vector. **
*** After the LU 6.2 application program has issued an **
*** open ACB, the LU 6.2 application program may use **
*** this vector to determine the values coded on the **
*** APPL definition statement. **
*** - This is obtained from the APPL STATEMENT PARAMETERS **

000000 ISTRIV0B DSECT LU 6.2 APPL DEFINITION VECTOR
* (FROM APPL STATEMENT PARAMETERS)

000000 RIV0BLEN DS X VECTOR LENGTH
000001 RIV0BKEY DS X VECTOR KEY

RIV0BKYC EQU X’0B’ KEY IS X’0B’
000002 RIV0BDTA DS 0X VECTOR DATA
000002 DS X RESERVED

RIV0BSLV EQU X’C0’ SESSION-LEVEL LU-LU VERIFICATION
* BIT MASK
RIV0BSLR EQU X’80’ REQUIRED
RIV0BSLO EQU X’40’ OPTIONAL
RIV0BSLN EQU X’00’ NONE

000003 RIV0BCLS DS X CONVERSATION SECURITY ACCEPTANCE
RIV0BCLN EQU X’01’ NONE
RIV0BCLC EQU X’02’ CONV
RIV0BCLA EQU X’03’ ALREADYV
RIV0BCLP EQU X’04’ PERSISTV
RIV0BCLV EQU X’05’ AVPV

000004 RIV0BFLG DS X MISCELLANEOUS FLAGS
RIV0BDDL EQU X’80’ DDRAINL=ALLOW
RIV0BDRL EQU X’40’ DRESPL=ALLOW
RIV0BATA EQU X’20’ ATNLOSS=ALL
RIV0BSYP EQU X’10’ SYNCLVL=SYNCPT
RIV0BOPC EQU X’08’ OPERCNOS=ALLOW

000005 DS X RESERVED
000006 RIV0BDSL DS HL2 DSESLIM VALUE
000008 RIV0BDML DS HL2 DMINWNL VALUE
00000A RIV0BDMR DS HL2 DMINWNR VALUE
00000C RIV0BAUT DS HL2 AUTOSES VALUE

*

*** ISTRIV0C - maps the common application definition vector. **
*** After the application program has issued an open for **
*** its ACB, the application may examine this vector to **
*** determine the values coded on the APPL definition **
*** statement for common application defination keywords. **
*** - This is obtained from the APPL STATEMENT PARAMETERS **

000000 ISTRIV0C DSECT APPLICATION DEFINITION VECTOR
* FOR ALL APPLICATION PROGRAMS @N1A
* (FROM APPL STATEMENT PARAMETERS)

000000 RIV0CLEN DS X VECTOR LENGTH @N1A
000001 RIV0CKEY DS X VECTOR KEY @N1A

RIV0CKYC EQU X’0C’ KEY IS X’0C’ @N1A
000002 RIV0CDTA DS 0X VECTOR DATA @N1A
000002 RIV0CAUT DS X AUTHORIZATION SETTINGS @N1A

RIV0CACQ EQU X’80’ AUTH=ACQ @N1A
RIV0CASD EQU X’40’ AUTH=ASDP @N1A

Appendix E. Control block formats and DSECTs 787

RIV0CCNM EQU X’20’ AUTH=CNM @N1A
RIV0CPAS EQU X’10’ AUTH=PASS @N1A
RIV0CPPO EQU X’08’ AUTH=PPO @N1A
RIV0CSPO EQU X’04’ AUTH=SPO @N1A
RIV0CTSO EQU X’02’ AUTH=TSO @N1A
RIV0CVPA EQU X’01’ AUTH=VPACE @N1A

000003 RIV0CFL1 DS X MISCELLANEOUS FLAGS 1 @N1A
RIV0CAPC EQU X’80’ APPC=YES @N1A
RIV0CAUX EQU X’40’ AUTHEXIT=YES @N1A
RIV0CCER EQU X’20’ CERTIFY=YES @N1A
RIV0CDSW EQU X’10’ DSPLYWLD=YES @N1A
RIV0CFSP EQU X’08’ FASTPASS=YES @N1A
RIV0CHAV EQU X’04’ HAVAIL=YES @N1A
RIV0CPAR EQU X’02’ PARSESS=YES @N1A
RIV0CPRS EQU X’01’ PERSIST=MULTI @N1A

000004 RIV0CFL2 DS X MISCELLANEOUS FLAGS 2 @N1A
RIV0CSSL EQU X’80’ SESSLIM=YES @N1A
RIV0CSON EQU X’40’ SONSCIP=YES @N1A
RIV0CSRX EQU X’20’ SRBEXIT=YES @N1A
RIV0CVCN EQU X’10’ VCNS=YES @N1A
RIV0CVFR EQU X’08’ VTAMFRR=YES @N1A

000005 RIV0CLTM DS X LOSTERM SETTING @N1A
RIV0CLTN EQU X’00’ LOSTERM=NORMAL @N1A
RIV0CLTI EQU X’01’ LOSTERM=IMMED @N1A
RIV0CLTS EQU X’02’ LOSTERM=SECOND @N1A

000006 RIV0CCMI DS X CMPAPPLI VALUE @N1A
000007 RIV0CCMO DS X CMPAPPLO VALUE @N1A
000008 RIV0CENC DS X ENCR VALUE @N1A

RIV0CECN EQU X’00’ ENCR=NONE @N1A
RIV0CECO EQU X’01’ ENCR=OPT @N1A
RIV0CECC EQU X’02’ ENCR=COND @N1A
RIV0CECS EQU X’03’ ENCR=SEL @N1A
RIV0CECR EQU X’04’ ENCR=REQD @N1A

000009 RIV0CVPC DS X VPACING VALUE @N1A
00000A DS XL4 RESERVED @N1A

*

*** ISTRIV11 - maps the APPCCMD vector area length vector. **
*** - It contains the absolute minimum length and the **
*** recommended minimum length for full use of the **
*** APPCCMD vector area. **

000000 ISTRIV11 DSECT APPCCMD VECTOR AREA LENGTH VECTOR
* @L3C

000000 RIV11LEN DS X VECTOR LENGTH
000001 RIV11KEY DS X VECTOR KEY

RIV11KYC EQU X’11’ KEY IS X’11’
000002 RIV11AML DS XL4 ABSOLUTE MINIMUM APPCCMD VECTOR

* AREA LENGTH @L3A
000006 RIV11RML DS XL4 RECOMMENDED MINIMUM APPCCMD

* VECTOR AREA LENGTH @L3C
*

*** ISTRIV12 - maps the application to VTAM vector keys vector. **
*** - It contains a list of all ACB vector keys that **
*** VTAM will process. Constants for the ACB vectors are **
*** located in ISTVACBV. **

000000 ISTRIV12 DSECT APPLICATION TO VTAM VECTOR KEYS
* FOR ACB MACRO

000000 RIV12LEN DS X VECTOR LENGTH
000001 RIV12KEY DS X VECTOR KEY

RIV12KYC EQU X’12’ KEY IS X’12’
000002 RIV12DTA DS 0CL1 VECTOR DATA

*

*** ISTRIV13 - maps the Performance Monitor vector. **

788 z/OS V2R1.0 Communications Server: SNA Programming

*** Identifies a table of Performance Data vector fields **
*** (within ISTXPL) that have been retired by the **
*** Performance Monitor Interface since its inception. **

000000 ISTRIV13 DSECT PERFORMANCE MONITOR VECTOR @L1A
*

000000 RIV13LEN DS X VECTOR LENGTH @L1A
000001 RIV13KEY DS X VECTOR KEY @L1A

RIV13KYC EQU X’13’ KEY IS X’13’ @L1A
000002 RIV13ENT DS HL2 NUMBER OF ENTRIES IN TABLE @L2A

* (ZERO IF NONE RETIRED)
000004 RIV13RFT DS AL4 RETIRED FIELDS TABLE ADDRESS @L2A

* (ZERO IF NONE RETIRED)
000008 RIV13ELN DS HL2 LENGTH OF EACH ENTRY @L2A

*
000000 RIV13TBL DSECT RETIRED FIELDS TABLE ENTRY @L1A

* (MAPS ENTRIES IN TABLE ADDRESSED
* BY RIV13RFT)

000000 RIV13VID DS 0CL6 ID OF AFFECTED VECTOR @L1A
000000 RIV13MAJ DS CL2 MAJOR CATEGORY @L1A
000002 RIV13SUB DS CL2 SUBCATEGORY @L1A
000004 RIV13REC DS CL2 RECORD TYPE @L1A
000006 RIV13FLD DS 0CL4 FIELD POSITION WITHIN VECTOR @L1A
000006 RIV13OFF DS HL2 FIELD OFFSET @L1A
000008 RIV13FLG DS BL1 FLAG BYTE @L1A

RIV13BIT EQU X’01’ DATA TYPE INDICATOR
* (1= BITSTRING, 0= OTHER) @L1A

000009 RIV13LNG DS XL1 FIELD LENGTH IF NOT BITSTRING,
* MASK FOR BITS RETIRED WITHIN BYTE
* FOR BITSTRING FIELD
*

Application-ACB vector list (ISTVACBV)
Loc Source Statement

*** **
*** DATA FIELDS PASSED FROM THE APPLICATION TO VTAM. **
*** **
*** **
*** Addressability: ACBAPID, ACBPASSW. **
*** **

000000 ISTVACAP DSECT APPLID MAPPING
*

000000 VACAPLEN DS X MAP LENGTH
000001 VACAPDTA DS 0X MAP DATA

*
000000 ISTVACPW DSECT PASSWORD MAPPING

*
000000 VACPWLEN DS X MAP LENGTH
000001 VACPWDTA DS 0X MAP DATA

*

*** **
*** VECTORS PASSED FROM THE APPLICATION TO VTAM. **
*** **
*** **
*** Addressability: ACBAVPTR. **
*** **
*** Note: Highorder bit in vector key is on for all vectors sent **
*** from application to VTAM. **
*** **

*
*** MAPPING FOR VECTORLIST HEADER (LENGTH FIELD) **

000000 ISTVACAV DSECT APPLICATION VECTORLIST

Appendix E. Control block formats and DSECTs 789

* POINTED TO BY ACBAPVTR
* WHEN PARMS=(APPLVCTR=address)

000000 VACAVLEN DS HL2 TOTAL LENGTH OF APPL VECTORS
000002 VACAVDTA DS 0X VECTOR DATA

*

*** GENERALIZED MAPPING FOR EXAMINING OR BUILDING COMMON FIELDS IN **
*** ALL ACB VECTORS IN THE VECTOR LIST POINTED TO BY ACBAVPTR **

000000 ISTVACVT DSECT VECTOR TEMPLATE
000000 VACVTLEN DS HL2 VECTOR LENGTH
000002 VACVTKEY DS X VECTOR KEY
000003 VACVTDAT DS 0X VECTOR DATA

*
*

*** ISTVAC81 - Application Capabilities vector **
*** - Passed to VTAM by the application at OPEN invocation **
*** for the ACB. **
*** - Bit indicators which enable/disable application use **
*** of certain VTAM functions. **

000000 ISTVAC81 DSECT APPLICATION CAPABILITIES VECTOR
000000 VAC81LEN DS HL2 VECTOR LENGTH
000002 VAC81KEY DS X VECTOR KEY

VAC81KYC EQU X’81’ KEY IS X’81’
000003 VAC81CAP DS 0XL4 APPLICATION CAPABILITIES DATA

VAC81MLE EQU X’80’ APPLICATION SUPPORTS HAVING ITS
* LOGON EXIT DRIVEN MULTIPLE TIMES
* PER SESSION REQUEST. APPLICATIONS
* WITH LOGON EXITS MUST SET THIS
* INDICATOR TO BENEFIT FROM
* VERIFICATION REDUCTION
VAC81FPR EQU X’40’ APPLICATION INDICATES THAT IT WILL
* USE HPDT INTERFACE PROVIDED
* VIA THE OPTCD=XBUFLST FIELD ON THE
* APPCCMD RECEIVE MACROINSTRUCTION
* @D1A
VAC81PWS EQU X’20’ APPLICATION INDICATES THAT IT
* IS PASSWORD SUBSTITUTION
* CAPABLE @D2A
VAC81ESS EQU X’10’ APPLICATION INDICATES THAT IT
* IS CAPABLE OF EXTENDED
* SECURITY SENSE CODES @D2A
VAC81FPS EQU X’08’ APPLICATION INDICATES THAT IT
* WILL USE HPDT INTERFACE
* PROVIDED BY THE OPTCD=XBUFLST
* FIELD ON AN APPCCMD
* MACROINSTRUCTION THAT SENDS
* DATA @D1A
VAC81EOM EQU X’04’ APPLICATION INDICATES THAT IT
* IS CAPABLE TO SUPPORT END OF
* MESSAGES MESSAGE FOR DISPLAY,
* MODIFY AND VARY COMMANDS @J1A
VAC81ACO EQU X’02’ APPLICATION INDICATES THAT IT
* REQUESTS AUTOSES FOR CNOS
* ONLY
VAC81FAA EQU X’01’ APPLICATION INDICATES THAT IT
* REQUESTS ATNLOSS=ALL
VAC81UCV EQU X’0080’ APPLICATION INDICATES THAT IT
* WOULD LIKE TO SPECIFY A USER
* CONTROL VECTOR ON SETLOGON START
*
*

*** ISTVAC82 - Local Application’s DCE Capability Vector **
*** - Passed to VTAM by the application at OPEN invocation **

790 z/OS V2R1.0 Communications Server: SNA Programming

*** for the ACB. **
*** - Contains the Security Mechanisms data for the Local **
*** LU. **
***@D3A**

000000 ISTVAC82 DSECT LOCAL APPLICATION’S DCE
* CAPABILITY VECTOR MAPPING @D3A

000000 VAC82LEN DS HL2 LENGTH OF VECTOR (INCLUDING
* LENGTH OF THIS FIELD). @D3A

000002 VAC82KEY DS X VECTOR KEY @D3A
VAC82KYC EQU X’82’ VECTOR KEY X’82’ @D3A

000003 VAC82DTA DS 0X ISTVAC82 DATA @D3A

Appendix E. Control block formats and DSECTs 791

792 z/OS V2R1.0 Communications Server: SNA Programming

Appendix F. Specifying a session parameter

A BIND request and response contain parameters that specify certain protocols
used by the PLU and SLU for the session. This appendix describes the format of
the session parameter as seen by a VTAM application program. The
macroinstructions used to establish a session and specify session parameters are
described in “Establishing parameters for sessions” on page 122. For a detailed
description of the session parameters themselves and how to use them, see:
v Chapter 5, “Establishing and terminating sessions with logical units,” on page

81, as well as the
v SNA Format and Protocol Reference Manual: Architectural Logic, SNA Formats, SNA

Sessions between Logical Units, and
v SNA Concepts and Products

VTAM supplies a default logon mode table containing examples of session
parameters for certain devices. This table is described in detail in the z/OS
Communications Server: SNA Resource Definition Reference.

Note: This appendix describes fields applicable to session parameters and is not to
be used to locate fields in an SNA BIND request. Because the SNA BIND request is
created by VTAM and not the application program, the BIND request contains
fields set by VTAM that have no significance to the application program. Also,
corresponding fields in the session parameters and the BIND request can have
different formats and be located in different positions.

Session parameter fields (BIND image)

The displacements indicated in Figure 171 on page 794 refer to the ISTDBIND
DSECT. The displacements are 1 greater in the actual BIND RU, because the BIND
RU contains a request code that is not contained in the ISTDBIND DSECT. Note
that the BIND image field in the CINIT RU also does not contain the BIND request
code.

The format of the session parameter fields is shown in Figure 171 on page 794. A
description of each field follows.

© Copyright IBM Corp. 2000, 2013 793

Note: When session parameters are part of the BIND or CINIT RU, the primary-
logical-unit-name length field can have a value ranging 1–8, thus changing the
displacements of the user-data-length and user-data fields. Similarly, for these RUs,
the cryptographic-control field can be a variable-length field and thus alter
succeeding displacements. For session parameters received in INQUIRE
OPTCD=SESSPARM or in the SCIP exit routine (pointed to by word 4 of the exit

Type

Function Management Usage Field (cont'd.)

Transmission Services Usage Field (cont'd.)

TS Usage Field LU Presentation Services Usage Field

Logical Unit Presentation Services Usage Field (cont'd.)

Note: The dashed vertical line indicates continuation of the field to the next line.

FM Usage Field

TS Usage Field

Format

Secondary
logical unit
protocols

0

8

12

16

4

1

9

13

5

2

10

14

4

12

16

20

8

3

11

7

Primary
logical unit
protocols

Primary logical
unit maximum send
request unit size

Secondary logical
unit send
pacing count

Primary logical
unit send
pacing count

Secondary logical
unit maximum send
request unit size

Secondary logical
unit receive
pacing count

Primary logical
unit receive
pacing count

Transmission
services
profile

Function
management
profile

Logical unit
presentation
services profile

(The format and content of this field are determined by the logical unit
presentation services profile; see the description of this field for the
formats that are available).

Common logical unit protocols

Figure 171. Format of session parameters area (BIND image)

794 z/OS V2R1.0 Communications Server: SNA Programming

parameter list), the primary-logical-unit name field is always 8 bytes long. The
associated length field is set to 8 (or 0). Also, in these cases, the
cryptographic-control field is always 1 byte long. Therefore, the displacements
shown in this figure are correct.

Although the PLU name can be 1-17 bytes in the BIND RU, the ISTDBIND DSECT
requires it to be exactly 8 bytes. This causes the offset of the user data field to vary
in the BIND RU but not in the BIND DSECT. The area provided by VTAM to the
SCIP exit will have an 8 in the PLU name length field and the name may be
padded with blanks or truncated, if necessary. VTAM requires the bind area to be
in this format when it is supplied by the application on an OPNDST or OPNSEC
macroinstruction. Also note that in the case of a BIND error, the offset contained in
sense code 0835nnnn is adjusted, if necessary, when given to the application to
parse the BIND DSECT. See “BIND area format and DSECT” on page 816 for
information about these session parameters.

Format
This field specifies the format of the BIND request or response. Only format 0 is
supported.

Type
This field indicates whether the BIND request or response is negotiable (type 0) or
non-negotiable (type 1). See “BIND request” on page 91 for further information on
negotiable or non-negotiable BIND requests.

Function management profile
The function management profile identifies a predefined set of protocol rules. Each
profile represents a different set of rules. Within each profile, some of the protocol
rules are mandatory and some are optional. The profiles that have optional rules
require the use of the function management usage field to indicate how the
optional rules are implemented. For a detailed description of the function
management profiles, see SNA Formats The following profiles are available to the
VTAM application program and can be specified in the function management
profile field (using the FMPROF operand of the MODEENT macroinstruction).

Bit setting 0123 4567
(Byte 1) Meaning

0000 0010
Function management profile 2 is to be used. (This profile applies only to
LU type 0 3270 terminals.)

0000 0011
Function management profile 3 is to be used.

0000 0100
Function management profile 4 is to be used.

0000 0111
Function management profile 7 is to be used.

Transmission services profile
The transmission services profile identifies a predefined set of session-control
requests that can be used in a session. Each profile represents a different set of
session-control requests and other transmission services attributes. For a detailed
description of the transmission services profiles, see SNA Formats The following

Appendix F. Specifying a session parameter 795

profiles are available to the VTAM application program and can be specified in the
transmission services field (using the TSPROF operand of the MODEENT
macroinstruction).

Bit setting 0123 4567
(Byte 2) Meaning

0000 0010
Transmission services profile 2 is to be used. (This profile applies only to
LU type 0 3270 sessions.)

0000 0011
Transmission services profile 3 is to be used.

0000 0100
Transmission services profile 4 is to be used.

0000 0111
Transmission services profile 7 is to be used.

The session-control requests that apply to each of these profiles are shown in
Table 121.

In this table:

Req This request must be used. The required requests can be issued by VTAM
on behalf of the application program.

Opt This request can be used.

N/A Not applicable. This request must not be used.

Table 121. Session-control requests for each transmission services profile

Session- control
request Profile 2 Profile 3 Profile 4 Profile 7

CLEAR Opt Opt Opt N/A

RQR N/A N/A Opt N/A

SDT N/A Req Req N/A

STSN N/A N/A Opt N/A

The function management usage field is used to supplement the protocol rules
defined by the function management profile. The function management usage field
is divided into three parts:
v The primary logical unit protocols (specified with the PRIPROT operand of the

MODEENT macroinstruction) apply to the primary end of the session.
v The secondary logical unit protocols (specified with the SECPROT operand of

the MODEENT macroinstruction) apply to the secondary end of the session.
v The common logical unit protocols (specified with the COMPROT operand of

the MODEENT macroinstruction) apply to both the primary and secondary ends
of the session.

The 2 bytes describing the primary and secondary logical unit protocols have the
same format; however, different bits can be on or off depending upon the protocol
used and how it applies to the specific end of the session being described by the
byte.

796 z/OS V2R1.0 Communications Server: SNA Programming

The format of the function management usage field is described in SNA Technical
Overview and is also shown in Table 124 on page 821 (see the primary, secondary,
and common protocol fields). An overview of the use of many of the indicators in
this field is given in Chapter 6, “Communicating with logical units,” on page 151.
More detailed information about the function management usage field can be
found in SNA Sessions Between Logical Units and SNA Concepts and Products

Transmission services usage field
The Transmission Services Usage (TSU) field indicates the send pacing count and
maximum send request unit size for both the primary and secondary logical unit.
See Figure 171 on page 794 for a description of this field.

Request unit size

The session parameters specify the maximum length of request units that can be
sent by the logical units. This information is divided into two parts: the secondary
logical unit send request unit size (byte 9) and the primary logical unit send
request unit size (byte 10). Both bytes have the same format; however, they can be
set to different values depending upon the requirements of the logical units. The
bits that can be set (using the RUSIZES operand of the MODEENT
macroinstruction) follow:

Bit setting 0123 4567 (Bytes 9 and 10) Meaning
0... (byte 9) 6K bytes is the default maximum

length of the request unit that can be sent by
the SLU. VTAM will terminate a session on
behalf of the PLU if a larger RU is received.

0... (byte 10) There is no limit specified for the
size of the request unit that can be sent by
the PLU.

1000 through 1111 This is the mantissa (m) of the formula m X
2n used to determine the maximum length of
request units that can be sent by the primary
or the secondary logical unit.

.... 0000 through 1111 This is the exponent (n) of the formula m X
2n used to determine the maximum length of
request units that can be sent by the primary
or secondary logical unit.

For example, if byte 9 or 10 is set to hex 85, the mantissa is 8 and the exponent is
5; the associated RU size is 256 bytes (8 x 25). For a discussion of maximum RU
size when using SEND OPTCD=LMPEO, refer to “LMPEO operating
considerations” on page 183.

The maximum size of request units is shown in Table 122.

Table 122. Maximum size of request unit (in decimal)

Decimal
value of
bits 4–7

Decimal value of bits 0–3

8 9 10 11 12 13 14 15

0 8 9 10 11 12 13 14 15
1 16 18 20 22 24 26 28 30
2 32 36 40 44 48 52 56 60
3 64 72 80 88 96 104 112 120
4 128 144 160 176 192 208 224 240

Appendix F. Specifying a session parameter 797

Table 122. Maximum size of request unit (in decimal) (continued)

Decimal
value of
bits 4–7

Decimal value of bits 0–3

8 9 10 11 12 13 14 15

5 256 288 320 352 384 416 448 480
6 512 576 640 704 768 832 896 960
7 1024 1152 1280 1408 1536 1664 1792 1920
8 2048 2304 2560 2816 3072 3328 3584 3840
9 4096 4608 5120 5632 6144 6656 7168 7680
10 8192 9216 10240 11264 12288 13312 14336 15360
11 16384 18432 20480 22528 24576 26624 28672 30720
12 32768 36864 40960 45056 49152 53248 57344 61440
13 65536 73728 81920 90112 98304 106496 114688 122880
14 131072 147456 163840 180224 196608 212992 229376 245760
15 262144 294912 327680 360488 393216 425984 458752 491520
Note: The bits this table refers to are contained in the RU size bytes (bytes 9 and 10).

Pacing count

The pacing count fields permit a user to control the rate of data flow through the
network path joining a VTAM application program and a logical unit (including
another VTAM application program). The four types of pacing count information
are:
v The secondary logical unit send pacing count (byte 7) specified with the

SSNDPAC operand of the MODEENT macroinstruction.
v The secondary logical unit receive pacing count (byte 8) specified with the

SRCVPAC operand of the MODEENT macroinstruction.
v The primary logical unit send pacing count (byte 11) specified with the

PSNDPAC operand of the MODEENT macroinstruction.
v The primary logical unit receive pacing count (byte 12).

Bit setting 0123 4567 (Byte 7) Meaning
0... Bit off = one-stage pacing.
1... Bit on = two-stage pacing.
.x.. Reserved.
..00 0000 through ..11 1111 Secondary send pacing count.

Bit setting 0123 4567 (Byte 8) Meaning
1... Adaptive pacing.
.x.. Reserved.
xx.. Reserved.
..00 0000 through ..11 1111 Secondary receive pacing count.

Bit setting 0123 4567 (Byte 11) Meaning
0... Bit off = two-stage pacing.
1... Bit on = one-stage pacing.
.x.. Reserved.
..00 0000 through ..11 1111 Primary send pacing count.

Bit setting 0123 4567 (Byte 12) Meaning
xx.. Reserved.

798 z/OS V2R1.0 Communications Server: SNA Programming

Bit setting 0123 4567 (Byte 12) Meaning
..00 0000 through ..11 1111 Primary receive pacing count.

Logical unit presentation services profile

The logical unit presentation services profile identifies a predefined type of logical
unit and the format of the associated logical unit presentation services usage field.
Each type of logical unit uses a unique subset of the SNA-defined protocols and
data streams for its operation. The logical unit presentation services usage field is
used in conjunction with the presentation services profile field. The profile field
determines the format of the usage field; the usage field is used to specify optional
protocols or data streams that are applicable to the LU type specified in the profile.
For detailed information on LU types and on LU presentation services usage field
indicators, see SNA Sessions Between Logical Units and SNA Concepts and Products
The logical unit presentation services profiles that can be specified (using the
PSERVIC operand of the MODEENT macroinstruction) follow:

Bit setting 0123 4567
(Byte 13) Meaning

0000 0000
Logical unit presentation service profile 0 is used (LU type 0).

0000 0001
Logical unit presentation service profile 1 is used (LU type 1).

0000 0010
Logical unit presentation service profile 2 is used (LU type 2).

0000 0011
Logical unit presentation service profile 3 is used (LU type 3).

0000 0100
Logical unit presentation service profile 4 is used (LU type 4).

0000 0110
Logical unit presentation service profile 6 is used (LU type 6).

The subsets of protocols and data streams that apply to each of these logical unit
types are:

LU type 0
Use of a set of protocols and data streams agreed upon by the logical units
involved. SNA does not define them. Note that byte 24 is an exception to this rule.

LU type 1
v Use of predefined function management headers to identify a variety of data set

types and controls that can be sent and received.
v Use of an SNA character string (SCS) and a defined set of SNA protocols for a

keyboard/printer device.

LU type 2
Use of a 3270 data stream and a defined set of SNA protocols for a
keyboard/display device.

LU type 3
Use of a 3270 data stream and a defined set of SNA protocols for a printer.

Appendix F. Specifying a session parameter 799

LU type 4
Use of an SNA character string (SCS) and a defined set of SNA protocols for a
batch input/output LU having associated with it a printer and a magnetic strip
reader/recorder.

LU type 6 for LU 6.2
Use of a set of protocols and data streams agreed upon by the logical units
involved which is characterized by:
v A peer relationship between session partners
v Efficient utilization of a session for multiple transactions
v Comprehensive end-to-end error processing.

Logical unit presentation services usage field

The logical unit presentation services usage field specifies (using the PSERVIC
operand of the MODEENT macroinstruction) certain optional SNA protocols and
data streams for the type of logical unit identified by the logical unit profile field.
See the description of the logical unit presentation services profile field in the
preceding section for an explanation of the profiles. The format of the logical unit
presentation services usage field that corresponds to each profile is as follows:

Profile 0

Figure 172 shows the profile 0 presentation services usage field.

Media flags

The bit settings for byte 24 are:

Bit setting 0123 4567
(Byte 24) Meaning

xxxx xx..
Reserved.

.... ..00
No compression

.... ..01
Compression bid

.... ..10
Reserved

24 25

Media flags

Figure 172. Profile 0 presentation services usage field

800 z/OS V2R1.0 Communications Server: SNA Programming

.... ..11
Compression required

Profile 1

Figure 173 shows the profile 1 presentation services usage field.

Function management header subset and data stream profile
This field identifies a predefined set of function management header and data
stream subsets. Each subset specifies the types of data sets and data set controls
and the types of data streams that can be handled. The following subset profiles
are available:

Bit setting 0123 4567
(Byte 14) Meaning

0000
Function management header subset 0 is used.

0001
Function management header subset 1 is used.

16

14

20

24

17

25

20

16

24

19

15

22

Logical Unit Presentation Services Usage Field

Logical Unit Presentation Services Usage Field

Primary Logical Unit Usage Field

Secondary Logical Unit Usage Field

Data stream flags

Data stream flags

Media flags

Media flags

FM header flags

FM header flags

(See Note)

FM header flags

Note: The dashed vertical line indicates continuation of the field to the next line.

FM header subset
and data stream
profile

Figure 173. Profile 1 presentation services usage field

Appendix F. Specifying a session parameter 801

0010
Function management header subset 2 is used.

0011
Function management header subset 3 is used.

.... 0000
Data stream subset 0 is used.

.... 0001
Data stream subset 1 is used.

Function management header subset flags
These flags identify the types of data sets and data set controls that can be used.
They are specified for the primary logical unit (bytes 15 and 16) and for the
secondary logical unit (bytes 20 and 21). Both sets of bytes have the same format;
however, different bits can be set for the primary and secondary logical units. If
the function management header usage bit in the common protocols area of the
function management usage field is set to 0, these flags cannot be used and should
be set to 0. The following function management header subset flags can be set:

Bit setting 0123 4567
(Bytes 15 or 20) Meaning

Function management header subset 0

xxxx xxxx
Reserved.

Function management header subset 1, 2, or 3

1...
The transmission can be interrupted twice to send to another logical unit
(three destinations are outstanding).

0...
The transmission can be interrupted once to send to another logical unit
(two destinations are outstanding).

.1..
The primary and the secondary LUs can send compacted data.

.0..
The primary and the secondary LUs must not send compacted data.

..1.
The primary and the secondary LUs can send PDIR.

..0.
The primary and the secondary LUs must not send PDIR.

...x xxxx
Reserved (for subsets 1 and 2 only).

Function management header subset 3

...1
The primary or the secondary LU can send keyed direct data sets.

...0
The primary or the secondary LU does not send keyed direct data sets.

.... 1...
The primary or the secondary LU can send sequential data sets.

802 z/OS V2R1.0 Communications Server: SNA Programming

.... 0...
The primary or the secondary LU does not send sequential data sets.

.... .1..
The primary or the secondary LU can send addressed direct data sets that
are accessed sequentially with Add, Note, and Note Reply in the opposite
direction.

.... .0..
The primary or the secondary LU does not send addressed direct data sets
that are accessed sequentially with Add, Note, and Note Reply in the
opposite direction.

.... ..1.
The primary or the secondary LU supports series IDs (with status in
reply).

.... ..0.
The primary or the secondary LU does not support series IDs (with status
in reply).

.... ...1
The primary or the secondary LU supports Add Replicate and Replace
Replicate.

.... ...0
The primary or the secondary LU does not support Add Replicate and
Replace Replicate.

Bit setting 0123 4567
(Bytes 16 or 21) Meaning

Function management header subset 0, 1, or 2

.... 1...
The primary or the secondary LU can use structured fields for error
recovery processing.

.... 0...
The primary or the secondary LU does not use structured fields for error
recovery processing.

.... ...1
The primary or the secondary LU supports query of structured fields.

.... ...0
The primary or the secondary LU does not support query of structured
fields.

xxxx .xx.
Reserved.

Function management header subset 3

.1..
The primary or the secondary LU supports query for data sets.

.0..
The primary or the secondary LU does not support query for data sets.

..1.
The primary or the secondary LU supports Create, Scratch, and Scratch All
data sets.

Appendix F. Specifying a session parameter 803

..0.
The primary or the secondary LU does not support Create, Scratch, and
Scratch All data sets.

...1
The primary or the secondary LU supports Execute Program Offline.

...0
The primary or the secondary LU does not support Execute Program
Offline.

.... 1...
The primary or the secondary LU can use structured fields for error
recovery processing.

.... 0...
The primary or the secondary LU does not use structured fields for error
recovery processing.

.... ...1
The primary or the secondary LU supports query of structured fields.

.... ...0
The primary or the secondary LU does not support query of structured
fields.

x... .xx.
Reserved.

Data stream subset flags
These flags identify the type of data stream that can be used. They are specified for
the primary logical unit (bytes 17 and 18) and for the secondary logical unit (bytes
22 and 23). Both bytes have the same format; however, different bits can be set for
the primary and secondary logical units. The following data stream subset flags
can be set:

Bit setting 0123 4567
(Bytes 17 or 22) Meaning

1...
The primary or the secondary LU can send an interactive data stream (BS,
CR, LF, HT, VT, ENP, and INF).

0...
The primary or the secondary LU does not send an interactive data stream
(BS, CR, LF, HT, VT, ENP, and INP).

.1..
The primary or the secondary LU can send a horizontal format data stream
(SHF) with parameters.

.0..
The primary or the secondary LU does not send a horizontal format data
stream (SHF).

..1.
The primary or the secondary LU can send a vertical format data stream
(SVF) with parameters.

..0.
The primary or the secondary LU does not send a vertical format data
stream (SVF).

804 z/OS V2R1.0 Communications Server: SNA Programming

...1
The primary or the secondary LU can send vertical channel, including
vertical format and vertical channel select (VCS) with parameters.

...0
The primary or the secondary LU does not send vertical channel, including
vertical format and vertical channel select (VCS) with parameters.

.... 1...
SLD (Set Line Density) is supported.

.... 0...
SLD (Set Line Density) is not supported.

.... ..1.
The primary or the secondary LU can send BEL.

.... ..0.
The primary or the secondary LU does not send BEL.

.... ...1
The primary or the secondary LU can send a transparency data stream
(TRN and IRS).

.... ...0
The primary or the secondary LU does not send a transparency data
stream (TRN and IRS).

.... .x..
Reserved.

Bit setting 0123 4567
(Bytes 18 or 23) Meaning

1...
The secondary LU initiates unattended (byte 18 only).

0...
The secondary LU initiates attended (byte 18 only).

.1..
During the session, the secondary LU can alternate between attended and
unattended (byte 18 only).

.0..
During the session, the secondary LU does not alternate between attended
and unattended (byte 18 only).

..xx xxxx
Reserved (byte 18 only).

xxxx xxxx
Reserved (byte 23 only).

Media flags
These flags identify the types of physical recording media for which the data
stream can be formatted. They are specified for the primary logical unit (byte 19)
and for the secondary logical unit (byte 24). Both bytes have the same format;
however, different bits can be set for the primary and secondary logical units. The
following media flags can be set:

Bit setting 0123 4567
(Bytes 19 or 24) Meaning

Appendix F. Specifying a session parameter 805

1...
The primary or the secondary LU can use document output.

0...
The primary or the secondary LU does not use document output.

.1..
The primary or the secondary LU can use card format.

.0..
The primary or the secondary LU does not use card format.

..1.
The primary or the secondary LU can use exchange media format.

..0.
The primary or the secondary LU does not use exchange media format.

...1
The primary or the secondary LU can use disk data management format.

...0
The primary or the secondary LU does not use disk data management
format.

.... 1...
The primary or secondary LU can use extended card format.

.... 0...
The primary or secondary LU does not use extended card format.

.... .1..
The primary or secondary LU can use extended document format.

.... .0..
The primary or secondary LU does not use extended document format.

.... ..1.
(Byte 19) The secondary LU must send CD every EDS.

.... ..0.
(Byte 19) The secondary LU can send CD every EDS.

.... ...x
(Byte 19) Reserved.

.... ..00
(Byte 24) No compression

.... ..01
(Byte 24) Compression bid

.... ..10
(Byte 24) Reserved

.... ..11
(Byte 24) Compression required

Profiles 2 and 3

Figure 174 on page 807 shows the profile 2 and 3 presentation services usage fields.

806 z/OS V2R1.0 Communications Server: SNA Programming

Presentation services flags
Bit setting 0123 4567

(Byte 14) Meaning

0...
Query (for example, for a 3270 extended data stream) is not supported.

1...
Query is supported.

.xxx xxxx
Reserved.

21 23

14

Logical Unit Presentation Services Usage Field

(See Note)

Note: The dashed vertical line indicates continuation of the field to the next line.

24 25

15 16

2019

24

16

20

Reserved

Reserved

Reserved

Presentation
services
flags

Default
presentation
space size

Default
presentation
space size

Alternate
presentation
space size

Presentation
space size

Presentation space
size code

Figure 174. Profile 2 and 3 presentation services usage fields

Appendix F. Specifying a session parameter 807

Presentation space size

This field (bytes 19–23) contains the default and alternate presentation space sizes
and a presentation space size code field. These fields are shown in Figure 174 on
page 807.

Bytes 19 and 21 contain the number of rows in the default presentation space and
the alternate presentation space respectively. Bytes 20 and 22 contain the number of
columns in the default presentation space and the alternate presentation space
respectively.

Byte 23 identifies the presentation space size or indicates to use either the default
or alternate presentation space size. The sizes that can be specified are:

Bit setting 0123 4567
(Byte 23) Meaning

0000 0000
A presentation space is not defined.

0000 0001
A presentation space of 12 by 40 bytes is used.

0000 0010
A presentation space of 24 by 80 bytes is used.

0111 1110
A presentation space as described by the default field is used.

0000 0011
The default presentation space is 24 by 80 bytes, and the alternate
presentation space is specified in the Query Reply (implicit partition size)
structured field. If there is no implicit partition size specified, use usable
area.

0111 1111
Either the default or the alternate presentation space size is used.

Bit setting 0123 4567
(Byte 24) Meaning

xxxx xx..
Reserved

.... ..00
No compression

.... ..01
Compression bid

.... ..10
Reserved

.... ..11
Compression required

Profile 4

Figure 175 on page 809 shows the profile 4 presentation services usage field.

808 z/OS V2R1.0 Communications Server: SNA Programming

Logical unit send capability
These 4-byte fields identify a predefined set of protocols used by either the
primary logical unit (bytes 14–17) or the secondary logical unit (bytes 18–21) to
send data through the VTAM network. See Figure 175. These send protocols are:

Bit setting 0123 4567
(Bytes 14 or 18) Meaning

Printer data stream profile

1...
Base data stream profile is supported.

0...
Base data stream profile is not supported.

.1..
General data stream is supported.

21 22 23

14

Logical Unit Presentation Services Usage Field

(See Note)

Note: The dashed vertical line indicates continuation of the field to the next line.

24 25

15 16

2019

24

16 17 18

20

Reserved

Console

Console

FM/FMH usage

FM/FMH usage

Code selection General
characteristics

Secondary logical unit send
capability (cont'd.)

Primary logical unit send
capability (cont'd.)

Secondary logical unit send
capability

Primary logical unit send capability

Printer data
stream profile

Printer data
stream profile

Additional data
stream profile

Additional data
stream profile

Figure 175. Profile 4 presentation services usage field

Appendix F. Specifying a session parameter 809

.0..
General data stream is not supported.

..1.
Job SNA character string (SCS) subset is supported.

..0.
Job SNA character string (SCS) is not supported.

.... 1...
Word processing in raw form is supported.

.... 0...
Word processing in raw form is not supported.

...x .xxx
Reserved.

Bit setting 0123 4567
(Bytes 15 or 19) Meaning

Additional data stream profile

.1..
Card format is supported.

.0..
Card format is not supported.

...1
Basic exchange format is supported.

...0
Basic exchange format is not supported.

.... .1..
Word processing exchange diskette format is supported.

.... .0..
Word processing exchange diskette format is not supported.

x.x. x.xx
Reserved.

Bit setting 0123 4567
(Bytes 16 or 20) Meaning

Console

1...
Base data stream profile is supported.

0...
Base data stream profile is not supported.

.1..
General data stream profile is supported.

.0..
General data stream profile is not supported.

..1.
Job SNA character string (SCS) subset is supported.

..0.
Job SNA character string (SCS) subset is not supported.

810 z/OS V2R1.0 Communications Server: SNA Programming

...x xxxx
Reserved.

Bit setting 0123 4567
(Bytes 17 or 21) Meaning

FM or FM header usage

.00.
A one-level destination suspension stack is supported.

.01.
A two-level destination suspension stack is supported.

.10.
Reserved.

.11.
A three-level destination suspension stack is supported.

...1
Compaction is supported.

...0
Compaction is not supported.

.... 1...
PDIR for all media is supported.

.... 0...
PDIR for all media is not supported.

.... ..1.
Query for data set FM header type 2 is supported.

.... ..0.
Query for data set FM header type 2 is not supported.

.... ...1
(Byte 17 only) The secondary logical unit needs to receive a CD with every
EDS.

.... ...0
(Byte 17 only) The secondary logical unit does not need to receive a CD
with every EDS.

.... ...1
(Byte 21 only) The primary logical unit needs to receive a CD with every
EDS.

.... ...0
(Byte 21 only) The primary logical unit does not need to receive a CD with
every EDS.

x... .x..
Reserved.

Code selection
This 1-byte field specifies the type of data stream code that is used in the session.
These codes are:

Bit setting 0123 4567
(Byte 22) Meaning

1...
Session is capable of EBCDIC code transmission.

Appendix F. Specifying a session parameter 811

.1..
Session is capable of ASCII/ISCII/ITA #5 code transmission.

.... 00..
EBCDIC is the main code.

.... 01..
ASCII/ISCII/ITA #5 is the main code.

.... ..00
EBCDIC is the alternate code.

.... ..01
ASCII/ISCII/ITA #5 is the alternate code.

..xx
Reserved.

General characteristics
This 1-byte field defines certain general session characteristics. These characteristics
are:

Bit setting 0123 4567
(Byte 23) Meaning

..0.
The primary logical unit can send data first.

..1.
The secondary logical unit must send data first.

.... 0...
The secondary logical unit initiates attended.

.... 1...
The secondary logical unit initiates unattended.

.... .0..
The secondary logical unit does not alternate between attended and
unattended.

.... .1..
The secondary logical unit alternates between attended and unattended.

xx.x ..xx
Reserved.

Profile 6 for LU 6.2

Figure 176 on page 813 shows the profile 6 for LU 6.2 presentation services usage
field.

812 z/OS V2R1.0 Communications Server: SNA Programming

LU level
This one-byte field indicates the LU6 level.

Bit setting 0123 4567
(Byte 14) Meaning

00000010
LU 6.2

LU 6.2 flags
These indicators show the capabilities supported for the LU 6.2 session.

Bit setting 0123 4567
(Byte 22) Meaning

xxx.....
Reserved

22 23

14

Logical Unit Presentation Services Usage Field

(See Note)

Note: The dashed vertical line indicates continuation of the field to the next line.

24 25

Media flags

LU 6.2 Flags LU 6.2 Flags

15 16

20

24

16

20

Reserved

Reserved

Reserved

LU Level

Figure 176. Profile 6 for LU 6.2 presentation services usage field

Appendix F. Specifying a session parameter 813

...1....
Access security information field will be accepted on incoming FMH-5s.

...0 ...
Access security information field will not be accepted on incoming
FMH-5s.

....1...
Session level security protocol

.....x..
Reserved

......1.
Already-verified function will be accepted on incoming FMH-5s.

.... .0.
Already-verified function will not be accepted on incoming FMH-5s.

.......1
Persistent verification function will be accepted on incoming FMH-5s.

.......0
Persistent verification function will not be accepted on incoming FMH-5s.

Bit setting 0123 4567
(Byte 23) Meaning

x.......
Reserved

.xx.....
Synchronization level

.10.....
Confirm, syn point, and backout supported

.01.....
Confirm supported

...1....
Reconnect supported

...0....
Reconnect not supported

....xx..
Responsibility for session reinitiation (reserved when parallel sessions are
supported)

....00..
Operator controlled

....01..
Primary will reinitiate

....10..
Secondary will reinitiate

....11..
Either can reinitiate

......1.
Parallel sessions are supported

814 z/OS V2R1.0 Communications Server: SNA Programming

......0.
Parallel sessions are not supported

.......1
Change number of sessions (CNOS) GDS variable flow is supported

.......0
Change number of sessions (CNOS) GDS variable flow is not supported

LU 6.2 flags
The bit settings for byte 24 are:

Bit setting 0123 4567
(Byte 24) Meaning

x...
Reserved

.1..
Limited resource exists

..xx xx..
Reserved

.... ..00
No compression

.... ..01
Compression bid

.... ..10
Reserved

.... ..11
Compression required

Cryptographic control
This field specifies the private-level and session-level cryptographic capabilities of
this session.

CAUTION:
Session-level cryptography can interfere with private-level cryptography.

Bit setting 0123 4567
(Byte 25) Meaning

00..
No private cryptography protocol.

01..
Private cryptography protocol.

10..
Reserved.

11..
Reserved.

..00
No session-level cryptography.

..01
Selective session-level cryptography.

Appendix F. Specifying a session parameter 815

..10
Reserved.

..11
Required session-level cryptography (called mandatory session-level
cryptography in SNA).

.... 0000
SLU is not capable of cryptography.

.... 1001
SLU is capable of cryptography (a session cryptographic option byte and
key are included in the BIND RU; however, they are not included in the
fixed length part of BIND).

Primary logical unit name length
This field can contain the length of the PLU name field. See the note in Figure 171
on page 794.

Primary logical unit name
This field contains the uninterpreted name of the primary logical unit. Refer to
“OPNSEC macroinstruction” on page 96 for a warning about the use of the
uninterpreted name.

User data length
This field specifies the length of the user data field. If hex 00 is specified, there is
no user data.

Note: When sending a BIND request or a BIND response, SNA requires that the
total BIND RU length (including the user data field) not exceed 256. The BIND RU
consists of the preceding fields plus some additional fields supplied by VTAM; see
SNA Formats for the BIND RU format.

User data
This field can be used to send data to the secondary logical unit as a part of the
BIND request.

BIND area format and DSECT

The ISTDBIND DSECT can be used to set up or examine a set of session
parameters. The situations in which the DSECT might be useful are listed here. For
further information about the individual macroinstructions, see Chapter 13,
“Conventions and descriptions of VTAM macroinstructions,” on page 371. For a
general discussion of DSECTs, see the introductory section of Appendix E, “Control
block formats and DSECTs,” on page 739. The format maps and DSECT
descriptions for the BIND area are shown in Figure 177 on page 818 through
Table 129 on page 840.

The term “fixed-length portion of BIND” refers to bytes 0–25 of a BIND area (only
fixed-length fields). See Figure 177 on page 818 for an example of the fixed-length
fields of a BIND area. In general, the fields in BIND after the fixed-length portion
are variable-length fields, so they cannot be examined by a DSECT. However, in
some instances, the primary logical unit name field is padded by VTAM to be a
fixed-length (8-byte) field. In this case, the full ISTDBIND DSECT can be used.

816 z/OS V2R1.0 Communications Server: SNA Programming

The ISTDBIND DSECT can be used:
v To examine the session parameters obtained by INQUIRE OPTCD=SESSPARM.

The full ISTDBIND DSECT can be used.
v To set up the session parameters (in the area pointed to by the NIB's BNDAREA

field) sent by OPNDST in a BIND request, or sent by OPNSEC in a negotiable
BIND response. The full ISTDBIND DSECT can be used.

v To examine the session parameters pointed to by the fourth word of the SCIP
exit routine parameter list when a BIND is received. The full ISTDBIND DSECT
can be used.

v To examine the BIND image portion of a CINIT request unit received in a
LOGON exit routine. Only the fixed-length portion (bytes 0–25) of the BIND
area can be examined with ISTDBIND. Note that this portion of CINIT can also
be accessed by INQUIRE OPTCD=SESSPARM.

v To examine bytes 1–26 of a BIND request received in an SCIP exit routine. Byte 0
of BIND is the BIND request code and is not included in ISTDBIND. The BIND
request is pointed to by the AREA field of the SCIP exit routine read-only RPL.

v To examine bytes 1–26 of a negotiable BIND response received in the AAREA
field specified by OPNDST. Byte 0 of AAREA is the BIND request code and is
not included in ISTDBIND.

Appendix F. Specifying a session parameter 817

For BINPSCHR, see Table 126 on page 829 Table 127 on page 838, Table 128 on
page 839, and Table 129 on page 840.

Note: The double outlined section is the fixed-length portion of BIND. The names
in brackets are the operands of the MODEENT macro used to build the
corresponding fields in a logon mode table entry (refer to the z/OS
Communications Server: SNA Resource Definition Reference for information on the
logon mode table.) The names in parentheses are the ISTDBIND DSECT labels for
the field.

Although the PLU name can be 1-17 bytes in the BIND RU, the ISTDBIND DSECT
requires it to be exactly 8 bytes. This causes the offset of the user data field to vary
in the BIND RU but not in the BIND DSECT. The area provided by VTAM to the
SCIP exit will have an 8 in the PLU name length field and the name may be
padded with blanks or truncated, if necessary. VTAM requires the bind area to be
in this format when it is supplied by the application on an OPNDST or OPNSEC
macroinstruction. Also note that in the case of a BIND error, the offset contained in
sense code 0835nnnn is adjusted, if necessary, when given to the application to
parse the BIND DSECT.

Displacement

(BINCMNP)

Secondary LU
(BINSRUSZ)

Logical unit presentation services usage field
[PSERVIC]

(BINPSCHR)

Name of primary logical unit
(BINPRIMN)

User data
(BINUSE)

User data
length

(BINUSEL)

Secondary LU
(BINPRUSZ)

(BINCMNP2)

BIND
format

(BINFMT)

BIND
type
[TYPE]
(BINTYPE))

FM profile
[FMPROF]

(BINFM)

TS profile
[TSPROF]

(BINTS)

Primary LU
protocols
[PRIPROT]
(BINPRIP)

Presentation
services
profile
[PSERVIC]
(BINLUP)

Secondary LU
protocols
[SECPROT]
(BINSECP)

Secondary
send pacing
count
[SSNDPAC]
(BINAPACE)

Secondary
receive
pacing count
[SRCVPAC]
(BINRPACE)

Primary receive
pacing count

(BINBPACE)

Cryptographic
control
(BINCRCTL)

Length of
primary LU
name
(BINPRIML)

Dec

0

4

8

12

16

20

24

28

32

36

Hex

0

4

8

C

10

14

18

1C

20

24

See BINPSCHR

Common LU protocols
[COMPROT]

Maximum request unit send sizes
[RUSIZES]

Figure 177. Format of BNDAREA (ISTDBIND).

818 z/OS V2R1.0 Communications Server: SNA Programming

Table 123. Session parameter fields: How they are made available and who can change them

ISTDBIND offset
ISTDBIND field
description

Information
available in SCIP
exit session
parameters (See
note 10)

Information
available to
INQUIRE
OPTCD=
SESSPARM (See
note 3)

Application
program can
specify in
OPNDST or
OPNSEC (in NIB
BNDAREA)

VTAM sets at
OPNDST or
OPNSEC (NIB
BNDAREA
information
superseded)

– BIND RU code
(X'31')2

No No No Yes

0 BIND format and
type

Yes Yes No8 Yes8

1 FM profile Yes Yes Yes No

2 TS profile Yes Yes Yes No12

3 PLU protocols Yes Yes Yes No

4 SLU protocols Yes Yes Yes No

5–6 Common
protocols

Yes Yes Yes No16

7 SLU send pacing
count

Yes Yes No14 Yes

8 SLU receive
pacing count

Yes Yes No for OPNDST.14

Yes for
OPNSEC.13

Yes for OPNDST.
No for OPNSEC.12

9 SLU maximum
send RU
size-mantissa/
exponent

Yes Yes Yes1 No

10 PLU maximum
send RU
size-mantissa/
exponent

Yes Yes Yes1 No

11 PLU send pacing
count

Yes Yes No14 Yes

12 PLU receive
pacing count

Yes Yes Yes for OPNDST.
No for OPNSEC.14

No for OPNDST.4

Yes for OPNSEC.

13–24 LU presentation
services

Yes Yes Yes No

25 Cryptographic
control

Yes6 Yes6 Yes9 Yes7 12

26 PLU name length Yes15 No No Yes

27–34 PLU name Yes15 No No Yes

35 User data length5 Yes Yes Yes No

36–n11 User data5 Yes Yes Yes No

Appendix F. Specifying a session parameter 819

Table 123. Session parameter fields: How they are made available and who can change them (continued)

ISTDBIND offset
ISTDBIND field
description

Information
available in SCIP
exit session
parameters (See
note 10)

Information
available to
INQUIRE
OPTCD=
SESSPARM (See
note 3)

Application
program can
specify in
OPNDST or
OPNSEC (in NIB
BNDAREA)

VTAM sets at
OPNDST or
OPNSEC (NIB
BNDAREA
information
superseded)

Note:

1. The RU size specified should be no larger than the size specified in the received CINIT or BIND RU.

2. The BIND request unit code (X'31') is not included in the ISTDBIND DSECT.

3. Certain information is available to an INQUIRE OPTCD=SESSPARM for a received CINIT RU which is not
available for other types of INQUIREs for session parameters. This information is the BIND type and user data.

4. The PLU receive pacing count is not overlaid unless the application program sets BINBPACE to zero in
BNDAREA (meaning the application program wants the CINIT value to be used), or unless the value in CINIT
for this field is 0 (meaning the SLU to PLU direction is not to be paced). The value specified should be no larger
than in the associated received CINIT RU.

5. The user data and user-data length have different meanings depending on when they are examined:

v For INQUIRE OPTCD=SESSPARM for a received CINIT RU, they represent the user-data field specified in the
original session-initiation request. For other types of INQUIRE, the length field is zero and there is no user
data.

v For OPNDST ACCEPT or ACQUIRE specifying a BNDAREA, they specify the user-data field to be sent in a
BIND to the secondary logical unit. If BNDAREA is not specified, no user data is sent to the logical unit as
part of BIND.

v For an SCIP exit routine scheduled by the receipt of a BIND request, they specify the data received in that
BIND request.

v For OPNSEC sending a negotiable BIND response in a BNDAREA, you must specify the user data-length field
(and user-data field if the length is not zero) when returning the BIND response to the PLU. If BNDAREA is
not specified, no user data is sent to the logical unit.

6. Note that the cryptographic length field in this byte is always set to 0. Some of the variable-length cryptographic
information is available through use of INQUIRE OPTCD=SESSKEY.

7. VTAM changes the session level cryptography part of this field (if possible) if a higher level of cryptography is
required for session establishment.

8. See NIB PROC option for NEGBIND to see how the application program can set the type field indirectly. The
type field of BNDAREA is ignored by VTAM; the format field is tested for 0 by VTAM.

9. See NIB ENCR parameter to see how the application program can set the session level cryptography part of this
field indirectly; that part of the cryptographic-control field in BNDAREA is ignored by VTAM. The
private-level-cryptography setting can be changed by the application program in BNDAREA and is not
subsequently changed by VTAM.

10. These are the session parameters pointed to by word 4 of the SCIP exit parameter list, not those in the BIND RU
pointed to by the SCIP exit read-only RPL.

11. The total BIND RU length (request or response) can be no larger than 256 bytes.

12. This field is checked for valid values by VTAM. The macroinstruction fails if a value that is not valid is found.

13. The application program can decrease this value, but cannot set it to 0 unless the field received in BIND is 0.

14. VTAM determines the pacing value from either the definition statement for the LU or the logon mode table
entry.

15. Although the PLU name can be 1-17 bytes in the BIND RU, the ISTDBIND DSECT requires it to be exactly 8
bytes. This causes the offset of the user data field to vary in the BIND RU but not in the BIND DSECT. The area
provided by VTAM to the SCIP exit will have an 8 in the PLU name length field and the name may be padded
with blanks or truncated, if necessary. VTAM requires the bind area to be in this format when it is supplied by
the application on an OPNDST or OPNSEC macroinstruction.

16. VTAM sets byte 6 bit 6 (Control vectors included indicator) as needed and includes any control vectors
appropriate for the session.

820 z/OS V2R1.0 Communications Server: SNA Programming

Table 124. BNDAREA DSECT (ISTDBIND)

Field

DSECT DS
or ORG
label

DSECT EQU
label Value Meaning Dec offset Hex offset

BIND Format
and Type

BINFMTY BINFMT X'F0' BIND format 0 0

BINFMT0 X'00' Format 0 0 0

BINTYPE X'0F' BIND type 0 0

BINNEGO X'00' Negotiable 0 0

BINONEGO X'01' Non-negotiable 0 0

BINCOLD X'01' Non-negotiable 0 0

FM Profile BINFM BINFM19 X'13' FM Profile 19 1 1

TS Profile BINTS BINTS2 X'02' Sequence numbers and no
reset state

2 2

BINTS3 X'03' Sequence numbers and
reset state

2 2

BINTS4 X'04' Sequence numbers and
reset state (STSN and
RQR)

2 2

BINTS7 X'07' Sequence numbers and no
reset state

2 2

Primary LU
Protocol

BINPRIP BINPCHN X'80'
Bit on =

multiple request
chains

Bit off =
only single
request chain
used

3 3

BINPMCH X'40'
Bit on =

multiple
outstanding
chains; delayed
request mode

Bit off =
single
outstanding
chains only;
immediate
request mode

3 3

BINPCHNR X'30' Primary chain response
protocol

3 3

BINNYRSP X'30' Either definite or
exception response

3 3

BINDFRSP X'20' Definite response 3 3

BINEXRSP X'10' Exception response 3 3

BINNORSP X'00' No response 3 3

BINNORSP X'00' No response 3 3

X'0C' Reserved 3 3

Appendix F. Specifying a session parameter 821

Table 124. BNDAREA DSECT (ISTDBIND) (continued)

Field

DSECT DS
or ORG
label

DSECT EQU
label Value Meaning Dec offset Hex offset

BINPCMP X'02'
Bit on =

compression can
be used

Bit off =
compression must
not be used

3 3

BINPSEB X'01'
Bit on =

primary can send
end bracket
indicator

Bit off =
primary will not
send end bracket
indicator

3 3

Secondary
LU Protocol

BINSECP BINSCHN X'80'
Bit on =

multiple request
chains

Bit off =
only single
request chains
used

4 4

BINSMCH X'40'
Bit on =

multiple
outstanding
chains; delayed
request mode

Bit off=
single
outstanding
chains only;
immediate
request mode

4 4

BINSCHNR X'30' Secondary chain response
protocol

4 4

BINNYRSP X'30' Either definite or
exception responses

4 4

BINDFRSP X'20' Definite response 4 4

BINEXRSP X'10' Exception response 4 4

X'0C' Reserved 4 4

BINSCMP X'02'
Bit on =

compression can
be used

Bit off =
compression must
not be used

4 4

822 z/OS V2R1.0 Communications Server: SNA Programming

Table 124. BNDAREA DSECT (ISTDBIND) (continued)

Field

DSECT DS
or ORG
label

DSECT EQU
label Value Meaning Dec offset Hex offset

BINSSEB X'01'
Bit on =

secondary can
send end bracket
indicator

Bit off =
secondary will
not send end
bracket indicator

4 4

Common LU
Protocol

BINCMNP BINWBREQ X'80' Whole BIUs-required
indicator

Bit on =
sending LU nodes
does not support
receipt of
segments on this
session

Bit off =
sending LU nodes
supports receipt
of segments on
this session

5 5

BINFMHD X'40'
Bit on =

function
management
headers can be
used

Bit off =
function
management
headers must not
be used

5 5

BINBRAK X'20'
Bit on =

brackets are used
and the reset state
is between
brackets

Bit off =
either brackets
are not used or
brackets are used
and the reset state
is in brackets

5 5

Appendix F. Specifying a session parameter 823

Table 124. BNDAREA DSECT (ISTDBIND) (continued)

Field

DSECT DS
or ORG
label

DSECT EQU
label Value Meaning Dec offset Hex offset

BINBKTR X'10'
Bit on =

conditional
bracket
termination

(termination rule
one)

Bit off =
unconditional
bracket
termination

(termination rule
two)

5 5

BINALT X'08'
Bit on =

alternate code can
be used

Bit off =
alternate code
must not be used

5 5

X'06' Reserved 5 5

BINQUE X'01' BIND queueing indicator

Bit on =
BIND sender
allows the BIND
receiver to queue
the BIND for an
indefinite period

Bit off =
BIND cannot be
held/queued

5 5

BINCMNP2 BINFMTRM X'C0' Send/Receive mode as
follows:

6 6

BINHDXFF X'80' Half-duplex flip-flop mode 6 6

BINHDXC X'40' Half-duplex contention
mode

6 6

BINFLDPX X'00' Full-duplex mode 6 6

BINRCVR X'20'
Bit on =

symmetric
responsibility for
recovery

Bit off =
contention loser is
responsible for
recovery

6 6

824 z/OS V2R1.0 Communications Server: SNA Programming

Table 124. BNDAREA DSECT (ISTDBIND) (continued)

Field

DSECT DS
or ORG
label

DSECT EQU
label Value Meaning Dec offset Hex offset

BINBKFS X'10'
Bit on =

primary is first
speaker in bracket
mode and
contention
winner;
secondary is
brackets bidder
and contention
loser

Bit off =
secondary is first
speaker in bracket
mode and
contention
winner; primary
is brackets bidder
and contention
loser

6 6

BINASCC X'0C'
00 = alternate code

selection is ASCII
7

01 = alternate code
selection is ASCII
8

6 6

BINCTLV X'02' Control vectors included
after SLU name.

6 6

BINCONR X'01'
Bit on =

for half-duplex
flip-flop mode,
primary sends
first when the
data traffic reset
state is left

Bit off =
for half-duplex
flip-flop mode,
secondary sends
first when the
data traffic reset
is left

6 6

Secondary
LU Send
Pacing Count

BINAPACE :c :c Secondary logical unit
send pacing. See Table 123
on page 819 for
availability.

7 7

Appendix F. Specifying a session parameter 825

Table 124. BNDAREA DSECT (ISTDBIND) (continued)

Field

DSECT DS
or ORG
label

DSECT EQU
label Value Meaning Dec offset Hex offset

BINSP2ST X'80' Number of pacing stages
from the secondary logical
unit to the primary logical
unit:

Bit on =
one stage

Bit off =
two stages

7 7

X'40' Reserved 7 7

BINAPACM X'3F' Secondary logical unit
send pacing count

7 7

Secondary
LU Receive
Pacing Count

BINRPACE Secondary logical unit
receive pacing. See
Table 123 on page 819 for
availability.

8 8

BINASPI X'80' Adaptive pacing 8 8

X'40' Reserved 8 8

BINRPACM X'3F' Secondary logical unit
receive pacing count

8 8

Request Unit
Sizes

BINSRUSZ Maximum size of the
request unit that can be
sent by the secondary
logical unit

9 9

BINSRUSS X'80' RU size is specified 9 9

BINRU256 X'85' 256-byte request unit
(8 x 2⁵)

9 9

BINRU1K X'87' 1024-byte request unit
(8 x 2⁷)

9 9

BINRUSZM X'F0' Mantissa (M) mask 9 9

BINRUSZE X'0F' Exponent (E) mask Size =
M x 2E

9 9

BINPRUSZ Maximum size of the
request unit that can be
sent by the primary logical
unit

10 A

BINPRUSS X'80' RU size is specified 9 9

BINRU256 X'85' 256-byte request unit
(8 x 2⁵)

10 A

BINRU1K X'87' 1024-byte request unit
(8 x 2⁷)

10 A

BINRUSZM X'F0' Mantissa (M) mask 10 A

BINRUSZE X'0F' Exponent (E) mask Size =
M x 2E

10 A

Primary LU
Send Pacing
Count

BINSPACE Primary logical unit send
placing. See Table 123 on
page 819 for availability.

11 B

826 z/OS V2R1.0 Communications Server: SNA Programming

Table 124. BNDAREA DSECT (ISTDBIND) (continued)

Field

DSECT DS
or ORG
label

DSECT EQU
label Value Meaning Dec offset Hex offset

BINPS1ST X'80' Number of pacing stages
from the primary logical
unit to the secondary
logical unit:

Bit on =
one stage

Bit off =
two stages

11 B

X'40' Reserved 11 B

BINBPACM X'3F' Primary logical unit send
pacing count

11 B

Primary LU
Receive
Pacing Count

BINBPACE Primary logical unit
receive pacing. See
Table 123 on page 819 for
availability.

12 C

X'C0' Reserved 12 C

BINBPACM X'3F' Primary logical unit
receive pacing count. PS
usage field format.

0 = Basic format

1 = Reserved

12 C

Logical Unit
Presentation
Services
Profile

BINLUP BINPSFMT X'80' PS usage field format 13 D

BINLUTYP X'7F' LU type 13 D

BINLUP0C X'00' Logical unit profile 0 13 D

BINLUP1C X'01' Logical unit profile 1 13 D

BINLUP2C X'02' Logical unit profile 2 13 D

BINLUP3C X'03' Logical unit profile 3 13 D

BINLUP4C X'04' Logical unit profile 4 13 D

BINLUP6C X'06' Logical unit profile 6 13 D

Logical Unit
Presentation
Services
Usage

BINPSCHR Logical unit presentation
services. See Table 126 on
page 829, Table 127 on
page 838, Table 128 on
page 839, and Table 129 on
page 840.

14 E

Crypto-
graphic
Control

BINCRCTL Cryptographic control byte 25 19

BINNOCRY X'00' No cryptography 25 19

BINCRYCA X'09' Capable of cryptography 25 19

BINCRYSL X'19' Selective cryptography 25 19

BINCRYRQ X'39' Required cryptography 25 19

Appendix F. Specifying a session parameter 827

Table 124. BNDAREA DSECT (ISTDBIND) (continued)

Field

DSECT DS
or ORG
label

DSECT EQU
label Value Meaning Dec offset Hex offset

BINCEUMP X'C0' Private cryptography flags 25 19

BINCEUPS X'80' System key, private
protocol

25 19

BINCEUPP X'40' Private key, private
protocol

25 19

BINCEUNP X'00' No private protocol 25 19

BINCSESS X'30' Session level cryptography
flags

25 19

BINCSENP X'00' No cryptography 25 19

BINCSESP X'10' Selective cryptography 25 19

BINCSESR X'30' Required cryptography 25 19

BINCLEN X'0F' Cryptographic field length
mask

25 19

Primary LU
Name Length

BINPRIML Primary logical unit name
length

26 1A

Primary LU
Name

BINPRIMN Primary logical unit name 27 1B

User-Data
Length

BINUSEL User-data length 35 23

BINUSERD X'00' User-data length default 35 23

User Data BINUSE User data 36 24

Note:

1. Refer to the z/OS Communications Server: SNA Programmer's LU 6.2 Guide for more information on the
BNDAREA DSECT (ISTDBIND).

Table 125. BINPSCHR field of BNDAREA DSECT for logical unit profile 0

Field

DSECT DS
or ORG
label

DSECT
EQU label Value Meaning Dec offset Hex offset

BINDFLAG BINSEDS X'80' 3270 extended data stream 14 E

X'7F' Reserved 14 E

Reserved 15 F

Reserved 16 10

Reserved 17 11

Reserved 18 12

BINSCRSZ Presentation space size (next 4
bytes)

19 13

BINSPRIR Default number of rows 19 13

BINSPRIC Default number of columns 20 14

BINSALTR Alternate number of rows 21 15

BINSALTC Alternate number of columns 22 16

828 z/OS V2R1.0 Communications Server: SNA Programming

Table 125. BINPSCHR field of BNDAREA DSECT for logical unit profile 0 (continued)

Field

DSECT DS
or ORG
label

DSECT
EQU label Value Meaning Dec offset Hex offset

Presentation
Space Size

BINPRESZ Presentation space size 23 17

BINPSZ0 X'00' Undefined row and column format 23 17

BINPSZ1 X'01' 12 rows 40 columns format 23 17

BINPSZ2 X'02' 24 rows 80 columns format 23 17

BINPSZ3 X'03' 24 rows 80 columns default. The
alternate presentation space is
specified in the Query Reply
structured field.

23 17

BINPSFX X'7E' Presentation space is a fixed size as
defined by default values

23 17

BINPSZRC X'7F' Presentation space has both default
and alternate sizes as defined in the
DEFAULT and ALTERNATE fields

23 17

Device Type X'C0' Device Type:

00 = unspecified device type

01 = printer device

10 = display device

11 = reserved

24 18

X'3C' Reserved 24 18

BINCMP1
BINCMP2

X'02' X'01'
BIND Request:

00 = no compression

01 = compression bid

10 = reserved

11 = compression required

BIND Response:

00 = reserved

01 = reserved

10 = compression used

11 = reserved

24 18

Table 126. BINPSCHR field of BNDAREA DSECT for logical unit profile 1

Field

DSECT DS
or ORG
label

DSECT EQU
label Value Meaning Dec offset Hex offset

FM Header
Subset and
Data
Stream
Profile

BINLUP1 BINFMHS1 X'F0' Function management header
subset

14 E

Appendix F. Specifying a session parameter 829

Table 126. BINPSCHR field of BNDAREA DSECT for logical unit profile 1 (continued)

Field

DSECT DS
or ORG
label

DSECT EQU
label Value Meaning Dec offset Hex offset

BINFMS3C X'30' FM header subset 3 used–Data
management subset

14 E

BINFMS2C X'20' FM header subset 2 used–Type 1
headers

14 E

BINFMS1C X'10' FM header subset 1 used–Type 1
headers with restrictions

14 E

BINFMS0C X'00' FM header subset 0 used–No
function management headers
allowed

14 E

BINDSP1 X'0F' Data stream profile 14 E

BINDSP1C X'01' Basic controls, cards can span RUs
(data stream subset 1)

14 E

BINDSP0C X'00' Basic controls (data stream subset
0)

14 E

Primary
Logical
Unit FM
Header
Subset
Flags

BINPFMB1 BINDESTS X'80'
Bit on =

three destinations might
be outstanding

Bit off =
two destinations might be
outstanding

15 F

BINCMPCT X'40'
Bit on =

can send compaction
table/can be queried for
compaction tables

Bit off =
will not send compaction
table/will not be queried
for compaction tables

15 F

BINPDIR X'20'
Bit on =

PDIR can be sent

Bit off =
PDIR will not be sent

15 F

X'1F' Reserved 15 F

BINKDDSI X'10'
Bit on =

keyed direct data sets can
be sent

Bit off =
keyed direct data sets will
not be sent

15 F

BINSDSI X'08'
Bit on =

sequential data sets can be
sent

Bit off =
sequential data sets will
not be sent

15 F

830 z/OS V2R1.0 Communications Server: SNA Programming

Table 126. BINPSCHR field of BNDAREA DSECT for logical unit profile 1 (continued)

Field

DSECT DS
or ORG
label

DSECT EQU
label Value Meaning Dec offset Hex offset

BINSAI X'04'
Bit on =

sequential access to
addressed direct data sets
can be sent

Bit off =
sequential access to
addressed direct data sets
will not be sent

15 F

BINSIDS X'02'
Bit on =

series IDs (with status in
reply) are supported

Bit off =
series IDs are not
supported

15 F

BINARRR X'01'
Bit on =

Add Replicate, Replace
Replicate are supported

Bit off =
Add Replicate, Replace
Replicate are not
supported

15 F

BINPFMB2 X'80' Reserved 16 10

BINQDSI X'40'
Bit on =

query for destination
selection is supported

Bit off =
query for destination
selection is not supported

16 10

BINCSDS X'20'
Bit on =

CREATE, SCRATCH, and
SCRATCH ALL are
permitted

Bit off =
CREATE, SCRATCH, and
SCRATCH ALL are not
permitted

16 10

BINXFPD X'10'
Bit on =

Execute Program Offline is
permitted

Bit off =
Execute Program Offline is
not permitted

16 10

X'0F' Reserved 17 10

Appendix F. Specifying a session parameter 831

Table 126. BINPSCHR field of BNDAREA DSECT for logical unit profile 1 (continued)

Field

DSECT DS
or ORG
label

DSECT EQU
label Value Meaning Dec offset Hex offset

Primary
Logical
Unit Data
Stream
Flags

BINPDSB1 BININTR X'80'
Bit on =

full base set data stream
(BS, CR, LF, ENP, INP HT,
VT) can be sent

Bit off =
full base set data stream
will not be sent

17 11

BINHFDS X'40'
Bit on =

horizontal format data
stream (SHF) can be sent

Bit off =
horizontal format data
stream will not be sent

17 11

BINVTDS X'20'
Bit on =

vertical format data stream
(SVF) can be sent

Bit off =
vertical format data stream
will not be sent

17 11

BINVSDS X'10'
Bit on =

vertical channel (includes
vertical format and
vertical channel select
(VCS) with parameters)
can be sent

BIN off =
vertical channel will not
be sent

17 11

BINSLD X'08'
Bit on =

SLD can be sent

Bit off =
SLD will not be sent

17 11

X'06' Reserved 17 11

BINTRNDS X'01'
Bit on =

transparency data stream
(TRN, IRS) can be sent

Bit off =
transparency data stream
will not be sent

17 11

BINPDSB2 BINUAINT X'80'
Bit on =

secondary logical unit will
initiate unattended

Bit off =
secondary logical unit will
initiate attended

18 12

832 z/OS V2R1.0 Communications Server: SNA Programming

Table 126. BINPSCHR field of BNDAREA DSECT for logical unit profile 1 (continued)

Field

DSECT DS
or ORG
label

DSECT EQU
label Value Meaning Dec offset Hex offset

BINUAALT X'40'
Bit on =

in session, the secondary
logical unit will alternate
between attended and
unattended

Bit off =
in session, secondary
logical unit will not
alternate between attended
and unattended

18 12

X'3F' Reserved 18 12

Primary
Logical
Unit Media
Flags

BINPMED1 BINDOCMT X'80'
Bit on =

document format can be
sent

Bit off =
document format will not
be sent

19 13

BINCARD X'40'
Bit on =

card format can be sent

Bit off =
card format will not be
sent

19 13

BINXCHNG X'20'
Bit on =

exchange media can be
sent

Bit off =
exchange media will not
be sent

19 13

BINDISK X'10'
Bit on =

disk data management can
be sent

Bit off =
disk data management
will not be sent

19 13

BINXCDF X'08'
Bit on =

extended card format can
be sent

Bit off =
extended card format will
not be sent

19 13

Appendix F. Specifying a session parameter 833

Table 126. BINPSCHR field of BNDAREA DSECT for logical unit profile 1 (continued)

Field

DSECT DS
or ORG
label

DSECT EQU
label Value Meaning Dec offset Hex offset

BINXDOCF X'04'
Bit on =

extended document format
can be sent

Bit off =
extended document format
will not be sent

19 13

BINCDEDS X'02'
Bit on =

secondary logical unit
must send Change
Direction every EDS

Bit off =
secondary logical unit can
send Change Direction
every EDS

19 13

X'01' Reserved 19 13

Secondary
Logical
Unit FM
Header
Subset
Flags

BINSFMB1 BINDESTS X'80'
Bit on =

three destinations might
be outstanding

Bit off =
two destinations might be
outstanding

20 14

BINCMPCT X'40'
Bit on =

can send compaction
table/can be queried for
compaction tables

Bit off =
will not send compaction
table/will not be queried
for compaction tables

20 14

BINPDIR X'20'
Bit on =

PDIR can be sent

Bit off =
PDIR will not be sent

20 14

BINKDDSI X'10'
Bit on =

keyed direct data sets can
be sent

Bit off =
keyed direct data sets will
not be sent

20 14

BINSDSI X'08'
Bit on =

sequential data sets can be
sent

Bit off =
sequential data sets will
not be sent

20 14

834 z/OS V2R1.0 Communications Server: SNA Programming

Table 126. BINPSCHR field of BNDAREA DSECT for logical unit profile 1 (continued)

Field

DSECT DS
or ORG
label

DSECT EQU
label Value Meaning Dec offset Hex offset

BINSAI X'04'
Bit on =

sequential access to
addressed direct data set
can be sent

Bit off =
these data sets will not be
sent

20 14

BINSIDS X'02'
Bit on =

series IDs (with status in
reply) are supported

Bit off =
series IDs are not
supported

20 14

BINARRR X'01'
Bit on =

Add Replicate, Replace
Replicate are supported

Bit off =
these are not supported

20 14

BINSFMB2 X'80' Reserved 21 15

BINQDSI X'40'
Bit on =

query for destination
selection is supported

Bit off =
query for destination
selection is not supported

21 15

BINCSDS X'20'
Bit on =

CREATE, SCRATCH, and
SCRATCH ALL are
permitted

Bit off =
these are not permitted

21 15

BINXFPD X'10'
Bit on =

Execute Program Offline is
permitted

Bit off =
Execute Program Offline is
not permitted

21 15

X'0F' Reserved 21 15

Appendix F. Specifying a session parameter 835

Table 126. BINPSCHR field of BNDAREA DSECT for logical unit profile 1 (continued)

Field

DSECT DS
or ORG
label

DSECT EQU
label Value Meaning Dec offset Hex offset

Secondary
Logical
Unit Data
Stream
Flags

BINSDSB1 BININTR X'80'
Bit on =

full base set data stream
(BS, CR, LF, ENP, INP, HT,
VT) can be sent

Bit off =
full base set data stream
will not be sent

22 16

BINHFDS X'40'
Bit on =

horizontal format data
stream (SHF) can be sent

Bit off =
horizontal format data
stream will not be sent

22 16

BINVTDS X'20'
Bit on =

vertical format data stream
(SVF) can be sent

Bit off =
vertical format data stream
will not be sent

22 16

BINVSDS X'10'
Bit on =

vertical channel (includes
vertical format and
vertical channel select
(VCS) with parameters)
can be sent

Bit off =
vertical channel will not
be sent

22 16

BINSLD X'08'
Bit on =

SLD can be sent

Bit off =
SLD will not be sent

22 16

X'06' Reserved 22 16

BINTRNDS X'01'
Bit on =

transparency data stream
(TRN, IRS) can be used

Bit off =
transparency data stream
will not be sent

22 16

BINSDSB2 X Reserved 23 17

836 z/OS V2R1.0 Communications Server: SNA Programming

Table 126. BINPSCHR field of BNDAREA DSECT for logical unit profile 1 (continued)

Field

DSECT DS
or ORG
label

DSECT EQU
label Value Meaning Dec offset Hex offset

Secondary
Logical
Unit Media
Flags

BINSMED1 BINDOCMT X'80'
Bit on =

document format can be
sent

Bit off =
document format will not
be sent

24 18

BINCARD X'40'
Bit on =

card format can be sent

Bit off =
card format will not be
sent

24 18

BINXCHNG X'20'
Bit on =

exchange media can be
sent

Bit off =
exchange media will not
be sent

24 18

BINDISK X'10'
Bit on =

disk data management can
be sent

Bit off =
disk data management
will not be sent

24 18

BINXCDF X'08'
Bit on =

extended card format can
be sent

Bit off =
extended card format will
not be sent

24 18

BINXDOCF X'04'
Bit on =

extended document format
can be sent

Bit off =
extended document format
will not be sent

24 18

Appendix F. Specifying a session parameter 837

Table 126. BINPSCHR field of BNDAREA DSECT for logical unit profile 1 (continued)

Field

DSECT DS
or ORG
label

DSECT EQU
label Value Meaning Dec offset Hex offset

BINCMP1
BINCMP2

X'02' X'01'
BIND Request:

00 = no compression

01 = compression bid

10 = reserved

11 = compression required

BIND Response:

10 = compression used

xx = reserved

24 18

Table 127. BINPSCHR field of BNDAREA DSECT for logical unit profile 2

Field

DSECT DS
or ORG
label

DSECT
EQU label Value Meaning Dec offset Hex offset

BINDFLAG BINSEDS X'80' 3270 extended data stream 14 E

X'7F' Reserved 14 E

Reserved 15 F

Reserved 16 10

Reserved 17 11

Reserved 18 12

BINSCRSZ Presentation space size (next 4
bytes)

19 13

BINSPRIR Default number of rows 19 13

BINSPRIC Default number of columns 20 14

BINSALTR Alternate number of rows 21 15

BINSALTC Alternate number of columns 22 16

Presentation
Space Size

BINPRESZ Presentation space size 23 17

BINPSZO X'00' Undefined row and column format 23 17

BINPSZ1 X'01' 12 rows 40 columns format 23 17

BINPSZ2 X'02' 24 rows 80 columns format 23 17

BINPSZ3 X'03' 24 rows 80 columns default to
undefined alternate. Do not write
structural field query to identify
alternate.

23 17

BINPSFX X'7E' Presentation space is a fixed size as
defined by default values

23 17

BINPSZRC X'7F' Presentation space has both default
and alternate sizes as defined in the
DEFAULT and ALTERNATE fields

23 17

X'FC' Reserved 24 18

838 z/OS V2R1.0 Communications Server: SNA Programming

Table 127. BINPSCHR field of BNDAREA DSECT for logical unit profile 2 (continued)

Field

DSECT DS
or ORG
label

DSECT
EQU label Value Meaning Dec offset Hex offset

BINCMP1
BINCMP2

X'02' X'01'
BIND Request:

00 = no compression

01 = compression bid

10 = reserved

11 = compression required

BIND Response:

10 = compression used

xx = reserved

24 18

Table 128. BINPSCHR field of BNDAREA DSECT for logical unit profile 3

DSECT DS
or ORG
label

DSECT EQU
label Value Meaning Dec offset Hex offset

BINDFLAG BINSEDS X'80' 3270 extended data stream 14 E

X'7F' Reserved 14 E

Reserved 15 F

Reserved 16 10

Reserved 17 11

Reserved 18 12

BINBFRSZ Presentation space size (next 4 bytes) 19 13

BINBFRDR Default number of rows 19 13

BINBFRDC Default number of columns 20 14

BINBFRAR Alternate number of rows 21 15

BINBFRAC Alternate number of columns 22 16

BINBDESC Code for presentation size:

0 maximum

1 480 characters

2 1920 characters

X'7E' fixed size as defined by the
default values

X'7F' variable size as defined by the
default and alternate values

23 17

X'FC' Reserved 24 18

Appendix F. Specifying a session parameter 839

Table 128. BINPSCHR field of BNDAREA DSECT for logical unit profile 3 (continued)

DSECT DS
or ORG
label

DSECT EQU
label Value Meaning Dec offset Hex offset

BINCMP1
BINCMP2

X'02' X'01'
BIND Request:

00 = no compression

01 = compression bid

10 = reserved

11 = compression required

BIND Response:

10 = compression used

xx = reserved

24 18

Table 129. BINPSCHR field of BNDAREA DSECT for logical unit profile 4

DSECT DS
or ORG
label

DSECT EQU
label Value Meaning Dec offset Hex offset

BINPSNDO Primary logical unit send capability (next
4 bytes)

14 E

BINPDSPP Printer data stream profile 14 E

BINPBDSP X'80' Base data stream profile

Bit on =
supported

Bit off =
not supported

14 E

BINPJOB X'20' Job SNA character string subset

Bit on =
supported

Bit off =
not supported

14 E

BINWPRAW X'08' Word processing raw form

Bit on =
supported

Bit off =
not supported

14 E

X'57' Reserved 14 E

BINADSPP Additional data stream profile 15 F

BINADSCD X'40'
Bit on =

card supported

Bit off =
card not supported

15 F

X'5F' Reserved 15 F

BINCSLP Console data stream profile 16 10

840 z/OS V2R1.0 Communications Server: SNA Programming

Table 129. BINPSCHR field of BNDAREA DSECT for logical unit profile 4 (continued)

DSECT DS
or ORG
label

DSECT EQU
label Value Meaning Dec offset Hex offset

BINCBDSP X'80' Base data stream profile

Bit on =
supported

Bit off =
not supported

16 10

BINCJOB X'20' Job SNA character string subset

Bit on =
supported

Bit off =
not supported

16 10

X'5F' Reserved 16 10

BINFMHUP Function management/function
management header usage

17 11

BINDSSTO X'60'
00 1 level of destination selection

suspension stack

01 2 levels of destination selection
suspension stack

10 Reserved

11 3 levels of destination selection
suspension stack

17 11

BINKIXS X'01'
Bit on =

secondary logical unit must
receive a Change Direction on
every End Data Set command

Bit off =
secondary logical unit need not
receive a Change Direction on
every End Data Set command

17 11

X'9E' Reserved 17 11

BINSSNDO Secondary logical unit send capability
(next 4 bytes)

18 12

BINPDSPS Printer data stream profile 18 12

BINPBDSP X'80' Base data stream profile

Bit on =
supported

Bit off =
not supported

18 12

BINPJOB X'20' Job SNA character string subset

Bit on =
supported

Bit off =
not supported

18 12

Appendix F. Specifying a session parameter 841

Table 129. BINPSCHR field of BNDAREA DSECT for logical unit profile 4 (continued)

DSECT DS
or ORG
label

DSECT EQU
label Value Meaning Dec offset Hex offset

BINWPRAW X'08' Word processing raw form

Bit on =
supported

Bit off =
not supported

18 12

X'57' Reserved 18 12

BINADSPS Additional data stream profile 19 13

BINADSCD X'40'
Bit on =

card supported

Bit off =
card not supported

19 13

X'BF' Reserved 19 13

BINSCLS Console data stream profile 20 14

BINCBDSP X'80' Base data stream profile

Bit on =
supported

Bit off =
not supported

20 14

BINCJOB X'20' Job SNA character string subset

Bit on =
supported

Bit off =
not supported

20 14

X'5F' Reserved 20 14

BINFMHUS Function management/function
management header usage

21 15

BINDSSTO X'60'
00 1 level of destination selection

suspension stack

01 2 levels of destination selection
suspension stack

10 Reserved

11 3 levels of destination selection
suspension stack

21 15

BINKIXS X'01'
Bit on =

secondary logical unit must
receive a Change Direction on
every End Data Set command

Bit off =
secondary logical unit need not
receive a Change Direction on
every End Data Set command

21 15

X'9E' Reserved 21 15

842 z/OS V2R1.0 Communications Server: SNA Programming

Table 129. BINPSCHR field of BNDAREA DSECT for logical unit profile 4 (continued)

DSECT DS
or ORG
label

DSECT EQU
label Value Meaning Dec offset Hex offset

BINSCO Code selection 22 16

BINCSOR X'F0' Repertoire 22 16

BINCSOE X'80' EBCDIC 22 16

BINCSOA1 X'40' ASCII/ISCII/ITA #5 22 16

X'30' Reserved 22 16

BINCSOC1 X'0C'
00 = code 0 (main code) selection is

EBCDIC

01 = code 0 (main code) selection is
ASCII/ISCII/ITA #5

22 16

BINCSOC2 X'03'
00 = code 1 (alternate code) selection

is EBCDIC

01 = code 1 (alternate code) selection
is ASCII/ISCII/ITA #5

22 16

BINGENCO General characteristics 23 17

X'C0' Reserved 23 17

BINWSDF X'20'
Bit on =

secondary logical unit must
send data first

Bit off =
primary logical unit can send
data first

23 17

X'10' Reserved 23 17

BINIAO X'08'
Bit on =

secondary logical unit will
initiate unattended

Bit off =
secondary logical unit will
initiate attended

23 17

BINAAO X'04'
Bit on =

secondary logical unit can
alternate between attended and
unattended

Bit off =
secondary logical unit will not
alternate between attended and
unattended

23 17

X'03' Reserved 24 18

Table 130. BINPSCHR field of BNDAREA DSECT for logical unit profile 6

DSECT DS or
ORG label

DSECT EQU
label Value Meaning Dec offset Hex offset

BINLULEV LU 6 Level 14 E

Appendix F. Specifying a session parameter 843

Table 130. BINPSCHR field of BNDAREA DSECT for logical unit profile 6 (continued)

DSECT DS or
ORG label

DSECT EQU
label Value Meaning Dec offset Hex offset

BINLV02 X'02' Level 2 14 E

BINFLG0 LU 6.2 flags, byte 0 21 15

BINDSSSP X'80' Distributed Systems
Security supported

21 15

BINDESS X'40' Extended security
sense codes supported

21 15

BINFLG1 LU 6.2 flags, byte 1 22 16

BINCLSS X'10' Access security
information support

22 16

BINDPWS X'04' Password substitution
support

22 16

BINSLAPS X'08' Session level security
protocol

22 16

BINAVFS X'02' Already-verified
function support

22 16

BINPV X'01' Persistent verification
function support

22 16

BINFLG2 LU 6.2 flags, byte 2 23 17

BINSYNCH X'60' Synchronization level
field

23 17

BINCONF X'20' Confirm supported 23 17

BINCSBK X'40' Confirm, sync point,
and backout supported

23 17

BINRS X'10' Reconnect support 23 17

BINRSR X'0C' Responsibility for
session, reinitiation
field (reserved when
parallel sessions are
supported)

23 17

BINOPRC X'00' Operator controlled 23 17

BINPRIMH X'04' Primary will reinitiate 23 17

BINSECNH X'08' Secondary will
reinitiate

23 17

BINETHR X'0C' Either may reinitiate 23 17

BINPSS X'02' Parallel session support
for LU-LU pair: 0= PSS
not supported, 1= PSS
supported

23 17

BINGDSVF X'01' Change number of
sessions GDS variable
flow support: 0= not
supported, 1=
supported

23 17

BINFLG3 X LU 6.2 Flags, byte 3 24 18

BINRSV37 X'80' Reserved 24 18

844 z/OS V2R1.0 Communications Server: SNA Programming

Table 130. BINPSCHR field of BNDAREA DSECT for logical unit profile 6 (continued)

DSECT DS or
ORG label

DSECT EQU
label Value Meaning Dec offset Hex offset

BINLTDRC X'40' 1 = limited resource
exists

24 18

BINRSV38 X'3C' Reserved 24 18

BIN6CMP1 X'02' Applies only to
BINSMED1

24 18

BIN6CMP2 X'01' (See BINCMP1 and
BINCMP2)

24 18

BINCMP1
BINCMP2

X'02' X'01'
BIND Request:

00 = no
compression

01 = compression
bid

10 = reserved

11 = compression
required

BIND Response:

10 = compression
used

xx = reserved

24 18

XRF session activation control vector

The XRF session control vector consists of:
1. A key (hex 27) which identifies the type of vector.
2. The length of the vector data field.
3. The vector data which consists of usage indicators to indicate whether the

BIND request is for a primary XRF session or a backup XRF session.

Note: The XRF session request type (primary or backup) is the initial XRF state
of this session. Subsequent SWITCH commands can be issued to change this
status after the session establishment has been completed.

4. BIND correlation ID, used to relate the BIND for primary XRF session to a
subsequent BIND for the backup XRF sessions.

Note: When the XRF session activation control vector specifies that a backup
XRF session is to be activated, the application program must ensure compatible
session parameters between this backup XRF session and the related primary
XRF session.

Table 131 on page 846 shows the structure of the XRF Vector hex 27. This XRF
session activation control vector must be appended to the user data field of the
BIND for XRF sessions.

Appendix F. Specifying a session parameter 845

Table 131. Structure of the XRF vector hex 27

Byte Description

0 Key: X'27'

1 Length (n-1), in binary, of vector data field

2–n Vector data

2 Usage indicators bit 0, session type:

0 XRF primary: the BIND request is for a primary XRF session which might become related
to one or more backup sessions

1 XRF backup: the SLU will relate this LU-LU session with the previously activated session

3–n Session correlator field

3 Length of session correlator

4–n Session correlator

846 z/OS V2R1.0 Communications Server: SNA Programming

Appendix G. RPL fields associated with VTAM
macroinstructions

VTAM can alter RPL fields prior to posting an RPL-based macroinstruction
complete. Figure 178 on page 848, Figure 179 on page 849, and Figure 180 on page
850 show fields modified by the SEND and SESSIONC macroinstructions.
Figure 181 on page 851 and Figure 182 on page 852 show fields modified by the
RECEIVE macroinstruction.

© Copyright IBM Corp. 2000, 2013 847

Applicable RPL Fields:

SEND POST=SCHED SEND POST=RESP SESSIONC

DFSYN
Data

DFSYN
Data

DFSYN
DFC

DFSYN
DFC

DFSYN
DFC DFASYDFASY

for
(ORDRESP)

Rq

for
(ORDRESP)

Rq

for
(NORDRESP)

RqRq Rq Rq Rq RspRsp Rsp Rsp

ACB

ARG/NIB
(when ARG specified)

ARG/NIB
(when NIB specified)

AREA

RECLEN

BRANCH

EXIT/ECB
(when ECB specified)

EXIT/ECB
(when EXIT specified)

EXIT/ECB
(when internal ECB is used)

REQ

RTNCD

FDBK2

FDBK

USER

SEQNO

POST

RESPOND:

EX/NEX

FME/NFME

RRN/NRRN

QRESP/NQRESP

CONTROL

CHAIN

CHNGDIR CMD

CHNGDIR REQ

RTYPE

STYPE

SSENSEO

SSENSMO

USENSED

SSENSEI

A

A

A

A

V

V

V

V

V

V

AV

(SCHED)

A

A

A

A

7

A

(O)

(NCMD)

A

A

A

A

A

A

A

A

A

A

V

V

V

V

V

V

V

A(SCHED)

A

A

A

A

6

A

(O)

A

A

A

A

A

A

A

A

A

A

A

V

V

V

V

V

V

AV

(SCHED)

A

A

A

A

7

A

(O)

(NCMD)

A

A

A

A

A

A

A

A

A

A

V

V

V

V

V

V

A

(SCHED)

A

(FME)

(NRRN)

(NQRESP)

A

(O)

(NCMD)

A

A

A

A

A

A

A

AV

A

A

V

V

V

V

V

V

V

A(RESP)

A

A

A

A

7, 8, 9

AV

(O)

A

AV

A

A

A

A

A

V

A

AV

A

A

V

V

V

V

V

V

V

A(RESP)

(NEX)

(FME)

(NRRN)

(NQRESP)

9

AV

(O)

A

AV

A

A

A

A

A

V

A

AV

A

A

V

V

V

V

V

V

AV

(RESP)

(NEX)

(FME)

(NRRN)

(NQRESP)

9

AV

(O)

(NCMD)

AV

A

A

V

A

AV

A

A

V

V

V

V

V

V

V

(RESP)

(NEX)

(FME)

(NRRN)

(NQRESP)

9

AV

(O)

(NCMD)

(NREQ)V

A

V

A

A

A

A

A

V

V

V

V

V

V

AV

(SCHED)

A

(FME)

(NRRN)

(NQRESP)

A

(O)

(NCMD)

(NREQ)

A

A

A

A

A

AV

A

A

A

A

V

V

V

V

V

V

V

A(RESP)

A

A

A

A

7, 8, 9

AV

A(F M L O)

A

AV

A

A

V

A for ASY; AV for SYN

1 1 1 1 1

2

1 1 1 1

5

1 1 1 1 1

10 11

12 12 12

13 13 13

13 13 13

13 13 13

3

3

4

14

14

14

3

A

A

A

A

A

A

V

V

V

V

V

V

V

A(SCHED)

A

A

A

A

6

A

A(F M L O)

A

A

A

A

Notes: Applicable to RESPOND

Figure 178. RPL fields associated with the SEND and SESSIONC macroinstructions for various modes of operation
(Part 1 of 3)

848 z/OS V2R1.0 Communications Server: SNA Programming

Applicable RPL Fields:

SEND POST=SCHED SEND POST=RESP SESSIONC

DFSYN
Data

DFSYN
Data

DFSYN
DFC

DFSYN
DFC

DFSYN
DFC DFASYDFASY

for
(ORDRESP)

Rq

for
(ORDRESP)

Rq

for
(NORDRESP)

RqRq Rq Rq Rq RspRsp Rsp Rsp

SSENSMI

USENSEI

CRYPT

RPLURH

BRACKET BB

BRACKET EB

BRACKET CEB

IBSQAC

OBSQAC

IBSQVAL

OBSQVAL

SIGDATA

CODESEL

OPTCD:

FMHDR-NFMHDR

SYN-ASY

CS-CA

LMPEO-NLMPEO

CONTCHN-NOCNTCHN

BUFFLST-NBUFFLST

USERRH-NUSERRH

A

A

A

A

A

V

A

A

A

A

A

A

A

A

(NO)

A

(NBB)

(NEB)

(NCEB)

(S)

A

A

A

A

(NO)

A

A

A

A

(S)

(F)

A

A

A

(NO)

A

(NBB)

(NEB)

(NCEB)

(S)

(F)

A

A

A

(NO)

A

(NBB)

(NEB)

(NCEB)

(S)

(F)

A

A

A

V

V

A

A

A

A

A

V

A

A

A

A

A

A

A

A

V

V

(NO)

A

A

A

A

(S)

(F)

A

A

A

V

V

(NO)

A

A

A

A

(S)

(F)

A

A

A

V

V

(NO)

A

(NBB)

(NEB)

(NCEB)

A

(S)

(F)

A

A

A

V

V

(NO)

(NBB)

(NEB)

(NCEB)

AV

AV

AV

AV

(S)

(F)

A

(NO)

(NBB)

(NEB)

(NCEB)

A

A

A

A

(S)

(F)

A

3

3

21

15 15 15

16 16 16

22 22 22

17 17

17

17

1717

17

17

23 23

20

18

19

Figure 179. RPL fields associated with the SEND and SESSIONC macroinstructions for various modes of operation
(Part 2 of 3)

Appendix G. RPL fields associated with VTAM macroinstructions 849

Application program specifies (by setting in RPL or on RPL-based
macroinstruction). VTAM uses the RPL file (for example, to set
up the RH field).

Cannot specify; results in error.

A blank box means the application program can specify (for
example, change RPL); however, VTAM does not look at the
RPL field and does not change the RPL field when posting
the macroinstruction complete.

VTAM changes the field when posting the macroinstruction
complete.

No matter what the application program specifies in the RPL,
VTAM acts as if x had been specified. VTAM does not change
the RPL unless is also listed.V

V

A

(x)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

The setting made by VTAM (V) will be the
same as the setting made by the application program (A) except
when a VTAM or network error occurs, or if the logical
unit does not obey SNA protocols.

A , if SESSIONC is used to send a negative response to a
BIND request; otherwise, --- .

VTAM sets this field to zero when the macroinstruction is accepted.
A non-zero value may be set by VTAM when the macroinstruction is
posted complete.

VTAM sets this field to zero when the macroinstruction is accepted.

For NIB PROC=ORDRESP;
if NIB PROC=NORDRESP, (RESP) is assumed.

Check is made for (EX, NFME, NRRN), which is not allowed;
if found, (NEX, NFME, NRRN) is assumed.

Check is made for (NEX, NFME, NRRN) and (EX, NFME, NRRN);
if found SEND is rejected with (RTNCD, FDBK2)=(20,59).

If EX is specified, POST=SCHED is assumed.
If (NEX, NFME, NRRN) is specified, POST=SCHED is assumed.

On posting complete, the RPL RESPOND field is changed to
whatever was received.

A(F M L O) means A (FIRST or MIDDLE or LAST or ONLY) .

(O) means (ONLY) .

Only for CONTROL=CANCEL,
CHASE, QC, or LUS; otherwise, (NCMD) .

For CONTROL=LUS.

VTAM sets this field to zero when the macroinstruction is
posted complete.

For CONTROL=LUS; otherwise, (NBB) .

Only for CONTROL=CANCEL,
CHASE, QC, or LUS; otherwise, (NEB) .

Only for CONTROL=STSN; otherwise, ignored (for A) and not
changed by VTAM.

(S) means (STANDARD) .

(F) means (FMHDR) .

Only for SIGNAL; otherwise, the RPL field is ignored by VTAM.

RPLURH is a label in the ISTRH DSECT (Appendix E), rather than
a field name. There is no RPL operand for this field.

For CONTROL=LUS; otherwise, (NCEB) .

This field is set by VTAM when SEND OPTCD=LMPEO is posted
complete.

Figure 180. RPL fields associated with the SEND and SESSIONC macroinstructions for various modes of operation
(Part 3 of 3)

850 z/OS V2R1.0 Communications Server: SNA Programming

Applicable RPL Fields: Rq Rq RqRspRsp

A

AV

A

A

V

A

A

V

V

V

V

V

V

V

V

V

V

V

V

AV

V

V

V

V

V

V

V

V

A

AV

A

A

V

V

V

V

V

V

V

V

V

V

AV

V

V

V

V

A

AV

A

A

A

A

V

V

V

V

V

V

V

V

V

V

V

V

AV

V

V

V

V

V

V

V

A

AV

A

A

V

V

V

V

V

V

V

V

V

V

AV

V

V

V

V

A

AV

A

A

V

V

V

V

V

V

V

V

V

V

V

AV

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

V

(A for ASY; AV for SYN)

R
E

C
E

IV
E

A
N

Y

R
E

S
P

E
xi

t

D
F

A
S

Y
E

x
it

S
C

IP
E

xi
t

L
O

G
O

N
E

xi
t

N
S

E
X

IT
E

x
itRECEIVE SPEC

DFSYN Data DFSYN DFC DFASY

A

V

A

A

V

A

A

V

V

V

V

V

V

V

V

V

V

V

V

AV

V

V

V

V

V

V

V

V

ACB

ARG/NIB (when ARG specified)

ARG/NIB (when NIB specified)

AREA

AREALEN

RECLEN

BRANCH

EXIT/ECB (when ECB specified)

EXIT/ECB (when EXIT specified)

EXIT/ECB (when internal ECB is used)

REQ

RTNCD

FDB2

FDBK

USER

SEQNO

POST

RESPOND

CONTROL

CHAIN

CHNGDIR CMD

CHNGDIR REQ

RTYPE

SSENSEI

SSENSMI

USENSEI

CRYPT

BRACKET BB

BRACKET EB

BRACKET CEB

RPLURH

IBSQAC

OBSQAC

6

6

7

6

6

6

11

1 1 1 1 1 2

3 4 5

543

4 5

4 5

4

4

4

4

4

9

9

Figure 181. RPL fields associated with the RECEIVE macroinstruction for various modes of operation (Part 1 of 2)

Appendix G. RPL fields associated with VTAM macroinstructions 851

DFSYN Data DFSYN DFC DFASY

Applicable RPL Fields: Rq Rq RqRspRsp

IBSQVAL

OBSQVAL

SIGDATA

CODESEL

OPTCD:

TRUNC-KEEP-NIBTK

FMHDR-NFMHDR

SPEC-ANY

SYN-ASY

CS-CA

Q-NQ

V

A(SPEC)

A

A

A

V

V

A(SPEC)

A

A

A

V

A(SPEC)

A

A

A

V

V

V

A(SPEC)

A

A

A

V

V

A

V

A(ANY)

A

A

A

V

V

V

V

V

V

V

V V V

9

9

101010

4

4

R
E

C
E

IV
E

A
N

Y

R
E

S
P

E
xi

t

D
FA

S
Y

E
xi

t

S
C

IP
E

xi
t

L
O

G
O

N
E

xi
t

N
S

E
X

IT
E

xi
tRECEIVE SPEC

The setting made by VTAM (V) will be the same as the
setting made by the application program (A) except
when a VTAM or network error occurs, or if the
logical unit does not obey SNA protocols.

ARG is set only for a CLEANUP RU.

Application program must specify this field for
RTYPE=DFSYN because it is required for
DFSYN CONTROL=DATA. However, the RPL field is not
used if the RU actually received is DFSYN DFC.

Used (A) or set (V) if meaningful for the type of
RU that completes the RECEIVE. See the corresponding
RECEIVE SPEC column.

When an RU (BIND or UNBIND) is made available in the
exit routine.

VTAM sets this field to zero when the macroinstruction
is accepted. A non-zero value may be set by VTAM when
the macroinstruction is posted complete.

VTAM sets this field to zero when the macroinstruction
is accepted.

VTAM sets this field to zero when the macroinstruction
is posted complete.

Only for CONTROL=STSN; otherwise, ignored (for A) and
not changed by VTAM.

Set only for CONTROL=SIGNAL RU received.

RPLURH is a label in the ISTRH DSECT (Appendix E),
rather than a field name. There is no RPL operand
for this field.

1

2

3

4

5

6

7

8

9

10

11

V

A

V

A(SPEC)

A

A

A

Application program specifies (by setting in RPL or on
RPL-based macroinstruction). VTAM uses the RPL field
(for example, to set up the RH field).

Cannot specify; results in error.

A blank means the application program can specify
(for example, change RPL); however, VTAM does not look
at the RPL field and does not change the RPL field when
posting the macroinstruction complete.

VTAM changes the field when posting the macroinstruction
complete.

No matter what the application specifies in the RPL,
VTAM acts as if x had been specified. VTAM does not
change the RPL unless V is also listed.

A

V

(x)

Figure 182. RPL fields associated with the RECEIVE macroinstruction for various modes of operation (Part 2 of 2)

852 z/OS V2R1.0 Communications Server: SNA Programming

Appendix H. Summary of register usage

The following table shows what VTAM does with the general-purpose registers
before it returns control to the application program at the next sequential
instruction. It indicates which registers are left unchanged by the VTAM
macroinstructions and which ones can be modified between the time the
macroinstruction is executed and control is returned to the application program.
The table also shows the disposition of the registers when any of the exit routines
receive control. Refer to Chapter 9, “Handling errors and special conditions,” on
page 277 for further details on how to handle macroinstruction errors.

Table 132. Register contents upon return of control

Register 0 Register 1 Register 2-12 Register 13 Register 14 Register 15

Upon return from
OPEN and CLOSE
macroinstructions

Unpredictable Unpredictable Unmodified Unmodified1 Unpredictable Return code

Upon return from
RPL-based
macroinstructions,
including CHECK

See footnote2 Address of
RPL

Unmodified Unmodified1 Unpredictable See footnote2

Upon return from
GENCB

Error return
code or
control block
length3 4

Control block
address3 4

Unmodified Unmodified1 Unpredictable General return
code

Upon return from
SHOWCB, MODCB,
or TESTCB

Error return
code4

Unpredictable Unmodified Unmodified1 Unpredictable General return
code

Upon invocation of
LERAD or SYNAD
exit routines

Recovery
action return
code

Address of
RPL

Unmodified Unmodified1 Return
address

Address of
exit routine

Upon invocation of
other EXLST exit
routines

Unpredictable Address of
VTAM-
supplied
parameter list

Unpredictable Unpredictable Return
address

Address of
exit routine

Upon invocation of
RPL-based exit
routines

Unpredictable Address of
RPL

Unpredictable Unpredictable Return
address

Address of
exit routine

Notes:

1. Register 13 must indicate the address of an 18-word save area when the macroinstruction is executed.

2. If the operation completed normally, register 15 is set to 0. For some macroinstructions completing normally but
with a special condition, register 0 is also set. If an error occurred and the LERAD or SYNAD exit routine has
been invoked, registers 0 and 15 contain the values set in them by the exit routine. If an error occurred and no
LERAD or SYNAD exit routine exists, VTAM sets register 15 to 4 and places a recovery action return code in
register 0 (if the error is that the ACB is not open, register 15 is set to decimal 32 and the RPL request code is set
in register 0).

3. When GENCB completes successfully (register 15 is set to 0), register 1 contains the address of the generated
control blocks and register 0 contains the length of the control blocks, in bytes.

4. If GENCB, SHOWCB, MODCB, or TESTCB completes unsuccessfully (with register 15 not set to 0), register 1 is
unpredictable and register 0 contains an error code (if register 15 is set to 4 or 12) or else is unpredictable.

© Copyright IBM Corp. 2000, 2013 853

854 z/OS V2R1.0 Communications Server: SNA Programming

Appendix I. Return codes for manipulative macroinstructions

When the application program receives control from any of the manipulative
macroinstructions (GENCB, MODCB, TESTCB, or SHOWCB), register 15 is set to
one of the decimal values shown here:

0 The macroinstruction was completed successfully.

If the macroinstruction is GENCB, register 1 contains the address of the
control blocks and register 0 contains their total length (in bytes).

4 An error occurred. A return code is placed in register 0 indicating the
cause of the error. (See Table 133.)

8 An error occurred. Specifically, an attempt has been made to use the
execute form of the macroinstruction to enter a new item in the parameter
list. (Only modifications to existing parameter lists are allowed, as
explained in Appendix K, “Forms of the manipulative macroinstruction,”
on page 865.) Register 0 is not set.

When a return code of 4 is placed in register 15, an error return code is placed in
register 0. Table 133 explains these error return codes and indicates the
manipulative macroinstructions that can return each code. An X in the
macroinstruction column means that the return code value applies to that
macroinstruction.

Table 133. Manipulative macroinstruction register 0 return codes when register 15 is 4

Decimal
value GENCB MODCB SHOWCB TESTCB Explanation

1 X X X X Request type not valid. When the access method
processed the execute form, it found that the part of
the parameter list that indicates the type of request
(GENCB, MODCB, SHOWCB, or TESTCB) had been
destroyed.

2 X X X X Block type not valid. You modified the list form's
parameter list. When the access method processed the
execute form, it found that the part of the parameter
list which indicates the type of control block (ACB,
EXLST, RPL, or NIB) had been destroyed.

3 X X X X Keyword not valid. You modified the list form's
parameter list. When the access method processed the
execute form, it found that part of the parameter list
representing keyword types (for example, FIELDS=
and ERET=) had been destroyed.

4 X X X Block not valid. The address specified with the ACB,
EXLST, RPL, or NIB keyword did not indicate a valid
ACB, EXLST, RPL, or NIB control block, respectively.

5 X X Reserved (VSAM only)

6 X X Reserved (VSAM only)

© Copyright IBM Corp. 2000, 2013 855

Table 133. Manipulative macroinstruction register 0 return codes when register 15 is 4 (continued)

Decimal
value GENCB MODCB SHOWCB TESTCB Explanation

7 X X Field nonexistent. You attempted to modify or extract
a field from an exit list, but the specified field does not
exist. For example, you might have specified MODCB
EXLST=EXLST1, LERAD=LERADPGM in order to
place a valid address (LERADPGM) in EXLST1's
LERAD field. The receipt of this return code means
that EXLST1 has no LERAD field; you never specified
on an EXLST or GENCB macroinstruction.

8 X Insufficient main storage. There is not enough main
storage in which to build the control block or blocks.

9 X X Insufficient program storage. The work area length
you indicated with the LENGTH operand was not
large enough to build the control blocks (GENCB) or
to hold the control block fields (SHOWCB).

10 X X No address supplied. You attempted to generate an
EXLST entry without specifying an address. For
example, coding TPEND= is not valid.

11 X RPL active. You attempted to modify an RPL that was
active (it must be inactive).

12 X ACB open. You attempted to modify an ACB after it
had been opened (the ACB must not be opened when
you modify it).

13 X Reserved (VSAM only)

14 X X X Parameter list not valid. You modified the list form's
parameter list. When the access method processed the
execute form, it found that the parameter list now
indicates mutually exclusive keywords (as though you
had, for example, specified
BLK=RPL,ECB=ECB1,EXIT=PGM on a GENCB
macroinstruction).

15 X X Alignment not valid. The work area in your
application program does not begin on a fullword
boundary.

16 X X X X Control block not valid (access method not valid). You
coded AM=VTAM on the macroinstruction and
included one or more parameters valid only for
VSAM.

17 X No internal ECB. TESTCB (IO=COMPLETE) failed
because there is no internal ECB in the RPL.

22 X AM=VTAM was specified and the RPL field's
parameter conflicted with the RPLNIB bit status.
Either the RPLNIB field was specified and the RPLNIB
bit was off, or the RPL ARG field was specified and
the RPLNIB bit was on.

856 z/OS V2R1.0 Communications Server: SNA Programming

Appendix J. Summary of operand specifications

The first figure in this appendix (Table 134) describes all of the operands of the
manipulative macroinstructions (GENCB, MODCB, SHOWCB, and TESTCB) that
do not involve a particular control block field. The remaining figures deal
exclusively with the operands you use to select the control block field or fields to
be set, moved, or tested. These figures indicate which manipulative
macroinstructions apply for each operand and the types of values that can be
coded with each operand.

For example, suppose you are interested in examining an ACB's OFLAGS field.
Refer to Table 135 and locate the OFLAGS entry. TESTCB (but not SHOWCB) can
be used to examine this field. The OFLAGS operand is coded in a fixed form, in
this case, OFLAGS=OPEN.

The “Notation Category” and “Example” columns in Table 135 through Table 138
on page 860 do not apply to the SHOWCB macroinstruction whose control block
field name is always coded after the FIELDS keyword (for example,
FIELDS=PASSWD).

In the following table an X in the macroinstruction's column means that the
operand applies to that macroinstruction.

Table 134. Manipulative macroinstruction operands exclusive of control block operands

Operand
keyword GENCB MODCB SHOWCB TESTCB Notation category Example

ACB X X X Address ACB=ACB1

AM X X X X Fixed value AM=VTAM

AREA X Address AREA=WORKAREA

BLK X Fixed value BLK=RPL

COPIES X Quantity COPIES=7

ERET X Address ERET=ERRPGM

EXLST X X X Address EXLST=EXLST1

FIELDS X Fixed value FIELDS=(ARG, ECB)

LENGTH X X Quantity LENGTH=132

MF X X X X See Appendix K,
“Forms of the
manipulative
macroinstruction,” on
page 865

MF=(E,PARMLIST)

NIB X X X Address NIB=NIB1

RPL X X X Address RPL=RPL1

WAREA X Address WAREA=WORKAREA

Table 135. Manipulative macroinstruction operands for ACB fields

Operand
keyword GENCB MODCB SHOWCB TESTCB Notation category Example

ACBLEN X X Quantity ACBLEN=(7)

© Copyright IBM Corp. 2000, 2013 857

Table 135. Manipulative macroinstruction operands for ACB fields (continued)

Operand
keyword GENCB MODCB SHOWCB TESTCB Notation category Example

AM X X X X Fixed value AM=VTAM

APPLID X X X X Address APPLID=AREA

ERROR X X Quantity ERROR=13

EXLST X X X X Address EXLST=EXLST2

MACRF X X Fixed value MACRF=EXLST2

OFLAGS X Fixed value OFLAGS=OPEN

PASSWD X X X X Address PASSWD=PASSWD1

Note:

1. An X in the macroinstruction's column means that the operand applies to that macroinstruction.

2. The ACB PARMS keyword is not supported by the manipulative macroinstructions. However, a map can be
generated using the DSECT-creating macroinstructions, as described in “Using DSECT-creating assembler
instructions and macroinstructions” on page 272.

In the following table an X in the macroinstruction's column means that the
operand applies to that macroinstruction.

Table 136. Manipulative macroinstruction operands for EXLST fields

Operand
keyword GENCB MODCB SHOWCB TESTCB Notation category Example

DFASY X X X X Address DFASY=(3)

EXLLEN X X Quantity EXLLEN=(3)

LERAD X X X X Address LERAD=LERTN

LOGON X X X X Address LOGON=LGNRTN

LOSTERM X X X X Address LOSTERM=(6)

NSEXIT X X X X Address NSEXIT=ERRORTN

RELREQ X X X X Address RELREQ=(S,AREA1)

RESP X X X X Address RESP=RESPEXIT

SCIP X X X X Address SCIP=(*,SCIPADR)

SYNAD X X X X Address SYNAD=(*,AREA2)

TPEND X X X X Address TPEND=(S,4(7))

In the following table an X in the macroinstruction's column means that the
operand applies to that macroinstruction.

Table 137. Manipulative macroinstruction operands for RPL fields

Operand
keyword GENCB MODCB SHOWCB TESTCB Notation category Example

AAREA X X X X Address AAREA=INAREA

AAREALN X X X X Quantity AAREALN=100

ACB X X X X Address ACB=ACB1

AREA X X X X Address AREA=(*,FLWORD)

AREALEN X X X X Quantity AREALEN=132

858 z/OS V2R1.0 Communications Server: SNA Programming

Table 137. Manipulative macroinstruction operands for RPL fields (continued)

Operand
keyword GENCB MODCB SHOWCB TESTCB Notation category Example

ARECLEN X X X X Quantity ARECLEN=(S,QUANT1)

ARG X X X X Register- indirect
value

ARG=(7)

BRACKET1 X X X Fixed value BRACKET=(BB,NEB)

BRANCH X X X Fixed value BRANCH=YES

CHAIN X X X Fixed value CHAIN=LAST

CHNGDIR X X X Fixed value CHNGDIR=(CMD,NREQ)

CODESEL X X X Fixed value CODESEL=STANDARD

CONTROL X X X Fixed value CONTROL=QEC

CRYPT X X X Fixed value CRYPT=YES

ECB X X X X Address ECB=FULLWORD

EXIT X X X X Address EXIT=EXITRTN

FDBK X X Quantity FDBK=(4)

FDBK2 X X Quantity FDBK2=128

IBSQAC X X X Fixed value IBSQAC=TESTPOS

IBSQVAL X X X X Quantity IBSQVAL=0

IO X Fixed value IO=COMPLETE

NIB X X X X Address NIB=NIB6

OBSQAC X X X Fixed value OBSQAC=INVALID

OBSQVAL X X X X Quantity OBSQVAL=(4)

OPTCD2 X X X Fixed value OPTCD=(SYN,SPEC)

POST X X X Fixed value POST=SCHED

RECLEN X X X X Quantity RECLEN=32

RESPOND X X X Fixed value RESPOND=(NEX,FME)

REQ X X Quantity REQ=VAL23

RPLLEN X X Quantity RPLLEN=(7)

RTNCD X X Quantity RTNCD=(*,X'00',X'03')

RTYPE X X X Fixed value RTYPE=(NDFSYN,
DFASY)

SEQNO X X X X Quantity SEQNO=(10)

SIGDATA X X X X Quantity SIGDATA=32767

SSENSEI X Fixed value SSENSEI=CPM

SSENSEO X X X Fixed value SSENSEO=STATE

SSENSMI X X Quantity SSENSMI=255

SSENSMO X X X X Quantity SSENSMO=(*,0(12))

STYPE X X Fixed value STYPE=REQ

USENSEI X X Quantity USENSEI=4095

USENSEO X X X X Quantity USENSEO=(4)

USER X X Quantity USER=1024

Appendix J. Summary of operand specifications 859

The RPL PARMS keyword is not supported by the manipulative macroinstructions.
However, a map can be generated for all operands by using DSECT-creating
macroinstructions, as described in “Using DSECT-creating assembler instructions
and macroinstructions” on page 272.

Note:

1. CEB/NCEB are not valid BRACKET operands when using the manipulative
macroinstructions.

2. The following OPTCD operands are not applicable when using manipulative
macroinstructions:

LMPEO or NLMPEO, SENSE or NSENSE, HOLD, BUFFLST or NBUFFLST,
SONCODE or NSONCODE, USERRH or NUSERRH, RSPQUED or
NRSPQUED, CONTCHN or NCONTCHN, UNBIND, QALL or QSESSLIM
or QNOTENAB, RESTORE, PERSIST or NPERSIST, PERSESS,
BACKUP or NBACKUP, NQN, GNAMEADD or GNAMEDEL,
SESSNAME, ENDAFFIN, KEEPSRB, NKEEPSRB

These notes refer to the following table.

Notes:

1. PROC=NEGBIND|NNEGBIND is not valid when using the manipulative
macroinstructions. Use the DSECT-creating macroinstructions as an alternative
as described in “Using DSECT-creating assembler instructions and
macroinstructions” on page 272.

2. An X in the macroinstruction's column means that the operand applies to that
macroinstruction.

Table 138. Manipulative macroinstruction operands for NIB fields

Operand
keyword GENCB MODCB SHOWCB TESTCB Notation category Example

BNDAREA X X X X Address BNDAREA=BNDADDR

CID X X Register- indirect
value

CID=(7)

CON X Fixed value CON=YES

DEVCHAR X X Indirect value DEVCHAR=(*,0(5))

ENCR X X X Fixed value ENCR=SEL

EXLST X X X X Address EXLST=(*,EXLSTADR)

LISTEND X X X Fixed value LISTEND=NO

LOGMODE X X X X Name LOGMODE=S3270

MODE X X X X Fixed value MODE=RECORD

NAME X X X X Name NAME=NYCTERM

NIBLEN X X Quantity NIBLEN=(8)

PROC X X X Fixed value PROC=(RESPX,CS)

RESPLIM X X X X Quantity RESPLIM=10

SDT X X X Fixed value SDT=SYSTEM

USERFLD X X X X Quantity USERFLD=(9)

860 z/OS V2R1.0 Communications Server: SNA Programming

A given operand can be coded in different ways, but the number of valid
combinations is small. The valid coding combinations for each operand have been
grouped under the heading “Notation Category” in Table 134 on page 857 through
Table 138 on page 860. The rest of this appendix contains coding instructions for
these notation categories. Three of these categories, described in “Address,”
“Quantity” on page 862, and “Fixed value” on page 863 encompass almost all of
the operands. A few operands fall into categories described in “Name” on page
863, “Register-indirect value” on page 863, and “Indirect value” on page 863.

Address

You can code any of the following expressions after the keyword and equal sign:
v Any expression that is valid for an A-type address constant. For example:

MODCB ACB=ACB1,APPLID=NAME1,AM=VTAM

...
NAME1 DC X’07’

DC CL7’INQUIRY’

v A register number or the label of an EQU instruction for the register, enclosed in
parentheses. For example:

L 3,ADRNAME
MODCB ACB=ACB1,APPLID=(3),AM=VTAM

...
ADRNAME DC A(NAME1)

Note: This form is prohibited if you are using the “simple” list form of the
macroinstruction (MF=L). List forms are explained in Appendix K, “Forms of the
manipulative macroinstruction,” on page 865.

v An expression of the form (S,expr) where expr is any expression valid for an
S-type address constant. This form of operand is especially useful for gaining
access to a control block field with a DSECT. For example, the program has
already used GENCB to build an ACB in dynamically allocated storage and has
placed the address of the ACB in register 7. The DSECT ACBMAP is used to
access the information in MYACB:

LA 5,MYACB
USING ACBMAP,5
MODCB ACB=(7),APPLID=(S,APPL1),AM=VTAM

...
MYACB DS XL108
ACBMAP DSECT

DS XL72
APPL1 DS A

DS XL32
END

Note: This form is prohibited if you are using the “simple” list form of the
macroinstruction (MF=L).

v An expression of the form (*,expr) where expr is any expression valid for an
S-type address constant. The address specified by expr is indirect; that is, it is the
address of a fullword that contains the operand. For example, the program
determines which APPLID address is used, and primes register 5 with the
appropriate displacement into APPLIST:

Appendix J. Summary of operand specifications 861

L 7,APPLIST(5)
MODCB ACB=ACB1,APPLID=(*,0(7)),AM=VTAM...
APPLIST EQU *

DC A(APPL1)
DC A(APPL2)

Quantity

You can code any of the following expressions after the keyword and equal sign:
v A decimal number, or an expression that you have equated to a decimal number.

For example:
TESTCB ACB=ACB1,ERROR=13,AM=VTAM

v A register number, or the label of an EQU instruction for the register number,
enclosed in parentheses. For example:

L 5,TESTVAL
TESTCB ACB=ACB1,ERROR=(5),AM=VTAM

...
TESTVAL DS F TESTVAL SET DURING PROGRAM
* EXECUTION

Note: This form is prohibited if you are using the “simple” list form of the
macroinstruction (MF=L).

v An expression of the form (S,expr) where expr is any expression valid for an
S-type address constant. This form is especially useful for gaining access to a
control block field with a DSECT. For example, the program has already used
GENCB to build an ACB in dynamically allocated storage, and has placed the
address of the ACB in register 7. A temporary work area, MYACB, contains the
information with which the contents of the ERROR field in the ACB pointed to
by register 7 are compared. The DSECT ACBMAP is used to access the
information in MYACB.

LA 5,MYACB
USING ACBMAP,5
TESTCB ACB=(7),ERROR=(S,ERR1),AM=VTAM

...
MYACB DS XL108
ACBMAP DSECT

DS XL49
ERR1 DS X

DS XL58
END

Note: This form is prohibited if you are using the “simple” list form of the
macroinstruction (MF=L).

v An expression of the form (*,expr) where expr is any expression valid for an
S-type address constant. The address specified by expr is indirect; that is, it is the
address of a fullword that contains the quantity for the operand. For example,
the program has determined which ERROR value is tested and has primed
register 5 with the appropriate displacement into ERRORLST:

TESTCB ACB=ACB1,ERROR=(*,ERLST(5)),AM=VTAM

...
ERLST EQU *
BADNAME DC F’90’
BADPSWD DC F’152’

862 z/OS V2R1.0 Communications Server: SNA Programming

Fixed value

You can code only the expressions that are specified in the macroinstruction
description. For example:
GENCB BLK=ACB,MACRF=NLOGON,AM=VTAM

Name

You can code any of the following expressions:
v 1–8 EBCDIC characters. For example:

TESTCB NIB=NIB1,NAME=TERM0003,AM=VTAM

v An expression of the form (*,expr) as explained in the preceding section. The
address specified by expr is indirect; that is, it is the address of a doubleword
containing the name. The name must be left-aligned and padded to the right
with blanks if it does not occupy the entire doubleword. For example:

L 7,NAMEPOOL
ST 7,NEWNAME+4
MODCB NIB=NIB1,NAME=(*,NEWNAME),AM=VTAM

...
NEWNAME DC CL8’TERM’
NAMEPOOL DC CL4’0001’

Register-indirect value

You can code any of the following expressions:
v A register number or label of an EQU instruction for the register number,

enclosed in parentheses. For example:
MODCB RPL=RPL1,ARG=(REG5),AM=VTAM

...
REG5 EQU 5

Note: This form is prohibited if you are using the “simple” list form of the
macroinstruction (MF=L).

v An expression of the form (*,expr) as explained in the preceding section. The
address specified by expr is indirect; that is, it is the address of a fullword that
contains the value. For example:

MODCB RPL=RPL1,ARG=(*,NEWCID),AM=VTAM

...
NEWCID DS F NEWCID SET DURING PROGRAM
* EXECUTION

Indirect value

You can code an expression of the form (*,expr) only as explained in the preceding
section. The address specified by expr is indirect; it is the address of a doubleword
that contains the value. For example:

Appendix J. Summary of operand specifications 863

TESTCB NIB=NIB1,DEVCHAR=(*,DEVMASK),AM=VTAM

...
DEVMASK DS D DEVMASK SET DURING PROGRAM
* EXECUTION

864 z/OS V2R1.0 Communications Server: SNA Programming

Appendix K. Forms of the manipulative macroinstruction

The standard form of a manipulative macroinstruction expands at assembly time
into (1) nonexecutable code that represents the parameters you specified on the
macroinstruction and (2) executable code that causes the access method to be
entered when the macroinstruction is executed. The nonexecutable code, called the
parameter list, is assembled at the point in your application program where the
macroinstruction appears.

Various alternative forms of the manipulative macroinstructions cause the
assembler to:
v Build the parameter list where the macroinstruction appears in your source code,

but assemble no executable code (“simple list” form)
v Assemble code that builds the parameter list at a location of your selection, but

assemble no executable code that causes the access method to be entered
(“remote list” form)

v Assemble code that builds the parameter list at a location of your selection and
assemble the code that causes the access method to be entered (generate form)

v Assemble code that modifies a parameter list and cause the access method to be
entered during program execution (execute form).

Table 139 summarizes the actions of these various forms. It also indicates the types
of programs that would use each form and how the MF operand is used.

Table 139. Forms of manipulative macroinstructions

Form During assembly During execution Useful for Coded with

Standard Parameter list built
where
macroinstruction
appears in source
code

Access method
entered

Nonreentrant
programs that are not
sharing or modifying
parameter lists

No MF operand

Simple List Parameter list built
where
macroinstruction
appears in source
code

No executable code
(execute form
required)

Nonreentrant
programs that are
sharing or modifying
parameter lists

MF=L

Remote List Assemble code to
build parameter list at
a location you specify

Parameter list built,
but access method not
entered (execute form
required)

Reentrant programs
that are sharing or
modifying parameter
lists

MF=(L,address[,label])

Generate Code assembled to:

1. Build parameter
list at a location
you specify

2. Enter the access
method

Parameter list built
and access method
entered

Reentrant programs
are not sharing or
modifying parameter
lists

MF=(G,address[,label])

© Copyright IBM Corp. 2000, 2013 865

Table 139. Forms of manipulative macroinstructions (continued)

Form During assembly During execution Useful for Coded with

Execute Code assembled
(where
macroinstruction
appears in the source
code) to modify the
parameter list whose
address you supply

Parameter list
modified and the
access method
entered

Programs using the
list form

MF=(E,address)

As indicated in Table 139 on page 865, the various alternative forms of the
manipulative macroinstructions are designated with the MF operand.

The MF operand for the list form of any manipulative macroinstruction is coded as
follows:

MF={L or (L,address[,label])}

L Indicates that this is the list form of the macroinstruction. If you code just
MF=L (simple list form), the parameter list is assembled in place. If you
code MF=(L,address) (remote list form), the parameter list is built during
program execution at the specified location.

address
Indicates the location where you want the parameter list to be built during
program execution. This area must begin on a fullword boundary and, if
your program is reentrant, must be in dynamically allocated storage.
Because the assembler builds executable codes that in turn builds the
parameter list, the macroinstruction must be in the executable portion of
your program—that is, not treated as a program constant.

You can code this address in any of the forms of the “address” notation
category (described in Appendix J, “Summary of operand specifications,”
on page 857).

label
This is a unique name that is used as a label for an assembled EQU
instruction. During program assembly, the assembler equates this label to
the length (in bytes) of the parameter list that is built during program
execution. You can use this label to assure that you are obtaining enough
dynamically allocated storage to hold the parameter list.

When coding label, follow the same rules that apply to any label for an
assembler instruction.

List form example:
LA 10,PLISTLEN OBTAIN LENGTH OF PARAMETER LIST
GETMAIN R,LV=(10) OBTAIN STORAGE FOR PARAMETER LIST
LR 5,1 SAVE STORAGE ADDRESS
TESTCB RPL=RPL1,CONTROL=DATA,AM=VTAM,MF=(L,(5),PLISTLEN)

The MF operand for the “generate” form of any of the manipulative
macroinstructions is coded as follows:

MF=(G,address[,label])

G Indicates that this is the generate form of the macroinstruction.

address
Indicates the location where you want the parameter list to be built during

866 z/OS V2R1.0 Communications Server: SNA Programming

program execution. Presumably, this is in dynamically allocated storage. In
both manner of use and manner of coding, this address is identical to the
address described in the preceding list form discussion.

label
Indicates the label to be used on an EQU instruction for the length of the
parameter list. The function of the label operand and its rules for coding
are identical to those described in the preceding list form discussion.

Generate form example:
LA 10,PLISTLEN OBTAIN LENGTH OF PARAMETER LIST
GETMAIN R,LV=(10) OBTAIN STORAGE FOR PARAMETER LIST
LR 5,1 SAVE STORAGE ADDRESS
GENCB BLK=RPL,AM=VTAM,MF=(G,(5),PLISTLEN)

The MF operand for the execute form of any of the manipulative macroinstructions
is coded as follows:

MF=(E,address)

E Indicates that this is the execute form of the macroinstruction.

address
Indicates the location of parameter list to be used by the access method.

The execute form allows you to modify the parameter list between the
generation of that parameter list and the invocation of the access method
routines that use the parameter list. Only the execute form provides a
means for you to modify the parameter list after it has been built.

The optional operands you specify on the execute form of a particular
macroinstruction are converted by the assembler into code that modifies a
parameter list during execution. This code can only modify—and not
expand—the parameter list. If the parameter list is actually a list form (as
is typically the case), never refer to a control block field in an execute form
that you did not specify in the list form. If you fail to observe this rule,
and thereby attempt to expand the parameter list, the execute form is not
processed successfully, and a return code of 8 is posted in register 15.

Execute form example:
EFORM MODCB EXLST=EXLST1,LERAD=(3),AM=VTAM, C

MF=(E,LFORM)

...
LFORM MODCB EXLST=0,LERAD=0,MF=L,AM=VTAM

Optional and required operands

Operands that are required in the standard form of the manipulative
macroinstructions can be optional in the list, generate, or execute forms, or
prohibited in the execute form. The meanings of the operands, however, and the
notation used to express them, are the same. The following syntax diagrams
indicate which operands are required and which are optional for each form of each
manipulative macroinstruction. Any operand that does not appear in a syntax
diagram for a particular form is prohibited.

Appendix K. Forms of the manipulative macroinstruction 867

Optional and required operands for the alternative forms of
GENCB

GENCB execute form

�� GENCB BLK = ACB , AM = VTAM
name EXLST

NIB
RPL

�

�
, COPIES = quantity , keyword = value

�

� , MF = (E , parameter_list_address) �

�
, WAREA = work_area_address , LENGTH = work_area_length

�

�
, COPIES = 1

, COPIES = quantity
��

CB generate

�� GENCB BLK = ACB , AM = VTAM
name EXLST

NIB
RPL

�

�
, WAREA = work_area_address , LENGTH = work_area_length

�

� , MF = (G , parameter_list_address)
, label

��

868 z/OS V2R1.0 Communications Server: SNA Programming

GENCB list form

�� GENCB BLK = ACB , AM = VTAM
name EXLST

NIB
RPL

�

�
, COPIES = 1

, COPIES = quantity , keyword = value
�

� , MF = L
(L , parameter_list_address)

, label

�

�
, WAREA = work_area_address , LENGTH = work_area_length

��

Optional and required operands for the alternative forms of
MODCB

MODCB execute form

�� MODCB AM = VTAM
name

, ACB = acb_address
, EXLST = exit_list_address
, NIB = nib_address
, RPL = rpl_address

�

�
, field_name = new_value

�

� , MF = (E , parameter_list_address) ��

Appendix K. Forms of the manipulative macroinstruction 869

MODCB generate form

�� MODCB AM = VTAM
name

, ACB = acb_address
, EXLST = exit_list_address
, NIB = nib_address
, RPL = rpl_address

�

� , field_name = new_value �

� , MF = (G , parameter_list_address)
, label

��

MODCB list form

�� MODCB AM = VTAM
name

, ACB = acb_address
, EXLST = exit_list_address
, NIB = nib_address
, RPL = rpl_address

�

� , field_name = new_value �

� , MF = L
(L , parameter_list_address)

, label

��

Optional and required operands for the alternative forms of
SHOWCB

870 z/OS V2R1.0 Communications Server: SNA Programming

SHOWCB execute form

�� SHOWCB AM = VTAM
name

, ACB = acb_address
, EXLST = exit_list_address
, NIB = nib_address
, RPL = rpl_address

�

�
, AREA = data_area_address , LENGTH = data_area_length

�

� , MF = (E , parameter_list_address) ��

SHOWCB generate form

�� SHOWCB AM = VTAM
name

, ACB = acb_address
, EXLST = exit_list_address
, NIB = nib_address
, RPL = rpl_address

�

� , AREA = data_area_address , FIELDS = field_name
(field_name)

�

� , LENGTH = data_area_length �

� , MF = (G , parameter_list_address)
, label

��

Appendix K. Forms of the manipulative macroinstruction 871

SHOWCB list form

�� SHOWCB AM = VTAM
name

, ACB = acb_address
, EXLST = exit_list_address
, NIB = nib_address
, RPL = rpl_address

�

� , AREA = data_area_address , FIELDS = field_name
(field_name)

�

� , LENGTH = data_area_length �

� , MF = L
(L , parameter_list_address)

, label

��

Optional and required operands for the alternative forms of
TESTCB

TESTCB execute form

�� TESTCB AM = VTAM
name

, ACB = acb_address
, EXLST = exit_list_address
, NIB = nib_address
, RPL = rpl_address

�

�
, ERET = error_exit_routine_address , field_name = test_value

�

� , MF = (E , parameter_list_address) ��

872 z/OS V2R1.0 Communications Server: SNA Programming

TESTCB generate form

�� TESTCB AM = VTAM
name

, ACB = acb_address
, EXLST = exit_list_address
, NIB = nib_address
, RPL = rpl_address

�

�
, ERET = error_exit_routine_address

, field_name = test_value �

� , MF = (G , parameter_list_address)
, label

��

TESTCB list form

�� TESTCB AM = VTAM
name

, ACB = acb_address
, EXLST = exit_list_address
, NIB = nib_address
, RPL = rpl_address

�

�
, ERET = error_exit_routine_address

, field_name = test_value �

� , MF = L
(L , parameter_list_address)

, label

��

Appendix K. Forms of the manipulative macroinstruction 873

874 z/OS V2R1.0 Communications Server: SNA Programming

Appendix L. Program operator coding requirements

This appendix describes how to write the program operator portion of a VTAM
application program using the SENDCMD and RCVCMD macroinstructions. See
“RCVCMD—Receive a message from VTAM” on page 463 for more information on
how to receive a message from VTAM. See “SENDCMD—Send a VTAM operator
command to VTAM” on page 529 for more information on how to send a VTAM
operator command to VTAM.

Defining a program operator

A VTAM application program can be authorized to issue VTAM operator
commands to:
v Display the status of the network
v Control the status of the network
v Receive messages from VTAM
v Reply to VTAM messages.

Such an application program is called a program operator, or a program operator
application (POA), and permits a user to:
v Enter operator commands from any LU in the network (for example, from a

terminal)
v Monitor and control elements in the network at program execution speed
v Specialize network control by dividing the network among several application

programs
v Define specialized commands (for example, to display the status of the entire

network with a single command)
v Reformat replies received for VTAM commands (for example, to reformat the

status display of a part of the network to fit on a 3270 display screen)
v Coordinate control of different domains in a multiple-domain network.

A program operator can:
v Issue a DISPLAY, MODIFY, or VARY command by using a SENDCMD

macroinstruction. The format of the command is the same as though it were
issued from the system console.

v Receive messages from VTAM by using a RCVCMD macroinstruction.
v Reply to a VTAM message by using a SENDCMD macroinstruction to send a

REPLY command.

Figure 183 on page 876 shows how the system console operator and a program
operator send VTAM operator commands and receive VTAM operator messages to
control the VTAM domain. OPNDST, SEND, RECEIVE, and CLSDST are examples
of session-establishment and communication macroinstructions.

© Copyright IBM Corp. 2000, 2013 875

The NetView program provides many of the facilities listed in the preceding
section while also providing a base for communication network management
functions.

In a multiple-domain network, program operators in different domains can
communicate by means of VTAM macroinstructions to allow a program operator
or an operator at a terminal to monitor and control elements in other domains.
Figure 184 on page 877 shows an example of how a multiple-domain network can
be controlled using two program operators.

System
console

Program
operator

Host processor

VTAM
operator terminal

VTAM

VTAM operator
commands and responses

SENDCMD and
RCVCMD macro-
instructions

Session-establishment
and communication
macroinstructions

Domain
control

Application
program-to-
terminal
communication

Figure 183. VTAM operator control of a VTAM domain

876 z/OS V2R1.0 Communications Server: SNA Programming

To activate an element in domain 2:
1. An operator at a terminal in domain 1 sends a command to program

operator 1.
2. Program operator 1 determines that the command is for domain 2 and sends it

to program operator 2.

Host processor 2

System
console

Program
operator 1

Program
operator 2 VTAM

VTAM

System
console

VTAM
operator terminal

VTAM
operator terminal

Domain 1

Domain 2

Application
program-to-
terminal
communication

Application
program-to-
terminal
communication

Domain
control

Domain
control

VTAM operator
commands and responses

Session establishment
and communication
macroinstructions

SENDCMD and
RCVCMD Macro-
instructions

Session establishment
and communication
macroinstructions

SENDCMD and
RCVCMD macro-
instructions

VTAM operator
commands and responses

Host processor 1

Application
program-to-
application
program
communication

Figure 184. VTAM operator control of a multiple-domain VTAM network

Appendix L. Program operator coding requirements 877

3. Program operator 2 sends the command to VTAM (using a SENDCMD
macroinstruction), where the command is processed.

4. Program operator 2 sends any replies back to program operator 1, which, in
turn, sends them to the terminal.

Another way to activate an element in domain 2 is to have a terminal establish a
session directly with program operator 2.

Two levels of authorization for an application program determine the type of
messages that the program can receive. A program can be authorized to:
v Receive only messages that are in reply to VTAM operator commands issued by

a program operator (solicited messages). Such an application program is called a
secondary program operator (SPO).

v Receive messages whether they are in reply to VTAM operator commands that
the program operator issued (solicited messages) or are as a result of unexpected
events in the network (unsolicited messages), for example, losing contact with a
terminal. Such an application program is called a primary program operator
(PPO).

Only one primary program operator can be active at a time; however, one or more
secondary program operators can also be active.

Note: If a primary program operator is active, the systems' operations console
does not receive unsolicited messages.

Authorizing a program operator

A program operator must be authorized to use the SENDCMD and RCVCMD
macroinstructions during VTAM definition. The APPL definition statement for the
application program specifies one of the following:
v AUTH=PPO: Authorizes the application program to send VTAM operator

commands to VTAM and to receive both solicited and unsolicited VTAM
messages.

v AUTH=SPO: Authorizes the application program to send VTAM operator
commands to VTAM and to receive only those VTAM messages that are in reply
to those commands.

v AUTH=NOPO: Prohibits the application program from issuing the SENDCMD
and RCVCMD macroinstructions. NOPO is the default value for AUTH.

Method for writing a program operator

An application program can use the SENDCMD macroinstruction to issue VTAM
operator commands to VTAM and the RCVCMD macroinstruction to receive
messages from VTAM. For a description of the SENDCMD macroinstruction, see
“SENDCMD—Send a VTAM operator command to VTAM” on page 529. For a
description of the RCVCMD macroinstruction, see “RCVCMD—Receive a message
from VTAM” on page 463. Terminals in the network can be in session with any
program operator, permitting VTAM commands to be entered from any terminal in
the network either in this domain or in another.

If a program operator fails, VTAM reroutes to the system console any commands
still outstanding that require a reply and any unsolicited VTAM messages. All
other messages are discarded.

878 z/OS V2R1.0 Communications Server: SNA Programming

The program operator interface allows flexibility in controlling and managing the
network. Careful planning is necessary to decide how much or how little
programmed control to use.

The following steps describe a suggested approach to coding and developing a
program operator:
1. Write a switching program that performs a minimum amount of VTAM

operator control to permit an operator at a terminal in the network to enter
commands and receive VTAM messages. This program (1) relieves the system
console operator of a part of the responsibility for monitoring and controlling
the VTAM network and (2) provides a base for further analysis and extension
of network control.

2. Analyze the daily command procedures used by the operator at the terminal.
Some of these procedures can be written into the program operator. For
example, the operator might be entering a series of repetitive, time-consuming
commands that can be handled by the program operator, or the replies to a
series of commands can be summarized or handled by the program operator.

3. Change and extend the program operator or add program operators. New
functions can be needed to aid the terminal operators or to support changes to
the network configuration. The program can be expanded gradually until the
desired amount of automatic operator control is implemented.

4. For a multiple-domain network, add application program-to-application
program communication capability (between VTAM domains) to allow operator
commands and replies to be exchanged between domains.

VTAM operator commands

VTAM operator commands entered by a program operator have the same format
and effect as commands entered at the system console. The VTAM operator
commands supported are the VARY, DISPLAY, and MODIFY commands. The
REPLY command is also supported to answer VTAM messages that require a reply.

A program operator can issue all commands except the VTAM START and HALT
commands; they can be issued only by the system operator at a system console.
The MODIFY QUERY command can be issued only from a program operator
application. For a description of MODIFY QUERY, see “POA communication with
tuning facility using the MODIFY QUERY COMMAND” on page 889.

For information about each VTAM operator command that can be issued by the
system operator, refer to z/OS Communications Server: SNA Operation. For
additional information about VTAM operator commands that use the unformatted
system services (USS) facility, refer to the z/OS Communications Server: SNA
Resource Definition Reference.

A program operator application (POA) can open its ACB indicating that can
receive the command complete message (IST1746I). VTAM issues this message as
the last message in response to a VTAM operator command. After receiving this
message, the POA continues processing with the next command. A POA must set
this capability in vector list ISTVACBV-ISTVAC81. The flag is VAC81EOM. For
further information, see the “Application-ACB vector list (ISTVACBV)” on page
789.

The operating procedures supplied by the system programmer should not depend
on internal VTAM execution sequences; that is, VTAM commands entered at nearly

Appendix L. Program operator coding requirements 879

the same time could be processed in parallel, and the order of processing of the
commands should not be assumed to be the same as the order in which the
commands are entered. In particular, if one command depends on the successful
completion of another, the dependent command should not be entered until the
successful completion of the first command is confirmed by a VTAM message.

Operational characteristics

A hard-copy log of the VTAM system console is not directly available to the
program operator. A program operator, however, can:
v Request that a copy of each VTAM command entered at the system console and

each VTAM message sent to the system console be sent to the primary program
operator log. The operator can see them at the primary program console in the
form of unsolicited messages if the primary program operator implements a log.
See the description of the MODIFY PPOLOG command in z/OS
Communications Server: SNA Operation or the PPOLOG option of the START
command in the z/OS Communications Server: SNA Resource Definition
Reference.

v Maintain a copy of each VTAM command issued by the program operator and
each message received by the program operator by writing them to a printer or
recording them on an auxiliary storage device.

An application program must control the display format of a terminal to be used
as a VTAM operator terminal.

To have the same capability as a VTAM operator at a system console, a program
operator must communicate with a system console operator to request certain
operating system services (such as starting application programs). When there is
not an active PPO, the messages or commands go to the system operator.

If a secondary program operator or a system console operator issues a
MODIFY USERVAR command, the resulting solicited USERVAR messages are sent
to both the originator of the command and the primary operator. The primary
operator receives them in the form of unsolicited messages. If the command was
issued by a secondary program operator and an active primary program operator
is not available, the messages go to the system console as well as to the secondary
program operator.

Note: The program operator can receive only VTAM messages. Operating system
messages, even though related to VTAM, cannot be received by a program
operator. This restriction does not apply to the system console operator.

In addition, it might be necessary to coordinate the operation of program operators
and the system console operator.

Messages rerouted to a PPO

A message that is sent to PPOLOG or percolated to a PPO from the system console
or from an SPO appears in the same format in which the message is defined in the
appropriate USS table.

880 z/OS V2R1.0 Communications Server: SNA Programming

If the message is defined in a user-written table (specified on the USSTAB operand
of the APPL definition statement or on the MODIFY TABLE command), VTAM
presents the message to the PPO in the format in which the message is defined in
the user-written table.

If the message is not defined in a user-written table and if SSCPFM=USSNOP is
specified on the APPL definition statement that defines the PPO, VTAM presents
the message to the PPO in the format in which the message is defined in the
IBM-supplied USS table, ISTINCNO.

If the message is not defined in a user-written table and if SSCPFM=USSPOI is
specified on the APPL definition statement that defines the PPO:
v VTAM presents the message to the PPO in the format in which the message is

defined in the IBM-supplied USS table, ISTCFCMM.
v If the message is not defined in ISTCFCMM, VTAM presents the message to the

PPO in the format in which the message is defined in the IBM-supplied USS
table, ISTINCNO.

Programming requirements

Table 140 lists some of the considerations and questions that relate to writing a
program operator. This list supplements the list of programming considerations
found in Chapter 11, “Programming for the IBM 3270 Information Display
System,” on page 327.

Table 140. Some considerations that affect the coding of a program operator

Program function Programming considerations

Handling VTAM operator
commands and VTAM
messages

v Can a timer routine perform predefined actions while the network is active?

v How is the program operator going to examine and react to messages received from
VTAM?

v Are there situations that require human intervention?

v Should displays be processed or reformatted prior to sending them to the terminal?

v Should commands be processed before sending them to VTAM?

v Are there other services that the program operator can provide?

– Operator-to-operator communication

– Hard-copy log (the hard-copy log available to the system console is not available
to the program operator)

Opening the program
operator

v How many ACBs are to be opened?

v Are separate EXLSTs to be used if more that one ACB is used?

Establishing sessions to
handle VTAM operator
commands

v When a terminal logs on, how is authorization for the terminal and the operator to
be determined?

– Is the terminal or operator authorized to use the program operator?

– What type of authorization is to be used (for example, a password as a part of
the logon message)?

v How does the program operator determine the terminal's authorization?

– Can this terminal receive all VTAM messages?

– Can this terminal enter only certain commands?

Appendix L. Program operator coding requirements 881

Table 140. Some considerations that affect the coding of a program operator (continued)

Program function Programming considerations

Correlating messages and
responses

v Is a table needed to associate messages and responses with a specific terminal?

v What type of messages are received by the program operator (solicited or
unsolicited)?
Note: The message-suppression level specified by the system console operator or a
program operator determines the levels of VTAM operator messages received by
any VTAM operator.

v How is the ID field of the header to be used?

v How is the header set up to send the message to VTAM?

v If a reply is requested, does the program operator

– Generate the reply?

– Pass the messages to a terminal?

– Keep track of the message until a reply is sent?

v If the terminal cannot receive the message, should it be sent to the system console,
sent to another terminal, or discarded?

Outage of the session with
the terminal operator

v What happens to messages that are intended for the terminal?

– Should they be sent to the system console?

– Should they be sent to another terminal?

– Should they be discarded?

v If all the terminals are lost, what should the program operator do?

– Terminate?

– Request operator intervention?

– Wait for other terminals to log on?

Closing the program
operator

v In what order are the ACBs in the application program to be closed?

v Are outstanding messages to be sent to the system console?

v What happens if the first CLOSE fails?

v Should any additional messages be processed before issuing a second CLOSE?

Orderly closing of a program operator

When a program operator is about to be closed, unreceived VTAM messages can
still be queued for it. Issuing the CLOSE macroinstruction results in a return
code (76), which indicates there are messages waiting. At this point, before a
second CLOSE macroinstruction is issued, the program operator can issue only
RCVCMD macroinstructions or SENDCMD macroinstructions with a REPLY
command. This permits the program operator to receive the messages that are still
waiting and to answer any that require a reply.

When all the messages have been received, a return code for a RCVCMD
macroinstruction indicates that there are no more messages waiting. A second
CLOSE macroinstruction then completes normally. Because VTAM does not queue
these RCVCMD macroinstructions, it is recommended that they be issued with NQ
specified in the OPTCD operand. VTAM accepts the RCVCMD macroinstruction
with the Q option; however, when there are no messages remaining on the queue,
the RCVCMD macroinstruction completes with (RTNCD,FDB2)=(X'14',X'70'). If NQ
is specified, the request completes with (RTNCD,FDB2)=(X'00',X'06') when there are
no more messages queued. Alternatively, a program operator can issue a second
CLOSE macroinstruction without receiving the queued messages. The second

882 z/OS V2R1.0 Communications Server: SNA Programming

CLOSE causes the outstanding messages that do not request a reply to be
discarded. Messages that require a reply and have not been received or replied to
are sent to the system console.

Limiting VTAM messages queued to a program operator

A program operator application (POA) has the responsibility of issuing enough
RCVCMDs to handle the messages that it is expected to receive. In the case of an
error in a POA, messages might arrive much faster than they are received.
Consequently, a limit can be set on the number of messages queued to a POA.
Should such an error occur, setting this limit allows VTAM to do the following:
v Reduce the possibility of VTAM abnormally terminating
v Allow information to be gathered to determine the source of the problem.

After the limit is reached, no further messages are queued and SENDCMDs from
that POA are rejected until all messages on the queue have been removed. This
limit can be specified with the POAQLIM parameter on the application (APPL)
definition statement and only when AUTH=SPO or AUTH=PPO is specified.
POAQLIM is not a required parameter, and any decimal value 1–2147483647 is
accepted. Refer to the z/OS Communications Server: SNA Resource Definition
Reference for the formula used to calculate POAQLIM. If a limit is not coded, there
is no limit to the number of messages queued.

If a limit is coded, the POA recognizes a RPL return code of X'0C' and RPL
feedback of X'0E' for a SENDCMD. When this value is returned, the POA issues
enough RCVCMDs to clear the message queue before issuing any more
SENDCMDs. If these RCVCMDs are issued with OPTCD=NQ (no queue), the POA
knows it has issued enough when a RCVCMD is returned because no more
messages exist to be received (RPL return code of X'00' and RPL feedback of X'06').
When the POA queue limit is reached, a “limit reached” message (IST983E)
displays on the operator console. The message is highlighted and stays on the
screen until cleared by the operator. It is suppressed so that only one occurrence
per application displays within a 30-second period. Each occurrence is traced.
When this message displays and the POA cannot handle the problem, you should
take a dump and cancel the POA to clear the message queue. The type of messages
queued to the POA should help determine the problem with the POA.

After the limit is reached, no further messages are queued until all messages on
the queue have been received. Messages to be queued after the limit is reached are
discarded except for unsolicited messages, which are sent to the operator console.

Partial groups of messages are not sent. If a solicited message causes the queue
limit to be exceeded, the message or its entire group is discarded. If an unsolicited
message causes the queue limit to be exceeded, the message or its entire group is
rerouted to the system console. If a message requiring a reply causes the queue
limit to be exceeded, the message is rerouted to the system console.

Data exchanged between a program operator and VTAM

The area pointed to by the AREA operand of the RPL associated with the program
operator macroinstructions contains the data that is exchanged between the
program operator and VTAM. The RPL associated with the SENDCMD
macroinstruction points to the VTAM operator commands that are sent from the
program operator to VTAM. The RPL associated with the RCVCMD

Appendix L. Program operator coding requirements 883

macroinstruction points to the message received by the program operator from
VTAM. Every time data is exchanged in this way, the sender of the data appends a
header to the beginning of the data. The header tells where the data is coming
from, the status of the data (such as whether a reply is requested), and the
identification number of the data.

Header

Every time VTAM sends a message to a program operator or every time a program
operator sends a VTAM operator command to VTAM, a 4-byte header is appended
to the data. The header has the following form:

X'00' Status ID number

1 byte 1 byte 2 bytes

X'00'
Is a required part of the header and is always present. Either it is provided by
VTAM in data that the program operator receives, or it must be supplied by
the program operator in data that is sent to VTAM.

Status
Indicates the sender of the message or command, whether a reply is required,
and the type of message if it is part of a multi-line message.

When VTAM sends an operator command to the program operator, the
program operator sets the following bits:

Status field bit
setting 0123
4567 Meaning
.... ...1 The command originates from a program operator.
.... ...0 The command originates from VTAM
.... ..0. VTAM is not to return a reply to the message issued as a result of a

SENDCMD macroinstruction.
.... ..1. VTAM returns an appropriate reply to the message issued as a result of

a SENDCMD macroinstruction.
xxxx xx.. Reserved.

When the program operator receives a message from VTAM, VTAM sets the
following bits:

Status field bit
setting 0123
4567 Meaning
.... ...0 This message is an unsolicited message. It originates from VTAM and is

not in reply to a VTAM operator command. The ID in this header was
generated by VTAM.

.... ...1 This message is sent in reply to a VTAM operator command previously
sent to VTAM by the program operator. The ID number in this header
was generated by the program operator when the command was sent.

.... ..0. A reply is not required.

.... ..1. A reply is required. A reply ID is present in the message. Use the
SENDCMD macroinstruction to issue a REPLY command to VTAM.

.... 00.. This message is not a copy of a VTAM operator command or a copy of a
VTAM message sent to the system console.

.... 01.. This is an unsolicited message containing a copy of a VTAM operator
command entered from the system console.

884 z/OS V2R1.0 Communications Server: SNA Programming

Status field bit
setting 0123
4567 Meaning
.... 10.. This is an unsolicited message containing an unsuppressed message that

had been sent to the system console.
.... 11.. This is an unsolicited message containing a copy of a VTAM-solicited,

suppressed message that had been sent to the system console.
0000 This is not a multi-line message.
0001 This is the control line of a multi-line message. The control line is

always the first line of a multi-line message and normally contains a
message title. The control line should remain static during framing
operations on a display console such as the 3270 (provided it is
displayed in an out-of-line display area).

0010 This is a label line of a multi-line message. The label line might be the
first line of a multi-line message if there is no control line. If there is a
control line, the label line always follows it. There can be more than one
label line, but they cannot be interspersed with other types of lines.
Label lines usually contain message header information and remain
static with the control line.

0100 This is a data line of a multi-line message. The data line always follows
either a control line or a label line, if present. The data line contains the
information intended for the VTAM operator and, unlike the control line
and label line, is paged during framing operations.

1000 This is the end line of a multi-line message. The end line indicates that
the previous data line is the last line of text that is to be passed to the
VTAM program operator. If data is included in the end line, it is
ignored.

1100 This is a combined data and end line of a multi-line message. It
indicates that this is the last line of text that is passed to the program
operator.

ID number
Any number 0–65535 (X'0000'–X'FFFF') can be specified by VTAM when it
sends an unsolicited message to the program operator. The program operator,
when sending a command or reply to VTAM, can select and interpret the
identification number in any way it finds meaningful. When the program
operator sends a command to VTAM, the program operator must set the
identification number; if a reply is requested, VTAM returns the same number
with the reply. If VTAM sends a message to the program operator and the
message is not a reply to a command, VTAM sets the identification number.
Using the identification number, the program operator can correlate solicited
messages received from VTAM with the appropriate commands issued by the
program operator.

Note: An IBM-supplied DSECT (ISTDPOHD) is available and can be used in
creating or interpreting the header. Refer to “Format and DSECT of the message
and command header” on page 888 for more information.

Data received from VTAM

A program operator can use the RCVCMD macroinstruction to receive messages
from VTAM. The program operator receives the message data with a 4-byte header
appended to it. The format of the message data is determined by the status byte of
the header:
v If this is a solicited message that does not require a reply (bits 6–7) or if this is a

copy of VTAM message that had been sent to system console (bit 4), the
message is in the form:

Appendix L. Program operator coding requirements 885

Header Message ID Message text

4 bytes 7 bytes (n-7) bytes

Message ID
Is ISTxxxx. It represents the message ID of any VTAM message that can be sent
to the VTAM operator. Refer to z/OS Communications Server: SNA Messages
for the specific IDs and text of VTAM messages.

Message text
Is the text of the VTAM message that corresponds to the message ID.

n Represents the total length of the message without the header bytes.

The text and occurrence of each message are VTAM release-dependent. Therefore,
a program operator application program might have to be changed in subsequent
releases if the messages change.

You can define USS tables to allow the program operator to run independently of
changes in message text. Refer to the z/OS Communications Server: SNA Resource
Definition Reference for details about creating and modifying USS definition tables.
v If this is a message that requires a reply (bit 6), the message data is in the form:

Header Reply ID Message ID Message text

4 bytes 4 bytes 7 bytes (n-11) bytes

Reply ID
Is a reply identification number that must be returned to VTAM with the reply
in the REPLY command. It is a decimal number 0–99. Leading zeros are
included but do not have to be included in the reply. This identifier should not
be confused with the identification number that is used in the header.

n Represents the total length of the message without the header bytes.
v If this is a message that contains a copy of a VTAM operator command entered

from the system console (bit 5), the message data is in the form:

Header Command text

4 bytes n bytes

Command text
is the text of the command as entered from the system console. The command
keyword (DISPLAY, VARY, or MODIFY) is always received spelled in full (that
is, not abbreviated).

n Represents the total length of the command without the header bytes.

Only the primary program operator can receive a copy of commands entered from
the system console or messages sent to the console, and only if PPOLOG=YES as a
result of the MODIFY PPOLOG command or the PPOLOG start option. In order to
receive the next message transmission from VTAM, the program operator must
have an outstanding RCVCMD.

If the message containing the reply identifier is not replied to by the program
operator and it is subsequently sent to the system console, the number is changed
and does not correspond to the original number.

886 z/OS V2R1.0 Communications Server: SNA Programming

Data sent to VTAM

A program operator can use the SENDCMD macroinstruction to send VTAM
operator commands and the REPLY command to VTAM. The VTAM operator
commands that can be sent are the VARY, DISPLAY, and MODIFY commands. The
data that the program operator sends to VTAM is in this form:

Header Command sent to VTAM

4 bytes n bytes

Each VTAM command issued by the program operator has the same format and
meaning as when it is entered at the system console. The VARY, DISPLAY, and
MODIFY commands are described in z/OS Communications Server: SNA
Operation.

The REPLY command is used to answer VTAM messages that require a reply from
the program operator. It has the following format:

{REPLY or R} reply identifier,[']text[']

reply identifier
Is the reply identification number (nn) that was received.

text
Is the reply to the VTAM message. If the actual wording of the text is supplied
in the original message, it should be copied exactly in the reply. The
apostrophes are optional and included only if the reply is not to be translated
into uppercase characters. A blank immediately following the reply
identification number indicates a null reply.

The abbreviated format of the REPLY command supported by z/OS for the system
console cannot be sent by a program operator.

Example:
IST259I INOP RECEIVED FOR LS3A4A1 CODE = 01
IST619I ID = LS3A4A1 FAILED - RECOVERY IN PROGRESS
IST526I ROUTE FAILED FROM 3 TO 4 - DSA 4 - NETID NETA
IST526I ROUTE FAILED FROM 3 TO 4 - DSA 4 - NETID NETA
IST238I AM GUNBIND REQ FOR ID = NCP4AA6 RCVD RECOVERY IN PROGRESS

RU DATA-TYPE = X’03’, CAUSE = X’07’

IST521I GBIND QUEUED FOR COS ISTVTCOS FROM SSCP1A TO NCP4AA6
IST528I VIRTUAL ROUTE NUMBER 0 1 2 3 4 5
IST523I REASON = NO ROUTES OPERATIVE
*00 IST095A OPTION TO DUMP NCP4AA6 AVAILABLE -

REPLY ’YES’ OR ’NO’ OR ’YES,DUMPSTA=LINKSTANAME’
*00 IST284A OPTION TO RELOAD NCP4AA6 AVAILABLE -

REPLY ’YES’ OR ’NO’ OR ’YES,LOADSTA=LINKSTANAME’
r 00,yes

The informational message IST619I is followed by messages that require replies
(IST095A and IST284A); VTAM assigns it a reply ID of 00 in both cases. In both
cases, the reply to the message is “yes”.

Appendix L. Program operator coding requirements 887

Format and DSECT of the message and command header

Table 141 and Table 142 describe the format map and DSECT for the VTAM
message and command header (ISTDPOHD). The header contains status
information and an ID number for each message or command that is sent or
received by the application program sending SENDCMD and RCVCMD
macroinstructions.

The format map and DSECT description can help in examining or setting up a
header. The IBM-supplied DSECT ISTDPOHD is provided as part of the system
macroinstruction library on SYS1.MACLIB.

To avoid the risk of duplicating DSECT labels in a program, no label should begin
with the characters POH. All relevant bits should be set.

Table 141. Format of the VTAM message and command header (ISTDPOHD)

Dec Hex Header code Status Message identifier

0 0 (POHRSVD) (POHSTAT) (POHID)

Table 142. VTAM message and command header DSECT (ISTDPOHD)

Field
DSECT DS or
ORG label

DSECT EQU
label Value Meaning

Displacement
Dec Hex Length

Header Code POHRSVD Reserved. 0 0 1

Status POHSTAT POHEND X'80' Message is an end line. 1 1 1

POHDATA X'40' Message is a data line.

POHLBL X'20' Message is a label line.

POHCNTRL X'10' Message is a control
line.

POHPPCMD X'04' Message contains copy
of VTAM operator
command entered
from the system
console.

POHPPSOL X'08' Message contains copy
of VTAM-solicited,
unsuppressed message
that had been sent to
the system console.

POHPPSUP X'0C' Message contains copy
of VTAM-solicited,
suppressed message
that had been sent to
the system console.

POHRREQ X'02' A reply is requested.

POHGEN X'01' If the bit is off, the
message was
generated by VTAM. If
the bit is on, the
message was
generated by the
program operator.

888 z/OS V2R1.0 Communications Server: SNA Programming

Table 142. VTAM message and command header DSECT (ISTDPOHD) (continued)

Field
DSECT DS or
ORG label

DSECT EQU
label Value Meaning

Displacement
Dec Hex Length

Message
Identifier

POHID ID number. 2 2 2

POA communication with tuning facility using the MODIFY
QUERY COMMAND

�� MODIFY procname , QUERY , ID = ncp_name �

�
, CONTINUE = NO

, CONTINUE = NO
RESET
YES

�

�

�

,

, VECTORS = (subfield_id,subfield_string)

��

Abbreviations

Operand Abbreviation

CONTINUE CONT

CONTINUE=YES YES

CONTINUE=NO NO

CONTINUE=RESET RESET

MODIFY F

VECTORS VECTOR or V

Purpose

The MODIFY QUERY command may be issued only from a program operator
application.

The MODIFY QUERY command allows a program operator application to
communicate with a tuning facility such as NTune

Note:

1. Any number of MODIFY QUERY commands may be issued, but the number
and size of the subvectors are limited by the maximum number of bytes the
NCP can receive in one PIU or PIU segment. The PIU size is determined by the
value specified on the MAXDATA keyword of the PCCU definition statement.

2. Once a command group is started by a specific program operator application,
commands are queried until a CONT=NO or RESET is received from the same
program operator application. Multiple command groups may not be
outstanding from the same program operator application.

Appendix L. Program operator coding requirements 889

3. The requestor must supply unique subvectors and track the responses to those
subvectors.

Operands

procname
is the procedure name for the command.

If procname in the START command is specified as startname.ident, where
startname is the VTAM start procedure and ident is the optional identifier, then
either startname.ident or ident can be specified for procname.

If procname in the START command was startname, then startname must be
specified for procname.

CONTINUE
specifies the command type.

CONTINUE=NO
specifies that this is a single command or the last command of a group.
The VECTORS operand may be specified with CONTINUE=NO, but it is
not required.

CONTINUE=RESET
specifies that all previous commands queued as part of a command group
are to be purged and not sent to the NCP. The VECTORS operand is
ignored if it is specified.

CONTINUE=YES
specifies that this command is part of a group of commands that make up
a single request. The VECTORS operand is required when
CONTINUE=YES.

ID=ncp_name
specifies the name of the NCP resource. The name cannot be a
network-qualified name.

VECTORS=(subfield_id,subfield_string)
specifies the subvectors to be passed to the NCP. More than one subvector may
be specified. A subvector consists of a subfield id paired with a subfield string.

For an example of the type of information used in the VECTORS operand, see
NTuneMON User's Guide

subfield_id
specifies the subfield ID of the subvector passed to the NCP. This field
must contain one or two hexadecimal characters. VTAM provides no other
checks for validity.

subfield_string
specifies the user data portion of the subvector passed to the NCP. This
string must be specified as an even number of characters in hexadecimal
form.

890 z/OS V2R1.0 Communications Server: SNA Programming

Appendix M. List of macroinstructions

Attention: The macroinstructions identified in this appendix are provided as
programming interfaces for customers by VTAM. Do not use as programming
interfaces any VTAM macroinstructions other than those identified in this
appendix.

The following macroinstructions are provided for general use:

ACB
APPCCMD
CHANGE
CHECK
CLOSE
CLSDST
EXECRPL
EXLST
GENCB
GTDEVSIZ
IFGACB
IFGACBVS
IFGACBVT
IFGEXLST
IFGEXLVS
IFGEXLVT
IFGRPL
IFGRPLVS
IFGRPLVT
INQUIRE
INTRPRET
ISTAMSVL

ISTAPCVL
ISTASDP
ISTBLENT
ISTDBIND
ISTDBINH
ISTDNIB
ISTDPOHD
ISTDPROC
ISTDVCHR
ISTGAPPC
ISTGLBAL
ISTFM5
ISTMTS
ISTRH
ISTRIVL
ISTRPL
ISTRPL6
ISTRPL6X
ISTSLCNS
ISTSLD
ISTSREST
ISTUSFBC

ISTVACBV
MODCB
NIB
OPEN
OPNDST
OPNSEC
RCVCMD
RECEIVE
REQSESS
RESETSR
RPL
SEND
SENDCMD
SESSIONC
SETLOGON
SHOWCB
SIMLOGON
STFSMODE
STLINENO
STTRAN
TERMSESS
TESTCB

The following macroinstructions are provided as product sensitive:

IKTIPARM
IKTMPL
IKTOPARM
IKTTCAST
IKTTSBX
IKTTVWA
IKTWESTD
IKTXSA

© Copyright IBM Corp. 2000, 2013 891

892 z/OS V2R1.0 Communications Server: SNA Programming

Appendix N. Application program migration

This appendix describes factors to consider in the following migration
environments:
v When migrating application programs from a prior release of VTAM.
v When migrating from a single-domain environment to a multiple-domain

environment
v When migrating from a multiple-domain environment to a multiple-network

environment (SNA network interconnection)

“Simplifying migration and network upgrades” on page 35 describes how to avoid
or minimize possible migration problems when coding new VTAM application
programs.

Migrating from prior releases of VTAM

As each new release of VTAM was developed, new application program facilities
were added, obsolete facilities were deleted, and errors were corrected. Significant
internal changes were made to improve performance, reliability, availability, and
serviceability. In this activity, the goal was to allow application programs that ran
on a prior release of VTAM to run on the new release of VTAM without
modification or reassembly of the application program. However, in certain cases,
modification of an application program is required.

COS name and logon mode name

In current releases of VTAM, a class-of-service (COS) name is associated with each
logon mode name. See “NIB LOGMODE and BNDAREA operands” on page 124.
When a logon mode name is specified with an Initiate request, SIMLOGON,
REQSESS, OPNDST OPTCD=ACQUIRE, or CLSDST OPTCD=PASS, the COS name
associated with that logon mode name is used by VTAM to establish the session.

The COS name is not returned to the application program when INQUIRE
OPTCD=SESSPARM is issued.

A program that issues INQUIRE OPTCD=SESSPARM with a logon mode name to
obtain a session parameter, and then use OPNDST OPTCD=ACQUIRE with a
BIND image (pointed to by the BNDAREA of the NIB) built from those a session
parameter gets the class of service associated with the default logon mode name.
That class of service might not be the one that is associated with the logon mode
name used by the INQUIRE macroinstruction. If this is undesirable, use
SIMLOGON with the logon mode name specified in the NIB LOGMODE operand.
The session parameter and COS name are presented to the program in the CINIT
RU. Current releases of VTAM use the associated class of service when an
OPNDST OPTCD=ACCEPT is issued.

A program that issues CLSDST OPTCD=PASS must also specify the logon mode
name in the NIB LOGMODE operand, to ensure that the subsequent OPNDST
OPTCD=ACCEPT uses the proper class of service. If CLSDST OPTCD=PASS is
issued with LOGMODE=0, the COS name of the default logon mode name is used.

© Copyright IBM Corp. 2000, 2013 893

Increase of ACB size

In current releases of VTAM, if the GENCB macroinstruction is used to build an
ACB and a length is specified in the GENCB that is smaller than needed for the
ACB, the GENCB fails with an error return code. Use the SHOWCB or TESTCB
macroinstructions to get the correct ACB length at execution time before issuing
GENCB. See the description of the GENCB macroinstruction in
“GENCB—Generate a control block” on page 407, for information on how to use
SHOWCB and TESTCB with GENCB.

If a program uses specific values to refer to an address beyond the ACB (for
example, ORG MYACB+92), fields that are inside the ACB could be referenced (or
overlaid) unintentionally. Use the IFGACB DSECT to get the ACB length at
assembly time.

Application program minor node name in BIND

In current releases of VTAM, the network name of the primary logical unit (PLU)
is used in the BIND request.

In installations where the ACB name and network name of PLUs are not the same,
an SLU might receive a BIND request with a different PLU name than was
expected. Some modifications might be required to take advantage of the network
name. See “OPNSEC macroinstruction” on page 96 and “SESSIONC
macroinstruction with CONTROL=BIND” on page 98 for more information.

Sequence number dependencies for LU type 0 3270 terminals

The sequence number associated with requests sent to or received from LU type 0
3270 terminals is handled differently, depending on how the 3270 is attached to the
network. The sequence number wraps around to 0 after it reaches 255 for some
3270 terminals and after it reaches 65535 for others. Table 143 lists the wraparound
point for the various types of attachment and products. Application programs
sensitive to the sequence number wraparound point might require modification if
the wraparound point changes. See the section “Summary of differences among LU
type 0 3270 terminals” on page 335 for information on avoiding sequence number
dependencies.

Table 143. Wraparound points for sequence numbers in sessions involving LU type 0 3270
terminals

Attachment Product Wrap point

BSC NCP 255

SDLC NCP 65535

Channel VTAM 65535

Dynamic network access function

The application-supplied operands for dial connections function is supported in all
current releases of VTAM.

894 z/OS V2R1.0 Communications Server: SNA Programming

Differences between BTAM and VTAM application programs

Table 144 shows the major similarities and differences between VTAM application
programs and BTAM application programs. The chart provides assistance in
evaluating the effort needed to revise the application program for communication
with VTAM LUs.

BTAM can request sessions only with dedicated devices. Hence the next section
about converting from a single-domain to a multiple-domain network offers hints
that apply equally to BTAM application programs that are being converted to
VTAM.

Table 144. Major similarities and differences between VTAM and BTAM application programs

Functions provided VTAM application program BTAM application program

Define line groups Can be defined during VTAM
definition or dynamically after VTAM
is started

Use DCB or DTFBT macroinstruction
to define line groups

Define terminals Can be defined during VTAM
definition or dynamically after VTAM
is started

Use DFTRMLST macroinstruction

Initialize program Use OPEN macroinstruction Use OPEN macroinstruction

Sessions with terminals established
dynamically

Use OPNDST macroinstruction Not available, because terminals are
statically connected when application
program's job step is initiated

Release control of a terminal to
another program that requests a
session with it

When requested, use CLSDST with
OPTCD=RELEASE specified

No comparable function

Receive input Use RECEIVE macroinstruction Use READ macroinstruction

Receive input from any terminal Specify input can be from any
terminal

Must poll each line separately

Receive input from a specific terminal Specify input is to be received from a
specific terminal

Specify terminal list entry

Send output Use SEND macroinstruction Use WRITE macroinstruction

Have data schedule for output from
access method buffers (output
buffering)

Specify that the data is scheduled for
output

No comparable function

Test, display, or modify control block
fields

Use manipulative macroinstructions:
TESTCB, SHOWCB, MODCB, or use
assembler language instructions

Use assembler language instructions

Record transmission errors Performed by NCP and VTAM Use error recording macroinstructions

Migrating from a single-domain to a multiple-domain environment

This section discusses application program considerations when converting from a
single-domain network to a multiple-domain network. In designing your
application programs, it is good practice to code them as though they always
operate in a multiple-domain network. This reduces the need for future
programming changes if you eventually migrate from a single-domain to a
multiple-domain network. See also “Simplifying migration and network upgrades”
on page 35 for additional information on network migration.

Appendix N. Application program migration 895

Use of INQUIRE for a cross-domain resource

For an LU in another domain, INQUIRE OPTCD=DEVCHAR or INQUIRE
OPTCD=TERMS can be issued only in two situations:
1. When there is a queued CINIT for the LU
2. When the LU is in session with a PLU application program in the host

processor in which the macroinstruction is processed.

INQUIRE OPTCD=SESSPARM with LOGMODE=0 specified in the NIB can be
issued only when there is a queued CINIT for the resource. The INQUIRE
macroinstruction with LOGMODE=C' ' or with LOGMODE=logon mode name in the
NIB cannot be used for a cross-domain resource.

Specifying LOGMODE names with OPNDST for a
cross-domain resource

When OPNDST OPTCD=ACCEPT is issued to accept a session with an LU in
another domain, no logon mode name can be present in the LOGMODE field of
the NIB (pointed to by the RPL specified in the request). When OPNDST
OPTCD=ACCEPT is issued for a cross-domain resource, the LOGMODE field of
the NIB can contain 0 (to specify that the BIND is to contain the session parameter
that accompanied the CINIT), or the application program can put an address in the
BNDAREA field of the NIB (to specify that the session parameter starting at that
address are to be used in the BIND).

Use of INTRPRET for a cross-domain resource

In VTAM, if an interpret table is defined, it must be stored in the same domain as
the device-type LUs related to the table. The interpret table is used only by the
VTAM of that domain. A VTAM application program in one domain cannot issue
an INTRPRET macroinstruction that calls for use of an interpret table in another
domain.

Considerations for a multiple-network environment

This section describes application program considerations for SNA network
interconnection.

Use of INQUIRE for a cross-network resource

For an LU in another network, the two valid option codes for the INQUIRE
macroinstruction are OPTCD=STATUS and OPTCD=APPSTAT. These options
provide information about the application program's ability to establish
cross-network sessions. Other forms of the INQUIRE macroinstruction provide no
information LUs in other networks.

896 z/OS V2R1.0 Communications Server: SNA Programming

Appendix O. Architectural specifications

This appendix lists documents that provide architectural specifications for the SNA
Protocol.

The APPN Implementers' Workshop (AIW) architecture documentation includes
the following architectural specifications for SNA APPN and HPR:
v APPN Architecture Reference (SG30-3422-04)
v APPN Branch Extender Architecture Reference Version 1.1
v APPN Dependent LU Requester Architecture Reference Version 1.5
v APPN Extended Border Node Architecture Reference Version 1.0
v APPN High Performance Routing Architecture Reference Version 4.0
v SNA Formats (GA27-3136-20)
v SNA Technical Overview (GC30-3073-04)

For more information, refer to the AIW documentation page at
http://www.ibm.com/support/docview.wss?rs=852&uid=swg27017843.

The following RFC also contains SNA architectural specifications:
v RFC 2353 APPN/HPR in IP Networks APPN Implementers' Workshop Closed Pages

Document

RFCs can be obtained from:

Government Systems, Inc.
Attn: Network Information Center
14200 Park Meadow Drive
Suite 200
Chantilly, VA 22021

Many RFCs are available online. Hardcopies of all RFCs are available from the
NIC, either individually or by subscription. Online copies are available using FTP
from the NIC at http://www.rfc-editor.org/rfc.html.

Use FTP to download the files, using the following format:
RFC:RFC-INDEX.TXT
RFC:RFCnnnn.TXT
RFC:RFCnnnn.PS

where:
v nnnn is the RFC number.
v TXT is the text format.
v PS is the postscript format.

You can also request RFCs through electronic mail, from the automated NIC mail
server, by sending a message to service@nic.ddn.mil with a subject line of
RFC nnnn for text versions or a subject line of RFC nnnn.PS for PostScript versions.
To request a copy of the RFC index, send a message with a subject line of
RFC INDEX.

For more information, contact nic@nic.ddn.mil.

© Copyright IBM Corp. 2000, 2013 897

http://www.ibm.com/support/docview.wss?rs=852&uid=swg27017843
http://www.rfc-editor.org/rfc.html

898 z/OS V2R1.0 Communications Server: SNA Programming

Appendix P. Accessibility

Publications for this product are offered in Adobe Portable Document Format
(PDF) and should be compliant with accessibility standards. If you experience
difficulties when using PDF files, you can view the information through the z/OS
Internet Library website or the z/OS Information Center. If you continue to
experience problems, send an email to mhvrcfs@us.ibm.com or write to:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. See z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer or Library
Server versions of z/OS books in the Internet library at www.ibm.com/systems/z/
os/zos/bkserv/.

One exception is command syntax that is published in railroad track format, which
is accessible using screen readers with the Information Center, as described in
“Dotted decimal syntax diagrams.”

Dotted decimal syntax diagrams

Syntax diagrams are provided in dotted decimal format for users accessing the
Information Center using a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always

© Copyright IBM Corp. 2000, 2013 899

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

present together (or always absent together), they can appear on the same line,
because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should see separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v A question mark (?) means an optional syntax element. A dotted decimal

number followed by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax elements, are
optional. If there is only one syntax element with a dotted decimal number, the ?
symbol is displayed on the same line as the syntax element, (for example 5?
NOTIFY). If there is more than one syntax element with a dotted decimal
number, the ? symbol is displayed on a line by itself, followed by the syntax
elements that are optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and
5 UPDATE, you know that syntax elements NOTIFY and UPDATE are optional;
that is, you can choose one or none of them. The ? symbol is equivalent to a
bypass line in a railroad diagram.

v An exclamation mark (!) means a default syntax element. A dotted decimal
number followed by the ! symbol and a syntax element indicate that the syntax
element is the default option for all syntax elements that share the same dotted

900 z/OS V2R1.0 Communications Server: SNA Programming

decimal number. Only one of the syntax elements that share the same dotted
decimal number can specify a ! symbol. For example, if you hear the lines 2?
FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option
for the FILE keyword. In this example, if you include the FILE keyword but do
not specify an option, default option KEEP will be applied. A default option also
applies to the next higher dotted decimal number. In this example, if the FILE
keyword is omitted, default FILE(KEEP) is used. However, if you hear the lines
2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE), the default option KEEP applies
only to the next higher dotted decimal number, 2.1 (which does not have an
associated keyword), and does not apply to 2? FILE. Nothing is used if the
keyword FILE is omitted.

v An asterisk (*) means a syntax element that can be repeated 0 or more times. A
dotted decimal number followed by the * symbol indicates that this syntax
element can be used zero or more times; that is, it is optional and can be
repeated. For example, if you hear the line 5.1* data area, you know that you
can include one data area, more than one data area, or no data area. If you hear
the lines 3*, 3 HOST, and 3 STATE, you know that you can include HOST,
STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix P. Accessibility 901

902 z/OS V2R1.0 Communications Server: SNA Programming

Notices

This information was developed for products and services offered in the USA.

IBM may not offer all of the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for information
on the products and services currently available in your area. Any reference to an
IBM product, program, or service is not intended to state or imply that only that
IBM product, program, or service may be used. Any functionally equivalent
product, program, or service that does not infringe any IBM intellectual property
right may be used instead. However, it is the user's responsibility to evaluate and
verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 2000, 2013 903

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
P.O. Box 12195
3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195
U.S.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color
illustrations might not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrates programming techniques on various operating platforms. You
may copy, modify, and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or distributing

904 z/OS V2R1.0 Communications Server: SNA Programming

application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_.

IBM is required to include the following statements in order to distribute portions
of this document and the software described herein to which contributions have
been made by The University of California. Portions herein © Copyright 1979,
1980, 1983, 1986, Regents of the University of California. Reproduced by
permission. Portions herein were developed at the Electrical Engineering and
Computer Sciences Department at the Berkeley campus of the University of
California under the auspices of the Regents of the University of California.

Portions of this publication relating to RPC are Copyright © Sun Microsystems,
Inc., 1988, 1989.

Some portions of this publication relating to X Window System** are Copyright ©
1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts, and the
Massachusetts Institute Of Technology, Cambridge, Massachusetts.

Some portions of this publication relating to X Window System are Copyright ©
1986, 1987, 1988 by Hewlett-Packard Corporation.

Permission to use, copy, modify, and distribute the M.I.T., Digital Equipment
Corporation, and Hewlett-Packard Corporation portions of this software and its
documentation for any purpose without fee is hereby granted, provided that the
above copyright notice appears in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the
names of M.I.T., Digital, and Hewlett-Packard not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior
permission. M.I.T., Digital, and Hewlett-Packard make no representation about the
suitability of this software for any purpose. It is provided "as is" without express
or implied warranty.

Copyright © 1983, 1995-1997 Eric P. Allman

Copyright © 1988, 1993 The Regents of the University of California.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list

of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must
display the following acknowledgment:

Notices 905

This product includes software developed by the University of
California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

This software program contains code, and/or derivatives or modifications of code
originating from the software program "Popper." Popper is Copyright ©1989-1991
The Regents of the University of California. Popper was created by Austin Shelton,
Information Systems and Technology, University of California, Berkeley.

Permission from the Regents of the University of California to use, copy, modify,
and distribute the "Popper" software contained herein for any purpose, without
fee, and without a written agreement is hereby granted, provided that the above
copyright notice and this paragraph and the following two paragraphs appear in
all copies. HOWEVER, ADDITIONAL PERMISSIONS MAY BE NECESSARY
FROM OTHER PERSONS OR ENTITIES, TO USE DERIVATIVES OR
MODIFICATIONS OF POPPER.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY
PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THE
POPPER SOFTWARE, OR ITS DERIVATIVES OR MODIFICATIONS, AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE POPPER SOFTWARE PROVIDED HEREUNDER IS ON AN "AS
IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
MODIFICATIONS.

Copyright © 1983 The Regents of the University of California.

Redistribution and use in source and binary forms are permitted provided that the
above copyright notice and this paragraph are duplicated in all such forms and
that any documentation, advertising materials, and other materials related to such
distribution and use acknowledge that the software was developed by the
University of California, Berkeley. The name of the University may not be used to
endorse or promote products derived from this software without specific prior

906 z/OS V2R1.0 Communications Server: SNA Programming

written permission. THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

Copyright © 1991, 1993 The Regents of the University of California.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list

of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must
display the following acknowledgment:
This product includes software developed by the University of
California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Copyright © 1990 by the Massachusetts Institute of Technology

Export of this software from the United States of America may require a specific
license from the United States Government. It is the responsibility of any person or
organization contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this
software and its documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation,
and that the name of M.I.T. not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission. Furthermore
if you modify this software you must label your software as modified software and
not distribute it in such a fashion that it might be confused with the original M.I.T.
software. M.I.T. makes no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied warranty.

Copyright © 1998 by the FundsXpress, INC.

Notices 907

Export of this software from the United States of America may require a specific
license from the United States Government. It is the responsibility of any person or
organization contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this
software and its documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation,
and that the name of FundsXpress not be used in advertising or publicity
pertaining to distribution of the software without specific, written prior
permission. FundsXpress makes no representations about the suitability of this
software for any purpose. It is provided "as is" without express or implied
warranty.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Copyright © 1999, 2000 Internet Software Consortium.

Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE
CONSORTIUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE CONSORTIUM
BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright © 1995-1998 Eric Young (eay@cryptsoft.com)

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscape's SSL.

This library is free for commercial and non-commercial use as long as the
following conditions are adhered to. The following conditions apply to all code
found in this distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the
SSL code. The SSL documentation included with this distribution is covered by the
same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in the code are
not to be removed. If this package is used in a product, Eric Young should be
given attribution as the author of the parts of the library used. This can be in the
form of a textual message at program startup or in documentation (online or
textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the copyright notice, this list of

conditions and the following disclaimer.

908 z/OS V2R1.0 Communications Server: SNA Programming

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must
display the following acknowledgment: "This product includes cryptographic
software written by Eric Young (eay@cryptsoft.com)". The word 'cryptographic'
can be left out if the routines from the library being used are not cryptographic
related.

4. If you include any Windows specific code (or a derivative thereof) from the
apps directory (application code) you must include acknowledgment:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

The license and distribution terms for any publicly available version or derivative
of this code cannot be changed. i.e. this code cannot simply be copied and put
under another distribution license [including the GNU Public License.]

This product includes cryptographic software written by Eric Young.

Copyright © 1999, 2000 Internet Software Consortium.

Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE
CONSORTIUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE CONSORTIUM
BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright © 2004 IBM Corporation and its licensors, including Sendmail, Inc., and
the Regents of the University of California.

Copyright © 1999,2000,2001 Compaq Computer Corporation

Copyright © 1999,2000,2001 Hewlett-Packard Company

Notices 909

Copyright © 1999,2000,2001 IBM Corporation

Copyright © 1999,2000,2001 Hummingbird Communications Ltd.

Copyright © 1999,2000,2001 Silicon Graphics, Inc.

Copyright © 1999,2000,2001 Sun Microsystems, Inc.

Copyright © 1999,2000,2001 The Open Group

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, provided that the
above copyright notice(s) and this permission notice appear in all copies of the
Software and that both the above copyright notice(s) and this permission notice
appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE
FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used
in advertising or otherwise to promote the sale, use or other dealings in this
Software without prior written authorization of the copyright holder.

X Window System is a trademark of The Open Group.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

You can obtain softcopy from the z/OS Collection (SK3T-4269), which contains
BookManager and PDF formats.

Minimum supported hardware

The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: http://www-01.ibm.com/

software/support/systemsz/lifecycle/
v For information about currently-supported IBM hardware, contact your IBM

representative.

910 z/OS V2R1.0 Communications Server: SNA Programming

http://www-01.ibm.com/software/support/systemsz/lifecycle/
http://www-01.ibm.com/software/support/systemsz/lifecycle/

Programming interface information

This publication documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of z/OS Communications Server.

Policy for unsupported hardware

Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted
for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Trademarks

IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at Copyright and
trademark information at www.ibm.com/legal/copytrade.shtml.

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United
States and other countries.

Java™ and all Java-based trademarks are trademarks or registered trademarks of
Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

Adobe and PostScript are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States, and/or other countries.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other product and service names might be trademarks of IBM or other companies.

Notices 911

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

912 z/OS V2R1.0 Communications Server: SNA Programming

Bibliography

This bibliography contains descriptions of the documents in the z/OS
Communications Server library.

z/OS Communications Server documentation is available in the following forms:
v Online at the z/OS Internet Library web page at www.ibm.com/systems/z/os/

zos/bkserv/
v In softcopy on CD-ROM collections. See “Softcopy information” on page xxix.

z/OS Communications Server library updates

An index to z/OS Communications Server book updates is at http://
www.ibm.com/support/docview.wss?uid=swg21178966. Updates to documents are
also available on RETAIN® and in information APARs (info APARs). Go to
http://www.ibm.com/software/network/commserver/zos/support to view
information APARs. In addition, Info APARs for z/OS documents are in z/OS and
z/OS.e DOC APAR and PTF ++HOLD Documentation, which can be found at
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/Shelves/ZDOCAPAR.

z/OS Communications Server information

z/OS Communications Server product information is grouped by task in the
following tables.

Planning

Title Number Description

z/OS Communications Server:
New Function Summary

GC27-3664 This document is intended to help you plan for new IP or
SNA function, whether you are migrating from a previous
version or installing z/OS for the first time. It summarizes
what is new in the release and identifies the suggested and
required modifications needed to use the enhanced functions.

z/OS Communications Server:
IPv6 Network and Application
Design Guide

SC27-3663 This document is a high-level introduction to IPv6. It
describes concepts of z/OS Communications Server's support
of IPv6, coexistence with IPv4, and migration issues.

Resource definition, configuration, and tuning

Title Number Description

z/OS Communications Server:
IP Configuration Guide

SC27-3650 This document describes the major concepts involved in
understanding and configuring an IP network. Familiarity
with the z/OS operating system, IP protocols, z/OS UNIX
System Services, and IBM Time Sharing Option (TSO) is
recommended. Use this document with the z/OS
Communications Server: IP Configuration Reference.

© Copyright IBM Corp. 2000, 2013 913

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/support/docview.wss?uid=swg21178966
http://www.ibm.com/support/docview.wss?uid=swg21178966
http://www.ibm.com/software/network/commserver/zos/support
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/Shelves/ZDOCAPAR

Title Number Description

z/OS Communications Server:
IP Configuration Reference

SC27-3651 This document presents information for people who want to
administer and maintain IP. Use this document with the z/OS
Communications Server: IP Configuration Guide. The
information in this document includes:

v TCP/IP configuration data sets

v Configuration statements

v Translation tables

v Protocol number and port assignments

z/OS Communications Server:
SNA Network Implementation
Guide

SC27-3672 This document presents the major concepts involved in
implementing an SNA network. Use this document with the
z/OS Communications Server: SNA Resource Definition
Reference.

z/OS Communications Server:
SNA Resource Definition
Reference

SC27-3675 This document describes each SNA definition statement, start
option, and macroinstruction for user tables. It also describes
NCP definition statements that affect SNA. Use this document
with the z/OS Communications Server: SNA Network
Implementation Guide.

z/OS Communications Server:
SNA Resource Definition
Samples

SC27-3676 This document contains sample definitions to help you
implement SNA functions in your networks, and includes
sample major node definitions.

z/OS Communications Server:
IP Network Print Facility

SC27-3658 This document is for systems programmers and network
administrators who need to prepare their network to route
SNA, JES2, or JES3 printer output to remote printers using
TCP/IP Services.

Operation

Title Number Description

z/OS Communications Server:
IP User's Guide and Commands

SC27-3662 This document describes how to use TCP/IP applications. It
contains requests with which a user can log on to a remote
host using Telnet, transfer data sets using FTP, send and
receive electronic mail, print on remote printers, and
authenticate network users.

z/OS Communications Server:
IP System Administrator's
Commands

SC27-3661 This document describes the functions and commands helpful
in configuring or monitoring your system. It contains system
administrator's commands, such as TSO NETSTAT, PING,
TRACERTE and their UNIX counterparts. It also includes TSO
and MVS commands commonly used during the IP
configuration process.

z/OS Communications Server:
SNA Operation

SC27-3673 This document serves as a reference for programmers and
operators requiring detailed information about specific
operator commands.

z/OS Communications Server:
Quick Reference

SC27-3665 This document contains essential information about SNA and
IP commands.

914 z/OS V2R1.0 Communications Server: SNA Programming

Customization

Title Number Description

z/OS Communications Server:
SNA Customization

SC27-3666 This document enables you to customize SNA, and includes
the following information:

v Communication network management (CNM) routing table

v Logon-interpret routine requirements

v Logon manager installation-wide exit routine for the CLU
search exit

v TSO/SNA installation-wide exit routines

v SNA installation-wide exit routines

Writing application programs

Title Number Description

z/OS Communications Server:
IP Sockets Application
Programming Interface Guide
and Reference

SC27-3660 This document describes the syntax and semantics of program
source code necessary to write your own application
programming interface (API) into TCP/IP. You can use this
interface as the communication base for writing your own
client or server application. You can also use this document to
adapt your existing applications to communicate with each
other using sockets over TCP/IP.

z/OS Communications Server:
IP CICS Sockets Guide

SC27-3649 This document is for programmers who want to set up, write
application programs for, and diagnose problems with the
socket interface for CICS using z/OS TCP/IP.

z/OS Communications Server:
IP IMS Sockets Guide

SC27-3653 This document is for programmers who want application
programs that use the IMS TCP/IP application development
services provided by the TCP/IP Services of IBM.

z/OS Communications Server:
IP Programmer's Guide and
Reference

SC27-3659 This document describes the syntax and semantics of a set of
high-level application functions that you can use to program
your own applications in a TCP/IP environment. These
functions provide support for application facilities, such as
user authentication, distributed databases, distributed
processing, network management, and device sharing.
Familiarity with the z/OS operating system, TCP/IP protocols,
and IBM Time Sharing Option (TSO) is recommended.

z/OS Communications Server:
SNA Programming

SC27-3674 This document describes how to use SNA macroinstructions to
send data to and receive data from (1) a terminal in either the
same or a different domain, or (2) another application program
in either the same or a different domain.

z/OS Communications Server:
SNA Programmer's LU 6.2
Guide

SC27-3669 This document describes how to use the SNA LU 6.2
application programming interface for host application
programs. This document applies to programs that use only
LU 6.2 sessions or that use LU 6.2 sessions along with other
session types. (Only LU 6.2 sessions are covered in this
document.)

z/OS Communications Server:
SNA Programmer's LU 6.2
Reference

SC27-3670 This document provides reference material for the SNA LU 6.2
programming interface for host application programs.

z/OS Communications Server:
CSM Guide

SC27-3647 This document describes how applications use the
communications storage manager.

Bibliography 915

Title Number Description

z/OS Communications Server:
CMIP Services and Topology
Agent Guide

SC27-3646 This document describes the Common Management
Information Protocol (CMIP) programming interface for
application programmers to use in coding CMIP application
programs. The document provides guide and reference
information about CMIP services and the SNA topology agent.

Diagnosis

Title Number Description

z/OS Communications Server:
IP Diagnosis Guide

GC27-3652 This document explains how to diagnose TCP/IP problems
and how to determine whether a specific problem is in the
TCP/IP product code. It explains how to gather information
for and describe problems to the IBM Software Support
Center.

z/OS Communications Server:
ACF/TAP Trace Analysis
Handbook

GC27-3645 This document explains how to gather the trace data that is
collected and stored in the host processor. It also explains how
to use the Advanced Communications Function/Trace
Analysis Program (ACF/TAP) service aid to produce reports
for analyzing the trace data information.

z/OS Communications Server:
SNA Diagnosis Vol 1,
Techniques and Procedures and
z/OS Communications Server:
SNA Diagnosis Vol 2, FFST
Dumps and the VIT

GC27-3667

GC27-3668

These documents help you identify an SNA problem, classify
it, and collect information about it before you call the IBM
Support Center. The information collected includes traces,
dumps, and other problem documentation.

z/OS Communications Server:
SNA Data Areas Volume 1 and
z/OS Communications Server:
SNA Data Areas Volume 2

GC31-6852

GC31-6853

These documents describe SNA data areas and can be used to
read an SNA dump. They are intended for IBM programming
service representatives and customer personnel who are
diagnosing problems with SNA.

Messages and codes

Title Number Description

z/OS Communications Server:
SNA Messages

SC27-3671 This document describes the ELM, IKT, IST, IUT, IVT, and USS
messages. Other information in this document includes:

v Command and RU types in SNA messages

v Node and ID types in SNA messages

v Supplemental message-related information

z/OS Communications Server:
IP Messages Volume 1 (EZA)

SC27-3654 This volume contains TCP/IP messages beginning with EZA.

z/OS Communications Server:
IP Messages Volume 2 (EZB,
EZD)

SC27-3655 This volume contains TCP/IP messages beginning with EZB or
EZD.

z/OS Communications Server:
IP Messages Volume 3 (EZY)

SC27-3656 This volume contains TCP/IP messages beginning with EZY.

z/OS Communications Server:
IP Messages Volume 4 (EZZ,
SNM)

SC27-3657 This volume contains TCP/IP messages beginning with EZZ
and SNM.

z/OS Communications Server:
IP and SNA Codes

SC27-3648 This document describes codes and other information that
appear in z/OS Communications Server messages.

916 z/OS V2R1.0 Communications Server: SNA Programming

http://publibz.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/F1A1D580/CCONTENTS?SHELF=ez2zo111&DN=GC31-6852-03&DT=20080606133328
http://publibz.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/F1A1D580/CCONTENTS?SHELF=ez2zo111&DN=GC31-6852-03&DT=20080606133328
http://publibz.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/F1A1D680/CCONTENTS?SHELF=ez2zo111&DN=GC31-6853-03&DT=20080606142122
http://publibz.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/F1A1D680/CCONTENTS?SHELF=ez2zo111&DN=GC31-6853-03&DT=20080606142122

Index

Special characters
&ISTGLRL global variable

declared and set 274

Numerics
0 value on LOGMODE operand 436
31-bit addressing 51, 319
3270 display station

characteristics of 328
communicating with 327
data flow control 329
transmission control 331

3270 terminals, types of 327

A
AAREA operand 492
AAREALN operand 492
ABEND (abnormal end)

error handling 322, 324
of VTAM, causing entry to TPEND exit routine 263
pattern of abnormal termination processing 278

abnormal end (ABEND)
error handling 322, 324
of VTAM, causing entry to TPEND exit routine 263
pattern of abnormal termination processing 278

ACB (access method control block)
address 447
address operand

of CLOSE 392
of OPEN 446, 447

address space 312
allocation of storage 376
contents 56
control block 740
data space 375
ERROR field 277, 383
error field settings

CLOSE ACB 393
OPEN ACB 449

fields, set by application program
APPLID 56, 377
EXLST 378
MACRF 378
PARMS 380
PASSWD 382

fields, set by VTAM
ACBAMSVL 383
ACBPSINS 383
ACBRIVL 383
ERROR 383
OFLAGS 383

IFGACB DSECT for 272, 740
level of error isolation 322
macroinstruction

CLOSE 22, 73
definition of 21
example 57
OPEN 22, 55

ACB (access method control block) (continued)
multiple 65
operand

of the MODCB 431
of the RPL 487
of the SHOWCB 551
of the TESTCB 565

storage key of 376
testing OFLAGS field 277
using 375
using multiple ACBs within one task 299

ACB-based macroinstruction 320
ACB-oriented exit routines 406
ACBAMSVL (access-method-support vector list)

address of 383
format 62

ACBLEN operand value
field name operand for TESTCB 567
obtaining 410

ACBRIVL (resource-information vector list) 383
ACCEPT value on OPTCD operand 497
accepting a session with OPNDST macroinstruction 89
access method control block (ACB)

address 447
address operand

of CLOSE 392
of OPEN 446, 447

address space 312
allocation of storage 376
contents 56
control block 740
data space 375
ERROR field 277, 383
error field settings

CLOSE ACB 393
OPEN ACB 449

fields, set by application program
APPLID 56, 377
EXLST 378
MACRF 378
PARMS 380
PASSWD 382

fields, set by VTAM
ACBAMSVL 383
ACBPSINS 383
ACBRIVL 383
ERROR 383
OFLAGS 383

IFGACB DSECT for 272, 740
level of error isolation 322
macroinstruction

CLOSE 22, 73
definition of 21
example 57
OPEN 22, 55

multiple 65
operand

of the MODCB 431
of the RPL 487
of the SHOWCB 551
of the TESTCB 565

© Copyright IBM Corp. 2000, 2013 917

access method control block (ACB) (continued)
storage key of 376
testing OFLAGS field 277
using 375
using multiple ACBs within one task 299

access-method-support vector list (ACBAMSVL)
address of 383
format 62

accessibility 899
ACQUIRE parameter

explanation of 453
operand value 497

acquiring sessions with OPNDST macroinstruction 90
action code

for inbound sequence number 537
for outbound sequence number 537

active application program, testing for 417
active logical unit, definition of 81
address

31-bit 319
address space

associated 316
multiple 312
session 316
termination 323
types of 312
used for exit routine execution 316

addressability in exit routines 234
ALIAS application 350
ALT value on CODESEL operand 519
AM operand

of the ACB macroinstruction 377
of the EXLST macroinstruction 406
of the GENCB macroinstruction 409
of the MODCB macroinstruction 432
of the RPL macroinstruction 492
of the SHOWCB macroinstruction 552
of the TESTCB macroinstruction 567

AMODE specifications 319
ANY value on OPTCD operand 502
any-mode

used to handle an inquiry 175
API (application program interface)

general requirements 50
handling control blocks 51
special requirements 51

APPL statement, name of application program in 375
APPL value on SDT operand 441
application program

as a logical unit 3
authorization to OPEN 10
authorized path under MVS 300
availability of 417
closing

as a generic resource 78
description 55, 73
with CLOSE macroinstruction 13, 28
with standard HALT command 76

closing in MVS 321
coding guidelines 33, 336
communicating with logical units 151
communication part 10, 13
controlling 85
designated for CNM routing 340
easing migration and upgrades 35
identification 56, 78, 377
in relation to a terminal operator and devices 17

application program (continued)
in relation to logical units in a network 17
in relation to other application programs 17
in SNA network 14
interfacing with MVS and VTAM 36, 50
ISTPDCLU application program 355
ISTSWBFR (session awareness data buffer) 356
LU 6.2 components 17
LU Initiate and Terminate request

description 85, 86
TERMSESS restrictions 86

mainline part 31
major functions 18
major start functions 7
opening

description 55
relationship to ACB 27
through an ACB 10

opening in MVS 320
organizing 33, 45
processing part 16
required control blocks for 14
schematic picture of 8
serial execution 309
sharing resources among 15
terminating 390
types of instructions 15
using multiple ACB's in 65
using to manage the network 18
VTAM definition requirements 355
VTAM interfaces and interactions 355

application program interface (API)
general requirements 50
handling control blocks 51
special requirements 51

application program migration
BTAM programs, differences between BTAM and

VSAM 895
from a single-domain to a multiple-domain network

INQUIRE, for a cross-domain resource 896
INTRPRET, for a cross-domain resource 896
LOGMODE names, specifying with OPNDST for a

cross-domain resource 896
from prior releases of VTAM

ACB size, increase of 894
BIND, application program minor node name in 894
sequence number dependencies for LU type 0 3270

terminals 894
SNA network interconnection requirements

INQUIRE, for a cross-network resource 896
application-supplied dial parameters (ASDP)

control block
format 743
using 119

ISTASDP DSECT for 745
macroinstructions

NIB 122
OPNDST 89, 122
SIMLOGON 122

APPLID operand 56, 377
APPLID processing 377
APPSTAT value on OPTCD operand 417
AREA operand

in RPL macroinstruction 493
in SHOWCB macroinstruction 552

AREALEN operand 493
ARECLEN field in RPL 506

918 z/OS V2R1.0 Communications Server: SNA Programming

ARG field in RPL 506
ASDP (application-supplied dial parameters)

control block
format 743
using 119

ISTASDP DSECT for 745
macroinstructions

NIB 122
OPNDST 89, 122
SIMLOGON 122

associated address space 316
association, task 310
ASY (asynchronous handling) 502
ASY operand value 502, 521
asynchronous exit routine 31
asynchronous handling (ASY) 502
asynchronous operation

advantages of 45
characteristics of 41
errors for 279
versus synchronous 169

asynchronous request 170
ATTN operand

EXLST 406
AUTHEXIT=YES 307
authorization

of application programs 296
authorized exit routine

MVS 307
authorized path

BRANCH operand 494
coding requirements 301
definition of 300
description 302
examples 304
macroinstructions

MVS 301
versus categories of VTAM macroinstructions 302
with RPL exit routines 302

authorized path facility, coded example 627
available logical unit, definition of 82

B
batch function, communication with 17
BB (Begin Bracket) indicator

operand value
for RPL 493
for SEND 518

using 214
Begin Bracket (BB) indicator

operand value
for RPL 493
for SEND 518

using 214
BID data 138
BID request

operand value 526
sending 526

bidder, in bracket protocol 215
BIND area

BNDAREA operand 116, 124, 435
definition of 123
format and DSECT 816

BIND image
session parameter area format 793

BIND request
basic function of 7
establishing a cryptographic session 130, 131
establishing an LU-LU session 7
need for SCIP exit to process 256
negotiable 131
non-negotiable 91
OPNSEC PROC options 97
receiving 102
rejection of 528
response 97
sending 97
session parameters in 356

BIS (bracket initiation stopped) 526
BIS data 138
BIS value on CONTROL operand 526
BLK operand of GENCB macroinstruction 409
BNDAREA

for LU profiles 828, 840
ISTDBIND DSECT 821

BRACKET field
for RPL 493, 507
for SEND 518

bracket indicators 681
bracket initiation stopped (BIS) 526
brackets

bracket protocol 214
bracket state transitions at the 3270 SLU 331
protocols used in session with 3270 terminals 330

BRANCH operand 494
branching table

using TESTCB return codes 568
buffer group 194
buffer list

entry format 192
LMPEO state transitions 195

buffer-list entry (ISTBLENT)
format of 192
ISTBLENT DSECT for 746

buffer-list LMPEO states
accumulate state 193
reset state 193
split state 193

buffer-list option (BUFFLST)
buffer-list operation 192
description 191
example of 200
operating considerations 191

BUFFLST (buffer list option)
buffer-list operation 192
description 191
example of 200
operating considerations 191

C
C value on LOGMODE operand 436
CA (continue-any mode)

CA value
OPTCD operand 498

for a RECEIVE operation 173
operand value 438, 520
processing option 438
used to handle concurrent inquiries 177
versus continue-specific mode 176

cancel closedown 263

Index 919

CANCEL field
for SEND 526

CANCEL request
discarding incomplete chain 202
receiving 514

cancelling RECEIVE requests 483
CEB (conditional end bracket)

in user RH (USERRH) option 197
LMPEO handling of 186
when turned on 214

CHAIN field
for RPL 494
for SEND 519

chain indicator
from initial RH chain indicators 186

chaining
using a 3270 terminal 329

chaining of data requests
bracket indicators 681
change-direction indicators 681
description 201
example of 202

chaining output routine
logic of the 3600 617
logic of the 3601 617

change direction command (CMD) indicator
using 212, 213

change-direction
indicators

sending 519
protocol

description 212, 213
CHASE operand value

for SEND 527
Chase request

ensuring all responses have been received 206
sending 527
using 216

CHECK
addressing mode 321
basic function of 25
in an RPL exit routine 219
using 387

CHNGDIR operand
RPL 494
SEND 519

CID (communication identifier)
communicating with logical units 168, 216
explanation of 115, 442
operand value 553

CIDXLATE operand value 419
CINIT (Control Initiate request)

using session parameters with 127
CINIT (Control Initiate Request)

and LOGON exit routine 6
basic function of 6
purpose 83

class of service 93, 126
CLEANUP request

as one of several session outage notification signals 110
definition of 104
examples of 252
format of 252
received by an application program 244

Clear request
need for SCIP exit routine to process 256
sending 532

Clear request (continued)
to stop flow of requests and responses 164, 167

CLEAR value on CONTROL operand 535
CLOSE

ACB storage allocation 390
basic function of 23
CLOSE ACB errors 393
errors and special conditions

organization of information 277
forms of

list and execute form 391
standard form 391

using 390
closedown of VTAM 407
closing a program

description 73
as a generic resource 78

in MVS 321
with CLOSE 13

closing an ACB 390
CLSDST

basic function of 23
OPTCD=PASS operand

determining session parameters for 125
using to initiate sessions 93

OPTCD=RELEASE operand 93
OPTCD=TERMQ operand 94
scope of 92

network-qualified names 93
SSENSEO 401
using 92, 394

network-qualified names with 399, 402
CMD (Change Direction Command) indicator

using 212, 213
CNM (communication network management)

ALIAS application 350
application program 337
description 337
interface

coding requirements 340
protocol and procedure 342
RU (request unit) format 342
standard headers 343

COBOL, in writing an application program 16
CODESEL operand

RPL 494, 507
SEND 519

coding
macroinstructions and exit routines 316
requirements for authorized path 301

coding guidelines
application programs 33, 336
program structure 33

coding requirements for communication network management
interface 337

coding rules for multiple address space 312
communicating with logical units

introduction 151
requests and responses 151
using SNA protocols 201
using VTAM 168

communication activity
separating from other activity 297

communication identifier (CID)
communicating with logical units 168, 216
explanation of 115, 442
operand value 553

920 z/OS V2R1.0 Communications Server: SNA Programming

communication network management (CNM)
ALIAS application 350
application program 337
description 337
interface

coding requirements 340
protocol and procedure 342
RU (request unit) format 342
standard headers 343

communication part of an application program 16
Communications Server for z/OS, online information xxxi
COMPLETE value on I/O operand 568
completion conditions

asynchronous requests 286
component ID vector 62
CON field in NIB 443
CONALL value on OPTCD operand 498
CONANY

concepts of establishing and terminating sessions 81
value on OPTCD operand 498

condition code of TERMSESS 563
conditional connection request (Q-NQ) 501
conditional end bracket (CEB)

in user RH (USERRH) option 197
LMPEO handling of 186
when turned on 214

confidential data handling 439
contention 210
continue chain operand 189
continue-any mode (CA)

CA value
OPTCD operand 498

for a RECEIVE operation 173
operand value 438, 520
processing option 438
used to handle concurrent inquiries 177
versus continue-specific mode 176

continue-specific (CS) mode
CS value

OPTCD operand 498, 520
PROC operand 438

processing option 438
continue-specific mode

used to handle concurrent inquiries 177
versus continue-any mode 176

control block
field lengths 547
field testing 565
generating

during program execution 407
with ACB 21, 377
with EXLST 21, 378, 404
with GENCB 407
with NIB 21, 433
with RPL 21, 487

manipulating
with GENCB 22, 407
with MODCB 22, 431
with SHOWCB 22, 551
with TESTCB 22, 565

required for application program 14
setting values in 267
techniques for handling 51
using for session establishment and termination 114

control block field
length of 553
tested with SHOWCB 553

control block field (continued)
tested with TESTCB 568
usage, summary 633

control block fields set by VTAM 633
control block format

ACB
MVS 740

ASDP 743
BLENT 746, 761
BNDAREA (ISTDBIND) 817
EXLST 750
MTS 752
NIB 754
RH 763
RPL 766

control block formats and DSECTs 739, 789
CONTROL field

RPL 495, 507
SEND 526, 527
SESSIONC 535

Control Initiate request (CINIT)
and LOGON exit routine 6
basic function of 6
purpose 83
using session parameters with 127

control points 2
control requests and indicators, summary of 681
Control Terminate request (CTERM)

cleanup 84
forced 84
orderly 84

control vector hex 29 747
controlling flow of requests and responses 164, 205
conventions used to describe VTAM macroinstructions 371
converting a CID to a symbolic name 419
converting a symbolic name to a CID 423
COUNTS value of OPTCD operand

INQUIRE 419
CP-CP sessions 4
cross-memory API support

and CHECK 388
and CLOSE 390
and OPEN 445
function of 317
limitations for application programs 318

CRYPT operand
RPL 495
SEND 519

cryptographic session
control 815
cross-domain 133
determining level of 133
establishing 132
INQUIRE OPTCD=SESSKEY 422
session-cryptography key

cross-domain 133
single-domain 132

single-domain 132
cryptography

definition of 117
establishing requirements from the logon mode entry 135
level for OPNDST request 134
level for OPNSEC request 136
requirements 218

CS (continue-specific) mode
CS value

OPTCD operand 498, 520

Index 921

CS (continue-specific) mode (continued)
CS value (continued)

PROC operand 438
processing option 438

CTERM (Control Terminate Request)
cleanup 84
forced 84
orderly 84

D
data buffer

session awareness 356
trace 357

data communication activity
dividing among several tasks 297
separating from other activity 297

data facility storage management system(DFSMS) 50
data in a message 152
data integrity damage

handling of 293
data stream

3270, LU type 0 328
DATA value on CONTROL operand

SEND 526
data-flow-control

3270, LU type 0 329
purpose 164
requests 329

declarative macroinstruction
building control blocks 320
description 21
DSECT-creating

designation of 21
default entry in the logon mode table 123
defining sets of session parameters 123
definite response

need for requesting, with SEND POST=RESP 171
definite response indication (types 1 and 2)

meaning of 156
receiving 157
requesting 157
sending 157

delayed request mode 205
delayed response mode 205
Deliver and Forward RU flow 339
Deliver request unit

flow 339
format 345, 348
interface

coding requirements 340
requests and responses 341

DEVCHAR field
in a NIB 443
value on OPTCD operand 413, 420

device characteristics field 334
device-type logical unit

Initiate and Terminate request 82, 86
DFASY exit routine

advantages and disadvantages 236
and the RPL user RH field 198
any-mode 174
executing

in SRB mode 307
in TCB mode 307

expedited requests and responses 161
how to use 236

DFASY exit routine (continued)
how VTAM handles DFASY input 180
list of expedited requests and responses 236
parameters passed to 180
registers upon entry 237
sample program 2 logic 624
scheduled when an expedited-flow request is

received 168, 178
specific-mode 174
specifying in ACB or NIB 229
versus RECEIVE macroinstruction 158

DFASY operand
EXLST 406
RECEIVE 471
RESETSR 483
RPL 504

DFASY request and response units
definition of 160

DFASYX processing option 439
DFSMS (Data Facility Storage Management System) 50
DFSYN request and response units

definition of 160
how handled by VTAM 182

DFSYN value on RTYPE operand
RESETSR 483
RPL 504

dial usability enhancements
conditions for using 121
dial parameter list 120
format of connection subfield 745
format of CPNAME subfield 744
format of dial number subfield 743
format of direct call line name subfield 744
format of DLCADDR subfield 745
format of expanded dial information subfield 744
format of IDBLK/IDNUM subfield 744
format of ISTASDP 743
function of 119

disability 899
disabled logical unit, definition of 81
dispatching priorities 32
DISPLAY command 529
DNS, online information xxxii
Downstream Load Utility (DSLU) 338
DSECT-creating macroinstructions 21
DSECTs and control block formats 739, 789
DSLU (Downstream Load Utility) 338

E
EB (End Bracket) indicator

value on BRACKET operand
for RPL 493
for SEND 518

ECB (event control block)
field in RPL 495
posting 170
using 41
versus RPL exit routines 42, 170

enabled logical unit, definition of 81
enciphered data request

sending and receiving 218
ENCR operand on NIB macroinstruction 435
encryption facility 435

definition of 117
establishing requirements from the logon mode entry 135
level for OPNDST request 134

922 z/OS V2R1.0 Communications Server: SNA Programming

encryption facility (continued)
level for OPNSEC request 136
requirements 218

End Bracket (EB) indicator
value on BRACKET operand

for RPL 493
for SEND 518

environment errors
handling 293

ERET operand 567
ERP (error recovery procedure)

during session initiation 44
error

ACB (application program) isolation 323
request level isolation 322
session level isolation 322
task level isolation 323

ERROR field
using after CLOSE processing 393
using after OPEN processing 448

error recovery procedure (ERP)
during session initiation 44

errors and special conditions
3270, LU type 0 330, 332
analyzing

for error isolation 322
for manipulative macroinstructions 278
for OPEN and CLOSE 277
for RPL-based macroinstructions 278

asynchronous operations 283
handling of

data integrity damage 293
environment errors 293
exception requests 291
logic errors 294
negative responses 293
retriable completion 293

software errors 293
synchronous operations 282
using FDBK field 417
using LERAD and SYNAD exit routines for 290

establishing and terminating sessions
BIND and UNBIND 7
macroinstructions

CLSDST 92
OPNDST 89
OPNSEC 96
REQSESS 95
SESSIONC 98
SIMLOGON 87
TERMSESS 99

stages of 83, 85
with logical units 81

establishing cross-domain cryptographic session 133
establishing single-domain cryptographic session 132
ESTAE exit routine 324
event control block (ECB)

field in RPL 495
posting 170
using 41
versus RPL exit routines 42, 170

EX value on RESPOND operand
SEND 523

exception conditions
3270, LU type 0 332
and sense information 332
handling 291

exception requests
handling

by a PLU application 292
by an SLU application 292

excess data, saving 499
exchanging

requests 152, 157
responses 152, 157

EXECRPL
basic function of 25
using 403

EXIT operand
as internal ECB 507
instead of ECB operand with RPL exit routine 496
RPL exit routine address 488

exit routine
address space used for execution of 316
addressability and save area requirements 234
addressing mode 321
asynchronous 31
basic function of 19, 28
cautions, restrictions, and techniques for 235
creation 404
deciding how to use 228
entry procedures for 234
executing

in SRB mode 307, 309
in TCB mode 307, 309

execution of 321
exit procedures from 235
how to use 219
identified by ACB 228
identified by NIB 228
identified in RPL-based macroinstructions 219
inline 31
installation 219
parameters passed to 234
procedures for writing 231
requirements for reenterability 231, 234
RPL-specified 29
rules of coding 316
session establishment and termination 100
summary of 224
task association 310
types of

exit-list exit routines 28, 221, 224
RPL-specified exit routines 28, 219, 256

EXLLEN value on LENGTH operand 410
EXLST

basic function of 21
named in EXLST operand of ACB 222
named in EXLST operand of NIB 222
names of exit routines in 222
scheduling 178
using 404

EXLST (IFGEXLST) DSECT 751
EXLST control block 405, 750
EXLST exit routine

addressing mode 321
definition of 29, 219
executing

in SRB mode 307
in TCB mode 307

optional 228
registers upon entry 226
required 228
specification and function of 221, 224

Index 923

EXLST exit routine (continued)
specified in ACB 222, 228
specified in NIB 222, 228
versus explicit RECEIVEs 178

EXLST operand
ACB 378
MODCB 432
NIB 435
SHOWCB 552
TESTCB 567

expedited-flow data-flow-control request
expedited-flow data-flow-control

summary of receiving 687
session-control

receiving, summary of 689
sending, summary of 687

summary of receiving 687
expedited-flow request

ability to send
during quiesced state 212
in change-direction protocol 212

and responses, table summary 161
controlling normal-flow responses 161
definition of 159
examples of

for synchronous operations 169
extracting control block fields 551
for a receive-any operation 174
for a receive-specific operation 174
sequence numbers in 163
versus normal-flow requests 160
ways of receiving

DFASY exit routine 174, 236
RECEIVE 157, 162
RECEIVE RTYPE=DFASY 178
RESETSR 482

extended reference facility (XRF)
and SESSIONC 532
programming 149
session requests 91
terminating sessions 74

F
FDB2 (reason code) 244
FDBK return code, for INQUIRE macroinstruction

(OPTCD=APPSTAT) 417
FIELDS operand 552
FIRST operand

RPL 494
SEND 519

FM (function management) header
using 217

FMD (function management data)
header option 217, 499
sending of, by LMPEO 183, 500

FME operand value 503
FMH-5 138
Forward and Deliver RU flow 339
forward request unit flow 339
forward request unit, CNM interface 341
FRR (functional recovery routines) 324
function management (FM) header

using 217
function management data (FMD)

header option 217, 499
sending of, by LMPEO 183, 500

function management profile 795
function management usage field 796
function-list macroinstruction global variables 275
function-list vector 62
functional recovery routines (FRR) 324

G
gathering performance data 358
GENCB

advantage of 267
basic function of 22
errors and special conditions for 278
examples of 268
how to use 268, 407

generating control blocks
during program execution 407

generating NIBs 271
generic resource 78

determining network qualified name of real instance 414,
422

example use of SETLOGON 547
opening and closing an application program 78
specifying application name 436
terminating LU-to-application association 384, 545

GETMAIN facility 410
global values in control blocks

setting 267
testing 267

global variables
declared and set 274

H
half-duplex contention communication 211
half-duplex devices 209
half-duplex flip-flop communication 211
HALT command

action for HALT NET, CANCEL or abnormal
termination 77

action for HALT NET, QUICK or VTAM-initiated
HALT 76

action for standard HALT 76
for application program without TPEND exit 76

hardware monitor 338
header

for VTAM messages 464
for VTAM operator commands 529
function management 499

HOLD value on OPTCD operand
RPL 501
SETLOGON 548

I
I/O operations

cancelling 483
input 466
output 514

I/O routine
logic of the 3270 619

IBM Software Support Center, contacting xxiv
IBSQAC operand

designating type of STSN request 536
used by SESSIONC 496
when SESSIONC is completed 507

924 z/OS V2R1.0 Communications Server: SNA Programming

IBSQVAL operand
assigned to inbound requests 537
used by SESSIONC 496
when SESSIONC is completed 507

IFGACB DSECT for ACB 272, 740
IFGEXLST DSECT for EXLST 272, 751
IFGRPL DSECT for RPL 272
immediate request mode 206
immediate response mode 206
inactive application program 417
inbound sequence number

description 535, 542
inbound STSN indicators 536
indicators

in requests and responses
definition of 151
in a request 151

Information APARs xxix
inhibited logical unit, definition of 82
initial RH, location of 185
Initiate Load Request RU format 350
Initiate request

basic function of 6
LOGON, character-coded 85
purpose 83, 85
sources 83, 85

initiating sessions
initiate request 6
macroinstructions

SIMLOGON 87
use of LOGON exit routine 6
using generic resource name 78

inline exit routine 31, 224
input operations, receiving 466
input RU

classified by VTAM 180
INQUIRE

basic function of 25, 412
determining session parameters for 124
OPTCD=TERMS 271
permissible option codes 413
using 412
using to get a logon message 575

Internet, finding z/OS information online xxxi
interpret table, definition of 426
interpreting an input sequence 426
INTRPRET

basic function of 25, 426
using 426

isolating errors
application program 323
request 322
session 322
task 323

ISTASDP DSECT 745
ISTBLENT (buffer list entry)

format of 192
ISTBLENT DSECT for 746

ISTBLENT DSECT 746
ISTDBIND DSECT

for BNDAREA 821
using to build or examine session parameters 272

ISTDNIB DSECT for NIB 272, 754
ISTDPOHD DSECT 888
ISTDPROC DSECT for NIB 761
ISTDPROC macroinstruction for processing options fields of

the NIB 272

ISTDVCHR DSECT for NIB 756
ISTDVCHR macroinstruction for device characteristics field of

the NIB 272
ISTGLBAL macroinstruction

control block fields 639
how to use 430
macroinstruction global variables set by

&ISTGLCI (component-ID) 274
&ISTGLRL (release-level) 274
&ISTGLxy (function-level) 274, 275

ISTMTS DSECT 753, 762
ISTPDCLU application program 355
ISTRH DSECT 272, 763
ISTUSFBC DSECT 272, 774

K
KEEP option for overlength input data

in record-mode operations 182
value on PROC operand

NIB 472
RPL 499

keyboard 899
keyword operand

as part of the VTAM macroinstruction language 19
of the GENCB macroinstruction 410

L
LANG 117
LANGTAB 117
language code values 117
large message performance enhancement outbound (LMPEO)

Begin RU/End RU combinations 195
buffer-list option and 184, 191
chaining of data requests 201
data stream considerations 189
description 183
encrypt/decrypt facility and 184
example of using 200
exception conditions 190
handling negative response 190
handling request headers 185
handling selected RH indicators 186
operating considerations 184
operation on a message sent to an SNA LU 184
performance conditions 191
sending FM data 189
sequence number handling 189
state transitions 195
status during buffer list processing 193

LAST value on CHAIN operand
RPL 494
SEND 519

LENGTH operand
GENCB 410
SHOWCB 552

LERAD exit routine
addressing mode 321
advantages of 237
basic function of 13, 406
coding 290
coding, special requirements 230
executing

in SRB mode 308
in TCB mode 308

Index 925

LERAD exit routine (continued)
how to use 237
linkages, conventions for 234, 237
not reentrant 234
operand 406
parameters passed to 237
purpose of 237
reentrant 234
register usage 291
registers upon entry 238

license, patent, and copyright information 903
list of NIBs

creating 433, 436
explanation of 433

LISTEND operand on NIB macroinstruction 436
LMPEO (large message performance enhancement outbound)

Begin RU/End RU combinations 195
buffer-list option and 184, 191
chaining of data requests 201
data stream considerations 189
description 183
encrypt/decrypt facility and 184
example of using 200
exception conditions 190
handling negative response 190
handling request headers 185
handling selected RH indicators 186
operating considerations 184
operation on a message sent to an SNA LU 184
performance conditions 191
sending FM data 189
sequence number handling 189
state transitions 195
status during buffer list processing 193

load operation 338
load request 338
Load Status (RU) format 350
logic errors

handling 294
logical unit (LU)

active 81, 84
available 81, 82
communicating with

application programs 151
description 28
VTAM 151, 168

communication protocol 209
connected 81
definition of 2
determining status 423
device-type 14
disabled 81
enabled 81
establishing sessions with 11, 27
examples of 14
identifying 168
in SNA network 2
primary session 4
quiescing an application program 207
receiving requests from 154
secondary session 4
SSCP-LU session 6
symbolic name 115
terminating sessions with 13, 28

logical unit presentation services
profile 799
profile 0 usage field 800

logical unit presentation services (continued)
profile 1 usage field 801
profile 2 and 3 usage fields 806
profile 4 usage field 808, 812
usage fields 800

Logical Unit Status (LUSTAT) request
sending 514, 526

LOGMODE operand values 126
LOGMODE operand, to identify a logon mode 436
logoff

using the 3270 terminal 335
logon

initiating 543
terminating 543

LOGON exit routine
accepting sessions in 238
advantages of 238
basic function of 6
examples of

in logic of sample program 1 575
executing

in SRB mode 307
in TCB mode 307

how to use 101
parameters passed to 238
registers upon entry 240
using INQUIRE macroinstruction in 238
versus RPL exit routine 238
with OPNDST OPTCD=ACCEPT 238

logon message
receiving 413
using the 3270 terminal 335

logon mode name
and session parameters 123
definition of 116
locating in the CINIT RU 128
using 123

logon mode, used by
CLSDST 92, 436
INQUIRE 436
OPNDST 89, 436
REQSESS 95, 436
SIMLOGON 87, 436

LOGON operand
EXLST 406

LOGON value of MACRF operand
ACB 378

LOGONMSG value of OPTCD operand
INQUIRE 413, 420

LOSTERM exit routine
entry codes for 242
executing

in SRB mode 307
in TCB mode 307

how to use 106, 241
operand 406
parameters passed to 241
reasons for entry to 241
registers upon entry 242

LU (logical unit)
active 81, 84
available 81, 82
communicating with

application programs 151
description 28
VTAM 151, 168

communication protocol 209

926 z/OS V2R1.0 Communications Server: SNA Programming

LU (logical unit) (continued)
connected 81
definition of 2
determining status 423
device-type 14
disabled 81
enabled 81
establishing sessions with 11, 27
examples of 14
identifying 168
in SNA network 2
primary session 4
quiescing an application program 207
receiving requests from 154
secondary session 4
SSCP-LU session 6
symbolic name 115
terminating sessions with 13, 28

LU-LU session protocols 342
LUSTAT (Logical Unit Status) request

sending 514, 526

M
MACRF operand

ACB 378
with SETLOGON 82

macroinstruction
ACB 375
ACB-based 22, 320
authorized path

MVS 301
categories of 20
CLOSE 387, 391
CLSDST 92, 394
declarative

ACB 21, 320
EXLST 21, 320
NIB 21, 320
RPL 21, 320

differences across operating systems 295
DSECT-creating

how to use 272, 273
list of 272
rules for coding 273, 316

establishing and terminating sessions 87
EXECRPL 403
EXLST 404
GENCB 407
global values in 274
how described 371
how to use 274
INQUIRE

permissible option codes 413
INTRPRET 426
ISTGLBAL 430
list of general-use 891
list of product-sensitive 891
MODCB 431
NIB 433
OPEN

forms of 446
OPNDST 89, 453
OPNSEC 96, 460
RCVCMD 463
RECEIVE

major options 467

macroinstruction (continued)
REQSESS 95
RESETSR

major options 482
RPL 487

RPL-based 320
SEND

major options 514
SENDCMD 529
SESSIONC

major options 541
SETLOGON 543
SHOWCB 551
SIMLOGON 555
specified in MVS 320
summary description 20, 375
task association 311
TERMSESS 99, 560
TESTCB 565
versus the authorized path function 302

macroinstruction global variables
declaring and setting 274
types of

component-ID 274
function-list 274
release-level 274

main storage, facility for obtaining 408
mainframe

education xxix
mainline program 31
maintenance-related information 18
management services 337
manipulating control blocks

GENCB 407
MODCB 431
SHOWCB 551
TESTCB 565

manipulative control block
description 267

manipulative macroinstructions
defined 22
description 19
errors and special conditions 278
forms of 22, 865
function of 14
GENCB

basic function of 22
how to use 268

list of 267
MODCB

basic function of 22
how to use 269

operands used with 857, 867
return codes 278, 855
SHOWCB

basic function of 22
FDBK2 field 651
how to use 270

TESTCB
basic function of 22
FDBK2 field 651
how to use 271

maximum RU size 183, 200
message and command header

DSECT example 888
format and DSECT 888

Index 927

MF operand
CLOSE 392
GENCB 410
MODCB 432
SHOWCB 553
TESTCB 568

MIDDLE value on CHAIN operand
RPL 494
SEND 519

migration considerations
coding guidelines 35

MODCB
advantage of 267
basic function of 22, 431
errors and special conditions for 278
how to use 269, 431

MODE operand 437
MODEENT macroinstruction

LANG operand 241
MODENAME 139
MODIFY QUERY command from a POA 889
multiple address space 312
multiple control block generation 409
multiple monitor environment 363
multiple tasks

each with its own ACB 298
multitasking a program 297
use of multitasking 296
using the same ACB 298

multitasking 296
multithread application program

characteristics of 36
definition of 36

multithread operation
definition 36
VTAM facilities for 37

MVS operating system
31-bit addressing 319
asynchronous exit routines 307
authorization criteria 296
authorized path 300
authorized path macroinstructions 301
closing the application program 321
data facility storage management system(DFSMS) 50
interfacing with an application program 50
multiple addresses 312
opening the application program 320
special exits 307
specifying macroinstructions 320

N
NAME field in NIB 443
NAME operand 437
national language support (NLS)

language code settings 117
NAU (network addressable unit)

definition of 1
NBB value on BRACKET operand

RPL 493
SEND 518

NCP (Network Control Program)
basic function of 16

negative response
receiving

examples of in RECEIVE macroinstruction 474
exception response requested 154

negative response (continued)
requesting 154
sending 154, 394
transferring sense fields before sending 292
with RECEIVE 473
with RPL 503
with SEND 525

network addressable unit (NAU)
definition of 1

Network Control Program (NCP)
basic function of 16

network operator macroinstruction
DISPLAY 529
MODIFY 529
RCVCMD 463
REPLY 529
SENDCMD 529
VARY 529

network services request unit
deliver request unit 345
embedded 348
forward request unit 344

network upgrades
coding guidelines 35

network-qualified names support 65
NIB (node initialization block)

contents 115
control block 754
fields set by VTAM

CID 442
CON 443
DEVCHAR 443
NAME 443
NETID 443
NIBNACLQ 443
NIBPSDFA 444
NIBPSDFS 443
NIBPSPLU 443
NIBPSRSP 443
NIBRPARM 444

generating with INQUIRE 271
ISTDNIB DSECT for 272, 754
ISTDPROC DSECT for 761
ISTDPROC macroinstruction for processing options in 273
ISTDVCHR DSECT for 756
ISTDVCHR macroinstruction for device characteristics field

in 273
PROC options 161
USERFLD field of 37
using 115, 116

NIB field versus ARG field 497
NIB generation for logical unit groups 417
NIB list

creating 433
defining 119
explanation of 433

NIB macroinstruction
basic function of 21
BNDAREA 124
information specified in 433
LOGMODE 124
specifying affinity ownership condition 436
specifying generic name of application 436
using 433

NIB operand
MODCB 432
RPL 497

928 z/OS V2R1.0 Communications Server: SNA Programming

NIB operand (continued)
SHOWCB 552
TESTCB 567

NIB-oriented exit routines 433
NIBLEN value of LENGTH operand 410
NIBNACLQ field in NIB 443
NIBPSDFA field in NIB 444
NIBPSDFS field in NIB 443
NIBPSPLU field in NIB 443
NIBPSRSP field in NIB 443
NIBRPARM field in NIB 444
NIBTK option code 499
NLS (national language support)

language code settings 117
NO value

BRANCH operand 494, 518, 535
LISTEND operand 436
no response 154

node initialization block (NIB)
contents 115
control block 754
fields set by VTAM

CID 442
CON 443
DEVCHAR 443
NAME 443
NETID 443
NIBNACLQ 443
NIBPSDFA 444
NIBPSDFS 443
NIBPSPLU 443
NIBPSRSP 443
NIBRPARM 444

generating with INQUIRE 271
ISTDNIB DSECT for 272, 754
ISTDPROC DSECT for 761
ISTDPROC macroinstruction for processing options in 273
ISTDVCHR DSECT for 756
ISTDVCHR macroinstruction for device characteristics field

in 273
PROC options 161
USERFLD field of 37
using 115, 116

non-negotiable BIND 91
normal environment for VTAM application programs 30
normal operating system environment

description 30
dispatching priorities 32

normal-flow request
and responses, summary table 161
definition of 158
expedited-flow 160
quiescing the sending of 206
sent sequentially 158
sequence numbers in 163

normal-flow requests and responses (DFSYN)
in RECEIVE 472
in RPL 504

normal-flow send/receive mode 329
Notify request

definition of 106
examples of 245
format of 247
received by an application program 244

notifying a session partner of a request for a session 89
NQN support 65

NSEXIT exit routine
address 406
executing

in SRB mode 307
in TCB mode 307

formats of RUs received by 244
registers upon entry 253
using 104, 244

NSPE request
definition of 105
examples of 245
format of 246
received by an application program 244

O
OBSQAC operand 507, 536
OBSQVAL operand 496, 537
OFLAGS field

contents 383
testing 393

OFLAGS operand 568
ONLY value on CHAIN operand

RPL 494
SEND 519

open destination 453
OPEN macroinstruction

ACB data space 375
ACB storage allocation 445
basic function of 10, 23
errors and special conditions

organization of information 277
example 57, 65
forms of 446
OPEN ACB errors 449
using 444
vector lists 58
where to issue 66

OPEN operand of TESTCB 568
opening a logon queue 543
opening a program

description 55
in MVS 320

opening an ACB 444
operand specification summary 857
operating system considerations

authorization 296
introduction 295

operating system differences 295
operating system environment 30
OPNDST

accepting a session 89
network-qualified names 90

acquiring a session 90
basic function of 23
BIND request 91
coding information for 453
completion information for 459
description 453
establishing an LU-LU session 7
examples of 575
general relationship to RPL and NIB 575
OPTCD=ACCEPT

determining session parameters for 125
OPTCD=ACQUIRE

determining session parameters for 125
requirements 453

Index 929

OPNDST (continued)
to acquire logical unit characteristics 575
use

in accepting pending-active sessions 453
in establishing sessions 89
in supplying dial parameters 122

OPNDST request
level of cryptography 134

OPNSEC
basic function of 23, 96, 460
network-qualified names and 96
PROC options 97
requirements 460
using 460

OPNSEC request
level of cryptography 136

OPTCD operand 498
option codes 498
options, processing 438
ORDRESP value on PROC operand

as used with LMPEO 199
NIB 440

outage notification 110
outbound sequence number

action code 537
description 537

outbound STSN indicators 537
output

responded 173
scheduled 172
scheduling 38

overlength data
handling 182

P
pacing count 798
parameter lists for exit routines 234
parameters, session 793
PARMS field 380
PARMS operand

ACB 380, 381
CLSDST

communicating with application program 94
passing a logical unit to an application program 245
setting system and user sense with existing fields 400

RPL 400, 503
TERMSESS 564

PASS value on OPTCD operand
CLSDST 399

PASSWD operand
ACB 382

password protection 382
path, authorized

MVS 300
pending active session, definition of 83
performance monitor interface 358

data collection dynamics 362
data collection mechanism 358
definition requirements for initialization 358
implications of multiple monitor environment 363
performance data types 363
request unit formats 364
sense codes 368
termination 363

PERSESS value of OPTCD operand
INQUIRE 421

persistent LU-LU session support
and TPEND exit 69
and VARY command 68, 70
application states of 67
CLOSE ACB flow 67
OPEN ACB flow 67
persistence capable, definition of 67, 381
persistence enabled, definition of 67, 548
restoring sessions pending recovery

control vector hex 29 138, 747
data tracking 137
PSTIMER 68, 548
reissuing the OPEN ACB 137
taking over a failed application 69, 137
using INQUIRE 139
using OPNDST 139

physical unit (PU)
definition of 1
in SNA network 2
SSCP-PU session 5

PLU (primary logical unit)
definition of 4
name 816
name length 816

POA (program operator application)
authorization 878
closing 882
data exchanged with VTAM 883
introduction 875
limiting queued messages 883
macroinstructions

RCVCMD 26, 882
SENDCMD 26, 882

message and command header, format and DSECT of 888
message header 884
message ID with VTAM

receiving data 885
sending data 887

method for writing 878
operational characteristics 880
POAQLIM 883
programming requirements 881
VTAM operator commands 879

MODIFY QUERY 889
positive response

meaning of 154
requesting and receiving 154
sending 524
type 1 and 2

with RECEIVE 466
with SEND 524

POST operand
RPL 503
SEND 12, 521

posting of return codes 651
prerequisite information xxix
presentation services 799
preventing logon request queuing

after OPEN processing 543
during OPEN processing 378

PRID (procedure-related identifier)
CNM application program 342

primary logical unit (PLU)
definition of 4
name 816
name length 816

PROC operand 438

930 z/OS V2R1.0 Communications Server: SNA Programming

procedure-related identifier (PRID)
CNM application program 342

processing options
of a session 116
specification 438

processing part of an application program 16
program operator application (POA)

authorization 878
closing 882
data exchanged with VTAM 883
introduction 875
limiting queued messages 883
macroinstructions

RCVCMD 26, 882
SENDCMD 26, 882

message and command header, format and DSECT of 888
message header 884
message ID with VTAM

receiving data 885
sending data 887

method for writing 878
operational characteristics 880
POAQLIM 883
programming requirements 881
VTAM operator commands 879

MODIFY QUERY 889
program structure

coding guidelines 33
programming considerations

general 33
protocol

bracket 213, 216
change-direction 212
CNM (communication network management) 342
half-duplex 211
LU-LU session 342
predefined sets of 795
quiesce 210
Systems Network Architecture (SNA) 201

PSERVIC operand 799
PU (physical unit)

definition of 1
in SNA network 2
SSCP-PU session 5

Q
Q value on OPTCD operand 501
QC (Quiesce Complete) request

example 207
SEND 514, 526

QEC (Quiesce at End-of-Chain) request
example 207
SEND 514, 526

queued response notification 182
queued session, definition of 83
queuing a request

for a session with an SLU 110
queuing of session-establishment request 83
quick closedown 264
Quiesce at End-of-Chain (QEC) request

example 207
SEND 514, 526

Quiesce Complete (QC) request
example 207
SEND 514, 526

quiesce protocol
description 206, 207

QUIESCE value on OPTCD operand
RPL 501
SETLOGON 544, 548

quiescing
of an application program by an LU 207
protocol 210
using 206

R
RCVCMD

basic function of 26
using 463

Ready to Receive (RTR) request
using 514, 526

reason code
OPTCD operand of the RPL macroinstruction 500
PARMS operand of TERMSESS macroinstruction 564
PARMS operand of the RPL macroinstruction 503

reason code (FDB2) 244
RECEIVE

basic function of 11, 24
continue-any mode for 176
continue-specific mode for 176
handling overlength data in 182
keeping or truncating overlength data for 182
major options 467
processing 375
receive-any operation 39
requirements 466
to receive a response

RTYPE=DFASY 178
RTYPE=RESP 154, 178

using 157, 466
versus DFASY or RESP exit routine 178
versus EXLST exit routines 178

receive-any operation
versus receive-specific 174

receiving a BIND request
SCIP exit routine 102

receiving an UNBIND request, SCIP exit routine 103
receiving requests and responses 466
RECLEN field in an RPL 183
RECLEN field or operand 503
record application program interface

general description 14
RECORD operand value 437
recovery action return codes

general meanings 280
recovery routines 324
register contents

control block address 853
exit routine address 853
return codes 853
RPL address 853

register usage
LERAD exit routine 291
summary 853
SYNAD exit routine 291

registers set by VTAM 633
Release Quiesce (RELQ) request

sending 514
using 207

RELEASE value on OPTCD operand
CLSDST 399

Index 931

release-level macroinstruction global variables 274
release-level vector 62
releasing logical units, method of 394
RELQ (Release Quiesce) request

sending 514
using 207

RELREQ exit routine
entry to 254, 406
executing

in SRB mode 307
in TCB mode 307

for notifying a program of release request 253
parameters passed to 254
possible actions in 253
registers upon entry 254

RELREQ operand
EXLST 406

RELRQ operand
RPL 501

REPLY command 529
replying to VTAM messages 529
REQ operand value

following RECEIVE
in request to be sent 519
to indicate a RECEIVE 472
to show indicator status 507

REQSESS
basic function of 23
determining session parameters for 125
using 95

request
code 508
modes 495
normal-flow 495

request and response exchanges 693
request header (RH)

chain indicators 186
generated by LMPEO 185
in SNA 151
indicators handled by LMPEO 186
location of the initial RH 185

request level error isolation 322
request parameter list (RPL)

AREA field in 257
basic function of 21
control block 487, 766
description 114
error and special condition information in 279
FDB2 field in 279
fields set by VTAM 505
fields, applicability of (per macroinstruction) 510
IFGRPL DSECT for 272
ISTUSFBC DSECT for 774
macroinstruction 487
operand

MODCB macroinstruction 431, 432
SHOWCB macroinstruction 551
TESTCB macroinstruction 565

RESPOND field in 576
RTNCD field in 280
sense fields in 280

Request Recovery (RQR) request
need for SCIP exit routine to process 256
summary of 532
using 167

request unit names, CNM interface 348

request unit size
description 797
maximum size 797

request/response unit (RU)
classified by VTAM 179
communication network services, format 351, 352
definition 151
format

deliver 348
forward (MVS) 344

initiate load request format 350
load status request format 350
network services

embedded 350
not embedded 351

translate-inquiry request (TR-INQ), format 352
requests

and responses 151
asynchronous 170
chaining 201
chaining (example) 202
Chase request 216
contents 11, 152
example of sending and receiving 153
exchanging requests and responses 152, 157
overlength data in 182
quiescing the sending of 206
received from a logical unit 154
receiving from LUs 11
request and response modes 205
responses to 153
sending 12
sequence number in 163
sequence relationship between normal-flow and expedited

flow 158
starting and stopping the flow of 165
synchronous 169
transmitted on expedited flow 161
transmitted on normal-flow 161

requests and responses, CNM interface 341
RESETSR

basic function of 24
major options 482
using 481

resetting
a session's CA-CS mode 482
RECEIVE 483

resource ID vector 63
resource-information 383
resource-information vector list (ACBRIVL) 383
RESP exit routine

advantages and disadvantages of 254
examples of

in logic of sample program 1 573, 577
executing

in SRB mode 307
in TCB mode 307

how to use 254
how VTAM handles RESP input 181
parameters passed to 255
read-only RPL provided for 255
registers upon entry 255
request and response units 160
sample program 2 logic 621
scheduled when an expedited-flow request is received 178
scheduling of, after receiving a response 155, 178
specifying in an ACB or NIB 229, 255

932 z/OS V2R1.0 Communications Server: SNA Programming

RESP operand
EXLST 407
RESETSR 486
RPL 503

RESP request and response units
definition of 160

RESP value on POST operand
SEND 522

RESP value on RTYPE operand
RECEIVE 472, 473
SEND 520

RESPLIM operand 441
RESPOND field

RPL 503, 509
SEND 521, 522

responded output
using 173
with SEND 522

response
contents 153
exchanging 152
limit 441
receiving 13, 153
request and response modes 205
requesting 153
sending 12
sequence number in 163
starting and stopping the flow of 165
to a normal-flow request 158
to an expedited-flow request 158
types of 153
using the 3270 terminal 330
ways of receiving

RECEIVE RTYPE=DFSYN 161, 178
RECEIVE RTYPE=RESP 161, 178
RESP exit routine 161, 178
without RECEIVE RTYPE=RESPONSE 225

response header indicators in SNA 151
response modes 205
RESPX processing option 440
resumption of LOGON exit routine scheduling 543
retriable completion

handling of 293
retrying RPL-based requests 403
return codes

combinations 655
for CLOSE 277, 393
for manipulative macroinstructions 278

errors and special conditions 278
registers 0, 15 855

for OPEN 277, 448
for RPL-based macroinstructions

FDB2 field 279
registers 0, 15 279
reuse of RPLs 502
RTNCD field 279

posting 651
recovery action 280
sense fields for RPL-based macroinstructions 651

RFC (request for comments)
accessing online xxxi

RH (request header)
chain indicators 186
generated by LMPEO 185
in SNA 151
indicators handled by LMPEO 186
location of the initial RH 185

RMODE specifications 319
RPL

basic function of 487
using 487

RPL (request parameter list)
AREA field in 257
basic function of 21
control block 487, 766
description 114
error and special condition information in 279
FDB2 field in 279
fields set by VTAM 505
fields, applicability of (per macroinstruction) 510
IFGRPL DSECT for 272
ISTUSFBC DSECT for 774
macroinstruction 487
operand

MODCB macroinstruction 431, 432
SHOWCB macroinstruction 551
TESTCB macroinstruction 565

RESPOND field in 576
RTNCD field in 280
sense fields in 280

RPL exit routine
addressing mode 321
compared to ECB-posting 219
definition of 29, 219
example

of using 219
of VTAM scheduling 172

executing
in SRB mode 309
in TCB mode 309

how it works 219
how to use 256
list of special purpose routines 29
parameters passed to 256
registers upon entry 256
specifications and functions of 219
using 42
using instead of ECB-posting

examples 170
illustration of 42
problems avoided by 231

using with ECBs 220
versus ECB posting 42
with asynchronous operations 170

RPL operand
CHECK 389
CLSDST

AAREA 396
ACB 397
AREA 397
ARG 397
BRANCH 397, 416, 428
ECB 397, 416, 428
NIB 398
OPTCD 398, 399, 400
PARMS 400
RECLEN 400

RPL-based macroinstruction
errors and special conditions 279, 280
OPNDST 23
OPNSEC 23
return codes for 279
using 23

RPLC value of PROC operand 438

Index 933

RPLLEN value of LENGTH operand 410
RQR (Request Recovery) request

need for SCIP exit routine to process 256
summary of 532
using 167

RQR value of CONTROL operand 535
RRN value of RESPOND operand 523
RSHUTD request

sending 514
RTNCD field 279, 509
RTR (Ready to Receive) request

using 514, 526
RTYPE operand

RECEIVE
example 472
explicit 178
indicating type of response received or expected in

return 473
table 467

RESETSR 481
RPL 504, 507

RU (request/response unit)
classified by VTAM 179
communication network services, format 351, 352
definition 151
format

deliver 348
forward (MVS) 344

initiate load request format 350
load status request format 350
network services

embedded 350
not embedded 351

translate-inquiry request (TR-INQ), format 352

S
sample programs

sample program 1
data interface with logical units 580
how SAMP1 code relates to sample program 1 579
logic of 573
notes on LERAD and SYNAD exit routines 584
notes on LOGON exit routine 583
notes on LOSTERM exit routine 585
notes on mainline program 582
notes on RESP exit routine 584
what it does 579

sample program 2
logic of 605

sample program 3
assembler language code 628
logic of 627

using authorized path 627
save area, requirement for 234
SBI (stop bracket initiative) 526
SBI value on CONTROL operand 527
SCHED value on POST operand

RPL 503
SEND 521

scheduled output 172, 521
scheduling priority of I/O requests 503
SCIP exit routine

address 407
basic function of 256
entered as a result of

BIND request 258

SCIP exit routine (continued)
entered as a result of (continued)

Clear request 257
RQR request 257
SDT request 257
STSN request 258
UNBIND request 260

executing
in SRB mode 307
in TCB mode 307

read-only RPL provided to 256
registers upon entry 262
resynchronization of sequence numbers in 258
specifying in an ACB or NIB 229
using 102, 256

SDT (Start Data Traffic) request
basic function of 7
in request flow 532
indication 117
need for SCIP exit routine to process 256
receiving 407
sending 532, 535
using 164

secondary logical unit (SLU)
definition of 4

SEND
basic function of 24
examples of

for asynchronous operations 169
for synchronous operations 169, 576

major options 514
OPTCD=LMPEO

handling of negative response 190
POST operand 12, 522
POST=RESP 170
POST=SCHED 169, 170
RESPOND operand 156, 216
scheduling 169
specific mode for 174
specifying ECB posting in 170
specifying execution of RPL exit routine in 170
STYPE=REQ 169
STYPE=RESP 12, 154
using 157, 514

SEND operation (example) 200
SEND options 514
SENDCMD

basic function of 26, 529
using 529

sending network operator commands 529
sending requests and responses 514
sense code 500
sense fields and return codes for RPL-based

macroinstructions 651
sense information

for a 3270 device 332
received at the application program 332

SEQNO field
for RECEIVE 473
for RPL 504, 509
for SEND 164, 525
how used with LMPEO 189, 509

sequence numbers
for RECEIVE 473
for RPL 504
for SEND 525
for STSN commands 537

934 z/OS V2R1.0 Communications Server: SNA Programming

sequence numbers (continued)
handling during LMPEO operation 189
in requests and responses 163
of normal-flow RUs 331
resetting to zero with Clear request 164
resynchronization of

general description 163
serialization of execution 309
session

accepting 89
acquiring 90
active 81, 84
address space 316
available 82
communication

macroinstructions 24
connected 81
control commands 532
cryptographic 131
cryptographic control 815
determining parameters for

INQUIRE 124
OPNDST OPTCD=ACCEPT 125
OPNDST OPTCD=ACQUIRE 125
REQSESS 125
SIMLOGON or CLSDST OPTCD=PASS 125

disabled 81
enabled 81
establishment

control block 115
macroinstructions 23
role of exit routines 100
stages of 5, 7, 83
with logical units 11, 27, 81

identifying 168
initiation

error recovery procedure 44
exit routines involved in 107
initiate request 6
initiate request types 85
use of SIMLOGON 87
using generic resource name 78
with logon information 6

limit 82
LU-LU 4
LU-LU session protocols 342
major communication alternatives 169
outage

codes 111
exit routines involved in 108
summary 105

parallel 4
parameters associated with CINIT 127
SSCP-LU 4
SSCP-LU session 6
SSCP-PU 4
SSCP-PU session 5
SSCP-SSCP 4
termination

by one of the session participants 109
control block 115
macroinstructions 23
stages of 84
terminate request types 86
with logical units 13, 28

types 3
session awareness data buffer 356

session control
transmission services profile 796

session establishment macroinstruction
CLSDST 23
OPNDST 23
OPNSEC 23
REQSESS 23
SESSIONC 24
SIMLOGON 23
TERMSESS 24

session instance identifier 139
session level error isolation 322
session monitor 338
session outage notification (SON) 105, 110
session parameter

3270, LU type 0 333
agreement 122
building and using in a BIND area 130
defining and naming (logon mode) 123
defining sets 123
example of

associated with a CINIT 127
in a BIND area 130

processing of by an application program 127, 128
specifying 34, 793
using 123

session parameter fields
format (BIND image) 793
function management 795
profile 795, 819

session qualifier pair 139
session state control vector 747
session termination

and Chase request 217
by a secondary application program 560
by one of the session participants 109
stages of 84
terminate request types 86

SESSIONC
and XRF 532
for communication 24
for session establishment 24
in sending SDT requests 157
options 541
using

general description 532
to reject a BIND request 98

with CONTROL=BIND 98
network-qualified names 98

SESSIONC command 532
SESSKEY value on OPTCD operand

RPL 498
SESSPARM value on OPTCD operand

INQUIRE
description 423
possible restrictions 412
source of session parameters 414

RPL 498
Set and Test Sequence Numbers request (STSN)

need for SCIP exit routine to process 258
possible responses to 532
receiving 407
sending 542
using 167, 532

SETLOGON
ACB MACRF operand, interaction with 83
basic function of 25, 543

Index 935

SETLOGON (continued)
examples of use 575
HOLD 84
LOGON exit routine scheduling 543
START 84
using 543

shortcut keys 899
SHOWCB

advantage of 267
basic function of 22, 551
errors and special conditions for 278
use and examples of 270
using 551

SHUTD (Shutdown Complete request)
in data-flow-control request 518
on CONTROL operand of SEND macroinstruction 527
on STYPE operand of SEND macroinstruction 527

Shutdown Complete request (SHUTD)
in data-flow-control request 518
on CONTROL operand of SEND macroinstruction 527
on STYPE operand of SEND macroinstruction 527

SIGDATA operand
RPL 504, 509
SEND 525

signal request 213
SIGNAL value on STYPE operand 526
SIMLOGON

basic function of 23, 555
defined 87
OPTCD=CONALL 90
OPTCD=CONANY 91
OPTCD=PASS

determining session parameters for 125
using 87, 555

simulated logon requests 555
single task with multiple ACBs 299
single-thread application program

characteristics of 36
definition of 36
example of

sample program 1 573
single-thread operation 36
SLU (secondary logical unit)

definition of 4
SNA (Systems Network Architecture)

key concepts for VTAM 1
LU (logical unit) 2
NAU (network addressable unit) 1
protocols

for ensuring orderly communication 209
specifying 217
using 201

PU (physical unit) 1
sense fields 679
SSCP (system services control point) 1
task association

exit routine 310
macroinstruction 311

SNA network interconnect vectors
host-subarea-network-name vector 63
host-subarea-PU-network-address vector 63
host-subarea-PU-network-name vector 63
maximum-subarea vector 64
network-name vector 63
SSCP-name vector 63

SNA protocol specifications 897
softcopy information xxix

SON (session outage notification) 105, 110
SON type codes 260
SONCODE 564
sources of SNA Initiate and Terminate requests 85
SPEC value on OPTCD operand 502
specific-mode

in a SEND or RECEIVE operation 174, 176
used to handle an inquiry 175

SRBEXIT operand 307
of ACB 381

SSCP (system services control point)
in SNA network 2
LU-LU session 4
role of, in VTAM 1
SSCP-LU session 4, 6
SSCP-PU session 4, 5
SSCP-SSCP session 4

SSENSEI field 510
SSENSEO field

for CLSDST request 401
for Logical Unit Status (LUSTAT) request 504
to represent a major class of error 525, 538
with requests and negative responses 510

SSENSMI field 510
SSENSMO field

for CLSDST request 401
for Logical Unit Status (LUSTAT) request 504
with requests and negative responses 510
with SNA-defined errors, how coded 525, 538, 564

stages of session establishment 83
stages of session termination

definition of 84
STANDARD value on CODESEL operand 519
Start Data Traffic request (SDT)

basic function of 7
in request flow 532
indication 117
need for SCIP exit routine to process 256
receiving 407
sending 532, 535
using 164

START value on OPTCD operand
RPL 501
SETLOGON 548

stop bracket initiative (SBI) 526
STOP value on OPTCD operand

RPL 501
SETLOGON 548

stopping logon request queuing 543, 550
storage key

ACB storage allocation 376
storage limitation

ACB data space 375
STSN (Set and Test Sequence Numbers request)

need for SCIP exit routine to process 258
possible responses to 532
receiving 407
sending 542
using 167, 532

STSN operand value 532
STYPE operand

RPL 505, 525
subtasks

using separate ACBs 298
using the same ACB 298

supervisor state, for use of authorized path 302

936 z/OS V2R1.0 Communications Server: SNA Programming

symbolic name
of a logical unit 115, 437
of an application program 375

SYN (synchronous handling) 502
SYN operand value 502
SYNAD exit routine

addressing mode 238, 263
advantage of 263
basic function of 13
coding 263, 290
coding, special requirements 230
executing

in SRB mode 308
in TCB mode 308

given control 321, 407
how to use 263
linkage conventions for 234, 263
not reentrant 234
parameters passed to 263
purpose of 263
reentrant 234
register usage 291
registers upon entry 263

synchronous handling (SYN) 502
synchronous operation

advantages of 45
characteristics of 40
errors for 282
returning to application under same SRB 499
versus asynchronous 169

synchronous request 169
syntax diagram, how to read xxv
SYSTEM operand value 441
system services control point (SSCP)

in SNA network 2
LU-LU session 4
role of, in VTAM 1
SSCP-LU session 4, 6
SSCP-PU session 4, 5
SSCP-SSCP session 4

system-sense information
sending 525, 538, 564

system-sense modifier information
sending 525, 538, 564

Systems Network Architecture (SNA)
key concepts for VTAM 1
LU (logical unit) 2
NAU (network addressable unit) 1
protocols

for ensuring orderly communication 209
specifying 217
using 201

PU (physical unit) 1
sense fields 679
SSCP (system services control point) 1
task association

exit routine 310
macroinstruction 311

T
target resource name 344
task association

description 310
of exit routines 310
of macroinstructions 311

task level error isolation 323

task termination 323
TCBEXIT operand 307
TCP/IP

online information xxxi
Technotes xxix
terminals

characteristics of LU type 0 3270 328
differences among LU type 0 3270 335
flow

deliver 339
forward 339

Terminate Cleanup request 84
Terminate Forced request 84
Terminate Orderly request 84
terminating affinities 79
terminating sessions with logical units 390

generic resources 79, 543
termination

address space 323
task 323

TERMSESS
basic function of 24
using 99, 560

network-qualified names 99
test request RUs, 3270 Information Display System

actions taken by the network 335
TESTCB

advantage of 267
basic function of 22
errors and special conditions for 278
testing OFLAGS field 277
use and examples of 271
using 565

testing
control block fields 565
multiple field values 565
processing options or option codes 565

third party Initiate and Terminate requests 85, 86
THRDPTY operand 400, 503
timeout CNM request unit format 352
TOPLOGON operand 414, 426
TPEND exit routine

closedown of VTAM 407
closing an application program 74
entry to, after HALT commands 263
executing

in SRB mode 307
in TCB mode 307

parameters available on entry to 265
reason codes 264
registers upon entry 265
user exit queues 309
with reason code 8 32

TPEND operand 407
trademark information 911
transmission control 331
transmission services

profile 795
usage field 797

type code
in PARMS operand of TERMSESS macroinstruction 564
UNBIND in RPL 500
UNBIND used on UNBIND RU 503

Index 937

U
UNBIND request

basic function of 7
need for SCIP exit routine to process 256
receiving 103
SON codes 93, 260
TERMSESS restrictions 100

USENSEI field 510
USENSEO field

errors indicated by 527, 564
for CLSSDT request 401
for Logical Unit Status (LUSTAT) request 505
how coded 527, 564
when RPL-based macroinstruction is completed 510

user data 816
user data length 816
user exit queues 309
user RH option (USERRH)

description 196
example of using 200
handling the Sense Data Included (SDI) indicator 199
operating considerations 196
operation for inbound RUs 198
operation for outbound RUs 197
relationship to NIB 199

user sense information
receiving 402
sending 527, 564

USERFLD field of the NIB 37
USERFLD operand

of ACB 381
of NIB 441

USERRH (user RH option)
description 196
example of using 200
handling the Sense Data Included (SDI) indicator 199
operating considerations 196
operation for inbound RUs 198
operation for outbound RUs 197
relationship to NIB 199

USERRH field in the RPL
relationship to the request/response header 198

using logon mode names and session parameters 123
using network-qualified names support 65
USS Messages

national language code values 117

V
VARY command 529
vector list

access method support vector 62
component-ID vector 62
function-list vector 62
release-level vector 62
resource-ID vector 63

VTAM
domain 16
exit routines 19
FRR (functional recovery routine) 324
general programming considerations 33
interfacing with an application program 50
keyword operands 19
language 19
macroinstruction differences

across operating systems 295

VTAM (continued)
macroinstructions

conventions and descriptions 371
summary of 20

manipulative macroinstructions 19
scheduling output 38
SNA concepts 1
special programming considerations 295
VTAM-initiated HALT 76

VTAM, online information xxxi

W
WAREA operand 411

X
XRF (extended reference facility)

and SESSIONC 532
programming 149
session requests 91
terminating sessions 74

XRF session activation control vector (MVS only) 845

Y
YES value

BRANCH operand 494, 518, 535
LISTEND operand 436

Z
z/OS Basic Skills Information Center xxix
z/OS, documentation library listing 913

938 z/OS V2R1.0 Communications Server: SNA Programming

Index for Communications Server: SNA Programming

Special characters
&ISTGLRL global variable

declared and set 274

Numerics
0 value on LOGMODE operand 436
31-bit addressing 51, 319
3270 display station

characteristics of 328
communicating with 327
data flow control 329
transmission control 331

3270 terminals, types of 327

A
AAREA operand 492
AAREALN operand 492
ABEND (abnormal end)

error handling 322, 324
of VTAM, causing entry to TPEND exit routine 263
pattern of abnormal termination processing 278

abnormal end (ABEND)
error handling 322, 324
of VTAM, causing entry to TPEND exit routine 263
pattern of abnormal termination processing 278

ACB (access method control block)
address 447
address operand

of CLOSE 392
of OPEN 446, 447

address space 312
allocation of storage 376
contents 56
control block 740
data space 375
ERROR field 277, 383
error field settings

CLOSE ACB 393
OPEN ACB 449

fields, set by application program
APPLID 56, 377
EXLST 378
MACRF 378
PARMS 380
PASSWD 382

fields, set by VTAM
ACBAMSVL 383
ACBPSINS 383
ACBRIVL 383
ERROR 383
OFLAGS 383

IFGACB DSECT for 272, 740
level of error isolation 322
macroinstruction

CLOSE 22, 73
definition of 21
example 57
OPEN 22, 55

ACB (access method control block) (continued)
multiple 65
operand

of the MODCB 431
of the RPL 487
of the SHOWCB 551
of the TESTCB 565

storage key of 376
testing OFLAGS field 277
using 375
using multiple ACBs within one task 299

ACB-based macroinstruction 320
ACB-oriented exit routines 406
ACBAMSVL (access-method-support vector list)

address of 383
format 62

ACBLEN operand value
field name operand for TESTCB 567
obtaining 410

ACBRIVL (resource-information vector list) 383
ACCEPT value on OPTCD operand 497
accepting a session with OPNDST macroinstruction 89
access method control block (ACB)

address 447
address operand

of CLOSE 392
of OPEN 446, 447

address space 312
allocation of storage 376
contents 56
control block 740
data space 375
ERROR field 277, 383
error field settings

CLOSE ACB 393
OPEN ACB 449

fields, set by application program
APPLID 56, 377
EXLST 378
MACRF 378
PARMS 380
PASSWD 382

fields, set by VTAM
ACBAMSVL 383
ACBPSINS 383
ACBRIVL 383
ERROR 383
OFLAGS 383

IFGACB DSECT for 272, 740
level of error isolation 322
macroinstruction

CLOSE 22, 73
definition of 21
example 57
OPEN 22, 55

multiple 65
operand

of the MODCB 431
of the RPL 487
of the SHOWCB 551
of the TESTCB 565

© Copyright IBM Corp. 2000, 2013 939

access method control block (ACB) (continued)
storage key of 376
testing OFLAGS field 277
using 375
using multiple ACBs within one task 299

access-method-support vector list (ACBAMSVL)
address of 383
format 62

accessibility 899
ACQUIRE parameter

explanation of 453
operand value 497

acquiring sessions with OPNDST macroinstruction 90
action code

for inbound sequence number 537
for outbound sequence number 537

active application program, testing for 417
active logical unit, definition of 81
address

31-bit 319
address space

associated 316
multiple 312
session 316
termination 323
types of 312
used for exit routine execution 316

addressability in exit routines 234
ALIAS application 350
ALT value on CODESEL operand 519
AM operand

of the ACB macroinstruction 377
of the EXLST macroinstruction 406
of the GENCB macroinstruction 409
of the MODCB macroinstruction 432
of the RPL macroinstruction 492
of the SHOWCB macroinstruction 552
of the TESTCB macroinstruction 567

AMODE specifications 319
ANY value on OPTCD operand 502
any-mode

used to handle an inquiry 175
API (application program interface)

general requirements 50
handling control blocks 51
special requirements 51

APPL statement, name of application program in 375
APPL value on SDT operand 441
application program

as a logical unit 3
authorization to OPEN 10
authorized path under MVS 300
availability of 417
closing

as a generic resource 78
description 55, 73
with CLOSE macroinstruction 13, 28
with standard HALT command 76

closing in MVS 321
coding guidelines 33, 336
communicating with logical units 151
communication part 10, 13
controlling 85
designated for CNM routing 340
easing migration and upgrades 35
identification 56, 78, 377
in relation to a terminal operator and devices 17

application program (continued)
in relation to logical units in a network 17
in relation to other application programs 17
in SNA network 14
interfacing with MVS and VTAM 36, 50
ISTPDCLU application program 355
ISTSWBFR (session awareness data buffer) 356
LU 6.2 components 17
LU Initiate and Terminate request

description 85, 86
TERMSESS restrictions 86

mainline part 31
major functions 18
major start functions 7
opening

description 55
relationship to ACB 27
through an ACB 10

opening in MVS 320
organizing 33, 45
processing part 16
required control blocks for 14
schematic picture of 8
serial execution 309
sharing resources among 15
terminating 390
types of instructions 15
using multiple ACB's in 65
using to manage the network 18
VTAM definition requirements 355
VTAM interfaces and interactions 355

application program interface (API)
general requirements 50
handling control blocks 51
special requirements 51

application program migration
BTAM programs, differences between BTAM and

VSAM 895
from a single-domain to a multiple-domain network

INQUIRE, for a cross-domain resource 896
INTRPRET, for a cross-domain resource 896
LOGMODE names, specifying with OPNDST for a

cross-domain resource 896
from prior releases of VTAM

ACB size, increase of 894
BIND, application program minor node name in 894
sequence number dependencies for LU type 0 3270

terminals 894
SNA network interconnection requirements

INQUIRE, for a cross-network resource 896
application-supplied dial parameters (ASDP)

control block
format 743
using 119

ISTASDP DSECT for 745
macroinstructions

NIB 122
OPNDST 89, 122
SIMLOGON 122

APPLID operand 56, 377
APPLID processing 377
APPSTAT value on OPTCD operand 417
AREA operand

in RPL macroinstruction 493
in SHOWCB macroinstruction 552

AREALEN operand 493
ARECLEN field in RPL 506

940 z/OS V2R1.0 Communications Server: SNA Programming

ARG field in RPL 506
ASDP (application-supplied dial parameters)

control block
format 743
using 119

ISTASDP DSECT for 745
macroinstructions

NIB 122
OPNDST 89, 122
SIMLOGON 122

associated address space 316
association, task 310
ASY (asynchronous handling) 502
ASY operand value 502, 521
asynchronous exit routine 31
asynchronous handling (ASY) 502
asynchronous operation

advantages of 45
characteristics of 41
errors for 279
versus synchronous 169

asynchronous request 170
ATTN operand

EXLST 406
AUTHEXIT=YES 307
authorization

of application programs 296
authorized exit routine

MVS 307
authorized path

BRANCH operand 494
coding requirements 301
definition of 300
description 302
examples 304
macroinstructions

MVS 301
versus categories of VTAM macroinstructions 302
with RPL exit routines 302

authorized path facility, coded example 627
available logical unit, definition of 82

B
batch function, communication with 17
BB (Begin Bracket) indicator

operand value
for RPL 493
for SEND 518

using 214
Begin Bracket (BB) indicator

operand value
for RPL 493
for SEND 518

using 214
BID data 138
BID request

operand value 526
sending 526

bidder, in bracket protocol 215
BIND area

BNDAREA operand 116, 124, 435
definition of 123
format and DSECT 816

BIND image
session parameter area format 793

BIND request
basic function of 7
establishing a cryptographic session 130, 131
establishing an LU-LU session 7
need for SCIP exit to process 256
negotiable 131
non-negotiable 91
OPNSEC PROC options 97
receiving 102
rejection of 528
response 97
sending 97
session parameters in 356

BIS (bracket initiation stopped) 526
BIS data 138
BIS value on CONTROL operand 526
BLK operand of GENCB macroinstruction 409
BNDAREA

for LU profiles 828, 840
ISTDBIND DSECT 821

BRACKET field
for RPL 493, 507
for SEND 518

bracket indicators 681
bracket initiation stopped (BIS) 526
brackets

bracket protocol 214
bracket state transitions at the 3270 SLU 331
protocols used in session with 3270 terminals 330

BRANCH operand 494
branching table

using TESTCB return codes 568
buffer group 194
buffer list

entry format 192
LMPEO state transitions 195

buffer-list entry (ISTBLENT)
format of 192
ISTBLENT DSECT for 746

buffer-list LMPEO states
accumulate state 193
reset state 193
split state 193

buffer-list option (BUFFLST)
buffer-list operation 192
description 191
example of 200
operating considerations 191

BUFFLST (buffer list option)
buffer-list operation 192
description 191
example of 200
operating considerations 191

C
C value on LOGMODE operand 436
CA (continue-any mode)

CA value
OPTCD operand 498

for a RECEIVE operation 173
operand value 438, 520
processing option 438
used to handle concurrent inquiries 177
versus continue-specific mode 176

cancel closedown 263

Index for Communications Server: SNA Programming 941

CANCEL field
for SEND 526

CANCEL request
discarding incomplete chain 202
receiving 514

cancelling RECEIVE requests 483
CEB (conditional end bracket)

in user RH (USERRH) option 197
LMPEO handling of 186
when turned on 214

CHAIN field
for RPL 494
for SEND 519

chain indicator
from initial RH chain indicators 186

chaining
using a 3270 terminal 329

chaining of data requests
bracket indicators 681
change-direction indicators 681
description 201
example of 202

chaining output routine
logic of the 3600 617
logic of the 3601 617

change direction command (CMD) indicator
using 212, 213

change-direction
indicators

sending 519
protocol

description 212, 213
CHASE operand value

for SEND 527
Chase request

ensuring all responses have been received 206
sending 527
using 216

CHECK
addressing mode 321
basic function of 25
in an RPL exit routine 219
using 387

CHNGDIR operand
RPL 494
SEND 519

CID (communication identifier)
communicating with logical units 168, 216
explanation of 115, 442
operand value 553

CIDXLATE operand value 419
CINIT (Control Initiate request)

using session parameters with 127
CINIT (Control Initiate Request)

and LOGON exit routine 6
basic function of 6
purpose 83

class of service 93, 126
CLEANUP request

as one of several session outage notification signals 110
definition of 104
examples of 252
format of 252
received by an application program 244

Clear request
need for SCIP exit routine to process 256
sending 532

Clear request (continued)
to stop flow of requests and responses 164, 167

CLEAR value on CONTROL operand 535
CLOSE

ACB storage allocation 390
basic function of 23
CLOSE ACB errors 393
errors and special conditions

organization of information 277
forms of

list and execute form 391
standard form 391

using 390
closedown of VTAM 407
closing a program

description 73
as a generic resource 78

in MVS 321
with CLOSE 13

closing an ACB 390
CLSDST

basic function of 23
OPTCD=PASS operand

determining session parameters for 125
using to initiate sessions 93

OPTCD=RELEASE operand 93
OPTCD=TERMQ operand 94
scope of 92

network-qualified names 93
SSENSEO 401
using 92, 394

network-qualified names with 399, 402
CMD (Change Direction Command) indicator

using 212, 213
CNM (communication network management)

ALIAS application 350
application program 337
description 337
interface

coding requirements 340
protocol and procedure 342
RU (request unit) format 342
standard headers 343

COBOL, in writing an application program 16
CODESEL operand

RPL 494, 507
SEND 519

coding
macroinstructions and exit routines 316
requirements for authorized path 301

coding guidelines
application programs 33, 336
program structure 33

coding requirements for communication network management
interface 337

coding rules for multiple address space 312
communicating with logical units

introduction 151
requests and responses 151
using SNA protocols 201
using VTAM 168

communication activity
separating from other activity 297

communication identifier (CID)
communicating with logical units 168, 216
explanation of 115, 442
operand value 553

942 z/OS V2R1.0 Communications Server: SNA Programming

communication network management (CNM)
ALIAS application 350
application program 337
description 337
interface

coding requirements 340
protocol and procedure 342
RU (request unit) format 342
standard headers 343

communication part of an application program 16
Communications Server for z/OS, online information xxxi
COMPLETE value on I/O operand 568
completion conditions

asynchronous requests 286
component ID vector 62
CON field in NIB 443
CONALL value on OPTCD operand 498
CONANY

concepts of establishing and terminating sessions 81
value on OPTCD operand 498

condition code of TERMSESS 563
conditional connection request (Q-NQ) 501
conditional end bracket (CEB)

in user RH (USERRH) option 197
LMPEO handling of 186
when turned on 214

confidential data handling 439
contention 210
continue chain operand 189
continue-any mode (CA)

CA value
OPTCD operand 498

for a RECEIVE operation 173
operand value 438, 520
processing option 438
used to handle concurrent inquiries 177
versus continue-specific mode 176

continue-specific (CS) mode
CS value

OPTCD operand 498, 520
PROC operand 438

processing option 438
continue-specific mode

used to handle concurrent inquiries 177
versus continue-any mode 176

control block
field lengths 547
field testing 565
generating

during program execution 407
with ACB 21, 377
with EXLST 21, 378, 404
with GENCB 407
with NIB 21, 433
with RPL 21, 487

manipulating
with GENCB 22, 407
with MODCB 22, 431
with SHOWCB 22, 551
with TESTCB 22, 565

required for application program 14
setting values in 267
techniques for handling 51
using for session establishment and termination 114

control block field
length of 553
tested with SHOWCB 553

control block field (continued)
tested with TESTCB 568
usage, summary 633

control block fields set by VTAM 633
control block format

ACB
MVS 740

ASDP 743
BLENT 746, 761
BNDAREA (ISTDBIND) 817
EXLST 750
MTS 752
NIB 754
RH 763
RPL 766

control block formats and DSECTs 739, 789
CONTROL field

RPL 495, 507
SEND 526, 527
SESSIONC 535

Control Initiate request (CINIT)
and LOGON exit routine 6
basic function of 6
purpose 83
using session parameters with 127

control points 2
control requests and indicators, summary of 681
Control Terminate request (CTERM)

cleanup 84
forced 84
orderly 84

control vector hex 29 747
controlling flow of requests and responses 164, 205
conventions used to describe VTAM macroinstructions 371
converting a CID to a symbolic name 419
converting a symbolic name to a CID 423
COUNTS value of OPTCD operand

INQUIRE 419
CP-CP sessions 4
cross-memory API support

and CHECK 388
and CLOSE 390
and OPEN 445
function of 317
limitations for application programs 318

CRYPT operand
RPL 495
SEND 519

cryptographic session
control 815
cross-domain 133
determining level of 133
establishing 132
INQUIRE OPTCD=SESSKEY 422
session-cryptography key

cross-domain 133
single-domain 132

single-domain 132
cryptography

definition of 117
establishing requirements from the logon mode entry 135
level for OPNDST request 134
level for OPNSEC request 136
requirements 218

CS (continue-specific) mode
CS value

OPTCD operand 498, 520

Index for Communications Server: SNA Programming 943

CS (continue-specific) mode (continued)
CS value (continued)

PROC operand 438
processing option 438

CTERM (Control Terminate Request)
cleanup 84
forced 84
orderly 84

D
data buffer

session awareness 356
trace 357

data communication activity
dividing among several tasks 297
separating from other activity 297

data facility storage management system(DFSMS) 50
data in a message 152
data integrity damage

handling of 293
data stream

3270, LU type 0 328
DATA value on CONTROL operand

SEND 526
data-flow-control

3270, LU type 0 329
purpose 164
requests 329

declarative macroinstruction
building control blocks 320
description 21
DSECT-creating

designation of 21
default entry in the logon mode table 123
defining sets of session parameters 123
definite response

need for requesting, with SEND POST=RESP 171
definite response indication (types 1 and 2)

meaning of 156
receiving 157
requesting 157
sending 157

delayed request mode 205
delayed response mode 205
Deliver and Forward RU flow 339
Deliver request unit

flow 339
format 345, 348
interface

coding requirements 340
requests and responses 341

DEVCHAR field
in a NIB 443
value on OPTCD operand 413, 420

device characteristics field 334
device-type logical unit

Initiate and Terminate request 82, 86
DFASY exit routine

advantages and disadvantages 236
and the RPL user RH field 198
any-mode 174
executing

in SRB mode 307
in TCB mode 307

expedited requests and responses 161
how to use 236

DFASY exit routine (continued)
how VTAM handles DFASY input 180
list of expedited requests and responses 236
parameters passed to 180
registers upon entry 237
sample program 2 logic 624
scheduled when an expedited-flow request is

received 168, 178
specific-mode 174
specifying in ACB or NIB 229
versus RECEIVE macroinstruction 158

DFASY operand
EXLST 406
RECEIVE 471
RESETSR 483
RPL 504

DFASY request and response units
definition of 160

DFASYX processing option 439
DFSMS (Data Facility Storage Management System) 50
DFSYN request and response units

definition of 160
how handled by VTAM 182

DFSYN value on RTYPE operand
RESETSR 483
RPL 504

dial usability enhancements
conditions for using 121
dial parameter list 120
format of connection subfield 745
format of CPNAME subfield 744
format of dial number subfield 743
format of direct call line name subfield 744
format of DLCADDR subfield 745
format of expanded dial information subfield 744
format of IDBLK/IDNUM subfield 744
format of ISTASDP 743
function of 119

disability 899
disabled logical unit, definition of 81
dispatching priorities 32
DISPLAY command 529
DNS, online information xxxii
Downstream Load Utility (DSLU) 338
DSECT-creating macroinstructions 21
DSECTs and control block formats 739, 789
DSLU (Downstream Load Utility) 338

E
EB (End Bracket) indicator

value on BRACKET operand
for RPL 493
for SEND 518

ECB (event control block)
field in RPL 495
posting 170
using 41
versus RPL exit routines 42, 170

enabled logical unit, definition of 81
enciphered data request

sending and receiving 218
ENCR operand on NIB macroinstruction 435
encryption facility 435

definition of 117
establishing requirements from the logon mode entry 135
level for OPNDST request 134

944 z/OS V2R1.0 Communications Server: SNA Programming

encryption facility (continued)
level for OPNSEC request 136
requirements 218

End Bracket (EB) indicator
value on BRACKET operand

for RPL 493
for SEND 518

environment errors
handling 293

ERET operand 567
ERP (error recovery procedure)

during session initiation 44
error

ACB (application program) isolation 323
request level isolation 322
session level isolation 322
task level isolation 323

ERROR field
using after CLOSE processing 393
using after OPEN processing 448

error recovery procedure (ERP)
during session initiation 44

errors and special conditions
3270, LU type 0 330, 332
analyzing

for error isolation 322
for manipulative macroinstructions 278
for OPEN and CLOSE 277
for RPL-based macroinstructions 278

asynchronous operations 283
handling of

data integrity damage 293
environment errors 293
exception requests 291
logic errors 294
negative responses 293
retriable completion 293

software errors 293
synchronous operations 282
using FDBK field 417
using LERAD and SYNAD exit routines for 290

establishing and terminating sessions
BIND and UNBIND 7
macroinstructions

CLSDST 92
OPNDST 89
OPNSEC 96
REQSESS 95
SESSIONC 98
SIMLOGON 87
TERMSESS 99

stages of 83, 85
with logical units 81

establishing cross-domain cryptographic session 133
establishing single-domain cryptographic session 132
ESTAE exit routine 324
event control block (ECB)

field in RPL 495
posting 170
using 41
versus RPL exit routines 42, 170

EX value on RESPOND operand
SEND 523

exception conditions
3270, LU type 0 332
and sense information 332
handling 291

exception requests
handling

by a PLU application 292
by an SLU application 292

excess data, saving 499
exchanging

requests 152, 157
responses 152, 157

EXECRPL
basic function of 25
using 403

EXIT operand
as internal ECB 507
instead of ECB operand with RPL exit routine 496
RPL exit routine address 488

exit routine
address space used for execution of 316
addressability and save area requirements 234
addressing mode 321
asynchronous 31
basic function of 19, 28
cautions, restrictions, and techniques for 235
creation 404
deciding how to use 228
entry procedures for 234
executing

in SRB mode 307, 309
in TCB mode 307, 309

execution of 321
exit procedures from 235
how to use 219
identified by ACB 228
identified by NIB 228
identified in RPL-based macroinstructions 219
inline 31
installation 219
parameters passed to 234
procedures for writing 231
requirements for reenterability 231, 234
RPL-specified 29
rules of coding 316
session establishment and termination 100
summary of 224
task association 310
types of

exit-list exit routines 28, 221, 224
RPL-specified exit routines 28, 219, 256

EXLLEN value on LENGTH operand 410
EXLST

basic function of 21
named in EXLST operand of ACB 222
named in EXLST operand of NIB 222
names of exit routines in 222
scheduling 178
using 404

EXLST (IFGEXLST) DSECT 751
EXLST control block 405, 750
EXLST exit routine

addressing mode 321
definition of 29, 219
executing

in SRB mode 307
in TCB mode 307

optional 228
registers upon entry 226
required 228
specification and function of 221, 224

Index for Communications Server: SNA Programming 945

EXLST exit routine (continued)
specified in ACB 222, 228
specified in NIB 222, 228
versus explicit RECEIVEs 178

EXLST operand
ACB 378
MODCB 432
NIB 435
SHOWCB 552
TESTCB 567

expedited-flow data-flow-control request
expedited-flow data-flow-control

summary of receiving 687
session-control

receiving, summary of 689
sending, summary of 687

summary of receiving 687
expedited-flow request

ability to send
during quiesced state 212
in change-direction protocol 212

and responses, table summary 161
controlling normal-flow responses 161
definition of 159
examples of

for synchronous operations 169
extracting control block fields 551
for a receive-any operation 174
for a receive-specific operation 174
sequence numbers in 163
versus normal-flow requests 160
ways of receiving

DFASY exit routine 174, 236
RECEIVE 157, 162
RECEIVE RTYPE=DFASY 178
RESETSR 482

extended reference facility (XRF)
and SESSIONC 532
programming 149
session requests 91
terminating sessions 74

F
FDB2 (reason code) 244
FDBK return code, for INQUIRE macroinstruction

(OPTCD=APPSTAT) 417
FIELDS operand 552
FIRST operand

RPL 494
SEND 519

FM (function management) header
using 217

FMD (function management data)
header option 217, 499
sending of, by LMPEO 183, 500

FME operand value 503
FMH-5 138
Forward and Deliver RU flow 339
forward request unit flow 339
forward request unit, CNM interface 341
FRR (functional recovery routines) 324
function management (FM) header

using 217
function management data (FMD)

header option 217, 499
sending of, by LMPEO 183, 500

function management profile 795
function management usage field 796
function-list macroinstruction global variables 275
function-list vector 62
functional recovery routines (FRR) 324

G
gathering performance data 358
GENCB

advantage of 267
basic function of 22
errors and special conditions for 278
examples of 268
how to use 268, 407

generating control blocks
during program execution 407

generating NIBs 271
generic resource 78

determining network qualified name of real instance 414,
422

example use of SETLOGON 547
opening and closing an application program 78
specifying application name 436
terminating LU-to-application association 384, 545

GETMAIN facility 410
global values in control blocks

setting 267
testing 267

global variables
declared and set 274

H
half-duplex contention communication 211
half-duplex devices 209
half-duplex flip-flop communication 211
HALT command

action for HALT NET, CANCEL or abnormal
termination 77

action for HALT NET, QUICK or VTAM-initiated
HALT 76

action for standard HALT 76
for application program without TPEND exit 76

hardware monitor 338
header

for VTAM messages 464
for VTAM operator commands 529
function management 499

HOLD value on OPTCD operand
RPL 501
SETLOGON 548

I
I/O operations

cancelling 483
input 466
output 514

I/O routine
logic of the 3270 619

IBM Software Support Center, contacting xxiv
IBSQAC operand

designating type of STSN request 536
used by SESSIONC 496
when SESSIONC is completed 507

946 z/OS V2R1.0 Communications Server: SNA Programming

IBSQVAL operand
assigned to inbound requests 537
used by SESSIONC 496
when SESSIONC is completed 507

IFGACB DSECT for ACB 272, 740
IFGEXLST DSECT for EXLST 272, 751
IFGRPL DSECT for RPL 272
immediate request mode 206
immediate response mode 206
inactive application program 417
inbound sequence number

description 535, 542
inbound STSN indicators 536
indicators

in requests and responses
definition of 151
in a request 151

Information APARs xxix
inhibited logical unit, definition of 82
initial RH, location of 185
Initiate Load Request RU format 350
Initiate request

basic function of 6
LOGON, character-coded 85
purpose 83, 85
sources 83, 85

initiating sessions
initiate request 6
macroinstructions

SIMLOGON 87
use of LOGON exit routine 6
using generic resource name 78

inline exit routine 31, 224
input operations, receiving 466
input RU

classified by VTAM 180
INQUIRE

basic function of 25, 412
determining session parameters for 124
OPTCD=TERMS 271
permissible option codes 413
using 412
using to get a logon message 575

Internet, finding z/OS information online xxxi
interpret table, definition of 426
interpreting an input sequence 426
INTRPRET

basic function of 25, 426
using 426

isolating errors
application program 323
request 322
session 322
task 323

ISTASDP DSECT 745
ISTBLENT (buffer list entry)

format of 192
ISTBLENT DSECT for 746

ISTBLENT DSECT 746
ISTDBIND DSECT

for BNDAREA 821
using to build or examine session parameters 272

ISTDNIB DSECT for NIB 272, 754
ISTDPOHD DSECT 888
ISTDPROC DSECT for NIB 761
ISTDPROC macroinstruction for processing options fields of

the NIB 272

ISTDVCHR DSECT for NIB 756
ISTDVCHR macroinstruction for device characteristics field of

the NIB 272
ISTGLBAL macroinstruction

control block fields 639
how to use 430
macroinstruction global variables set by

&ISTGLCI (component-ID) 274
&ISTGLRL (release-level) 274
&ISTGLxy (function-level) 274, 275

ISTMTS DSECT 753, 762
ISTPDCLU application program 355
ISTRH DSECT 272, 763
ISTUSFBC DSECT 272, 774

K
KEEP option for overlength input data

in record-mode operations 182
value on PROC operand

NIB 472
RPL 499

keyboard 899
keyword operand

as part of the VTAM macroinstruction language 19
of the GENCB macroinstruction 410

L
LANG 117
LANGTAB 117
language code values 117
large message performance enhancement outbound (LMPEO)

Begin RU/End RU combinations 195
buffer-list option and 184, 191
chaining of data requests 201
data stream considerations 189
description 183
encrypt/decrypt facility and 184
example of using 200
exception conditions 190
handling negative response 190
handling request headers 185
handling selected RH indicators 186
operating considerations 184
operation on a message sent to an SNA LU 184
performance conditions 191
sending FM data 189
sequence number handling 189
state transitions 195
status during buffer list processing 193

LAST value on CHAIN operand
RPL 494
SEND 519

LENGTH operand
GENCB 410
SHOWCB 552

LERAD exit routine
addressing mode 321
advantages of 237
basic function of 13, 406
coding 290
coding, special requirements 230
executing

in SRB mode 308
in TCB mode 308

Index for Communications Server: SNA Programming 947

LERAD exit routine (continued)
how to use 237
linkages, conventions for 234, 237
not reentrant 234
operand 406
parameters passed to 237
purpose of 237
reentrant 234
register usage 291
registers upon entry 238

license, patent, and copyright information 903
list of NIBs

creating 433, 436
explanation of 433

LISTEND operand on NIB macroinstruction 436
LMPEO (large message performance enhancement outbound)

Begin RU/End RU combinations 195
buffer-list option and 184, 191
chaining of data requests 201
data stream considerations 189
description 183
encrypt/decrypt facility and 184
example of using 200
exception conditions 190
handling negative response 190
handling request headers 185
handling selected RH indicators 186
operating considerations 184
operation on a message sent to an SNA LU 184
performance conditions 191
sending FM data 189
sequence number handling 189
state transitions 195
status during buffer list processing 193

load operation 338
load request 338
Load Status (RU) format 350
logic errors

handling 294
logical unit (LU)

active 81, 84
available 81, 82
communicating with

application programs 151
description 28
VTAM 151, 168

communication protocol 209
connected 81
definition of 2
determining status 423
device-type 14
disabled 81
enabled 81
establishing sessions with 11, 27
examples of 14
identifying 168
in SNA network 2
primary session 4
quiescing an application program 207
receiving requests from 154
secondary session 4
SSCP-LU session 6
symbolic name 115
terminating sessions with 13, 28

logical unit presentation services
profile 799
profile 0 usage field 800

logical unit presentation services (continued)
profile 1 usage field 801
profile 2 and 3 usage fields 806
profile 4 usage field 808, 812
usage fields 800

Logical Unit Status (LUSTAT) request
sending 514, 526

LOGMODE operand values 126
LOGMODE operand, to identify a logon mode 436
logoff

using the 3270 terminal 335
logon

initiating 543
terminating 543

LOGON exit routine
accepting sessions in 238
advantages of 238
basic function of 6
examples of

in logic of sample program 1 575
executing

in SRB mode 307
in TCB mode 307

how to use 101
parameters passed to 238
registers upon entry 240
using INQUIRE macroinstruction in 238
versus RPL exit routine 238
with OPNDST OPTCD=ACCEPT 238

logon message
receiving 413
using the 3270 terminal 335

logon mode name
and session parameters 123
definition of 116
locating in the CINIT RU 128
using 123

logon mode, used by
CLSDST 92, 436
INQUIRE 436
OPNDST 89, 436
REQSESS 95, 436
SIMLOGON 87, 436

LOGON operand
EXLST 406

LOGON value of MACRF operand
ACB 378

LOGONMSG value of OPTCD operand
INQUIRE 413, 420

LOSTERM exit routine
entry codes for 242
executing

in SRB mode 307
in TCB mode 307

how to use 106, 241
operand 406
parameters passed to 241
reasons for entry to 241
registers upon entry 242

LU (logical unit)
active 81, 84
available 81, 82
communicating with

application programs 151
description 28
VTAM 151, 168

communication protocol 209

948 z/OS V2R1.0 Communications Server: SNA Programming

LU (logical unit) (continued)
connected 81
definition of 2
determining status 423
device-type 14
disabled 81
enabled 81
establishing sessions with 11, 27
examples of 14
identifying 168
in SNA network 2
primary session 4
quiescing an application program 207
receiving requests from 154
secondary session 4
SSCP-LU session 6
symbolic name 115
terminating sessions with 13, 28

LU-LU session protocols 342
LUSTAT (Logical Unit Status) request

sending 514, 526

M
MACRF operand

ACB 378
with SETLOGON 82

macroinstruction
ACB 375
ACB-based 22, 320
authorized path

MVS 301
categories of 20
CLOSE 387, 391
CLSDST 92, 394
declarative

ACB 21, 320
EXLST 21, 320
NIB 21, 320
RPL 21, 320

differences across operating systems 295
DSECT-creating

how to use 272, 273
list of 272
rules for coding 273, 316

establishing and terminating sessions 87
EXECRPL 403
EXLST 404
GENCB 407
global values in 274
how described 371
how to use 274
INQUIRE

permissible option codes 413
INTRPRET 426
ISTGLBAL 430
list of general-use 891
list of product-sensitive 891
MODCB 431
NIB 433
OPEN

forms of 446
OPNDST 89, 453
OPNSEC 96, 460
RCVCMD 463
RECEIVE

major options 467

macroinstruction (continued)
REQSESS 95
RESETSR

major options 482
RPL 487

RPL-based 320
SEND

major options 514
SENDCMD 529
SESSIONC

major options 541
SETLOGON 543
SHOWCB 551
SIMLOGON 555
specified in MVS 320
summary description 20, 375
task association 311
TERMSESS 99, 560
TESTCB 565
versus the authorized path function 302

macroinstruction global variables
declaring and setting 274
types of

component-ID 274
function-list 274
release-level 274

main storage, facility for obtaining 408
mainframe

education xxix
mainline program 31
maintenance-related information 18
management services 337
manipulating control blocks

GENCB 407
MODCB 431
SHOWCB 551
TESTCB 565

manipulative control block
description 267

manipulative macroinstructions
defined 22
description 19
errors and special conditions 278
forms of 22, 865
function of 14
GENCB

basic function of 22
how to use 268

list of 267
MODCB

basic function of 22
how to use 269

operands used with 857, 867
return codes 278, 855
SHOWCB

basic function of 22
FDBK2 field 651
how to use 270

TESTCB
basic function of 22
FDBK2 field 651
how to use 271

maximum RU size 183, 200
message and command header

DSECT example 888
format and DSECT 888

Index for Communications Server: SNA Programming 949

MF operand
CLOSE 392
GENCB 410
MODCB 432
SHOWCB 553
TESTCB 568

MIDDLE value on CHAIN operand
RPL 494
SEND 519

migration considerations
coding guidelines 35

MODCB
advantage of 267
basic function of 22, 431
errors and special conditions for 278
how to use 269, 431

MODE operand 437
MODEENT macroinstruction

LANG operand 241
MODENAME 139
MODIFY QUERY command from a POA 889
multiple address space 312
multiple control block generation 409
multiple monitor environment 363
multiple tasks

each with its own ACB 298
multitasking a program 297
use of multitasking 296
using the same ACB 298

multitasking 296
multithread application program

characteristics of 36
definition of 36

multithread operation
definition 36
VTAM facilities for 37

MVS operating system
31-bit addressing 319
asynchronous exit routines 307
authorization criteria 296
authorized path 300
authorized path macroinstructions 301
closing the application program 321
data facility storage management system(DFSMS) 50
interfacing with an application program 50
multiple addresses 312
opening the application program 320
special exits 307
specifying macroinstructions 320

N
NAME field in NIB 443
NAME operand 437
national language support (NLS)

language code settings 117
NAU (network addressable unit)

definition of 1
NBB value on BRACKET operand

RPL 493
SEND 518

NCP (Network Control Program)
basic function of 16

negative response
receiving

examples of in RECEIVE macroinstruction 474
exception response requested 154

negative response (continued)
requesting 154
sending 154, 394
transferring sense fields before sending 292
with RECEIVE 473
with RPL 503
with SEND 525

network addressable unit (NAU)
definition of 1

Network Control Program (NCP)
basic function of 16

network operator macroinstruction
DISPLAY 529
MODIFY 529
RCVCMD 463
REPLY 529
SENDCMD 529
VARY 529

network services request unit
deliver request unit 345
embedded 348
forward request unit 344

network upgrades
coding guidelines 35

network-qualified names support 65
NIB (node initialization block)

contents 115
control block 754
fields set by VTAM

CID 442
CON 443
DEVCHAR 443
NAME 443
NETID 443
NIBNACLQ 443
NIBPSDFA 444
NIBPSDFS 443
NIBPSPLU 443
NIBPSRSP 443
NIBRPARM 444

generating with INQUIRE 271
ISTDNIB DSECT for 272, 754
ISTDPROC DSECT for 761
ISTDPROC macroinstruction for processing options in 273
ISTDVCHR DSECT for 756
ISTDVCHR macroinstruction for device characteristics field

in 273
PROC options 161
USERFLD field of 37
using 115, 116

NIB field versus ARG field 497
NIB generation for logical unit groups 417
NIB list

creating 433
defining 119
explanation of 433

NIB macroinstruction
basic function of 21
BNDAREA 124
information specified in 433
LOGMODE 124
specifying affinity ownership condition 436
specifying generic name of application 436
using 433

NIB operand
MODCB 432
RPL 497

950 z/OS V2R1.0 Communications Server: SNA Programming

NIB operand (continued)
SHOWCB 552
TESTCB 567

NIB-oriented exit routines 433
NIBLEN value of LENGTH operand 410
NIBNACLQ field in NIB 443
NIBPSDFA field in NIB 444
NIBPSDFS field in NIB 443
NIBPSPLU field in NIB 443
NIBPSRSP field in NIB 443
NIBRPARM field in NIB 444
NIBTK option code 499
NLS (national language support)

language code settings 117
NO value

BRANCH operand 494, 518, 535
LISTEND operand 436
no response 154

node initialization block (NIB)
contents 115
control block 754
fields set by VTAM

CID 442
CON 443
DEVCHAR 443
NAME 443
NETID 443
NIBNACLQ 443
NIBPSDFA 444
NIBPSDFS 443
NIBPSPLU 443
NIBPSRSP 443
NIBRPARM 444

generating with INQUIRE 271
ISTDNIB DSECT for 272, 754
ISTDPROC DSECT for 761
ISTDPROC macroinstruction for processing options in 273
ISTDVCHR DSECT for 756
ISTDVCHR macroinstruction for device characteristics field

in 273
PROC options 161
USERFLD field of 37
using 115, 116

non-negotiable BIND 91
normal environment for VTAM application programs 30
normal operating system environment

description 30
dispatching priorities 32

normal-flow request
and responses, summary table 161
definition of 158
expedited-flow 160
quiescing the sending of 206
sent sequentially 158
sequence numbers in 163

normal-flow requests and responses (DFSYN)
in RECEIVE 472
in RPL 504

normal-flow send/receive mode 329
Notify request

definition of 106
examples of 245
format of 247
received by an application program 244

notifying a session partner of a request for a session 89
NQN support 65

NSEXIT exit routine
address 406
executing

in SRB mode 307
in TCB mode 307

formats of RUs received by 244
registers upon entry 253
using 104, 244

NSPE request
definition of 105
examples of 245
format of 246
received by an application program 244

O
OBSQAC operand 507, 536
OBSQVAL operand 496, 537
OFLAGS field

contents 383
testing 393

OFLAGS operand 568
ONLY value on CHAIN operand

RPL 494
SEND 519

open destination 453
OPEN macroinstruction

ACB data space 375
ACB storage allocation 445
basic function of 10, 23
errors and special conditions

organization of information 277
example 57, 65
forms of 446
OPEN ACB errors 449
using 444
vector lists 58
where to issue 66

OPEN operand of TESTCB 568
opening a logon queue 543
opening a program

description 55
in MVS 320

opening an ACB 444
operand specification summary 857
operating system considerations

authorization 296
introduction 295

operating system differences 295
operating system environment 30
OPNDST

accepting a session 89
network-qualified names 90

acquiring a session 90
basic function of 23
BIND request 91
coding information for 453
completion information for 459
description 453
establishing an LU-LU session 7
examples of 575
general relationship to RPL and NIB 575
OPTCD=ACCEPT

determining session parameters for 125
OPTCD=ACQUIRE

determining session parameters for 125
requirements 453

Index for Communications Server: SNA Programming 951

OPNDST (continued)
to acquire logical unit characteristics 575
use

in accepting pending-active sessions 453
in establishing sessions 89
in supplying dial parameters 122

OPNDST request
level of cryptography 134

OPNSEC
basic function of 23, 96, 460
network-qualified names and 96
PROC options 97
requirements 460
using 460

OPNSEC request
level of cryptography 136

OPTCD operand 498
option codes 498
options, processing 438
ORDRESP value on PROC operand

as used with LMPEO 199
NIB 440

outage notification 110
outbound sequence number

action code 537
description 537

outbound STSN indicators 537
output

responded 173
scheduled 172
scheduling 38

overlength data
handling 182

P
pacing count 798
parameter lists for exit routines 234
parameters, session 793
PARMS field 380
PARMS operand

ACB 380, 381
CLSDST

communicating with application program 94
passing a logical unit to an application program 245
setting system and user sense with existing fields 400

RPL 400, 503
TERMSESS 564

PASS value on OPTCD operand
CLSDST 399

PASSWD operand
ACB 382

password protection 382
path, authorized

MVS 300
pending active session, definition of 83
performance monitor interface 358

data collection dynamics 362
data collection mechanism 358
definition requirements for initialization 358
implications of multiple monitor environment 363
performance data types 363
request unit formats 364
sense codes 368
termination 363

PERSESS value of OPTCD operand
INQUIRE 421

persistent LU-LU session support
and TPEND exit 69
and VARY command 68, 70
application states of 67
CLOSE ACB flow 67
OPEN ACB flow 67
persistence capable, definition of 67, 381
persistence enabled, definition of 67, 548
restoring sessions pending recovery

control vector hex 29 138, 747
data tracking 137
PSTIMER 68, 548
reissuing the OPEN ACB 137
taking over a failed application 69, 137
using INQUIRE 139
using OPNDST 139

physical unit (PU)
definition of 1
in SNA network 2
SSCP-PU session 5

PLU (primary logical unit)
definition of 4
name 816
name length 816

POA (program operator application)
authorization 878
closing 882
data exchanged with VTAM 883
introduction 875
limiting queued messages 883
macroinstructions

RCVCMD 26, 882
SENDCMD 26, 882

message and command header, format and DSECT of 888
message header 884
message ID with VTAM

receiving data 885
sending data 887

method for writing 878
operational characteristics 880
POAQLIM 883
programming requirements 881
VTAM operator commands 879

MODIFY QUERY 889
positive response

meaning of 154
requesting and receiving 154
sending 524
type 1 and 2

with RECEIVE 466
with SEND 524

POST operand
RPL 503
SEND 12, 521

posting of return codes 651
prerequisite information xxix
presentation services 799
preventing logon request queuing

after OPEN processing 543
during OPEN processing 378

PRID (procedure-related identifier)
CNM application program 342

primary logical unit (PLU)
definition of 4
name 816
name length 816

PROC operand 438

952 z/OS V2R1.0 Communications Server: SNA Programming

procedure-related identifier (PRID)
CNM application program 342

processing options
of a session 116
specification 438

processing part of an application program 16
program operator application (POA)

authorization 878
closing 882
data exchanged with VTAM 883
introduction 875
limiting queued messages 883
macroinstructions

RCVCMD 26, 882
SENDCMD 26, 882

message and command header, format and DSECT of 888
message header 884
message ID with VTAM

receiving data 885
sending data 887

method for writing 878
operational characteristics 880
POAQLIM 883
programming requirements 881
VTAM operator commands 879

MODIFY QUERY 889
program structure

coding guidelines 33
programming considerations

general 33
protocol

bracket 213, 216
change-direction 212
CNM (communication network management) 342
half-duplex 211
LU-LU session 342
predefined sets of 795
quiesce 210
Systems Network Architecture (SNA) 201

PSERVIC operand 799
PU (physical unit)

definition of 1
in SNA network 2
SSCP-PU session 5

Q
Q value on OPTCD operand 501
QC (Quiesce Complete) request

example 207
SEND 514, 526

QEC (Quiesce at End-of-Chain) request
example 207
SEND 514, 526

queued response notification 182
queued session, definition of 83
queuing a request

for a session with an SLU 110
queuing of session-establishment request 83
quick closedown 264
Quiesce at End-of-Chain (QEC) request

example 207
SEND 514, 526

Quiesce Complete (QC) request
example 207
SEND 514, 526

quiesce protocol
description 206, 207

QUIESCE value on OPTCD operand
RPL 501
SETLOGON 544, 548

quiescing
of an application program by an LU 207
protocol 210
using 206

R
RCVCMD

basic function of 26
using 463

Ready to Receive (RTR) request
using 514, 526

reason code
OPTCD operand of the RPL macroinstruction 500
PARMS operand of TERMSESS macroinstruction 564
PARMS operand of the RPL macroinstruction 503

reason code (FDB2) 244
RECEIVE

basic function of 11, 24
continue-any mode for 176
continue-specific mode for 176
handling overlength data in 182
keeping or truncating overlength data for 182
major options 467
processing 375
receive-any operation 39
requirements 466
to receive a response

RTYPE=DFASY 178
RTYPE=RESP 154, 178

using 157, 466
versus DFASY or RESP exit routine 178
versus EXLST exit routines 178

receive-any operation
versus receive-specific 174

receiving a BIND request
SCIP exit routine 102

receiving an UNBIND request, SCIP exit routine 103
receiving requests and responses 466
RECLEN field in an RPL 183
RECLEN field or operand 503
record application program interface

general description 14
RECORD operand value 437
recovery action return codes

general meanings 280
recovery routines 324
register contents

control block address 853
exit routine address 853
return codes 853
RPL address 853

register usage
LERAD exit routine 291
summary 853
SYNAD exit routine 291

registers set by VTAM 633
Release Quiesce (RELQ) request

sending 514
using 207

RELEASE value on OPTCD operand
CLSDST 399

Index for Communications Server: SNA Programming 953

release-level macroinstruction global variables 274
release-level vector 62
releasing logical units, method of 394
RELQ (Release Quiesce) request

sending 514
using 207

RELREQ exit routine
entry to 254, 406
executing

in SRB mode 307
in TCB mode 307

for notifying a program of release request 253
parameters passed to 254
possible actions in 253
registers upon entry 254

RELREQ operand
EXLST 406

RELRQ operand
RPL 501

REPLY command 529
replying to VTAM messages 529
REQ operand value

following RECEIVE
in request to be sent 519
to indicate a RECEIVE 472
to show indicator status 507

REQSESS
basic function of 23
determining session parameters for 125
using 95

request
code 508
modes 495
normal-flow 495

request and response exchanges 693
request header (RH)

chain indicators 186
generated by LMPEO 185
in SNA 151
indicators handled by LMPEO 186
location of the initial RH 185

request level error isolation 322
request parameter list (RPL)

AREA field in 257
basic function of 21
control block 487, 766
description 114
error and special condition information in 279
FDB2 field in 279
fields set by VTAM 505
fields, applicability of (per macroinstruction) 510
IFGRPL DSECT for 272
ISTUSFBC DSECT for 774
macroinstruction 487
operand

MODCB macroinstruction 431, 432
SHOWCB macroinstruction 551
TESTCB macroinstruction 565

RESPOND field in 576
RTNCD field in 280
sense fields in 280

Request Recovery (RQR) request
need for SCIP exit routine to process 256
summary of 532
using 167

request unit names, CNM interface 348

request unit size
description 797
maximum size 797

request/response unit (RU)
classified by VTAM 179
communication network services, format 351, 352
definition 151
format

deliver 348
forward (MVS) 344

initiate load request format 350
load status request format 350
network services

embedded 350
not embedded 351

translate-inquiry request (TR-INQ), format 352
requests

and responses 151
asynchronous 170
chaining 201
chaining (example) 202
Chase request 216
contents 11, 152
example of sending and receiving 153
exchanging requests and responses 152, 157
overlength data in 182
quiescing the sending of 206
received from a logical unit 154
receiving from LUs 11
request and response modes 205
responses to 153
sending 12
sequence number in 163
sequence relationship between normal-flow and expedited

flow 158
starting and stopping the flow of 165
synchronous 169
transmitted on expedited flow 161
transmitted on normal-flow 161

requests and responses, CNM interface 341
RESETSR

basic function of 24
major options 482
using 481

resetting
a session's CA-CS mode 482
RECEIVE 483

resource ID vector 63
resource-information 383
resource-information vector list (ACBRIVL) 383
RESP exit routine

advantages and disadvantages of 254
examples of

in logic of sample program 1 573, 577
executing

in SRB mode 307
in TCB mode 307

how to use 254
how VTAM handles RESP input 181
parameters passed to 255
read-only RPL provided for 255
registers upon entry 255
request and response units 160
sample program 2 logic 621
scheduled when an expedited-flow request is received 178
scheduling of, after receiving a response 155, 178
specifying in an ACB or NIB 229, 255

954 z/OS V2R1.0 Communications Server: SNA Programming

RESP operand
EXLST 407
RESETSR 486
RPL 503

RESP request and response units
definition of 160

RESP value on POST operand
SEND 522

RESP value on RTYPE operand
RECEIVE 472, 473
SEND 520

RESPLIM operand 441
RESPOND field

RPL 503, 509
SEND 521, 522

responded output
using 173
with SEND 522

response
contents 153
exchanging 152
limit 441
receiving 13, 153
request and response modes 205
requesting 153
sending 12
sequence number in 163
starting and stopping the flow of 165
to a normal-flow request 158
to an expedited-flow request 158
types of 153
using the 3270 terminal 330
ways of receiving

RECEIVE RTYPE=DFSYN 161, 178
RECEIVE RTYPE=RESP 161, 178
RESP exit routine 161, 178
without RECEIVE RTYPE=RESPONSE 225

response header indicators in SNA 151
response modes 205
RESPX processing option 440
resumption of LOGON exit routine scheduling 543
retriable completion

handling of 293
retrying RPL-based requests 403
return codes

combinations 655
for CLOSE 277, 393
for manipulative macroinstructions 278

errors and special conditions 278
registers 0, 15 855

for OPEN 277, 448
for RPL-based macroinstructions

FDB2 field 279
registers 0, 15 279
reuse of RPLs 502
RTNCD field 279

posting 651
recovery action 280
sense fields for RPL-based macroinstructions 651

RFC (request for comments)
accessing online xxxi

RH (request header)
chain indicators 186
generated by LMPEO 185
in SNA 151
indicators handled by LMPEO 186
location of the initial RH 185

RMODE specifications 319
RPL

basic function of 487
using 487

RPL (request parameter list)
AREA field in 257
basic function of 21
control block 487, 766
description 114
error and special condition information in 279
FDB2 field in 279
fields set by VTAM 505
fields, applicability of (per macroinstruction) 510
IFGRPL DSECT for 272
ISTUSFBC DSECT for 774
macroinstruction 487
operand

MODCB macroinstruction 431, 432
SHOWCB macroinstruction 551
TESTCB macroinstruction 565

RESPOND field in 576
RTNCD field in 280
sense fields in 280

RPL exit routine
addressing mode 321
compared to ECB-posting 219
definition of 29, 219
example

of using 219
of VTAM scheduling 172

executing
in SRB mode 309
in TCB mode 309

how it works 219
how to use 256
list of special purpose routines 29
parameters passed to 256
registers upon entry 256
specifications and functions of 219
using 42
using instead of ECB-posting

examples 170
illustration of 42
problems avoided by 231

using with ECBs 220
versus ECB posting 42
with asynchronous operations 170

RPL operand
CHECK 389
CLSDST

AAREA 396
ACB 397
AREA 397
ARG 397
BRANCH 397, 416, 428
ECB 397, 416, 428
NIB 398
OPTCD 398, 399, 400
PARMS 400
RECLEN 400

RPL-based macroinstruction
errors and special conditions 279, 280
OPNDST 23
OPNSEC 23
return codes for 279
using 23

RPLC value of PROC operand 438

Index for Communications Server: SNA Programming 955

RPLLEN value of LENGTH operand 410
RQR (Request Recovery) request

need for SCIP exit routine to process 256
summary of 532
using 167

RQR value of CONTROL operand 535
RRN value of RESPOND operand 523
RSHUTD request

sending 514
RTNCD field 279, 509
RTR (Ready to Receive) request

using 514, 526
RTYPE operand

RECEIVE
example 472
explicit 178
indicating type of response received or expected in

return 473
table 467

RESETSR 481
RPL 504, 507

RU (request/response unit)
classified by VTAM 179
communication network services, format 351, 352
definition 151
format

deliver 348
forward (MVS) 344

initiate load request format 350
load status request format 350
network services

embedded 350
not embedded 351

translate-inquiry request (TR-INQ), format 352

S
sample programs

sample program 1
data interface with logical units 580
how SAMP1 code relates to sample program 1 579
logic of 573
notes on LERAD and SYNAD exit routines 584
notes on LOGON exit routine 583
notes on LOSTERM exit routine 585
notes on mainline program 582
notes on RESP exit routine 584
what it does 579

sample program 2
logic of 605

sample program 3
assembler language code 628
logic of 627

using authorized path 627
save area, requirement for 234
SBI (stop bracket initiative) 526
SBI value on CONTROL operand 527
SCHED value on POST operand

RPL 503
SEND 521

scheduled output 172, 521
scheduling priority of I/O requests 503
SCIP exit routine

address 407
basic function of 256
entered as a result of

BIND request 258

SCIP exit routine (continued)
entered as a result of (continued)

Clear request 257
RQR request 257
SDT request 257
STSN request 258
UNBIND request 260

executing
in SRB mode 307
in TCB mode 307

read-only RPL provided to 256
registers upon entry 262
resynchronization of sequence numbers in 258
specifying in an ACB or NIB 229
using 102, 256

SDT (Start Data Traffic) request
basic function of 7
in request flow 532
indication 117
need for SCIP exit routine to process 256
receiving 407
sending 532, 535
using 164

secondary logical unit (SLU)
definition of 4

SEND
basic function of 24
examples of

for asynchronous operations 169
for synchronous operations 169, 576

major options 514
OPTCD=LMPEO

handling of negative response 190
POST operand 12, 522
POST=RESP 170
POST=SCHED 169, 170
RESPOND operand 156, 216
scheduling 169
specific mode for 174
specifying ECB posting in 170
specifying execution of RPL exit routine in 170
STYPE=REQ 169
STYPE=RESP 12, 154
using 157, 514

SEND operation (example) 200
SEND options 514
SENDCMD

basic function of 26, 529
using 529

sending network operator commands 529
sending requests and responses 514
sense code 500
sense fields and return codes for RPL-based

macroinstructions 651
sense information

for a 3270 device 332
received at the application program 332

SEQNO field
for RECEIVE 473
for RPL 504, 509
for SEND 164, 525
how used with LMPEO 189, 509

sequence numbers
for RECEIVE 473
for RPL 504
for SEND 525
for STSN commands 537

956 z/OS V2R1.0 Communications Server: SNA Programming

sequence numbers (continued)
handling during LMPEO operation 189
in requests and responses 163
of normal-flow RUs 331
resetting to zero with Clear request 164
resynchronization of

general description 163
serialization of execution 309
session

accepting 89
acquiring 90
active 81, 84
address space 316
available 82
communication

macroinstructions 24
connected 81
control commands 532
cryptographic 131
cryptographic control 815
determining parameters for

INQUIRE 124
OPNDST OPTCD=ACCEPT 125
OPNDST OPTCD=ACQUIRE 125
REQSESS 125
SIMLOGON or CLSDST OPTCD=PASS 125

disabled 81
enabled 81
establishment

control block 115
macroinstructions 23
role of exit routines 100
stages of 5, 7, 83
with logical units 11, 27, 81

identifying 168
initiation

error recovery procedure 44
exit routines involved in 107
initiate request 6
initiate request types 85
use of SIMLOGON 87
using generic resource name 78
with logon information 6

limit 82
LU-LU 4
LU-LU session protocols 342
major communication alternatives 169
outage

codes 111
exit routines involved in 108
summary 105

parallel 4
parameters associated with CINIT 127
SSCP-LU 4
SSCP-LU session 6
SSCP-PU 4
SSCP-PU session 5
SSCP-SSCP 4
termination

by one of the session participants 109
control block 115
macroinstructions 23
stages of 84
terminate request types 86
with logical units 13, 28

types 3
session awareness data buffer 356

session control
transmission services profile 796

session establishment macroinstruction
CLSDST 23
OPNDST 23
OPNSEC 23
REQSESS 23
SESSIONC 24
SIMLOGON 23
TERMSESS 24

session instance identifier 139
session level error isolation 322
session monitor 338
session outage notification (SON) 105, 110
session parameter

3270, LU type 0 333
agreement 122
building and using in a BIND area 130
defining and naming (logon mode) 123
defining sets 123
example of

associated with a CINIT 127
in a BIND area 130

processing of by an application program 127, 128
specifying 34, 793
using 123

session parameter fields
format (BIND image) 793
function management 795
profile 795, 819

session qualifier pair 139
session state control vector 747
session termination

and Chase request 217
by a secondary application program 560
by one of the session participants 109
stages of 84
terminate request types 86

SESSIONC
and XRF 532
for communication 24
for session establishment 24
in sending SDT requests 157
options 541
using

general description 532
to reject a BIND request 98

with CONTROL=BIND 98
network-qualified names 98

SESSIONC command 532
SESSKEY value on OPTCD operand

RPL 498
SESSPARM value on OPTCD operand

INQUIRE
description 423
possible restrictions 412
source of session parameters 414

RPL 498
Set and Test Sequence Numbers request (STSN)

need for SCIP exit routine to process 258
possible responses to 532
receiving 407
sending 542
using 167, 532

SETLOGON
ACB MACRF operand, interaction with 83
basic function of 25, 543

Index for Communications Server: SNA Programming 957

SETLOGON (continued)
examples of use 575
HOLD 84
LOGON exit routine scheduling 543
START 84
using 543

shortcut keys 899
SHOWCB

advantage of 267
basic function of 22, 551
errors and special conditions for 278
use and examples of 270
using 551

SHUTD (Shutdown Complete request)
in data-flow-control request 518
on CONTROL operand of SEND macroinstruction 527
on STYPE operand of SEND macroinstruction 527

Shutdown Complete request (SHUTD)
in data-flow-control request 518
on CONTROL operand of SEND macroinstruction 527
on STYPE operand of SEND macroinstruction 527

SIGDATA operand
RPL 504, 509
SEND 525

signal request 213
SIGNAL value on STYPE operand 526
SIMLOGON

basic function of 23, 555
defined 87
OPTCD=CONALL 90
OPTCD=CONANY 91
OPTCD=PASS

determining session parameters for 125
using 87, 555

simulated logon requests 555
single task with multiple ACBs 299
single-thread application program

characteristics of 36
definition of 36
example of

sample program 1 573
single-thread operation 36
SLU (secondary logical unit)

definition of 4
SNA (Systems Network Architecture)

key concepts for VTAM 1
LU (logical unit) 2
NAU (network addressable unit) 1
protocols

for ensuring orderly communication 209
specifying 217
using 201

PU (physical unit) 1
sense fields 679
SSCP (system services control point) 1
task association

exit routine 310
macroinstruction 311

SNA network interconnect vectors
host-subarea-network-name vector 63
host-subarea-PU-network-address vector 63
host-subarea-PU-network-name vector 63
maximum-subarea vector 64
network-name vector 63
SSCP-name vector 63

SNA protocol specifications 897
softcopy information xxix

SON (session outage notification) 105, 110
SON type codes 260
SONCODE 564
sources of SNA Initiate and Terminate requests 85
SPEC value on OPTCD operand 502
specific-mode

in a SEND or RECEIVE operation 174, 176
used to handle an inquiry 175

SRBEXIT operand 307
of ACB 381

SSCP (system services control point)
in SNA network 2
LU-LU session 4
role of, in VTAM 1
SSCP-LU session 4, 6
SSCP-PU session 4, 5
SSCP-SSCP session 4

SSENSEI field 510
SSENSEO field

for CLSDST request 401
for Logical Unit Status (LUSTAT) request 504
to represent a major class of error 525, 538
with requests and negative responses 510

SSENSMI field 510
SSENSMO field

for CLSDST request 401
for Logical Unit Status (LUSTAT) request 504
with requests and negative responses 510
with SNA-defined errors, how coded 525, 538, 564

stages of session establishment 83
stages of session termination

definition of 84
STANDARD value on CODESEL operand 519
Start Data Traffic request (SDT)

basic function of 7
in request flow 532
indication 117
need for SCIP exit routine to process 256
receiving 407
sending 532, 535
using 164

START value on OPTCD operand
RPL 501
SETLOGON 548

stop bracket initiative (SBI) 526
STOP value on OPTCD operand

RPL 501
SETLOGON 548

stopping logon request queuing 543, 550
storage key

ACB storage allocation 376
storage limitation

ACB data space 375
STSN (Set and Test Sequence Numbers request)

need for SCIP exit routine to process 258
possible responses to 532
receiving 407
sending 542
using 167, 532

STSN operand value 532
STYPE operand

RPL 505, 525
subtasks

using separate ACBs 298
using the same ACB 298

supervisor state, for use of authorized path 302

958 z/OS V2R1.0 Communications Server: SNA Programming

symbolic name
of a logical unit 115, 437
of an application program 375

SYN (synchronous handling) 502
SYN operand value 502
SYNAD exit routine

addressing mode 238, 263
advantage of 263
basic function of 13
coding 263, 290
coding, special requirements 230
executing

in SRB mode 308
in TCB mode 308

given control 321, 407
how to use 263
linkage conventions for 234, 263
not reentrant 234
parameters passed to 263
purpose of 263
reentrant 234
register usage 291
registers upon entry 263

synchronous handling (SYN) 502
synchronous operation

advantages of 45
characteristics of 40
errors for 282
returning to application under same SRB 499
versus asynchronous 169

synchronous request 169
syntax diagram, how to read xxv
SYSTEM operand value 441
system services control point (SSCP)

in SNA network 2
LU-LU session 4
role of, in VTAM 1
SSCP-LU session 4, 6
SSCP-PU session 4, 5
SSCP-SSCP session 4

system-sense information
sending 525, 538, 564

system-sense modifier information
sending 525, 538, 564

Systems Network Architecture (SNA)
key concepts for VTAM 1
LU (logical unit) 2
NAU (network addressable unit) 1
protocols

for ensuring orderly communication 209
specifying 217
using 201

PU (physical unit) 1
sense fields 679
SSCP (system services control point) 1
task association

exit routine 310
macroinstruction 311

T
target resource name 344
task association

description 310
of exit routines 310
of macroinstructions 311

task level error isolation 323

task termination 323
TCBEXIT operand 307
TCP/IP

online information xxxi
Technotes xxix
terminals

characteristics of LU type 0 3270 328
differences among LU type 0 3270 335
flow

deliver 339
forward 339

Terminate Cleanup request 84
Terminate Forced request 84
Terminate Orderly request 84
terminating affinities 79
terminating sessions with logical units 390

generic resources 79, 543
termination

address space 323
task 323

TERMSESS
basic function of 24
using 99, 560

network-qualified names 99
test request RUs, 3270 Information Display System

actions taken by the network 335
TESTCB

advantage of 267
basic function of 22
errors and special conditions for 278
testing OFLAGS field 277
use and examples of 271
using 565

testing
control block fields 565
multiple field values 565
processing options or option codes 565

third party Initiate and Terminate requests 85, 86
THRDPTY operand 400, 503
timeout CNM request unit format 352
TOPLOGON operand 414, 426
TPEND exit routine

closedown of VTAM 407
closing an application program 74
entry to, after HALT commands 263
executing

in SRB mode 307
in TCB mode 307

parameters available on entry to 265
reason codes 264
registers upon entry 265
user exit queues 309
with reason code 8 32

TPEND operand 407
trademark information 911
transmission control 331
transmission services

profile 795
usage field 797

type code
in PARMS operand of TERMSESS macroinstruction 564
UNBIND in RPL 500
UNBIND used on UNBIND RU 503

Index for Communications Server: SNA Programming 959

U
UNBIND request

basic function of 7
need for SCIP exit routine to process 256
receiving 103
SON codes 93, 260
TERMSESS restrictions 100

USENSEI field 510
USENSEO field

errors indicated by 527, 564
for CLSSDT request 401
for Logical Unit Status (LUSTAT) request 505
how coded 527, 564
when RPL-based macroinstruction is completed 510

user data 816
user data length 816
user exit queues 309
user RH option (USERRH)

description 196
example of using 200
handling the Sense Data Included (SDI) indicator 199
operating considerations 196
operation for inbound RUs 198
operation for outbound RUs 197
relationship to NIB 199

user sense information
receiving 402
sending 527, 564

USERFLD field of the NIB 37
USERFLD operand

of ACB 381
of NIB 441

USERRH (user RH option)
description 196
example of using 200
handling the Sense Data Included (SDI) indicator 199
operating considerations 196
operation for inbound RUs 198
operation for outbound RUs 197
relationship to NIB 199

USERRH field in the RPL
relationship to the request/response header 198

using logon mode names and session parameters 123
using network-qualified names support 65
USS Messages

national language code values 117

V
VARY command 529
vector list

access method support vector 62
component-ID vector 62
function-list vector 62
release-level vector 62
resource-ID vector 63

VTAM
domain 16
exit routines 19
FRR (functional recovery routine) 324
general programming considerations 33
interfacing with an application program 50
keyword operands 19
language 19
macroinstruction differences

across operating systems 295

VTAM (continued)
macroinstructions

conventions and descriptions 371
summary of 20

manipulative macroinstructions 19
scheduling output 38
SNA concepts 1
special programming considerations 295
VTAM-initiated HALT 76

VTAM, online information xxxi

W
WAREA operand 411

X
XRF (extended reference facility)

and SESSIONC 532
programming 149
session requests 91
terminating sessions 74

XRF session activation control vector (MVS only) 845

Y
YES value

BRANCH operand 494, 518, 535
LISTEND operand 436

Z
z/OS Basic Skills Information Center xxix
z/OS, documentation library listing 913

960 z/OS V2R1.0 Communications Server: SNA Programming

Communicating your comments to IBM

If you especially like or dislike anything about this document, use one of the
methods listed below to send your comments to IBM. Whichever method you
choose, make sure you send your name, address, and telephone number if you
would like a reply.

Feel free to comment on specific errors or omissions, accuracy, organization, subject
matter, or completeness of this document. However, the comments you send
should pertain to only the information in this manual and the way in which the
information is presented. To request additional publications, or to ask questions or
make comments about the functions of IBM products or systems, you should talk
to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

Send your comments to us in any of the following ways:
v To send comments by FAX, use this number: 1+919-254-1258
v To send comments electronically, use this address:

– comsvrcf@us.ibm.com
v To send comments by post, use this address:

International Business Machines Corporation
Attn: z/OS Communications Server Information Development
P.O. Box 12195, 3039 Cornwallis Road
Department AKCA, Building 501
Research Triangle Park, North Carolina 27709-2195

Make sure to include the following information in your note:
v Title and publication number of this document
v Page number or topic to which your comment applies

© Copyright IBM Corp. 2000, 2013 961

mailto:comsvrcf@us.ibm.com

962 z/OS V2R1.0 Communications Server: SNA Programming

����

Product Number: 5650-ZOS

Printed in USA

SC27-3674-00

	Contents
	Figures
	Tables
	About this document
	Who should read this document
	How this document is organized
	How to use this document
	Determining whether a publication is current
	How to contact IBM service

	Conventions and terminology that are used in this document
	How to read a syntax diagram
	Prerequisite and related information

	Summary of changes
	Chapter 1. VTAM application program concepts
	Systems Network Architecture (SNA) concepts in VTAM
	Network accessible units
	Sessions
	SSCP-PU session
	SSCP-LU session
	Initiate request or logon
	Control Initiate request
	LOGON exit routine
	Establishing the LU-LU session (OPNDST macroinstruction)
	BIND request
	Completing the LU-LU session establishment

	Major programming elements in a VTAM application program
	Opening the program
	Establishing a session with an LU
	Receiving requests from LUs
	Sending a request
	Sending a response
	Receiving a response
	Other exit routines
	Terminating a session with an LU
	Closing the program
	Constants and control blocks
	VTAM macroinstructions

	VTAM application program as part of an SNA network
	VTAM application program
	Processing part
	Communication part
	VTAM part
	Network control program
	Logical unit
	Terminal operator and devices
	Another VTAM application program

	Using a VTAM application program to manage the network

	Chapter 2. VTAM language
	Characteristics of the language
	Keyword operands
	Manipulative macroinstructions
	Exit routines

	Summary description of the VTAM macroinstructions
	Declarative macroinstructions
	ACB
	EXLST
	NIB
	RPL

	Manipulative macroinstructions
	GENCB
	SHOWCB
	TESTCB
	MODCB

	ACB-based macroinstructions
	OPEN
	CLOSE

	RPL-based macroinstructions
	Session-establishment macroinstructions
	Session-termination macroinstructions
	Communication macroinstructions
	Macroinstructions that assist in session establishment or communication
	Program operator macroinstructions

	Relationship between the executable macroinstructions and control blocks
	Opening the application program
	Establishing sessions with LUs
	Communicating with LUs
	Terminating sessions with LUs
	Closing the application program

	Exit routines
	Normal operating system environment for a VTAM application program
	Use of a single task
	Mainline program
	Inline exit routines
	Asynchronous exit routines
	Dispatching priorities

	Chapter 3. Organizing an application program
	Coding guidelines for application programs
	Program structure recommendations
	Simplifying migration and network upgrades

	Single-thread or multithread operations
	Using a single-thread program
	Using a multithread program

	Multithreading facilities
	USERFLD field of the NIB
	Scheduling output
	Receiving input on any session except those already in communication

	How a synchronous operation works
	How an asynchronous operation works
	Using ECBs
	Using RPL exit routines
	Initializing a session
	Advantages and disadvantages of different forms of operation

	Some questions that affect program organization
	Application programming interface
	General requirements
	Specific requirements

	Handling control blocks and work areas
	Techniques for handling control blocks and work areas
	Element per LU at assembly
	Element per session at session establishment
	Element per transaction
	Element per request
	Combinations

	Chapter 4. Opening and closing an application program
	Opening an application program
	Access method control block (ACB)
	OPEN macroinstruction
	Vector lists
	Vector lists supplying information to VTAM
	Vector lists supplying information to the application

	Supplying control vectors with the SETLOGON START
	Using multiple ACBs in a VTAM application program
	Using network-qualified names
	Establishing network-qualified names capability

	Where OPEN can be issued

	Using persistent LU-LU session support
	How an application establishes persistence
	Session recovery states
	Application program recovery with single-node persistence enabled
	Response to an application failure with single-node persistence
	Opening the ACB during recovery from an application failure
	Takeover OPEN

	Application program recovery with multinode persistence enabled
	Response to a node failure
	Response to an application failure with MNPS
	Restoring the sessions pending recovery

	Closing an application program
	Program initiates closing
	Program receives a closedown message
	TPEND exit routine is entered
	Action for a standard HALT command
	Action for HALT NET,QUICK command or for VTAM-initiated HALT
	Action for HALT NET,CANCEL command or abnormal termination
	Action for a takeover OPEN

	Opening and closing an application program as a generic resource
	Identifying an application program as a generic resource member
	Initiating a session using a generic resource name
	Initiating a session using the name of an application that is a member of a generic resource
	Closing an application program that is a member of a generic resource
	Ownership of affinities between LUs and application programs
	Terminating affinities that are application-owned
	Terminating VTAM-owned affinities

	Chapter 5. Establishing and terminating sessions with logical units
	Defining LUs
	Stages of session establishment
	Stages of session termination
	Sources of SNA Initiate and Terminate requests
	Device-type LU Initiate
	Application program LU Initiate
	Third party Initiate
	Device-type LU Terminate
	Application program LU Terminate
	Third party Terminate

	Macroinstructions related to session establishment and termination
	SIMLOGON macroinstruction
	Initiating sessions with all LUs in a list
	Initiating a session with the first LU in a list
	Queuing Initiates
	Notification to the session partner of a request for a session

	OPNDST macroinstruction
	Accepting and establishing a single pending active session
	Acquiring sessions
	Restoring sessions
	Extended recovery facility session requests
	BIND request

	CLSDST macroinstruction
	Scope of CLSDST
	CLSDST OPTCD=RELEASE
	CLSDST OPTCD=PASS
	CLSDST OPTCD=TERMQ

	REQSESS macroinstruction
	OPNSEC macroinstruction
	BIND response

	SESSIONC macroinstruction with CONTROL=BIND
	TERMSESS macroinstruction
	TERMSESS OPTCD=UNBIND
	TERMSESS OPTCD=TERMQ

	Exit routines related to session establishment and termination
	LOGON exit routine
	SCIP exit routine
	Receiving a BIND request
	Receiving an UNBIND request

	NSEXIT exit routine
	CLEANUP request
	NSPE request
	Notify request

	LOSTERM exit routine
	Summary tables of exit routines

	Session outage notification
	Queuing a request for a session with an SLU
	Control blocks used for session establishment and termination
	Request parameter list (RPL)
	Node initialization block (NIB)
	Application-supplied dial parameter control block (ASDP)

	Establishing parameters for sessions
	General pattern of agreement on session parameters
	Defining and naming a set of session parameters (logon mode and class of service)
	How logon mode names and session parameters are used
	NIB LOGMODE and BNDAREA operands
	Examples of how an application program processes session parameters
	Example 1: Using session parameters associated with CINIT
	Example 2: Locating the logon mode name in the CINIT RU
	Example 3: Building and using session parameters in a BIND area
	Example 4: Responding to a negotiable BIND request

	Establishing cryptographic sessions
	Establishing single-domain cryptographic sessions
	Establishing cross-domain cryptographic sessions
	How VTAM determines the level of cryptography for a cryptographic session

	Restoring sessions pending recovery
	Data tracking
	BID data
	BIS data
	FMH-5
	MODENAME
	Session instance identifier
	Session qualifier pair

	Restoring sessions

	Extended recovery facility (XRF) programming

	Chapter 6. Communicating with logical units
	Who is communicating: The VTAM application program and LUs
	What is communicated: Requests and responses
	What a request contains
	Example of data exchange

	What a response contains
	Definite, exception, or no response indication
	Definite response 1 and 2 indication
	Three key elements in a RESPOND operand

	How requests and responses are exchanged
	SEND, RECEIVE, and SESSIONC macroinstructions
	Normal-flow and expedited-flow requests and responses
	DFSYN, DFASY, and RESP types of RUs
	Controlling the handling of normal-flow responses

	Sequence numbers
	Controlling flow
	The Start Data Traffic (SDT) and Clear requests
	The Set and Test Sequence Numbers (STSN) and Request Recovery (RQR) Requests
	Data-flow-control requests and indicators

	Identifying LUs and sessions
	Using VTAM to communicate with LUs
	Major alternatives
	Using SNA protocols

	Chapter 7. Using exit routines
	How exit routines work
	RPL exit routines
	EXLST exit routines

	Summary of exit routines
	Deciding whether and how to use exit routines
	Specifying the DFASY, RESP, and SCIP exit routines in an ACB or NIB
	Special requirements for LERAD and SYNAD exit routines
	Exit scheduling versus ECB posting
	Procedures to follow in writing exit routines
	Entry procedures
	Cautions, restrictions and techniques
	Exit procedures

	DFASY exit routine
	LERAD exit routine
	LOGON exit routine
	TSO/VTAM Katakana and double-byte character set (DBCS) support

	LOSTERM exit routine
	LOSTERM reason codes

	NSEXIT exit routine
	Network services procedure error or Notify
	Cleanup session

	RELREQ exit routine
	RESP exit routine
	RPL exit routine
	SCIP exit routine
	Clear
	Start Data Traffic (SDT)
	Request Recovery (RQR)
	Set and Test Sequence Numbers (STSN)
	BIND
	UNBIND

	SYNAD exit routine
	TPEND exit routine

	Chapter 8. Setting and testing control blocks and macro global variables
	Setting and testing control block values
	Using manipulative macroinstructions
	GENCB macroinstruction
	Example 1
	Example 2
	Example 3

	MODCB macroinstruction
	Example 1
	Example 2
	Example 3

	SHOWCB macroinstruction
	Example 1
	Example 2
	Example 3
	Example 4

	TESTCB macroinstruction
	Example

	Using INQUIRE OPTCD=TERMS to generate NIBs
	Using DSECT-creating assembler instructions and macroinstructions
	Defining the DSECTs
	Using the DSECTs

	ISTGLBAL macroinstruction
	Release-level and component-ID macro global variables
	Function-list macro global variables

	Chapter 9. Handling errors and special conditions
	OPEN and CLOSE errors and special conditions
	Manipulative macroinstruction errors and special conditions
	RPL-based macroinstruction errors and special conditions
	Coding LERAD and SYNAD exit routines
	Handling exception conditions (register 0=04)
	Further action by a PLU application program
	Further action by an SLU application program

	Handling retriable completion (register 0=08)
	Handling data integrity damage (register 0=0C)
	Handling environment errors (register 0=10)
	Handling logic errors (register 0=14 and register 0=18)

	Chapter 10. Operating system facilities
	VTAM macroinstruction differences across operating systems
	Assigning operating system authorization
	Authorization criteria

	Multitasking
	Separating data communication activity from other activity
	Dividing data communication activity among several tasks
	Multiple tasks, using the same ACB
	Multiple tasks, each with its own ACB

	Using multiple ACBs within one task

	Authorized path
	Specifying authorized path macroinstructions
	Additional coding considerations for authorized path
	Simple example of authorized path usage

	Authorized asynchronous exit routines
	Execution of exit routines
	EXLST exit routines other than LERAD and SYNAD
	LERAD and SYNAD exit routines
	RPL exit routines

	Serialization of execution
	Task association
	Exit routine task association
	Macroinstruction task association
	SRB requirements

	Multiple address spaces
	Types of address spaces
	ACB address space
	Associated address space
	Session address space

	Rules for coding macroinstructions and exit routines
	Address space used for exit routine execution

	Cross-memory application program interface (API) support
	31-bit addressing
	Opening by the Application Program
	Specifying macroinstructions
	Declarative macroinstructions
	ACB-based macroinstructions
	RPL-based macroinstructions

	Executing exit routines
	Closing by the Application Program

	Error handling
	Isolation of errors
	Request level isolation
	Session level isolation
	Task level isolation
	Application program (ACB) level isolation
	Task termination and address space termination
	Functional recovery routines

	Chapter 11. Programming for the IBM 3270 Information Display System
	Types of 3270 terminals
	Characteristics of LU type 0 for 3270 terminals
	Data stream
	Data flow control
	Data-flow-control requests
	Chaining
	Normal-flow Send/Receive mode
	Responses
	Brackets
	Sequence numbering

	Transmission control
	Exception conditions and sense information
	Session parameter
	Device characteristics field
	Logon message
	Logoff
	Test request
	Summary of differences among LU type 0 3270 terminals

	Chapter 12. Coding for the communication network management interface
	CNM interface
	Functions of the application program
	Gathering maintenance-related information from a PU
	Gathering session data from VTAM and NCP
	Gathering performance data from VTAM
	Loading a PU
	Receiving hardware alerts

	Request unit flow
	Application program coding requirements for the CNM interface
	CNM interface requests and responses
	Protocols and procedures
	Request unit (RU) formats
	Standard CNM headers
	Forward request unit
	Deliver request unit
	Request unit names
	Examples of embedded network services request units
	Types of network services request units not embedded
	Alias application

	Inquiry data
	Constant values
	Reply data

	Requirements for receiving session-awareness and trace data
	VTAM definition requirements
	Interfaces and interactions
	Session-awareness data buffer
	Session notification data format

	Trace data buffer

	Requirements for receiving performance data
	Performance monitor definition requirements for initialization
	Data collection mechanism
	Categorization of data

	Automatic data delivery
	Resource inactivation
	Non-inactivation events
	System Management Facility (SMF) intervals
	Switching requests

	Data collection dynamics
	Performance monitor interface termination
	Performance data types
	Implications of the multiple monitor environment
	Request unit formats for the performance monitor interface
	Sense codes for the performance monitor CNM RUs
	Protocol violations
	Process exceptions

	Chapter 13. Conventions and descriptions of VTAM macroinstructions
	How the macroinstructions are described
	How the macroinstructions are coded
	Name
	Operation
	Operands
	Types of operands
	Comments and continuation lines
	Operand descriptions
	Examples
	Completion information

	Description of the VTAM macroinstructions
	ACB—Create an access method control block
	CHANGE—Terminate affinity between LU and generic resource application
	CHECK—Check request status
	CLOSE—Close one or more ACBs
	CLSDST—Terminate sessions, application program is the PLU
	Network-qualified names with CLSDST

	EXECRPL—Execute a request
	EXLST—Create an exit list
	GENCB—Generate a control block
	INQUIRE—Obtain logical unit information or application program status
	INTRPRET—Interpret an input sequence
	ISTGLBAL—Declare and set macro global variables
	MODCB—Modify the contents of control block fields
	NIB—Create a node initialization block
	NIB fields set by VTAM

	OPEN—Open one or more ACBs
	OPNDST—Establish sessions (application as PLU) or recover sessions
	OPNSEC—Establish a session, application program acts as the SLU
	RCVCMD—Receive a message from VTAM
	RECEIVE—Receive input on a session
	REQSESS—Initiate a session, application program acts as the SLU
	RESETSR—Cancel RECEIVE operations and switch a session's CA-CS mode
	RPL—Create a request parameter list
	RPL fields set by VTAM
	RPL fields and RPL-based macroinstructions

	SEND—Send output on a session
	SENDCMD—Send a VTAM operator command to VTAM
	SESSIONC—Send a session-control request or response
	Send a Start Data-Traffic request to the SLU
	Send a Clear request to the SLU
	Send a Request Recovery request to the PLU
	Send a Set and Test Sequence Number request to the SLU
	Send the PLU a response to a Set and Test Sequence Number (STSN) request
	Send the PLU a Request-Rejected response to a BIND request
	Send the PLU a response to an SDT request
	Send a Switch request initiating the switch from backup to primary session status

	SETLOGON—Modify an application program's capability to establish sessions
	SHOWCB—Extract the contents of control block fields
	Control block fields applicable for SHOWCB

	SIMLOGON—Initiate a session, application program acts as the PLU
	TERMSESS—Request session termination, application program is SLU
	TESTCB—Test the contents of a control block field
	Control block fields applicable for TESTCB

	Chapter 14. Logic of a simple application program
	Logic of Sample Program 1

	Chapter 15. Sample code of a simple application program
	What SAMP1 does
	How SAMP1 relates to Sample Program 1 (Chapter 14)
	Data interface between SAMP1 and LUs
	Notes on SAMP1
	Mainline program
	LOGON exit routine
	RESP exit routine
	LERAD and SYNAD exit routines
	LOSTERM exit routine

	SAMP1

	Chapter 16. Logic of a more complicated application program
	Introduction
	Organization and flow of Sample Program 2
	Logic of the 3600 finance communication system I/O routine
	Logic of the 3600 chaining output routine
	Routine logic of the 3270 I/O routine
	Logic of the RESP exit routine
	Logic of the DFASY exit routine of Sample Program 2

	Chapter 17. Sample code using authorized path
	Notes on SAMP3
	SAMP3 assembler language code

	Appendix A. Summary of control block field usage
	ACB
	CHANGE
	CHECK
	CLOSE
	CLSDST
	EXECRPL
	EXLST
	GENCB
	INQUIRE
	INTRPRET
	ISTGLBAL
	MODCB
	NIB
	OPEN
	OPNDST
	OPNSEC
	RCVCMD
	RECEIVE
	REQSESS
	RESETSR
	RPL
	SEND
	SENDCMD
	SESSIONC
	SETLOGON
	SHOWCB
	SIMLOGON
	TERMSESS
	TESTCB

	Appendix B. Return codes and sense fields for RPL-based macroinstructions
	Return code posting
	RPL return code (RTNCD,FDB2) combinations
	SNA sense fields
	System-sense information

	Appendix C. Summary of control requests and indicators
	Appendix D. Request and response exchanges for typical communication operations
	Appendix E. Control block formats and DSECTs
	ACB (IFGACB)
	ASDP (ISTASDP)
	BLENT (ISTBLENT)
	Control vector hex 29 (CV29)
	EXLST (IFGEXLST)
	MTS override (ISTMTS)
	NIB (ISTDNIB)
	NIB DEVCHAR (ISTDVCHR)
	NIB PROC (ISTDPROC)
	NRIPL (ISTNRIPL)
	Request/response header (ISTRH)
	RPL (IFGRPL)
	RPL RTNCD-FDB2-FDBK (ISTUSFBC)
	Access-method-support vector list (ISTAMSVL)
	Resource-information vector list (ISTRIVL)
	Application-ACB vector list (ISTVACBV)

	Appendix F. Specifying a session parameter
	Session parameter fields (BIND image)
	Format
	Type
	Function management profile
	Transmission services profile
	Transmission services usage field
	Request unit size

	Pacing count
	Logical unit presentation services profile
	LU type 0
	LU type 1
	LU type 2
	LU type 3
	LU type 4
	LU type 6 for LU 6.2

	Logical unit presentation services usage field
	Profile 0
	Media flags
	Profile 1
	Function management header subset and data stream profile
	Function management header subset flags
	Data stream subset flags
	Media flags
	Profiles 2 and 3
	Presentation services flags
	Presentation space size
	Profile 4
	Logical unit send capability
	Code selection
	General characteristics
	Profile 6 for LU 6.2
	LU level
	LU 6.2 flags
	LU 6.2 flags

	Cryptographic control
	Primary logical unit name length
	Primary logical unit name
	User data length
	User data
	BIND area format and DSECT
	XRF session activation control vector

	Appendix G. RPL fields associated with VTAM macroinstructions
	Appendix H. Summary of register usage
	Appendix I. Return codes for manipulative macroinstructions
	Appendix J. Summary of operand specifications
	Address
	Quantity
	Fixed value
	Name
	Register-indirect value
	Indirect value

	Appendix K. Forms of the manipulative macroinstruction
	Optional and required operands
	Optional and required operands for the alternative forms of GENCB
	Optional and required operands for the alternative forms of MODCB
	Optional and required operands for the alternative forms of SHOWCB
	Optional and required operands for the alternative forms of TESTCB

	Appendix L. Program operator coding requirements
	Defining a program operator
	Authorizing a program operator
	Method for writing a program operator
	VTAM operator commands
	Operational characteristics
	Messages rerouted to a PPO
	Programming requirements
	Orderly closing of a program operator
	Limiting VTAM messages queued to a program operator
	Data exchanged between a program operator and VTAM
	Header
	Data received from VTAM
	Data sent to VTAM

	Format and DSECT of the message and command header
	POA communication with tuning facility using the MODIFY QUERY COMMAND

	Appendix M. List of macroinstructions
	Appendix N. Application program migration
	Migrating from prior releases of VTAM
	COS name and logon mode name
	Increase of ACB size
	Application program minor node name in BIND
	Sequence number dependencies for LU type 0 3270 terminals
	Dynamic network access function

	Differences between BTAM and VTAM application programs
	Migrating from a single-domain to a multiple-domain environment
	Use of INQUIRE for a cross-domain resource
	Specifying LOGMODE names with OPNDST for a cross-domain resource
	Use of INTRPRET for a cross-domain resource

	Considerations for a multiple-network environment
	Use of INQUIRE for a cross-network resource

	Appendix O. Architectural specifications
	Appendix P. Accessibility
	Notices
	Programming interface information
	Policy for unsupported hardware
	Trademarks

	Bibliography
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Index for Communications Server: SNA Programming
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z
	Communicating your comments to IBM

