
z/OS Communications Server

IP Configuration Reference
Version 2 Release 1

SC27-3651-03

���

Note:
Before using this information and the product it supports, be sure to read the general information under “Notices” on page
1493.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS), and to subsequent releases and modifications until
otherwise indicated in new editions.

IBM welcomes your comments. You can send us comments electronically by using one of the following methods:

Internet email:
comsvrcf@us.ibm.com

World Wide Web:
http://www.ibm.com/systems/z/os/zos/webqs.html

If you would like a reply, be sure to include your name, address, and telephone number. Make sure to include the
following information in your comment or note:
v Title and order number of this document

v Page number or topic related to your comment

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 2000, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

http://www.ibm.com/systems/z/os/zos/webqs.html

Contents

Figures . xix

Tables . xxi

About this document . xxv
Who should read this document . xxv
How this document is organized . xxv
How to use this document . xxv

Determining whether a publication is current . xxvi
How to contact IBM service . xxvi

Conventions and terminology that are used in this document xxvi
How to read a syntax diagram . xxvii
Prerequisite and related information. xxx

Summary of changes . xxxv
Changes made in z/OS Version 2 Release 1, as updated February 2015 xxxv
Changes made in z/OS Version 2 Release 1, as updated September 2014 xxxv
Changes made in z/OS Version 2 Release 1, as updated December 2013 xxxv
Summary of changes for z/OS Version 2 Release 1 . xxxvi

Chapter 1. Configuration data sets and files . 1
TCP/IP configuration data sets . 1

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 11
Summary of TCP/IP address space configuration statements 11
PROFILE.TCPIP search order . 14
Statement syntax for configuration statements . 15
ARPAGE statement . 16
ATMARPSV statement. 17
ATMLIS statement . 19
ATMPVC statement . 22
AUTOLOG statement . 23
BEGINROUTES statement . 28
BSDROUTINGPARMS statement . 36
DEFADDRTABLE statement . 41
DELETE statement . 43
Summary of DEVICE and LINK statements . 47

Overview of DEVICE and LINK statements . 47
Recovering from device failures . 48
Missing interrupt handler factors . 49
DEVICE and LINK statements relationship to VTAM configuration. 50
Modifying DEVICE and LINK statements . 50
Monitoring network links (DEVICE and LINK statements) 52

DEVICE and LINK — ATM devices statement . 52
DEVICE and LINK — CLAW devices statement . 55
DEVICE and LINK — CTC devices statement . 60
DEVICE and LINK — HYPERchannel A220 devices statement 63
DEVICE and LINK — LAN Channel Station and OSA devices statement 66
DEVICE and LINK — MPCIPA OSA-Express QDIO devices statement 74
DEVICE and LINK — MPCIPA HiperSockets devices statement 85
DEVICE and LINK — MPCOSA devices statement . 89
DEVICE and LINK — MPCPTP devices statement . 92
DEVICE and LINK — SNA LU0 links statement . 95
DEVICE and LINK — SNA LU 6.2 links statement . 98

© Copyright IBM Corp. 2000, 2015 iii

DEVICE and LINK — VIRTUAL devices statement. 101
DEVICE and LINK - X.25 NPSI connections statement. 103
DEVICE and LINK — 3745/46 channel DLC devices statement. 105
GATEWAY statement . 109
GLOBALCONFIG statement . 117
HOME statement . 136
INCLUDE statement . 141
Summary of INTERFACE statements . 141

Restrictions on IPv6 addresses configured in the TCP/IP profile 143
Steps for modifying INTERFACE statements . 144
Monitoring network interfaces (INTERFACE statements) 144

INTERFACE - IPAQENET OSA-Express QDIO interfaces statement 145
INTERFACE — IPAQIDIO HiperSockets interfaces statement 157
INTERFACE — VIRTUAL interfaces statement . 160
INTERFACE - IPAQENET6 OSA-Express QDIO interfaces statement 161
INTERFACE — IPAQIDIO6 HiperSockets interfaces statement 177
INTERFACE — LOOPBACK6 interface statement . 182
INTERFACE — MPCPTP6 interfaces statement . 183
INTERFACE — VIRTUAL6 interfaces statement . 188
IPCONFIG statement . 190
IPCONFIG6 statement . 206
IPSEC statement . 218
ITRACE statement. 227
NETACCESS statement . 229
NETMONITOR statement . 234
OSAENTA statement . 241
PKTTRACE statement . 250
PORT statement . 257
PORTRANGE statement . 266
PRIMARYINTERFACE statement . 270
SACONFIG statement . 271
SMFCONFIG statement . 274
SMFPARMS statement . 281
SOMAXCONN statement . 282
SRCIP statement . 282
START statement . 292
STOP statement . 293
TCPCONFIG statement . 294
TRANSLATE statement . 301
UDPCONFIG statement . 304
VIPADYNAMIC statement summary . 306
VIPADYNAMIC - VIPADEFINE statement . 308
VIPADYNAMIC - VIPABACKUP statement . 312
VIPADYNAMIC - VIPADELETE statement . 315
VIPADYNAMIC - VIPADISTRIBUTE statement . 316
VIPADYNAMIC - VIPARANGE statement. 335
VIPADYNAMIC - VIPAROUTE statement . 338
VIPADYNAMIC - VIPASMPARMS statement . 341

Chapter 3. TCP/IP cataloged procedure (TCPIPROC) 343
Specifying TCP/IP address space parameters . 343
Example of a TCP/IP cataloged procedure . 344
Using output data sets . 345

Chapter 4. Protocol number and port assignments 347
Port assignments . 348

PROFILE.TCPIP port assignments . 348
/etc/services and ETC.SERVICES port assignments . 350

iv z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 5. Resolver setup and TCPIP.DATA configuration statements 355
Resolver setup statements . 355

Resolver setup statement information and syntax conventions 356
CACHE NOCACHE statements . 358
CACHESIZE statement . 359
COMMONSEARCH/NOCOMMONSEARCH statement 360
DEFAULTIPNODES statement. 360
DEFAULTTCPIPDATA statement . 361
GLOBALIPNODES statement . 362
GLOBALTCPIPDATA statement . 363
MAXTTL statement . 365
UNRESPONSIVETHRESHOLD statement . 366
; and # statements . 368

Configuration statements in TCPIP.DATA . 369
system_name considerations . 370
Dynamically changing TCPIP.DATA statements . 370
Determining which TCPIP.DATA statements are being used 372
Syntax conventions for TCPIP.DATA configuration statements 372
ALWAYSWTO statement . 373
DATASETPREFIX statement . 374
DOMAIN statement . 374
DOMAINORIGIN statement . 374
HOSTNAME statement . 376
LOADDBCSTABLES statement . 377
LOOKUP statement . 378
MESSAGECASE statement . 379
NAMESERVER statement . 380
NOCACHE statement . 381
NSINTERADDR statement . 381
NSPORTADDR statement . 384
OPTIONS statement . 385
RESOLVERTIMEOUT statement . 387
RESOLVERUDPRETRIES statement . 389
RESOLVEVIA statement . 390
SEARCH statement . 391
SOCKDEBUG statement . 392
SOCKNOTESTSTOR statement . 393
SOCKTESTSTOR statement. 393
SORTLIST statement . 394
TCPIPJOBNAME statement . 395
TCPIPUSERID statement . 396
TRACE RESOLVER statement . 396
TRACE SOCKET statement. 397
; and # statements . 398

Sample TCPIP.DATA data set (TCPDATA) . 398

Chapter 6. z/OS Load Balancing Advisor and Load Balancing Agent. 403
General syntax rules for z/OS Load Balancing Advisor . 403
Starting the z/OS Load Balancing Advisor . 404
Load Balancing Advisor sample start procedure . 404
Load Balancing Advisor configuration file statements . 404

agent_connection_port statement . 406
agent_id_list statement . 406
debug_level statement . 407
lb_connection_v4 statement. 408
lb_connection_v6 statement. 408
lb_id_list statement . 409
port_list statement. 410
sysplex_group_name statement . 413
update_interval statement . 413
wlm statement . 414

Contents v

Starting the z/OS Load Balancing Agent . 415
z/OS Load Balancing Agent sample start procedure . 416
z/OS Load Balancing Agent configuration file statements 416

advisor_id statement . 417
debug_level statement . 417
host_connection statement . 418
sysplex_group_name statement . 419

Chapter 7. Automated domain name registration 421
General configuration rules for automated domain name registration. 421
Starting the automated domain name registration application 422
EZBADNRS sample start procedure for automated domain name registration application 422
Automated domain name registration application configuration file 424
arm_element_suffix statement . 426
debug_level statement . 426
dns statement . 428
gwm statement . 430
host_group statement. 431
ipaddrlist statement . 433
key statement . 434
server_group statement . 434
uuid statement . 436

Chapter 8. IKE daemon . 439
Starting the IKED using z/OS UNIX . 439
IKE cataloged procedure . 439
IKE environment variables . 441
IKE daemon configuration file statements . 442

IkeConfig statement . 443
NssStackConfig statement . 454
IKE daemon configuration file sample . 456

Chapter 9. Network security services server 459
Starting Network security services server using z/OS UNIX. 459
Network security services server cataloged procedure . 459
Network security services server environment variables . 461
Network security services server configuration file statements 462

NSS server configuration file sample . 462
IPSecDisciplineConfig statement . 464
NssConfig statement . 467

Chapter 10. Defense Manager daemon . 471
Starting the DMD using z/OS UNIX (optional) . 471
The Defense Manager daemon cataloged procedure (optional) 471
DMD environment variables . 473
DMD configuration file statements . 474

DmConfig statement . 474
DmStackConfig statement . 476
DMD configuration file sample . 479

Chapter 11. OMPROUTE . 483
Starting OMPROUTE using z/OS UNIX (optional) . 483
OMPROUTE cataloged procedure (optional) . 483
OMPROUTE parameters . 484
OMPROUTE environment variables . 485
OMPROUTE configuration file statements . 487

INCLUDE statement . 487
OSPF configuration statements . 488
RIP configuration statements . 506
IPv6 OSPF configuration statements . 518

vi z/OS V2R1.0 Communications Server: IP Configuration Reference

IPv6 RIP configuration statements . 529
Common configuration statements for RIP and OSPF . 538

Interfaces supported by OMPROUTE . 548

Chapter 12. SNALINK . 553
SNALINK cataloged procedure (SNALPROC) . 553
SNALINK parameters . 553

Chapter 13. SNALINK LU6.2 . 555
SNALINK LU6.2 cataloged procedure (LU62PROC) . 555
Sample SNALINK LU6.2 configuration data set (LU62CFG) 556
Summary of SNALINK LU6.2 configuration statements . 557
SNALINK LU6.2 configuration statements. 557

Statement syntax . 557
Statement ordering . 558
BUFFERS. 558
DEST . 559
LINK . 560
TRACE . 561
VTAM. 561

Chapter 14. X.25 NPSI. 563
X.25 NPSI cataloged procedure (X25PROC) . 563
Sample X.25 NPSI server configuration data set (X25CONF) 563
Summary of X.25 NPSI server configuration statements . 565
X.25 NPSI server configuration statements. 565

Statement syntax . 565
ALTLINK statement . 566
BUFFERS statement . 567
DEST statement . 568
FAST statement. 569
LINK statement . 569
OPTIONS statement . 570
TIMERS statement. 572
TRACE statement . 572
VTAM statement . 574

Chapter 15. NCPROUTE server . 575
Related topics . 575
NCPROUTE gateways statements and syntax rules . 575

GATEWAY statement . 576
OPTIONS statement . 577

NCPROUTE cataloged procedure (NCPROUT) . 582
Specifying the NCPROUTE parameters . 583
NCPROUTE profile data set . 584

Chapter 16. TN3270E Telnet server . 587
Telnet profile statements overview . 587

TELNETGLOBALS statements. 587
TELNETPARMS statements. 587
PARMSGROUP statements . 587
BEGINVTAM block . 587
INCLUDE statement . 588
Telnet statement syntax . 588

Telnet parameter statements in the Telnet profile . 590
Rules for Telnet parameter statements and security parameters 593
BINARYLINEMODE statement . 594
CHECKCLIENTCONN statement . 594
CLIENTAUTH statement . 595
CODEPAGE statement . 596

Contents vii

CONNTYPE statement . 597
CRLLDAPSERVER statement . 598
DBCSTRACE statement . 599
DBCSTRANSFORM statement . 599
DEBUG statement . 600
DISABLESGA statement . 602
DROPASSOCPRINTER statement. 602
ENCRYPTION statement . 602
EXPRESSLOGON statement . 603
FORMAT statement . 604
FULLDATATRACE statement . 605
INACTIVE statement . 605
INCLUDE statement . 606
KEEPINACTIVE statement . 606
KEEPLU statement . 607
KEYRING statement . 607
LUSESSIONPEND statement . 609
MAXRECEIVE statement . 609
MAXREQSESS statement . 610
MAXRUCHAIN statement . 610
MAXTCPSENDQ statement . 611
MAXVTAMSENDQ statement . 611
MSG07 statement . 612
NACUSERID statement . 612
OLDSOLICITOR statement . 613
PASSWORDPHRASE statement . 613
PORT, SECUREPORT, and TTLSPORT statements . 614
PROFILEINACTIVE statement . 615
PRTINACTIVE statement . 616
REFRESHMSG10 statement. 616
SCANINTERVAL and TIMEMARK statements . 617
SEQUENTIALLU statement . 617
SGA statement . 618
SHAREACB statement . 618
SIMCLIENTLU statement . 619
SINGLEATTN statement . 619
SMFINIT and SMFTERM statements . 620
SMFPROFILE statement . 621
SNAEXT statement . 622
SSLTIMEOUT statement . 622
SSLV2 and NOSSLV2 statements . 623
SSLV3 and NOSSLV3 statements . 623
TCPIPJOBNAME statement . 624
TELNETDEVICE statement . 624
TESTMODE statement . 626
TIMEMARK statement . 626
TKOGENLU, TKOGENLURECON, and NOTKO statements. 627
TKOSPECLU, TKOSPECLURECON, and NOTKO statements 628
TN3270E statement . 630
TNSACONFIG statement . 631
UNLOCKKEYBOARD statement . 632
XCFGROUP statement . 633

Telnet mapping statements in the Telnet profile . 635
Rules for LU name specification . 637
Client identifier types and definitions . 638
Rules for client identifier specification . 639
Rules for host name specification . 639
ALLOWAPPL statement . 640
DEFAULTAPPL statement . 641
DEFAULTLUS or SDEFAULTLUS statement . 642
DEFAULTLUSSPEC or SDEFAULTLUSSPEC statement 643

viii z/OS V2R1.0 Communications Server: IP Configuration Reference

||

DEFAULTPRT or SDEFAULTPRT statement . 644
DEFAULTPRTSPEC or SDEFAULTPRTSPEC statement 645
DESTIPGROUP statement . 645
HNGROUP statement . 646
INTERPTCP statement . 647
IPGROUP statement . 648
LINEMODEAPPL statement . 649
LINKGROUP statement . 650
LUGROUP or SLUGROUP statement . 651
LUMAP statement. 652
MONITORGROUP statement . 654
MONITORMAP statement . 655
PARMSGROUP statement . 656
PARMSMAP statement . 656
PORT statement . 657
PRTDEFAULTAPPL statement . 657
PRTGROUP or SPRTGROUP statement . 658
PRTMAP statement . 660
RESTRICTAPPL statement . 661
USERGROUP statement . 663
USSTCP statement. 664

Telnet USS table setup . 665
General usage rules for Telnet USS macroinstructions . 665
USSCMD macroinstruction . 665
USSMSG macroinstruction . 667
USSPARM macroinstruction . 670
USSTAB macroinstruction . 672
USSEND macroinstruction . 673

Telnet INTERPRET table setup . 674
General usage rules for Telnet INTERPRET macroinstructions 674
INTAB macroinstruction. 674
LOGCHAR macroinstruction . 675
ENDINTAB macroinstruction . 679

Telnet LU exit setup . 679
Telnet LU exit setup operation. 680
Requirements for LU exit routines . 682
LU exit routine parameter list . 683

Chapter 17. EXPRESS LOGON using DCAS 685
Starting Digital Certificate Access Server . 685
Digital Certificate Access Server (DCAS) sample procedure (EZADCASP) 686
Digital Certificate Access Server (DCAS) environment variables 687
PassTicket server configuration file processing when using IBM System SSL 687
Digital Certificate Access Server (DCAS) configuration file keywords and parameters 688

CLIENTAUTH . 688
IPADDR . 689
KEYRING . 689
LDAPPORT . 690
LDAPSERVER . 690
PORT . 690
SAFKEYRING . 691
SERVERTYPE . 691
STASHFILE . 693
TCPIP . 693
TLSMECHANISM . 694
TLSV1ONLY . 694
V3CIPHER . 694
Steps for setting up RACF for Digital Certificate Access Server (DCAS) 695

Contents ix

|

||
||

Chapter 18. File Transfer Protocol . 697
FTP server cataloged procedure (FTPD) . 697
FTP server cataloged procedure (FTPD) parameters . 699
FTP server user exits . 700

Sample server user exits . 701
The FTCHKCMD user exit . 702
The FTPOSTPR user exit . 703
The FTCHKIP user exit . 706
The FTCHKPWD user exit . 707
The FTCHKJES user exit . 708
The FTP server SMF user exit . 710

FTP client user exits . 710
Sample client user exits . 712
The EZAFCCMD user exit . 712
The EZAFCREP user exit . 718
Using both EZAFCCMD and EZAFCREP user exits . 720

FTP configuration statements in FTP.DATA . 721
Summary of FTP client and server configuration statements 722

FTP.DATA data set statements . 737
ACCESSERRORMSGS (FTP server) statement . 737
ADMINEMAILADDRESS (FTP server) statement . 738
ANONYMOUS (FTP server) statement . 738
ANONYMOUSFILEACCESS (FTP server) statement . 741
ANONYMOUSFILETYPEJES (FTP server) statement . 742
ANONYMOUSFILETYPESEQ (FTP server) statement . 743
ANONYMOUSFILETYPESQL (FTP server) statement . 743
ANONYMOUSFTPLOGGING (FTP server) statement . 744
ANONYMOUSHFSDIRMODE (FTP server) statement . 745
ANONYMOUSHFSFILEMODE (FTP server) statement . 746
ANONYMOUSHFSINFO (FTP server) statement . 747
ANONYMOUSLEVEL (FTP server) statement . 748
ANONYMOUSLOGINMSG (FTP server) statement . 750
ANONYMOUSMVSINFO (FTP server) statement . 751
APPLNAME (FTP server) statement . 752
ASATRANS (FTP client and server) statement . 753
AUTOMOUNT (FTP client and server) statement . 753
AUTORECALL (FTP client and server) statement . 754
AUTOTAPEMOUNT (FTP client and server) statement . 755
BANNER (FTP server) statement . 756
BLKSIZE (FTP client and server) statement . 756
BUFNO (FTP client and server) statement . 758
CCONNTIME (FTP client) statement . 758
CCTRANS (FTP client) statement. 758
CCXLATE (FTP server) statement . 759
CHKCONFIDENCE statement (FTP client and server) statement 760
CHKPTFLUSH (FTP client) statement . 761
CHKPTINT (FTP client and server) statement . 762
CHKPTPREFIX (FTP client) statement . 764
CIPHERSUITE (FTP client and server) statement . 765
CLIENTERRCODES (FTP client) statement . 767
CLIENTEXIT (FTP client) statement . 767
CONDDISP (FTP client and server) statement . 768
CTRLCONN (FTP client and server) statement . 769
DATACLASS (FTP client and server) statement . 770
DATACTTIME (FTP client) statement . 772
DATAKEEPALIVE (FTP client and server) statement . 773
DATATIMEOUT (FTP server) statement . 774
DB2 (FTP client and server) statement . 774
DB2PLAN (FTP cilent and server) statement . 775
DBSUB (FTP client and server) statement . 776
DCBDSN (FTP client and server) statement . 776

x z/OS V2R1.0 Communications Server: IP Configuration Reference

||

DCONNTIME (FTP client and server) statement. 777
DEBUG (FTP client and server) statement . 778
DEBUGONSITE (FTP server) statement. 780
DEST (FTP server) statement . 780
DIRECTORY (FTP client and server) statement . 781
DIRECTORYMODE (FTP client and server) statement . 782
DSNTYPE (FTP client and server) statement . 783
DSWAITTIME (FTP client and server) statement. 784
DSWAITTIMEREPLY (FTP server) statement . 785
DUMP (FTP client and server) statement . 786
DUMPONSITE (FTP server) statement . 787
EATTR (FTP client and server) statement . 788
EMAILADDRCHECK (FTP server) statement. 789
ENCODING (FTP client and server) statement . 790
EPSV4 (FTP client) statement . 791
EXTENSIONS (FTP client and server) statement . 792
FIFOIOTIME (FTP client and server) statement . 794
FIFOOPENTIME (FTP client and server) statement . 795
FILETYPE (FTP client and server) statement . 796
FTPKEEPALIVE (FTP client and server) statement . 797
FTPLOGGING (FTP server) statement . 797
FWFRIENDLY (FTP client) statement . 799
HFSINFO (FTP server) statement . 799
INACTIVE (FTP Server) statement . 800
INACTTIME (FTP client) statement . 801
ISPFSTATS (FTP client and server) statement . 802
JESENTRYLIMIT (FTP server) statement . 802
JESGETBYDSN (FTP server) statement . 803
JESINTERFACELEVEL (FTP server) statement . 804
JESLRECL (FTP server) statement . 806
JESPUTGETTO (FTP server) statement . 807
JESRECFM (FTP server) statement . 808
KEYRING (FTP client and server) statement . 808
LISTLEVEL (FTP server) statement . 809
LISTSUBDIR (FTP client and server) statement . 810
LOGCLIENTERR (FTP client) statement . 812
LOGINMSG (FTP server) statement . 813
LRECL (FTP client and server) statement . 813
MBDATACONN (FTP client and server) statement . 815
MBREQUIRELASTEOL (FTP client and server) statement 816
MBSENDEOL statement (FTP client and server) statement 817
MGMTCLASS (FTP client and server) statement. 818
MIGRATEVOL (FTP client and server) statement . 819
MVSINFO (FTP server) statement . 820
MVSURLKEY (FTP server) statement . 820
MYOPENTIME (FTP client) statement . 821
NETRCLEVEL (FTP client) statement . 821
NONSWAPD (FTP server) statement . 822
PASSIVEDATACONN (FTP server) statement . 823
PASSIVEDATAPORTS (FTP server) statement . 824
PASSIVEIGNOREADDR (FTP client) statement . 824
PASSPHRASE (FTP server) statement . 825
PDSTYPE (FTP client and server) statement . 826
PORTCOMMAND (FTP server) statement . 827
PORTCOMMANDIPADDR (FTP server) statement . 828
PORTCOMMANDPORT (FTP server) statement . 828
PORTOFENTRY4 (FTP server) statement . 829
PRIMARY (FTP client and server) statement . 830
PROGRESS (FTP client) statement . 831
QUOTESOVERRIDE (FTP client and server) statement . 831
RDW (FTP client and server) statement. 832

Contents xi

RECFM (FTP client and server) statement . 833
REMOVEINBEOF (FTP client and server) statement . 835
REPLY226 (FTP server) statement. 835
REPLYSECURITYLEVEL (FTP server) statement . 836
RESTGET (FTP client) statement . 837
RESTPUT (FTP server) statement . 838
RETPD (FTP client and server) statement . 838
SBDATACONN (FTP client and server) statement . 840
SBSENDEOL statement (FTP client and server) statement. 841
SBSUB (FTP client and server) statement . 843
SBSUBCHAR (FTP client and server) statement . 844
SBTRANS (FTP client) statement . 844
SECONDARY (FTP client and server) statement . 845
SECURE_CTRLCONN (FTP client and server) statement . 846
SECURE_DATACONN (FTP client and server) statement . 847
SECURE_FTP (FTP client and server) statement . 849
SECURE_HOSTNAME (FTP client) statement . 851
SECUREIMPLICITZOS (FTP client and server) statement . 851
SECURE_LOGIN (FTP server) statement . 852
SECURE_MECHANISM (FTP client) statement . 854
SECURE_PASSWORD (FTP server) statement . 855
SECURE_PASSWORD_KERBEROS (FTP server) statement 856
SECURE_PBSZ (FTP client and server) statement . 858
SEQNUMSUPPORT (FTP client) statement . 859
SMF (FTP server) statement . 860
SMFAPPE (FTP server) statement. 862
SMFDCFG (FTP server) statement . 863
SMFDEL (FTP server) statement . 864
SMFEXIT (FTP server) statement . 865
SMFJES (FTP server) statement . 866
SMFLOGN (FTP server) statement . 867
SMFREN (FTP server) statement . 868
SMFRETR (FTP server) statement. 869
SMFSQL (FTP server) statement . 870
SMFSTOR (FTP server) statement. 871
SOCKSCONFIGFILE (FTP client) statement . 872
SPACETYPE (FTP client and server) statement . 873
SPREAD (FTP client and server) statement . 874
SQLCOL (FTP client and server) statement . 874
SSLV3 (FTP client and server connection) statement . 875
STARTDIRECTORY (FTP server) statement . 876
STORCLASS (FTP client and server) statement . 877
SUPPRESSIGNOREWARNINGS (FTP client and server) statement. 877
TAPEREADSTREAM (FTP server) statement . 878
TLSMECHANISM (FTP client and server) statement . 879
TLSPORT (FTP client and server) statement . 880
TLSRFCLEVEL (FTP client and server) statement . 880
TLSTIMEOUT (FTP client and server) statement. 882
TRACE (FTP client and server) statement . 882
TRACECAPI (FTP client) statement . 883
TRAILINGBLANKS (FTP client and server) statement . 883
TRUNCATE (FTP client and server) statement . 884
UCOUNT (FTP client and server) statement . 885
UCSHOSTCS (FTP client and server) statement . 886
UCSSUB (FTP client and server) statement . 886
UCSTRUNC (FTP client and server) statement . 887
UMASK (FTP client and server) statement. 887
UNICODEFILESYSTEMBOM (FTP client and server) statement. 888
UNITNAME (FTP client and server) statement . 890
UNIXFILETYPE (FTP client and server) statement . 891
VCOUNT (FTP client and server) statement . 892

xii z/OS V2R1.0 Communications Server: IP Configuration Reference

||

VERIFYUSER (FTP server) statement . 893
VOLUME (FTP client and server) statement . 895
WRAPRECORD (FTP client and server) statement . 896
WRTAPEFASTIO (FTP client and server) statement . 896
XLATE (FTP server) statement. 897
FTP server environment variables . 898
SOCKS configuration statements in SOCKSCONFIGFILE . 898

DIRECT statement. 899
SOCKD statement . 900

Chapter 19. Trivial file transfer protocol . 903
Starting TFTPD as a procedure . 905
Step for starting the TFTP server . 907
Step for stopping the TFTP server . 907

Chapter 20. Syslog daemon . 909
Syslog daemon files . 909
Starting syslogd with a cataloged procedure . 909
Starting syslogd from the UNIX shell . 911
Syslogd environment variables . 914
Syslogd configuration statements . 915

Global syslogd configuration statements . 916
Syslogd rule configuration statement . 919
Usage notes for syslogd . 924
Syntax. 926
Parameters . 927

Syslogd browser tool . 928
Providing library access . 928
Adding the syslogd browser to the ISPF primary option menu 929

Chapter 21. Policy Agent and policy applications 931
Policy configuration files . 931

Policy Agent configuration files overview . 931
Policy Agent configuration statements overview. 932
General syntax rules for Policy Agent . 933

Policy Agent general configuration file statements . 943
AutoMonitorApps statement . 950
AutoMonitorParms statement . 954
ClientConnection statement . 955
Codepage statement . 956
CommonIDSConfig statement . 957
CommonIPSecConfig statement . 958
CommonRoutingConfig statement . 959
CommonTTLSConfig statement . 960
DynamicConfigPolicyLoad statement . 961
IDSConfig statement . 967
IPSecConfig statement . 969
LogLevel statement . 970
PolicyPerfMonitorForSDR statement . 971
PolicyPerformanceCollection statement . 974
PolicyServer statement . 977
QOSConfig statement . 981
ReadFromDirectory statement . 981
RoutingConfig statement . 987
ServerConnection statement . 988
ServicesConnection statement . 993
SetSubnetPrioTosMask statement . 996
TcpImage and PEPInstance statement . 999
TTLSConfig statement . 1001

AT-TLS policy statements . 1003

Contents xiii

TTLSCipherParms statement . 1004
TTLSConnectionAction statement . 1009
TTLSConnectionAdvancedParms statement . 1012
TTLSEnvironmentAction statement . 1017
TTLSEnvironmentAdvancedParms statement . 1020
TTLSGroupAction statement . 1028
TTLSGroupAdvancedParms statement . 1030
TTLSGskAdvancedParms statement . 1032
TTLSGskLdapParms statement . 1033
TTLSKeyringParms statement . 1035
TTLSRule statement . 1036
TTLSSignatureParms statement . 1041

IDS policy statements . 1043
IDSAction statement . 1043
IDSAttackCondition statement . 1046
IDSExclusion statement . 1055
IDSReportSet statement . 1057
IDSRule statement . 1060
IDSScanEventCondition statement . 1063
IDSScanExclusion statement . 1065
IDSScanGlobalCondition statement . 1067
IDSTRCondition statement . 1068

IPSec policy statements. 1071
IpDataOffer statement . 1072
IpDynVpnAction statement . 1077
IpFilterGroup statement . 1083
IpFilterPolicy statement . 1084
IpFilterRule statement . 1087
IpGenericFilterAction statement . 1091
IpLocalStartAction statement . 1093
IpManVpnAction statement . 1098
IpService statement . 1106
IpServiceGroup statement . 1111
KeyExchangeAction statement . 1111
KeyExchangeGroup statement . 1119
KeyExchangeOffer statement . 1120
KeyExchangePolicy statement . 1126
KeyExchangeRule statement . 1131
LocalDynVpnGroup statement . 1133
LocalDynVpnPolicy statement . 1134
LocalDynVpnRule statement . 1135
LocalSecurityEndpoint statement . 1138
RemoteIdentity statement . 1144
RemoteSecurityEndpoint statement . 1146

Policy-based routing policy statements . 1151
RouteTable statement . 1152
RoutingAction statement . 1163
RoutingRule statement . 1164

QoS policy statements . 1168
PolicyAction statement . 1168
PolicyRule statement . 1176
ServiceCategories statement . 1183
ServicePolicyRules statement . 1187

Reusable policy statements . 1191
IpAddr statement . 1191
IpAddrGroup statement . 1192
IpAddrSet statement . 1193
IpOptionGroup statement . 1195
IpOptionRange statement . 1195
IpProtocolGroup statement . 1196
IpProtocolRange statement . 1197

xiv z/OS V2R1.0 Communications Server: IP Configuration Reference

IpTimeCondition statement . 1198
Ipv6NextHdrGroup statement . 1200
Ipv6NextHdrRange statement . 1200
PortGroup statement . 1201
PortRange statement . 1202
TrafficDescriptor statement . 1203
TrafficDescriptorGroup statement . 1205

Policy Agent search order . 1206
Starting Policy Agent from the z/OS shell . 1206
Starting Policy Agent as a started task. 1209
Policy Agent environment variables . 1212
Starting the network SLAPM2 subagent from the z/OS shell 1212
Starting the network SLAPM2 subagent as a started task 1214
Network SLAPM2 subagent environment variables . 1216
Starting the traffic regulation manager daemon (TRMD) from the z/OS shell. 1216
Starting the traffic regulation manager daemon (TRMD) as a started task 1217

Chapter 22. RSVP Agent . 1219
RSVP Agent configuration file . 1219

LogLevel statement . 1219
TcpImage statement . 1220
Interface statement . 1220
RSVP statement . 1221

RSVPD.CONF search order . 1222
Starting RSVP from the z/OS shell . 1223
Starting RSVP as a started task . 1223

Chapter 23. Intrusion detection services policy 1225
IDS policies defined in IDS configuration files . 1225
IDS Policies defined in LDAP . 1225

Chapter 24. Simple Network Management Protocol. 1241
SNMP agent (OSNMPD) . 1241

Starting OSNMPD from MVS . 1241
Sample SNMP agent cataloged procedure . 1241
Starting OSNMPD from the z/OS UNIX System Services shell 1243
OSNMPD parameters . 1243
OSNMPD environment variables . 1246
OSNMPD.DATA statement syntax . 1247
OSNMPD.DATA search order . 1247
OSNMPD.DATA example . 1248
PW.SRC statement syntax . 1248
PW.SRC search order . 1249
SNMPTRAP.DEST statement syntax . 1249
SNMPTRAP.DEST search order . 1250
SNMPD.CONF search order . 1250
SNMPD.CONF statements. 1250
Steps for configuring the SNMP agent for community-based security and SNMPv3 user-based security . . . 1252
Coding the SNMPD.CONF entries . 1255
SNMPD.CONF sample . 1272
Migrating the PW.SRC file and SNMPTRAP.DEST file to the SNMPD.CONF file 1274
SNMPD.BOOTS statement syntax . 1275
SNMPD.BOOTS search order . 1276

SNMP query engine (SNMPQE) . 1276
SNMP query engine cataloged procedure (SNMPPROC). 1276
Specifying the SNMPQE parameters . 1277
SNMP parameter data set (SNMPARMS) sample . 1278
Specifying the SNMPARMS parameters . 1279
MIBDESC.DATA statement . 1280

z/OS UNIX snmp command . 1280

Contents xv

Environment variables . 1281
OSNMP.CONF search order . 1281
OSNMP.CONF statement syntax . 1281
OSNMP.CONF sample . 1284
MIBS.DATA statement syntax . 1285
MIBS.DATA search order . 1286

TRAPFWD daemon . 1286
Starting TRAPFWD from an MVS console . 1286
Specifying TRAPFWD parameters . 1287
TRAPFWD environment variables . 1288
Starting TRAPFWD from the UNIX shell . 1288
TRAPFWD.CONF statement syntax . 1288
TRAPFWD.CONF search order . 1289
TRAPFWD examples . 1289

Chapter 25. Remote print server . 1291
LPD server cataloged procedure (LPSPROC) . 1291
Sample LPD server configuration data set (LPDDATA) . 1292
Specifying LPD server parameters . 1294
Summary of LPD server configuration statements . 1295
LPD server configuration data set statements . 1295

Syntax rules . 1295
DEBUG statement . 1295
JOBPACING statement . 1296
OBEY statement . 1296
SERVICE statement . 1297
STEPLIMIT statement . 1306
UNIT statement . 1307
VOLUME statement . 1307

Chapter 26. PORTMAP and UNIX PORTMAP. 1309
PORTMAP cataloged procedure (PORTPROC) . 1309
UNIX PORTMAP cataloged procedure (OPORTRPC) . 1309

Chapter 27. RPCBIND . 1311
RPCBIND cataloged procedure . 1311

Chapter 28. NCS Interface . 1313
NRGLBD cataloged procedure (NRGLBD) . 1313
LLBD cataloged procedure (LLBD) . 1314

Chapter 29. SMTP server . 1315
SMTP cataloged procedure (SMTPPROC). 1315
Summary of SMTP configuration statements . 1316
Steps for using the SMTP server exits . 1319
SMTP configuration data set statements . 1325

ALTNJEDOMAIN statement . 1325
ALTTCPHOSTNAME statement . 1326
ATSIGN statement . 1326
BADSPOOLFILEID statement . 1327
CHECKSPOOLSIZE statement . 1327
DBCS statement . 1328
DEBUG statement . 1330
DELETEBADSPOOLFILE statement . 1330
DISALLOWCMD statement . 1331
EXITDIRECTION statement . 1332
FINISHOPEN statement . 1333
GATEWAY statement . 1333
INACTIVE statement . 1335
INBOUNDOPENLIMIT statement . 1335

xvi z/OS V2R1.0 Communications Server: IP Configuration Reference

IPMAILERADDRESS statement . 1336
IPMAILERNAME statement . 1337
LISTENONADDRESS statement . 1338
LOCALCLASS statement . 1339
LOCALFORMAT statement . 1339
LOG statement . 1340
MAILER statement . 1340
MAILFILEDSPREFIX statement . 1342
MAILFILEUNIT statement . 1343
MAILFILEVOLUME statement . 1343
MAXMAILBYTES statement . 1344
MAXMSGSENT statement. 1345
NJECLASS statement . 1346
NJEDOMAIN statement . 1346
NJEFORMAT statement . 1347
NJENODENAME statement . 1348
NOLOG statement . 1349
NOSOURCEROUTE statement . 1349
OUTBOUNDOPENLIMIT statement . 1351
PORT statement . 1351
POSTMASTER statement . 1352
RCPTREPLY452 statement. 1353
RCPTRESPONSEDELAY statement . 1353
REMOTEPORT statement . 1354
RESOLVERRETRYINT statement . 1355
RESOLVERUSAGE statement. 1355
RESTRICT statement . 1356
RETRYAGE statement . 1357
RETRYINT statement . 1358
REWRITE822HEADER statement . 1358
SECURE statement . 1359
SMSGAUTHLIST statement . 1360
SPOOLPOLLINTERVAL statement . 1361
STOPONRENF statement . 1361
TEMPERRORRETRIES statement . 1362
TIMEZONE statement . 1363
WARNINGAGE statement . 1364

Chapter 30. Communications Server SMTP application 1365
General syntax rules for CSSMTP . 1365
Starting CSSMTP . 1367
CSSMTP sample started procedure . 1368

CSSMTP configuration statements . 1370
CSSMTP environment variables . 1392
CSSMTP user exit version 3 . 1394

Registers at entry. 1397

Chapter 31. TIMED daemon . 1403
Starting TIMED from z/OS . 1403
Starting TIMED as a procedure . 1403

Chapter 32. SNTP daemon . 1405
Starting SNTPD from z/OS . 1405
Starting SNTPD as a procedure . 1406

Chapter 33. Remote execution server . 1407
Remote execution server cataloged procedure (RXPROC) 1407
Remote execution server parameters . 1409
RXUEXIT user exit sample . 1411
z/OS remote execution server . 1413

Contents xvii

z/OS UNIX System Services REXECD command (orexecd) 1413
z/OS UNIX System Services RSHD command (orshd) 1414
RSHD command (orshd) environment variables . 1415

Appendix A. Translation tables . 1417
SBCS translation table hierarchy. 1418

Customizing SBCS translation tables . 1420
Syntax rules for SBCS translation tables . 1421

SBCS country or region translation tables . 1422
ISO-8 and IBM PC interpretations for ASCII and EBCDIC code points 1424
DBCS translation table hierarchy . 1424

Usage notes for the TRANSLATE option for the FTP client 1426
Telnet 3270 DBCS transform mode codefiles . 1427
Steps for customizing DBCS translation tables . 1427
DBCS country or region translation tables . 1428
Syntax rules for DBCS translation tables . 1428
Using TSO CONVXLAT to convert translation tables to binary 1428
CONVXLAT examples . 1430

Appendix B. LDAP definition files . 1433
PAGENTAT sample . 1433
PAGENTOC sample . 1453

Appendix C. Related protocol specifications 1465

Appendix D. Accessibility . 1489

Notices . 1493
Policy for unsupported hardware . 1501
Trademarks . 1501

Bibliography . 1503

Index . 1507

Communicating your comments to IBM . 1539

xviii z/OS V2R1.0 Communications Server: IP Configuration Reference

Figures

1. Summary of DEVICE and LINK statements . 48
2. Example of the OSAENTA statement. 250
3. Sample TCP/IP start up proc . 345
4. /etc/proto or ETC.PROTO example . 347
5. Sample TCP/IP start up proc . 350
6. /etc/services example . 354
7. Sample TCPIP.DATA data set (TCPDATA) . 402
8. Advisor sample start procedure . 404
9. Advisor relationships . 406

10. Agent sample start procedure . 416
11. EZBADNR start procedure . 423
12. Configuration Relationships. 426
13. IKE cataloged procedure . 440
14. Sample IKE daemon configuration file . 458
15. NSSD cataloged procedure . 460
16. NSS server configuration file sample . 464
17. DMD cataloged procedure . 472
18. DMD configuration file sample . 481
19. OMPROUTE cataloged procedure. 484
20. SNALINK cataloged procedure (SNALPROC). 553
21. SNALINK LU6.2 cataloged procedure (LU62PROC). 556
22. Sample of LU62CFG . 557
23. X.25 NPSI cataloged procedure (X25PROC) . 563
24. Sample X.25 NPSI server configuration data set (X25CONF) 565
25. NCPROUTE catalogued procedure . 583
26. USS message layout in storage . 668
27. DCA server configuration file sample . 687
28. Sample start procedure for the daemon . 699
29. TFTPD sample [shipped as SEZAINST(TFTPD)] . 906
30. Syslogd sample cataloged procedure . 911
31. Menu section of the ISPF primary option menu for ISR@PRIM 930
32. Processing section of the ISPF Primary Option menu for ISR@PRIM 930
33. Example of the ServiceCategories Version 1 Action statement 1187
34. Example of the ServicePolicyRules Version 1 statement 1190
35. PAGENT sample procedure . 1212
36. NSLAPM2 sample procedure . 1215
37. TRMD sample procedure . 1218
38. RSVP sample procedure . 1224
39. OSNMPD MVS started procedure . 1243
40. OSNMPD.DATA example . 1248
41. Example of SNMPD.CONF statements for community-based security 1254
42. SNMPD.CONF sample . 1274
43. SNMP query engine cataloged procedure (SNMPPROC) 1277
44. SNMP parameter data set (SNMPARMS) sample . 1278
45. OSNMP.CONF sample . 1285
46. TRAPFWD cataloged procedure . 1287
47. LPD Server cataloged procedure (LPSPROC). 1292
48. Sample LPD server configuration data set (LPDDATA) 1294
49. PORTMAP cataloged procedure (PORTPROC) . 1309
50. UNIX PORTMAP cataloged procedure (OPORTRPC) 1310
51. Sample RPCBIND. 1311
52. NRGLBD cataloged procedure . 1313
53. LLBD cataloged procedure (LLBD) . 1314
54. SMTP cataloged procedure (SMTPPROC) . 1316
55. Example of a TCP-to-NJE mail gateway . 1334

© Copyright IBM Corp. 2000, 2015 xix

56. CSSMTP application sample start procedure . 1370
57. Code sample . 1391
58. Starting TIMED as a procedure . 1404
59. Starting SNTPD as a procedure . 1406
60. Remote execution cataloged procedure (RXPROC) . 1409
61. RXUEXIT user exit . 1413
62. ASCII-to-EBCDIC translation table . 1421
63. EBCDIC-to-ASCII translation table . 1421
64. PAGENTAT sample . 1453

xx z/OS V2R1.0 Communications Server: IP Configuration Reference

Tables

1. TCP/IP configuration data sets . 2
2. Summary of TCP/IP address space configuration statements 11
3. BSDROUTINGPARMS modification methods . 39
4. WLM Service Class Importance Levels . 130
5. IPv4 network interface types supported by TCP/IP . 142
6. IPv6 network interface types supported by TCP/IP . 142
7. Summary of resolver setup statements . 355
8. Summary of TCPIP.DATA configuration statements . 369
9. Refreshable TCPIP.DATA. 371

10. Advisor configuration file statements . 405
11. Agent configuration file statements . 416
12. Automated domain name registration application configuration (ADNR) file statements 424
13. debug_level values. 427
14. IKE environment variables . 441
15. IKE terminology: phase 1 and phase 2 . 442
16. Example of an IkeRetries retransmission scenario . 446
17. Example of an IkeRetries retransmission using maximum values scenario 446
18. Example of an IkeRetries retransmission using minimum values scenario 447
19. DN attribute names . 449
20. Unicode letter descriptions . 450
21. NSS server environment variables. 461
22. Cached data events that cause a reload . 466
23. Defense Manager daemon (DMD) environment variables 473
24. OMPROUTE environment variables . 485
25. Types of IPv4 interfaces (using DEVICE and LINK statements) supported by OMPROUTE 548
26. Types of IPv4 interfaces (using INTERFACE statement) supported by OMPROUTE 550
27. Types of IPv6 interfaces supported by OMPROUTE. 551
28. Summary of SNALINK LU6.2 configuration statements 557
29. Summary of X.25 NPSI server configuration statements 565
30. NCPRoute parameters and options . 576
31. Printable characters . 589
32. Restricted printable characters . 590
33. Telnet parameter statements . 590
34. SAF keyringname printable character exceptions . 608
35. Device type and logmode table . 625
36. Telnet mapping statements . 636
37. Object and Client Identifier group name printable character exceptions 637
38. Client identifier types and definitions . 638
39. Variables substituted for USSMSG . 668
40. Default table variable substitution . 669
41. Logon interpret routine parameter list . 678
42. DCAS environment variables . 687
43. User exit samples . 712
44. Parameter list passed to the EZAFCCMD user exit . 713
45. Parameter list passed to the EZAFCREP user exit . 718
46. FTP client search orders . 721
47. Summary of FTP client and server configuration statements 723
48. Supported code page pairs . 815
49. SECURE_PASSWORD statement value options . 856
50. SECURE_LOGIN statement value options . 856
51. User identity in the Kerberos ticket matches user ID on USER command 857
52. User identity in the Kerberos ticket does not match user ID on USER command 858
53. FTP server environment variables . 898
54. Syslogd environment variables . 914
55. syslogd facilities . 920

© Copyright IBM Corp. 2000, 2015 xxi

56. Statements, parameters, and parameter values that are no longer supported 935
57. Valid statements, parameters, and parameter values for z/OS V2R1 and later releases 935
58. Valid statements, parameters, and parameter values for z/OS V1R13 and later releases 937
59. Valid statements, parameters, and parameter values for z/OS V1R12 and later releases 939
60. Valid statements, parameters, and parameter values for z/OS V1R10 and later releases 941
61. Valid rules and restrictions for V1R12 and later releases 942
62. Valid rules and restrictions for V1R10 and later releases 943
63. Policy Agent main configuration file statements . 943
64. Policy Agent image configuration file statements. 944
65. Policy Agent configuration file policy statements. 945
66. JCL parameters . 953
67. Characters with special meaning . 963
68. Supported cipher constants for the ServerSSLV3CipherSuites parameter 992
69. V2CipherSuites . 1005
70. V3CipherSuites . 1006
71. ClientEcurves . 1042
72. SignaturePairs . 1043
73. IKE terminology: phase 1 and phase 2 . 1071
74. DN attribute names . 1141
75. Unicode letter descriptions. 1141
76. PolicyAction mapping to LDAP . 1175
77. PolicyRule mapping to LDAP. 1181
78. Policy Agent environment variables. 1212
79. Network SLAPM2 subagent environment variables 1216
80. IDS-specific condition attributes . 1227
81. IDS-specific action attributes . 1228
82. IDS scan global policies . 1231
83. IDS scan event policies (ICMP) . 1231
84. IDS scan event policies (TCP and UDP) . 1232
85. IDS attack policies (FLOOD) . 1233
86. IDS attack policies (MALFORMED) . 1234
87. IDS attack policies (FRAGMENT and REDIRECT) . 1235
88. IDS attack policies (RESTRICTED PROTOCOL and RAW) 1236
89. IDS attack policies (RESTRICTED OPTIONS) . 1237
90. IDS attack policies (PERPETUAL ECHO) . 1238
91. IDS TR policies . 1239
92. OSNMPD environment variables . 1247
93. MIBDESC environment variables . 1280
94. z/OS UNIX snmp command environment variables 1281
95. TRAPFWD environment variables . 1288
96. Summary of LPD server configuration statements . 1295
97. Summary of SMTP configuration statements . 1316
98. SMTP user exit settings . 1321
99. SMTP server exit input parameter list . 1321

100. Exit action codes and values (Part 1) . 1324
101. Exit action codes and values (Part 2) . 1325
102. Exit action codes and values (Part 3) . 1325
103. CSSMTP configuration statements . 1370
104. Code pages known to work with CSSMTP . 1392
105. USEREXIT comparisons. 1394
106. CSSMTP user exit settings . 1397
107. CSSMTP exit input parameter list . 1398
108. Register contents upon return from CSSMTP exit processing 1400
109. Action code and return code results . 1401
110. RSHD command (orshd) environment variables . 1415
111. SBCS translation table hierarchy . 1418
112. Translation table members for Telnet client and non-Telnet SBCS applications. 1422
113. SBCS translation table members for Telnet 3270 DBCS transform support 1423
114. ISO-8 interpretations for certain ASCII and EBCDIC code points 1424
115. IBM PC interpretations for certain ASCII and EBCDIC code points 1424
116. DBCS translation table hierarchy. 1424

xxii z/OS V2R1.0 Communications Server: IP Configuration Reference

117. Translation table members for DBCS applications . 1428

Tables xxiii

xxiv z/OS V2R1.0 Communications Server: IP Configuration Reference

About this document

This document contains reference material such as statement syntax, options,
keywords, and descriptions for z/OS® Communications Server. It also provides
detailed information for the statements used to configure address spaces, servers,
and applications. For detailed information about configuration-related tasks, see
z/OS Communications Server: IP Configuration Guide.

Use this document to perform the following tasks:
v Configure z/OS Communications Server
v Customize and administer z/OS Communications Server

The information in this document includes descriptions of support for both IPv4
and IPv6 networking protocols. Unless explicitly noted, descriptions of IP protocol
support concern IPv4. IPv6 support is qualified within the text.

This document refers to Communications Server data sets by their default SMP/E
distribution library name. Your installation might, however, have different names
for these data sets where allowed by SMP/E, your installation personnel, or
administration staff. For instance, this document refers to samples in SEZAINST
library as simply in SEZAINST. Your installation might choose a data set name of
SYS1.SEZAINST, CS390.SEZAINST or other high level qualifiers for the data set
name.

Who should read this document
This document is intended for programmers and system administrators who are
familiar with TCP/IP, MVS™, z/OS, UNIX, and the Time Sharing Option
Extensions (TSO/E).

How this document is organized
This document contains the following information:
v TCP/IP system information, including TCP/IP concepts and overview

information about the TCP/IP system.
v Server application information, including descriptions of server applications,

including cataloged procedures, and configuration statements.
v Appendixes provide additional details for the base and application information.
v “Notices” on page 1493 contains notices and trademarks used in this

information.
v “Bibliography” on page 1503 contains descriptions of the information in the

z/OS Communications Server library.

How to use this document
To use this document, you should be familiar with z/OS TCP/IP Services and the
TCP/IP suite of protocols.

© Copyright IBM Corp. 2000, 2015 xxv

Determining whether a publication is current
As needed, IBM updates its publications with new and changed information. For a
given publication, updates to the hardcopy and associated BookManager® softcopy
are usually available at the same time. Sometimes, however, the updates to
hardcopy and softcopy are available at different times. The following information
describes how to determine if you are looking at the most current copy of a
publication:
v At the end of a publication's order number there is a dash followed by two

digits, often referred to as the dash level. A publication with a higher dash level
is more current than one with a lower dash level. For example, in the
publication order number GC28-1747-07, the dash level 07 means that the
publication is more current than previous levels, such as 05 or 04.

v If a hardcopy publication and a softcopy publication have the same dash level, it
is possible that the softcopy publication is more current than the hardcopy
publication. Check the dates shown in the Summary of Changes. The softcopy
publication might have a more recently dated Summary of Changes than the
hardcopy publication.

v To compare softcopy publications, you can check the last 2 characters of the
publication's file name (also called the book name). The higher the number, the
more recent the publication. Also, next to the publication titles in the CD-ROM
booklet and the readme files, there is an asterisk (*) that indicates whether a
publication is new or changed.

How to contact IBM service
For immediate assistance, visit this website: http://www.software.ibm.com/
network/commserver/support/

Most problems can be resolved at this website, where you can submit questions
and problem reports electronically, and access a variety of diagnosis information.

For telephone assistance in problem diagnosis and resolution (in the United States
or Puerto Rico), call the IBM Software Support Center anytime (1-800-IBM-SERV).
You will receive a return call within 8 business hours (Monday – Friday, 8:00 a.m.
– 5:00 p.m., local customer time).

Outside the United States or Puerto Rico, contact your local IBM representative or
your authorized IBM supplier.

If you would like to provide feedback on this publication, see “Communicating
your comments to IBM” on page 1539.

Conventions and terminology that are used in this document
Commands in this book that can be used in both TSO and z/OS UNIX
environments use the following conventions:
v When describing how to use the command in a TSO environment, the command

is presented in uppercase (for example, NETSTAT).
v When describing how to use the command in a z/OS UNIX environment, the

command is presented in bold lowercase (for example, netstat).
v When referring to the command in a general way in text, the command is

presented with an initial capital letter (for example, Netstat).

xxvi z/OS V2R1.0 Communications Server: IP Configuration Reference

http://www.software.ibm.com/network/commserver/support/
http://www.software.ibm.com/network/commserver/support/

All the exit routines described in this document are installation-wide exit routines.
The installation-wide exit routines also called installation-wide exits, exit routines,
and exits throughout this document.

The TPF logon manager, although included with VTAM®, is an application
program; therefore, the logon manager is documented separately from VTAM.

Samples used in this book might not be updated for each release. Evaluate a
sample carefully before applying it to your system.

Note: In this information, you might see the following Shared Memory
Communications over Remote Direct Memory Access (SMC-R) terminology:
v RDMA network interface card (RNIC), which is used to refer to the IBM® 10GbE

RoCE Express® feature.
v Shared RoCE environment, which means that the 10GbE RoCE Express feature

operates on an IBM z13™ (z13) or later system, and that the feature can be used
concurrently, or shared, by multiple operating system instances. The RoCE
Express feature is considered to operate in a shared RoCE environment even if
you use it with a single operating system instance.

For definitions of the terms and abbreviations that are used in this document, you
can view the latest IBM terminology at the IBM Terminology website.

Clarification of notes

Information traditionally qualified as Notes is further qualified as follows:

Note Supplemental detail

Tip Offers shortcuts or alternative ways of performing an action; a hint

Guideline
Customary way to perform a procedure

Rule Something you must do; limitations on your actions

Restriction
Indicates certain conditions are not supported; limitations on a product or
facility

Requirement
Dependencies, prerequisites

Result Indicates the outcome

How to read a syntax diagram
This syntax information applies to all commands and statements that do not have
their own syntax described elsewhere.

The syntax diagram shows you how to specify a command so that the operating
system can correctly interpret what you type. Read the syntax diagram from left to
right and from top to bottom, following the horizontal line (the main path).

Symbols and punctuation

The following symbols are used in syntax diagrams:

About this document xxvii

|
|

|
|

|
|
|
|
|

http://www.ibm.com/software/globalization/terminology/index.jsp

Symbol
Description

�� Marks the beginning of the command syntax.

� Indicates that the command syntax is continued.

| Marks the beginning and end of a fragment or part of the command
syntax.

�� Marks the end of the command syntax.

You must include all punctuation such as colons, semicolons, commas, quotation
marks, and minus signs that are shown in the syntax diagram.

Commands

Commands that can be used in both TSO and z/OS UNIX environments use the
following conventions in syntax diagrams:
v When describing how to use the command in a TSO environment, the command

is presented in uppercase (for example, NETSTAT).
v When describing how to use the command in a z/OS UNIX environment, the

command is presented in bold lowercase (for example, netstat).

Parameters

The following types of parameters are used in syntax diagrams.

Required
Required parameters are displayed on the main path.

Optional
Optional parameters are displayed below the main path.

Default
Default parameters are displayed above the main path.

Parameters are classified as keywords or variables. For the TSO and MVS console
commands, the keywords are not case sensitive. You can code them in uppercase
or lowercase. If the keyword appears in the syntax diagram in both uppercase and
lowercase, the uppercase portion is the abbreviation for the keyword (for example,
OPERand).

For the z/OS UNIX commands, the keywords must be entered in the case
indicated in the syntax diagram.

Variables are italicized, appear in lowercase letters, and represent names or values
you supply. For example, a data set is a variable.

Syntax examples

In the following example, the PUt subcommand is a keyword. The required
variable parameter is local_file, and the optional variable parameter is foreign_file.
Replace the variable parameters with your own values.

�� PUt local_file
foreign_file

��

xxviii z/OS V2R1.0 Communications Server: IP Configuration Reference

Longer than one line

If a diagram is longer than one line, the first line ends with a single arrowhead
and the second line begins with a single arrowhead.

�� The first line of a syntax diagram that is longer than one line �

� The continuation of the subcommands, parameters, or both ��

Required operands

Required operands and values appear on the main path line. You must code
required operands and values.

�� REQUIRED_OPERAND ��

Optional values

Optional operands and values appear below the main path line. You do not have
to code optional operands and values.

��
OPERAND

��

Selecting more than one operand

An arrow returning to the left above a group of operands or values means more
than one can be selected, or a single one can be repeated.

��

�

,

REPEATABLE_OPERAND_OR_VALUE_1
REPEATABLE_OPERAND_OR_VALUE_2
REPEATABLE_OPER_OR_VALUE_1
REPEATABLE_OPER_OR_VALUE_2

��

Nonalphanumeric characters

If a diagram shows a character that is not alphanumeric (such as parentheses,
periods, commas, and equal signs), you must code the character as part of the
syntax. In this example, you must code OPERAND=(001,0.001).

�� OPERAND = (001 , 0.001) ��

Blank spaces in syntax diagrams

If a diagram shows a blank space, you must code the blank space as part of the
syntax. In this example, you must code OPERAND=(001 FIXED).

About this document xxix

�� OPERAND = (001 FIXED) ��

Default operands

Default operands and values appear above the main path line. TCP/IP uses the
default if you omit the operand entirely.

��
DEFAULT

OPERAND
��

Variables

A word in all lowercase italics is a variable. Where you see a variable in the syntax,
you must replace it with one of its allowable names or values, as defined in the
text.

�� variable ��

Syntax fragments

Some diagrams contain syntax fragments, which serve to break up diagrams that
are too long, too complex, or too repetitious. Syntax fragment names are in mixed
case and are shown in the diagram and in the heading of the fragment. The
fragment is placed below the main diagram.

�� Syntax fragment ��

Syntax fragment:

1ST_OPERAND , 2ND_OPERAND , 3RD_OPERAND

Prerequisite and related information
z/OS Communications Server function is described in the z/OS Communications
Server library. Descriptions of those documents are listed in “Bibliography” on
page 1503, in the back of this document.

Required information

Before using this product, you should be familiar with TCP/IP, VTAM, MVS, and
UNIX System Services.

xxx z/OS V2R1.0 Communications Server: IP Configuration Reference

Softcopy information

Softcopy publications are available in the following collection.

Titles Order
Number

Description

IBM System z Redbooks
Collection

SK3T-7876 The IBM Redbooks® publications selected for this CD series are
taken from the IBM Redbooks inventory of over 800 books. All the
Redbooks publications that are of interest to the System z® platform
professional are identified by their authors and are included in this
collection. The System z subject areas range from e-business
application development and enablement to hardware, networking,
Linux, solutions, security, parallel sysplex, and many others. For
more information about the Redbooks publications, see
http://www-03.ibm.com/systems/z/os/zos/zfavorites/.

Other documents

This information explains how z/OS references information in other documents.

When possible, this information uses cross-document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see z/OS Information Roadmap (SA23-2299). The Roadmap describes what level of
documents are supplied with each release of z/OS Communications Server, and
also describes each z/OS publication.

To find the complete z/OS library, visit the z/OS library in IBM Knowledge Center
(www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

Relevant RFCs are listed in an appendix of the IP documents. Architectural
specifications for the SNA protocol are listed in an appendix of the SNA
documents.

The following table lists documents that might be helpful to readers.

Title Number

DNS and BIND, Fifth Edition, O'Reilly Media, 2006 ISBN 13: 978-0596100575

Routing in the Internet, Second Edition, Christian Huitema (Prentice Hall 1999) ISBN 13: 978-0130226471

sendmail, Fourth Edition, Bryan Costales, Claus Assmann, George Jansen, and
Gregory Shapiro, O'Reilly Media, 2007

ISBN 13: 978-0596510299

SNA Formats GA27-3136

TCP/IP Illustrated, Volume 1: The Protocols, W. Richard Stevens, Addison-Wesley
Professional, 1994

ISBN 13: 978-0201633467

TCP/IP Illustrated, Volume 2: The Implementation, Gary R. Wright and W. Richard
Stevens, Addison-Wesley Professional, 1995

ISBN 13: 978-0201633542

TCP/IP Illustrated, Volume 3: TCP for Transactions, HTTP, NNTP, and the UNIX Domain
Protocols, W. Richard Stevens, Addison-Wesley Professional, 1996

ISBN 13: 978-0201634952

TCP/IP Tutorial and Technical Overview GG24-3376

Understanding LDAP SG24-4986

z/OS Cryptographic Services System SSL Programming SC14-7495

z/OS IBM Tivoli Directory Server Administration and Use for z/OS SC23-6788

About this document xxxi

|
|

http://www-03.ibm.com/systems/z/os/zos/zfavorites/
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www-01.ibm.com/support/knowledgecenter/

Title Number

z/OS JES2 Initialization and Tuning Guide SA32-0991

z/OS Problem Management SC23-6844

z/OS MVS Diagnosis: Reference GA32-0904

z/OS MVS Diagnosis: Tools and Service Aids GA32-0905

z/OS MVS Using the Subsystem Interface SA38-0679

z/OS V2R1 Program Directory GI11-9848

z/OS UNIX System Services Command Reference SA23-2280

z/OS UNIX System Services Planning GA32-0884

z/OS UNIX System Services Programming: Assembler Callable Services Reference SA23-2281

z/OS UNIX System Services User's Guide SA23-2279

z/OS XL C/C++ Runtime Library Reference SC14-7314

zEnterprise System and System z10 OSA-Express Customer's Guide and Reference SA22-7935

Redbooks publications

The following Redbooks publications might help you as you implement z/OS
Communications Server.

Title Number

IBM z/OS V2R1 Communications Server TCP/IP Implementation, Volume 1: Base
Functions, Connectivity, and Routing

SG24-8096

IBM z/OS V2R1 Communications Server TCP/IP Implementation, Volume 2: Standard
Applications

SG24-8097

IBM z/OS V2R1 Communications Server TCP/IP Implementation, Volume 3: High
Availability, Scalability, and Performance

SG24-8098

IBM z/OS V2R1 Communications Server TCP/IP Implementation, Volume 4: Security and
Policy-Based Networking

SG24-8099

IBM Communication Controller Migration Guide SG24-6298

IP Network Design Guide SG24-2580

Managing OS/390 TCP/IP with SNMP SG24-5866

Migrating Subarea Networks to an IP Infrastructure Using Enterprise Extender SG24-5957

SecureWay Communications Server for OS/390 V2R8 TCP/IP: Guide to Enhancements SG24-5631

SNA and TCP/IP Integration SG24-5291

TCP/IP in a Sysplex SG24-5235

TCP/IP Tutorial and Technical Overview GG24-3376

Threadsafe Considerations for CICS SG24-6351

Where to find related information on the Internet

z/OS

This site provides information about z/OS Communications Server release
availability, migration information, downloads, and links to information
about z/OS technology

http://www.ibm.com/systems/z/os/zos/

xxxii z/OS V2R1.0 Communications Server: IP Configuration Reference

|
|
|

|
|
|

|
|
|

|
|
|

http://www.ibm.com/systems/z/os/zos/

z/OS Internet Library

Use this site to view and download z/OS Communications Server
documentation

www.ibm.com/systems/z/os/zos/bkserv/

IBM Communications Server product

The primary home page for information about z/OS Communications
Server

http://www.software.ibm.com/network/commserver/

IBM Communications Server product support

Use this site to submit and track problems and search the z/OS
Communications Server knowledge base for Technotes, FAQs, white
papers, and other z/OS Communications Server information

http://www.software.ibm.com/network/commserver/support/

IBM Communications Server performance information

This site contains links to the most recent Communications Server
performance reports.

http://www.ibm.com/support/docview.wss?uid=swg27005524

IBM Systems Center publications

Use this site to view and order Redbooks publications, Redpapers™, and
Technotes

http://www.redbooks.ibm.com/

IBM Systems Center flashes

Search the Technical Sales Library for Techdocs (including Flashes,
presentations, Technotes, FAQs, white papers, Customer Support Plans,
and Skills Transfer information)

http://www.ibm.com/support/techdocs/atsmastr.nsf

Tivoli NetView for z/OS

Use this site to view and download product documentation about Tivoli®

NetView® for z/OS

http://www.ibm.com/support/knowledgecenter/SSZJDU/welcome

RFCs

Search for and view Request for Comments documents in this section of
the Internet Engineering Task Force website, with links to the RFC
repository and the IETF Working Groups web page

http://www.ietf.org/rfc.html

Internet drafts

View Internet-Drafts, which are working documents of the Internet
Engineering Task Force (IETF) and other groups, in this section of the
Internet Engineering Task Force website

http://www.ietf.org/ID.html

Information about web addresses can also be found in information APAR II11334.

About this document xxxiii

|

|
|

|

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.software.ibm.com/network/commserver/
http://www.software.ibm.com/network/commserver/support/
http://www.ibm.com/support/docview.wss?uid=swg27005524
http://www.redbooks.ibm.com
http://www.ibm.com/support/techdocs
http://www.ibm.com/support/knowledgecenter/SSZJDU/welcome
http://www.rfc-editor.org/rfc.html
http://www.ietf.org/ID.html

Note: Any pointers in this publication to websites are provided for convenience
only and do not serve as an endorsement of these websites.

DNS websites

For more information about DNS, see the following USENET news groups and
mailing addresses:

USENET news groups
comp.protocols.dns.bind

BIND mailing lists
https://lists.isc.org/mailman/listinfo

BIND Users

v Subscribe by sending mail to bind-users-request@isc.org.
v Submit questions or answers to this forum by sending mail to

bind-users@isc.org.

BIND 9 Users (This list might not be maintained indefinitely.)

v Subscribe by sending mail to bind9-users-request@isc.org.
v Submit questions or answers to this forum by sending mail to

bind9-users@isc.org.

The z/OS Basic Skills Information Center

The z/OS Basic Skills Information Center is a web-based information resource
intended to help users learn the basic concepts of z/OS, the operating system that
runs most of the IBM mainframe computers in use today. The Information Center
is designed to introduce a new generation of Information Technology professionals
to basic concepts and help them prepare for a career as a z/OS professional, such
as a z/OS systems programmer.

Specifically, the z/OS Basic Skills Information Center is intended to achieve the
following objectives:
v Provide basic education and information about z/OS without charge
v Shorten the time it takes for people to become productive on the mainframe
v Make it easier for new people to learn z/OS

To access the z/OS Basic Skills Information Center, open your web browser to the
following website, which is available to all users (no login required):
http://www-01.ibm.com/support/knowledgecenter/zosbasics/
com.ibm.zos.zbasics/homepage.html

xxxiv z/OS V2R1.0 Communications Server: IP Configuration Reference

https://lists.isc.org/mailman/listinfo
http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html
http://www-01.ibm.com/support/knowledgecenter/zosbasics/com.ibm.zos.zbasics/homepage.html

Summary of changes

This document contains terminology, maintenance, and editorial changes, including
changes to improve consistency and retrievability. Technical changes or additions
to the text and illustrations are indicated by a vertical line to the left of the change.

Changes made in z/OS Version 2 Release 1, as updated February 2015

This document contains information previously presented in z/OS
Communications Server: IP Configuration Reference, SC27-3651-02, which
supported z/OS Version 2 Release 1.

Changed information
v Shared Memory Communications over RDMA adapter (RoCE) virtualization, see

the following topics:
– “GLOBALCONFIG statement” on page 117
– “INTERFACE - IPAQENET OSA-Express QDIO interfaces statement” on page

145
– “INTERFACE - IPAQENET6 OSA-Express QDIO interfaces statement” on

page 161

Changes made in z/OS Version 2 Release 1, as updated September
2014

This document contains information previously presented in z/OS
Communications Server: IP Configuration Reference, SC27-3651-01, which
supported z/OS Version 2 Release 1.

Changes made in z/OS Version 2 Release 1, as updated December
2013

This document contains information previously presented in z/OS
Communications Server: IP Configuration Reference, SC27-3651-00, which
supported z/OS Version 2 Release 1.

Changed information
v AT-TLS enablement for DCAS, see Chapter 17, “EXPRESS LOGON using

DCAS,” on page 685.
v TLS security enhancements for policy agent, see the following topics:

– “ServerConnection statement” on page 988
– “ServicesConnection statement” on page 993

v Network security enhancements for SNMP, see the following topics:
– “USM_USER entry” on page 1256
– “SNMPD.CONF sample” on page 1272
– “OSNMP.CONF statement syntax” on page 1281
– “OSNMP.CONF sample” on page 1284

© Copyright IBM Corp. 2000, 2015 xxxv

Summary of changes for z/OS Version 2 Release 1
For specifics on the enhancements for z/OS Version 2, Release 1, see the following
publications:
v z/OS Summary of Message and Interface Changes
v z/OS Introduction and Release Guide
v z/OS Planning for Installation
v z/OS Migration

xxxvi z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 1. Configuration data sets and files

This topic contains information about the configuration data sets and files that are
used by the TCP/IP servers and functions.

This information refers to Communications Server data sets by their default
SMP/E distribution library name. However, your installation might have different
names for these data sets where allowed by SMP/E, your installation personnel, or
administration staff. For instance, this topic refers to samples in hlq.SEZAINST
library as simply in SEZAINST. Your installation might choose a data set name of
SYS1.SEZAINST, CS390.SEZAINST or other high level qualifiers for the data set
name.

The following terms are used in Table 1 on page 2:

hlq (high-level qualifier)
High-level qualifiers permit you to associate an application's configuration
data set with a particular job name or TSO user ID, or permit you to use a
default configuration data set for the application. The possible high-level
qualifiers are:

userid The TSO user ID which invoked the application

jobname
The application's batch JCL JOB name or the name of the
application's started procedure

default hlq
TCP/IP is distributed with a default hlq of TCPIP. To override the
default used by dynamic data set allocation, specify the
DATASETPREFIX statement in the TCPIP.DATA configuration file.
For most servers or functions, the data set whose high-level
qualifier matches the DATASETPREFIX value is the last data set in
the search order. The data set whose high-level qualifier matches
the DATASETPREFIX value is not the last in the search order for
TCPIP.DATA configuration information.

SEZAINST (member)
Indicates that the sample is a member of the SEZAINST data set. This hlq
value is the high-level qualifier specified during TCP/IP installation.

For some configuration information, the search order depends on the type of
application (z/OS UNIX or native MVS). For a description of these search orders,
see search orders used in the z/OS UNIX environment and search orders used in
the native MVS environment in z/OS Communications Server: IP Configuration
Guide.

TCP/IP configuration data sets
Table 1 on page 2 lists the configuration MVS data sets and z/OS UNIX files used
by the TCP/IP servers and functions. The table includes the name of the sample
data set or file that is provided by Communications Server, and the way the data
set or file is used.

© Copyright IBM Corp. 2000, 2015 1

Table 1. TCP/IP configuration data sets

Name (search order) Copied from Usage

ADNR.CONF

The MVS data set or z/OS UNIX
file specified on the CONFIG DD
statement in the automated
domain name registration started
procedure

SEZAINST(ADNRCNF) Contains automated domain
name registration
configuration statements.

CSSMTP.CONF

1. The MVS data set or z/OS
UNIX file referenced by the
CONFIG DD statement in the
CSSMTP application started
procedure

2. jobname.CSSMTP.CONF

SEZAINST(CSSMTPCF) Contains CSSMTP
application configuration
statements.

Defense Manager daemon (DMD)
configuration

1. The MVS data set or z/OS
UNIX file specified by the
DMD_FILE environment
variable

2. /etc/security/dmd.conf

/usr/lpp/tcpip/samples/dmd.conf Contains DMD
configuration statements.

Digital certificate access server
(DCAS) configuration

1. The MVS data set or z/OS
UNIX file that the
DCAS_CONFIG_FILE
environment variable specified

2. /etc/dcas.conf

3. tsouserid.DCAS.CONF

4. TCPIP.DCAS.CONF

No sample provided. Contains DCAS
configuration statements.

/etc/hosts No sample provided. One of the possible local
host files used for IPv4
name query. For
information about creating
/etc/hosts directory, see
z/OS Communications
Server: IP Configuration
Guide

hlq.ETC.IPNODES SEZAINST(EZBREIPN) One of the local host files
used for IPv6 name query,
or IPv4 and IPv6 name
query when
COMMONSEARCH is
specified in the resolver
setup file.

2 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 1. TCP/IP configuration data sets (continued)

Name (search order) Copied from Usage

/etc/mail/sendmail.cf /usr/lpp/tcpip/samples/sendmail/cf/sample.cf Provides configuration
information for the
sendmail daemon when
being used as a message
transfer agent (MTA). If
/etc/mail/submit.cf does
not exist, this data set also
provides configuration
information for the end-user
sendmail application when
being used as a mail user
agent (MUA).

/etc/mail/submit.cf /usr/lpp/tcpip/samples/sendmail/cf/submit.cf Provides configuration
information for the end-user
sendmail application when
being used as a mail user
agent (MUA).

/etc/mail/zOS.cf /usr/lpp/tcpip/samples/sendmail/cf/zOS.cf Provides z/OS-specific
information for the
sendmail daemon when
being used as a message
transfer agent (MTA).
Currently the file consists of
Secure Sockets Layer (SSL)
information only.

ETC.PROTO usr/lpp/tcpip/samples/protocol Used to map types of
protocol to integer values to
determine the availability of
the specified protocol.
Required by several z/OS
Communications Server
components. The search
order depends on the type
of application (z/OS UNIX
or native MVS).

ETC.RPC SEZAINST(ETCRPC) Defines RPC applications to
the Portmapper function.

ETC.SERVICES usr/lpp/tcpip/samples/services Establishes port numbers
for servers using TCP and
UDP. Required for z/OS
UNIX SNMP and
OMPROUTE (if the RIP
protocol is used). The search
order depends on the type
of application (z/OS UNIX
or native MVS).

/etc/syslog.conf /usr/lpp/tcpip/samples/syslog.conf Configuration file for the
syslog daemon (syslogd).

Chapter 1. Configuration data sets and files 3

Table 1. TCP/IP configuration data sets (continued)

Name (search order) Copied from Usage

FTP.DATA

1. -f command line parameter
(FTP client only)

2. The MVS data set or z/OS
UNIX file specified on the
SYSFTPD DD statement in the
FTP server started procedure

3. userid/jobname.FTP.DATA

4. /etc/ftp.data

5. SYS1.TCPPARMS(FTPDATA)

6. hlq.FTP.DATA

SEZAINST(FTCDATA) for the client and
(FTPSDATA) for the server

Overrides default FTP client
and server parameters for
the FTP server. For more
information about the hlq,
jobname, or userid values, see
Chapter 18, “File Transfer
Protocol,” on page 697.

HOSTS.LOCAL SEZAINST(HOSTS) Input data set to
MAKESITE for generation
of HOSTS.ADDRINFO and
HOSTS.SITEINFO.

IKE daemon configuration

1. The MVS data set or z/OS
UNIX file specified by the
IKED_FILE environment
variable

2. /etc/security/iked.conf

/usr/lpp/tcpip/samples/iked.conf Contains IKE configuration
statements.

INETD.CONF

The MVS data set or z/OS UNIX
file specified on the EXEC DD
statement in the INETD started
procedure

/samples/inetd.conf Provides configuration
management statements of
generic servers for the
Internet Daemon (InetD).
InetD handles rlogin,
telnetd, rshd, rexec, and
other applications. For more
information about InetD,
see z/OS UNIX System
Services Planning.

LBADV.CONF

The MVS data set or z/OS UNIX
file specified on the CONFIG DD
statement in the z/OS Load
Balancing Advisor started
procedure

SEZAINST(LBADVCNF) Contains z/OS Load
Balancing Advisor
configuration statements.

LBAGENT.CONF

The MVS data set or z/OS UNIX
file specified on the CONFIG DD
statement in the z/OS Load
Balancing Agent started
procedure.

SEZAINST(LBAGECNF) Contains z/OS Load
Balancing Agent
configuration statements.

LPD.CONFIG SEZAINST(LPDDATA) Configures the Line Printer
Daemon for the Remote
Print Server.

LU62CFG SEZAINST(LU62CFG) Provides configuration
parameters for the
SNALINK LU6.2 interface.

4 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 1. TCP/IP configuration data sets (continued)

Name (search order) Copied from Usage

MIBS.DATA

1. The name of a z/OS UNIX file
or an MVS data set specified
by the MIBS_DATA
environment variable

2. /etc/mibs.data z/OS UNIX
file

No sample provided Defines textual names for
MIB objects for the z/OS
UNIX snmp command.

Network security services (NSS)
server configuration

1. The name of a z/OS UNIX file
or MVS data set specified by
the NSSD_FILE environment
variable.

2. /etc/security/nssd.conf

/usr/lpp/tcpip/samples/nssd.conf Contains NSS server
configuration statements.

NPSIDATE SEZAINST(NPSIDATE) v Operates the TCP/IP X.25
NCP Packet Switching
Interface.

v NCP and X.25 definition
statements supplied as
input to the NCP/EP
Definition Facility (NDF)
procedure. See NCP X.25
Planning and Installation
for details.

NPSIGATE SEZAINST(NPSIGATE) v Supports GATE MCHs
for X.25 NCP Packet
Switching Interface.

v NCP and X.25 definition
statements supplied as
input to the NCP/EP
Definition Facility (NDF)
procedure. See Network
Control Program X.25
Planning and Installation
for details.

OMPROUTE configuration

1. The MVS data set or z/OS
UNIX file specified on the
OMPCFG DD statement in the
OMPROUTE started
procedure.

2. The MVS data set or z/OS
UNIX file specified by the
OMPROUTE_FILE
environment variable

3. /etc/omproute.conf

4. hlq.ETC.OMPROUTE.CONF

SEZAINST(EZAORCFG) Contains OMPROUTE
configuration statements.

OSNMP.CONF

1. /etc/osnmp.conf

2. /etc/snmpv2.conf

/usr/lpp/tcpip/samples/snmpv2.conf Defines target host security
parameters for the osnmp
command.

Chapter 1. Configuration data sets and files 5

Table 1. TCP/IP configuration data sets (continued)

Name (search order) Copied from Usage

OSNMPD.DATA

1. The MVS data set or z/OS
UNIX file specified by the
OSNMPD_DATA environment
variable

2. /etc/osnmpd.data file system
file

3. The MVS data set z/OS UNIX
file specified on the OSNMPD
DD statement in the agent
started procedure

4. jobname.OSNMPD.DATA,
where jobname is the name of
the job used to start the
SNMP agent

5. SYS1.TCPPARMS(OSNMPD)

6. hlq.OSNMPD.DATA, where hlq
either defaults to TCPIP or is
specified on the
DATASETPREFIX statement in
the TCPIP.DATA file being
used

/usr/lpp/tcpip/samples/osnmpd.data Used by SNMP for setting
values for selected MIB
objects.

PAGENT.CONF

1. File or data set specified with
-c startup option

2. File or data set specified with
PAGENT_CONFIG_FILE
environment variable

3. /etc/pagent.conf

/usr/lpp/tcpip/samples/pagent.conf Defines Policy Agent
configuration parameters
and optionally defines QoS
service policies (rules and
actions).

PROFILE.TCPIP

1. The MVS data set specified on
the PROFILE DD statement in
the TCP/IP stack started
procedure.

2. jobname.nodename.TCPIP

3. TCPIP.nodename.TCPIP

4. jobname.PROFILE.TCPIP

5. TCPIP.PROFILE.TCPIP

SEZAINST(SAMPPROF) Provides TCP/IP
initialization parameters
and specifications for
network interfaces and
routing.

6 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 1. TCP/IP configuration data sets (continued)

Name (search order) Copied from Usage

PW.SRC

1. The MVS data set or z/OS
UNIX file specified by the
PW_SRC environment variable

2. /etc/pw.src file system file

3. The MVS data set or z/OS
UNIX file specified on
SYSPWSRC DD statement in
the started agent procedure

4. jobname.PW.SRC, where
jobname is the name of the job
used to start the SNMP agent

5. SYS1.TCPPARMS(PWSRC)

6. hlq.PW.SRC, where hlq either
defaults to TCPIP or is
specified on the
DATASETPREFIX statement in
the TCPIP.DATA file being
used

No sample provided Defines a list of community
names used when accessing
objects on a destination
SNMP agent.

Resolver Setup File SEZAINST (RESSETUP) Provides configuration
statements for the resolver.

RSVPD.CONF

1. File or data set specified with
-c startup option

2. File or data set specified with
RSVPD_CONFIG_FILE
environment variable

3. /etc/rsvpd.conf

4. hlq.RSVPD.CONF

/usr/lpp/tcpip/samples/rsvpd.conf Defines RSVP Agent
configuration parameters.

SMTPCONF

The MVS data set referenced by
CONFIG DD statement in the
SMTP started procedure.

SEZAINST(SMTPCONF) Provides configuration
parameters for the Simple
Mail Transfer Protocol
(SMTP).

SMTPNOTE clist

System CLIST data set

SEZAINST(SMTPNOTE) Defines the note parameters
for Simple Mail Transfer
Protocol (SMTP) and the
CSSMTP application.

Chapter 1. Configuration data sets and files 7

Table 1. TCP/IP configuration data sets (continued)

Name (search order) Copied from Usage

SNMPD.BOOTS

1. The name of a z/OS UNIX file
system file or an MVS data set
specified by the
SNMPD_BOOTS environment
variable.

2. /etc/snmpd.boots

No sample provided Defines the SNMP agent
security and notification
destinations.
Note: If the
SNMPD.BOOTS file is not
provided, the SNMP agent
creates the file. If multiple
SNMPv3 agents are running
on the same MVS image,
use the environment
variable to specify different
SNMPD.BOOTS files for the
different agents. For
security reasons, ensure
unique engine IDs are used
for different SNMP agents.

SNMPD.CONF

1. The name of a z/OS UNIX file
system file or an MVS data set
specified by the
SNMPD_CONF environment
variable.

2. /etc/snmpd.conf

Note: The first file found in the
search order is used.

/usr/lpp/tcpip/samples/snmpd.conf Defines the SNMP agent
security and notification
destinations.
Note: If the SNMPD.CONF
file is found, the PW.SRC
file and the
SNMPTRAP.DEST files are
not used.

SNMPTRAP.DEST

1. The MVS data set or z/OS
UNIX file specified by the
SNMPTRAP_DEST
environment variable

2. /etc/snmptrap.dest file
system file

3. The MVS data set or z/OS
UNIX file specified on
SNMPTRAP DD statement in
the agent started procedure

4. jobname.SNMPTRAP.DEST,
where jobname is the name of
the job used to start the
SNMP agent

5.
SYS1.TCPPARMS(SNMPTRAP)

6. hlq.SNMPTRAP.DEST, where
hlq either defaults to TCPIP or
is specified on the
DATASETPREFIX statement in
the TCPIP.DATA file being
used

No sample provided Defines a list of managers
to which the SNMP agent
sends traps.

8 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 1. TCP/IP configuration data sets (continued)

Name (search order) Copied from Usage

TCPIP.DATA SEZAINST(TCPDATA) Provides parameters for
TCP/IP client programs.
The search order depends
on the type of application
(z/OS UNIX or native
MVS). See Chapter 5,
“Resolver setup and
TCPIP.DATA configuration
statements,” on page 355 for
more information.

TNDBCSCN

The MVS data set specified on the
TNDBCSCN DD statement in the
TN3270E Telnet server started
procedure

SEZAINST(TNDBCSCN) Provides configuration
parameters for Telnet 3270
Transform support.

TRAPFWD.CONF

1. A z/OS UNIX system file or
an MVS data set specified by
the TRAPFWD_CONF
environment variable

2. /etc/trapfwd.conf

No sample provided Defines addresses to which
the Trap Forwarder Daemon
forwards traps.
Note: If the environment
variable is set and if the file
specified by the
environment variable is not
found, the Trap Forwarder
daemon terminates.

VTAMLST

The VTAM definitions added to
the ATCCONxx member of the
MVS data set specified on the
VTAMLST DD statement in the
VTAM started procedure

SEZAINST(VTAMLST) Defines VTAM applications
and their characteristics.
Entries required for
TN3270E Telnet server,
SNALINK LU0, SNALINK
LU6.2, and X.25 NPSI
Server.

X25CONF

The MVS data set specified on the
X25IPI DD statement in the
X25PROC started procedure

SEZAINST(X25CONF) Provides configuration
parameters for the X.25
NCP Packet Switching
Interface.

X25VSVC

The VTAM switched major node
definition, added as a member of
the MVS data set specified on the
VTAMLST DD statement in the
VTAM started procedure

SEZAINST(X25VSVC) Provides switched virtual
circuit configuration for the
X.25 NCP Packet Switching
Interface.

Chapter 1. Configuration data sets and files 9

10 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration
statements

This topic contains the following information:
v “Summary of TCP/IP address space configuration statements”
v “PROFILE.TCPIP search order” on page 14
v “Statement syntax for configuration statements” on page 15
v Statements and descriptions

Configuring the stack for IPv6 is done in the BPXPRMxx member of
SYS1.PARMLIB. For more information about configuring the stack to support IPv6,
see z/OS Communications Server: IP Configuration Guide or z/OS
Communications Server: IPv6 Network and Application Design Guide.

Summary of TCP/IP address space configuration statements
Table 2 contains a brief description of each configuration statement, along with the
location of more information.

Table 2. Summary of TCP/IP address space configuration statements

Statement Description See

ARPAGE Alters the number of minutes before
an ARP table entry is deleted.

“ARPAGE statement” on page 16

ATMARPSV Defines the ATMARP server to resolve
ATMARP requests for a logical IP
subnetwork (LIS).

“ATMARPSV statement” on page 17

ATMLIS Describes the characteristics of an
ATM logical IP subnet (LIS).

“ATMLIS statement” on page 19

ATMPVC Describes a permanent virtual circuit
to be used by an ATM link.

“ATMPVC statement” on page 22

AUTOLOG Indicates which procedures should be
automatically started when TCP/IP is
started.

“AUTOLOG statement” on page 23

BEGINROUTES, ENDROUTES Defines main routing table entries in
standard Berkeley Software
Distribution (BSD) format for static
routes.

“BEGINROUTES statement” on page 28

BSDROUTINGPARMS Defines network interface information.
Used to provide interface-level
characteristics to interfaces used for
static routing or NCPROUTE.

“BSDROUTINGPARMS statement” on page
36

DEFADDRTABLE Defines the policy table for IPv6
default address selection.

“DEFADDRTABLE statement” on page 41

DELETE Removes an ATMARPSV, ATMLIS,
ATMPVC, device, link, port, or
portrange.

“DELETE statement” on page 43

© Copyright IBM Corp. 2000, 2015 11

Table 2. Summary of TCP/IP address space configuration statements (continued)

Statement Description See

DEVICE and LINK statements Defines an IPv4 device. To configure
your devices, add the appropriate
DEVICE and LINK statements to the
configuration data set. The LINK
statements show how to define a
network interface link associated with
the device and are included with the
DEVICE statement for that device
type.

“Summary of DEVICE and LINK
statements” on page 47

DEVICE and LINK ATM devices “DEVICE and LINK — ATM devices
statement” on page 52

DEVICE and LINK CLAW devices “DEVICE and LINK — CLAW devices
statement” on page 55

DEVICE and LINK CTC devices “DEVICE and LINK — CTC devices
statement” on page 60

DEVICE and LINK HYPERchannel A220 devices “DEVICE and LINK — HYPERchannel
A220 devices statement” on page 63

DEVICE and LINK LAN Channel Station and OSA
devices

“DEVICE and LINK — LAN Channel
Station and OSA devices statement” on
page 66

DEVICE and LINK MPCIPA devices “DEVICE and LINK — MPCIPA
OSA-Express QDIO devices statement” on
page 74

DEVICE and LINK MPCIPA HiperSockets™ devices “DEVICE and LINK — MPCIPA
HiperSockets devices statement” on page
85

DEVICE and LINK MPCOSA devices “DEVICE and LINK — MPCOSA devices
statement” on page 89

DEVICE and LINK MPCPTP devices

Used for:

v EE

v HPDT

v Communication between stacks

v XCF connections

“DEVICE and LINK — MPCPTP devices
statement” on page 92

DEVICE and LINK SNA LU0 links “DEVICE and LINK — SNA LU0 links
statement” on page 95

DEVICE and LINK SNA LU 6.2 links “DEVICE and LINK — SNA LU 6.2 links
statement” on page 98

DEVICE and LINK X.25 NPSI connections “DEVICE and LINK - X.25 NPSI
connections statement” on page 103

DEVICE and LINK Virtual devices “DEVICE and LINK — VIRTUAL devices
statement” on page 101

DEVICE and LINK 3745/46 Channel DLC devices “DEVICE and LINK — 3745/46 channel
DLC devices statement” on page 105

GATEWAY Defines main routing table entries for
static routes.

“GATEWAY statement” on page 109

GLOBALCONFIG Passes global configuration
parameters to TCP/IP.

“GLOBALCONFIG statement” on page 117

12 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 2. Summary of TCP/IP address space configuration statements (continued)

Statement Description See

HOME Provides a list of home addresses and
associated link names.

“HOME statement” on page 136

INCLUDE Causes another data set that contains
profile configuration statements to be
included at this point.

“INCLUDE statement” on page 141

INTERFACE statements Defines an IPv4 interface for
OSA-Express QDIO Ethernet,
HiperSockets, or static VIPA, or
defines an IPv6 interface.

“Summary of INTERFACE statements” on
page 141

INTERFACE IPAQENET interfaces

Specifies IPv4 OSA-Express QDIO
interfaces.

“INTERFACE - IPAQENET OSA-Express
QDIO interfaces statement” on page 145

INTERFACE IPAQENET6 interfaces

Specifies IPv6 OSA-Express QDIO
interfaces.

“INTERFACE - IPAQENET6 OSA-Express
QDIO interfaces statement” on page 161

INTERFACE IPAQIDIO interfaces

Configures IPv4 HiperSockets
connectivity.

“INTERFACE — IPAQIDIO HiperSockets
interfaces statement” on page 157

INTERFACE IPAQIDIO6 interfaces

Configures IPv6 HiperSockets
connectivity.

“INTERFACE — IPAQIDIO6 HiperSockets
interfaces statement” on page 177

INTERFACE LOOPBACK6 interface

Allows you to add additional IP
addresses for LOOPBACK6 in the
initial profile or in a data set used
with the VARY TCPIP,,OBEYFILE
command.

“INTERFACE — LOOPBACK6 interface
statement” on page 182

INTERFACE MPC Point-to-Point interfaces

Updated Data Link Control supports
IPv6 traffic.

“INTERFACE — MPCPTP6 interfaces
statement” on page 183

INTERFACE VIRTUAL interfaces

Specifies IPv4 static virtual interfaces.

“INTERFACE — VIRTUAL interfaces
statement” on page 160

INTERFACE VIRTUAL6 interfaces

Specifies IPv6 static virtual interfaces.

“INTERFACE — VIRTUAL6 interfaces
statement” on page 188

IPCONFIG Specifies IP configuration values. “IPCONFIG statement” on page 190

IPCONFIG6 Specifies IPv6 configuration values. “IPCONFIG6 statement” on page 206

IPSEC Specifies policy for the IP Security
function.

“IPSEC statement” on page 218

ITRACE Controls tracing for configuration, the
SNMP subagent, commands, and the
autolog subtask.

“ITRACE statement” on page 227

NETACCESS, ENDNETACCESS Configures network access. “NETACCESS statement” on page 229

NETMONITOR Activates or deactivates network
management programming interfaces.

“NETMONITOR statement” on page 234

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 13

Table 2. Summary of TCP/IP address space configuration statements (continued)

Statement Description See

OSAENTA Defines the conditions used to select
Ethernet frames from an OSA as
candidates for tracing and subsequent
analysis.

“OSAENTA statement” on page 241

PKTTRACE Defines the conditions used to select
IP packets as candidates for tracing
and subsequent analysis.

“PKTTRACE statement” on page 250

PORT Reserves a port for one or more given
job names or controls application
access to unreserved ports.

“PORT statement” on page 257

PORTRANGE Reserves a range of ports for one or
more job names.

“PORTRANGE statement” on page 266

PRIMARYINTERFACE Specifies which link is to be
considered the primary interface.

“PRIMARYINTERFACE statement” on page
270

SACONFIG Specifies parameters for the TCP/IP
SNMP subagent.

“SACONFIG statement” on page 271

SMFCONFIG Provides SMF logging for Telnet, FTP,
IPSec, TCP API, and TCP stack
activity.

“SMFCONFIG statement” on page 274

SMFPARMS Provides SMF logging for Telnet and
FTP client activity and TCP API
activity.

“SMFPARMS statement” on page 281

SOMAXCONN Specifies a maximum connection
length for the connection request
queues created by the socket call
listen().

“SOMAXCONN statement” on page 282

SRCIP Designates source IP addresses to be
used for outbound TCP connections
that are initiated by specified jobs or
destined for specified IP addresses,
networks, or subnets.

“SRCIP statement” on page 282

START Starts the specified device or interface. “START statement” on page 292

STOP Stops the specified device or interface. “STOP statement” on page 293

TCPCONFIG Specifies TCP parameters. “TCPCONFIG statement” on page 294

TRANSLATE Indicates the relationship between an
IP address and the network address.

“TRANSLATE statement” on page 301

UDPCONFIG Specifies UDP parameters. “UDPCONFIG statement” on page 304

VIPADYNAMIC,
ENDVIPADYNAMIC

Specifies a block of definitions related
to dynamic VIPAs. This includes
VIPABACKUP, VIPADEFINE,
VIPADELETE, VIPADISTRIBUTE,
VIPARANGE, and VIPASMPARMS.

“VIPADYNAMIC statement summary” on
page 306

PROFILE.TCPIP search order
The search order for accessing PROFILE.TCPIP information is as follows. The first
file found in the search order is used.
1. //PROFILE DD statement
2. jobname.nodename.TCPIP

14 z/OS V2R1.0 Communications Server: IP Configuration Reference

3. TCPIP.nodename.TCPIP
4. jobname.PROFILE.TCPIP
5. TCPIP.PROFILE.TCPIP

Statement syntax for configuration statements
Statement syntax is the same in both the configuration data set hlq.PROFILE.TCPIP
and the VARY TCPIP,,OBEYFILE command data set.
v Entries in a configuration data set are free format; blanks, comments, and

end-of-record are ignored.
v A configuration statement consists of a statement name followed by a required

blank, and usually one or more positional arguments. Separate each argument
by one or more blanks or end-of-record.

v A semicolon begins a comment. Comments act as blanks, separating words
without affecting their meaning.

v An argument followed by a comment must have a blank before the semicolon.
v Statements can be split across multiple lines.
v Sequence numbers are not allowed.
v Lowercase letters are translated to uppercase before the statements are executed,

except for those parameters that support mixed case entries. For example, the
SNMP community name is case sensitive.

v An END statement terminates a number of statements, such as AUTOLOG. If
the END statement is omitted, all subsequent tokens in the data set are
interpreted as parameters for that configuration statement.

v If a syntax error is encountered in a list of parameters, such as a HOME list, the
rest of the entries in the list are ignored.
Tip: Because some statements skip the entry in error and continue to process the
remaining entries, this does not apply to all statements.

v Profile statements do have some order restrictions. The basic order is any
statement that references a name defined in another statement must follow that
statement. For example, LINK statements must follow the DEVICE statement
that defines the device referenced by the link. Statements referencing links (for
example, GATEWAY, HOME, and TRANSLATE) must follow the referenced
LINK statement.

v Static system symbols can be used in profile statements.
v For those profile statements where you can modify parameters by respecifying

the statement, the only parameter values that are changed when the statement is
respecified are those parameters explicitly coded on the respecified statement.
The parameter values that are not explicitly coded on the statement are not
changed to the default value of the parameter; they retain their last specified
value. For example, if you specify: IPCONFIG NODATAGRAMFWD in an initial
profile data set, and then specify: IPCONFIG IGNOREREDIRECT in a data set
referenced by a VARY TCPIP,,OBEYFILE command, the NODATAGRAMFWD
parameter remains in effect and is not changed to the default parameter value of
DATAGRAMFWD NOFWDMULTIPATH.

v Rules: User-defined names on configuration statements must adhere to the
following rules:
– Each character must be a non-blank printable character.
– The following characters are not allowed:

- Comma (,)
- Semicolon (;)

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 15

- Equal (=)
- Asterisk (*)

– The following characters are considered printable characters:
- ¢ < (+ | & ! $) ¬ \ - / % _ > ? ` : # @ ' " Ý \ { } ¬ ~ (also alphabetic and

numeric characters)
– The first character must be alphanumeric or either $ or @. If it is numeric, the

name must not be a hexadecimal number.
v IPv4 IP addresses can be partially defined in a Profile statement where an IP

address is expected. If a user enters 100, it is interpreted as 100.0.0.0, and 1.2 is
interpreted as 1.2.0.0.

v All characters must be entered in code page IBM-1047.

Guideline: Use the VARY TCPIP,,SYNTAXCHECK command to verify that the
configuration statements in the configuration data set are free of syntax errors
before starting the TCP/IP stack or activating a new profile using the Vary
TCPIP,,OBEYFILE command to activate the profile. To use the syntax checker
before starting the stack, you must issue the VARY TCPIP,,SYNTAXCHECK
command on a system that has already started TCP/IP. See VARY
TCPIP,,SYNTAXCHECK in z/OS Communications Server: IP System
Administrator's Commands for more information.

ARPAGE statement

Use the ARPAGE statement to change the number of minutes between creation or
revalidation of an ARP table entry, and deletion of the entry. By default, TCP/IP
deletes ARP table entries 20 minutes after creation or revalidation. An ARP table
entry is revalidated when another ARP packet is received from the same host
specifying the same hardware address. The ARPAGE statement only applies to
LAN channel station (LCS) devices.

Syntax

�� ARPAGE
20

minutes
��

Parameters

minutes
The number of minutes between creation or revalidation of an ARP table entry
and deletion of the entry.

This number is an integer in the range 1 - 1 440 (24 hours). The default is 20
minutes.

Steps for modifying

To modify parameters for the ARPAGE statement, you must respecify the
statement with the new parameters.

Statement dependency

Because ARP cache entries for MPCIPA and MPCOSA interfaces are not managed
by the TCP/IP stack, they are not affected by the ARPAGE statement.

16 z/OS V2R1.0 Communications Server: IP Configuration Reference

Examples

This example causes revalidation of ARP table entries every 10 minutes.
ARPAGE 10

Usage notes
v IPCONFIG ARPTO allows you to specify the number of seconds between creation

or revalidation and deletion.
v The revalidation of ARP requests for asynchronous transfer mode (ATM) is

controlled using the ATMLIS statement.

Related topics

See ARPTO in “IPCONFIG statement” on page 190.

ATMARPSV statement

Because support will be eliminated for the ATM device type in a future release, the
ATMARPSV statement will no longer be supported.

Use the ATMARPSV statement to designate the ATMARP server to resolve
ATMARP requests for a logical IP subnet (LIS).

Restriction: Statements describing ATM devices must be coded in the following
order:
1. ATMLIS
2. DEVICE
3. LINK
4. ATMPVC (if used)
5. ATMARPSV

When an ATM device is started, TCP/IP attempts to establish a connection to the
ATMARP server for any LINK associated with a device that both specifies an
ATMLIS and has a corresponding ATMARPSV defined.

Syntax

Rule: Specify the parameters in the order shown here.

�� ATMARPSV arpsrv_name lis_name SVC ip_addr NSAP physical_addr
PVC pvc_name

��

Parameters

arpsrv_name
The ATMARP server to resolve ARP requests for this LIS. An arpsrv_name has a
maximum length of 16 characters.

lis_name
The logical IP subnet (LIS) as defined previously on the ATMLIS statement and
as included on the LINK statement. An lis_name has a maximum length of 16
characters.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 17

|
|

SVC
Indicates that TCP/IP should connect to the ATMARP server by way of a
switched virtual circuit (SVC).

ip_addr
The IP address of the ATMARP server.

Requirement: This IP address must be contained within the subnet
defined by the lis_name parameter.

NSAP
The type of physical address; Network Services Access Point.

physical_addr
The physical address of the ATMARP server. Specify a 40-digit
hexadecimal value.

Requirement: This is required only if the connection to the ATM ARP
server is a switched virtual circuit (SVC).

PVC
Indicates that TCP/IP should connect to the ATMARP server by way of a
permanent virtual circuit (PVC). Not all ATMARP server products support
being used as an ATMARP server over a PVC connection.

pvc_name
Use to specify the PVC name of the connection to the ATM ARP server, such as
ATMPVC1.

Requirement: This is required only if the connection to the ATM ARP server is
a permanent virtual circuit (PVC).

Rules: The following rules apply to this parameter:
v A PVC name has a maximum length of eight characters.
v This name must match the PVC defined for the ATM port in the ATM native

settings in the OSA configuration, which might further restrict the set of
valid names.

Steps for modifying

Perform the following steps to modify the ATMARPSV statement:
1. Stop the associated ATM device or devices.

__
2. Use the VARY TCPIP,,OBEYFILE command with a data set that contains a

DELETE ATMARPSV statement.
__

3. Use the VARY TCPIP,,OBEYFILE command with a data set that contains the
updated ATMARPSV statement.
__

4. Start the associated ATM device or devices.
__

For more information about the VARY TCPIP commands, see z/OS
Communications Server: IP System Administrator's Commands.

18 z/OS V2R1.0 Communications Server: IP Configuration Reference

Examples

This is an example of a PVC connection to an ATMARP server:
ATMLIS LIS1 9.67.100.0 255.255.255.0
DEVICE OSA1 ATM PORTNAME PORT1
LINK LINK1 ATM OSA1 LIS LIS1
ATMPVC PVC1 LINK1
ATMARPSV ARPSV1 LIS1 PVC PVC1

This is an example of an SVC connection to an ATMARP server:
ATMLIS LIS1 9.67.100.0 255.255.255.0
DEVICE OSA1 ATM PORTNAME PORT1
LINK LINK1 ATM OSA1 LIS LIS1
ATMARPSV ARPSV1 LIS1 SVC 9.67.100.10
NSAP 1234567890123456789012345678901234567890

Related topics
v “ATMLIS statement”
v “ATMPVC statement” on page 22
v “DEVICE and LINK — ATM devices statement” on page 52
v “DELETE statement” on page 43

ATMLIS statement

Because support will be eliminated for the ATM device type in a future release, the
ATMLIS statement will no longer be supported.

Use the ATMLIS statement to describe the characteristics of an ATM logical IP
subnet (LIS). An LIS is a separate administrative ATM entity. Each logical IP subnet
operates and communicates independently of other logical IP subnets on the same
ATM network.

Rule: Specify the required parameters in the order shown here. The ATMLIS
options can be specified in any order.

Syntax

�� ATMLIS lis_name subnet_value subnet_mask �

ATMLIS Options
��

ATMLIS Options:

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 19

|
|

ARPRETRies 2

ARPRETRies arp_retries
ARPTO 3

ARPTO arp_timeout
BEARERclass C

BEARERclass class
CEAGE 900

CEAGE cache_entry_age
DFLTMTU 9180

DFLTMTU default_mtu
INACTVTO 300

INACTVTO inactivity_timeout
MINHold 60

MINHold min_holding_time
PEAKCR 0

PEAKCR peak_cell_rate

Parameters

lis_name
The ATM logical IP subnet on the LINK statement. A lis_name has a maximum
length of 16 characters.

subnet_value
The subnet value that defines this logical IP subnet.

Rules:

v The subnet_value must be in the subnet mask. In other words, any bit in the
subnet value that is a 1-bit also must be a 1-bit in the subnet mask.

v The subnet_value must be a class A, B, or C address.

subnet_mask
The subnet mask that defines this logical IP subnet.

ARPRETRIES arp_retries
The number of times an ATMARP request is tried again when no response is
received and the arp_timeout expires. By default, two retries occur. The
minimum value for this parameter is 0 and the maximum is 10. The default is
2.

ARPTO arp_timeout
The number of seconds to wait before retransmitting an ATMARP request. By
default, the wait is 3 seconds. The minimum value for this variable is 1 second
and the maximum is 60 seconds. The default is 3.

BEARERCLASS class
The class used to initialize the ATM session. The class is a single letter, A, C, or
X. C is the default value.

20 z/OS V2R1.0 Communications Server: IP Configuration Reference

CEAGE cache_entry_age
The number of seconds before an ARP cache entry is removed from the cache.
The minimum value for this parameter is 60. The maximum and default value
is 900.

DFLTMTU default_mtu
The maximum transmission unit for SVCs within this logical IP subnet. The
minimum valid value for this parameter is 0, the maximum is 65535, and the
default is 9 180.

INACTVTO inactivity_timeout
The number of seconds before an established SVC connection is dropped due
to no traffic. A value of 0 (minimum) for this parameter indicates there is no
timeout period. If a value of 1 - 9 is specified, a value of 10 is used. The
maximum value is 65535, and the default is 300.

MINHOLD min_holding_time
The minimum number of seconds that a call remains open. A value of 0
(minimum) for this parameter indicates that the call is controlled completely
by the inactivity_timeout. The maximum value for this parameter is 65535 and
the default is 60.

Restriction: If min_holding_time is less than inactivity_timeout or if
inactivity_timeout out is 0, then the value for min_holding_timehas no effect.

PEAKCR peak_cell_rate
Indicates the best effort peak cell rate for both forward and backward traffic. A
value of 0 (the minimum) indicates that a peak cell rate equal to 10% of the
actual link speed is used. This is the default value. The maximum value for
this variable is 2 147 483 647.

Steps for modifying

The lis_name, subnet_value, and subnet_mask values are used to identify each
ATMLIS statement. ATMLIS options can be updated by issuing an ATMLIS
statement for an existing ATMLIS with identical lis_name, subnet_value, and
subnet_mask values. If a previously defined LIS name is used on another ATMLIS
statement with a different subnet mask or subnet value, an error message is issued
saying that the ATMLIS statement is already defined.

To change any options (other than subnet value and subnet mask) on the ATMLIS
statement, use the VARY TCPIP,,OBEYFILE command with a data set that contains
the updated ATMLIS statement. Any options not included on the ATMLIS
statement are reset to defaults.

For more information about the VARY TCPIP commands, see z/OS
Communications Server: IP System Administrator's Commands.

Tip: The new ATMLIS values do not apply to any open ATM SVCs, but they do
apply to any newly created ATM SVCs.

Perform the following steps to modify the ATMLIS statement:
1. Stop the associated ATM device or devices.

__

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 21

2. Use the VARY TCPIP,,OBEYFILE command with a data set that contains a
DELETE ATMLIS statement and a DELETE LINK statement for each associated
ATM link and a DELETE ATMARPSV statement for any associated
ATMARPSV.
__

3. Use the VARY TCPIP,,OBEYFILE command with a data set that contains the
updated ATMLIS statement along with the associated ATM LINK and
ATMARPSV statements.
__

4. Start the associated ATM device or devices.
__

For more information about the VARY TCPIP commands, see z/OS
Communications Server: IP System Administrator's Commands.

Examples
ATMLIS LIS1 9.67.100.0 255.255.255.0

Usage notes
v An ATMLIS must be referenced by a LINK statement. If an ATMLIS is

unreferenced by any LINK statement, that ATMLIS and any ATMARPSV
referring to that ATMLIS are automatically deleted.

v A HOME address used by an ATM LINK referencing an ATMLIS should be
within the logical IP subnetwork defined by the LIS subnet_value and
subnet_mask. If it is not within the subnetwork, the LINK is not able to send or
receive data over SVCs.

Related topics
v “ATMARPSV statement” on page 17
v “DELETE statement” on page 43
v “DEVICE and LINK — ATM devices statement” on page 52
v “HOME statement” on page 136

ATMPVC statement

Because support will be eliminated for the ATM device type in a future release, the
ATMPVC statement will no longer be supported.

Use the ATMPVC statement to describe a permanent virtual circuit (PVC) to be
used by an ATM link.

Syntax

Rule: Specify the parameters in the order shown here.

�� ATMPVC pvc_name link_name ��

Parameters

pvc_name
The name of the permanent virtual circuit on the ATM network.

22 z/OS V2R1.0 Communications Server: IP Configuration Reference

|
|

Requirement: This name must match the name of the PVC defined in the
Open Systems Adapter (OSA) configuration in the ATM native settings for the
ATM port. A pvc_name has a maximum length of eight characters. Because this
name must match the PVC defined for the ATM port in the ATM native
settings in the OSA configuration, it might further restrict the set of valid
names.

link_name
The name of the ATM link associated with this PVC.

Requirement: The link_name must be defined previously with a LINK
statement. The maximum length is 16 characters.

Steps for modifying

Perform the following steps to modify the ATMPVC statement:
1. Stop the associated ATM device whose link is referenced on the ATMPVC

statement.
__

2. Use the VARY TCPIP,,OBEYFILE command with a data set that contains a
DELETE ATMPVC statement.
__

3. Use the VARY TCPIP,,OBEYFILE command with a data set that contains the
updated ATMPVC statement.
__

4. Start the associated ATM device.

For more information about the VARY TCPIP commands, see z/OS
Communications Server: IP System Administrator's Commands.

Examples
DEVICE OSA1 ATM PORTNAME PORT1
LINK LINK1 ATM OSA1
ATMPVC PVC1 LINK1

Usage notes

When an ATM device is started, TCP/IP attempts to activate all PVCs defined to
all LINKs associated with the ATM device.

Related topics
v “DELETE statement” on page 43
v “DEVICE and LINK — ATM devices statement” on page 52

AUTOLOG statement

Use the AUTOLOG statement to provide a list of MVS started procedures to be
started by the Autolog task when TCP/IP is started.

In addition to initially starting these procedures, the AUTOLOG statement can
provide a monitoring function that ensures that these started procedures are still
active. To request this monitoring function for a started procedure, reserve one or
more ports for the procedure using the PORT or PORTRANGE profile statement.
Do not specify the NOAUTOLOG parameter. The proc_name or JOBNAME value

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 23

on the AUTOLOG statement entry must match the jobname value on the port
reservation statement. Every 5 minutes, the autolog monitoring function ensures
that there is either a TCP listening socket, or a UDP socket, active for those port
reservations where:
v NOAUTOLOG was not specified
v The jobname matches the AUTOLOG statement proc_name or JOBNAME value

If no active socket is found for any of the reserved ports for the started procedure,
then the Autolog monitoring function performs the following actions:
v Determines if the started procedure address space is still active. If it is still

active, the autolog function cancels the started procedure.

Note: If the started procedure has multiple reserved ports (for example,
INETD1) and if any one of those ports does not have an active socket, the
autolog function will cancel the started procedure. This can cause disruption to
the active sockets for the other reserved ports for that started procedure address
space.

v Restarts the started procedure.

Guideline: Ensure that ports that are used by the started procedure (for example,
in /etc/services or specified on an optional port parameter for the started
procedure) match the reserved ports in the port reservation statement. A
mismatched port can cause the autolog monitoring function to cancel the started
procedure.

Restriction: Do not use AUTOLOG to automatically start generic servers (those
without affinity to a specific stack, such as TN3270E and FTP) when multiple
stacks (CINET) are running. Do not use AUTOLOG to automatically start servers
defined as non-cancelable (such as TN3270E) in the program properties table (PPT).
Instead, use a method other than AUTOLOG to automatically start generic servers.
For more information about generic servers, see z/OS Communications Server: IP
Configuration Guide.

Syntax

Rule: Specify the parameters in the order shown. The optional parameters
following the proc_name parameter can be specified in any order.

�� AUTOLog
5

wait

� proc_name Options ENDAUTOLOG ��

Options:

PARMSTRING " parm_string" JOBNAME job_name
�

�

�
DVIPA

DELAYSTART
TTLS

24 z/OS V2R1.0 Communications Server: IP Configuration Reference

Parameters

wait
The time TCP/IP should allow for a procedure to come down when, at
startup, it is still active and TCP/IP is attempting to AUTOLOG the procedure
again. This could happen if the procedure did not come down when TCP/IP
was last shut down.

The default is 5 minutes. wait can be set to any value from 0 to 30 minutes. If a
wait value outside the valid range is specified, the default of 5 minutes is used.
When a wait value of 0 is specified, TCP/IP startup does not cancel and restart
any procedures in the autolog list that are already started.

TCP/IP does not cancel the procedure at initialization. TCP/IP checks every 10
seconds (until the time interval specified by wait has expired) to check if the
procedure has come down. If the procedure comes down during one of these
10 second intervals, it is restarted. If the procedure is still active when the time
interval specified by wait expires, then TCP/IP cancels and restarts the
procedure.

This value is only used at startup of TCP/IP and is never referenced again.

proc_name
A procedure that the TCP/IP address space should start.

Requirement: The procedure name must be a member of a cataloged
procedure library.

PARMSTRING "parm_string"
A string to be added following the START procedure_name. Do not include the
comma. The "parm_string" is 115 characters or less, not counting the double
quotation marks around the string.

Restriction: The entire "parm_string" must be on one line and must not contain
a double quotation mark.

JOBNAME job_name
The job name used for the PORT reservation statement. This can be identical to
the proc_name, but for z/OS UNIX jobs that spawn listener threads it is not. If
the job_name is not explicitly set, it is assumed to be the same as the proc_name.

DELAYSTART
An optional keyword that indicates that the procedure does not start until the
TCP/IP stack has completed one or more processing steps. One or more
optional subparameters determine which processing steps must be completed
before the procedure is started. If no additional subparameters are configured,
then the procedure is started after the TCP/IP stack has joined the sysplex
group and has processed its dynamic VIPA configuration.

If this keyword is not specified, the procedure is started after the TCP/IP stack
is started, whether or not the stack has completed any of the processing steps.

DVIPA
When this subparameter is specified, the procedure starts after the
TCP/IP stack has joined the sysplex group and has processed its
dynamic VIPA configuration. This is the default setting that occurs if
DELAYSTART is coded without any subparameters.

Guideline: Use this subparameter to delay the start of a procedure that
binds to a dynamic VIPA address that is created during TCP/IP stack
initialization or when the procedure performs the bind. Dynamic
VIPAs cannot be created until after the stack has joined the sysplex

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 25

group and has processed its dynamic VIPA configuration; this keyword
prevents the procedure from starting before the dynamic VIPA can be
created. For information about when the TCP/IP stack joins the
sysplex group, see sysplex problem detection and recovery in z/OS
Communications Server: IP Configuration Guide.

Tip: The stack issues console message EZD1214I INITIAL DYNAMIC VIPA
PROCESSING HAS COMPLETED FOR jobname when dynamic VIPA
configuration processing is complete. After this console message is
displayed, the autolog procedures waiting on this processing start.

TTLS When this subparameter is specified, the procedure starts after the
Policy Agent has successfully installed the AT-TLS policy in the
TCP/IP stack and AT-TLS services are available.

Guideline: Use this subparameter to delay the start of the procedures
that depend on AT-TLS services.

Tip: The message EZZ4250I AT-TLS SERVICES ARE AVAILABLE FOR
jobname is issued after the Policy Agent has installed the policy and the
AT-TLS services are available. After this console message is issued, the
autolog procedures waiting on this processing start.

Rules:

v Do not specify the DELAYSTART DVIPA (or DELAYSTART with no
subparameters) for your OMPROUTE procedure if you configure the
DELAYJOIN parameter on the GLOBALCONFIG profile statement.

v If TCPCONFIG TTLS is not specified in the initial profile, the DELAYSTART
TTLS subparameter is ignored because AT-TLS services are not being used.

Results:

v When more than one DELAYSTART subparameter is specified, all of the
processing steps defined for those subparameters must complete before the
procedure is started.

v When at least one DELAYSTART subparameter is specified, but DVIPA is
not specified, the default behavior does not occur; the procedure does not
wait for dynamic VIPA configuration processing to complete before starting.

ENDAUTOLOG
The ENDAUTOLOG statement specifies the end of the AUTOLOG parameters
to pass to TCP/IP.

Steps for modifying

To modify the AUTOLOG statement, use the VARY TCPIP,,OBEYFILE command
with a data set that contains a new AUTOLOG statement. The first AUTOLOG
statement in the data set replaces all previous AUTOLOG statements. Subsequent
AUTOLOG statements in the same data set append to the previous statements in
the data set.

For more information about the VARY TCPIP commands, see z/OS
Communications Server: IP System Administrator's Commands .

Examples

This example shows how to include several servers in the AUTOLOG statement:
AUTOLOG

FTPD JOBNAME FTPD1 ; FTP Server
LPSERVE ; LPD Server

26 z/OS V2R1.0 Communications Server: IP Configuration Reference

NCPROUT ; NCPRoute Server
PORTMAP JOBNAME PORTMAP1 ; USS Portmap server (SUN 4.0)
RXSERVE ; Remote Execution Server
SMTP ; SMTP Server
OSNMPD ; SNMP Agent Server
SNMPQE ; SNMP Client Address space
TCPIPX25 ; X25
MVSNFS ; Network File System Server

ENDAUTOLOG

The next example shows how to autolog two procedures using the PARMSTRING,
DELAYSTART, and JOBNAME options.
v The first procedure is named MYPROC1. This procedure does not start until

after the TCP/IP stack has joined the sysplex group and has processed its
dynamic VIPA configuration. When the procedure is started, it should use the
following MVS console start command:
S MYPROC1,PARMS=’-w 100’,ID=XYZ

v The second procedure has a listening z/OS UNIX thread that is the first
spawned task. (You can use the MVS DISPLAY ACTIVE,LIST console command
to determine the job name.) If the MYPROC21 procedure abends or stops
listening, the following MVS console start command is entered:
S MYPROC21,PARMS=’-dzy 50’,DSN=’HLQ.’

v The third procedure is named MYPROC3. This procedure does not start until
AT-TLS services are available.
AUTOLOG 20
MYPROC1 PARMSTRING "PARMS=’-w 100’,ID=XYZ" DELAYSTART
MYPROC2 PARMSTRING "PARMS=’-dzy 50’,DSN=’HLQ.’" JOBNAME MYPROC21
MYPROC3 DELAYSTART TTLS
ENDAUTOLOG

PORT 2010 TCP MYPROC1
2011 TCP MYPROC21
2012 TCP MYPROC3

Usage notes

The AUTOLOG statement can be used to start both socket and non-socket
applications. For any procedure that has no port reserved in the PORT statement,
AUTOLOG initially starts the procedure when TCP/IP starts. For procedures
whose ports are reserved in the PORT statement (and do not have the
NOAUTOLOG option specified), each port is checked to make sure that the
procedure has an active connection to that port. If a procedure has multiple ports
reserved and any one port is inactive, the procedure is canceled and restarted. For
TCP connections, the procedure must have a socket open to that port in the
LISTEN state. For UDP connections, the procedure must have a socket open to that
port.

Related topics
v “PORT statement” on page 257
v “PORTRANGE statement” on page 266

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 27

BEGINROUTES statement

Use the BEGINROUTES statement to add static routes to the main route table. The
BEGINROUTES statement is an alternative to the GATEWAY statement. You can
specify a BSD style syntax or destination IP address and address mask; you can
also define the route to be replaceable and define IPv6 static routes.

To configure policy-based route tables, use the RouteTablestatement. For more
information, see the policy-based routing information in the z/OS Communications
Server: IP Configuration Guide.

IBM Health Checker for z/OS can be used to check whether the total number of
indirect routes in a TCP/IP stack routing table exceeds a maximum threshold.
When this threshold is exceeded, OMPROUTE and the TCP/IP stack may
potentially experience high CPU consumption from routing changes. A large
routing table is considered to be inefficient in network design and operation. For
more details about IBM Health Checker for z/OS, see IBM Health Checker for
z/OS: User's Guide..

The destination IP address can be an IPv4 or IPv6 address and does not need to be
a fully qualified address.

Requirement: The first hop gateway IP address can also support either IPv4 or
IPv6 addresses, but must be a fully qualified address.

Because it is compatible with UNIX standards, easier to code than GATEWAY, and
has enhanced functionality, BEGINROUTES is the preferred method for defining
static routes. Future static route enhancements are only available with the
BEGINROUTES statement.

The IP static routes can be modified by the following methods:
v Replace the routing table using the VARY TCPIP,,OBEYFILE command.
v Incoming ICMP Redirect packets can replace IPv4 static routes, and also add

routes to the routing table.
v Incoming ICMPv6 Redirect packets can replace IPv6 static routes, and also add

routes to the routing table.
v Dynamic routing daemons (for example, OMPROUTE) can replace IPv4 or IPv6

replaceable static routes, as well as add dynamic routes to the routing table.
v Router advertisements can update IPv6 replaceable static routes, as well as add

dynamic routes to the routing table.

The first BEGINROUTES statement of each configuration data set that is issued
replaces all static routes in the existing routing table with the new route
information. All static routes are deleted, along with all routes learned by way of
ICMP or ICMPv6 redirects. Routes created by OMPROUTE and router
advertisements are not deleted. Subsequent BEGINROUTES statements in the same
data set add entries to the routing table.

Restrictions:

v A BEGINROUTES-ENDROUTES block and a GATEWAY statement cannot be
intermixed in the same configuration data set. If they are intermixed, the first
type found is used and the other type is discarded with warning messages being

28 z/OS V2R1.0 Communications Server: IP Configuration Reference

issued to the console. You can use a BEGINROUTES-ENDROUTES block in the
initial profile and a GATEWAY statement in a later VARY TCPIP,,OBEYFILE
command data set, and vice versa.

v Static routes defined by the BEGINROUTES-ENDROUTES block cannot be
replaced by OMPROUTE or router advertisements unless the static routes are
defined as replaceable. If you want OMPROUTE or router advertisements to
begin managing all routes, an empty BEGINROUTES-ENDROUTES block can be
used in a VARY TCPIP,,OBEYFILE command data set to eliminate the existing
static routes.

v ROUTE entries within a BEGINROUTES-ENDROUTES block can be coded only
for LINK names or INTERFACE names that exist when the entry is processed.

Result: When an incorrect ROUTE entry statement is encountered, the ROUTE
entry is rejected with an error message, but the rest of the ROUTE entries in that
BEGINROUTES-ENDROUTES block are still processed. Subsequent
BEGINROUTES-ENDROUTES blocks in the same initial profile or VARY
TCPIP,,OBEYFILE command data set, are also processed.

Route precedence is as follows:
v If a route exists to the destination address (a host route), it is chosen first.
v For IPv4, if subnet, network, or supernetwork routes exist to the destination, the

route with the most specific network mask (the mask with the most bits on) is
chosen second.

v For IPv6, if prefix routes exist to the destination, the route with the most specific
prefix is chosen second.

v If the destination is a multicast destination and multicast default routes exist
(valid only for IPv4), the route with the most specific multicast address is chosen
third.

v Default routes are chosen when no other route exists to a destination.

Rule: The required parameters for this statement must be specified in the order
shown here. The optional parameters can be specified in any order.

Syntax

�� BEGINRoutes � Route Entry ENDRoutes ��

Route Entry:

� �ROUTE Destination gateway_addr interface_name PacketSize
= Options

Destination:

IPv4_Destination
IPv6_Destination

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 29

IPv4_Destination:

dest_ipaddr address_mask
dest_ipaddr HOST
dest_ipaddr/num_mask_bits
DEFAULT

IPv6_Destination:

DEFAULT6
dest_ipaddr HOST
dest_ipaddr/prefixLength

Packet size:

MTU mtu_size
DEFAULTSIZE

Options:

DELAYAcks

NODELAYAcks

MAXImumretransmittime 120.00

MAXImumretransmittime seconds
�

�
MINImumretransmittime 0.50

MINImumretransmittime seconds

NOREPLaceable

REPLaceable
�

�
ROUNDTRIPGain 0.125

ROUNDTRIPGain value

VARIANCEGain 0.25

VARIANCEGain value
�

�
VARIANCEMultiplier 2.00

VARIANCEMultiplier value

Parameters

dest_ipaddr
The destination IPv4 or IPv6 address.

The DEFAULT/DEFAULT6 keyword in this field specifies default routes. For
IPv4, the destination address can be a host, network, subnetwork,
supernetwork or default address. For IPv6, the destination address can be a
host, prefix or default address. In addition, multiple routes having an identical
destination IP address and address mask can be specified. When multiple
routes are specified, all of them are used when multipath is enabled on the
IPCONFIG/IPCONFIG6 statement; otherwise, only the first active route
specified is used.

Requirement: An IPv4 address must be fully qualified.

address_mask
The BSD style address mask for an IPv4 route. If the HOST keyword is
specified in this field, it is a host route with a mask of 255.255.255.255.

30 z/OS V2R1.0 Communications Server: IP Configuration Reference

num_mask_bits
An integer value in the range 1 - 32 that represents the number of leftmost
significant bits for the address mask of an IPv4 route.

prefixLength
An integer value in the range 1 - 128 representing the number of bits in the
dest_ipaddr value that are used to determine the destination address of the IPv6
route.

gateway_addr
The host IPv4 or IPv6 address of a gateway or router that you can reach
directly, and that forwards packets for the destination network or host over the
interface that is identified by interface_name.

Requirement: This value must be either a fully qualified address or an equal
sign (=), meaning that the messages are routed directly to destinations on that
network or directly to that host. The equal sign is not supported for DEFAULT
or DEFAULT6 route entries. It cannot be a local IP address on this TCP/IP
stack. A local IP address can be defined on the HOME, INTERFACE,
VIPADEFINE, or IPCONFIG/IPCONFIG6 DYNAMICXCF statement.

interface_name
The name of the interface through which packets are sent to the specified
destination.

Requirement: The interface name must be previously defined in a LINK or
INTERFACE statement. VIPA interfaces are not allowed on the ROUTE entry
statement.

MTU mtu_size
The maximum transmission unit (MTU) in bytes for the destination. This value
can be up to 65535. The keyword DEFAULTSIZE in this field requests that
TCP/IP supply a default value of 576 for IPv4 routes and 1280 for IPv6 routes.

See Figure 1 on page 48 for more information about the largest MTU value
supported by each IPv4 link type.

See Table 6 on page 142 for more information about the largest MTU value
supported by each IPv6 interface type.

See the Usage notes in this topic for packet size considerations.

Tip: See z/OS Communications Server: IP Configuration Guide, under section,
Maximum transmission unit considerations, for additional information about
how TCP/IP uses the MTU to determine the largest size frame to send.

REPLACEABLE | NOREPLACEABLE
Indicates whether or not the static route can be replaced by OMPROUTE and
router advertisements when a dynamic route to the same destination is
discovered.

NOREPLACEABLE
Indicates that static routes cannot be replaced by dynamic routes. The
static route is always used to reach the destination, regardless of when
dynamic routes are available. This is the default setting. This parameter
can be abbreviated as NOREPL.

REPLACEABLE
Indicates that the static route can be replaced by OMPROUTE and
router advertisements when a dynamic route to the same destination is
discovered. This parameter can be abbreviated REPL.

Restrictions:

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 31

v Only one type (replaceable or nonreplaceable) of static route can be
defined to the same destination. All static routes defined to a
destination must match the type of the first static route defined to
that destination. Any definitions that do not match that type are
rejected.

v Replaceable static routes cannot be defined to destination addresses
that correspond to dynamic VIPAs for which the TCP/IP stack is a
sysplex distributor target.

Tip: You can use the Netstat ROUTE/-r RSTAT command to display all
replaceable static routes currently configured.

Retransmission parameter considerations

The parameters listed in this topic affect the TCP retransmit algorithms. When TCP
packets are not acknowledged, TCP begins to retransmit these packets at certain
time intervals. If these packets are not acknowledged after a specified number of
retransmits, TCP aborts the connection. The time interval between retransmissions
increases by approximately twice the previous interval until the packets are
acknowledged or the connection times out.

The time intervals between retransmissions and the number of times that packets
are retransmitted before the connection times out differs for initial connection
establishment and for data packets . For initial connection establishment, the initial
time interval is set at approximately 3 seconds and the SYN packet is retransmitted
5 times before the connection is timed out. Data packets use a smoothed Round
Trip Time (RTT) as the initial time interval, and data packets are retransmitted 15
times before the connection is timed out. All of the remaining parameters listed in
this topic affect the data packet retransmission algorithm. Only the
MINIMUMRETRANSMITTIME parameter affects the initial connection
establishment.

Tip: A new route lookup is performed after every two retransmissions for a data
packet. For more information about the route lookup process, see Route selection
algorithm in z/OS Communications Server: IP Configuration Guide. Be careful
when you design networks with firewalls. A firewall in an alternate routing path
can generate a RESET packet for the rerouted data packets, which causes TCP to
abort the connection.

The retransmission parameters enable system administrators who are familiar with
TCP/IP transmission performance to alter the flow of TCP/IP data packets and
acknowledgments. Under normal circumstances, the following occurs:
v TCP typically waits to receive two packets before sending one ACK to

acknowledge the data within them.
v When TCP sends a packet, it waits for an acknowledgment. If it times out before

getting an acknowledgment, it resends the packet.

Use the following parameters to adjust the retransmission time-out calculations;
slower transmission times prevent packets from being resent as quickly:
v MAXIMUMRETRANSMITTIME
v MINIMUMRETRANSMITTIME
v ROUNDTRIPGAIN
v VARIANCEGAIN
v VARIANCEMULTIPLIER
v DELAYACKS

32 z/OS V2R1.0 Communications Server: IP Configuration Reference

v NODELAYACKS

TCP uses these values in an algorithm called the TCP Retransmission Timeout
Calculation, which is described in RFC 793. When you use this calculation, the
following occurs:
v A smoothed round trip time (SRTT) and variance (VAR) is updated from the

individual RTT derived from each packet acknowledgement.
v The retransmit time for a new packet is set to twice (approximately) the current

SRTT value plus the VAR value.
v Each time a packet is retransmitted, the retransmit time value is doubled.
v The actual interval time used for the initial packet and each retransmission is the

retransmit time calculated previously, but limited by the configured
MINIMUMRETRANSMITTIME and MAXIMUMRETRANSMITTIME values.

DELAYACKS | NODELAYACKS
Controls transmission of acknowledgments when a packet is received with the
PUSH bit on in the TCP header.

NODELAYACKS
Specifies that an acknowledgment is returned immediately when a
packet is received with the PUSH bit on in the TCP header. The
NODELAYACKS parameter on the BEGINROUTES, GATEWAY, and
RouteTable statements affects only the connections that use this route.
Specifying NODELAYACKS on the TCP/IP stack BEGINROUTES or
GATEWAY profile statements, or on the Policy Agent RouteTable
statement, overrides the specification of the DELAYACKS parameter on
the TCP/IP stack PORT, PORTRANGE, and TCPCONFIG profile
statements.

DELAYACKS
Delays transmission of acknowledgments when a packet is received
with the PUSH bit on in the TCP header. The DELAYACKS parameter
on the BEGINROUTES, GATEWAY, and RouteTable statements affects
only the connections that use this route. This is the default, but you
can override the default by specifying the NODELAYACKS parameter
on the TCP/IP stack PORT, PORTRANGE, or TCPCONFIG profile
statements.

MAXIMUMRETRANSMITTIME
Limits the TCP retransmission interval. Decreasing this value might decrease
the total time it takes a connection to timeout. Specifying
MAXIMUMRETRANSMITTIME assures that the interval time never exceeds
the specified limit. The minimum value that can be specified for
MAXIMUMRETRANSMITTIME is 0. The maximum is 999.990. The default is
120 seconds. This parameter does not affect initial connection retransmission.

MINIMUMRETRANSMITTIME
Sets a minimum retransmit interval. Increasing this value might increase the
amount of time it takes for TCP to time out a connection. The minimum value
that can be specified for MINIMUMRETRANSMITTIME is 0. The maximum is
99.990. The default is 0.5 (500 milliseconds).

ROUNDTRIPGAIN
This value is the percentage of the latest Round Trip Time (RTT) to be applied
to the smoothed RTT average. The higher this value, the more influence the
latest packet RTT has on the average. The minimum value that can be specified
for ROUNDTRIPGAIN is 0. The maximum value is 1.0. The default is 0.125.
This parameter does not affect initial connection retransmission.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 33

VARIANCEGAIN
This value is the percentage of the latest RTT variance from the RTT average to
be applied to the RTT variance average. The higher this value, the more
influence the latest packet's RTT has on the variance average. The minimum
value that can be specified for VARIANCEGAIN is 0. The maximum value is
1.0. The default is 0.25. This parameter does not affect initial connection
retransmission.

VARIANCEMULTIPLIER
This value is multiplied against the RTT variance in calculating the
retransmission interval. The higher this value, the more affect variation in RTT
has on calculating the retransmission interval. The minimum value that can be
specified for VARIANCEMULTIPLIER is 0. The maximum value is 99.990. The
default is 2. This parameter does not affect initial connection retransmission.

Retransmission parameters

Use the ROUNDTRIPGAIN, VARIANCEGAIN, and VARIANCEMULTIPLIER
parameters to instruct TCP how heavily to weigh the most recent behavior of the
network versus the long term behavior for updating the SRTT and VAR values. If
you specify smaller values for these parameters, TCP attempts to correct for
congestion only if the congestion is sustained. With larger values, TCP corrects for
congestion more quickly, and the system is more sensitive to variations in network
performance. Use the default values (unless your retransmission rate is too high).

Use DELAYACKS to delay the acknowledgments so that they can be combined
with data sent to the foreign host.

Steps for modifying

To modify any values on the BEGINROUTES-ENDROUTES block, use a VARY
TCPIP,,OBEYFILE command with a data set that contains a new
BEGINROUTES-ENDROUTES block. All existing static routes are deleted, along
with all routes learned by way of ICMP or ICMPv6 redirects. Routes created by
OMPROUTE and router advertisements are not deleted. To remove all static routes
from the main routing table, specify an empty BEGINROUTES-ENDROUTES
block.

Results:

v If any HOME list entries are changed or deleted, all static routes using the
associated links are deleted. This applies to IPv4 only.

v If any INTERFACE statements are deleted, all static routes that correspond with
the INTERFACE names are deleted.

v If a LINK or INTERFACE becomes inactive, then all routes that are associated
with that link or INTERFACE are marked inactive.

v If a LINK or INTERFACE becomes active, then all static routes that are
associated with that link or INTERFACE are marked active.

Examples
; BEGINRoutes: Defines static routes to the main route table for IPv4
; and IPv6
;
BEGINRoutes
;
; Direct Routes - Routes that are directly connected to my interfaces.
;

34 z/OS V2R1.0 Communications Server: IP Configuration Reference

; Destination Subnet Mask First Hop Link Name Packet Size
;
ROUTE 130.50.75.0 255.255.255.0 = TR1 MTU 2000
ROUTE 193.5.2.0/24 = ETH1 MTU 1500
ROUTE 9.67.43.0 255.255.255.0 = FDDI1 MTU 4000
ROUTE 193.7.2.2 HOST = SNA1 MTU 2000
;
; Destination Subnet Mask First Hop Interface Packet Size
;
ROUTE fe80::230:71ff:fed3:5160 HOST = OSAQDIO26 MTU 2000
ROUTE 2001:0CD8:1/128 = OSAQDIO26 MTU 2000
;
;
; Indirect Routes - Routes that are reachable through routers on my
; network.
;
; Destination Subnet Mask First Hop Link Name Packet Size
;
ROUTE 193.12.2.0 255.255.255.0 130.50.75.10 TR1 MTU 2000
ROUTE 10.5.6.4 HOST 193.5.2.10 ETH1 MTU 1500
;
; Destination Subnet Mask First Hop Interface Packet Size
;
ROUTE FEC8::/64 fe80::230:71ff:fed3:5160 OSAQDIO26 MTU 2000
;
; Default Route - All packets to an unknown destination are routed
; through this route.
;
; Destination First Hop Link Name Packet Size
;
ROUTE DEFAULT 9.67.43.99 FDDI1 MTU DEFAULTSIZE
;
; Destination Subnet Mask First Hop Interface Packet Size
;
ROUTE DEFAULT6 fe80::230:71ff:fed3:5160 OSAQDIO26 MTU DEFAULTSIZE
ENDRoutes

Usage notes
v The destination address and first hop IP address must both be either IPv4 or

IPv6. If they do not match, an error message is displayed.
v An error message is displayed if an IPv6 address is coded along with an IPv4

link name, or if an IPv4 address is coded along with an IPv6 interface name.
v If the first hop IP address is IPv6, then it cannot be an IPv4-mapped IPv6

address (in hexadecimal or dotted decimal format) or an IP address with the
reserved prefix ::/96. If the IPv6 address is one of these types, an error message
is displayed.

v If the destination address is an IPv4-mapped IPv6 address, an error message is
displayed.

v The host portion of a valid host IP address cannot be all ones or all zeros; an
address that consists of all ones or zeros is considered to be the broadcast
address. The dest_ipaddr value can be either a network address or a host IP
address. The gateway_addr value must be a host IP address.

v Packet size considerations:
– The mtu_size value that z/OS Communications Server can handle varies for

different networks. For example, while the largest packet size for the Ethernet
protocol is 1500 bytes, the largest packet size for the 802.3 protocol is 1492
bytes.

– The actual packet size is determined by the total network connection.
- If a locally attached host has a packet size smaller than yours, transfers to

that host use the smaller size.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 35

|

- The TCP maximum segment size for the 3172 Interconnect Controller
Program is 4096. Any packet specifications over 4096 are limited by this
restriction. For example, if you specified a packet size of 4352, the resulting
packet size would still only be 4096 + the header = 4132.

– Large packets can be fragmented by intervening gateways for IPv4 only.
Fragmentation and reassembly of packets are expensive in their use of
bandwidth and CPU time. Therefore, packets sent through gateways to other
networks should use the default size, DEFAULTSIZE, unless one of the
following situations is true:
- All intervening gateways and networks are known to accept larger packets
- Path MTU discovery (PATHMTUDISCOVERY) is enabled on the

IPCONFIG statement, which results in the TCP/IP stack dynamically
learning the maximum MTU for the total network connection. For IPv6,
Path MTU discovery is always enabled.

– If this is a pSeries link, the mtu_size value cannot exceed the write_size
specified on the corresponding DEVICE statement.

– You cannot specify an MTU smaller than the default MTU size. For IPv4 the
default MTU is 576 and for IPv6 it is 1280.

v If the routing table is empty, all addresses in the HOME list remain route
capable. For information about testing commands with LOOPBACK, see the
z/OS Communications Server: IP User's Guide and Commands.

v The IPv4 address_mask value must follow the Classless Inter-Domain Routing
(CIDR) convention that requires the actual mask to be one or more on-bits
followed by zero or more off-bits. You cannot have on-bits followed by off-bits
followed by on-bits. Therefore, a mask of 255.255.254.0 (or FFFFFE00) is valid,
but a mask of 255.255.253.0 (or FFFFFD00) is not valid because 253 is 11111101.

v There is no limit on the number of equal-cost multipath routes to a destination.
v Multicast routes can be specified using host specification. You can also specify

multicast network or prefix routes by using BEGINROUTES. A general multicast
default route for IPv6 can be specified using:
BEGINROUTES
ROUTE FF00::/8 = INTERFACE1 MTU 4096
ENDROUTES

Related topics
v “BSDROUTINGPARMS statement”
v “GATEWAY statement” on page 109
v “IPCONFIG statement” on page 190
v “IPCONFIG6 statement” on page 206
v Policy agent Route table, see “RouteTable statement” on page 1152

BSDROUTINGPARMS statement

Restriction: The BSDROUTINGPARMS statement applies only to IPv4 interfaces
defined with the LINK statement.

Use the BSDROUTINGPARMS statement to define the characteristics of every
physical link defined at the host. This includes links used for static routing and
links over which NCPROUTE sends transport PDUs to client NCPs.

For more information about subnet masking, see z/OS Communications Server: IP
Configuration Guide.

36 z/OS V2R1.0 Communications Server: IP Configuration Reference

When not using OMPROUTE, define links in BSDROUTINGPARMS. Otherwise,
the values for MTU and subnet mask for links are filled in from BEGINROUTES or
GATEWAY statements, if any. These assumed definitions might not provide good
performance or function.

If using OMPROUTE, it is not necessary to define the BSDROUTINGPARMS
statement because the parameters are overridden by OMPROUTE. However, if the
Ignore_Undefined_Interfaces option is defined in OMPROUTE such that a default
interface definition is not generated for a corresponding link,
BSDROUTINGPARMS might need to be defined to specify interface characteristics
for that link. If OMPROUTE does not have the equivalent parameters coded for a
corresponding link, it provides defaults that might not provide good performance
or function.

Requirement: If using NCPROUTE with OMPROUTE, the BSDROUTINGPARMS
statement is required to route Transport PDUs prior to OMPROUTE activation.
Because the BSDROUTINGPARMS parameters are overridden by the interface
parameters defined in the OMPROUTE configuration, ensure that the interface
parameters for the SNALINK or IP/CDLC channel connections are identical in
both the BSDROUTINGPARMS statement and the OMPROUTE configuration file.

Syntax

Rule: Specify the parameters in the order shown here.

�� BSDRoutingparms TRUE
FALSE

�

� � link_name DEFAULTSize cost_metric subnet_mask dest_addr
mtu

�

� ENDBSDRoutingparms ��

Parameters

TRUE
Specifies that the maximum packet size for the interface is always used
regardless of whether the destination is one or more hops away.

FALSE
Specifies that the default maximum packet size of 576 is used (rather than the
packet size of the interface) when sending to networks that are not locally
attached.

link_name
The name of the link as defined in a LINK statement.

Requirements:

v Each link must be defined once in the BSDROUTINGPARMS statement.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 37

v To be used, a link must be defined at the time the BSDROUTINGPARMS
statement is processed. If the corresponding link name is not defined in the
HOME list, the link has no HOME address and is rendered as unusable until
a HOME address is assigned.

mtu

The maximum packet size for this interface. The DEFAULTSIZE keyword can
be used to designate the default of 576. The minimum value is 1, and the
maximum value is 65 535.

See Figure 1 on page 48 for more information about the largest MTU value
supported by each link type.

The MTU value specified on BSDROUTINGPARMS statement is also used for
applications that use the setsockopt() IP_MULTICAST_IF option to specify the
route for multicast datagrams.

Tip: See z/OS Communications Server: IP Configuration Guide, section
Maximum transmission unit considerations, for additional information about
how TCP/IP uses the MTU to determine the largest size frame to send.

cost_metric
Specifies the interface-level metric associated with the cost of use for the link.
If using OMPROUTE, the value of cost_metric is overridden with a
corresponding interface parameter value that might be coded or set (Cost0= on
OSPF_INTERFACE or In_Metric= on RIP_INTERFACE). The default is 0.

subnet_mask
A bit mask (expressed in dotted decimal form), having bits in the network or
host portions, that define the link-level subnet mask associated with the link
and acts as a default for a route-level subnet mask to be used for routes
dynamically created over this link.

Requirement: The bits must be contiguous from left to right.

The subnet_mask is related to the HOME IP address of the link. If the
subnet_mask equals 0 to indicate that the network is not subnetted, the default
is the network class mask, which is based on an IP address class. By definition,
the network class masks are:
v Class A: 255.0.0.0
v Class B: 255.255.0.0
v Class C: 255.255.255.0

A subnet mask is used in calculation of a subnet, network, or supernet route. A
subnet route is used to represent multiple hosts in a subnet, a network route is
used to represent multiple subnet routes (or multiple hosts if the network is
not subnetted), and a supernet route is used to represent multiple network
routes in a supernet. For Classless Inter-Domain Routing (CIDR) support,
variable-length subnet masks can be used. Variable-length subnet masks can be
used in a single network; that is, multiple subnets having the same network
number can have different subnet masks. Fixed-length subnet masks are used
in a single network with multiple subnets having the same network number
and subnet mask. A subnet mask that is less than the network class mask is
considered to be a supernet mask. A supernet mask can be defined such that
multiple networks can be represented by a single supernet.

Restriction: The host mask of 255.255.255.255 cannot be used for the
interface-level subnet mask; however, an implicit host route based on its home
IP address is dynamically created internally for this link.

38 z/OS V2R1.0 Communications Server: IP Configuration Reference

dest_addr
Destination address applies to point-to-point links only. A nonzero destination
address applies to nonbroadcast-capable and nonmulticast-capable
point-to-point links. If 0 is coded, a directed broadcast or multicast address is
used; otherwise, insert the address of the host on the other end of the link. For
VIPA links, this field should be 0.

See Figure 1 on page 48 for more descriptions about devices and links.

Steps for modifying

To modify the BSDROUTINGPARMS statement for a link, use a VARY
TCPIP,,OBEYFILE command with a data set which defines a new
BSDROUTINGPARMS statement for a link with the same link_name. The new
BSDROUTINGPARMS statement is a complete replacement for the original
BSDROUTINGPARMS statement. If you have changed the link's IP address, or the
order of the HOME list entries, along with the BSDROUTINGPARMS changes,
remember to include the new HOME list statement in the same VARY
TCPIP,,OBEYFILE command data set as the new BSDROUTINGPARMS statement.

For more information about the VARY TCPIP commands, see z/OS
Communications Server: IP System Administrator's Commands .

Table 3. BSDROUTINGPARMS modification methods

Modification method Required action

Adding new links Issue VARY TCPIP,,OBEYFILE command
with new DEVICE, LINK, HOME, and
BSDROUTINGPARMS statements.

Deleting or changing order of links in use. Issue VARY TCPIP,,OBEYFILE command
with new HOME statement.

Changing HOME IP addresses or
BSDROUTINGPARMS values for existing
links in use.

Issue VARY TCPIP,,OBEYFILE command
with new HOME statements or
BSDROUTINGPARMS statements, or both.

Guideline: If HOME addresses have been changed, the NCP generation definitions must
also be changed in order to recognize the new HOME addresses.

Examples

This example shows the BSDROUTINGPARMS statement for several types of LAN
media.

; link maxmtu metric subnet mask dest addr
BSDROUTINGPARMS false

TR1 2000 0 255.255.255.0 0
ETH1 1500 0 255.255.255.0 0
FDDI1 DEFAULTSIZE 0 255.255.255.0 0

ENDBSDROUTINGPARMS

This example includes a link, LINK3, that is a point-to-point link between host
MVS1 and host 128.84.54.6.

;
; link maxmtu metric subnet_mask dest_addr
BSDROUTINGPARMS false

LINK1 DEFAULTSIZE 0 255.255.255.0 0
LINK2 DEFAULTSIZE 0 255.255.255.0 0
LINK3 1500 0 255.255.255.0 128.84.54.6

ENDBSDROUTINGPARMS

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 39

This example shows the definitions for VIPA links.
BSDROUTINGPARMS false

VLINK1 DEFAULTSIZE 0 255.255.255.252 0
VLINK2 DEFAULTSIZE 0 255.255.255.252 0

ENDBSDROUTINGPARMS

This example shows how BSDRoutingparms relate to other statements in the
profile.

DEVICE DEVC00 CTC C00 IOBUFFERSIZE 65535 AUTORESTART
LINK LCTCC00 0 DEVC00 IFSPEED 10000
HOME 9.32.2.1 LCTCC00

DEVICE DEVD00 LCS D00 AUTORESTART
LINK ETHERD00 ETHERNET 0 DEVD00
LINK IBMTRD00 IBMTR 1 DEVD00
LINK FIDDID00 FDDI 2 DEVD00
HOME 130.80.0.1 ETHERD00

130.81.0.2 IBMTRD00
130.82.0.3 FIDDID00

PRIMARYINTERFACE LCTCC00

BSDROUTINGPARMS TRUE
LCTCC00 DEFAULTSIZE 0 255.252.0.0 9.32.2.5
ETHERD00 DEFAULTSIZE 0 255.252.0.0 0
IBMTRD00 DEFAULTSIZE 0 255.252.0.0 0
FIDDID 00 DEFAULTSIZE 0 255.252.0.0 0

ENDBSDROUTINGPARMS

START DEVD00

This example shows how to use BSDRoutingparms with supernet routes.
HOME

130.201.1.1 VLINK1
172.200.10.1 ETH1
192.3.200.1 CTCBF0

BSDROUTINGPARMS FALSE
ETH1 1500 0 255.252.0.0 0
VLINK1 1500 0 255.254.0.0 0
CTCBF0 1000 0 255.255.252.0 192.3.200.2

ENDBSDROUTINGPARMS

Usage notes
v For rules on defining virtual IP addresses for VIPA links, see “HOME statement”

on page 136.
v The maximum transmission unit (MTU) and metric of any other links with a

destination address in the same subnet are updated to ensure that all entries in
the same subnet have the same routing values. Except for these links and the
LOOPBACK link, all links get default BSD values if not specified.

v If no HOME address exists for a LINK or if a HOME address is changed by way
of a later VARY TCPIP,,OBEYFILE command, processing of the HOME statement
verifies whether subnet_mask value on the BSDROUTINGPARMS statement is
within the valid ranges.

v When an incorrect BSDROUTINGPARMS entry is encountered, all entries
following that entry on that BSDROUTINGPARMS statement are ignored.
Subsequent BSDROUTINGPARMS statements are processed.

v BSDROUTINGPARMS statements can only be coded for LINK names that exist
in the HOME list when the statement is processed. Thus, LINKs from

40 z/OS V2R1.0 Communications Server: IP Configuration Reference

IPCONFIG DYNAMICXCF and the VIPADYNAMIC block should not be
included in BSDROUTINGPARMS statements of the initial PROFILE.TCPIP.
However, the data set used on a VARY TCPIP,,OBEYFILE command can contain
BSDROUTINGPARMS statements with LINKs from IPCONFIG DYNAMICXCF
and the VIPADYNAMIC block.

v The BSDROUTINGPARMS parameter values are displayed with the Netstat
DEvlinks/-d commands. If the BSDROUTINGPARMS statement is not defined,
the values of the displayed parameters are either the defaults from the
BEGINROUTES or GATEWAY statement, or are from the OMPROUTE
configuration statements.

Related topics
v “BEGINROUTES statement” on page 28
v “DEVICE and LINK — VIRTUAL devices statement” on page 101
v “GATEWAY statement” on page 109
v “HOME statement” on page 136
v “IPCONFIG statement” on page 190

DEFADDRTABLE statement

Use the DEFADDRTABLE statement to configure the policy table for IPv6 default
address selection. If you do not configure the policy table for IPv6 default address
selection with the DEFADDRTABLE profile statement, then the following default
policy table is used:

Prefix Precedence Label
::1/128 50 0
::/0 40 1
2002::/16 30 2
::/96 20 3
::ffff:0.0.0.0/96 10 4

Restriction: Only one DEFADDRTABLE block should appear in a configuration
data set. Any subsequent DEFADDRTABLE blocks are ignored, and an
informational message is displayed. If a syntax error is encountered when this
statement is processed, an error message is displayed, and the entire
DEFADDRTABLE block is ignored (no entries are processed).

Guideline: The order of the entries in the policy table is not important. When the
policy table is used during address selection, all entries in the table are searched to
locate the entry with the prefix that best matches (longest prefix match) the
address for which precedence and label values are needed.

For more information about the policy table for default address selection and the
precedence and label values, see z/OS Communications Server: IPv6 Network and
Application Design Guide.

Syntax

�� DEFADDRTable � Policy Entry ENDDEFADDRTable ��

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 41

Policy Entry:

� prefix/prefix_length precedence label

Parameters

prefix/prefix_length
The address prefix that is used to select the policy table entry that best matches
a source address or a destination address. The policy table is a
longest-matching-prefix lookup table.

If duplicate prefix entries are specified in the same DEFADDRTABLE block, the
first prefix entry is used, the remaining duplicate prefix entries are ignored,
and messages are displayed.

prefix The digits (in colon-hexadecimal format) before the slash (/) specify
the prefix.

prefix_length
An integer value in the range 0 - 128 that specifies the length of the
prefix, in bits.

precedence

An integer value in the range 0 - 65530 that specifies the precedence that is
used to sort destination addresses.

label
An integer value in the range 0 - 65530 that specifies that a particular source
address prefix is preferred for use with a destination address prefix.

Steps for modifying

The following considerations apply when you modify the DEFADDRTABLE block:
v To remove all the current configured policies, specify the DEFADDRTABLE block

without any entries:
DEFADDRTABLE ENDDEFADDRTABLE

Issue the VARY TCPIP,,OBEYFILE command; the default policy table replaces
the previously configured values.

v To change any of the policy entries, create a DEFADDRTABLE block with the
existing set of policies. Update the policy entries that need to be changed. Then,
issue the VARY TCPIP,,OBEYFILE command to activate the change. The new
policy table completely replaces the existing policy table.

Examples

The default policy table contains the following values:
DEFADDRTABLE
; Prefix Precedence Label

::1/128 50 0
::/0 40 1
2002::/16 30 2
::/96 20 3
::ffff:0.0.0.0/96 10 4

ENDDEFADDRTABLE

42 z/OS V2R1.0 Communications Server: IP Configuration Reference

This default table specifies the following behavior:
v Prefer using native source addresses with native destination addresses, 6to4

source addresses with 6to4 destination addresses, and IPv4-compatible source
addresses with IPv4-compatible destination addresses
Guideline: IPv4-compatible addresses have been deprecated by RFC 4291, but
are shown here because they are part of the default policy table defined by RFC
3484.

v Prefer using IPv6 network transport over IPv4 network transport when possible

To specify that IPv4 network transport should be preferred over IPv6 network
transport, change the precedence of the ::ffff:0.0.0.0/96 prefix to 100.
DEFADDRTABLE
; Prefix Precedence Label

::1/128 50 0
::/0 40 1
2002::/16 30 2
::/96 20 3
::ffff:0.0.0.0/96 100 4

ENDDEFADDRTABLE

All other considerations being equal, a destination address whose label does not
match the label of any of the possible source addresses prefers an IPv4 source
address because the precedence value for the ::ffff:0.0.0.0/96 prefix is higher than
the precedence value of all the other entries.

The destination address selection rules give preference to destinations of smaller
scope. For example, a link-local destination is sorted before a global scope
destination when the two are otherwise equally suitable. To sort global destinations
before link-local destinations, change the policy table to reverse the existing
preference.
DEFADDRTABLE
; Prefix Precedence Label

::1/128 50 0
::/0 40 1
fe80::/10 33 1
2002::/16 30 2
::/96 20 3
::ffff:0.0.0.0/96 100 4

ENDDEFADDRTABLE

DELETE statement

Use the DELETE statement to delete a previously defined ATMARPSV, ATMLIS,
ATMPVC, device, link, port, or portrange.

Guideline: Use the INTERFACE statement with the DELETE parameter to delete a
previously defined interface.

Syntax

Rule: Specify the parameters in the order shown here.

�� DELEte ATMARPSV arpsrv_name ��

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 43

�� DELEte ATMLIS lis_name ��

�� DELEte ATMPVC pvc_name ��

�� DELEte DEVice device_name ��

�� DELEte LINK link_name ��

�� DELEte PORT � num TCP RESERVED
UDP jobname Port Options

UNRSV TCP jobname
UDP * Port options

��

Port Options

The optional parameters for the PORT profile statement can be specified on the
DELETE PORT statement but, though the syntax of the parameters is verified, the
parameter values are ignored.

�� DELEte PORTRange �

� � 1st_port num_ports TCP RESERVED
UDP AUTHPORT

jobname Portrange Options

��

Portrange Options

The optional parameters for the PORTRANGE profile statement can be specified
on the DELETE PORTRANGE statement but, though the syntax of the parameters
is verified, the parameter values are ignored.

Parameters

The values of the required parameters must match the existing reservation or the
delete fails. You can specify the optional parameters for the PORT or PORTRANGE
profile statement on the DELETE PORT or DELETE PORTRANGE statement.
However, even though the syntax of the parameters is verified, the parameter
values are ignored.

The following parameters are network interface parameters:

arpsrv_name
The name of the ATMARP server to be deleted. This is the name that was used
on an ATMARPSV statement to define the ATMARP server to TCP/IP.

44 z/OS V2R1.0 Communications Server: IP Configuration Reference

lis_name
The name of the LIS to be deleted. This is the name that was used on an
ATMLIS statement to define the LIS to TCP/IP.

pvc_name
The name of the PVC to be deleted. This is the name that was used on an
ATMPVC statement to define the PVC to TCP/IP.

device_name
The name of the device to be deleted. This is the name that was used on a
DEVICE statement to define the device to TCP/IP.

link_name
The name of the link to be deleted. This is the name that was used on a LINK
statement to define the link to TCP/IP.

The following parameters are PORT and PORTRANGE parameters.

To delete an existing PORT or PORTRANGE reservation, use a PORT or
PORTRANGE profile statement and prefix it with the DELETE keyword. The only
required parameters on the DELETE PORT or DELETE PORTRANGE statement
are as follows:
v Reserved port number or UNRSV on the DELETE PORT statement, or the range

of port numbers on the DELETE PORTRANGE statement
v Protocol of TCP or UDP
v Job name specification

num
The port number of the port to be deleted. This is the port number that was
used on a PORT statement to define the port to TCP/IP.

UNRSV
UNRSV indicates that a statement that defines access to unreserved port
numbers is to be deleted.

1st_port
The first port number in the range of reserved ports to be deleted.

num_ports
The number of ports to be deleted, starting with the port specified on the
1st_port parameter. This range is the same number of ports that were reserved
when the port range was defined with the PORTRANGE statement.

jobname
The job name associated with the port to be deleted.

RESERVED
Indicates that the port is not available for use by any user. Use this value to
lock certain ports. This value is optional and valid for TCP and UDP protocols.

AUTHPORT
Indicates that the port is not available for use by any user except FTP, and only
when FTP is configured to use PASSIVEDATAPORTS. AUTHPORT is valid
only with the TCP protocol.

Steps for modifying

Modification is not applicable to this statement.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 45

Statement dependency
v To delete a link, you must first delete any associated HOME entry by specifying

a HOME statement that does not include the link, and you must also stop the
device.
Restriction: You do not need to (and cannot) stop the device when deleting a
link for a virtual device.

v To delete an ATM link, you must first delete any associated ATMPVCs.
v To delete an ATMLIS, you must first delete all associated LINKs and

ATMARPSVs.
v To delete an ATMARPSV, you must first stop all devices that have a LINK

associated with the ATMLIS for the ATMARPSV.
v You can delete an ATMPVC for a started device. However, if the PVC is in use

as an ATMARP server, you must first stop the devices using the PVC as an
ATMARP server in order to delete the ATMPVC.

v To delete a device, you must first stop the device, then delete all associated
links.
Restriction: You do not need to (and cannot) stop the device when deleting a
link for a virtual device.

Examples

This example shows DELETE statements to delete an ATM PVC named PVC1, an
ATM LIS named LIS1, and an ATMARPSV named ARPSV1:
DELETE ATMPVC PVC1
DELETE ATMLIS LIS1
DELETE ATMARPSV ARPSV1

This example shows DELETE statements that delete a link called sanjose and a
device called ourctc:
DELETE LINK sanjose
DELETE DEVICE ourctc

This example shows a DELETE PORT statement that deletes a reservation for port
5001:
PORT 5001 TCP MEGA
DELETE PORT 5001 TCP MEGA

This example shows a PORT statement that denies all jobs access to unreserved
UDP ports on explicit binds. The example also shows the DELETE PORT statement
that deletes this access restriction.
PORT UNRSV UDP * DENY WHENBIND
DELETE PORT UNRSV UDP *

The keywords DENY and WHENBIND are not required on the DELETE PORT
statement.

This example shows several PORTRANGE statements to reserve ports for MEGA,
and then several DELETE PORTRANGE statements to delete the reservations for
those ports:
PORTRANGE 5000 10 UDP MEGA

5100 10 TCP MEGA NOAUTOLOG
5200 10 UDP MEGA DELAYACKS
5300 10 TCP MEGA
5400 10 UDP MEGA
5500 10 TCP MEGA NOAUTOLOG DELAYACKS

46 z/OS V2R1.0 Communications Server: IP Configuration Reference

DELETE PORTRANGE
5000 10 UDP MEGA
5100 10 TCP MEGA NOAUTOLOG
5200 10 UDP MEGA DELAYACKS
5300 10 TCP MEGA
5400 10 UDP MEGA
5500 10 TCP MEGA NOAUTOLOG DELAYACKS

Usage notes

The link_name of a deleted link remains associated with its device. It cannot be
reassigned to a new device while TCP/IP is active.

Summary of DEVICE and LINK statements

Restriction: The DEVICE and LINK statements apply to IPv4 only.

To define an IPv6 interface, you must use the INTERFACE statement. You can also
use the INTERFACE statement to define an IPv4 interface for OSA-Express QDIO
Ethernet, HiperSockets, and static VIPA. See “Summary of INTERFACE
statements” on page 141 for more information.

Overview of DEVICE and LINK statements
z/OS Communications Server allows a single TCP/IP address space to drive
multiple instances of any supported device. To configure your devices, add the
appropriate DEVICE and LINK statements to the configuration data set. The LINK
statements show how to define a network interface link associated with the device
and are included with the DEVICE statement for that device type.

Requirements: The following list shows the minimum required statements to
define a network interface for use by TCP/IP:
v A set of DEVICE and LINK statements for the appropriate device. Depending on

the type of device being defined, additional PROFILE statements, VTAM
definitions, or both might be required. For more details, see the DEVICE and
LINK statements for the device type.

v A HOME statement assigning an IP address to the LINK interface. For more
details, see “HOME statement” on page 136.

v If you are using static routing, define a BEGINROUTES or GATEWAY statement
referencing the LINK interface to reach the target networks. For more details, see
“BEGINROUTES statement” on page 28 or “GATEWAY statement” on page 109.

v If you are using dynamic routing, see Chapter 11, “OMPROUTE,” on page 483.

Because devices (except VIPA devices) are not automatically initialized, you must
also specify a START statement in the configuration data set to start each device
automatically.

Restrictions:

v Because TCP/IP has a maximum of 255 started devices (not including VIPA),
you cannot start more than 255 devices.

v If you are using OMPROUTE, the maximum number of non-VIPA links that can
be specified in the HOME list is 255.

v There is no maximum for static VIPA interfaces, but the maximum number of
dynamic VIPA interfaces is 1024.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 47

Figure 1 summarizes information about the various IPv4 network interfaces
supported by TCP/IP. The values listed in the MTU column represent the largest
MTU supported by each interface.

Notes:

1. Can be point-to-multipoint.
2. The MTU column represents the largest MTU supported by the interface.
3. Based on the IOBUFFERSIZE value on the CTC device statement in TCP/IP

profile.
4. For non-packed mode, the maximum MTU is equal to the write buffer size

value on the CLAW device statement in the TCP/IP profile. For packed mode,
the maximum MTU is 4096.

5. This MTU value assumes 16Mb Token-Ring. (For 4Mb TR, you must configure
an MTU of 4464 or lower.)

6. Based on the read and write buffer size values on the CDLC device statement
in TCPIP profile.

7. Based on MAXBFRU value in the TRLE definition.
8. Some LCS devices (for example, old 3172s) do not support multicast.
9. Based on frame size configured in HCD.

10. Requires IPBCAST parameter on LINK statement in TCP/IP profile.

Recovering from device failures
TCP/IP automatically attempts reactivation of the non-VIPA device following some
device-failure indications (regardless of the AUTORESTART setting). Specifying
AUTORESTART causes TCP/IP to attempt reactivation following most
device-failure indications.

The AUTORESTART option is meaningful only for errors that occur after the
device is active. For errors that occur before the device reaches the active state,
AUTORESTART has no effect, as such errors might likely be the result of a
configuration error (for example, incorrect device number specification within the

Device
type

Link type

CTC CTC

LCS See below

IBMTR

ETHERNET

802.3

FDDI

MPCPTP
(for XCF)

MPCPTP

MPCPTP (for
IUTSAMEH)

MPCPTP

MPCIPA See below

IPAQENET

IPAQENET

IPAQTR

MPCIPA (for
HiperSockets)

IPAQIDIO

MPCOSA See
below

MPCPTP MPCPTP

LAN using OSA in LCS mode
(including ATM LAN Emulation),
3172, 2216, or OEM

Token Ring

Ethernet

Ethernet 802.3

FDDI

z/OS, RS/6000, Cisco CIP,
RS/6000, CS/NT, or OEM

Another TCP/IP within
same z/OS sysplex

LAN using OSA-
Express in QDIO mode

Gigabit Ethernet, 10G, and
1000BASE-T Ethernet

Fast Ethernet,
ATM Ethernet LANE

Token Ring

Another TCP/IP within the same CPC

LAN using OSA-2 or OSA-
Express in MPC mode

Fast Ethernet

FDDI

Another TCP/IP on same z/OS
(or VTAM for Enterprise Extender)

Connectivity

z/OS using channel-to-channel
adapter

OSAENET

OSAFDDI

ARP
statistics

n/a

n/a

n/a

Yes Yes

Yes (dest
IP addrs)

No

Yes

n/a

ARP

No

No

No

No

Offloaded
to adapter

Offloaded
to adapter

Yes using
broadcast

No

MTU
(#2)

See below

65527 (#3)

17914 (#4)

1500

1492

1492

57344 (#7)

17914

8992

1492

4352

55296

65535

See below

4050

59392 (#5)

See below

QDIO Multiple
links

Yes

No

No

No

No

No

No

No

No

Yes

No

No

No

No

No

TRLE definition

Reserved name

Generated by
VTAM

Generated by
VTAM

Generated by
VTAM

Required

Required

Reserved name

Required

Multicast
support

Broadcast
support

Point
to point

Dynamic
XCF support

Yes Yes No

Yes (#6) No No

Yes Yes (#1) No

Yes Yes (#1) Yes

Yes Yes (#1) Yes

Yes

No

Yes

No

No

No

Yes (#8)

Yes (#8)

No

No No

No Yes

No No

No

Yes

ID in
TCPIP profile

Device number

Device number

Adapter number

Adapter number

Adapter number

Adapter number

TRLE name

CP name of
target VTAM

IUTSAMEH

TRLE name

IUTIQDxx

OSA - Express
port name

Figure 1. Summary of DEVICE and LINK statements

48 z/OS V2R1.0 Communications Server: IP Configuration Reference

TCP/IP PROFILE). No automatic error correction would be possible for such an
error, and for this reason, TCP/IP initiates device recovery only when evidence of
a previously working configuration exists. For any error encountered before the
device reaches the active state, the user should correct any configuration error and
initiate a new START DEVICE.

If automatic reactivation is attempted, the number of allowable reactivation
attempts is determined from the IPCONFIG DEVRETRYDURATION setting.

DEVRETRYDURATION specifies the duration of the Retry Period, during which
TCP/IP attempts automatic recovery of a device. The first reactivation attempt is
performed two seconds after the original error, and subsequent attempts are 30
seconds apart. If not successfully reactivated within the specified retry duration,
the device is returned to the INACTIVE state, and a manual START of the device
is required after the error has been corrected.

Missing interrupt handler factors
When multiple subchannels are used for channel-layer communications, WRITE
operations and READ operations are separated onto their own subchannels. On a
multi-subchannel device, the missing interrupt handler (MIH) is automatically (by
VTAM) configured OFF on the READ subchannels. (This is necessary, as a READ
command is always active for such devices, and MIH would detect a missing
interrupt on the READ subchannels any time the device experienced an idle
period.) Therefore, there is no need to specify any MIH values for TCP/IP read
devices.

You should configure a reasonable MIH value for the WRITE subchannels on a
multi-subchannel device, as well as for the single subchannel on other devices (for
example, CDLC), as this protects the system from a storage-usage spike, brought
on by a hung device.

VTAM honors the MIH provided for ATM, MPCPTP, MPCPTP6, and MPCOSA
write devices, but imposes a limit of four minutes and fifteen seconds. If a value is
not provided, VTAM uses a value of 30 seconds, unless running as a guest on VM
in which case, a value of 45 seconds is used. For other device types, an MIH value
of 0, which disables MIH, for a TCP/IP write device or a single-subchannel device
is not advisable.

Reasonable values for MIH on the WRITE (or only) subchannel in the range 15-30
seconds [a value of 30 seconds might be warranted if either channel extenders are
in the configuration, or dispatching delays (due to running second level, under
VM) are possible]. For nonextended ESCON channels, being driven by z/OS
running native, 15 seconds is the preferred MIH value.

In summary, MIH on the WRITE (or only) subchannel should be configured ON,
with a value in the range 15-30 seconds for the following TCP/IP device types:
v For multi-subchannel TCP/IP device types, set MIH only on the WRITE

subchannels:
– For ATM, MPCPTP, and MPCOSA, the write subchannels are specified on the

WRITE parameter of the TRLE definition.
– For MPCIPA, the WRITE-control subchannel is specified on the WRITE

parameter of the TRLE definition.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 49

– For LCS, CLAW, and Hyperchannel, the WRITE subchannel is device_number
+1 (where device_number is the value specified on the DEVICE statement in
the TCP/IP profile).

v For single-subchannel TCP/IP device types, set MIH on the single subchannel.
– For CDLC, the WRITE subchannel is the device_number value specified on the

DEVICE statement in the TCP/IP profile.

Tip: To override the default MIH value for a given subchannel, use the MIH
statement in the IECIOSxx parmlib member or use the SETIOS MIH command. See
z/OS MVS System Commands and z/OS MVS Initialization and Tuning Guide for
more information about the IECIOSxx parmlib and SETIOS command, respectively.

Restriction: For all other TCP/IP device types (including the XCF and IUTSAMEH
types of MPCPTP and the data devices for MPCIPA), MIH is either not applicable
or is automatically disabled by VTAM.

DEVICE and LINK statements relationship to VTAM
configuration

z/OS Communications Server provides a set of High Performance Data Transfer
(HPDT) services that includes MultiPath Channel (MPC), a high-speed channel
interface designed for network protocol use (for example, APPN or TCP/IP).
Multiple protocols can either share or have exclusive use of a set of channel paths
to an attached platform. The term MPC+ is used to distinguish this multi-protocol
version of MPC from earlier versions that were restricted to APPN usage only.

MPC provides the user with the ability to have multiple device paths defined as a
single logical connection. The term MPC group is used to define a single MPC
connection that can contain multiple read and write paths. The number of read
and write paths do not have to be equal, but there must be at least one read and
write path defined within each MPC group.

MPC groups are defined using the Transport Resource List (TRL), where each
defined MPC group becomes an entry (that is, a TRLE) in the TRL table. The user
defines the channel paths that are a part of the group in the TRLE. Each TRLE is
identified by a resource_name. For ATM, the TRLE also has a port_name to identify a
particular ATM port. For details about defining a TRLE, see the z/OS
Communications Server: SNA Resource Definition Reference.

Modifying DEVICE and LINK statements
To modify most LINK statement parameters (and any DEVICE statement
parameters), you must first delete and then redefine the LINK or DEVICE
statement.

However, the following LINK statement parameters are dynamically modifiable:
v MONSYSPLEX
v NOMONSYSPLEX

To modify these parameters on a LINK statement, use a VARY TCPIP,,OBEYFILE
command with a data set that contains a LINK statement for an existing link name
which has new values for these parameters.

Guidelines:

v Any changes to non-modifiable parameters are ignored.

50 z/OS V2R1.0 Communications Server: IP Configuration Reference

v If any modifiable parameters are not specified, prior values remain in effect for
these parameters.

Steps for modifying LINK statements
This topic describe the steps for modifying the LINK statement.

Procedure

Perform the following steps to modify all other parameters on a LINK statement or
to modify any DEVICE statement parameters:
1. Stop the device.

__
2. Use a VARY TCPIP,,OBEYFILE command with a data set that contains:
v A new HOME statement that does not contain the home IP address or

addresses of the LINK or LINKs involved in the DELETE
v DELETE linkname and DELETE devicename statements
__

3. Use a VARY TCPIP,,OBEYFILE command with a data set that contains:
v The changed DEVICE and LINK statements
v A new HOME statement that includes the home IP address or addresses of

the LINK or LINKs being added
The data set used on the VARY TCPIP,,OBEYFILE command in this step should
be different from the data set used in step . Do not put the DELETE and
redefinition of an interface in the same OBEYFILE data set.
__

4. Start the device.
__

Results

Guideline: To change parameters on a LINK statement only, you do not need to
delete the DEVICE name statement and later redefine the DEVICE name statement.

To dynamically change a value on a LINK statement only, do not perform the
DELETE devicename and redefine DEVICE steps in “Steps for modifying LINK
statements.”

For more information about the VARY TCPIP commands, see z/OS
Communications Server: IP System Administrator's Commands.

You can add new DEVICE and LINK statements using the VARY TCPIP command.
You can also delete and redefine existing statements.

When you add new LINK statements, any corresponding BEGINROUTES,
GATEWAY, HOME, and TRANSLATE statements coded to include the new links
are treated as replacements for active statements. Therefore, when you code the
BEGINROUTES, GATEWAY, HOME, or TRANSLATE statements of the data set
specified on a VARY TCPIP,,OBEYFILE command, be sure to include new and
existing links that you want to have active in your configuration.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 51

Monitoring network links (DEVICE and LINK statements)
To delete links, the devices must be stopped. When the devices are stopped, the
link becomes inactive. If the TCP/IP stack is currently monitoring interfaces and
detects that all monitored interfaces are inactive as a result of the devices being
stopped, the TCP/IP stack might issue messages about the problem and might
trigger a recovery action. You can disable monitoring of these interfaces. To do this,
specify the NOMONSYSPLEX keyword on the LINK statement using the VARY
TCPIP,,OBEYFILE command before stopping the devices. For more information, see
sysplex problem detection and recovery in z/OS Communications Server: IP
Configuration Guide.

DEVICE and LINK — ATM devices statement

This device type will not be supported in a future release. It is recommended that
you migrate to a later interface type, such as OSA-Express QDIO or HiperSockets.

Use the DEVICE statement to specify the name of the ATM device that you use.
Use the LINK statement to define a network interface link associated with the
ATM device.

The presence of DEVICE and LINK ATM statements in your PROFILE.TCPIP
enables ATM native mode and SNMP network management support for the ATM
device. Even if an ATM device is not being used by this TCP/IP, or is being used
by TCP/IP in ATM LAN Emulation mode instead of Native mode, specifying
DEVICE and LINK statements enable you to retrieve SNMP network management
data for the ATM device. Enabling SNMP network management data for the ATM
devices also requires specification of the OSAENABLED parameter on the
SACONFIG Profile statement. For more information about SNMP OSA
Management, see z/OS Communications Server: IP Configuration Guide.

You can specify multiple LINKs for an ATM device. This is so an ATM device can
be in more than one LIS.

For more information about missing interrupt handler (MIH) considerations with
TCP/IP devices, see “Missing interrupt handler factors” on page 49.

Syntax

Rule: Specify the parameters in the order shown here.

�� DEVice device_name ATM PORTNAME port_name
ENABLEINcomingsvc

DISABLEINcomingsvc
�

�
NOAUTORestart

AUTORestart
��

Parameters

device_name
The name of the device.

Requirement: The device name must be the Open Systems Adapter (OSA)
name known to MPC and OSA/SF. The maximum length is eight characters.

52 z/OS V2R1.0 Communications Server: IP Configuration Reference

|
|

This name, the OSA name, must match the name specified on the transport
resource list element (TRLE).For more information about the TRLE, see z/OS
Communications Server: SNA Resource Definition Reference. The same name is
specified in the LINK statements.

ATM
Specifies the device is for ATM use.

PORTNAME port_name
The OSA port name. The maximum length is eight characters.

Requirements:

v This name must match the port name specified on the transport resource list
element (TRLE). For more information about the TRLE, see z/OS
Communications Server: SNA Resource Definition Reference.

v The PORTNAME must be the same in all instances of TCP/IP and VTAM
that share the same adapter.

DISABLEINCOMINGSVC
Device cannot be used for incoming SVCs.

ENABLEINCOMINGSVC
Allow incoming SVC calls for this device; the device can be used for both
outgoing and incoming SVCs.

AUTORESTART | NOAUTORESTART
Controls device failure reactivation behavior.

AUTORESTART
In the event of a device failure, the TCP/IP address space attempts to
reactivate the device. For more information, see “Recovering from
device failures” on page 48.

NOAUTORESTART
For most device failures, specifying NOAUTORESTART indicates that
the TCP/IP address space does not attempt to reactivate this device.

Syntax

Rule: The optional parameters on the LINK statement following device_name can be
specified in any order.

�� LINK link_name ATM device_name
LIS lis_name

�

�
IFSPEED 0

IFSPEED ifspeed
IFHSPEED ifhspeed

SECCLASS 255

SECCLASS security_class

NOMONSYSPLEX

MONSYSPLEX
��

Parameters

link_name
The name of the link. The maximum length is 16 characters.

ATM
Specifies that the link is an ATM link.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 53

device_name
The device_name must be the same as specified in the DEVICE statement.

LIS lis_name
The logical IP subnet for this LINK. This parameter is required only if the link
is to be used for SVC connections. The maximum length is 16 characters. The
lis_name must be defined on an ATMLIS statement prior to being used on the
LINK statement.

IFSPEED ifspeed
An optional estimate of the interface's current bandwidth in bits per second.
The minimum value that can be specified for the ifspeed variable is 0, the
maximum value is 2 147 483 647, and the default is 0 set dynamically. Until
the interface is successfully started, this value is used by SNMP as the value of
the ifSpeed MIB object. After the interface is successfully started, SNMP uses
the actual speed reported by the interface as the value of the ifSpeed MIB
object. The value of this parameter has no effect on the operation of the device.

IFHSPEED ifhspeed
An optional estimate of the interface's current bandwidth in one million bits
per second units. The minimum value that can be specified for the ifhspeed
variable is 0, the maximum value is 2 147, and the default ifhspeed for an ATM
link is 0. Until the interface is successfully started, this value is used by SNMP
as the value of the ifHighSpeed MIB object. After the interface is successfully
started, SNMP uses the actual speed reported by the interface as the value of
the ifHighSpeed MIB object. The value of this parameter has no effect on the
operation of the device.

SECCLASS security_class
Use this parameter to associate a security class for IP filtering with this
interface. In order for traffic over the interface to match a filter rule, the filter
rule must have the same security class value as the interface or a value of 0.
Filter rules can be specified in the TCP/IP profile or in an IP Security policy
file read by the Policy Agent. Filter rules can include a security class
specification on the IpService statement in an IP Security policy file or on the
SECCLASS parameter on the IPSEC statement in the TCP/IP profile.

Valid security classes are identified as a number in the range 1 - 255. The
default value is 255. For more information about security class values, see
z/OS Communications Server: IP Configuration Guide.

Restriction: The TCP/IP stack ignores this value if IPSECURITY is not
specified on the IPCONFIG statement.

MONSYSPLEX | NOMONSYSPLEX
Specifies whether or not sysplex autonomics should monitor the link's status.

NOMONSYSPLEX
Specifies that sysplex autonomics should not monitor the link's status.
This is the default value.

MONSYSPLEX
Specifies that sysplex autonomics should monitor the link's status.

Restriction: The MONSYSPLEX attribute is not in effect unless the
MONINTERFACE keyword is specified on the GLOBALCONFIG
SYSPLEXMONITOR profile statement. The presence of dynamic routes
over this link is monitored if the DYNROUTE keyword is also
specified on the GLOBALCONFIG SYSPLEXMONITOR profile
statement.

54 z/OS V2R1.0 Communications Server: IP Configuration Reference

Steps for modifying

See “Modifying DEVICE and LINK statements” on page 50 for modifying
information.

Examples

The following example specifies that OSA1 is an ATM device:
DEVICE OSA1 ATM PORTNAME PORT1
LINK LINK1 ATM OSA1

Usage notes

To see samples of commands for using dynamic routing with this device, see the
information about NBMA subnetworks in z/OS Communications Server: IP
Configuration Guide.

Related topics
v “ATMARPSV statement” on page 17
v “ATMLIS statement” on page 19
v “ATMPVC statement” on page 22
v “BEGINROUTES statement” on page 28
v “BSDROUTINGPARMS statement” on page 36
v “DELETE statement” on page 43
v “GATEWAY statement” on page 109
v “HOME statement” on page 136
v “SACONFIG statement” on page 271
v “START statement” on page 292
v “STOP statement” on page 293
v “TRANSLATE statement” on page 301

DEVICE and LINK — CLAW devices statement

This device type will not be supported in a future release. It is recommended that
you migrate to a later interface type, such as OSA-Express QDIO or HiperSockets.

Use the DEVICE statement to specify the name and hexadecimal device number of
a Common Link Access to Workstation (CLAW) device that you use. Devices that
use the CLAW protocol include SP2, IBM pSeries servers, and Cisco
7200/7500-series channel-attached routers. Only one DEVICE statement should be
used for each device. Use the LINK statement to define a network interface link
associated with CLAW devices.

Restriction: Only one LINK statement should be used for each device.

For more information about missing interrupt handler (MIH) considerations with
TCP/IP devices, see “Missing interrupt handler factors” on page 49.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 55

|
|

Syntax

Rule: Specify the parameters in the order shown here.

�� DEVice device_name CLAW device_number �

� host_claw_name workstation_claw_name NONE
PACKED

15

read_buffers
�

�
15

write_buffers

4096(Unpacked) or 32K (Packed)

read_size
�

�
4096(Unpacked) or 32K (Packed)

write_size

NOAUTORestart

AUTORestart
��

Parameters

device_name
The name of the device. The maximum length is 16 characters. The same name
is specified in the LINK statement.

CLAW
Specifies the device is a CLAW device.

device number
The hexadecimal device number of the pSeries. TCP/IP also uses device
number + 1.

host_claw_name
A value that defines the name of the host system in the system validation
exchange between the TCP/IP code and the workstation code. This name must
match the HOSTNAME configured on the device.

The maximum length is eight characters.

workstation_claw_name
A value for the name of the workstation for the system validation exchange.
This name must match the Workstation (or Device) Name configured on the
device. The maximum length is eight characters.

NONE
This CLAW device operates in non-packed mode. This is the default value.

PACKED
This CLAW device operates in packed mode.

read_buffers
This is the decimal number (one or more) of buffers to allocate to the read
channel program. The minimum value that can be specified for read_buffers is
1; the maximum effective value is limited to 256K/Read_Size, even if a larger
value is coded on this statement. This should be large enough to give TCP/IP
sufficient time to process the received data and append the buffer to the
running channel program before it terminates. Each of these buffers uses real
storage, so the number should be small enough not to impact overall system
performance. The default is 15.

56 z/OS V2R1.0 Communications Server: IP Configuration Reference

write_buffers
This is the decimal number (one or more) of buffers to allocate to the write
channel program. The minimum value that can be specified for write_buffers is
1; the maximum effective value is limited to 256K/Write_Size, even if a larger
value is coded on this statement. This should be large enough that a busy
TCP/IP can reuse buffers without the channel program terminating. Each of
these buffers uses real storage, so the number should be small enough not to
impact overall system performance. The default is 15.

read_size
This is the size of the read buffers. If non-packed mode is specified, values are:
v 1024
v 2048
v 3072
v 4096

If packed mode is specified, the valid values for the read_size parameter are:
v 32K
v 60K

The default for non-packed mode is 4096. The default for packed mode is 32K.

Use the following guidelines for selection read_size:

Unpacked mode
When configuring CLAW to communicate with pSeries, choose the
read_size value that matches the transmit buffer size configured on the
channel adapter (this is usually 4096, unless the administrator has
overridden this setting on the adapter). When configuring CLAW to
communicate with a Cisco 7200-series or 7500-series router in
non-packed mode, always specify a read_size of 4096. For other CLAW
devices, see the documentation for the device.

Packed mode
When running workloads that involve bulk-data transfer inbound, the
60K read_size value delivers a higher throughput than the 32K value.
However, this larger buffer consumes more REAL storage than the 32K
setting.

write_size
This is the size of the write buffers. If non-packed mode is specified, values
are:
v 1024
v 2048
v 3072
v 4096 or 4K

If packed mode is specified, the valid values for the write_size parameter are:
v 32K
v 60K

The default for UnPacked mode is 4096. The default for Packed mode is 32K.

Use the following guidelines for selection write_size:

Unpacked mode
When configuring CLAW to communicate with pSeries, choose the
write_size value that matches the receive buffer size configured on the

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 57

channel adapter (this is usually 4096, unless the administrator has
overridden this setting on the adapter). When configuring CLAW to
communicate with a Cisco 7200-series or 7500-series router in
non-packed mode, always specify a read_size of 4096. For other CLAW
devices, see the documentation for the device.

Packed mode
When running workloads that involve bulk-data transfer outbound, the
60K write_size value delivers a higher throughput than the 32K value;
however, the larger buffer consumes more REAL storage than the 32K
setting.

AUTORESTART | NOAUTORESTART
Controls device failure reactivation behavior.

NOAUTORESTART
For most device failures, specifying NOAUTORESTART indicates that
the TCP/IP address space does not attempt to reactivate this device.

AUTORESTART
In the event of a device failure, the TCP/IP address space attempts to
reactivate the device. For more information, see “Recovering from
device failures” on page 48.

Syntax

Rule: The optional parameters on the LINK statement following the device_name
parameter can be specified in any order.

�� LINK link_name IP 0 device_name
P2MP

IFSPEED 100000000

IFSPEED ifspeed
IFHSPEED ifhspeed

�

�
SECCLASS 255

SECCLASS security_class

NOMONSYSPLEX

MONSYSPLEX
��

Parameters

link_name
The name of the link. The maximum length is 16 characters.

IP 0
Specifies that the link is an IP link.

device_name
The device_name must be the same as specified in the DEVICE statement. The
maximum length is 16 characters.

P2MP
Treat this CLAW link as a point-to-multipoint link. The default is
point-to-point. Point-to-multipoint RIP neighbors with which OMPROUTE
exchanges routing information are learned through RIP_INTERFACE
NEIGHBOR statements or upon receipt of an RIP update from the same-subnet
neighbor.

IFSPEED ifspeed
An optional estimate of the interface's current bandwidth in bits per second.
The minimum value that can be specified for ifspeed is 0; the maximum value is

58 z/OS V2R1.0 Communications Server: IP Configuration Reference

2147483647. The default is 100000000. This value is accessible to SNMP for
management queries, but has no effect on operation of the device.

IFHSPEED ifhspeed
An optional estimate of the interface's current bandwidth in one million bits
per second units. The minimum value that can be specified for ifhspeed is 0; the
maximum value is 2147. The default is 100. This value is accessible to SNMP
for management queries, but has no effect on operation of the device.

SECCLASS security_class
Use this parameter to associate a security class for IP filtering with this
interface. In order for traffic over the interface to match a filter rule, the filter
rule must have the same security class value as the interface or a value of 0.
Filter rules can be specified in the TCP/IP profile or in an IP Security policy
file read by the Policy Agent. Filter rules can include a security class
specification on the IpService statement in an IP Security policy file or on the
SECCLASS parameter on the IPSEC statement in the TCP/IP profile.

Valid security classes are identified as a number in the range 1 - 255. The
default value is 255. For more information about security class values, see
z/OS Communications Server: IP Configuration Guide.

Restriction: The TCP/IP stack ignores this value if IPSECURITY is not
specified on the IPCONFIG statement.

MONSYSPLEX | NOMONSYSPLEX
Specifies whether or not sysplex autonomics should monitor the link's status.

NOMONSYSPLEX
Specifies that sysplex autonomics should not monitor the link's status.
This is the default value.

MONSYSPLEX
Specifies that sysplex autonomics should monitor the link's status.

Restriction: The MONSYSPLEX attribute is not in effect unless the
MONINTERFACE keyword is specified on the GLOBALCONFIG
SYSPLEXMONITOR profile statement. The presence of dynamic routes
over this link is monitored if the DYNROUTE keyword is also
specified on the GLOBALCONFIG SYSPLEXMONITOR profile
statement.

Steps for modifying

See “Modifying DEVICE and LINK statements” on page 50 for modifying
information.

Examples

This example shows how you might code DEVICE, LINK, and related statements
for a pSeries connection.
DEVICE RS6K CLAW 6B2 HOST PSCA NONE
LINK IPLINK1 IP 0 RS6K
HOME

192.10.10.1 IPLINK1

GATEWAY
;
; Network First hop Driver Packet size Subnet mask Subnet value

192.10.10.2 = IPLINK1 DEFAULTSIZE HOST

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 59

DEFAULTNET 192.10.10.2 IPLINK1 DEFAULTSIZE 0

; BSDROUTINGPARMS: Defines the characteristics of each link defined at the host.
;
; If not supplied, defaults will be supplied from:
; (1) Static routing definitions in BEGINROUTES
; (2) OMPROUTE configuration (if OMPROUTE is running)
; (3) Stack’s interface layer based on hardware capabilites ; and characteristics
: of devices and links.
; - OMPROUTE does not require BSDROUTINGPARMS. However,
; it will override the parameters with its coded or
; defaulted values from its configuration.
; - NCPROUTE requires BSDROUTINGPARMS to route Transport
; PDUs prior to OMPROUTE activation. If OMPROUTE is
; also used, the parameters must match the corresponding
; ones in OMPROUTE configuration for the channel-
; attached links.
;

Usage notes
v Claw packing was originally developed to communicate with the Cisco 7200

series routers with Channel Port Adapters (ECPAs or PCPAs) and the Cisco 7500
series routers with Channel Interface Processors (CIPs), but newer router models
from Cisco or other vendors might have incorporated the Claw packing function
since that time. Please consult your router vendor if there are questions about
the packing capability of your router.
The prerequisite microcode from Cisco is cip26-17 or xcpa26-17 for 12.0 IOS
releases and cip27-11 or xcpa27-11 for 12.1 IOS releases; also, any future image
that has the following problems resolved: CSCds19174 and CSCds24793.

v If PACKED operation is specified, z/OS Communications Server ensures READ
and WRITE buffer sizes of at least 32K, and enforces an interface MTU of 4096
bytes on the z/OS side of the channel. The interface MTU is not to be confused
with the MTU value that is defined in the routing definitions; the interface MTU
sets an upper limit on what the MTU can be for a routing definition.

v If the z/OS server running the CLAW device driver is a second-level (Virtual
not equal Real) guest on a VM system, certain elements of the CLAW protocol
are transparently disabled. In particular, the effects of extending the channel
program are seen, and this can result in a higher interrupt rate with potentially
lower throughput. Other than this slightly degraded performance, the CLAW
device driver is functional in a Virtual-Not-Equal-Real guest.

Related topics
v “BEGINROUTES statement” on page 28
v “BSDROUTINGPARMS statement” on page 36
v “GATEWAY statement” on page 109
v “HOME statement” on page 136
v “START statement” on page 292
v “STOP statement” on page 293

DEVICE and LINK — CTC devices statement

Use the DEVICE statement to specify the name and hexadecimal device number of
the channel-to-channel (CTC) devices that you use. Use the LINK statement to
define a network interface link associated with the CTC devices.

60 z/OS V2R1.0 Communications Server: IP Configuration Reference

Requirement: You must use a separate DEVICE statement for each device you use.
The same is true for the LINK statement.

For more information about missing interrupt handler (MIH) considerations with
TCP/IP devices, see “Missing interrupt handler factors” on page 49.

Syntax

Rule: Specify the parameters in the order shown here.

�� DEVice device_name CTC base_device_number �

�
IOBUFFERSIZE 32768

IOBUFFERSIZE buffer_size

NOAUTORestart

AUTORestart
��

Parameters

device_name
The name of the device. The maximum length is 16 characters. The same name
is specified in the LINK statement.

CTC
Specifies the device is a channel-to-channel (CTC) device.

base_device_number
The hexadecimal base device number associated with the CTC adapter. Two
numbers are used by TCP/IP: the base_device_number and base_device_number+1.

IOBUFFERSIZE buffer_size
Specifies the I/O buffer size. The buffer size must be 32K (minimum), 32 768
(default), or 65 535 (maximum).

AUTORESTART | NOAUTORESTART
Controls device failure reactivation behavior.

NOAUTORESTART
For most device failures, specifying NOAUTORESTART indicates that
the TCP/IP address space does not attempt to reactivate this device.

AUTORESTART
In the event of a device failure, the TCP/IP address space attempts to
reactivate the device. For more information, see “Recovering from
device failures” on page 48.

Syntax

Rule: The optional parameters on the LINK statement following the device_name
parameter can be specified in any order.

�� LINK link_name CTC adapter_addr device_name
IFSPEED 4500000

IFSPEED ifspeed
IFHSPEED ifhspeed

�

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 61

�
SECCLASS 255

SECCLASS security_class

NOMONSYSPLEX

MONSYSPLEX
��

Parameters

link_name
The name of the link. The maximum length is 16 characters.

CTC
Specifies that the link is a channel-to-channel link.

adapter_addr
An integer used to specify whether the DEVICE statement's parameter,
base_device_number, is the read device number or the write device number. Use
0 to indicate that the base device number is the read device and 1 to indicate
that the base_device_number is the write device.

device_name
The device_name must be the same as specified in the DEVICE statement.

IFSPEED ifspeed
An optional estimate of the interface's current bandwidth in bits per second.
The minimum value that can be specified for ifspeed for a CTC link is 0; the
maximum value is 2 147 483 647. The default is 4 500 000. This value is
accessible to SNMP for management queries, but has no effect on operation of
the device.

IFHSPEED ifhspeed
An optional estimate of the interface's current bandwidth in one million bits
per second units. The minimum value that can be specified for ifhspeed for a
CTC link is 0; the maximum value is 2147. The default is 4. This value is
accessible to SNMP for management queries, but has no effect on operation of
the device.

SECCLASS security_class
Use this parameter to associate a security class for IP filtering with this
interface. In order for traffic over the interface to match a filter rule, the filter
rule must have the same security class value as the interface or a value of 0.
Filter rules can be specified in the TCP/IP profile or in an IP Security policy
file read by the Policy Agent. Filter rules can include a security class
specification on the IpService statement in an IP Security policy file or on the
SECCLASS parameter on the IPSEC statement in the TCP/IP profile.

Valid security classes are identified as a number in the range 1 - 255. The
default value is 255. For more information about security class values, see
z/OS Communications Server: IP Configuration Guide.

Restriction: The TCP/IP stack ignores this value if IPSECURITY is not
specified on the IPCONFIG statement.

MONSYSPLEX | NOMONSYSPLEX
Specifies whether or not sysplex autonomics should monitor the link's status.

NOMONSYSPLEX
Specifies that sysplex autonomics should not monitor the link's status.
This is the default value.

MONSYSPLEX
Specifies that sysplex autonomics should monitor the link's status.

62 z/OS V2R1.0 Communications Server: IP Configuration Reference

Restriction: The MONSYSPLEX attribute is not in effect unless the
MONINTERFACE keyword is specified on the GLOBALCONFIG
SYSPLEXMONITOR profile statement. The presence of dynamic routes
over this link is monitored if the DYNROUTE keyword is also
specified on the GLOBALCONFIG SYSPLEXMONITOR profile
statement.

Steps for modifying

See “Modifying DEVICE and LINK statements” on page 50 for modifying
information.

Usage notes

The configured I/O buffer sizes at each end of the CTC connection must match. A
buffer size mismatch can cause packet loss or I/O errors, resulting in deactivation
of the CTC connection. CTC I/O buffer size can be explicitly specified with the
IOBUFFERSIZE parameter.

Related topics
v “BEGINROUTES statement” on page 28
v “BSDROUTINGPARMS statement” on page 36
v “GATEWAY statement” on page 109
v “HOME statement” on page 136
v “START statement” on page 292
v “STOP statement” on page 293

DEVICE and LINK — HYPERchannel A220 devices statement

This device type will not be supported in a future release. It is recommended that
you migrate to a later interface type, such as OSA-Express QDIO or HiperSockets.

Use the DEVICE statement to specify the name and hexadecimal device number of
the HYPERchannel A220 device.

Use the LINK statement to define the link to the HYPERchannel A220 adapter.

The TRANSLATE statement is required for HYPERchannel A220 devices.

Some token-ring hardware does not recognize the RFC 1469 mandated functional
MAC address for multicast. The TRANSLATE statement can be used to configure a
token-ring link to broadcast multicast datagrams as an alternative to using the
functional MAC address. Use the reserved class D address 224.0.0.0 with one of the
following special physical addresses:
v FFFFFFFFFFFF for all rings broadcast
v C00000040000 to reset back to the default functional address

The following examples show how to specify each method:
v All rings:

TRANSLATE
224.0.0.0 IBMTR FFFFFFFFFFFF linkname

v Assigned functional address:

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 63

|
|

TRANSLATE
224.0.0.0 IBMTR C00000040000 linkname

The TRANSLATE statement is effective on a per link basis. You do not have to
code a TRANSLATE statement if you want the assigned functional address, as it is
the default method.

For more information about missing interrupt handler (MIH) considerations with
TCP/IP devices, see “Missing interrupt handler factors” on page 49.

Syntax

Rule: Specify the parameters in the order shown here.

�� DEVICE device_name HCH base_device_number
NOAUTORestart

AUTORestart
��

Parameters

device_name
The name of the device. The maximum length is 16 characters. The same name
is specified in the LINK statement.

HCH
Specifies the device is a HYPERchannel A220.

base_device_number
The hexadecimal base device number (in the range 0 - FFFF) associated with
the A220 adapter. Two addresses are used by TCP/IP: the base_device_number
and base_device_number+1.

AUTORESTART | NOAUTORESTART
Controls device failure reactivation behavior.

NOAUTORESTART
For most device failures, specifying the NOAUTORESTART value
indicates that the TCP/IP address space does not attempt to reactivate
this device.

AUTORESTART
In the event of a device failure, the TCP/IP address space attempts to
reactivate the device. For more information, see “Recovering from
device failures” on page 48.

Syntax

Rule: The optional parameters on the LINK statement following device_name can be
specified in any order.

�� LINK link_name HCH adapter_addr device_name
IFSPEED 50000000

IFSPEED ifspeed
IFHSPEED ifhspeed

�

64 z/OS V2R1.0 Communications Server: IP Configuration Reference

�
SECCLASS 255

SECCLASS security_class

NOMONSYSPLEX

MONSYSPLEX
��

Parameters

link_name
The name of the link. The maximum length is 16 characters.

HCH
Specifies that the link is a HYPERchannel A220.

adapter_addr
This value must be an integer, but the value is ignored. This parameter is
included for consistency with LINK statement formats for other device types.

device_name
The device_name must be the same as specified in the DEVICE statement. The
maximum length is 16 characters.

IFSPEED ifspeed
An optional estimate of the interface's current bandwidth in bits per second.
The minimum value that can be specified for ifspeed for a hyperchannel link is
0; the maximum value is 2 147 483 647. The default is 50 000 000. This value
is accessible to SNMP for management queries, but has no effect on operation
of the device.

IFHSPEED ifhspeed
An optional estimate of the interface's current bandwidth in one million bits
per second units. The minimum value that can be specified for ifhspeed for a
hyperchannel link is 0; the maximum value is 2147. The default is 50. This
value is accessible to SNMP for management queries, but has no effect on
operation of the device.

SECCLASS security_class
Use this parameter to associate a security class for IP filtering with this
interface. In order for traffic over the interface to match a filter rule, the filter
rule must have the same security class value as the interface or a value of 0.
Filter rules can be specified in the TCP/IP profile or in an IP Security policy
file read by the Policy Agent. Filter rules can include a security class
specification on the IpService statement in an IP Security policy file or on the
SECCLASS parameter on the IPSEC statement in the TCP/IP profile.

Valid security classes are identified as a number in the range 1 - 255. The
default value is 255. For more information about security class values, see
z/OS Communications Server: IP Configuration Guide.

Restriction: The TCP/IP stack ignores this value if IPSECURITY is not
specified on the IPCONFIG statement.

MONSYSPLEX | NOMONSYSPLEX
Specifies whether or not sysplex autonomics should monitor the link's status.

NOMONSYSPLEX
Specifies that sysplex autonomics should not monitor the link's status.
This is the default value.

MONSYSPLEX
Specifies that sysplex autonomics should monitor the link's status.

Restriction: The MONSYSPLEX attribute is not in effect unless the
MONINTERFACE keyword is specified on the GLOBALCONFIG

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 65

SYSPLEXMONITOR profile statement. The presence of dynamic routes
over this link is monitored if the DYNROUTE keyword is also
specified on the GLOBALCONFIG SYSPLEXMONITOR profile
statement.

Steps for modifying

See “Modifying DEVICE and LINK statements” on page 50 for modifying
information.

Usage notes
v The ATTENTION+BUSY and unit check conditions are normally handled in the

background and can affect performance without any visible evidence. The
guidelines for HYPERchannel A222 and A223 Mode Switch Settings are:
– The Disable Attentions setting on the HYPERchannel box eliminates the

ATTENTION+BUSY status in response to read commands, which reduces
overhead.

– The Enable Command Retry setting reduces the number of unit checks needed
because of trunk contention. This setting improves performance, because the
TCP/IP device driver waits 10 milliseconds before trying a command that
produced a unit check again. This setting also eliminates the need to perform
sense operations and try commands again.

v To use dynamic routing with this device, see the NBMA subnetworks
information (Non_Broadcast parameter) in “OSPF_INTERFACE statement” on
page 493 and see examples in z/OS Communications Server: IP Configuration
Guide.

Related topics
v “BEGINROUTES statement” on page 28
v “BSDROUTINGPARMS statement” on page 36
v “GATEWAY statement” on page 109
v “HOME statement” on page 136
v “START statement” on page 292
v “STOP statement” on page 293
v “TRANSLATE statement” on page 301

DEVICE and LINK — LAN Channel Station and OSA devices statement

Use the DEVICE statement to specify the name and hexadecimal device number of
an IBM 8232 LAN Channel Station (LCS) device, an IBM 3172 Interconnect
Controller, an IBM 2216 Multiaccess Connector Model 400, an IBM FDDI, Ethernet,
Token-Ring OSA, or an IBM ATM OSA-2 in LAN emulation mode.

Use the LINK statement to define a network interface link associated with an LCS
device. The LINK statements used are the Ethernet Network LCS LINK statement,
the Token-Ring Network or PC Network LCS LINK statement, and the FDDI LCS
LINK statement.

Requirement: You must use a separate LINK statement for each link associated
with an LCS device.

Each network interface on the OSA is considered a separate DEVICE. For example,
if you are using both ports on the OSA-2 card, you need to code a DEVICE and

66 z/OS V2R1.0 Communications Server: IP Configuration Reference

LINK pair for each port. For more information about missing interrupt handler
(MIH) considerations with TCP/IP devices, see “Missing interrupt handler factors”
on page 49.

Syntax

Rule: Specify the parameters in the order shown here.

�� DEVice device_name LCS device_number
NONETMAN

NETMAN
�

�
IOBUFFERSIZE 20480

IOBUFFERSIZE buffer_size

NOAUTORESTART

AUTORESTART
��

Parameters

device_name
The name of the device. The maximum length is 16 characters. The same name
is specified on the LINK statements.

LCS
Specifies the device is a LAN Channel Station.

device_number
The hexadecimal device number (in the range 0 - FFFF) of the LCS.
device_number +1 is also used by the TCP/IP address space.

NETMAN
Specifies that this device is a 3172 that supports the IBM Enterprise-specific
MIB variables for 3172.

Requirement: NETMAN must be coded before IOBUFFERSIZE.

NONETMAN
Specifies that this device is not used for NETMAN data retrieval.

IOBUFFERSIZE buffer_size
Specifies the I/O buffer size. The buffer size must be 20K, 20 480, 32K, or
32 768.

Guidelines:

v The configured I/O buffer sizes for the host and for the device must match.
A buffer size mismatch can cause packet loss or I/O errors, which results in
the deactivation of the LCS connection.

v If the LCS device supports an option to configure a 32K buffer size, then
configuring both the device and the TCP/IP profile to 32K provides the best
performance. If the device does not support this option, then specify (or
default) to 20K in the TCP/IP profile.

AUTORESTART | NOAUTORESTART
Controls device failure reactivation behavior.

NOAUTORESTART
For most device failures, specifying the NOAUTORESTART value
indicates that the TCP/IP address space does not attempt to reactivate
this device.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 67

AUTORESTART
In the event of a device failure, the TCP/IP address space attempts to
reactivate the device. For more information, see “Recovering from
device failures” on page 48.

LINK statement for Ethernet network LCS

This LINK statement is used to define an Ethernet link on an IBM 3172
Interconnect Controller and IBM 8232 LAN Channel Station (LCS) or OSA device.

Syntax

Rule: The optional parameters on the LINK statement following the device_name
parameter can be specified in any order.

�� LINK link_name ETHERNet
802.3
ETHEROR802.3

link_number device_name �

�
IFSPEED 4000000

IFSPEED ifspeed
IFHSPEED ifhspeed

SECCLASS 255

SECCLASS security_class

NOMONSYSPLEX

MONSYSPLEX
��

Parameters

link_name
The name of the link. The maximum length is 16 characters.

ETHERNET
Standard Ethernet protocol only.

802.3
IEEE 802.3 protocol only.

ETHERor802.3
Both standard Ethernet and IEEE 802.3 protocols. When ETHERor802.3 is
specified, address resolution packets (ARP) for both protocols are generated.
All devices on the network must be able to process or discard these packets.

link_number
The relative adapter number (0 for the first Ethernet protocol network in the
LCS, 1 for the second Ethernet protocol network, and so on). If defining OSA,
this value is the port number on the OSA.

device_name
The device_name must be the same name as specified in the DEVICE statement.
The maximum length is 16 characters.

IFSPEED ifspeed
An optional estimate of the interface's current bandwidth in bits per second.
The minimum value that can be specified for ifspeed for an LCS link is 0, the
maximum value is 2 147 483 647. The default is 4 000 000. This value is
accessible to SNMP for management queries, but has no effect on operation of
the device.

IFHSPEED ifhspeed
An optional estimate of the interface's current bandwidth in one million bits
per second units. The minimum value that can be specified for ifhspeed for an

68 z/OS V2R1.0 Communications Server: IP Configuration Reference

LCS link is 0, the maximum value is 2147. The default is 4. This value is
accessible to SNMP for management queries, but has no effect on operation of
the device.

SECCLASS security_class
Use this parameter to associate a security class for IP filtering with this
interface. In order for traffic over the interface to match a filter rule, the filter
rule must have the same security class value as the interface or a value of 0.
Filter rules can be specified in the TCP/IP profile or in an IP Security policy
file read by the Policy Agent. Filter rules can include a security class
specification on the IpService statement in an IP Security policy file or on the
SECCLASS parameter on the IPSEC statement in the TCP/IP profile.

Valid security classes are identified as a number in the range 1 - 255. The
default value is 255. For more information about security class values, see
z/OS Communications Server: IP Configuration Guide.

Restriction: The TCP/IP stack ignores this value if IPSECURITY is not
specified on the IPCONFIG statement.

MONSYSPLEX | NOMONSYSPLEX
Specifies whether or not sysplex autonomics should monitor the link's status.

NOMONSYSPLEX
Specifies that sysplex autonomics should not monitor the link's status.
This is the default value.

MONSYSPLEX
Specifies that sysplex autonomics should monitor the link's status.

Restriction: The MONSYSPLEX attribute is not in effect unless the
MONINTERFACE keyword is specified on the GLOBALCONFIG
SYSPLEXMONITOR profile statement. The presence of dynamic routes
over this link is monitored if the DYNROUTE keyword is also
specified on the GLOBALCONFIG SYSPLEXMONITOR profile
statement.

LINK statement for token-ring network or PC network LCS

The token-ring LCS LINK statement is used to define the token-ring link to the
LCS (IBM 8232 or IBM 3172) or OSA device previously defined by the LCS
DEVICE statement. By default, the token-ring LCS LINK statement is also used to
define the PC Network link.

Medium Access Control (MAC) addresses in the Address Resolution Protocol
(ARP) packets on this token-ring network are in the more common, noncanonical
format.

Requirement: All TCP/IP hosts and gateways on a given token-ring network must
be configured to use the same form for MAC addresses in ARP packets, either
canonical or noncanonical. For more information about the terms, canonical and
noncanonical, see IEEE standards 802.3 and 802.5.

Rule: The optional parameters on the LINK statement following device_name can be
specified in any order.

Syntax

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 69

�� LINK link_name IBMTR link_number device_name �

�

�

NONCANONical ALLRINGsbcast

CANONical
NONCANONical
ALLRINGsbcast
LOCALBcast

IFSPEED 4000000

IFSPEED ifspeed
IFHSPEED ifhspeed

�

�
SECCLASS 255

SECCLASS security_class

NOMONSYSPLEX

MONSYSPLEX
��

Parameters

link_name
The name of the link. The maximum length is 16 characters.

IBMTR
Specifies that the link is to an IBM Token-Ring.

link_number
The relative adapter number (0 for the first token-ring adapter in the LCS, 1 for
the second token-ring, and so on). If defining OSA, this value is the port
number on the OSA.

device_name
The device_name must be the same as specified in the DEVICE statement. The
maximum length is 16 characters.

CANONICAL
MAC addresses in Address Resolution Protocol (ARP) packets on this
token-ring network are in the canonical IEEE 802.5 form.

NONCANONICAL
MAC addresses in ARP packets on this token-ring network are in the more
common noncanonical format. This is the default value.

ALLRINGSBCAST
All IP and ARP broadcasts are sent as all-rings broadcasts, which are
propagated through token-ring bridges (Source Route Bridging). This is the
default value.

LOCALBCAST
All IP and ARP broadcasts are sent only on the local ring and are not
propagated through token-ring bridges (Transparent Bridging).

IFSPEED ifspeed
An optional estimate of the interface's current bandwidth in bits per second.
This value is accessible to SNMP for management queries, but has no effect on
operation of the device.

IFHSPEED ifhspeed
An optional estimate of the interface's current bandwidth in one million bits

70 z/OS V2R1.0 Communications Server: IP Configuration Reference

per second units. This value is accessible to SNMP for management queries,
but has no effect on operation of the device.

SECCLASS security_class
Use this parameter to associate a security class for IP filtering with this
interface. In order for traffic over the interface to match a filter rule, the filter
rule must have the same security class value as the interface or a value of 0.
Filter rules can be specified in the TCP/IP profile or in an IP Security policy
file read by the Policy Agent. Filter rules can include a security class
specification on the IpService statement in an IP Security policy file or on the
SECCLASS parameter on the IPSEC statement in the TCP/IP profile.

Valid security classes are identified as a number in the range 1 - 255. The
default value is 255. For more information about security class values, see
z/OS Communications Server: IP Configuration Guide.

Restriction: The TCP/IP stack ignores this value if IPSECURITY is not
specified on the IPCONFIG statement.

MONSYSPLEX | NOMONSYSPLEX
Specifies whether or not sysplex autonomics should monitor the link's status.

NOMONSYSPLEX
Specifies that sysplex autonomics should not monitor the link's status.
This is the default value.

MONSYSPLEX
Specifies that sysplex autonomics should monitor the link's status.

Restriction: The MONSYSPLEX attribute is not in effect unless the
MONINTERFACE keyword is specified on the GLOBALCONFIG
SYSPLEXMONITOR profile statement. The presence of dynamic routes
over this link is monitored if the DYNROUTE keyword is also
specified on the GLOBALCONFIG SYSPLEXMONITOR profile
statement.

LINK statement for FDDI LCS

The following topic discusses the LINK statement for FDDI LCS.

This LINK statement is used to define the Fiber Distributed Data Interface (FDDI)
link to the LCS (IBM 3172 Models 002 and 003) or OSA device defined by the LCS
DEVICE statement.

Rule: The optional parameters on the LINK statement following the device_name
parameter can be specified in any order.

Syntax

�� LINK link_name FDDI link_number device_name
IFSPEED 4000000

IFSPEED ifspeed
IFHSPEED ifhspeed

�

�
SECCLASS 255

SECCLASS security_class

NOMONSYSPLEX

MONSYSPLEX
��

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 71

Parameters

link_name
The name of the link. The maximum length is 16 characters.

FDDI
Specifies that the link is to an FDDI network.

link_number
The relative adapter number (0 for the first FDDI adapter in the LCS, 1 for the
second FDDI adapter, and so on). If defining OSA, this value is the port
number on the OSA.

device_name
The device_name must be the same as specified in the DEVICE statement. The
maximum length is 16 characters.

IFSPEED ifspeed
An optional estimate of the interface's current bandwidth in bits per second.
This value is accessible to SNMP for management queries, but has no effect on
operation of the device.

IFHSPEED ifhspeed
An optional estimate of the interface's current bandwidth in one million bits
per second units. This value is accessible to SNMP for management queries,
but has no effect on operation of the device.

SECCLASS security_class
Use this parameter to associate a security class for IP filtering with this
interface. In order for traffic over the interface to match a filter rule, the filter
rule must have the same security class value as the interface or a value of 0.
Filter rules can be specified in the TCP/IP profile or in an IP Security policy
file read by the Policy Agent. Filter rules can include a security class
specification on the IpService statement in an IP Security policy file or on the
SECCLASS parameter on the IPSEC statement in the TCP/IP profile.

Valid security classes are identified as a number in the range 1 - 255. The
default value is 255. For more information about security class values, see
z/OS Communications Server: IP Configuration Guide.

Restriction: The TCP/IP stack ignores this value if IPSECURITY is not
specified on the IPCONFIG statement.

MONSYSPLEX | NOMONSYSPLEX
Specifies whether or not sysplex autonomics should monitor the link's status.

NOMONSYSPLEX
Specifies that sysplex autonomics should not monitor the link's status.
This is the default value.

MONSYSPLEX
Specifies that sysplex autonomics should monitor the link's status.

Restriction: The MONSYSPLEX attribute is not in effect unless the
MONINTERFACE keyword is specified on the GLOBALCONFIG
SYSPLEXMONITOR profile statement. The presence of dynamic routes
over this link is monitored if the DYNROUTE keyword is also
specified on the GLOBALCONFIG SYSPLEXMONITOR profile
statement.

72 z/OS V2R1.0 Communications Server: IP Configuration Reference

Steps for modifying

See “Modifying DEVICE and LINK statements” on page 50 for modifying
information.

Examples
v In this example, LCS1 is a 3172 model 1 with a Token-Ring and Ethernet

adapter.
DEVICE LCS1 LCS BA0
LINK TR1 IBMTR 0 LCS1
LINK ETH1 ETHERNET 1 LCS1

v In this example, LCS2 is a 3172 model 2 with an FDDI adapter.
DEVICE LCS2 LCS BE0
LINK FDDI1 FDDI 0 LCS2

v This example shows how you might code DEVICE, LINK, and related
statements for an LCS connection.
DEVICE LCS1 LCS BA0
LINK TR1 IBMTR 0 LCS1
LINK TR2 IBMTR 1 LCS1 LOCALBCAST
LINK ETH1 ETHERNET 0 LCS1
HOME

192.10.10.10 TR1
9.67.43.10 TR2
128.50.17.1 ETH1

GATEWAY
;
; Network First hop Driver Packet size Subnet mask Subnet value

192.10.10 = TR1 2000 0
9 = TR2 2000 0.255.255.0 0.67.43.0
128.50 = ETH1 1500 0.0.240.0 0.0.16.0
DEFAULTNET 9.67.43.1 TR2 DEFAULTSIZE 0

;
; link maxmtu metric subnet mask dest addr
; BSDROUTINGPARMS false
; TR1 2000 0 255.255.255.0 0
; TR2 2000 0 255.255.255.0 0
; ETH1 1500 0 255.255.240.0 0
; ENDBSDROUTINGPARMS
;

START LCS1

v In this example of an OSA-2 card, LCS1 is Token-Ring Port 0 and LCS2 is an
ETHERNET Port 1.
DEVICE LCS1 LCS BA0
LINK TR1 IBMTR 0 LCS1
DEVICE LCS2 LCS BA2
LINK ETH1 ETHERNET 1 LCS1

Usage notes

When an OSA-Express feature is being shared between multiple stacks (OSA port
sharing), you need to consider how to configure the OSA address table (OAT). Use
the OAT definitions to control the stack to which OSA sends datagrams and ARP
packets for specific destination IP addresses. OSA also allows two TCP/IP stacks
sharing the port to act as IP routers: a PRIMARY stack and a SECONDARY stack.
When an OAT is configured, OSA processes inbound packets as follows:

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 73

v If the IP address is configured for a given stack in the OAT, then OSA sends the
packet to that stack.

v Otherwise, if a PRIMARY entry is defined in the OAT, then OSA sends the
packet to the stack configured as PRIMARY (if active).

v Otherwise, if a SECONDARY entry is defined in the OAT, then OSA sends the
packet to the stack configured as SECONDARY (if active).

v Otherwise, OSA discards the packet.

Guideline: Configure the OAT as follows:
v Always configure an OAT entry containing the TCP/IP HOME address

associated with the LINK defined in the TCP/IP Profile.
v If you are using Virtual IP Addressing (VIPA) on the LAN, configure OAT

entries containing the TCP/IP stack's Virtual IP Addresses.
v If the stack has multiple OSAs onto the same LAN, then configure an OAT entry

for the HOME IP address of each of these OSAs. This enables you to take
advantage of the fault tolerance provided by the interface takeover (ARP
takeover) function.

v To enable a TCP/IP stack to act as a router, configure one of the OAT entries as
PRIMARY, and enable IP forwarding (IPCONFIG DATAGRAMFWD in the
TCP/IP Profile) on the TCP/IP stack acting as PRIMARY. Likewise, to enable a
second stack to back up the PRIMARY router, configure one of the OAT entries
as SECONDARY, and enable IP forwarding on the stack acting as SECONDARY.
For more information, see System z9 and zSeries Open Systems Adapter-Express
(OSA-Express) Customer's Guide and Reference.

Related topics
v “BEGINROUTES statement” on page 28
v “BSDROUTINGPARMS statement” on page 36
v “GATEWAY statement” on page 109
v “HOME statement” on page 136
v “START statement” on page 292
v “STOP statement” on page 293
v “TRANSLATE statement” on page 301

DEVICE and LINK — MPCIPA OSA-Express QDIO devices statement

To define an OSA-Express device in QDIO mode, use the MPCIPA DEVICE
statement, specifying the PORTNAME value from the TRLE definition as the
device_name value.

Requirements:

v The TRLE must be defined as MPCLEVEL=QDIO.
v If multiple LPARs share the same OSA, although the TRLE name must be

unique in each VTAM, the PORTNAME value must be the same in each of these
TRLE definitions for that QDIO interface.

For details about defining a TRLE, see z/OS Communications Server: SNA
Resource Definition Reference.

Use the LINK statement to define a network interface link associated with the
QDIO interface.

74 z/OS V2R1.0 Communications Server: IP Configuration Reference

|
|

Restriction: Only one LINK statement can be specified for each MPCIPA device.

Tip: You can also use the INTERFACE statement to define an IPv4 interface for
OSA-Express QDIO Ethernet, which combines the definitions of the DEVICE,
LINK, and HOME statements into a single statement.

Restriction: For a given OSA-Express feature, a device and link definition is
precluded in the following scenarios:
v An IPv4 interface is or was previously defined
v Multiple IPv6 definitions are or were previously defined.

When you start an MPCIPA device, TCP/IP registers all non-loopback (home) IPv4
addresses for this TCP/IP instance to OSA-Express feature. (For a dynamic VIPA
that exists on multiple stacks, only the stack that owns the DVIPA, and therefore
advertises the DVIPA to routers, registers the DVIPA to OSA-Express feature.) This
enables the device to route datagrams destined for those IPv4 addresses to this
TCP/IP instance. If a datagram is received at this device for an unknown IP
address, the device routes the datagram to the TCP/IP instance, depending on the
configuration of a virtual MAC (VMAC) address or definition of an instance as
PRIROUTER or SECROUTER. If the datagram is not destined for a virtual MAC
address and no active TCP/IP instance using this device is defined as PRIROUTER
or SECROUTER, the device discards the datagram. For more details about
OSA-Express feature routing considerations, see router information in z/OS
Communications Server: IP Configuration Guide and primary and secondary
routing in z/OS Communications Server: SNA Network Implementation Guide.

If you subsequently add, delete, or change any home IPv4 addresses on this
TCP/IP instance, TCP/IP dynamically registers the changes to OSA-Express.

SNMP management data specific to OSA-Express and OSA-Express2 features is
supported by the z/OS Communications Server SNMP TCP/IP subagent, and the
OSA-Express Direct SNMP subagent. For more information about these SNMP
subagents, see TCP/IP subagent and OSA-Express Direct subagent in the z/OS
Communications Server: IP Configuration Guide.

For detailed instructions on setting up an OSA-Express feature, see zEnterprise
System and System z10 OSA-Express Customer's Guide and Reference.

To determine the OSA-Express microcode level, use the DISPLAY TRL command. If
a specific OSA-Express feature is documented with a minimum microcode level,
you can use this command to determine whether that function is supported. IBM
service might request the microcode level for problem diagnosis. For more
information about the DISPLAY TRL command, see z/OS Communications Server:
SNA Operation.

For more information about configuring OSA-specific SNMP support, see Step 4:
Configure the Open Systems Adapter (OSA) support in z/OS Communications
Server: IP Configuration Guide.

For more information about missing interrupt handler (MIH) considerations with
TCP/IP devices, see “Missing interrupt handler factors” on page 49.

The following OSA-Express features can be defined in QDIO mode:
v Fast Ethernet
v ATM LANE Ethernet

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 75

v Gigabit Ethernet
v Token Ring
v 1000BASE-T Ethernet
v 10G Ethernet

Syntax

Rule: Specify the parameters in the order shown here.

�� DEVice device_name MPCIPA
NONRouter

PRIRouter
SECRouter

NOAUTORestart

AUTORestart
��

Parameters

device_name
The name of the device. The device name must be the PORT name of the LAN
adapter defined in a TRLE for a QDIO connection. The maximum length is
eight characters.

MPCIPA
Specifies the device belongs to the MPC family of interfaces and uses the
interface based on IP assist.

NONROUTER
If a datagram is received at this device for an unknown IP address, the
datagram is not routed to this TCP/IP instance. This is the default value.

PRIRouter and SECRouter parameters interact with the VLANID parameter on
the LINK statement. See the VLANID parameter to understand this
relationship.

Rule: This keyword is ignored if the VMAC parameter is configured on the
LINK statement.

PRIROUTER
If a datagram is received at this device for an unknown IP address and is not
destined for a virtual MAC address, the datagram is routed to this TCP/IP
instance.

Rule: This keyword is ignored if the VMAC parameter is configured on the
LINK statement.

SECROUTER
If a datagram is received at this device for an unknown IP address and is not
destined for a virtual MAC address, and there is no active TCP/IP instance
defined as PRIROUTER, then the datagram can be routed to this TCP/IP
instance. In this case, OSA routes to only one of the active TCP/IP instances
that is defined with SECROUTER parameter. This parameter indicates that the
OSA considers this TCP/IP instance to be one of the secondary routers.

Rule: This keyword is ignored if the VMAC parameter is configured on the
LINK statement.

AUTORESTART | NOAUTORESTART
Controls device failure reactivation behavior.

76 z/OS V2R1.0 Communications Server: IP Configuration Reference

NOAUTORESTART
For most device failures, specifying NOAUTORESTART indicates that
the TCP/IP address space does not attempt to reactivate this device.

AUTORESTART
In the event of a device failure, the TCP/IP address space attempts to
reactivate the device. For more information, see “Recovering from
device failures” on page 48.

Syntax

Rule: The optional parameters on the LINK statement following device_name can be
specified in any order.

�� LINK link_name IPAQENET device_name
IPBCAST VLANID id

�

�
READSTORAGE GLOBAL

READSTORAGE MAX
AVG
MIN

INBPERF BALANCED

INBPERF DYNAMIC
MINCPU
MINLATENCY

�

�
IFSPEED 100000000

IFSPEED ifspeed
IFHSPEED ifhspeed

SECCLASS 255

SECCLASS security_class

NOMONSYSPLEX

MONSYSPLEX
�

�
NODYNVLANREG

DYNVLANREG ROUTEALL
VMAC

macaddr ROUTELCL

��

Parameters

link_name
The name of the link. The maximum length is 16 characters.

IPAQENET
Indicates that the link uses the interface bases on IP assist, belongs to the
QDIO family of interfaces, and uses the Gigabit Ethernet or Fast Ethernet
protocol. IPAQGNET is accepted for migration purposes.

device_name
The device_name must be the same as specified in the DEVICE statement.

IPBCAST
Specifies that the link both sends and receives IP broadcast packets. If this
parameter is not specified, no IP broadcast packets are sent or received on this
link.

VLANID id
An optional parameter followed by a decimal number indicating the virtual
LAN identifier to be assigned to this OSA-Express Link. This field should be a
virtual LAN identifier recognized by the switch for the LAN connected to this
OSA-Express. The valid range is 1 - 4094.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 77

The VLANID parameter interacts with the PRIROUTER and SECROUTER
parameters on the DEVICE statement. If you configure both a VLANID and
either the PRIROUTER or SECROUTER parameter, then this TCP/IP instance
acts as a router for this VLAN ID only. Datagrams that are received at this
device for an unknown IP address and are not destined for a virtual MAC are
routed only to this TCP/IP instance if the datagrams are VLAN tagged with a
matching VLAN ID. For more information about VLANID parameter
interactions, see z/OS Communications Server: IP Configuration Guide.

READSTORAGE
An optional parameter indicating the amount of fixed storage that z/OS
Communications Server should keep available for read processing for this
adapter. The QDIOSTG VTAM start option allows you to specify a value which
applies to all OSA-Express adapters in QDIO mode. You can use the
READSTORAGE keyword to override the global QDIOSTG value for this
adapter based on the inbound workload you expect over this adapter on this
stack. The valid values are:

GLOBAL
The amount of storage is determined by the QDIOSTG VTAM start
option. This is the default value.

MAX Use this value if you expect a heavy inbound workload over this
adapter.

AVG Use this value if you expect a medium inbound workload over this
adapter.

MIN Use this value if you expect a light inbound workload over this
adapter.

Tip: See the description of the QDIOSTG VTAM start option in the z/OS
Communications Server: SNA Resource Definition Reference for details about
exactly how much storage is allocated by z/OS Communications Server for
each of these values.

Rule: If you define both a LINK and INTERFACE statement for the same
adapter, then the READSTORAGE value on the LINK statement must match
the READSTORAGE value on the corresponding INTERFACE statement. If you
define a LINK statement that contains a value for READSTORAGE that
conflicts with the READSTORAGE value for a previous INTERFACE statement
for the same adapter, then TCP/IP rejects the LINK statement.

INBPERF
An optional parameter indicating how frequently the adapter should interrupt
the host for inbound traffic.

There are three supported static settings (MINCPU, MINLATENCY, and
BALANCED). The static settings use static interrupt-timing values. The static
values are not always optimal for all workload types or traffic patterns, and
cannot account for changes in traffic patterns.

There is also one supported dynamic setting. This setting causes the host
(stack) to dynamically adjust the timer-interrupt value while the device is
active and in use. This function exploits an OSA hardware function called
dynamic LAN idle. Unlike the static settings, the DYNAMIC setting reacts to
changes in traffic patterns, and sets the interrupt-timing values at the point
where throughput is maximized.

Valid settings for this setting are:

78 z/OS V2R1.0 Communications Server: IP Configuration Reference

BALANCED
This setting uses a static interrupt-timing value, selected to achieve
reasonably high throughput and reasonably low CPU consumption.
This is currently the default value.

DYNAMIC
This setting causes the host to dynamically signal the OSA-Express
feature to change the timer-interrupt value, based on current inbound
workload conditions. The DYNAMIC setting is effective only for
OSA-Express2 or later features on at least an IBM System z9® with the
corresponding dynamic LAN idle functional support. See the
2094DEVICE Preventive Service Planning (PSP) and the 2096DEVICE
Preventive Service Planning (PSP) buckets for more information about
the level of OSA-Express2 adapter that supports this function. See the
2097DEVICE Preventive Service Planning (PSP) bucket for more
information about the OSA-Express3 adapter that supports this
function. When this setting is specified for an Open Systems
Adapter-Express that does not support the dynamic LAN idle function,
the stack reverts to using the BALANCED setting. The DYNAMIC
setting can decrease latency and provide increases in throughput for
many interactive workloads. For all other workload combinations, this
setting provides performance similar to the three static settings.

Restriction: The QDIO inbound workload queueing function, which is
part of the DYNAMIC setting for OSA-Express3 or later features, is not
supported for IPAQENET interfaces that are defined by DEVICE and
LINK statements. You must convert your IPAQENET definitions to use
the INTERFACE statement in order to enable this function. See the
information about QDIO inbound workload queueing and Steps for
converting from IPv4 IPAQENET DEVICE, LINK, and HOME
definitions to the IPv4 IPAQENET INTERFACE statement in z/OS
Communications Server: IP Configuration Guide.

MINCPU
This setting uses a static interrupt-timing value, selected to minimize
host interrupts without regard to throughput. This mode of operation
might result in minor queueing delays (latency) for packets into the
host, which is not optimal for workloads with demanding latency
requirements.

MINLATENCY
This setting uses a static interrupt-timing value, selected to minimize
latency (delay), by more aggressively presenting received packets to
the host. This mode of operation generally results in higher CPU
consumption than the other three settings. Use this setting only if host
CPU consumption is not an issue.

Rule: If you define both a LINK IPAQENET and an INTERFACE IPAQENET6
statement for the same adapter, then the following rules apply for the
INBPERF parameter on these statements:
v The value on the LINK statement must match the INBPERF value on the

corresponding INTERFACE statement.
v The INTERFACE statement supports the subparameters WORKLOADQ and

NOWORKLOADQ for the INBPERF DYNAMIC parameter. These
subparameters are associated with QDIO inbound workload queueing
support and are not supported on the LINK IPAQENET statement. So, if you
specify the INBPERF DYNAMIC parameter for both the LINK and the
INTERFACE statements, then you must use the default or specify the

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 79

NOWORKLOADQ subparameter for the INBPERF DYNAMIC parameter on
the INTERFACE statement. This ensure that the INBPERF DYNAMIC setting
for both statements is the same.

v If you define a LINK IPAQENET statement that contains a value for
INBPERF that conflicts with the INBPERF value for a previous INTERFACE
IPAQENET6 statement for the same adapter, then TCP/IP rejects the LINK
statement.

IFSPEED ifspeed
An optional estimate of the interface's current bandwidth in bits per second.
The minimum value that can be specified for the ifspeed variable for an
MPCIPA link is 0; the maximum value is 2147483647. The default is 100 000
000. Until the interface is successfully started, this value is used by SNMP as
the value of the ifSpeed MIB object. After the interface is successfully started,
SNMP uses the actual speed reported by the interface as the value of the
ifSpeed MIB object. The value of this parameter has no effect on the operation
of the device.

IFHSPEED ifhspeed
An optional estimate of the interface's current bandwidth in one million bits
per second units. The minimum value that can be specified for the ifhspeed
variable for an MPCIPA link is 0; the maximum value is 2147. The default is
100. Until the interface is successfully started, this value is used by SNMP as
the value of the ifHighSpeed MIB object. After the interface is successfully
started, SNMP uses the actual speed reported by the interface as the value of
the ifHighSpeed MIB object. The value of this parameter has no effect on the
operation of the device.

SECCLASS security_class
Use this parameter to associate a security class for IP filtering with this
interface. In order for traffic over the interface to match a filter rule, the filter
rule must have the same security class value as the interface or a value of 0.
Filter rules can be specified in the TCP/IP profile or in an IP Security policy
file read by the Policy Agent. Filter rules can include a security class
specification on the IpService statement in an IP Security policy file or on the
SECCLASS parameter on the IPSEC statement in the TCP/IP profile.

Valid security classes are identified as a number in the range 1 - 255. The
default value is 255. For more information about security class values, see
z/OS Communications Server: IP Configuration Guide.

Restriction: The TCP/IP stack ignores this value if IPSECURITY is not
specified on the IPCONFIG statement.

MONSYSPLEX | NOMONSYSPLEX
Specifies whether or not sysplex autonomics should monitor the link's status.

NOMONSYSPLEX
Specifies that sysplex autonomics should not monitor the link's status.
This is the default value.

MONSYSPLEX
Specifies that sysplex autonomics should monitor the link's status.

Restriction: The MONSYSPLEX attribute is not in effect unless the
MONINTERFACE keyword is specified on the GLOBALCONFIG
SYSPLEXMONITOR profile statement. The presence of dynamic routes
over this link is monitored if the DYNROUTE keyword is also
specified on the GLOBALCONFIG SYSPLEXMONITOR profile
statement.

80 z/OS V2R1.0 Communications Server: IP Configuration Reference

DYNVLANREG | NODYNVLANREG
Controls VLAN ID configuration behavior for this link.

Restriction: This parameter is applicable only if a VLAN ID is specified on the
statement.

Dynamic registration of VLAN IDs is handled by the OSA-Express feature and
the physical switch on your LAN. Therefore, both must be at a level that
provides the necessary hardware support for dynamic VLAN ID registration,
in order for the DYNVLANREG parameter to be effective. After the link is
active, you can view the Netstat DEVLINKS/-d report output to determine
whether your OSA-Express feature can support VLAN dynamic registration.
This Netstat report also displays whether or not dynamic VLAN ID
registration has been configured for the link.

Rule: If you define both a LINK and INTERFACE statement for the same
adapter, then the dynamic VLAN ID registration parameter value on the LINK
statement must match the value of this same parameter on the corresponding
INTERFACE statement. If you define a LINK statement that contains a
dynamic VLAN ID registration parameter value that conflicts with the same
parameter value for a previous INTERFACE statement for the same
OSA-Express feature, then TCP/IP rejects the LINK statement.

NODYNVLANREG
Specifies that if a VLAN ID is configured for this link, the ID must be
manually registered with the physical switches on the corresponding
LAN. This is the default value. If this parameter is specified without a
VLAN ID, it is ignored.

DYNVLANREG
Specifies that if a VLAN ID is configured for this link, the ID is
dynamically registered with the physical switches on the
corresponding LAN. If this parameter is specified without a VLAN ID,
message EZZ0056I is issued and the NODYNVLANREG setting is used
instead.

VMAC macaddr
Indicates the virtual MAC address, which can be represented by 12
hexadecimal characters. The OSA-Express feature uses this address rather than
the physical MAC address of the device for all IPv4 packets to and from this
TCP/IP stack.

The macaddr value is an optional parameter. If the macaddr is not coded, then
the OSA-Express feature generates a virtual MAC address. If the macaddr value
is coded, it must be defined as a locally administered individual MAC address.
This means that the MAC address must have bit 6 (the universal or local flag
U bit) of the first byte set to 1 and bit 7 (the group or individual flag G bit) of
the first byte set to 0. The second hexadecimal character must be 2, 6, A, or E.
The bit positions within the 12 hexadecimal characters are indicated in the
following figure:
| 1|1 3|3 4|
|0 5|6 1|2 7|
+----------------+----------------+----------------+
|xxxxxxUGxxxxxxxx|xxxxxxxxxxxxxxxx|xxxxxxxxxxxxxxxx|
+----------------+----------------+----------------+

Rules:

v The same virtual MAC address generated by the OSA-Express feature at
interface activation remains in effect for this OSA-Express for this TCP/IP
stack, even if the device is stopped or becomes inoperative (INOPs). A new

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 81

virtual MAC address is generated only if the LINK statement is deleted and
redefined, or if the TCP/IP stack is recycled.

v The NONROUTER, PRIROUTER, and SECROUTER parameters are ignored
for an OSA-Express feature if the VMAC parameter is configured on the
LINK statement.

Guideline: Unless the virtual MAC address representing this OSA-Express
device must remain the same even after TCP/IP termination and restart,
configure VMAC without a macaddr value and allow the OSA-Express device
to generate it. This guarantees that the VMAC address is unique from all other
physical burned-in MAC addresses and from all other VMAC addresses
generated by any OSA-Express feature.

ROUTEALL
All IP traffic destined to the virtual MAC is forwarded by the OSA-Express
device to the TCP/IP stack. This is the default value. See the router
information in z/OS Communications Server: IP Configuration Guide for more
details.

ROUTELCL
This specifies that only traffic destined to the virtual MAC and whose
destination IP address is registered with the OSA-Express device by this
TCP/IP stack is forwarded by the OSA-Express device. See the router
information in z/OS Communications Server: IP Configuration Guide for more
details.

Syntax

Rule: The optional parameters on the LINK statement following device_name can be
specified in any order.

�� LINK link_name IPAQTR device_name
NONCANONical

CANONical

ALLRINGsbcast

LOCALBcast
�

�
IPBCAST

READSTORAGE GLOBAL

READSTORAGE MAX
AVG
MIN

INBPERF BALANCED

INBPERF MINCPU
MINLATENCY

�

�
IFSPEED 100000000

IFSPEED ifspeed
IFHSPEED ifhspeed

SECCLASS 255

SECCLASS security_class

NOMONSYSPLEX

MONSYSPLEX
��

Parameters

link_name
The name of the link. The maximum length is 16 characters.

IPAQTR
Indicates that the link uses the interface based on IP assist, belongs to the
QDIO family of interfaces, and uses the Token Ring protocol.

device_name
The device_name must be the same as specified in the DEVICE statement.

82 z/OS V2R1.0 Communications Server: IP Configuration Reference

CANONICAL | NONCANONICAL
Specifies the canonical form of MAC addresses in Address Resolution Protocol
(ARP) packets on this token-ring network.

NONCANONICAL
MAC addresses in ARP packets on this token-ring network are in the
more common non-canonical format. This is the default value.

CANONICAL
MAC addresses in Address Resolution Protocol (ARP) packets on this
token-ring network are in the canonical IEEE 802.5 form.

ALLRINGSBCAST
All IP and ARP broadcasts are sent as all-rings broadcasts, which are
propagated through token-ring bridges (Source Route Bridging). This is the
default value.

LOCALBCAST
All IP and ARP broadcasts are sent only on the local ring and are not
propagated through token-ring bridges (Transparent Bridging).

IPBCAST
Specifies that the link both sends and receives IP broadcast packets. If this
parameter is not specified, no IP broadcast packets are sent or received on this
link.

READSTORAGE
An optional parameter indicating the amount of fixed storage that z/OS
Communications Server should keep available for read processing for this
adapter. The QDIOSTG VTAM start option allows you to specify a value which
applies to all OSA-Express adapters in QDIO mode. You can use the
READSTORAGE keyword to override the global QDIOSTG value for this
adapter based on the inbound workload you expect over this adapter on this
stack. The valid values are:

GLOBAL
The amount of storage is determined by the QDIOSTG VTAM start
option. This is the default value.

MAX Use this value if you expect a heavy inbound workload over this
adapter

AVG Use this value if you expect a medium inbound workload over this
adapter.

MIN Use this value if you expect a light inbound workload over this
adapter.

Tip: See the description of the QDIOSTG VTAM start option in the z/OS
Communications Server: SNA Resource Definition Reference for details about
exactly how much storage is allocated by z/OS Communications Server for
each of these values.

INBPERF
An optional parameter indicating how frequently the adapter should interrupt
the host for inbound traffic. The valid values are:

MINCPU
This setting instructs the adapter to minimize host interrupts, thereby
minimizing host CPU consumption. This mode of operation might
result in minor queueing delays for packets into the host, and is not
preferred for workloads with demanding latency requirements.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 83

MINLATENCY
This setting instructs the adapter to minimize latency, by immediately
presenting received packets to the host. This mode of operation
generally results in higher CPU consumption than the other two
settings, and is preferred only for workloads with demanding latency
requirements. This setting should be used only if host CPU
consumption is not an issue.

BALANCED
This setting instructs the adapter to strike a balance between MINCPU
and MINLATENCY.

IFSPEED ifspeed
An optional estimate of the interface's current bandwidth in bits per second.
Until the interface is successfully started, this value is used by SNMP as the
value of the ifSpeed MIB object. After the interface is successfully started,
SNMP uses the actual speed reported by the interface as the value of the
ifSpeed MIB object. The value of this parameter has no effect on the operation
of the device.

IFHSPEED ifhspeed
An optional estimate of the interface's current bandwidth in one million bits
per second units. Until the interface is successfully started, this value is used
by SNMP as the value of the ifHighSpeed MIB object. After the interface is
successfully started, SNMP uses the actual speed reported by the interface as
the value of the ifHighSpeed MIB object. The value of this parameter has no
effect on the operation of the device.

SECCLASS security_class
Use this parameter to associate a security class for IP filtering with this
interface. In order for traffic over the interface to match a filter rule, the filter
rule must have the same security class value as the interface or a value of 0.
Filter rules can be specified in the TCP/IP profile or in an IP Security policy
file read by the Policy Agent. Filter rules can include a security class
specification on the IpService statement in an IP Security policy file or on the
SECCLASS parameter on the IPSEC statement in the TCP/IP profile.

Valid security classes are identified as a number in the range 1 - 255. The
default value is 255. For more information about security class values, see
z/OS Communications Server: IP Configuration Guide.

Restriction: The TCP/IP stack ignores this value if IPSECURITY is not
specified on the IPCONFIG statement.

MONSYSPLEX | NOMONSYSPLEX
Specifies whether or not sysplex autonomics should monitor the link's status.

NOMONSYSPLEX
Specifies that sysplex autonomics should not monitor the link's status.
This is the default value.

MONSYSPLEX
Specifies that sysplex autonomics should monitor the link's status.

Restriction: The MONSYSPLEX attribute is not in effect unless the
MONINTERFACE keyword is specified on the GLOBALCONFIG
SYSPLEXMONITOR profile statement. The presence of dynamic routes
over this link is monitored if the DYNROUTE keyword is also
specified on the GLOBALCONFIG SYSPLEXMONITOR profile
statement.

84 z/OS V2R1.0 Communications Server: IP Configuration Reference

Steps for modifying

See “Modifying DEVICE and LINK statements” on page 50 for modifying
information.

Usage notes
v If using a dynamic VIPA when connecting an OSA-Express QDIO Ethernet

device to an intelligent bridge or switch, ensure that the Spanning Tree Protocol
(STP) on the intelligent bridge or switch is configured properly for dynamic
VIPA giveback and takeover operations. For more information, see z/OS
Communications Server: IP Configuration Guide.

v Across one central processor complex (CPC), PRIROUTER can be specified only
in the profile of one TCP/IP instance for the same MPCIPA device. If
PRIROUTER is specified for an MPCIPA device but was already specified for the
same device in the profile of another active TCP/IP instance, a warning message
is issued during START DEVICE processing for the device. Depending on the
level of OSA-Express being started, either only one or multiple TCP/IP instances
can be allowed to have SECROUTER specified. If OSA-Express allows only one
secondary router, any TCP/IP instance subsequently starting that device with
SECROUTER receives a warning message during START processing for the
device. If OSA-Express allows multiple secondary routers, then OSA-Express can
select any TCP/IP instance which specifies SECROUTER as the secondary router.
There is no requirement that the same TCP/IP instance be specified PRIROUTER
or SECROUTER for all OSA-Express adapters attached to the CPC.

v MPCIPA devices have an ARP off-load function that off-loads all ARP processing
to the OSA-Express adapter. For some MPCIPA devices, TCP/IP cannot display
any ARP cache information or ARP counter statistics because OSA-Express does
not provide this data to TCP/IP.
For more information about devices that support ARP Offload, see z/OS
Communications Server: IP Configuration Guide.

Related topics
v “BEGINROUTES statement” on page 28
v “BSDROUTINGPARMS statement” on page 36
v “GATEWAY statement” on page 109
v “HOME statement” on page 136
v “INTERFACE - IPAQENET OSA-Express QDIO interfaces statement” on page

145
v “INTERFACE - IPAQENET6 OSA-Express QDIO interfaces statement” on page

161
v “SACONFIG statement” on page 271
v “START statement” on page 292
v “STOP statement” on page 293

DEVICE and LINK — MPCIPA HiperSockets devices statement

When defining an MPCIPA HiperSockets device, also known as an iQDIO device,
use the DEVICE statement to specify the IQD CHPID hexadecimal value. The
reserved device name using prefix IUTIQDxx must be specified. The suffix xx
indicates the hexadecimal value of the corresponding IQD CHPID that was
configured within HCD.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 85

The hexadecimal value specified here cannot be the same value that is used for the
dynamic XCF HiperSockets interface. See the IQDCHPID start option in z/OS
Communications Server: SNA Resource Definition Reference.

MPCIPA HiperSockets devices do not require a corresponding TRLE. Instead, the
TRLE is dynamically built when the device is started. There is no PORT name used
for HiperSockets MPCIPA devices. The NONROUTER, PRIROUTER, and
SECROUTER parameters do not apply to a HiperSockets device and are ignored if
specified on the MPCIPA statement.

Use the LINK statement to define a network interface link associated with the
HiperSockets interface.

Restriction: Only one LINK statement can be specified for each MPCIPA
HiperSockets device.

Tip: You can also use the INTERFACE statement to define an IPv4 interface for
HiperSockets, which combines the definitions of the DEVICE, LINK, and HOME
statements into a single statement.

To determine the HiperSockets microcode level, use the DISPLAY TRL command. If
a specific HiperSockets function is documented with a minimum microcode level,
you can use this command to determine whether that function is supported. IBM
service might request the microcode level for problem diagnosis. For more
information, see DISPLAY TRL command in z/OS Communications Server: SNA
Operation.

Syntax

Rule: Specify the parameters in the order shown here.

�� DEVice device_name MPCIPA
NOAUTORestart

AUTORestart
��

Parameters

device_name
The name of the device must use the following convention:
v Prefix is IUTIQD.
v Suffix xx [hexadecimal value (00x - FFx) of the corresponding IQD CHPID].

This value cannot conflict with the IQD CHPID used for dynamic XCF.

MPCIPA
Specifies the device belongs to the MPC family of interfaces and uses the
interface based on IP assist.

AUTORESTART | NOAUTORESTART
Controls device failure reactivation behavior.

NOAUTORESTART
For most device failures, specifying NOAUTORESTART indicates that
the TCP/IP address space does not attempt to reactivate this device.

86 z/OS V2R1.0 Communications Server: IP Configuration Reference

AUTORESTART
In the event of a device failure, the TCP/IP address space attempts to
reactivate the device. For more information, see “Recovering from
device failures” on page 48.

Syntax

Rule: The optional parameters on the LINK statement following device_name can be
specified in any order.

��
READSTORAGE GLOBAL

LINK link_name IPAQIDIO device_name
IPBCAST READSTORAGE MAX VLANIDid

AVG
MIN

�

�
SECCLASS 255

SECCLASS security_class

NOMONSYSPLEX

MONSYSPLEX
��

Parameters

link_name
The name of the link. The maximum length is 16 characters.

IPAQIDIO
Indicates that the link uses the interface based on IP assist, belongs to the
QDIO family of interfaces, and uses the HiperSockets protocol.

device_name
The device_name must be the same as specified in the DEVICE statement.

IPBCAST
Specifies that the link both sends and receives IP broadcast packets. If this
parameter is not specified, no IP broadcast packets are sent or received on this
link.

READSTORAGE
An optional parameter indicating the amount of fixed storage that z/OS
Communications Server should keep available for read processing for this
device. The IQDIOSTG VTAM start option allows you to specify a value which
applies to all HiperSockets devices. You can use the READSTORAGE keyword
to override the global IQDIOSTG value for this adapter based on the inbound
workload you expect over this device on this stack. The valid values are:

GLOBAL
The amount of storage is determined by the IQDIOSTG VTAM start
option. This is the default value.

MAX Use this value if you expect a heavy inbound workload over this
device.

AVG Use this value if you expect a medium inbound workload over this
device.

MIN Use this value if you expect a light inbound workload over this device.

Tip: See the description of the IQDIOSTG VTAM start option in the z/OS
Communications Server: SNA Resource Definition Reference for details about
exactly how much storage is allocated by z/OS Communications Server for
each of these values.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 87

Rule: If you define both a LINK and INTERFACE statement for the same
device, then the READSTORAGE value on the LINK statement must match the
READSTORAGE value on the corresponding INTERFACE statement. If you
define a LINK statement that contains a value for READSTORAGE that
conflicts with the READSTORAGE value for a previous INTERFACE statement
for the same device, then TCP/IP rejects the LINK statement.

VLANID id
An optional parameter followed by a decimal number indicating the virtual
LAN identifier to be assigned to this HiperSockets link. The valid range is 1 -
4094.

Restriction: With HiperSockets, a stack can specify only one VLAN ID when
the interface is used for both IPv4 and IPv6. If you specify a different VLAN
ID value on a LINK and INTERFACE definition for the same CHPID, the
second statement is rejected.

SECCLASS security_class
Use this parameter to associate a security class for IP filtering with this
interface. In order for traffic over the interface to match a filter rule, the filter
rule must have the same security class value as the interface or a value of 0.
Filter rules can be specified in the TCP/IP profile or in an IP Security policy
file read by the Policy Agent. Filter rules can include a security class
specification on the IpService statement in an IP Security policy file or on the
SECCLASS parameter on the IPSEC statement in the TCP/IP profile.

Valid security classes are identified as a number in the range 1 - 255. The
default value is 255. For more information about security class values, see
z/OS Communications Server: IP Configuration Guide.

Restriction: The TCP/IP stack ignores this value if IPSECURITY is not
specified on the IPCONFIG statement.

MONSYSPLEX | NOMONSYSPLEX
Specifies whether or not sysplex autonomics should monitor the link's status.

NOMONSYSPLEX
Specifies that sysplex autonomics should not monitor the link's status.
This is the default value.

MONSYSPLEX
Specifies that sysplex autonomics should monitor the link's status.

Restriction: The MONSYSPLEX attribute is not in effect unless the
MONINTERFACE keyword is specified on the GLOBALCONFIG
SYSPLEXMONITOR profile statement. The presence of dynamic routes
over this link is monitored if the DYNROUTE keyword is also
specified on the GLOBALCONFIG SYSPLEXMONITOR profile
statement.

Steps for modifying

See “Modifying DEVICE and LINK statements” on page 50 for modifying
information.

System environment

In order to configure a single HiperSockets device for both IPv4 and IPv6 traffic,
you must use DEVICE/LINK/HOME for the IPv4 definition and INTERFACE for
the IPv6 definition, such that the CHPID value on the INTERFACE statement

88 z/OS V2R1.0 Communications Server: IP Configuration Reference

matches the xx portion of the device_name (IUTIQDxx) on the DEVICE statement.

Related topics
v “BEGINROUTES statement” on page 28
v “BSDROUTINGPARMS statement” on page 36
v “GATEWAY statement” on page 109
v “HOME statement” on page 136
v “INTERFACE — IPAQIDIO HiperSockets interfaces statement” on page 157
v “INTERFACE — IPAQIDIO6 HiperSockets interfaces statement” on page 177
v “SACONFIG statement” on page 271
v “START statement” on page 292
v “STOP statement” on page 293

DEVICE and LINK — MPCOSA devices statement

When defining a multipath channel MPCOSA connection, use the DEVICE
statement to specify the TRLE name of an HPDT connection. Use the LINK
statement to specify Fast Ethernet OSA-2 or FDDI OSA-2.

Restrictions:

v MPCOSA devices cannot be configured to accept IP packets destined to an IP
address other than the IP address of the OSA-2 adapter. For example, IP packets
destined to a Virtual IP Address (VIPA) owned by this TCP/IP is not delivered
by the OSA-2 adapter.

v MPCOSA devices do not support multicast or broadcast.

For more information about missing interrupt handler (MIH) considerations with
TCP/IP devices, see “Missing interrupt handler factors” on page 49.

Syntax

Rule:

v Specify the parameters in the order shown here.

�� DEVice device_name MPCOSA
NOAUTORestart

AUTORestart
��

Parameters

device_name
For MPCOSA connections, the device_name must be the name of the TRLE
definition that corresponds to the OSA-2 configuration. You need to use
OSA/SF to configure the OSA-2 to run in HPDT MPC mode. The TRLE is
defined in a VTAM TRL major node and must be active to start the device. For
details about defining a TRLE, see z/OS Communications Server: SNA
Resource Definition Reference.

The maximum length is eight characters.

MPCOSA
Specifies that the device is a multipath channel MCPOSA device.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 89

AUTORESTART | NOAUTORESTART
Controls device failure reactivation behavior.

NOAUTORESTART
For most device failures, specifying NOAUTORESTART indicates that
the TCP/IP address space does not attempt to reactivate this device.

AUTORESTART
In the event of a device failure, the TCP/IP address space attempts to
reactivate the device. For more information, see “Recovering from
device failures” on page 48.

Syntax

Rule: The optional parameters on the LINK statement following the device_name
parameter can be specified in any order.

�� LINK link_name OSAFDDI link_number device_name
OSAENET

�

�
IFSPEED 100000000

IFSPEED ifspeed
IFHSPEED ifhspeed

SECCLASS 255

SECCLASS security_class

NOMONSYSPLEX

MONSYSPLEX
��

Parameters

link_name
The name of the link. The maximum length is 16 characters. The link name is
associated with a home address on the HOME statement.

OSAFDDI
Specifies that the link is for MPCOSA FDDI OSA-2.

OSAENET
Specifies that the link is for MPCOSA Fast Ethernet OSA-2.

link_number
Specifies the OSA link_number of this interface and identifies the external
attachment to a LAN supported by the OSA using the IP protocol.

Restriction: The only link number supported is 0.

device_name
The device_name must be the same as specified in the DEVICE statement. The
maximum length is eight characters.

IFSPEED ifspeed
An optional estimate of the interfaces current bandwidth in bits per second.
The minimum value that can be specified for ifspeed is 0; the maximum value is
2 147 483 647. The default is 100 000 000. This value is accessible to SNMP
for management queries, but has no effect on operation of the device.

IFHSPEED ifhspeed
An optional estimate of the interfaces current bandwidth in one million bits
per second units. The minimum value that can be specified for ifhspeed is 0; the
maximum value is 2147. The default is 100. This value is accessible to SNMP
for management queries, but has no effect on operation of the device.

90 z/OS V2R1.0 Communications Server: IP Configuration Reference

SECCLASS security_class
Use this parameter to associate a security class for IP filtering with this
interface. In order for traffic over the interface to match a filter rule, the filter
rule must have the same security class value as the interface or a value of 0.
Filter rules can be specified in the TCP/IP profile or in an IP Security policy
file read by the Policy Agent. Filter rules can include a security class
specification on the IpService statement in an IP Security policy file or on the
SECCLASS parameter on the IPSEC statement in the TCP/IP profile.

Valid security classes are identified as a number in the range 1 - 255. The
default value is 255. For more information about security class values, see
z/OS Communications Server: IP Configuration Guide.

Restriction: The TCP/IP stack ignores this value if IPSECURITY is not
specified on the IPCONFIG statement.

MONSYSPLEX | NOMONSYSPLEX
Specifies whether or not sysplex autonomics should monitor the link's status.

NOMONSYSPLEX
Specifies that sysplex autonomics should not monitor the link's status.
This is the default value.

MONSYSPLEX
Specifies that sysplex autonomics should monitor the link's status.

Restriction: The MONSYSPLEX attribute is not in effect unless the
MONINTERFACE keyword is specified on the GLOBALCONFIG
SYSPLEXMONITOR profile statement. The presence of dynamic routes
over this link is monitored if the DYNROUTE keyword is also
specified on the GLOBALCONFIG SYSPLEXMONITOR profile
statement.

Steps for modifying

See “Modifying DEVICE and LINK statements” on page 50 for modifying
information.

Usage notes
v MPCOSA devices have an ARP offload function that offloads all ARP processing

to the OSA-2 adapter. TCP/IP cannot display any ARP cache information or
ARP counter statistics for these devices because OSA-2 does not provide this
data to TCP/IP.

v To use dynamic routing with this device, see the NBMA subnetworks
information in z/OS Communications Server: IP Configuration Guide.

Related topics
v “BEGINROUTES statement” on page 28
v “BSDROUTINGPARMS statement” on page 36
v “GATEWAY statement” on page 109
v “HOME statement” on page 136
v “START statement” on page 292
v “STOP statement” on page 293

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 91

DEVICE and LINK — MPCPTP devices statement

When defining a High Performance Data Transfer (HPDT) connection, use the
DEVICE statement to specify the name of the TRLE definition for the multipath
channel (MPC) group. Also, the TRLE must be defined as MPCLEVEL=HPDT.

When defining an Enterprise Extender connection to the VTAM instance running
on this host, use the DEVICE statement to define an IUTSAMEH interface.
IUTSAMEH can also be used to define a connection between two TCP/IP stacks
on the same system, and the MPCPTP device and link statements can be used to
define XCF connections between two TCP/IP stacks in the same sysplex. For more
information about configuring Enterprise Extender, see z/OS Communications
Server: SNA Network Implementation Guide.

Use the LINK statement to define a network interface link associated with an MPC
group when defining an HPDT connection, or a network interface link associated
with the IUTSAMEH interface when defining an Enterprise Extender connection.

The preferred way to define XCF and IUTSAMEH connections is to use the
IPCONFIG DYNAMICXCF statement.

For more information about missing interrupt handler (MIH) considerations with
TCP/IP devices, see “Missing interrupt handler factors” on page 49.

Syntax

Rule: Specify the parameters in the order shown here.

�� DEVice device_name MPCPTP
NOAUTORestart

AUTORestart
��

Parameters

device_name
For HPDT MPC connections to an IBM 2216 Multiaccess Connector Model 400,
an IBM pSeries, or another z/OS host, the device_name must be the TRLE name
of an HPDT connection. The TRLE is defined in a VTAM TRL major node and
must be active to start the device. For details about defining a TRLE, see z/OS
Communications Server: SNA Resource Definition Reference.

The maximum length is eight characters.

The reserved TRLE name IUTSAMEH can be used to bring up an MPCPTP
connection between two TCP/IP stacks on the same system without the need
for a physical device connection between the two stacks. The reserved TRLE
name IUTSAMEH can also be used to define an Enterprise Extender
connection to the VTAM instance running on this host. If you are defining an
Enterprise Extender connection, the device name must be IUTSAMEH. VTAM
automatically activates the IUTSAMEH TRLE.

For XCF connections, the device_name must be the CPname or SSCPname of the
target VTAM on the other side of the XCF connection, and the VTAM
ISTLSXCF major node must be active in both nodes to start the device. The
ISTLSXCF major node is created by VTAM dynamically.

92 z/OS V2R1.0 Communications Server: IP Configuration Reference

Tip: This value is also specified for device_name in the MPCPTP LINK
statement.

MPCPTP
Specifies the device is a multipath channel point-to-point device.

AUTORESTART | NOAUTORESTART
Controls device failure reactivation behavior.

NOAUTORESTART
For most device failures, specifying NOAUTORESTART indicates that
the TCP/IP address space does not attempt to reactivate this device.

AUTORESTART
In the event of a device failure, the TCP/IP address space attempts to
reactivate the device. For more information, see “Recovering from
device failures” on page 48.

Syntax

Rule: The optional parameters on the LINK statement following device_name can be
specified in any order.

�� LINK link_name MPCPTP device_name
CHECKSUM

NOCHECKSUM
�

�
IFSPEED 4500000

IFSPEED ifspeed
IFHSPEED ifhspeed

SECCLASS 255

SECCLASS security_class

NOMONSYSPLEX

MONSYSPLEX
��

Parameters

link_name
The name of the link. The maximum length is 16 characters. The link name is
associated with a home address on the HOME statement.

MPCPTP
Specifies that the link is for MPCPTP.

device_name
The device_name must be the same as specified in the DEVICE statement. The
maximum length is eight characters.

CHECKSUM
Inbound checksum calculation is performed for all packets received on this
interface. This is the default value.

NOCHECKSUM
Inbound checksum calculation is not performed for any packets received on
this interface.

The CHECKSUM or NOCHECKSUM setting affects only the inbound TCP/IP
data path. This setting has no effect upon the outbound path (checksum
calculation is always performed outbound).

While a performance gain can be achieved by specifying NOCHECKSUM, only
specify NOCHECKSUM for single-hop MPCPTP links (that is, where
application traffic terminates in the adjacent node), such as z/OS to pSeries

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 93

point-to-point connections. In such a configuration, the z/OS channel provides
a reliable data path, thereby minimizing the need for TCP/IP checksum in
detecting transmission errors.

Guideline: The TCP/IP checksum is useful in detecting software errors at the
sending side, so it is further suggested that NOCHECKSUM be specified only
when the sending-side software is considered reliable.

Restriction: Do not specify NOCHECKSUM when the sending side is
forwarding packets received over other devices. Systems forwarding packets
do not check the transport layer (TCP or UDP) checksums; this is the
responsibility of the final destination stack. In this case, disabling checksum
processing can result in corrupted data being provided to the application.

IFSPEED ifspeed
An optional estimate of the interface's current bandwidth in bits per second.
The minimum value for ifspeed is 0; the maximum value is 2 147 483 647. The
default is 4 500 000. This value is accessible to SNMP for management queries,
but has no effect on operation of the device.

IFHSPEED ifhspeed
An optional estimate of the interface's current bandwidth in one million bits
per second units. The minimum value that can be specified for ifhspeed is 0; the
maximum value is 2147. The default is 4. This value is accessible to SNMP for
management queries, but has no effect on operation of the device.

SECCLASS security_class
Use this parameter to associate a security class for IP filtering with this
interface. In order for traffic over the interface to match a filter rule, the filter
rule must have the same security class value as the interface or a value of 0.
Filter rules can be specified in the TCP/IP profile or in an IP Security policy
file read by the Policy Agent. Filter rules can include a security class
specification on the IpService statement in an IP Security policy file or on the
SECCLASS parameter on the IPSEC statement in the TCP/IP profile.

Valid security classes are identified as a number in the range 1 - 255. The
default value is 255. For more information about security class values, see
z/OS Communications Server: IP Configuration Guide.

Restriction: The TCP/IP stack ignores this value if IPSECURITY is not
specified on the IPCONFIG statement.

MONSYSPLEX | NOMONSYSPLEX
Specifies whether or not sysplex autonomics should monitor the link's status.

NOMONSYSPLEX
Specifies that sysplex autonomics should not monitor the link's status.
This is the default value.

MONSYSPLEX
Specifies that sysplex autonomics should monitor the link's status.

Restriction: The MONSYSPLEX attribute is not in effect unless the
MONINTERFACE keyword is specified on the GLOBALCONFIG
SYSPLEXMONITOR profile statement. The presence of dynamic routes
over this link is monitored if the DYNROUTE keyword is also
specified on the GLOBALCONFIG SYSPLEXMONITOR profile
statement.

94 z/OS V2R1.0 Communications Server: IP Configuration Reference

Steps for modifying

See “Modifying DEVICE and LINK statements” on page 50 for modifying
information.

Usage notes

Requirements:

v In order to configure a single physical device for both IPv4 and IPv6 traffic, you
must use DEVICE/LINK/HOME for the IPv4 definition and INTERFACE for the
IPv6 definition, such that the TRLENAME value on the INTERFACE statement
matches the device_name on the DEVICE statement.

v IUTSAMEH definition is required if you plan to use the Enterprise Extender
function and the TCP/IP stack you are configuring is used for access to the IP
network by VTAM on this host.

Restriction: A mix of static and dynamic IPv4 and IPv6 definitions for a device is
not allowed. For example, if a static IUTSAMEH IPv4 device and link is defined,
an IPv6 dynamic definition for IUTSAMEH is created. If a static IUTSAMEH IPv6
interface is defined, an IPv4 dynamic definition for IUTSAMEH is not created. The
same logic also applies for XCF links; a mix of static and dynamic IPv4 and IPv6
definitions is not allowed for an XCF link.
v If you start an MPCPTP device and the device does not become active and

TCP/IP issues no messages in response to the start request, ensure that the
remote end of this HPDT MPC connection is active. Even though the TRLE is
active and a start device request was initiated, VTAM holds the TCP/IP start
request waiting for the remote side of the HPDT MPC connection to become
active.

v For installations that plan on dedicating the MPC group for exclusive use by a
single TCP/IP stack, improved performance can be achieved by explicitly
defining the MPC group as MPCUSAGE=EXC. For additional information about
the MPCUSAGE keyword, see the z/OS Communications Server: SNA Resource
Definition Reference.

Related topics
v “BEGINROUTES statement” on page 28
v “BSDROUTINGPARMS statement” on page 36
v For information about direct route restrictions, see “GATEWAY statement” on

page 109.
v DYNAMICXCF in “IPCONFIG statement” on page 190
v “GATEWAY statement” on page 109
v “HOME statement” on page 136
v “INTERFACE — MPCPTP6 interfaces statement” on page 183
v “START statement” on page 292
v “STOP statement” on page 293

DEVICE and LINK — SNA LU0 links statement

This device type will not be supported in a future release. It is recommended that
you migrate to a later interface type, such as OSA-Express QDIO or HiperSockets.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 95

|
|

Use the DEVICE statement to specify the name of the address space running the
SNALINK program and the remote SNA LU name of the 3745 Communications
Controller to which an Ethernet or token-ring is attached. These statements are
required for NCPROUTE when using NCP V7R3 or earlier.

Use the LINK statement to define the link on the SNA LU type 0 DEVICE
statement. Use this method to configure TCP/IP to access the 3745 adapter through
SNALINK.

Syntax

Rule: Specify the parameters in the order shown here.

For more information about missing interrupt handler (MIH) considerations with
TCP/IP devices, see “Missing interrupt handler factors” on page 49.

�� DEVICE device_name SNAIUCV SNALINK lu_name proc_name �

�
NOAUTORestart

AUTORestart
��

Parameters

device_name
The name of the device. The maximum length is 16 characters. The same name
is specified in the LINK statement.

SNAIUCV SNALINK
Specifies that the connection operates as an SNA LU type 0.

lu_name
The logical unit (LU) name of the remote end. The maximum length is eight
characters.

proc_name
The name of the SNALINK started procedure that runs on the host end. The
maximum length is eight characters.

AUTORESTART | NOAUTORESTART
Controls device failure reactivation behavior.

NOAUTORESTART
For most device failures, specifying NOAUTORESTART indicates that
the TCP/IP address space does not attempt to reactivate this device.

AUTORESTART
In the event of a device failure, the TCP/IP address space attempts to
reactivate the device. For more information, see “Recovering from
device failures” on page 48.

Syntax

Rule: The optional parameters on the LINK statement following the device_name
parameter can be specified in any order.

96 z/OS V2R1.0 Communications Server: IP Configuration Reference

�� LINK link_name SAMEHOST link_number device_name
IUCV

�

�
IFSPEED 56000

IFSPEED ifspeed
IFHSPEED ifhspeed

SECCLASS 255

SECCLASS security_class

NOMONSYSPLEX

MONSYSPLEX
��

Restriction: There must be only one LINK statement for each SNA LU type 0
device statement.

Parameters

link_name
The name of the link. The maximum length is 16 characters.

SAMEHOST
Specifies that the DEVICE for SNA LU type 0 support uses a SAMEHOST
connection.

Note on IUCV: The IUCV keyword remains for migration purposes and is
identical to SAMEHOST.

link_number
The link_number must be an integer, but its value is ignored. This parameter is
included for consistency with LINK statement formats for other device types.

device_name
The device_name must be the same as specified in the DEVICE statement. The
maximum length is 16 characters.

IFSPEED ifspeed
An optional estimate of the interface's current bandwidth in bits per second.
The minimum value that can be specified for ifspeed is 0; the maximum value is
2147483647. The default is 56000. This value is accessible to SNMP for
management queries, but has no effect on operation of the device.

IFHSPEED ifhspeed
An optional estimate of the interface's current bandwidth in one million bits
per second units. The minimum value that can be specified for ifhspeed is 0; the
maximum value is 2147. The default is 0. This value is accessible to SNMP for
management queries, but has no effect on operation of the device.

SECCLASS security_class
Use this parameter to associate a security class for IP filtering with this
interface. In order for traffic over the interface to match a filter rule, the filter
rule must have the same security class value as the interface or a value of 0.
Filter rules can be specified in the TCP/IP profile or in an IP Security policy
file read by the Policy Agent. Filter rules can include a security class
specification on the IpService statement in an IP Security policy file or on the
SECCLASS parameter on the IPSEC statement in the TCP/IP profile.

Valid security classes are identified as a number in the range 1 - 255. The
default value is 255. For more information about security class values, see
z/OS Communications Server: IP Configuration Guide.

Restriction: The TCP/IP stack ignores this value if IPSECURITY is not
specified on the IPCONFIG statement.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 97

MONSYSPLEX | NOMONSYSPLEX
Specifies whether or not sysplex autonomics should monitor the link's status.

NOMONSYSPLEX
Specifies that sysplex autonomics should not monitor the link's status.
This is the default value.

MONSYSPLEX
Specifies that sysplex autonomics should monitor the link's status.

Restriction: The MONSYSPLEX attribute is not in effect unless the
MONINTERFACE keyword is specified on the GLOBALCONFIG
SYSPLEXMONITOR profile statement. The presence of dynamic routes
over this link is monitored if the DYNROUTE keyword is also
specified on the GLOBALCONFIG SYSPLEXMONITOR profile
statement.

Steps for modifying

See “Modifying DEVICE and LINK statements” on page 50 for modifying
information.

Examples

In this example, SNALU0 is an SNA Link.
DEVICE SNALU0 SNAIUCV SNALINK LU000000 SNALINK
LINK SNA1 SAMEHOST 1 SNALU0

Usage notes

You can specify multiple LU0 DEVICE statements for the same SNALINK started
procedure. A single LU0 address space can support multiple SAMEHOST links. A
SAMEHOST link is created for each pair of LU0 DEVICE and LINK statements.

However, you must specify a different lu_name for each DEVICE statement. This
value is passed to the LU0 application to establish a session with a remote LU of
that name.

Related topics
v “BEGINROUTES statement” on page 28
v “BSDROUTINGPARMS statement” on page 36
v “GATEWAY statement” on page 109
v “HOME statement” on page 136
v “START statement” on page 292
v “STOP statement” on page 293

DEVICE and LINK — SNA LU 6.2 links statement

This device type will not be supported in a future release. It is recommended that
you migrate to a later interface type, such as OSA-Express QDIO or HiperSockets.

Use the DEVICE statement to specify the name of the started procedure running
the SNALINK LU 6.2 interface program.

98 z/OS V2R1.0 Communications Server: IP Configuration Reference

|
|

Use the LINK statement to define the link to the SNALINK LU 6.2 Interface
program.

Restriction: There must be only one LINK statement for each SNA LU type 6.2
DEVICE statement.

For more information about missing interrupt handler (MIH) considerations with
TCP/IP devices, see “Missing interrupt handler factors” on page 49.

Syntax

Rule: Specify the parameters in the order shown here.

�� DEVICE device_name SNALU62 proc_name
NOAUTORestart

AUTORestart
��

Parameters

device_name
The name of the device. The maximum length is 16 characters. The same name
is specified in the LINK statement.

SNALU62
Specifies that the connection operates by an SNA LU type 6.2 session.

proc_name
The name of the SNALINK started procedure (on this node) that controls the
device. The maximum length is eight characters.

AUTORESTART | NOAUTORESTART
Controls device failure reactivation behavior.

NOAUTORESTART
For most device failures, specifying NOAUTORESTART indicates that
the TCP/IP address space does not attempt to reactivate this device.

AUTORESTART
In the event of a device failure, the TCP/IP address space attempts to
reactivate the device. For more information, see “Recovering from
device failures” on page 48.

Syntax

Rule: The optional parameters on the LINK statement following the device_name
parameter can be specified in any order.

�� LINK link_name SAMEHOST link_number device_name
IUCV

�

�
IFSPEED 56000

IFSPEED ifspeed
IFHSPEED ifhspeed

SECCLASS 255

SECCLASS security_class

NOMONSYSPLEX

MONSYSPLEX
��

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 99

Parameters

link_name
The name of the link. The maximum length is eight characters. The same name
is specified in the SNALINK LU 6.2 configuration data set
(hlq.PROFILE.TCPIP) to identify this link.

SAMEHOST
A constant that specifies that the device for SNA LU type 6.2 support uses a
SAMEHOST connection.

Note on IUCV: The IUCV keyword remains for migration purposes and is
identical to SAMEHOST.

link_number
The link_number must be an integer, but the value is ignored. This parameter is
included for consistency with LINK statement formats for other device types.

device_name
The device_name must be the same as specified in the DEVICE statement. The
maximum length is 16 characters.

IFSPEED ifspeed
An optional estimate of the interface's current bandwidth in bits per second.
The minimum value that can be specified for ifspeed is 0; the maximum value is
2 147 483 647. The default is 56 000. This value is accessible to SNMP for
management queries, but has no effect on operation of the device.

IFHSPEED ifhspeed
An optional estimate of the interface's current bandwidth in one million bits
per second units. The minimum value that can be specified for ifhspeed is 0; the
maximum value is 2 147. The default is 0. This value is accessible to SNMP for
management queries, but has no effect on operation of the device.

SECCLASS security_class
Use this parameter to associate a security class for IP filtering with this
interface. In order for traffic over the interface to match a filter rule, the filter
rule must have the same security class value as the interface or a value of 0.
Filter rules can be specified in the TCP/IP profile or in an IP Security policy
file read by the Policy Agent. Filter rules can include a security class
specification on the IpService statement in an IP Security policy file or on the
SECCLASS parameter on the IPSEC statement in the TCP/IP profile.

Valid security classes are identified as a number in the range 1 - 255. The
default value is 255. For more information about security class values, see
z/OS Communications Server: IP Configuration Guide.

Restriction: The TCP/IP stack ignores this value if IPSECURITY is not
specified on the IPCONFIG statement.

MONSYSPLEX | NOMONSYSPLEX
Specifies whether or not sysplex autonomics should monitor the link's status.

NOMONSYSPLEX
Specifies that sysplex autonomics should not monitor the link's status.
This is the default value.

MONSYSPLEX
Specifies that sysplex autonomics should monitor the link's status.

Restriction: The MONSYSPLEX attribute is not in effect unless the
MONINTERFACE keyword is specified on the GLOBALCONFIG
SYSPLEXMONITOR profile statement. The presence of dynamic routes

100 z/OS V2R1.0 Communications Server: IP Configuration Reference

over this link is monitored if the DYNROUTE keyword is also
specified on the GLOBALCONFIG SYSPLEXMONITOR profile
statement.

Steps for modifying

See “Modifying DEVICE and LINK statements” on page 50 for modifying
information.

Related topics
v “BEGINROUTES statement” on page 28
v “BSDROUTINGPARMS statement” on page 36
v “GATEWAY statement” on page 109
v “HOME statement” on page 136
v “START statement” on page 292
v “STOP statement” on page 293

DEVICE and LINK — VIRTUAL devices statement

Use the DEVICE statement to specify the device name of a static virtual device,
and use the LINK statement to define the link on the DEVICE statement.

More than one virtual DEVICE/LINK statement can be defined to allow for
multiple virtual IP addresses on one TCP/IP image in one MVS system.

Tip: You can also use the INTERFACE statement to define an IPv4 interface for a
static VIPA, which combines the definitions of the DEVICE, LINK, and HOME
statements into a single statement.

This statement applies to IPv4. See “INTERFACE — VIRTUAL6 interfaces
statement” on page 188 for this function in IPv6.

Syntax

Rule: Specify the parameters in the order shown here.

�� DEVice device_name VIRTual device_number ��

Parameters

device_name
The name of the device. The maximum length is 16 characters. The same name
is specified in the LINK statement.

VIRTUAL
Specifies that the device is not associated with real hardware and is used for
fault tolerance support. The static virtual devices always stay active and are
never subject to physical failure.

device_number
The device_number must be a hexadecimal number, but the value is ignored.
This parameter is included for consistency with the DEVICE statements for
other device types.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 101

Syntax

�� LINK link_name VIRTual adapter_address device_name ��

Restriction: Only one LINK statement can be defined for each virtual device.

Parameters

link_name
The name of the link. The maximum length is 16 characters. The same name is
specified in the HOME statement.

VIRTUAL
Specifies that the link is a virtual link that is not associated with real hardware
and is used for fault tolerance support.

adapter_address
The adapter_address must be an integer, but the value is ignored. This parameter
is included for consistency with the LINK statements for other device types.

device_name
The device_name must be the same as specified in the DEVICE statement.

Steps for modifying

See “Modifying DEVICE and LINK statements” on page 50 for modifying
information.

Guideline: The steps in the Modifying DEVICE and LINK statements topic that
refer to stopping and starting the device do not apply to virtual devices.

Examples
DEVICE VDEV1 VIRTUAL 0
LINK VLINK1 VIRTUAL 0 VDEV1
DEVICE VDEV2 VIRTUAL 1
LINK VLINK2 VIRTUAL 0 VDEV2

Usage notes
v The device_name or link_name values should not start with VIP because VIP is a

restricted keyword.
v A virtual LINK cannot be coded on the START, BEGINROUTES, GATEWAY or

TRANSLATE statements, but can be coded on a BSDROUTINGPARMS
statement for interface characteristics such as subnet mask.

Requirement: If you are running with 3172s configured for multihost connectivity
(release 3.5 and later) and want to use VIPA addresses on the host, you must
configure the 3172 in one of the following ways:
v As a default router (routes all IP addresses)
v Configure all VIPA addresses in the 3172
v For rules on defining virtual IP addresses for virtual links, see “HOME

statement” on page 136.

Related topics
v “BSDROUTINGPARMS statement” on page 36
v “HOME statement” on page 136

102 z/OS V2R1.0 Communications Server: IP Configuration Reference

v “INTERFACE — VIRTUAL interfaces statement” on page 160
v “IPCONFIG statement” on page 190
v “VIPADYNAMIC statement summary” on page 306

DEVICE and LINK - X.25 NPSI connections statement

This device type will not be supported in a future release. It is recommended that
you migrate to a later interface type, such as OSA-Express QDIO or HiperSockets.

Use the DEVICE statement to specify the name and address of the X.25 NPSI
interface program devices that you use. Use the LINK statement to define a
network interface link associated with the X.25 NPSI interface program devices.

For more information about missing interrupt handler (MIH) considerations with
TCP/IP devices, see “Missing interrupt handler factors” on page 49.

Syntax

Rule: Specify the parameters in the order shown here.

�� DEVICE device_name X25NPSI proc_name
NOAUTORestart

AUTORestart
��

Parameters

device_name
The name of the device. The maximum length is 16 characters. The same name
is specified in the LINK statement.

X25NPSI
Specifies that the device is an X.25 NPSI.

proc_name
The name of the X.25 NPSI server started procedure. The maximum length is
eight characters.

AUTORESTART | NOAUTORESTART
Controls device failure reactivation behavior.

NOAUTORESTART
For most device failures, specifying NOAUTORESTART indicates that
the TCP/IP address space does not attempt to reactivate this device.

AUTORESTART
In the event of a device failure, the TCP/IP address space attempts to
reactivate the device. For more information, see “Recovering from
device failures” on page 48.

Restriction: Only one DEVICE and LINK statement per TCPIPX25 address space is
allowed.

Syntax

Rule: The optional parameters on the LINK statement following the device_name
parameter can be specified in any order.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 103

|
|

�� LINK link_name SAMEHOST link_number device_name
IUCV

�

�
IFSPEED 56000

IFSPEED ifspeed
IFHSPEED ifhspeed

SECCLASS 255

SECCLASS security_class

NOMONSYSPLEX

MONSYSPLEX
��

Parameters

link_name
The name of the link. The maximum length is 16 characters.

SAMEHOST
Specifies that the connection to X.25 NPSI is established using a SAMEHOST
connection.

Note on IUCV: The IUCV keyword remains for migration purposes and is
identical to SAMEHOST.

link_number
The link_number must be an integer, but its value is ignored. This parameter is
included for consistency with LINK statement formats for other device types.

device_name
The device_name must be the same as specified in the DEVICE statement. The
maximum length is 16 characters.

IFSPEED ifspeed
An optional estimate of the interface's current bandwidth in bits per second.
The minimum value that can be specified for ifspeed is 0; the maximum value is
2 147 483 647. The default is 56 000. This value is accessible to SNMP for
management queries, but has no effect on operation of the device.

IFHSPEED ifhspeed
An optional estimate of the interface's current bandwidth in one million bits
per second units. The minimum value that can be specified for ifhspeed is 0; the
maximum value is 2 147. The default is 0. This value is accessible to SNMP for
management queries, but has no effect on operation of the device.

SECCLASS security_class
Use this parameter to associate a security class for IP filtering with this
interface. In order for traffic over the interface to match a filter rule, the filter
rule must have the same security class value as the interface or a value of 0.
Filter rules can be specified in the TCP/IP profile or in an IP Security policy
file read by the Policy Agent. Filter rules can include a security class
specification on the IpService statement in an IP Security policy file or on the
SECCLASS parameter on the IPSEC statement in the TCP/IP profile.

Valid security classes are identified as a number in the range 1 - 255. The
default value is 255. For more information about security class values, see
z/OS Communications Server: IP Configuration Guide.

Restriction: The TCP/IP stack ignores this value if IPSECURITY is not
specified on the IPCONFIG statement.

MONSYSPLEX | NOMONSYSPLEX
Specifies whether or not sysplex autonomics should monitor the link's status.

104 z/OS V2R1.0 Communications Server: IP Configuration Reference

NOMONSYSPLEX
Specifies that sysplex autonomics should not monitor the link's status.
This is the default value.

MONSYSPLEX
Specifies that sysplex autonomics should monitor the link's status.

Restriction: The MONSYSPLEX attribute is not in effect unless the
MONINTERFACE keyword is specified on the GLOBALCONFIG
SYSPLEXMONITOR profile statement. The presence of dynamic routes
over this link is monitored if the DYNROUTE keyword is also
specified on the GLOBALCONFIG SYSPLEXMONITOR profile
statement.

Steps for modifying

See “Modifying DEVICE and LINK statements” on page 50 for modifying
information.

Examples

This example shows how you might code DEVICE, LINK, and related statements
for an X.25 connection.
DEVICE X25DEV X25NPSI TCPIPX25
LINK X25LINK SAMEHOST 1 X25DEV
;
HOME

199.005.058.23 X25LINK
;
GATEWAY
;
; Network First Hop Link name Packet size Subnet mask Subnet Value

192.005 = X25LINK 2000 0.0.255.0 0.0.58.0
;
START X25DEV
;

Usage notes

To use dynamic routing with this device, see the NBMA subnetworks information
in z/OS Communications Server: IP Configuration Guide.

Related topics
v “BEGINROUTES statement” on page 28
v “BSDROUTINGPARMS statement” on page 36
v “GATEWAY statement” on page 109
v “HOME statement” on page 136
v “START statement” on page 292
v “STOP statement” on page 293
v Chapter 16, “TN3270E Telnet server,” on page 587

DEVICE and LINK — 3745/46 channel DLC devices statement

This device type will not be supported in a future release. It is recommended that
you migrate to a later interface type, such as OSA-Express QDIO or HiperSockets.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 105

|
|

Use the DEVICE statement to specify the name and hexadecimal device number of
the channel data link control (CDLC) devices that you use. Use the LINK statement
to define a network interface link associated with the CDLC devices.

If the device is running NCP V7R3 or earlier and dynamic routing is to be
performed, SNALINK must be configured to carry RIP transport PDUs:
v NCP V7R3 or earlier does not support native IP transmission across the channel

of the transport PDUs associated with RIP traffic (NCP V7R3 or earlier expects
these PDUs to be carried in SNA Frames). SNALINK is still required in
environments where dynamic routing is performed with the NCP V7R3 or
earlier (using NCPROUTE).
To minimize the amount of data sent across the SNALINK (LUO) connection (as
SNALINK consumes more CPU than does IP over CDLC), use the RIP Filter to
send RIP updates across the channel, while the associated transport PDUs
(Route Table Management, for example, Handshaking, Add Route Request,
Delete Route Request) are carried over the SNALINK connection.

v If the device is running a later version than NCP V7R3, or if the device is a 3746
model 950, SNALINK is not required (all IP and RIP traffic can be transported
over direct CDLC link of TCP/IP).

For more information about missing interrupt handler (MIH) considerations with
TCP/IP devices, see “Missing interrupt handler factors” on page 49.

Syntax

Rule: Specify the parameters in the order shown here.

�� DEVICE device_name CDLC device_number
15

read_buffers
�

�
15

write_buffers

4096

read_size

4096

write_size

NOAUTORestart

AUTORestart
��

Parameters

device_name
The name of the device. The maximum length is 16 characters. The same name
is specified in the LINK statement.

CDLC
Specifies that this device is to run the CDLC protocol.

device_number
The hexadecimal device number (in the range 0 - FFFF) of the CDLC device.

read_buffers
The decimal number of buffers to allocate to the read channel program. The
default is 15. The minimum is 1 and the maximum is 63. The product of
read_buffers times read_size must be less than or equal to 65535. If the product
of these configured variables exceeds 65535, TCP/IP reduces read_buffers to the
integer 65535/read_size.

write_buffers
The decimal number of buffers to allocate to the write channel program. The
minimum is 1 and the maximum is 63. The product of write_buffers times

106 z/OS V2R1.0 Communications Server: IP Configuration Reference

write_size must be less than or equal to 65535. The default is 15. If the product
of these configured variables exceeds 65535, TCP/IP reduces write_buffers to the
integer 65535/write_size.

read_size
The size in bytes (decimal) of the read buffers. The default is 4096. Valid values
are 1024, 2048, 4096, 6144, 8192.

write_size
The size in bytes (decimal) of the write buffers. The default is 4096. Valid
values are 1024, 2048, 4096, 6144, 8192.

AUTORESTART | NOAUTORESTART
Controls device failure reactivation behavior.

NOAUTORESTART
For most device failures, specifying NOAUTORESTART indicates that
the TCP/IP address space does not attempt to reactivate this device.

AUTORESTART
In the event of a device failure, the TCP/IP address space attempts to
reactivate the device. For more information, see “Recovering from
device failures” on page 48.

Syntax

Rule: The optional parameters on the LINK statement following the device_name
parameter can be specified in any order.

�� LINK link_name CDLC adapter_addr device_name
IFSPEED 4500000

IFSPEED ifspeed
IFHSPEED ifhspeed

�

�
SECCLASS 255

SECCLASS security_class

NOMONSYSPLEX

MONSYSPLEX
��

Parameters

link_name
The name of the link. The maximum length is 16 characters.

CDLC
Specifies that the link is a channel DLC.

adapter_addr
The adapter_addr value must be an integer, but the value is ignored. This
parameter is included for consistency with the LINK statement formats for
other device types.

device_name
The device_name must be the same as specified in the DEVICE statement.

IFSPEED ifspeed
An optional estimate of the interface's current bandwidth in bits per second.
The minimum value that can be specified for ifspeed is 0; the maximum value is
2147483647. The default is 4500000. This value is accessible to SNMP for
management queries, but has no effect on operation of the device.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 107

IFHSPEED ifhspeed
An optional estimate of the interface's current bandwidth in one million bits
per second units. The minimum value that can be specified for ifhspeed is 0; the
maximum value is 2147. The default is 4. This value is accessible to SNMP for
management queries, but has no effect on operation of the device.

SECCLASS security_class
Use this parameter to associate a security class for IP filtering with this
interface. In order for traffic over the interface to match a filter rule, the filter
rule must have the same security class value as the interface or a value of 0.
Filter rules can be specified in the TCP/IP profile or in an IP Security policy
file read by the Policy Agent. Filter rules can include a security class
specification on the IpService statement in an IP Security policy file or on the
SECCLASS parameter on the IPSEC statement in the TCP/IP profile.

Valid security classes are identified as a number in the range 1 - 255. The
default value is 255. For more information about security class values, see
z/OS Communications Server: IP Configuration Guide..

Restriction: The TCP/IP stack ignores this value if IPSECURITY is not
specified on the IPCONFIG statement.

MONSYSPLEX | NOMONSYSPLEX
Specifies whether or not sysplex autonomics should monitor the link's status.

NOMONSYSPLEX
Specifies that sysplex autonomics should not monitor the link's status.
This is the default value.

MONSYSPLEX
Specifies that sysplex autonomics should monitor the link's status.

Restriction: The MONSYSPLEX attribute is not in effect unless the
MONINTERFACE keyword is specified on the GLOBALCONFIG
SYSPLEXMONITOR profile statement. The presence of dynamic routes
over this link is monitored if the DYNROUTE keyword is also
specified on the GLOBALCONFIG SYSPLEXMONITOR profile
statement.

Steps for modifying

See “Modifying DEVICE and LINK statements” on page 50 for modifying
information.

Usage notes

For a buffer size of 8192, the maximum number of buffers is 7. For a buffer size of
6144, the maximum number of buffers is 10. For a buffer size of 4096, the
maximum number of buffers is 15. For a buffer size of 2048, the maximum number
of buffers is 31. For a buffer size of 1024, the maximum number of buffers is 63.

Related topics
v “BEGINROUTES statement” on page 28
v “BSDROUTINGPARMS statement” on page 36
v “GATEWAY statement” on page 109
v “HOME statement” on page 136
v “STOP statement” on page 293
v “START statement” on page 292

108 z/OS V2R1.0 Communications Server: IP Configuration Reference

GATEWAY statement

The GATEWAY statement will not be supported in a future release. It is
recommended that you use the BEGINROUTES/ENDROUTES statement block
instead of the GATEWAY statement.

Tip: To use IPCS to create BEGINROUTES statements from the existing
specification, run the TCPIPCS PROFILE report on a dump of the TCP/IP address
space. Static routes are presented as a BEGINROUTES/ENDROUTES statement
block even if you code the static routes by using a GATEWAY statement.

Use the GATEWAY statement to add static routes to the main route table. If you
want to specify static routes in a BSD style syntax or if you need to define routes
for interfaces defined with the INTERFACE statement, see “BEGINROUTES
statement” on page 28. To configure policy-based route tables, use the RouteTable
statement. For more information, see the policy-based routing information in z/OS
Communications Server: IP Configuration Guide.

IBM Health Checker for z/OS can be used to check whether the total number of
indirect routes in a TCP/IP stack routing table exceeds a maximum threshold.
When this threshold is exceeded, OMPROUTE and the TCP/IP stack may
potentially experience high CPU consumption from routing changes. A large
routing table is considered to be inefficient in network design and operation. For
more details about IBM Health Checker for z/OS, see z/OS Communications
Server: IP Diagnosis Guide and IBM Health Checker for z/OS: User's Guide..

The IP static routes can be modified in the following ways:
v Replace the routing table using the VARY TCPIP,,OBEYFILE command.
v Use incoming ICMP redirect packets if redirects have not been disabled on the

IPCONFIG statement.

The first GATEWAY statement of each configuration data set that is issued replaces
all the static routes in the existing routing table with the new gateway information.
All static routes and any dynamic routes added as a result of ICMP redirects are
deleted. Routes created by OMPROUTE are not deleted. Subsequent GATEWAY
statements in the same data set add entries to the routing table.

Restrictions:

v The GATEWAY statement applies only to IPv4 interfaces that are defined with
the LINK statement.

v A GATEWAY statement and a BEGINROUTES-ENDROUTES block cannot be
intermixed in the same configuration data set. If they are intermixed, the first
type found is used and the other type is discarded with warning messages being
issued to the console. You can use a GATEWAY statement in the initial profile
and a BEGINROUTES-ENDROUTES block in the data set specified on a later
VARY TCPIP,,OBEYFILE command, and vice versa.

v Route entries on the GATEWAY statement can be coded only for LINK names
that exist when the entry is processed.

v Static routes that you define using the GATEWAY statement cannot be replaced
by dynamic routes learned by OMPROUTE. If you want OMPROUTE to begin
managing all routes, use an empty GATEWAY statement block in a VARY
TCPIP,,OBEYFILE command data set to eliminate the existing static routes.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 109

|
|
|

|
|
|
|

OMPROUTE discovers the changes dynamically. If you want to define static
routes that can be replaced by dynamic routes learned by OMPROUTE, use the
BEGINROUTES statement.

v VIPA links are not allowed on the GATEWAY statement.

Note:

1. When an incorrect entry in a GATEWAY statement is encountered, it is
discarded along with the remaining entries in the GATEWAY statement. All
routes defined before the incorrect entry are added to the main route table.
Subsequent GATEWAY statements in the same profile data set or in the VARY
TCPIP,,OBEYFILE command data set are processed.

2. A specific host route takes precedence over a subnetwork route, followed by a
network route, followed by a supernetwork route, and finally, a default route.

3. To add a route over a MPCPTP link to another IP address (for example a VIPA)
on the remote host, you need to add an indirect route. This indirect route
should have a destination equal to the other IP address, a first_hop value equal
to the remote IP address of the MPCPTP link, and a link_name value equal to
the name of the MPCPTP link.

Rule: Specify the required parameters in the order shown here. The optional
parameters can be specified in any order.

Syntax

�� GATEway � Gateway List Entry ��

Gateway List Entry:

Gateway Network Specification
Gateway Host Specification
Gateway Default Network Specification

�

� Gateway List Entry Options

Gateway Network Specification:

network first_hop
=

link_name max_packet_size
DEFAULTSIZE

�

� subnet_mask subnet_value
0

Gateway Host Specification:

host first_hop link_name max_packet_size HOST
= DEFAULTSIZE

Gateway Default Network Specification:

110 z/OS V2R1.0 Communications Server: IP Configuration Reference

DEFAULTNET
DEFAULT

first_hop link_name max_packet_size
DEFAULTSIZE

0

Gateway List Entry Options:

MAXImumretransmittime 120.00

MAXImumretransmittime seconds

MINImumretransmittime 0.50

MINImumretransmittime seconds
�

�
ROUNDTRIPGain 0.125

ROUNDTRIPGain value

VARIANCEGain 0.25

VARIANCEGain value
�

�
VARIANCEMultiplier 2.00

VARIANCEMultiplier value

DELAYAcks

NODELAYAcks

Parameters

network
The IP address in dotted decimal form.
v An example of a class A network is 9.0.0.0.
v An example of a class B network is 129.34.0.0.
v An example of a class C network is 192.9.100.0.

Use the subnet_mask and subnet_value fields to completely define the route.
Multiple network routes having an identical destination IP address and
address mask can be specified. When multiple routes are specified, all of them
are used when multipath is enabled on the IPCONFIG statement; otherwise,
only the first active route specified is used.

first_hop
Specify one of the following values:
v An equal sign (=), meaning that datagrams are routed directly to

destinations on that network or directly to that host over the interface that is
identified by link_name. This is not supported for DEFAULT or
DEFAULTNET.

v The IP address of a gateway or router that you can reach directly, and that
forwards datagrams for the destination network or host over the interface
that is identified by link_name. The address must be a host address that
uniquely identifies the gateway or router. It cannot be a local IP address on
this TCP/IP stack. A local IP address can be defined on the HOME,
INTERFACE, VIPADEFINE, or IPCONFIG DYNAMICXCF statement. The IP
address must be a fully qualified address in the form a.b.c.d.

link_name
The name of the link through which packets are sent to the specified network.
The link name is defined in a LINK statement.

max_packet_size
The maximum transmission unit (MTU) in bytes for the network or host. This
value can be up to 65535.

See Figure 1 on page 48 for more information about the largest MTU value
supported by each link type.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 111

The DEFAULTSIZE keyword sets the max_packet_size to 576. This value is the
minimum MTU that an IPv4 network should use. See Usage notes for packet
size considerations.

Tip: See z/OS Communications Server: IP Configuration Guide, under section,
Maximum transmission unit considerations, for additional information about
how TCP/IP uses the MTU to determine the largest size frame to send.

subnet_mask
A bit mask (expressed in dotted decimal form) having bits in the network
portions or host portions, or both, that defines the subnet mask associated with
the route. If a route to the network is not subnetted, specify a subnet mask of 0
and omit the subnet value. For a specific host route, specify a subnet mask of
HOST and omit the subnet value.

Restriction: The mask bits of all ones in the host portion cannot be used for
the subnet mask.

The valid values are:
v A dotted decimal bit mask
v 0
v Host

subnet_value
Value of the subnet. Each subnet should have a unique dotted decimal
representation. Do not include the subnet_value field if the subnet_mask is 0,
HOST, or contains a supernet mask.

If the network has one or more subnets, specify a separate entry in the
GATEWAY statement for each subnet. The network part of each GATEWAY
entry is identical (contains the IP network address as if the network has no
subnets). The subnet_mask part of each GATEWAY entry might be identical, but
the subnet_value varies.

host
The host address, specified as 4 octets (192.9.100.3, for example). If a host
address is specified, the keyword HOST must be specified in place of the
subnet_mask value, and the subnet_value value must be omitted. Multiple host
routes having an identical destination IP addresses and address masks can be
specified. When multiple routes are specified, all of them are used when
multipath is enabled on the IPCONFIG statement; otherwise, only the first
active route specified is used.

DEFAULTNET
Specifies a route to use for any destination that is not covered by an explicit
route. You can specify multiple DEFAULTROUTE entries to provide multiple
default routes. When you specify multiple routes, all of them are used when
multipath is enabled on the IPCONFIG statement; otherwise, only the first
active route that is specified is used. The DEFAULT and DEFAULTROUTE
parameters are interchangeable.

DEFAULT
Specifies a route to use for any destination that is not covered by an explicit
route. You can specify multiple DEFAULT entries to provide multiple default
routes. When you specify multiple routes, all of them are used when multipath
is enabled on the IPCONFIG statement; otherwise, only the first active route
that is specified is used. The DEFAULT and DEFAULTROUTE parameters are
interchangeable.

112 z/OS V2R1.0 Communications Server: IP Configuration Reference

Retransmission parameter considerations

The parameters listed in this topic affect the TCP retransmit algorithms. When TCP
packets are not acknowledged, TCP begins to retransmit these packets at certain
time intervals. If these packets are not acknowledged after a specified number of
retransmits, TCP aborts the connection. The time interval between retransmissions
increases by approximately twice the previous interval until the packets are
acknowledged or the connection times out.

The time intervals between retransmissions and the number of times that packets
are retransmitted before the connection times out differs for initial connection
establishment and for data packets . For initial connection establishment, the initial
time interval is set at approximately 3 seconds and the SYN packet is retransmitted
5 times before the connection is timed out. Data packets use a smoothed Round
Trip Time (RTT) as the initial time interval, and data packets are retransmitted 15
times before the connection is timed out. All of the remaining parameters listed in
this topic affect the data packet retransmission algorithm. Only the
MINIMUMRETRANSMITTIME parameter affects the initial connection
establishment.

Tip: A new route lookup is performed after every two retransmissions for a data
packet. For more information about the route lookup process, see Route selection
algorithm in z/OS Communications Server: IP Configuration Guide. Be careful
when you design networks with firewalls. A firewall in an alternate routing path
can generate a RESET packet for the rerouted data packets, which causes TCP to
abort the connection.

The retransmission parameters enable system administrators who are familiar with
TCP/IP transmission performance to alter the flow of TCP/IP data packets and
acknowledgments. Under normal circumstances, the following occurs:
v TCP typically waits to receive two packets before sending one ACK to

acknowledge the data within them.
v When TCP sends a packet, it waits for an acknowledgment. If it times out before

getting an acknowledgment, it resends the packet.

Use the following parameters to adjust the retransmission time-out calculations;
slower transmission times prevent packets from being resent as quickly:
v MAXIMUMRETRANSMITTIME
v MINIMUMRETRANSMITTIME
v ROUNDTRIPGAIN
v VARIANCEGAIN
v VARIANCEMULTIPLIER
v DELAYACKS
v NODELAYACKS

TCP uses these values in an algorithm called the TCP Retransmission Timeout
Calculation, which is described in RFC 793. When you use this calculation, the
following occurs:
v A smoothed round trip time (SRTT) and variance (VAR) is updated from the

individual RTT derived from each packet acknowledgement.
v The retransmit time for a new packet is set to twice (approximately) the current

SRTT value plus the VAR value.
v Each time a packet is retransmitted, the retransmit time value is doubled.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 113

v The actual interval time used for the initial packet and each retransmission is the
retransmit time calculated previously, but limited by the configured
MINIMUMRETRANSMITTIME and MAXIMUMRETRANSMITTIME values.

DELAYACKS | NODELAYACKS
Controls transmission of acknowledgments when a packet is received with the
PUSH bit on in the TCP header.

NODELAYACKS
Specifies that an acknowledgment is returned immediately when a
packet is received with the PUSH bit on in the TCP header. The
NODELAYACKS parameter on the BEGINROUTES, GATEWAY, and
RouteTable statements affects only the connections that use this route.
Specifying NODELAYACKS on the TCP/IP stack BEGINROUTES or
GATEWAY profile statements, or on the Policy Agent RouteTable
statement, overrides the specification of the DELAYACKS parameter on
the TCP/IP stack PORT, PORTRANGE, and TCPCONFIG profile
statements.

DELAYACKS
Delays transmission of acknowledgments when a packet is received
with the PUSH bit on in the TCP header. The DELAYACKS parameter
on the BEGINROUTES, GATEWAY, and RouteTable statements affects
only the connections that use this route. This is the default, but you
can override the default by specifying the NODELAYACKS parameter
on the TCP/IP stack PORT, PORTRANGE, or TCPCONFIG profile
statements.

MAXIMUMRETRANSMITTIME
Limits the TCP retransmission interval. Decreasing this value might decrease
the total time it takes a connection to timeout. Specifying
MAXIMUMRETRANSMITTIME assures that the interval time never exceeds
the specified limit. The minimum value that can be specified for
MAXIMUMRETRANSMITTIME is 0. The maximum is 999.990. The default is
120 seconds. This parameter does not affect initial connection retransmission.

MINIMUMRETRANSMITTIME
Sets a minimum retransmit interval. Increasing this value might increase the
amount of time it takes for TCP to time out a connection. The minimum value
that can be specified for MINIMUMRETRANSMITTIME is 0. The maximum is
99.990. The default is 0.5 (500 milliseconds).

ROUNDTRIPGAIN
This value is the percentage of the latest Round Trip Time (RTT) to be applied
to the smoothed RTT average. The higher this value, the more influence the
latest packet RTT has on the average. The minimum value that can be specified
for ROUNDTRIPGAIN is 0. The maximum value is 1.0. The default is 0.125.
This parameter does not affect initial connection retransmission.

VARIANCEGAIN
This value is the percentage of the latest RTT variance from the RTT average to
be applied to the RTT variance average. The higher this value, the more
influence the latest packet's RTT has on the variance average. The minimum
value that can be specified for VARIANCEGAIN is 0. The maximum value is
1.0. The default is 0.25. This parameter does not affect initial connection
retransmission.

VARIANCEMULTIPLIER
This value is multiplied against the RTT variance in calculating the
retransmission interval. The higher this value, the more affect variation in RTT

114 z/OS V2R1.0 Communications Server: IP Configuration Reference

has on calculating the retransmission interval. The minimum value that can be
specified for VARIANCEMULTIPLIER is 0. The maximum value is 99.990. The
default is 2. This parameter does not affect initial connection retransmission.

Retransmission parameters

Use the ROUNDTRIPGAIN, VARIANCEGAIN, and VARIANCEMULTIPLIER
parameters to instruct TCP how heavily to weigh the most recent behavior of the
network versus the long term behavior for updating the SRTT and VAR values. If
you specify smaller values for these parameters, TCP attempts to correct for
congestion only if the congestion is sustained. With larger values, TCP corrects for
congestion more quickly, and the system is more sensitive to variations in network
performance. Use the default values (unless your retransmission rate is too high).

Use DELAYACKS to delay the acknowledgments so that they can be combined
with data sent to the foreign host.

Steps for modifying

To modify any values on the GATEWAY statement, use a VARY TCPIP,,OBEYFILE
command with a data set that contains a new GATEWAY statement. All existing
static routes are deleted along with all routes learned by way of ICMP redirects,
but routes created by OMPROUTE are not deleted. To remove all static routes from
the main routing table, specify an empty GATEWAY statement.

Note:

1. If any HOME list entries are changed or deleted, all static routes using the
associated links are deleted.

2. If a LINK becomes inactive, then all routes that are associated with that link are
marked inactive.

3. If a LINK becomes active, then all static routes that are associated with that
link are marked active.

For more information about the VARY TCPIP commands, see z/OS
Communications Server: IP System Administrator's Commands.

Usage notes
v Packet size considerations

The actual packet size is determined by the total network connection.
– The max_packet_size varies for different networks. For example, the largest

packet size for the Ethernet protocol network is 1500 bytes while the largest
packet size for the IEEE 802.3 protocol network is 1492 bytes.

–
- If a locally attached host has a packet size smaller than yours, transfers to

that host use the smaller size.
- The TCP maximum segment size for the 3172 Interconnect Controller

Program is 4096. Any packet specifications over 4096 are limited by this
restriction. For example, if you specified a packet size of 4352, the resulting
packet size would still only be 4096 + the header = 4132.

– Large packets can be fragmented by intervening gateways. Fragmentation and
reassembly of packets are expensive in their use of bandwidth and CPU time.
Therefore, packets sent through gateways to other networks should use the
default size, DEFAULTSIZE, unless one of the following situations is true:

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 115

- All intervening gateways and networks are known to accept larger packets
- Path MTU discovery is enabled on the IPCONFIG statement, which results

in the TCP/IP stack dynamically learning the maximum MTU for the total
network connection.

For example, the router to network 192.8.4 is reached through router 14.0.0.10,
and somewhere along the path, packets larger than 576 bytes are fragmented.
You can improve throughput by using the following GATEWAY statement:

GATEWAY
; Network first-hop link packet-size subnet-mask

192.8.4 14.0.0.10 LINK1 576 0

– You cannot specify an MTU smaller than the default MTU size. For IPv4, the
default MTU is 576.

v Requirement: The subnet_mask must follow the Classless Inter-Domain Routing
(CIDR) convention that requires the actual mask to be one or more on-bits
followed by zero or more off-bits. You cannot have on-bits followed by off-bits
followed by on-bits. Therefore, a class A subnet mask of 0.255.254.0 is valid (an
actual mask of 255.255.254.0 or FFFFE00), but a class A subnet mask of
0.255.253.0 is not valid (an actual mask of 255.255.253.0 or FFFFD00) because 253
is 11111101.

v The first GATEWAY statement of each profile data set or VARY
TCPIP,,OBEYFILE command data set deletes only IPv4 routes. Any IPv6 static
routes added previously are not deleted. The IPv6 routes must have been added
using the BEGINROUTES statement.

v If the routing table is empty, all addresses in the HOME list are still
route-capable. For information about testing commands with LOOPBACK, see
the z/OS Communications Server: IP User's Guide and Commands.

v There is no limit on the number of equal-cost multipath routes to a destination.
v Multicast routes can be specified using host specification. A general multicast

default route can be specified using the multicast group address of 224.0.0.0:
GATEWAY

;Host First hop Link packet size

224.0.0.0 = LINK1 DEFAULTSIZE HOST

Specific multicast group routes can also be specified:
GATEWAY

;Host First hop Link packet size

224.1.1.1 = LINK2 DEFAULTSIZE HOST

The order of precedence for determining the route of an outbound multicast
datagram is as follows:
1. Application uses setsockopt() IP_MULTICAST_IF to specify the interface to

use.
2. The specific multicast group route that is specified.
3. Multicast network or prefix route.
4. The general multicast default group address that is specified (224.0.0.0).
5. If a default route is specified and the route's link is multicast capable.

Given the preceding two sample GATEWAY statements and assuming the
application does not code the setsockopt() IP_MULTICAST_IF, one of the
following situations occurs:
– If an application sends a datagram to 224.2.2.2, LINK1 is used.

116 z/OS V2R1.0 Communications Server: IP Configuration Reference

– If an application sends a datagram to 224.1.1.1, LINK2 is used.

Related topics
v “BEGINROUTES statement” on page 28
v “BSDROUTINGPARMS statement” on page 36
v “IPCONFIG statement” on page 190
v “RouteTable statement” on page 1152
v z/OS Communications Server: IP System Administrator's Commands

GLOBALCONFIG statement

Use the GLOBALCONFIG statement to pass global configuration parameters to
TCP/IP.

Syntax

Tip: Specify the parameters for this statement in any order.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 117

�� GLOBALCONFig �

�

� �

�

ALLTRAFFIC
AUTOIQDX

NOLARGEDATA

NOAUTOIQDX
ECSALimit 0K

ECSALimit ecsa_limitK
ECSALimit ecsa_limitM

NOEXPLICITBINDPORTRANGE

EXPLICITBINDPORTRANGE 1st_port num_ports
NOIQDMULTIWRITE

IQDMULTIWRITE

IQDVLANid vlan_id
MAXRECS 100

MAXRECS *
MAXRECS recs

NOMLSCHKTERMinate

MLSCHKTERMinate
POOLLimit 0K

POOLLimit pool_limitK
POOLLimit pool_limitM

NOSEGMENTATIONOFFLoad

SEGMENTATIONOFFLoad
NOSMCR

SMCR

PFID pfid
PORTNum 1

PORTNum num
MTU 1024

MTU mtusize
FIXEDMemory 256

FIXEDMemory mem_size
TCPKEEPmininterval 300

TCPKEEPmininterval interval
SYSPLEXMONitor Sysplex options

SYSPLEXMONitor Sysplex options
SYSPLEXWLMPoll 60

SYSPLEXWLMPoll seconds
NOTCPIPStatistics

TCPIPStatistics
NOWLMPRIORITYQ

default_control_values
WLMPRIORITYQ

IOPRIn control_values

XCFGRPid group_id

NOIPSECURITY
ZIIP

IPSECURITY
NOIQDIOMULTIWRITE

IQDIOMULTIWRITE

��

118 z/OS V2R1.0 Communications Server: IP Configuration Reference

Sysplex options:

NOAUTOREJOIN

AUTOREJOIN
NODELAYJOIN

DELAYJOIN

NOJOIN
NOMONINTERFACE NODYNROUTE

NODYNROUTE
NOMONINTERFACE

DYNROUTE
MONINTERFACE

NODYNROUTE
NORECOVERY

RECOVERY
TIMERSECS 60

TIMERSECS seconds

Parameters

AUTOIQDX | NOAUTOIQDX
Specifies whether to use dynamic Internal Queued Direct I/O extensions
(IQDX) interfaces for connectivity to the intraensemble data network.

See “Steps for modifying” on page 133 for details about changing this
parameter while the TCP/IP stack is active. See z/OS Communications Server:
IP Configuration Guide for information about the intraensemble data network
and the dynamic IQDX function.

NOAUTOIQDX
Do not use dynamic IQDX interfaces.

AUTOIQDX
Use dynamic IQDX interfaces when an IQD CHPID has been
configured with the Internal Queued Direct I/O extensions (IQDX)
function. This value is the default value.

ALLTRAFFIC
Use IQDX interfaces for all eligible outbound traffic on the
intraensemble data network. This value is the default value.

NOLARGEDATA
Do not use IQDX interfaces for outbound TCP socket data
transmissions of length 32KB or larger. Use IQDX interfaces for
all other eligible outbound traffic. See z/OS Communications
Server: IP Configuration Guide for more information.

ECSALIMIT ecsalimit K | M
Specifies the maximum amount of extended common service area (ECSA) that
TCP/IP can use. This limit can be expressed as a number followed by a K
(which represents 1024 bytes), or a number followed by an M (which
represents 1048576 bytes). If the K suffix is used, ecsalimit must be in the range
10240K and 2096128K inclusive or 0. If the M suffix is used, ecsalimit must be
in the range 10M and 2047M inclusive or 0. The default is no limit, and it can

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 119

be specified as 0 K or 0 M. The minimum value for ECSALIMIT and
POOLLIMIT is not allowed to be set to a value if the current storage in use
would be greater than or equal to 80% of that value (for example, not allowed
to set it such that there is an immediate storage shortage).

ECSALIMIT ensures that TCP/IP does not overuse common storage. It is
intended to improve system reliability by limiting TCP/IP's storage usage. The
limit must account for peak storage usage during periods of high system
activity or TCP/IP storage abends might occur. The limit does not include
storage used by communications storage manager (CSM). CSM ECSA storage
is managed independently of the TCP/IP ECSALIMIT. See z/OS
Communications Server: SNA Network Implementation Guide for more
information about CSM.

Specifying a nonzero ECSALIMIT enables warning messages EZZ4360I,
EZZ4361I, and EZZ4362I to appear if a storage shortage occurs.

EXPLICITBINDPORTRANGE | NOEXPLICITBINDPORTRANGE

NOEXPLICITBINDPORTRANGE
Indicates that this stack does not participate in the allocation of ports
from a pool of ports. The ports in the pool are guaranteed to be unique
across the sysplex in that they are allocated to only one requestor in
the sysplex at any one time, when processing an explicit bind() of a
TCP socket to the IPv4 INADDR_ANY address, or to the IPv6
unspecified address (in6addr_any), and port 0.

EXPLICITBINDPORTRANGE
Indicates that this stack participates in the allocation of ports from a
pool of ports guaranteed to be unique across the sysplex, when
processing an explicit bind() of a TCP socket to the IPv4
INADDR_ANY address, or to the IPv6 unspecified address
(in6addr_any), and port 0. This parameter also designates the range of
ports that defines that pool. This parameter defines the range used by
all stacks participating in EXPLICITBINDPORTRANGE port allocation
processing throughout the sysplex. The most recently processed profile
or OBEYFILE command that specifies EXPLICITBINDPORTRANGE
defines the range for the sysplex.

Use this parameter so that you can specify distributed DVIPAs as the
source IP address on DESTINATION or JOBNAME rules in a SRCIP
block. See “SRCIP statement” on page 282.

1st_port
The starting port for the range of ports. The 1st_port value is in the
range 1024 - 65535. The sum of the 1st_port value plus the num_ports
value minus 1 cannot exceed 65535.

num_ports
The number of ports in the range. The num_ports value is in the range
1 - 64512. The sum of the 1st_port value plus the num_ports value
minus 1 cannot exceed 65535.

Guidelines:

v All TCP/IP stacks in the sysplex that participate in
EXPLICITBINDPORTRANGE processing should have the same port range
specified. To ensure this, specify the GLOBALCONFIG
EXPLICITBINDPORTRANGE statement in a file that is specified in an
INCLUDE statement in the TCP profiles data set of all the participating
stacks.

120 z/OS V2R1.0 Communications Server: IP Configuration Reference

v The port range defined on the EXPLICITBINDPORTRANGE parameter
should not overlap any existing port reservations of any TCP/IP stacks in
the sysplex. Any reserved ports that are within the
EXPLICITBINDPORTRANGE range are excluded from the
EXPLICITBINDPORTRANGE port pool, effectively making the pool smaller.

v The EXPLICITBINDPORTRANGE port range must be large enough to
accommodate all applications in the sysplex that might issue explicit bind()
calls for the IPv4 INADDR_ANY address, or for the IPv6 unspecified
address (in6addr_any), and port 0.

v If additional TCP/IP stacks or systems are introduced into the sysplex, the
extent of the port range defined by EXPLICITBINDPORTRANGE should be
re-evaluated.

v If the size of the port range defined by the EXPLICITBINDPORTRANGE
parameter is too large, there are fewer ports available for local ephemeral
port allocation.

v If you specify the EXPLICITBINDPORTRANGE parameter in a sysplex that
contains pre-V1R9 TCP/IP stacks, each distributor, backup, and target
TCP/IP stack of a distributed SYSPLEXPORTS DVIPA that is configured as a
source IP address on a SRCIP profile statement must have one of the
following characteristics:
– Run on a V1R9 or later system.
– Use the PORTRANGE profile statement on the pre-V1R9 stacks to reserve

the ports that are configured on the V1R9 or later stacks with the
EXPLICITBINDPORTRANGE parameter.

Failure to meet these characteristics can result in connection failures because
unique ports assignments are no longer be assured throughout the sysplex
for a SYSPLEXPORTS distributed DVIPA; the same port value could be
assigned from the following pools:
– The DVIPA-specific pool by a pre-V1R9 system
– The EXPLICITBINDPORTRANGE pool by a V1R9 or later system

Restriction: In a common INET (CINET) environment, this parameter is
accepted, but the EXPLICITBINDPORTRANGE function is supported in a
limited set of conditions only. It is supported when CINET is managing one
stack only on the system or when the affected application has established stack
affinity. Otherwise, results can be unpredictable.

IQDMULTIWRITE | NOIQDMULTIWRITE
Specifies whether HiperSockets interfaces should use multiple write support.
HiperSockets multiple write might reduce CPU usage and might provide a
performance improvement for large outbound messages that are typically
generated by traditional streaming workloads such as file transfer, and
interactive web-based services workloads such as XML or SOAP. This
parameter applies to all HiperSockets interfaces, including IUTIQDIO and
IQDIOINTF6 interfaces created for Dynamic XCF.

Restriction: HiperSockets multiple write is effective only on an IBM System
z10™ or later and when z/OS is not running as a guest in a z/VM®

environment.

See the modifying information in this topic for details about changing this
parameter while the TCP/IP stack is active. See the HiperSockets multiple
write information in z/OS Communications Server: IP Configuration Guide for
more information about HiperSockets multiple write support.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 121

NOIQDMULTIWRITE
HiperSockets interfaces do not use the multiple write support. This is
the default.

IQDMULTIWRITE
HiperSockets interfaces do use the multiple write support.

IQDVLANID vlan_id
Specifies a VLAN ID to be used when HiperSockets (iQDIO) connectivity is
used for dynamic XCF support. VLAN IDs are used to partition
communication across HiperSockets. Stacks on the same CPC using the same
HiperSockets CHPID that use the same VLAN ID can establish
communications; stacks on the same CPC using the same HiperSockets CHPID
that use different VLAN IDs cannot.

The specified value, vlan_id, is used for both IPv4 and IPv6 DYNAMICXCF
HiperSockets connectivity. This parameter is intended to be used in
conjunction with the GLOBALCONFIG XCFGRPID parameter to support
subplexing.

Subplexing enables TCP/IP participation in a Sysplex to be partitioned into
subsets based on the XCFGRPID value. When using subplexing, TCP/IP stacks
with the same XCFGRPID value should specify the same IQDVLANID value.
Stacks with different XCFGRPID values should have different IQDVLANID
values. If you have stacks in the default subplex (that is, stacks that do not
specify an XCFGRPID value) that use the same HiperSockets CHPID as stacks
within a non-default subplex (an XCFGRPID value was specified), then the
stacks in the default subplex should specify an IQDVLANID value that is
different from the other IQDVLANID values specified by the other non-default
subplex stacks that use the same HiperSockets CHPID.

Restriction: The IQDVLANID parameter can be specified only in the initial
profile.

Valid VLAN IDs are in the range 1 - 4094. For more information about VLANs
and Hipersockets see z/OS Communications Server: IP Configuration Guide.

MAXRECS
Specifies the maximum number of records to be displayed by the DISPLAY
TCPIP,,NETSTAT operator command. The term records refers to the number of
entries displayed on each report. For example, for the connection-related
reports, a record is a TCP connection or listener, or a UDP endpoint. This
configured value is used when the MAX parameter is not explicitly specified
on the command. The default value is 100. If the number of output lines
exceeds the maximum number of lines for a multi-line Write to Operator
(WTO), the report output is truncated. See the information about the Display
TCPIP,,NETSTAT command in z/OS Communications Server: IP System
Administrator's Commands for more details about the command.

* A value of asterisk (*) specifies that all records are to be displayed.

recs This value specifies the number of records to be displayed. The valid
range is 1 - 65535.

MLSCHKTERMINATE | NOMLSCHKTERMINATE

NOMLSCHKTERMINATE
Specifies that the stack should remain active after writing an
informational message when inconsistent configuration information is
discovered in a multilevel-secure environment.

122 z/OS V2R1.0 Communications Server: IP Configuration Reference

Informational message EZD1217I is written to the system console
summarizing the number of problems found. Additional informational
messages between EZD1219I and EZD1234I are written to the job log
for each configuration inconsistency found.

This is the default value.

MLSCHKTERMINATE
Specifies that the stack should be terminated after writing an
informational message when inconsistent configuration information is
discovered in a multilevel-secure environment.

Informational message EZD1217I is written to the system console
summarizing the number of problems found. Additional informational
messages between EZD1219I and EZD1234I are written to the job log
for each configuration inconsistency found.

POOLLIMIT pool_limit K | M
Specifies the maximum amount of authorized private storage that TCP/IP can
use within the TCP/IP address space. This limit can be expressed as a number
followed by a K (which represents 1024 bytes), or a number followed by an M
(which represents 1048576 bytes). If the K suffix is used, pool_limit must be in
the range 10240K and 2096128K inclusive or 0. If the M suffix is used,
pool_limit must be in the range 10M and 2047M inclusive or 0. The default is
no limit, and it can be specified as 0K or 0M. The minimum value for
ECSALIMIT and POOLLIMIT is not allowed to be set to a value if the current
storage in use would be greater than or equal to 80% of that value (for
example, not allowed to set it such that there is an immediate storage
shortage).

POOLLIMIT ensures that TCP/IP does not overuse its authorized private
storage. Most systems can use the default POOLLIMIT (no limit). Systems with
limited paging capacity can use POOLLIMIT to help limit TCP/IP storage
usage. If the limit is used, it must account for peak storage usage during
periods of high system activity or TCP/IP storage abends might occur.

POOLLIMIT can be higher than the REGION size on the TCP/IP start
procedure because POOLLIMIT applies to authorized storage, whereas
REGION applies to unauthorized storage. Specifying a nonzero POOLLIMIT
enables warning messages EZZ4364I, EZZ4365I, and EZZ4366I to appear if a
storage shortage occurs.

SEGMENTATIONOFFLOAD | NOSEGMENTATIONOFFLOAD
Specifies whether the stack should offload TCP segmentation for IPv4 packets
to OSA-Express features. TCP segmentation offload support transfers the
overhead of segmenting outbound data into individual TCP packets to
QDIO-attached OSA-Express devices whose features that support this function.
Offloading segmentation of streaming-type workloads reduces CPU use and
increases throughput. This parameter is ignored for OSA-Express features that
do not support segmentation offload.

Guideline: The support for specifying IPv4 segmentation offload on the
GLOBALCONFIG profile statement has been deprecated. The parameters are
still supported on the GLOBALCONFIG statement, but the support for
specifying these parameters on the GLOBALCONFIG statement will be
dropped in a future release. It is recommended to specify these parameters on
the IPCONFIG profile statement instead.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 123

Rule: The SEGMENTATIONOFFLOAD and NOSEGMENTATIONOFFLOAD
parameters specified on the IPCONFIG statement override the equivalent
parameters specified on the GLOBALCONFIG statement.

See the Modifying topic for information about changing this parameter while
the TCP/IP stack is active. See TCP segmentation offload information in z/OS
Communications Server: IP Configuration Guide for more information about
TCP segmentation offload support.

NOSEGMENTATIONOFFLOAD
TCP segmentation is performed by the TCP/IP stack. This is the
default.

SEGMENTATIONOFFLOAD
TCP segmentation is offloaded to the OSA-Express feature.

SMCR | NOSMCR
Specifies whether this stack uses Shared Memory Communications over
Remote Direct Memory Access (RDMA), or SMC-R, for external data network
communications. For more information about SMC-R, see Shared Memory
Communications over Remote Direct Memory Access in z/OS Communications
Server: IP Configuration Guide.

NOSMCR
Specifies that this stack should not use SMC-R for external data
network communications. This is the default setting.

SMCR
Specifies that this stack should use SMC-R for external data network
communications. Use this parameter to define the IBM 10GbE RoCE
Express features that this stack should use for SMC-R communications.
You can use this parameter to define additional operational
characteristics for SMC-R communications.

If you specify the SMCR parameter without any subparameters, you
get one of the following results:
v If this is the first time that you specify the SMCR parameter, no

Peripheral Component Interconnect Express (PCIe) function IDs are
defined and the FIXEDMEMORY and TCPKEEPMININTERVAL
subparameters are set to default values.

v If you previously specified the SMCR parameter with
subparameters, TCP/IP retains the knowledge of the subparameter
settings, even if SMC-R processing is stopped by issuing the VARY
TCPIP,,OBEYFILE command with a data set that contains a
GLOBALCONFIG NOSMCR parameter. Therefore, a subsequent
specification of a GLOBALCONFIG SMCR profile statement resumes
SMC-R processing with the previous subparameter settings.

PFID pfid
Specifies the Peripheral Component Interconnect Express
(PCIe) function ID (PFID) value for a 10GbE RoCE Express
feature that this stack uses. A pfid is a 2-byte hexadecimal value
in the range 0 - 0FFF that identifies this TCP/IP stack's
representation of a 10GbE RoCE Express feature.

Rules:

v You must code at least one PFID subparameter for this stack
to use SMC-R communications.

124 z/OS V2R1.0 Communications Server: IP Configuration Reference

|
|

v You can specify a maximum of 16 PFID subparameter values
on the SMCR parameter.

v The value for each PFID and PORTNUM pair must be
unique.

v When the RoCE Express feature operates in a shared RoCE
environment, you cannot simultaneously activate a 10GbE
RoCE Express feature that uses the same PFID value from
different TCP/IP stacks within the same logical partition
(LPAR).

PORTNUM num
Specifies the 10GbE RoCE Express port number to use for a
particular PFID. Configure each PFID to use only a single port.
The port number can be 1 or 2; 1 is the default value.

Rules:

v If the 10GbE RoCE Express feature operates in a dedicated
RoCE environment, you can activate either port 1 or port 2
but not both simultaneously for an individual PFID value. If
PORTNUM 1 and PORTNUM 2 definitions for the same
PFID value are created, the port that is first activated is
used.

v If the 10GbE RoCE Express feature operates in a shared
RoCE environment, you can use both port 1 and port 2 on
an individual RNIC adapter, but the PFID value that is
associated with each port must be different. You cannot
simultaneously activate PORTNUM 1 and PORTNUM 2
definitions for the same PFID value.
For example, if PFID 0013 and PFID 0014 are both defined in
HCD to represent the RNIC adapter with PCHID value 0140,
you can configure PFID 0013 PORT 1 PFID 0014 PORT 2 to
use both ports on the RNIC adapter. However, if you specify
PFID 0013 PORT 1 PFID 0013 PORT 2, only the first port that
is activated will be used.

MTU mtusize
Specifies the maximum transmission unit (MTU) value to be
used for a particular PFID. The MTU value can be 1024 or
2048. The default value is 1024 and can be used for most
workloads. If you set the MTU size to 2048, you must also
enable jumbo frames on all switches in the network path for all
peer hosts. For more information about the RoCE maximum
transmission unit, see z/OS Communications Server: IP
Configuration Guide.

FIXEDMEMORY mem_size
Specifies the maximum amount of 64-bit storage that the stack
can use for the send and receive buffers that are required for
SMC-R communications. The mem_size value is an integer in
the range 30 - 9999, and represents the maximum storage in
megabytes of data. The default value is 256 megabytes.

TCPKEEPMININTERVAL interval
This interval specifies the minimum interval that TCP
keepalive packets are sent on the TCP path of an SMC-R link.

Rules:

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 125

|
|
|
|
|

|

|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|

v If a keepalive interval is also specified on the INTERVAL
parameter of the TCPCONFIG statement or is set for a
specific SMC-R link socket by the TCP_KEEPALIVE
setsockopt() option, the largest of the three interval values is
used.

v The valid range for this interval is 0-2147460 seconds, and
the default is 300 seconds.

v A value of 0 disables TCP keepalive probe packets on the
TCP path of an SMC-R link.

v The SO_KEEPALIVE setsockopt() option must be set for
keepalive processing to be used.

Result: The TCPKEEPMININTERVAL setting has no effect on
keepalive processing for the SMC-R path of an SMC-R link.

For more information about TCP keepalive processing for the
TCP path and the SMC-R path of SMC-R links, see TCP
keepalive in z/OS Communications Server: IP Configuration
Guide.

SYSPLEXMONITOR
Specifies SYSPLEXMONITOR subparameters to configure the operation of the
sysplex autonomics function. For more information about connectivity
problems in a sysplex, see z/OS Communications Server: IP Configuration
Guide.

If the SYSPLEXMONITOR parameter is not specified in the initial TCP/IP
profile, then the sysplex autonomics function uses the default values for all
SYSPLEXMONITOR subparameters. If the SYSPLEXMONITOR parameter is
specified but not all subparameters are specified in the initial TCP/IP profile,
then the sysplex autonomics function uses the default values for those
SYSPLEXMONITOR subparameters that are not specified. For example, if
SYSPLEXMONITOR is specified without RECOVERY or NORECOVERY
specified in the initial profile, then the NORECOVERY action is in effect.

Rule: If you specify the GLOBALCONFIG statement in a data set associated
with a VARY TCPIP,,OBEYFILE command and the SYSPLEXMONITOR
parameter is specified without any subparameters, an informational message is
issued and the parameter is ignored.

AUTOREJOIN | NOAUTOREJOIN
Specifies whether TCP/IP should automatically rejoin the TCP/IP
sysplex group when a detected problem is relieved after the stack has
left the sysplex group.

NOAUTOREJOIN
Do not rejoin the TCP/IP sysplex group when a detected
problem is relieved. This is the default value.

AUTOREJOIN
When all detected problems (that caused the stack to leave the
sysplex group) are relieved, the stack automatically rejoins the
sysplex group and reprocesses the saved VIPADYNAMIC block
configuration.

Restriction: AUTOREJOIN cannot be configured when NORECOVERY
is configured (or set to the default value).

126 z/OS V2R1.0 Communications Server: IP Configuration Reference

Guideline: AUTOREJOIN should be used when RECOVERY is
configured to allow the stack to rejoin the sysplex group without
operator intervention.

DELAYJOIN | NODELAYJOIN
Specify whether TCP/IP should delay joining or rejoining the TCP/IP
sysplex group (EZBTCPCS) during stack initialization, or rejoining the
sysplex group following a VARY TCPIP,,OBEYFILE command.

NODELAYJOIN
Attempt to join the TCP/IP sysplex group. When specified
during stack initialization, the stack attempts to join the
sysplex group. This is the default value.

DELAYJOIN
Delay joining the TCP/IP sysplex group and processing any
VIPADYNAMIC block or DYNAMICXCF statements during
stack initialization until OMPROUTE is started and active.

DYNROUTE | NODYNROUTE
Specifies whether TCP/IP should monitor the presence of dynamic
routes over monitored network links or interfaces.

NODYNROUTE
The TCP/IP stack should not monitor the presence of dynamic
routes over monitored network links or interfaces. When
MONINTERFACE is not configured, this is the default value.

DYNROUTE
The TCP/IP stack should monitor the presence of dynamic
routes over monitored network links or interfaces.

Tip: This level of monitoring is useful in detecting problems
that OMPROUTE is having in communicating with other
routing daemons on the selected network interfaces.

If no dynamic routes are present in the TCP/IP stack from that
network, a specific interface attached to that network might not
be active or routers attached to that network might not be
active or healthy. In either case, when these conditions are
detected, they provide a reasonable indication that client
requests for DVIPAs or distributed DVIPAs owned by this
TCP/IP stack might not reach this stack over that interface.
These checks can help further qualify the state of a network
interface on this TCP/IP stack. When the MONINTERFACE
parameter is specified, This is the default value.

Restriction: DYNROUTE cannot be specified when
NOMONINTERFACE is configured (or is the default value).

Rules:

v Specify DYNROUTE only when OMPROUTE is configured
and started; otherwise, the TCP/IP stack might be forced to
leave the TCP/IP sysplex group if RECOVERY is coded.

v If DYNROUTE is specified, also specify DELAYJOIN to
avoid a scenario where the TCP/IP stack leaves the TCP/IP
sysplex group before OMPROUTE is started.

NOJOIN
Specifies that the TCP/IP stack should not join the TCP/IP sysplex
group (EZBTCPCS) during stack initialization. If this value is specified,

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 127

the TCP/IP stack does not process any VIPADYNAMIC block or
DYNAMICXCF statements. Any other GLOBALCONFIG
SYSPLEXMONITOR parameter settings (configured or default) are
ignored, and the settings are saved in case you want the TCP/IP stack
to join the sysplex group at a later time.

If you subsequently issue a VARY TCPIP,,SYSPLEX,JOINGROUP
command, the NOJOIN setting is overridden and the saved
GLOBALCONFIG SYSPLEXMONITOR parameter settings become
active. For example, if you configure NOJOIN and DELAYJOIN,
DELAYJOIN is initially ignored. If you subsequently issue a V
TCPIP,,SYSPLEX,JOINGROUP command, NOJOIN is overridden,
DELAYJOIN becomes active, and the stack joins the sysplex group if
OMPROUTE is initialized.

Any sysplex-related definitions within the TCP/IP profile, such as
VIPADYNAMIC or IPCONFIG DYNAMICXCF statements, are not
processed until the TCP/IP stack joins the sysplex group.

Restriction: You can specify this parameter only in the initial profile;
you cannot specify it when you issue a VARY TCPIP,,OBEYFILE
command.

MONINTERFACE | NOMONINTERFACE

NOMONINTERFACE
The TCP/IP stack should not monitor the status of any
network links or interfaces. This is the default.

MONINTERFACE
The TCP/IP stack should monitor the status of specified
network link or interfaces. The interfaces or links being
monitored are those that are configured with the
MONSYSPLEX keyword on the LINK or INTERFACE
statement. See “Summary of DEVICE and LINK statements” on
page 47 or “Summary of INTERFACE statements” on page 141
for more information.

Guideline: This level of monitoring can further qualify the health of
the TCP/IP stack by ensuring that at least one key interface is active
and available. This option can be useful in environments where the
dynamic XCF interface is not configured as an alternate network path
for this stack (for example, where no dynamic routes are advertised
over dynamic XCF interfaces and no static or replaceable static routes
are defined over those interfaces).

RECOVERY | NORECOVERY
Specify the action to be taken when a sysplex problem is detected.

NORECOVERY
When a problem is detected, issue messages regarding the
problem but take no further action. This is the default value.

RECOVERY
When a problem is detected, issue messages regarding the
problem, leave the TCP/IP sysplex group, and delete all
DVIPA resources owned by this stack. As allowed by a
configuration with backup capabilities, other members of the
TCP/IP sysplex automatically take over the functions of this
member that was removed from the TCP/IP sysplex group.

128 z/OS V2R1.0 Communications Server: IP Configuration Reference

Recovery is the preferred method of operation because other
members of the TCP/IP sysplex can automatically take over
the functions of a member with no actions needed by an
operator. IBM Health Checker for z/OS enhancements can be
used to check whether the RECOVERY parameter has been
specified when the IPCONFIG DYNAMICXCF or IPCONFIG6
DYNAMICXCF parameters have been specified. For more
details about IBM Health Checker for z/OS enhancements, see
the IBM Health Checker for z/OS enhancements information in
the z/OS Communications Server: IP Diagnosis Guide.

TIMERSECS seconds
Time value specified in seconds. Determines how quickly the sysplex
monitor reacts to problems with needed sysplex resources. Valid values
are in the range 10 - 3600 seconds. The default value is 60 seconds.

SYSPLEXWLMPOLL seconds
Time value specified in seconds. Determines how quickly the sysplex
distributor and its target servers poll WLM for new weight values. A short
time results in quicker reactions to changes in target status. Valid values are in
the range is 1 - 180 seconds. The default value is 60 seconds.

TCPIPSTATISTICS | NOTCPIPSTATISTICS

NOTCPIPSTATISTICS
Indicates that the TCP/IP counter values are not to be written to the
output data set designated by the CFGPRINT JCL statement.

The NOTCPIPSTATISTICS parameter is confirmed by the message:
EZZ0613I TCPIPSTATISTICS IS DISABLED

This is the default value.

TCPIPSTATISTICS
Prints the values of several TCP/IP counters to the output data set
designated by the CFGPRINT JCL statement. These counters include
number of TCP retransmissions and the total number of TCP segments
sent from the MVS TCP/IP system. These TCP/IP statistics are written
to the designated output data set only during termination of the
TCP/IP address space.

The TCPIPSTATISTICS parameter is confirmed by the message:
EZZ0613I TCPIPSTATISTICS IS ENABLED

The SMFCONFIG TCPIPSTATISTICS parameter (see “SMFCONFIG
statement” on page 274) serves a different purpose. It requests that
SMF records of subtype 5 containing TCP/IP statistics be created.
These statistics are recorded in SMF type 118 or 119, subtype 5 records.

WLMPRIORITYQ | NOWLMPRIORITYQ
Specifies whether OSA-Express QDIO write priority values should be assigned
to packets associated with WorkLoad Manager service classes, and to
forwarded packets. See the information about prioritizing outbound
OSA-Express data using the WorkLoad Manager service class in z/OS
Communications Server: IP Configuration Guide .

NOWLMPRIORITYQ
Specifies that OSA-Express QDIO write priority values should not be
assigned to packets associated with WorkLoad Manager service class
values or to forwarded packets. This value is the default.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 129

WLMPRIORITYQ
Specifies that OSA-Express QDIO write priority values should be
assigned to packets associated with WorkLoad Manager service class
valuesand to forwarded packets.

You can assign specific OSA-Express QDIO write priority values by
using the IOPRIn subparameters, where n is one or more of the
priority values in the range 1 - 4. For each subparameter, you can
specify a control value in the range 0 - 6, which correlates to the WLM
services classes, or you can specify the keyword FWD for forwarded
packets. WLM supports a service class for the SYSTEM value, but this
value is always assigned the OSA-Express QDIO write priority 1 and
its assignment cannot be configured; therefore, a control value is not
assigned for the SYSTEM WLM service class.

You can use the default assignment by specifying the WLMPRIORITYQ
parameter without any IOPRIn subparameters. See the description of
the default_control_values variable in this topic to understand the default
assignment.

control_values
Control values are used to represent the WLM service classes
and forwarded packets. Valid control values are the digits 0 - 6,
which represent WLM service classes, or the keyword FWD,
which represents forwarded packets. Table 4 identifies the
control value, the type of packet that it represents, and the
default QDIO priority assigned to the packet:

Table 4. WLM Service Class Importance Levels

Control value Type of packet Default QDIO priority

0 System-defined service class
(SYSSTC) used for
high-priority started tasks

1

1 User-defined service classes
with importance level 1

2

2 User-defined service classes
with importance level 2

3

3 User-defined service classes
with importance level 3

3

4 User-defined service classes
with importance level 4

4

5 User-defined service classes
with importance level 5

4

6 User-defined service classes
associated with a
discretionary goal

4

FWD Forwarded packets 4

default_control_values
When the WLMPRIORITYQ parameter is specified without any
IOPRIn subparameters, then the OSA-Express QDIO write
priority values are assigned as shown Table 4.

IOPRIn control_values
Use the IOPRIn subparameters to correlate control values with

130 z/OS V2R1.0 Communications Server: IP Configuration Reference

specific OSA-Express QDIO write priority values. You can use
one or more of the following subparameter keywords:
v IOPRI1
v IOPRI2
v IOPRI3
v IOPRI4

Each subparameter keyword corresponds to one of the four
QDIO write priority values, 1 through 4. Each subparameter
can be specified once on a GLOBALCONFIG statement.

control_values
Indicates the type of packet to which the QDIO write
priority value should be assigned. Valid values are:

Digits 0 - 6
Causes the QDIO write priority value that is
specified by the IOPRIn subparameter to be
assigned to packets associated with the WLM
service classes represented by the control value.

FWD This keyword causes the QDIO write priority
value indicated by the IOPRIn subparameter to
be assigned to forwarded packets.

Rules:

v IOPRIn must be followed by one or more priority level
releases.

v You can specify more than one control value for an IOPRIn
subparameter. Each control value must be separated by at
least one blank.

v A specific control value can be specified only once in the set
of IOPRIn subparameters on a GLOBALCONFIG statement.

v If any control value is not explicitly specified on an IOPRIn
subparameter, then the associated packets are assigned a
default QDIO write priority 4.

In the following example, QDIO priority 1 is assigned to packets associated
with control values 0 and 1, QDIO priority 2 is assigned to packets associated
with control value 2 and to forwarded packets, QDIO priority 3 is assigned to
packets associated with control values 3 and 4, and QDIO priority 4 is
assigned to packets associated with control values 5 and 6.
WLMPRIORITYQ IOPRI1 0 1

IOPRI2 2 FWD
IOPRI3 3 4
IOPRI4 5 6

XCFGRPID group_id
This parameter is needed only if you want subplexing. If specified, the value
provides a 2-digit suffix that is used in generating the XCF group name that
the TCP/IP stack joins. Valid values are in the range 2 - 31. The group name is
EZBTvvtt, where the vv value is the VTAM XCF group ID suffix (specified with
the XCFGRPID VTAM start option) and the tt value is the group_id value
supplied on this parameter, used as a 2-digit value converted to character
format. If no VTAM XCF group ID suffix was specified, the group name is
EZBTCPtt. If no VTAM XCF group ID suffix and no TCP XCF group ID suffix
is specified, the group name is EZBTCPCS.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 131

These characters are also used as a suffix for the EZBDVIPA and EZBEPORT
structure names, in the form EZBDVIPAvvtt and EZBEPORTvvtt. If no VTAM
XCF group ID suffix was specified, the structure names are EZBDVIPA01tt and
EZBEPORT01tt.

If XCFGRPID is not specified, the XCF group name is EZBTvvCS and the
structure names are EZBDVIPAvv and EZBEPORTvv. If no VTAM XCF group
id suffix was specified, the group name is EZBTCPCS and the structure names
are EZBDVIPA and EZBEPORT.

Restriction: XCFGRPID can be specified only in the initial profile.

This allows multiple TCP/IP stacks to join separate Sysplex groups and access
separate Coupling Facility structures, isolating sets of TCP/IP stacks into
subplexes with XCF communication only with other TCP/IP stacks within the
same subplex.

If HiperSockets is supported on this system, the IQDVLANID parameter, on
the GLOBALCONFIG statement, must be specified if XCFGRPID is specified.
Stacks on the same CPC using the same HiperSockets CHPID that specify the
same XCFGRPID value must specify the same IQDVLANID value.

Stacks on the same CPC using the same HiperSockets CHPID specifying
different XCFGRPID values must specify different IQDVLANID values. This
allows partitioning of connectivity across the Sysplex to include partitioning of
connectivity across HiperSockets.

Creating TCP/IP and VTAM subplexes can add some complexity to your
VTAM and TCP/IP configurations and requires careful planning. Before setting
this parameter you should review the information about setting up a subplex
in the z/OS Communications Server: IP Configuration Guide.

ZIIP
Specifies subparameters that control whether TCP/IP displaces CPU cycles
onto a System z9® Integrated Information Processor (zIIP). You must specify at
least one subparameter. If the ZIIP parameter is specified with no
subparameters, an informational message is issued and the parameter is
ignored.

IPSECURITY | NOIPSECURITY
Specifies whether TCP/IP should displace CPU cycles for IPSec workload
to a zIIP. For more information about this function, see the Additional
IPSec assist using z9 Integrated Information Processor (zIIP IP security)
topic in z/OS Communications Server: IP Configuration Guide.

NOIPSECURITY
Do not displace CPU cycles for IPSec workload to a zIIP. This is
the default value.

IPSECURITY
When possible, displace CPU cycles for IPSec workload to a zIIP.
Workload Manager (WLM) definitions should be examined and
possible changes made before this option is used. See the more
detailed description in the additional IPSec Assist by way of z9
Integrated Information Processor (zIIP IPSECURITY) topic in z/OS
Communications Server: IP Configuration Guide.

NOIQDIOMULTIWRITE | IQDIOMULTIWRITE
Specifies whether TCP/IP should displace CPU cycles for large outbound
TCP messages that are typically created by traditional streaming work
loads such as file transfer, and interactive web-based service workloads

132 z/OS V2R1.0 Communications Server: IP Configuration Reference

such as XML or SOAP. The TCP/IP outbound message must be at 32KB in
length before the write processing is off-loaded to an available zIIP
specialty engine. For more information about this function, see the
information about additional IPSec Assist by way of z9 Integrated
Information Processor (zIIP IPSECURITY) in z/OS Communications Server:
IP Configuration Guide.

NOIQDIOMULTIWRITE
Do not displace CPU cycles for the writing of large TCP outbound
messages to a zIIP. This is the default value.

IQDIOMULTIWRITE
When possible, displace CPU cycles for the writing of large TCP
outbound messages to a zIIP.

Rules:

v You cannot specify IQDIOMULTIWRITE as a ZIIP parameter when
GLOBALCONFIG IQDMULTIWRITE is not configured. When GLOBALCONFIG
IQDMULTIWRITE is not configured, HiperSockets interfaces do not use the
multiple write support.

v Only large TCP outbound messages (32KB and larger) are processed on the zIIP
specialty engine.

v The TCP message must be originating from this node. Routed TCP messages are
not eligible for zIIP assistance.

Tip: These ZIIP parameters apply to pre-defined HiperSockets interfaces, as well as
HiperSockets interfaces that are created and used by dynamic XCF definitions.

Steps for modifying

To modify parameters for the GLOBALCONFIG statement, you must respecify the
statement with the new parameters.

The following list describes how to modify individual parameters:

AUTOIQDX and NOAUTOIQDX
If you use the VARY TCPIP,,OBEYFILE command to change this parameter
from AUTOIQDX to NOAUTOIQDX, no new dynamic IQDX interfaces
will be activated. All active dynamic IQDX interfaces will remain active
and available for use. To stop existing interfaces, you must issue a V
TCPIP,,STOP command for each active IQDX interface.

If you use the VARY TCPIP,,OBEYFILE command to change this parameter
from NOAUTOIQDX to AUTOIQDX, active OSX interfaces are not
affected, but the stack will attempt to activate a dynamic IQDX interface on
any subsequent OSX activations.

EXPLICITBINDPORTRANGE and NOEXPLICITBINDPORTRANGE
If you specified the EXPLICITBINDPORTRANGE parameter and then you
change to the NOEXPLICITBINDRANGE parameter, then the stack stops
allocating more ports from the EXPLICITBINDPORTRANGE pool.
However, the existing active range for the EXPLICITBINDPORTRANGE
pool in the coupling facility is unaffected unless you are changing the
parameter on the last stack in the sysplex using this function.

If you specified the NOEXPLICITBINDPORTRANGE parameter and then
you change to the EXPLICITBINDPORTRANGE parameter, then a range of
ports used for the EXPLICITBINDPORTRANGE pool is set. The stack uses

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 133

ports from that pool for explicit bind() requests to the IPv4 INADDR_ANY
address, or to the IPv6 unspecified address (in6addr_any), and port 0. If
the range specified on the EXPLICITBINDPORTRANGE parameter is
different from the currently active range for the
EXPLICITBINDPORTRANGE pool in the coupling facility, the new range
replaces that value.

Changing the starting port (1st_port), the number of ports (num_ports), or
both for the EXPLICITBINDPORTRANGE parameter changes the port
numbers in the pool of ports that is guaranteed to be unique across the
sysplex for future port allocation

Guidelines:

v Changing the range specified on the EXPLICITBINDPORTRANGE
parameter of the GLOBALCONFIG statement affects every stack in the
sysplex that has configured a GLOBALCONFIG
EXPLICITBINDPORTRANGE value. Future port allocations for all such
stacks use the new port range.

v Ports in the EXPLICITBINDPORTRANGE range are usually assigned to
a stack in blocks of 64 ports. When expanding the range, use multiples
of 64 multiplied by the number of stacks that use a GLOBALCONFIG
EXPLICITBINDPORTRANGE configuration.

IQDMULTIWRITE and NOIQDMULTIWRITE
If this parameter is changed with the VARY TCPIP,,OBEYFILE command,
the new value does not take effect for any active HiperSockets (iQDIO)
interfaces. For a change in this parameter to take effect for an active iQDIO
interface, you must stop and restart both the IPv4 and IPv6 interface for
the change to be effective.

IQDVLANID
If the IQDVLANID parameter was previously specified and you modify
that value, then you must stop and restart the TCP/IP stack for the change
to take effect.

MLSCHKTERMINATE
You cannot change the MLSCHKTERMINATE parameter to the
NOMLSCHKTERMINATE parameter when the RACF® option MLSTABLE
is on and the RACF option MLQUIET is off. You can always change the
NOMLSCHKTERMINATE parameter to the MLSCHKTERMINATE
parameter, but this change is ignored if the value is specified in the data
set of a VARY TCPIP,,OBEYFILE command and consistency errors are
detected at the same time.

SEGMENTATIONOFFLOAD and NOSEGMENTATIONOFFLOAD:
If this parameter is changed with the VARY TCPIP,,OBEYFILE command,
the new value does not take effect for any active OSA-Express QDIO
interfaces. For a change in these parameters to take effect, all the
OSA-Express QDIO interfaces that support TCP segmentation offload must
be stopped and restarted.

SMCR and NOSMCR

v If SMCR support is not enabled, you can specify the SMCR parameter in
a VARY TCPIP,,OBEYFILE command data set to activate the support.

Result: TCP/IP retains knowledge of the last set of SMCR subparameter
values that are specified on the GLOBALCONFIG statement, even if
GLOBALCONFIG NOSMCR was specified subsequently. If you issue a
VARY TCPIP,,OBEYFILE command with GLOBALCONFIG SMCR

134 z/OS V2R1.0 Communications Server: IP Configuration Reference

specified, TCP/IP uses the saved last set of SMCR subparameters, unless
new values for the subparameters are coded on the GLOBALCONFIG
SMCR statement. This allows you to temporarily stop SMC-R processing
by issuing a VARY TCPIP,,OBEYFILE command with GLOBALCONFIG
NOSMCR specified. Then you can resume SMC-R processing with the
previous subparameter settings by issuing a second VARY
TCPIP,,OBEYFILE command with just GLOBALCONFIG SMCR
specified.

v If SMCR support is enabled, you can specify the NOSMCR parameter in
a VARY TCPIP,,OBEYFILE command data set to deactivate the support.
– No new TCP connections that use SMC-R processing will be

established.
– Existing TCP connections that use SMC-R will continue to use SMC-R

processing.
v You cannot change the SMCR PFID parameter values that are currently

configured when the associated 10GbE RoCE Express interfaces are
active. To change the SMCR PFID parameter values that are currently
configured, you must perform the following steps in order:
1. Stop the associated 10GbE RoCE Express interfaces.
2. Issue the VARY TCPIP,,OBEYFILE command with the new PFID

values that are coded in the command data set. The new PFID values
replace the existing PFID values.

v To add PFID values when you have one or more PFID values coded,
you must specify the existing PFID values and the additional PFID
values on the SMCR parameter in the VARY TCPIP,,OBEYFILE
command data set. Existing PFID values and any existing 10GbE RoCE
Express interfaces are not affected.

SYSPLEXMONITOR

AUTOREJOIN and NOAUTOREJOIN
If you change NOAUTOREJOIN to AUTOREJOIN after the stack
has left the sysplex and before the problem that caused it to leave
has been relieved, the stack automatically rejoins the sysplex group
when the problem is relieved. However, if you change
NOAUTOREJOIN to AUTOREJOIN after the problem that caused
the stack to leave the group has been relieved, you must issue a
VARY TCPIP,,SYSPLEX,JOINGROUP command to cause the stack
to rejoin the sysplex.

DELAYJOIN and NODELAYJOIN
Changing from DELAYJOIN to NODELAYJOIN while the TCP/IP
stack is in the process of delaying joining the sysplex group
because OMPROUTE is not active causes the TCP/IP stack to
immediately join the sysplex group.

Changing from NODELAYJOIN to DELAYJOIN has no immediate
effect until the TCP/IP stack leaves the sysplex group and then
attempts to rejoin while OMPROUTE is not active.

SYSPLEXWLMPOLL
You can change the polling rate for WLM values while the TCP/IP stack is
active. In order for the change to be effective, you should change the
polling rate on all stacks that participate in sysplex distribution (all active
distributing stacks, any backup stacks that might take over distribution,
and all target stacks).

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 135

WLMPRIORITYQ
If you specify WLMPRIORITYQ with the VARY TCPIP,,OBEYFILE
command, the IOPRIn values are changed to the values specified for the
default_control_values variable. The new values take effect immediately for
all workloads influenced by this function.

WLMPRIORITYQ IOPRIn control_values
If you specify this parameter with the VARY TCPIP,,OBEYFILE command,
and you do not specify all the control values, the QDIO priority 4 is
assigned to packets associated with all control values omitted. The new
values immediately take effect for all workloads influenced by this
function.

Rule: You cannot modify individual IOPRIn control values. If you attempt
to modify IOPRIn control values, but you specify only those control values
that you want to modify, then the QDIO priority 4 is assigned to packets
that are associated with any control values that you omitted.

XCFGRPID
For a change in this parameter to take effect, you must stop and restart the
TCP/IP stack.

Examples

This example shows the use of the SYSPLEXMONITOR parameter on the
GLOBALCONFIG statement that enables many of the sysplex autonomics
functions:
GLOBALCONFIG SYSPLEXMONITOR AUTOREJOIN DELAYJOIN MONINTERFACE DYNROUTE RECOVERY

The following example shows the use of the EXPLICITBINDPORTRANGE
parameter to define 1024 ports in the range 5000 - 6023. The ports are used for
explicit binds to the IPv4 INADDR_ANY address, or to the IPv6 unspecified
address (in6addr_any), and port 0:
GLOBALCONFIG EXPLICITBINDPORTRANGE 5000 1024

The following example shows the use of the SMCR parameter to define two 10GbE
RoCE Express features that use PFID values 0018 and 0019 and port numbers 1
and 2, and to limit the stack to 500 megabytes of 64-bit storage for SMC-R
communications.
GLOBALCONFIG SMCR PFID 0018 PORTNUM 1 PFID 0019 PORTNUM 2 FIXEDMEMORY 500

Related topics
v “SMFCONFIG statement” on page 274
v For more information about TCP/IP networking in a multilevel-secure

environment, see the security information in z/OS Communications Server: IP
Configuration Guide.

HOME statement

Use the HOME statement to provide the list of home IPv4 addresses and
associated link names.

Restriction:

v The HOME statement applies only to IPv4 interfaces that are defined with
DEVICE and LINK statements. Specify the home IP address on the INTERFACE
statement for the following interfaces:

136 z/OS V2R1.0 Communications Server: IP Configuration Reference

– An IPv6 interface.
– An IPv4 interface that is defined by using the INTERFACE statement for

QDIO Ethernet, HiperSockets, or static VIPA.

See “Summary of INTERFACE statements” on page 141 for more information.

Syntax

Rule: Specify the parameters in the order shown here.

�� HOME �

internet_addr link_name
��

Parameters

internet_addr
The IP address valid for this host. The IP address can be associated with a
physical or VIPA link.

Requirement: The IP address must be specified in dotted decimal form.

link_name
The name of the link defined in a previous LINK statement (or the reserved
name LOOPBACK) that is associated with the home address.

Steps for modifying

To modify the HOME statement, use a VARY TCPIP,,OBEYFILE command with a
data set that defines a new HOME statement.

Rules:

v If you use the HOME statement to change the IP addresses of any links, you
should stop and restart the affected devices. Furthermore, if the OSPF dynamic
routing protocol is being used over an affected interface, you should wait
between stopping and restarting the device to enable the OSPF protocol to fully
propagate the deletion of the old IP address. The duration of this wait should be
at least three times the dead router interval configured for the interface.

v The first HOME statement of each configuration data set that is set replaces the
existing HOME list with the new list. Subsequent HOME statements in the same
data set add entries to the list; however, dynamically defined HOME list entries
created by XCF dynamics, by a VIPADEFINE statement, or by an application
binding to an IP address in a currently valid VIPARANGE statement are not
deleted by a new HOME statement. You can display dynamically created HOME
list entries with the Netstat HOME/-h command. A dynamic XCF HOME list
entry has the link name EZASAMEMVS or begins with EZAXCF. A dynamic
VIPA HOME list entry has a link name that begins with VIPL, followed by the
hexadecimal value of its IP address.

v If the first HOME statement of a profile contains no entries, then all IP addresses
that were specified in a HOME statement from a previous profile are removed
from the HOME list.

v If you change the IP address of a link that was used by previously specified
default routes and you want to maintain those default routes, you must include
your GATEWAY or BEGINROUTES statements in the VARY TCPIP,,OBEYFILE

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 137

command data set that contains the new HOME list. If you do not include your
GATEWAY or BEGINROUTES statements, the static routes using that link are
deleted.

v If you had previously specified the PRIMARYINTERFACE statement and want
to preserve the primary interface that was previously specified, you must
include your PRIMARYINTERFACE statement in the VARY TCPIP,,OBEYFILE
command data set that contains the new HOME list. If you do not include the
original PRIMARYINTERFACE statement, the primary interface is reset to the
first entry in the new HOME list.

Usage notes
v Only one home address can be associated with a link. If the same link is

specified in more than one HOME list entry, only the home address in the last
entry is associated with the link. The only exception to this is the LOOPBACK
link.

v The default LOOPBACK address of 127.0.0.1 is internally defined by the TCP/IP
stack. If you try to define this LOOPBACK address, it is flagged as a duplicate
entry. You can use a link_name value of LOOPBACK in the HOME list to define
additional LOOPBACK addresses. No DEVICE or LINK statement is needed for
LOOPBACK, and it cannot be started or stopped (LOOPBACK is always active).

v IP addresses from 127.0.0.128 through 127.0.0.255 are reserved for IBM use and
cannot be coded on the HOME statement as the IP address of any link; this
includes LOOPBACK addresses.

v To improve server application performance, use a non-loopback home address
instead of a loopback address. This can result in improved throughput for
applications that reside on the same MVS system and communicate with one
another on the same TCP/IP stack.

v A HOME address used by an ATM LINK referencing an ATMLIS should be
within the logical IP subnetwork defined by the LIS subnet_value and
subnet_mask. If it is not within the subnetwork, the link cannot be used for
sending or receiving any ATM SVC traffic.

v If a default local address is not specified using the PRIMARYINTERFACE
statement, the first address in the HOME list is used as the default local address.
This default local address is the value obtained by the GETHOSTID() function.

v If an outgoing packet has the limited broadcast address (255.255.255.255) as its
destination address and the source address is not specified by the sender, the
default local address (see previous bullet) is used as the source address as long
as it is associated with a link (other than LOOPBACK) that supports broadcast.
If the link associated with the default local address is LOOPBACK or it does not
support broadcast, the first address in the HOME list that is associated with a
link (other than LOOPBACK) that supports broadcast is used as the source
address.

v When an incorrect HOME entry is encountered, all entries following that entry
on that HOME statement are ignored. Subsequent HOME statements are
processed.

v When defining static VIPA addresses, observe the following rules:
– Code a primary VIPA address first in the HOME list or on the

PRIMARYINTERFACE statement to serve as the default local address for use
by the GETHOSTID() function.
A static VIPA address must be a unique host address in the network and not
be a duplicate of any physical IP address in the network.

138 z/OS V2R1.0 Communications Server: IP Configuration Reference

If using the RIP routing protocol and host route broadcasting is not supported
by adjacent routers (that is, adjacent routers are unable to learn host routes),
the following restrictions for VIPA addresses must be applied in order to
benefit from fault tolerance support:
- If you use subnetting and VIPA addresses are in the same network as the

physical IP addresses, the subnetwork portion of any VIPA addresses must
not be the subnetwork portion of any physical IP addresses in the network.
In this case, assign a new subnetwork for the VIPA address.
If subnetting is not used on any physical interface, the network portion of
any VIPA address must not be the network portion of any physical IP
address in the network. In this case, assign a new network for the VIPA
address, preferably a class C network address.

If using the RIP routing protocol and host route broadcasting is supported by
adjacent routers (that is, adjacent routers are able to learn host routes), the
network or subnetwork portions of VIPA addresses can be the same across
multiple z/OS TCP/IP stacks in the network. See Chapter 11, “OMPROUTE,”
on page 483 for more information.
While a VIPA address can be assigned to each TCP/IP stack in one z/OS
image, you should define an internal point-to-point link (for example, CTC)
between the stacks. This ensures that the VIPA address in one z/OS TCP/IP
stack attached to a failing adapter/controller (for example, 3172) can be
reached by way of another z/OS TCP/IP stack channel-attached to the same
controller through another adapter or to another controller across the
point-to-point link.
For information about what routing protocols to use to achieve nondisruptive
TCP-connection fault tolerance, see the VIPA information in z/OS
Communications Server: IP Configuration Guide.
If you are using a name server to resolve host names by way of UDP and any
of the related resolver configuration files have only one name server address
coded that specifies a VIPA address, the host the name server is running on
must be configured to use the SOURCEVIPA option.

– In general, the static VIPA addresses can be coded in any order in the HOME
list; however, if you specify the SOURCEVIPA option on the IPCONFIG
statement, the order of the VIPA addresses is important in terms of how
source IP addresses are used for outbound datagrams originating at the host.
In this case, the following rules apply:
- In the HOME list, the static VIPA address that precedes a physical IP

address is used as the source IP address if not overridden by another
method of source address selection. See the information about source IP
address selection in z/OS Communications Server: IP Configuration
Guidefor the hierarchy of ways that the source IP address of an outbound
packet is determined.

- If static VIPA addresses are coded after all of the physical IP addresses, no
VIPA addresses are used as the source IP address.

– More than one VIPA address can be defined in one network or subnetwork.
– You can use the VIPA address as the primary or only destination for the name

of a z/OS server on the domain name server. A workstation on the network
would use the z/OS server name (translated into the VIPA address) to access
applications on the z/OS server.

– If you use DEVICE and LINK statements to define an IPv4 interface and you
want to designate a static VIPA as the source VIPA for that interface, use
DEVICE and LINK statements to define the static VIPA.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 139

– If you use the INTERFACE statement to define an IPv4 interface and you
want to designate a static VIPA as the source VIPA for that interface, take the
following steps:
- Use the INTERFACE VIRTUAL statement to define the static VIPA that will

be used as the source VIPA.
- Specify the SOURCEVIPAINTERFACE parameter on the INTERFACE

statement for the IPv4 interface.

Examples

This example shows a HOME statement that defines the IP addresses of each link
in the host.
HOME

151.4.1.2 TR2
192.1.1.1 VIPA1
130.50.75.1 TR1
193.5.2.1 ETH1
192.2.1.1 VIPA2
9.67.43.110 FDDI1
193.7.2.1 SNA1

VIPA1 and VIPA2 are examples of static VIPA links associated with static VIPA
addresses, the other values are examples of physical links associated with physical
IP addresses. If you specify SOURCEVIPA on the IPCONFIG statement, VIPA1
serves as the VIPA address for TR1 and ETH1, and VIPA2 for links FDDI1 and
SNA1. Because there is no VIPA definition preceding TR2 in the HOME list, it is
not affected by SOURCEVIPA. The VIPA addresses are used in the outbound IP
datagrams. For more information, see “IPCONFIG statement” on page 190.

The following example shows the definition of an additional LOOPBACK address:
HOME 9.67.113.105 CTCD00 ; CTC IP address for this system

127.0.0.2 LOOPBACK ; additional LOOPBACK address

If using the SOURCEVIPA option for the outbound datagrams originating at a
z/OS TCP/IP stack, see the following example for details:
HOME

172.2.1.1 VIPA1 ; <-- Source for ETH1 and TR1
151.2.3.1 ETH1
151.4.1.1 TR1
172.2.1.2 VIPA2 ; <-- Source for ETH2 and TR2
151.2.3.2 ETH2
151.4.1.2 TR2

Select a VIPA address in the HOME statement to provide as the local address. The
address that closely precedes a physical IP address is used as the local address. For
example:

Optionally, additional VIPA addresses can be defined to associate a group of
interfaces and serve as local addresses. In this example, VIPA1 is associated with
ETH1 and TR1, and VIPA2 is associated with ETH2 and TR2.

If an outbound datagram is not to contain a SOURCEVIPA address for a particular
interface (that is, use a physical IP address), then use the following example:
HOME

151.4.1.1 TR1 ; <-- No SOURCEVIPA for outbound on TR1
172.2.1.1 VIPA ; <-- Source for ETH1 and TR2
151.2.3.1 ETH1
151.4.1.2 TR2

140 z/OS V2R1.0 Communications Server: IP Configuration Reference

If traffic over an interface should not use a source VIPA address, put the HOME
entry for that interface before all VIPA addresses in the HOME list.

Related topics
v “BEGINROUTES statement” on page 28
v “BSDROUTINGPARMS statement” on page 36
v “GATEWAY statement” on page 109
v “PRIMARYINTERFACE statement” on page 270
v See the SOURCEVIPA information in “IPCONFIG statement” on page 190.

INCLUDE statement

This statement causes profile statements from the named data set to be included at
the point that the INCLUDE statement is encountered. In general, a profile
statement must begin and end within the same data set. For example, the
statement beginning with BSDROUTINGPARMS and ending with
ENDBSDROUTINGPARMS must be contained within the same data set.

Syntax

�� INCLude data_set_name ��

Parameters

data_set_name
A fully qualified data set name that identifies a sequential file. The sequential
file can be a sequential data set or a PDS with the member name. It cannot be
a z/OS UNIX file.

Steps for modifying

Modification is not applicable to this statement.

Summary of INTERFACE statements

Use the INTERFACE statement to define an IPv6 interface. You can also use the
INTERFACE statement to define an IPv4 interface for OSA-Express QDIO Ethernet.
You can use the INTERFACE statement to define an IPv4 interface for OSA-Express
QDIO Ethernet, HiperSockets, or static VIPA, or to define an IPv6 interface

See “Summary of DEVICE and LINK statements” on page 47 for IPv4 support for
other interface types.

Table 5 on page 142 summarizes information about the IPv4 network interface
types supported by TCP/IP with the INTERFACE statement.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 141

Table 5. IPv4 network interface types supported by TCP/IP

Interface type Connectivity ID in TCP/IP profile MTU TRLE
definition

DYNAMICXCF
support

IPAQENET LAN by way of
OSA-Express in
QDIO mode (Gigabit
Ethernet, 10G, or
Fast Ethernet),
1000BASE-T Ethernet

OSA-Express port
name

8992 (1492 for
Fast Ethernet)

Required No

IPAQIDIO Another TCP/IP
within same CPC

CHPID 57344
Note: Based
on frame size
configured in
HCD.

Reserved
name

Yes

Table 6 summarizes information about the IPv6 network interface types supported
by TCP/IP.

Table 6. IPv6 network interface types supported by TCP/IP

Interface type Connectivity ID in TCP/IP profile MTU TRLE
definition

DYNAMICXCF
support

IPAQENET6 LAN by way of
OSA-Express in
QDIO mode (Gigabit
Ethernet, 10G,
1000BASE-T, or Fast
Ethernet)

OSA-Express port
name

9000 (1500
for Fast
Ethernet)

Required No

IPAQIDIO6 Another TCP/IP
within same CPC

CHPID 57344 (2) Reserved
name

Yes

MPCPTP6 for
ESCON

ESCON to another
z/OS
Communications
Server image,
running IPv6 at
z/OS level V1R5 or
later.

TRLE Name 59392 (1) Manual
definition
required

No

MPCPTP6 for
XCF

Coupling Facility or
ESCON channel to
another z/OS
Sysplex member
running IPv6 at
z/OS level V1R5 or
later.

CP name of target
VTAM

55296 Automatically
generated by
VTAM

Yes

MPCPTP6 (for
IUTSAMEH)

Simulated IPv6
channel to another
TCP/IP (or to
VTAM, for
Enterprise Extender)
on same z/OS
image.

IUTSAMEH 65535 Automatically
generated by
VTAM

Yes

Note:

1. Based on MAXBFRU value in the TRLE definition.

2. Based on frame size configured in HCD.

142 z/OS V2R1.0 Communications Server: IP Configuration Reference

The stack supports one IPv4 home address per interface. The stack does not
impose any limit on the number of IPv6 home addresses allowed for a given
interface.

Statement dependency

The INTERFACE statement for an IPv6 interface type is rejected unless the stack is
enabled for IPv6. To enable the stack for IPv6, see z/OS Communications Server:
IPv6 Network and Application Design Guide for information about defining
TCP/IP as a UNIX System Services physical file system (PFS).

Modifying INTERFACE statements

To modify most INTERFACE statement parameters, you must first delete and
redefine the INTERFACE statement.

However, the following INTERFACE statement parameters are dynamically
modifiable:
v MONSYSPLEX
v NOMONSYSPLEX

To modify these parameters on an INTERFACE statement, use a VARY
TCPIP,,OBEYFILE command with a data set that contains an INTERFACE
statement for an existing interface name which has new values for these
parameters.

Restrictions:

v Any changes to non-modifiable parameters are ignored
v If any modifiable parameters are not specified, prior values remain in effect for

these parameters

Restrictions on IPv6 addresses configured in the TCP/IP
profile

The following IPv6 addresses are not accepted for ipaddr_spec:
v Link local IP addresses
v Multicast IP addresses
v IPv4-mapped IPv6 addresses
v Addresses with the reserved prefix ::/96
v Default loopback address (::1)
v Unspecified address (::)
v Any address where bit 6 (the universal/local flag - 'U' bit) or bit 7 (the

group/individual flag - 'G' bit) of the Interface ID portion is nonzero.
The Interface ID portion is the lower 64 bits of the address. The Interface ID bit
positions are numbered 0 - 63. This is shown in the following code example:
| 1|1 3|3 4|4 6|
|0 5|6 1|2 7|8 3|
+----------------+----------------+----------------+----------------+
|xxxxxxUGxxxxxxxx|xxxxxxxxxxxxxxxx|xxxxxxxxxxxxxxxx|xxxxxxxxxxxxxxxx|
+----------------+----------------+----------------+----------------+

v ISATAP address ('00005EFE'x in bits 0 - 31 of the Interface ID portion of the
address).

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 143

v Reserved Anycast address (Non-multicast format prefix 001 - - 111 and
'FCFFFFFFFFFFFF8'x in bits 0 - 56 of the Interface ID portion of the address. The
format prefix is the bit string consisting of the first 3 bits of the address.)

v A site-local address that has any value other than 0 in bits 10 - 47 of the address.
(A site-local address has 1111111011 in bits 0 - 9 of the address.)
Guideline: Site-local addresses were designed to use private address prefixes
that could be used within a site without the need for a global prefix. Until
recently, the full negative impacts of site-local addresses in the Internet were not
fully understood. Because of problems in the use and deployment of addresses
constructed using a site-local prefix, the IETF has deprecated the special
treatment given to the site-local prefix. An IPv6 address constructed using a
site-local prefix is now being treated as a global unicast address. The site-local
prefix might be reassigned for other use by future IETF standards action.
You should not use site-local unicast addresses. Instead of site-local addresses,
you should use global unicast addresses.

Steps for modifying INTERFACE statements
This topic describes the steps for modifying the INTERFACE statement.

Procedure

Perform the following steps to modify all other parameters (other than
MONOSYSPLEX and NOMONOSYSPLEX) on an INTERFACE statement:
1. Stop the interface.

__
2. Use a VARY TCPIP,,OBEYFILE command with a data set that contains:

INTERFACE interface_name DELETE statement

__
3. Use a VARY TCPIP,,OBEYFILE command with a data set that contains the

changed INTERFACE statement.
Rule: The data set that you use on the VARY TCPIP,,OBEYFILE command in
this step should be different from the data that you used in Step 2. Do not
attempt to delete and redefine an interface in the same OBEYFILE data set.
__

4. Start the interface.
__

Results

For more information about the VARY TCPIP commands, see z/OS
Communications Server: IP System Administrator's Commands.

To modify IPADDR values, use INTERFACE ADDADDR and INTERFACE
DELADDR.

To modify TEMPPREFIX for an IPAQENET6 interface, use INTERFACE
ADDTEMPPREFIX and INTERFACE DELTEMPPREFIX.

Monitoring network interfaces (INTERFACE statements)
To delete interfaces, stop the interfaces first. When the interfaces are stopped, they
become inactive. If the TCP/IP stack is currently monitoring interfaces and detects
that all monitored interfaces are inactive as a result of stopping devices, the

144 z/OS V2R1.0 Communications Server: IP Configuration Reference

TCP/IP stack might issue messages regarding the problem and might trigger a
recovery action. You can disable monitoring these interfaces. Specify the
NOMONSYSPLEX keyword on the INTERFACE statement using the VARY
TCPIP,,OBEYFILE command before stopping the interfaces. For more information
about sysplex autonomics, see sysplex problem detection and recovery in z/OS
Communications Server: IP Configuration Guide.

INTERFACE - IPAQENET OSA-Express QDIO interfaces statement

Use the INTERFACE statement to specify an OSA-Express QDIO Ethernet interface
for IPv4.

Restriction: This statement applies to IPv4 IP addresses only.

To determine the OSA-Express microcode level, use the DISPLAY TRL command. If
a specific OSA-Express function is documented with a minimum microcode level,
you can use this command to determine whether that function is supported. IBM
service might request the microcode level for problem diagnosis. For more
information about the DISPLAY TRL command, see z/OS Communications Server:
SNA Operation.

The following OSA-Express features can be defined in QDIO mode for IPv4:
v Fast Ethernet
v Gigabit Ethernet
v 1000BASE-T Ethernet
v 10G Ethernet

When you start an IPAQENET interface (and you did not specify VMAC with
ROUTEALL), TCP/IP registers all non-loopback local (home) IPv4 addresses for
this TCP/IP instance to the OSA-Express feature. If you subsequently add, delete,
or change any home IPv4 addresses on this TCP/IP instance, TCP/IP dynamically
registers the changes to the OSA-Express feature. The OSA adapter routes
datagrams destined for those IPv4 addresses to this TCP/IP instance.

If a datagram is received at the OSA adapter for an unregistered IPv4 address, then
the OSA-Express feature routes the datagram to the TCP/IP instance, depending
on the setting of a virtual MAC (VMAC) address or definition of an instance as
PRIROUTER or SECROUTER. If the datagram is not destined for a virtual MAC
address and no active TCP/IP instance using this interface is defined as
PRIROUTER or SECROUTER, then the OSA-Express feature discards the datagram.
See the router information in z/OS Communications Server: IP Configuration
Guide for more details and primary and secondary routing in z/OS
Communications Server: SNA Network Implementation Guide.

For detailed instructions on setting up an OSA-Express feature, see zEnterprise
System and System z10 OSA-Express Customer's Guide and Reference.

For more information about missing interrupt handler (MIH) considerations with
TCP/IP interfaces, see “Missing interrupt handler factors” on page 49.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 145

Syntax

Rule: Specify the required parameters and the CHPIDTYPE parameter in the order
shown here. The OSD Interface Definition and OSX Interface Definition parameters
can be specified in any order.

�� INTERFace intf_name �

�
CHPIDTYPE OSD | OSD interface definition |

DEFINE IPAQENET Common parameters
CHPIDTYPE OSX | OSX interface definition |

DELEte

��

OSD Interface Definition:

PORTNAME portname
NONRouter

IPADDR ipv4_address/0
ipv4_address PRIRouter
ipv4_address/num_mask_bits SECRouter

TEMPIP

�

�
VLANID id

INBPERF BALANCED

NOWORKLOADQ
INBPERF DYNAMIC

WORKLOADQ
MINCPU
MINLATENCY

�

�
ROUTEALL

VMAC
macaddr ROUTELCL

SMCR

NOSMCR

OSX Interface Definition:

CHPID chpid
PORTNAME portname

IPADDR ipv4_address/num_mask_bits VLANID id �

�
INBPERF DYNAMIC NOWORKLOADQ

INBPERF BALANCED
MINCPU
MINLATENCY

NOWORKLOADQ
DYNAMIC

WORKLOADQ

VMAC ROUTEALL

ROUTEALL
VMAC

ROUTELCL

Common parameters for OSD and OSX interface definitions:

SOURCEVIPAINTerface vipa_name MTU num

READSTORAGE GLOBAL

READSTORAGE MAX
AVG
MIN

�

146 z/OS V2R1.0 Communications Server: IP Configuration Reference

�
IPBCAST

SECCLASS 255

SECCLASS security_class

NOMONSYSPLEX

MONSYSPLEX

NODYNVLANREG

DYNVLANREG
�

�
NOOLM

OLM

NOISOLATE

ISOLATE

Parameters

intf_name
The name of the interface. The maximum length is 16 characters.

Requirement: This name must be different than the name specified for the
PORTNAME parameter.

DEFINE
Specifies that this definition is to be added to the list of defined interfaces.

DELETE
Specifies that this definition is to be deleted from the list of defined interfaces.
The intf_name value must be the name of an interface previously defined by an
INTERFACE statement. Specifying INTERFACE DELETE deletes the home IP
address for the interface.

IPAQENET
Indicates that the interface uses the interface based on IP assist, which belongs
to the QDIO family of interfaces, and uses the Ethernet protocol.

CHPIDTYPE
An optional parameter indicating the CHPID type of the OSA-Express QDIO
interface.

OSD Indicates an external data network type. This is the default value.

OSX The intraensemble data network. See z/OS Communications Server: IP
Configuration Guide for information about requirements necessary to
make an OSX work.

Rule: You must specify an OSD interface definition to make this interface
eligible to use Shared Memory Communications over Remote Direct Memory
Access (SMC-R).

CHPID chpid
This parameter applies only to interfaces of CHPIDTYPE OSX and is used to
specify the CHPID for the interface. This value is a 2-character hexadecimal
value (00 - FF).

PORTNAME portname
Use this parameter to specify the PORT name that is in the TRLE definition for
the QDIO interface. The TRLE must be defined as MPCLEVEL=QDIO. For
details about defining a TRLE, see z/OS Communications Server: SNA
Resource Definition Reference.

Requirement: The portname value must be different than the name specified for
intf_name.

IPADDR

ipv4_address
The home IP address for this interface.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 147

Requirement: The IP address must be specified in dotted decimal
form.

num_mask_bits
An integer value in the range 0 - 32 that represents the number of
leftmost significant bits for the subnet mask of the interface. This value
also controls how ARP processing for VIPAs is handled for this
interface. When you specify a nonzero value, the TCP/IP stack informs
OSA to perform ARP processing for a VIPA only if the VIPA is
configured in the same subnet as the OSA (as defined by this subnet
mask). The default is 0 for CHPIDTYPE OSD. This parameter is
required for CHPIDTYPE OSX..

Requirement: If you are configuring multiple IPv4 VLAN interfaces to
the same OSA-Express feature, then you must specify a nonzero value
for the num_mask_bits variable for each of these interfaces and the
resulting subnet must be unique for each of these interfaces.

Rule: If you are using OMPROUTE and OMPROUTE is not configured
to ignore this interface, ensure that the subnet mask value that you
define on this parameter matches the subnet mask used by
OMPROUTE for this interface. The subnet mask used by OMPROUTE
is the subnet mask value defined on the corresponding OMPROUTE
statement (OSPF_INTERFACE, RIP_INTERFACE, or INTERFACE) for
this interface. If no OMPROUTE statement is specified for this
interface, the subnet mask used by OMPROUTE is the class mask for
the interface IP address.

TEMPIP
Specifies that the interface starts with an IP address of 0.0.0.0. The interface can
be used for broadcast traffic. This parameter applies only to interfaces that are
defined with CHPIDTYPE OSD.

Guideline: Use TEMPIP interfaces in a unit test environment to support an
application that provides a DHCP client, such as IBM Rational® Developer for
System z Unit Test feature (Rdz-UT). For more information about configuring a
TEMPIP interface, see Using TEMPIP interfaces in z/OS Communications
Server: IP Configuration Guide.

NONROUTER
If a datagram is received at this interface for an unknown IP address, the
datagram is not routed to this TCP/IP instance. This is the default value.

The PRIROUTER and SECROUTER parameters interact with the VLANID
parameter. See the VLANID parameter definition to understand this
relationship.

For more information about VLANID parameter interactions, see z/OS
Communications Server: IP Configuration Guide.

Rule: This keyword applies only to interfaces of CHPIDTYPE OSD and is
ignored if the VMAC parameter is configured on the INTERFACE statement.

PRIROUTER
If a datagram is received at this interface for an unknown IP address and is not
destined for a virtual MAC, the datagram is routed to this TCP/IP instance.
This parameter interacts with the VLANID parameter. See the VLANID
parameter definition to understand this relationship.

For more information about VLANID parameter interactions, see z/OS
Communications Server: IP Configuration Guide.

148 z/OS V2R1.0 Communications Server: IP Configuration Reference

Rule: This keyword applies only to interfaces of CHPIDTYPE OSD and is
ignored if the VMAC parameter is configured on the INTERFACE statement.

SECROUTER
If a datagram is received at this interface for an unknown IP address and is not
destined for a virtual MAC, and there is no active TCP/IP instance defined as
PRIROUTER, then the datagram is routed to this TCP/IP instance. This
parameter interacts with the VLANID parameter. See the VLANID parameter
definition to understand this relationship.

For more information about VLANID parameter interactions, see z/OS
Communications Server: IP Configuration Guide.

Rule: This keyword applies only to interfaces of CHPIDTYPE OSD and is
ignored if the VMAC parameter is configured on the INTERFACE statement.

VLANID id
Specifies the decimal virtual LAN identifier to be assigned to the OSA-Express
interface. This field should be a virtual LAN identifier recognized by the
switch for the LAN that is connected to this OSA-Express interface. The valid
range is 1 - 4094. This parameter is optional for CHPIDTYPE OSD and
required for CHPIDTYPE OSX.

Guideline: Installation configuration on other platforms or related to Ensemble
networking can limit the maximum VLANID of 4096.

The VLANID parameter interacts with the PRIROUTER and SECROUTER
parameters. If you configure both the VLANID parameter and either
PRIROUTER or SECROUTER parameter, then this TCP/IP instance acts as a
router for this VLAN (ID) only. Datagrams that are received at this device
instance for an unknown IP address and are not destined for a virtual MAC
are routed only to this TCP/IP instance if it is VLAN tagged with this VLAN
ID. For more information about VLANID parameter interactions, see z/OS
Communications Server: IP Configuration Guide.

Rule: If you are configuring multiple VLAN interfaces to the same
OSA-Express feature, then you must specify the VMAC parameter (with the
default ROUTEALL attribute) on the INTERFACE statement for each of these
interfaces.

Restriction: The stack supports a maximum of 32 IPv4 VLAN interfaces to the
same OSA-Express port. Additional VLANID limitations might exist if this
interface can be used with Shared Memory Communications over Remote
Direct Memory Access (SMC-R). See VLANID considerations in z/OS
Communications Server: IP Configuration Guide for details.

INBPERF

An optional parameter that indicates how processing of inbound traffic for the
QDIO interface is performed.

There are three supported static settings that indicate how frequently the
adapter should interrupt the host for inbound traffic: BALANCED, MINCPU,
and MINLATENCY. The static settings use static interrupt-timing values. The
static values are not always optimal for all workload types or traffic patterns,
and the static values cannot account for changes in traffic patterns.

There is also one supported dynamic setting (DYNAMIC). This setting causes
the host (stack) to dynamically adjust the timer-interrupt value while the
device is active and in use. This function exploits an OSA hardware function
called Dynamic LAN Idle. Unlike the static settings, the DYNAMIC setting
reacts to changes in traffic patterns and sets the interrupt-timing values to

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 149

|
|
|
|

maximize throughput. The dynamic setting does not incur additional CPU
consumption that might be produced when you specify any of the static
settings. In addition, the DYNAMIC setting uses the OSA Dynamic Router
Architecture function to enable QDIO inbound workload queues for specific
inbound traffic types.

Result: When you specify OLM on the INTERFACE statement, the INBPERF
parameter is ignored and the statement takes the value DYNAMIC.

Valid values for INBPERF are:

BALANCED
This setting uses a static interrupt-timing value, which is selected to
achieve reasonably high throughput and reasonably low CPU
consumption. This is the default value for CHPIDTYPE OSD. .

DYNAMIC
This setting causes the host to dynamically signal the OSA-Express
feature to change the timer-interrupt value, based on current inbound
workload conditions. The DYNAMIC setting is effective only for
OSA-Express2 or later features on at least an IBM System z9 that
supports the corresponding Dynamic LAN Idle function. See the
2097DEVICE Preventive Service Planning (PSP) bucket for more
information about the OSA-Express3 adapter that supports this
function. The DYNAMIC setting should outperform the other three
static settings for most workload combinations. This is the default
value for CHPIDTYPE OSX.

If the DYNAMIC setting is specified for an OSA-Express adapter that
does not support the dynamic LAN Idle function, the stack reverts to
using the BALANCED setting.

WORKLOADQ | NOWORKLOADQ

This subparameter controls the QDIO inbound workload
queueing function for the interface. QDIO inbound workload
queueing is effective only for OSA-Express features in QDIO
mode that support the corresponding Data Router Architecture.
OSA-Express features that support workload queueing do not
necessarily support workload queueing for all possible traffic
types. For more information about the QDIO inbound
workload queueing function and the OSA-Express features that
support it, see QDIO inbound workload queueing in z/OS
Communications Server: IP Configuration Guide.

NOWORKLOADQ
Specifies that QDIO inbound workload queueing is not
enabled for inbound traffic. All inbound traffic for this
interface uses a single input queue. This is the default
value.

WORKLOADQ
Specifies that QDIO inbound workload queueing is
enabled for inbound traffic.

If the WORKLOADQ subparameter is specified, QDIO
inbound workload queueing is enabled for specific
inbound traffic types. A primary input queue is
reserved for all other traffic types.

150 z/OS V2R1.0 Communications Server: IP Configuration Reference

Ancillary input queues (AIQs) are created for the
following inbound traffic types when supported by the
OSA-Express feature:
v Sysplex distributor
v Streaming workloads (for example FTP)
v Enterprise Extender (EE)

Requirement: You must specify the VMAC parameter
with WORKLOADQ to enable QDIO inbound
workload queueing.

If the WORKLOADQ setting is specified for an
OSA-Express adapter that does not support the Data
Router Architecture function, the stack reverts to using
a single input queue.

MINCPU
This setting uses a static interrupt-timing value, which is selected to
minimize host interrupts without regard to throughput. This mode of
operation might result in minor queueing delays (latency) for packets
flowing into the host, which is not optimal for workloads with
demanding latency requirements.

MINLATENCY
This setting uses a static interrupt-timing value, which is selected to
minimize latency (delay), by more aggressively sending received
packets to the host. This mode of operation generally results in higher
CPU consumption than the other three settings. Use this setting only if
host CPU consumption is not an issue.

VMAC macaddr
Specifies the virtual MAC address, which can be represented by 12
hexadecimal characters. The OSA-Express device uses this address rather than
the physical MAC address of the device for all IPv4 packets sent to and
received from this TCP/IP stack. For CHPIDTYPE OSD, using a virtual MAC
address is optional. For CHPIDTYPE OSX, using a virtual MAC address is
required, so the VMAC parameter is the default

The macaddr value is optional. The macaddr value is optional for CHPIDTYPE
OSD and cannot be specified for CHPIDTYPE OSX. If you do not code the
macaddr value, then the OSA-Express device generates a virtual MAC address.
If you do code the macaddr value, it must be defined as a locally administered
individual MAC address. This means the MAC address must have bit 6 (the
universal or local flag U bit) of the first byte set to 1 and bit 7 (the group or
individual flag G bit) of the first byte set to 0. The second hexadecimal
character must be 2, 6, A, or E. The bit positions within the 12 hexadecimal
characters are indicated as follows:
| 1|1 3|3 4|
|0 5|6 1|2 7|
+----------------+----------------+----------------+
|xxxxxxUGxxxxxxxx|xxxxxxxxxxxxxxxx|xxxxxxxxxxxxxxxx|
+----------------+----------------+----------------+

Rules:

v The same virtual MAC address generated by the OSA-Express device during
interface activation remains in effect for this OSA-Express for this TCP/IP
stack, even if the interface is stopped or becomes inoperative (INOPs). A
new virtual MAC address is generated only if the INTERFACE statement is
deleted and redefined or if the TCP/IP stack is recycled.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 151

v The NONROUTER, PRIROUTER, and SECROUTER parameters are ignored
for an OSA-Express interface if the VMAC parameter is configured on the
INTERFACE statement.

Guideline: Unless the virtual MAC address representing this OSA-Express
device must remain the same even after TCP/IP termination and restart,
configure VMAC without a macaddr value and allow the OSA-Express device
to generate it. This guarantees that the VMAC address is unique from all other
physical MAC addresses and from all other VMAC addresses generated by any
OSA-Express feature.

ROUTEALL
Specifies that all IP traffic destined to the virtual MAC is forwarded by the
OSA-Express device to the TCP/IP stack. This is the default value. See the
router information in z/OS Communications Server: IP Configuration Guide
for more details.

ROUTELCL
Specifies that only traffic destined to the virtual MAC and whose destination
IP address is registered with the OSA-Express device by this TCP/IP stack is
forwarded by the OSA-Express. See the router information in z/OS
Communications Server: IP Configuration Guide for more details.

SMCR | NOSMCR
Specifies whether this interface can be used with Shared Memory
Communications over Remote Direct Memory Access (SMC-R) for external
data network communications.

NOSMCR
Specifies that this interface cannot be used for new TCP connections
with SMC-R for external data network communications.

SMCR
Specifies that this interface can be used for new TCP connections with
SMC-R for external data network communications. This is the default
setting.

Rules:

v SMCR and NOSCMR are valid with CHPIDTYPE OSD definitions only.
v SMCR has no effect unless at least one Peripheral Component Interconnect

Express (PCIe) function ID (PFID) value is specified by using the PFID
subparameter of the SMCR parameter on the GLOBALCONFIG statement.

v SMCR has no effect unless a nonzero subnet mask is configured on the
INTERFACE statement.

SOURCEVIPAINTERFACE vipa_name
Specifies which previously-defined static VIPA interface is used for
SOURCEVIPA (when IPCONFIG SOURCEVIPA is in effect). The vipa_name
value is the interface name (or link name) for a VIRTUAL interface. This
parameter is optional.

Requirement: The VIRTUAL interface must be defined prior to specifying this
INTERFACE statement to the TCP/IP stack. It must either already be defined,
or the INTERFACE statement (or DEVICE and LINK statements) that define
the static VIPA must precede this INTERFACE statement in the profile data set.

152 z/OS V2R1.0 Communications Server: IP Configuration Reference

Tip: The SOURCEVIPAINTERFACE setting can be overridden. See the
information about Source IP address selection in z/OS Communications Server:
IP Configuration Guide for the hierarchy of ways that the source IP address of
an outbound packet is determined.

MTU num
The maximum transmission unit (MTU), in bytes. This value can be in the
range 576 - 8992. The minimum MTU for IPv4 is 576. The stack takes the
minimum of the configured value and the value supported by the device
(returned by OSA).

The MTU default, which depends on the value that is supported by the device,
is the following value:
v Gigabit Ethernet default MTU = 8992
v Fast Ethernet default MTU = 1492

The MTU default is 1492 for Fast Ethernet; otherwise, it is 8992.

Rule: If you are using OMPROUTE and OMPROUTE is not configured to
ignore this interface, ensure that the MTU that you define on this parameter
matches the MTU used by OMPROUTE for this interface. The MTU used by
OMPROUTE is the MTU value defined on the corresponding OMPROUTE
statement (OSPF_INTERFACE, RIP_INTERFACE, or INTERFACE) for this
interface. If an MTU value is not defined on the corresponding OMPROUTE
statement for this interface or if no OMPROUTE statement is specified for this
interface, the MTU used by OMPROUTE is the minimum MTU for IPv4 (576).

Tip: See z/OS Communications Server: IP Configuration Guide, in section
Maximum transmission unit considerations, for additional information about
how TCP/IP uses the MTU to determine the largest size frame to send.

READSTORAGE
An optional parameter indicating the amount of fixed storage that z/OS
Communications Server should keep available for read processing for this
adapter. Use the QDIOSTG VTAM start option to specify a value that applies
to all OSA-Express adapters in QDIO mode. You can use the READSTORAGE
keyword to override the global QDIOSTG value for this adapter based on the
inbound workload that you expect over this interface on this stack. The valid
values for READSTORAGE are:

GLOBAL
The amount of storage is determined by the QDIOSTG VTAM start
option. This is the default value.

MAX Use this value if you expect a heavy inbound workload over this
interface.

AVG Use this value if you expect a medium inbound workload over this
interface.

MIN Use this value if you expect a light inbound workload over this
interface.

Tip: See the description of the QDIOSTG VTAM start option in the z/OS
Communications Server: SNA Resource Definition Reference for details about
exactly how much storage is allocated by z/OS Communications Server for
each of these values.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 153

IPBCAST
Specifies that the interface both sends and receives IP broadcast packets. If this
parameter is not specified, no IP broadcast packets are sent or received on this
interface.

SECCLASS security_class
Use this parameter to associate a security class for IP filtering with this
interface. For traffic over the interface to match a filter rule, the filter rule must
have the same security class value as the interface or a value of 0. You can
specify filter rules in the TCP/IP profile or in an IP security policy file that is
read by the Policy Agent. Filter rules can include a security class specification
on the IpService statement in an IP Security policy file or on the SECCLASS
parameter on the IPSECRULE statement in the TCP/IP profile.

Valid security classes are identified as a number in the range 1 - 255. The
default value is 255. For more information about security class values, see
z/OS Communications Server: IP Configuration Guide.

The TCP/IP stack ignores this value if IPSECURITY is not specified on the
IPCONFIG statement.

MONSYSPLEX | NOMONSYSPLEX
Specifies whether sysplex autonomics should monitor the interface's status.

NOMONSYSPLEX
Specifies that sysplex autonomics should not monitor the interface's
status. This is the default value.

MONSYSPLEX
Specifies that sysplex autonomics should monitor the interface's status.

Restriction: The MONSYSPLEX attribute is not in effect unless the
MONINTERFACE keyword is specified on the GLOBALCONFIG
SYSPLEXMONITOR profile statement. The presence of dynamic routes
over this interface is monitored if the DYNROUTE keyword is also
specified on the GLOBALCONFIG SYSPLEXMONITOR profile
statement.

DYNVLANREG | NODYNVLANREG
This parameter controls whether or not the VLAN ID for this interface is
dynamically or statically registered with the physical switch on the LAN.

Restriction: This parameter is applicable only if a VLAN ID is specified on the
statement.

Dynamic registration of VLAN IDs is handled by the OSA-Express feature and
the physical switch on your LAN. Therefore, in order for the DYNVLANREG
parameter to be effective, both must be at a level that provides the necessary
hardware support for dynamic VLAN ID registration. After the interface is
active, you can view the Netstat DEvlinks/-d report output to determine
whether your OSA-Express feature can support VLAN dynamic registration.
This Netstat report also displays whether dynamic VLAN ID registration has
been configured for the interface.

NODYNVLANREG
Specifies that if a VLAN ID is configured for this interface, it must be
manually registered with the physical switches on the corresponding
LAN. This is the default value. If this parameter is specified without a
VLAN ID, then it is ignored.

DYNVLANREG
Specifies that if a VLAN ID is configured for this interface, it is

154 z/OS V2R1.0 Communications Server: IP Configuration Reference

dynamically registered with the physical switches on the
corresponding LAN. If this parameter is specified without a VLAN ID,
then warning message EZZ0056I is issued and the NODYNVLANREG
setting is used instead.

OLM | NOOLM
An optional parameter indicating whether an OSA-Express adapter operates in
optimized latency mode.

NOOLM
Specifies that the OSA-Express adapter should not operate in
optimized latency mode. This is the default value.

OLM Specifies that the OSA-Express adapter operates in optimized latency
mode (OLM). Optimized latency mode optimizes interrupt processing
for both inbound and outbound data. Use this mode for workloads
that have demanding latency requirements. Because this mode can
provide significant increases of throughput, particularly for interactive,
non-streaming workloads. For more information about optimized
latency mode, see the optimized latency mode topic in z/OS
Communications Server: IP Configuration Guide.

Guidelines:

v Because of the operating characteristics of optimized latency mode, you
might need to change your configuration to direct traffic to particular
OSA-Express write priority queues and to limit the number of concurrent
users sharing an OSA-Express configured for optimized latency mode. For
more information about OLM, see the optimized latency mode topic in z/OS
Communications Server: IP Configuration Guide.

v The optimized latency mode function targets a z/OS environment with a
high-volume, interactive workloads. Although optimized latency mode can
compensate for some mixing of workloads, an excessive amount of
high-volume streaming workloads, such as bulk data or file transfer, can
result in higher CPU consumption.

Restrictions:

v This function is limited to OSA-Express3 or later Ethernet features in QDIO
mode that are running with an IBM System z10 or later. See the 2097
DEVICE Preventive Service Planning (PSP) bucket for more information.

v Traffic that is either inbound over or being forwarded to an OSA-Express
configured to use optimized latency mode is not eligible for the accelerated
routing function provided by HiperSockets Accelerator and QDIO
Accelerator.

v For an OSA-Express configured to use optimized latency mode, the stack
ignores the configured or default INBPERF setting and uses the value
DYNAMIC.

ISOLATE | NOISOLATE
Specifies whether packets should be directly routed between TCP/IP stacks
that share the OSA adapter.

NOISOLATE
Route packets directly between TCP/IP stacks sharing the OSA
adapter. In this mode, if the next hop address was registered by
another stack that is sharing the OSA adapter, then the OSA-Express
adapter routes the packet directly to the sharing stack without putting
the packet on the external LAN.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 155

ISOLATE
Prevent OSA-Express from routing packets directly to another TCP/IP
stack that is sharing the OSA adapter. In this mode, OSA-Express
adapter discards any packets when the next hop address was
registered by another stack that is sharing the OSA adapter. Packets
can flow between two stacks that share the OSA only by first going
through a router on the LAN. For more details, see the OSA-Express
connection isolation information in z/OS Communications Server: IP
Configuration Guide.

Tips:

v If you isolate an interface, there might be an adverse effect on
latency.

v You can selectively apply OSA-Express connection isolation to
individual virtual LANs.

v The OSA-Express adapter requires that both stacks sharing the port
be non-isolated for direct routing to occur. Therefore, for traffic
between two stacks sharing the OSA adapter, as long as at least one
of the stacks is isolated, connection isolation is in effect for traffic in
both directions between these stacks.

Restriction: This function is limited to OSA-Express2 or later Ethernet
features in QDIO mode and running at least an IBM System z9
Enterprise Class (EC) or z9 Business Class (BC). See the 2094DEVICE,
2096DEVICE, 2097DEVICE, or 2098DEVICE Preventive Service
Planning (PSP) bucket for more information.

Steps for modifying

See “Summary of INTERFACE statements” on page 141 for modification
information.

Examples
INTERFACE OSAQDIO24
DEFINE IPAQENET
PORTNAME OSAQDIO2
SOURCEVIPAINT VIPAV4
IPADDR 100.1.1.1/24

Related topics
v “BEGINROUTES statement” on page 28
v “BSDROUTINGPARMS statement” on page 36
v “DEVICE and LINK — MPCIPA OSA-Express QDIO devices statement” on page

74
v “GLOBALCONFIG statement” on page 117
v “INTERFACE - IPAQENET6 OSA-Express QDIO interfaces statement” on page

161
v “SACONFIG statement” on page 271
v “START statement” on page 292
v “STOP statement” on page 293

156 z/OS V2R1.0 Communications Server: IP Configuration Reference

INTERFACE — IPAQIDIO HiperSockets interfaces statement

Use the INTERFACE statement for IPAQIDIO to configure IPv4 HiperSockets
connectivity. Use the CHPID parameter to specify the value of the desired IQD
CHPID that was configured within HCD. HiperSockets interfaces do not require a
corresponding TRLE definition. Instead, the TRLE is dynamically built when the
interface is started.

To determine the HiperSockets microcode level, use the DISPLAY TRL command. If
a specific HiperSockets function is documented with a minimum microcode level,
you can use this command to determine whether that function is supported. IBM
service might request the microcode level for problem diagnosis. For more
information, see DISPLAY TRL command in z/OS Communications Server: SNA
Operation.

Rule: Specify the required parameters in the order shown here. The Interface
Definition parameters can be specified in any order.

Syntax

�� INTERFace intf_name DEFINE IPAQIDIO Interface Definition
DELEte

��

Interface Definition:

CHPID chpid IPADDR ipv4_address/0
ipv4_address
ipv4_address/num_mask_bits

IPBCAST
�

�
MTU num

READSTORAGE GLOBAL

READSTORAGE MAX
AVG
MIN

VLANID id
�

�
SOURCEVIPAINTerface vipa_name

SECCLASS 255

SECCLASS security_class
�

�
NOMONSYSPLEX

MONSYSPLEX

Parameters

intf_name
The name of the interface. The maximum length is 16 characters.

DEFINE
Specifies that this definition is to be added to the list of defined interfaces.

DELETE
Specifies that this definition is to be deleted from the list of defined interfaces.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 157

The intf_name must be the name of an interface that was previously defined by
an INTERFACE statement. INTERFACE DELETE deletes the home IP address
for the interface.

IPAQIDIO
Indicates that the interface is for HiperSockets IPv4.

CHPID chpid
Use this parameter to specify the IQD CHPID for the HiperSockets interface.
This value is a 2-character hexadecimal value (00x - FFx). The hexadecimal
value specified on the CHPID parameter cannot be the same value that is used
for the dynamic XCF HiperSockets interface. See the IQDCHPID start option in
the z/OS Communications Server: SNA Resource Definition Reference.

IPADDR ipaddr_spec

ipv4_address
The home IP address for this interface.

Requirement: The IP address must be specified in dotted decimal
form.

num_mask_bits
An integer value in the range 0 - 32 that represents the number of
leftmost significant bits for the subnet mask of the interface. The
default is 0.

Requirement: If you are configuring multiple IPv4 VLAN interfaces to
the same HiperSockets CHPID, then you must specify a nonzero value
for the num_mask_bits variable for each of these interfaces and the
resulting subnet must be unique for each of these interfaces.

Rule: If you are using OMPROUTE and OMPROUTE is not configured
to ignore this interface, ensure that the subnet mask value that you
define on this parameter matches the subnet mask used by
OMPROUTE for this interface. The subnet mask used by OMPROUTE
is the subnet mask value defined on the corresponding OMPROUTE
statement (OSPF_INTERFACE, RIP_INTERFACE, or INTERFACE) for
this interface. If no OMPROUTE statement is specified for this
interface, the subnet mask used by OMPROUTE is the class mask for
the interface IP address.

IPBCAST
Specifies that the interface both sends and receives IP broadcast packets. If this
parameter is not specified, no IP broadcast packets are sent or received on this
interface.

MTU num
The maximum transmission unit (MTU), in bytes. This value can be in the
range 576 - 57344. The minimum MTU for IPv4 is 576. The stack takes the
minimum of the configured value and the firmware supported value (which is
the IQD frame size configured in HCD minus 8192)

The MTU default is equal to the IQD frame size minus 8192.

Rule: If you are using OMPROUTE and OMPROUTE is not configured to
ignore this interface, ensure that the MTU that you define on this parameter
matches the MTU used by OMPROUTE for this interface. The MTU used by
OMPROUTE is the MTU value defined on the corresponding OMPROUTE
statement (OSPF_INTERFACE, RIP_INTERFACE, or INTERFACE) for this
interface. If an MTU value is not defined on the corresponding OMPROUTE

158 z/OS V2R1.0 Communications Server: IP Configuration Reference

statement for this interface or if no OMPROUTE statement is specified for this
interface, the MTU used by OMPROUTE is the minimum MTU for IPv4 (576).

Tip: See Determining the maximum transmission unit in z/OS
Communications Server: IP Configuration Guide for more information about
how TCP/IP uses the MTU to determine the largest size frame to send.

READSTORAGE
An optional parameter that indicates the amount of fixed storage that z/OS CS
should keep available for read processing for this interface. The IQDIOSTG
VTAM start option allows you to specify a value that applies to all
HiperSockets interfaces. You can use the READSTORAGE keyword to override
the global IQDIOSTG value for this interface based on the inbound workload
that you expect over this interface on this stack. The following values are valid:

GLOBAL
The amount of storage is determined by the IQDIOSTG VTAM start
option. This is the default value.

MAX
Use this value if you expect a heavy inbound workload over this interface.

AVG
Use this value if you expect a medium inbound workload over this
interface.

MIN
Use this value if you expect a light inbound workload over this interface.

Tip: See the description of the IQDIOSTG VTAM start option in the z/OS
Communications Server: SNA Resource Definition Reference for details about
exactly how much storage is allocated by z/OS Communications Server for
each of these values.

VLANID id
An optional parameter followed by a decimal number indicating the virtual
LAN identifier to be assigned to this HiperSockets interface. The valid range is
1 - 4 094.

SOURCEVIPAINTERFACE vipa_name
An optional parameter used to specify which previously-defined VIPA
interface is to be used for SOURCEVIPA (when IPCONFIG SOURCEVIPA is in
effect). The vipa_name value is the interface name for a VIRTUAL interface.

Requirement: The VIRTUAL interface or the link must be defined prior to
specifying this INTERFACE statement to the TCP/IP stack. It must either
already be defined, or the INTERFACE statement (or DEVICE and LINK
statements) that define the static VIPA must precede this INTERFACE
statement in the profile data set.

Tip: The use of the SOURCEVIPAINTERFACE parameter can be overridden.
See the information about Source IP address selection in z/OS
Communications Server: IP Configuration Guide for the hierarchy of ways that
the source IP address of an outbound packet is determined.

SECCLASS security_class
Use this parameter to associate a security class for IP filtering with this
interface. For traffic over the interface to match a filter rule, the filter rule must
have the same security class value as the interface or a value of 0. Filter rules
can be specified in the TCP/IP profile or in an IP Security policy file that is
read by the Policy Agent. Filter rules can include a security class specification

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 159

on the IpService statement in an IP Security policy file or on the SECCLASS
parameter on the IPSECRULE statement in the TCP/IP profile.

Valid security classes are identified as a number in the range 1 - 255. The
default value is 255. See security class values in z/OS Communications Server:
IP Configuration Guide for more information.

Restriction: The TCP/IP stack ignores this value if IPSECURITY is not
specified on the IPCONFIG statement.

MONSYSPLEX | NOMONSYSPLEX
Specifies whether or not sysplex autonomics should monitor the interface's
status.

NOMONSYSPLEX
Specifies that sysplex autonomics should not monitor the interface's
status. This is the default value.

MONSYSPLEX
Specifies that sysplex autonomics should monitor interface's status.

Restriction: The MONSYSPLEX attribute is not in effect unless the
MONINTERFACE keyword is specified on the GLOBALCONFIG
SYSPLEXMONITOR profile statement. The presence of dynamic routes
over the interface is monitored if the DYNROUTE keyword is also
specified on the GLOBALCONFIG SYSPLEXMONITOR profile
statement.

Steps for modifying

See “Summary of INTERFACE statements” on page 141 for modification
information.

Examples
INTERFACE HIPERSOCK1 DEFINE IPAQIDIO CHPID FC

IPADDR 9.1.1.1/24

Related topics
v “BEGINROUTES statement” on page 28
v “DEVICE and LINK — MPCIPA HiperSockets devices statement” on page 85
v “INTERFACE — IPAQIDIO6 HiperSockets interfaces statement” on page 177
v “START statement” on page 292
v “STOP statement” on page 293

INTERFACE — VIRTUAL interfaces statement

Use the INTERFACE statement to specify a static virtual interface.

You can define multiple virtual IPv4 addresses on one TCP/IP image by specifying
multiple VIRTUAL INTERFACE statements.

Syntax

�� INTERFace intf_name DEFINE VIRTUAL Interface Definition
DELEte

��

160 z/OS V2R1.0 Communications Server: IP Configuration Reference

Interface Definition:

IPADDR ipv4_address

Parameters

intf_name
The name of the interface. The maximum length is 16 characters.

DEFINE
Specifies that this definition is to be added to the list of defined interfaces.

DELETE
Specifies that this definition is to be deleted from the list of defined interfaces.
The intf_name must be the name of an interface previously defined by an
INTERFACE statement. INTERFACE DELETE deletes all home IP addresses for
the interface.

VIRTUAL
Indicates that the interface is not associated with real hardware and is used for
fault tolerance support.

IPADDR ipv4_address
This parameter is required and must be one IPv4 address specified in dotted
decimal form.

Steps for modifying

See “Summary of INTERFACE statements” on page 141 for modification
information.

Examples
INTERFACE VIPAV4 DEFINE

VIRTUAL
IPADDR 9.1.1.1

Usage notes
v The TCP/IP stack does not maintain interface counters for VIRTUAL interfaces.
v A VIRTUAL interface name cannot be coded in the BEGINROUTES block.

Related topics

“IPCONFIG statement” on page 190

INTERFACE - IPAQENET6 OSA-Express QDIO interfaces statement

Use the INTERFACE statement to specify an OSA-Express QDIO Ethernet interface
for IPv6.

To determine the OSA-Express microcode level, use the DISPLAY TRL command. If
a specific OSA-Express function is documented with a minimum microcode level,
you can use this command to determine whether that function is supported. IBM
service might request the microcode level for problem diagnosis. For more
information about the DISPLAY TRL command, see z/OS Communications Server:
SNA Operation.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 161

The following OSA-Express features can be defined in QDIO mode for IPv6:
v Fast Ethernet
v Gigabit Ethernet
v 1000BASE-T Ethernet
v 10G Ethernet

When you start an IPAQENET6 interface (and you do not specify VMAC with
ROUTEALL), TCP/IP registers all non-loopback local (home) IPv6 addresses for
this TCP/IP instance to the OSA-Express feature. If you subsequently add, delete,
or change any home IPv6 addresses on this TCP/IP instance, TCP/IP dynamically
registers the changes to the OSA-Express feature. If stateless address
autoconfiguration is enabled for this interface, TCP/IP dynamically registers
autoconfigured addresses to the OSA-Express feature. This includes both public
and temporary autoconfigured addresses. The OSA-Express feature routes
datagrams destined to those IPv6 addresses to this TCP/IP instance.

If a datagram is received by the OSA adapter for an unregistered IPv6 address,
then the OSA-Express feature routes the datagram to the TCP/IP instance,
depending on the setting of a virtual MAC (VMAC) address or whether the
definition of an instance is PRIROUTER or SECROUTER. If the datagram is not
destined for a virtual MAC address and no active TCP/IP instance using this
interface is defined as PRIROUTER or SECROUTER, then the OSA-Express feature
discards the datagram. For more details about the OSA-Express feature routing
considerations, see the router information in z/OS Communications Server: IP
Configuration Guide and primary and secondary routing in z/OS Communications
Server: SNA Network Implementation Guide.

For detailed instructions on setting up an OSA-Express feature, see zEnterprise
System and System z10 OSA-Express Customer's Guide and Reference.

For more information about missing interrupt handler (MIH) considerations with
TCP/IP interfaces, see “Missing interrupt handler factors” on page 49.

Restriction: This statement applies to IPv6 IP addresses only.

Syntax

Rule: Specify the required parameters and the CHPIDTYPE parameter in the order
shown here. The OSD Interface Definition and OSX Interface Definition parameters
can be specified in any order.

�� INTERFace intf_name �

162 z/OS V2R1.0 Communications Server: IP Configuration Reference

�

�

�

�

�

�

CHPIDTYPE OSD | OSD interface definition |
DEFINE IPAQENET6 Common parameters

CHPIDTYPE OSX | OSX interface definition |
DELEte

ADDADDR ipaddr_spec

DELADDR ipaddr_spec

DEPRADDR ipaddr_spec

ADDTEMPPREFIX prefix/prefix_length
ALL

DELTEMPPREFIX prefix/prefix_length
ALL

��

OSD interface definition:

PORTNAME portname

�IPADDR ipaddr_spec

NONRouter

PRIRouter
SECRouter

�

�
VLANID id

INBPERF BALANCED

NOWORKLOADQ
INBPERF DYNAMIC

WORKLOADQ
MINCPU
MINLATENCY

�

�
ROUTEALL

VMAC
macaddr ROUTELCL

SMCR

NOSMCR

OSX Interface definition:

�

CHPID chpid
PORTNAME portname

IPADDR ipaddr_spec

VLANID id �

�
INBPERF DYNAMIC NOWORKLOADQ

INBPERF BALANCED
MINCPU
MINLATENCY

NOWORKLOADQ
DYNAMIC

WORKLOADQ

VMAC ROUTEALL

ROUTEALL
VMAC

ROUTELCL

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 163

Common parameters for OSD and OSX interface definitions:

INTFID interface_id SOURCEVIPAINTerface vipa_name MTU num
�

�
READSTORAGE GLOBAL

READSTORAGE MAX
AVG
MIN

SECCLASS 255

SECCLASS security_class

NOMONSYSPLEX

MONSYSPLEX
�

�
NODYNVLANREG

DYNVLANREG

DUPADDRDET 1

DUPADDRDET count
�

�

�

TEMPPREFIX ALL

TEMPPREFIX prefix/prefix_length
NONE

NOOLM

OLM

NOISOLATE

ISOLATE

ipaddr_spec:

ipv6_address
prefix/prefix_length

Parameters

intf_name
The name of the interface. The maximum length is 16 characters.

Requirement: This name must be different than the name specified for the
PORTNAME parameter.

Restriction: Do not specify the value PUBLICADDRS or TEMPADDRS for the
interface name. The values PUBLICADDRS and TEMPADDRS are keywords on
the SRCIP statement. These values are not recognized if they are specified as
an IPv6 interface name on an SRCIP entry.

DEFINE
Specifies that this definition is to be added to the list of defined interfaces.

DELETE
Specifies that this definition is to be deleted from the list of defined interfaces.
The intf_name must be the name of an interface previously defined by an
INTERFACE statement. INTERFACE DELETE deletes all home IP addresses for
the interface.

CHPIDTYPE
An optional parameter indicating the CHPID type of the OSA-Express QDIO
interface.

OSD The external data network. This is the default value.

OSX The intraensemble data network. See z/OS Communications Server: IP
Configuration Guide for information about requirements necessary to
make an OSX work.

164 z/OS V2R1.0 Communications Server: IP Configuration Reference

Rule: You must specify an OSD interface definition to make this OSA-Express
QDIO interface use Shared Memory Communications over Remote Direct
Memory Access (SMC-R) for external data network communications.

IPADDR ipaddr_spec
For information about the IPv6 address restrictions, see “Restrictions on IPv6
addresses configured in the TCP/IP profile” on page 143.

The following value can be specified for ipaddr_spec:

ipv6_address

This parameter can be one of the following values:
v ipv6_addr (A fully qualified IPv6 address is in colon-hexadecimal

format.)
v prefix/64 [The digits (in colon-hexadecimal format) before the /

represent the prefix. The prefix length represents the length of the
prefix in bits. If a prefix length is coded, it must be equal to 64.
When a prefix is specified, TCP/IP constructs the IPv6 address by
appending the interface ID to it.]

Restriction: If you code a prefix that is longer than 64 bits, it is
truncated to 64 bits, and no error messages are issued.

ADDADDR ipaddr_spec
Allows the addition of IP addresses to an existing INTERFACE definition
(similar to updating the HOME list with the VARY TCPIP,,OBEYFILE
command) without having to delete and redefine the INTERFACE. This can be
used to change the autoconfiguration state of an interface. If ADDADDR is
coded and this is the first manually configured IP address for the interface,
then TCP/IP disables autoconfiguration for the interface. The intf_name coded
with ADDADDR must be the name of an interface previously defined by an
INTERFACE statement.

Any public or temporary addresses that had previously been autoconfigured
for the interface are deleted.

DELADDR ipaddr_spec
Allows you to delete IP addresses from an existing INTERFACE definition. If
DELADDR is coded for the last or only manually configured IP address for an
interface, then TCP/IP enables autoconfiguration for the interface. DELADDR
is valid only for an IP address or prefix configured manually. The intf_name
coded with DELADDR must be the name of an interface previously defined by
an INTERFACE statement. DELADDR is valid only in a data set specified on a
VARY TCPIP,,OBEYFILE command.

Guideline: If you specify a prefix for DELADDR, then the only IP addresses
affected are those defined by way of the same prefix specified on IPADDR or
ADDADDR.

DEPRADDR ipaddr_spec
The DEPRADDR keyword allows you to deprecate an IP address. This can
assist with site renumbering. DEPRADDR is valid only for an IP address or
prefix configured manually. If you use DEPRADDR to deprecate an IP address,
you can subsequently use ADDADDR again to make that IP address preferred.
For DEPRADDR, the interface_name must be the name of an interface
previously defined by an INTERFACE statement. DEPRADDR is valid only in
a data set specified on a VARY TCPIP,,OBEYFILE command.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 165

Guideline: If you specify a prefix for DEPRADDR, then the only IP addresses
affected are those defined by way of the same prefix specified on IPADDR or
ADDADDR.

ADDTEMPPREFIX
Use the ADDTEMPPREFIX keyword to add prefixes to the temporary prefixes
list of an existing INTERFACE definition without having to delete and redefine
the INTERFACE statement. The temporary prefixes list limits the set of prefixes
for which temporary IPv6 addresses can be generated. A temporary IPv6
address is generated when a router advertisement containing the prefix is
processed, and the prefix is included in one of the prefixes in the temporary
prefixes list. For example, if the temporary prefixes list for an interface contains
a single prefix 2001:0db8:58cd::/48, a temporary address is generated for
advertised prefix 2001:0db8:58cd:0001/64; however, a temporary address is not
generated on this interface for advertised prefix 2001:0db8:5555:0001/64. The
intf_name variable coded with ADDTEMPPREFIX must be the name of an
interface that was previously defined by an INTERFACE statement.

prefix/prefix_length
The digits (in colon-hexadecimal format) before the slash (/) represent
the prefix. The prefix_length value represents the length of the prefix in
bits. Valid values for prefix_length parameter are in the range 1 - 64.

ALL Causes temporary addresses to be generated for all prefixes that are
learned over this interface by way of router advertisements.

DELTEMPPREFIX
Use the DELTEMPPREFIX keyword to delete prefixes from the temporary
prefixes list of an existing INTERFACE definition. The temporary prefixes list
limits the set of prefixes for which temporary IPv6 addresses can be generated.
A temporary IPv6 address is generated when a router advertisement
containing the prefix is processed and the prefix is included in one of the
prefixes in the temporary prefixes list. The intf_name variable coded with the
DELTEMPPREFIX keyword must be the name of an interface that was
previously defined by an INTERFACE statement.

prefix/prefix_length
The digits (in colon-hexadecimal format) before the slash (/) represent
the prefix. The prefix_length value represents the length of the prefix in
bits. Valid values for the prefix_length are in the range 1 - 64. All
temporary addresses for this interface whose prefix is not included in
the updated temporary prefixes list are deleted.

ALL Delete all prefixes from the temporary prefixes list, which sets the
temporary prefixes list to NONE. All temporary addresses for this
interface are deleted, and no more temporary addresses are generated
for this interface.

IPADDR ipaddr_spec
TCP/IP always creates the link-local IPv6 address. If IPADDR is not specified,
then TCP/IP enables autoconfiguration for the interface.

Tip: Autoconfiguration is enabled if there is a router or some other device that
provides a router advertisement.

If no address or prefix is specified, it is obtained from a router on the LAN by
way of an IPv6 stateless autoconfiguration. For more information, see z/OS
Communications Server: IPv6 Network and Application Design Guide.

166 z/OS V2R1.0 Communications Server: IP Configuration Reference

IPAQENET6
Indicates that the interface uses the interface based on IP assist, belongs to the
QDIO family of interfaces, and uses the Gigabit Ethernet or Fast Ethernet
protocol.

INTFID interface_id
An optional 64-bit interface identifier in colon-hexadecimal format. IPv6
shorthand is not allowed when specifying the interface ID. If specified, this
interface ID is used to form the link-local address for the interface, and is also
appended to any manually configured prefixes for the interface, to form
complete IPv6 addresses on the interface. If you do not configure manual IP
addresses on the interface, the INTFID value is appended to any prefixes that
are learned over this interface by way of router advertisements to form public
IPv6 addresses on the interface. The INTFID value is not used to form
temporary IPv6 addresses. A randomly generated interface ID is appended to
any learned prefixes to form temporary IPv6 addresses on the interface (if
temporary addresses are enabled).

If INTFID is not coded, TCP/IP builds the Interface ID using information
returned from the OSA-Express Adapter (during Interface activation). The built
Interface ID value is then used to form the link-local address. This value is also
used to complete the formation of other IPv6 addresses on the interface, if you
choose to configure only the prefix portion of the addresses (by way of
IPADDR or ADDADDR). Also, if you do not configure manual IP addresses on
the interface, the built interface ID value is appended to any prefixes learned
over this interface by way of router advertisements to form public IPv6
addresses on the interface. The built interface ID value is not used to form
temporary IPv6 addresses. A randomly generated interface ID is appended to
any learned prefixes to form temporary IPv6 addresses on the interface (if
temporary addresses are enabled).

When defining the interface ID, the local/universal flag (the U bit, bit 6 shown
in the following example) must be set to 0. The group/individual flag (the G
bit, bit 7 shown in the following example) must also be set to 0. If either flag is
set incorrectly, interface definition fails. Additionally, an interface ID value
correlating to an ISATAP address or a Reserved Anycast address is not
allowed. (An ISATAP Interface ID has '00005EFE'x in bits 0 - 31, and a
Reserved Anycast Interface ID has 'FCFFFFFFFFFFFF8' in bits 0 - 56.)
| 1|1 3|3 4|4 6|
|0 5|6 1|2 7|8 3|
+----------------+----------------+----------------+----------------+
|xxxxxxUGxxxxxxxx|xxxxxxxxxxxxxxxx|xxxxxxxxxxxxxxxx|xxxxxxxxxxxxxxxx|
+----------------+----------------+----------------+----------------+

SOURCEVIPAINTERFACE vipa_name
SOURCEVIPAINTERFACE is optional. Use this parameter to specify which
previously defined static VIPA interface is to be used for SOURCEVIPA (when
IPCONFIG6 SOURCEVIPA is in effect).

Tip: The use of the SOURCEVIPAINTERFACE parameter can be overridden.
See the information about source IP address selection in z/OS Communications
Server: IP Configuration Guide for the hierarchy of ways that the source IP
address of an outbound packet is determined.

The vipa_name is the interface name for a VIRTUAL6 interface. If the VIPA has
multiple IP addresses, then the sourcevipa address for outbound packets is
selected from among these addresses according to the default source address
selection algorithm. For more information, seez/OS Communications Server:
IPv6 Network and Application Design Guide.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 167

Requirement: The VIRTUAL6 interface must be defined prior to specifying this
INTERFACE statement to the TCP/IP stack. It must either already be defined
or, the INTERFACE statement that defines it must precede this INTERFACE
statement in the profile data set.

CHPID chpid
This parameter applies only to interfaces of CHPIDTYPE OSX and is used to
specify the CHPID for the interface. This value is a 2-character hexadecimal
value (00 - FF).

PORTNAME portname
Use this parameter to specify the PORT name contained in the TRLE definition
for the QDIO interface. The TRLE must be defined as MPCLEVEL=QDIO. For
details about defining a TRLE, see z/OS Communications Server: SNA
Resource Definition Reference.

Requirement: The portname value must be different from the name that is
specified for the intf_name value.

NONROUTER
If a datagram is received at this interface for an unknown IP address, the
datagram is not routed to this TCP/IP instance. This is the default value.

PRIRouter and SECRouter parameters interact with the VLANID parameter.
See the VLANID parameter to understand this relationship.

For more information about VLANID parameter interactions, see z/OS
Communications Server: IP Configuration Guide.

Rule: This keyword applies only to interfaces of CHPIDTYPE OSD and is
ignored if the VMAC parameter is configured on the INTERFACE statement.

PRIROUTER
If a datagram is received at this interface for an unknown IP address and is not
destined for a virtual MAC, the datagram is routed to this TCP/IP instance.

Rule: This keyword applies only to interfaces of CHPIDTYPE OSD and is
ignored if the VMAC parameter is configured on the INTERFACE statement.

SECROUTER
If a datagram is received at this interface for an unknown IP address and is not
destined for a virtual MAC, and there is no active TCP/IP instance defined as
PRIROUTER, then the datagram is routed to this TCP/IP instance.

Rule: This keyword applies only to interfaces of CHPIDTYPE OSD and is
ignored if the VMAC parameter is configured on the INTERFACE statement.

DUPADDRDET count
Use this parameter to specify the number of times to attempt duplicate address
detection. The minimum value is 0, maximum is 2 and default is 1. This is an
optional parameter.

Guideline: A value of 0 means that TCP/IP does not perform duplicate
address detection for this interface.

MTU num
The maximum transmission unit (MTU) in bytes. This value can be up to 9000.
The minimum MTU for IPv6 is 1280. The stack takes the minimum of the
configured value and the value supported by the device (returned by the OSA
adapter).

The MTU default, which depends on value supported by device, is the
following value:

168 z/OS V2R1.0 Communications Server: IP Configuration Reference

v Gigabit Ethernet default MTU = 9000
v Fast Ethernet default MTU = 1500

Tip: See z/OS Communications Server: IP Configuration Guide, in section
Maximum transmission unit considerations, for additional information about
how TCP/IP uses the MTU to determine the largest size frame to send.

VLANID id
Specifies the decimal virtual LAN identifier to be assigned to the OSA-Express
INTERFACE. This field should be a virtual LAN identifier recognized by the
switch for the LAN connected to this OSA-Express. The valid range is 1 - 4094.
This parameter is optional for CHPIDTYPE OSD and required for CHPIDTYPE
OSX.

Guideline: Installation configuration on other platforms or related to Ensemble
networking can limit the maximum VLANID of 4096.

The VLANID parameter interacts with the PRIRouter and SECRouter
parameters. If you configure both the VLANID parameter and either
PRIROUTER or SECROUTER parameter, then this TCP/IP instance acts as a
router for this VLAN (ID) only. Datagrams that are received at this device
instance for an unknown IP address and are not destined for a virtual MAC
are routed only to this TCP/IP instance if it is VLAN tagged with this VLAN
ID. For more information about VLANID parameter interactions, see z/OS
Communications Server: IP Configuration Guide.

Rule: If you are configuring multiple VLAN interfaces to the same
OSA-Express feature, then you must specify the VMAC parameter (with the
default ROUTEALL attribute) on the INTERFACE statement for each of these
interfaces.

Restriction: The stack supports a maximum of 32 IPv6 VLAN interfaces to the
same OSA-Express port. Additional VLANID limitations might exist if this
interface can be used with Shared Memory Communications over Remote
Direct Memory Access (SMC-R). See VLANID considerations in z/OS
Communications Server: IP Configuration Guide for details.

READSTORAGE
An optional parameter indicating the amount of fixed storage that z/OS
Communications Server should keep available for read processing for this
adapter. The QDIOSTG VTAM start option allows you to specify a value which
applies to all OSA-Express adapters in QDIO mode. You can use the
READSTORAGE keyword to override the global QDIOSTG value for this
adapter based on the inbound workload you expect over this interface on this
stack. The valid values are:

GLOBAL
The amount of storage is determined by the QDIOSTG VTAM start
option. This is the default value.

MAX Use this value if you expect a heavy inbound workload over this
interface.

AVG Use this value if you expect a medium inbound workload over this
interface.

MIN Use this value if you expect a light inbound workload over this
interface.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 169

|
|
|
|

Tip: See the description of the QDIOSTG VTAM start option in the z/OS
Communications Server: SNA Resource Definition Reference for details about
exactly how much storage is allocated by z/OS Communications Server for
each of these values.

Rule: If you define both a LINK and INTERFACE statement for the same
adapter, then the READSTORAGE value on the LINK statement must match
the READSTORAGE value on the corresponding INTERFACE statement. If you
define an INTERFACE statement that contains a value for READSTORAGE
that conflicts with the READSTORAGE value for a previous LINK statement
for the same adapter, then TCP/IP rejects the INTERFACE statement.

INBPERF
An optional parameter that indicates how processing of inbound traffic for the
QDIO interface is performed.

There are three supported static settings (MINCPU, MINLATENCY, and
BALANCED).that indicate how frequently the adapter should interrupt the
host for inbound traffic: BALANCED, MINCPU, and MINLATENCY. The static
settings use static interrupt-timing values. The static values are not always
optimal for all workload types or traffic patterns, and cannot account for
changes in traffic patterns.

There is also one supported dynamic setting (DYNAMIC). This setting causes
the host (stack) to dynamically adjust the timer-interrupt value while the
device is active and in use. This function exploits an OSA hardware function
called Dynamic LAN Idle. Unlike the static settings, the DYNAMIC setting
reacts to changes in traffic patterns, and sets the interrupt-timing values at the
point where throughput is maximized. In addition, the DYNAMIC setting uses
the OSA Dynamic Router Architecture function to enable QDIO inbound
workload queues for specific inbound traffic types.

Result: When you specify OLM on the INTERFACE statement, the INBPERF
parameter is ignored and the statement defaults to the value DYNAMIC.

Valid values are:

BALANCED
This setting uses a static interrupt-timing value, which is selected to
achieve reasonably high throughput and reasonably low CPU
consumption. This is the default value for CHPIDTYPE OSD.

DYNAMIC
This setting causes the host to dynamically signal the OSA-Express
feature to change the timer-interrupt value, based on current inbound
workload conditions. The DYNAMIC setting is effective only for
OSA-Express2 or later features on at least an IBM System z9 that
supports the corresponding Dynamic LAN Idle function. See the
2094DEVICE Preventive Service Planning (PSP) bucket and the
2096DEVICE Preventive Service Planning (PSP) bucket for more
information about the level of OSA-Express2 adapter that supports this
function. See the 2097DEVICE Preventive Service Planning (PSP)
bucket for more information about the OSA-Express3 adapter that
supports this function. The DYNAMIC setting can decrease latency and
provide increases in throughput for many interactive workloads. For
all other workload combinations, this setting provides performance
similar to the three static settings. This is the default value for
CHPIDTYPE OSX.

170 z/OS V2R1.0 Communications Server: IP Configuration Reference

If the DYNAMIC setting is specified for an OSA-Express adapter that
does not support the dynamic LAN Idle function, the stack reverts to
using the BALANCED setting.

WORKLOADQ | NOWORKLOADQ

This subparameter controls the QDIO inbound workload
queueing function for the interface. QDIO inbound workload
queueing is effective only for OSA-Express features in QDIO
mode that support the corresponding Data Router Architecture.
OSA-Express features that support workload queueing do not
necessarily support workload queueing for all possible traffic
types. For more information about the QDIO inbound
workload queueing function and the OSA-Express features that
support it, see QDIO inbound workload queueing in z/OS
Communications Server: IP Configuration Guide.

NOWORKLOADQ
Specifies that QDIO inbound workload queueing is not
enabled for inbound traffic. All inbound traffic for this
interface uses a single input queue. This is the default.

WORKLOADQ
Specifies that QDIO inbound workload queueing is
enabled for inbound traffic.

If the WORKLOADQ subparameter is specified, QDIO
inbound workload queueing is enabled for specific
inbound traffic types. A primary input queue is
reserved for all other traffic types.

Ancillary input queues (AIQs) are created for the
following inbound traffic types when supported by the
OSA-Express feature:
v Sysplex distributor
v Streaming workloads (for example FTP)
v Enterprise Extender (EE)

Requirement: You must specify the VMAC parameter
with WORKLOADQ to enable QDIO inbound
workload queueing.

If the WORKLOADQ setting is specified for an
OSA-Express adapter that does not support the Data
Router Architecture function, the stack reverts to using
a single input queue.

MINCPU
This setting uses a static interrupt-timing value, which is selected to
minimize host interrupts without regard to throughput. This mode of
operation might result in minor queueing delays (latency) for packets
into the host, which is not optimal for workloads with demanding
latency requirements.

MINLATENCY
This setting uses a static interrupt-timing value, which is selected to
minimize latency (delay), by more aggressively presenting received
packets to the host. This mode of operation generally results in higher
CPU consumption than the other three settings. Use this setting only if
host CPU consumption is not an issue.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 171

Rule: If you define both a LINK IPAQENET and an INTERFACE IPAQENET6
statement for the same adapter, then the following rules apply for the
INBPERF parameter on these statements:
v The value on the LINK statement must match the INBPERF value on the

corresponding INTERFACE statement.
v The INTERFACE statement supports the subparameters WORKLOADQ and

NOWORKLOADQ for the INBPERF DYNAMIC parameter. These
subparameters are associated with QDIO inbound workload queueing
support and are not supported on the LINK IPAQENET statement. So, if you
specify the INBPERF DYNAMIC parameter for both the LINK and the
INTERFACE statements, then you must use the default or specify the
NOWORKLOADQ subparameter for the INBPERF DYNAMIC parameter on
the INTERFACE statement. This ensures that the INBPERF DYNAMIC
setting for both statements is the same.

v If you define an INTERFACE IPAQENET6 statement that contains a value
for INBPERF that conflicts with the INBPERF value for a previous LINK
IPAQENET statement for the same adapter, then TCP/IP rejects the
INTERFACE statement.

SECCLASS security_class
Use this parameter to associate a security class for IP filtering with this
interface. In order for traffic over the interface to match a filter rule, the filter
rule must have the same security class value as the interface or a value of 0.
Filter rules can be specified in the TCP/IP profile or in an IP Security policy
file read by the Policy Agent. Filter rules can include a security class
specification on the IpService statement in an IP Security policy file or on the
SECCLASS parameter on the IPSEC6RULE statement in the TCP/IP profile.

Valid security classes are identified as a number in the range 1 - 255. The
default value is 255. For more information about security class values, see
z/OS Communications Server: IP Configuration Guide.

The TCP/IP stack ignores this value if IPSECURITY is not specified on the
IPCONFIG6 statement.

MONSYSPLEX | NOMONSYSPLEX
Specifies whether or not sysplex autonomics should monitor the interface's
status.

NOMONSYSPLEX
Specifies that sysplex autonomics should not monitor the interfaces's
status. This is the default value.

MONSYSPLEX
Specifies that sysplex autonomics should monitor the interface's status.

Restriction: The MONSYSPLEX attribute is not in effect unless the
MONINTERFACE keyword is specified on the GLOBALCONFIG
SYSPLEXMONITOR profile statement. The presence of dynamic routes
over this interface is monitored if the DYNROUTE keyword is also
specified on the GLOBALCONFIG SYSPLEXMONITOR profile
statement.

DYNVLANREG | NODYNVLANREG
This parameter controls whether or not the VLAN ID for this interface is
dynamically or statically registered with the physical switch on the LAN.

Restriction: This parameter is applicable only if a VLAN ID is specified on the
statement.

172 z/OS V2R1.0 Communications Server: IP Configuration Reference

Dynamic registration of VLAN IDs is handled by the OSA-Express feature and
the physical switch on your LAN. Therefore, in order for the DYNVLANREG
parameter to be effective, both must be at a level which provides the necessary
hardware support for dynamic VLAN ID registration. After the interface is
active, you can view the Netstat DEvlinks/-d report output to determine if
your OSA-Express feature can support VLAN dynamic registration. This
Netstat report also displays whether or not dynamic VLAN ID registration has
been configured for the interface.

Rule: If you define both a LINK and INTERFACE statement for the same
adapter, then the dynamic VLAN ID registration parameter value on the LINK
statement must match the value of this same parameter on the corresponding
INTERFACE statement. If you define an INTERFACE statement that contains a
dynamic VLAN ID registration parameter value that conflicts with the same
parameter value for a previous INTERFACE statement for the same
OSA-Express feature, then TCP/IP rejects the INTERFACE statement.

NODYNVLANREG
Specifies that if a VLAN ID is configured for this interface, it must be
manually registered with the physical switches on the corresponding
LAN. This is the default value. If this parameter is specified without a
VLAN ID, then it is ignored.

DYNVLANREG
Specifies that if a VLAN ID is configured for this interface, it is
dynamically registered with the physical switches on the
corresponding LAN. If this parameter is specified without a VLAN ID,
then warning message EZZ0056I is issued and the NODYNVLANREG
setting is used instead.

VMAC macaddr
Specifies the virtual MAC address, which can be represented by 12
hexadecimal characters. The OSA-Express device uses this address rather than
the physical MAC address of the device for all IPv6 packets to and from this
TCP/IP stack. For CHPIDTYPE OSD, using a virtual MAC address is optional.
For CHPIDTYPE OSX, using a virtual MAC address is required, so the VMAC
parameter is the default.

The macaddr value is optional for CHPIDTYPE OSD and cannot be specified
for CHPIDTYPE OSX. If the macaddr value is not coded, then the OSA-Express
device generates a virtual MAC address. If the macaddr is coded, it must be
defined as a locally administered individual MAC address. This means the
MAC address must have bit 6 (the universal or local flag U bit) of the first byte
set to 1 and bit 7 (the group or individual flag G bit) of the first byte set to 0.
The second hexadecimal character must be 2, 6, A or E. The bit positions
within the 12 hexadecimal characters are indicated as follows:
| 1|1 3|3 4|
|0 5|6 1|2 7|
+----------------+----------------+----------------+
|xxxxxxUGxxxxxxxx|xxxxxxxxxxxxxxxx|xxxxxxxxxxxxxxxx|
+----------------+----------------+----------------+

Rules:

v The same virtual MAC address generated by the OSA-Express device at
interface activation remains in effect for this OSA-Express for this TCP/IP
stack, even if the interface is stopped or becomes inoperative (INOPs). A
new Virtual MAC address is generated only if the INTERFACE statement is
deleted and redefined, or if the TCP/IP stack is recycled.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 173

v The NONROUTER, PRIROUTER, and SECROUTER parameters are ignored
for an OSA-Express interface if the VMAC parameter is configured on the
INTERFACE statement.

Guideline: Unless the virtual MAC address representing this OSA-Express
device must remain the same even after TCP/IP termination and restart,
configure VMAC without a macaddr value and allow the OSA-Express device
to generate it. This guarantees that the VMAC address is unique from all other
physical burned-in MAC addresses and from all other VMAC addresses
generated by any OSA-Express feature.

ROUTEALL
Specifies that all IP traffic destined to the virtual MAC is forwarded by the
OSA-Express device to the TCP/IP stack. This is the default value. See the
router information in z/OS Communications Server: IP Configuration Guide
for more details.

ROUTELCL
This specifies that only traffic destined to the virtual MAC and whose
destination IP address is registered with the OSA-Express device by this
TCP/IP stack is forwarded by the OSA-Express. See the router information in
z/OS Communications Server: IP Configuration Guide for more details.

SMCR | NOSMCR
Specifies whether this interface can be used with Shared Memory
Communications over Remote Direct Memory Access (SMC-R) for external
data network communications.

NOSMCR
Specifies that this interface cannot be used for new TCP connections
with SMC-R for external data network communications.

SMCR
Specifies that this interface can be used for new TCP connections with
SMC-R for external data network communications. This is the default
setting.

Rules:

v SMCR and NOSCMR are valid with CHPIDTYPE OSD definitions only.
v SMCR has no effect unless at least one Peripheral Component Interconnect

Express (PCIe) function ID (PFID) value is specified by using the PFID
subparameter of the SMCR parameter on the GLOBALCONFIG statement.

OLM| NOOLM
An optional parameter indicating whether an OSA-Express adapter operates in
optimized latency mode.

OLM Specifies that the OSA-Express adapter operates in optimized latency
mode (OLM). Optimized latency mode optimizes interrupt processing
for both inbound and outbound data. Use this mode for workloads
that have demanding latency requirements. Because this mode can
provide significant increases of throughput, this mode is particularly
suited for interactive, non-streaming workloads. For more information
about OLM, see the optimized latency mode topic in z/OS
Communications Server: IP Configuration Guide.

NOOLM
Specifies that the OSA-Express adapter should not operate in
optimized latency mode. This is the default value.

174 z/OS V2R1.0 Communications Server: IP Configuration Reference

Guidelines:

v Because of the operating characteristics of optimized latency mode, you
might need to change configuration to direct traffic to particular
OSA-Express write priority queues and to limit the number of concurrent
users sharing an OSA-Express adapter configured for OLM. See the
optimized latency mode topic in z/OS Communications Server: IP
Configuration Guide. for more information.

v The optimized latency mode function targets a z/OS environment with
high-volume interactive workloads. Although optimized latency mode can
compensate for some mixing of workloads, an excessive amount of
high-volume streaming workloads, such as bulk data or file transfer, can
result in higher CPU consumption.

Restrictions:

v This function is limited to OSA-Express3 or later Ethernet features in QDIO
mode that are running with an IBM System z10 or later. See the 2097
DEVICE Preventive Service Planning (PSP) bucket for more information.

v For an OSA-Express configured to use optimized latency mode, the stack
ignores the configured or default INBPERF setting and uses the value
DYNAMIC.

NOISOLATE | ISOLATE
Specifies whether packets should be directly routed between TCP/IP stacks
that share the OSA adapter.

NOISOLATE
Route packets directly between TCP/IP stacks that share the OSA
adapter. In this mode, if the next hop address was registered by
another stack that is sharing the OSA, then OSA-Express routes the
packet directly to the sharing stack without putting the packet on the
external LAN.

ISOLATE
Prevent OSA-Express from routing packets directly to another TCP/IP
stack that is sharing the OSA adapter. In this mode, OSA-Express
discards any packets when the next hop address was registered by
another stack that is sharing the OSA adapter. In this mode, packets
can flow between two stacks that share the OSA adapter only by first
going through a router on the LAN. For more details, see OSA-Express
connection isolation information in z/OS Communications Server: IP
Configuration Guide.

Tips:

v If you isolate an INTERFACE, that action might have an adverse
effect on latency.

v You can selectively apply OSA-Express connection isolation to
individual virtual LANs.

v OSA-Express requires that both stacks sharing the port be
non-isolated for direct routing to occur. Therefore, for traffic between
two stacks sharing the OSA adapter, as long as at least one of the
stacks is isolated, connection isolation is in effect for traffic in both
directions between these stacks.

Restriction: This function is limited to OSA-Express2 or later Ethernet
features in QDIO mode and running at least an IBM System z9
Enterprise Class (EC) or z9 Business Class (BC). See the 2094, 2096,

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 175

2097, or 2098 DEVICE Preventive Service Planning (PSP) and the
2096DEVICE Preventive Service Planning (PSP) buckets for more
information.

TEMPPREFIX
TEMPPREFIX specifies the set of prefixes for which temporary IPv6 addresses
can be generated. A temporary IPv6 address is generated when a router
advertisement containing a prefix is processed and the prefix is included in
one of the prefixes in the temporary prefix list. For example, if TEMPPREFIX
2001:0db8:58cd::/48 is specified for an interface, a temporary address is
generated for advertised prefix 2001:0db8:58cd:0001/64; however, a temporary
address is not generated for advertised prefix 2001:0db8:5555:0001/64.

ALL Generate temporary addresses for all prefixes that are learned over this
interface by way of router advertisements. ALL is the default.

NONE
No IPv6 temporary addresses are generated for this interface.

prefix/prefix_length
The digits (in colon-hexadecimal format) before the slash (/) represent
the prefix. The prefix_length value represents the length of the prefix, in
bits. Valid values for prefix_length are in the range 1 - 64.

Rules:

v Temporary addresses are generated only on an interface that is enabled for
stateless address autoconfiguration.

v Temporary addresses are generated only when the TEMPADDRS keyword is
specified on the IPCONFIG6 statement.

Requirement: You must specify the job name of an application in the SRCIP
statement block with a value of TEMPADDRS to cause a temporary IPv6
address to be preferred over a public IPv6 address as the source IP address for
the application; otherwise, the default source address selection algorithm
prefers public IPv6 addresses over temporary addresses. For more information,
see the information about the default source address selection algorithm in
z/OS Communications Server: IPv6 Network and Application Design Guide.

Steps for modifying

See “Summary of INTERFACE statements” on page 141 for modification
information.

Examples
INTERFACE OSAQDIO26 ; OSA QDIO (Fast Ethernet)
DEFINE IPAQENET6
PORTNAME OSAQDIO2
SOURCEVIPAINT VIPAV6
IPADDR 2001:0DB8:1:9:67:115:66 ; (Global Address)

Usage notes

Restriction: For each interface, the PRIROUTER and SECROUTER attributes can be
in effect for only one TCP/IP instance within a central processor complex (CPC). If
PRIROUTER is specified for an IPAQENET6 interface, but the IPv6 primary router
attribute is already in effect on another TCP/IP instance for the same OSA-Express,
then TCP/IP issues a warning message during interface activation and ignores the
PRIROUTER parameter. Therefore, only one TCP/IP instance can be the primary
router for the OSA-Express. Depending on the level of OSA-Express being started,

176 z/OS V2R1.0 Communications Server: IP Configuration Reference

either only one or multiple TCP/IP instances can be allowed to have SECROUTER
specified. If OSA-Express allows only one secondary router, any TCP/IP instance
subsequently starting that interface with SECROUTER receives a warning message
during START processing for the interface. If OSA-Express allows multiple
secondary routers, then OSA-Express can select any TCP/IP instance which
specifies SECROUTER as the secondary router. There is no requirement that the
same TCP/IP instance be specified PRIROUTER or SECROUTER for all
OSA-Express adapters attached to the CPC.

Rule: To configure a single OSA port for both IPv4 and IPv6 traffic, consider the
following conditions:
v If you use DEVICE/LINK/HOME for the IPv4 definition and INTERFACE for

the IPv6 definition, the PORTNAME value on the INTERFACE statement must
match the device_name on the DEVICE statement. This combination shares a
single DATAPATH device.

v If you use INTERFACE for both IPv4 and IPv6 definitions, the PORTNAME
value on the IPv4 INTERFACE statement must match the PORTNAME value on
the IPv6 INTERFACE statement. This combination results in separate
DATAPATH devices.

Related topics
v “BEGINROUTES statement” on page 28
v “DEVICE and LINK — MPCIPA OSA-Express QDIO devices statement” on page

74
v “GLOBALCONFIG statement” on page 117
v “INTERFACE - IPAQENET OSA-Express QDIO interfaces statement” on page

145
v “START statement” on page 292
v “STOP statement” on page 293

INTERFACE — IPAQIDIO6 HiperSockets interfaces statement

Use the INTERFACE statement for IPAQIDIO6 to configure IPv6 HiperSockets
connectivity. Use the CHPID parameter to specify the value of the desired IQD
CHPID that was configured within HCD. HiperSockets interfaces do not require a
corresponding TRLE definition. Instead, the TRLE is dynamically built when the
interface is started.

Rule: Specify the required parameters in the order shown here. The Interface
Definition parameters can be specified in any order.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 177

Syntax

�� INTERFace intf_name

�

�

�

DEFINE IPAQIDIO6 Interface Definition
DELEte

ADDADDR ipaddr_spec

DELADDR ipaddr_spec

DEPRADDR ipaddr_spec

��

Interface Definition:

CHPID chpid
INTFID interface_id

�

�

�IPADDR ipaddr_spec

READSTORAGE GLOBAL

READSTORAGE MAX
AVG
MIN

VLANID id
�

�
SOURCEVIPAINTerface vipa_name

SECCLASS 255

SECCLASS security_class
�

�
NOMONSYSPLEX

MONSYSPLEX

ipaddr_spec:

ipv6_address
prefix/prefix_length

Parameters

intf_name
The name of the interface. The maximum length is 16 characters.

Restriction: Do not specify the value PUBLICADDRS or TEMPADDRS for the
interface name. The values PUBLICADDRS and TEMPADDRS are keywords on
the SRCIP statement. These values are not recognized if they are specified as
an IPv6 interface name on an SRCIP entry.

DEFINE
Specifies that this definition is to be added to the list of defined interfaces.

DELETE
Specifies that this definition is to be deleted from the list of defined interfaces.
The intf_name must be the name of an interface previously defined by an
INTERFACE statement. INTERFACE DELETE deletes all home IP addresses for
the interface.

178 z/OS V2R1.0 Communications Server: IP Configuration Reference

ADDADDR ipaddr_spec
Adds IP addresses to an existing INTERFACE definition (similar to an obeyfile
to update the home list) without having to delete and redefine the
INTERFACE. The interface name (intf_name) coded with ADDADDR must be
the name of an interface previously defined by an INTERFACE statement.

DELADDR ipaddr_spec
Deletes IP addresses from an existing INTERFACE definition. The DELADDR
parameter is valid only for an IP address or prefix configured manually. The
interface name (intf_name) coded with DELADDR must be the name of an
interface previously defined by an INTERFACE statement. DELADDR is valid
only in a VARY OBEYFILE profile.

Guideline: If you specify a prefix for DELADDR, then the only IP addresses
affected are those defined by way of the same prefix specified on IPADDR or
ADDADDR.

DEPRADDR ipaddr_spec
The DEPRADDR keyword allows you to deprecate an IP address. This can
assist with site renumbering. DEPRADDR is valid only for an IP address or
prefix configured manually. If you use DEPRADDR to deprecate an IP address,
you can subsequently use ADDADDR again to make that IP address preferred.
For DEPRADDR, the interface_name must be the name of an interface
previously defined by an INTERFACE statement. DEPRADDR is valid only in
a VARY OBEYFILE profile.

Guideline: If you specify a prefix for DEPRADDR, then the only IP addresses
affected are those defined by way of the same prefix specified on IPADDR or
ADDADDR.

IPADDR ipaddr_spec
The IPADDR parameter is optional, and is used to configure the interface's
IPv6 addresses other than the link-local address (which is generated internally
by TCP/IP).

Rule: Stateless Address Autoconfiguration does not apply to IPAQIDIO6
interfaces, you must manually configure any addresses (other than link-local)
that are to be assigned to the IPAQIDIO6 interface.

If ADDADDR, DELADDR, DEPRADDR, or IPADDR is specified, then
ipaddr_spec can be one of the following:
v ipv6_addr (A fully qualified IPv6 address in colon-hexadecimal format)
v prefix/prefix_length. Here, the digits (in colon-hexadecimal format) before

the / represent the prefix. The prefix length represents the length of the
prefix in bits. If a prefix length is coded, it must be equal to 64. When a
prefix is specified, TCP/IP forms the IPv6 address by appending an interface
ID to the specified prefix. The selected interface ID is either the value
specified by way of the INTFID keyword, or the value returned by the
device when the interface was started.

For information about the IPv6 address restrictions, see “INTERFACE -
IPAQENET6 OSA-Express QDIO interfaces statement” on page 161.

IPAQIDIO6
Indicates that the interface is for HiperSockets IPv6.

INTFID interface_id
An optional 64-bit interface identifier in colon-hexadecimal format.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 179

If specified, this interface ID is used to form the link-local address for the
interface, and is also appended to any manually configured prefixes for the
interface, to form complete IPv6 addresses on the interface.

If INTFID is not coded, TCP/IP builds the Interface ID using information
returned from the HiperSockets device (during interface activation). The built
Interface ID value is then used to form the link-local address. This value is also
used to complete the formation of other IPv6 addresses on the interface, if you
choose to configure only the prefix portion of the addresses (by way of
IPADDR or ADDADDR).

For information about INTFID restrictions, see “INTERFACE - IPAQENET6
OSA-Express QDIO interfaces statement” on page 161.

SOURCEVIPAINTERFACE vipa_name
SOURCEVIPAINTERFACE is optional. Use this to specify which previously
defined VIPA interface is to be used for SOURCEVIPA (when IPCONFIG6
SOURCEVIPA is in effect).

Tip: The use of the SOURCEVIPAINTERFACE parameter can be overridden.
See the information about source IP address selection in z/OS Communications
Server: IP Configuration Guide for the hierarchy of ways that the source IP
address of an outbound packet is determined.The vipa_name is the interface
name for a VIRTUAL6 interface. If the VIPA has multiple IP addresses, then
the sourcevipa address for outbound packets is selected from among these
addresses according to the default source address selection algorithm. For more
information, see the default source address selection algorithm information in
z/OS Communications Server: IPv6 Network and Application Design Guide.

Requirement: The VIRTUAL6 interface must be defined prior to specifying this
INTERFACE statement to the TCP/IP stack. It must either already be defined
or, the INTERFACE statement that defines it must precede this INTERFACE
statement in the profile data set.

SECCLASS security_class
Use this parameter to associate a security class for IP filtering with this
interface. In order for traffic over the interface to match a filter rule, the filter
rule must have the same security class value as the interface or a value of 0.
Filter rules can be specified in the TCP/IP profile or in an IP Security policy
file read by the Policy Agent. Filter rules can include a security class
specification on the IpService statement in an IP Security policy file or on the
SECCLASS parameter on the IPSEC6RULE statement in the TCP/IP profile.

Valid security classes are identified as a number in the range 1 - 255. The
default value is 255. For more information about security class values, see
z/OS Communications Server: IP Configuration Guide.

Restriction: The TCP/IP stack ignores this value if IPSECURITY is not
specified on the IPCONFIG6 statement.

MONSYSPLEX | NOMONSYSPLEX
Specifies whether or not sysplex autonomics should monitor the interface's
status.

NOMONSYSPLEX
Specifies that sysplex autonomics should not monitor the interface's
status. This is the default value.

MONSYSPLEX
Specifies that sysplex autonomics should monitor tinterface's status.

180 z/OS V2R1.0 Communications Server: IP Configuration Reference

Restriction: The MONSYSPLEX attribute is not in effect unless the
MONINTERFACE keyword is specified on the GLOBALCONFIG
SYSPLEXMONITOR profile statement. The presence of dynamic routes
over the interface is monitored if the DYNROUTE keyword is also
specified on the GLOBALCONFIG SYSPLEXMONITOR profile
statement.

The following interface-specific values can be specified for IPAQIDIO6.

CHPID chpid
Use this parameter to specify the IQD CHPID for the HiperSockets interface.
This value is a 2-character hexadecimal value (00x - FFx). The hexadecimal
value specified on the CHPID parameter cannot be the same value that is used
for the dynamic XCF HiperSockets interface. See IQDCHPID start option in the
z/OS Communications Server: SNA Resource Definition Reference.

READSTORAGE
An optional parameter indicating the amount of fixed storage that z/OS CS
should keep available for read processing for this interface. The IQDIOSTG
VTAM start option allows you to specify a value which applies to all
HiperSockets devices. You can use the READSTORAGE keyword to override
the global IQDIOSTG value for this interface based on the inbound workload
you expect over this interface on this stack. The valid values are:

GLOBAL
The amount of storage is determined by the IQDIOSTG VTAM start
option. This is the default value.

MAX Use this value if you expect a heavy inbound workload over this
interface.

AVG Use this value if you expect a medium inbound workload over this
interface.

MIN Use this value if you expect a light inbound workload over this
interface.

Tip: See the description of IQDIOSTG start option in the z/OS
Communications Server: SNA Resource Definition Reference for details about
exactly how much storage is allocated by z/OS Communications Server for
each of these values.

Rules:

v If you define both a LINK and INTERFACE statement for the same device,
then the READSTORAGE value on the LINK statement must match the
READSTORAGE value on the corresponding INTERFACE statement.

v If you define an INTERFACE statement which contains a value for
READSTORAGE which conflicts with the READSTORAGE value for a
previous LINK statement for the same device, then TCP/IP rejects the
INTERFACE statement.

VLANID id
An optional parameter followed by a decimal number indicating the virtual
LAN identifier to be assigned to this HiperSockets interface. The valid range is
1 - 4094.

Restriction: HiperSockets allows a stack to specify only one VLAN ID if you
define IPv4 connectivity by using DEVICE and LINK statements and also
configure an IPv6 INTERFACE statement for the same CHPID. In this case, if

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 181

you specify a different VLAN ID value on a LINK or INTERFACE definition
for the same CHPID, the second statement is rejected.

Steps for modifying

See “Summary of INTERFACE statements” on page 141 for modification
information.

Examples
INTERFACE HIPERSOCK1 DEFINE IPAQIDIO6 CHPID FC

IPADDR 12AB::7

Usage notes

Rule: To configure a single HiperSockets CHPID for both IPv4 and IPv6 traffic,
consider the following conditions:
v If you use DEVICE/LINK/HOME for the IPv4 definition and INTERFACE for

the IPv6 definition, the CHPID value on the INTERFACE statement must match
the xx portion of the device_name (IUTIQDxx) on the DEVICE statement. This
combination shares a single DATAPATH device.

v If you use INTERFACE for both IPv4 and IPv6 definition, the CHPID value on
the IPv4 INTERFACE statement must match the CHPID value on the IPv6
INTERFACE statement. This combination results in separate DATAPATH
devices.

Related topics
v “BEGINROUTES statement” on page 28
v “DEVICE and LINK — MPCIPA HiperSockets devices statement” on page 85
v “INTERFACE — IPAQIDIO HiperSockets interfaces statement” on page 157
v “START statement” on page 292
v “STOP statement” on page 293

INTERFACE — LOOPBACK6 interface statement

There is only one LOOPBACK6 interface. The default LOOPBACK6 address ::1 is
generated automatically and cannot be deleted. Therefore, you cannot DEFINE or
DELETE the LOOPBACK6 interface. However, you can add additional IP addresses
for LOOPBACK6 in the initial profile or by using the VARY TCPIP,,OBEYFILE
command. Additionally, you can delete and deprecate one or more of these
additional IP addresses by using the VARY TCPIP,,OBEYFILE command.

Rule: Specify the required parameters in the order shown here. The optional
parameters can be specified in any order.

182 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

�� INTERFace LOOPBACK6 �

�

�

ADDADDR ipaddr_spec

DELADDR ipaddr_spec

DEPRADDR ipaddr_spec

��

Parameters

ADDADDR
Allows the addition of IP addresses to an existing LOOPBACK6 definition
(similar to updating the HOME list with a VARY TCPIP,,OBEYFILE command)
without having to delete and redefine the INTERFACE.

If ADDADDR is specified, then ipaddr_spec can be one or more full IPv6
addresses.

ipaddr_spec
For information about the IPv6 address restrictions, see “Restrictions on IPv6
addresses configured in the TCP/IP profile” on page 143.

The following value can be specified for ipaddr_spec:

ipv6_address
IPv6 address in colon-hexadecimal format.

DELADDR ipaddr_spec
Allows you to delete IP addresses from an existing LOOPBACK6 definition.

If DELADDR is specified, then ipaddr_spec can be one or more full IPv6
addresses.

Restriction: You cannot code DELADDR to delete the default LOOPBACK6
address ::1.

DEPRADDR ipaddr_spec
The DEPRADDR keyword allows you to deprecate an IP address. This can
assist with site renumbering. If you use DEPRADDR to deprecate an IP
address, you can subsequently use ADDADDR again to make that IP address
preferred.

DEPRADDR is valid only for an IP address configured manually.

Examples
INTERFACE LOOPBACK6 ADDADDR ::0014:0

INTERFACE — MPCPTP6 interfaces statement

The MPC Point-To-Point Data Link Control supports IPv6 traffic. With this
support, interface type MPCPTP6 can be used to carry IPv6 traffic over ESCON
channels, over XCF links in a sysplex, or between z/OS Communications Server
images using the simulated device provided by the IUTSAMEH function in VTAM.

Rule: Specify the required parameters in the order shown here. The Interface
Definition parameters can be specified in any order.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 183

Syntax

�� INTERFace intf_name

�

�

�

DEFINE MPCPTP6 Interface Definition
DELETE

ADDADDR ipaddr_spec

DELADDR ipaddr_spec

DEPRADDR ipaddr_spec

��

Interface Definition:

INTFID-interface_id

�IPADDR ipaddr_spec

NOMONSYSPLEX

MONSYSPLEX
�

�
SECCLASS 255

SECCLASS security_class SOURCEVIPAINTerface-vipa_name
�

� TRLEname trle_name

ipaddr_spec:

ipv6_address
prefix/prefix_length

Parameters

intf_name
The name of the interface. The maximum length is 16 characters.

Restriction: Do not specify the value PUBLICADDRS or TEMPADDRS for the
interface name. The values PUBLICADDRS and TEMPADDRS are keywords on
the SRCIP statement. These values are not recognized if they are specified as
an IPv6 interface name on an SRCIP entry.

DEFINE
Specifies that this definition is to be added to the list of defined interfaces.

DELETE
Specifies that this definition is to be deleted from the list of defined interfaces.
The intf_name must be the name of an interface previously defined by an
INTERFACE statement. INTERFACE DELETE deletes all home IP addresses for
the interface.

ipaddr_spec
For information about the IPv6 address restrictions, see “Restrictions on IPv6
addresses configured in the TCP/IP profile” on page 143.

The following value can be specified for ipaddr_spec:

184 z/OS V2R1.0 Communications Server: IP Configuration Reference

v ipv6_addr (A fully qualified IPv6 address in colon-hexadecimal format)
v prefix/prefix_length. Here, the digits (in colon-hexadecimal format) before

the / represent the prefix. The prefix length represents the length of the
prefix in bits. If a prefix length is coded, it must be equal to 64. When a
prefix is specified, TCP/IP forms the IPv6 address by appending an interface
ID to the specified prefix. The selected interface ID is either the value
specified by way of the INTFID keyword, or a random value that was
generated at the time the interface was started.

ADDADDR ipaddr_spec
Allows the addition IP addresses to an existing INTERFACE definition (similar
to updating the HOME list with a VARY TCPIP,,OBEYFILE command) without
having to delete and redefine the INTERFACE. The intf_name coded with
ADDADDR must be the name of an interface previously defined by an
INTERFACE statement.

DELADDR ipaddr_spec
Allows you to delete IP addresses from an existing INTERFACE definition. The
intf_name coded with DELADDR must be the name of an interface previously
defined by an INTERFACE statement.

Guideline: If you specify a prefix for DELADDR, then the only IP addresses
affected are those defined by way of the same prefix specified on IPADDR or
ADDADDR.

DEPRADDR ipaddr_spec
Allows you to deprecate an IP address. This can assist with site renumbering.
If you use DEPRADDR to deprecate an IP address, you can subsequently use
ADDADDR to once again make that IP address preferred. The intf_name coded
with DEPRADDR must be the name of an interface previously defined by an
INTERFACE statement.

Guideline: If you specify a prefix for DEPRADDR, then the only IP addresses
affected are those defined by way of the same prefix specified on IPADDR or
ADDADDR.

MPCPTP6
Indicates that this interface operates as a MultiPath Channel connection for
IPv6 traffic.

INTFID interface_id
An optional 64-bit interface identifier in colon-hexadecimal format. IPv6
shorthand is not allowed when specifying the interface ID. If specified, this
interface ID is used to form the link-local address for the interface, and is also
appended to any manually-configured prefixes for the interface, to form
complete IPv6 addresses on the interface.

If INTFID is not coded, TCP/IP generates a random value to be used to form
the link-local address. This random value is also used to complete the
formation of other IPv6 addresses on the interface, if you choose to configure
only the Prefix portion of the addresses (by way of IPADDR or ADDADDR).

For information about INTFID parameter restrictions, see “INTERFACE -
IPAQENET6 OSA-Express QDIO interfaces statement” on page 161.

MONSYSPLEX | NOMONSYSPLEX
Specifies whether or not sysplex autonomics should monitor the interface's
status.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 185

NOMONSYSPLEX
Specifies that sysplex autonomics should not monitor the interface's
status. This is the default value.

MONSYSPLEX
Specifies that sysplex autonomics should monitor the interface's status.

Restriction: The MONSYSPLEX attribute is not in effect unless the
MONINTERFACE keyword is specified on the GLOBALCONFIG
SYSPLEXMONITOR profile statement. The presence of dynamic routes
over this interface is monitored if the DYNROUTE keyword is also
specified on the GLOBALCONFIG SYSPLEXMONITOR profile
statement.

SECCLASS security_class
Use this parameter to associate a security class for IP filtering with this
interface. In order for traffic over the interface to match a filter rule, the filter
rule must have the same security class value as the interface or a value of 0.
Filter rules can be specified in the TCP/IP profile or in an IP Security policy
file read by the Policy Agent. Filter rules can include a security class
specification on the IpService statement in an IP Security policy file or on the
SECCLASS parameter on the IPSEC6RULE statement in the TCP/IP profile.

Valid security classes are identified as a number in the range 1 - 255. The
default value is 255. For more information about security class values, see
z/OS Communications Server: IP Configuration Guide.

Restriction: The TCP/IP stack ignores this value if the IPSECURITY parameter
is not specified on the IPCONFIG6 statement.

SOURCEVIPAINTERFACE vipa_name
The SOURCEVIPAINTERFACE parameter is optional. It specifies which
previously defined static VIPA interface is to be used for SOURCEVIPA (when
IPCONFIG6 SOURCEVIPA is specified).

Tip: The use of the SOURCEVIPAINTERFACE parameter can be overridden.
See the information about source IP address selection in z/OS Communications
Server: IP Configuration Guide for the hierarchy of ways that the source IP
address of an outbound packet is determined.

The vipa_name value is the interface name for a VIRTUAL6 interface. If the
VIPA has multiple IP addresses, then the source VIPA address for outbound
packets is selected from among these addresses according to the default source
address selection algorithm. For more information, see the default source
address selection algorithm information in z/OS Communications Server: IPv6
Network and Application Design Guide.

Requirement: The VIRTUAL6 interface must be defined prior to specifying this
INTERFACE statement to the TCP/IP stack. It must either already be defined
or, the INTERFACE statement that defines it must precede this INTERFACE
statement in the profile data set.

TRLENAME trle_name
The trle_name value must be the TRLE name of an HPDT connection. The
TRLE is defined in a VTAM TRL major node and must be active before the
interface can be started. For details about defining a TRLE, see z/OS
Communications Server: SNA Resource Definition Reference.

The maximum length of the trle_name value is eight characters.

TRLE Name Specification for IP samehost, Enterprise Extender, and sysplex
connections:

186 z/OS V2R1.0 Communications Server: IP Configuration Reference

Specifying the reserved TRLE name IUTSAMEH allows for IPv6
communications over a samehost MPC point-to-point connection between the
local TCP/IP stack and one or more TCP/IP stacks running on the same z/OS
image. No physical device is needed to provide this connection between the
stacks; VTAM provides a simulated communications link. VTAM dynamically
defines the IUTSAMEH TRLE.

When running Enterprise Extender over an IPv6 network, you must define and
start an MPCPTP6 interface, specifying the IUTSAMEH TRLE. This is not
required if you specify IPCONFIG6 DYNAMICXCF.

For XCF connections, the trle_name must be the CP name of the target VTAM
on the other side of the XCF connection, and the VTAM ISTLSXCF major node
must be active in both nodes to start the device.

IPADDR ipaddr_spec
The IPADDR parameter is optional, and is used to configure the interface's
IPv6 addresses other than the link-local address (which is generated internally
by TCP/IP).

Rule: Stateless Address Autoconfiguration does not apply to MPCPTP6
interfaces, so you must manually configure any addresses (other than
link-local) that are to be assigned to the MPCPTP6 interface.

Steps for modifying

See “Summary of INTERFACE statements” on page 141 for modification
information.

Examples
INTERFACE MPCPTPV6A DEFINE MPCPTP6 TRLENAME ESCONCT1

INTFID 0:0:0:1 IPADDR 12AB:0:0:0::/64

Usage notes

Requirement: IUTSAMEH definition is required if you plan to use the Enterprise
Extender function over an IPv6 network, and the TCP/IP stack you are configuring
is used for access to the IP network by VTAM on this host.

Restriction: A mix of static and dynamic IPv4 and IPv6 definitions for a device is
not allowed. For example, if a static IUTSAMEH IPv4 device and link is defined,
an IPv6 dynamic definition for IUTSAMEH is not created. If a static IUTSAMEH
IPv6 interface is defined, an IPv4 dynamic definition for IUTSAMEH is not created.
The same logic also applies for XCF links; a mix of static and dynamic IPv4 and
IPv6 definitions is not allowed for an XCF link.

Rule: In order to configure a single physical device for both IPv4 and IPv6 traffic,
you must use DEVICE/LINK/HOME for the IPv4 definition and INTERFACE for
the IPv6 definition, such that the TRLENAME value on the INTERFACE statement
matches the device_name on the DEVICE statement.

Related topics
v “BEGINROUTES statement” on page 28
v “DEVICE and LINK — MPCPTP devices statement” on page 92
v DYNAMICXCF in “IPCONFIG6 statement” on page 206
v “START statement” on page 292
v “STOP statement” on page 293

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 187

INTERFACE — VIRTUAL6 interfaces statement

Use the INTERFACE statement to specify a static virtual interface.

You can define multiple virtual IPv6 addresses on one TCP/IP image either by
specifying multiple addresses on one VIRTUAL6 INTERFACE statement or by
specifying multiple VIRTUAL6 INTERFACE statements.

Rule: Specify the required parameters in the order shown here. The optional
parameters can be specified in any order.

Syntax

�� INTERFace intf_name

�

�

�

DEFINE Interface Definition
DELEte

ADDADDR ipaddr_spec

DELADDR ipaddr_spec

DEPRADDR ipaddr_spec

��

Interface Definition:

VIRTUAL6 �IPADDR ipaddr_spec

Parameters

intf_name
The name of the interface. The maximum length is 16 characters.

Restriction: Do not specify the value PUBLICADDRS or TEMPADDRS for the
interface name. The values PUBLICADDRS and TEMPADDRS are keywords on
the SRCIP statement. These values are not recognized if they are specified as
an IPv6 interface name on an SRCIP entry.

DEFINE
Specifies that this definition is to be added to the list of defined interfaces.

DELETE
Specifies that this definition is to be deleted from the list of defined interfaces.
The intf_name must be the name of an interface previously defined by an
INTERFACE statement. INTERFACE DELETE deletes all home IP addresses for
the interface.

ADDADDR ipaddr_spec
Allows the addition of IP addresses to an existing INTERFACE definition
(similar to updating the HOME list with a VARY TCPIP,,OBEYFILE command),
without having to delete and redefine the INTERFACE. The intf_name coded
with ADDADDR must be the name of an interface previously defined by an
INTERFACE statement.

188 z/OS V2R1.0 Communications Server: IP Configuration Reference

If ADDADDR is specified, then ipaddr_spec can be one or more full IPv6
addresses.

ipaddr_spec
For information about the IPv6 address restrictions, see “Restrictions on IPv6
addresses configured in the TCP/IP profile” on page 143.

The following value can be specified for ipaddr_spec:

ipv6_address
IPv6 address in colon-hexadecimal format.

DELADDR ipaddr_spec
Allows you to delete IP addresses from an existing INTERFACE definition. The
intf_name coded with DELADDR must be the name of an interface previously
defined by an INTERFACE statement.

If DELADDR is specified, then ipaddr_spec can be one or more full IPv6
addresses.

Restriction: You cannot code DELADDR and delete the last IP address for a
VIRTUAL6 interface. You must delete the interface itself by specifying an
INTERFACE statement for the interface name, with the DELETE parameter.

DEPRADDR ipaddr_spec
The DEPRADDR keyword allows you to deprecate an IP address. This can
assist with site renumbering. If you use DEPRADDR to deprecate an IP
address, you can subsequently use ADDADDR again to make that IP address
preferred. For DEPRADDR, the interface_name must be the name of an
interface previously defined by an INTERFACE statement.

VIRTUAL6
Indicates that the interface is not associated with real hardware and is used for
fault tolerance support.

IPADDR ipaddr_spec
This parameter is required and must be one or more full IPv6 addresses (no
prefix is allowed).

Steps for modifying

See “Summary of INTERFACE statements” on page 141 for modification
information.

Examples
INTERFACE VIPAV6 DEFINE
VIRTUAL6
IPADDR 12AB::1
12AB::2

Usage notes
v The TCP/IP stack does not maintain interface counters for VIRTUAL6 interfaces.
v A VIRTUAL6 interface name cannot be coded in the BEGINROUTES block.

Related topics

“IPCONFIG6 statement” on page 206

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 189

IPCONFIG statement

Use the IPCONFIG statement to update the IPv4 IP layer of TCP/IP.

Syntax

Tip: Specify the parameters for this statement in any order.

�� IPCONFig �

190 z/OS V2R1.0 Communications Server: IP Configuration Reference

� �

�

ARPTO 1200

ARPTO ARP_cache_timeout
CHECKSUMOFFLoad

NOCHECKSUMOFFLoad

CLAWUSEDoublenop
NOFWDMULTipath

DATAGRamfwd
FWDMULTipath PERPacket

NODATAGRamfwd
DEVRETRYDURation 90

DEVRETRYDURation dev_retry_duration
NODYNAMICXCF

DYNAMICXCF ipv4_address subnet_mask cost_metric
ipv4_address/num_mask_bits SECCLASS 255

SECCLASS security_class
SOURCEVIPAINTerface vipa_name

FORMat LONG
SHORT

IGNORERedirect

IPSECURITY
NOIQDIORouting

QDIOPriority 1
IQDIORouting

QDIOPriority priority
NOMULTIPATH

PERConnection
MULTIPATH

PERPacket
NOPATHMTUDISCovery

PATHMTUDISCovery
NOQDIOACCELerator

QDIOPriority 1
QDIOACCELerator

QDIOPriority priority
REASSEMBLytimeout 60

REASSEMBLytimeout reassembly_timeout
NOSEGMENTATIONOFFLoad

SEGMENTATIONOFFLoad
NOSOURCEVIPA

SOURCEVIPA

STOPONclawerror
NOSYSPLEXRouting

SYSPLEXRouting
NOTCPSTACKSOURCEVipa

TCPSTACKSOURCEVipa vipa_addr
TTL 64

TTL time_to_live

��

Parameters

ARPTO ARP_cache_timeout
Use ARPTO to specify the number of seconds between creation or revalidation

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 191

and deletion of ARP table entries. The default is 1200 seconds. An LCS ARP
table entry is revalidated when another ARP packet is received from the same
host specifying the same hardware address. The minimum value is 60, and the
maximum value is 86400.

This parameter serves the same purpose as the ARPAGE statement, but the
value specified on ARPAGE is in minutes while the value specified on the
ARPTO parameter is in seconds.

Because ARP cache entries for MPCIPA and MPCOSA interfaces are not
managed by the TCP/IP stack, they are not affected by the ARPTO statement.
For more information about devices that support ARP Offload, see z/OS
Communications Server: IP Configuration Guide.

CHECKSUMOFFLOAD | NOCHECKSUMOFFLOAD
Specifies whether the stack should offload inbound and outbound checksum
processing (IP header, TCP, and UDP checksums) for IPv4 packets to
OSA-Express features. The checksum offload support transfers the overhead of
most checksum processing to QDIO-attached OSA-Express devices that
support this function. Offloading checksum processing reduces CPU use and
increases throughput. This parameter is ignored for OSA-Express features that
do not support checksum offload.

See “Steps for modifying” on page 204 for information about changing this
parameter while the TCP/IP stack is active. See Checksum offload in z/OS
Communications Server: IP Configuration Guide for more information about
the checksum offload support and for specific information about which packets
can have checksum processing performed by the OSA-Express.

NOCHECKSUMOFFLOAD
Checksum processing is performed by the TCP/IP stack.

CHECKSUMOFFLOAD
Checksum processing is offloaded to the OSA-Express feature. This value is
the default value.

CLAWUSEDOUBLENOP
Forces channel programs for CLAW devices to have two NOP CCWs to end
the channel programs. This is required for some vendor devices, and applies to
only first-level MVS systems. The CLAWUSEDOUBLENOP parameter is
confirmed by the message:
EZZ0337I CLAWUSEDOUBLENOP IS SET

DATAGRAMFWD | NODATAGRAMFWD

NODATAGRAMFWD
Disables the forwarding of IP packets that are received by, but not
addressed to, the stack. This statement can be used for security or to
ensure correct usage of limited resources. The NODATAGRAMFWD
parameter is confirmed by the message:
EZZ0334I IP FORWARDING IS DISABLED

DATAGRAMFWD
Enables the forwarding of IP packets that are received by, but not
addressed to, the stack. This is the default value.

Tip: The FWDMULTIPATH and NOFWDMULTIPATH keywords used
with DATAGRAMFWD are independent of the MULTIPATH keyword
on the IPCONFIG statement.

NOFWDMULTIPATH
When forwarding is in effect and there are multiple equal-cost

192 z/OS V2R1.0 Communications Server: IP Configuration Reference

routes to the destination and the NOFWDMULTIPATH parameter
is specified, TCP/IP uses the first active route found for
forwarding each IP packet. This is the default value. The
DATAGRAMFWD NOFWDMULTIPATH parameter is confirmed
by the message:
EZZ0641I IP FORWARDING NOFWDMULTIPATH SUPPORT IS ENABLED

FWDMULTIPATH PERPACKET
When forwarding is in effect and there are multiple equal-cost
routes to the destination and the FWDMULTIPATH PERPACKET
parameter is specified, TCP/IP selects a route for forwarding each
IP packet on an approximate round-robin basis from the multiple
equal-cost routes. The selected route is used for routing that IP
packet. Connection or connectionless-oriented IP packets using the
same destination address do not always use the same route, but
they do use all possible active routes to that destination host. All
IP packets for a given association with a destination host are
spread across the multiple equal-cost routes. The
DATAGRAMFWD FWDMULTIPATH PERPACKET parameter is
confirmed by the message:
EZZ0641I IP FORWARDING FWDMULTIPATH PERPACKET SUPPORT IS ENABLED

Guideline: If the TCP/IP stack is also configured to be a sysplex distributor
(see “VIPADYNAMIC statement summary” on page 306 for more information),
datagrams destined to a sysplex-distributed dynamic VIPA are forwarded to
stacks, whether or not forwarding is enabled.

DEVRETRYDURATION dev_retry_duration
Specifies the duration (in seconds) of the retry period for a failed device or
interface. TCP/IP performs reactivation attempts at 30 second intervals during
this retry period. The default for DEVRETRYDURATION is 90 seconds. A
specification of 0 generates an infinite recovery period, which means
reactivation attempts are performed until the device or interface is either
successfully reactivated or manually stopped (by way of the VARY
TCPIP,,STOP command, or the VARY TCPIP,,OBEYFILE command with a data
set containing the STOP profile statement). The maximum specifiable value is
4294967295.

Guideline: The default 90–seconds retry duration is sufficient for transparent
recovery following many types of device or channel errors. However, certain
ESCON-attached routers cannot complete a microcode load in 90 seconds and
installations might want to increase the DEVRETRYDURATION to
automatically recover the device following these longer outages. On the other
hand, installations running extensive automation built upon SNMP status and
alerts can choose to code a small (nonzero) value in DEVRETRYDURATION,
such that device recovery is deferred to external automation software, rather
than a function of TCP/IP. For IPv4 interfaces that are defined with DEVICE
and LINK statements, see also the AUTORESTART parameter in “Overview of
DEVICE and LINK statements” on page 47. For IPv6 interfaces and IPv4
interfaces that are defined with the INTERFACE statement, the autorestart
function is always active.

DYNAMICXCF | NODYNAMICXCF
Indicates XCF support status.

NODYNAMICXCF
Indicates XCF dynamic support is not enabled. The NODYNAMICXCF
parameter is confirmed by the message:

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 193

EZZ0624I DYNAMIC XCF DEFINITIONS ARE DISABLED

NODYNAMICXCF is the default value.

DYNAMICXCF
Indicates that dynamic XCF support is enabled for IPv4.

When DYNAMICXCF is coded in the profile, the purpose is to
generate dynamic XCF interfaces, if possible. When TCP/IP is active,
but ISTLSXCF is not active, dynamic creation is deferred. Later, when a
TCP/IP command such as VARY TCPIP,,OBEYFILE or VARY
TCPIP,,START is executed, triggering profile processing, the stack again
checks to see if ISTLSXCF is active. If ISTLSXCF is active at that time,
then the dynamic XCF interfaces are generated.

Dynamic XCF definitions are not generated if there is a DEVICE and
LINK definition with the same device or link name that dynamic XCF
would generate, or if there is an INTERFACE definition with the same
interface name that dynamic XCF would generate.

Activation of dynamic XCF interfaces is delayed if VTAM is not up or
if OMPROUTE is not up and DELAYJOIN is coded on the
GLOBALCONFIG SYSPLEXMONITOR statement. For more
information about connectivity problems in a sysplex, see z/OS
Communications Server: IP Configuration Guide.

When using dynamic XCF for Sysplex configuration, make sure that
XCFINIT=YES or XCFINIT=DEFINE is coded in the VTAM start
options, or if XCFINIT=NO was specified, ensure that a VARY
ACTIVATE command is issued for the ISTLSXCF major node. This
ensures that XCF connections between TCP stacks on different VTAM
nodes in the sysplex can be established. See z/OS Communications
Server: SNA Resource Definition Reference for directions to code the
XCFINIT VTAM start option. The DISPLAY NET,VTAMOPTS
command can be used to determine the XCFINIT setting.

cost_metric
Specifies the interface-level metric for the cost of use for the
DYNAMICXCF interface. The cost_metric value is an integer in
the range 0 - 14. If using OMPROUTE, the cost_metric value is
overridden with a corresponding OMPROUTE interface
parameter value that can be coded or set to the default value
(Cost0= on OSPF_INTERFACE or In_Metric= on
RIP_INTERFACE).

ipv4_address
The IP address to be used as the home address for all
dynamically generated XCF, Same Host, and HiperSockets
interfaces. A multicast address is not accepted in this case.

subnet_mask
Specifies the interface-level subnet mask for the
DYNAMICXCF interface. If using OMPROUTE, the
subnet_mask value is overridden with a corresponding
OMPROUTE interface parameter value that can be coded or set
to the default value.

/num_mask_bits
It is an integer value in the range 1 - 32 that represents the
number of leftmost significant bits for the address mask.

194 z/OS V2R1.0 Communications Server: IP Configuration Reference

SECCLASS security_class
Use this parameter to associate a security class for IP filtering
with each dynamic XCF interface. In order for traffic over the
interface to match a filter rule, the filter rule must have the
same security class value as the interface or a value of 0. Filter
rules can be specified in the TCP/IP profile or in an IP Security
policy file read by the Policy Agent. Filter rules can include a
security class specification on the IpService statement in an IP
Security policy file or on the SECCLASS parameter on the
IPSEC statement in the TCP/IP profile.

Valid security classes are identified as a number in the range 1
- 255. The default value is 255. For more information about
security class values, see z/OS Communications Server: IP
Configuration Guide.

This value is used only when IPSECURITY is specified on the
IPCONFIG statement.

SOURCEVIPAINTERFACE vipa_name
The SOURCEVIPAINTERFACE parameter is optional. This
parameter specifies which static VIPA interface is to be used as
the source IP address when IPCONFIG SOURCEVIPA is
specified and outbound packets are sent over the dynamically
generated XCF, Same Host, or HiperSockets interfaces. The
vipa_name value is the interface name for a VIRTUAL interface.
The maximum length is 16 characters.

The use of the SOURCEVIPAINTERFACE parameter can be
overridden. See Source IP address selection in z/OS
Communications Server: IP Configuration Guide for the
hierarchy of ways that the source IP address of an outbound
packet is determined.

Requirement: The VTAM ISTLSXCF major node must be active for XCF
dynamics to work, except for the following scenarios:
v Multiple TCP/IP stacks on the same MVS image; a dynamic samehost

definition is generated whether ISTLSXCF is active or not.
v HiperSockets is configured and enabled across multiple z/OS systems that

are in the same sysplex and the same CEC; a dynamic IUTIQDIO link is
created whether ISTLSXCF is active or not.

For information about activating the ISTLSXCF major node, see z/OS
Communications Server: SNA Resource Definition Reference.

Restriction: A mix of static and dynamic IPv4 and IPv6 definitions for a device
are not allowed. For example, if a static IUTSAMEH IPv4 interface is defined,
then the IPv6 dynamic definition for IUTSAMEH is not created. If a static
IUTSAMEH IPv6 interface is defined, then the IPv4 dynamic definition for
IUTSAMEH is not created. The same logic is also applied for XCF interfaces; a
mix of static and dynamic IPv4 and IPv6 definitions is not allowed for an XCF
interface.

Guidelines:

1. Dynamic XCF can be enabled even in a single system sysplex. HiperSockets
can be used between LPARs on the same central processor complex (CPC)
even when MVS images in those LPARs are not defined to be part of the
same sysplex. HiperSockets can also be used between LPARs even when
some of those other LPARs are running Linux, as long as all of the stacks

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 195

connecting to HiperSockets and needing to exchange IP packets with each
other define IP addresses that are all in the same subnet (as defined by the
dynamic XCF IP address and subnet mask in the IPCONFIG
DYNAMICXCF profile statement).

2. If the DYNAMICXCF parameter is added (using a VARY TCPIP,,OBEYFILE
command data set) after the TCP/IP stack and OMPROUTE are active, the
DYNAMICXCF link should be configured to OMPROUTE prior to issuing
the VARY TCPIP,,OBEYFILE command. If you do not do this, the network
mask is used as the subnet mask for the interface.

For more details about the use of DYNAMICXCF, see the DYNAMICXCF
information in z/OS Communications Server: IP Configuration Guide. The
DYNAMICXCF parameter is confirmed by the message:
EZZ0624I DYNAMIC XCF DEFINITIONS ARE ENABLED

FORMAT
The FORMAT keyword is optional, and there is no default.

The FORMAT keyword is meaningful only for stacks that are not enabled for
IPv6. It controls the format of the command output. If FORMAT SHORT is
specified and the stack is enabled for IPv6, then an error message is displayed.
If the stack is not enabled for IPv6 and the user specified LONG format, the
command output is displayed as if it could contain IPv6 addresses. If the stack
is not enabled for IPv6 and the user specified SHORT format or did not specify
the FORMAT keyword, then the command output is displayed as if it could
contain only IPv4 addresses and not the longer IPv6 addresses.

If the stack is enabled for IPv6, then specifying the FORMAT keyword does
not make any difference to the command format

IGNOREREDIRECT
Causes TCP/IP to ignore ICMP Redirect packets. The IGNOREREDIRECT
parameter is confirmed by the message:
EZZ0335I ICMP WILL IGNORE REDIRECTS

If you are using OMPROUTE and you have IPv4 interfaces configured to
OMPROUTE and this option is not specified, IGNOREREDIRECT is enabled
automatically.

If you are using intrusion detection services (IDS) policy to detect and discard
ICMP Redirects and this option is not specified, ICMP Redirects are discarded
anyway while the policy is active.

If this option is not specified, and an ICMP redirect is received for a
destination for which there is a HOST route in the routing table, then the
original route is deleted and replaced by the redirect. This applies to all routes,
including static routes.

IPSECURITY
Activates IPv4 IP filtering and IPv4 IPSec tunnel support.

Requirements:

v Use this parameter so that the stack can function with the Communications
Server IKE daemon, and for the stack to receive IPv4 IPSec policy
information such as IP filter rules from the policy agent.

v Use this parameter so that the stack can receive defensive filters from the
Defense Manager daemon (DMD).

The IPSECURITY parameter is confirmed by the message:
EZZ0753I IPV4 SECURITY SUPPORT IS ENABLED

196 z/OS V2R1.0 Communications Server: IP Configuration Reference

Restriction: IPSec functions can be activated only at initial activation of
TCP/IP.

IQDIOROUTING | NOIQDIOROUTING

NOIQDIOROUTING
Specifies that inbound packets that are to be forwarded by this TCP/IP
stack should not be routed directly between a HiperSockets device and
an OSA-Express device in QDIO mode. These packets are processed
and routed by this TCP/IP stack.

NOIQDIOROUTING is the default value. If NOIQDIOROUTING is
explicitly specified, then the stack confirms that direct routing is
disabled with the following message:
EZZ0688I IQDIO ROUTING IS DISABLED

IQDIOROUTING
Specifies that inbound packets that are to be forwarded by this TCP/IP
stack are eligible to be routed directly between a HiperSockets device
and an OSA-Express device in QDIO mode without needing to be sent
to this TCP/IP stack for forwarding. This type of routing over a
HiperSockets device (iQDIO) is called HiperSockets Accelerator. If
specified, HiperSockets Accelerator routes are created dynamically as
this TCP/IP stack learns of destination IP addresses that can be routed
to or from HiperSockets links without needing to be forwarded to this
TCP/IP stack. HiperSockets Accelerator support cannot be enabled if
the IPSECURITY parameter or the NODATAGRAMFWD parameter is
specified. Use of the IQDIOROUTING parameter is confirmed by the
following message:
EZZ0688I IQDIO ROUTING IS ENABLED

If HiperSockets Accelerator support cannot be enabled, message
EZZ0689I is issued with the reason. This message is also issued if
IQDIOROUTING is specified in the data set that is used with the
VARY TCPIP,,OBEYFILE command, if TCP/IP was activated with
NOIQDIOROUTING and NOQDIOACCELERATOR on the initial
profile.

Rule: This parameter is ignored if QDIOACCELERATOR is specified.

Restrictions:

v HiperSockets Accelerator support cannot be enabled during VARY
TCPIP,,OBEYFILE command processing unless either
IQDIOROUTING or QDIOACCELERATOR was specified on the
IPCONFIG statement in the initial profile.

v HiperSockets Accelerator does not accelerate packets either from or
to interfaces configured with optimized latency mode. For more
information about optimized latency mode, see Optimized latency
mode in z/OS Communications Server: IP Configuration Guide.

v You cannot enable HiperSockets accelerator support if you specify
the NODATAGRAMFWD parameter.

v You cannot enable HiperSockets accelerator support if you specify
the IPSECURITY parameter.

QDIOPRIORITY priority
If traffic is being routed by way of HiperSockets Accelerator,
the data is sent using the priority level specified by priority.
priority values are in the range 1 - 4. The default is to send data

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 197

using priority level 1. See the OSA-Express documentation in
z/OS Communications Server: SNA Network Implementation
Guide.

QDIOACCELERATOR | NOQDIOACCELERATOR

NOQDIOACCELERATOR
Specifies that inbound packets that are to be forwarded by this TCP/IP
stack should not be routed directly between any of the following
combinations of interface types:
v A HiperSockets interface and an OSA-Express QDIO interface
v Two OSA-Express QDIO interfaces
v Two HiperSockets interfaces

These packets are processed and routed by this TCP/IP stack.

NOQDIOACCELERATOR is the default value. If
NOQDIOACCELERATOR is explicitly specified, the stack confirms this
type of routing with the message:
EZZ0817I QDIO ACCELERATOR IS DISABLED

QDIOACCELERATOR
Specifies that inbound packets that are to be forwarded by this TCP/IP
stack are eligible to be routed directly between any of the following
combinations of interface types:
v A HiperSockets interface and an OSA-Express QDIO interface
v Two OSA-Express QDIO interfaces
v Two HiperSockets interfaces

These packets do not need to be sent to this TCP/IP stack for
forwarding. This also applies to packets that would be forwarded by
the Sysplex Distributor. This type of routing is called QDIO
Accelerator. See the information about QDIO Accelerator in z/OS
Communications Server: IP Configuration Guide for more details on
this function.

Use of the QDIOACCELERATOR parameter is confirmed by one of the
following messages:
EZZ0817I QDIO ACCELERATOR IS ENABLED
EZZ0819I QDIO ACCELERATOR IS ENABLED FOR SYSPLEX DISTRIBUTOR ONLY
EZD2020A QDIO ACCELERATOR IS ENABLED ONLY FOR SYSPLEX DISTRIBUTOR BECAUSE OF TCPIP PROFILE FILTER RULES
EZD2021A QDIO ACCELERATOR IS ENABLED ONLY FOR SYSPLEX DISTRIBUTOR BECAUSE OF POLICY FILTER RULES
EZD2022A QDIO ACCELERATOR IS ENABLED ONLY FOR SYSPLEX DISTRIBUTOR BECAUSE OF DEFENSIVE FILTER RULES
EZD2023I QDIO ACCELERATOR IS ENABLED WITH CURRENTLY INSTALLED IP FILTER RULES

You receive the following message with the appropriate reason if
QDIO Accelerator support cannot be enabled. You also receive this
message if QDIOACCELERATOR is specified in the data set used with
the VARY TCPIP,,OBEYFILE command, if TCP/IP was activated with
NOIQDIOROUTING and NOQDIOACCELERATOR on the initial
profile.
EZZ0818I CANNOT ENABLE QDIO ACCELERATOR - reason

Rule: IQDIOROUTING is ignored if QDIOACCELERATOR is specified.

Restrictions:

v If you specify the NODATAGRAMFWD parameter, then QDIO
Accelerator applies only to packets that are forwarded by the
Sysplex Distributor.

v If you specify the IPSECURITY parameter, TCP/IP monitors your IP
filter rules and defensive filter rules that apply to routed traffic.

198 z/OS V2R1.0 Communications Server: IP Configuration Reference

Depending on your filter configuration, QDIO Accelerator might be
restricted to only packets that are forwarded by the Sysplex
Distributor. For more information about QDIO Accelerator and
IPSECURITY, see Search orders used in the native MVS environment
in z/OS Communications Server: IP Configuration Guide.

v QDIO Accelerator support cannot be enabled during VARY
TCPIP,,OBEYFILE command processing unless either
QDIOACCELERATOR or IQDIOROUTING was specified on the
IPCONFIG statement in the initial profile.

v QDIO Accelerator does not accelerate packets either from or to
interfaces configured with optimized latency mode. For more
information about optimized latency mode, see Optimized latency
mode in z/OS Communications Server: IP Configuration Guide.

QDIOPRIORITY priority
Specifies that traffic routed by QDIO Accelerator to an OSA-Express
QDIO interface be sent using the priority level specified by the priority
value. The priority level can be in range 1 - 4. The default is to send
data using priority level 1. See the OSA-Express information in the
z/OS Communications Server: SNA Network Implementation Guide.

MULTIPATH | NOMULTIPATH

NOMULTIPATH
Disables the multipath routing selection algorithm for outbound IP
traffic. If there are multiple equal-cost routes to a destination and
NOMULTIPATH is specified, TCP/IP uses the first active route found
to send each IP packet. The NOMULTIPATH parameter is confirmed
by the message:
EZZ0615I MULTIPATH SUPPORT IS DISABLED

This is the default value.

Rule: The NOMULTIPATH parameter applies to outbound IP traffic
that is routed by using the main route table. This parameter applies
also to outbound IP traffic that is routed by using a policy-based route
table if the Multipath UseGlobal parameter is specified on the
RouteTable statement that defines the policy-based route table. See
“RouteTable statement” on page 1152 for more information.

MULTIPATH
Enables the multipath routing selection algorithm for outbound IP
traffic. In general, multipath routing provides the routing distribution
necessary to balance the network utilization of outbound packets by
load splitting. Multipath routing requires multiple equal-cost routes
that are either defined statically or added dynamically by routing
protocols (except for RIP, which does not provide multipath routing). If
MULTIPATH is specified without any subparameters, the default is
PERCONNECTION. The MULTIPATH parameter has no effect if there
are no multipath routes in the TCP/IP configuration.

Guideline: In some cases, it might appear data is not being equally
distributed among each of the equal-cost interfaces. This depends upon
the characteristics of the application that is sending or receiving data.
For example, when osnmp walk is issued, the application initially sends
data using a source IP address of INADDR_ANY. Subsequently, when
the application receives a response, all future sends use the source IP

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 199

address of the interface where data was just received. The result is that
all data is sent out on a single interface, independent of any multipath
setting.

Rules:

v The MULTIPATH parameter and its subparameters apply to
outbound IP traffic that is routed by using the main route table. This
parameter and its subparameters apply also to outbound IP traffic
that is routed by using a policy-based route table if the Multipath
UseGlobal parameter is specified on the RouteTable statement that
defines the policy-based route table. See “RouteTable statement” on
page 1152 for more information.

v The multipath routing selection algorithm is applied and can be
specified separately for each route table. Specify the algorithm for
the main route table by using the MULTIPATH parameter on the
IPCONFIG statement. Specify the algorithm for policy-based route
tables in the policy definition for each table. See “RouteTable
statement” on page 1152 for more information.

Note: The IPCONFIG MULTIPATH|NOMULTIPATH configuration
option affects Enterprise Extender (EE) traffic when
MULTPATH=TCPVALUE is coded. For information about multipath
for EE see z/OS Communications Server: SNA Network
Implementation Guide. For information about the MULTPATH start
option, see z/OS Communications Server: SNA Resource Definition
Reference.

PERCONNECTION
After a round-robin route is selected, connection or
connectionless oriented IP packets using the same association
always use the same route, as long as that route is active. The
MULTIPATH PERCONNECTION parameter is confirmed by
the message:
EZZ0632I MULTIPATH PERCONNECTION SUPPORT IS ENABLED

For more information about EE load balancing and standard
logic for a UDP application, see z/OS Communications Server:
SNA Network Implementation Guide.

PERPACKET
Connection or connectionless oriented IP packets using the
same source and destination address pair do not always use
the same route, but do use all possible active routes to that
destination host. The MULTIPATH PERPACKET parameter is
confirmed by the message:
EZZ0632I MULTIPATH PERPACKET SUPPORT IS ENABLED

Restrictions:

v Use this option only as an attempt to improve aggregate
throughput of IP traffic over multipath routes and for routes
for which potentially high CPU consumption in reassembly
of out-of-order packets at the receiving end is not an issue.
Performance varies according to network configurations
used.

200 z/OS V2R1.0 Communications Server: IP Configuration Reference

v The MULTIPATH PERPACKET parameter cannot be
specified if IP security is configured. If both are specified,
the following messages are displayed, and multipath routing
is disabled:
EZZ0763I CANNOT ENABLE IPV4 MULTIPATH PERPACKET SUPPORT WHEN

IPV4 SECURITY IS ENABLED
EZZ0615I MULTIPATH SUPPORT IS DISABLED

v IP traffic on RSVP-based routes cannot use this option.
Instead, the PERCONNECTION option is used for these
routes.

v Fragmented and packed IP datagrams cannot use this
option. These datagrams are being sent over one selected
route to the intended destination.

PATHMTUDISCOVERY | NOPATHMTUDISCOVERY

NOPATHMTUDISCOVERY
Indicates that TCP/IP is not to provide path MTU (PMTU) discovery
support. This is the default value. The NOPATHMTUDISCOVERY
parameter is confirmed by the message:
EZZ0623I PATH MTU DISCOVERY SUPPORT IS DISABLED

PATHMTUDISCOVERY
Indicates that TCP/IP is to dynamically discover the PMTU, which is
the smallest MTU of all the hops in the path. Use this parameter to
prevent fragmentation of datagrams. The PATHMTUDISCOVERY
parameter is confirmed by the message:
EZZ0623I PATH MTU DISCOVERY SUPPORT IS ENABLED

Requirement: PATHMTUDISCOVERY uses ICMP
fragmentation-needed errors to detect the PMTU for a path. If you use
PATHMTUDISCOVERY, you must permit ICMP errors to flow at all
hosts along the path of a connection. PATHMTUDISCOVERY does not
function if a firewall blocks ICMP errors.

For a policy-based route table, the IgnorePathMtuUpdate parameter on
the Policy Agent RouteTable statement can be used to prevent the path
MTU value from being updated for routes in the table. See the
information about the IgnorePathMtuUpdate parameter in “RouteTable
statement” on page 1152 for information about determining when you
should prevent the path MTU value from being updated for a
policy-based route table.

REASSEMBLYTIMEOUT reassembly_timeout
The amount of time (in seconds) allowed to receive all parts of a fragmented
packet before the fragments received are discarded. The minimum value is 1,
the maximum value is 240, and the default is 60.

SEGMENTATIONOFFLOAD | NOSEGMENTATIONOFFLOAD
Specifies whether the stack should offload TCP segmentation for IPv4 packets
to OSA-Express features. The TCP segmentation offload support transfers the
overhead of segmenting outbound data into individual TCP packets to
QDIO-attached OSA-Express devices that support this function. Offloading
segmentation of streaming-type workloads reduces CPU use and increases
throughput. This parameter is ignored for OSA-Express features that do not
support segmentation offload. This value overrides the
SEGMENTATIONOFFLOAD or NOSEGMENTATIONOFFLOAD parameter
specified on the GLOBALCONFIG statement.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 201

See the steps for modifying topic for information about changing this
parameter while the TCP/IP stack is active. See TCP segmentation offload in
z/OS Communications Server: IP Configuration Guide for more information
about TCP segmentation offload support.

NOSEGMENTATIONOFFLOAD
TCP segmentation is performed by the TCP/IP stack. This value is the
default value.

SEGMENTATIONOFFLOAD
TCP segmentation is offloaded to the OSA-Express feature.

SOURCEVIPA | NOSOURCEVIPA

NOSOURCEVIPA
Specifies that TCP/IP is not requested to use the corresponding virtual
IP address in the HOME list as the source IP address for outbound
datagrams. The NOSOURCEVIPA parameter is confirmed by the
message:
EZZ0351I SOURCEVIPA SUPPORT IS DISABLED.

NOSOURCEVIPA is the default value.

SOURCEVIPA
Requests that TCP/IP use the TCPSTACKSOURCEVIPA address (if
specified) or the corresponding virtual IP address in the HOME list as
the source IP address for outbound datagrams that do not have an
explicit source address. If the outgoing interface was defined with the
INTERFACE statement, TCP/IP uses the VIPA specified on the
SOURCEVIPAINTERFACE parameter of the INTERFACE statement
instead of the HOME list. You must specify the
TCPSTACKSOURCEVIPA parameter, update the HOME statement, or
use the SOURCEVIPAINTERFACE parameter of the INTERFACE
statement for the SOURCEVIPA parameter to take effect. For more
information about how the order of the HOME list impacts source
VIPA selection, see “HOME statement” on page 136. This parameter
has no effect on RIP packets used by RIP services (NCPROUTE or
OMPROUTE) or OSPF packets used by OSPF services (OMPROUTE).
The SOURCEVIPA parameter is confirmed by the following message:
EZZ0351I SOURCEVIPA SUPPORT IS ENABLED

Tip: You can override the SOURCEVIPA or TCPSTACKSOURCEVIPA
values. See the information about source IP address selection in z/OS
Communications Server: IP Configuration Guide for the hierarchy of
ways that the source IP address of an outbound packet is determined.

STOPONCLAWERROR
Stops channel programs (HALTIO and HALTSIO) when a device error is
detected. The STOPONCLAWERROR parameter is confirmed by the message:
EZZ0345I STOPONCLAWERROR IS ENABLED

SYSPLEXROUTING | NOSYSPLEXROUTING

NOSYSPLEXRouting
Specifies that this TCP/IP host is not part of an MVS sysplex domain.
Use of the NOSYSPLEXROUTING parameter is confirmed by the
message:
EZZ0350I SYSPLEX ROUTING SUPPORT IS DISABLED

202 z/OS V2R1.0 Communications Server: IP Configuration Reference

NOSYSPLEXROUTING is the default value.

SYSPLEXRouting
Specifies that this TCP/IP host is part of an MVS sysplex domain. The
SYSPLEXROUTING parameter is confirmed by the message:
EZZ0350I SYSPLEX ROUTING SUPPORT IS ENABLED

TCPSTACKSOURCEVIPA | NOTCPSTACKSOURCEVIPA

NOTCPSTACKSOURCEVIPA
Specifies that TCP/IP does not use a stack-level IP address as the source
address for outbound TCP connections. The source IP address is governed
by the IPCONFIG SOURCEVIPA setting.

TCPSTACKSOURCEVIPA vipa_addr
The IPv4 address (vipa_addr) is used as the source IP address for outbound
TCP connections if SOURCEVIPA has been enabled. The vipa_addr value
must be a static VIPA or an active dynamic VIPA (DVIPA).

If SOURCEVIPA has not been enabled, TCPSTACKSOURCEVIPA is
ignored, and the following message is issued:
EZZ0706I TCPSTACKSOURCEVIPA IS IGNORED - SOURCEVIPA IS NOT ENABLED

Restriction: At the time of an outbound TCP request, the
TCPSTACKSOURCEVIPA address must be a static VIPA or active dynamic
VIPA, or it is not used for the source IP address.

Tips:

v After it is set, TCPSTACKSOURCEVIPA is not disabled until a profile
explicitly adds NOTCPSTACKSOURCEVIPA to the IPCONFIG statement.

v If you specify the same distributed DVIPA interface for
TCPSTACKSOURCEVIPA on multiple target stacks, you also should specify
SYSPLEXPORTS on the VIPADISTRIBUTE statement. Otherwise connections
might be disrupted because identical connections could be created from
more than one stack.

v Carefully consider the following condition when determining the interface to
use for TCPSTACKSOURCEVIPA. A dynamic VIPA that becomes inactive
because it moves to another TCP/IP stack, or that is deleted because the
application that caused its creation (in the case of a VIPARANGE created
address) causes its deletion, is no longer a valid interface for
TCPSTACKSOURCEVIPA.

v The use of TCPSTACKSOURCEVIPA can be overridden. See the information
about source IP address selection in z/OS Communications Server: IP
Configuration Guide for the hierarchy of ways that the source IP address of
an outbound packet is determined.

v TCPSTACKSOURCEVIPA is not used when an outbound TCP request is
connecting to an IP address that is active in the Home list.

TTL time_to_live
Number of hops that packets originating from this host can travel before
reaching the destination. If the destination is more hops away, the packet never
reaches the destination. The minimum value is 1, the maximum value is 255,
and the default is 64.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 203

Steps for modifying

To modify most parameters for the IPCONFIG statement, you must respecify the
statement with the new parameters. Additional actions are required to modify the
following parameters:

CHECKSUMOFFLOAD | NOCHECKSUMOFFLOAD
If the CHECKSUMOFFLOAD or NOCHECKSUMOFFLOAD parameter is
changed with the VARY TCPIP,,OBEYFILE command, the new value does
not affect any active OSA-Express QDIO interfaces. For this change to
affect an active OSA-Express QDIO interface, the interface must be stopped
and restarted.

DYNAMICXCF
If dynamic XCF definitions have been enabled but a later VARY
TCPIP,,OBEYFILE command contains NODYNAMICXCF, only future
dynamic definitions and connectivity are affected. Existing definitions and
connectivity are not affected.

After support is enabled, none of the parameters specified on the
IPCONFIG DYNAMICXCF statement can be changed with a VARY
TCPIP,,OBEYFILE command. You must first stop the TCP/IP stack, apply
changes, and then restart the TCP/IP stack.

IPSECURITY
z/OS IPSec functions cannot be activated using VARY TCPIP,,OBEYFILE
on an active TCP/IP stack. To activate z/OS IPSec, halt all traffic on the
designated TCP/IP stack, stop the stack, modify the TCP profile to include
IPCONFIG IPSECURITY, and restart the stack.

IQDIOROUTING
If HiperSockets Accelerator is active then:
v You can disable HiperSockets Accelerator by issuing the VARY

TCPIP,,OBEYFILE command and specifying IPCONFIG
NOIQDIOROUTING.

v You can activate QDIO Accelerator by issuing the VARY
TCPIP,,OBEYFILE command and specifying IPCONFIG
NOIQDIOROUTING QDIOACCELERATOR.

If HiperSockets Accelerator and QDIO Accelerator are not active and you
want to enable HiperSockets Accelerator, enable HiperSockets Accelerator
by issuing the VARY TCPIP,,OBEYFILE command and specifying
IPCONFIG IQDIOROUTING (if either IQDIOROUTING or
QDIOACCELERATOR was specified in the initial profile); otherwise, stop
the stack, modify the profile to include IPCONFIG IQDIOROUTING and
restart the stack.

NODATAGRAMFWD
If HiperSockets Accelerator is enabled and IP forwarding is subsequently
disabled by issuing a VARY TCPIP,,OBEYFILE with NODATAGRAMFWD
specified, HiperSockets Accelerator is also disabled. If HiperSockets
Accelerator is disabled, and IPCONFIG IQDIOROUTING is subsequently
specified on a VARY TCPIP,,OBEYFILE command for an active TCP/IP
stack where IP Forwarding is disabled, HiperSockets Accelerator remains
disabled.

If QDIO Accelerator is enabled and IP Forwarding is subsequently disabled
using NODATAGRAMFWD in a VARY TCPIP,,OBEYFILE command data
set, QDIO Accelerator remains enabled but only for Sysplex Distributor

204 z/OS V2R1.0 Communications Server: IP Configuration Reference

forwarding. If QDIO Accelerator is disabled and IPCONFIG
QDIOACCELERATOR is subsequently specified on a VARY
TCPIP,,OBEYFILE command for an active TCP/IP stack on which IP
forwarding is disabled, QDIO Accelerator is enabled for Sysplex
Distributor forwarding only.

QDIOACCELERATOR
If QDIO Accelerator is active:
v You can disable QDIO Accelerator by issuing the VARY

TCPIP,,OBEYFILE command and specifying IPCONFIG
NOQDIOACCELERATOR.

v You can activate HiperSockets Accelerator by issuing the VARY
TCPIP,,OBEYFILE command and specifying IPCONFIG
NOQDIOACCELERATOR IQDIOROUTING.

If QDIO Accelerator and HiperSockets Accelerator are not active and you
want to enable QDIO Accelerator, enable QDIO Accelerator by issuing the
VARY TCPIP,,OBEYFILE command and specifying IPCONFIG
QDIOACCELERATOR (if either IQDIOROUTING or QDIOACCELERATOR
was specified in the initial profile); otherwise, stop the stack, modify the
profile to include IPCONFIG QDIOACCELERATOR and restart the stack.

MULTIPATH
If you modify the multipath routing type (PERCONNECTION to
PERPACKET, or vice versa), the new parameter takes effect only for new
connections created after the modification is done, and existing connections
use whatever the value was when the connection was established. If you
enable multipath routing when it was previously disabled, existing
connections are not affected; multipath routing is applied only to new
connections.

SEGMENTATIONOFFLOAD | NOSEGMENTATIONOFFLOAD
If the SEGMENTATIONOFFLOAD or NOSEGMENTATIONOFFLOAD
parameter is changed with the VARY TCPIP,,OBEYFILE command, the new
value does not affect any active OSA-Express QDIO interfaces. For this
change to affect an active OSA-Express QDIO interface, the interface must
be stopped and restarted.

Examples
IPCONFIG ARPTO 2400 CLAWUSED NODATAGR STOPON
DYNAMICXCF 9.9.9.9 255.255.255.0 15

This example shows an IPCONFIG statement that does the following tasks:
v Causes ARP table entries to be deleted 2400 seconds after creation or

revalidation
v Forces channel programs for CTC devices to have two NOP CCWs to end the

channel programs
v Disables IP forwarding
v Causes TCP/IP to halt on certain CLAW errors
v Enables dynamic XCF support and indicates that 9.9.9.9 is the IP address to be

used for HOME statements for all dynamically generated XCF, Same Host, and
HiperSockets links. These links have an interface-level subnet mask of
255.255.255.0 and a metric of 15.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 205

Usage notes
v If the stack is enabled for IPv6 and the user specified LONG format, the

command output is displayed in IPv6 format.
v The FORMAT keyword is meaningful only for stacks that are not enabled for

IPv6. It controls the format of the command output. If FORMAT SHORT is
specified and the stack is enabled for IPv6, then the following error message is
displayed:
EZZ0687I FORMAT SHORT IGNORED - IPV6 SUPPORT IS ENABLED

v If you do not include any configuration data in the OMPROUTE configuration
file for the XCF links, OMPROUTE does not communicate a routing protocol
(OSPF or RIP) over the interfaces. OMPROUTE includes (in the data sent to
other routers) information relative to the XCF links as long as
Send_Static_Routes=YES is configured for RIP Interfaces and
AS_Boundary_Routing(Import_Static_Routes=YES) is configured for OSPF.
Rule: If you want to communicate the OSPF or RIP protocol over a subset of the
XCF links, you must configure the appropriate links in the OMPROUTE
configuration file using the OSPF_Interface or RIP_Interface statements. Doing
this enables OMPROUTE to communicate to other routers not only the
information relative to the XCF links, but also information relative to resources
on the other side of the host at the opposite end of the XCF links.
To configure the appropriate links, you can explicitly configure each XCF link as
either an OSPF or RIP interface (including those that might become active in the
future). Alternatively, you can use the wildcard configuration capability of
OMPROUTE to configure your XCF links.
To use the wildcard configuration, use a wildcard address (for example,
9.67.100.*) on the OSPF_Interface or RIP_Interface statement instead of an
explicit address. In this way, any interface address falling within that wildcard
range (9.67.100.1, 9.67.100.2, and so on) is configured using the parameters
specified on the wildcard definition statement.
When adding links, XCF or otherwise, to both OMPROUTE and TCP/IP, it is
necessary to add them to OMPROUTE before adding them to TCP/IP for proper
routing protocol configuration.

Related topics
v “GLOBALCONFIG statement” on page 117
v “IPCONFIG6 statement”
v “SRCIP statement” on page 282

IPCONFIG6 statement

Use the IPCONFIG6 statement to update the IP layer of TCP/IP with information
that pertains to IPv6.

If the stack is not configured for IPv6 and IPCONFIG6 is specified, the following
error message is generated, and TCP/IP startup processing continues.
EZZ0695I IPCONFIG6 NOT VALID - IPV6 SUPPORT IS NOT ENABLED

Syntax

Tip: Specify the parameters for this statement in any order.

206 z/OS V2R1.0 Communications Server: IP Configuration Reference

�� IPCONFIG6 �

� �

�

CHECKSUMOFFLoad

NOCHECKSUMOFFLoad
DATAGRamfwd NOFWDMULTipath

NODATAGRamfwd
NOFWDMULTipath

DATAGRamfwd
FWDMULTipath PERPacket

NODYNAMICXCF

SECCLASS 255
DYNAMICXCF ipv6_address

ipv6_address/prefix_route_len INTFID interface_id SECCLASS security_class
SOURCEVIPAINTerface vipa_name

HOPLimit 255

HOPLimit hoplimit
ICMPErrorlimit 3

ICMPErrorlimit msgs_per_sec

IGNORERedirect
NOIGNOREROUTERHoplimit

IGNOREROUTERHoplimit

OSMSECCLASS 255
IPSECURITY

OSMSECCLASS security_class
NOMULTIPATH

PERConnection
MULTIPATH

PERPacket
NOSEGMENTATIONOFFLoad

SEGMENTATIONOFFLoad
NOSOURCEVIPA

SOURCEVIPA
NOTCPSTACKSOURCEVipa

TCPSTACKSOURCEVipa intf_name
NOTEMPADDRS

PREFLIFETIME 24 VALIDLIFETIME 7*24
TEMPADDRS

PREFLIFETIME 24 VALIDLIFETIME default_valid_lifetime

PREFLIFETIME pref_lifetime VALIDLIFETIME valid_lifetime

��

Parameters

CHECKSUMOFFLOAD | NOCHECKSUMOFFLOAD
Specifies whether the stack should offload inbound and outbound checksum
processing (TCP and UDP checksums) for IPv6 packets to OSA-Express
features. The checksum offload support transfers the overhead of most
checksum processing to QDIO-attached OSA-Express devices that support this
function. Offloading checksum processing reduces CPU use and increases
throughput. This parameter is ignored for OSA-Express features that do not
support IPv6 checksum offload.

See “Steps for modifying” on page 217 for information about changing this
parameter while the TCP/IP stack is active. See Checksum offload in z/OS
Communications Server: IP Configuration Guide for more information about
the checksum offload support and for specific information about which packets
can have checksum processing performed by the OSA-Express.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 207

NOCHECKSUMOFFLOAD
Checksum processing is performed by the TCP/IP stack.

CHECKSUMOFFLOAD
Checksum processing is offloaded to the OSA-Express feature. This value is
the default value.

DATAGRAMFWD | NODATAGRAMFWD

NODATAGRAMFWD
Disables the forwarding of IP packets that are received by, but not
addressed to, the stack. This statement can be used for security or to
ensure correct usage of limited resources. The NODATAGRAMFWD
parameter is confirmed by the message:
EZZ0699I IPV6 FORWARDING IS DISABLED

If the TCP/IP stack is also configured to be a sysplex distributor (see
“VIPADYNAMIC statement summary” on page 306 for more
information), datagrams destined to a sysplex-distributed dynamic
VIPA are forwarded to stacks, whether or not forwarding is enabled.

DATAGRAMFWD
Enables the forwarding of IP packets that are received by, but not
addressed to, the stack. This is the default value.

NOFWDMULTIPATH
When forwarding is in effect and there are multiple equal-cost
routes to the destination and the NOFWDMULTIPATH parameter
is specified, TCP/IP uses the first active route found for
forwarding each IP packet. This is the default value. The
DATAGRAMFWD NOFWDMULTIPATH parameter is confirmed
by the message:
EZZ0700I IPV6 FORWARDING NOFWDMULTIPATH SUPPORT IS ENABLED

FWDMULTIPATH PERPACKET
When forwarding is in effect and there are multiple equal-cost
routes to the destination and the FWDMULTIPATH PERPACKET
parameter is specified, TCP/IP selects a route for forwarding each
IP packet on an approximate round-robin basis from the multiple
equal-cost routes. Connection or connectionless-oriented IP packets
using the same destination address do not always use the same
route, but they do use all possible active routes to that destination
host. All IP packets for a given association with a destination host
are spread across the multiple equal-cost routes. The
DATAGRAMFWD FWDMULTIPATH PERPACKET parameter is
confirmed by the message:
EZZ0700I IPV6 FORWARDING FWDMULTIPATH PERPACKET SUPPORT IS ENABLED

DYNAMICXCF | NODYNAMICXCF

NODYNAMICXCF
Indicates XCF dynamic support is not enabled for IPv6 on this TCP/IP.
The NODYNAMICXCF parameter for IPCONFIG6 is confirmed by the
message:
EZZ0739I IPV6 DYNAMIC XCF DEFINITIONS ARE DISABLED

DYNAMICXCF
Indicates that dynamic XCF support is enabled for IPv6.

208 z/OS V2R1.0 Communications Server: IP Configuration Reference

When DYNAMICXCF is coded in the profile, the purpose is to
generate those dynamic XCF devices or interfaces, if possible. When
TCP/IP is up, but ISTLSXCF is not active, dynamic creation is
deferred. Later, when a TCP/IP command such as VARY
TCPIP,,OBEYFILE or VARY TCPIP,,START is executed, triggering
profile processing, the stack again checks to see if ISTLSXCF is active.
If ISTLSXCF is active at that time, then the dynamic XCF devices and
interfaces are generated.

Dynamic XCF definitions are not generated if there is a DEVICE or
INTERFACE definition with the same device or interface name that
dynamic XCF would generate.

Activation of dynamic XCF links is delayed if VTAM is not up or if
OMPROUTE is not up and DELAYJOIN is coded on the
GLOBALCONFIG SYSPLEXMONITOR statement. For more
information about connectivity problems in a sysplex, see z/OS
Communications Server: IP Configuration Guide.

When using dynamic XCF for sysplex configuration, make sure that
XCFINIT=YES or XCFINIT=DEFINE is coded in the VTAM start
options, or if XCFINIT=NO was specified, ensure that a VARY
ACTIVATE command is issued for the ISTLSXCF major node. This
ensures that XCF connections between TCP stacks on different VTAM
nodes in the sysplex can be established. See z/OS Communications
Server: SNA Resource Definition Reference for directions for coding the
XCFINIT VTAM start option. The DISPLAY NET,VTAMOPTS
command can be used to determine the XCFINIT setting.

The VTAM ISTLSXCF major node must be active for XCF dynamics to
work, except for the following two scenarios:
v Multiple TCP/IP stacks on the same MVS image; a dynamic

samehost definition is generated, whether ISTLSXCF is active or not.
v HiperSockets is configured and enabled across multiple z/OS

systems that are in the same sysplex and the same CEC; a dynamic
IUTIQDIO link is created, whether ISTLSXCF is active or not.

For information about activating the ISTLSXCF major node, see z/OS
Communications Server: SNA Resource Definition Reference.

Dynamic XCF can be enabled even in a single system sysplex.
HiperSockets can be used between LPARs on the same central
processor complex (CPC) even when MVS images in those LPARs are
not defined to be part of the same sysplex. HiperSockets can also be
used between LPARs even when some of those other LPARs are
running Linux, as long as all of the stacks connecting to HiperSockets
and needing to exchange IP packets with each other define IP
addresses that are all in the same subnet (as defined by the dynamic
XCF IP address and subnet mask in the IPCONFIG6 DYNAMICXCF
profile statement).

A mix of static and dynamic IPv4 and IPv6 definitions for a device are
not allowed. For example, if a static IUTSAMEH IPv4 device/link is
defined, then the IPv6 dynamic definition for IUTSAMEH is not
created. If a static IUTSAMEH IPv6 interface is defined, then the IPv4
dynamic definition for IUTSAMEH is not created. The same logic is
also applied for XCF links; a mix of static and dynamic IPv4 and IPv6
definitions is not allowed for an XCF link.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 209

ipv6_address
The fully qualified IPv6 address that is used for all dynamically
generated XCF, Same Host, and HiperSockets interfaces.

See “Restrictions on IPv6 addresses configured in the TCP/IP
profile” on page 143 for a list of restrictions that must be observed
when specifying this parameter.

prefix_route_len
The length of the routing prefix (an integer value in the range 1 -
128). If specified, and if DYNAMICXCF generates a HiperSockets
interface definition, TCP/IP creates a prefix route over the
HiperSockets interface using the number of bits specified in
prefix_route_len of the ipv6_address. Therefore, you can configure
other stacks outside the sysplex for the same IQD CHPID using IP
addresses with the same prefix such that this stack automatically
has a route to these other stacks over the HiperSockets interface
generated by DYNAMICXCF. If prefix_route_len is not specified,
then TCP/IP does not create a prefix route over the HiperSockets
interface. For interfaces other than HiperSockets which are
generated from DYNAMICXCF, the prefix_route_len value has no
meaning.

Guideline: Configure a prefix_route_len to simplify connectivity if
you use HiperSockets on the same IQD CHPID for stacks outside
the sysplex or if you configure VIPAROUTE statements.

INTFID interface_id
An optional 64-bit interface identifier in colon-hexadecimal format.
IPv6 address shorthand notation (for example, the use of :: to
indicate multiple groups of 16 bits of zeros) is not allowed when
specifying the interface ID. If specified, this interface ID is used to
form the link-local address for the interface.

If INTFID is not coded, TCP/IP generates a random value to be
used to form the link-local address.

See “INTERFACE - IPAQENET6 OSA-Express QDIO interfaces
statement” on page 161 for an explanation of restrictions that must
be observed when manually specifying the INTFID parameter.

SOURCEVIPAINTERFACE vipa_name
The SOURCEVIPAINTERFACE parameter is optional. This
parameter specifies which static VIPA interface is to be used as the
source IP address when IPCONFIG6 SOURCEVIPA is specified and
outbound packets are sent over the dynamically generated XCF or
Same Host interfaces. The vipa_name value is the interface name for
a VIRTUAL6 interface. If the VIPA has multiple IP addresses, then
the source VIPA address for outbound packets is selected from
among these addresses according to the default source address
selection algorithm. The maximum length is 16 characters. For
more information, see the default source address selection
algorithm information in z/OS Communications Server: IPv6
Network and Application Design Guide.

The use of the SOURCEVIPAINTERFACE parameter can be
overridden. See the information about source IP address selection
in z/OS Communications Server: IP Configuration Guide for the
hierarchy of ways that the source IP address of an outbound
packet is determined.

210 z/OS V2R1.0 Communications Server: IP Configuration Reference

SECCLASS security_class
Use this parameter to associate a security class for IP filtering with
each IPv6 dynamic XCF interface. In order for traffic over the
interface to match a filter rule, the filter rule must have the same
security class value as the interface or a value of 0. Filter rules can
be specified in the TCP/IP profile or in an IP Security policy file
read by the Policy Agent. Filter rules can include a security class
specification on the IpService statement in an IP Security policy file
or on the SECCLASS parameter on the IPSEC6RULE statement in
the TCP/IP profile.

Valid security classes are identified as a number in the range 1 -
255. The default value is 255. For more information about security
class values, see z/OS Communications Server: IP Configuration
Guide.

Restriction: This value is used only when IPSECURITY is specified
on the IPCONFIG6 statement.

For more details about the use of DYNAMICXCF, see the
DYNAMICXCF information in z/OS Communications Server: IP
Configuration Guide. The DYNAMICXCF parameter is confirmed by
the message:
EZZ0739I IPV6 DYNAMIC XCF DEFINITIONS ARE ENABLED

HOPLIMIT hoplimit
Number of hops a packet originating at this host can travel enroute to the
destination. If the destination is more hops away, the packet never reaches the
destination. The valid range is between 1 - 255. The default is 255.

ICMPERRORLIMIT msgs_per_sec
This parameter controls the rate at which ICMP error messages can be sent to a
particular IPv6 destination address. The number specified is messages per
second. The default is 3 messages per second, and the valid range is 1 - 20
messages per second. A token bucket algorithm is used to allow bursts of
ICMP errors while limiting the long-term rate.

IGNOREREDIRECT
Causes TCP/IP to ignore ICMPv6 Redirect packets. The IGNOREREDIRECT
parameter is confirmed by the message:
EZZ0701I ICMPV6 REDIRECTS WILL BE IGNORED

If you are using OMPROUTE, and IPv6 interfaces are configured to
OMPROUTE, and this option is not specified, IGNOREREDIRECT is enabled
automatically. If you are using intrusion detection services (IDS) policy to
detect and discard ICMPv6 redirect packets and this option is not specified,
ICMPv6 redirect packets are discarded while the policy is active.

IGNOREROUTERHOPLIMIT | NOIGNOREROUTERHOPLIMIT

NOIGNOREROUTERHOPLIMIT
NOIGNOREROUTERHOPLIMIT causes TCP/IP to not ignore a hop
limit value received in a router advertisement from a router over an
IPAQENET6 interface. This results in the configured global hop limit
value being overridden by the router advertisement value for all routes
using the interface on which the router advertisement was received.
This is the default value. The NOIGNOREROUTERHOPLIMIT
parameter is confirmed by the message:
EZZ0720I ROUTER ADVERTISEMENT HOP LIMIT VALUES WILL NOT BE IGNORED

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 211

IGNOREROUTERHOPLIMIT
Although you can configure a global hop limit value for the stack (by
way of IPCONFIG6 HOPLIMIT), your stack might receive a different
hop limit value in a router advertisement from a router, over an
IPAQENET6 interface. This results in the configured global hop limit
value being overridden by the router advertisement value for all routes
using the interface on which the router advertisement was received.
IGNOREROUTERHOPLIMIT gives you a way to prevent this, ensuring
that your configured value is always used. The
IGNOREROUTERHOPLIMIT parameter is confirmed by the message:
EZZ0719I ROUTER ADVERTISEMENT HOP LIMIT VALUES WILL BE IGNORED

IPSECURITY
Activates IPv6 IP filtering and IPv6 IPSec tunnel support. This parameter
requires the IPSECURITY parameter to be configured for IPv4 on the
IPCONFIG statement.

Requirements:

v Use this parameter so that the stack can function with the Communications
Server IKE daemon and to enable the stack to receive IPv6 IPSec policy
information, such as IP filter rules from the policy agent.

v Use this parameter so that the stack can receive IPv6 defensive filters from
the Defense Manager daemon (DMD).

The IPSECURITY parameter is confirmed by the message:
EZZ0786I IPV6 SECURITY SUPPORT IS ENABLED

Restriction: IPSec functions can be activated only at initial activation of
TCP/IP.

OSMSECCLASS security_class
Use this parameter to associate a security class for IP filtering with
each OSM interface. In order for traffic over the interface to match a
filter rule, the filter rule must have the same security class value as the
interface or a value of 0. Filter rules can be specified in the TCP/IP
profile or in an IP Security policy file read by the Policy Agent. Filter
rules can include a security class specification on the IpService
statement in an IP Security policy file or on the SECCLASS parameter
on the IPSEC6RULE statement in the TCP/IP profile. For more
information about OSM interfaces, see the TCP/IP in an intraensemble
network section in z/OS Communications Server: IP Configuration
Guide.

Valid security classes are identified as a number in the range 1 - 255.
The default value is 255. For more information about security class
values, see z/OS Communications Server: IP Configuration Guide.

MULTIPATH | NOMULTIPATH

NOMULTIPATH
Disables the multipath routing selection algorithm for outbound IP
traffic. If there are multiple equal-cost routes to a destination and
NOMULTIPATH is specified, TCP/IP uses the first active route found
to send each IP packet. The NOMULTIPATH parameter is confirmed
by the message:
EZZ0703I IPV6 MULTIPATH SUPPORT IS DISABLED

NOMULTIPATH is the default value.

212 z/OS V2R1.0 Communications Server: IP Configuration Reference

Rule: The NOMULTIPATH parameter applies to outbound IP traffic
that is routed by using the main route table. This parameter applies
also to outbound IP traffic that is routed by using a policy-based route
table if the Multipath6 UseGlobal parameter is specified on the
RouteTable statement that defines the policy-based route table. See
“RouteTable statement” on page 1152 for more information.

MULTIPATH
Enables the multipath routing selection algorithm for outbound IP
traffic. In general, multipath routing provides the routing distribution
necessary to balance the network utilization of outbound packets by
load splitting. Multipath routing requires the definition of multiple
equal-cost routes that are either defined statically or added
dynamically by routing protocols (except for RIP, which does not
provide multipath routing). If MULTIPATH is specified without any
subparameters, the default is PERCONNECTION. The MULTIPATH
parameter has no effect if there are no multipath routes in the TCP/IP
configuration.

Rules:

v The MULTIPATH parameter and its subparameters apply to
outbound IP traffic that is routed by using the main route table. This
parameter and its subparameters apply also to outbound IP traffic
that is routed by using a policy-based route table if the Multipath6
UseGlobal parameter is specified on the RouteTable statement that
defines the policy-based route table. See “RouteTable statement” on
page 1152 for more information.

v The multipath routing selection algorithm is applied and can be
specified separately for each route table. Specify the algorithm for
the main route table using the MULTIPATH parameter on the
IPCONFIG6 statement. Specify the algorithm for policy-based route
tables in the policy definition for each table. See “RouteTable
statement” on page 1152 for more information.

Note: The IPCONFIG6 MULTIPATH|NOMULTIPATH configuration
option affects Enterprise Extender (EE) traffic when
MULTPATH=TCPVALUE is coded. For information about multipath
for EE, see z/OS Communications Server: SNA Network
Implementation Guide. For information about the MULTPATH start
option, see z/OS Communications Server: SNA Resource Definition
Reference.

PERCONNECTION
If there are multiple equal-cost routes to a destination and
MULTIPATH PERCONNECTION is specified, TCP/IP, upon
first sending an IP packet to a given destination, selects a route
on a round-robin basis from a multipath routing list to that
destination host. The selected route is used to route IP packets
for a given connection or connectionless oriented association to
that destination host. Connection or connectionless oriented IP
packets using the same association always use the same route,
as long as that route is active. The MULTIPATH
PERCONNECTION parameter is confirmed by the message:
EZZ0704I IPV6 MULTIPATH PERCONNECTION SUPPORT IS ENABLED

PERPACKET
If there are multiple equal-cost routes to a destination, TCP/IP,

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 213

upon sending an IP packet in that destination, selects a route
on an approximate round-robin basis from a multipath routing
list to that destination host. The selected route is used for
routing that IP packet. Connection or connectionless oriented
IP packets using the same source and destination address pair
do not always use the same route, but do use all possible
active routes to that destination host. All IP packets for a given
association with a destination host are spread across the
multiple equal-cost routes. The MULTIPATH PERPACKET
parameter is confirmed by the message:
EZZ0704I IPV6 MULTIPATH PERPACKET SUPPORT IS ENABLED

Restriction: The MULTIPATH PERPACKET parameter cannot
be enabled if the IPSECURITY parameter is specified. If both
values are specified, the following messages are displayed, and
multipath routing is disabled.
EZZ0792I CANNOT ENABLE IPV6 MULTIPATH PERPACKET SUPPORT WHEN
IPV6 SECURITY IS ENABLED
EZZ0703I IPV6 MULTIPATH SUPPORT IS DISABLED

SEGMENTATIONOFFLOAD | NOSEGMENTATIONOFFLOAD
Specifies whether the stack should offload TCP segmentation for IPv6 packets
to OSA-Express features. The TCP segmentation offload support transfers the
overhead of segmenting outbound data into individual TCP packets to
QDIO-attached OSA-Express devices that support this function. Offloading
segmentation of streaming-type workloads reduces CPU use and increases
throughput. This parameter is ignored for OSA-Express features that do not
support IPv6 segmentation offload.

See the steps for modifying topic for information about changing this
parameter while the TCP/IP stack is active. See TCP segmentation offload in
z/OS Communications Server: IP Configuration Guide for more information
about the TCP segmentation offload support.

NOSEGMENTATIONOFFLOAD
TCP segmentation is performed by the TCP/IP stack. This value is the
default value.

SEGMENTATIONOFFLOAD
TCP segmentation is offloaded to the OSA-Express feature.

SOURCEVIPA | NOSOURCEVIPA

NOSOURCEVIPA
Specifies that TCP/IP is not requested to use a VIPA address as the
source IP address for outbound datagrams. The NOSOURCEVIPA
parameter is confirmed by the message:
EZZ0702I IPV6 SOURCEVIPA SUPPORT IS DISABLED

NOSOURCEVIPA is the default value.

SOURCEVIPA
Requests that TCP/IP use a virtual IP address assigned to the
TCPSTACKSOURCEVIPA interface (if TCPSTACKSOURCEVIPA is
specified) or to the SOURCEVIPAINTERFACE interface as the source
address for outbound datagrams that do not have an explicit source
address. If multiple addresses are assigned to the
TCPSTACKSOURCEVIPA interface or the SOURCEVIPAINTERFACE
interface, the source address is selected from among these addresses

214 z/OS V2R1.0 Communications Server: IP Configuration Reference

according to the default source address selection algorithm. For more
information, see the default source address selection algorithm
information in z/OS Communications Server: IPv6 Network and
Application Design Guide.

Requirement: You must specify the SOURCEVIPAINTERFACE
keyword on the INTERFACE statement for each interface on which
you want that SOURCEVIPA to take effect. The SOURCEVIPA
parameter is confirmed by the message:
EZZ0702I IPV6 SOURCEVIPA SUPPORT IS ENABLED

Tip: The use of SOURCEVIPA or TCPSTACKSOURCEVIPA can be
overridden. See the information about source IP address selection in
z/OS Communications Server: IP Configuration Guide for the
hierarchy of ways that the source IP address of an outbound packet is
determined.

TCPSTACKSOURCEVIPA | NOTCPSTACKSOURCEVIPA

NOTCPSTACKSOURCEVIPA
Specifies that TCP/IP does not use a stack-level IPv6 address as the
source address for outbound TCP connections. The source IP address is
determined by the normal default selection.

TCPSTACKSOURCEVIPA intf_name
The name of a static VIPA or a dynamic VIPA interface. The maximum
length is 16 characters.

If the interface has multiple IP addresses, then the sourcevipa address
for outbound packets is selected from among these addresses according
to the default source address selection algorithm. For more
information, see the default source address selection algorithm
information in z/OS Communications Server: IPv6 Network and
Application Design Guide.

If SOURCEVIPA has not been enabled for IPCONFIG6, IPCONFIG6
TCPSTACKSOURCEVIPA is ignored and the following message is
issued:
EZZ0760I IPV6 TCPSTACKSOURCEVIPA IS IGNORED - SOURCEVIPA IS NOT ENABLED

Tips:

v After it is set, TCPSTACKSOURCEVIPA is not disabled until a
profile explicitly adds NOTCPSTACKSOURCEVIPA to the
IPCONFIG6 statement.

v A dynamic VIPA that becomes inactive because it moves to another
TCP/IP stack, or that is deleted because the application that caused
its creation (in the case of a VIPARANGE statement created address)
causes its deletion, is no longer a valid interface for the
TCPSTACKSOURCEVIPA parameter.

v If you specify the same distributed DVIPA interface for
TCPSTACKSOURCEVIPA on multiple target stacks, you also should
specify SYSPLEXPORTS on the VIPADISTRIBUTE statement.
Otherwise connections might be disrupted because identical
connections could be created from more than one stack.

v Carefully consider the following when determining the interface to
use for TCPSTACKSOURCEVIPA.
– A dynamic VIPA that becomes inactive because it moves to

another TCP/IP stack, or that is deleted because the application

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 215

that caused its creation (in the case of a VIPARANGE statement
created address) causes its deletion, is no longer a valid interface
for TCPSTACKSOURCEVIPA.

– A dynamic VIPA interface that is created by a VIPARANGE
statement can have multiple dynamic VIPA addresses associated
with it. The actual address chosen as the source IP for the
outbound connection is not predictable or necessarily meaningful.

v The use of TCPSTACKSOURCEVIPA can be overridden. See the
information about source IP address selection in z/OS
Communications Server: IP Configuration Guide for the hierarchy of
ways that the source IP address of an outbound packet is
determined.

TEMPADDRS | NOTEMPADDRS

NOTEMPADDRS
Specifies that TCP/IP should not generate IPv6 temporary addresses.
Use of the NOTEMPADDRS parameter is confirmed by the message:
EZZ0821I IPV6 TEMPORARY ADDRESS SUPPORT IS DISABLED

NOTEMPADDRS is the default value.

TEMPADDRS
Requests that TCP/IP generate IPv6 temporary addresses for
IPAQENET6 OSA-Express QDIO interfaces for which stateless address
autoconfiguration is enabled. Stateless address autoconfiguration is
enabled for an interface if no address or prefix is specified with the
IPADDR keyword. See the information about using IPv6 temporary
addresses to address privacy concerns in the z/OS Communications
Server: IPv6 Network and Application Design Guide.

Requirement: You must specify the job name of an application in the
SRCIP statement block with a value of TEMPADDRS to cause a
temporary IPv6 address to be preferred over a public IPv6 address as
the source IP address for the application; otherwise, the default source
address selection algorithm prefers public IPv6 addresses over
temporary addresses. See the information about default source address
selection in the z/OS Communications Server: IPv6 Network and
Application Design Guide .

The TEMPADDRS parameter is confirmed by the message:
EZZ0816I IPV6 TEMPORARY ADDRESS SUPPORT IS ENABLED

PREFLIFETIME pref_lifetime
Preferred lifetime for temporary addresses specified in hours. At the expiration
of the preferred lifetime, a new temporary address is generated and the
existing address is deprecated. Valid values are in the range 1 - 720 hours (30
days). The default is 24 hours (1 day).

Results:

v A temporary address can be deprecated sooner than specified by the
pref_lifetime value if the preferred lifetime of the prefix that is learned from a
router advertisement is less than the pref_lifetime.

v A short preferred lifetime results in new temporary addresses being
generated more quickly.

VALIDLIFETIME valid_lifetime
Valid lifetime for temporary addresses, specified in hours. At the expiration of

216 z/OS V2R1.0 Communications Server: IP Configuration Reference

the valid lifetime, the temporary address is deleted. Valid values are in the
range 2 - 2160 hours (90 days). The default is 7 times the preferred lifetime, not
to exceed a maximum value of 90 days.

Rules:

v valid_lifetime value must be greater than pref_lifetime value.
v If PREFLIFETIME is not explicitly configured, the valid_lifetime value must

be greater than the default value for pref_lifetime.

Results:

v A temporary address can be deleted sooner than specified by the
valid_lifetime value if the valid lifetime of the prefix that is learned from a
router advertisement is less than valid_lifetime.

v A short valid lifetime results in deprecated temporary addresses being
deleted more quickly.

Guideline: Do not specify a small pref_lifetime value with a large valid_lifetime
value. A large number of deprecated temporary addresses can have an impact
on storage usage.

default_valid_lifetime
Specifies the default valid lifetime for temporary addresses in hours. The
default is 7 times the preferred lifetime; you can specify a maximum value of
90 days.

Steps for modifying

To modify most parameters for the IPCONFIG6 statement, you must respecify the
statement with the new parameters. Additional actions are required to modify the
following parameters:

CHECKSUMOFFLOAD | NOCHECKSUMOFFLOAD
If the CHECKSUMOFFLOAD or NOCHECKSUMOFFLOAD parameter is
changed with the VARY TCPIP,,OBEYFILE command, the new value does
not affect any active OSA-Express QDIO interfaces. For this change to
affect an active OSA-Express QDIO interface, the interface must be stopped
and restarted.

DYNAMICXCF
None of the parameters on the IPCONFIG6 DYNAMICXCF statement can
be changed with a VARY TCPIP,,OBEYFILE command. You must first stop
the TCP/IP stack, apply changes, and then restart the TCP/IP stack.

If dynamic XCF definitions have been enabled but a later VARY
TCPIP,,OBEYFILE command contains NODYNAMICXCF, only future
dynamic definitions and connectivity are affected. Existing definitions and
connectivity are not affected.

IPSECURITY
z/OS IPv6 IPSec functions cannot be activated using the VARY
TCPIP,,OBEYFILE command on an active TCP/IP stack. To activate z/OS
IPSec for IPv6, halt all traffic on the designated TCP/IP stack, stop the
stack, modify the TCP profile to include IPCONFIG6 IPSECURITY, and
restart the stack.

MULTIPATH
If you modify the multipath routing type (PERCONNECTION to
PERPACKET, or vice versa), the new parameter takes effect only for new
connections created after the modification is done, and existing connections

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 217

use whatever the value was when the connection was established. If you
enable multipath routing when it was previously disabled, existing
connections are not affected; multipath routing is applied to new
connections only.

SEGMENTATIONOFFLOAD | NOSEGMENTATIONOFFLOAD
If the SEGMENTATIONOFFLOAD or NOSEGMENTATIONOFFLOAD
parameter is changed with the VARY TCPIP,,OBEYFILE command, the new
value does not affect any active OSA-Express QDIO interfaces. For this
change to affect an active OSA-Express QDIO interface, the interface must
be stopped and restarted.

TEMPADDRS
If you disable temporary addresses by changing TEMPADDRS to
NOTEMPADDRS using a VARY TCPIP,,OBEYFILE command, all existing
IPv6 temporary addresses are deleted. This is disruptive for connections
that are using the temporary address.

Related topics
v “GLOBALCONFIG statement” on page 117
v “IPCONFIG statement” on page 190
v “SRCIP statement” on page 282

IPSEC statement

Use the IPSEC statement to define policy for the IPv4 security function that is
enabled with the IPCONFIG IPSECURITY parameter. The IPSEC statement is
ignored if IPSECURITY is not specified on the IPCONFIG statement. If you also
enable IPv6 Security with the IPCONFIG6 IPSECURITY parameter, then use the
IPSEC statement to also define policy for IPv6 IP security.

Restriction: Only one IPSEC statement block should appear in the profile. Any
subsequent statement blocks are ignored and an informational message is
generated. Multiple filter rules can be defined in the IPSEC block.

Syntax

Rule: Specify the parameters in the order shown here.

�� IPSEC �

DVIPsec
LOGDISable

LOGENable
NOLOGImplicit

LOGImplicit

�

IP Filter Rule
ENDIPSEC ��

IP Filter Rule:

IPv4 Filter Rule
IPv6 Filter Rule

218 z/OS V2R1.0 Communications Server: IP Configuration Reference

IPv4 Filter Rule:

IPSECRule src_ipaddr
src_ipaddr/prefix_length
*

dest_ipaddr
dest_ipaddr/prefix_length
*

�

�
NOLOG

LOG

ROUTING LOCAL
Protocol

ROUTING ROUTED
EITHER

SECCLASS 0

SECCLASS securityclass

Protocol:

PROTOcol *

SRCPort * DESTport *
PROTOcol TCP

6 SRCPort num DESTport num
UDP
17

TYPE * CODE *
ICMP
1 CODE *

TYPE icmptype
CODE icmpcode

TYPE *
OSPF
89 TYPE ospftype

protocol_number

IPv6 Filter Rule:

IPSEC6Rule src_ipaddr
src_ipaddr/prefix_length
*

dest_ipaddr
dest_ipaddr/prefix_length
*

�

�
NOLOG

LOG

ROUTING LOCAL
Protocol

ROUTING ROUTED
EITHER

SECCLASS 0

SECCLASS securityclass

Protocol:

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 219

PROTOcol *

SRCPort * DESTport *
PROTOcol TCP

6 SRCPort num DESTport num
UDP
17

TYPE * CODE *
ICMPV6
58 CODE *

TYPE icmptype
CODE icmpcode

TYPE *
OSPF
89 TYPE ospftype

protocol_number

Parameters

DVIPSEC
Indicates that IPsec tunnels associated with IPv4 dynamic VIPA addresses are
eligible to be distributed if the dynamic VIPA address is being distributed. The
IPsec tunnels are also eligible to be moved during dynamic VIPA takeover or
giveback.

Restriction: For tunnels that traverse a NAT device, the dynamic VIPA
takeover and giveback function is limited to configurations where IKE can act
as initiator. IKE cannot act as initiator in the following configurations:
v The remote security endpoint is a security gateway and a NAT is being

traversed
v The remote security endpoint is behind an NAPT

For more information about NAT Traversal configuration scenarios, see z/OS
Communications Server: IP Configuration Guide.

LOGDISABLE/LOGENABLE
Indicates whether packet filter logging is enabled or disabled. The following
log messages are controlled by this parameter:
v EZD0814I
v EZD0815I
v EZD0821I
v EZD0832I
v EZD0833I
v EZD0836I
v EZD0822I

If logging is enabled, messages are written to syslogd by the Traffic Regulation
Manager Daemon (TRMD).

If LOGENABLE is specified, then the log setting on the individual default filter
rules and the implicit default rules is honored. The log setting for individual
default rules is specified with the LOG/NOLOG parameter. The log setting for
the implicit default rules is specified with the LOGIMPLICIT/
NOLOGIMPLICIT parameter.

220 z/OS V2R1.0 Communications Server: IP Configuration Reference

If LOGDISABLE is specified, then the log setting on the individual default
filter rules and the implicit default rules is ignored and no packet filter logging
is done.

LOGIMPLICIT/NOLOGIMPLICIT
Indicates whether packet filter logging is enabled or disabled for packets that
are denied by the implicit default rules. IP traffic not explicitly permitted by
the default IP filter rules parameters described in the following IP Filter Rule
parameters topic, is handled by implicit default rules generated by the stack
while default IP filter policy is in effect.

If the IPSEC statement is not specified, packet filter logging is disabled for
packets that are handled by the implicit default rules. To turn on packet filter
logging for the implicit default rules, IPSEC must be coded with the
LOGENABLE and LOGIMPLICIT parameters.

A setting of LOGIMPLICIT is honored only when filter logging is enabled on
the IPSEC statement with LOGENABLE.

IP Filter Rule parameters
Default IP filter rules can be defined on the IPSEC statement. The default IP
filter policy is used prior to the initial loading of IP security policy into the
stack from the Policy Agent. It is also used when the IP security policy has
been suspended by the z/OS UNIX ipsec command (that is, when the ipsec -f
default command is issued).

The default IP filter policy consists of the following rules:
v Rules defined explicitly with the IPSECRULE and IPSEC6RULE statement
v Implicit rules that deny all inbound and outbound data traffic

The explicit rules appear first in the search order and the implicit deny all
rules appear last in the search order.

The rules defined explicitly with the IPSECRULE and IPSEC6RULE statements
are permit rules. Each rule is treated as bidirectional, generating both an
outbound and inbound permit rule. The outbound rule permits outbound
traffic from the specified source to the specified destination. The inbound rule
permits inbound traffic with the destination and source reversed. IP traffic not
explicitly permitted by one of the defined rules is denied while the default IP
filter policy is in effect.

The physical order in which the rules are defined in the profile determines the
search order for the rules. The rule parameters are ANDed together to
determine whether the IP traffic matches the filter rule.

If you configure an IPSEC6RULE statement but did not specify IPCONFIG6
IPSECURITY, then TCP/IP rejects the IPSEC6RULE statement and issues
message EZZ0787I in z/OS Communications Server: IP Messages Volume 4
(EZZ, SNM).

If the IPSEC statement is not specified or if no default IP filter rules are
specified, the default IP filter table consists only of the implicitly defined deny
all rule.

src_ipaddr
The source IP address for the outbound rule. For outbound IP traffic to
be permitted by this rule, the source IP address of the traffic must
match this parameter. For inbound IP traffic to be permitted by the
generated inbound rule, the destination IP address of the traffic must
match this parameter.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 221

Specify an asterisk (*) to allow any source IP address to match.

Guidelines:

v For IPSECRULE, an asterisk means any IPv4 address. For
IPSEC6RULE, an asterisk means any IPv6 address

v For IPSEC6RULE, the src_ipaddr can be any valid IPv6 address in
colon-hexadecimal format. IPv4-mapped IPv6 addresses are also
allowed.

src_ipaddr/prefix-length
A source IP prefix specification for the outbound rule. For outbound IP
traffic to be permitted by this rule, the leading portion of the source IP
address of the traffic must match the leading portion of the source IP
address (src_ipaddr) rule for the number of bits indicated by the
prefix-length value. For inbound IP traffic to be permitted by the
generated inbound rule, the destination IP address of the traffic must
match the leading portion of the source IP address (src_ipaddr) rule for
the number of bits indicated by the prefix-length value. For
IPSECRULE, the prefix-length is a value in the range 1 - 32. For
IPSEC6RULE, the prefix-length is a value in the range 1 - 128.

dest_ipaddr
The destination IP address for the outbound rule. For outbound IP
traffic to be permitted by this rule, the destination IP address of the
traffic must match this parameter. For inbound IP traffic to be
permitted by the generated inbound rule, the source IP address of the
traffic must match this parameter.

Specify an asterisk (*) to allow any destination IP address to match.

Guidelines:

v For IPSECRULE, an asterisk means any IPv4 address. For
IPSEC6RULE, an asterisk means any IPv6 address

v For IPSEC6RULE, the dst_ipadd can be any valid IPv6 address in
colon-hexadecimal format. IPv4-mapped IPv6 addresses are also
allowed.

dest_ipaddr/prefix-length
A destination IP prefix specification for the outbound rule. For
outbound IP traffic to be permitted by this rule, the leading portion of
the destination IP address of the traffic must match the leading portion
of the destination address (dest_ipaddr) rule for the number of bits
indicated by the prefix-length value. For inbound IP traffic to be
permitted by the generated inbound rule, the source IP address of the
traffic must match the leading portion of the destination address
(dest_ipaddr) rule for the number of bits indicated by the prefix-length
value. For IPSECRULE, the prefix-length is a value in the range 1 - 32.
For IPSEC6RULE, the prefix-length is a value in the range 1 - 128.

LOG/NOLOG
Indicates whether packet filter logging is enabled or disabled for the
default filter rule. A setting of LOG is honored only when filter logging
is enabled on the IPSEC statement with LOGENABLE.

PROTOCOL
The protocol specification for this rule. For IP traffic to be permitted by
this rule, the protocol of the traffic must match this parameter.

222 z/OS V2R1.0 Communications Server: IP Configuration Reference

* Any protocol specification. IP traffic of any protocol can match
this rule. This is the default value.

TCP | 6
TCP protocol specification. For IP traffic to be permitted by this
rule, the protocol of the traffic must be TCP.

SRCPORT num
A source port specification for the outbound rule. The
parameter is applicable when either TCP or UDP is
specified for PROTOCOL. For outbound IP traffic to be
permitted by this rule, the source port of the traffic
must match this parameter. For inbound IP traffic to be
permitted by the generated inbound rule, the
destination port of the traffic must match this
parameter.

Valid values for num are in the range 1 - 65535. The
default is an asterisk (*), which indicates that any
source port matches this parameter.

Rule: If the ROUTING value is ROUTED or EITHER,
SRCPORT must be defined as all ports (*).

DESTPORT num
A destination port specification for the outbound rule.
The parameter is applicable when either TCP or UDP
is specified for PROTOCOL. For outbound IP traffic to
be permitted by this rule, the destination port of the
traffic must match this parameter. For inbound IP
traffic to be permitted by the generated inbound rule,
the source port of the traffic must match this
parameter.

Valid values for num are in the range 1 - 65535. The
default is *, which indicates that any destination port
matches.

Restriction: If the ROUTING value is ROUTED or
EITHER, DESTPORT must be defined as all ports (*).

UDP | 17
UDP protocol specification. For IP traffic to be permitted by
this rule, the protocol of the traffic must be UDP.

SRCPORT num
A source port specification for the outbound rule. The
parameter is applicable when either TCP or UDP is
specified for PROTOCOL. For outbound IP traffic to be
permitted by this rule, the source port of the traffic
must match this parameter. For inbound IP traffic to be
permitted by the generated inbound rule, the
destination port of the traffic must match this
parameter.

Valid values for num are in the range 1 - 65535. The
default is *, which indicates that any source port
matches.

Restriction: If the ROUTING value is ROUTED or
EITHER, SRCPORT must be defined as all ports (*).

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 223

DESTPORT num
A destination port specification for the outbound rule.
The parameter is applicable when either TCP or UDP
is specified for PROTOCOL. For outbound IP traffic to
be permitted by this rule, the destination port of the
traffic must match this parameter. For inbound IP
traffic to be permitted by the generated inbound rule,
the source port of the traffic must match this
parameter.

Valid values for num are in the range 1 - 65535. The
default is *, which indicates that any destination port
matches.

Restriction: If the ROUTING value is ROUTED or
EITHER, DESTPORT must be defined as all ports (*).

ICMP | 1
ICMP protocol specification.

Restrictions:

v The ICMP protocol is valid only on an IPSECRULE
statement.

v For IP traffic to be permitted by this rule, the protocol of the
traffic must be ICMP.

TYPE icmptype
ICMP type. This parameter is applicable when ICMP is
specified for the PROTOCOL parameter. Valid values
are an asterisk (*) or are in the range 0 - 255. The
default is *, which indicates that any ICMP type
matches.

Restrictions:

v For IP traffic to be permitted by this rule, the ICMP
type of the traffic must match this parameter value.

v If the ROUTING value is ROUTED or EITHER,
TYPE must be defined as all types (*).

CODE icmpcode
ICMP code. This parameter is applicable when ICMP is
specified for the PROTOCOL parameter and when the
TYPE parameter has a value other than an asterisk (*)
for the icmptype. Valid values are asterisk (*) or in the
range 0 - 255. The default is asterisk (*), which
indicates that any ICMP code matches.

Restrictions:

v For IP traffic to be permitted by this rule, the ICMP
code of the traffic must match this parameter value.

v If the ROUTING value is ROUTED or EITHER,
CODE must be defined as all codes (*).

ICMPV6 | 58
ICMPv6 protocol specification.

Restriction: The ICMPv6 protocol is valid only on an
IPSEC6RULE statement.

224 z/OS V2R1.0 Communications Server: IP Configuration Reference

Rule: For IP traffic to be permitted by this rule, the protocol of
the traffic must be ICMPv6.

TYPE icmptype
ICMP type. This parameter is applicable when ICMPV6
is specified for PROTOCOL. Valid values are * or 0 -
255. The default is *, which indicates that any ICMP
type matches.

Restrictions:

v For IP traffic to be permitted by this rule, the ICMP
type of the traffic must match this parameter value.

v If the ROUTING value is ROUTED or EITHER,
TYPE must be defined as all types (*).

CODE icmpcode
ICMP code. This parameter is applicable when
ICMPV6 is specified for PROTOCOL and when TYPE
has been specified with an icmptype value other than *.
Valid values are * or 0 - 255. The default is *, which
indicates that any ICMP code matches.

Restrictions:

v For IP traffic to be permitted by this rule, the ICMP
code of the traffic must match this parameter value.

v If the ROUTING value is ROUTED or EITHER,
CODE must be defined as all codes(*).

OSPF | 89
OSPF protocol specification.

Restriction: For IP traffic to be permitted by this rule, the
protocol of the traffic must be OSPF.

TYPE ospftype
OSPF type. This parameter is applicable when OSPF is
specified for PROTOCOL. Valid values are * or 0 - 255.

Restrictions:

v For IP traffic to be permitted by this rule, the OSPF
type of the traffic must match this parameter value.
The default is *, which indicates that any OSPF type
matches.

v If the ROUTING value is ROUTED or EITHER,
TYPE must be defined as all types(*).

For a list of the possible IPv4 OSPF types, see RFC
1583 OSPF Version 2. For a list of the possible IPv6
OSPF types, see RFC 2740, OSPF for IPv6. See
Appendix C, “Related protocol specifications,” on page
1465 for more information about accessing RFCs.

protocol_number
A protocol number in the range 0 - 255.

Restriction: For IP traffic to be permitted by this rule, the
protocol of the traffic must match this parameter.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 225

ROUTING
Specifies the type of packet to which this rule applies. Valid values for
ROUTING are:

LOCAL
Indicates that this rule applies to packets destined for this
stack.

ROUTED
Indicates that this rule applies to packets being forwarded by
this stack.

EITHER
Indicates that this rule applies to forwarded and
non-forwarded packets.

The default value is LOCAL.

SECCLASS security_class
A security class value in the range 0 - 255.

Restriction: For IP traffic to be permitted by this rule, the security class
of the interface that the traffic is inbound to or outbound from must
match this parameter.For IPv4, the security class for the interface is
specified as SECCLASS on the LINK, INTERFACE, or IPCONFIG
DYNAMICXCF statement. For IPv6, the security class for the interface
is specified as SECCLASS on the INTERFACE or IPCONFIG6
DYNAMICXCF statement. A value of 0 matches any security class
value coded on the corresponding profile statement which defines the
interface. For more information about security class values, see z/OS
Communications Server: IP Configuration Guide.

The default value is 0.

Steps for modifying

To modify most parameters for the IPSEC statement, use a VARY
TCPIP,,OBEYFILE command with a data set that contains a new IPSEC statement.
Additional actions are required to modify the following parameters:

DVIPSEC
The value of DVIPSEC cannot be modified using the VARY
TCPIP,,OBEYFILE command on an active TCP/IP stack.

LOGDISABLE/LOGENABLE
The value of LOGDISABLE/LOGENABLE can be modified using a VARY
TCPIP,,OBEYFILE command with a data set that contains a new IPSEC
statement. The current set of IPSECRULE statements should be included in
the data set when changing LOGDISABLE/LOGENABLE on the IPSEC
statement.

LOGIMPLICIT/NOLOGIMPLICIT
The value of LOGIMPLICIT/NOLOGIMPLICIT can be modified using a
VARY TCPIP,,OBEYFILE command with a data set that contains a new
IPSEC statement. The current set of IPSECRULE statements should be
included in the data set when changing LOGIMPLICIT/NOLOGIMPLICIT
on the IPSEC statement.

IP Filter Rules
To modify the default IP filter rules on the IPSEC statement, use a VARY
TCPIP,,OBEYFILE command with a data set that contains a new IPSEC

226 z/OS V2R1.0 Communications Server: IP Configuration Reference

statement. All existing default IP filter rules are deleted and replaced with
the default IP filter rules defined on the new IPSEC statement.

To delete all defined default filter rules leaving only the implicit deny all
default rule, the data set must contain a new IPSEC statement with no
default filter rules defined. If the data set does not contain an IPSEC
statement, then the existing default filter rules remain in effect.

If IP filtering is being done based on the default filter rules, then the
modified default filter rules are in effect following the VARY
TCPIP,,OBEYFILE command. If IP filtering is being done based on the filter
rules defined to Policy Agent, then the default filter rules are updated by
the VARY TCPIP,,OBEYFILE command, but filter rules defined in Policy
Agent remain in effect. The ipsec -f default command must be issued to
cause the default filter rules to be used.

For more information about the VARY TCPIP commands, see z/OS
Communications Server: IP System Administrator's Commands.

Examples
IPSEC
; Rule SourceIp DestIp Logging Prot SrcPort DestPort Routing Secclass
;
; Permit outbound IPv4 TCP traffic from local IP address 1.1.1.1 port 23 to remote IP address 2.2.2.2
; Permit inbound IPv4 TCP traffic from remote IP address 2.2.2.2 to local IP address 1.1.1.1 port 23

IPSECR 1.1.1.1 2.2.2.2 NOLOG PROTO TCP SRCPORT 23 DESTPORT * ROUTING LOCAL
;
; Permit outbound IPv4 TCP traffic from local IP address 1.1.1.1 to remote IP address 2.2.2.2 port 23
; Permit inbound IPv4 TCP traffic from remote IP address 2.2.2.2 port 23 to local IP address 1.1.1.1

IPSECR 1.1.1.1 2.2.2.2 NOLOG PROTO TCP SRCPORT * DESTPORT 23
;
; Permit outbound IPv4 ICMP traffic from local IP addresses 1.2.0.0/16
; Permit inbound IPv4 ICMP traffic to local IP addresses 1.2.0.0/16

IPSECR 1.2.0.0/16 * LOG PROTO ICMP
; Permit all routed IPv4 traffic
; IPSECR * * LOG PROTO * ROUTING ROUTED
; Permit all local outbound traffic to remote IP address 1.2.3.4
; Permit all local inbound traffic from remote IP address 1.2.3.4

IPSECR * 1.2.3.4
; Permit local outbound IPv6 Neighbor Solicitations
; Permit local inbound IPv6 Neighbor Solicitations
IPSEC6R * * LOG PROTO ICMPV6 TYPE 135
; Permit local outbound IPv6 Neighbor Advertisements
; Permit local inbound IPv6 Neighbor Advertisements

IPSEC6R * * LOG PROTO ICMPV6 TYPE 136
; Permit local inbound IPv6 Router Advertisements from remote IP address 2001::1:2:3:4

IPSEC6R * 2001::1:2:3:4/128 LOG PROTO ICMPV6 TYPE 134

ENDIPSEC

Related topics
v “Summary of DEVICE and LINK statements” on page 47
v “Summary of INTERFACE statements” on page 141
v “IPCONFIG statement” on page 190
v “IPCONFIG6 statement” on page 206

ITRACE statement

Use the ITRACE statement to control TCP/IP runtime tracing. This statement is
used primarily for diagnostic purposes.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 227

Syntax

Rule: Specify the parameters in the order shown here.

�� ITRACE
SUBAGENt 1 CONFig 1 COMMAND 1 AUTODAEMON

ON
SUBAGENt level
CONFig level
COMMAND level
AUTODAEMON
SUBAGENt CONFig COMMAND AUTODAEMON

OFF
SUBAGENt
CONFig
COMMAND
AUTODAEMON

��

Parameters

ON Specify ON to establish runtime tracing. If specified with no parameters, the
trace defaults to CONFIG level 1, SUBAGENT level 1, COMMAND level 1,
and AUTODAEMON tracing.

OFF
Specify OFF to terminate runtime tracing. If specified with no parameters,
CONFIG, SUBAGENT, COMMAND, and AUTODAEMON tracing is turned
off.

SUBAGENT
Turn internal trace for SNMP subagent ON or OFF.

CONFIG
Turn internal trace for configuration ON or OFF.

Restrictions:

v To trace the processing of specific TCP/IP profile statements, you must
specify the ITRACE statement before the profile statements in the profile
data set.

v You cannot specify the ITRACE statement inside a block statement. For
example, do not place it within a VIPADYNAMIC/ENDVIPADYNAMIC
block or a BEGINROUTES/ENDROUTES block.

COMMAND
Turn internal trace for command ON or OFF.

AUTODAEMON
Turn internal trace for the autolog subtask ON or OFF.

level
Indicates the tracing level to be established. Levels are as follows:

Levels for CONFIG

1 ITRACE for all of config

2 General level of tracing for all of config

3 Tracing for configuration set commands

4 Tracing for configuration get commands

5 Tracing for syslog calls issued by config

228 z/OS V2R1.0 Communications Server: IP Configuration Reference

100 Tracing for the parser

200 Tracing for scanner

300 Tracing for mainloop

400 Tracing for commands

Levels for SUBAGENT

1 General subagent tracing

2 General subagent tracing plus DPI traces

3 General subagent tracing plus extended storage dump traces

4 All trace levels

Levels for COMMAND

1 ITRACE for all commands

Steps for modifying

To modify parameters for the ITRACE statement, use a VARY TCPIP,,OBEYFILE
command with a data set that contains a new ITRACE statement.

Examples
ITRACE ON CONFIG 3
ITRACE OFF SUBAGENT

Results:

v Subagent trace output is directed to the syslog daemon. This daemon is
configured by the /etc/syslog.conf z/OS UNIX file and must be active.

v AUTOLOG trace output goes to the destination specified by the ALGPRINT
setting in the TCP/IP cataloged procedure (TCPIPROC).

v CONFIG trace output goes to the destination specified by the CFGPRINT setting
in the TCP/IP cataloged procedure (TCPIPROC). If CFGPRINT is not specified
in TCPIPROC, the CONFIG component dynamically allocates a ddname of
CFGPRINT.

v Command trace output goes to the hardcopy console log.

Usage notes

ITRACE ON commands are cumulative until an ITRACE OFF is issued.

Related topics
v z/OS Communications Server: IP Diagnosis Guide
v “Specifying TCP/IP address space parameters” on page 343

NETACCESS statement

Use the NETACCESS statement to configure network access control. Specifically, it
allows for the one-to-one mapping between a network, subnetwork or host and a
Security Access Facility (SAF) resource name. The network specifications are used
to build an internal data structure that maps networks, subnetworks and hosts to
SAF resource names. The mapping is used to construct a complete resource name

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 229

that is passed to the Security Product to determine the user's permission to access
the network resource. The most specific mapping is used to determine the resource
name for the SAF authorization check.

If the network resource does not have an assigned mapping, no SAF check is
performed. If the network resource does have an assigned mapping, the
SERVAUTH class must be active, the resource name must be defined, and the user
ID making the request must have at least read access to the resource.

Inbound socket commands include application requests to bind a socket, accept a
TCP connection and any command that transfers data into the application from a
socket. Outbound socket commands include application requests to connect a
socket and any command that transfers data from the application into the socket.

Multilevel-security is an enhanced security environment that can be configured on
a z/OS Communications Server system. In this environment the Security Server
and trusted resource managers enforce mandatory access control (MAC) policies in
addition to the usual discretionary access control (DAC) policies. For more
information about the multilevel-security environment and configuring z/OS
Communications Server in that environment, see the multilevel-security
information in the z/OS Communications Server: IP Configuration Guide.

Syntax

Rule: Specify the parameters in the order shown here.

�� �
NOINBound OUTBound CACHEALL

NETAccess ipv4_addr/num_mask_bits saf_resname ENDNETAccess
INBound NOOUTBound CACHEPERMIT ipv4_addr address_mask

CACHESAME ipv6_addr/prefixlength
DEFAULT

0
DEFAULTHome

��

Parameters

NOINBOUND
Specifies that network access control checking is disabled for inbound socket
commands. This is the default value.

INBOUND
Specifies that network access control checking is enabled for inbound socket
commands.

OUTBOUND
Specifies that network access control checking is enabled for outbound socket
commands. This is the default value.

NOOUTBOUND
Specifies that network access control checking is disabled for outbound socket
commands.

CACHEALL
Specifies that when a SAF call is made to check a user's access to a security
zone, the result is cached regardless of whether access is permitted or denied.
Subsequent checks of the user's access to the security zone are resolved using
the cached results. This is the default value.

230 z/OS V2R1.0 Communications Server: IP Configuration Reference

This parameter allows an external security manager to write an audit record
for only the first access check made for a user for each security zone.

CACHEPERMIT
Specifies that when a SAF call is made to check a user's access to a security
zone, the result is cached when access is permitted, but not when access is
denied. Subsequent checks of the user's access to a permitted security zone are
resolved using the cached results. Subsequent checks of the user's access to a
denied security zone are resolved by another SAF call.

This parameter allows an external security manager to write an audit record
for only the first access check made for a user for each permitted security zone,
and for all access checks made for a user for each denied security zone.

CACHESAME
Specifies that when a SAF call is made to check the access of a user to a
security zone, the result is cached when access is permitted, but not when
access is denied.

If the user is permitted to access the security zone, subsequent checks of the
user access to the security zone are resolved using the cached results as long as
the user associated with the socket and the IP address being accessed are
unchanged. However, if the user that is associated with the socket changes or
if the IP address being accessed changes from the previous packet that is
received or sent over the socket, the next access check is resolved by another
SAF call.

Subsequent checks of the user access to a denied security zone are resolved by
another SAF call.

This parameter allows an external security manager to write an audit record
for all denied access checks that are made for a user for each denied security
zone and for the first of multiple successive access checks made for a socket
under the same user and for the same IP address in a permitted security zone.

ipv4_addr/num_mask_bits
Specifies the network for which security product access control is required for
user requests. The num_mask_bits field is used to create an address mask that is
bit-contiguous from left to right. This address mask is logically ANDed with
the ipv4_addr value to create the network address for which access control is
required.

ipv4_addr address_mask
Specifies the network for which security product access control of user requests
is required. The address_mask value is a bit mask (expressed in dotted decimal
form) that is bit-contiguous from left to right. The address_mask value is
logically ANDed with the ipv4_addr value to create the network address for
which access control is required.

ipv6_addr/prefixlength
Specifies the IPv6 network for which security product access control is
required. The ipv6_addr is an IPv6 address in colon-hexadecimal format. The
prefixlength value is a decimal value specifying how many of the leftmost
contiguous bits of the address comprise the prefix. The value is in the range of
1 - 128. IPv4-mapped IPv6 addresses and IPv6 addresses with the reserved
prefix ::/96 are not allowed.

DEFAULT
Specifies that security product access control of user requests is required for
any networks not specifically defined by other NETACCESS statement entries.
If DEFAULTHOME is not specified, DEFAULT maps all addresses, local and

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 231

remote, not mapped by other entries. If DEFAULTHOME is also specified,
DEFAULT maps all remote addresses not mapped by other entries. Use of the
address_mask value of 0 on this entry is deprecated.

DEFAULTHOME
Specifies that security product access control of user requests is required for all
IP addresses that are local to this stack and not specifically defined by other
NETACCESS statement entries. When this parameter is specified, security
product access control of user requests is also required for addresses
dynamically defined by SYSPLEX services and IPv6 link-local and global
addresses that are automatically assigned for an interface.

saf_resname
Specifies the final qualifier of a security product resource name. The maximum
length is eight characters. The profile name has the following format:
EZB.NETACCESS.sysname.tcpname.saf_resname

where
v EZB.NETACCESS is constant.
v sysname is the value of the MVS &SYSNAME. system symbol.
v tcpname is the name of the procedure used to start the TCP stack.
v saf_resname is the 1-8 character value following the network specification.

If the installation's SAF compliant security product (for example, RACF)
supports the SERVAUTH class, the installation has activated the SERVAUTH
class, a profile covering this resource name has been created in the SERVAUTH
class, and the effective user ID is permitted to the resource, then it is allowed
to access the network.

Steps for modifying

To modify any values on the NETACCESS statement, use a VARY
TCPIP,,OBEYFILE command with a data set that contains a new NETACCESS
statement. All existing network entries are deleted and replaced with the entries
from the new NETACCESS statement. Active connections are reauthorized
whenever the user ID the active connections are running under has changed or a
new NETACCESS statement is loaded.

For more information about the VARY TCPIP commands, see z/OS
Communications Server: IP System Administrator's Commands .

Statement dependency
v A security server must be running and the SERVAUTH class must be active or

all users are denied access to all network addresses mapped to a security zone.
v A resource profile name must be defined for a security zone or all users are

denied access to all network addresses mapped to that security zone.
v Each user must be authorized to the security zone containing their static or

Dynamic IP address.
v Servers such as HTTPD, FTPD, and INETD must have the user ID they accept

work under authorized to all security zones that contain their intended clients'
addresses.

v The FTP anonymous user (ANONYMO) must be authorized to the security
zones containing clients that are allowed anonymous access.

v Users must be authorized to the security zone containing the name server
address they use to avoid resolver failures.

232 z/OS V2R1.0 Communications Server: IP Configuration Reference

v To protect security zone definitions, authority to modify the initial profile data
set and issue VARY TCPIP,,OBEYFILE commands must be controlled.

v When local addresses, or the DEFAULTHOME or DEFAULT parameters are
specified and inbound checking is enabled, servers and other applications that
explicitly bind must be permitted to the bind address.
– Define address 127.0.0.1/8 or address ::1/128 into a security zone to control

binds to the IPv4 or IPv6 loopback addresses, respectively.
– Define address 0.0.0.0/32 or address ::/128 into a security zone to control

binds to the IPv4 INADDR_ANY address, or to the IPv6 unspecified address
(in6addr_any), respectively.

– Use the BIND parameter on the PORT statement to optionally override binds
to the IPv4 INADDR_ANY address, or to the IPv6 unspecified address
(in6addr_any), with a bind to the specific local address specified on the BIND
parameter. Permit the job to the security zone for that address.

v An IPv6 address should not be configured unless the TCP/IP stack is IPv6
enabled. If the stack is not IPv6 enabled, then all entries following an IPv6 entry
are ignored and a message is issued.

Examples
NETACCESS INBOUND OUTBOUND CACHEPERMIT ; check both ways, cache permits only

192.168.0.0/16 CORPNET ; Net address
192.168.113.19/32 HOST1 ; Specific host address
192.168.113.0 255.255.255.0 SUBNET1 ; Subnet address
192.168.112.0 255.255.248.0 SUBNET2 ; Subnet address
192.168.192.0/24 CAMPUS ; Subnet address
192.168.214.0/24 CAMPUS ; Subnet address
fe80::6:2900:1dc:21bc/128 HOST2 ; IPv6 specific host address
2001:0DB8::/16 GLBL ; IPv6 global network
DEFAULTHOME HOME ; Optional Default local zone

DEFAULT DEFZONE ; Optional Default zone
ENDNETACCESS

Usage notes
v The NETACCESS statement is optional.
v The initial profile or a VARY TCPIP,,OBEYFILE command data set can contain

multiple NETACCESS statements.
v The first NETACCESS statement of each configuration data set that is executed

resets the flags to OUTBOUND, NOINBOUND, and CACHEALL and clears any
existing NETACCESS list prior to processing the flags and entries in that
statement.

v Subsequent NETACCESS statements in the same configuration data set override
any flags specified and add or replace specified entries in the list. Default flag
values do not override previously specified values

v Specifying a DEFAULT is optional. If you do not specify a default, Network
Access Control applies only to the networks which are explicitly listed in
NETACCESS statements.

v When an incorrect NETACCESS entry is encountered, all entries following that
entry in that NETACCESS statement are ignored. IPv4 entries as well as any
DEFAULT and DEFAULTHOME entries should precede the first IPv6 entry, to
ensure that they are accepted, if the TCP/IP stack is not IPv6 enabled.

v If the new NETACCESS list is empty at the end of the configuration data set,
Network Access Control is disabled.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 233

NETMONITOR statement

Use the NETMONITOR PROFILE.TCPIP statement to activate or deactivate
selected real-time TCP/IP network management interfaces (NMI). See Real-time
TCP/IP network monitoring NMI in z/OS Communications Server: IP
Programmer's Guide and Reference for more information about these services.

The NETMONITOR parameters, TCPCONNSERVICE and SMFSERVICE, provide
two functions:
v They control the availability of the real time SMF services that are associated

with each parameter.
v They control the creation of the SMF 119 records that are supported by each

service.

If you want your application to process only SMF 119 records by using these real
time SMF services, you need to configure only the NETMONITOR profile
statement. You do not need to request support for these SMF 119 records on the
SMFCONFIG profile statement.

Syntax

Tip: Specify the parameters for this statement in any order.

234 z/OS V2R1.0 Communications Server: IP Configuration Reference

�� NETMONitor

�

�

OFF

ON

NONTATRCService

NTATRCService
NOPKTTRCService

PKTTRCService
NOTCPCONNService

MINLIFETime 3
TCPCONNService

MINLIFETime seconds
NOSMFService

SMFService
NOCSMAIL

CSMAIL
CSSMTP

NOCSSMTP
DVIPA

NODVIPA
IPSECURITY

NOIPSECURITY
PROFILE

NOPROFILE

��

Parameters

OFF
If specified in PROFILE.TCPIP at initialization, indicates that no supported
network monitoring services should be started. This is the default value.

If specified using the VARY TCPIP,,OBEYFILE command and any network
monitoring services are currently enabled, then those services are disabled,
causing all current client connections to those services to be terminated.

ON If specified in PROFILE.TCPIP at initialization, indicates that all supported
network monitoring services should be started, and any options specific to
those services (such as MINLIFETIME) set to their default values. If specified
using the VARY TCPIP,,OBEYFILE command, then all network monitoring
services that are not currently enabled are started, with any options specific to
those services (such as MINLIFETIME) set to their default values. All services
that are currently running at the time of a VARY TCPIP,,OBEYFILE command
remain running, and any options specific to those services (such as
MINLIFETIME) are unchanged. No other monitoring services are allowed on
the NETMONITOR statement when the ON parameter is set.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 235

NTATRCSERVICE | NONTATRCSERVICE
Specifies the behavior of the real time TCP/IP OSAENTA trace service
(SYSTCPOT).

NONTATRCSERVICE
If this parameter is specified in PROFILE.TCPIP at initialization, it
indicates that the OSAENTA trace service should not be activated on
the stack. This is the default value. If specified using the VARY
TCPIP,,OBEYFILE command and the OSAENTA service is currently
enabled, the connections of the client applications are terminated and
new connections are not accepted.

NTATRCSERVICE
Enables the OSAENTA trace service function to run on this TCP/IP
stack. This service enables network management applications to access
trace data that is collected for all OSAENTA traces. Access control
should be provided for this service; see the z/OS Communications
Server: IP Configuration Guide security topic for more information.

Tip: To ensure that a network management application that uses the
real-time TCP/IP network management interface (NMI) receives
OSAENTA data, verify the following requirements:
v The CTRACE SYSTCPOT component must be active. The component

is activated by default. The TRACE
CT,ON,COMP=SYSTCPOT,SUB=(tcpprocname) command activates
the trace and the TRACE
CT,OFF,COMP=SYSTCPOT,SUB=(tcpprocname) command
deactivates the trace.

v The VARY TCPIP,,OSAENTA,ON command must be issued, or the
OSAENTA statement in the TCP/IP profile is used to specify the
parameters to collect data from an OSA-Express adapter. For trace
data collection from an OSA-Express adapter, verify the following
requirements:
– An extra DATAPATH device must be defined for the TRLE for the

OSA-Express adapter.
– The hardware definitions for the OSA-Express adapter must be

defined to allow OSAENTA trace data to be collected.

For more information, see Real-time TCP/IP network monitoring NMI
in z/OS Communications Server: IP Programmer's Guide and
Reference.

PKTTRCSERVICE | NOPKTTRCSERVICE
Specifies the behavior of the real time TCP/IP packet trace service
(SYSTCPDA).

NOPKTTRCSERVICE
If specified in PROFILE.TCPIP at initialization, this parameter indicates
that the packet trace service should not be allowed on the stack. This is
the default value. If specified using the VARY TCPIP,,OBEYFILE
command and packet trace service is currently enabled, the client
applications connections are terminated and new connections are not
accepted.

PKTTRCSERVICE
Enables the packet trace service function to run on this TCP/IP stack.
This service enables network management applications to access trace
data collected for any active packet traces or data traces. Access control

236 z/OS V2R1.0 Communications Server: IP Configuration Reference

should be provided for this service; see the z/OS Communications
Server: IP Configuration Guide security topic for more information.

Tip: To ensure that a network management application that uses the
real-time TCP/IP NMI receives packet trace (PKTTRACE) or data trace
(DATTRACE) data, verify the following requirements:
v The CTRACE SYSTCPDA component must be active. The

component is activated by default when TCP/IP starts. The TRACE
CT,ON,COMP=SYSTCPDA,SUB=(tcpprocname) command activates
the trace and the TRACE
CT,OFF,COMP=SYSTCPDA,SUB=(tcpprocname) command
deactivates the trace.

v If the network management application collects packet trace data,
the VARY TCPIP,,PKTTRACE,ON command must be issued to
specify the parameters to collect trace data from TCP/IP interfaces.

v If the network management application collects data trace data, the
VARY TCPIP,,DATTRACE,ON command must be issued to specify
the parameters to collect application data.

For more information, see Real-time TCP/IP network monitoring NMI
in z/OS Communications Server: IP Programmer's Guide and
Reference.

TCPCONNSERVICE | NOTCPCONNSERVICE
Controls the behavior of the real time TCP connection SMF NMI service
(SYSTCPCN), and the generation of SMF 119 records that are supported on this
service.

NOTCPCONNSERVICE
If the parameter is specified in PROFILE.TCPIP at initialization, this
parameter indicates that the TCP connection SMF NMI service should
not be started on the stack. This is the default value. If the parameter is
specified by the VARY TCPIP,,OBEYFILE command, this parameter
indicates that the service should be stopped.

TCPCONNSERVICE
Enables the real time TCP connection SMF NMI service to run on this
TCP/IP stack. The service runs as a subtask in the TCP/IP stack
address space. This service provides an interface for network
management applications to obtain information about TCP connections
on this stack. For more information about this service and a list of the
SMF 119 records supported on this service, see Real-time TCP/IP
network monitoring NMI in z/OS Communications Server: IP
Programmer's Guide and Reference.

Enabling or disabling this service has no effect on SMF 119 records
written to the MVS SMF data sets due to the SMFCONFIG profile
statement. You should provide access control for this service. For more
information, see z/OS Communications Server: IP Configuration
Guide.

MINLIFETIME seconds
The minimum connection lifetime, specified in seconds, for connections
reported by the TCP connection information server. The server waits
for this period before recording information about new connections; if
the connection has closed in the meantime, then the connection is not

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 237

reported by the TCP connection information server. This parameter can
have a value from 0 to 60 seconds; the default, if not specified, is 3
seconds.

If 0 is coded for this option, then all connections are reported.

This option is used to suppress short-lived connections from being
reported over the TCP connection information service. In order to
ensure that all connections are reported, a 0 should be coded for this
option.

SMFSERVICE | NOSMFSERVICE
Controls the behavior of the real time SMF NMI service (SYSTCPSM), and the
generation of SMF 119 records that are supported on this service.

NOSMFSERVICE
If the parameter is specified in PROFILE.TCPIP at initialization, this
parameter indicates that the real time SMF NMI service should not be
started on the stack. This is the default value. If the parameter is
specified using the VARY TCPIP,,OBEYFILE command, this parameter
indicates that the service should be terminated.

SMFSERVICE
Enables the real time SMF NMI service to run on this TCP/IP stack.
The service runs as a subtask in the TCP/IP stack address space. This
service provides an interface for network management applications to
obtain stack information in the form of SMF 119 records. This
parameter can also be used, with or without subparameters, to request
the creation of specific SMF 119 records which are then provided to
applications that are connected to this service. For more information
about this service and a list of all the SMF 119 records supported on
this service, see Real-time TCP/IP network monitoring NMI in z/OS
Communications Server: IP Programmer's Guide and Reference.

Certain FTP and Telnet SMF records are created by default. You must
specify NOSMFSERVICE to stop the creation of these records. The
creation of other SMF records is controlled by specifying the
subparameter associated with the specific SMF record.

Rules:

v If you have specified the SMFSERVICE parameter (with or without
subparameters), certain FTP and Telnet SMF records are created.
There are no subparameters to control the creation of these SMF
records.

v You can specify only the SMFSERVICE parameter, without any
subparameters, to enable the creation of all supported SMF 119
records on this stack.

v For the SMF records whose creation is controlled by subparameters,
specify the SMFSERVICE parameter with one or more subparameters
to enable or disable the creation of the SMF records for the specified
subparameter only.

Enabling or disabling this service has no effect on SMF 119 records
written to the MVS SMF data sets due to the SMFCONFIG profile
statement, or the FTP.DATA or CSSMTP SMF119 configuration
statements. For more information, see z/OS Communications Server:
IP Configuration Guide.

238 z/OS V2R1.0 Communications Server: IP Configuration Reference

CSMAIL | NOCSMAIL
Controls the creation of the real time CSSMTP SMF MAIL records.
(SMF 119 Subtype 50 (MAIL))

CSMAIL
Specifies that the real time CSSMTP SMF MAIL records
should be created and provided on the real time SMF NMI
service.

Special considerations for CSSMTP application and
NETMONITOR in a CINET environment:
v The CSSMTP application can be started with the -p

parameter to set stack name. All the SMF records are
written to the real time SMF NMI associated with the
stack whose name was specified on the -p parameter.
This forces connection-oriented SMF records
(CONNECT) and non-connection oriented SMF records
(CONFIG, SPOOL, MAIL and STATS) to go to the same
stack. The CSSMTP and CSMAIL NETMONITOR
parameters should be specified in the profile data sets of
the stack name whose name is specified on the -p
parameter.

v If the CSSMTP application is started without the -p
parameter and multiple stacks are active, then a network
management application cannot determine the stack that
records will be written to. So, the CSSMTP and CSMAIL
NETMONITOR parameters should be specified in the
profile data sets of all stacks, so that network
management applications can obtain all the records. The
network management application will not get redundant
records.

NOCSMAIL
Specifies that the real time CSSMTP SMF MAIL records
should not be created. This is the default.

CSSMTP | NOCSSMTP
Controls the creation of the real time CSSMTP SMF records. (SMF
119, Subtype 48 (CONFIG), 49 (CONNECT), 51 (SPOOL), and 52
(STATS)).

CSSMTP
Specifies that the real time CSSMTP SMF records should be
created and provided on the real time SMF NMI service.
This is the default.

Special considerations for CSSMTP application and
NETMONITOR in a CINET environment:
v The CSSMTP application can be started with the -p

parameter to set stack affinity. All the SMF records are
written to the real time SMF NMI associated with the
stack whose name was specified on the -p parameter.
This forces connection-oriented SMF records
(CONNECT) and non-connection oriented SMF records
(CONFIG, SPOOL, MAIL and STATS) to go to the same
stack. The CSSMTP and CSMAIL NETMONITOR

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 239

parameters should be specified in the profile data sets of
the stack name whose name is specified on the -p
parameter.

v If the CSSMTP application is started without the -p
parameter and multiple stacks are active, then a network
management application cannot determine the stack that
records will be written to. So, the CSSMTP and CSMAIL
NETMONITOR parameters should be specified in the
profile data sets of all stacks, so that network
management applications can obtain all the records. The
network management application will not get redundant
records.

NOCSSMTP
Specifies that the real time CSSMTP SMF records should
not be created.

DVIPA | NODVIPA
Controls the creation of the real time sysplex (dynamic virtual IP
address) SMF records.

DVIPA
Specifies that the real time sysplex SMF records should be
created and provided on the real time SMF NMI service.

NODVIPA
Specifies that the real time sysplex SMF records should not
be created.

IPSECURITY | NOIPSECURITY
Controls the creation of the real-time IPSec SMF records.

IPSECURITY
Specifies that the real time IPSec SMF records should be
created and provided on the real time SMF NMI service.

NOIPSECURITY
Specifies that the real time IPSec SMF records should not
be created.

PROFILE | NOPROFILE
Controls the creation of the real-time TCP/IP stack profile SMF
records and TN3270 Telnet server (Telnet) profile SMF records.

PROFILE
Specifies that the real-time TCP/IP stack profile SMF
records (subtype 4) and TN3270 Telnet profile SMF records
(subtype 24) should be created and provided on the
real-time SMF NMI service.

NOPROFILE
Specifies that the real-time TCP/IP stack profile SMF
records and TN3270 Telnet profile SMF records should not
be created.

Steps for modifying

If NETMONITOR appears in a VARY TCPIP,,OBEYFILE command data set without
any options, then no change occurs. NETMONITOR OFF must be explicitly coded
in a VARY TCPIP,,OBEYFILE command data set in order to turn off all active
services.

240 z/OS V2R1.0 Communications Server: IP Configuration Reference

If a NETMONITOR statement in a VARY TCPIP,,OBEYFILE command data set
contains service-specific keywords, then those services which are not specified on
the statement remain unaffected by the command processing.

If any service is disabled by a VARY TCPIP,,OBEYFILE command, then clients
connected to that service have their connections terminated.

If the MINLIFETIME setting is changed by a VARY TCPIP,,OBEYFILE command,
then existing TCP connections are not affected by the new minimum lifetime value.
Only new TCP connections are affected by the updated minimum lifetime value.

Related topic
v “SMFCONFIG statement” on page 274

OSAENTA statement

Use the OSAENTA statement to control the OSA-Express Network Traffic Analyzer
(OEAENTA) tracing facility in the OSA-Express adapter. You can use this statement
to select frames as candidates for tracing and subsequent analysis; OSAENTA
traces are recorded externally using the TRACE command. See z/OS
Communications Server: IP Diagnosis Guide for information about the steps
required to perform an OSAENTA trace.

The OSAENTA statement consists of two parts. One part defines the OSA-Express
that is to be traced and characteristics of the tracing. A second part turns tracing
on or off or clears the trace settings. The tracing characteristics are identified by
filters which specify under which conditions a frame should be traced. A frame
must meet all the conditions specified on the OSAENTA statements for it to be
traced. For example, if the OSAENTA statement identifies PROTOCOL=TCP and
PORTNUM=21, only IP packets that have both a protocol of TCP and a port of 21
are traced. Only one value can be specified for a given filter on one OSAENTA
statement.

Multiple OSAENTA statements can be included in the PROFILE.TCPIP data set,
and can control tracing for multiple OSAs. The filters on multiple OSAENTA
statements are cumulative for a given OSA-Express port. Each OSAENTA
statement that specifies filters adds to the filters that are already in effect for that
OSA-Express port. You can use multiple OSAENTA statements, multiple filter
values can be assigned to each filter. There is a limit of eight filter values for each
filter for each OSA-Express port. For example, you can specify up to eight IP
protocols, up to eight VLAN IDs, and so on. For IP addresses, you can specify up
to eight IPv4 addresses and up to eight IPv6 addresses. If a frame matches any of
the values for that filter, it is considered to meet the condition of that particular
filter. For example, if IPADDR=9.67.1.1,PROTO=TCP, and PORTNUM=21 is
specified on one OSAENTA statement for OSA1, and IPADDR=9.67.1.2 is specified
on another OSAENTA statement for OSA1, all frames sent to either IP address
9.67.1.1 or 9.67.1.2 with a protocol of TCP and a port of 21 are traced.

The OSAENTA statement dynamically defines a QDIO interface to the
OSA-Express being traced, called an OSAENTA interface. That interface is used
exclusively for capturing OSA-Express Network Traffic Analyzer traces.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 241

The OSAENTA statement enables an installation to trace data from other hosts
connected to OSA-Express. The trace data collected should be considered
confidential and TCP/IP system dumps and external trace files containing this
trace data should be protected.

If an error is found while parsing the OSAENTA statement, an error message is
generated and the statement is ignored.

Syntax

Tip: Specify all parameters, except the PORTNAME parameter, for this statement
in any order. If a keyword on a given statement is specified multiple times, the last
value specified is used.

�� OSAENTA PORTNAME=osa_port_name
ON
OFF
DEL

Parameter Filter ��

Parameter:

CLEARfilter 1024
DATA= trace_amount

DISCARD=EXCEPTION

DISCARD=ALL
DISCARD=NONE
DISCARD=discard_code

�

�
FULL

224
ABBREV= abbrev_length

NOFILTER=NONE

NOFILTER=ALL
�

�
2147483647

FRAMES= trace_count
10080

TIME= trace_time

Filter:

IPaddr=*

IPaddr= IPv4_address
IPv6_address

DEVICEID=*

DEVICEID=device_id
�

�
ETHType=*

ETHType=IPV4
ETHType=IPV6
ETHType=ARP
ETHType=SNA
ETHType=ethernet_type

MAC=*

MAC=mac_address

PORTNum=*

PORTNum=port_number
�

242 z/OS V2R1.0 Communications Server: IP Configuration Reference

�
PROTOcol=*

PROTOcol=TCP
PROTOcol=UDP
PROTOcol=ICMP
PROTOcol=ICMPv6
PROTOcol=protocol_number

VLANID=*

VLANID=vlan_id
VLANID=ALL

IPv4_address:

ipv4_address
ipv4_address/num_mask_bits

IPv6_address:

ipv6_address
ipv6_address/prefix_length

Parameters

PORTNAME=osa_port_name
Specifies the required port name of the OSA-Express for which you want to
enable tracing. This is the same port name that is defined on the PORTNAME
keyword of the VTAM TRLE statement. This is the same port name that is
either defined on the PORTNAME keyword of the VTAM TRLE statement or is
dynamically created by VTAM for OSX interfaces (configured with the CHPID
parameter) or for OSM interfaces. For more information about OSM and OSX
interfaces, see z/OS Communications Server: IP Configuration Guide..

Tip: You do not also have to define the OSA-Express to TCP/IP using the
DEVICE or LINK statements or INTERFACE statement or activate it on the
tracing stack in order to collect trace data from other stacks using that
OSA-Express. For an OSX interface configured with the CHPID parameter or
for an OSM interface, specify the port name according to the VTAM naming
convention for these dynamic TRLEs, and VTAM will dynamically create the
TRLE when you activate the OSAENTA interface. For details about the naming
convention for these dynamically generated TRLEs, see z/OS Communications
Server: SNA Network Implementation Guide.

Restriction: OSA-Express does not allow multiple stacks to concurrently use
the tracing function for a given OSA-Express feature.

ABBREV
Specifies the amount of data that is to be traced for each frame. You can
specify a length in the range 64 - 65472 or use the default value 224. The value
is rounded up to the next 32 byte boundary. The ABBREV parameter can be
used to control the volume of data stored in the trace buffers and file. The
actual amount of data traced might be limited by the OSA adapter.

Tip: The size value that OSA returns is the maximum amount of trace data
that OSA can return. Depending on the model, OSA can return fewer bytes
than the maximum. OSA-Express3 or later version returns only 120 bytes for
unicast packets, and return up to the maximum amount of trace data for
multicast, broadcast, or unrouteable packets.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 243

Guideline: Use a large value or specify the FULL parameter if you want to
maximize the amount of data traced for each packet; TCP segmentation offload
packets are traced before the packet is segmented, and can be larger than the
largest frame size on the LAN. See the segmentation offload information in
z/OS Communications Server: IP Configuration Guide for information about
which parameters affect the size of TCP segmentation offload packets.

CLEARFILTER
Clears any previous OSAENTA trace filters for the specified OSA-Express port
name.

If you specify the CLEARFILTER parameter and the OSAENTA interface is
active, either all frames are traced or no frames are traced, depending on the
setting of the NOFILTER parameter. The trace buffers are likely to fill up very
quickly if you clear all the filters without setting new filters to filter out an
adequate percentage of the packets.

Tip: Specifying CLEARFILTER clears all filters. To clear all values for a single
filter, use OSAENTA and specify an asterisk (*) for the filter value.

DATA
Specifies the number of megabytes of data to be collected before stopping the
trace. The minimum value is 1 megabyte, the default value is 1024 megabytes,
and the maximum value is 2147483647 megabytes. If a value of 0 is specified,
then the maximum value is set.

Result: If the OSAENTA interface is inactive, then the data limit takes effect
when the OSAENTA trace is enabled with the ON parameter. If the OSAENTA
interface is active and the trace_amount value is modified, then the stack resets
the data counter to 0 and puts the new data limit into effect.

DEL
Removes the OSAENTA interface definition. The OSAENTA interface must be
inactive in order to specify the DELETE parameter. To deactivate the
OSAENTA interface, you can respecify the OSAENTA statement with the OFF
parameter, or use the V TCPIP,,OSAENTA command with the OFF parameter.

DEVICEID
Specifies the 8-digit hexadecimal value that identifies a host that is sharing the
OSA-Express feature. The value is in the form csmfclus, where:

cs The channel subsystem ID for this datapath device.

mf The LPAR Multiple Image Facility ID for the LPAR using this datapath
device.

cl The control unit logical identifier for this datapath device.

ua The unit address for this datapath device.

Each identifier is a 2-digit hexadecimal value in the range 00 - FF.

If the frame was either inbound or outbound to the host identified by the
device_id value, then the frame meets the criteria for this filter. If the DEVICEID
option has been omitted or an asterisk (*) is specified, then all packets meet the
criteria for this filter.

Tip: You can obtain the device_id values for any user of the OSA-Express
feature by using the Hardware Management Console (HMC). For a data device
that is active on a z/OS stack, you can obtain the device_id value for that data
device from message IST2190I in the output from the D NET,TRL,TRLE=name
command.

244 z/OS V2R1.0 Communications Server: IP Configuration Reference

DISCARD
Specifies which frames that are discarded by the OSA-Express feature should
be traced. Discarded frames include frames that OSA-Express feature could not
transmit outbound or could not forward inbound. Discarded frames that match
the DISCARD= setting are traced whether or not they match any filters that
might be in effect. You can specify the DISCARD parameter on multiple
OSAENTA statements. The ALL and NONE values reset any previous
DISCARD values that are in effect, and the EXCEPTION value or a discard
code resets the setting ALL or NONE. The EXCEPTION value and
discard_code values are cumulative for a given OSA-Express feature.

ALL Specifies that all frames that are discarded by the OSA-Express feature
are traced. This includes both exception conditions and expected
discards, such as ARP packets received for non-registered IP addresses
or packets for non-supported ethernet types.

EXCEPTION
Specifies that frames discarded by the OSA-Express feature for
exception conditions are traced. These are frames that are typically
discarded for anomalous conditions. Examples of anomalous
conditions are:
v An inbound IP packet destined for an IP address that is not

registered with the OSA-Express feature and no PRIROUTER or
SECROUTER parameter is in effect.

v An outbound IP packet that could not be delivered because no
storage was available within the OSA-Express feature.

Rule: If the EXCEPTION value and discard codes are specified on
multiple OSAENTA statements, all frames that are discarded for
exception conditions and all frames that are discarded for any of the
discard codes in effect are traced.

Restriction: When the EXCEPTION value is specified, only seven or
fewer discard codes can be active for one OSA-Express feature.

NONE
Specifies that no discarded frames are traced.

discard_code
Specifies that frames discarded for the reason specified by the
discard_code value are traced. This option should be used only under
the direction of IBM service personnel. Valid values are in the range 1 -
4087. As many as 8 discard codes can be active for one OSA-Express
feature.

Rule: The CLEARFILTER parameter does not affect the state of the DISCARD
parameter.

Result: A frame can be traced twice; once when the packet is passed to the
OSA-Express feature, and again as a discarded packet during the processing of
the packet.

Guideline: To reset the current set of active discard codes, specify
DISCARD=ALL or NONE followed by OSAENTA statements with the
DISCARD parameters that you want to specify.

ETHTYPE
Specifies the Ethernet frame type to be traced. This can be specified as one of
the literals IPV4, IPV6, ARP, SNA or as a hexadecimal number in the range

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 245

0600 - FFFF (IPV4=0800, IPV6=86DD, ARP=0806, and SNA=80D5). If the
ETHTYPE parameter has been omitted or an asterisk (*) is specified, then all
packets meet the criteria for this filter.

FRAMES
Specifies the number of frames to be recorded before tracing is stopped. The
minimum value is 100 frames. The maximum value is 2147483647 frames. If a
value of 0 is specified, then the maximum value is set.

Result: If the OSAENTA interface is inactive, then the FRAMES limit takes
effect when the OSAENTA trace is enabled with the ON parameter. If the
OSAENTA interface is active and the trace_count value is modified, then the
stack resets the frame counter to 0 and puts the new frame limit into effect.

FULL
Specifies that the entire frame is to be traced if possible. (OSA-Express might
limit the amount of data actually traced.)

IPADDR
Specifies an IP address (either a 32-bit IPv4 address in dotted decimal notation,
or a 128-bit IPv6 address in colon hexadecimal notation) to be compared with
both the source and destination addresses of inbound and outbound packets. If
either the source or destination address of a packet matches the specified IP
address, the frame meets the criteria for this filter. If the IPADDR option is
omitted or an asterisk (*) is specified, then all packets meet the criteria for this
filter. If the IPADDR filter is specified, then only frames containing IP packets
or ARP packets are subject to tracing.

If an IPv4 address is specified, then the /num_mask_bits variable (range 1-32)
can be used to designate a subnet. The default number of bits is 32.

If an IPv6 address is specified, then an optional prefix_length value (range
1-128) can be specified. The default prefix_length value is 128.

Note:

1. If an IP address has never been specified on the OSAENTA command for
the OSA portname, IPADDR=* is the default.

2. If IPADDR is specified on the command, you can specify one of the
following values:
v *
v An IPv4 address
v An IPv6 address

There is no default if the IPADDR parameter is specified alone. If this
parameter is specified by itself, it is a syntax error . Specify IPADDR=* to
remove all previous IP addresses from the filter. Specify
IPADDR=IPv4_address or IPADDRr=IPv6_address to add this address to the
list of addresses for the IP address filter.

MAC
Specifies the twelve hexadecimal digits of the MAC address. The address is
compared with both the source and destination MAC address of inbound and
outbound frames. If either the source or destination address of a frame
matches the specified MAC address, the frame meets the criteria for this filter.
If the MAC option has been omitted or an asterisk (*) is specified, then all
packets meet the criteria for this filter.

NOFILTER=ALL|NONE
Specifies the filtering behavior when all filters (DEVICEID, MAC, ETHTYPE,

246 z/OS V2R1.0 Communications Server: IP Configuration Reference

VLANID, IPADDR, PROTOCOL and PORTNUM) have been cleared or are
inactive. This condition might exist if no filters have been specified, if the
CLEARFILTER parameter is specified, or when the current setting for every
filter is set to an asterisk (*). When NOFILTER=ALL, all packets are traced.
When NOFILTER=NONE is specified, no packets are traced. The NOFILTER
parameter applies only to packets that were not discarded by the OSA-Express
feature. The DISCARD parameter controls tracing of discarded packets.

Guideline: If you clear filters using the CLEARFILTER parameter with the
OSAENTA interface active, and specify NOFILTER=ALL, ensure that you also
specify sufficient new filters. The trace buffers are likely to fill up very quickly
if you clear all the filters without setting new filters to filter out an adequate
percentage of the packets.

OFF
Disables OSA-Express feature tracing for the specified OSA-Express feature
port name by stopping the OSAENTA interface. The trace parameters and
filters remain in effect if you subsequently re-enable the OSAENTA trace.

ON Enables OSA-Express feature tracing for the specified OSA port name by
starting the OSAENTA interface using the OSAENTA trace parameters and
filters that are currently in effect. If the OSAENTA interface is already active,
then the ON keyword causes the stack to reset the active counters on the
DATA, FRAMES, and TIME limits.

Guideline: Ensure that you have specified sufficient trace filters before starting
the trace. The trace buffers are likely to fill up very quickly if you activate the
trace with either no filters (NOFILTER=ALL) or with a set of filters that does
not filter out an adequate percentage of the packets.

PORTNUM
Specifies a port number in the range 1 - 65535. The port number is compared
with the destination or source port of inbound and outbound packets. If the
port of a packet is the same as the specified port number, then the frame meets
the criteria for this filter. This comparison is performed only for packets using
the TCP or UDP protocol; frames using other protocols are not traced when a
PORTNum filter is in effect. If the PORTNum parameter is omitted or an
asterisk (*) has been specified, then all packets meet the criteria for this filter. If
the PORTNum filter is used, then only frames containing IP packets are subject
to tracing.

IPSec Encapsulating Security Payload (ESP) packets cannot be traced by port
number because the TCP or UDP headers are encrypted.

PROTOCOL
Specifies the IP protocol type to be traced. This can be specified as one of the
literals TCP, UDP, ICMP, or ICMPV6, or as a number in the range 0 - 255
(ICMP=1, TCP=6, UDP=17, ICMPV6=58). If the PROTOCOL parameter is
omitted or an asterisk (*) has been specified, then all packets meet the criteria
for this filter. If a PROTOCOL protocol value is specified and the frame does
not contain an IP protocol packet, then the frame is not traced. If the
PROTOCOL filter is used, then only frames containing IP packets are subject to
tracing.

Rule: For encapsulated packets, OSAENTA bases collection on whether the
specified protocol filter matches the outermost packet protocol. For example, if
TCP was specified as the protocol filter, and a TCP packet was received
encapsulated in an IPSEC packet with protocol 50, this TCP packet is not
collected. Protocol 50 must be specified to collect these packets.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 247

TIME
Specifies the number of minutes that trace records are recorded before
stopping. The minimum value is 1 minute. The maximum value is 10080
minutes (7 days). If a value of 0 is specified, then the maximum value is set.

Result: If the OSAENTA interface is inactive, then the time limit takes effect
when the OSAENTA trace is enabled with the ON parameter. If the OSAENTA
interface is active and the trace_time value is modified, then the stack resets the
time counter to 0 and puts the new time limit into effect.

VLANID
Specifies a VLAN identifier value, which is a decimal number in the range 0 -
4094. The keyword ALL indicates that all frames that have a VLAN tag are
included. If the VLANID parameter has been omitted or an asterisk(*) is
specified, then all frames meet the criteria for this filter. If a VLAN identifier is
specified, and the frame does not contain a VLAN tag or does not match the
VLAN identifier, then the frame is not traced.

Steps for modifying

As previously indicated, the OSAENTA statements are cumulative for a given
OSA-Express adapter, and any subsequent OSAENTA statement processed adds to
the filters that are already in effect for that OSA-Express feature. To actually
change a value for a given filter, the following options are available:
v Define an OSAENTA statement with a filter value of *, effectively deleting all

values for that one filter entirely. Then define subsequent OSAENTA statements
with the new filter values.

v Define an OSAENTA statement with the CLEARFILTER parameter, which
removes all existing filters, and specify the entire list of filter attributes.

Tip: If the trace is currently enabled, the trace continues to run while each filter is
modified or added. This can become an issue when changing a value for a given
filter. Because both options involve deleting current filters, more data than you
want is being traced during this time. Turn the trace off (define an OSAENTA
statement with the OFF option) before changing filter values.

Examples for enabling, disabling, and modifying the OSA-Express feature tracing
facility are shown in “Examples” on page 249.

You can also modify existing OSAENTA settings by using the VARY
TCPIP,,OSAENTA command. See z/OS Communications Server: IP System
Administrator's Commands for more information. Use the Netstat DEvlinks/-d
command to display the results.

Usage notes
v You can use the Netstat DEvlinks/-d command to display the current OSAENTA

trace settings.
v When the DATA, FRAMES, or TIME values are exceeded, the stack disables the

OSAENTA trace, but this does not happen immediately. Trace records from the
OSA-Express feature continue to be recorded until the stack has successfully
contacted the adapter to stop the OSAENTA trace.

v To verify that the Ctrace component SYSTCPOT is active for a stack, issue
DISPLAY TRACE,COMP=SYSTCPOT,SUB=(tcpip_procname).

248 z/OS V2R1.0 Communications Server: IP Configuration Reference

v To write the data to the external writer, use the MVS
TRACE,CT,WTRSTART=writer_procedure command to start the writer and the
TRACE CT,ON,COMP=SYSTCPOT,SUB=(tcpip_procname) command to connect to
the writer.

v The last buffer trace data are not written to the external writer until the writer
has been disconnected from TCPIP and stopped.

v The TRACE CT,OFF,COMP=SYSTCPOT,SUB=(tcpip_procname) command stops
the recording of trace data into TCPIP buffers and to the external writer. It does
not stop the receipt of trace data from the OSA-Express feature. Issue a TRACE
ON command to start recording the trace data into the buffers. To halt the
receipt of trace data from the OSA-Express feature, specify the OSAENTA
statement with the OFF parameter, or use the V TCPIP,,OSAENTA command
with the OFF parameter.

v The OSAENTA trace can have performance implications if sufficient trace filters
are not specified before enabling the trace. OSAENTA can reduce the amount of
traffic the OSA-Express device can process and the amount of traffic that can be
accelerated through that OSA-Express device. Also, host processing to collect the
OSAENTA trace records can increase host CPU consumption. Specify sufficient
filters to limit the amount of traffic traced to what is necessary for problem
diagnosis.

The following differences exist between the OSAENTA and PKTTRACE statements:
v The PKTTRACE statement can collect data for only a single TCP/IP stack. The

OSAENTA statement can collect data for other stacks that share the OSA-Express
feature.

v Data collection enabled with the PKTTRAACE statement starts immediately. The
data collection enabled with the OSAENTA statement is not started until the ON
parameter is used.

v Each PKTTRACE command or statement is one set of filters. OSAENTA
statement filters accumulate across multiple OSAENTA commands or statements.

Examples

The following sample includes several examples of the OSAENTA statement:

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 249

Related topics
v V TCPIP,,OSAENTA command in z/OS Communications Server: IP System

Administrator's Commands
v OSAENTA Trace in z/OS Communications Server: IP Diagnosis Guide
v OSA-Express Network Traffic Analyzer trace in z/OS Communications Server:

IP Configuration Guide
v Display TRL command in z/OS Communications Server: SNA Operation

PKTTRACE statement

Use the PKTTRACE statement to control the packet tracing facility in TCP/IP. You
can use this statement to select IP packets as candidates for tracing and subsequent
analysis.

Restriction: An IP packet must meet all the conditions specified on the statement
for it to be traced.

The PKTTRACE statement consists of two parts. The first part defines to TCP/IP
the network interfaces that are to be traced and characteristics of how they are to
be traced. The second part turns packet tracing ON or OFF or CLEARs packet

;
;
; set up the filters to trace for TCP packets on PORT 5003 with a source
;or destination
; IP address of 9.67.116.124 over MAC address 000084576893
OSAENTA PORTNAME=OSA4 PROT=TCP IP=9.67.116.124 PORTNUM=5003
OSAENTA PORTNAME=OSA4 MAC=000084576893
; activate the tracing (the trace will self-deactivate after 20,000 frames)
OSAENTA PORTNAME=OSA4 ON FRAMES=20000
;
; deactivate the tracing
OSAENTA OFF PORTNAME=OSA4
;
; Reactivate the tracing for another 20,000 frames
OSAENTA ON PORTNAME=OSA4
;
; Modify tracing to change a port filter
OSAENTA PORTNAME=OSA4 PORTNUM=*
OSAENTA PORTNAME=OSA4 PORTNUM=21
;
; Change the parameters (add an IP address)
OSAENTA IP=9.67.116.125 PORTNAME=OSA4
;
; Set up tracing for a new problem on OSA5
; trace frames on VLAN 192 or 193 with an IPaddress 9.37.124.00 to .255 or
; 9.37.125.00 to .255 or
; 9.37.126.00 to .255
OSAENTA PORTNAME=OSA5 ABBREV=480 TIME=5

VLANID=192 IP=9.37.124/24
OSAENTA PORTNAME=OSA5 IP=9.37.125/24
OSAENTA PORTNAME=OSA5 VLANID=193 IP=9.37.126/24

; Now activate the trace with the new filters for 5 minutes
OSAENTA ON PORTNAME=OSA5

; Reset the VLANID filter and restart tracing for another 5 minute interval
OSAENTA ON PORTNAME=OSA5 VLANID=*

Figure 2. Example of the OSAENTA statement

250 z/OS V2R1.0 Communications Server: IP Configuration Reference

trace settings for the interfaces specified on prior PKTTRACE statements or for a
single interface if the LINKName/INTFName parameter is used.

Packet traces are recorded externally using the TRACE command CTRACE writer
instead of GTF. See z/OS Communications Server: IP Diagnosis Guide for
information about the steps required to perform an IP packet trace.

Syntax

Tip: Specify the parameters for this statement in any order.

�� PKTTRACE �

DESTport = *

DESTport = destination_port
DISCard=NONE

DISCard=*
DISCard=ALL
DISCard=reason_code
FULL

= 200
ABBREV
ABBREV = abbrev_length

INTFName = *

INTFName = interface_name
IPaddr = *

IPaddr = IPv4_address
IPv6_address

LINKName = *

LINKName = tcpip_linkname
ON
OFF
CLEAR
PORTNum = *

PORTNum = port_number
PROT = *

PROT = TCP
PROT = UDP
PROT = ICMP
PROT = ICMPv6
PROT = protocol_number
SRCPort = *

SRCPort = source_port

��

IPv4_address:

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 251

SUBNet=255.255.255.255
ipv4_address
ipv4_address _SUBNet= subnet_mask
ipv4_address/num_mask_bits

IPv6_address:

ipv6_address
ipv6_address/prefixLength

Parameters

ABBREV
Specifies that a truncated portion of the IP packet is to be traced. You can
specify a length in the range 0 - 65 535, or use the default of 200. The ABBREV
parameter can be used to reduce the volume of data stored in the trace file.

The protocol headers are always included, even if they exceed the ABBREV
value.

CLEAR
Disables packet tracing for the interfaces specified and removes the
characteristics defining how they should be traced.

DESTPORT
Specifies a port number that is compared with the destination port of inbound
and outbound packets. The port number is an integer in the range 1 - 65 535.
If the destination port of a packet is the same as the specified port number, the
packet is traced. This comparison is performed only for packets using the TCP
or UDP protocol; packets using other protocols are not traced. If the
DESTPORT parameter is omitted, and the PORTNUM parameter is also
omitted, or an asterisk (*) is specified for the DESTPORT parameter, the
destination port of packets is not checked.

IPSec Encapsulating Security Payload (ESP) packets cannot be traced by using
the port number because the TCP or UDP headers are encrypted.

DISCARD
Specifies the IP packet discard reason code for the packets that should be
traced. All IP packets have a discard reason code associated with them, which
is typically set to 0. When the TCP/IP stack discards a packet, a specific
discard reason code is set in this field. See the IP discard reason codes
information in z/OS Communications Server: IP and SNA Codes for a list of
all the discard reason codes. Typically, the TCP/IP stack does not trace
discarded packets. You must specify a DISCARD value other than NONE to
trace discarded packets. Valid values for DISCARD are:

* The DISCARD parameter is not applied to the selection of packets. All
packets are traced.

ALL Specifies that IP packets with a nonzero discard reason code should be
traced. Specifying this value results in tracing only discarded packets.

NONE
Specifies that only IP packets that were not discarded should be traced.
This is the default value.

reason_code
Specifies that only IP packets with the specified discard reason_code

252 z/OS V2R1.0 Communications Server: IP Configuration Reference

value should be traced. The reason_code value is a number in the range
of 4 096 - 20 479. You can also specify a value of 0, which is the
equivalent of DISCARD=NONE.

Tips:

v A packet can be traced twice, once at the lower level IP layer when a packet
arrives (with a discard reason code of 0), and again as a discarded packet in
an upper level protocol layer of TCP/IP.

v You can use one packet trace profile statement per discard reason code. You
can also specify a packet trace statement with DISCARD=ALL to trace all
packets that are discarded. The other specified parameters are used to
further select which discarded packets are traced. For example, use the
following code to collect packets with discard reason code 4138 on all TCP
or UDP packets with PORT number 20:
PKTTRACE ON,DISCARD=4138,PORTNUM=20

v Specifying the SRCPORT, DESTPORT, IPADDR, PORTNUM or PROTOCOL
parameters might prevent malformed packets from being traced.

FULL
Specifies that the entire IPADDR packet is to be traced.

IPADDR
Specifies an IPv4 or IPv6 address that is compared with both the source and
destination addresses of inbound and outbound packets. If either the source or
destination address of a packet matches the specified IP address, the packet is
traced. If the IPADDR option is omitted, or an asterisk (*) is specified, then all
IP addresses are traced.

Guidelines:

v If an IPv6 address is specified, an optional prefix length in the range 1 - 128
is allowed. The default prefix length is 128.

v If an IPv4 address is specified, the /num_mask_bits value is allowed.

/num_mask_bits
Specifies a numeric mask in the range 1 - 32.

/prefixLength
Specifies a numeric prefix length in the range 1 - 128.

LINKNAME|INTFNAME
The LINKNAME and INTFNAME parameters are interchangeable. They
specify the name of the network interface defined on a preceding LINK or
INTERFACE statement. If the LINKNAME or INTFNAME parameter is
omitted or an asterisk (*) is specified for either parameter, the PKTTRACE
parameters apply to all IPv4 and IPv6 interfaces prior to this statement.

To facilitate defining packet tracing when many interfaces are involved, use the
PKTTRACE statement with the LINKNAME=* or INTFNAME=* option to
define packet tracing characteristics for the majority of the interfaces. Then use
individual PKTTRACE statements with specific LINKNAME or INTFNAME
parameters for each interface that must be defined differently from the
majority or interfaces.

The PKTTRACE statement must appear after a valid LINK or INTERFACE
statement for the link or interface in the PROFILE.TCPIP data set.

OFF
Disables packet tracing for the specified interfaces and removes the
characteristics defining how they should be traced.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 253

If LINKNAME=* or INTFNAME=* and all other parameters are defaults, all
trace structures are deactivated and removed from all existing IPv4 and IPv6
interfaces.

If LINKNAME=* or INTFNAME=* and PROT=UDP, all trace structures for all
resources are analyzed; any matches are removed. If no trace structures remain,
trace is deactivated for that resource.

If LINKNAME=link_name or INTFNAME=interface_name and there are no
other parameters, all trace structures for link_name/interface_name are
deactivated and removed.

If LINKNAME=link_name and IP=127.0.0.1, or INTFNAME=interface_name and
IP=::1, then that particular trace structure is removed if it is found. If there is
only one trace structure, then that structure is removed and trace is deactivated
for that resource.

ON Turns on packet tracing, clears all settings previously defined and refreshes just
the default settings.

If you use LINKNAME=* or INTFNAME=* and all other parameters are
defaults, even if the defaults are specified, the command results replace any
existing trace structures for all existing IPv4 and IPv6 interfaces.

If you use LINKNAME=link_name or INTFNAME=interface_name and another
nondefault parameter, the command results are added to any existing trace
structures. However, if the existing trace structure for link_name/interface_name
is all defaults, the existing trace structures are discarded.

PORTNUM
Specifies a port number that is compared with the destination and source port
of inbound and outbound packets. You can use this parameter instead of using
the SRCPORT and DESTPORT parameters. The port number is an integer in
the range 1 - 65 535. If the destination or source port of a packet is the same as
the specified port number, the packet is traced. This comparison is performed
only for packets using the TCP or UDP protocol; packets using other protocols
are not traced. If the PORTNUM parameter is omitted and the SRCPORT and
DESTPORT parameters are also omitted, then the port numbers of packets are
not checked. If an asterisk (*) is specified, packets of any protocol and any
destination or source port number are traced.

Guideline: SRCPORT and DESTPORT parameters should not be specified on
the same PKTTRACE statement as the PORTNUM parameter. When the
PORTNUM parameter is specified after DESTPORT or SRCPORT parameters,
the DESTPORT and SRCPORT parameters are ignored.

Restriction: IPSec Encapsulating Security Payload (ESP) packets cannot be
traced by port number because the TCP or UDP headers are encrypted.

PROT
Specifies the protocol type to be traced. This can be specified as one of the
literals TCP, UDP, ICMP, or ICMPV6, or as a number between 1 and 255
(ICMP=1, TCP=6, UDP=17, ICMPV6=58, and RAW=255). If the PROT
parameter is omitted or an asterisk (*) is specified, packets of any protocol are
traced.

SRCPORT
Specifies a port number that is compared with the source port of inbound and
outbound packets. The port number is an integer in the range 1 - 65535. If the
source port of a packet is the same as the specified port number, the packet is
traced. This comparison is performed only for packets using the TCP or UDP

254 z/OS V2R1.0 Communications Server: IP Configuration Reference

protocol; packets using other protocols are not traced. If the SRCPORT
parameter is omitted, and the PORTNUM parameter is also omitted, or an
asterisk (*) is specified for the SRCPORT parameter, the source port of packets
is not checked.

IPSec Encapsulating Security Payload (ESP) packets cannot be traced by port
number because the TCP or UDP headers are encrypted.

SUBNET
Specifies a subnet mask that applies to the host and network portions of the IP
address specified on the accompanying IPADDR parameter. The subnet mask
must be specified in dotted decimal notation and must be specified in
conjunction with the IPADDR parameter. The default is 255.255.255.255.

Steps for modifying

You can activate tracing at any time by executing the VARY TCPIP,,OBEYFILE
command with a data set that contains PKTTRACE statements. However, the
interface names specified on the PKTTRACE statements must already be defined.
For example:
PKTTRACE ON,LINKNAME=*
LINK ...
DEVICE ...

In this example, the trace is done only for the LOOPBACK interface.

For more information about changing PKTTRACE parameters, see the descriptions
for the ON and OFF parameters for “PKTTRACE statement” on page 250.

You can also modify existing PKTTRACE settings by using the VARY
TCPIP,,PKTTRACE command. See z/OS Communications Server: IP System
Administrator's Commands for more information.

To trace all the packets for a particular application port, enter two PKTTRACE
commands:
PKTTRACE ON,DESTport=21
PKTTRACE ON,SRCport=21

The two commands capture all the packets received and all the packets sent for a
particular port. If other options are specified, then they should be the same on both
commands.

Use the Netstat DEvlinks/-d command to display the results. An IP packet is
traced according to the first trace structure that the packet matches.

Statement dependency
v INTFName and LINKName are mutually exclusive. An error message is

displayed if both are coded.
v The num_mask_bits and SUBNET= are mutually exclusive. An error message is

displayed if both are coded.
v IP=* implies IP=0.0.0.0 and SUBNET=255.255.255.255.
v The IP address and subnet mask pair specified must be in the same network.
v Tracing is not done for packets whose destination and source IP address match.

However, tracing is always done for packets using a loopback interface.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 255

Usage notes
v Multiple PKTTRACE statements can be included in the PROFILE.TCPIP; the

results are cumulative.
v If a keyword on a given statement is specified multiple times, the last value

specified is used. If an option appears more than once on a statement, the value
associated with the last occurrence of the option is used.

v If you do not specify any options on the PKTTRACE statement, all packets
through all devices are traced except for discarded packets. The default is
DISCARD=NONE.

v If an error is found while parsing the PKTTRACE statement, an error message is
generated, the parameter in error is ignored, and the rest of the statement is
parsed. If an error is produced by an incorrect ABBREV value, the ABBREV
value is changed to the default.

v Each defined interface has an associated trace profile. The trace profile stores the
values of each of the trace options for the interface. When you create or reset a
trace profile for an interface using the CLEAR option, the trace profile is set to
the default values for the trace options as follows:

PROT
All protocols

IPADDDR
All IP addresses

SUBNET
No checking

SRCPORT
No checking

DESTPORT
No checking

FULL
Trace of the whole IP packet

Examples

The following sample includes several examples of the PKTTRACE statement:
; CTC Device and Link
DEVICE CTC1 CTC D00
LINK CTCD00 CTC 1 CTC1
;
; CTC Device and Link
DEVICE CTC2 CTC D02
LINK CTCD02 CTC 1 CTC2
;
; CTC Device and Link
DEVICE CTC3 CTC D04
LINK CTCD04 CTC 1 CTC3
;
; LCS Device and Links
DEVICE LCS1 LCS 100
LINK TR1 IBMTR 1 LCS1
LINK LCSC00 ETHERNET 2 LCS1
LINK LCSF00 FDDI 3 LCS1
;
DEVICE LCS2 LCS 102
LINK LCS802 802.3 1 LCS2
;
DEVICE LCS3 LCS 104

256 z/OS V2R1.0 Communications Server: IP Configuration Reference

LINK LCSE802 ETHEROR802.3 1 LCS3
;
; start pkttrace
PKTTRACE ON LINKNAME=*
;
; set defaults for all links not specified below
PKTTRACE
; set for CTCD00
PKTTRACE FULL LINKNAME=CTCD00 PROT=* IP=* SRCPORT=* DESTPORT=*
; set for CTCD02
PKTTRACE ABBREV LINKNAME=CTCD02 PROT=TCP IP=9.67.116.124

SRCPORT=5000 DESTPORT=161
; set for CTCD04
PKTTRACE ABBREV=1 LINKNAME=CTCD04 PROT=UDP IP=9.67.116.124

SUBNET=255.255.255.255 SRCPORT=161 DESTPORT=5000
; set for TR1
PKTTRACE ABBREV=200 LINKNAME=TR1 PROT=ICMP IP=*

SRCPORT=5000 DESTPORT=161
; set for LCSC00
PKTTRACE ABBREV=65535 LINKNAME=LCSC00 PROT=1 IP=9.67.116.124

SUBNET=255.255.255.255 SRCPORT=* DESTPORT=*
; set for LCSF00 not to trace
PKTTRACE OFF LINKNAME=LCSF00

Related topics
v “Summary of DEVICE and LINK statements” on page 47
v “Summary of INTERFACE statements” on page 141
v z/OS Communications Server: IP Diagnosis Guide

PORT statement

Use the PORT statement to reserve a port for one or more specified job names or
to control application access to unreserved ports.

Syntax

Rule: The PORT parameters and options (for example, NOAUTOLOG,
DELAYACKS) must be specified in the order in which they appear on the
following syntax diagram.

�� �PORT num TCP RESERVED
UDP jobname

Options
WHENLISTEN

UNRSV TCP jobname
SAF resname WHENBIND

*
DENY
SAF resname

WHENBIND
UDP jobname

SAF resname
*

DENY
SAF resname

��

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 257

Options:

NOAUTOLog

DELAYAcks

NODELAYAcks SHAREPort
SHAREPORTWLM

BIND ipaddr
�

�
SAF resname NOSMCR

Parameters

num
The number of the port to be reserved. The same port number can appear in
more than one PORT statement with different users or more than once in the
same PORT statement. This port cannot appear in a range specified by the
PORTRANGE statement. If a PORTRANGE statement including this port
number is specified prior to this statement, this port is ignored. If the
PORTRANGE statement follows this statement, the PORTRANGE statement is
ignored. An error message is generated in either case. num is a value in the
range 1 - 65535.

Requirement: For z/OS UNIX applications that are invoked by INETD, ensure
that the port number defined for the application in the /etc/services file is the
same as the port number reserved for the application on the PORT statement.

UNRSV
This value indicates any unreserved port (any port number that is in the range
1 - 65535 that has not been reserved by a PORT or PORTRANGE statement).

Use PORT UNRSV statements to indicate which applications or users are
permitted to access application-specified unreserved ports. PORT UNRSV
statements control access to all unreserved ports in the range 1 - 65535 unless
RESTRICTLOWPORTS is configured; however, when RESTRICTLOWPORTS is
configured, PORT UNRSV statements control access to unreserved ports only
above port 1023. For UDP, access control is applied when an application issues
a bind to a particular port number to establish a local port. For TCP, access
control is applied depending on the value of the WHENBIND or
WHENLISTEN parameter.

If neither DENY nor the SAF keyword is specified, an application that matches
the protocol and specified job name [the job name can be an asterisk (*)] on a
PORT UNRSV statement can access unreserved ports. If DENY is specified, all
applications are denied access to unreserved ports for the specified protocol. If
the SAF keyword is specified, applications that match the PORT UNRSV
statement must also have user access to the SAF SERVAUTH resource which is
indicated by the SAF keyword, to be permitted to access an unreserved port.

Results:

v When no PORT UNRSV statements are configured for the socket protocol
that is being used, all applications are allowed access to the unreserved ports
unless prevented by TCPCONFIG or UDPCONFIG RESTRICTLOWPORTS
or by GLOBALCONFIG EXPLICITBINDPORTRANGE. This is the default.

v When TCPCONFIG or UDPCONFIG RESTRICTLOWPORTS is configured
for the access protocol that is being used, PORT UNRSV access control
applies only to unreserved ports above port 1023.

258 z/OS V2R1.0 Communications Server: IP Configuration Reference

v If any PORT UNRSV statements are configured for a protocol, access is
determined by the PORT UNRSV statement whose specified job name most
closely matches the application's job name. If the application's jobname does
not match any of the PORT UNRSV statements, the application's access to
unreserved ports is denied for that protocol.

v PORT UNRSV statements control access to nonzero, unreserved ports that
are specified on explicit binds. Access to unreserved ports that are assigned
by the stack is not affected.

Guideline: In a Common INET (CINET) environment with multiple stacks and
no established stack affinity, an explicit bind to port 0 is converted to a bind to
a specific port in the CINET range. If you have not reserved the ports in your
CINET range for jobname OMVS, the explicit bind to port 0 is treated as an
explicit bind to an unreserved port.

RESERVED
Indicates the port is not available for use by any user. Use RESERVED to lock
certain ports. This is optional and valid for TCP or UDP protocols.

jobname
Specifies the MVS job name that can use the specified port (or any unreserved
port in the case of a PORT UNRSV statement). You can specify the jobname
value using a wildcard value consisting of 0 - 7 characters followed by an
asterisk (*). For UDP, only one job name can be associated with a particular
port. For TCP, the same port can be reserved multiple times for different job
names. This can be useful if you have different servers with different job
names that need access to the same port. For PORT UNRSV statements, both
TCP and UDP can have multiple statements with different job names.

For multiple TCP reservations for the same port, or for multiple PORT UNRSV
statements for the same protocol, the TCP/IP stack searches these PORT
statements for the closest match (if any) to the application's job name. If you
specified the job name using a wildcard on more than one of these statements,
the TCP/IP stack matches the application job name to a PORT statement
jobname value using the most specific value first and the least specific value (or
value *, if it was specified) last.

Restriction: To reserve a port that is to be monitored by AUTOLOG, the
jobname name must exactly match (no wildcards) the jobname name on the
AUTOLOG statement.

The environment in which the application is run determines the job name to be
associated with a particular client or server application.

The following list explains how to determine the jobname value given the
environment in which the application is run:
v Applications run from batch use the batch job name.
v Applications started from the MVS operator console use the started

procedure name as the job name.
v Applications run from a TSO user ID use the TSO user ID as the job name.
v Applications run from the z/OS shell normally have a job name that is the

logged on user ID plus a one-character suffix.
v Authorized users can run applications from the z/OS shell and use the

_BPX_JOBNAME environment variable to set the job name. In this case, the
value specified for the environment variable is the job name.

v Use the name of the started JCL procedure for the UNIX System Services
kernel address space to enable applications (except for applications using the

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 259

Pascal API) to bind to the port. This name is typically OMVS unless a
different name is explicitly specified in the STARTUP_PROC parameter of
the BPXPRMxx parmlib member.

v z/OS UNIX applications started by INETD use the jobname of the INETD
server.

v Use the name of the VTAM started task for the UDP ports that are to be
used for Enterprise Extender (EE) network connections.

Restriction: The VTAM job name cannot include a wildcard character (*)
when it reserves EE UDP ports.

Reserved Port Options:

NOAUTOLOG
Tells the TCP/IP address space not to restart the server if it was stopped
previously. Otherwise, the default is to restart the server if it was stopped
previously. If the application associated with the job name is an AUTOLOG
started procedure, and the port is inactive (for TCP connections, the procedure
must have a socket open to that port in the LISTEN state; for UDP connections,
the procedure must have a socket open to that port), then AUTOLOG assumes
that the procedure is hung; it cancels and restarts it every five minutes. Use
NOAUTOLOG to prevent this from occurring. See “AUTOLOG statement” on
page 23 for more information.

DELAYACKS | NODELAYACKS

DELAYACKS
Delays transmission of acknowledgments when a packet is received
with the PUSH bit on in the TCP header. The DELAYACKS parameter
on the PORT statement affects only connections that use this port. This
is the default, but the behavior can be overridden by specifying the
NODELAYACKS parameter on the TCP/IP stack TCPCONFIG profile
statement, or on any of the following statements used to configure the
route used by the TCP connection:
v The TCP/IP stack BEGINROUTES or GATEWAY profile statements
v The Policy Agent RouteTable statement
v The OMPROUTE configuration statements

NODELAYACKS
Specifies that an acknowledgment is returned immediately when a
packet is received with the PUSH bit on in the TCP header. The
NODELAYACKS parameter on the PORT statement affects only
connections that use this port. Specifying NODELAYACKS on the
PORT statement overrides the specification of the DELAYACKS
parameter on the TCP/IP stack TCPCONFIG profile statement or on
any of the following statements used to configure the route used by
the TCP connection:
v The TCP/IP stack BEGINROUTES or GATEWAY profile statements
v The Policy Agent RouteTable statement
v The OMPROUTE configuration statements

SHAREPORT
Required when reserving a port to be shared across multiple listeners on the
same interface. When SHAREPORT is specified, TCP/IP allows multiple
listeners to listen on the same combination of port and IP address.

260 z/OS V2R1.0 Communications Server: IP Configuration Reference

As incoming client connections arrive for this port and IP address, TCP/IP
distributes them across the listeners. Specification of this keyword causes
incoming connection requests for the port to be distributed among the listeners
using a weighted round-robin distribution method based on the servers' accept
Efficiency Fractions (SEFs) of the listeners sharing the port. The SEF is a
measure, calculated at intervals of approximately one minute, of the efficiency
of the server application in accepting new connection requests and managing
its backlog queue. Alternatively, SHAREPORTWLM can be coded instead;
SHAREPORTWLM changes the connection distribution algorithm.

If the same port is reserved for multiple job names, SHAREPORT or
SHAREPORTWLM needs to be specified on only one instance of the port
reservation. SHAREPORTand SHAREPORTWLM are valid only for TCP ports.
The last setting of either SHAREPORT or SHAREPORTWLM is used for all
TCP/IP servers that use that port.

SHAREPORTWLM
Required when reserving a port to be shared across multiple listeners on the
same interface. When SHAREPORTWLM is specified, TCP/IP allows multiple
listeners to listen on the same combination of port and IP address.

The SHAREPORTWLM option can be used instead of SHAREPORT. Like
SHAREPORT, SHAREPORTWLM causes incoming connections to be
distributed among a set of TCP listeners; however, unlike SHAREPORT, the
listener selection is based on WLM server-specific recommendations, modified
by the SEF values for each listener. WLM server-specific recommendations are
acquired at intervals of approximately 1 minute from the Work Load Manager
and reflect the listener's capacity to handle additional work.

If the same port is reserved for multiple job names, SHAREPORT or
SHAREPORTWLM needs to be specified on only one instance of the port
reservation. SHAREPORT and SHAREPORTWLM are valid only for TCP ports.
The last setting of either SHAREPORT or SHAREPORTWLM is used for all
TCP/IP servers that use that port.

Result: zAAP and zIIP processor capacity is automatically included when the
SHAREPORTWLM parameter is specified and all systems in the sysplex are
V1R9 or later.

BIND ipaddr
Associates a job name with the IP address, ipaddr. When a job with the
designated name binds to the IPv4 INADDR_ANY address, or to the IPv6
unspecified address (in6addr_any), the bind is intercepted and converted to a
bind to the IP address specified by ipaddr. Subsequent bind processing occurs
as though the server instance had originally issued the bind to the IP address
ipaddr.

You can specify either an IPv4 address (in dotted decimal notation) or an IPv6
address (in hexadecimal notation). IPv4-mapped IPv6 addresses and IPv6
addresses with the reserved prefix ::/96 are not supported.

Rule: The BIND ipaddr parameter does not apply to the PORTRANGE
statement.

Guidelines:

v When you are using the BIND parameter with IPv6 addresses, you should
use only manually configured addresses, because autoconfigured addresses
might change when the stack is recycled.

v If the IP address specified on the BIND parameter is also specified in a
VIPARANGE statement subnet, then VIPARANGE security verification

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 261

might occur to determine whether an application can create the dynamic
VIPA (DVIPA). For information about security profiles for binding to
DVIPAs in the VIPARANGE statement, see z/OS Communications Server: IP
Configuration Guide.

SAF resname
Indicates that the port is reserved for users that have READ access to the
RACF resource
EZB.PORTACCESS.sysname.tcpname.resname

where
v EZB.PORTACCESS is constant
v sysname is the value of the MVS &SYSNAME. system symbol
v tcpname is the name of the procedure used to start the TCP stack
v resname is the 1-8 character value following the SAF keyword

If the SAF keyword is specified and a user tries to bind to the port and is not
allowed access to the resource, the BIND socket call fails.

Tip: The SAF keyword is ignored when VTAM opens a UDP port for
Enterprise Extender (EE) network connections. However, it can still be used to
prevent other address spaces that are using the same name as the VTAM
started task from opening the port.

This is optional and valid for TCP or UDP protocols.

If the jobname parameter is specified as an asterisk (*), any user ID that is
RACF-permitted to the resource specified by the resname value is allowed to
bind to the port specified by the value; APF or superuser authority is not
required.

This permits multiple users access to the protected port. However, the stack
allows only one user to actually BIND to the port at a time. Use SHAREPORT
or SHAREPORTWLM to override this behavior for TCP ports.

Guideline: If an application binds to an IP address that is also specified in a
VIPARANGE statement subnet, then additional security verification might
occur to determine whether the application can create the dynamic VIPA
(DVIPA). This additional verification might occur whether the application
explicitly binds to the DVIPA address or whether the application binds to the
unspecified address and is converted to the DVIPA address using the BIND
parameter. For information about security profiles for binding to DVIPAs in the
VIPARANGE statement, see z/OS Communications Server: IP Configuration
Guide.

NOSMCR
Indicates that Shared Memory Communications over Remote Direct Memory
Access (SMC-R) processing is not permitted for TCP connections by using this
port. NOSMCR is valid only for TCP ports.

Unreserved Port Options:

SAF resname
Indicates that binding to, or listening on, any unreserved port is restricted to
users that are permitted to the specified SAF SERVAUTH resource. See the
description of the SAF parameter for more information.

262 z/OS V2R1.0 Communications Server: IP Configuration Reference

DENY
DENY indicates that port access should be denied. DENY can be specified only
for unreserved ports (on the PORT UNRSV statement) and only when the
specified jobname is an asterisk (*).

A PORT UNRSV protocol * DENY statement is needed only if no other PORT
UNRSV statements are configured for the specified protocol and you want to
prevent all access to unreserved ports using that protocol.

WHENLISTEN
WHENLISTEN indicates that port access control is targeted to TCP
applications that are acting as servers (that is, applications able to accept
incoming client TCP connections) that issue an explicit bind to a user-specified
unreserved port. Permission to use the unreserved port is determined when a
TCP listen is issued. If a listen is not issued, no access control check is made.
The WHENLISTEN parameter is not available for the UDP protocol, and it is
the default for the TCP protocol.

Rule: Every PORT UNRSV statement for the TCP protocol must use the same
access control option. You cannot specify, or default to, the WHENLISTEN
parameter on some statements and specify the WHENBIND parameter on
other statements.

WHENBIND
WHENBIND indicates that permission to use an unreserved port is determined
when an explicit bind to a specific local port is issued. This is the default, and
only option, for the UDP protocol, and it can affect UDP applications that bind
to a specific local port. If the WHENBIND parameter is specified for the TCP
protocol, it can affect TCP client applications that bind to a specific local port
for outbound connections.

Rule: Every PORT UNRSV statement for the TCP protocol must specify, or
default to, the same access control option. You cannot specify the
WHENLISTEN parameter on some statements and specify the WHENBIND
parameter on other statements.

Steps for modifying

To change a parameter value, you must delete the existing PORT statement by
using the DELETE PORT statement, then redefine with the new PORT statement.

Examples

The following example was used for test configuration and is provided here for
illustration only. The sample profile, SEZAINST(SAMPPROF), contains the most
current assignments.
PORT

7 UDP MISCSERV ; Miscellaneous Server - echo
7 TCP MISCSERV ; Miscellaneous Server - echo
9 UDP MISCSERV ; Miscellaneous Server - discard
9 TCP MISCSERV ; Miscellaneous Server - discard
19 UDP MISCSERV ; Miscellaneous Server - chargen
19 TCP MISCSERV ; Miscellaneous Server - chargen
20 TCP * NOAUTOLOG ; FTP Server

; 20 TCP * NOAUTOLOG SAF FTPDATA ; FTP Server
21 TCP FTPD1 ; FTP Server
23 TCP TN3270 ; Telnet 3270 Server

; 23 TCP INETD1 BIND 9.67.113.3 ; z/OS UNIX Telnet server
25 TCP SMTP ; SMTP Server
111 TCP PORTMAP ; Portmap Server (SUN 3.9)
111 UDP PORTMAP ; Portmap Server (SUN 3.9)

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 263

; 111 TCP PORTMAP1 ; Unix Portmap Server (SUN 4.0)
; 111 UDP PORTMAP1 ; Unix Portmap Server (SUN 4.0)

123 UDP SNTPD ; Simple Network Time Protocol Server
135 UDP LLBD ; NCS Location Broker
161 UDP OSNMPD ; SNMP Agent
389 TCP LDAPSRV ; LDAP Server
443 TCP HTTPS ; http protocol over TLS/SSL
443 UDP HTTPS ; http protocol over TLS/SSL

; 500 UDP IKED ; CS IKE daemon
512 TCP RXSERVE ; Remote Execution Server
514 TCP RXSERVE ; Remote Execution Server

; 512 TCP * SAF OREXECD ; z/OS UNIX Remote Execution Server
; 514 TCP * SAF ORSHELLD ; z/OS UNIX Remote Shell Server
; 515 TCP LPSERVE ; LPD Server
; 515 TCP AOPLPD ; Infoprint LPD Server

520 UDP OMPROUTE ; OMPROUTE Server (IPv4 RIP)
521 UDP OMPROUTE ; OMPROUTE Server (IPv6 RIP)
580 UDP NCPROUT ; NCPROUTE Server
750 TCP MVSKERB ; Kerberos
750 UDP MVSKERB ; Kerberos
751 TCP ADM@SRV ; Kerberos Admin Server
751 UDP ADM@SRV ; Kerberos Admin Server

; 1700 TCP PAGENT NOAUTOLOG ; Policy Agent pagentQosListener port
; 1701 TCP PAGENT NOAUTOLOG ; Policy Agent pagentQosCollector port

3000 TCP CICSTCP ; CICS Socket
3389 TCP MSYSLDAP ; LDAP Server for Msys

; 4159 TCP NSSD ; CS NSS daemon
; 4500 UDP IKED ; CS IKE daemon
;16310 TCP PAGENT NOAUTOLOG ; Policy Agent server listener port
;

The following examples control application access to unreserved ports:
v To deny all TCP explicit binds to an unreserved port, add the following

statement to your profile:
PORT UNRSV TCP * DENY WHENBIND

v To allow TCP explicit binds to an unreserved port but deny all TCP listens on an
unreserved port, add the following statement to your profile:
PORT UNRSV TCP * DENY WHENLISTEN

v To deny all TCP listens on an unreserved port, except for applications that
match jobname value ABC*, add the following statement to your profile:
PORT UNRSV TCP ABC* WHENLISTEN

Guideline: If the ports that applications ABC* are accessing are predictable, you
should use PORT reservation statements for those specific ports instead of using
the PORT UNRSV statement.

v To deny all TCP listens on an unreserved port, except for application MYAPP1
and all users permitted to EZB.PORTACCESS.sysname.tcpname.GENERIC, add
the following statements to your profile:
PORT UNRSV TCP MYAPP1
PORT UNRSV TCP * SAF GENERIC

v To deny all UDP explicit binds to an unreserved port, except for users permitted
to EZB.PORTACCESS.sysname.tcpname.GENERIC, add the following statement to
your profile:
PORT UNRSV UDP * SAF GENERIC

Usage notes
v If there are no PORT UNRSV statements configured for this stack, any user can

use a port that is not reserved in this list or that is not reserved with the
PORTRANGE statement. If you have TCP/IP hosts in your network that use

264 z/OS V2R1.0 Communications Server: IP Configuration Reference

ports in the range 1 - 1023 for privileged applications, you should reserve them
with this statement, the PORTRANGE statement, or the RESTRICTLOWPORTS
parameter on the TCPCONFIG or UDPCONFIG statements.

v If an application attempts to access a specific port by explicitly binding for UDP,
by explicitly binding, or listening for TCP, and no PORT or PORTRANGE
statement is found that matches that port and protocol (that is, the port is
unreserved for that protocol), then a check is made for PORT UNRSV
statements. The following list shows the possible results:
– If there are no PORT UNRSV statements for that protocol, the access is

allowed.
– If there are any PORT UNRSV statements for the protocol, a search is made

for the most specific match to the application's job name.
- If a match is found, the access is allowed unless the closest matching PORT

UNRSV statement contains the DENY keyword, or if it contains the SAF
keyword and the user is not permitted to the specified SAF resource.

- If no matching PORT UNRSV statement is found, the access is denied.
v For z/OS UNIX applications, you can reserve a port by specifying the job name

of the application or you can use the name of the started JCL procedure for the
z/OS UNIX kernel address space to enable any application (except applications
using the Pascal API) to bind to the port. This name is typically OMVS unless a
different name is explicitly specified in the STARTUP_PROC parameter in the
BPXPRMxx parmlib member. See z/OS MVS Initialization and Tuning Reference
for more details about the STARTUP_PROC parameter.

v For syslogd, you must include the following PORT statement:
PORT

514 UDP OMVS ; syslogd Server

This port is required for syslogd to accept log data from remote syslogd servers.
Guideline: Instead of OMVS, you can also use the job name of the syslog
daemon on this port reservation statement. If your syslog daemon's job name is
SYSLOGD1, you can specify:
PORT 514 UDP SYSLOGD1

v If you want SNMP OSA Management support, see z/OS Communications
Server: IP Configuration Guide for more information about the PORT statement.

v The NOSMCR option is enforced during TCP bind() processing. To allow servers
that bind to a port that is configured with the NOSMCR option to use SMC-R
communications, you need to perform the following steps:
1. Delete the existing port reservation by using the VARY TCPIP,,OBEYFILE

command with a data set that contains a DELETE PORT statement.
2. Create a reservation for the port by using the VARY TCPIP,,OBEYFILE

command with a data set that contains a PORT statement without the
NOSMCR parameter.

3. Stop and restart the servers that use the port.

Related topics
v “AUTOLOG statement” on page 23
v “DELETE statement” on page 43
v “PORTRANGE statement” on page 266
v “TELNETPARMS statements” on page 587

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 265

PORTRANGE statement

Use the PORTRANGE statement to reserve a range of ports for specified user IDs,
procedures, or job names. The PORTRANGE statement can also specify other
options that apply to all ports in the range.

Rule: The portrange options (NOAUTOLOG, DELAYACKS, and so on) must be
specified in the same order as they appear on the following syntax diagram.

Syntax

�� PORTRange �

� � 1st_port num_ports TCP PortRange Access Specifications
UDP

��

PortRange Access Specifications:

RESERVED
AUTHPORT
jobname

Options

Options:

NOAUTOLog

DELAYAcks

NODELAYAcks SAF resname NOSMCR

Parameters

1st_port
The starting port for a range of ports to reserve. The same port number cannot
appear in multiple PORTRANGE statements, nor can the port be specified on
both PORTRANGE and PORT statements. If the port is specified on a PORT
statement prior to this statement, this port range is ignored. If the port is
specified on a PORT statement that follows this statement, the port in the
PORT statement is ignored. An error message is generated in either case.
1st_port is a value in the range 1 - 65535.

If the 1st_port and num_ports values that are specified result in a range of ports
that exceeds the maximum port number of 65535, the ports up to 65535 are
reserved and those greater than 65535 are ignored.

num_ports
The number of ports to reserve. The ports reserved cannot overlap other
ranges specified by a PORTRANGE statement. No ports within this range can
be specified on a PORT statement. If the port is specified on a PORT statement
prior to this statement, this port range is ignored. If the port is specified on a

266 z/OS V2R1.0 Communications Server: IP Configuration Reference

PORT statement that follows this statement, the port in the PORT statement is
ignored. An error message is generated in either case. num_port is a value in
the range 1 - 65535.

If the 1st_port and num_ports values that are specified result in a range of ports
that exceeds the maximum port number of 65535, the ports up to 65535 are
reserved and those greater than 65535 are ignored.

jobname
The MVS job name that can use the port. You can specify the jobname value as
1 - 8 characters, an asterisk (*) wildcard value, or a 1 - 7 character prefix
followed by an asterisk wildcard value. Specify an asterisk as the jobname value
to reserve a port without specifying a particular job name. This is useful when
you do not know the exact job name or when you want to allow several
different applications to serially bind to the port. Specify a 1 - 7 character
prefix followed by an asterisk to enable all job names that match the prefix to
access the ports in the range.

Restrictions:

v For UDP, only one job name can be associated with a port.
v To reserve a port that is to be monitored by the AUTOLOG function, the

jobname value must exactly match the jobname value on the AUTOLOG
statement; you cannot use an asterisk wildcard value.

Guideline: If a TCP port is to be shared by multiple users, use the PORT
statement instead. The PORTRANGE statement does not support sharing of
ports.

Determining the job name to be associated with a particular client or server
application depends on the environment in which the application is run.
v Applications run from batch use the batch job name.
v Applications started from the MVS operator console use the started

procedure name as the job name.
v Applications run from a TSO user ID use the TSO user ID as the job name.
v Applications run from the z/OS shell normally have a job name that is the

logged on user ID plus a 1-character suffix.
v Authorized users can run applications from the z/OS shell and use the

_BPX_JOBNAME environment variable to set the job name. In this case, the
value specified for the environment variable is the job name.

v Use the name of the started JCL procedure for the UNIX System Services
kernel address space to enable any application (except for applications using
the Pascal API) to bind to the port. This name is typically OMVS unless a
different name is explicitly specified in the STARTUP_PROC parameter in
the BPXPRMxx parmlib member.

v To reserve the port and not allow any application access to it, use the name
RESERVED.

v To reserve ports for the FTP server's use as passive data ports, use the name
AUTHPORT and the protocol TCP. You must also code the
PASSIVEDATAPORTS value in the FTP server's FTP.DATA data set.

v Use the name of the VTAM started task for the UDP ports that are to be
used for Enterprise Extender (EE) network connections.

Restriction: The VTAM jobname can NOT include a wildcard character (*)
when it reserves EE UDP ports.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 267

RESERVED
Indicates that all ports in the port range are not available for use by any user.

AUTHPORT
Indicates that all ports in the port range are not available for use by any user
except FTP, and only when FTP is configured to use PASSIVEDATAPORTS.
AUTHPORT is valid only with the TCP protocol.

NOAUTOLOG
Tells the TCP/IP address space not to restart the server if it was stopped
previously. Otherwise, the default is to restart the server if it was stopped
previously.

DELAYACKS | NODELAYACKS

NODELAYACKS
Specifies that an acknowledgment is returned immediately when a
packet is received with the PUSH bit on in the TCP header. The
NODELAYACKS parameter on the PORTRANGE statement, affects
only connections that use this port. Specifying the NODELAYACKS
parameter on the PORTRANGE statement overrides the specification of
the DELAYACKS parameter on the TCP/IP stack TCPCONFIG profile
statement, or on any of the following statements used to configure the
route used by the TCP connection:
v The TCP/IP stack BEGINROUTES or GATEWAY profile statements
v The Policy Agent RouteTable statement
v The OMPROUTE configuration statements

DELAYACKS
Delays transmission of acknowledgments when a packet is received
with the PUSH bit on in the TCP header. The DELAYACKS parameter
on the PORTRANGE statement affects only connections that use this
port. This is the default, but the behavior can be overridden by
specifying the NODELAYACKS parameter on the TCP/IP stack
TCPCONFIG profile statement, or on any of the following statements
used to configure the route used by the TCP connection:
v The TCP/IP stack BEGINROUTES or GATEWAY profile statements
v The Policy Agent RouteTable statement
v The OMPROUTE configuration statements

SAF resname
SAF resname indicates that all ports in the range are reserved for users that
have READ access to the RACF resource.
EZB.PORTACCESS.sysname.tcpname.resname

where
v EZB.PORTACCESS is constant
v sysname is the value of the MVS &SYSNAME. system symbol
v tcpname is the name of the procedure used to start the TCP stack
v resname is a 1-8 character value following the SAF keyword

If the SAF keyword is specified and an application tries to bind to a port in the
port range, and the user ID associated with the application is not permitted to
the resource, the BIND socket call fails.

This is optional and valid for TCP or UDP protocols.

268 z/OS V2R1.0 Communications Server: IP Configuration Reference

If the jobname value is specified as an asterisk (*), any user ID that is
RACF-permitted to the resource specified by the resname value is allowed to
bind to the port; APF or superuser authority is not required.

Guideline: If an application binds to an IP address that is also specified in a
VIPARANGE statement subnet, then additional security verification might
occur to determine whether the application can create the dynamic VIPA
(DVIPA). For information about security profiles for binding to DVIPAs in the
VIPARANGE statement, see z/OS Communications Server: IP Configuration
Guide

NOSMCR
Indicates that Shared Memory Communications over Remote Direct Memory
Access (SMC-R) processing is not permitted for TCP connections by using any
port in this range. NOSMCR is valid only for TCP ports.

Steps for modifying

To change a parameter value, you must delete the existing PORTRANGE statement
by using the DELETE PORTRANGE statement, then redefine the parameter with
the new PORTRANGE statement.

Examples

This example shows a PORTRANGE statement used to reserve a large number of
ports for a single test system.
PORTRANGE

4000 200 TCP TESTSYS

The following example shows a PORTRANGE statement that reserves port 111 for
both UDP and TCP for one user, ports 500 - 504 for two different users, one using
UDP and one using TCP, and ports 700 - 703 for TCP users with job names that
begin with the prefix ABCD.
PORTRANGE

111 1 UDP PORTMAP
111 1 TCP PORTMAP
500 5 UDP USER1
500 5 TCP USER2
700 4 TCP ABCD*

Usage notes
v A range of ports specified in a VARY TCPIP,,OBEYFILE command data set are

added to the list of ports already reserved.
v Any user can use a port that is not reserved by a PORT or PORTRANGE

statement. If you have TCP/IP hosts in your network that reserve ports in the
range 1 - 1023 for privileged applications, you should reserve them either with
this statement, the PORT statement, or the RESTRICTLOWPORTS parameter on
the TCPCONFIG or UDPCONFIG statements.

v If you are reserving ports for the INADDRANYPORT() parameter in the
BPXPRMxx SYS1.PARMLIB member, you must specify the name of the started
JCL procedure for the z/OS UNIX kernel address space to enable any
application (except for applications using the Pascal API) to bind to the port.
This name is typically OMVS unless a different name is explicitly specified in
the STARTUP_PROC parameter in the BPXPRMxx parmlib member. See z/OS
MVS Initialization and Tuning Reference for more details about the
STARTUP_PROC parameter. You can use IBM Health Checker for z/OS

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 269

enhancements to check whether the range of ports specified by the
INADDRANYPORT and INADDRANYCOUNT parameter of the BPXPRMxx
parmlib member is reserved for OMVS on the TCP/IP stack when operating in a
CINET environment. For more details about IBM Health Checker for z/OS
enhancements, see the IBM Health Checker for z/OS enhancements information
in the z/OS Communications Server: IP Diagnosis Guide

v The NOSMCR option is enforced during TCP bind() processing. To allow servers
that bind to a port in this range that is configured with the NOSMCR option to
use SMC-R communications, you need to perform the following steps:
1. Delete the existing port reservations by using the VARY TCPIP,,OBEYFILE

command with a data set that contains a DELETE PORTRANGE statement.
2. Create reservations for the port by using the VARY TCPIP,,OBEYFILE

command with a data set that contains a PORTRANGE statement without
the NOSMCR parameter.

3. Stop and restart the servers that use the ports.

Related topics
v “DELETE statement” on page 43
v “PASSIVEDATAPORTS (FTP server) statement” on page 824
v “PORT statement” on page 257

PRIMARYINTERFACE statement

Restriction: The PRIMARYINTERFACE statement applies to IPv4 only.

Use the PRIMARYINTERFACE statement to specify which interface is to be
designated as default local host for use by the GETHOSTID() function.

The PRIMARYINTERFACE statement's IP address is not used as the source IP
address for any out-going datagrams, unless that same address is configured as the
SOURCEVIPA address.

If no HOME statements are defined in the profile, PRIMARYINTERFACE defaults
to the first IPv4 INTERFACE statement listed in the profile.

Syntax

�� PRImaryinterface interface_name ��

Parameters

interface_name
The name of an interface that is to be the primary interface. This interface must
have already been defined to TCP/IP. If you specify the name of a dynamic
VIPA interface, the dynamic VIPA must have been defined in a
VIPADYNAMIC block. You cannot specify a loopback interface name.

Steps for modifying

To modify parameters for the PRIMARYINTERFACE statement, you must respecify
the statement with the new parameters.

270 z/OS V2R1.0 Communications Server: IP Configuration Reference

|
|

Include the PRIMARYINTERFACE statement in a VARY TCPIP,,OBEYFILE
command data set under the following conditions:
v Your primary interface is defined by the DEVICE, LINK, and HOME profile

statements.
v The VARY TCPIP,,OBEYFILE command data set includes a HOME statement.
v You want to preserve your primary interface settings.

If you do not include the PRIMARYINTERFACE statement under these conditions,
the primary interface is reset to the first entry in the new HOME list. If your
primary interface is defined by an INTERFACE profile statement, including a
HOME statement in a VARY TCPIP,,OBEYFILE command data set does not affect
the primary interface settings.

Examples

This example shows a PRIMARYINTERFACE statement specifying a token-ring:
PRIMARYINTERFACE TR1

You can verify which HOME entry is primary by using the Netstat HOME/-h
command:
Home address list:
Address Link Flg
9.67.113.61 TR1 P
9.67.116.125 CTCD00
127.0.0.1 LOOPBACK

Usage notes
v Because of the way dynamic VIPA links are added to the TCP/IP stack, you

cannot specify a PRIMARYINTERFACE statement for a dynamic VIPA link in
the same Profile data set as the VIPADYNAMIC block that defines the dynamic
VIPA link. This is true for the initial Profile data set or a Profile data set
specified on a VARY TCPIP,,OBEYFILE command. In order to specify a dynamic
VIPA link on a PRIMARYINTERFACE statement, the dynamic VIPA link must
have been defined to the stack in a previous Profile data set.

v The primary interface is flagged in the Netstat HOME/-h display.
v If the PRIMARYINTERFACE statement is not specified, then the first address in

the HOME list is designated as the default local host.

Related topic
v “HOME statement” on page 136

SACONFIG statement

Use the SACONFIG statement to configure the SNMP TCP/IP subagent. If the
SACONFIG statement is not specified, the subagent is started by TCP/IP
initialization but SNMP SET support is disabled.

Syntax

Tip: Specify the parameters for this statement in any order.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 271

�� SACONFig �

AGENT 161

AGENT agent_port_number
COMMUNity public

COMMUNity community_string
ENABLed

DISABLed
OSADISabled

OSAENabled

OSASF osasf_port_number
SACACHETime 30

SACACHETime cache_time
SETSDISabled

SETSENAbled

��

Parameters

AGENT
A port number in the range 1 - 65 535 used in establishing communication
with the SNMP agent. For the TCP/IP SNMP subagent to communicate with
the z/OS Communications Server SNMP agent, the port number specified
must match the port number specified on the -p parameter when the SNMP
agent is started. The default value is 161 when processing the initial profile
only. If SACONFIG is specified in a VARY TCPIP,,OBEYFILE command data
set without the AGENT parameter, the value is unchanged.

COMMUNITY
A 1 - 32 character string used as the community name (or password) in
establishing contact with the SNMP agent. It is not converted to uppercase by
profile processing. It cannot contain any imbedded white space or control
characters (such as blank, tab, end of line, or end of file) and cannot contain
any imbedded semicolons (semicolons are treated as comment delimiters). For
the TCP/IP SNMP subagent to communicate with the z/OS Communications
Server SNMP agent, the community name specified on the COMMUNITY
keyword must match one that is defined in the PW.SRC or SNMPD.CONF data
set used by the SNMP agent or specified on the -c parameter when the SNMP
agent is started.

Restriction: The community name is case sensitive.

For more information about how the community name is used to permit access
to the SNMP agent, see Step 1: Configure the SNMP agent (OSNMPD), in
z/OS Communications Server: IP Configuration Guide.

The default value is public when processing the initial profile only. If
SACONFIG is specified in a VARY TCPIP,,OBEYFILE command data set
without the COMMUNITY parameter, the value is unchanged.

DISABLED
If specified in PROFILE.TCPIP at initialization, indicates that the SNMP
subagent should not be started. Specify this parameter if you do not require

272 z/OS V2R1.0 Communications Server: IP Configuration Reference

any of the SNMP MIB data supported by the TCP/IP subagent. By default, the
SNMP subagent is started by TCP/IP initialization.

If specified in a VARY TCPIP,,OBEYFILE command data set, indicates that the
currently active subagent task should be terminated.

SNMP MIB objects supported by the z/OS Communications Server SNMP
agent and subagents other than the TCP/IP SNMP subagent are still available.
For information about which MIB objects are supported by the SNMP agent
and subagent, see the z/OS Communications Server: IP User's Guide and
Commands.

ENABLED
Indicates that the SNMP subagent should be started at the completion of the
initial profile processing, or of VARY TCPIP,,OBEYFILE command processing.

OSADISABLED
Indicates that OSA Management support is not required at this TCP/IP
instance. If this support was previously enabled, then specifying this parameter
disables the support.

OSAENABLED
Indicates that OSA Management support is required at this TCP/IP instance.
For optimal performance, specify OSAENABLED only at the TCP/IP instance
from which Management support is needed. By default, OSA data retrieval is
not enabled.

The SNMP subagent must be enabled, as it provides support for retrieval of
SNMP management data about OSA devices and links. Therefore, do not
specify the DISABLED parameter for this TCP/IP instance.

To retrieve the data, there must also be at least one TCP/IP instance active for
which the OSASF parameter and its port number have been specified in the
SACONFIG statement.

OSASF osasf_port_number
A value between 0 and 65 535. There is no default. A value of 1 - 65 535
indicates a port number and marks the corresponding TCP/IP instance as a
candidate to communicate with OSA/SF for retrieval of SNMP management
data regarding ATM devices and links. A value of 0 indicates that the
corresponding TCP/IP instance is no longer a candidate to communicate with
OSA/SF, in the event that the OSA/SF-to-TCP/IP connection is restarted.

Guideline: When multiple TCP/IP instances specify that OSA management
data retrieval is wanted, it is suggested that all be configured with the same
OSASF parameter. Only one TCP/IP instance connects directly to OSA/SF.
Other instances connect to OSA/SF using this primary TCP/IP instance.

SACACHETIME cache_time
The number of seconds (in the range 0 - 3 600) that the TCP/IP subagent
caches management data. If a request for management data is received and the
amount of time specified by the cache_time value has expired, the TCP/IP
subagent retrieves a new copy of the management data from the TCP/IP stack.
A value of 0 indicates that the TCP/IP subagent should not cache any data,
but always retrieve the current value of the data from the TCP/IP stack. The
default value is 30 seconds when processing the initial profile only. The
subagent's cache_time value can also be changed by an SNMP SET request.

SETSDISABLED
Indicates that the SNMP subagent should not process SNMP SET requests.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 273

SETSENABLED
Indicates that the SNMP subagent should process SNMP set requests. For
example, SETSENABLED allows a user who issued an SNMP set request to
cancel connections and start and stop devices using the SNMP agent security
instead of RACF security. By default, the processing of SNM P SET requests is
disabled.

Steps for modifying

To modify parameters for the SACONFIG statement, you must respecify the
statement with the new parameters.
v If you modify the community name or Agent port number, you must recycle the

TCP/IP subagent or the SNMP Agent for the changes to take effect.
v If you modify the OSA/SF port number, you must recycle the TCP/IP subagent

or the OSA/SF IOASNMP application for the changes to take effect.

Examples
SACONFIG COMMUNITY USACCESS AGENT 528
SACONFIG DISABLED
SACONFIG SETSENABLED OSAENABLED OSASF 2026

Usage notes

When you specify more than one SACONFIG statement in the initial profile data
set, or in a data set referenced by the VARY TCPIP,,OBEYFILE command, the
default value ENABLED is set even if the DISABLED value was specified in a
previous SACONFIG statement.

SMFCONFIG statement

Use the SMFCONFIG statement to provide SMF logging for Telnet, FTP, IPSec,
TCP/IP API, TCP/IP stack, and Shared Memory Communications over Remote
Direct Memory Access (SMC-R) activity.

Using SMFCONFIG to turn on SMF logging allows you to request that standard
subtypes are assigned to the TCP/IP SMF records. The SMFPARMS statement
provides a similar capability but requires the installation to select the subtype
numbers to be used. Use the SMFCONFIG statement instead of SMFPARMS. See
the information about accounting for SMF records in z/OS Communications
Server: IP Configuration Guide.

The SMFCONFIG profile statement controls only whether SMF records are written
to the MVS SMF data sets. Some of the SMF 119 records are also available to
applications that connect to the following network management interface (NMI)
services:
v Real time TCP connection SMF data NMI (SYSTCPCN)
v Real time SMF data NMI (SYSTCPSM)

These functions are part of the real time TCP/IP network monitoring NMI. For
more information about the real time TCP/IP network monitoring NMI
functions,see “NETMONITOR statement” on page 234. If you want your
application to process only SMF 119 records by using the real time TCP/IP
network monitoring NMI functions, you need to configure only the
NETMONITOR profile statement. You do not need to request support for these

274 z/OS V2R1.0 Communications Server: IP Configuration Reference

records on the SMFCONFIG profile statement.

Syntax

Tip: Specify the parameters for this statement in any order.

�� SMFCONFIG
Type 118 Options

�

TYPE118 Type 118 Options
TYPE119 Type 119 Options

��

Type 118 Options:

�

NOFTPCLIENT

FTPCLIENT
NOTCPINIT

TCPINIT
NOTCPIPStatistics

TCPIPStatistics
NOTCPTERM

TCPTERM
NOTN3270CLIENT

TN3270CLIENT

Type 119 Options:

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 275

�

NODVIPA

DVIPA
NOFTPCLIENT

FTPCLIENT
NOIFStatistics

IFStatistics
NOIPSECURITY

IPSECURITY
PORTStatistics

NOPORTStatistics
NOPROFILE

PROFILE
NOSMCRGROUPStatistics

SMCRGROUPStatistics
NOSMCRLINKEvent

SMCRLINKEvent
NOTCPINIT

TCPINIT
NOTCPIPStatistics

TCPIPStatistics
NOTCPSTACK

TCPSTACK
NOTCPTERM

TCPTERM
NOTN3270CLIENT

TN3270CLIENT
NOUDPTerm

UDPTerm

Parameters

DVIPA | NODVIPA

NODVIPA
Requests that SMF records of subtype 32, 33, 34, 35, 36, and 37 not be
created when various sysplex events occur. This operand is valid if the
current record type setting is TYPE119. This is the default value.

DVIPA
Requests that SMF records of subtype 32, 33, 34, 35, 36, and 37 be
created when various sysplex events occur. This operand is valid if the
current record type setting is TYPE119.

FTPCLIENT | NOFTPCLIENT

276 z/OS V2R1.0 Communications Server: IP Configuration Reference

NOFTPCLIENT
Requests that SMF records of subtype 3 not be created when a user
invokes the FTP client command. The record format affected (Type 118
or Type 119) by this operand is determined by the most recently
specified setting of the TYPE118 or TYPE119 operand. This is the
default value.

FTPCLIENT
Requests that SMF records of subtype 3 be created when a user
invokes the FTP client command. The record format affected (Type 118
or Type 119) by this operand is determined by the most recently
specified setting of the TYPE118 or TYPE119 operand.

IFSTATISTICS | NOIFSTATISTICS

NOIFSTATISTICS
Requests that SMF type 119 records of subtype 6 and subtype 44 not be
created. This operand is valid if the current record type setting is
TYPE119. This is the default value.

IFSTATISTICS
Requests that SMF type 119 records that are related to interface
statistics are created. The following record subtypes are created:
v Subtype 6 records that contain statistics that are related to interface

utilization
v Subtype 44 records that contain statistics that are related to 10GbE

RoCE Express interface utilization for SMC-R communications

Note that these records are created periodically based on the SMF
interval in effect. This operand is valid if the current record type
setting is TYPE119.

IPSECURITY | NOIPSECURITY

NOIPSECURITY
SMF type 119 records of subtypes 77, 78, 79, and 80 are not created.
This operand is valid if the current record type setting is TYPE119. This
is the default value.

IPSECURITY
Creates SMF type 119 records of subtypes 77 and 78 when a dynamic
tunnel is added and removed. Creates SMF type 119 records of
subtypes 79 and 80 when a manual tunnel is activated or deactivated.
This operand is valid if the current record type setting is TYPE119.

PORTSTATISTICS | NOPORTSTATISTICS

NOPORTSTATISTICS
Requests that SMF type 119 records of subtype 7 not be created. This
operand is valid if the current record type setting is TYPE119. This is
the default value.

PORTSTATISTICS
Requests that SMF type 119 records of subtype 7 containing statistics
related to reserved PORT utilization be created. Note that these records
are created periodically based on the SMF interval in effect. This
operand is valid if the current record type setting is TYPE119.

PROFILE| NOPROFILE

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 277

NOPROFILE
Requests that SMF type 119 records of subtype 4 not be created. This
operand is valid if the current record type setting is TYPE119. This is
the default value.

Results: If SMFCONFIG PROFILE is in effect, and then SMFCONFIG
NOPROFILE is specified in a profile data set referenced by the VARY
TCPIP,,OBEYFILE command, one final SMF type 119 record of subtype
4 is created to record the fact that this function has been turned off and
no more SMF records of this subtype are created.

PROFILE
Requests that SMF type 119 records of subtype 4 be created. These
records are SMF event records that provide TCP/IP stack profile
information. They are created when the stack is first started and when
profile changes occur as a result of VARY TCPIP,,OBEYFILE command
processing. This operand is valid if the current record type setting is
TYPE119.

SMCRGROUPSTATISTICS | NOSMCRGROUPSTATISTICS

SMCRGROUPSTATISTICS
Requests that SMF type 119 records of subtype 41 not be created. This
operand is valid if the current record type setting is TYPE119. This is
the default value.

NOSMCRGROUPSTATISTICS
Requests that SMF type 119 records of subtype 41 containing statistics
related to SMC-R link groups be created. These records are created
periodically based on the SMF interval in effect. This operand is valid
if the current record type setting is TYPE119.

SMCRLINKEVENT | NOSMCRLINKEVENT

SMCRLINKEVENT
Requests that SMF type 119 records of subtype 42 and 43 not be
created. This operand is valid if the current record type setting is
TYPE119. This is the default value.

NOSMCRLINKEVENT
Requests that SMF type 119 records of subtype 42 and 43 be created.
The SMF records of subtype 42 are created when SMC-R links are
started, and the SMF records of subtype 43 are created when SMC-R
links are ended. This operand is valid if the current record type setting
is TYPE119.

TCPINIT | NOTCPINIT

NOTCPINIT
Requests that SMF records of subtype 1 not be created when TCP
connections are established. The record format affected (Type 118 or
Type 119) by this operand is determined by the most recent setting of
the TYPE118 or TYPE119 operand. This is the default value.

TCPINIT
Requests that SMF records of subtype 1 be created when TCP
connections are established. The record format collected (Type 118 or
Type 119) is determined by the most recently specified TYPE118 or
TYPE119 operand.

TCPIPSTATISTICS | NOTCPIPSTATISTICS

278 z/OS V2R1.0 Communications Server: IP Configuration Reference

NOTCPIPSTATISTICS
Requests that SMF records of subtype 5 not be created. The record
format affected (Type 118 or Type 119) by this operand is determined
by the most recently specified setting of the TYPE118 or TYPE119
operand. This is the default value.

TCPIPSTATISTICS
Requests that SMF records of subtype 5 containing TCP/IP statistics be
created. Note that these records are created periodically based on the
SMF interval in effect. The record format collected (Type 118 or Type
119) is determined by the most recent setting of the TYPE118 or
TYPE119 operand.

TCPSTACK | NOTCPSTACK

NOTCPSTACK
Requests that SMF type 119 records of subtype 8 not be created. This
operand is valid if the current record type setting is TYPE119. This is
the default value.

TCPSTACK
Requests that SMF type 119 records of subtype 8 be created when a
TCP stack is activated and when it is terminated. This operand is valid
if the current record type setting is TYPE119.

TCPTERM | NOTCPTERM

NOTCPTERM
Requests that SMF records of subtype 2 not be created when TCP
connections are terminated. The record format affected (Type 118 or
Type 119) by this operand is determined by the most recently specified
setting of the TYPE118 or TYPE119 operand. This is the default value.

TCPTERM
Requests that SMF records of subtype 2 be created when TCP
connections are terminated. The record format collected (Type 118 or
Type 119) is determined by the most recently specified TYPE118 or
TYPE119 operand.

TN3270CLIENT | NOTN3270CLIENT

NOTN3270CLIENT
Requests that SMF type 118 records of subtype 4, or type 119 records of
subtype 22 or 23 not be created. The record format affected (Type 118
or Type 119) by this operand is determined by the most recently
specified setting of the TYPE118 or TYPE119 operand. This is the
default value.

TN3270CLIENT
Requests that SMF type 118 records of subtype 4, or type 119 records of
subtype 22 and 23 be created when the TSO Telnet Client code initiates
or terminates a connection (respectively for type 119). The record
format collected (Type 118 or Type 119) is determined by the most
recently specified TYPE118 or TYPE119 operand.

UDPTERM | NOUDPTERM

NOUDPTERM
Requests that SMF type 119 records of subtype 10 not be created. This
operand is valid if the current record type setting is TYPE119. This is
the default value.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 279

UDPTERM
Requests that SMF type 119 records of subtype 10 be created when a
UDP Socket is closed. This operand is valid if the current record type
setting is TYPE119.

Steps for modifying

To modify parameters for the SMFCONFIG statement, you must respecify the
statement with the new parameters.

VARY TCPIP,,OBEYFILE command processing does not reset previous settings to
the default.

Statement dependency
v Use of SMFCONFIG is preferable to SMFPARMS to standardize subtypes. If

SMFPARMS is encountered after an SMFCONFIG statement, an error message is
displayed and the SMFPARMS parameters are ignored. If SMFCONFIG is not
coded, no SMF records are logged (assuming that SMFPARMS is not coded
either).

v SMFPARMS is valid only for Type 118 records. Type 119 records have default
subtype values that are not installation-configurable.

Examples

This example requests SMF records for TCP connection initialization, TCP
connection termination, FTP client, Telnet client, and TCP/IP statistics:
SMFCONFIG TCPINIT TCPTERM FTPCLIENT TN3270CLIENT TCPIPSTATISTICS

The format type default is TYPE118. If you use SMFCONFIG to activate SMF
recording, you do not need to make any changes to continue receiving the same
recording. If you want to use the new records, specify TYPE119, followed by any
of the SMF records that you want.

For example, if the following is specified:
SMFCONFIG FTPCLIENT TN3270CLIENT

TYPE119 FTPCLIENT TN3270CLIENT

The recording is Type 118 FTP, TN3270 client records and Type 119 FTP, TN3270
client records.

Usage notes

Requirement: SMF must be active and properly configured to allow the recording
of Type 118 or Type 119 records, depending on which types are being used by the
configuration.

Tip: The TYPE118 keyword can be omitted when designating Type 118 options as
long as they are specified before the Type 119 options.

Related topic
v “NETMONITOR statement” on page 234

280 z/OS V2R1.0 Communications Server: IP Configuration Reference

SMFPARMS statement

Use the SMFPARMS statement to log the use of TCP by applications using SMF
Type 118 log records. You can log Telnet and FTP client activity, and TCP API
activity.

Syntax

Rule: Specify the parameters in the order shown here.

�� SMFPARMS inittype termtype clienttype ��

Parameters

inittype
An integer in the range 0 - 255 specifying the subtype field in the API
initialization records. The value 0 indicates that no API initialization is written.

termtype
An integer in the range 0 - 255 specifying the subtype field in the API
termination records. The value 0 indicates no API termination records are
written.

clienttype
An integer in the range 0 - 255 specifying the subtype field in the FTP or
Telnet client. The value 0 indicates that no FTP or Telnet client records are
written.

Steps for modifying

To modify parameters for the SMFPARMS statement, you must respecify the
statement with the new parameters.

Statement dependency

SMFPARMS is valid only for Type 118 SMF records. Type 119 records have default
subtype values that are not installation-configurable. As such, the only way to
activate the recording of Type 119 records is by using SMFCONFIG.

Examples
v Either of the following statements would produce API initialization and

termination records but no FTP or Telnet client records:
SMFPARMS 3 4 0
SMFPARMS 3 4

v The following statement would produce client records only:
SMFPARMS 0 0 5

v Because one of the parameters is missing, this statement would generate an error
and not produce any records:
SMFPARMS 3

Usage notes
v The values for each subtype should be unique.
v If inittype, termtype, or clienttype have the value of 0, no attempt is made to write

the respective record.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 281

v The format of the log information differs for Telnet and FTP client activity, and
TCP API activity.

SOMAXCONN statement

Use the SOMAXCONN statement to specify the maximum number of connection
requests queued for any listening socket.

Syntax

Rule: Specify the parameters in the order shown here.

��
SOMAXCONN 1024

SOMAXCONN maximum_queue_depth
��

Parameters

maximum_queue_depth
The maximum number of pending connection requests queued for any
listening socket. The minimum value is 1, the maximum value is 2147483647,
and the default value is 1024.

This number is stored as a fullword integer, but most implementations of
TCP/IP hardcode a value in the range 5 - 10.

This number is the maximum depth for any listening stream socket, but you
can specify a shorter queue length when the listen performed for the socket.

Steps for modifying

To modify parameters for the SOMAXCONN statement, you must respecify the
statement with the new parameters.

Examples

This example shows a SOMAXCONN statement specifying the default number of
listening sockets.
SOMAXCONN 1024

Usage notes
v A SOMAXCONN constant with a value of 10 is defined in the SOCKET.H

header file. If your C socket programs use this constant to determine the
acceptable maximum listening backlog queue length, remember to change the
header file to specify the value that you specified for TCP/IP for the
maximum_queue_depth on the SOMAXCONN statement.

SRCIP statement

Use the SRCIP statement to do the following tasks:
v Designate source IP addresses for certain outbound TCP connections or server

applications

282 z/OS V2R1.0 Communications Server: IP Configuration Reference

v Designate whether to prefer a public or a temporary IPv6 address when the
algorithm for default source address selection is used to select the source IP
address for certain outbound TCP connections or for outbound UDP or RAW
packets

Restriction: Only one SRCIP block should appear in a configuration data set. Any
subsequent SRCIP blocks are ignored and an informational message is displayed. If
a syntax error is encountered when this statement is processed, an error message is
displayed and the entire SRCIP block is ignored (no entries are processed).

Guidelines:

v The SRCIP block does not require you to specify the SOURCEVIPA parameter on
either the IPCONFIG statement or the IPCONFIG6 statement.

v SRCIP JOBNAME and DESTINATION entries can appear in any order. If an
outbound connection matches more than one JOBNAME or DESTINATION
entry, the following order of precedence is used:
1. A match on the most specific JOBNAME entry with at least one,

non-wildcard character (this excludes JOBNAME *)
2. A match on the most specific DESTINATION entry
3. A JOBNAME * entry

Designating source IP addresses for TCP connections

The SRCIP statement supports a combination of JOBNAME and DESTINATION
entries to designate source IP addresses. Use the SRCIP JOBNAME statement to
designate source IP addresses to be used for TCP applications identified by
specified jobs. Use the SRCIP DESTINATION statement to designate source IP
addresses to be used for outbound TCP connections destined for specified IP
addresses, networks or subnets.

These source IP addresses override source IP address specification based on:
v The VIPA IP addresses in the HOME list or the SOURCEVIPAINTERFACE

specification, if SOURCEVIPA was specified
v The TCPSTACKSOURCEVIPA IP address

See the information about source IP address selection in z/OS Communications
Server: IP Configuration Guide for the hierarchy of ways that the source IP address
of an outbound connection is determined.

Guideline: Applications that bind to INADDR_ANY or to the unspecified IPv6
address (in6addr_any), and that match on a SRCIP JOBNAME or DESTINATION
statement, do not have the designated IP address as its source address upon
completion of the bind() call. The source address is not set to the designated
address until completion of the subsequent connect() (client applications) or listen
(server applications) call. This is important to note for applications that issue a
getsockname() call after a bind() call.

Designating whether to prefer a public IPv6 address or a
temporary IPv6 address

Use the SRCIP JOBNAME statement to indicate whether to prefer a public IPv6
address or a temporary IPv6 address for an application that is identified by the
specified job name. The preference for temporary or public IPv6 addresses is part
of selecting a source address for an outbound packet using the algorithm for

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 283

source address selection. For more information about default source IP address
selection and about using IPv6 temporary addresses, see z/OS Communications
Server: IPv6 Network and Application Design Guide.

Syntax

Rule: Specify the parameters for JOBNAME or DESTINATION entries in the order
shown here.

�� SRCIP �

DESTINATION dstv4_addr srcv4_addr
dstv4_addr/prefixlen srcv4_addr
dstv6_addr srcv6_addr

srcv6_intf_name
dstv6_addr/prefixlen srcv6_addr

srcv6_intf_name
JOBNAME jobname Source IP

TEMPADDRS
PUBLICADDRS

�

� ENDSRCIP ��

Source IP:

srcv4_addr
srcv6_addr
srcv6_intf_name

CLIENT

SERVER
BOTH

Parameters

DESTINATION
Designates a source address or interface to be used for outbound TCP
connections with destinations that match the specified destination address or
network.

Restriction: The source address specified in a matching SRCIP DESTINATION
entry cannot be a distributed DVIPA unless the GLOBALCONFIG
EXPLICITBINDPORTRANGE profile parameter is configured and one of the
following situations exist:
v The application issued a connect request without a prior explicit bind.
v The source port for the outbound TCP connection socket was explicitly

bound to port 0, to a specified port that is less than 1024, or to a port that is
reserved for this job by a PORT or PORTRANGE profile statement.

If GLOBALCONFIG EXPLICITBINDPORTRANGE is not configured or if the
source port is explicitly bound to an ephemeral port (equal to or greater than
1024) that is not reserved for this job, the connection request fails.

Rule: If the source port is less than 1024 or is a port that is reserved for this
job and the specified source is a distributed DVIPA, you must ensure that
multiple outbound connections to the same destination IP address and port
cannot occur concurrently with the same source IP address and port.

284 z/OS V2R1.0 Communications Server: IP Configuration Reference

A match to a SRCIP DESTINATION entry cannot be identified until a connect
request is issued and the destination is known. However, some applications
establishing outbound TCP connections might issue an explicit bind socket API
prior to issuing the connect request. The port that is assigned or specified
during this early bind processing might not be available across the sysplex for
the destination-specific source IP address that is determined later at connect
request time. If the port is not available, then an ambiguous situation might
occur in which multiple outbound connections to the same destination IP
address and port have the same source IP address and port. For this reason,
the use of distributed DVIPAs on a SRCIP DESTINATION statement is not
allowed without a GLOBALCONFIG EXPLICITBINDPORTRANGE statement
configured on this stack.

Guideline: If you use distributed DVIPAs for the source IP address in a SRCIP
DESTINATION entry, you should specify the SYSPLEXPORTS keyword on the
VIPADISTRIBUTE statement for those distributed DVIPAs.

If duplicate destination values are specified in the SRCIP block, the first
DESTINATION entry is used, any subsequent DESTINATION entry with a
duplicate destination value is ignored, and a message is displayed.

If an outbound TCP connection's destination address matches more than one
SRCIP destination address, the source address selected is determined by the
most complete match. For example, suppose the following DESTINATION
entries are specified in the SRCIP statement:
DESTINATION 9.67.0.0/16 10.1.1.1
DESTINATION 9.67.37.0/24 10.1.1.2

A destination address of 9.67.37.5 matches both DESTINATION entries, but
9.67.37.0/24 is the most specific match and 10.1.1.2 is selected as the source IP
address for the outbound connection.

A DESTINATION designation is ignored if the job name for the connection
matches any JOBNAME entry other than JOBNAME *.

dstv4_addr
IPv4 host address to be matched by the destination IP address of an
outbound TCP connection request. This is the destination IP address with
which a specified source address is associated

dstv4_addr/prefixlen
Subnet or network address to be matched by the destination IP address of
an outbound TCP connection request. This is the destination IP subnet or
network that a specified source address is associated with. The dstv4_addr
value is a fully qualified IPv4 IP address and the prefixlen value is a
decimal value in the range 1 - 32 that specifies how many of the leftmost
contiguous bits of the address comprise the prefix.

dstv6_addr
IPv6 host address to be matched by the destination IP address of an
outbound TCP connection request. This is the destination IP address that a
specified source address or interface name is associated with. See
“Restrictions on IPv6 addresses configured in the TCP/IP profile” on page
143 for a list of restrictions that must be observed when specifying this
parameter. If the stack is not IPv6-enabled and an IPv6 IP address is
specified, the DESTINATION entry is ignored and a message is displayed.

dstv6_addr/prefixlen
Prefix address to be matched by the destination IP address of an outbound
TCP connection request. This is the destination IP subnet or network that a

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 285

specified source address or interface name is associated with. The
dstv6_addr value is a fully qualified IPv6 IP address and the prefixlen value
is a decimal value in the range 1 - 128 that specifies how many of the
leftmost contiguous bits of the address comprise the prefix.

See “Restrictions on IPv6 addresses configured in the TCP/IP profile” on
page 143 for a list of restrictions that must be observed when specifying
this parameter. If the stack is not IPv6-enabled and an IPv6 IP address is
specified, the DESTINATION entry is ignored and a message is displayed.

srcv4_addr
IPv4 host address to be used as a source IP address if the associated
destination address is matched. The specified IP address does not need to
be defined prior to the processing of the SRCIP block but it must be
defined before the first TCP connect request is issued for the associated
destination, otherwise the connect request fails.

The srcv4_addr value is a static VIPA, a dynamic VIPA, or a real IPv4
address associated with a physical interface. If a dynamic VIPA is used, it
can be defined by a VIPADEFINE statement or previously activated with
bind() or the IOCTL SIOCSVIPA value within a range of VIPAs.

Restrictions:

v An IPv4 source address cannot be specified for an IPv6 destination
address.

v A distributed DVIPA cannot be specified for the source IP address in a
DESTINATION entry unless the EXPLICITBINDPORTRANGE parameter
on a GLOBALCONFIG statement is configured on this stack.

srcv6_addr
IPv6 host address to be used as a source IP address if the associated
destination address is matched. The IPv6 IP address is in
colon-hexadecimal format. A prefix_length cannot be specified. See
“Restrictions on IPv6 addresses configured in the TCP/IP profile” on page
143 for a list of restrictions that must be observed when specifying this
parameter. If the stack is not IPv6-enabled and an IPv6 IP address is
specified, the DESTINATION entry is ignored and a message is displayed.
The specified IP address does not need to be defined prior to the
processing of the SRCIP block, but it must be defined before the first TCP
connect request is issued for the associated destination; otherwise, the
connect request fails.

The srcv6_addr value is a static VIPA, a dynamic VIPA, or a real IPv4
address associated with a physical interface. If a dynamic VIPA is used, it
can be defined by a VIPADEFINE statement or previously activated with
bind() or a IOCTL SIOCSVIPA6 value within a VIPARANGE statement.

Restrictions:

v An IPv6 source address cannot be specified for an IPv4 destination
address.

v A distributed DVIPA cannot be specified for the source IP address in a
DESTINATION entry unless the EXPLICITBINDPORTRANGE parameter
on a GLOBALCONFIG statement is configured on this stack.

srcv6_intf_name
The name of an IPv6 static VIPA, dynamic VIPA interface, or a physical
interface to be used as a source interface if the associated destination
address is matched. The maximum length is 16 characters. If a dynamic
VIPA is used, it can be defined by a VIPADEFINE statement or previously

286 z/OS V2R1.0 Communications Server: IP Configuration Reference

activated with bind() or the IOCTL SIOCSVIPA6 value within a
VIPARANGE statement. If the stack is not IPv6-enabled, the
DESTINATION entry is ignored and a message is displayed. The specified
interface does not need to be defined prior to the processing of the SRCIP
block, but it must be defined before the first TCP connect request is issued
for the associated destination; otherwise, the connect request fails. If the
interface has multiple IP addresses, then the source IP address for the
outbound connection is selected from among these addresses according to
the default source address selection algorithm. For more information, see
the default source address selection algorithm information in z/OS
Communications Server: IPv6 Network and Application Design Guide.

Restrictions:

v An IPv6 source interface cannot be specified for an IPv4 destination
address.

v A distributed DVIPA cannot be specified for the source IP address in a
DESTINATION entry unless the EXPLICITBINDPORTRANGE parameter
on a GLOBALCONFIG statement has been configured on this stack.

JOBNAME
Use this keyword to do one of the following:
v Designate a source address or interface to be used for TCP applications with

a job name that matches the specified job name.
– The parameters CLIENT, SERVER, and BOTH designate the type of socket

function call on which the source IP address should be used.
– The application can be a server if it binds to the IPv4 INADDR_ANY

address or to the IPv6 unspecified address (in6addr_any), and the
keyword SERVER or BOTH is specified with the SRCIP JOBNAME
statement specified with a value other than JOBNAME *.

See Designate source IP addresses for TCP connections for more information.
v Designate whether to prefer a temporary IPv6 address (TEMPADDRS) or a

public IPv6 address (PUBLICADDRS) when the algorithm for default source
address selection is used to select the source IP address for an application
that has the specified job name.
See Designate that a temporary IPv6 address is preferred over a public IPv6
address and Designate that a public IPv6 address is preferred over a
temporary IPv6 address for more information.

If a connection request matches both a job name value other than JOBNAME *
and a SRCIP destination address, the matching JOBNAME entry is used;
otherwise, the matching DESTINATION entry is used.

Designate source IP addresses for TCP connections

Use the following parameters to designate source IP addresses for TCP
connections.

jobname
Specifies the MVS job name of the application with which the specified
source IP address is associated. The jobname value can be up to 8 characters
in length. A trailing asterisk (*) indicates a wildcard specification. If you
specify an asterisk (*), then all qualifying TCP applications, except those
whose destination matches a SRCIP destination address on connect
requests, are associated with the specified source IP address or interface;
any existing specifications indicated by TCPSTACKSOURCEVIPA
parameter are overridden. If similar prefixes are specified (for example,
PAY* and PAYR*), then the actual source IP address associated with a job

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 287

name is determined by the most complete match between the prefix and
the job name. For example, an application whose job name is PAYROLL
would match the PAYR* JOBNAME entry, not the PAY* JOBNAME entry.

If you want to associate one job name with both an IPv4 and an IPv6 IP
address, specify two JOBNAME entries in which the jobname value is the
same but the IP addresses are of different IP address families. If duplicate
job names are specified in the same SRCIP block, and the duplicate entries
specify an IP address of the same IP type (for example, both entries specify
IPv4 or both specify IPv6 IP address types) the first JOBNAME entry is in
effect. Any duplicate JOBNAME entries are ignored and messages are
displayed.

If duplicate job names are specified in the same SRCIP block, and one of
the entries specifies an IPv6 address or interface and the other entry
specifies TEMPADDRS, the first JOBNAME entry is in effect. Any duplicate
JOBNAME entries that specify an IPv6 address or interface or
TEMPADDRS are ignored and messages are displayed.

Restriction: Unless a GLOBALCONFIG EXPLICITBINDPORTRANGE
statement is configured on this stack, you cannot use an IPv4 SRCIP
JOBNAME entry that specifies a distributed DVIPA to select as the source
IP address for a connection on an IPv6 socket to an IPv4-mapped
destination. If you do use such an entry, the connection fails.

srcv4_addr
IPv4 host address to be used as a source IP address if it matches the
associated job name. The specified IP address does not need to be defined
prior to processing the SRCIP block but it must be defined before the TCP
connect or listen request is issued by the associated job; otherwise, the
connect or listen request fails.

The ipv4_address value can be a static VIPA, a dynamic VIPA, or a real IPv6
address associated with a physical interface. If you specify a dynamic
VIPA, it can be defined by a VIPADEFINE statement or a VIPARANGE
statement. If the dynamic VIPA is defined by a VIPARANGE statement,
then it must have been activated with a bind() or IOCTL SIOCSVIPA value.

srcv6_addr
IPv6 host address to be used as a source IP address if it matches the
associated job name. The IPv6 IP address is in colon-hexadecimal format.
You cannot specify a prefix length. See “Restrictions on IPv6 addresses
configured in the TCP/IP profile” on page 143 for a list of restrictions that
apply to this parameter. If the stack is not IPv6-enabled and an IPv6 IP
address is specified, the JOBNAME entry is ignored and a message is
displayed. The specified IP address does not need to be defined prior to
processing the SRCIP block, but it must be defined before the TCP connect
or listen request is issued by the associated job; otherwise, the connect or
listen request fails.

The ipv6_address value is a static VIPA, a dynamic VIPA, or a real IPv6
address that is associated with a physical interface. If you specify a
dynamic VIPA, it can be defined by a VIPADEFINE statement or a
VIPARANGE statement. If the dynamic VIPA is defined by a VIPARANGE
statement, then it must have been activated with a bind() or IOCTL
SIOCSVIPA value.

srcv6_intf_name
The name of an IPv6 static VIPA, dynamic VIPA interface, or a physical
interface to be used as a source interface if it matches the associated job

288 z/OS V2R1.0 Communications Server: IP Configuration Reference

name. The maximum length is 16 characters. If a dynamic VIPA is
specified, it can be defined by a VIPADEFINE statement or it could have
been previously activated with bind() or IOCTL SIOCSVIPA6 value in a
VIPARANGE statement. If the stack is not IPv6-enabled, the JOBNAME
entry is ignored and a message is displayed. The specified interface does
not need to be defined prior to processing the SRCIP block, but it must be
defined before the TCP connect or listen request is issued by the associated
job; otherwise, the connect or listen request fails. If the interface has
multiple IP addresses, then the source IP address for the outbound
connection is selected from among these addresses according to the default
source address selection algorithm. For more information, see the default
source address selection algorithm information in z/OS Communications
Server: IPv6 Network and Application Design Guide.

Guideline: When you are using a SRCIP JOBNAME statement for an IPv6
server application, code an IPv6 address (srcv6_addr) instead of an IPv6
interface (srcv6_intf_name); otherwise, the source address that is chosen for
that IP interface might not be the best choice for the server application to
be bound to. For more information, see the default source address selection
algorithm information in z/OS Communications Server: IPv6 Network and
Application Design Guide.

CLIENT
Specifies that the source IP address should be used for client applications
that are establishing outbound TCP connections that bind to the IPv4
INADDR_ANY address to IPv6 unspecified address (in6addr_any), or to
the connect() call without having first completed a bind() call. The source
IP address is determined on the subsequent connect() call. This value is the
default.

SERVER
Specifies that the source IP address should be used to convert TCP server
applications that bind to the IPv4 INADDR_ANY address or to the IPv6
unspecified address (in6addr_any), to bind to the specific source IP
address. This means that only client applications that are using the
designated IP address can connect to the server application. The source IP
address is determined on the subsequent listen() call. When an application
issues a getsockname() call after a bind() call to retrieve the source IP
address, the processing is different from the processing that occurs when a
TCP server application is converted to being bind specific using the BIND
keyword on the PORT statements in the TCP/IP profile. When using the
BIND keyword on the PORT statement, the designated IP address is set
when the bind() call completes; some applications, such as DB2®, depend
on this behavior.

BOTH
Specifies that the source IP address should be used for both client and
server applications. For client applications, the source IP address is used
for applications that invoke the bind() call with the IP INADDR_ANY
address, the IPv6 unspecified address (in6addr_any), or the connect() call
(for TCP outbound connections) without having first completed a bind()
call. For server applications, the source IP address is used for applications
that invoke the bind() call with the IP INADDR_ANY address or the IPv6
unspecified address (in6addr_any). The source IP address is determined on
the connect() call for client applications and the listen() call for server
applications.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 289

Restriction: The options SERVER and BOTH are not valid with JOBNAME *
specifications.

Designate that a temporary IPv6 address is preferred over a public IPv6 address

jobname
Specifies the MVS job name of the application for which temporary IPv6
addresses should be preferred over public IPv6 addresses. The jobname
value can be up to 8 characters in length. A trailing asterisk (*) is a
wildcard specification.

If duplicate job names are specified in the same SRCIP block and some of
the duplicate entries specify an IPv6 address or interface and the other
entries specify the value TEMPADDRS or PUBLICADDRS, the first
JOBNAME entry is in effect. Any subsequent duplicate JOBNAME entries
are ignored and messages are displayed.

TEMPADDRS
Specifies that this JOBNAME entry causes temporary IPv6 addresses to be
preferred over public IPv6 addresses for the specified job when default
source IP address selection is performed for the outbound packets.

Designate that a public IPv6 address is preferred over a temporary IPv6 address

jobname
Specifies the MVS job name of the application for which public IPv6
addresses should be preferred over temporary IPv6 addresses. The jobname
value can be up to 8 characters in length. A trailing asterisk (*) is a
wildcard specification.

If duplicate job names are specified in the same SRCIP block and some of
the duplicate entries specify an IPv6 address or interface and the other
entries specify the value TEMPADDRS or PUBLICADDRS, the first
JOBNAME entry is in effect. Any subsequent duplicate JOBNAME entries
are ignored and messages are displayed.

PUBLICADDRS
Specifies that this JOBNAME entry causes public IPv6 addresses to be
preferred over temporary IPv6 addresses for the specified job when default
source IP address selection is performed for the outbound packets. The
application prefers public addresses by default.

Guideline: The environment in which the application is run determines the job
name to be associated with a particular client or server application as follows:
v Applications submitted as batch jobs use the batch job name.
v The job name associated with applications started from the MVS operator

console using the START command is determined as follows:
– If the START command is issued with the name of a member in a cataloged

procedure library (for example, S APP1), the job name is the member name
(for example, APP1).

– If the member name on the START command is qualified by a started task
identifier (for example, S APP1.ABC), the job name is the started task
identifier (for example, ABC). The started task identifier is not visible to all
MVS components, but TCP/IP uses it to match a job name specified in the
SRCIP block.

v The JOBNAME parameter can also be used on the START command to identify
the job name (for example, S APP1,JOBNAME=XYZ).

290 z/OS V2R1.0 Communications Server: IP Configuration Reference

v The JOBNAME parameter can also be included on the JOB card.
v Applications run from a TSO user ID use the TSO user ID as the job name.
v Applications run from the z/OS shell typically have a job name that is the user

ID of the user that is logged on plus a 1-character suffix. Because this job name
might not be predictable, you can use a job name ending in an asterisk (*) to
ensure that these applications are governed by the SRCIP block. Because
different applications might have the same job name, use care when you
designate job names for applications running from the z/OS shell.

v Authorized users can run applications from the z/OS shell and use the
_BPX_JOBNAME environment variable to set the job name. In this case, the
value specified for the environment variable is the job name.

v z/OS UNIX applications started by INETD typically use the job name of the
INETD server plus a 1-character suffix.

Steps for modifying

To modify parameters for the SRCIP block, consider the following:
v When a new SRCIP block is specified in a configuration data set on a VARY

TCPIP,,OBEYFILE command, the new designations completely replace the
existing designations.

v If you want to remove all the current designations, specify the SRCIP block
without any entries, as indicated in the following example:
SRCIP ENDSRCIP

v If you want to change one of the designations, first create a SRCIP block with
the existing set of designations. Update any JOBNAME or DESTINATION entry
with the designation that needs to be changed. Then issue the VARY
TCPIP,,OBEYFILE command to activate the change.

v Changing the source IP address in a JOBNAME or DESTINATION entry affects
only new TCP connect requests for the job or destination address. It does not
affect processing for any existing connections.

v Changing the TEMPADDRS or PUBLICADDRS setting in a JOBNAME entry
affects only new TCP connect requests; it does not affect processing for existing
connections.

Guidelines:

v While the SRCIP-ENDSRCIP statement allows the specification of real IP
addresses that are associated with physical interfaces, use static or dynamic
VIPA interfaces. Because static and dynamic VIPA interfaces are not associated
with a specific physical interface, they provide higher availability attributes in
cases where specific network interfaces fail or where connectivity is lost in
specific parts of the network. In cases where a real IP address must be specified
as a source IP address on the SRCIP-ENDSRCIP block statement, there are
several considerations that should be carefully evaluated:
– The IP address specified affects only the source IP address that is used for all

packets associated with an outbound TCP connection for the specified jobs or
destinations; it does not influence the physical network interface selected by
TCP/IP for any outbound packets associated with the TCP connection.
TCP/IP determines the outbound interface by consulting its routing table and
determining the best route to the destination IP address for the connection. As
a result, the source IP address that is selected might not be associated with
the outbound physical interface selected by TCP/IP. The network routing
topology must allow for any inbound packets for this connection to be routed

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 291

back to this TCP/IP host regardless of the network interface that was used for
any outbound traffic associated with this connection.

– If the physical network interface associated with a specified IP address fails or
is deactivated, any incoming packets destined to this IP address might not be
able to reach this TCP/IP host. This could disrupt traffic for both existing
TCP connections and new TCP connections that use this source IP address.

v For JOBNAME entries, if the same VIPA source IP address is used on more than
one z/OS TCP/IP stack, then the job-specific source IP address should be a
distributed DVIPA with the SYSPLEXPORTS parameter enabled.

Tips: Give careful consideration if:
v The designated source is a dynamic VIPA.

A dynamic VIPA that becomes inactive is no longer a valid designated source for
SRCIP. A dynamic VIPA might become inactive if one of the following is true:
– It is no longer a target for sysplex distribution on this stack
– The application that causes its creation (in the case of an address created by a

VIPARANGE statement) causes its deletion
– It has been deactivated by the VARY TCPIP,,SYSPLEX,DEACTIVATE

command
– The DVIPA is in QUIESCING status
– The TCP/IP stack leaves the sysplex group

v The designated source is an interface name.
When an interface name is specified, it might be associated with multiple
addresses. In this case, the address is chosen at connect time:
– If an interface has multiple addresses defined, the address chosen as the

source IP address for the outbound connection is selected according to the
default source address selection algorithm. For more information, see the
default source address selection algorithm information in z/OS
Communications Server: IPv6 Network and Application Design Guide.

– If the interface is a dynamic VIPA interface that is created by a VIPARANGE
statement, then the actual address chosen as the source IP address for the
outbound connection is not predictable or necessarily meaningful. Thus, you
should specify an IPv6 address instead of an interface name if a VIPARANGE
statement address is to be used.

Related topics
v “IPCONFIG statement” on page 190
v “IPCONFIG6 statement” on page 206

START statement

Use the START statement to start a device or interface that is currently stopped.
This statement is usually specified at the end of hlq.PROFILE.TCPIP.

Requirements:

v VTAM must be active to START a device or interface with TCP/IP.
v Each device or interface to be started needs a separate START statement.

Tips:

v You can also use the VARY TCPIP,,START command to start a device or
interface.

292 z/OS V2R1.0 Communications Server: IP Configuration Reference

v The START statement can also be used in a VARY TCPIP,,OBEYFILE command
data set to start the following:
– A newly-defined device or interface
– A device or interface stopped with the STOP statement
– A device or interface that was never successfully started

Syntax

�� START device_name
interface_name

��

Parameters

device_name
The name of the device to start. This should be the same device_name specified
on the DEVICE statement.

interface_name
The name of the interface to start. This should be the same interface_name
specified on the INTERFACE statement or the name of a dynamically created
interface, such as an IQDX interface.

Steps for modifying

Modification is not applicable to this statement.

Examples

This example shows START statements that start devices LCS1 and LCS2.
START LCS1
START LCS2

Usage notes
v TCP/IP has a maximum of 255 non-VIPA started devices.
v There is no maximum number of static VIPA interfaces, but the maximum

number of dynamic VIPA interfaces is 1024.
v The START statement is not valid for virtual devices or interfaces. When you use

the DEVICE and LINK statements for IPv4, a virtual device is started
automatically when a HOME entry is defined to it. When you use the IPv4
INTERFACE statement or when you use IPv6 , a virtual interface is started
automatically when an INTERFACE statement is defined. The virtual device or
interface never leaves the started (active) state.

v The START and STOP statements are processed after all other statements within
the initial profile or VARY TCPIP,,OBEYFILE command data set.

Related topics
v “STOP statement”
v z/OS Communications Server: IP System Administrator's Commands

STOP statement

Use the STOP statement in a VARY TCPIP,,OBEYFILE command data set to stop a
device or interface that is currently started.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 293

Tip: You can also use the VARY TCPIP,,STOP command to stop a device or
interface.

Syntax

�� STOP device_name
interface_name

��

Parameters

device_name
The name of the device to be stopped. This should be the same device_name
specified on the DEVICE statement.

interface_name
The name of the interface to be stopped. This should be the same
interface_name specified on the INTERFACE statement or the name of a
dynamically created interface.

Steps for modifying

Modification is not applicable to this statement.

Examples

This example shows STOP statements that stop devices LCS1 and LCS2.
STOP LCS1
STOP LCS2

Usage notes
v A virtual device or interface cannot be stopped.
v The START and STOP statements are processed after all other statements within

the initial profile or VARY TCPIP,,OBEYFILE command data set.

Related topics
v “START statement” on page 292
v z/OS Communications Server: IP System Administrator's Commands

TCPCONFIG statement

Use the TCPCONFIG statement to update the TCP layer of TCP/IP.

Syntax

Tip: Specify the parameters for this statement in any order.

294 z/OS V2R1.0 Communications Server: IP Configuration Reference

�� TCPCONFIG �

CONNECTInitinterval 3000

CONNECTInitinterval milliseconds
CONNECTTimeout 75

CONNECTTimeout seconds
DELAYAcks

NODELAYAcks
EPHEMERALPORTS 1024 65535

EPHEMERALPORTS low_port high_port
FINWait2time 600

FINWait2time finwait2_seconds
FRRTHReshold 3

FRRTHReshold acks
INTerval 120

INTerval default_keepalive_interval
KEEPALIVEPROBEInterval 75

KEEPALIVEPROBEInterval seconds
KEEPALIVEPROBES 10

KEEPALIVEPROBES number
MAXImumretransmittime 120

MAXImumretransmittime seconds
NAGLE

NONAGLE
QUEUEDrtt 20

QUEUEDrtt milliseconds
UNRESTRICTLowports

RESTRICTLowports
RETRANSMITAttempts 15

RETRANSMITAttempts times
NOSELECTIVEACK

SELECTIVEACK
SENDGarbage FALSE

SENDGarbage TRUE
TCPMAXRCVBufrsize 256K

TCPMAXRCVBufrsize tcp_max_receive_buffer_size
TCPMAXSENDBufrsize 256K

TCPMAXSENDBufrsize tcp_max_send_buffer_size
TCPRCVBufrsize 65536

TCPRCVBufrsize tcp_receive_buffer_size
TCPSENDBfrsize 65536

TCPSENDBfrsize tcp_send_buffer_size
TCPTIMEstamp

NOTCPTIMEstamp
TIMEWAITInterval 60

TIMEWAITInterval seconds
NOTTLS

TTLS

��

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 295

|

Parameters

CONNECTINITINTERVAL milliseconds
The initial retransmission interval in milliseconds. The range is 100 - 3000. The
default value is 3000.

CONNECTTIMEOUT seconds
The number of seconds before the initial connection times out. This connection
includes TCP connections that are established over SMC-R links. The range is 5
- 190. The default value is 75.

DELAYACKS | NODELAYACKS

NODELAYACKS
Specifies that an acknowledgement is returned immediately when data
is received that has the PUSH bit set on in the TCP header. Specifying
the NODELAYACKS parameter on the TCPCONFIG statement
overrides the specification of the DELAYACKS parameter on the
TCP/IP stack PORT or PORTRANGE profile statements for the port
used by a TCP connection, or on any of the following statements used
to configure the route used by a TCP connection:
v The TCP/IP stack BEGINROUTES or GATEWAY profile statements
v The Policy Agent RouteTable statement
v The OMPROUTE configuration statements

DELAYACKS
Delays transmission of acknowledgments when a packet is received
with the PUSH bit on in the TCP header. This is the default, but the
behavior can be overridden by specifying the NODELAYACKS
parameter on the TCP/IP stack PORT or PORTRANGE profile
statements for the port used by a TCP connection, or on any of the
following statements used to configure the route used by a TCP
connection:
v The TCP/IP stack BEGINROUTES or GATEWAY profile statements
v The Policy Agent RouteTable statement
v The OMPROUTE configuration statements

EPHEMERALPORTS low_port high_port
Indicates the range of ephemeral ports that are to be assigned at bind time.
The default ephemeral port range is 1024 - 65535.

low_port
The starting port for the range of ports. The low_port value is in the
range 1024 - 65535.

high_port
The ending port for the range of ports. The high_port value is in the
range 1024 – 65535, and must be greater than or equal to the low_port
value.

Guidelines:

v The TCP/IP stack selects an ephemeral port from the range of ports that are
defined on the EPHEMERALPORTS parameter only if an ephemeral port
was not assigned by EXPLICITBINDPORTRANGE, SYSPLEXPORTS or
PASSIVEDATAPORTS processing.

v The SYSPLEXPORTS processing uses only ports that are within the range of
ports that the EPHEMERALPORTS parameter defines.

296 z/OS V2R1.0 Communications Server: IP Configuration Reference

v For the ports within the EPHEMERALPORTS range, if they are reserved by
using port reservation definitions or the EXPLICITBINDRANGE parameter,
they are excluded from the EPHEMERALPORTS port pool. Such exclusion
effectively makes the pool smaller.

Restriction: Ports that are defined by BPXPARMS INADDRANYPORT and
INADDRANYCOUNT must be restricted by the PORT or PORTRANGE
statement to the job name OMVS. The stack does not assign these ports unless
the user has the job name of OMVS.

FINWAIT2TIME finwait2_seconds
The number of seconds a TCP connection should remain in the FINWAIT2
state. The range is 1 - 3600. The default value is 600 seconds.

FRRTHRESHOLD acks
The threshold of duplicate ACKs for the functional recovery routine (FRR) to
engage. The range is 1 - 2048. The default value is 3. Do not change this
parameter from the default value unless a specific FRR-related problem occurs
or you are under the direction of IBM service personnel.

INTERVAL default_keepalive_interval
The default TCP keepalive interval for applications that enable the
SO_KEEPALIVE socket option and do not override the interval using the
TCP_KEEPALIVE socket option. The range is 0 - 35791 minutes, and the
default is 120. A value of 0 disables the keepalive function, so that sockets for
which SO_KEEPALIVE is specified do not perform TCP keepalive. In this case,
sockets specifying a specific interval using TCP_KEEPALIVE continue to send
keepalive probes.

TCP keepalive probes end TCP connections after a period of inactivity. TCP
keepalive is disabled by default for a connection, but can be enabled by issuing
the SO_KEEPALIVE or TCP_KEEPALIVE socket options. The TCP_KEEPALIVE
socket option enables the application to specify the keepalive probe interval,
while the SO_KEEPALIVE socket option uses default_keepalive_interval as the
interval.

After the interval has expired, TCP sends a single keepalive probe to the peer.
If the TCP_KEEPALIVE socket option is not used to specify the probe interval,
a total of ten probes are then sent at 75-second intervals if no response is
received from the peer. If no response has been received 75 seconds after the
last probe, the connection is reset. If TCP_KEEPALIVE is used to specify the
keepalive probe interval, the number of probes and the interval between the
probes might differ depending on the interval specified.

KEEPALIVEPROBEINTERVAL seconds
The interval in seconds between keepalive probes. The range is 1 - 75. The
default value is 75.

This parameter does not change the initial keepalive timeout interval. It
controls only the time between the probes that are sent out after the initial
keepalive interval has expired.

KEEPALIVEPROBES number
The number of keepalive probes before the connection is aborted. The range is
1 - 10. The default value is 10.

This parameter does not change the initial keepalive time out interval. It
controls only the number of probes that are sent out after the initial keepalive
interval has expired.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 297

MAXIMUMRETRANSMITTIME seconds
The maximum retransmit interval in seconds. The range is 0 - 999.990. The
default value is 120.

Rule: If none of the following parameters is specified, this
MAXIMUMRETRANSMITTIME parameter is used and the
MINIMUMRETRANSMITTIME parameters of the following statements are not
used:
v MAXIMUMRETRANSMITTIME on the BEGINROUTES statement
v MAXIMUMRETRANSMITTIME on the GATEWAY statement
v MAXIMUMRETRANSMITTIME on the ROUTETABLE statement
v Max_Xmit_Time on the OSPF_INTERFACE statement
v Max_Xmit_Time on the RIP_INTERFACE statement

The TCPCONFIG parameter value is used if no route parameter has been
explicitly specified. If the TCPCONFIG parameter value of the maximum
retransmit time is used, the MINIMUMRETRANSMITTIME value that is
specified on the route parameter is not used, which means the minimum
retransmit time is 0.

MAXIMUMRETRANSMITTIME of 0 indicates that the smallest retransmission
interval must be used. When 0 is specified, TCP/IP uses a maximum
retransmission interval of approximately 100 milliseconds. Specifying a very
low maximum retransmission interval can result in additional system overhead
for increased retransmission processing.

NAGLE | NONAGLE

NAGLE
Specifies that the Nagle algorithm is enabled. This is the default value.

NONAGLE
Specifies that the Nagle algorithm is disabled.

Rules:

v If the setsockopt() with TCP_NODELAY is specified for a connection, the
Nagle algorithm is disabled for the connection.

v If NONAGLE is specified, the setsockopt() with TCP_NODELAY is ignored.

QUEUEDRTT milliseconds
The threshold at which the outbound serialization is engaged. The range is 0 -
50 milliseconds. The default value is 20 milliseconds. A value of 0 millisecond
enables outbound serialization for all connections. Do not change this
parameter from the default setting unless specific problems with outbound
serialization occur or you are under the direction of IBM service personnel.

RESTRICTLOWPORTS | UNRESTRICTLOWPORTS

RESTRICTLOWPORTS
When set, ports 1- 1023 are reserved for users by the PORT and
PORTRANGE statements. The RESTRICTLOWPORTS parameter is
confirmed by the message:
EZZ0338I TCP PORTS 1 THRU 1023 ARE RESERVED

Restriction: When RESTRICTLOWPORTS is specified, an application
cannot obtain a port in the 1- 1023 range unless it is authorized.
Applications can be authorized to low ports in the following ways:

298 z/OS V2R1.0 Communications Server: IP Configuration Reference

|

v Using PORT or PORTRANGE with the appropriate job name or a
wildcard job name such as * or OMVS. If the SAF keyword is used on
PORT or PORTRANGE, additional access restrictions can be imposed by
a security product, such as RACF.

v APF authorized applications can access unreserved low ports.
v OMVS superuser (UID(0)) applications can access unreserved low ports.

Applications with a dependency on being able to obtain an available port
in the 1- 1023 range without having that port explicitly reserved for its use
should be run as APF authorized or superuser. Use RESTRICTLOWPORTS
to increase system security.

UNRESTRICTLOWPORTS
When set, ports 1 - 1023 are not reserved. This is the default value. The
UNRESTRICTLOWPORTS parameter is confirmed by the message:
EZZ0338I TCP PORTS 1 THRU 1023 ARE NOT RESERVED

RETRANSMITATTEMPTS times
The number of times that a segment is retransmitted before the connection is
aborted. The range is 0 - 15. The default value is 15.

SELECTIVEACK | NOSELECTIVEACK

SELECTIVEACK
Enables the exchange of selective acknowledgements with partners that
support the selective acknowledgement (SACK) option as defined by RFC
2018. For information about this RFC, see Appendix C, “Related protocol
specifications,” on page 1465.

If TCP/IP initiates a TCP connection, then a selective acknowledgement
permit option is sent. During a passive connect, if TCP/IP receives a TCP
connection request with a selective acknowledgement permit option from a
client and the SACK option is enabled, then TCP/IP sends a SYN-ACK
with its own selective acknowledgement permit option. The SACK option
must be enabled to help prevent unnecessary packets from being
retransmitted when packet loss occurs in the network.

NOSELECTIVEACK
Disables the exchange of selective acknowledgements during connection
setup and also during the entire connection. This is the default value.

SENDGARBAGE
Specifies whether the keepalive packets sent by TCP contain 1 byte of random
data.

FALSE
Causes the packet to contain no data. This is the default value.

TRUE
Causes the packet to contain 1 byte of random data and an incorrect
sequence number, assuring that the data is not accepted by the remote
TCP.

TCPMAXRCVBUFRSIZE tcp_max_receive_buffer_size
The TCP maximum receive buffer size is the maximum value an application
can set as its receive buffer size using SETSOCKOPT(). The minimum
acceptable value is the value coded on TCPRCVBUFRSIZE, the maximum is
2M, and the default is 256K. If you do not have large bandwidth interfaces,
you can use this parameter to limit the receive buffer size that an application
can set.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 299

Note: If Dynamic right sizing (DRS) is active for a connection, the
TCPMAXRCVBUFRSIZE value is ignored and a maximum value of 2M is
used. For more information about DRS, see TCP receive window in z/OS
Communications Server: IP Configuration Guide.

IBM Health Checker for z/OS can be used to check whether the
TCPMAXRCVBUFRSIZE value is sufficient to provide optimal support to the
z/OS Communications Server FTP server. By default, it checks that
TCPMAXRCVBUFRSIZE is at least 180 K. For more details about IBM Health
Checker, see z/OS Communications Server: IP Diagnosis Guide.

TCPMAXSENDBUFRSIZE tcp_max_send_buffer_size
The maximum send buffer size, which is between the value that is specified on
the TCPSENDBUFRSIZE parameter and 2M. The default value is 256K.

TCPRCVBUFRSIZE tcp_receive_buffer_size
The TCP receive buffer size, which is between 256 bytes and the
TCPMAXRCVBUFRSIZE value. The default value is 65536. This value is used
as the default receive buffer size for those applications that do not explicitly set
the buffer when they use SETSOCKOPT().

Increasing the receive buffer size does not allocate or consume any additional
storage. The receive buffer size determines the amount of data that TCP/IP can
buffer for the application to receive. When the TCP/IP stack receives the data,
the data is stored in CSM data space or TCP/IP private storage. Each received
segment has an associated data descriptor that resides in ECSA or TCP/IP
private. No external mechanism controls which storage type is selected for the
received data. For more information about the receiver buffer size and the TCP
receive window, see TCP receive window in z/OS Communications Server: IP
Configuration Guide.

TCPSENDBFRSIZE tcp_send_buffer_size
The TCP send buffer size, which is between 256 bytes and the
TCPMAXSENDBUFRSIZE value. The default value is 65536. This value is used
as the default send buffer size for those applications that do not explicitly set
the buffer size when they use SETSOCKOPT().

Increasing the send buffer size does not allocate or consume any additional
storage. The send buffer size determines the amount of data that TCP/IP can
buffer for the application to send. When the application sends the data, the
TCP/IP stack stores the data in CSM data space. The sent data has one or
more associated data descriptors that reside in ECSA.

TCPTIMESTAMP | NOTCPTIMESTAMP

NOTCPTIMESTAMP
TCP Timestamp Option is disabled, and MVS does not participate in
TCP timestamp negotiation during connection setup and also during
the entire life of connection.

TCPTIMESTAMP
TCP Timestamp Option is enabled. If MVS initiates a TCP connection,
then a TCP timestamp option is sent. During a passive connect, for
example, if MVS receives a TCP connection request with TCP
timestamp option from a client and this option is enabled, then MVS
sends a SYN-ACK with its own TCP timestamp option. This option
should be enabled to help prevent wrapping of sequence numbers or
to prevent a connection from receiving a delayed segment that was

300 z/OS V2R1.0 Communications Server: IP Configuration Reference

|
|

|
|

originally intended for an earlier incarnation of the connection. The
sequence numbers can wrap more quickly with higher bandwidth
networks. This is the default value.

TIMEWAITINTERVAL seconds
The number of seconds that a connection remains in the TIMEWAIT state. The
range is 0 - 120. The default value is 60.

TTLS | NOTTLS

NOTTLS
Indicates that the Application Transparent Transport Layer Security
(AT-TLS) function is not activated for the TCP/IP stack. This is the
default value.

TTLS Indicates that the AT-TLS function is activated for the TCP/IP stack.
The AT-TLS function provides invocation of System SSL in the TCP
transport layer of the stack. When a TCPCONFIG TTLS value is
specified, the AT-TLS function uses AT-TLS policy information that is
configured by using Policy Agent to determine how application
connections are processed. If the setting is modified by using the VARY
TCPIP,,OBEYFILE command, only new connections are affected by the
change.

Guideline: If AT-TLS is enabled, you must activate the SERVAUTH
class, define the INITSTACK resource profile, and permit users to it.
For more information about AT-TLS data protection, see z/OS
Communications Server: IP Configuration Guide.

Steps for modifying

To modify parameters for the TCPCONFIG statement, you must respecify the
statement with the new parameters.

The parameter changes do not affect existing connections. They effect only new
connections.

Examples

This example shows a TCPCONFIG statement that reserves ports 1 - 1023 for users
by the PORT and PORTRANGE statements:
TCPCONFIG RESTRICTLOWPORTS

TRANSLATE statement

Use the TRANSLATE statement to indicate the relationship between an IP address
and the physical address, on a specified link. You can use the TRANSLATE
statement, with some limitations, for Ethernet, ATM, FDDI, and token-ring hosts
that do not support ARP.

Restrictions:

v The TRANSLATE statement applies to IPv4 links only.
v The TRANSLATE statement is valid for LCS, ATM, and HCH devices only.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 301

|
|
|
|
|
|
|
|

|
|
|
|

Each configuration data set’s first TRANSLATE statement replaces the internal
translation tables (the ARP table), including information dynamically added by
ARP, with the new information. Subsequent TRANSLATE statements in the same
data set add entries to the table.

If the first TRANSLATE statement of a profile contains no IP address or link name,
all addresses are removed from the TRANSLATE list.

Syntax

Rule: Specify the parameters in the order shown here.

�� TRANSLATE � internet_addr NSAP physical_addr link_name
HCH
ETHERNet
IBMTR
FDDI

��

Parameters

internet_addr
The IP address for which a translation is specified.

NSAP
Indicates the network address is an ATM address.

HCH
Indicates the network address is a HYPERchannel address.

ETHERNET
Indicates the network address is an Ethernet address.

IBMTR
Indicates the network address is a token-ring address.

FDDI
Indicates the network address is an FDDI address.

physical_addr
The network address corresponding to internet_addr and link_name. The format
depends on the network type.
v For NSAP, specify a 40-digit hexadecimal value.

Restriction: If the TRANSLATE statement is defining an ATM address for a
TCP/IP stack on another z/OS system, then the last hex digit of the 40-digit
address cannot be 0. (Zero is reserved for High Performance Routing (HPR)
use by VTAM.)

v For HCH, specify a 12-digit hexadecimal number of the form ttxxxxxxhhcc.

tt The trunk mask. Use values other than FF only when advised to do so
by Network Systems Corporation or by a HYPERchannel expert.

xxxxxx
These 6 digits are ignored.

hh The remote adapter address.

cc The meaning depends on the type of remote adapter. If the remote

302 z/OS V2R1.0 Communications Server: IP Configuration Reference

adapter is attached to a VM TCP/IP or MVS TCP/IP system, then cc is
the read port address (the lower of the two addresses that are attached
to TCP/IP).

v For ETHERNET, IBMTR, and FDDI, specify a 12-digit hexadecimal MAC
address of the remote adapter.
– For Ethernet, the remote host is assumed to use network headers DIX

Ethernet format, not the 802.3 format.
– For token-ring, the translation table entry should not contain a token-ring

source routed bridge path.

link_name
A network link name (from the LINK statement). The specified internet_addr is
translated to the specified net_addr only when sending on this link. You can
include multiple TRANSLATE statement entries for the same internet_addr with
a different link_name.

Steps for modifying

To modify any values on the TRANSLATE statement, use a VARY
TCPIP,,OBEYFILE command with a data set that contains a new TRANSLATE
statement. All existing ARP entries are deleted. To remove all static ARP entries
from the ARP table, specify an empty TRANSLATE statement.

Note:

1. If any HOME statement values were dynamically modified, all ARP static
entries that correspond with the LINK names in the TRANSLATE statement are
deleted and replaced.

2. If any DEVICE/LINK statement values were dynamically deleted, all static
ARP entries that correspond with the LINK names on the TRANSLATE
statement are deleted. Include a new TRANSLATE statement in the VARY
TCPIP,,OBEYFILE command data set that contains the changed DEVICE/LINK
statements and a new HOME statement.

For more information about the VARY TCPIP commands, see z/OS
Communications Server: IP System Administrator's Commands .

Examples

This example shows the TRANSLATE statement for FDDI:
TRANSLATE

9.67.51.3 FDDI FF0000006702 FDDI1
9.67.22.4 FDDI FF0000009A05 FDDI1

Usage notes
v When using the TRANSLATE statement to define the ATM address of a TCP/IP

stack on another z/OS system, it is important that the correct ATM address be
specified. Start the ATM link on the other stack and use the Netstat ARP/-R
ALL command to display the ARP cache. The entry for the local IP address in
this display shows exactly which ATM address must be specified in the
TRANSLATE statement on the first stack.

v Some token-ring hardware does not recognize the RFC 1469-mandated
functional MAC address for multicast. The TRANSLATE statement can be used
to configure a token-ring link to broadcast multicast datagrams as an alternative
to using the functional MAC address. Use the reserved class D address 224.0.0.0
with one of the following special physical addresses:

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 303

– FFFFFFFFFFFF for all rings broadcast
– C00000040000 to reset back to the default functional address
The following list shows OSPF implementation examples of how to specify each
method:
– All rings

- TRANSLATE
- 224.0.0.0 IBMTR FFFFFFFFFFFF linkname

– Assigned functional address:
- TRANSLATE 224.0.0.0 IBMTR
- C00000040000 linkname

The TRANSLATE statement is effective on a per link basis. You do not have to
code a TRANSLATE statement if you want the assigned functional address, as it
is the default method.

Related topics
v “DEVICE and LINK — ATM devices statement” on page 52
v “DEVICE and LINK — LAN Channel Station and OSA devices statement” on

page 66
v “DEVICE and LINK — HYPERchannel A220 devices statement” on page 63

UDPCONFIG statement

Use the UDPCONFIG statement to update the UDP layer of TCP/IP.

Syntax

Tip: Specify the parameters for this statement in any order.

�� UDPCONFIG �

EPHEMERALPORTS 1024 65535

EPHEMERALPORTS low_port high_port
UNRESTRICTLowports

RESTRICTLowports
UDPCHKsum

NOUDPChksum
UDPQueuelimit

NOUDPQueuelimit
UDPRCVBufrsize 65535

UDPRCVBufrsize udp_receive_buffer_size
UDPSENDBfrsize 65535

UDPSENDBfrsize udp_send_buffer_size

��

304 z/OS V2R1.0 Communications Server: IP Configuration Reference

Parameters

EPHEMERALPORTS low_port high_port
Indicates the range of ephemeral ports that are to be assigned at bind time.
The default ephemeral port range is 1024 - 65535.

low_port
The starting port for the range of ports. The low_port value is in the
range 1024 - 65535.

high_port
The ending port for the range of ports. The high_port value is in the
range 1024 – 65535, and must be greater than or equal to the low_port
value.

Guideline: Any ports that are reserved using port reservation definitions that
are within the EPHEMERALPORTS range are excluded from the
EPHEMERALPORTS pool, effectively making the pool smaller.

Restriction: Ports that are defined by BPXPARMS INADDRANYPORT and
INADDRANYCOUNT must be restricted by the PORT or PORTRANGE
statement to the job name OMVS. These ports will not be assigned by the stack
unless the user has the job name of OMVS.

RESTRICTLOWPORTS | UNRESTRICTLOWPORTS

RESTRICTLOWPORTS
When set, ports 1 - 1023 are reserved for users by the PORT and
PORTRANGE statements. The RESTRICTLOWPORTS parameter is
confirmed by the message:
EZZ0338I UDP PORTS 1 THRU 1023 ARE RESERVED

Applications can be authorized to low ports in the following ways:
v By way of PORT or PORTRANGE with the appropriate job name or a

wildcard job name such as * or OMVS. If the SAF keyword is used on
PORT or PORTRANGE, additional access restrictions can be imposed by
a security product (for example, RACF).

v APF authorized applications can access unreserved low ports.
v OMVS superuser (UID(0)) applications can access unreserved low ports.

Applications that have a dependency on being able to obtain an available
port in the 1- 1023 range without having that port explicitly reserved for its
use should be run as APF authorized or superuser. Use
RESTRICTLOWPORTS to increase system security.

UNRESTRICTLOWPORTS
Ports 1 - 1023 are not reserved. This is the default value. The
UNRESTRICTLOWPORTS parameter is confirmed by the message:
EZZ0338I UDP PORTS 1 THRU 1023 ARE NOT RESERVED

UDPCHKSUM | NOUDPCHKSUM

NOUDPCHKSUM
Used to ensure UDP does not do check summing. This option is
ignored for UDP datagrams flowing over an IPv6 network, as UDP
Checksum is a required function on an IPv6 network. If an AF_INET6
socket is used to send datagrams over an IPv4 network, this option
disables the UDP checksum function.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 305

UDPCHKSUM
Used to ensure UDP does check summing. This is the default value.

UDPQUEUELIMIT | NOUDPQUEUELIMIT

NOUDPQUEUELIMIT
Used to specify that UDP should not have a queue limit. With
NOUDPQUEUELIMIT specified, it is possible for inbound datagrams
to arrive and be queued to a UDP application's socket faster than the
application can receive the datagrams. If so, the amount of data
queued could be substantial, resulting in a possible shortage of system
storage. For this reason, set a limit using UDPQUEUELIMIT or by
using an IDS Traffic Regulation policy. The NOUDPQUEUELIMIT
parameter is confirmed by the message:
EZZ0336I NO LIMIT ON INCOMING UDP DATAGRAM QUEUE SET

If intrusion detection services (IDS) Traffic Regulation (TR) policy is in
effect for a UDP port then NOUDPQUEUELIMIT is overridden for that
port.

UDPQUEUELIMIT
Used to set a queue limit for UDP. If set, then a maximum of 2000
incoming datagrams are queued on a UDP socket. This is the default
value. The UDPQUEUELIMIT parameter is confirmed by the message:
EZZ0336I A LIMIT ON INCOMING UDP DATAGRAM QUEUE SET

If intrusion detection services (IDS) Traffic Regulation (TR) policy is in
effect for a UDP port, the queue limit size is controlled by the policy
for that port.

UDPRCVBUFRSIZE udp_receive_buffer_size
The UDP receive buffer size. Valid values are in the range 1 - 65535. The
default is 65535.

UDPSENDBFRSIZE udp_send_buffer_size
The UDP send buffer size. Valid values are in the range 1 - 65535. The default
is 65535.

Steps for modifying

To modify parameters for the UDPCONFIG statement, you must respecify the
statement with the new parameters.

Examples

This example shows a UDPCONFIG statement that uses check summing, sets no
queue limit, and sets the send buffer size to 8192:
UDPCONFIG UDPCHK NOUDPQ UDPSENDB 8192

VIPADYNAMIC statement summary

Use the VIPADYNAMIC statement to start a block of definitions related to
dynamic VIPAs (DVIPAs) and the sysplex distributor; use an ENDVIPADYNAMIC
statement to end the block of definitions. A VIPADYNAMIC block can contain the
following statements:
v “VIPADYNAMIC - VIPADEFINE statement” on page 308
v “VIPADYNAMIC - VIPABACKUP statement” on page 312

306 z/OS V2R1.0 Communications Server: IP Configuration Reference

v “VIPADYNAMIC - VIPADELETE statement” on page 315
v “VIPADYNAMIC - VIPADISTRIBUTE statement” on page 316
v “VIPADYNAMIC - VIPARANGE statement” on page 335
v “VIPADYNAMIC - VIPAROUTE statement” on page 338
v “VIPADYNAMIC - VIPASMPARMS statement” on page 341

Rules:
v Within a single profile there should be only one VIPADEFINE or VIPABACKUP

statement for a particular DVIPA. If the DVIPA does appear in more than one
statement, a VIPADELETE statement must be specified before the last instance to
ensure that it is not rejected.

v A stack is limited to no more than 1024 configured or target VIPAs at any one
time. A configured dynamic VIPA is one that was created in any of the following
ways, and might or might not be active:
– Using VIPADEFINE
– Using VIPABACKUP
– Using an IOCTL SIOCSVIPA or SIOCSVIPA6 DEFINE value when this stack

had a covering VIPARANGE statement
– Using a BIND when this stack had a covering VIPARANGE statement

v Syntax errors in a VIPADYNAMIC block end further processing of the
VIPADYNAMIC block. VIPADYNAMIC statements are processed up to the
syntax error, and any remaining statements are ignored.

v The TCP/IP stack does not maintain interface counters for dynamic VIPA
interfaces.

Syntax

�� VIPADynamic � VIPADEFine
VIPABackup
VIPADELete
VIPADISTribute
VIPARange
VIPAROUTE
VIPASMparms

ENDVIPADynamic ��

Examples

This example shows the use of the VIPADEFINE, VIPADISTRIBUTE,
VIPABACKUP, and VIPAROUTE statements within a VIPADYNAMIC/
ENDVIPADYNAMIC block.
VIPADYNAMIC
VIPADEFINE 255.255.255.192 201.2.10.11 201.2.10.12
VIPADISTRIBUTE DEFINE SYSPLEXPORTS TIMEDAFF 30 201.2.10.11
PORT 21 DESTIP 201.3.10.10 201.3.10.11
VIPABACKUP 100 201.2.10.13
VIPADEFINE DVIPA1 2001:0DB8:1::1
VIPADISTRIBUTE DISTMETHOD ROUNDROBIN DVIPA1 PORT 21 DESTIP ALL
VIPABACKUP 150 DVIPA2 2001:0DB8:2::2
VIPAROUTE 201.3.10.10 199.3.10.1
ENDVIPADYNAMIC

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 307

Related topics
v See z/OS Communications Server: IP Configuration Guide for more information

about Virtual IP Addressing.
v “IPCONFIG statement” on page 190.
v “IPCONFIG6 statement” on page 206.

VIPADYNAMIC - VIPADEFINE statement

Designates one or more dynamic VIPAs (DVIPAs) that this stack should initially
own and support. Other stacks can provide backup for these VIPAs if this stack
fails.

Rule:

v Within a single profile there should be only one VIPADEFINE statement for a
particular DVIPA. If the DVIPA does appear in more than one statement, you
must specify a VIPADELETE statement before the last instance to ensure that the
statement is not rejected.

Syntax

Rule: Specify the parameters in the order shown here.

�� �
MOVEable IMMEDiate

VIPADEFine address_mask ipv4_addr
TIER1 MOVEable WHENIDLE SERVICEMGR
TIER2 MOVEable IMMEDiate

CPCSCOPE ipv6_intfname ipv6_addr
CPCSCOPE ipv6_addr/prefix_len

��

Parameters

TIER1
Indicates that the dynamic VIPA whose address is specified as an IP address
on this statement are used to distribute incoming requests to z/OS or
non-z/OS targets (for example, DataPower appliances).

Restriction: You cannot configure this parameter on this statement if TIER2 is
configured. A dynamic VIPA address cannot be used as both a TIER1 and
TIER2 address.

TIER2
Indicates that the dynamic VIPA whose address is specified as an IP address
on this statement are used to distribute incoming requests from Tier 1 targets
to the group of server applications that is named.

Restriction: You cannot configure this parameter on this statement if TIER1 is
configured. A dynamic VIPA address cannot be used as both a TIER1 and
TIER2 address.

CPCSCOPE
Indicates that the dynamic VIPA whose address is specified as an IP address
on this statement is specific to the central processor complex (CPC) on which it
is defined. That is, it is not moved to, or taken over, by another TCP/IP stack
that is in a different CPC.

Tier 1 non-z/OS target addresses must be on the same subnet as the subnet
determined by the address_mask or prefix_len value.

308 z/OS V2R1.0 Communications Server: IP Configuration Reference

Restrictions:

v A DVIPA defined with the CPCSCOPE parameter cannot be used in a
VIPADISTRIBUTE DEFINE statement unless TIER2 is also configured .

v You cannot configure this parameter on this statement if TIER1 is
configured.

MOVEABLE

This parameter is used to specify when a DVIPA that has been activated on
this TCP/IP stack can be moved to another TCP/IP stack when the other
TCP/IP stack requests ownership.

Rule: To preserve connections during dynamic VIPA takeover, you must
specify the DYNAMICXCF parameter on the IPCONFIG statement for IPv4
DVIPA interfaces and on the IPCONFIG6 statement for IPv6 DVIPA interfaces.

IMMEDIATE
Specifies an immediate nondisruptive movement of a dynamic VIPA
from one stack to another stack. This indicates that this dynamic VIPA
can be moved to another stack as soon as the other stack requests
ownership of the VIPA by executing a VIPADEFINE statement for the
same dynamic VIPA. The new owning stack forwards packets for any
existing connections to the original stack in order that the existing
connections are not disturbed. All new connection requests are directed
to the new owning stack. This is the default value.

The IMMEDIATE option is the only option supported for IPv6
addresses.

WHENIDLE
Indicates that this dynamic VIPA can be moved to another stack when
there are no connections for this DVIPA on the current stack. While
there are existing connections, any new connection requests continue to
be directed to the current stack.

This option is not supported for IPv6.

SERVICEMGR
Indicates that sysplex distributor performs Multinode Load Balancing (MNLB)
by functioning as a Service Manager (in place of Cisco's LocalDirector) for
these distributed dynamic VIPAs. SERVICEMGR has no effect if a
VIPADISTRIBUTE DEFINE statement does not exist for this VIPA.

Restrictions:

v MNLB is not supported for IPv6 DVIPAs; the SERVICEMGR parameter is
ignored for these types of addresses.

v The SERVICEMGR parameter is ignored when TIER1, TIER2, or CPCSCOPE
is specified.

address_mask
Specifies the subnet mask that determines how many of the bits of the IP
address determine the subnet. All IP addresses in the same VIPADEFINE
statement list must belong to the same subnet. That is, if the address_mask value
is logically ANDed with all the IP addresses in the list, the resulting values
must all be the same. The first IP address in the list determines the subnet.

When you specify the subnet mask for a DVIPA with a value of CPCSCOPE,
ensure that the subnet is the same subnet that is used for tier 1 non-z/OS
targets, such as DataPower appliances, that are routing requests to tier 2
targets on this CPC.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 309

The address_mask value is specified in standard dotted decimal format; the IP
addresses in the subnet must be a single contiguous range of IP addresses. A
subnet mask of 0.0.0.0 is not valid.

Rules: The address_mask value must meet the following normal mask definition
rules:
v When converted to binary, the most significant bit must be 1.
v When converted to binary, all bits less significant than (to the right of) the

first 0 encountered must also be 0.

Restriction: This parameter applies only to IPv4 addresses.

ipv4_addr
Specifies the specific DVIPA to be defined. More than one ipv4_addr value can
be specified on a single VIPADEFINE statement. A mixture of IPv4 addresses
and an IPv6 interface on the same VIPADEFINE statement is not permitted. A
mixture of VIPADEFINE statements with all IPv4 addresses and VIPADEFINE
statements with IPv6 addresses is permitted within the same
VIPADYNAMIC/ENDVIPADYNAMIC block, and the VIPADEFINE statements
can be intermixed in any order.

If a DVIPA in this VIPADEFINE statement list is already active on another
stack as a dynamic VIPA that was activated by VIPADEFINE or VIPABACKUP
statement, the result of this VIPADEFINE statement depends on the level of
each stack and how the DVIPA was originally defined.

If the DVIPA was originally defined with MOVE IMMEDIATE, then the
original owning stack immediately gives up ownership of the DVIPA and the
DVIPA is activated on this stack. If there were any connections to the DVIPA
on the original owning stack, the newly owning stack forwards packets to the
original stack in order that the existing connections are not disturbed.

If two or more stacks in the sysplex have the same DVIPA in VIPADYNAMIC
VIPADEFINE statements, with different address masks, the stack that gets the
active DVIPA determines the address mask.

If a DVIPA in this VIPADEFINE statement list is already active on this stack or
another stack either as an IP address in a HOME statement or as a dynamic
VIPA activated by way of an IOCTL or a BIND implicit activation, the DVIPA
in the VIPADEFINE statement list is rejected and an error message is issued.

ipv6_intfname
The name of the interface. The maximum length is 16 characters. This specified
name and the address specified in ipv6_addr are verified to ensure that the
DVIPA interface is uniquely (consistently) defined throughout the sysplex
environment.

ipv6_addr
Specifies the specific DVIPA to be defined. Only one ipv6_addr value can be
specified on a single VIPADEFINE statement. A mixture of IPv4 addresses and
IPv6 interfaces on the same VIPADEFINE statements is not permitted. A
mixture of VIPADEFINE statements with all IPv4 addresses and VIPADEFINE
statements with an IPv6 address is permitted within the same
VIPADYNAMIC/ENDVIPADYNAMIC block, and the VIPADEFINE statements
can be intermixed in any order.

If theDVIPA specified by the ipv6_addr value is already active on another stack
as a dynamic VIPA that was activated by the VIPADEFINE or VIPABACKUP
statement on the same interface name, the DVIPA is activated on this stack and
changed to backup status on the other stack.

310 z/OS V2R1.0 Communications Server: IP Configuration Reference

Requirement: All stacks (distributing stack, backup stack, target stack) which
participate in distribution for a distributed DVIPA with IPv6 address must be
at least z/OS V1R6.

If the specified ipv6_addr is already active on this stack or another stack either
as an IP address on an INTERFACE statement or as a dynamic VIPA activated
by way of an IOCTL or a BIND implicit activation, the VIPADEFINE statement
is rejected and an error message is issued.

See “Restrictions on IPv6 addresses configured in the TCP/IP profile” on page
143 for a description of the ipaddr_spec parameter and a list of restrictions that
must be observed when specifying this parameter.

/prefix_len
Specifies the prefix length to be used when calculating a prefix for CPCSCOPE
processing. The number of bits in the ipv6_addr value defines the prefix. Valid
values are in the range 1 - 128.

When you specify the prefix length for a CPCSCOPE DVIPA, ensure that the
prefix is the same subnet that is used for the tier 1 targets that are in this CPC.

Restriction: This parameter applies to IPv6 only.

Steps for modifying
v To remove one or more of the IPv4 addresses, use:

VIPADELETE ipv4_addr [ipv4_addr ...]

v To remove an IPv6 DVIPA interface, use:
VIPADELETE ipv6_intfname

If the IPv4 DVIPA address or IPv6 DVIPA interface is being distributed, you
must use one or more VIPADISTRIBUTE DELETE statements to end distribution
before you can use the VIPADELETE statement to delete the DVIPA. The
VIPADISTRIBUTE DELETE and VIPADELETE statements can appear in the
same VARY TCPIP,,OBEYFILE command data set.

v To change the mask for one or more of the IPv4 addresses, you must first delete
the IP addresses and then redefine them with the new mask:
VIPADELETE ipv4_addr [ipv4_addr ...]
VIPADEFINE new_mask ipv4_addr [ipv4_addr ...]

If the IP address is active, the VIPADELETE statement breaks any existing
connections and causes the dynamic VIPA to be activated elsewhere in the
sysplex if there is another stack prepared to activate it.

v To change the SERVICEMGR setting, you must first delete the DVIPA and then
redefine it with the SERVICEMGR setting that you want.

v To change a VIPADEFINE from TIER1 to TIER2, from TIER2 to TIER1, from
non-TIER to TIER, or from TIER to non-TIER, you must first specify a
VIPADELETE ipaddr value.

Examples
VIPADEFINE 255.255.255.192 9.67.240.02
VIPADEFINE TIER2 CPCSCOPE V6DVIPA1 2000::9:67:240:2/96

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 311

VIPADYNAMIC - VIPABACKUP statement

Designates one or more dynamic VIPAs (DVIPAs) for which this stack provides
automatic backup if the owning stack fails. Another stack is expected, but not
required, to have this same DVIPA defined with a VIPADYNAMIC VIPADEFINE
statement.

Rule:

v Within a single profile there should be only one VIPABACKUP statement for a
particular DVIPA. If the DVIPA does appear in more than one statement, you
must specify a VIPADELETE statement before the last instance to ensure that it
is not rejected.

Syntax

Rule:

v Specify the parameters in the order shown here.

�� �

�

1
VIPABackup ipv4_addr

rank TIER1 ipv6_intfname ipv6_addr
TIER2

CPCSCOPE
CPCSCOPE MOVEable IMMEDiate address_mask ipv4_addr

WHENIDLE SERVICEMGR
MOVEable IMMEDiate ipv6_intfname ipv6_addr

ipv6_addr/prefix_len

��

Parameters

rank
Specifies the intended order of the VIPAs in this VIPABACKUP statement list
in their respective backup chains, relative to other stacks in those backup
chains. Larger numerical rank values move the respective stacks closer to the
beginning of the backup chain.

rank can be set to any integer from 1 (end of the backup chain) through 254
(start of the backup chain). Values 0 and 255 are reserved for use by the stacks
themselves to temporarily force stack entries to the start or the end of the
backup chain until an expected transition takes place.

The default is a rank of 1.

TIER1
Indicates that the dynamic VIPA whose address is specified as an IP address
on this statement are used to distribute incoming requests to z/OS or
non-z/OS targets (for example, DataPower appliances).

Restriction: You cannot configure this parameter on this statement if
CPCSCOPE is configured.

TIER2
Indicates that the dynamic VIPA whose address is specified as an IP address
on this statement are used to distribute incoming requests from Tier 1 targets
to the group of server applications.

Rule: If CPCSCOPE is also configured on this statement, then the Tier 2 group
of server applications is limited to TCP/IP stacks on this CPC.

312 z/OS V2R1.0 Communications Server: IP Configuration Reference

CPCSCOPE
Indicates that the dynamic VIPA whose address is specified as an IP address
on this statement is specific to the central processor complex (CPC) on which it
is defined. The VIPA is not moved to or taken over by another TCP/IP stack
that is in a different CPC. A DVIPA defined with this characteristic can be used
as the default route for incoming requests from Tier 1 targets on this CPC. A
DVIPA defined with this characteristic can be used as the default route for
incoming requests from non-z/OS tier 1 targets on this CPC. The non-z/OS
Tier 1 target addresses must be on the same subnet as the subnet determined
by the address_mask or prefix_len value.

Restrictions:

v A DVIPA defined with the CPCSCOPE parameter cannot be used in a
VIPADISTRIBUTE DEFINE statement unless TIER2 is also configured.

v You cannot configure this parameter on this statement if TIER1 is
configured.

MOVEABLE

This parameter is used to specify when a DVIPA that has been activated on
this TCP/IP stack can be moved to another TCP/IP stack when the other
TCP/IP stack requests ownership.

It can also be used to specify that the dynamic VIPA should be activated on
this TCP/IP stack if it is not already active in the sysplex. If the DVIPA is
already active in the sysplex when the VIPABACKUP statement is processed,
this parameter is ignored. If you specify this parameter, you must also specify
one of the following sets of dynamic VIPA information:
v The IPv4 address mask and address
v The IPv6 interface name and address

For more information about configuring VIPAs for activation with
VIPABACKUP, see z/OS Communications Server: IP Configuration Guide.

IMMEDIATE
Specifies that the DVIPA can be activated immediately on another
TCP/IP stack. The TCP connections to this TCP/IP stack are preserved.
If the DVIPA has been activated on this TCP/IP, and the TCP/IP where
the DVIPA is defined by a VIPADEFINE statement is subsequently
activated, the DVIPA is activated immediately on that TCP/IP. And the
TCP connections to this TCP/IP are preserved.

WHENIDLE
Specifies that the DVIPA remains active on this TCP/IP stack until
there are no more connections to the DVIPA on this stack. If the DVIPA
is activated on this TCP/IP, and the TCP/IP where the DVIPA is
defined by a VIPADEFINE statement is subsequently activated, the
DVIPA remains active on this TCP/IP until there are no more
connections to the DVIPA on this TCP/IP.

This option is not supported for IPv6.

Guideline: Support for the WHENIDLE parameter is limited. It is
recommended to use the IMMEDIATE parameter instead of the
WHENIDLE parameter

SERVICEMGR
Indicates that sysplex distributor performs Multinode Load Balancing (MNLB)
by functioning as a Service Manager (in place of Cisco's LocalDirector) for
these distributed dynamic VIPAs. SERVICEMGR has no effect if a

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 313

VIPADISTRIBUTE DEFINE statement does not exist for the dynamic VIPA or
VIPAs. SERVICEMGR is optional, and can be specified on a VIPABACKUP
statement only when MOVEABLE is also specified.

This parameter is used only for activating the DVIPA when it is not already
active in the sysplex. If the DVIPA is active when the VIPABACKUP statement
is processed, this parameter is ignored.

Restrictions:

v MNLB is not supported for IPv6 DVIPAs; the SERVICEMGR parameter is
ignored for these types of addresses.

v The SERVICEMGR parameter is ignored when TIER1, TIER2, or CPCSCOPE
is specified.

address_mask
Specifies the subnet mask or prefix to be used when building the
BSDROUTINGPARMS entry for this DVIPA when it is activated. This
parameter can be specified on a VIPABACKUP statement only when
MOVEABLE is also specified, and this parameter is required when
MOVEABLE is specified on a VIPABACKUP statement. It is specified in
standard dotted decimal notation. A subnet mask of 0.0.0.0 is not valid.

When you are specifying the subnet mask for a DVIPA with the value
CPSCOPE, ensure that the subnet is the same subnet that is used for tier 1
non-z/OS targets that are being routed to tier 2 targets on this CPC.

This parameter is used only for activating the DVIPA when it is not already
active in the sysplex. If the DVIPA is active when the VIPABACKUP statement
is processed, this parameter is ignored.

Restriction: This parameter applies to IPv4 only.

ipv4_addr
Specifies the specific DVIPA to be backed up. More than one IPv4 address can
be specified on a single VIPABACKUP statement. A mixture of IPv4 addresses
and an IPv6 interface on the same VIPABACKUP statement is not permitted. A
mixture of a VIPABACKUP statement with all IPv4 addresses, and a
VIPABACKUP statement with an IPv6 interface, is permitted within the same
VIPADYNAMIC/ENDVIPADYNAMIC block, and the VIPABACKUP
statements can be intermixed in any order.

All ipv4_addr values specified on a single VIPABACKUP statement have the
same rank. Use multiple VIPABACKUP statements to define different ranks for
different ipv4_addr values.

The default LOOPBACK address (127.0.0.1) cannot be specified as the
ipv4_addr.

ipv6_addr
Specifies the specific DVIPA to be backed up. Only one IPv6 address can be
specified on a single VIPABACKUP statement. A mixture of VIPABACKUP
statements with all IPv4 addresses, and VIPABACKUP statements with the
IPv6 address, is permitted within the same VIPADYNAMIC/
ENDVIPADYNAMIC block, and the VIPABACKUP statements can be
intermixed in any order.

See “Restrictions on IPv6 addresses configured in the TCP/IP profile” on page
143 for a description of the ipaddr_spec parameter and a list of restrictions that
must be observed when specifying this parameter.

314 z/OS V2R1.0 Communications Server: IP Configuration Reference

/prefix_len
Specifies the prefix length to be used when calculating a prefix for CPCSCOPE
processing. The number of bits in the ipv6_addr value defines the prefix. The
range is 1 - 128.

When specifying the prefix length for a CPCSCOPE DVIPA, ensure that the
prefix is the same subnet used for the tier 1 targets that are in this CPC.

Restriction: This parameter applies to IPv6 only.

ipv6_intfname
The name of the IPv6 interface to be backed up. The maximum length is 16
characters. Only one ipv6_intfname can be specified on a single VIPABACKUP
statement. This specified name and the address specified in ipv6_addr are
verified to ensure that the DVIPA interface is uniquely (consistently) defined
throughout the sysplex environment.

Steps for modifying
v To remove an IPv4 address or IPv6 interface as a dynamic VIPA backup, use one

of the following:
– For an IPv4 address: VIPADELETE ipv4_addr

– For an IPv6 interface: VIPADELETE ipv6_intfname

– To change the rank (if the IP address is not currently active on this stack):
VIPABACKUP new_rank ipv4_addr

However, if the IP address is currently active, you must first delete it and
then configure it with the new rank by using one of the following:
-

VIPADELETE ipv4_addr
VIPABACKUP new_rank ipv4_addr

-
VIPABACKUP new_rank ipv6_intfname ipv6_addr

or if the IP address is currently active, the VIPADELETE statement breaks any
existing connections and causes the dynamic VIPA to activate elsewhere in
the sysplex if there is another stack prepared to activate it.

v To remove an IPv6 interface and its address as a dynamic VIPA backup, use a
VIPADELETE statement. ipv6_intfname.

v To modify the VIPABACKUP or VIPADELETE ipv6_intfname statement to
remove an IP address as a dynamic VIPA backup, code the following:
VIPADELETE ipaddr

v To change a VIPABACKUP from TIER1 to TIER2, from TIER2 to TIER1, from
non-TIER to TIER, or from TIER to non-TIER, you must first issue a
VIPADELETE ipaddr.

Examples
VIPABACKUP V6DVIPA1 2000::9:67:240:2
VIPABACKUP 200 TIER2 CPCSCOPE MOVEABLE IMMEDIATE 255.255.255.192 9.67.240.02

VIPADYNAMIC - VIPADELETE statement

The VIPADELETE statement allows you to remove a dynamic VIPA interface from
the VIPADEFINE or VIPABACKUP statement in which it occurs. It results in the
interface and its dynamic VIPA being deleted.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 315

Syntax

�� �VIPADELete ipv4_addr
ipv6_intfname

��

Parameters

ipv6_intfname
The name of the IPv6 interface as previously defined by a VIPADEFINE or
VIPABACKUP statement. The maximum length is 16 characters. Only one
interface name can be specified on a VIPADELETE statement.

ipv4_addr
Specifies the IPv4 IP address of the specific DVIPA to be deleted from the
stack. More than one ipv4_addr value can be specified on a single VIPADELETE
statement.

Examples
VIPADELETE 201.2.10.11
VIPADELETE DVIPA1

VIPADYNAMIC - VIPADISTRIBUTE statement

Enables (VIPADISTRIBUTE DEFINE) or disables (VIPADISTRIBUTE DELETE) the
sysplex distributor function for a dynamic VIPA (defined on the same stack by a
VIPADEFINE or VIPABACKUP statement) for which new connection requests can
be distributed to other stacks in the sysplex. If you want to distribute FTP traffic,
specify port 21 (or another designation according to which ports you are using for
FTP) on the PORT parameter.

Tip: A target (or destination) DVIPA is one that was created on this stack as a
result of a VIPADISTRIBUTE statement for an active VIPA on another stack. These
addresses are identified by Flag I (internal only) in the Netstat HOME/-h
command output.

Syntax

Rule: Specify the parameters in the order shown here, except for the optional
parameters preceding the IPv4 address or IPv6 interface name, which can be
specified in any order.

�� VIPADISTribute Base Parameters
Tier1 Parameters
Tier2 Parameters

��

Base Parameters:

Base Options ipv4_addr
ipv6_intfname

�PORT num
num-num

�

316 z/OS V2R1.0 Communications Server: IP Configuration Reference

�

�

DESTIP ALL

dynxcfip
DESTIP WEIGHTEDACTIVE options
DESTIP HOTSTANDBY options

Base Options (These can be specified in any order):

DEFINE

DELEte

DISTMethod BASEWLM BASEWLM distribution method options

DISTMethod ROUNDROBIN
SERVERWLM SERVERWLM distribution method options
WEIGHTEDActive
HOTSTANDBY HOTSTANDBY distribution method options

�

�
NOOPTLOCAL

1
OPTLOCAL

value

SYSPLEXPorts

TIMEDAFFinity 0

TIMEDAFFinity seconds

Tier1 Parameters:

Tier1 Options ipv4_addr
ipv6_intfname

�PORT num
num-num

�

�

�

DESTIP ALL

targetip
DESTIP WEIGHTEDACTIVE options
DESTIP HOTSTANDBY options

Tier1 Options (These can be specified in any order):

DEFINE

DELEte

DISTMethod BASEWLM BASEWLM distribution method options

DISTMethod ROUNDROBIN
SERVERWLM SERVERWLM distribution method options
WEIGHTEDActive
HOTSTANDBY HOTSTANDBY distribution method options

DISTMethod ROUNDROBIN CONTROLPORT 1702
GRE
ENCAP DISTMethod WEIGHTEDActive CONTROLPORT port_number

TARGCONTRolled

�

�
NOOPTLOCAL

1
OPTLOCAL

value

SYSPLEXPorts
TIMEDAFFinity 0
TIMEDAFFinity seconds

TIER1 groupname

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 317

Tier2 Parameters:

Tier2 Options ipv4_addr
ipv6_intfname

�PORT num
num-num

�

�

�

DESTIP ALL

dynxcfip
DESTIP WEIGHTEDACTIVE options
DESTIP HOTSTANDBY options

Tier2 Options (These can be specified in any order):

DEFINE

DELEte

DISTMethod BASEWLM BASEWLM distribution method options

DISTMethod ROUNDROBIN
SERVERWLM SERVERWLM distribution method options
WEIGHTEDActive
HOTSTANDBY HOTSTANDBY distribution method options

�

�
NOOPTLOCAL

1
OPTLOCAL

value

SYSPLEXPorts

TIMEDAFFinity 0

TIMEDAFFinity seconds
TIER2 groupname

DESTIP WEIGHTEDACTIVE options:

WEIGHT 10

WEIGHT value

DESTIP HOTSTANDBY options:

PREFERRED
1

BACKUP
rank

BASEWLM distribution method options:

318 z/OS V2R1.0 Communications Server: IP Configuration Reference

�

PROCTYPE CP 1 ZAAP 0 ZIIP 0

CP 1
PROCTYPE

CP x
ZAAP 0

ZAAP y
ZIIP 0

ZIIP z

SERVERWLM distribution method options:

�

PROCXCOST ZAAP 1 ZIIP 1

ZAAP 1
PROCXCOST

ZAAP x
ZIIP 1

ZIIP y

ILWEIGHTING 0

ILWEIGHTING 1
2
3

HOTSTANDBY distribution method options:

AUTOSWITCHBACK

NOAUTOSWITCHBACK

HEALTHSWITCH

NOHEALTHSWITCH

Parameters

DEFINE
Adds or replaces the designation of this dynamic VIPA (defined on the same
stack by a VIPADEFINE or VIPABACKUP statement) as distributable. This is
the default value.

DELETE
Deletes a previous designation of a dynamic VIPA as distributable.

DISTMETHOD
Specifies the distribution method to be used by the distributing stack.

BASEWLM
Specifies that Workload Manager (WLM) and policy information is used
for this distributed DVIPA for incoming connection requests. Incoming
connection requests are distributed according to relative WLM system
weight preferences as modified by the Target Server Responsiveness (TSR)
value, and possibly as modified by Service Policy Agent policies. The value
DISTMETHOD BASEWLM is the default setting unless you specify GRE or
ENCAP.

Restriction: You cannot specify DISTMETHOD BASEWLM if you specify
GRE or ENCAP.

Rule: You must specify IPCONFIG SYSPLEXROUTING on all target
systems to use this distribution method.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 319

BASEWLM distribution method options:

PROCTYPE
This parameter is valid only when the distribution method is
BASEWLM. zAAPs and zIIPs are specialty processors designed for
specific application workloads. Some target applications can take
advantage of these specialty processors. For workloads that use
server-specific WLM weights, WLM typically returns a composite raw
weight that takes into consideration how well the server is meeting its
WLM goals with respect to the various types of processors the server is
using. For workloads that use system-wide WLM recommendations,
WLM is unaware of how a resource is utilizing the various processors.
Instead, WLM returns a weight for each processor type that is based
on the amount of displaceable capacity for this processor in the system
as compared to the available capacity for this processor on the other
target systems.

For applications that use specialty processors and receive WLM system
weight recommendations, specify a PROCTYPE parameter to indicate
the expected proportion of each type of processor that the target
application's workloads should use. A composite recommendation is
determined from these proportions. Each of the proportions should be
expressed as a number in the range 0 - 99. Each proportion value is
divided by the total to determine the processor usage pattern. To
determine the processor proportions to configure, study your workload
usage of assist processors by analyzing SMF records, using
performance monitors reports, such as RMF™, and so on.

Possible values include:

CP x The proportion of the workload that uses conventional
processors.

ZAAP y
The proportion of the workload that uses zAAP processors.

ZIIP z The proportion of the workload that uses zIIP processors.

For example, the value PROCTYPE CP 5 ZAAP 0 ZIIP 3 specifies a
processor usage pattern such that 5/8 of the application's CPU
utilization uses conventional processors (CP), and 3/8 of the
application's CPU utilization uses zIIP processors.

For example, the value PROCTYPE CP 60 ZAAP 30 ZIIP 10, would
specify a processor usage pattern such that 60% uses conventional
processors (CP), 30% uses zAAP processors, and 10% uses zIIP
processors.

The value PROCTYPE CP 1 ZAAP 0 ZIIP 0 is the default value; this
value is used when the PROCTYPE parameter has never been
specified. The default value indicates that 100% of the conventional
processor weight (CP) should be considered when determining the
composite weight (the application's workload does not use zIIP or
zAAP processors). This value also disables an existing PROCTYPE
value.

Specifying the PROCTYPE parameter without any parameters is
equivalent to specifying the default values; you can use this setting
disable an existing PROCTYPE value.

320 z/OS V2R1.0 Communications Server: IP Configuration Reference

Restriction: When processor types are specified, at least one type must
be specified with a nonzero value.

ROUNDROBIN
Specifies that WLM and policy information are not used to determine how
to route future incoming connection requests for this distributed DVIPA.
Incoming TCP connection requests are distributed in a round-robin fashion
across the available TCP/IP stacks that are targets for each DVIPA/port
combination and have at least one application server instance listening on
the specified ports. This distribution method is not influenced by the
number of server instances that are active on a target TCP/IP stack
instance and listening on the same port (for example, SHAREPORT
specified on the PORT reservation statement). In other words, a target
TCP/IP stack that has multiple active servers on the same port does not
receive more connection requests than a target stack that has a single
instance of that server active. DISTMETHOD ROUNDROBIN is the default
setting if GRE or ENCAP is specified.

Result: If a distribution target has a Target Server Responsiveness (TSR)
value of 0, it is normally not used as a target for distribution. For more
information about responsiveness monitoring, see z/OS Communications
Server: IP Configuration Guide.

SERVERWLM
Specifies that server-specific WLM values should be collected for this
group of DVIPA ports. If WLM server values can be collected for each
target server, these values are used to distribute connections for this group
of DVIPA ports [as modified by the Target Server Responsiveness (TSR)
value, and possibly as modified by Service Policy Agent policies]. If all
target servers do not provide the server-specific recommendations, then
DISTMETHOD BASEWLM distribution is used instead. For more
information about workload balancing and sysplex distribution, see z/OS
Communications Server: IP Configuration Guide.

Rule: You must specify IPCONFIG SYSPLEXROUTING on all target
systems to use this distribution method.

Result: zAAP and zIIP processor capacity is automatically included when
SERVERWLM is specified and all systems in the sysplex are V1R9 or later.

Restriction: You cannot specify SERVERWLM if you specify GRE or
ENCAP.

Port sharing

Specifying SHAREPORT on the PORT statement in the TCP/IP profile
enables a group of servers to listen on the same port and thereby share the
incoming workload. As new connections are received, the SHAREPORT
algorithm distributes connections in a weighted round-robin fashion based
on each server's Server accept Efficiency Fraction (SEF). By specifying
SHAREPORTWLM on the PORT statement, connections are distributed in
a weighted round-robin fashion based on the WLM server-specific
recommendations, as modified by the Server accept Efficiency Fraction
(SEF). If the shared port is a sysplex-distributed port and SERVERWLM is
the distribution method that is being used, then SHAREPORTWLM should
be coded on each target's PORT statement to take advantage of the new
WLM server-specific recommendations when connections are received at
the target; if it is not, new connections continue to be distributed using the
existing SHAREPORT algorithm when they are received at the target.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 321

Result: zAAP and zIIP processor capacity is automatically included when
SHAREPORTWLM is specified and all systems in the sysplex are V1R9 or
later.

SERVERWLM distribution method options:

ILWEIGHTING
This parameter is valid only when the distribution method is
SERVERWLM.

The ILWEIGHTING parameter specifies the weighting factor that WLM
uses when comparing displaceable capacity at different importance
levels (ILs) as it determines a SERVERWLM recommendation for each
system. The parameter value indicates how aggressively WLM should
favor systems with displaceable capacity at low importance levels over
systems with displaceable capacity at high importance levels. The
higher the value specified for ILWEIGHTING the more a stack with
displaceable capacity at lower importance levels is favored. See the
internal load balancing information in z/OS Communications Server:
IP Configuration Guide for more information about the effects of this
parameter.

0 WLM ignores importance levels when comparing displaceable
capacity. This is the default value.

1 WLM weights displaceable capacity that is at each successively
lower importance level slightly higher than the capacity at the
preceding importance level. The weighting increases proportionally
to the square root of the difference between the two importance
level values plus 1. This calculation provides a moderate bias when
comparing displaceable capacity at different importance levels.

Guideline: If you specify any value other than the default value
(0), for the first time, specify this value (1) initially.

2 WLM weights displaceable capacity that is at each successively
lower importance level significantly higher than the capacity at the
preceding importance level. The weighting increases proportionally
to the difference between the two importance level values plus 1.
This provides an aggressive bias when comparing displaceable
capacity at different importance levels.

3 WLM weights displaceable capacity that is at each successively
lower importance level significantly higher than the capacity at the
preceding importance level. The weighting increases proportionally
to the square of the difference between the two importance level
values plus 1. This provides an exceptionally aggressive bias when
comparing displaceable capacity at different importance levels.

PROCXCOST
This parameter is valid only when the distribution method is
SERVERWLM.

zAAPs and zIIPs are specialty processors designed to off-load specific
application workloads. Some target applications are designed to have a
portion of their workload take advantage of these processors.

For server-specific recommendations, WLM calculates a composite
weight based on a comparison, for each system, of the available
capacity of each processor modified by the proportion of processor
usage by the application. However, the composite weight does not

322 z/OS V2R1.0 Communications Server: IP Configuration Reference

consider that the conventional processor proportion on a system might
be higher than normal because specialty processing capacity is
constrained; a portion of the workload intended to run on a specialty
processor ran on the conventional processor instead.

This parameter specifies a crossover cost which is applied to the zAAP
or zIIP targeted workload that ran on the conventional processor; it
reduces the conventional processor proportion which in turn reduces
the composite weight for that system. This parameter can be used to
cause WLM to favor systems that had less crossover (more of their
workload running on the intended specialty processor) over systems
that had more crossover. The higher the PROCXCOST crossover value,
the more aggressively WLM recommendations favor systems with
more specialty engine capacity which can reduce overall processing
cost; however, if you use a PROCXCOST value that is too aggressive
(high), overall workload performance for that service class might be
sacrificed. The RMF Workload Activity Report shows the zAAP and
zIIP processor utilization as well as how much crossover took place.
Run this report before, and after, using the PROCXCOST parameter to
better understand how this affects your overall workload performance.

Possible values include:

ZAAP x
The crossover cost of running targeted zAAP workload on a
conventional processor instead of the zAAP processor, where x is
an integer in the range 1 - 100. The higher the PROCXCOST zAAP
value, the more aggressively the systems with less zAAP crossover
occurring are favored. The default value is 1, which means that
zAAP crossover is not considered.

ZIIP y
The crossover cost of running targeted zIIP workload on a
conventional processor instead of the zIIP processor, where y is an
integer in the range 1 - 100. The higher PROCXCOST zIIP value,
the more aggressively the systems with less zIIP crossover are
favored. The default value is 1, which means that zIIP crossover is
not considered.

TARGCONTROLLED
Specifies that incoming connection requests are distributed using weights
provided by the Tier 1 targets.

Restrictions:
v You can specify TARGCONTROLLED only when you specify GRE or

ENCAP.
v You can specify TARGCONTROLLED only when you are distributing

connections to DataPower appliances.

WEIGHTEDACTIVE
Specifies that WLM and policy information are not used to determine how
to route future incoming connection requests for this distributed DVIPA.
Instead, distribution of incoming TCP connection requests is balanced
across the targets such that the number of active connections on each target
is proportionally equivalent to a configured active connection weight for
each target.

You can specify the weight for each target on the DESTIP parameter after
each target's IP address. If you configure the value DESTIP ALL, then the

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 323

default weight 10 is used and the connection distribution goal is to have an
equal number of active connections for each DESTIP target. For more
information, see the DESTIP WEIGHTEDACTIVE options.

This distribution method is not influenced by the number of server
instances that are active on a target TCP/IP stack instance and listening on
the same port (SHAREPORT parameter specified on the PORT reservation
statement). For example, when two target TCP/IP stacks are configured
with the same active connection weight, if one of the targets has multiple
active servers for that port and the other target has only one instance of
that server active, both stacks initially receive the same number of
connection requests.

Rule: You must specify IPCONFIG SYSPLEXROUTING on all target
systems to use this distribution method.

HOTSTANDBY
Specifies that there is at least one backup (hot-standby) target and a
preferred target stack. You must configure one preferred target and at least
one hot-standby target. For information about configuring these targets, see
the PREFERRED and BACKUP parameters under DESTIP HOTSTANDBY
options.

The target to which connections are distributed is referred to as the active
target. If AUTOSWITCHBACK is configured, then the preferred target is
the active target if it is available and has not had any health problems. If
the active target becomes unavailable, the hot-standby target becomes the
new active target, and the unavailable target becomes a hot-standby target.

A target is unavailable if any of the following conditions are true:
v The target is not ready.
v The distributor does not have an active route to the target.
v The target is not healthy; there is a severe problem detected by one of

the following health metrics:
– The target server responsiveness (TSR) value is 0%
– WLM reported abnormal terminations are 1000 out of 1000 total

transactions
– WLM reported health is 0%

Requirement: PREFERRED or BACKUP must be configured on the
DESTIP parameter for each target after the dynamic XCF address. For more
information, see the DESTIP HOTSTANDBY options.

Rule: IPCONFIG SYSPLEXROUTING must be specified on all target
systems for this distribution method to be used.

Restrictions:

v You cannot configure DESTIP ALL with this distribution method.
v You cannot configure GREor ENCAP with this distribution method.
v TIMEDAFFINITY is ignored with this distribution method.

Result: In the Netstat VDPT/-O report, ACTIVE is displayed if this is
currently the active target, and BACKUP is displayed if this is currently a
hot-standby target. For more information about the Netstat VDPT/-O
report, see z/OS Communications Server: IP System Administrator's
Commands.

HOTSTANDBY distribution method options:

324 z/OS V2R1.0 Communications Server: IP Configuration Reference

AUTOSWITCHBACK | NOAUTOSWITCHBACK

AUTOSWITCHBACK
Specifies that the distributor automatically switches
distribution back to the preferred target when the preferred
target becomes available. For example, if the preferred target
becomes a standby target because its server is no longer ready,
when the server is again in the LISTENING state, the
distributor automatically switches back to the preferred target
as the active target. This is the default value.

Automatic switchback does not occur if the preferred target
initially became unavailable because it was not healthy (TSR,
WLM abnormal terminations, WLM health). A standby target
that had health problems while active can look healthy again
because it is not processing new work.

NOAUTOSWITCHBACK
Specifies that you do not want the distributor to switch back to
the preferred target when it becomes available.

HEALTHSWITCH | NOHEALTHSWITCH

HEALTHSWITCH
Specifies that the distributor automatically switches from the
active target if the target is not healthy. This is the default
value.

NOHEALTHSWITCH
Specifies that the distributor ignores health metrics, and
switches from the active target only if the target is not ready or
if the distributor does not have an active route to the target.

SYSPLEXPORTS
Causes coordinated sysplex-wide ephemeral port assignment to be activated
for the distributed DVIPA on all stacks where the DVIPA is defined, including
all active candidate target stacks and the distributing stack, for all TCP
connection requests.

SYSPLEXPORTS must be specified on the first VIPADISTRIBUTE statement for
a DVIPA. It cannot be enabled after a DVIPA has been marked for distribution.
If enabled, it cannot be disabled until all distribution has been deleted for the
DVIPA (except for quiescing the DVIPA on the target stacks).

If you send connection requests to SYPLEXPORTS-enabled distributed DVIPAs
and a random ephemeral port with no associated listener, then this connection
times out.

Rules:

v For Passive Mode FTP to be distributed, the SYSPLEXPORTS parameter
must be specified.

v Always specify the PORT parameter when specifying the SYSPLEXPORTS
parameter; the way dynamic port allocation interacts with the EZBEPORT
vvtt structure inhibits distribution to more than one target.

v A server application on a target stack can bind to a distributed DVIPA and a
port that is not defined in the PORT parameter of the VIPADISTRIBUTE
statement.

v If EPHEMERALPORTS is specified on the TCPCONFIG statement, only
ports within the EPHEMERALPORTS range are assigned on the local stack
for SYSPLEXPORTS processing.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 325

Restrictions:

v For sysplexports allocation to function correctly, the stacks involved must be
connected to the same sysplex ports coupling facility structure.

v SYSPLEXPORTS is ignored if GRE or ENCAP is specified.

TIER1 groupname
This parameter indicates that the dynamic VIPA whose address is specified as
an IP address on this statement is used to distribute incoming requests to z/OS
or non-z/OS targets (for example, DataPower appliances).

Rules:

v If you do not specify GRE or ENCAP, the targets are z/OS targets and the IP
addresses specified on the DESTIP subparameter of this statement are
dynamic XCF addresses.

v If you specify GRE or ENCAP, the targets are non-z/OS targets and the IP
addresses specified on the DESTIP subparameter of this statement are not
dynamic XCF addresses, but are the IP addresses of those Tier 1 targets.

The groupname value specifies the name of a cluster of equivalent server
applications in the sysplex that the tier 1 targets might distribute the requests
to. The groupname value can be 1 - 16 characters in length, must begin with an
alphabetic character, and must not contain any national symbols, including @
or $. This value is used to correlate this statement with a corresponding TIER2
VIPADISTRIBUTE statement or statements. When TIER1 is specified, groupname
is required, even if TIER2 definitions are not used.

CONTROLPORT port_number
Specifies the destination port number to be used when a control
connection is being established to the Tier 1 target; a control connection
is always established when GRE or ENCAP is configured. If
CONTROLPORT is not specified, but GRE or ENCAP is specified, the
default port number 1702 is used. See the DataPower configuration
manuals for information about how to configure a control port.

Restrictions:

v You can specify CONTROLPORT only when you are distributing
connections to non-z/OS targets.

v You can specify CONTROLPORT only when GRE or ENCAP is
specified.

v The same port number (whether explicitly specified or specified by
default) must be used on all VIPADISTRIBUTE statements that
specify a CONTROLPORT value or that require a default port value.
When a VIPADISTRIBUTE statement specifying a CONTROLPORT
port_number (or requiring the default port value) has been
encountered, any subsequent VIPADISTRIBUTE statement specifying
a different port number is rejected.

GRE Indicates that generic routing encapsulation (GRE) is used when
distributing requests to the Tier 1 targets.

Restrictions:

v This parameter applies to IPv4 only.
v You can specify GRE only when you are distributing connections to

non-z/OS targets.
v You can specify GRE only when TIER1 is specified.
v When GRE is specified, the following parameters on the

VIPADISTRIBUTE statement are ignored:

326 z/OS V2R1.0 Communications Server: IP Configuration Reference

– SYSPLEXPORTS
– OPTLOCAL

v When GRE is specified, the following DISTMETHOD parameters
cannot be specified:
– BASEWLM
– SERVERWLM

v If the client is local to the distributing stack and it binds to
inaddr_any or it uses an implicit bind, you must ensure that source
IP address selection does not choose to use the distributed DVIPA
destination as the source IP address for the connect() call. In the
following example, source IP address selection will use the
distributed DVIPA destination (DVIPA1) for the source because it is
locally owned and advertised by the sysplex distributor. Because the
SYN is routed by the sysplex distributor to a DataPower appliance,
the packet is encapsulated in a GRE header:

GRE Inner IP header

Source IP Dest IP Source IP Dest IP

XCF@ DataPower IP@ Distributed DVIPA1 Distributed DVIPA1

After the GRE header is stripped away at the DataPower appliance,
the connect() call will hang because the DataPower routing logic
assumes that the packet should remain local because the source IP
address (DVIPA1) is locally defined on the appliance as a
non-advertised IP address.
The source IP address must be routable by the DataPower appliance.
You can use the SRCIP statement to select an appropriate source IP
address for the client application.
For more information about source IP selection, see z/OS
Communications Server: IP Configuration Guide. For more
information about the SRCIP statement, see “SRCIP statement” on
page 282.

Tip: If you specify GRE, a control connection to the Tier 1 target is
always established, using the CONTROLPORT port number as the
destination port.

ENCAP
Indicates that routing encapsulation is used when distributing requests
to the Tier 1 targets.

Restrictions:

v This parameter applies to IPv6 only.
v You can specify ENCAP only when you are distributing connections

to non-z/OS targets.
v You can specify ENCAP only when TIER1 is specified.
v If you specify ENCAP, the following parameters on the

VIPADISTRIBUTE statement are ignored:
– SYSPLEXPORTS
– OPTLOCAL

v If you specify ENCAP, you cannot specify the following
DISTMETHOD parameters:
– BASEWLM

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 327

– SERVERWLM
v If the client is local to the distributing stack and it binds to the

unspecified IPv6 address (in6addr_any), or if it uses an implicit
bind, you must ensure that source IP address selection does not
choose to use the distributed DVIPA destination as the source IP
address for the connect() call. In the following example, source IP
address selection will use the distributed DVIPA destination
(DVIPA1) for the source because it is locally owned and advertised
by the sysplex distributor. Because the SYN is routed by the sysplex
distributor to a DataPower appliance, the packet is encapsulated in
the outer IP header:

OuterIP header Inner IP header

Source IP Dest IP Source IP Dest IP

XCF@ DataPower IP@ Distributed DVIPA1 Distributed DVIPA1

After the outer IP header is stripped away at the DataPower
appliance, the connect() call will hang because the DataPower
routing logic assumes that the packet should remain local because
the source IP address (DVIPA1) is locally defined on the appliance as
a non-advertised IP address.
The source IP address must be routable by the DataPower appliance.
You can use the SRCIP statement to select an appropriate source IP
address for the client application.
For more information about source IP selection, see z/OS
Communications Server: IP Configuration Guide. For more
information about the SRCIP statement, see “SRCIP statement” on
page 282.

Tip: If you specify ENCAP, a control connection to the Tier 1 target is
always established, using the CONTROLPORT port number as the
destination port.

TIER2 groupname
This parameter indicates that the dynamic VIPA whose address is specified as
an IP address on this statement is used to distribute incoming requests from
Tier 1 targets to the group of server applications that is named.

The groupname value specifies the name of a cluster of equivalent server
applications in the sysplex that the Tier 1 targets might distribute the requests
to. It is used to correlate this statement with a corresponding TIER1
VIPADISTRIBUTE statement.

The groupname value can be 1 - 16 characters in length, must begin with an
alphabetic character, and must not contain any national symbols, including @
or $.

TIMEDAFFINITY seconds
Specifies whether or not a connection from a client (as identified by source IP
address) to a particular server instance of several served by sysplex distributor
shall establish an affinity for future connections from the same client (IP
address) to the same Distributed DVIPA and ports. Valid values are in the
range 0 to 9999. A value of 0, the default, means that no affinity is established
when a new connection request is distributed to a particular server application
instance by sysplex distributor. A nonzero value means that when a connection
from a client is routed to a particular server instance, any subsequent
connections from the same client (identified by source IP address) to the same

328 z/OS V2R1.0 Communications Server: IP Configuration Reference

Distributed DVIPA and ports are routed to the same server instance until the
specified number of seconds have elapsed after the last such connection was
closed.

Restriction: Under some circumstances, a client's affinity with a specific target
application server instance might be terminated prior to the specified time
interval. This can occur if the key resources needed to satisfy new client TCP
connection requests are not available. See z/OS Communications Server: IP
Configuration Guide for more information.

If the TIMEDAFFINITY parameter is not initially specified on a
VIPADISTRIBUTE statement, this indicates that timed affinity is not being used
for the distributed DVIPA and ports, which is the same as specifying
TIMEDAFFINITY 0.

Restriction: The TIMEDAFFINITY parameter cannot be specified with the
OPTLOCAL keyword.

OPTLOCAL value | NOOPTLOCAL

NOOPTLOCAL
Causes target stacks to send locally originating connection requests to
the sysplex distributor stack even when both endpoints reside on the
same target stack. This is the default value.

OPTLOCAL value
Causes target stacks to optimize sysplex connections for which both
endpoints reside on the same stack. When this value is specified, target
stacks should bypass sending connection requests to the sysplex
distributor stack for connections to a distributed DVIPA and port pair
that reside locally, and instead process the connection locally using
local optimizations. The local target stack continues to favor the local
stack unless conditions on the local stack become unfavorable as
defined by the value specified. If this happens, connections to this
distributed DVIPA and port pair are sent to the sysplex distributor
stack for appropriate work load balancing.

Restrictions:

v OPTLOCAL cannot be specified with the TIMEDAFFINITY keyword.
v OPTLOCAL is ignored if GRE or ENCAP is specified.

value An integer in the range 0 - 16. The values 0 and 1 are special values,
and values 2 - 16 are used as multipliers against the raw WLM
weights.

A value of 0 indicates that connections originating from a target stack
within the sysplex should always bypass sending the connection
request to the sysplex distributor. The relative capacities of other target
stacks within the sysplex are not considered in determining whether
the connection should remain local.

A value of 1 indicates that connections originating from a target stack
within the sysplex should always bypass sending the connection
request to the sysplex distributor as long as the WLM weight for the
server on the local stack is not 0. This is the default value if
OPTLOCAL is specified without a value.

If a value in the range 2 - 16 is specified, the value is used as a
multiplier against the local target stack's raw WLM weight to cause it
to be favored over the other target stacks. The relative capacities of the
other target stacks within the sysplex are considered in determining

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 329

which stack should process the connection. The higher the value
specified, the more the local stack is favored over other target stacks.

Regardless of the value specified on the OPTLOCAL parameter, if no
local server is available, or the SEF is less than 75 or the abnormal
transaction completions is greater than 250, or the health indicator is
less than 75, connections are sent to the distributing stack.

Result: If the configured distribution method is ROUNDROBIN,
WEIGHTEDACTIVE, or HOTSTANDBY, the OPTLOCAL value is
forced to 0.

ipv4_addr
The specific IPv4 address for which the designation as distributable is to be
deleted or defined.

Rule: An IPv4 address is not allowed if TIER1 ENCAP is specified.

ipv6_intfname
The specific IPv6 interface for which the designation as distributable is to be
deleted or defined.

Rule: An IPv6 interface is not allowed if TIER1 GRE is specified.

PORT num | num-num
Specifies one or more individual ports, ranges of ports, or a combination of
individual ports and ranges. Valid values for num are in the range of 1 - 65535.
For a port range, the value for the second port must be greater than the first.

If the PORT parameter is specified, servers that bind to the specified DVIPA,
the IPv4 INADDR_ANY address, or to the IPv6 unspecified address
(in6addr_any) and one of the specified ports, cause the target stack to become
eligible to receive connection requests.

The PORT parameter can also be omitted entirely from the VIPADISTRIBUTE
statement. If the PORT parameter is omitted, then any server that binds a
socket to the distributed DVIPA and a specific (nonzero) port, and establishes
that socket as a listening socket, is eligible for connection workload balancing.
The following methods can be used to bind a socket to the distributed DVIPA
and a specific (nonzero) port:
1. If available, use a socket option provided by the server application to

override the INADDR_ANY address and to specify a distributed DVIPA
address for the listening port.

2. Code a BIND parameter that specifies a distributed DVIPA for the listening
port in the TCP/IP profile PORT statement.

3. Use the TCP/IP profile SRCIP statement to specify a job name for the
server application, the distributed DVIPA address, and the SERVER option.
The listening port for the server application will be associated with the
distributed DVIPA address.

Rules:

v When the PORT parameter is omitted from the VIPADISTRIBUTE statement
and a specific (nonzero) port is not specified on the bind for the distributed
DVIPA, then any ports that are bound to the distributed DVIPA are eligible
for distribution.

v When the PORT parameter is specified, at least one port or port range must
be specified. The maximum number of ports that is specified, including all
individual ports and all ports within ranges, cannot exceed 64.

330 z/OS V2R1.0 Communications Server: IP Configuration Reference

v Always specify the PORT parameter when specifying the SYSPLEXPORTS
parameter. For the ports omitted from the PORT parameter, connection setup
delays and connection timeouts might occur when there are no active
listeners in the target stacks.

v For the ports specified in the PORT parameter for a distributed DVIPA,
reserve them in the PORT statement in all target stacks associated with the
distributed DVIPA so that ineligible server applications will not use them.

Requirement: If you specify TIER1 GRE or TIER1 ENCAP, you must specify
the PORT parameter.

DESTIP dynxcfip
Specifies the dynamic XCF address (IPCONFIG DYNAMICXCF) of the TCP/IP
stacks in the sysplex that are to be target stacks for the dynamic VIPA. The
target stacks are candidates for receiving new incoming connection requests.
See the PORT keyword for an explanation of how a candidate target stack
becomes eligible to receive connection requests. If the VIPAROUTE statement
specifies a target IP address for dynxcfip, but no route exists from the
distributor to the target stack, that target stack is not considered for
distribution, and the distributor treats this as it does when the dynamic XCF
interface becomes inactive.

A maximum of 32 destination (target) dynamic XCF addresses can be specified.

Rules:

v If an IPv4 address is specified for this VIPADISTRIBUTE statement, then all
of the addressees specified by the dynxcfip value must also be IPv4
addresses.

v If an IPv6 interface name is specified for this VIPADISTRIBUTE statement,
then all of the addressees specified by the dynxcfip value must also be IPv6
addresses.

DESTIP targetip
When you specify TIER1 GRE or TIER1 ENCAP, this parameter specifies the IP
address of non-z/OS hosts (for example, DataPower) appliances that are to be
targets for the dynamic VIPA. The targets are candidates to receive new
incoming connection requests.

When you specify TIER1 without specifying GRE or ENCAP, this parameter
specifies the dynamic XCF address (IPCONFIG DYNAMICXCF) of the TCP/IP
stacks in the sysplex that are to be target stacks for the dynamic VIPA. The
target stacks are candidates to receive new incoming connection requests.

A maximum of 32 Tier 1 target IP addresses can be specified.

Requirement: You must specify TIER1 and either GRE or ENCAP when
specifying the IP address of a non-z/OS host.

Rules:

v If an IPv4 address is specified for this VIPADISTRIBUTE statement, then all
of the addressees specified by the targetip value must also be IPv4 addresses.

v If an IPv6 interface name is specified for this VIPADISTRIBUTE statement,
then all of the addressees specified by the targetip value must also be IPv6
addresses.

v IPv6 addresses are not valid if TIER1 GRE is specified.
v IPv4 addresses are not valid if TIER1 ENCAP is specified.

DESTIP WEIGHTEDACTIVE options:

WEIGHT value

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 331

This parameter is configured following a DESTIP targetip or dynxcfip value.

This parameter has meaning only if the distribution method is
WEIGHTEDACTIVE; it is ignored if this is not the distribution method.
The weight is used by the distributor to determine the proportion of
incoming requests to route to this target such that the number of active
connections on each target is proportionally equivalent to the configured
weight for each target. Valid values are in the range 1 - 99.

For example, if target 1 has a weight of 10 and target 2 has a weight of 90,
then the connection distribution goal is to have 9 times as many active
connections on target 2 as on target 1, or 10% of the active connections on
target 1 and 90% of the active connections on target 2. If a weight is not
specified, the default value of 10 is used. If the distribution method is
WEIGHTEDACTIVE and weights are not configured for any targets, the
goal is to have an equal number of active connections on each target.

Guidelines: Although weights can be in the range 1- 99, it is preferred to
use weights that are greater or equal to 10. This is because the target server
health metrics (Target Server Responsiveness [TSR] fractions) abnormal
terminations, and the health indicator fractions are used to reduce the
weight when these values are not optimal. By specifying weights greater
than or equal to 10, these metrics can be applied without losing the
original weight distinctions between targets. For example, if target 1 has a
weight of 2, target 2 has a weight of 1, and a TSR for target 1 of 90% is
applied, target 1 has a reduced weight of 1 (equal to target 2), but if target
1 has a weight of 20 and target 2 has a weight of 10, then when the TSR of
90% is applied to target 1, it has a weight of 18 (weight reduced, but it is
still preferred over target 2).

If your workload has a low connection arrival rate (less than 100
connections per minute), and typically has a low number of active
connections (less than 1000 active connections), you will get the most
accurate distribution if you configure each weight so that it is a multiple of
10.

DESTIP HOTSTANDBY options:

PREFERRED

Specify this parameter after the dynamic XCF address (dynxcfip) on the
DESTIP parameter. This parameter specifies that this address is the
preferred target when the distribution method is HOTSTANDBY. If you
configure AUTOSWITCHBACK, then the preferred target is the active
target if it is available and has not had any health problems. If the active
target becomes unavailable, the distributor switches to use a hot-standby
target; the active target becomes a hot-standby target and the selected
hot-standby target becomes the active target.

Restriction: You can specify this parameter only if you specify
DISTMethod HOTSTANDBY.

BACKUP rank

Specify this parameter after the dynamic XCF address (dynxcfip) on the
DESTIP parameter. This parameter specifies that this address is one of the
backup targets when the distribution method is HOTSTANDBY.

The rank is used to determine which backup target is selected if the
preferred target becomes unavailable. The backup with the highest rank is
used. Valid values for rank are in the range 1 - 254; the default value is 1.

332 z/OS V2R1.0 Communications Server: IP Configuration Reference

Restriction: You can specify this parameter only if you specify
DISTMethod HOTSTANDBY.

DESTIP ALL
All TCP/IP stacks in the sysplex that have defined a dynamic XCF address of
the same type as the IP address specified by the ipv4_addr or ipv6_intfname
values in this VIPADISTRIBUTE statement are target stacks for the dynamic
VIPA and for ports specified on this profile statement. If the distribution
method WEIGHTEDACTIVE is being used, the default weight 10 is assumed
for all targets; the goal is to have an equal number of active connections on
each target.

Restrictions: .
v

– DESTIP ALL cannot be specified when GRE or ENCAP is specified, or
when the distribution method is HOTSTANDBY.

– When DESTIP ALL or DESTIP dxcfaddr is specified, there is a limitation
that only 32 targets can be used.

Steps for modifying
v To add ports (if the active VIPADISTRIBUTE statement has the PORT parameter

coded) or destination stacks for a distributed DVIPA, use another
VIPADISTRIBUTE statement to specify the additional port or ports and
destination stacks. Ports and destination stacks for a distributed VIPA are
cumulative, up to the maximum number allowed (64 for ports and 32 for
destination stacks).

v To remove a port or a destination stack for IPv4, or both, for a distributed VIPA,
use one of the following:
VIPADISTRIBUTE DELETE ipaddr PORT port_num ... DESTIP dynxcfip ...

VIPADISTRIBUTE DELETE ipaddr PORT port_num DESTIP ALL

For IPv6, use one of the following:
VIPADISTRIBUTE DELETE ipv6_intfname PORT port_num ... DESTIP dynxcfip

VIPADISTRIBUTE DELETE ipv6_intfname PORT port_num DESTIP ALL

v To end distribution for a VIPA, use one or more VIPADISTRIBUTE DELETE
statements to delete every port and destination stack that is currently configured
for this VIPA. These changes are communicated to any stacks backing up the
distribution of this DVIPA, unless the backup stack has its own
VIPADISTRIBUTE statement coded.

v If ports are currently assigned for distribution dynamically for this Distributed
DVIPA (PORT parameter omitted from the VIPADISTRIBUTE DEFINE), then
VIPADISTRIBUTE DELETE can be used only to stop distribution for a target
TCP/IP or for the Distributed DVIPA as a whole. VIPADISTRIBUTE DELETE
cannot be used to stop distribution for a port with a Distributed DVIPA where
ports are added dynamically.

v To specify certain ports for distribution when a distributed DVIPA is allowing
distribution ports to be assigned dynamically (the active VIPADISTRIBUTE
statement has no PORT parameter), you must first delete the VIPADISTRIBUTE
statement (without PORT parameter). You can then code a VIPADISTRIBUTE
statement with the PORT parameter. Existing connections to server instances are
not affected. However, a server listening socket bound to a port which is not in
the current PORT statement does not receive additional work.

v To allow dynamic port specification by having servers listening on ports when
the active VIPADISTRIBUTE statement has a PORT parameter coded, you must
first delete the VIPADISTRIBUTE statement (with PORT parameter). You can

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 333

then code a VIPADISTRIBUTE statement without the PORT parameter. Existing
connections are not affected. Note that when the VIPADISTRIBUTE statement is
specified without the PORT parameter, only servers that bind explicitly to the
distributed DVIPA are eligible for workload distribution for that distributed
DVIPA.

v To modify the OPTLOCAL option on the VIPADISTRIBUTE statement, respecify
the VIPADISTRIBUTE statement with the new option value in a data set
referenced by a VARY TCPIP,,OBEYFILE command. You can specify
NOOPTLOCAL to dynamically stop OPTLOCAL processing.

v If the value TIMEDAFFINITY 0 is specified for a distributed DVIPA and ports
for which a nonzero TIMEDAFFINITY value was in effect, no future affinities
are established for new clients connecting to the distributed DVIPA and ports
covered by the VIPADISTRIBUTE statement. Existing client affinities are not
affected.

v If a nonzero TIMEDAFFINITY value is specified for an existing distributed
DVIPA with active connections, affinities are established only for connections
that are received at the distributing stack after the processing of the VARY
TCPIP,,OBEYFILE command that established the nonzero TIMEDAFFINITY
value. Existing connections do not automatically have an affinity established for
the respective client.

v To change the distribution method being used, respecify the VIPADISTRIBUTE
statement with the new DISTMETHOD option in a data set referenced by a
VARY TCPIP,,OBEYFILE command. If the new distribution method is
WEIGHTEDACTIVE:
– Specify the WEIGHT keyword and the desired active connection weight value

after each DESTIP dynamic XCF address.
– If the active connection weight is not specified a default value of 10 is

assumed.
– If DESTIP ALL is specified, the active connection weight cannot be specified.

A goal of having an equal number of active connections on all targets is used.
v To change the active connection weights being used for the targets when the

distribution method is WEIGHTEDActive, in a data set referenced by a VARY
TCPIP,,OBEYFILE command, respecify the VIPADISTRIBUTE statement with the
WEIGHT keyword and the desired active connection weight value following
each DESTIP dynamic XCF address. If the active connection weight is not
specified, a default value of 10 is assumed.

v To change the PROCTYPE values being used with BASEWLM, in a data set
referenced by a VARY TCPIP,,OBEYFILE command, respecify the
VIPADISTRIBUTE statement with the PROCTYPE values for each processor
type. If PROCTYPE is not specified, the previous values for PROCTYPE are
used.

v To stop using PROCTYPE values, in a data set referenced by a VARY
TCPIP,,OBEYFILE command, respecify the VIPADISTRIBUTE statement with the
PROCTYPE values of CP 1 zAAP 0 zIIP 0, or simply PROCTYPE. This is the
default usage of BASEWLM; only the general CPU weight that is returned by
WLM is considered.

v To change the PROCXCOST values that are being used with SERVERWLM
respecify the VIPADISTRIBUTE statement with the PROCXCOST values for each
processor type in a data set referenced by a VARY TCPIP,,OBEYFILE command.
If PROCXCOST is not specified, then the TCP/IP stack uses the previous values
for PROCXCOST when it receives a server-specific WLM recommendation.

v To change the ILWEIGHTING value being used with SERVERWLM, respecify
the VIPADISTRIBUTE statement with the ILWEIGHTING value in a data set

334 z/OS V2R1.0 Communications Server: IP Configuration Reference

referenced by a VARY TCPIP,,OBEYFILE command. If ILWEIGHTING is not
specified, then TCP/IP stack uses the previous values for ILWEIGHTING when
it gets a server-specific WLM recommendation.

Examples
VIPADEFINE 255.255.255.192 9.67.240.02
VIPADISTRIBUTE

DISTMETHOD SERVERWLM 9.67.240.02 PORT 10000 DESTIP ALL

VIPADEFINE TIER2 CPCSCOPE V6DVIPA1 2000::9:67:240:2/96
VIPADISTRIBUTE

DISTMETHOD SERVERWLM PROCXCOST ZIIP 2 ZAAP 2 ILWEIGHTING 2
TIER2 LOCALGROUP OPTLOCAL 1 SYSPLEXPORTS
V6DVIPA1 PORT 10000 DESTIP ALL

VIPADYNAMIC - VIPARANGE statement

Defines or deletes a subnet for which dynamic VIPA (DVIPA) activation requests,
by way of a BIND, SIOCSVIPA IOCTL, or SIOCSVIPA6 IOCTL are honored. For
guidance on defining this statement, see the APF-authorized application instance
(ioctl) information and movement of unique application-instance (BIND)
information in z/OS Communications Server: IP Configuration Guide.

Guideline: VIPARANGE statements that are common to more than one stack
should be defined in a common file and included in the appropriate stack profiles.
This can help you avoid keying errors that could result in a failure to activate an
application on a stack.

Rule: For any DVIPA creation request, the most specific VIPARANGE statement
match (IP address and subnet) is used.

Restriction: There is a limit of 1024 VIPARANGE definition statements.

Syntax

Rule: Specify the parameters in the order shown here.

��
DEFINE MOVEable NONDISRUPTive

VIPARange address_mask ipv4_addr
DELEte MOVEable DISRUPTive SAF resname

MOVEable NONDISRUPTive
ipv6_intfname ipv6_addr/prefix_len

��

Parameters

DEFINE
Specifies that this definition is to be added to the list of defined VIPARANGE
definition statements. This is the default value.

DELETE
Specifies that this definition (with the same address_mask and ipv4_addr values
or the same ipv6_intfname and ipv6_addr/prefix_len values) is to be removed
from the list of allowable ranges for IOCTL or BIND implicit dynamic VIPA
activation.

Tip: A VIPARANGE DELETE statement does not affect currently existing
dynamic VIPAs in the range being deleted.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 335

MOVEABLE NONDISRUPTIVE
Specifies an immediate nondisruptive movement of a dynamic VIPA from one
stack to another stack. This value indicates that a dynamic VIPA in this
VIPARANGE statement can be moved to another stack when that stack
requests ownership of the DVIPA as the stack creates it; this occurs when an
application binds to that DVIPA, the MODDVIPA utility is used to create the
DVIPA through the SIOCSVIPA or SIOCSVIPA6 ioctl, or the application
directly issues the SIOCSVIPA or SIOCSVIPA6 ioctl. The new owning stack
forwards packets for any existing connections to the original stack in order that
the existing connections are not disturbed. All new connection requests are
directed to the new owning stack. The NONDISRUPTIVE option is the only
option supported for IPv6 addresses and is the default value for IPv4
addresses.

MOVEABLE DISRUPTIVE
Indicates that nondisruptive movement does not occur for dynamic VIPAs
created within this range on this stack. This option is not supported for IPv6.

A subsequent BIND on another stack for the same VIPA address fails. The
VIPA on the original stack remains unchanged.

A subsequent SIOCSVIPA ioctl on another stack succeeds, and the VIPA on this
stack is deleted. Any connections to the VIPA on this stack are broken.

address_mask
Provides the subnet mask that, when logically ANDed with the ipv4_addr
value, determines the VIPARANGE subnet.

The address mask is specified in standard dotted decimal format for IP
addresses. The address_mask variable is used only for IPv4. A subnet mask of
0.0.0.0 is not valid.

Rules: This value must meet the normal mask definition rules:
v When converted to binary, the most significant bit must be a 1.
v When converted to binary, all bits less significant than (to the right of) the

first 0 encountered from the left must also be 0.

In other words, the IP addresses in the subnet must be a single contiguous
range of IP addresses.

ipv4_addr
This determines a VIPARANGE subnet value when ANDed with the specified
address mask. Any dynamic VIPA that is requested by way of IOCTL or by
implicit BIND to a specific address must match a defined VIPARANGE subnet
value, after the dynamic VIPA has been logically ANDed with the
corresponding address mask.

ipv6_intfname
The interface name is used only for IPv6. This interface name is used for each
DVIPA defined by this VIPARANGE statement.

ipv6_addr
This determines a VIPARANGE prefix defined by the prefix_len value.

Any dynamic VIPA that is requested by way of IOCTL or by implicit BIND to
a specific address must match a defined VIPARANGE subnet value, after the
dynamic VIPA has been logically ANDed with the corresponding network
prefix.

336 z/OS V2R1.0 Communications Server: IP Configuration Reference

/prefix_len
The number of bits in the ipv6_addr value defines the prefix. The range is 1 -
128.

SAF resname
Specifies the final qualifier of a System Authorization Facility (SAF) resource
name. An application can create a dynamic VIPA in the specified VIPARANGE
subnet if the user ID that is associated with the application is given READ
access to the resource. The maximum length for the resname value is 8
characters.

For an application to create a dynamic VIPA in the VIPARANGE subnet, the
user ID associated with the application must have access to the appropriate
SAF resource:
v For an application that issues a bind socket call, the user ID must have

READ access to the resource
EZB.BINDDVIPARANGE.sysname.tcpname.resname.

v For an application that issues a SIOCSVIPA or SIOCSVIPA6 ioctl call or
invokes the MODDVIPA utility (which issues the SIOCSVIPA or
SIOCSVIPA6 ioctl call on behalf of the user), the user ID must have READ
access to the resource EZB.MODDVIPA.sysname.tcpname.resname.

where:
v EZB.BINDDVIPARANGE and EZB.MODDVIPA are constant
v sysname is the value of the MVS &SYSNAME. system symbol
v tcpname is the name of the procedure used to start the TCP stack
v resname is the 1-8 character resource name that follows the SAF keyword on

the VIPARANGE statement

Results:

v If the SAF keyword is specified and the user ID has READ access to the
resource, the bind or ioctl call is processed.

v If the SAF keyword is specified and the user ID does not have READ access
to the resource, the bind or ioctl call fails.

v If the SAF keyword is specified and the resource profile is not defined, the
bind or ioctl call fails.

v Generic profiles are handled in the following ways:
– All of the following profile specifications that include wildcard values

match the EZB.BINDDVIPARANGE.sysname.tcpname.resname resource
profile name:
- EZB.BINDDVIPARANGE.*.*
- EZB.BINDDVIPARANGE.**
- EZB.BINDDVIPARANGE.*.*.*

– All of the following profile specifications that include wildcard values
match the EZB.MODDVIPA.sysname.tcpname.resname resource profile
name:
- EZB.MODDVIPA.*.*
- EZB.MODDVIPA.**
- EZB.MODDVIPA.*.*.*

The most specific match to a resource profile is always used.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 337

For more information about defining a security profile for SIOCSVIPA,
SIOCSVIPA6, and MODDVIPA and about defining a security profile for
binding to DVIPAs in the VIPARANGE statement, see z/OS Communications
Server: IP Configuration Guide.

Steps for modifying
v To remove a VIPARANGE statement, use one of the following:

VIPARANGE DELETE mask ipv4_addr

VIPARANGE DELETE ipv6_intfname ipv6_addr/prefix_len

v To change the subnet for a VIPARANGE statement, use one of the following two
methods:
– To replace the subnet, use one of the following:

VIPARANGE DELETE original_mask original_ipv4_addr
VIPARANGE new_mask new_ipv4_addr

VIPARANGE DELETE ipv6_intfname ipv6_addr/prefix_len
VIPARANGE ipv6_intfname ipv6_addr/new_prefix_len

– To enlarge the subnet, use one of the following:
VIPARANGE mask2 ipv4_addr2

VIPARANGE ipv6_intfname ipv6_addr/prefix_len2

This configures a VIPARANGE statement where mask2 ANDed with ipv4_addr2
determines a subnet that overlaps or includes the original one.
Alternatively, you can enlarge the subnet by using one of the following:
VIPARANGE mask2 ipaddr2

VIPARANGE ipv6_intfname ipv6_addr/prefix_len2

This configures a VIPARANGE statement where mask2 ANDed with ipaddr
determines a subnet that overlaps or includes the original subnet.

Examples
VIPARANGE DEFINE 255.255.255.0 10.10.10.1
VIPARANGE DEFINE 255.255.255.255 10.10.10.210 SAF APPL1
VIPARANGE DEFINE 255.255.255.255 10.10.10.211 SAF APPL2
VIPARANGE 255.255.255.0 9.67.240.0
VIPARANGE V6DVIPARANGE 2000::9:67:270:0/112

VIPADYNAMIC - VIPAROUTE statement

A VIPAROUTE statement is used to select a route from a distributing stack or a
backup distributing stack to a target stack. This route is used for distribution of all
DVIPAs for which a matching dynamic XCF address, or ALL, was specified on a
VIPADISTRIBUTE statement. This route is also used for forwarding packets to
existing connections on a stack that contains the DVIPA in MOVING status. When
processing a connection from the client, the sysplex distributor determines whether
or not a matching VIPAROUTE statement has been specified. If it has, the best
available route is determined using the normal IP routing tables. If no matching
VIPAROUTE statement exists for that target, IP packets distributed by sysplex
distributor to that target use dynamic XCF interfaces. Dynamic XCF interfaces
include HiperSockets (iQDIO), IUTSAMEH for the same LPAR, or XCF interfaces
created by the IPCONFIG DYNAMICXCF or IPCONFIG6 DYNAMICXCF
statement. If the Cisco Multi-Node Load Balancing (MNLB) function is being used,
the target IP address on a VIPAROUTE statement is used to route the packet
directly to the target stack if a matching VIPAROUTE statement has been specified.

Rule:

338 z/OS V2R1.0 Communications Server: IP Configuration Reference

v Ensure that the MTU value on the routes that are to be used is at least 604
(specify 1308 for IPv6). Lower MTU values can impact network performance and
might result in loss of connections.

Result: There is always a matching route (and thus no message) if you define a
default route by specifying DEFAULT.

If the VIPAROUTE statement specifies a target IP address for which no route
exists, an informational message is issued the first time the problem is
encountered. When this happens, that target is not considered for the distribution,
and the distributor treats this the same way as when the dynamic XCF interface
becomes inactive. If OMPROUTE is used for dynamic routing on the target, the
GLOBALCONFIG SYSPLEXMONITOR DELAYJOIN TCP/IP profile option should
be considered. The DELAYJOIN option delays the processing of sysplex-related
definitions within the TCP/IP profile statements until OMPROUTE is active.

In the following cases, even though a VIPAROUTE statement has been specified,
the dynamic XCF interface is used for distribution:
v A target IP address that is not owned by the target stack is specified
v The defined dynamic XCF address is for a pre-V1R7 target stack

Messages are issued at the distributing stack when these conditions are detected,
and when the distributing stack first attempts to route a connection request to the
target stack.

An additional case where the dynamic XCF interface is used even though the
VIPAROUTE parameter has been specified is for a connection that is protected by
an IPSec UDP-encapsulated security association negotiated with a peer behind a
NAT.

Syntax

Rule: Specify the parameters in the order shown here.

�� VIPAROUTE
DEFINE

DELEte
dynxcfip target_ipaddr ��

Parameters

DEFINE
Specifies that sysplex distributor should use the target IP address
(target_ipaddr) to find the best available route to reach the target stack
defined by the dynxcfip parameter. The target IP address can be any
address in the HOME list of the target stack except for a dynamic VIPA
(DVIPA) or a loopback address.

DELETE
Specifies that a previously defined VIPAROUTE statement should be
deleted. sysplex distributor processing for the target stack specified by the
dynxcfip parameter reverts to using dynamic XCF interfaces for existing
and new connections after approximately 60 seconds.

dynxcfip
Specifies the IPv4 or IPv6 dynamic XCF address that uniquely identifies a

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 339

target stack. The address is defined with an IPCONFIG DYNAMICXCF or
IPCONFIG6 DYNAMICXCF statement on that target stack.

If duplicate dynxcfip values are specified (with different target_ipaddr
values) with the DEFINE function in the same profile, the first entry is in
effect. Any duplicate entries are ignored and a message is displayed.

See “Restrictions on IPv6 addresses configured in the TCP/IP profile” on
page 143 for a list of restrictions that must be observed when specifying
this parameter for IPv6 dynamic XCF addresses.

target_ipaddr
Specifies any fully qualified IPv4 address (in dotted-decimal format) or
fully qualified IPv6 address (in colon-hexadecimal format) in the HOME
list of the target stack except for a dynamic VIPA (DVIPA) or a loopback
address. The value is a static VIPA, a dynamic XCF address, or a real IPv4
or IPv6 address associated with a physical interface. See “Restrictions on
IPv6 addresses configured in the TCP/IP profile” on page 143 for a list of
restrictions that must be observed when specifying this parameter for IPv6
addresses. This IP address is used as a destination address for a target
stack to obtain the best available route from the sysplex distributor to the
target stack.

Specifying a static VIPA for this address might achieve the highest degree
of fault tolerance. This alleviates the single point of failure issue with
non-VIPAROUTE statement use of dynamic XCF interfaces. If an IP
address is specified that is not owned by the target stack, dynamic XCF
interfaces are used to distribute IP packets to this target stack.

For more information about the use of the routing information, see z/OS
Communications Server: IP Configuration Guide.

Steps for modifying
v To remove the current configured statement, specify the VIPAROUTE DELETE

statement with the same dynxcfip value and the same target_ipaddr value in a
configuration data set referenced by a VARY TCPIP,,OBEYFILE command.

v To change the current configured statement, you must specify the VIPAROUTE
DELETE statement with the same dynxcfip value and the same target_ipaddr
value first, and then specify the VIPAROUTE DEFINE statement with the same
dynxcfip value and the different target_ipaddr value referenced by a configuration
data set on a VARY TCPIP,,OBEYFILE command.

v If the VIPAROUTE statement is changed, it affects active as well as new
connections. For example, if an active connection is being distributed across
dynamic XCF interface, and a VIPAROUTE DEFINE statement is defined for that
target which results in the distributor selecting a route to the target over a
different interface, then the active and new connections begin to use that new
interface after approximately 60 seconds. If the previously defined VIPAROUTE
statement is deleted, then active and new connections begin to use dynamic XCF
interfaces after approximately 60 seconds.

Examples

This example shows how to define an alternate route to dynamic XCF for the
sysplex distributor function.
VIPAROUTE 201.3.10.10 199.3.10.1
VIPAROUTE 2001:ODB8::201:3:10:10 2001:ODB8::199:3:10:1

340 z/OS V2R1.0 Communications Server: IP Configuration Reference

VIPADYNAMIC - VIPASMPARMS statement

Defines service manager parameters. See z/OS Communications Server: IP
Configuration Guide for more information about setting up sysplex distributor to
be the Service Manager for Cisco's MNLB. This support applies only to IPv4.

Requirements:

v The VIPASMPARMS statement is required when any VIPADEFINE or
VIPABACKUP statement in the profile contains the SERVICEMGR keyword, and
it is permitted even if no active VIPADEFINE or VIPABACKUP statements in
the profile currently contain the SERVICEMGR keyword.

v The VIPASMPARMS and SERVICEMGR parameters (on a VIPADEFINE
statement) must be specified on the primary distributing stack (the stack
identified by the VIPADEFINE statement) for the cluster address. The
information is communicated to all backup stacks through expansion of the MVS
XCF messaging messages used for normal DVIPA takeover processing. These
parameters cannot be overridden on the backup stack.

Results:

v If the VIPASMPARMS statement is included without any VIPADEFINE or
VIPABACKUP statements designated as SERVICEMGR, the values specified in
this statement are saved and displayed in Netstat configuration displays.

v If a Distributed DVIPA is designated as SERVICEMGR on its VIPADEFINE
statement, but one or both of SMMCAST group and SMPORT are not valid at
the conclusion of profile processing, a console message is issued, and the
Distributed DVIPA is not treated as SERVICEMGR at that point. However, the
designation is saved in order that a subsequent VARY TCPIP,,OBEYFILE
command that adds valid SMMCAST group and SMPORT values allows the
cluster address to be treated as SERVICEMGR for all subsequent TCP connection
requests.

v If a backup stack detects that inconsistent VIPASMPARMS statement values have
been specified (by two different Sysplex stacks, for both of which this backup
stack is backup for Distributed DVIPAs), this is considered a Sysplex
configuration error, and the backup stack issues a console warning message.

Syntax

Rule: Specify the parameters in the order shown here.

�� SMMCASTgroup ipaddr SMPORT port
SMPASSWORD password

��

Parameters

SMMCASTGROUP ip_addr
Specifies the multicast address used for communications between the sysplex
distributor and the Cisco routers acting as forwarding agents.

SMPORT num
Specifies the UDP port used for communications between the sysplex
distributor and Cisco forwarding agents.

The number is in the range 1 - 65 535.

Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements 341

SMPORT usage begins when the first dynamic VIPA with the service manager
attribute is defined as distributable. At that point, a console message is issued
if the same port value is already specified on an active PORT statement for
that UDP port. Similarly, if a subsequent PORT statement is encountered after
SMPORT usage begins for that same port, the subsequent PORT statement is
rejected with a console message.

SMPASSWORD string
Specifies the password to enable MD5 encryption for all communication
between sysplex distributor and forwarding agents. This is a 1 - 64 character
alphanumeric string. For both the forwarding agents and the sysplex
distributor, the password is treated simply as ASCII characters. No translation
or conversion is performed.

Requirement: The password must match the one configured on Cisco
forwarding agents.

Steps for modifying

To modify any of the parameters on this statement, you must respecify the
statement with the changed parameter values.

Examples
VIPASMPARMS SMMCASTGROUP 224.0.0.10 SMPORT 50000

342 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 3. TCP/IP cataloged procedure (TCPIPROC)

If you need to customize TCPIPROC, see the configuration information and
customization information in z/OS Communications Server: IP Configuration
Guide.

Copy the TCP/IP cataloged procedure in SEZAINST(TCPIPROC) to your system
or recognized PROCLIB and modify it to suit your local conditions. Specify TCPIP
parameters and remove or change the DD statements as required. The job name
associated with the started task of the TCP/IP system address space must match
the NAME parameter on the SUBFILESYSTYPE statement in the BPXPRMxx
member of PARMLIB used to start z/OS UNIX.

Configuring the stack for IPv6 is done in BPXPRMxx. For more information about
configuring the stack to support IPv6, see z/OS Communications Server: IP
Configuration Guide or z/OS Communications Server: IPv6 Network and
Application Design Guide.

The TCP/IP cataloged procedure is used to specify parameters and define
input/output files to be used by the stack. One of the main input data sets defined
in the cataloged procedure is the Profile data set. This data set is defined by the
PROFILE DD statement.

Specifying TCP/IP address space parameters
Parameters are specified in the PARM= field of the cataloged procedure's EXEC
JCL statement. The values specified in this field can be any of the following ones:

Stack initial component trace parameters
The following parameters configure stack tracing at initialization time:
v CTRACE(CTIEZBxx) or TRC=xx can be specified to identify the

CTIEZBxx member of SYS1.PARMLIB, which contains the SYSTCPIP
Component Trace (CTRACE) options. If neither parameter is specified,
the default member CTIEZB00 is used.

v IDS=xx can be specified to identify the CTIIDSxx member of
SYS1.PARMLIB, which contains the SYSTCPIS Component Trace
(CTRACE) options. If this parameter is not specified, the default member
CTIIDS00 is used.

Language Environment runtime options and environment variables
These values are used by the stack's Language Environment® functions:
v Configuration
v Autolog
v SNMP TCP/IP Subagent

For example, the TCP/IP stack's configuration function uses the z/OS
UNIX search order to locate TCPIP.DATA information to determine the
stack's host name. See the search orders used in the z/OS UNIX
environment in the z/OS Communications Server: IP Configuration Guide
for a description of this search order. Use the RESOLVER_CONFIG
environment variable in the PARM= field of the TCP/IP cataloged
procedure to specify the TCPIP.DATA file or data set that you want the
configuration function to use.

© Copyright IBM Corp. 2000, 2015 343

Stack Configuration task tracing parameter, -d or -D
This parameter enables tracing of Configuration task processing before the
ITRACE ON CONFIG 1 Profile statement is processed.

Requirement: If this parameter is specified, then it must be the last
parameter specified in the PARM= field, and it must be preceded by a
slash as in the following example:
//TCPIP EXEC PARM=(’&PARMS’,

// ’ENVAR("RESOLVER_CONFIG=//’’TCPIVP.TCPPARMS(TCPDATA)’’")’
// ’/ -d’)

This trace can be disabled by way of a VARY TCPIP,,OBEYFILE command
with ITRACE OFF CONFIG statement specified in the data set referenced
by the command.

Example of a TCP/IP cataloged procedure
The following code is an example of a TCP/IP cataloged procedure that defines
the component tracing and intrusion detection services tracing that is to be in effect
for the TCP/IP address space.
//TCPIP PROC PARMS=’CTRACE(CTIEZB00),IDS=00’
//*TCPIP PROC PARMS=’TRC=00,IDS=00’
//*
//* z/OS Communications Server
//* SMP/E Distribution Name: EZAEB01G
//*
//* Licensed Materials - Property of IBM
//* 5650-ZOS
//* Copyright IBM Corp. 1991, 2013
//* Status = CSV2R1
//*
//* SET PARM1=TCPIVP.TCPPARMS(TCPDATA)
//*
//TCPIP EXEC PGM=EZBTCPIP,REGION=0M,TIME=1440,
// PARM=’&PARMS’
//* Uncomment the SET statement above when using the next two lines.
//* PARM=(’&PARMS’,
//* ’ENVAR("RESOLVER_CONFIG=//’’&PARM1’’")’)
//*
//* See the TCP/IP cataloged procedure chapter of the IP Configuration
//* Reference for a description of the parameters that can be
//* specified in the PARM= field of the EXEC statement.
//*
//***
//* The C runtime libraries should be in the system’s link list
//* or add them via a STEPLIB definition here. If you add
//* them via a STEPLIB, they must be APF authorized with DISP=SHR
//*
//*STEPLIB DD ...
//* Any data set referenced by the STEPLIB DD statement must be
//* APF authorized.
//*
//* SYSPRINT contains Resolver run-time diagnostics (TRACE RESOLVER
//* output). It can be directed to SYSOUT or a data set.
//* We recommend directing the output to SYSOUT due to
//* data set size restraints.
//* ALGPRINT contains run-time diagnostics from TCP/IP’s Autolog
//* task. It can be directed to SYSOUT or a data set. We
//* recommend directing the output to SYSOUT due to data set size
//* restraints.
//* CFGPRINT contains run-time diagnostics from TCP/IP’s Config
//* task and TCPIPSTATISTICS counter output.
//* It can be directed to SYSOUT or a data set. We recommend
//* directing the output to SYSOUT due to data set size
//* restraints.
//* SYSERROR contains console messages issued by TCP/IP’s Config
//* task while processing the initial profile or the data
//* set specified on a VARY TCPIP,,OBEYFILE command.
//*
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)
//ALGPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)
//CFGPRINT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)
//SYSOUT DD SYSOUT=*,DCB=(RECFM=VB,LRECL=132,BLKSIZE=136)

344 z/OS V2R1.0 Communications Server: IP Configuration Reference

|
|
|

//SYSERROR DD SYSOUT=*
//*
//* TNDBCSCN is the configuration data set for TELNET DBCS
//* transform mode.
//*
//*TNDBCSCN DD DISP=SHR,
//* DSN=TCPIP.SEZAINST(TNDBCSCN)
//*
//* TNDBCSXL contains binary DBCS translation table codefiles
//* used by TELNET DBCS Transform mode.
//*
//*TNDBCSXL DD DISP=SHR,
//* DSN=TCPIP.SEZAXLD2
//*
//* TNDBCSER receives debug output from TELNET DBCS Transform
//* mode, when TRACE TELNET is specified in the PROFILE data set.
//*
//*TNDBCSER DD SYSOUT=*
//*
//*
//*PROFILE DD ...
//* The PROFILE DD statement specifies the data set containing the
//* TCP/IP configuration parameters. If the PROFILE DD statement
//* is not supplied, a default search order is used to find
//* the PROFILE data set. See the IP Configuration Guide for
//* a description of the search order for PROFILE.TCPIP. A
//* sample profile is included in member SAMPPROF of the
//* SEZAINST data set.
//*
//*PROFILE DD DISP=SHR,
//* DSN=TCPIVP.TCPPARMS(PROFILE)
//*PROFILE DD DISP=SHR,
//* DSN=TCPIP.PROFILE.TCPIP
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//*
//*SYSTCPD DD DISP=SHR,
//* DSN=TCPIVP.TCPPARMS(TCPDATA)
//*SYSTCPD DD DISP=SHR,
//* DSN=TCPIP.SEZAINST(TCPDATA)

Using output data sets
In the TCP/IP address space, the SYSPRINT and SYSERROR data sets defined
with a DD statement must have a variable blocked (VB) format. Block size
(BLKSIZE) for a VB RECFM must be at least 4 bytes larger than the logical record
length (LRECL).

Guideline: You can allocate these as partitioned or sequential data sets, but be
aware that partitioned data sets cannot be reused if they have filled or if the
members already exist.

Figure 3. Sample TCP/IP start up proc

Chapter 3. TCP/IP cataloged procedure (TCPIPROC) 345

|

346 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 4. Protocol number and port assignments

The protocol file or data set is used to map protocol names to protocol numbers.
Some applications use getprotobyname() and other socket calls to look up protocol
numbers or names. If the protocol file or data set is not present or does not contain
the required definitions, certain applications might not function properly.

The sample protocol file or data set provided with z/OS Communications Server
and shown in the following example contains the definitions required by most
applications. See Chapter 1, “Configuration data sets and files,” on page 1 for
information about the search order used by the resolvers for locating this file or
data set.

Guideline: Keep both hlq.ETC.PROTO and /etc/protocol in sync.

#
Licensed Materials - Property of IBM
5694-A01
Copyright IBM Corp. 1995, 2010
Status = CSV1R12
#
sample protocol file or dataset, installed in
#
/usr/lpp/tcpip/samples/protocol
/usr/lpp/tcpip/samples/IBM/EZAOEPRO
SEZAINST(PROTO)
#
Refer to IP Configuration Reference for the search
order used by the resolver to find this file.
#
offical name, protocol number, aliases

ip 0 # dummy for IP
hopopt 0 # hop-by-hop options for IPv6
icmp 1 # control message protocol
ggp 2 # gateway^2 (deprecated)
tcp 6 # tcp
egp 8 # exterior gateway protocol
pup 12 # pup
udp 17 # user datagram protocol
idp 22 # xns idp
ipv6 41 # ipv6
ipv6-icmp 58 # icmpv6
ipv6-route 43 IPv6-Route # Routing Header for IPv6
ipv6-frag 44 IPv6-Frag # Fragment Header for IPv6
esp 50 # encapsulating security payload
ipv6-crypt 50 IPv6-Crypt # Encryption Header for IPv6
ah 51 # Authentication header
ipv6-auth 51 IPv6-Auth # Authentication Header for IPv6
ipv6-icmp 58 IPv6-ICMP # ICMP for IPv6
ipv6-nonxt 59 IPv6-NoNxt # No Next Header for IPv6
ipv6-opts 60 IPv6-Opts # Destination Options for IPv6
ospf 89 # Open Shortest Path First protocol

Figure 4. /etc/proto or ETC.PROTO example

© Copyright IBM Corp. 2000, 2015 347

Port assignments
Port numbers are used on various socket calls. They are also included in both the
header of a TCP segment and a UDP datagram. You can assign port numbers to
your own server applications by adding entries to the z/OS UNIX file or to the
data set.

Guidelines:

v Assign ports is by assigning a standard port number and use the Server Bind
Control function of the PROFILE.TCPIP PORT statement to assign each server to
a separate IP address.

v Use the IP address on the PORT BIND be a VIPA address known to the domain
name server (DNS) as a host name that users understand. For example, the
RXSERVE procedure is assigned to ports 512 and 514, the orexecd and orshd
daemons are assigned to ports 512 and 514, and two IP addresses (host names
MVS97 and MVS97USS) 9.67.113.1 and 9.67.113.2 are available.

The following example reflects a situation where more than one application needs
to listen on the same port, and the application or applications bind to
INADDR_ANY.

In this example, the PORT statement would be as follows:
PORT
512 TCP RXSERVE ; Remote Execution Server (default)
512 TCP OMVS BIND 9.67.113.2 ; orexecd Remote Execution Server (MVS97USS)
514 TCP RXSERVE ; Remote Shell Server (default)
514 TCP OMVS BIND 9.67.113.2 ; orshd Remote Shell Server (MVS97USS)

Result: Clients who use MVS97 for remote execution get RXSERVE, and clients
who use MVS97USS get OMVS orshd.

PROFILE.TCPIP port assignments
Use the PORT and PORTRANGE statement in the PROFILE.TCPIP data set to
reserve ports for specified user IDs, procedures, and job names.

Tip: The following example was used for test configuration and is for illustration
only. The example shows a portion of SEZAINST(SAMPPROF), which contains the
most current assignments.
;
PORT: Reserves a port for specified job names
;
; - A port that is not reserved in this list can be used by any user.
; If you have TCP/IP hosts in your network that reserve ports
; in the range 1-1023 for privileged applications, you should
; reserve them here to prevent users from using them.
; The RESTRICTLOWPORTS option on TCPCONFIG and UDPCONFIG will also
; prevent unauthorized applications from accessing unreserved
; ports in the 1-1023 range.
;
; - A PORT statement with the optional keyword SAF followed by a
; 1-8 character name can be used to reserve a PORT and control
; access to the PORT with a security product such as RACF.
; For port access control, the full resource name for the security
; product authorization check is constructed as follows:
; EZB.PORTACCESS.sysname.tcpname.safname
; where:
; EZB.PORTACCESS is a constant
; sysname is the MVS system name (substitute your sysname)
; tcpname is the TCPIP jobname (substitute your jobname)

348 z/OS V2R1.0 Communications Server: IP Configuration Reference

; safname is the 1-8 character name following the SAF keyword
;
; When PORT access control is used, the TCP/IP application
; USERID that is authorized to the resource. The resources
; are defined in the SERVAUTH class.
;
; For an example of how the SAF keyword can be used to enhance
; security, see the definition below for the FTP data PORT 20
; with the SAF keyword. This definition reserves TCP PORT 20 for
; any jobname (the *) but requires that the FTP user be permitted
; by the security product to the resource:
; EZB.PORTACCESS.sysname.tcpname.FTPDATA in the SERVAUTH class.
;
; - The BIND keyword is used to force a generic server (one that
; binds to the IPv4 INADDR_ANY address, or the IPv6 unspecified
; address, in6addr_any) to bind to the specific IP address that
; is specified following the BIND keyword. This capability could
; be used, for example, to allow z/OS UNIX telnet and telnet
; 3270 servers to both bind to TCP port 23.
; The IP address that follows bind must be in IPv4 (dotted
; decimal) or IPv6 (colon-hexadecimal) format and may be
; any valid address for the host including VIPA and dynamic
; VIPA addresses.
;
; The special jobname of OMVS indicates that the PORT is reserved
; for any application with the exception of those that use the Pascal
; API.
;
; The special jobname of * indicates that the PORT is reserved
; for any application, including Pascal API socket applications.
; Jobname may be specified as a prefix of zero to seven characters
; ending in *.
;
; The special jobname of RESERVED indicates that the PORT is
; blocked. It will not be available to any application.
;
; GUIDELINE: When IPSECURITY is enabled, UDP ports 500 and 4500
; should either be reserved for IKED (if it is in use) or should
; be marked RESERVED.
;
; TIP: The PORT statement can also be used to control application
; access to unreserved ports by configuring PORT entries where the
; port number is replaced by the keyword UNRSV.
;
PORT

7 UDP MISCSERV ; Miscellaneous Server - echo
7 TCP MISCSERV ; Miscellaneous Server - echo
9 UDP MISCSERV ; Miscellaneous Server - discard
9 TCP MISCSERV ; Miscellaneous Server - discard
19 UDP MISCSERV ; Miscellaneous Server - chargen
19 TCP MISCSERV ; Miscellaneous Server - chargen
20 TCP * NOAUTOLOG ; FTP Server

; 20 TCP * NOAUTOLOG SAF FTPDATA ; FTP Server
21 TCP FTPD1 ; FTP Server
23 TCP TN3270 ; Telnet 3270 Server

; 23 TCP INETD1 BIND 9.67.113.3 ; z/OS UNIX Telnet server
25 TCP SMTP ; SMTP Server
111 TCP PORTMAP ; Portmap Server (SUN 3.9)
111 UDP PORTMAP ; Portmap Server (SUN 3.9)

; 111 TCP PORTMAP1 ; Unix Portmap Server (SUN 4.0)
; 111 UDP PORTMAP1 ; Unix Portmap Server (SUN 4.0)

123 UDP SNTPD ; Simple Network Time Protocol Server
135 UDP LLBD ; NCS Location Broker
161 UDP OSNMPD ; SNMP Agent
389 TCP LDAPSRV ; LDAP Server
443 TCP HTTPS ; http protocol over TLS/SSL
443 UDP HTTPS ; http protocol over TLS/SSL

Chapter 4. Protocol number and port assignments 349

; 500 UDP IKED ; CS IKE daemon
512 TCP RXSERVE ; Remote Execution Server
514 TCP RXSERVE ; Remote Execution Server

; 512 TCP * SAF OREXECD ; z/OS UNIX Remote Execution Server
; 514 TCP * SAF ORSHELLD ; z/OS UNIX Remote Shell Server
; 515 TCP LPSERVE ; LPD Server
; 515 TCP AOPLPD ; Infoprint LPD Server

520 UDP OMPROUTE ; OMPROUTE Server (IPv4 RIP)
521 UDP OMPROUTE ; OMPROUTE Server (IPv6 RIP)
580 UDP NCPROUT ; NCPROUTE Server
750 TCP MVSKERB ; Kerberos
750 UDP MVSKERB ; Kerberos
751 TCP ADM@SRV ; Kerberos Admin Server
751 UDP ADM@SRV ; Kerberos Admin Server

; 1700 TCP PAGENT NOAUTOLOG ; Policy Agent pagentQosListener port
; 1701 TCP PAGENT NOAUTOLOG ; Policy Agent pagentQosCollector port

3000 TCP CICSTCP ; CICS Socket
3389 TCP MSYSLDAP ; LDAP Server for Msys

; 4159 TCP NSSD ; CS NSS daemon
; 4500 UDP IKED ; CS IKE daemon
;16310 TCP PAGENT NOAUTOLOG ; Policy Agent server listener port
;
;
; PORTRANGE: Reserves a range of ports for specified jobnames.
;
; In a common INET (CINET) environment, the port range indicated by
; the INADDRANYPORT and INADDRANYCOUNT in your BPXPRMxx parmlib member
; should be reserved for OMVS.
;
; The special jobname of OMVS indicates that the PORTRANGE is reserved
; for ANY z/OS UNIX socket application.
;
; The special jobname of * indicates that the PORTRANGE is reserved
; for any socket application, including Pascal API socket
; applications.
;
; The special jobname of RESERVED indicates that the PORTRANGE is
; blocked. It will not be available to any application.
;
; The SAF keyword is used to restrict access to the PORTRANGE to
; authorized users. See the use of SAF on the PORT statement above.
;
;
; PORTRANGE 4000 1000 TCP OMVS
; PORTRANGE 4000 1000 UDP OMVS
; PORTRANGE 2000 3000 TCP RESERVED
; PORTRANGE 5000 6000 TCP * SAF RANGE1
;

/etc/services and ETC.SERVICES port assignments
The z/OS UNIX file, /etc/services, contains the service names and port
assignments of specific z/OS UNIX applications. The MVS data set ETC.SERVICES
can also be used to contain the same information. The source for this example is
shipped in SEZAINST(SERVICES) and copied to the hlq.ETC.SERVICES by the
Installation Verification Procedure (IVP). The source is also installed in
/usr/lpp/tcpip/samples/services for use in copying it to /etc/services. It is
important that /etc/services and hlq.ETC.SERVICES be kept identical so that MVS
and z/OS UNIX applications use the same port assignments. The shipped file
contains the most current assignments.

Figure 5. Sample TCP/IP start up proc

350 z/OS V2R1.0 Communications Server: IP Configuration Reference

Rules: The following syntax rules apply to the services information specification:
v An ETC.SERVICES data set must be fixed or fixed block with an LRECL

between 56 and 256.
v The /etc/services z/OS UNIX file can have a maximum line length of 256.
v Each service is listed on a single line corresponding to the form:

ServiceName PortNumber/ProtocolName Aliases

ServiceName
Specifies an official Internet service name.

PortNumber
Specifies the socket port number used for the service.

ProtocolName
Specifies the transport protocol used for the service.

Aliases
Specifies a list of unofficial service names.

Items on a line are separated by spaces or tabs.
v A service name must start in the first position on a line.
v The maximum service name and alias name length is 32 characters.
v A maximum of 35 aliases is recognized.
v Service and alias names are case sensitive.
v Comments begin with a # or ; character and continue until the end of the line.

When services information is requested, the definitions are searched sequentially.
The first entry matching a specified search request (either service name and
protocol or port number and protocol) is returned.

For the search order used in locating /etc/services and ETC.SERVICES, see z/OS
Communications Server: IP Configuration Guide.

Tip: The following example was used for test configuration and is for illustration
only.
z/OS Communications Server
SMP/E distribution path: /usr/lpp/tcpip/samples/IBM/EZAOESER
SMP/E distribution path: SEZAINST(EZAEB02J)
#
5694-A01 Copyright IBM Corp. 1998, 2009
Licensed Materials - Property of IBM
Status = CSV1R11
#
$Header:services 9.4$
$ACIS:services 9.4$
$Source: /ibm/acis/usr/src/etc/RCS/services,v $
Change Activity:
#
Flag Reason Release Date Origin Description
---- -------- -------- ------ -------- -----------------------
$X1= D136984 R8BASEN 060303 ADAMSON : JES NJE over TCP/IP
$Y1= D139394 R9BASEN 061011 AMITRANO: NFS port information
$F1= D146073 RBBASE 081016 PACKETTA: Add port 521 alias

@(#)services 1.16 (Berkeley) 86/04/20
#
Network services, Internet style
#
Service port/protocol alias names if any @Y1A
#
echo 7/tcp
echo 7/udp
discard 9/tcp sink null
discard 9/udp sink null

Chapter 4. Protocol number and port assignments 351

systat 11/tcp users
daytime 13/tcp
daytime 13/udp
netstat 15/tcp
qotd 17/tcp quote
chargen 19/tcp ttytst source
chargen 19/udp ttytst source
ftp 21/tcp
telnet 23/tcp
smtp 25/tcp mail
time 37/tcp timserver
time 37/udp timserver
rlp 39/udp resource # resource location
nameserver 42/tcp name # IEN 116
whois 43/tcp nicname
domain 53/tcp nameserver # name-domain server
domain 53/udp nameserver
mtp 57/tcp # deprecated
tftp 69/udp
rje 77/tcp netrjs
finger 79/tcp
link 87/tcp ttylink
supdup 95/tcp
hostnames 101/tcp hostname # usually from sri-nic
#csnet-cs 105/?
pop 109/tcp postoffice
sunrpc 111/tcp
sunrpc 111/udp
auth 113/tcp authentication
sftp 115/tcp
uucp-path 117/tcp
nntp 119/tcp readnews untp # USENET News Xfer Proto
ntp 123/udp # Network Time Protocol
snmp 161/udp # snmp request port
snmp-trap 162/udp # snmp monitor trap port
vmnet 175/tcp # JES NJE over TCP/IP @X1A
#
UNIX specific services
#
exec 512/tcp
biff 512/udp comsat
login 513/tcp
who 513/udp whod
shell 514/tcp cmd # no passwords used
syslog 514/udp
printer 515/tcp spooler # line printer spooler
talk 517/udp
ntalk 518/udp
efs 520/tcp # for LucasFilm
#
IBM added services
#
route 520/udp router omproute
route 521/udp ipv6rip ripng # @F1C

timed 525/udp timeserver
tempo 526/tcp newdate
courier 530/tcp rpc
conference 531/tcp chat
#
RVD service
#
rvd-control 531/udp # rvd control port
netnews 532/tcp readnews
netwall 533/udp # -for emergency broadcasts
uucp 540/tcp uucpd # uucp daemon
#
Kerberos services
#
klogin 543/tcp # Kerberos authenticated rlogin
kshell 544/tcp cmd # Kerberos remote shell

remotefs 556/tcp rfs_server rfs # Brunhoff remote filesystem
#
IBM added service
#
ncprout 580/udp ncproute
#
Andrew File System Authenticated services
#

352 z/OS V2R1.0 Communications Server: IP Configuration Reference

vexec 712/tcp vice-exec
vlogin 713/tcp vice-login
vshell 714/tcp vice-shell
#
Kerberos services
#
kerberos 750/udp kdc # Kerberos authentication--udp
kerberos 750/tcp kdc # Kerberos authentication--tcp
kerboros_master 751/udp # Kerberos authentication
kerberos_master 751/tcp # Kerberos authentication
passwd_server 752/udp # Kerberos passwd server
userreg_server 753/tcp # Kerberos userreg server
krb_prop 754/tcp # Kerberos slave propagation
erlogin 888/tcp # Login and environment passing
#
#
Kerberos sample server
#
sample 906/tcp # Kerberos sample app server
sample 906/udp # for kerberos simple test

kpop 1109/tcp # Pop with Kerberos

ingreslock 1524/tcp
#
Policy Agent QoS Listener and Collector ports
#
pagentQosListener 1700/tcp # Policy Agent Listener thread
pagentQosCollector 1701/tcp # Policy Agent Collector thread
#
Andrew File System services
#
filesrv 2001/tcp
rauth2 2001/udp
rfilebulk 2002/udp
rfilesrv 2003/udp
console 2018/udp
For file server backup and migration
client 2030/tcp
NFS server @Y1A
@Y1A
Port 2049 must be used for nfsd. @Y1A
@Y1A
Consecutive port numbers must be assigned for the NFS status, @Y1A
nlockmgr, mountd, mvsmount, showattr, and pcnfsd services. @Y1A
The example below uses ports 2043-2048. @Y1A
When the NFS callback function is being used the services @Y1A
nfsscb_b and nfsscb_e should reserve 100 consecutive ports. @Y1A
The example below uses port 10300 for the beginning port @Y1A
and port 10399 as the ending port. @Y1A
For additional information see the Network File System Guide @Y1A
and Reference manual. @Y1A
@Y1A
status 2043/tcp nfs_statd # NFS State daemon (NSM) @Y1A
status 2043/udp nfs_statd # NFS State daemon (NSM) @Y1A
nlockmgr 2044/tcp nfs_lockd # NFS Lock daemon (NLM) @Y1A
nlockmgr 2044/udp nfs_lockd # NFS Lock daemon (NLM) @Y1A
mountd 2045/tcp mount # NFS mount daemon @Y1A
mountd 2045/udp mount # NFS mount daemon @Y1A
mvsmount 2046/tcp nfs_mvsmnt # NFS mvsmount daemon @Y1A
mvsmount 2046/udp nfs_mvsmnt # NFS mvsmount daemon @Y1A
showattr 2047/tcp nfs_showattr # NFS showattr daemon @Y1A
showattr 2047/udp nfs_showattr # NFS showattr daemon @Y1A
pcnfsd 2048/udp nfs_pcnfs # NFS pcnfsd daemon @Y1A
nfsd 2049/tcp nfs # NFS server daemon @Y1A

- do not change @Y1A
nfsd 2049/udp nfs # NFS server daemon @Y1A

- do not change @Y1A
@Y1A
NFS Callback function port range @Y1A
@Y1A
nfsscb_b 10300/tcp # NFSS callback port begin @Y1A
nfsscb_e 10399/tcp # NFSS callback port end @Y1A
nfsscb_b 10300/udp # NFSS callback port begin @Y1A
nfsscb_e 10399/udp # NFSS callback port end @Y1A
#
Kerberos services
#
knetd 2053/tcp # Kerberos de-multiplexor
eklogin 2105/tcp # Kerberos encrypted rlogin

Chapter 4. Protocol number and port assignments 353

#
Andrew File System services
#
venus.itc 2106/tcp
ropcons 2115/udp
The following are assigned in pairs and the bulk must be the srv +1
rupdsrv 2131/udp
rupdbulk 2132/udp
rupdsrv1 2133/udp
rupdbulk1 2134/udp

njenet-ssl 2252/tcp # JES NJE over TCP/IP with SSL @X1A

Figure 6. /etc/services example

354 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 5. Resolver setup and TCPIP.DATA configuration
statements

This topic contains the following information:
v “Resolver setup statements”
v “Sample TCPIP.DATA data set (TCPDATA)” on page 398

Resolver setup statements
The resolver address space can be customized with the following resolver setup
statements summarized in Table 7.

See z/OS Communications Server: IP Configuration Guide for more information
about resolvers.

Table 7. Summary of resolver setup statements

Statement Description See

CACHE/ NOCACHE CACHE indicates that
system-wide caching is enabled
for the resolver.

NOCACHE indicates that
system-wide caching is not
enabled for the resolver.

“CACHE NOCACHE statements” on page 358

CACHESIZE CACHESIZE specifies the
maximum amount of storage
that can be allocated by the
resolver to manage cached
records.

Tip: CACHESIZE is ignored
unless CACHE is also specified.

“CACHESIZE statement” on page 359

COMMONSEARCH/
NOCOMMONSEARCH

COMMONSEARCH indicates
that the search order for local
host tables is the same
regardless of whether the query
is for IPv6 or IPv4 addresses.
The search order is also the
same regardless of whether the
query is issued under the native
MVS or the z/OS
UNIXenvironment.

NOCOMMONSEARCH
indicates that the search order
for local host tables is different
for IPv4 and IPv6 queries. The
search order is also different for
queries issued under the native
MVS environment, vs. queries
issued under the z/OS UNIX
environment.

“COMMONSEARCH/NOCOMMONSEARCH
statement” on page 360

© Copyright IBM Corp. 2000, 2015 355

Table 7. Summary of resolver setup statements (continued)

Statement Description See

DEFAULTIPNODES Specifies the name of either a
z/OS UNIX file or MVS data set
that contains the hard-coded IP
addresses and host names to be
used.

Identifies the default search
location for IPNODES local host
file.

“DEFAULTIPNODES statement” on page 360

DEFAULTTCPIPDATA Specifies the name of either a
z/OS UNIX file or MVS data set
that contains the TCPIP.DATA
statement that is used instead of
TCPIP.TCPIP.DATA as the final
location when searching for
TCPIP.DATA.

“DEFAULTTCPIPDATA statement” on page 361

GLOBALIPNODES Specifies the name of either a
z/OS UNIX file or MVS data set
that contains the hard-coded IP
addresses and host names to be
used.

Identifies the first search
location for IPNODES local host
file.

“GLOBALIPNODES statement” on page 362

GLOBALTCPIPDATA Specifies the name of either a
z/OS UNIX file or MVS data set
that contains the TCPIP.DATA
statement that is used to set
global MVS image-wide values
for TCPIP.DATA.

“GLOBALTCPIPDATA statement” on page 363

MAXTTL Specifies the maximum amount
of time the resolver can use
resource information obtained
from a Domain Name System
(DNS) server as part of resource
resolution.

“MAXTTL statement” on page 365

UNRESPONSIVETHRESHOLD Specify the threshold value for
when a name server is declared
to be unresponsive to resolver
queries. Also specifies whether
the resolver automatically stops
sending DNS queries generated
by an application to an
unresponsive name server.

“UNRESPONSIVETHRESHOLD statement” on
page 366

; or # Indicates a comment. “; and # statements” on page 368

Resolver setup statement information and syntax conventions
This topic explains each of the resolver setup statements in detail.

If resolver setup statements are contained in a data set, the data set can have the
following characteristics:
v Sequential (PS) or partitioned (PO) organization

356 z/OS V2R1.0 Communications Server: IP Configuration Reference

v Fixed (F) or fixed block (FB) format
v Recommended logical record length (LRECL) in the range 80 - 256
v Any valid block size

Restriction: If resolver setup statements are contained in a z/OS UNIX file, the file
can have a maximum line length of 256.

Observe the following syntax conventions for resolver setup statements:
v A blank indicates the end of a statement's values. Anything following the blank

on the same line is treated as a comment.
v Static system symbols can be used in resolver setup file statements.
v If a valid statement has any parameter error, a warning message is displayed on

the operator console and in the JES job log.
– If the statement was found during resolver address space initialization, the

statement is ignored. Processing of the setup statements continues.
– If the statement was found while processing a MODIFY

RESOLVER,REFRESH,SETUP command, processing of the setup statements
ends, the MODIFY fails, and no refresh takes place.

v If an invalid statement is found, a warning message is displayed on the
operator's console and in the JES job log.
– If the invalid statement was found during resolver address space

initialization, the statement is ignored. Processing of the setup statements
continues.

– If the invalid statement was found while processing a MODIFY
RESOLVER,REFRESH,SETUP command, processing of the setup statements
ends, the MODIFY fails, and no refresh takes place.

v When setup file processing is complete, the resolver attempts to open the MVS
data set or z/OS UNIX file name specified as the parameter on the last valid
instance of the GLOBALIPNODES, DEFAULTIPNODES, GLOBALTCPIPDATA,
and DEFAULTTCPIPDATA setup statements. If the parameter value was
incorrect or the specified z/OS UNIX or MVS data set does not exist, a warning
message is displayed on the operator console and in the JES job log.
– If the error occurred during resolver address space initialization, processing

continues. The resolver assumes the default setting for the setup statement,
which in this case is no file was specified.

– If the error occurred while processing a MODIFY
RESOLVER,REFRESH,SETUP command, processing of the setup statements
ends, the MODIFY fails, and no refresh takes place.

v When the setup file processing successfully completes, each resolver statement's
value is displayed on the operator console and in the JES job log. If a resolver
statement can specify an MVS data set or z/OS UNIX file and none was
specified, the word NONE is displayed as the statement's value on the operator
console and in the JES job log.

v The resolver processes an MVS data set or z/OS UNIX file specified on the
GLOBALTCPIPDATA resolver setup statement differently than data sets or files
that are specified on other resolver setup statements:
– During the initialization of the resolver address space and while processing

the MODIFY,REFRESH command, the resolver reads the contents of the MVS
data set or the z/OS UNIX file that is specified on the GLOBALTCPIPDATA
resolver setup statement. The resolver saves the information for resolver NMI
purposes. See Resolver NMI (EZBREIFR) in z/OS Communications Server: IP
Programmer's Guide and Reference for details.

Chapter 5. Resolver setup and TCPIP.DATA configuration statements 357

– For all other data set or file specifications, the contents of an MVS data set or
z/OS UNIX file that is specified by a resolver setup statement are not
validated during the initialization of the resolver address space or while the
MODIFY,REFRESH command is processing. The contents are validated when
the first usage of resolver services is requested by an address space.

v If the resolver address space abnormally terminates, an eventual action message
is issued which indicates the failure. Use the START operator command to
restart the Resolver address space.

v Resolver initialization deletes any resolver-related eventual action messages.
v If an allocation error occurs when trying to access a resolver statement's MVS

data set or z/OS UNIX file, an eventual action message is issued to the operator
console. Only one eventual action message per MVS data set or z/OS UNIX file
is issued regardless of the number of times the file is accessed. After a successful
reference to the file has occurred, the message is removed from the operator
console.
– If the allocation error occurs during resolver address space initialization,

processing continues.
– If the allocation error occurs while resolver is processing a MODIFY

RESOLVER,REFRESH command, processing of the setup statements ends and
the MODIFY command fails. No refresh takes place.

– If the allocation error occurs during a resolver API call, processing of the
resolver API continues. The resolver takes default values, if appropriate, for
any statements that could have appeared in the data set or file.

v If no errors are detected during resolver address space initialization, the resolver
issues message EZZ9291I at the completion of initialization processing. If an
error is detected, the resolver issues message EZD2038I. You can create
automation to look for message EZD2038I and to alert you about errors in your
resolver setup file that might cause the resolver to behave differently than
intended.

To determine the current setting of the resolver setup statements, use the MODIFY
RESOLVER,DISPLAY operator console command. See z/OS Communications
Server: IP System Administrator's Commands for MODIFY command.

For more information about resolvers, see z/OS Communications Server: IP
Configuration Guide

CACHE NOCACHE statements

Use the CACHE statement to enable system-wide caching for the resolver. Use the
NOCACHE statement to disable system-wide caching.

System-wide caching saves resource information obtained from name servers
during processing of application queries, which permits subsequent queries for the
same resource to be satisfied without contacting the name server for the
information. The resolver caches both positive and negative resource information.
For more information about the resolver caching function, see z/OS
Communications Server: IP Configuration Guide.

The default value is CACHE.

358 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

��
CACHE

NOCACHE
��

Parameters

This statement has no parameters.

CACHESIZE statement

Use the CACHESIZE statement to specify the maximum amount of storage that
can be allocated by the resolver to manage cached records.

Tip: When the CACHESIZE statement is specified with the NOCACHE statement,
the CACHESIZE operand is ignored.

Syntax

��
CACHESIZE(200M)

CACHESIZE(cachesizeM)
��

Parameters

cachesize M
Specifies the maximum amount of 64-bit private virtual storage that the
resolver can use to maintain cache information. This limit should be expressed
as a number followed by an M (which represents 1 048 576 bytes). The
cachesize value must be in the range 1M - 999M. The default is 200M.

Examples

Use the CACHESIZE statement to set 10 M as the maximum cache size value:
CACHESIZE(10M)

Usage notes
v For planning purposes, 1 megabyte of storage can contain between 400 and 450

cache entries. The actual values can vary depending on the amount of storage
needed to hold cache infrastructure control blocks used to represent the entries
and the name servers providing the information.

v The resolver acquires cache storage incrementally as needed, up to the
maximum specified by the CACHESIZE operand. Because storage is acquired
incrementally, there is no penalty for specifying a CACHESIZE value
significantly greater than the expected maximum amount of storage required.
This avoids storage constraint processing during spikes in the amount of
information being cached. Consider specifying a value at least fifty percent
larger than the amount of storage you actually expect to be used for cache
entries.

v You can increment the value of cachesize M dynamically by issuing the MODIFY
RESOLVER,REFRESH,SETUP=resolver_setup_filename command. You cannot
decrease the value of cachesize M dynamically. If you attempt to lower the value

Chapter 5. Resolver setup and TCPIP.DATA configuration statements 359

of CACHESIZE dynamically, the MODIFY command fails and message
EZZ9306I is issued. To decrease the value of cachesize M, you must stop and
restart the resolver. Alternatively, update the resolver setup file to indicate
NOCACHE and issue a MODIFY
RESOLVER,REFRESH,SETUP=resolver_setup_filename command to first stop
resolver caching, and then issue a second MODIFY
RESOLVER,REFRESH,SETUP=resolver_setup_filename command that both restarts
resolver caching and decrease the value of cachesize M.

COMMONSEARCH/NOCOMMONSEARCH statement
Use the COMMONSEARCH statement to indicate that the search order for local
host table is the same regardless of whether it is for an IPv6 or an IPv4 query, or
whether the query is issued in the native MVS or z/OS UNIX environment. The
default is NOCOMMONSEARCH.

Restriction: You must code the COMMONSEARCH statement if you use
IPNODES for the local hosts file. For more information, see Search orders used in
the z/OS UNIX environment and Search orders used in the native MVS
environment in z/OS Communications Server: IP Configuration Guide.

Syntax

��
NOCOMMONSEARCH

COMMONSEARCH
��

Parameters

This statement has no parameters.

Examples

To code COMMONSEARCH:
COMMONSEARCH

DEFAULTIPNODES statement

Use the DEFAULTIPNODES statement to specify the name of either a z/OS UNIX
file or MVS data set that contains the hard-coded IP addresses and host names to
be used.

Restriction: The specified file or data set can contain IPv4 and IPv6 addresses, but
cannot contain IPv4–mapped addresses.

Syntax

��
DEFAULTIPNODES ('fully qualified MVS dataset name')

(/file system absolute pathname)

��

360 z/OS V2R1.0 Communications Server: IP Configuration Reference

Parameters

'fully qualified MVS dataset name'
The complete name of the MVS data set containing the IP addresses and host
names. The data set name is not case sensitive.

Requirement: The beginning and ending quotation marks (' ') are required.

/file system absolute pathname
The complete name of the z/OS UNIX file containing the IP addresses and
host names. The z/OS UNIX path name is case sensitive.

Requirement: The beginning slash (/) is required.

Restriction: The /file system absolute path name can be a maximum of 255
characters.

Examples

To specify the data set named TCPIP.ETC.IPNODES, use the following code:
DEFAULTIPNODES(’TCPIP.ETC.IPNODES’)

To specify z/OS UNIX file ipnodes in directory etc as containing IP addresses and
host names, use the following code:
DEFAULTIPNODES(/etc/ipnodes)

Note: Because it is a z/OS UNIX file, the name is case sensitive.

Usage notes
v For a z/OS UNIX file, the file can reside in any directory. The maximum line

length supported is 256 characters. If the line is greater than 256 characters, it is
truncated to 256 characters and processed, and a trace resolver warning message
is issued.

v For an MVS data set, the following conditions are required:
– Sequential (PS) organization or PDS
– RECFM=F or RECFM=FB
– A logical record length (LRECL) in the range 80 - 256

v This specified file or data set can include IPv4 and IPv6 addresses, but cannot
include IPv4–mapped addresses. Each host name can be up to 128 characters in
length, and each host name can have up to 35 IPv4 addresses and 35 IPv6
addresses. Each node in the host name (without dots) can be up to 63 characters
in length. For example, if host name is testname.testdomain, testname and
testdomain can be up to 63 characters in length.

DEFAULTTCPIPDATA statement

Use the DEFAULTTCPIPDATA statement to specify the name of either a z/OS
UNIX file or MVS data set that contains the TCPIP.DATA statements. This name is
used, instead of TCPIP.TCPIP.DATA, as the final location when searching for
TCPIP.DATA statements.

Chapter 5. Resolver setup and TCPIP.DATA configuration statements 361

Syntax

��
DEFAULTTCPIPDATA ('fully qualified MVS dataset name')

(/file system absolute pathname)

��

Parameters

'fully qualified MVS dataset name'
The complete name of the MVS data set containing the TCPIP.DATA
statements.

Requirement: The beginning and ending quotation marks (' ') are required.

/file system absolute pathname
The complete name of the z/OS UNIX file containing the TCPIP.DATA
statements.

Requirement: The beginning slash (/) is required.

Restriction: The /file system absolute path name can be a maximum of 255
characters.

Examples

The following example specifies member RESLVCF in partitioned data set
TCPIP.TCPPARMS as containing TCPIP.DATA statements.
DEFAULTTCPIPDATA(’TCPIP.TCPPARMS(RESLVCF)’)

The following example specifies z/OS UNIX file DefaultTcpip.data in directory etc
as containing TCPIP.DATA statements.

Note: Because it is a z/OS UNIX file, the name is case sensitive.
DEFAULTTCPIPDATA(/etc/DefaultTcpip.data)

Usage notes
v For a z/OS UNIX file, the file can reside in any directory. The maximum line

length supported is 256 characters. If the line is greater than 256 characters, it is
truncated to 256 characters and processed, and a trace resolver warning message
is issued.

v The z/OS UNIX path name is case sensitive.
v For an MVS data set, the following conditions are required:

– Sequential (PS) or Partitioned (PO) organization
– RECFM=F or RECFM=FB
– Recommended logic record length (LRECL) in the range 80 - 256

v The MVS data set name is not case sensitive.

GLOBALIPNODES statement

Use the GLOBALIPNODES statement to specify the name of either a z/OS UNIX
file or MVS data set that contains the hard-coded IP addresses and host names to
be used.

Restriction: The specified file or data set can include IPv4 and IPv6 addresses, but
cannot include IPv4–mapped addresses.

362 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

��
GLOBALIPNODES ('fully qualified MVS dataset name')

(/file system absolute pathname)

��

Parameters

'fully qualified MVS dataset name'
The complete name of the MVS data set containing the IP addresses and host
names. The data set name is not case sensitive.

Requirement: The beginning and ending quotation marks (' ') are required.

/file system absolute pathname
The complete name of the file system containing the IP addresses and host
names. The z/OS UNIX path name is case sensitive.

Requirement: The beginning slash (/) is required.

Restriction: The /file system absolute path name can be a maximum of 255
characters.

Examples

To specify the data set named TCPIP.ETC.IPNODES, use the following code:
GLOBALIPNODES(’TCPIP.ETC.IPNODES’)

To specify z/OS UNIX file ipnodes in directory etc as containing IP addresses and
host names, use the following code:
GLOBALIPNODES(/etc/ipnodes)

Note: Because it is an z/OS UNIX file, the name is case sensitive.

Usage notes
v For a z/OS UNIX file, the file can reside in any directory. The maximum line

length supported is 256 characters. If the line is greater than 256 characters, it is
truncated to 256 characters and processed, and a trace resolver warning message
is issued.

v For an MVS data set, the following conditions are required:
– Sequential (PS) organization or PDS
– RECFM=F or RECFM=FB
– Recommended logic record length (LRECL) in the range 80 - 256

v This specified file or data set can contain IPv4 and IPv6 addresses, but cannot
contain IPv4–mapped addresses. Each host name can be up to 128 characters in
length, and each host name can have up to 35 IPv4 addresses and 35 IPv6
addresses. Each node in the host name (without dots) can be up to 63 characters
in length. For example, if host name is testname.testdomain, testname and
testdomain can be to 63 characters in length.

GLOBALTCPIPDATA statement

Use the GLOBALTCPIPDATA statement to specify the name of either a z/OS
UNIX file or MVS data set that contains the TCPIP.DATA statements that are used
to set global MVS image-wide values for TCPIP.DATA.

Chapter 5. Resolver setup and TCPIP.DATA configuration statements 363

If GLOBALTCPIPDATA is not specified, the appropriate environment's (Native
MVS or z/OS UNIX) search order is used to locate TCPIP.DATA.

If GLOBALTCPIPDATA is specified, any TCPIP.DATA statements contained in the
specified file or data set take precedence over any TCPIP.DATA statements found
using the appropriate environment's (native MVS or z/OS UNIX) search order.

The following resolver TCPIP.DATA statements can be specified only in the file or
data set specified by GLOBALTCPIPDATA. If these resolver statements are found
in any of the other search locations for TCPIP.DATA, they are ignored. If these
resolver statements are not found in the file or data set specified by
GLOBALTCPIPDATA, their default value is used.
v DomainOrigin/Domain
v NSInterAddr/NameServer
v NSPortAddr
v ResolverTimeOut
v ResolverUDPRetries
v ResolveVia
v Search
v SortList

Syntax

��
GLOBALTCPIPDATA ('fully qualified MVS dataset name')

(/file system absolute pathname)

��

Parameters

'fully qualified MVS dataset name'
The complete name of the MVS data set containing the TCPIP.DATA
statements.

Requirement: The beginning and ending quotes (' ') are required.

/file system absolute pathname
The complete name of the z/OS UNIX file containing the TCPIP.DATA
statements.

Requirement: The beginning slash (/) is required.

Restriction: The /file system absolute path name can be a maximum of 255
characters.

Examples

The following example specifies member GLOBAL in partitioned data set
TCPIP.TCPPARMS as containing TCPIP.DATA statements.
GLOBALTCPIPDATA(’TCPIP.TCPPARMS(GLOBAL)’)

The following example specifies z/OS UNIX file Global.Tcpip.data in directory etc
as containing TCPIP.DATA statements.

Note: Because it is a z/OS UNIX file the name is case sensitive.
GLOBALTCPIPDATA(/etc/Global.Tcpip.data)

364 z/OS V2R1.0 Communications Server: IP Configuration Reference

Usage notes
v For a z/OS UNIX file, the file can reside in any directory. The maximum line

length supported is 256 characters. If the line is greater than 256 characters, it is
truncated to 256 characters and processed, and a trace resolver warning message
is issued.

v The z/OS UNIX path name is case sensitive.
v For an MVS data set, the following conditions are required:

– Sequential (PS) or Partitioned (PO) organization
– RECFM=F or RECFM=FB
– Recommended logic record length (LRECL) in the range 80 - 256

v The MVS data set name is not case sensitive.
v You must code the GLOBALTCPIPDATA statement if you specify the

AUTOQUIESCE operand on the UNRESPONSIVETHRESHOLD statement. If
you cannot ensure that all DNS IP addresses are accessible from all of your
TCPIP stacks, you should not use a global TCPIP.DATA file and you should not
code AUTOQUIESCE on the UNRESPONSIVETHRESHOLD setup statement in
your resolver setup file. See “UNRESPONSIVETHRESHOLD statement” on page
366 for more information.

MAXTTL statement

Use the MAXTTL statement to specify the maximum amount of time the resolver
can use resource information obtained from a Domain Name System (DNS) server
as part of resource resolution.

Tip: When MAXTTL is specified with NOCACHE, the value is ignored.

Syntax

��
MAXTTL(2147483647)

MAXTTL(time-to-live)
��

Parameters

time-to-live
Specifies the maximum amount of time, in seconds, that the resolver is
permitted to use cached information about a resource obtained from a name
server. The time-to-live value must be in the range 1 - 2 147 483 647. The
default is 2 147 483 647, which is the largest value that can be specified for
the time-to-live value for a resource at a name server. Specifying, or defaulting
to, a value of 2 147 483 647 means that the resolver uses the time-to-live value
received from the name server to determine how long the resource information
can be used.

Examples

The following code is an example of coding 10 minutes (or 600 seconds) as the
maximum time-to-live value by using the MAXTTL statement:
MAXTTL(600)

Chapter 5. Resolver setup and TCPIP.DATA configuration statements 365

Usage notes
v You can change the value for MAXTTL dynamically using the MODIFY

RESOLVER,REFRESH,SETUP=resolver_setup_filename command. Changing the
value of MAXTTL dynamically has no affect on existing records in the resolver
cache, but the new value is used for cache records created after the MODIFY
command completes.

v The value for MAXTTL applies to both negative cache records and cache records
that represent successful resolution attempts.

v If the time-to-live value that is received from the name server for a given
resource is lower than the MAXTTL value, the cached entry times out based on
the name server TTL value.

v If the time-to-live value that is received from the name server for a given
resource is higher than the MAXTTL value, the cached entry times out based on
the MAXTTL value

UNRESPONSIVETHRESHOLD statement

Use the UNRESPONSIVETHRESHOLD statement to specify the threshold value for
when the resolver name server monitoring function declares a DNS name server to
be unresponsive to resolver queries, and to specify whether the resolver should
automatically stop using unresponsive name servers for Domain Name System
(DNS) queries generated by an application. For detailed information about the
name server monitoring function and about selecting an appropriate value for
UNRESPONSIVETHRESHOLD, see the information about monitoring the
responsiveness of Domain Name System name servers in z/OS Communications
Server: IP Configuration Guide.

Syntax

��
UNRESPONSIVETHRESHOLD(25)

UNRESPONSIVETHRESHOLD(percentage_of_queries)
UNRESPONSIVETHRESHOLD(percentage_of_queries,AUTOQUIESCE)

��

Parameters

percentage_of_queries
The threshold value for determining when the resolver declares a DNS name
server to be unresponsive. The threshold represents a percentage of failures
within a specific time interval. The duration of the time interval depends on
the setting of the AUTOQUIESCE operand:
v If you do not specify the AUTOQUIESCE operand, the resolver monitors

name server responsiveness using sliding 5-minute intervals.
v If you specify the AUTOQUIESCE operand, the resolver monitors name

server responsiveness using 30-second intervals.

Valid values for percentage_of_queries are in the range 0-100.

The value 0 indicates that the resolver should not monitor name server
responsiveness.

The default percentage depends on the setting of the AUTOQUIESCE operand:
v If you do not specify the AUTOQUIESCE operand, the default percentage

value is 25% of resolver queries.

366 z/OS V2R1.0 Communications Server: IP Configuration Reference

v If you specify the AUTOQUIESCE operand, there is no default percentage.
You must specify a percentage value when specifying the AUTOQUIESCE
operand.

AUTOQUIESCE
Indicates what actions the resolver takes when it identifies an unresponsive
name server.
v If you do not specify the AUTOQUIESCE operand and a name server fails to

respond to a percentage of resolver queries that is equal to or greater than
the specified threshold level, the resolver displays message EZZ9308E to the
operator console to indicate that the name server has been unresponsive for
this latest 5-minute interval. The resolver continues to forward DNS queries
generated by an application to the name server whether it is responsive or
not. The name server is considered to be unresponsive until the percentage
of queries that the name server does not respond to is less than the specified
threshold, or until monitoring is disabled.

v If you specify the AUTOQUIESCE operand and a name server fails to
respond to a percentage of resolver queries that is equal to or greater than
the specified threshold level, the resolver displays message EZZ9311E to the
operator console to indicate that the name server has been unresponsive for
this latest 30-second interval. The resolver stops sending DNS queries
generated by an application to the name server while the name server is
unresponsive. While a name server is unresponsive, the resolver periodically
sends DNS polling queries to the name server. The name server is
considered to be unresponsive until the percentage of DNS polling queries
that the name server does not respond is less than the specified threshold, or
until the monitoring is disabled. In most cases, a minimum of 10 DNS
polling queries must be attempted before the resolver considers a name
server to be responsive.
Result: If all name servers specified in the global TCPIP.DATA file are
unresponsive, the resolver sends DNS queries generated by an application to
those name servers, rather than failing the DNS query immediately.

The AUTOQUIESCE operand is used only when the percentage_of_queries value
is greater than 0.

If you specify the AUTOQUIESCE operand, you must also code the
GLOBALTCPIPDATA statement. If you do not code the GLOBALTCPIPDATA
statement, the resolver issues message EZD2036I and ignores the
AUTOQUIESCE operand. If you cannot ensure that all DNS IP addresses are
accessible from all of your TCPIP stacks, you should not use a global
TCPIP.DATA file and you should not code AUTOQUIESCE on the
UNRESPONSIVETHRESHOLD setup statement in your resolver setup file. See
“GLOBALTCPIPDATA statement” on page 363 for details on coding the
GLOBALTCPIPDATA statement.

The default setting is that AUTOQUIESCE is not specified.

Steps for modifying

You can refresh this statement using the MODIFY command. To modify the
threshold value, the setting of the AUTOQUIESCE operand, or both, perform the
following steps:
1. If you do not have a resolver setup file, create one.
2. Specify the percentage value and the required setting for the AUTOQUIESCE

operand on the UNRESPONSIVETHRESHOLD statement in the resolver setup

Chapter 5. Resolver setup and TCPIP.DATA configuration statements 367

file. The following guidelines apply when you modify the value for the
UNRESPONSIVETHRESHOLD statement:
v If you change the value to 0, the function is disabled, all accumulated

statistics are deleted, and any unresponsive name server notification
messages are cleared from the operator console.

v If you change the value to a nonzero value but you do not change the value
of the AUTOQUIESCE operand, the new threshold percentage will be used
when the next time interval ends.
– If you do not specify the AUTOQUIESCE operand and the resolver was

already monitoring name server responsiveness, existing statistics that
were accumulated during the 1-minute interval are not affected and
current EZZ9308E unresponsive name server messages remain on the
operator console.

– If you specify the AUTOQUIESCE operand and the resolver was already
monitoring name server responsiveness, existing statistics that were
accumulated during the 30-second interval are not affected and current
EZZ9311E unresponsive name server messages remain on the operator
console.

v If you change the value of the AUTOQUIESCE operand, all accumulated
statistics are deleted and any unresponsive name server messages (EZZ9308E
or EZZ9311E) are cleared from the operator console. The resolver uses the
specified threshold percentage when the next time interval (5-minutes or
30-seconds) ends.

3. Issue the MODIFY RESOLVER,REFRESH,SETUP=setup_filename command to
cause the resolver to use the new threshold value, the AUTOQUIESCE operand
setting, or both.

For more information about parameters used with the MODIFY command, see
z/OS Communications Server: IP System Administrator's Commands .

Examples

To specify a 50% threshold value and cause the resolver to continue sending DNS
queries generated by an application to an unresponsive name server, specify the
following value:
UNRESPONSIVETHRESHOLD(50)

To specify a 100% threshold value and cause the resolver to stop sending DNS
queries generated by an application to an unresponsive name server, specify the
following values:
UNRESPONSIVETHRESHOLD(100,AUTOQUIESCE)

; and # statements

Use ; or # to indicate comments. Any data after the ; or # character is treated as a
comment.

368 z/OS V2R1.0 Communications Server: IP Configuration Reference

Configuration statements in TCPIP.DATA
The TCPIP.DATA configuration statements are summarized in Table 8.

Table 8. Summary of TCPIP.DATA configuration statements

Statement Description See

ALWAYSWTO Issue WTO messages for servers. “ALWAYSWTO statement” on page
373

DATASETPREFIX Set the high-level qualifier for dynamic allocation
of data sets.

“DATASETPREFIX statement” on
page 374

DOMAINORIGIN or
DOMAIN (see note)

Specify the domain origin that is appended to the
host name to form the fully qualified domain
name of a host.

“DOMAINORIGIN statement” on
page 374

HOSTNAME Specify the TCP host name of the z/OS
communication server.

“HOSTNAME statement” on page
376

LOADDBCSTABLES Indicate to FTP which DBCS translation tables can
be loaded.

“LOADDBCSTABLES statement” on
page 377

LOOKUP Specify the order in which the DNS and the local
host file are to be used for name resolution.

“LOOKUP statement” on page 378

MESSAGECASE Specify case translation for the FTP server and
osnmpd.

“MESSAGECASE statement” on page
379

NOCACHE Specify that the resolver should not use the
system-wide cache for any queries associated with
applications that use this TCPIP.DATA file. The
cache is bypassed for any queries from a DNS
server and results obtained from a DNS server are
not updated in the cache.

“NOCACHE statement” on page 381

NSINTERADDR or
NAMESERVER
Note: A synonym that
provides common
statements regardless of
whether the statements
are defined in an MVS
data set or z/OS UNIX
file.

Define the IP address of a name server. The IP
address can be either IPv4 or IPv6.

“NSINTERADDR statement” on page
381

NSPORTADDR Specify the name server port number. “NSPORTADDR statement” on page
384

OPTIONS Specify if resolver debug messages should be
issued and the number of periods (.) that need to
be contained in a domain name for it to be
considered a fully qualified domain name.

“OPTIONS statement” on page 385

RESOLVERTIMEOUT Specify how long the resolver waits for a response
while trying to communicate with the name server.

“RESOLVERTIMEOUT statement” on
page 387

RESOLVERUDPRETRIES Specify how many times the resolver tries to
connect to the name server when using UDP
datagrams.

“RESOLVERUDPRETRIES statement”
on page 389

RESOLVEVIA Specify the protocol used by the resolver to
communicate with the name server.

“RESOLVEVIA statement” on page
390

SEARCH Specify the list of domain names that are
appended, in the order listed, to the host name to
form the fully qualified domain name of a host.

“SEARCH statement” on page 391

Chapter 5. Resolver setup and TCPIP.DATA configuration statements 369

Table 8. Summary of TCPIP.DATA configuration statements (continued)

Statement Description See

SOCKDEBUG Turn on tracing of TCP/IP socket library calls. “SOCKDEBUG statement” on page
392

SOCKNOTESTSTOR Stop checking of TCP/IP socket calls for storage
access errors on the parameters to the call.

“SOCKNOTESTSTOR statement” on
page 393

SOCKTESTSTOR Enable checking of TCP/IP socket calls for storage
access errors on the parameters to the call.

“SOCKTESTSTOR statement” on
page 393

SORTLIST Specify the ordered list of network numbers
(subnets or networks) for the resolver to prefer if it
receives multiple addresses as the result of a name
query.

“SORTLIST statement” on page 394

TCPIPJOBNAME or
TCPIPUSERID (see note)

Specify the member name of the cataloged
procedure used to start the TCPIP address space.

“TCPIPJOBNAME statement” on
page 395

TRACE RESOLVER Trace all queries to and responses from the name
server.

“TRACE RESOLVER statement” on
page 396

TRACE SOCKET Trace TCP/IP C socket library calls. “TRACE SOCKET statement” on
page 397

; or # Use either character to indicate a comment. “; and # statements” on page 368

Rule: If any TCPIP.DATA statement is in the GLOBALTCPIPDATA file, it is always
used, regardless of what is found in any subsequent TCPIP.DATA statements from
the search list.

system_name considerations
The system_name parameter on the statements is derived from the MVS system
name. If you have configured VMCF and TNF as non-restartable subsystems, the
system name is specified in the IEFSSNxx member of PARMLIB. If you have
configured VMCF and TNF as restartable subsystems, the system name is obtained
from the value of the P= parameter of the EZAZSSI started procedure. See "Step 3:
Configure VMCF and TNF" in z/OS Communications Server: IP Configuration
Guide for information about starting VMCF.

sysname above is the name specified by the IEASYSxx parmlib member's
SYSNAME= parameter value. For more information about the SYS1.PARMLIB
member definitions, see z/OS MVS Initialization and Tuning Guide.

For more information about using the system_name parameter, see the TCPIP.DATA
statements customization information in z/OS Communications Server: IP
Configuration Guide

For SMTP usage, use the NJENODENAME statement in the SMTP configuration
data set to specify the JES nodename for mail delivery on the NJE network.

Dynamically changing TCPIP.DATA statements
You can use the MODIFY RESOLVER,REFRESH command to change some of the
TCPIP.DATA statements being used by a long-running TCP/IP application (for
example, a server application). To do this, follow either of the following
procedures.

Restrictions: You cannot change the TCPIP.DATA statement values for the
following subset of TCP/IP provided applications:

370 z/OS V2R1.0 Communications Server: IP Configuration Reference

v SMTP server
v DNS utility z/OS UNIX commands (nslookup, onslookup and dig)
v Any application program that uses the Language Environment C/C++ res_ API

facilities and changed the updated TCPIP.DATA statement

Table 9 lists the TCPIP.DATA statements and whether each statement can be
dynamically changed (refreshed). For more information about modifying
statements, see z/OS Communications Server: IP System Administrator's
Commands and to z/OS Communications Server: IP Configuration Guide for
information about configuring resolvers.

Table 9. Refreshable TCPIP.DATA

TCPIP.DATA statement Refreshable

ALWAYSWTO No

DATASETPREFIX No

DOMAINORIGIN or DOMAIN Yes

HOSTNAME No

LOADDBCSTABLES No

LOOKUP Yes

MESSAGECASE No

NOCACHE Yes

NSINTERADDR or NAMESERVER Yes

NSPORTADDR Yes

RESOLVEVIA Yes

RESOLVERTIMEOUT Yes

RESOLVERUDPRETRIES Yes

SEARCH Yes

SOCKDEBUG No

SOCKNOTESTSTOR No

SOCKTESTSTOR No

SORTLIST Yes

TCPIPJOBNAME or TCPIPUSERID No

TRACE RESOLVER Yes

TRACE SOCKET No

OPTIONS DEBUG Yes

OPTIONS NDOTS Yes

; or # (COMMENT) NA

Steps for dynamically changing TCPIP.DATA statements without
using GLOBALTCPIPDATA:
This topic describes the steps of dynamically changing the TCPIP.DATA statements,
but not using GLOBALTCPIPDATA.

Procedure

Perform the following steps to dynamically change TCPIP.DATA statements
without using GLOBALTCPIPDATA.

Chapter 5. Resolver setup and TCPIP.DATA configuration statements 371

1. Change the MVS data set or z/OS UNIX file currently being used for
TCPIP.DATA statements to the new values.

2. To use the changed values, issue the MODIFY RESOLVER,REFRESH command.
When application programs that are configured to use the TCPIP.DATA file
make their next resolver socket call (for example, gethostbyaddr or
gethostbyname), the new values are used.

Step for dynamically changing TCPIP.DATA statements using
GLOBALTCPIPDATA:
This topic describes the steps of dynamically changing the TCPIP.DATA statement
by using GLOBALTCPIPDATA.

Procedure

Perform the following step to dynamically change TCPIP.DATA statements using
GLOBALTCPIPDATA.

Use the preceding procedure to change the GLOBALTCPIPDATA file.

Steps for creating a new GLOBALTCPIPDATA data set or file
Alternatively, you could create a new GLOBALTCPIPDATA data set or file.

Procedure

Perform the following steps to create a new GLOBALTCPIPDATA data set or file.
1. Create a new resolver setup file in which the GLOBALTCPIPDATA statement

points to the new TCPIP.DATA file.
2. To use the changed values, issue the MODIFY RESOLVER,REFRESH,SETUP=

command specifying the new resolver setup name. When application programs
make their next resolver socket call (for example, gethostbyaddr or
gethostbyname), the new values are used.

Determining which TCPIP.DATA statements are being used
Use the Trace Resolver facility to determine which TCPIP.DATA values the resolver
is using and where they were read from. See z/OS Communications Server: IP
Diagnosis Guide for information about how to dynamically start the trace. After
the trace is active, issue use the Netstat HOME/-h command to display the values.
Issuing a ping of a host name from TSO and from the z/OS UNIX shell also shows
activity to any DNSs that might be configured.

Syntax conventions for TCPIP.DATA configuration statements
Observe the following syntax conventions for TCPIP.DATA statements:
v A data set containing TCPIP.DATA statements must be fixed or fixed block with

a suggested logic record length (LRECL) in the range 80 - 256. The data set
should not contain line numbers, because the line numbers are treated as
parameter values for statements that allow multiple parameters.

v A z/OS UNIX file containing TCPIP.DATA statements can have a maximum line
length of 256.

v Only one statement is allowed on each line.
v A statement can start in any position on a line.
v Statements are not case sensitive.
v Statements can be preceded by an optional system_name.

372 z/OS V2R1.0 Communications Server: IP Configuration Reference

v Static system symbols can be used in statements.
v A blank line is treated as a comment.
v For statements with a single parameter value or no parameter value, a blank

after the value ends the statement. Anything on the line following the blank is
treated as a comment.

v For statements accepting multiple parameter values (for example, SEARCH,
LOOKUP, NSINTERADDR/NAMESERVER, SORTLIST, OPTIONS, and
LOADDBCSTABLES), at least one blank followed by either a semicolon (;), or #
character must precede any comments.

v If the same statement is encountered multiple times within a single TCPIP.DATA
specification, the last statement takes effect. See the SEARCH, SORTLIST,
NSINTERADDR/NAMESERVER, OPTIONS, and LOADDBCSTABLES
statements for their unique processing of multiple statements.

v When Trace Resolver is in effect a warning message is written for any error in
the specification of a statement or its parameters. The message is written to the
specified Trace Resolver output location. Processing continues with the next line.

v Allocation errors (including volume offline conditions) cause the resolver service
being requested to continue to be processed, but processing of TCPIP.DATA
statements stops. Any already processed statements are used (for example,
GLOBALTCPIPDATA statements). Defaults are assigned to any statements not
specified.
If an allocation error occurs when trying to use TCPIP.DATA statements, a
message is issued to the Joblog/STDOUT. If Trace Resolver is in effect, a
message is also written to the specified Trace Resolver output location.

ALWAYSWTO statement

Some TCP/IP servers, such as SMTP, SNMPQE, LPD, and Miscellaneous server,
can use the ALWAYSWTO statement to issue all of their messages as Write To
Operator (WTO) messages. This is in addition to their messages being sent to the
server's MVS joblog output. Omitting the ALWAYSWTO statement causes the
server messages to be sent only to the server's MVS job output.

Guideline: Do not specify ALWAYSWTO YES unless requested by IBM service.
Specifying YES can generate a large volume of system operator console messages.

Syntax

��
system_name:

ALWAYSWTO NO
YES

��

Parameters

system_name:
The name of the system to which this statement applies. See “system_name
considerations” on page 370 for a complete description of this parameter.

Requirement: The colon is required.

YES
Indicates that server messages are to be displayed on the console.

NO Indicates that server messages only go to the MVS output.

Chapter 5. Resolver setup and TCPIP.DATA configuration statements 373

DATASETPREFIX statement

Use the DATASETPREFIX statement to set the high-level qualifier for the dynamic
allocation of data sets in TCP/IP.

Syntax

��
system_name:

DATASETPREFIX dsprefix ��

Parameters

system_name:
The name of the system to which this statement applies. See “system_name
considerations” on page 370 for a complete description of this parameter.

Requirement: The colon is required.

dsprefix
The prefix to use as the high-level qualifier for the dynamic allocation of data
sets. The default high-level qualifier distributed with the system is TCPIP.

Guidelines: The values for the parameter must conform to the following rules:
v A maximum of 26 characters.
v Must contain one or more tokens separated by a period.
v Each token must be in the range 1 - 8 characters in length.
v Each token must start with a letter or character ($, @, or #).
v Remaining characters in each token must be a letter, number, or character (-,

$, @, or #).
v The last character of the data set prefix must not be a period.

Examples

Code the following example to set the data set prefix for client and server usage to
TCPIP.V1R6:
DATASETPREFIX TCPIP.V1R6

Usage notes

The DATASETPREFIX in TCPIP.DATA is used by clients and servers except the
TCPIP address space.

DOMAIN statement

The DOMAIN statement is functionally equivalent to the DOMAINORIGIN
statement. See “DOMAINORIGIN statement.”

DOMAINORIGIN statement

Use the DOMAINORIGIN statement to specify the domain origin that is appended
to the host name to form the fully qualified domain name of a host.

374 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

�� DOMAINORIGIN origin
system_name:

��

Parameters

system_name:
The name of the system to which this statement applies. See “system_name
considerations” on page 370 for a complete description of this parameter.

Requirement: The colon is required.

origin
The domain origin is appended to the host name. This name usually has
imbedded dots.

Guidelines: The values for the domain name must conform to the following
rules:
v Maximum of 249 characters.
v Must contain one or more tokens separated by a period.
v Each token must be at least one character.
v Each token must start with a letter or number.
v Remaining characters in each token must be a letter, number, or hyphen.
v The length of the host name plus the length of the domain name must be

less than or equal to 254.

Steps for modifying

You can refresh this statement using the MODIFY command. For more information
about parameters used with the MODIFY command, see z/OS Communications
Server: IP System Administrator's Commands.

Examples

This example appends the domain origin of BOBS.YOUR.UNCLE to the host name:
DOMAINORIGIN BOBS.YOUR.UNCLE

Usage notes
v No case translation is performed on the domain origin.
v If the resolver is passed a host name that does not contain any dots (in dotted

decimal notation), the domain origin is appended to the host name. If the host
name passed to the resolver contains dots, the value of the OPTIONS NDOTS:n
statement influences how the DOMAINORIGIN value is used. See “OPTIONS
statement” on page 385.

v The DOMAINORIGIN configuration statement must be customized at each site.
v Additionally, the domain origin can be set from the z/OS shell environment by

exporting the LOCALDOMAIN environment variable.

�� export LOCALDOMAIN=origin ��

The setting of the LOCALDOMAIN as an environment variable overrides any
setting for DOMAIN, DOMAINORIGIN, or SEARCH found in TCPIP.DATA.

Chapter 5. Resolver setup and TCPIP.DATA configuration statements 375

HOSTNAME statement

Use the HOSTNAME statement to specify the TCP host name of this z/OS
Communications Server server.

Syntax

�� HOSTNAME host_name
system_name:

��

Parameters

system_name:
The name of the system to which this statement applies. See “system_name
considerations” on page 370 for a complete description of this parameter.

Requirement: The colon is required.

host_name
The host name. If not specified or if not valid, the value is determined as
follows:
v The system name specified in the IEFSSNxx PARMLIB member or on the P

parameter of the EZASSI started procedure used for restartable VMCF. See
z/OS Communications Server: IP Configuration Guide for details about
configuring VMCF.

v If VMCF was not active at the time the TCP/IP stack was started, the
CVTSNAME value (this is the SYSNAME=value in the IEASYSxx PARMLIB
member A).

If the host name came from TCPIP.DATA, it is in the message case it was
specified in on the HOSTNAME statement. For VMCF or CVTSNAME, the
name is upper case.

The TCP/IP stack's configuration function uses the z/OS UNIX search order to
locate the TCPIP.DATA HOSTNAME statement to determine the stack's host
name. See search orders used in the z/OS UNIX environment in the z/OS
Communications Server: IP Configuration Guide for a description of this
search order. This host name value is the value that is returned on
gethostname socket function calls processed by the stack. If the HOSTNAME
statement is changed, TCP/IP needs to be restarted to pick up this change.

Guidelines: The values for the host name must conform to the following rules:
v Maximum of 63 characters.
v Must contain one or more tokens separated by a period.
v Each token must be at least one character and less than 64 characters.
v Each token must start with a letter or number.
v Remaining characters in each token must be a letter, number, or hyphen.

Examples

The TCPIP.DATA data set is shared between two systems, MVSMFG4 and
MVSADM1. The HOSTNAME statements define the host name on each system.
MVSMFG4: HOSTNAME MVSMFG4
MVSADM1: HOSTNAME MVSADM1

376 z/OS V2R1.0 Communications Server: IP Configuration Reference

Usage notes
v No case translation is performed on the host name.
v See z/OS Communications Server: IP Configuration Guide for descriptions of

local host tables.

LOADDBCSTABLES statement

Use the LOADDBCSTABLES statement to indicate to the FTP server and client
which DBCS translation tables can be loaded.

Syntax

�� LOADDBCSTABLES
system-name:

�

BIG5
EUCKANJI
HANGEUL
JIS78KJ
JIS83KJ
KSC5601
SCHINESE
SJISKANJI
TCHINESE

��

Parameters

system_name:
The name of the system to which this statement applies. See “system_name
considerations” on page 370 for a complete description of this parameter.

Requirement: The colon is required.

BIG5
Indicates to the FTP server and client that the BIG5 DBCS translation table
should be loaded from the TCPCHBIN binary translate table data set.

EUCKANJI
Indicates to the FTP server and client that the Extended UNIX Code Kanji
DBCS translation table should be loaded from the TCPKJBIN binary translate
table data set.

HANGEUL
Indicates to the FTP server and client that the Hangeul DBCS translation table
should be loaded from the TCPHGBIN binary translate table data set.

JIS78KJ
Indicates to the FTP server and client that the JIS 1978 Kanji DBCS translation
table should be loaded from the TCPKJBIN binary translate table data set.

JIS83KJ
Indicates to the FTP server and client that the JIS 1983 Kanji DBCS translation
table should be loaded from the TCPKJBIN binary translate table data set.

KSC5601
Indicates to the FTP server and client that the Korean Standard Code KSC-5601
DBCS translation table should be loaded from the TCPHGBIN binary translate
table data set.

Chapter 5. Resolver setup and TCPIP.DATA configuration statements 377

SCHINESE
Indicates to the FTP server and client that the Simplified Chinese DBCS
translation table should be loaded from the TCPSCBIN binary translate table
data set.

SJISKANJI
Indicates to the FTP server and client that the Shift JIS Kanji DBCS translation
table should be loaded from the TCPKJBIN binary translate table data set.

TCHINESE
Indicates to the FTP server and client that the Traditional Chinese (5550) DBCS
translation table should be loaded from the TCPCHBIN binary translate table
data set.

Examples

Load the Korean Standard Code KSC-5601 and the Traditional Chinese (5550)
DBCS translation tables:
LOADDBCSTABLES KSC5601 TCHINESE

Usage notes
v You can select any or all of the translation tables or specify none. However,

additional virtual storage might be required by the FTP server and client when a
large number of translation tables are loaded at the same time.

v All the parameters must fit on one line. You can repeat the LOADDBCSTABLES
statement as necessary to specify additional tables to be loaded.

v If the LOADDBCSTABLES parameter is not specified, is specified incorrectly, or
if TCPIP.DATA is not accessible, then no DBCS translation tables are Reloaded,
and the corresponding FTP server and client DBCS transfer types are
unavailable.

v The IBMKANJI transfer type does not require any translation table to be loaded.
v If the same table name is specified more than one time, the subsequent

specifications are ignored.

Related topics

See z/OS Communications Server: IP Configuration Guide for more information.

LOOKUP statement

Use the LOOKUP statement to specify the order in which the DNS or local host
tables are to be used for name resolution.

Syntax

�� LOOKUP
system_name:

� DNS
LOCAL

��

Parameters

system_name:
The name of the system to which this statement applies. See “system_name
considerations” on page 370 for a complete description of this parameter.

378 z/OS V2R1.0 Communications Server: IP Configuration Reference

Requirement: The colon is required.

DNS
The domain name servers specified by the NSINTERADDR and
NAMESERVER statements are used for name resolution. When system-wide
caching is active, this processing includes querying the resolver cache first for
entries provided by these name servers on previous name resolution attempts,
and only if that query fails, querying the domain name servers.

For more resolver information see z/OS Communications Server: IP
Configuration Guide for more details.

LOCAL
The local host tables (for example, etc/hosts, HOSTS.SITEINFO or
HOSTS.ADDRINFO) are used for name resolution. See z/OS Communications
Server: IP Configuration Guide for information about determining which local
host tables are used.

Statement dependency

You can refresh this statement using the MODIFY command. For more information
about parameters used with the MODIFY command, see z/OS Communications
Server: IP System Administrator's Commands.

Examples

In the following example, only the local host tables are used:
LOOKUP LOCAL

In the following example, the local host tables are used first. If the resource name
is not resolved, then the resolver cache (if a cache is being used) is used next. If
there is still no resolution, then the name servers are queried directly.
LOOKUP LOCAL DNS

In the following example, the resolver cache (if a cache is being used) is used first.
If the resource name is not resolved, then the name servers are queried directly. If
there is still no resolution, then the local host tables are used next.
LOOKUP DNS LOCAL

Usage notes
v If a LOOKUP statement is not specified, the resolver cache (if a cache is being

used) is queried first. If the cache query is unsuccessful, the domain name
servers are queried next, and if the resolution request is not successful, the local
host file, if it exists, is used.

v If an incorrect parameter value is specified, the entire LOOKUP statement is
ignored.

v The last syntactically correct LOOKUP statement is used.

MESSAGECASE statement

Use the MESSAGECASE statement to specify whether to convert output into
uppercase for the FTP server and some TSO commands.

Chapter 5. Resolver setup and TCPIP.DATA configuration statements 379

Syntax

�� MESSAGECASE
system-name:

MIXED
UPPER ��

Parameters

system_name:
The name of the system to which this statement applies. See “system_name
considerations” on page 370 for a complete description of this parameter.

Requirement: The colon is required.

MIXED
Indicates that output should be displayed in mixed case. This is the default.

UPPER
Indicates that output should be displayed in uppercase.

Examples

To display all messages to the MVSTEST system in uppercase, use the following
code:
MVSTEST: MESSAGECASE UPPER

Usage notes
v If you specify MIXED, no case conversion is performed on output.
v If the MESSAGECASE statement is not specified, is specified incorrectly, if

MIXED or UPPER is not specified, or if TCPIP.DATA is not accessible, then
mixed case output is displayed.

v All Writer To Operator (WTO) messages issued by the TCPIP stack are displayed
in uppercase and are not affected by the MESSAGECASE value.

v Additionally, the MESSAGECASE statement can be set from the z/OS shell
environment by exporting the MESSAGECASE environment variable. The
MESSAGECASE environment variable is not supported by all functions. This is
shown in the following example:

�� export MESSAGECASE=
MIXED
UPPER ��

The setting of the MESSAGECASE as an environment variable overrides any
setting found in TCPIP.DATA. If MESSAGECASE is not defined as an
environment variable or as a statement in TCPIP.DATA, the WTO message
remains in mixed case.

NAMESERVER statement

The NAMESERVER statement is functionally equivalent to the NSINTERADDR
statement. See “NSINTERADDR statement” on page 381.

380 z/OS V2R1.0 Communications Server: IP Configuration Reference

NOCACHE statement

Use the NOCACHE statement to indicate that results from application queries that
are associated with this TCPIP.DATA file are not used to populate the system
cache, nor are the contents of the system cache used to generate results to
application queries.

For more information about resolvers see z/OS Communications Server: IP
Configuration Guide for more details.

Syntax

��
system_name:

NOCACHE ��

Parameters

system_name:
The name of the system to which this statement applies. See “system_name
considerations” on page 370 for a complete description of this parameter.

Requirement: The colon is required.

Steps for modifying

You can use the MODIFY command to change whether or not system-caching
functions are used. If the NOCACHE statement is not in TCPIP.DATA, the current
system-wide settings for use of the caching function should be used.

For more information about parameters used with the MODIFY command, see
z/OS Communications Server: IP System Administrator's Commands.

NSINTERADDR statement

Use the NSINTERADDR statement to define the IP address of a name server. The
IP address can be either an IPv4 address or an IPv6 address.

See z/OS Communications Server: IP Configuration Guide for implications on
coding an IPv6 address on this statement.

Syntax

��
system_name:

NSINTERADDR � internet_addr ��

Parameters

system_name:
The name of the system to which this statement applies. See “system_name
considerations” on page 370 for a complete description of this parameter.

Requirement: The colon is required.

Chapter 5. Resolver setup and TCPIP.DATA configuration statements 381

internet_addr
The IP address of a name server.

Guidelines:

v You must code the values for a name server IPv4 address in dotted decimal
format. The following restrictions apply:
– You cannot specify the following IPv4 addresses as a valid name server

IPv4 address:
- IPv4 unspecified address (0.0.0.0)
- IPv4 broadcast address
- IPv4 multicast address

– You cannot specify IPv4 subnet length information as part of the IPv4
address.

v You must code the values for a name server IPv6 address in colon
hexadecimal format. You can specify the IPv6 addresses in upper case, lower
case, or mixed case formats. The following restrictions apply:
– You cannot specify the following IPv6 addresses as a valid name server

IPv6 address:
- IPv6 unspecified address (::)
- IPv6 multicast address
- IPv4-mapped IPv6 address
- IPv6 address with the reserved prefix ::/96

– You cannot specify scope information as part of the IPv6 address.
– You cannot specify IPv6 prefix length information as part of the IPv6

address.

You can specify multiple IP addresses on a single NSINTERADDR statement.
You can specify all IPv4 addresses, all IPv6 addresses, or a mixture of IPv4 and
IPv6 addresses, in any order, on a single statement.

Steps for modifying

You can refresh this statement using the MODIFY command. For more information
about parameters used with the MODIFY command, see z/OS Communications
Server: IP System Administrator's Commands.

Examples

To specify the IP address of the name server to be 14.13.12.11, use the following
code:
NSINTERADDR 14.13.12.11

To specify the IP address of the three name servers to be 14.13.12.11, 9.9.9.9, and
6.7.8.9, use the following code:
NSINTERADDR 14.13.12.11 9.9.9.9 6.7.8.9

An equivalent specification is:
NSINTERADDR 14.13.12.11
NSINTERADDR 9.9.9.9
NSINTERADDR 6.7.8.9

To specify the IP address of the name server to be
2001:0000:0000:0000:000E:000D:000C:000B, code any of these equivalent definitions:

382 z/OS V2R1.0 Communications Server: IP Configuration Reference

NSINTERADDR 2001:0000:0000:0000:000E:000D:000C:000B
NSINTERADDR 2001::e:d:c:b
NSINTERADDR 2001:0:0:0:E:d:c:B

To specify the IP address of the three name servers to be 2001::e:d:c:b, 2001::9:9:9:9,
and 2001:6:7:8:9, use the following code:
NSINTERADDR 2001::e:d:c:b 2001::9:9:9:9 2001::6:7:8:9

An equivalent specification is:
NSINTERADDR 2001::e:d:c:b
NSINTERADDR 2001::9:9:9:9
NSINTERADDR 2001::6:7:8:9

To specify a mixture of IPv4 and IPv6 name server IP addresses, for example ::1,
14.13.12.11, 9.9.9.9, and 2001:6:7:8:9, use the following code:
NSINTERADDR ::1 14.13.12.11 9.9.9.9 2001::6:7:8:9

An equivalent specification is:
NSINTERADDR ::1
NSINTERADDR 14.13.12.11
NSINTERADDR 9.9.9.9
NSINTERADDR 2001::6:7:8:9

Usage notes
v Up to 16 name server IP addresses can be specified. Any IP addresses beyond 16

are ignored.
v Connections to the name servers are attempted in the order they appear in the

TCPIP.DATA data set.
If network DNS response message sizes tend to be larger than 512 bytes, put
name servers that support Extension Mechanisms for DNS (EDNS0) before name
servers that do not support EDNS0. The z/OS resolver supports UDP message
sizes as large as 3072 bytes when communicating with name servers that
support EDNS0. Ordering the name servers in terms of EDNS0 support can
potentially avoid the use of more expensive TCP protocols when processing
large DNS response messages.

v If resolver caching is in effect, the resolver cache is searched first before
connections to any of the name servers are attempted. If valid, non-expired
response data for the target resource has been received and cached from any
name server in the list, the resolver uses that data and does not send queries to
any name servers. If response data for the target resource has been received and
cached from more than one name server in the list, the resolver chooses the
response data to be returned based on the order of the name servers in the
TCPIP.DATA data set.

v If no NSINTERADDR statements are coded, the resolver does not attempt to use
a name server. Instead, the resolver uses the local host tables as described in
z/OS Communications Server: IP Configuration Guide to attempt to resolve the
name or IP address.

v You can specify the same IP address multiple times.
v If you specify multiple name server IP addresses on a single NSINTERADDR

statement, if any IP address is not an acceptable IP address, all IP addresses on
the NSINTERADDR statement are ignored.

v After the resolver has successfully contacted a name server, it stops without
contacting the remaining name servers for that query. Name servers beyond the
first in the list are used only if the name server currently being contacted is
down, or unreachable through the network.

Chapter 5. Resolver setup and TCPIP.DATA configuration statements 383

v When the AUTOQUIESCE operand is specified on the
UNRESPONSIVETHRESHOLD resolver setup statement, the resolver attempts to
contact a name server for DNS queries generated by an application, based on
whether the name servers specified on the NSINTERADDR statements are
responsive.
– If all name servers specified on the NSINTERADDR statements are

responsive, or if all name servers are unresponsive, the resolver contacts all
name servers in the list until a name server is successfully contacted or all
attempts have failed.

– If only a subset of name servers specified on the NSINTERADDR statements
are responsive, the resolver attempts to contact only those name servers that
are responsive, and does not send queries that are generated by an
application to unresponsive name servers.

See the “UNRESPONSIVETHRESHOLD statement” on page 366 for more
information about when the resolver considers a name server to be
unresponsive.

v RESOLVERUDPRETRIES indicates the maximum number of times an attempt is
made to reach a given name server if a response is not received within the
current timeout interval. RESOLVERUDPRETRIES is applicable only if
RESOLVEVIA UDP is coded or used by default.
Tip: RESOLVERTIMEOUT is the parameter used for the timeout value.

NSPORTADDR statement

Use the NSPORTADDR statement to specify the name server port number.

Syntax

��
system_name:

NSPORTADDR 53

NSPORTADDR nsportaddr
��

Parameters

system_name:
The name of the system to which this statement applies. See “system_name
considerations” on page 370 for a complete description of this parameter.

Requirement: The colon is required.

nsportaddr
The name server port number. The default is port 53.

Guidelines: The values for the name server port must conform to the
following rules:
v Must be a single number.
v The number must be between one and five digits.
v The number cannot exceed 65 535.

Steps for modifying

You can refresh this statement using the MODIFY command. For more information
about parameters used with the MODIFY command, see z/OS Communications
Server: IP System Administrator's Commands.

384 z/OS V2R1.0 Communications Server: IP Configuration Reference

Examples

To specify the foreign port of the name server to be 55, use the following code:
NSPORTADDR 55

OPTIONS statement

Use the OPTIONS statement to specify:
v Whether or not resolver debug messages should be issued
v The number of periods (.) that need to be contained in a domain name for it to

be considered a fully qualified domain name

Guideline: The NDOTS and DEBUG options are independent; setting one of them
does not imply a setting for the other.

Syntax

�� OPTIONS
system-name:

�

DEBUG
NDOTS:n

��

Parameters

system_name:
The name of the system to which this statement applies. See “system_name
considerations” on page 370 for a complete description of this parameter.

Requirement: The colon is required.

DEBUG
Specifying DEBUG is equivalent to the Trace Resolver statement. Debugging
messages from the resolver are generated.

If OPTIONS DEBUG is anywhere in the TCPIP.DATA file, then tracing is on. It
should be the first statement in the TCPIP.DATA statements to get the
maximum trace output. The initial default setting is for no debug messages to
be specified. Do not specify OPTIONS DEBUG in the GLOBALTCPIPDATA
file.

NDOTS:n
Specifies that for a domain name that contains n or more periods (.), the
resolver should try to look up the name as is before applying the
DOMAINORIGIN or SEARCH statement settings.

Requirement: The colon is required.

A maximum of 15 is allowed for n. Any value for n not in the range 1 - 15
results in n being set to 1. Not specifying the NDOTS:n parameter results in
the current setting remaining in effect (if no value has yet been specified on
any previous OPTIONS statements, then NDOTS:1 is the setting).

Use care when setting n greater than 1. For example, consider the following:
v If NDOTS:2 was specified and the DOMAINORIGIN statement had mit.edu

specified, the following results would be observed:

Chapter 5. Resolver setup and TCPIP.DATA configuration statements 385

– A user enters ftp prep.ai. Resolution of domain name prep.ai.mit.edu
would be tried. If that fails resolution, then the name prep.ai would be
tried.

– A user enters ftp prep.ai.mit. The domain name prep.ai.mit would try
to be resolved. If that fails resolution, then the name prep.ai.mit.mit.edu
would be tried.

– A user enters ftp prep. The domain name prep.mit.edu would try to be
resolved. If that fails resolution, then the name prep would be tried.

v If NDOTS:1 was specified and the SEARCH statement had ai.mit.edu and
MIT.EDU specified, the following results would be observed:
– A user enters ftp prep.ai. The domain name prep.ai would try to be

resolved. If that fails resolution, then the name prep.ai.ai.mit.edu would
be tried. If that fails resolution, then the name prep.ai.MIT.EDU would be
tried.

– A user enters ftp prep. The domain name prep.ai.mit.edu would try to
be resolved. If that fails resolution, then the name prep.MIT.EDU would be
tried. If that fails resolution, then the name prep would be tried.

v If the name specified by the user ends with a period (.), then both the
NDOTS:n specification and the DOMAINORIGIN or SEARCH values are
ignored. For example, a user enters ftp prep.ai.. The domain name
prep.ai. would try to be resolved. If that fails, no other name is tried.

Steps for modifying

You can refresh this statement using the MODIFY command. For more information
about parameters used with the MODIFY command, see z/OS Communications
Server: IP System Administrator's Commands.

Examples

The following statement sets NDOTS to 2 and also requests resolver debug
messages:
OPTIONS NDOTS:2 DEBUG

The following statement requests resolver debug messages and by default set
NDOTS to 1:
OPTIONS DEBUG

The following set of statements in a single TCPIP.DATA file sets NDOTS to 3 and
also request resolver debug messages:
OPTIONS NDOTS:2 DEBUG
OPTIONS NDOTS:3

The following set of statements in a single TCPIP.DATA file would set NDOTS to 3
and also request resolver debug messages.
OPTIONS NDOTS:2
OPTIONS NDOTS:3 DEBUG
OPTIONS

Usage notes
v If the OPTIONS statement is not specified or specified without a NDOTS:n

parameter (for example, OPTIONS specified only with the DEBUG parameter), a
value of :1 is assigned. Do not specify the OPTIONS DEBUG parameter in the
GLOBALTCPIPDATA file.

386 z/OS V2R1.0 Communications Server: IP Configuration Reference

Guideline: This assumes only one OPTIONS statement in the TCPIP.DATA file.
v If multiple OPTIONS NDOTS:n statements are encountered in a single

TCPIP.DATA file, the last statement takes effect.
v If an OPTIONS statement without the DEBUG parameter is specified, the

previous debug setting stays in effect. The default setting is for no debug
messages to be specified.

Related topics
v “DOMAINORIGIN statement” on page 374
v “SEARCH statement” on page 391
v “TRACE RESOLVER statement” on page 396
v z/OS Communications Server: IP Configuration Guide

RESOLVERTIMEOUT statement

Use the RESOLVERTIMEOUT statement to specify the amount of time the resolver
waits for a response while trying to communicate with a name server when using
UDP. See “RESOLVEVIA statement” on page 390.

Syntax

��
system_name:

RESOLVERTIMEOUT 5

RESOLVERTIMEOUT time_out_value
��

Parameters

system_name:
The name of the system to which this statement applies. See “system_name
considerations” on page 370 for a complete description of this parameter.

Requirement: The colon is required.

time_out_value
The time the resolver waits until a response is received from a name server.
The time can be specified in whole seconds, milliseconds, or a combination of
both. For example, the RESOLVERTIMEOUT value can be 11, .110, or 1.100.

A time_out_value value that is less than 10 milliseconds is set to 10 milliseconds
(0.010). For example, RESOLVERTIMEOUT 0.005 is processed as
RESOLVERTIMEOUT 0.010.

A time_out_value value of 0 is equivalent to RESOLVERTIMEOUT 1.

Specifying more than three decimal positions is considered a parse error and is
ignored. For example, RESOLVERTIMEOUT 0.0100 is a parse error and is not
processed.

The default timeout value is 5 seconds; the maximum timeout value is
2147483.647.

Steps for modifying

You can refresh this statement using the MODIFY command. For more information
about parameters used with the MODIFY command, see z/OS Communications
Server: IP System Administrator's Commands.

Chapter 5. Resolver setup and TCPIP.DATA configuration statements 387

Examples

Specify a 10 second time_out_value value:
RESOLVERTIMEOUT 10

Specify a half second time_out_value value:
RESOLVERTIMEOUT .5

Specify a 75 millisecond time_out_value value:
RESOLVERTIMEOUT .075

Specify a 3 and one half second time_out_value value:
RESOLVERTIMEOUT 3.50

Usage notes

The resolver uses the RESOLVERTIMEOUT value when it is waiting for a response
to a resolver DNS polling query. The resolver sends resolver DNS polling queries
to a name server when AUTOQUIESCE is specified on the
UNRESPONSIVETHRESHOLD resolver setup statement and the name server is
considered unresponsive. If the RESOLVERTIMEOUT value is changed using the
MODIFY RESOLVER,REFRESH command, the new time value applies only to
resolver DNS polling queries that are sent by the resolver after the MODIFY
command is processed. See “UNRESPONSIVETHRESHOLD statement” on page
366 for more information about when the resolver considers a name server to be
unresponsive.

Guideline: If you use the autonomic quiescing of unresponsive name servers
function, you should specify a timeout value of 5 seconds or less.

The SMTP server and the BIND 9 DNS utilities provide their own resolver that
supports RESOLVERTIMEOUT values in seconds. If a time_out_value of less than 1
second is specified, these resolvers use a one second timeout. For a time_out_value
of seconds.milliseconds, the specified seconds are used as the timeout value.

Be careful when assigning a short time_out_value. A number too small can result in
timeouts occurring even when the network or name server is available, but due to
high usage volume, it cannot respond quickly. Review the
RESOLVERUDPRETRIES statement to see if a higher value should be specified for
the maximum number of tries the resolver can make when using a name server.

Tip: Timeout conditions can cause the z/OS resolver to mistakenly act as though
the name server does not support Extension Mechanism for DNS (EDNS0). This
can prevent the z/OS resolver from using EDNS0 when it could otherwise be used;
this behavior can adversely affect performance. For more information about ENDS0
processing, see z/OS Communications Server: IP Configuration Guide.

Guideline: The resolver uses the API services of z/OS Unix System Services to
manage the time_out_value value. z/OS Unix System Services uses the following
criteria for timer resolution, if the time_out_value is one of the following values:
v Less than 1 second, the timer resolution is set to the next microsecond.
v Greater than 1 second, the timer resolution is set to the next second.

388 z/OS V2R1.0 Communications Server: IP Configuration Reference

RESOLVERUDPRETRIES statement

Use the RESOLVERUDPRETRIES statement to specify the number of times
(including retries) the resolver should try to connect to the name server when
using UDP datagrams.

Syntax

��
system_name:

RESOLVERUDPRETRIES 1

RESOLVERUDPRETRIES limit
��

Parameters

system_name:
The name of the system to which this statement applies. See “system_name
considerations” on page 370 for a complete description of this parameter.

Requirement: The colon is required.

limit
The maximum number of times the resolver should try to connect to the name
server. The default is 1; the maximum number can be 2 147 483 647.

Steps for modifying

You can refresh this statement using the MODIFY command. For more information
about parameters used with the MODIFY command, see z/OS Communications
Server: IP System Administrator's Commands.

Examples

To specify 2 as the number of times the resolver tries to connect to the name server
when using UDP datagrams, use the following code:
RESOLVERUDPRETRIES 2

Usage notes
v This statement applies only when using UDP datagrams. See “RESOLVEVIA

statement” on page 390 for more information.
v The resolver attempts to contact each of the specified name servers before

attempting any retries.
v The maximum amount of time for each UDP resolution is the product of the

number of name servers (NSINTERADDR/NAMERSERVER statements)
multiplied by the resolver timeout value (RESOLVERTIMEOUT statement)
multiplied by the number of times to try the name servers
(RESOLVERUDPRETRIES statement). This amount of time can occur for each
domain name specified by the SEARCH statement. If a getaddrinfo API call is
issued to request a query for both IPv4 and IPv6 addresses, the maximum
amount of time can be doubled.

v A RESOLVERUDPRETRIES value of zero indicates that the resolver should not
attempt to contact any name servers.

v Use the DIG command with the STATS option to determine how many attempts
it takes for each DNS in the NSINTERADDR list to respond. Set
RESOLVERUDPRETRIES to the number of attempts for the least responsive DNS
in the list, and place the least responsive DNSs at the end of the list.

Chapter 5. Resolver setup and TCPIP.DATA configuration statements 389

v If network DNS response message sizes tend to be larger than 512 bytes, put
name servers that support Extension Mechanisms for DNS (EDNS0) before name
servers that do not support EDNS0. The z/OS resolver supports UDP message
sizes as large as 3 072 bytes when communicating with name servers that
support EDNS0. Ordering the name servers in terms of EDNS0 support can
potentially avoid the use of more expensive TCP protocols when processing
large DNS response messages.

RESOLVEVIA statement

Use the RESOLVEVIA statement to specify the protocol used by the resolver to
communicate with the name server.

Guideline: If you use the autonomic quiescing of unresponsive name servers
function, you should use UDP as your protocol to communicate with the name
server.

Syntax

��
system_name:

RESOLVEVIA UDP

RESOLVEVIA UDP
TCP

��

Parameters

system_name:
The name of the system to which this statement applies. See “system_name
considerations” on page 370 for a complete description of this parameter.

Requirement: The colon is required.

UDP
Specifies that the protocol is UDP. The default protocol is UDP.

TCP
Specifies that the protocol is TCP.

If anything other than UDP or TCP is specified, the default of UDP is used.

Steps for modifying

You can refresh this statement using the MODIFY command. For more information
about parameters used with the MODIFY command, see z/OS Communications
Server: IP System Administrator's Commands.

Examples

To specify that the resolver is to communicate with the name server using TCP
virtual circuits, code the following:
RESOLVEVIA TCP

Usage notes

When RESOLVEVIA UDP is specified, the resolver primarily uses the UDP
protocol but can switch to TCP protocols under certain conditions. The resolver is
most likely to switch to TCP protocols when a DNS reply from the name server is

390 z/OS V2R1.0 Communications Server: IP Configuration Reference

|

|
|
|

truncated. Even though the resolver supports Extension Mechanisms for DNS0
(EDNS0) standards and accepts up to 3072 bytes of reply data, not all DNS name
servers support EDNS0. Firewall settings along the path to the name server can
also limit the number of bytes in a resolver UDP reply. To maximize the use of
UDP protocols by the resolver, configure firewalls such that the TCP and UDP
ports to and from the name servers are allowed to pass the larger EDNS0 packets.

For more information about EDNS0 processing, see z/OS Communications Server:
IP Configuration Guide.

SEARCH statement

Use the SEARCH statement to specify the list of domain names that are appended,
in the order listed, to the host name to form the fully qualified domain name of a
host. A domain name is appended until either the list is exhausted or an IP
address is determined. The domain names are appended for name server queries
as well as for searching the local host tables.

Syntax

�� SEARCH
system_name

�

domain
��

Parameters

system_name:
The name of the system to which this statement applies. See “system_name
considerations” on page 370 for a complete description of this parameter.

Requirement: The colon is required.

domain
The domain name is appended to the host name. This name usually has
imbedded dots.

For name query performance reasons, the first domain listed should be the
most likely to respond to a name query. See “DOMAINORIGIN statement” on
page 374 for the rules for the domain name values. See “RESOLVERTIMEOUT
statement” on page 387 and “RESOLVERUDPRETRIES statement” on page 389
for details. No case translation is performed on the domain name.

Up to six names separated by at least one blank are allowed. If the domain
names cannot fit on a single SEARCH statement, multiple SEARCH statements
can be used. If more than six domain names are specified, only the first six are
used. The first domain name specified is used as the value for
DOMAINORIGIN/DOMAIN. If both the SEARCH and DOMAINORIGIN/
DOMAIN statements are present, the one that appears last is used.
Encountering a DOMAINORIGIN/DOMAIN statement after SEARCH
statements results in the DOMAINORIGIN's value as the only domain name.

Steps for modifying

You can refresh this statement using the MODIFY command. For more information
about parameters used with the MODIFY command, see z/OS Communications
Server: IP System Administrator's Commands.

Chapter 5. Resolver setup and TCPIP.DATA configuration statements 391

|
|
|
|
|
|

|
|

Examples

The following example would establish a search list:
SEARCH raleigh.ibm.com US.IBM.COM ibm.com

An equivalent specification is:
SEARCH raleigh.ibm.com
SEARCH US.IBM.COM
SEARCH ibm.com

If a user entered FTP RALVM12 and assuming that OPTIONS NDOTS:n (see
“OPTIONS statement” on page 385) was specified such that the SEARCH domains
should be appended, the following order of name queries would be done in
sequence by the resolver until either an answer was found, or the list was
exhausted:
1. RALVM12.raleigh.ibm.com
2. RALVM12.US.IBM.COM
3. RALVM12.ibm.com

Related topics
v “DOMAINORIGIN statement” on page 374
v “OPTIONS statement” on page 385
v z/OS Communications Server: IP Configuration Guide

SOCKDEBUG statement

Use the SOCKDEBUG statement to turn on the tracing of TCP/IP socket library
calls. This statement produces trace messages only for sockets using the TCP/IP C
sockets or TCP/IP REXX sockets application programming interfaces.

Syntax

�� SOCKDEBUG
system_name:

��

Parameters

system_name:
The name of the system to which this statement applies. See “system_name
considerations” on page 370 for a complete description of this parameter.

Requirement: The colon is required.

Usage notes

This statement works for all TCP/IP C sockets across the system the way
sock_debug() works for a specific socket application.

Related topics

See z/OS Communications Server: IP Sockets Application Programming Interface
Guide and Reference for more information about sockets.

392 z/OS V2R1.0 Communications Server: IP Configuration Reference

SOCKNOTESTSTOR statement

Use the SOCKNOTESTSTOR statement to stop checking of TCP/IP C sockets
socket calls for storage access errors on the parameters to the call.

Syntax

�� SOCKNOTESTSTOR
system_name:

��

Parameters

system_name:
The name of the system to which this statement applies. See “system_name
considerations” on page 370 for a complete description of this parameter.

Requirement: The colon is required.

Usage notes
v This statement improves response time.
v This statement is in effect unless SOCKTESTOR is specified.
v This statement works for all TCP/IP C sockets across the system the way

sock_do_test_stor() works for a specific socket application.

Related topics

See z/OS Communications Server: IP Sockets Application Programming Interface
Guide and Reference for more information about sockets.

SOCKTESTSTOR statement

Use the SOCKTESTSTOR statement to enable checking of TCP/IP C sockets socket
calls for storage access errors on the parameters to the call.

Syntax

�� SOCKTESTSTOR
system_name:

��

Parameters

system_name:
The name of the system to which this statement applies. See “system_name
considerations” on page 370 for a complete description of this parameter.

Requirement: The colon is required.

Usage notes

This statement works for all TCP/IP C sockets across the system the way
sock_do_test_stor() works for a specific socket application.

Chapter 5. Resolver setup and TCPIP.DATA configuration statements 393

Related topics

See z/OS Communications Server: IP Sockets Application Programming Interface
Guide and Reference for more information about sockets.

SORTLIST statement

Use the SORTLIST statement to specify the ordered list of network numbers
(subnets or networks) for the resolver to prefer if it receives multiple addresses as
the result of a name query. This controls the list of addresses returned for a
gethostbyname call. This is also used to sort the IPv4 addresses returned for a
getaddrinfo call.

Restriction: This statement supports only IPv4 IP addresses.

Syntax

�� SORTLIST
system-name:

�

IPaddr
��

Parameters

system_name:
The name of the system to which this statement applies. See “system_name
considerations” on page 370 for a complete description of this parameter.

Requirement: The colon is required.

IPaddr
The subnet or network address.

The specification of the address can be:
v network/subnet mask; for example 128.32.42.0/255.255.255.0 or

128.32.42.0/24
The mask can be specified by a /xx. The number, denoted by xx, represents
the number of significant bits in the mask, for example: /24=24 significant
bits=11111111 11111111 11111111 00000000=255.255.255.0

v network; for example 128.32.0.0 or 9.0.0.0
If no mask is specified then the following mask is used:
– Class A network - 255.0.0.0
– Class B network - 255.255.0.0
– Class C network - 255.255.255.0
– Class D or E network - 255.255.255.255

Guidelines: The values for the SORTLIST IP address must conform to the
following rules:
v Must contain four tokens, each separated by a period.
v Each token must be between one and three characters.
v Each character in each token must be a number.
v Each token cannot exceed the 255.

The values for the SORTLIST subnet mask:
v The short format is of the form x.x.x.x/y where:

394 z/OS V2R1.0 Communications Server: IP Configuration Reference

– x.x.x.x is the IP address
– y is an integer from 1 to 32 representing the number of bits for the mask

v The full format is of the form x.x.x.x/y.y.y.y where:
– x.x.x.x is the IP address
– y.y.y.y is the mask (same syntax checking as IP address)

Steps for modifying

You can refresh this statement using the MODIFY command. For more information
about parameters used with the MODIFY command, see z/OS Communications
Server: IP System Administrator's Commands.

Examples

In this example, assume that your host has multiple subnet interfaces, for example,
128.32.42 for FDDI and 128.32.1 for Ethernet.

If you want your applications to see the FDDI subnet address before any other
interface address, code the SORTLIST statement as follows:
SORTLIST 128.32.42.0/24

If you want to ensure that FDDI is first and then any other Class B interface for
128.32, code the SORTLIST statement as follows:
SORTLIST 128.32.42.0/24 128.32.0.0

Usage notes
v A maximum of four IP addresses is allowed. If the IP addresses cannot fit on a

single SORTLIST statement, multiple SORTLIST statements can be used. If more
than four are specified, only the first four IP addresses are used.

v SORTLIST is supported only for GETHOSTBYNAME and GETADDRINFO calls
that return IPv4 addresses, and is not used for NSLOOKUP or ONSLOOKUP.

TCPIPJOBNAME statement

Use the TCPIPJOBNAME statement to specify the member name of the procedure
used to start the TCP/IP address space.

Syntax

��
system_name:

TCPIPJOBNAME TCPIP

TCPIPJOBNAME tcpip_proc
��

Parameters

system_name:
The name of the system to which this statement applies. See “system_name
considerations” on page 370 for a complete description of this parameter.

Requirement: The colon is required.

tcpip_proc
The name of the member in the cataloged procedure library that is used to
start the TCP/IP address space. In some cases, the default is TCPIP. However,

Chapter 5. Resolver setup and TCPIP.DATA configuration statements 395

for applications which use Language Environment services, the lack of a
TCPIPJOBNAME statement causes applications that issue __iptcpn() to receive
a jobname of NULL, rather than the default of TCPIP. Although this presents no
problem when running in a single-stack environment, this can potentially
cause errors in a multi-stack environment. The maximum length of the start
procedure is 8 characters.

Examples

To specify TCPIPA as the name of the procedure that was used to start the TCP/IP
address space, use the following code:
TCPIPJOBNAME TCPIPA

Usage notes

You must specify the proper procedure name of the TCP/IP address space on your
system. If tcpip_proc is not the name of the started TCP/IP address space,
applications using any TCP/IP provided API fail with an irrecoverable
interaddress communication error.

For more information about why the TCPIPJOBNAME parameter must match the
name of the associated TCP/IP address space and be the same name as that
defined for the corresponding AF_INET physical file system in the BPXPRMxx
member used to configure z/OS UNIX, see z/OS Communications Server: IP
Configuration Guide.

TCPIPUSERID statement

The TCPIPUSERID statement is functionally equivalent to the TCPIPJOBNAME
statement. See “TCPIPJOBNAME statement” on page 395.

TRACE RESOLVER statement

Use the TRACE RESOLVER statement to have a complete trace of all queries to
and responses from the name server issued. Specifying TRACE RESOLVER is
equivalent to the OPTIONS DEBUG statement.

Restrictions:

v The TRACE RESOLVER statement should not be specified in the
GLOBALTCPIPDATA file. Before making a TCPIP.DATA file global, it should be
tested for syntax errors. Trace output should appear in the SYSTCPT data set or
RESOLVER_TRACE file that was specified.

v TRACE RESOLVER should be the first statement in the TCPIP.DATA statements
to get the maximum trace output.

Syntax

�� TRACE RESOLVER
system_name:

��

396 z/OS V2R1.0 Communications Server: IP Configuration Reference

Parameters

system_name:
The name of the system to which this statement applies. See “system_name
considerations” on page 370 for a complete description of this parameter.

Requirement: The colon is required.

Steps for modifying

You can refresh this statement using the MODIFY command. For more information
about parameters used with the MODIFY command, see z/OS Communications
Server: IP System Administrator's Commands.

Examples

To do a complete trace of all queries to and from the name server, use the
following code:
TRACE RESOLVER

Usage notes

The TRACE RESOLVER statement is used for debugging purposes only.

Related topics

See z/OS Communications Server: IP Diagnosis Guide for information about
interpreting and directing the output.

TRACE SOCKET statement

Use the TRACE SOCKET statement to have a complete trace of all calls to TCP/IP
through the C socket library.

Syntax

�� TRACE SOCKET
system_name:

��

Parameters

system_name:
The name of the system to which this statement applies. See “system_name
considerations” on page 370 for a complete description of this parameter.

Requirement: The colon is required.

Examples

Do a complete trace of all TCP/IP C socket calls:
TRACE SOCKET

Usage notes

The TRACE SOCKET statement is used for debugging purposes only.

Chapter 5. Resolver setup and TCPIP.DATA configuration statements 397

The output from the TRACE SOCKET command is sent to the data set referred to
by the SYSPRINT DD statement.

; and # statements

Use the ; or # to indicate a comment. Any data after the ; or # character is treated
as a comment.

Sample TCPIP.DATA data set (TCPDATA)
The following shows sample TCPIP.DATA statements that can be used to configure
information used by the resolver and TCP/IP application programs. The sample is
shipped as member TCPDATA in the z/OS Communications Server SEZAINST
data set.
;***
; *
; Name of Data Set: TCPIP.DATA *
; *
; COPYRIGHT = NONE. *
; *
; This data, TCPIP.DATA, is used to specify configuration *
; information required by TCP/IP client and server programs. *
; *
; *
; Syntax Rules for the TCPIP.DATA configuration data set: *
; *
; (a) All characters to the right of and including a ; or # will *
; be treated as a comment. *
; *
; (b) Blanks and <end-of-line> are used to delimit tokens. *
; *
; (c) The format for each configuration statement is: *
; *
; <SystemName||’:’> keyword value *
; *
; where <SystemName||’:’> is an optional label that can be *
; specified before a keyword; if present, then the keyword- *
; value pair will only be recognized if the SystemName matches *
; the name of the MVS system. *
; SystemName is derived from the MVS image name. Its value should*
; be the IEASYSxx parmlib member’s SYSNAME= parameter value. *
; The SystemName can be specified by either restartable VMCF *
; or the subsystem definition of VMCF in the IEFSSNxx member of *
; PARMLIB. *
; *
; For SMTP usage use the NJENODENAME statement in the SMTP *
; configuration data set to specify the JES nodename for mail *
; delivery on the NJE network. *
; *
; (d) There should be no sequence numbers in this dataset. If there *
; are they can be treated as invalid statement parameters. *
; *
;***
;
; TRACE RESOLVER statement
; ========================
; TRACE RESOLVER will cause a complete trace of all queries to and
; responses from the name server or site tables.
; This command is for debugging purposes only.
; It should be the first statement in the TCPIP.DATA statements to get
; the maximum trace output.
;
; TRACE RESOLVER
;
;
; OPTIONS statement
; =================
; Use the OPTIONS statement to specify the following:
; DEBUG
; Causes resolver debug messages to be issued. This is equivalent to
; TRACE RESOLVER. If used it should be the first statement in the
; TCPIP.DATA statements to get the maximum trace output.
; NDOTS:n

398 z/OS V2R1.0 Communications Server: IP Configuration Reference

; Indicates the number of periods (.) that need to be contained in a
; domain name for it to be considered a fully qualified domain name
;
; OPTIONS NDOTS:1 DEBUG
;
;
; TCPIPJOBNAME statement
; ======================
; TCPIPJOBNAME specifies the name of the started procedure that was
; used to start the TCPIP address space. TCPIP is the default for
; most cases. However, for applications which use Language Environment
; services, the lack of a TCPIPJOBNAME statement causes applications
; that issue __iptcpn() to receive a jobname of NULL, and some of these
; applications will use INET instead of TCPIP. Although this presents
; no problem when running in a single-stack environment, this can
; potentially cause errors in a multi-stack environment.
;
; If multiple TCPIP stacks are run on a single system, each stack will
; require its own copy of this file, each with a different value for
; TCPIPJOBNAME.
;
TCPIPJOBNAME TCPIP
;
;
; HOSTNAME statement
; ==================
; HOSTNAME specifies the TCP host name of this system as it is known
; in the IP network. If not specified, the default HOSTNAME will be
; the name specified by either restartable VMCF or the subsystem
; definition of VMCF in the IEFSSNxx member of PARMLIB.
; If the VMCF name is not available then the IEASYSxx parmlib member’s
; SYSNAME= parameter value will be used.
;
; For example, if this TCPIP.DATA data set is shared between 2
; systems, OURMVSNAME and YOURMVSNAME, then the following 2 lines
; will define the HOSTNAME correctly on each system.
;
; OURMVSNAME: HOSTNAME OURTCPNAME
; YOURMVSNAME: HOSTNAME YOURTCPNAME
;
; No prefix is required if the TCPIP.DATA file is not being shared.
;
; HOSTNAME THISTCPNAME
;
;
; NOTE - Use either DOMAINORIGIN/DOMAIN or SEARCH to specify your domain
; origin value
;
; DOMAINORIGIN or DOMAIN statement
; ================================
; DOMAINORIGIN or DOMAIN specifies the domain origin that will be
; appended to host names passed to the resolver. If a host name
; ends with a dot, then the domain origin will not be appended to the
; host name.
;
; DOMAINORIGIN YOUR.DOMAIN.NAME
;
;
; SEARCH statement
; ================
; SEARCH specifies a list of 1 to 6 domain origin values that will be
; appended to host names passed to the resolver. If a host name
; ends with a dot, then none of the domain origin values will be
; appended to the host name.
; The first domain origin value specified by SEARCH will be used as the
; DOMAINORIGIN/DOMAIN value.
;
; SEARCH YOUR.DOMAIN.NAME my.domain.name domain.name
;
;
; DATASETPREFIX statement
; =======================
; DATASETPREFIX is used to set the high level qualifier for dynamic
; allocation of data sets in TCP/IP.
;
; The character string specified as a parameter on
; DATASETPREFIX takes precedence over the default prefix of "TCPIP".
;
; The DATASETPREFIX parameter can be up to 26 characters long
; and the parameter must NOT end with a period.

Chapter 5. Resolver setup and TCPIP.DATA configuration statements 399

;
; For more information please see "Dynamic Data Set Allocation" in
; the IP Configuration Guide.
;
DATASETPREFIX TCPIP
;
;
; MESSAGECASE statement
; =====================
; MESSAGECASE MIXED indicates to some servers, such as FTPD, that
; messages should be displayed in mixed case. MESSAGECASE UPPER
; indicates that all messages should be displayed in uppercase. Mixed
; case strings that are inserted in messages will not be uppercased.
;
; If MESSAGECASE is not specified, mixed case messages will be used.
;
; MESSAGECASE MIXED
; MESSAGECASE UPPER
;
;
; NOCACHE statement
; =================
; NOCACHE specifies that resolver cache processing should not be used.
; If NOCACHE is not specified, then the current system-wide level of
; resolver caching is used.
;
; NOCACHE
;
;
; NSINTERADDR or NAMESERVER statement
; ===================================
; NSINTERADDR or NAMESERVER specifies the IP address of a name server.
;
; If you do not use name servers, then do not code any NSINTERADDR or
; NAMESERVER statements. If you do have name servers, then code the
; IPv4 or IPv6 address of the remote name servers to be contacted.
;
; The NSINTERADDR or NAMESERVER statement can be repeated up to sixteen
; times to specify alternate name servers. The name server listed first
; will be the first one attempted.
;
; IPv4 name server address:
; NSINTERADDR 10.0.0.1
;
; Ipv6 name server address:
; NSINTERADDR fc00::1
;
; NSPORTADDR statement
; ====================
; NSPORTADDR specifies the foreign port of the name server.
; 53 is the default value.
;
; NSPORTADDR 53
;
;
; RESOLVEVIA statement
; ====================
;
; RESOLVEVIA specifies how the resolver is to communicate with the
; name server. TCP indicates use of TCP connections. UDP indicates
; use of UDP datagrams. The default is UDP.
;
RESOLVEVIA UDP
;
;
; RESOLVERTIMEOUT statement
; =========================
; RESOLVERTIMEOUT specifies the time that the resolver will wait for
; a response from the name server when using RESOLVEVIA UDP.
; The default is 5 seconds.
;
RESOLVERTIMEOUT 5
;
;
; RESOLVERUDPRETRIES statement
; ============================
;
; RESOLVERUDPRETRIES specifies the number of times the resolver
; should try to connect to the name server when using UDP datagrams.
; The default is 1.

400 z/OS V2R1.0 Communications Server: IP Configuration Reference

|
|

|
|

|
|

;
RESOLVERUDPRETRIES 1
;
;
; LOOKUP statement
; ================
; LOOKUP indicates the order of name and address resolution. DNS means
; use the DNSs listed on the NSINTERADDR and NAMESERVER statements.
; LOCAL means use the local host tables as appropriate for the
; environment being used (UNIX System Services or Native MVS).
;
; LOOKUP DNS LOCAL
;
;
; LOADDBCSTABLES statement
; ========================
; LOADDBCSTABLES indicates to the FTP server and FTP client which DBCS
; translation tables should be loaded at initialization time. Remove
; from the list any tables that are not required. If LOADDBCSTABLES is
; not specified, no DBCS tables will be loaded.
;
; LOADDBCSTABLES JIS78KJ JIS83KJ SJISKANJI EUCKANJI HANGEUL KSC5601
; LOADDBCSTABLES TCHINESE BIG5 SCHINESE
;
;
; SOCKDEBUG statement
; ===================
; Use the SOCKDEBUG statement to turn on the tracing of TCP/IP C and
; REXX socket library calls.
; This command is for debugging purposes only.
;
; SOCKDEBUG
;
;
; SOCKNOTESTSTOR statement
; ========================
; SOCKTESTSTOR is used to check socket calls for storage access errors
; on the parameters to the call. SOCKNOTESTSTOR stops this checking
; and is better for response time. SOCKNOTESTSTOR is the default.
;
; SOCKTESTSTOR
; SOCKNOTESTSTOR
;
;
; SORTLIST statement
; ==================
; Use the SORTLIST statement to specify the ordered list (maximum of 4)
; of network numbers (subnets or networks) for the resolver to prefer
; if it receives multiple addresses as the result of a name query.
;
; SORTLIST 128.32.42.0/24 128.32.42.0/255.255.0.0 9.0.0.0
;
;
; TRACE SOCKET statement
; ======================
; TRACE SOCKET will cause a complete trace of all calls to TCP/IP
; through the C socket library.
; This statement is for debugging purposes only.
;
; TRACE SOCKET
;
;
; ALWAYSWTO statement
; ===================
; ALWAYSWTO causes messages for some servers, such as SMTP and LPD,
; to be issued as WTOs. Specifying YES can cause excessive operator
; console messages to be issued.
;
ALWAYSWTO NO
; ALWAYSWTO YES
;
; Obsolete statements
; ===================
; The following statements no longer have any effect when included in
; this file:
; SOCKBULKMODE
; SOCKDEBUGBULKPERF0
;
; End of file.
;

Chapter 5. Resolver setup and TCPIP.DATA configuration statements 401

Figure 7. Sample TCPIP.DATA data set (TCPDATA)

402 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 6. z/OS Load Balancing Advisor and Load Balancing
Agent

This topic contains the following information:
v “General syntax rules for z/OS Load Balancing Advisor”
v “Starting the z/OS Load Balancing Advisor” on page 404
v “Load Balancing Advisor sample start procedure” on page 404
v “Load Balancing Advisor configuration file statements” on page 404
v “Starting the z/OS Load Balancing Agent” on page 415
v “z/OS Load Balancing Agent sample start procedure” on page 416
v “z/OS Load Balancing Agent configuration file statements” on page 416

The z/OS Load Balancing Advisor communicates with outboard load balancers
(LBs) and one or more z/OS Load Balancing Agents.

The purpose of the z/OS Load Balancing Advisor is to provide information to an
outboard load balancer (such as a CISCO Content Switching Module [CSM]) about
the availability of various resources (applications) and their relative ability to
handle additional workload with respect to other resources that have the ability to
handle the same workload. The outboard load balancer takes data the z/OS Load
Balancing Advisor passes to it and makes a determination about where to route
new workloads. This load balancing solution is different than existing load
balancing solutions such as sysplex distributor and CISCO Multi-node Load
Balancing (MNLB) in that in this implementation, the actual decision of where to
route work is made outside of the sysplex.

For additional overview and configuration information about the z/OS Load
Balancing Advisor, see z/OS Communications Server: IP Configuration Guide.

General syntax rules for z/OS Load Balancing Advisor
The following list shows the general configuration rules for the z/OS Load
Balancing Advisor:
v Each statement must have a corresponding value and be separated from its

value by one or more blanks.
v Only one statement and its values can be specified per line.
v Text beyond the specified statement and values is ignored.
v Text beginning with the # is a comment and is ignored. The remainder of the

line following the # is considered part of the comment.
v Statements should be specified only once. When a statement is repeated, a

warning message is written to the syslogd file, and the last instance of the
statement is used.

v Statements that contain braces ({ and }) must specify the braces on separate lines.
For example:
agent_id_list
{
1.2.3.4..8000
10.10.10.0..9000
}

© Copyright IBM Corp. 2000, 2015 403

Starting the z/OS Load Balancing Advisor
You must start the Advisor from a start procedure. A sample start procedure is
shipped in member EZBLBADV in SEZAINST. The Advisor must have a
configuration file. A sample Advisor configuration file is shipped in member
EZBLBADC in SEZAINST.

Load Balancing Advisor sample start procedure
This topic shows the advisor sample start procedure.

Load Balancing Advisor configuration file statements
Table 10 on page 405 lists the advisor configuration file statements.

//LBADV PROC
//*
//* IBM Communications Server for z/OS
//* SMP/E distribution name: EZBLBADV
//*
//* Licensed Materials - Property of IBM
//* 5694-A01
//* Copyright IBM Corp. 2005, 2009
//* Status = CSV1R11
//*
//* Function: Sample procedure for running the
//* z/OS Load Balancing Advisor
//*
//LBADV EXEC PGM=EZBLBADV,REGION=0K,TIME=NOLIMIT,
// PARM=’/’
//*
//*** Notes:
//*
//* - The system link list concatenation must contain the TCP/IP
//* runtime libraries and the C runtime libraries. If they are
//* not in the link list concatenation, this procedure will need
//* to be changed to STEPLIB to them.
//* If you add them to STEPLIB, they must be APF authorized.
//*
//* - The z/OS Load Balancing Advisor requires a configuration file
//* which can be a member of an MVS PDS(E), an MVS sequential file,
//* or a z/OS UNIX file.
//*
//CONFIG DD DSN=TCPIP.TCPPARMS(LBADVCNF),DISP=SHR
//*CONFIG DD DSN=TCPIP.CONFIG.LBADV,DISP=SHR
//*CONFIG DD PATH=’/etc/lbadv.conf’,PATHOPTS=(ORDONLY)
//STDENV DD DUMMY
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//SYSIN DD DUMMY
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//CEEDUMP DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)
//CEESNAP DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)
//SYSMDUMP DD DISP=SHR,DSN=your.data.set.name

Figure 8. Advisor sample start procedure

404 z/OS V2R1.0 Communications Server: IP Configuration Reference

Rule: You must specify at least one of the load balancer connection statements
(lb_connection_v4 or lb_connection_v6). You can specify both statements.

Table 10. Advisor configuration file statements

Configuration file statement Default Required or Optional Purpose

agent_connection_port No value is specified Required Specifies the port the
Advisor should listen on
for connections from
Agents.

agent_id_list No value is specified Optional Specifies which agents
are allowed to connect
to the Advisor.

debug_level 7 Optional Specifies the level of
debug information that
is logged.

lb_connection_v4 No value is specified Required (1) Specifies the IPv4
address and port the
Advisor should listen on
for IPv4 connections
from load balancers.

lb_connection_v6 No value is specified Required (1) Specifies the IPv6
address and port the
Advisor should listen on
for IPv6 connections
from load balancers.

lb_id_list No value is specified Optional Specifies which load
balancers are allowed to
connect to the Advisor.

port_list No value is specified Optional Specifies a list of ports
and the type of WLM
recommendation that
should be used for each.

sysplex_group_name No value is specified Optional Specifies the TCP/IP
sysplex group name for
the subplex that this
Advisor handles.

update_interval 60 Optional Specifies how often
agents update the
Advisor with new
information.

wlm basewlm Optional Specifies the default
type of WLM
recommendation that
should be used.

The connected arrows in Figure 9 on page 406 show configuration relationships
relative to the Advisor. The IP address in the advisor_id statement can be any IP
address belonging to the TCP/IP stack the Advisor is running on; however, this
value should be a DVIPA.

Tip: The Agent host_connection statement and the corresponding entry in the
Advisor agent_id_list are optional if AT-TLS is used for the connection between the
Advisor and the Agent.

Chapter 6. z/OS Load Balancing Advisor and Load Balancing Agent 405

agent_connection_port statement

Use the agent_connection_port to specify the port the Advisor should listen on for
connections from Agents.

Syntax

�� agent_connection_port host_port ��

Parameters

host_port
Use host_port to specify which port the Advisor listens on for connections from
Agents.

Requirement: This port must match the port number specified in the
advisor_id configuration statement on Agents that wish to connect to this
Advisor.
The valid range of port values is 1 - 65 535.

Restriction: If the host where the Advisor is running has only a single interface IP
address, do not specify the same port on the agent_connection_port and
lb_connection_v4 or lb_connection_v6 statements. Having only a single IP address
means both the z/OS Load Balancer and the Agent would need to be configured
with that address, and both would end up connecting to the Advisor's socket for
z/OS Load Balancer connections.

agent_id_list statement

Use the agent_id_list statement to specify which agents are allowed to connect to
the Advisor. This statement is optional.

Rules:

v If you are using AT-TLS with SERVAUTH access control checks to validate all
Agent connections to this Advisor, this statement is optional. If you specify this

...

advisor_id 10.1.5.1.. 8100

host_connection 10.1.1.1..8000

...

Agent config

...

agent_connection_port 8100

agent_id_list

{
10.1.1.1..8000

10.1.5.22..8000
}

...

Advisor config

Figure 9. Advisor relationships

406 z/OS V2R1.0 Communications Server: IP Configuration Reference

statement, but AT-TLS is used for the connection, this statement is ignored. If
you omit this statement, AT-TLS is required and the security checks must
succeed.

v If you are not using AT-TLS with SERVAUTH access control checks to validate
all Agent connections to this Advisor, this statement is required.

Syntax

�� agent_id_list { � agent_ipaddr ..agent_port } ��

Parameters

agent_ipaddr..agent_port
Use agent_ipaddr..agent_port to specify a list of Agents that are allowed to
connect to the Advisor. This parameter is required. The list consists of one or
more blank-delimited IP address and port pairs each specified on a separate
line, which are all contained within braces. There should be no spaces between
the IP address, the two ellipses (..), and the port. These pairs represent the IP
address and port of a given Agent.

There is no limit to the length of a line. The IP address can be an IPv4 or an
IPv6 address. The IPv4 INADDR_ANY address (0.0.0.0) and the IPv6
unspecified address (::) are not allowed. If agent_ipaddr..agent_port is specified,
this parameter must match the addresses specified in the host_connection
configuration statement on the Agents.

The valid range of port values is 1 - 65 535.

Rule: You can specify only complete IP addresses. You cannot specify host
names, prefixes, or subnets. Any given agent_ipaddr..agent_port pair must be
specified on one line; it cannot be continued to a subsequent line.

debug_level statement

Use the debug_level statement to specify the level of debug information that is
logged.

Syntax

�� debug_level n ��

Parameters

n Use n to specify the debug level. All log messages are written to syslogd. The
value of n represents a particular debug level or combination of debug levels
according to the following values:

0 None. No debug messages are logged.

1 Error-level messages are logged.

2 Warning-level messages are logged.

4 Event-level messages are logged.

8 Info-level messages are logged.

Chapter 6. z/OS Load Balancing Advisor and Load Balancing Agent 407

16 Message-level messages are logged. These are details of the messages
(packets) sent between the Advisor and Load Balancer, and the
Advisor. This level is intended for IBM service use only.

64 Debug-level messages are logged. These are internal debug messages
intended for Development and Service. This level is intended for IBM
service use only.

128 Trace-level messages are logged. These are function entry and exit
traces that show the path through the code. This level is intended for
IBM service use only.

Guideline: To log a combination of debug levels, add the debug level
numbers. The default debug level is 7, which captures all Error, Warning, and
Event messages.

lb_connection_v4 statement

Use the lb_connection_v4 statement to specify the IPv4 address and port the
Advisor should listen on for IPv4 connections from load balancers.

This statement is optional. However, if neither an lb_connection_v4 nor an
lb_connection_v6 statement is present in the configuration file, a terminating error
results.

Syntax

�� lb_connection_v4 host_ipaddr
..3860

..host_port
��

Parameters

host_ipaddr..host_port
Use host_ipaddr..host_port to specify which IPv4 address and optionally the port
the Advisor listens on for IPv4 connections from a load balancer. This address
and port must be coordinated on any load balancers that wish to connect to
this Advisor. The port is optional and defaults to 3860.

Rule: There should be no spaces between the IP address, the two ellipses (..),
and the port. The host_ipaddr..host_port pair must be specified on one line. It
cannot be continued to a subsequent line.

The valid range of port values is 1 - 65 535.

Guideline: This address should be a DVIPA.

Restriction: If the host where the Advisor is running has only a single interface
IP address, do not specify the same port on the agent_connection_port and
lb_connection_v4 or lb_connection_v6 statements. Having only a single IP
address means both the z/OS Load Balancer and the Agent would need to be
configured with that address, and both would end up connecting to the
Advisor's socket for z/OS Load Balancer connections.

lb_connection_v6 statement

Use the lb_connection_v6 statement to specify the IPv6 address and port the
Advisor should listen on for IPv6 connections from load balancers.

408 z/OS V2R1.0 Communications Server: IP Configuration Reference

This statement is optional. However, if neither an lb_connection_v4 nor an
lb_connection_v6 statement is present in the configuration file, a terminating error
results.

Syntax

�� lb_connection_v6 host_ipaddr
..3860

..host_port
��

Parameters

host_ipaddr..host_port
Use host_ipaddr..host_port to specify which IPv6 address and optionally the port
the Advisor listens on for IPv6 connections from a load balancer. This address
and port must be coordinated on any load balancers that wish to connect to
this Advisor. The port is optional and defaults to 3860.

Rule: There should be no spaces between the IP address, the two ellipses (..)
and the port. The host_ipaddr..host_port pair must be specified on one line. It
cannot be continued to a subsequent line.

The valid range of port values is 1 - 65 535.

Guideline: For higher availability, specify a unique application-instance
DVIPA.

Restrictions:

v If the host where the Advisor is running has only a single interface IP
address, do not specify the same port on the agent_connection_port and
lb_connection_v4 or lb_connection_v6 statements. Having only a single IP
address means both the z/OS Load Balancer and the Agent would need to
be configured with that address, and both would end up connecting to the
Advisor's socket for z/OS Load Balancer connections.

v In general, most IPv6 listening sockets accept IPv4 connections if the
listening socket is using the IPv6 unspecified address (::). However, for this
listening socket, only IPv6 connections are accepted, even if you use the IPv6
unspecified address. If you expect to receive IPv4 connections from load
balancers, you must specify the lb_connection_v4 statement.

lb_id_list statement

Use the lb_id_list statement to specify which load balancers are allowed to connect
to the Advisor.

Rules:

v If you are using AT-TLS with SERVAUTH access control checks to validate all
connections between Advisor-load balancer and Advisor-ADNR, this statement
is optional. If you specify this statement, but AT-TLS is used for the connection,
this statement is ignored. If this statement is not specified, AT-TLS is required
and the security checks must succeed.

v If you are not using AT-TLS with SERVAUTH access control checks to validate
all Advisor-load balancer connections and Advisor-ADNR connections, this
statement is required or the connection is refused.

Chapter 6. z/OS Load Balancing Advisor and Load Balancing Agent 409

Syntax

�� lb_id_list Place Braces and Parameters on Separate Lines ��

Place Braces and Parameters on Separate Lines:

�

{

lb_ipaddr
}

Parameters

lb_ipaddr
Specifies the load balancers that are allowed to connect to the Advisor. The list
consists of one or more blank-delimited IP addresses, each specified on a
separate line. All IP addresses are contained in one set of braces. These
addresses represent the IP address of a given load balancer. There is no limit to
the length of a line.

Rules:

v You can specify only complete IP addresses. You cannot specify host names,
prefixes, or subnets. Any IP address parameter on this statement must be
specified on one line; it cannot be continued to a subsequent line.

v If you specify at least one IPv4 address, you must specify an
lb_connection_v4 statement. Similarly, if you specify at least one IPv6
address, you must specify an lb_connection_v6 statement.

Guideline: If the load balancer has multiple source IP addresses that it can
use, ensure that the lb_id_list statement contains the address that the load
balancer should use as a source IP address when connecting as a client to the
Advisor.

port_list statement

Use the port_list statement to specify a list of ports and the type of Workload
Manager (WLM) recommendation that should be used for each.

Syntax

�� port_list

�

{

port definition
}

��

410 z/OS V2R1.0 Communications Server: IP Configuration Reference

port definition:

port_number
{
wlm serverwlm

Default proctype
basewlm

Other proctype
}

Default proctype:

{
proctype
{

CP 1
zAAP 0
zIIP 0

}
}

Other proctype:

{
proctype
{

CP x
zAAP y
zIIP z

}
}

Guideline: Place brackets and parameters on separate lines.

Parameters

port_number
A numerical value that represents a valid port number. Keywords on the
remainder of this statement are applied to all members that match this port
number.

wlm
A keyword that is used to override the default WLM recommendation method
that is specified or made the default by the wlm statement. See z/OS
Communications Server: IP Configuration Guide for more information about
WLM recommendation types.

basewlm
Specifies that WLM system weight recommendations are being used for
determining the best candidates for workload balancing for all members
with ports that match the port_number value.

proctype

Chapter 6. z/OS Load Balancing Advisor and Load Balancing Agent 411

For workloads that use server-specific WLM weights, WLM typically
returns a composite raw weight that takes into consideration how well
the server is meeting its WLM goals with respect to the various types
of processors the server is using.

For workloads that use WLM system weight recommendations, WLM
is unaware of how a resource is using the various processors. Instead,
WLM returns a weight for each processor type that is based on the
amount of displaceable capacity for this processor in this system as
compared to the available capacity for this processor on the other
target systems.

For applications that use specialty processors and receive WLM system
weight recommendations, specify the proctype parameter to indicate the
expected proportion of each type of processor that the target
application's workloads should use. A composite recommendation is
determined from these proportions. Express each of the proportions as
a number in the range 0 - 99. Each proportion value is divided by the
total to determine the processor usage pattern; see the example that
follows. To determine the processor proportions to configure, study
your workload usage of assist processors by analyzing SMF records,
using performance monitors reports, such as RMF, and so on.

For example, the proctype value CP 5 zAAP 0 zIIP 3 specifies a
processor usage pattern such that 5/8 of the application's processor
uses conventional processors (CP), and 3/8 of the application's CPU
utilization uses zIIP processors.

For example, PROCTYPE CP 60 ZAAP 30 ZIIP 10, specifies a CPU
usage pattern such that 60% uses conventional processors (CP), 30%
uses zAAP processors, and 10% uses zIIP processors.

zAAPs and zIIPs are specialty processors designed to offload specific
application workloads. Some target applications can take advantage of
these specialty processors. For workloads that use server-specific WLM
weights, WLM typically returns a composite raw weight that takes into
consideration how well the server is meeting its WLM goals with
respect to the various types of processors the server is using. For
workloads that use the system-wide WLM recommendation, WLM is
unaware of how a resource is using the various processors. Instead,
WLM returns a weight for each processor type that is based on the
amount of displaceable capacity for this processor in the system as
compared to the available capacity for this processor on the other
target systems.

Possible values are:

CP x The proportion of the workload that uses conventional
processors.

zAAP y
The proportion of the workload that uses zAAP processors.

zIIP z The proportion of the workload that uses zIIP processors.

Requirement: If you specify a proctype value, it must be followed by
braces (each brace on a separate line and each processor type and its
value on a separate line). Each processor type parameter is optional;
however, at least one processor type and its value must be coded. Each
processor type can be specified in any order. When specified, each

412 z/OS V2R1.0 Communications Server: IP Configuration Reference

processor type must be specified with a value. Each processor type
parameter and its value must be specified on separate lines.

Restrictions: When processor types are specified, at least one type
must be specified with a nonzero value.

When you specify a proctype value on this statement, all proctype values
on WLM statements are overridden. If you do not specify a processor
type, the value 0 is assumed for that processor type.

serverwlm
Specifies that server-specific WLM recommendations are the WLM
recommendation method to be used for determining the best candidates
for workload balancing for all members with ports matching the
port_number value. The actual WLM recommendation method used can be
different than the configured method, depending on whether if each
system reporting on members of the group supports server-specific WLM
recommendations.

sysplex_group_name statement

Use the sysplex_group_name statement to specify the TCP/IP sysplex group name
for the subplex that this Advisor handles when operating the Load Balancing
Advisor in a sysplex subplexing environment.

You should specify a sysplex_group_name statement in the configuration file of
each Load Balancing Advisor that is operating in a sysplex subplexing
environment. The statement is optional. If the statement is omitted, it is assumed
that the Advisor is not running in a subplexing environment.

Syntax

�� sysplex_group_name EZBTvvtt ��

Parameters

EZBTvvtt
Specify the TCP/IP sysplex group name that is associated with the subplex
that this Advisor handles. The TCP/IP sysplex group name is in the format
EZBTvvtt. The vv value is the VTAM subplex group ID, as specified on the
VTAM XCFGRPID start option. The tt value is the TCP/IP subplex group ID,
as specified on the XCFGRPID parameter of the GLOBALCONFIG statement in
the TCP/IP profile. If you did not specify the VTAM XCFGRPID start option
when VTAM was started, then vv is CP. If you did not specify the XCFGRPID
parameter on the GLOBALCONFIG statement in the TCP/IP profile, then tt is
CS.

Tip: Use the DISPLAY TCPIP,,SYSPLEX,GROUP command to display the
current TCP/IP sysplex group name.

update_interval statement

Use the update_interval statement to specify how often agents update the Advisor
with new information.

Chapter 6. z/OS Load Balancing Advisor and Load Balancing Agent 413

Syntax

�� update_interval n ��

Parameters

n Use n to specify the update interval in seconds, which determines how
frequently Agents update the Advisor with information. n must be an integer
in the range of 10 - 600 (10 seconds to 10 minutes). This statement is optional.
The default is 60 seconds.

wlm statement

Use the wlm statement to specify the default Workload Manager (WLM)
recommendation method that is used for each member, unless overridden on a
per-port basis by the port_list statement. For more details about WLM
recommendation types, see Customizing optional statements in z/OS
Communications Server: IP Configuration Guide.

This statement is optional, and the default is basewlm.

Syntax

�� wlm

{ proctype { CP 1 zAAP 0 zIIP 0 } }
basewlm

{ proctype { CP x zAAP y zIIP z} }

serverwlm
��

Parameters

basewlm
Specifies that WLM system weight recommendations should be used to
determine the best candidates for workload balancing.

proctype
For workloads that use server-specific WLM weights, WLM typically
returns a composite raw weight that takes into consideration how well the
server is meeting its WLM goals with respect to the various types of
processors the server is using.

For workloads that use WLM system weight recommendations, WLM is
unaware of how a resource is using the various processors. Instead, WLM
returns a weight for each processor type that is based on the amount of
displaceable capacity for this processor in this system as compared to the
available capacity for this processor on the other target systems.

For applications that use specialty processors and receive WLM system
weight recommendations, specify the proctype parameter to indicate the
expected proportion of each type of processor that the target application's
workloads should use. A composite recommendation is determined from
these proportions. Express each of the proportions as a number in the
range 0 - 99. Each proportion value is divided by the total to determine the
processor usage pattern; see the example that follows. To determine the

414 z/OS V2R1.0 Communications Server: IP Configuration Reference

|
|
|

processor proportions to configure, study your workload usage of assist
processors by analyzing SMF records, using performance monitors reports,
such as RMF, and so on.

For example, the proctype value CP 5 zAAP 0 zIIP 3 specifies a processor
usage pattern such that 5/8 of the application's processor uses
conventional processors (CP), and 3/8 of the application's processor uses
zIIP processors.

zAAPs and zIIPs are specialty processors designed to offload specific
application workloads. Some target applications can take advantage of
these specialty processors. For workloads that use server-specific WLM
weights, WLM typically returns a composite raw weight that takes into
consideration how well the server is meeting its WLM goals with respect
to the various types of processors the server is using. For workloads that
use the system-wide WLM recommendation, WLM is unaware of how a
resource is using the various processors. Instead, WLM returns a weight
for each processor type that is based on the amount of displaceable
capacity for this processor in the system as compared to the available
capacity for this processor on the other target systems.

Possible values are:

CP x The proportion of the workload that uses conventional processors.

zAAP y
The proportion of the workload that uses zAAP processors.

zIIP z The proportion of the workload that uses zIIP processors.

Requirement: If you specify a proctype value, it must be followed by braces
(each brace on a separate line and each processor type and its value on a
separate line). Each processor type parameter is optional; however, at least
one processor type and its value must be coded. Each processor type can
be specified in any order. When specified, each processor type must be
specified with a value. Each processor type parameter and its value must
be specified on separate lines.

Restrictions: When processor types are specified, at least one type must be
specified with a nonzero value.

When you specify a proctype value on this statement, all proctype values on
WLM statements are overridden. If you do not specify a processor type,
the value 0 is assumed for that processor type.

serverwlm
Specifies that server-specific WLM recommendations should be used to
determine the best candidates for workload balancing. The actual WLM
recommendation method used can be different than the configured method,
depending whether each system that reports on members of the group
supports server-specific WLM recommendations.

Result: zAAP and zIIP processor capacity is automatically included when the
SERVERWLM parameter is specified and all systems in the sysplex are V1R9
or later.

Starting the z/OS Load Balancing Agent
Rule: You must start the Agent from a start procedure.

Chapter 6. z/OS Load Balancing Advisor and Load Balancing Agent 415

A sample start procedure is shipped in member EZBLBAGE in SEZAINST. A
configuration file is required. A sample Agent configuration file is shipped in
member EZBLBAGC in SEZAINST.

z/OS Load Balancing Agent sample start procedure

z/OS Load Balancing Agent configuration file statements
Table 11 lists the agent configuration file statements.

Table 11. Agent configuration file statements

Configuration file
statement Default

Required or
Optional Purpose

advisor_id No value is specified Required Specifies the IP
address and port of
the Advisor that this
Agent communicates
with.

//LBAGENT PROC
//*
//* IBM Communications Server for z/OS
//* SMP/E distribution name: EZBLBAGE
//*
//* Licensed Materials - Property of IBM
//* 5694-A01
//* Copyright IBM Corp. 2005, 2009
//* Status = CSV1R11
//*
//* Function: Sample procedure for running the
//* z/OS Load Balancing Agent
//*
//LBAGENT EXEC PGM=EZBLBAGE,REGION=0K,TIME=NOLIMIT,
// PARM=’/’
//*
//*** Notes:
//*
//* - The system link list concatenation must contain the TCP/IP
//* runtime libraries and the C runtime libraries. If they are
//* not in the link list concatenation, this procedure will need
//* to be changed to STEPLIB to them.
//* If you add them to STEPLIB, they must be APF authorized.
//*
//* - The z/OS Load Balancing Agent requires a configuration file
//* which can be a member of an MVS PDS(E), an MVS sequential file,
//* or a z/OS UNIX file.
//*
//CONFIG DD DSN=TCPIP.TCPPARMS(LBAGECNF),DISP=SHR
//*CONFIG DD DSN=TCPIP.CONFIG.LBAGENT,DISP=SHR
//*CONFIG DD PATH=’/etc/lbagent.conf’,PATHOPTS=(ORDONLY)
//STDENV DD DUMMY
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//SYSIN DD DUMMY
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//CEEDUMP DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)
//CEESNAP DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)
//SYSMDUMP DD DISP=SHR,DSN=your.data.set.name

Figure 10. Agent sample start procedure

416 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 11. Agent configuration file statements (continued)

Configuration file
statement Default

Required or
Optional Purpose

debug_level 7 Optional Specifies the level of
debug information
that is logged.

host_connection No value is specified Optional Specifies the local IP
address and port that
the Agent binds to
for communications
with the Advisor.

sysplex_group_name No value is specified Optional Specifies the TCP/IP
sysplex group name
for the subplex that
this Agent handles.

advisor_id statement

Use the advisor_id statement to specify the IP address and port of the Advisor that
this Agent communicates with.

Syntax

�� advisor_id advisor_ipaddr..advisor_port ��

Parameters

advisor_ipaddr..advisor_port
Use advisor_ipaddr..advisor_port to specify the IP address and the port of the
Advisor that this agent communicates with. Both the IP address and the port
are required. The port must match the port specified in the Advisor's
agent_connection_port configuration statement. The two ellipses (..) must
immediately follow the advisor_ipaddr without any intervening spaces, and the
port number must immediately follow the ellipses, without any intervening
spaces. The IP address can be an IPv4 or an IPv6 address. The valid range of
port values is 1 - 65 535.

Guideline: This address should be a VIPA.

Rule: If you specify an IPv4 address for advisor_id and you specify
host_connection, you must specify an IPv4 address in the host_connection
statement. Similarly, if you specify an IPv6 address for advisor_id and you
specify host_connection, you must specify an IPv6 address in the
host_connection statement.

debug_level statement

Use the debug_level statement to specify the level of debug information that is
logged.

Chapter 6. z/OS Load Balancing Advisor and Load Balancing Agent 417

Syntax

�� debug_level n ��

Parameters

n Use n to specify the debug level. All log messages are written to syslogd. The
value of n represents a particular debug level or combination of debug levels
according to the following values:

0 None. No debug messages are logged.

1 Error-level messages are logged.

2 Warning-level messages are logged.

4 Event-level messages are logged.

8 Info-level messages are logged.

16 Message-level messages are logged. These are details of the messages
(packets) sent between the Advisor and Load Balancer, and the
Advisor. This level is intended for IBM service use only.

32 Collection-level messages are logged. These are details of the collection
and manipulation of data supporting the calculated weights. This level
is intended for IBM service use only.

64 Debug-level messages are logged. This level is intended for IBM
service use only.

128 Trace-level messages are logged. These are function entry and exit
traces that show the path through the code. This level is intended for
IBM service use only.

Guideline: To log a combination of debug levels, add the debug level
numbers. The default debug level is 7, which captures all Error, Warning, and
Event messages.

host_connection statement

Use the host_connection statement to specify the local IP address and port that the
Agent binds to for communications with the Advisor.

Rules:

v If you are using AT-TLS with SERVAUTH access control checks to validate the
Advisor-Agent connection, this statement is optional. If you specify this
statement, but AT-TLS with SERVAUTH access control checks is used for the
connection, the Advisor does not verify that the host_ipaddr and host_port
specified on this statement is in its agent_id_list statement. If you omit this
statement, AT-TLS with SERVAUTH access control checks is required, and the
security checks must succeed.

v If you are not using AT-TLS with SERVAUTH access control checks to validate
the Advisor-Agent connection, this statement is required, and the address and
port must match one of the IP address and port pairs that are specified in the
Advisor's agent_id_list configuration statement.

v If you specify this statement, the Agent binds to the specified IP address and
port.

418 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

�� host_connection host_ipaddr..host_port ��

Parameters

host_ipaddr..host_port
Specifies the local IP address and the port that this Agent binds to. Both the IP
address and the port are required. The two ellipses (..) must immediately
follow the host_ipaddr value without any intervening spaces, and the port
number must immediately follow the ellipses (..) without any intervening
spaces. The IP address can be an IPv4 or an IPv6 address.

The valid range of port values is 1 - 65 535.

Rules:

v If you specify an IPv4 address, you must specify an IPv4 address in the
advisor_id statement. Similarly, if you specify an IPv6 address, you must
specify an IPv6 address in the advisor_id statement.

v In a subplexing environment, the address specified on the host_connection
statement must be configured and owned by a stack in the same subplex as
the Load Balancing Agent. If there is more than one TCP/IP stack on this
system, in this subplex, the IP address must be a DVIPA defined in a
VIPARANGE statement on each of these TCP/IP stacks so that the Agent
can connect without regard to the order in which the TCP/IP stacks on this
system are started.

sysplex_group_name statement

Use the sysplex_group_name statement to specify the TCP/IP sysplex group name
for the subplex that this Agent handles when operating the Load Balancing Agent
in a sysplex subplexing environment.

You should specify the sysplex_group_name statement in the configuration file of
each Load Balancing Agent operating in a sysplex subplexing environment. The
statement is optional. If the statement is omitted, it is assumed that the Agent is
not running in a subplexing environment

Tip: Use the DISPLAY TCPIP,,SYSPLEX,GROUP command to display the current
TCP/IP sysplex group name.

Syntax

�� sysplex_group_name EZBTvvtt ��

Parameters

EZBTvvtt
Specify the TCP/IP sysplex group name that is associated with the subplex
that this Agent handles. The TCP/IP sysplex group name is in the format
EZBTvvtt. The vv value is the VTAM subplex group ID, as specified on the
VTAM XCFGRPID start option. The tt value is the TCP/IP subplex group ID,
as specified on the XCFGRPID parameter of the GLOBALCONFIG statement in
the TCP/IP profile. If you did not specify the VTAM XCFGRPID start option

Chapter 6. z/OS Load Balancing Advisor and Load Balancing Agent 419

when VTAM was started, then vv is CP. If you did not specify the XCFGRPID
parameter on the GLOBALCONFIG statement, then tt is CS.

420 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 7. Automated domain name registration

The automated domain name registration (ADNR) application is a function that
dynamically updates name servers with information about sysplex resources in
near real time. The DNS names managed by ADNR can be names that represent all
instances of an application within the sysplex, names that represent a specific
instance of an application within the sysplex, names that represent the entire
sysplex, as well as names that represent individual systems within the sysplex.

This topic contains the following information:
v “Starting the automated domain name registration application” on page 422
v “General configuration rules for automated domain name registration”
v “EZBADNRS sample start procedure for automated domain name registration

application” on page 422
v “Automated domain name registration application configuration file” on page

424

For additional overview and configuration information about automated domain
name registration, see z/OS Communications Server: IP Configuration Guide.

General configuration rules for automated domain name registration
The following list shows the general configuration rules for the automated domain
name registration application (ADNR):
v Each statement must have a corresponding value and be separated from its

value by one or more blanks.
v Only one statement and its values can be specified per line.
v Text beyond the specified statement and values is ignored.
v Statements that contain braces ({ and }) must specify the braces on separate lines.

For example:
DNS mydns1

{
dns_id 10.11.12.0..553

zone zone1
{
domain_suffix myplex1.mycorp.com
transfer_key transfer_key1
update_key update_key1
}
zone zone2
{
domain_suffix myplex2.mycorp.com
transfer_key transfer_key2
update_key update_key2
ttl 15
}

}

v Any text beyond an opening or closing brace is ignored.
v Text beginning with a # is a comment and is ignored. The remainder of the line

following the # is considered part of the comment.
v A uuid statement, gwm statement, and at least one dns statement are required.

© Copyright IBM Corp. 2000, 2015 421

v For statements with identical labels, a warning message is written to the log,
and the last instance of the statement is used.

v As a statement is processed, all of the parameters are examined. Any parameter
that is specified incorrectly causes an error. Any inconsistencies between
parameters also cause an error. For example, using an IPv4 address for the local
endpoint and an IPv6 address as a remote endpoint causes an error.

v Inconsistencies between statements cause errors. For example, some statements
reference other statements. Statement order is not important, but if after
processing the entire file if all references are not resolved (such as a dns
statement referencing a key statement that is not present), an error results.

v When generating resource records (RRs), more than one group statement can
refer to the same dns statement and zone parameter. However, each of the
resource records generated for a zone must be a unique combination of
member_name and ipaddress values. The name created when registering with a
DNS server must be less than 255 characters. See the complete rules for name
creation in the zone parameter in “dns statement” on page 428.

v A maximum of 100 zones is supported. If the file contains more than 100 zone
statements, this causes an error.

v Files specified in any statements are opened and read to verify the existence of
the file, and to verify that the correct permissions are in place to properly access
the file.

Starting the automated domain name registration application
Rule: You must start the automated domain name registration (ADNR) application
from a start procedure.

A sample start procedure is shipped in member ADNRS in SEZAINST. The ADNR
application must have a configuration file. A sample configuration file is shipped
in member ADNRC in SEZAINST.

EZBADNRS sample start procedure for automated domain name
registration application

This topic shows a sample EZBADNRS start procedure.

422 z/OS V2R1.0 Communications Server: IP Configuration Reference

//ADNR PROC
//*
//* IBM Communications Server for z/OS
//* SMP/E distribution name: EZBADNRS
//*
//* Licensed Materials - Property of IBM
//* 5694-A01
//* Copyright IBM Corp. 2006,2009
//* Status = CSV1R11
//*
//* Function: Sample procedure for running the
//* Automated Domain Name Registration application
//*
//ADNR EXEC PGM=EZBADNR,REGION=0K,TIME=NOLIMIT,
// PARM=’/’
//*
//* To start ADNR with stack affinity:
//*ADNR EXEC PGM=EZBADNR,REGION=0K,TIME=NOLIMIT,
//* PARM=(’ENVAR("_BPXK_SETIBMOPT_TRANSPORT=TCPCS4")/’)
//*
//*** Notes:
//*
//* - The system link list concatenation must contain the TCP/IP
//* runtime libraries and the C runtime libraries. If they are
//* not in the link list concatenation, this procedure will need
//* to be changed to STEPLIB to them.
//* If you add them to STEPLIB, they must be APF authorized.
//*
//* - The Automated Domain Name Registration requires a configuration
//* file which can be a member of an MVS PDS(E), an MVS sequential
//* dataset, or a z/OS UNIX file.
//*
//CONFIG DD DSN=TCPIP.TCPPARMS(ADNRCNF),DISP=SHR
//*CONFIG DD DSN=TCPIP.CONFIG.ADNR,DISP=SHR
//*CONFIG DD PATH=’/etc/adnr.conf’,PATHOPTS=(ORDONLY)
//STDENV DD DUMMY
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//SYSIN DD DUMMY
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//CEEDUMP DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)
//CEESNAP DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)
//SYSMDUMP DD DISP=SHR,DSN=your.data.set.name

Figure 11. EZBADNR start procedure

Chapter 7. Automated domain name registration 423

Automated domain name registration application configuration file
Table 12 lists the automated domain name registration application configuration
file statements.

Table 12. Automated domain name registration application configuration (ADNR) file
statements

Configuration file
statement

Default Default
Required or
Optional

Purpose See

arm_element_suffix none Optional Specifies the
suffix added to
the default
element name for
the automatic
restart manager
(ARM).

“arm_element_suffix
statement” on page 426

debug_level 7 Optional Specifies the
level of debug
information that
is logged.

“debug_level statement”
on page 426

dns none Required (1) Specifies a DNS
server that
supports
dynamic DNS
registration.

“dns statement” on page
428

gwm none Required (2) Specifies the
Global Workload
Manager (GWM)
that advises the
ADNR
application.

“gwm statement” on
page 430

host_group none Optional Specifies the set
of IP addresses
to register for a
group of hosts.

“host_group statement”
on page 431

ipaddrlist none Optional (3) Specifies a list of
IP addresses
being referenced
from the
host_group or
server_group
statements.

“ipaddrlist statement”
on page 433

key none Optional Specifies the key
to use when
signing a
dynamic DNS
update or zone
transfer.

“key statement” on page
434

server_group none Optional Specifies the set
of IP addresses
to register for a
group of servers.

“server_group
statement” on page 434

424 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 12. Automated domain name registration application configuration (ADNR) file
statements (continued)

Configuration file
statement

Default Default
Required or
Optional

Purpose See

uuid none Required Identifies this
automated
domain name
registration
application
instance and
distinguishes it
from all other
automated
domain name
registration
application
instances, as well
as from all other
external load
balancers using
SASP.

“uuid statement” on
page 436

Notes:

1. At least one dns statement is required.

2. Only the last gwm statement in the configuration file is used.

3. Required if either a host_group or server_group statement is specified.

Rule: If the configuration file has been changed any time after ADNR has been
initially started, you must issue a MODIFY <proc_name> REFRESH command
before ADNR is stopped.

The connected arrows in Figure 12 on page 426 show configuration relationships
relative to the z/OS Load Balancing Advisor (LBA) Advisor application. The IP
address in the gwm_id parameter can be any IP address belonging to the TCP/IP
stack that the Advisor is running on; however, this value should be a dynamic
VIPA (DVIPA). The IP address in the host_connection_addr parameter can be any
IP address belonging to the TCP/IP stack that the automated domain name
registration application is running on; this value should also be a DVIPA.

Tip: ADNR’s host_connection_addr parameter and the corresponding entry in the
Advisor’s lb_id_list are optional if AT-TLS is used for the connection between the
Advisor and ADNR.

Chapter 7. Automated domain name registration 425

arm_element_suffix statement

Use the arm_element_suffix statement to specify the suffix added to EZBADNR for
the automatic restart manager (ARM) element name. This statement is optional.

Syntax

�� arm_element_suffix name ��

Parameters

name
The arm_element_suffix value is an EBCDIC string 1 - 8 characters in length.
The following characters are valid:
v Uppercase alpha characters
v Numeric characters (0 - 9)
v $, #, @, and underscore (_)

Rules:

v The name should be unique across the sysplex.
v Do not enclose the string in quotation marks.

Restriction: The number symbol (#) is not allowed as the first character of
name.

debug_level statement

Use the debug_level statement to specify the type and quantity of logging
information to be written to the log file.

Automated Domain Name Registration
Config

...
gwm mygwm
{

gwm_id 10.1.10.1...3860
host_connection_addr 10.2.2.2

}
...

Advisor(gwm) config

...
lb_connection_v4 10.1.10.1 3860
lb_id_list
{

10.2.2.2
10.3.3.3
}
...

Figure 12. Configuration Relationships

426 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

��
debug_level 7

debug_level n
��

Parameters

n Used to specify the debug level. All log messages are written to syslogd. The
value of n represents a particular debug level or combination of debug levels
according to the values shown in Table 13.

To log a combination of debug levels, add together the debug level numbers. If
a debug level value is not specified, the default debug level is 7, which
captures all ERROR, WARNING, and EVENT messages.

Table 13 lists the possible values:

Table 13. debug_level values

Debug level Logging level Description

0 None No messages of any kind are sent to the logging file
after initialization is complete.

1 ERROR Error messages indicate that something requires
attention. Messages at this level can be fatal
(terminating) or can indicate that an important part
of the automated domain name registration
application is not working properly.

This information is logged at the syslogd ERROR
priority level.

2 WARNING Warning messages indicate that an error has
occurred, but it is not severe enough to warrant an
ERROR level. Corrective action might be necessary
because the automated domain name registration
application might not be functioning as intended.

This information is logged at the syslogd
WARNING priority level.

4 EVENT Event messages are logged for events that occur
periodically, like operator commands, UNIX signals,
timer pops, receipt of a network message, and so
on.

This information is logged at the syslogd NOTICE
priority level.

8 INFO Informational messages are sent to the logging file.
These messages do not require corrective action.

This information is logged at the syslogd INFO
priority level.

Chapter 7. Automated domain name registration 427

Table 13. debug_level values (continued)

Debug level Logging level Description

16 MESSAGE Messages about the detailed contents of message
packets that are sent between the GWM (Advisor)
and the automated domain name registration
application. Use these messages to assist debugging
automated domain name registration application
communications.

This information is logged at the syslogd DEBUG
priority level.

32 COLLECTION Collection messages concern the details of
managing the data in the DNS zones.

This information is logged at the syslogd DEBUG
priority level.

64 DEBUG Debug messages are intended for Development or
Service and give detail that customers do not
normally want. The intention of this level of
message is to provide information that is useful in
debugging code, logic, or timing errors.

This information is logged at the syslogd DEBUG
priority level.

128 TRACE Trace messages are intended for Development or
Service to track code processing (footprints).

This information is logged at the syslogd DEBUG
priority level.

dns statement

Use the dns statement to define a DNS server that supports dynamic DNS update.
The automated domain name registration application update-adds and
update-deletes host names and IP addresses with the DNS server.

Requirement: This statement is required.

Syntax

�� dns dns_label Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

�
..53

{ dns_id dns_addr zone }
..dns_port

zone:

zone zone_label { domain_suffix domain_suffix
update_key key_label

�

428 z/OS V2R1.0 Communications Server: IP Configuration Reference

�
transfer_key key_label

ttl gwm_update_interval

ttl ttl
}

Parameters

dns
The keyword that defines the beginning of the dns statement.

dns_label
A string 1 - 32 characters in length for the label of this DNS server.
This value is referenced from other statements in the automated
domain name registration application configuration file and from
automated domain name registration commands.

dns_id dns_addr..dns_port
Used to specify the IP address and port this DNS server is listening on.
The port is optional; the default value is 53.

The valid range of port values is 1 - 65 535.

Rules:

v Do not put any spaces between the IP address, the two ellipses (..),
and the port.

v The dns_addr..dns_port value must be specified on one line. It cannot
be continued to a subsequent line.

zone
The keyword that defines the beginning of a zone owned by this DNS server.

zone_label
A string 1 - 32 characters in length for the label that specifies the name
of the zone for which the DNS server is authoritative. This value is
referenced from other statements in the automated domain name
registration application configuration file and from automated domain
name registration commands.

Restriction: Within the configuration file, all zone labels must be
unique.

domain_suffix domain_suffix
The domain suffix of a zone for which the DNS server is authoritative.

Rules:

v All domain suffixes must be unique within a dns statement.
v The domain suffix cannot contain two consecutive periods together.

When the domain_suffix value is created, a trailing period is added if
one was not configured.

All dynamic DNS updates sent to the DNS server have the domain
suffix appended. Thus, the following names can be created by the
automated domain name registration application. The longest of these
names must be less than or equal to 255 characters in length, including
the trailing period. For example:
host_group_name.domain_suffix.
host_name.domain_suffix.
server_group_name.domain_suffix.
server_name.server_group_name.domain_suffix.

Chapter 7. Automated domain name registration 429

update_key key_label
The label referencing the key statement that represents the key used in
signing update-add and update-delete requests sent to this DNS server.
If the update_key parameter is not specified, meaning transaction
signature (TSIG) is not being used, then the update-add and
update-delete requests are not signed.

transfer_key key_label
The label referencing the key statement that represents the key used in
signing zone transfer requests sent to this DNS server. If the
transfer_key parameter is not specified, meaning transaction signatures
(TSIG) is not being used, then the zone transfer requests are not
signed.

ttl The time to live (TTL) value used for domain names registered with
this zone. This indicates the amount of time, in seconds, that a DNS
record exists in the cache of a non-authoritative name server or
resolver before expiring from the cache. If the ttl parameter is not
specified, the TTL is the value specified on the Load Balancing Advisor
(LBA) update_interval configuration parameter. For information about
the update interval of the LBA, see “Load Balancing Advisor
configuration file statements” on page 404.

The time to live of the resource record (RR) field is a 32-bit integer
value, in seconds, and is primarily used by resolvers and
non-authoritative name servers when they cache RRs. The TTL
specifies how long an RR can be cached before it should be discarded.

The valid range of ttl values is 0 - 2 147 483 647 seconds.

gwm statement

Use the gwm statement to define a Global Workload Manager (GWM) that advises
the automated domain name registration application.

The z/OS Load Balancing Advisor—Advisor application is an instance of a GWM.

Requirement: This statement is required.

Restriction: Only the last gwm statement in the automated domain name
registration application configuration file is used.

Syntax

�� gwm gwm_label Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

..3860
{ gwm_id gwm_addr }

..gwm_port host_connection_addr ip_addr

Parameters

gwm
The keyword that defines the beginning of the gwm statement.

430 z/OS V2R1.0 Communications Server: IP Configuration Reference

gwm_label
A string 1 - 32 characters in length for the label of the GWM that is
communicating with the automated domain name registration
application. This value is not referenced from other statements in the
automated domain name registration application configuration file or
from automated domain name registration commands.

gwm_id gwm_addr..gwm_port
The remote IP address and port that the GWM is listening on for
connections from load balancers. The port is optional; the default value
is 3860.

The valid range of port values is 1 - 65 535.

Tip: For higher availability, specify a unique application instance
DVIPA for the remote IP address.

Rule: There should be no spaces between the IP address, the two
ellipses (..), and the port. The gwm_addr..gwm_port value must be
specified on one line. It cannot be continued to a subsequent line.

host_connection_addr ipaddr
The local IP address that the automated domain name registration
application uses when creating the socket that is used to connect to the
GWM if AT-TLS is not used.

Rules:

v If you are using AT-TLS with SERVAUTH access control checks to
validate the Advisor-ADNR connection, this statement is optional. If
you specify the host_connection_addr statement and use AT-TLS
with SERVAUTH access control checks for the connection, the
Advisor does not verify that the host_connection_addr statement is
in its lb_id_list statement. If you omit this statement, AT-TLS with
SERVAUTH access control checks is required, and the security
checks must succeed.

v If you are not using AT-TLS with SERVAUTH access control checks
to validate the Advisor-ADNR connection, this parameter is required
and the IP address must match one of the IP addresses specified in
the Advisor's lb_id_list configuration statement.

v If this parameter is specified, ADNR binds to the specified IP
address.

Tip: For increased availability, specify a unique application-instance
DVIPA for the local IP address.

host_group statement

Use the host_group statement to identify the set of IP addresses to update for a
group of hosts. The automated domain name registration application updates the
name server with the intersection between the IP addresses configured to the
automated domain name registration application and the IP addresses active on
the hosts in the sysplex.

The DNS names dynamically added to the name server take the form
host_group_name.domain_suffix, where the host_group_name value is the name of the
group of hosts being registered to the GWM and the domain_suffix value is the
domain suffix name specified in a zone parameter on a dns statement.

Chapter 7. Automated domain name registration 431

The automated domain name registration application can also update individual
host instances with the DNS server using the member keyword. The automated
domain name registration application updates the name server with the
intersection between the IP addresses configured for the member and the set of IP
addresses active on the hosts in the sysplex. The DNS names dynamically added to
the name server take the form host_name.domain_suffix, where host_name is the
name of the member being registered to the GWM and domain_suffix is the domain
suffix name specified in a zone parameter on a dns statement.

See the description of domain_suffix in “dns statement” on page 428 for total length
restrictions.

Syntax

�� host_group host_group_label Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

�

{

member host_group_name host_group_name dns dns_label zone zone_label
}

member:

member {
host_name host_name

� ipaddrlist ipaddrlist_label }

Parameters

host_group
The keyword that defines the beginning of the host_group statement.

host_group_label
A string 1 - 32 characters in length for the label of this host group. This
value is referenced from automated domain name registration
commands.

host_group_name host_group_name
The name of the group of hosts to be updated in the name server. This is the
default host name for a member defined without a host_name parameter.

Restrictions:

v The name must be less than or equal to 63 characters in length.
v The name cannot contain any periods.
v Within the entire configuration file, a group name must be unique. The

host_group_name value cannot be used on any other host_group statements
or be used on any other server_group statements as a server_group_name
value.

dns dns_label
A label referencing the dns statement that defines the DNS server with which
to register the domain name and IP addresses. The value specified matches the
dns_label on a dns statement.

432 z/OS V2R1.0 Communications Server: IP Configuration Reference

zone zone_label
A label referencing a zone on the DNS server that is identified by the dns
keyword. The value specified matches the zone_label value on a dns statement.

member
The members for a given group. The member might refer to a single TCP/IP
host instance or might apply to the host group itself.

host_name host_name
The name of the individual host to be updated in the name server. If
the host_name value is not specified, the member statement applies to
the host group itself and not an individual host.

Rules:

v Only one member can be defined for a host group without a
host_name definition.

v The name must be less than or equal to 63 characters in length.
v The name cannot contain any periods.

ipaddrlist ipaddrlist_label
A label referencing an ipaddrlist statement. This list contains one or
more IP addresses to register. These IP addresses can be IPv4 or IPv6
addresses.

Guideline: For increased availability, specify VIPAs to identify the
host.

ipaddrlist statement

Use the ipaddrlist statement to define a set of IP addresses that are referenced by
members of host_group and server_group statements in the automated domain
name registration application configuration file.

Syntax

�� ipaddrlist ipaddrlist_label Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{ � ipaddr ipaddr }

Parameters

ipaddrlist
The keyword that defines the beginning of the ipaddrlist statement.

ipaddrlist_label
A string 1 - 32 characters in length for the label of this ipaddrlist
statement. This value is referenced from other statements in the
automated domain name registration application configuration file.

ipaddr ipaddr
A single IP address to register. Multiple ipaddr values can be specified
if there is more than one IP address associated with a host group or
server group.

Chapter 7. Automated domain name registration 433

Guideline: These IP addresses can be a combination of IPv4 and IPv6
addresses.

key statement

Use the key statement to define the key name and key file to use when creating
signatures for specifying transaction signatures (TSIGs) for zone updates and zone
transfers.

Syntax

�� key key_label Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{ keyfile file_name }

Parameters

key
The keyword that defines the beginning of the key statement.

key_label
A string 1 - 32 characters in length for the label of the key used in
creating signatures. This name is referenced by the update_key or
transfer_key keywords on a dns statement in the automated domain
name registration application configuration file.

keyfile file_name
The file that contains the shared secret used in creating signatures.

Rules:

v The file_name value must be a fully qualified name of a z/OS UNIX
file.

v Both the .key and the .private key files generated by the
dnssec-keygen utility must be available for TSIG authentication to
work correctly, even though only the .key key file name is specified
by the file_name value.

v The file name is case sensitive. For TSIG authentication to work
properly, the file name extensions must be .key and .private.

server_group statement

Use the server_group statement to identify the set of IP addresses to update for a
group of servers. The automated domain name registration application updates the
name server with the intersection between the IP addresses configured to the
automated domain name registration application and the set of IP addresses on
which the servers are listening.

The DNS names dynamically added to the name server take the following form
server_group_name.domain_suffix, where server_group_name is the name of the
individual server instance being registered to the GWM, server_group_name is the
name of the group of servers, which includes server_name, and domain_suffix is the
domain suffix name specified in a zone parameter on a dns statement.

434 z/OS V2R1.0 Communications Server: IP Configuration Reference

The automated domain name registration application can also update individual
server instances with the DNS server using the member keyword. The automated
domain name registration application updates the name server with the
intersection between the IP addresses configured for the member and the set of IP
addresses on which the server is listening. The DNS names dynamically added to
the name server take the form server_name.server_group_name.domain_suffix,
where server_name is the name of the individual server instance being registered to
the GWM, server_group_name is the name of the group of servers which includes
server_name, and domain_suffix is the domain suffix name specified in a zone
parameter on a dns statement.

See the description of domain_suffix in “dns statement” on page 428 for total length
restrictions.

Syntax

�� server_group server_group_label Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{ � member port port protocol protocol �

� server_group_name server_group_name dns dns_label zone zone_label }

member:

�member { ipaddrlist ipaddrlist_label
server_name server_name

Parameters

server_group
The keyword that defines the beginning of the server_group statement.

server_group_label
A string 1 - 32 characters in length for the label of this server group.
This value is referenced from automated domain name registration
commands.

port port
The port on which the server is listening.

The valid range of port values is 1 - 65535.

protocol protocol
The transport protocol used by the application. This value must be TCP or
UDP.

server_group_name
The name of the group of servers to be registered with DNS server. This is the
default server name for a member defined without a server_name parameter.

Chapter 7. Automated domain name registration 435

Rules:

v The name must be less than or equal to 63 characters in length.
v The name cannot contain any periods.
v Within the entire configuration file, a group name must be unique. The

server_group_name value cannot be used on any other server_group
statements or be used on any other host_group statements as a
host_group_name value.

dns dns_label
A label referencing a dns statement that defines the DNS server with which to
register the domain name and IP addresses. The value specified matches the
dns_label value on a dns statement.

zone zone_label
A label referencing a zone on the DNS server that is identified by the dns
keyword. The value specified matches a zone_label value on a dns statement.

member
The members for a given group. The member might refer to a single TCP/IP
server instance or it might apply to the server group itself.

server_name server_name
The name of the individual server to be registered with the DNS server. If this
parameter is not specified, then the member statement applies to the server
group itself and not an individual server. Specifying a server_name value
enables clients to connect to a particular instance of a server that is a member
of a server group.

Rules:

v Only one member can be defined for a server group without a server_name
definition.

v The name must be less than or equal to 63 characters in length.
v The name cannot contain any periods.

ipaddrlist ipaddrlist_label
A label referencing an ipaddrlist statement. This list contains one or more IP
addresses to register for this server or server group.

Guidelines:

v These IP addresses can be IPv4 or IPv6 addresses.
v For increased availability, specify DVIPAs and VIPAs to identify the server

or server group.

uuid statement

Use the uuid [(Universally Unique ID (UUID)] statement to uniquely identify this
automated domain name registration application instance and distinguish it from
all other SASP external load balancers. The GWM uses this unique user ID to
distinguish one SASP entity from another.

Requirement: This statement is required.

Syntax

436 z/OS V2R1.0 Communications Server: IP Configuration Reference

�� uuid uuid ��

Parameters

uuid
The keyword that defines the beginning of the uuid statement.

uuid The uuid value is an EBCDIC string 1 - 64 characters in length. Do not
enclose the string in quotation marks.

Chapter 7. Automated domain name registration 437

438 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 8. IKE daemon

This topic contains the following information:
v “Starting the IKED using z/OS UNIX”
v “IKE cataloged procedure”
v “IKE environment variables” on page 441
v “IKE daemon configuration file statements” on page 442

Starting the IKED using z/OS UNIX
Start the IKED from the z/OS shell using the following syntax:

�� iked ��

Tip: When you are starting the IKE daemon from the z/OS UNIX shell, set the
environment variable _BPX_JOBNAME. This enables a specific job name to be used
when reserving ports for the IKE daemon. You can also use this name with the
STOP or MODIFY console commands. For more information about
_BPX_JOBNAME, see z/OS UNIX System Services Planning.

IKE cataloged procedure
This topic shows the IKE cataloged procedure.

Update the cataloged procedure, IKED, by copying the sample in
SEZAINST(IKED), to your system or recognized PROCLIB. Specify IKE daemon
parameters and change the data set names to suit your local configuration. See
SEZAINST(EZARACF) for SAF considerations for started procedures. After the
IKED procedure has been started, a different IKED configuration file can be
specified by using the Modify command with the FILE parameter. For example:
MODIFY IKED,REFRESH,FILE=’/etc/security/iked.conf2’

© Copyright IBM Corp. 2000, 2015 439

//IKED PROC
//*
//* IBM Communications Server for z/OS
//* SMP/E distribution name: EZBIKPRC
//*
//* 5650-ZOS Copyright IBM Corp. 2005, 2013
//* Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* Status = CSV2R1
//*
//*
//IKED EXEC PGM=IKED,REGION=0K,TIME=NOLIMIT,
// PARM=’ENVAR("_CEE_ENVFILE_S=DD:STDENV")/’
//*
//* Provide environment variables to run with the desired
//* configuration. As an example, the data set or file specified by
//* STDENV could contain:
//*
//* IKED_FILE=/etc/security/iked.conf2
//* IKED_CTRACE_MEMBER=CTIIKE01
//* IKED_CODEPAGE=IBM-1047
//*
//*
//* If you want to include comments in the data set or
//* z/OS UNIX file, specify the _CEE_ENVFILE_COMMENT
//* environment variable as the first environment variable
//* in the data set or file. The value specified for
//* the _CEE_ENVFILE_COMMENT variable is the comment character.
//* For example, if you want to use the pound sign, #, as
//* the comment character, specify this as the first
//* statement:
//* _CEE_ENVFILE_COMMENT=#
//*
//* For information on the above environment variables, refer to the
//* IP Configuration Reference.
//*
//STDENV DD DUMMY
//* Sample MVS data set containing environment variables:
//*STDENV DD DSN=TCPIP.IKED.ENV(IKED),DISP=SHR
//* Sample HFS file containing environment variables:
//*STDENV DD PATH=’/etc/security/iked.env’,PATHOPTS=(ORDONLY)
//*
//* Output written to stdout and stderr goes to the data set or
//* file specified with SYSPRINT or SYSOUT, respectively.
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*

Figure 13. IKE cataloged procedure

440 z/OS V2R1.0 Communications Server: IP Configuration Reference

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

IKE environment variables
Table 14 provides a list of environment variables used by IKE that can be tailored
to a particular installation.

Table 14. IKE environment variables

Environment variable Server, Client or
Command-type
application

Description Any specific coding rules

IKED_CODEPAGE Server Used by the IKE daemon
to specify the EBCDIC
code page to be used for
the configuration file. The
default code page is
IBM-1047.

The following code pages are
supported:

v IBM-037

v IBM-273

v IBM-274

v IBM-275

v IBM-277

v IBM-278

v IBM-280

v IBM-281

v IBM-282

v IBM-284

v IBM-285

v IBM-297

v IBM-500

v IBM-871

v IBM-1047

v IBM-1140

v IBM-1141

v IBM-1142

v IBM-1143

v IBM-1144

v IBM-1145

v IBM-1146

v IBM-1147

v IBM-1148

v IBM-1149

Example:

IKED_CODEPAGE=IBM-1141

IKED_FILE Server Used by the IKE daemon
in the search order for the
IKE daemon configuration
file. For details on the
search order used for
locating this configuration
file, see Table 1 on page 2

Example:

IKED_FILE=/etc/security/iked.conf

Chapter 8. IKE daemon 441

Table 14. IKE environment variables (continued)

Environment variable Server, Client or
Command-type
application

Description Any specific coding rules

IKED_CTRACE_MEMBER Server Used by the IKE daemon
to specify the name of a
parmlib member that
contains default CTRACE
settings. The
IKED_CTRACE_MEMBER
environment variable is
read by the IKE daemon
only during initialization.
Changes to the
IKED_CTRACE_MEMBER
after daemon initialization
have no effect.

If not defined, the default value used
by the IKE daemon is CTIIKE00.

Example:

IKED_CTRACE_MEMBER=CTIIKE00

IKE daemon configuration file statements
If you specify a configuration file for the IKE daemon, the file must contain an
IkeConfig statement. If you are using network security services, this file might also
contain one NssStackConfig statement for each z/OS network security services
(NSS) client TCP/IP stack. If you specify multiple IkeConfig statements, the last
one is used; if you define multiple NssStackConfig statements for the same stack
name, the last one is used.

If no configuration file is specified, then defaults are provided for IkeConfig
parameters where possible. However, because there are no reasonable defaults for
the NssStackConfig statements or the z/OS network security services (NSS)
server-related parameters of the IkeConfig statement, it is not possible to have any
NSS client TCP/IP stacks. All stacks in this case are handled using local services
available to the IKE daemon.

If a configuration error is detected during startup, then the IKE daemon logs the
error and exits. If a configuration error is detected during a dynamic refresh, then
the entire refresh is rejected, the error is logged, and the IKE daemon continues
running with the old configuration values.

Tip: The terms phase 1 and phase 2 refer to different types of security associations
(SAs) that the z/OS IKE daemon can negotiate with its peers. Although the specific
terminology for these types of security associations differs between the IKE version
1 and IKE version 2 protocols, the terms phase 1 and phase 2 refers to both
versions, as shown in Table 15.

Table 15. IKE terminology: phase 1 and phase 2

Term Usage in regard to IKE protocol version

Phase 1 security association (SA) Refers to IKE version 1 phase 1 SAs as well as IKE
version 2 IKE SAs. When a specific version is intended,
that version is identified in this document.

Phase 2 security association (SA) Refers to IKE version 1 phase 2 SAs as well as IKE
version 2 child SAs. When a specific version is intended,
that version is identified in this document.

442 z/OS V2R1.0 Communications Server: IP Configuration Reference

IkeConfig statement

If you code more than one IkeConfig statement, the last statement is used.
Likewise, if a parameter other than SMF119 or SupportedCertAuth in the
IkeConfig statement is specified more than once, the value from the last statement
is used. SMF119 adds to, but does not replace, the types of SMF records to be
written. SupportedCertAuth is used to define a set of certificate authorities (CAs)
this value adds to, but does not replace, the list of CAs supported by a local
security endpoint.

Syntax

�� IkeConfig Braces & Parms on Separate Lines ��

Braces & Parms on Separate Lines:

{
IkeConfig Parameters

}

IkeConfig Parameters:

IkeSyslogLevel 1

IkeSyslogLevel n

PagentSyslogLevel 0

PagentSyslogLevel n

SMF119 None

SMF119 None
SMF119 IKEALL
SMF119 IKETunnel
SMF119 DynTunnel

IkeRetries 6

IkeRetries n
�

�
IkeInitWait 2

IkeInitWait n

FIPS140 no

FIPS140 yes
no

KeyRing iked/keyring

KeyRing userid/ringname
KeyRing ringname

Echo no

Echo yes
no

�

�
Port 4159

NetworkSecurityServer host Identity IpAddr authid
Port port Fqdn authid

UserAtFqdn authid
X500dn authid

�

�
Port 4159

NetworkSecurityServerBackup host Identity IpAddr authid
Port port Fqdn authid

UserAtFqdn authid
X500dn authid

�

�
NssWaitLimit 60

NssWaitLimit seconds

NssWaitRetries 3

NssWaitRetries n

PagentWait 0

PagentWait n
�

� � SupportedCertAuth Label }

Chapter 8. IKE daemon 443

Parameters

IkeSyslogLevel
Specifies the level of logging to obtain from the IKE daemon. The following
levels are supported:

0 - IKE_SYSLOG_LEVEL_NONE
Disable IKE daemon syslog messages

1 - IKE_SYSLOG_LEVEL_MINIMUM
Minimal IKE daemon syslog output

2 - IKE_SYSLOG_LEVEL_SADETAIL
Always output detailed Security Association (SA) information when
available

4 - IKE_SYSLOG_LEVEL_DEBUGSA
Debug for SA negotiations

8 - IKE_SYSLOG_LEVEL_FMTPKTTRC
Formatted packet trace

16 - IKE_SYSLOG_LEVEL_UNFPKTTRC
Unformatted packet trace

32 - IKE_SYSLOG_LEVEL_VERBOSE
Show cascaded error messages

64 - IKE_SYSLOG_LEVEL_CERTINFO
Show certificates in CA cache when cache is initially built or rebuilt

128 Reserved

To specify a combination of log levels, add the level numbers. For example, to
request FMTPKTTRC (8) messages and VERBOSE (32) messages, specify
IkeSyslogLevel 40. Use the MODIFY IKED,REFRESH command to change this
value. Level values greater than 1 are intended for diagnostic purposes only. A
non-zero PagentSyslogLevel will take effect only if IkeSyslogLevel is also set to
a non-zero value, otherwise no debug trace records are generated.

Rules:

v The default IkeSyslogLevel is in effect until the parameter is read from the
configuration file.

v Any level higher than 1 automatically includes 1.

PagentSyslogLevel
Specifies the level of diagnostic logging to obtain for the interaction between
the IKE daemon and the Policy Agent. The following levels are supported:

0 - PAGENT_SYSLOG_LEVEL_NONE
No logging of IKE daemon interactions with the Policy Agent.

1 - PAGENT_SYSLOG_LEVEL_EMERG
A panic condition

2 - PAGENT_SYSLOG_LEVEL_ALERT
Requires immediate action

4 - PAGENT_SYSLOG_LEVEL_CRIT
Critical condition

8 - PAGENT_SYSLOG_LEVEL_ERR
Error messages

444 z/OS V2R1.0 Communications Server: IP Configuration Reference

16 - PAGENT_SYSLOG_LEVEL_WARNING
Warning messages

32 - PAGENT_SYSLOG_LEVEL_NOTICE
Conditions that are not error conditions, but might require special
handling

64 - PAGENT_SYSLOG_LEVEL_INFO
Informational messages

128 - PAGENT_SYSLOG_LEVEL_DEBUG
Messages that contain information normally of use only when
debugging a program

To specify a combination of log levels, add the level numbers. For example, to
request LEVEL_EMERG (1) messages and LEVEL_WARNING (16) messages,
specify PagentSyslogLevel 17. Use the MODIFY IKED,REFRESH command to
change this value. Level values greater than 0 are intended for diagnostic
purposes only. A non-zero PagentSyslogLevel will take effect only if
IkeSyslogLevel is also set to a non-zero value, otherwise no debug trace
records will be generated.

SMF119
Specifies the types of SMF 119 records to be written to the MVS SMF data sets.
The following levels are supported:

None No SMF 119 records should be written to the MVS SMF data sets. This
is the default.

IKEAll
All SMF 119 records should be written to the MVS SMF data sets. This
setting includes all of the SMF 119 record types listed in this topic.

IKETunnel
SMF record type 119 subtypes related to phase 1 SA events should be
written (subtypes 73 and 74) to the MVS SMF data sets.

DynTunnel
SMF record type 119 subtypes related to phase 2 SA events should be
written (subtypes 75 and 76) to the MVS SMF data sets.

To specify a combination of records to be written, specify multiple SMF119
statements. Use the MODIFY IKED,REFRESH command to change this value.

KeyRing
The owning userid and ringname used by the IKE server when performing RSA
signature mode of authentication. When using a key ring owned by IKE server,
specify the ring name as ringname. When using a key ring owned by another
user, specify the ring name as userid/ringname.

The KeyRing parameter is not used by NSS client TCP/IP stacks.

IkeRetries
Specifies the number of times that an unanswered IKE negotiation message is
retransmitted before the negotiation is terminated. The value of n can be in the
range 1 - 8. The default is six retransmissions (254 seconds before dropping the
message exchange if the default IkeInitWait value of two seconds is used). The
IKE server uses an exponentially increasing wait interval between each
retransmission. The initial wait interval is specified by the IkeInitWait
parameter, and each subsequent wait interval is doubled from there. For
example, if the IkeInitWait value is two, the first retransmission comes after

Chapter 8. IKE daemon 445

two seconds, the second comes four seconds after the first, the fourth eight
seconds after the third, and so on. Use the MODIFY IKED,REFRESH command
to change this value.

Table 16 illustrates how a retransmission scenario would occur using the
default values of IkeRetries 6 and IkeInitWait 2. The following scenario
assumes that the IKE partner never responds to the IKE message in question.

Table 16. Example of an IkeRetries retransmission scenario

Event Seconds since last event Elapsed time in seconds

Send initial message 0 0

1st wait interval expires:
message retransmitted

2 2

2nd wait interval expires:
message retransmitted

4 6

3rd wait interval expires:
message retransmitted

8 14

4th wait interval expires:
message retransmitted

16 30

5th wait interval expires:
message retransmitted

32 62

6th wait interval expires:
message retransmitted

64 126

7th wait interval expires:
message exchange is
dropped

128 254 (See note)

Note: * 4 minutes, 14 seconds

Table 17 illustrates how retransmission scenario would occur using the
maximum values of IkeRetries 8 and IkeInitWait 15. This scenario assumes that
the IKE partner never responds to the IKE message in question.

Table 17. Example of an IkeRetries retransmission using maximum values scenario

Event Seconds since last event Elapsed time in seconds

Send initial message 0 0

1st wait interval expires:
message retransmitted

15 15

2nd wait interval expires:
message retransmitted

30 45

3rd wait interval expires:
message retransmitted

60 105

4th wait interval expires:
message retransmitted

120 225

5th wait interval expires:
message retransmitted

240 465

6th wait interval expires:
message retransmitted

480 945

7th wait interval expires:
message retransmitted

960 1905

8th wait interval expires:
message retransmitted

1920 3825

446 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 17. Example of an IkeRetries retransmission using maximum values
scenario (continued)

Event Seconds since last event Elapsed time in seconds

9th wait interval expires:
message exchange is
dropped

3840 7665

Note: * 2 hours, 7 minutes, 45 seconds

Table 18 illustrates how retransmission scenario would occur using the
minimum values of IkeRetries 1 and IkeInitWait 1. This scenario assumes that
the IKE partner never responds to the IKE message in question:

Table 18. Example of an IkeRetries retransmission using minimum values scenario

Event Seconds since last event Elapsed time in seconds

Send initial message 0 0

1st wait interval expires:
message retransmitted

1 1

2nd wait interval expires:
message exchange is
dropped

2 3

IkeInitWait
Specifies the number of seconds to wait before the first retransmission of an
unanswered IKE message. The value of n can be in the range 1 - 15. The
default is 2 seconds. Use the MODIFY IKED,REFRESH command to change
this value.

FIPS140
Specifies whether the IKE daemon should perform cryptographic operations by
invoking cryptographic modules that are designed to meet the Level 1 security
requirements documented in the Federal Information Processing Standard
(FIPS) publication 140 (FIPS 140).

yes Perform all IKE daemon cryptographic operations using cryptographic
modules that are designed to meet FIPS 140 requirements. When the
value of yes is specified, the IKE daemon server is running in FIPS 140
mode.

no IKE daemon might perform some cryptographic operations using
cryptographic modules that do not adhere to the FIPS 140
requirements. When the value of no is specified, the IKE daemon is not
running in FIPS 140 mode.

Requirement: ICSF must be active before starting the IKE daemon when
FIPS140 YES is specified. For information about configuring ICSF to support
FIPS 140-2, see Operating in compliance with FIPS 140-2 in z/OS
Cryptographic Services ICSF Writing PKCS #11 Applications.

Rule: This parameter cannot be modified while the IKED is running. Attempts
to modify the value while the IKED is running are ignored and a warning
message is issued.

Tip: Enabling FIPS 140 mode provides a higher degree of assurance of the
integrity of the cryptographic modules that IKE uses, including ICSF and
System SSL. However, enabling FIPS 140 mode might require additional setup
and configuration, it will restrict the available set of cryptographic algorithms,

Chapter 8. IKE daemon 447

and it might result in a reduction in performance. See Cryptographic standards
and FIPS 140 in z/OS Communications Server: IP Configuration Guide for
more information.

Echo
Echoes all IKE daemon log messages to the job output file, specified by the
IKEDOUT DD (JCL) statement. Use the MODIFY IKED,REFRESH command to
change this value.

NetworkSecurityServer
Identifies the primary NSS server for IKE NSS client TCP/IP stacks.

A single server is used for all of the TCP/IP stacks configured as NSS clients.
Stacks can be configured individually as NSS clients. Stacks with a
corresponding NssStackConfig statement are treated as NSS clients; stacks
without a corresponding NssStackConfig statement rely solely on local IKE
resources.

Tip: The NetworkSecurityServer parameter is optional. However, if both the
NetworkSecurityServer and NetworkSecurityServerBackup parameters are not
specified, none of the TCP/IP stacks can function as an NSS client.

Use the MODIFY IKED,REFRESH command to change this value. If you
change the NetworkSecurityServer value, the changes take effect for new
connections, but existing connections are not dropped. If you want the old
connections to be dropped, perform the following steps:
1. Comment out the following statements:
v NetworkSecurityServer statement (if present)
v NetworkSecurityServerBackup statement (if present)
v NssStackConfig statements (if present)

2. Issue a MODIFY IKED, REFRESH command to reread the IKED
configuration file.

3. Uncomment the following statements:
v NetworkSecurityServer statement (if present)
v NetworkSecurityServerBackup statement (if present)
v NssStackConfig statements (if present)

4. Issue a MODIFY IKED,REFRESH command to re-read the IKED
configuration file.

host The address of the NSS server can be specified either as a host name, a
numeric IPv4 address, or a numeric IPv6 address. This is a required
parameter. If a host name is specified, the maximum length accepted is
255 characters. The host name value should conform to the naming
standards set forth by RFC 1035. For information about RFC, see
Appendix C, “Related protocol specifications,” on page 1465.

Examples of supported host identifiers are as follows:
163.44.212.11
1080:0:0:0:8:800:200C:417A
norton.nycsanitation.gov

Port port
The TCP port on which the NSS server is listening for connections
from the IKE daemon. The default value is 4159. Valid values are in the
range 1 - 65535.

This parameter is optional.

448 z/OS V2R1.0 Communications Server: IP Configuration Reference

Identity
The identity of the NSS Server. This is a required parameter.

The IKE daemon requires that communication with an NSS Server be
protected using AT-TLS. During the AT-TLS handshake, the NSS server
provides a certificate that is used to authenticate its identity. The IKE
daemon interrogates this certificate and verifies that the identity in the
certificate matches the identity specified on the NetworkSecurityServer
parameter of the IkeConfig statement.

The following identity types (for idtype) and formats (for authid) are
supported:

IpAddr
Indicates that the authid value is a numeric IPv4 address or a
numeric IPv6 address. For example, 1.2.3.4.

Fqdn Indicates that the authid value is a fully qualified domain name
or host name. For example, vnet.ibm.com. The maximum
length accepted is 255 characters. The Fqdn value should
conform to the naming standards set forth by RFC 1035.

UserAtFqdn
Indicates that the authid value is a user at a fully qualified
domain name or host name. The user name cannot contain a
blank. For example, ibm@vnet.ibm.com. The maximum length
accepted is 512 characters. The UserAtFqdn value should
conform to the naming standards set forth by RFC 822.

X500dn
Indicates that the authid value is an X.500 distinguished name
(DN). The DN must be specified in accordance with RFC 2253.
A double-byte character is represented using the escaped
UTF-8 encoding of the double-byte character in the Unicode
character set. Attribute types can be specified using either
attribute names or numeric object identifiers. Attribute values
must represent string values.

Any distinguished name that contains an imbedded blank
must be enclosed in double quotes. For example, X500dn
"CN=R. Kramden,T=Driver,O=Gotham Bus Company,C=US".

Table 19 lists the DN attribute names that are recognized by the
System SSL run time. An error is returned if the DN contains
an unrecognized attribute name.

Table 19. DN attribute names

Abbreviation Meaning

C Country

CN Common name

DC Domain component

E E-mail address

EMAIL E-mail address (preferred)

EMAILADDRESS E-mail address

L Locality

O Organization name

OU Organizational unit name

Chapter 8. IKE daemon 449

Table 19. DN attribute names (continued)

Abbreviation Meaning

PC Postal code

S State or province

SN Surname

SP State or province

ST State or province (preferred)

STREET Street

T Title

The following code is an example of a DN using attribute
names and string values:
CN=Hoffman,OU=Endicott,O=IBM,C=US

The following code is the same DN using object identifiers and
encoded string values. The encoded string values represent the
ASN.1 DER encoding of the string. The System SSL run time
supports the following ASN.1 string types: PRINTABLE,
VISIBLE, TELETEX, IA5, UTF8, BMP, and UCS.
2.5.4.3=#130E526F6E616C6420486F66666D616E,2.5.4.11=
#1308456E6469636F7474, 2.5.4.10=#130349424D,2.5.4.6=#13025553

Individual characters can be represented using escape
sequences. This is useful when the character cannot be
represented in a single-byte character set. The hexadecimal
value for the escape sequence is the UTF-8 encoding of the
character in the Unicode character set. Table 20 shows some
Unicode example letter descriptions.

Table 20. Unicode letter descriptions

Unicode letter
description 10646 code UTF-8 Quoted

LATIN CAPITAL
LETTER L

U0000004C 0x4C L

LATIN SMALL LETTER
U

U00000075 0x75 u

LATIN SMALL LETTER
C WITH CARON

U0000010D 0xC48D \C4\8D

LATIN SMALL LETTER I U00000069 0x69 i

LATIN SMALL LETTER
C WITH ACUTE

U00000107 0xC487 \C4\87

Guideline: The letters in the Quoted column in Table 20 can be
used to encode a surname as follows:
SN=Lu\C4\8Di\C4\87

An escape sequence can also be used for special characters that
are part of the name and are not to be interpreted as
delimiters. The following special characters must be
represented as an escape sequence (prefixed with a backslash
[\]) when used as part of the name:

450 z/OS V2R1.0 Communications Server: IP Configuration Reference

v A space or number sign (#) character occurring at the
beginning of the string

v A space occurring at the end of the string
v One of the following characters , + " \ < >

This correct escape sequence is shown in the following
example:
"CN=L. Eagle,OU=Jones\, Dale and Mian,O=IBM,C=US"

In this example, the enclosing double quotes are required
because of the imbedded blanks, not because of the escaped
characters.

Rule: When an X500dn type identity is specified, the DN
attributes must have the same order as those of the
corresponding certificate subject name.

NetworkSecurityServerBackup
Identifies the backup NSS server for the IKE daemon. The NSS server (or its
backup) supplies certificate and remote management services for managed
stacks.

A single backup server is used for all of the TCP/IP stacks configured as NSS
clients.

The NetworkSecurityServerBackup parameter is optional. It allows network
security clients to connect to a backup NSS server at a different address or port
from the primary. Alternatively, in a sysplex configuration, the primary NSS
server can be configured on a dynamic VIPA to use the recovery capabilities of
dynamic addressing. If no backup server is available when the primary server
is not responsive, certificate and remote management services are unavailable
to network security clients. However, if a NetworkSecurityServerBackup
parameter is not specified, then certificate services are unavailable to Network
Security clients if the primary NSS server becomes unresponsive.

Network Security clients switch between the primary and the backup NSS
servers whenever their current server becomes unresponsive. If both the
primary and the backup become unresponsive, the Network Security client
attempts to connect to the primary and the backup in a round-robin fashion
until a successful connection is made. It is possible to have a situation where
one NSS client is being managed by the primary server and another NSS client
is being managed by the backup server. It is also possible to specify a backup
server without specifying a primary server, in which case, the backup server is
treated as if it is the primary server.

Use the MODIFY IKED,REFRESH command to change this value. If you
change the NetworkSecurityServerBackup value, then the changes take effect
for new connections, but existing connections are not dropped. If you want the
old connections to be dropped, follow this following sequence:
1. Comment out all of the following statements:
v NetworkSecurityServer statement (if present)
v NetworkSecurityServerBackup statement (if present)
v NssStackConfig statements (if present)

2. Issue a MODIFY IKED, REFRESH command to re-read the IKED
configuration file.

3. Uncomment out all of the following statements:
v NetworkSecurityServer statement (if present)

Chapter 8. IKE daemon 451

v NetworkSecurityServerBackup statement (if present)
v NssStackConfig statements (if present)

4. Issue a MODIFY IKED, REFRESH command to re-read the IKED
configuration file.

host The address of the NSS server can be specified either as a host name, a
numeric IPv4 address, or a numeric IPv6 address. This is a required
parameter. If a host name is specified, the maximum length accepted is
255 characters. The host name value should conform to the naming
standards set forth by RFC 1035.

Examples of supported host identifiers are as follows:
163.44.212.11
1080:0:0:0:8:800:200C:417A
norton.nycsanitation.gov

Port port
The TCP port on which the backup NSS server is listening for
connections from the IKE daemon. The default value is 4159. Valid
values are in the range 1 - 65535. This parameter is optional.

Identity
The identity of the backup NSS server. This is a required parameter.

The IKE daemon requires that communication with an NSS server be
protected using AT-TLS. During the AT-TLS handshake the NSS server
provides a certificate that is used to authenticate its identify. The IKE
daemon interrogates this certificate and verifies that the identity in the
certificate matches the identity specified on the NetworkSecurityServer
parameter of the IkeConfig statement.

The following identity types (idtype) and formats (authid) are
supported:

IpAddr
Indicates that the authid value is a numeric IPv4 address or a
numeric IPv6 address. For example, 1.2.3.4.

Fqdn Indicates that the authid value is a fully qualified domain name
or host name. For example, vnet.ibm.com. The maximum
length accepted is 255 characters. The Fqdn value should
conform to the naming standards set forth by RFC 1035.

UserAtFqdn
Indicates that the authid value is a user at a fully qualified
domain name or host name. The user name cannot contain a
blank. For example, ibm@vnet.ibm.com. The maximum length
accepted is 512 characters. The UserAtFqdn value cannot begin
or end with a dot (.) or contain consecutive dots. The
UserAtFqdn value should conform to the naming standards set
forth by RFC 822.

X500dn
Indicates that authid is an X.500 distinguished name (DN). See
the NetworkSecurityServer parameter description in this topic
for the DN specification.

NssWaitLimit
Specifies the number of seconds (1-300) that an NSS client waits between
connection attempts when trying to establish a connection with an NSS server.

452 z/OS V2R1.0 Communications Server: IP Configuration Reference

The product of the NssWaitLimit value multiplied by the NssWaitRetries value
defines the maximum number of seconds that an NSS client attempts to
connect to an NSS server before switching to another server. For example, if
the NssWaitLimit value is 60, and the NssWaitRetries value is 3, then an NSS
client waits at most for a total of 180 seconds for a successful connection with
a given server. See the description of the NetworkSecurityServerBackup
parameter for a discussion of how NSS clients switch between the primary and
backup NSS servers.

The default value is 60 seconds. Use the MODIFY IKED,REFRESH command to
change this value. The new value takes effect immediately.

NssWaitRetries
Specifies the number of times (1-10) that an NSS client attempts to establish a
connection with an NSS server.

The product of the NssWaitLimit value multiplied by the NssWaitRetries value
defines the maximum number of seconds that an NSS client attempts to
connect to an NSS server before switching to another server. For example, if
the NssWaitLimit value is 60, and the NssWaitRetries value is 3, then an NSS
client waits at most for a total of 180 seconds for a successful connection with
a given server. See the description of the NetworkSecurityServerBackup
parameter for a discussion of how NSS clients switch between the primary and
backup NSS servers.

The default value is 3 retries. Use the MODIFY IKED,REFRESH command to
change this value. The new value takes effect immediately.

PagentWait
The time limit in seconds to wait for connection to the Policy Agent. The value
of n can be 0-9999. A value of 0 indicates retry forever. The default is 0.

SupportedCertAuth
Specifies the label of a certificate on the IKE server's key ring. This label
corresponds to the certificate of a certificate authority supported by the local
security endpoint when using RSA signature mode of authentication. RSA
signature authentication is a certificate-based authentication method used by
the IKE server to authenticate a remote security endpoint's identify. The
SupportedCertAuth parameter can be specified multiple times to identify a set
of supported certificate authorities.

Use the SupportedCertAuth parameter to define a set of certificate authorities
(CAs) supported by the local security endpoint. This list is provided to the
remote security endpoint to request that it choose a certificate signed by an
acceptable CA. The remote security endpoint is not constrained to choose
certificates signed by CAs accepted by the local security endpoint. However, if
the remote security endpoint chooses a certificate signed by a CA that is not on
the IKE server's key ring, the key exchange fails.

The CaLabel parameter of the RemoteSecurityEndpoint IPSec policy statement
can be used to further restrict the set of certificate authorities that can sign the
certificate used by a particular remote security endpoint. The advantage of
further restricting the set of certificate authorities that might sign the certificate
used by a particular remote security endpoint is a reduction in the size of the
IKE key exchange messages transmitted between the local security endpoint
and the remote security endpoint.

The number of specified labels is limited to a maximum of 128. The maximum
length of a label is 32 characters, which corresponds to the maximum length of
a RACF label. The default is an empty list containing no labels.

Chapter 8. IKE daemon 453

Use the MODIFY IKED,REFRESH command to change this value.

The SupportedCertAuth parameter is not used by NSS server client TCP/IP
stacks.

NssStackConfig statement

The NssStackConfig statement contains NSS server stack configuration information
for the IKE daemon. Only stacks with a corresponding NssStackConfig statement
are eligible for management services provided by network security services. Stacks
that are not configured with an NssStackConfig statement do not use network
security services.

Restriction: NssStackConfig statements require that a valid NSS server is set up in
the IkeConfig statement. See the NetworkSecurityServer and
NetworkSecurityServerBackup parameters in the IkeConfig statement. It is a
configuration error to have an NSSStackConfig statement without also specifying a
NetworkSecurityServer parameter, a NetworkSecurityServerBackup parameter, or
both.

If more than one NssStackConfig statement is coded for the same TCP/IP stack,
the last one is used. Likewise, if a parameter within the NssStackConfig statement
is specified more than once, the value from the last one is used.

Use the MODIFY IKED,REFRESH command to change which TCP/IP stacks are
configured as NSS clients, as follows:

Deleting an NSS client
If it is determined after a refresh that an NSSStackConfig statement was
removed, then the connection associated with the removed NssStackConfig
statement is closed

Adding NSS client
If it is determined after a refresh that a new NssStackConfig statement was
added, then the connection for the new stack is opened.

Changing internal NssStackConfig values
Any change to an internal parameter of the NssStackConfig statement results
in a disconnect followed by a reconnect.

Syntax

�� NssStackConfig stackname Braces & Parms on Separate Lines ��

Braces & Parms on Separate Lines:

�

{
ClientName clientname

ServiceType RemoteMgmt
Cert

UserId userid
AuthBy Password password

Passticket
}

454 z/OS V2R1.0 Communications Server: IP Configuration Reference

Parameters

stackname
The name of the NSS client TCP/IP stack. This is a required parameter. There
is no default value.

ClientName clientname
The NSS client name for the stack. By default, client names have the form
sysname_stackname, where the sysname value is the MVS system name, and the
stackname value is the TCP/IP stack name. This name must match the
clientname portion of the associated SERVAUTH profile
(EZB.NSS.sysname.clientname.IPSEC.CERT and
EZB.NSS.sysname.clientame.IPSEC.NETMGMT) and can be 1 - 24 characters in
length.

Restriction: Only alphanumeric characters (a-z, A-Z, 0-9), the hyphen (-), and
the underscore (_) are valid for the ClientName parameter. Embedded spaces
are also not permitted in the ClientName parameter; only trailing spaces are
permitted.

If no client name is configured, then the IKE daemon generates this parameter
based on the system's host name and the associated TCP/IP stack name.

For example, if the system host name is MVSIBM and the TCP/IP stack name
is TCPCS, then the generated client name is MVSIBM_TCPCS.

ServiceType
The ServiceType parameter should be specified once for each network security
service that is to be enabled for the stack. The following service types are
supported:

RemoteMgmt
Indicates that this stack is eligible for remote management.

Cert Indicates that this stack uses centralized certificate management.

Requirement: There must be as least one ServiceType statement in the
NssStackConfig statement.

UserId userid
The RACF user ID that the NSS server uses to authenticate the NSS client and
to verify its access to the SERVAUTH profiles that protect the certificate and
remote management resources on the NSS server. User IDs can be 1 - 8
characters in length.

AuthBy
Authorization of the client TCP/IP stack to the NSS server can be
accomplished either by the use of a password or by a Pass Ticket.

Password password
The password value is the RACF password for the user ID specified for
the user. There is no default value for the password value; a valid
password is required if password authentication is being used.
Passwords can be 1 - 8 characters in length.

Passticket
The Pass Ticket option causes the client to generate a one-time session
key. See the information about the secured signon function in z/OS
Security Server RACF Security Administrator's Guide.

Authby is a required parameter and there is no default value. Either the
Password option or Passticket option (but not both), must be specified.

Chapter 8. IKE daemon 455

During the installation, ensure that you prevent access to the IKE configuration
file by unauthorized users to protect this sensitive data. The most secure
approach to protecting this information is to use Pass Tickets, which store the
application keys in the RACF database.

IKE daemon configuration file sample
#
IBM Communications Server for z/OS
SMP/E distribution path: /usr/lpp/tcpip/samples/IBM/EZAIKCFG
#
5694-A01 Copyright IBM Corp. 2007 - 2010.
Licensed Materials - Property of IBM
"Restricted Materials of IBM"
Status = CSV1R12
#
/etc/security/iked.conf (IKE daemon configuration)
#
This file contains sample IKE daemon configuration parameters.
The search order used by the IKE daemon to locate the initial
configuration file is (highest priority listed first):
#
1) The name of a file or MVS data set specified by the IKED_FILE
environment variable.
2) /etc/security/iked.conf
#
Some parameters may be dynamically modified after the
IKE daemon has been started. The parameters that are
dynamically modifiable are noted below.
#
One way of dynamically modifying parameters is to edit
the iked.conf file after the IKE daemon has been started and then
issue a modify command to cause the IKE daemon to re-read the file.
#
Example: MODIFY IKED,REFRESH
Note: IKED is the IKE daemon procedure name.
#
After the IKE daemon has been started, a different configuration
file can be specified by using the Modify command with the FILE
parameter. This allows modifiable parameters to be
dynamically altered while the IKE daemon is running. Note that
the parameter values modified in this fashion are not
persistent. To make the changes persistent, edit the iked.conf
file that is located at IKE initialization time according to the
search order described previously.
#
Example: MODIFY IKED,REFRESH,FILE=’/etc/security/iked.conf2’
Note: IKED is the IKE daemon procedure name.
#
See the IP System Administrator’s Commands book for more information
about the modify command.
#
See the IP Configuration Reference book for more information about
the IkeConfig and NssConfig statements and their individual
parameters.

IkeConfig
{
IkeSyslogLevel 0-255 (dynamically modifiable)
Specifies the level of logging to obtain from the IKE daemon.
To specify a combination of log levels, add the level numbers.
The supported levels are:
0 - IKE_SYSLOG_LEVEL_NONE - Disable IKE daemon syslog messages
1 - IKE_SYSLOG_LEVEL_MINIMUM - Minimal IKE daemon syslog output
2 - IKE_SYSLOG_LEVEL_SADETAIL - Always output detailed Security
Association (SA) information when
available
4 - IKE_SYSLOG_LEVEL_DEBUGSA - Include additional debug
information for SA negotiations
8 - IKE_SYSLOG_LEVEL_FMTPKTTRC - Formatted IKE message trace
16 - IKE_SYSLOG_LEVEL_UNFPKTTRC - Unformatted IKE message trace
32 - IKE_SYSLOG_LEVEL_VERBOSE - Show cascaded error messages
64 - IKE_SYSLOG_LEVEL_CERTINFO - Show certificates in CA cache when
cache is initially built or
rebuilt
128 - reserved
Default: 1
IkeSyslogLevel 1

456 z/OS V2R1.0 Communications Server: IP Configuration Reference

PagentSyslogLevel 0-255 (dynamically modifiable)
Specifies the level of logging to obtain from pagent through the PAPI.
To specify a combination of log levels, add the level numbers.
The supported levels are:
1 - PAGENT_SYSLOG_LEVEL_EMERG - A panic condition
2 - PAGENT_SYSLOG_LEVEL_ALERT - Requires immediate action
4 - PAGENT_SYSLOG_LEVEL_CRIT - Critical condition
8 - PAGENT_SYSLOG_LEVEL_ERR - Error messages
16 - PAGENT_SYSLOG_LEVEL_WARNING - Warning messages
32 - PAGENT_SYSLOG_LEVEL_NOTICE - Notice messages
64 - PAGENT_SYSLOG_LEVEL_INFO - Informational messages
128 - PAGENT_SYSLOG_LEVEL_DEBUG - Debug messages
Default: 0
PagentSyslogLevel 0

Keyring userid/ringname (not dynamically modifiable)
The owning userid and ringname used by the IKE server when performing
RSA Signature Mode of authentication. The userid must be the userid
of the process under which IKE will run.
Default: iked/keyring
Keyring iked/keyring

IkeRetries 1-8 (dynamically modifiable)
Specifies the number of times that an unanswered IKE negotiation
message is retransmitted before the negotiation is cancelled.
Default: 6
IkeRetries 6

IkeInitWait 1-15 (dynamically modifiable)
Specifies the number of seconds to wait before the first
retransmission of an unanswered IKE message
Default: 2
IkeInitWait 2

FIPS140 yes,no (not dynamically modifiable)
Specifies whether the IKE daemon should perform cryptographic
operations by invoking cryptographic modules that are compliant with
Federal Information Processing Standard (FIPS) publication 140-2’s
Level 1 security requirements.
Default: no
FIPS140 no

Echo yes,no (dynamically modifiable)
Echoes all IKE daemon log messages to the job output file,
specified by the IKEDOUT DD (JCL) statement.
Default: no
Echo no

PagentWait 0-9999 (not dynamically modifiable)
The time limit in seconds to wait for connection to the policy agent.
A value of 0 means retry forever.
Default: 0
PagentWait 0

SupportedCertAuth label (dynamically modifiable)
Specifies the label of a Certificate Authority(CA) certificate on the
IKE server’s keyring. Use multiple instances of this keyword to
specify multiple CA certificates.
Default: <none>

NetworkSecurityServer address Port 4159 Identity IpAddr 1.2.3.4
Default: none #(dynamically modifiable)
NetworkSecurityServerBackup address Port 4159 Identity IpAddr 2.2.3.4
Default: none #(dynamically modifiable)

NssWaitLimit 1-300 (dynamically modifiable)
Specifies the number of seconds that a Network Security client
will wait between connection attempts when trying to establish a
connection with a Network Security Server.
Default: 60
NssWaitLimit 60

NssWaitRetries 1-10 (dynamically modifiable)
Specifies the number of times that a Network Security client will
attempt to establish a connection with the primary Network Security
Server before attempting to establish a connection with the backup
server.
Default: 3
NssWaitRetries 3

Chapter 8. IKE daemon 457

SMF119 None, IKETunnel, DynTunnel, IKEAll (dynamically
modifiable)
Specifies the level of logging to send to the SMF facility.
IKEAll is equivalent to specifying SMF119 IKETunnel and
SMF119 DynTunnel on two separate lines.
The supported levels are:
None No SMF records
IKETunnel Phase 1 related SMF records
DynTunnel Phase 2 related SMF records
IKEAll Phase 1 and Phase 2 related SMF records
Default: None
SMF119 None

}

NssStackConfig stackname (dynamically modifiable)
Used to configure a stack as a Network Security client.
Use one NssStackConfig statement for each TCPIP stack that you wish
to configure as a Network Security client. TCPIP stacks that do not
have a corresponing NssStackConfig statement will be serviced by
local IKE resources only.
#
NssStackConfig TCPCS
{
Clientname clientname (dynamically modifiable)
Specifies the Network Security client name for the stack. Client
names for stacks typically have the form sysname_stackname, where
sysname is the MVS system name, and stackname is the TCP/IP stack
name. This name must match the clientname portion of the associated
SERVAUTH profiles:
- EZB.NSS.sysname.clientname.IPSEC.CERT
- EZB.NSS.sysname.clientname.IPSEC.NETMGMT
The client name may be from 1 to 24 characters long.
Default: <systemname>_<stackname>
ClientName MYSYSTEM_TCPCS
#
ServiceType RemoteMgmt, Cert (dynamically modifiable)
Specifies that the stack is requesting a type of centralized
management via a Network Security Server. This statement will occur
once for each type of service that the stack is requesting. Supported
service types are:
- RemoteMgmt
- Cert
Defaults: None
ServiceType RemoteMgmt
ServiceType Cert
#
Userid userid (dynamically modifiable)
Specifies the RACF userid that will be used to verify access for this
stack to the services provided by the Network Security Server. Userid
may be from 1-8 characters long.
Defaults: None.
UserId SMITHXYZ
#
#Authby Password password (dynamically modifiable)
Passticket (dynamically modifiable)
Specifies the mechanism by which the Network Security Server should
authenticate the client TCPIP stack. Supported mechanisms are RACF
password or RACF passticket.
#
Password password
password is the RACF password for the userid specified for the
UserId.
#
Passticket
A RACF Passticket is generated for authorization.
#
Default: none. One (and only one) of Password or Passticket must be
specified.
Authby Password secretxyz
}

Figure 14. Sample IKE daemon configuration file

458 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 9. Network security services server

This topic contains the following information about the Network security services
(NSS) server:
v “Starting Network security services server using z/OS UNIX”
v “Network security services server cataloged procedure”
v “Network security services server environment variables” on page 461
v “Network security services server configuration file statements” on page 462

Starting Network security services server using z/OS UNIX
Start NSS server from the z/OS shell using the following syntax:

�� nssd ��

Tip: When you are starting the NSS server from the z/OS UNIX shell, set the
environment variable _BPX_JOBNAME. This enables a specific job name to be used
when reserving ports for the NSS server. You can also use this name with the
STOP or MODIFY console commands. For more information about
_BPX_JOBNAME, see z/OS UNIX System Services Planning.

Network security services server cataloged procedure
Update the cataloged procedure, NSSD, by copying the sample in
SEZAINST(NSSD), to your system or recognized PROCLIB. Specify the NSS server
parameters and change the data set names to suit your local configuration. See
SEZAINST(EZARACF) for external security manager considerations for started
procedures. After the NSSD procedure has been started, you can specify a different
NSSD configuration file by using the Modify command with the FILE parameter.
For example:
MODIFY NSSD,REFRESH,FILE=’/etc/security/nssd.conf2’

© Copyright IBM Corp. 2000, 2015 459

//NSSD PROC
//*
//* IBM Communications Server for z/OS
//* SMP/E distribution name: EZBIMPRC
//*
//* 5650-ZOS Copyright IBM Corp. 2007, 2013
//* Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* Status = CSV2R1
//*
//*
//NSSD EXEC PGM=NSSD,REGION=0K,TIME=NOLIMIT,
// PARM=’ENVAR("_CEE_ENVFILE_S=DD:STDENV")/’
//*
//* Provide environment variables to run with the desired
//* configuration. As an example, the data set or file specified by
//* STDENV could contain:
//*
//* NSSD_FILE=/etc/security/nssd.conf
//* NSSD_CTRACE_MEMBER=CTINSS01
//* NSSD_CODEPAGE=IBM-1047
//*
//* If you want to include comments in the data set or
//* z/OS UNIX file, specify the _CEE_ENVFILE_COMMENT
//* environment variable as the first environment variable
//* in the data set or file. The value specified for
//* the _CEE_ENVFILE_COMMENT variable is the comment character.
//* For example, if you want to use the pound sign, #, as
//* the comment character, specify this as the first
//* statement:
//* _CEE_ENVFILE_COMMENT=#
//*
//* For information on the above environment variables, refer to the
//* IP Configuration Reference.
//*
//STDENV DD DUMMY
//* Sample MVS data set containing environment variables:
//*STDENV DD DSN=TCPIP.NSSD.ENV(NSSD),DISP=SHR
//* Sample file containing environment variables:
//*STDENV DD PATH=’/etc/security/nssd.env’,PATHOPTS=(ORDONLY)
//*
//* Output written to stdout and stderr goes to the data set or
//* file specified with SYSPRINT or SYSOUT, respectively.
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*

Figure 15. NSSD cataloged procedure

460 z/OS V2R1.0 Communications Server: IP Configuration Reference

|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

Network security services server environment variables
Table 21 provides a list of environment variables used by the NSS server that you
can alter for a particular installation.

Table 21. NSS server environment variables

Environment variable Description Any specific coding rules

NSSD_CODEPAGE Used by the NSS server to
specify the EBCDIC codepage to
be used for the configuration
file. The default codepage is
IBM-1047.

The following codepages are supported:

v IBM-037

v IBM-273

v IBM-274

v IBM-275

v IBM-277

v IBM-278

v IBM-280

v IBM-281

v IBM-282

v IBM-284

v IBM-285

v IBM-297

v IBM-500

v IBM-871

v IBM-1047

v IBM-1140

v IBM-1141

v IBM-1142

v IBM-1143

v IBM-1144

v IBM-1145

v IBM-1146

v IBM-1147

v IBM-1148

v IBM-1149

Example:

NSSD_CODEPAGE=IBM-1141

NSSD_FILE Used by the NSS server in the
search order for the NSS server
configuration file. For details on
the search order used for
locating this configuration file,
see “TCP/IP configuration data
sets” on page 1.

If this environment variable is not defined, the
default value used by the NSS server is
/etc/security/nssd.conf. Example:

NSSD_FILE=/etc/security/nssd.conf

NSSD_PIDFILE Used by the NSS server in the
search order for the NSS server
PID file. The search order for
the NSS server PID file is as
follows:

1. NSSD_PIDFILE environment
variable

2. /etc/nssd.pid

If this environment variable is not defined, the
default value used by the NSS server is
/etc/nssd.pid. Example:

NSSD_PIDFILE=/etc/nssd.pid

Chapter 9. Network security services server 461

Table 21. NSS server environment variables (continued)

Environment variable Description Any specific coding rules

NSSD_CTRACE_MEMBER Used by the NSS server to
specify the name of a parmlib
member that contains default
CTRACE settings. The
NSSD_CTRACE_MEMBER
environment variable is read by
the NSS server only during
initialization. Changes to the
NSSD_CTRACE_MEMBER after
NSS server initialization have no
effect.

If this environment variable is not defined, the
default value used by the NSS server is
CTINSS00. Example:

NSSD_CTRACE_MEMBER=CTINSS00

Network security services server configuration file statements
The configuration of the NSS server contains parameters that define the behavior
of the daemon. If any parameter is omitted from the configuration file, then default
values are provided for parameters that support a default. If a configuration file is
not specified, then default values are provided for all parameters.

If a configuration error is detected during startup, then the NSS server logs the
error and exits. If a configuration error is detected during a dynamic refresh, then
the entire refresh is rejected, the error is logged, and the NSS server continues
running with the old configuration values.

The NSS server uses the following search order to locate the configuration file
(highest priority is listed first):
1. The name of a file or MVS data set specified by the NSSD_FILE environment

variable.
2. /etc/security/nssd.conf

Tip: You can use the IBM Configuration Assistant for z/OS Communications
Server to establish NSS server settings. Establish the settings using the NSS
perspective of the Configuration Assistant, and then click Install Configuration
File on the Image Information tab to store the generated NSS server configuration
file on the z/OS system.

NSS server configuration file sample
This topic shows the NSS server configuration file sample.
#
IBM Communications Server for z/OS
SMP/E distribution path: /usr/lpp/tcpip/samples/IBM/EZANSCFG
#
Licensed Materials - Property of IBM
5694-A01 Copyright IBM Corp. 2007, 2010
Status = CSV1R12
#
/etc/security/nssd.conf (network security services (NSS) server
configuration)
#
This file contains sample configuration parameters for the NSS server.
The search order used by the NSS server to locate the initial
configuration file is (highest priority listed first):
#
1) The name of a file or MVS data set specified by the NSSD_FILE
environment variable.
2) /etc/security/nssd.conf
#
Some parameters may be dynamically modified after the

462 z/OS V2R1.0 Communications Server: IP Configuration Reference

NSS server has been started. The parameters that are
dynamically modifiable are noted below.
#
To dynamically modify the NSS server’s configuration parameters
first edit the configuration file and then issue the modify command
(while the NSS server is running). This causes the NSS server to
re-read the configuration file.
#
Example: MODIFY NSSD,REFRESH
Note: NSSD is the NSS server procedure name.
#
After the NSS server has been started, a different configuration
file can be specifed by using the modify command with the FILE
parameter. This allows modifiable parameters to be
dynamically altered while the NSS server is running. Note that
the parameter values modified in this fashion are not
persistent. To make the changes persistent, edit the configuration
file that is located at NSS server initialization time according
to the search order described previously.
#
Example: MODIFY NSSD,REFRESH,FILE=’/etc/security/nssd.conf2’
Note: NSSD is the NSS server procedure name.
#
See the IP System Administrator’s Commands book for more information
about the modify command.
#
See the IP Configuration Reference book for more information about
the individual parameters.
#
Blank lines, empty lines and lines beginning with the ’#’ char as the
first non-space character are ignored.

#
The NssConfig statement contains parameters that apply globally
across all supported disciplines.

NssConfig
{
Port portNumber (dynamically modifiable)
This is the TCP port to which the NSS server will bind.
Default: 4159
Port 4159

SyslogLevel 0-255 (dynamically modifiable)
Specifies the level of logging to obtain from the NSS server.
To specify a combination of log levels, add the level numbers.
The supported levels are:
0 - NSS_SYSLOG_LEVEL_NONE - Disable NSS server syslog messages
1 - NSS_SYSLOG_LEVEL_MINIMUM - Minimal NSS server syslog messages
2 - NSS_SYSLOG_LEVEL_VERBOSE - Include cascaded internal error
messages (for IBM service)
4 - NSS_SYSLOG_LEVEL_CERTINFO - Include info about certificate
cache
8 - NSS_SYSLOG_LEVEL_CLIENTLIFECYCLE - Include info about client
lifecycle
16 - NSS_SYSLOG_LEVEL_SAF_ACCESS_INFO - Include info about SAF
access operations
32 - reserved
64 - reserved
128 - reserved
Default: 1
SyslogLevel 1

KeyRing userid/ringname (dynamically modifiable)
The NSS server attempts to open the configured key ring during
startup. The key ring is used throughout the IPSec and XMLAppliance
disciplines to locate certificates and/or private keys to be used for
centralized cryptographic services.
When using a key ring owned by the NSS server, specify only the
ringname value. When using a key ring owned by another user, specify
the ring name as a userid/ringname value.
There is no default value. If KeyRing is not specified, then the
NSS server cannot supply certificate services.
KeyRing nssd/keyring

Discipline disciplineName Enable | Disable (dynamically modifiable)
Specifies a discipline that is enabled or disabled by the NSS server.
Supported disciplines are:
IPSec -
Includes the IPSec certificate service and IPSec network

Chapter 9. Network security services server 463

management service. The default for the IPSec discipline is
’Enable’.
XMLAppliance -
Includes the XMLAppliance SAF access service, XMLAppliance private
key service, and XMLAppliance certificate service. The default for
the XMLAppliance discipline is ’Enable’.
Default: IPSec Enable
Default: XMLAppliance Enable
Discipline IPSec Enable
Discipline XMLAppliance Enable
}

The IPSecDisciplineConfig statement contains parameters that apply
to only the IPSec discipline.

IPSecDisciplineConfig
{
FIPS140 Yes | No (non-refreshable)
Specifies whether the NSS server should perform cryptographic
operations for the IPSec Discipline by invoking cryptographic modules
that are compliant with Federal Information Processing Standard (FIPS)
publication 140-2’s Level 1 security requirements.
Default: No
FIPS140 No

URLCacheInterval minutes (dynamically modifiable)
Specifies the maximum amount of time in minutes that data retrieved
from an HTTP server will be cached before an attempt to reload the
data is made. If minutes is specified as 0 then data retrieved from
HTTP servers will not be cached.
Default: 10080
URLCacheInterval 10080

CertificateURL certlabel url (dynamically modifiable)
Maps a certificate (specified by certlabel) to a URL which identifies
a file on an HTTP server that contains a DER-encoded representation
of the certificate. Zero or more of these mappings may be specified.
Note that this keyword only applies to network security clients that
are using the IPSec certificate service in support of IKE version 2
Phase 1 SA negotiations.
There is no default value.
CertificateURL CACert1 http://mycompany.com/ca_cert1.der

CertificateBundleURL certlabel url (dynamically modifiable)
Maps a certificate (specified by certlabel) to a URL which identifies
a file on an HTTP server that contains an x509 certificate bundle
pertaining to the certificate. Zero or more of these mappings may be
specified. Note that this keyword only applies to network security
clients that are using the IPSec certificate service in support of IKE
version 2 Phase 1 SA negotiations.
There is no default value.
CertificateBundleURL CACert2 http://mycompany.com/certbundle2.bndl
}

IPSecDisciplineConfig statement

The IPSecDisciplineConfig statement contains parameters that apply to the IPSec
discipline only. If more than one IPSecDisciplineConfig statement is coded, the last
one is used. If a parameter within the IPSecDisciplineConfig statement is specified
more than once, the value from the last one is used.

Syntax

�� IPSecDisciplineConfig Braces & Parms on Separate Lines ��

Figure 16. NSS server configuration file sample

464 z/OS V2R1.0 Communications Server: IP Configuration Reference

Braces & Parms on Separate Lines:

{
IPSecDisciplineConfig Parameters

}

IPSecDisciplineConfig Parameters:

FIPS140 no

FIPS140 yes
no

URLCacheInterval 10080

URLCacheInterval
�

� �

CertificateURL label url

�

CertificateBundleURL label url

Parameters

FIPS140 Yes | No
Specifies whether the NSS server should perform cryptographic operations by
invoking cryptographic modules that are designed to meet the Level 1 security
requirements documented in the Federal Information Processing Standard
(FIPS) publication 140 (FIPS 140).

yes Perform all IPSec discipline cryptographic operations using
cryptographic modules that are designed to meet FIPS 140
requirements. When the value of yes is specified, the NSS server is
running in FIPS 140 mode.

no NSS server might perform some cryptographic operations using
cryptographic modules that do not adhere to the FIPS 140
requirements. When the value of no is specified, the NSS server is not
running in FIPS 140 mode.

Requirement: ICSF must be active before starting the NSS server when
FIPS140 YES is specified. For information about configuring ICSF to support
FIPS 140-2, see Operating in compliance with FIPS 140-2 in z/OS
Cryptographic Services ICSF Writing PKCS #11 Applications.

Rule: If the FIPS140 parameter is modified while the NSS server is running it
will not take effect until the NSSD is restarted. Attempts to modify the value
while the NSS server is running are ignored and a warning message is issued.

Tip: Enabling FIPS 140 mode provides a higher degree of assurance of the
integrity of the cryptographic modules that the NSS server uses, including
ICSF and System SSL. However, enabling FIPS 140 mode might require
additional setup and configuration, it will restrict the available set of
cryptographic algorithms, and it might result in a reduction in performance.
See Cryptographic standards and FIPS 140 in z/OS Communications Server: IP
Configuration Guide for more information.

URLCacheInterval minutes
Specifies the maximum amount of time in minutes that data retrieved from an
HTTP server will be cached before an attempt to reload the data is made. If 0

Chapter 9. Network security services server 465

is specified for the minutes value, then data retrieved from an HTTP server will
not be cached. The default value is 10080 which is one week. The maximum
value is 999999.

Tip: Table 22 shows when cached data must be reloaded.

Table 22. Cached data events that cause a reload

Cached data Events that cause a reload

Certificate Data The following events cause a reload:

v The Validity notAfter time in the
certificate is reached

v The URLCacheInterval is reached

v The NSSD MODIFY REFRESH command
is issued

Certificate Bundle Data The following events cause a reload:

v The Validity notAfter time in any
certificate in the bundle is reached

v The nextUpdate time in any CRL in the
bundle is reached

v The URLCacheInterval is reached

v The NSSD MODIFY REFRESH command
is issued

Certificate Revocation Data The following events cause a reload:

v The nextUpdate time in the CRL is
reached

v The URLCacheInterval is reached

v The NSSD MODIFY REFRESH command
is issued

CertificateURL label url
The label is the label of a certificate on the key ring specified by the KeyRing
parameter. If this label value contains imbedded blanks, then the value must be
enclosed in double quote characters ("). Empty ("") and blank (" ") label names
are not allowed. Any leading or trailing blanks within the double quotes will
be ignored (for example, " label name " is treated as "label name"). If the string
also contains a double quote character, then the imbedded double quote
character must be coded as a sequence of two such characters (""). For
example, the label in the following statement contains both imbedded blanks
and imbedded double quotes:
CertificateURL "my ""new"" certificate" http://xyz.edu/cert51

The url is an HTTP based URL identifying a file on an HTTP server that
contains the DER encoded representation of the certificate identified by label.
The file should not contain the private key associated with the certificate. See
Using hash and URL certificate encoding types in z/OS Communications
Server: IP Configuration Guide for additional details.

Rule: If the same label is specified on multiple CertificateURL statements only
the last CertificateURL statement for that label is used.

Tip: This keyword is applicable only to network security clients utilizing
certificate services during an IKE version 2 Phase 1 SA negotiation.

CertificateBundleURL label url
The label value is the label of a certificate on the key ring specified by the

466 z/OS V2R1.0 Communications Server: IP Configuration Reference

KeyRing parameter. If this label value contains imbedded blanks, then the
value must be enclosed in double quote characters ("). Empty ("") and blank ("
") label names are not allowed. Any leading or trailing blanks within the
double quotes will be ignored (for example, " label name " is treated as "label
name"). If the string also contains a double quote character, then the imbedded
double quote character must be coded as a sequence of two such characters
(""). For example, the label in the following statement contains both imbedded
blanks and imbedded double quotes:
CertificateBundleURL "my ""new"" certificates" http://xyz.edu/certbundle

The url is an HTTP based URL identifying a file on an HTTP server that
contains an x509 certificate bundle pertaining to the certificate identified by
label. The z/OS UNIX certbundle command may be used to create an x509
certificate bundle. See Using hash and URL certificate encoding types in z/OS
Communications Server: IP Configuration Guide for additional details.

Rules:

v If the same label is specified on multiple CertificateBundleURL statements,
only the last CertificateBundeURL statement for that label is used.

v If the same label is specified on both a CertificateURL statement and
CertificateBundleURL statement, the statement specified last is used.

Tip: This keyword is applicable only to network security clients utilizing
certificate services during an IKE version 2 Phase 1 SA negotiation.

NssConfig statement

The NssConfig statement contains parameters that apply globally to the NSS server
and all supported disciplines. If more than one NssConfig statement is coded, the
parameters coded within all the statements are combined as if they had all been
coded under one NssConfig statement. If a parameter within the NssConfig
statement is specified more than once, the value from the last one is used.

Syntax

�� NssConfig Braces & Parms on Separate Lines ��

Braces & Parms on Separate Lines:

{
NSSConfig Parameters

}

NSSConfig Parameters:

Port 4159

Port n

SyslogLevel 0

SyslogLevel n KeyRing userid/ringname
KeyRing ringname

�

Chapter 9. Network security services server 467

� �

Discipline XMLAppliance Enable
Discipline IPSec Enable

Discipline IPSec Enable
XMLApplicance Disable

Parameters

Port n
The TCP port that the NSS server binds to. All NSS clients must connect to the
server through this port.

The default value is 4159. Valid values are in the range 1 - 65535. Use the
MODIFY NSSD,REFRESH command to change the value of this parameter.
When the TCP port is changed, existing connections remain open, but all new
client connections must come through the new port.

Tip: The NSS server binds to INADDR_ANY. Configuring NSS clients to
connect to the NSS server on a dynamic VIPA might increase availability of the
NSS server. See NSS server failover considerations in z/OS Communications
Server: IP Configuration Guide for more information.

SyslogLevel level
Specifies the level of logging to be obtained from the NSS server. The following
levels are supported:

0 - NSS_SYSLOG_LEVEL_NONE
Disable NSS server syslog messages.

1 - NSS_SYSLOG_LEVEL_MINIMUM
Minimal NSS daemon syslog output.

2 - NSS_SYSLOG_LEVEL_VERBOSE
Include cascaded internal error messages (for IBM service).

4 - NSS_SYSLOG_LEVEL_CERTINFO
Include information about certificate cache.

8 - NSS_SYSLOG_LEVEL_CLIENTLIFECYCLE
Include information about client lifecycle (connect, update, and
disconnect).

16 - NSS_SYSLOG_LEVEL_SAF_ACCESS_INFO
Include information about SAF access operations.

32 Reserved

64 Reserved

128 Reserved

These levels can be added together to create a cumulative logging effect.

Use the MODIFY NSSD,REFRESH command to change this value. The default
value is 1.

Rules:

v The default SyslogLevel is in effect until the parameter is read from the
configuration file.

v Any level higher than 1 automatically includes 1.

468 z/OS V2R1.0 Communications Server: IP Configuration Reference

KeyRing ringname | userid/ringname
The owning user ID and ring name used by the NSS server when you are
creating and verifying signatures on behalf of a NSS client. When using a key
ring owned by the NSS server, specify the ring name as ringname value. When
using a key ring owned by another user, specify the ring name as a
userid/ringname value. There is no default value. If KeyRing is not specified,
then the NSS server cannot supply certificate services.

Restriction: The NSS server does not support PKCS #11 Tokens for the
KeyRing parameter.

Use the MODIFY NSSD,REFRESH command to change this value.

Discipline discipline Enable | Disable
Specifies that a discipline is enabled or disabled by the NSS server. Valid
disciplines are:

IPSec Includes the IPSec certificate service and IPSec remote management
service. The default for the IPSec discipline is Enable.

XMLAppliance
Includes the XMLAppliance SAF access service, the XMLAppliance
certificate service, and the XMLAppliance private key service. The
default for the XMLAppliance discipline is Enable.

Use the MODIFY NSSD, REFRESH command to change which disciplines are
enabled or disabled, as follows:

Enabling a discipline

If, during refresh processing, the NSS server detects a Discipline statement that
has been added or modified with the Enable keyword, the NSS server enables
the required services to allow NSS clients to connect to the indicated discipline.

Disabling a discipline

If, after a refresh, a Discipline statement was modified with the Disable
keyword, then connections for all NSS clients of the indicated discipline are
removed and services for the indicated discipline are disabled. The NSS server
prevents new clients from connecting to the indicated discipline.

Chapter 9. Network security services server 469

470 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 10. Defense Manager daemon

The Defense Manager daemon (DMD) is an integral part of defensive filtering. The
z/OS UNIX ipsec command provides the user interface to add, update, delete,
and display defensive filters. The DMD sits between the z/OS UNIX ipsec
command and the TCP/IP stacks. The DMD manages the installation of defensive
filters into the TCP/IP stacks. One instance of the DMD manages all stacks on the
z/OS image. The DMD must be active for defensive filters to be added, updated,
or deleted. For more information about defensive filtering, see z/OS
Communications Server: IP Configuration Guide. For more information about the
z/OS UNIX ipsec command, see z/OS Communications Server: IP System
Administrator's Commands.

This topic contains the following information about the DMD:
v “Starting the DMD using z/OS UNIX (optional)”
v “The Defense Manager daemon cataloged procedure (optional)”
v “DMD environment variables” on page 473
v “DMD configuration file statements” on page 474

Starting the DMD using z/OS UNIX (optional)
If the DMD is to be started from the z/OS UNIX shell, use the following syntax:

�� dmd ��

Tip: When you are starting the DMD from the z/OS UNIX shell, set the
environment variable _BPX_JOBNAME so that you can use a specific job name
with the STOP or MODIFY console commands. For more information about
_BPX_JOBNAME, see z/OS UNIX System Services Planning.

The Defense Manager daemon cataloged procedure (optional)
If the DMD is to be started by a procedure, update the cataloged procedure, DMD,
by copying the sample in SEZAINST(DMD) to your system or recognized
PROCLIB. Specify the DMD parameters and change the data set names that are
appropriate for your local configuration. See SEZAINST(EZARACF) for external
security manager considerations for started procedures. After you have started the
DMD procedure, you can specify a different DMD configuration file by using the
MODIFY command with the FILE parameter. For example:
MODIFY DMD,REFRESH,FILE=’/etc/security/dm.conf2’

© Copyright IBM Corp. 2000, 2015 471

//DMD PROC
//*
//* IBM Communications Server for z/OS
//* SMP/E distribution name: EZADMD
//*
//* 5650-ZOS Copyright IBM Corp. 2008, 2013
//* Licensed Materials - Property of IBM
//* Status = CSV2R1
//*
//*
//DMD EXEC PGM=DMD,REGION=0K,TIME=NOLIMIT,
// PARM=’ENVAR("_CEE_ENVFILE_S=DD:STDENV")/’
//*
//* Provide environment variables to run with the desired
//* configuration. As an example, the data set or file specified by
//* STDENV could contain:
//*
//* DMD_FILE=/etc/security/dmd.conf
//* DMD_CTRACE_MEMBER=CTIDMD00
//* DMD_PIDFILE=/var/dm/dmd.pid
//* DMD_CODEPAGE=IBM-1047
//*
//* If you want to include comments in the data set or
//* z/OS UNIX file, specify the _CEE_ENVFILE_COMMENT
//* environment variable as the first environment variable
//* in the data set or file. The value specified for
//* the _CEE_ENVFILE_COMMENT variable is the comment character.
//* For example, if you want to use the pound sign, #, as
//* the comment character, specify this as the first
//* statement:
//* _CEE_ENVFILE_COMMENT=#
//*
//* For information on the above environment variables, refer to the
//* IP Configuration Reference.
//*
//STDENV DD DUMMY
//* Sample MVS data set containing environment variables:
//*STDENV DD DSN=TCPIP.DMD.ENV(DMD),DISP=SHR
//* Sample file containing environment variables:
//*STDENV DD PATH=’/etc/security/dmd.env’,PATHOPTS=(ORDONLY)
//*
//* Output written to stdout and stderr goes to the data set or
//* file specified with SYSPRINT or SYSOUT, respectively.
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*

Figure 17. DMD cataloged procedure

472 z/OS V2R1.0 Communications Server: IP Configuration Reference

|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

DMD environment variables
Table 23 provides a list of environment variables used by the DMD that can be
tailored to a particular installation.

Table 23. Defense Manager daemon (DMD) environment variables

Environment variable Description Any specific coding rules

DMD_CODEPAGE Used by the DMD to specify the
EBCDIC code page to be used
for the configuration file. The
default code page is IBM-1047.

The following code pages are supported:

v IBM-037

v IBM-273

v IBM-274

v IBM-275

v IBM-277

v IBM-278

v IBM-280

v IBM-281

v IBM-282

v IBM-284

v IBM-285

v IBM-297

v IBM-500

v IBM-871

v IBM-1047

v IBM-1140

v IBM-1141

v IBM-1142

v IBM-1143

v IBM-1144

v IBM-1145

v IBM-1146

v IBM-1147

v IBM-1148

v IBM-1149

Example:

DMD_CODEPAGE=IBM-1141

DMD_FILE Used by the DMD in the search
order for the DMD
configuration file. For details
about the search order used for
locating this configuration file,
see “TCP/IP configuration data
sets” on page 1.

Example:

DMD_FILE=/etc/security/dmd.conf

DMD_PIDFILE Used by the DMD in the search
order for the DMD PID file. The
search order for the DMD PID
file is as follows:

1. DMD_PIDFILE environment
variable

2. /var/dm/dmd.pid

Example:

DMD_PIDFILE=/var/dm/dmd.pid

Chapter 10. Defense Manager daemon 473

Table 23. Defense Manager daemon (DMD) environment variables (continued)

Environment variable Description Any specific coding rules

DMD_CTRACE_MEMBER Used by the DMD to specify the
name of a parmlib member that
contains default CTRACE
settings. The
DMD_CTRACE_MEMBER
environment variable is read by
the DMD only during
initialization. Changes to the
DMD_CTRACE_MEMBER after
DMD initialization have no
effect.

If not defined, the default value used by the
DMD is CTIDMD00.

Example:

DMD_CTRACE_MEMBER=CTIDMD00

DMD configuration file statements
The DMD configuration file contains parameters that define the behavior of the
daemon. These parameters are contained in two statement types, DMConfig and
DmStackConfig.

If a configuration error is detected during startup, the DMD logs the error and
exits. If a configuration error is detected during a dynamic refresh, the entire
refresh is rejected, the error is logged, and the DMD continues to run with the old
configuration values.

The DMD uses the following search order to locate the configuration file:
1. The name of a file or MVS data set specified by the DMD_FILE environment

variable
2. /etc/security/dmd.conf

All DMD configuration file statements are optional. An empty configuration file is
permitted, but if no DmStackConfig statements are defined, no stacks are
supported.

DmConfig statement

This statement contains configuration information for the DMD. Only one instance
of the DmConfig statement can be included in the configuration file. If there are
multiple instances of the DmConfig statement, an error is generated.

Syntax

�� DmConfig Braces & Parms on Separate Lines ��

Braces & Parms on Separate Lines:

{
DmConfig Parameters

}

474 z/OS V2R1.0 Communications Server: IP Configuration Reference

DmConfig Parameters:

SyslogLevel 7

SyslogLevel n

DefensiveFilterDirectory /var/dm/filters

DefensiveFilterDirectory directory
}

Parameters

SyslogLevel n
Specifies the level of logging to obtain from the Defense Manager daemon. The
following levels are supported:

0 - DM_SYSLOG_LEVEL_NONE
Disable Defense Manager syslog messages.

1 - DM_SYSLOG_LEVEL_MINIMUM
Minimal Defense Manager syslog output.

2 - DM_SYSLOG_LEVEL_LIFECYCLE_CLIENT
Include information about client connections and disconnections.

4 - DM_SYSLOG_LEVEL_LIFECYCLE_STACK
Include information about the cycling of stacks and the installation,
deletion, or modification of defensive filters in a stack.

8 - DM_SYSLOG_LEVEL_VERBOSE
Include cascaded internal error messages (for IBM service).

16 Reserved

32 Reserved

64 Reserved

128 Reserved

You can add these levels to create a cumulative logging effect.

Use the MODIFY DMD,REFRESH command to change the SyslogLevel value.

The default value is 7.

Rules:

v The default SyslogLevel value is in effect until the parameter is read from
the configuration file.

v Any level higher than 1 automatically includes 1.

DefensiveFilterDirectory dirname
The name of the directory in which the DMD creates a file for each stack using
a copy of that stack's active defensive filters. These are binary files managed by
the DMD; you must not manually modify them. This directory must exist
when the DMD starts, and the DMD must have authority to create, delete,
read, and write files in this directory.

This is not a refreshable parameter. Any refresh attempt fails if the new
DefensiveFilterDirectory parameter value differs from the value that was used
at server startup.

The default value is /var/dm/filters.

Rules:

v The binary files that DMD creates are persistent. If the DMD is restarted, the
files are expected to reflect the active defensive filters in the TCP/IP stacks.

Chapter 10. Defense Manager daemon 475

v Each stack can have a file that contains the persisted form of its active
defensive filters. This file, if present, is named active.stackname. The name of
the file that contains global defensive filters is active._globals_. This is a
binary file managed by the DMD; do not manually modify it.

v When the DMD starts, each active.stackname file in the defensive filter
directory is checked both for internal consistency and for consistency with
the installed defensive filters in its corresponding stack (if that stack is
active). If an inconsistency is detected, the file is considered to be corrupted
or untrustworthy and message EZD1731I is written to syslog.

v When a defensive filter file is found to be untrustworthy, it is renamed by
the DMD from active.stackname to untrusted.stackname.tttttttt, where tttttttt is
the hexadecimal value of the current system timestamp as reported by the
LE time() function. If the stack is active, any defensive filters currently in the
stack are individually unaddressable by the DMD and can be referenced
only by ipsec commands that accept or imply the ALL notation for
addressing a stack's defensive filters.

v When defensive filtering is set to inactive for a stack, and if there is an
active.stackname file for the stack, the file is renamed by the DMD from
active.stackname to inactive.stackname.tttttttt where tttttttt is the hexadecimal
value of the current system timestamp as reported by the language
environment time() function. You can set defensive filtering to inactive by
changing the mode of the stack on the DmStackConfig statement or by
issuing the MODIFY FORCE_INACTIVE command.

DmStackConfig statement

This statement contains the Defense Manager daemon configuration information
for a single TCP/IP stack.

Syntax

�� DmStackConfig stackname Braces & Parms on Separate Lines ��

Braces & Parms on Separate Lines:

�

{
Mode Active

Mode Active
Simulate
Inactive

MaxLifetime 1440

MaxLifetime lifetime
DefaultLogLimit 0

DefaultLogLimit 0
n

Exclude ipaddress
ipaddress/prefixLength

}

476 z/OS V2R1.0 Communications Server: IP Configuration Reference

Parameters

stackname
The name of the TCP/IP stack that is being configured for defensive filter
support. This is a required parameter, and there is no default value.

Mode Active | Simulate | Inactive
Specifies the defensive filter mode for the TCP/IP stack. Possible values are:

Active When the stack specified by the stackname value is active and
configured for IP security, it is managed by the DMD. Each defensive
filter applied to that stack operates in the mode specified for the
individual defensive filter, either block or simulate. Blocking mode
discards packets that match the defensive filter. Simulate mode
simulates a block for packets that match the defensive filter. When a
packet matches a defensive filter with a simulate mode, a message is
logged to indicate that the packet would have been discarded.
However, the packet is not discarded and processing continues with IP
filtering. For more information about simulate block behavior, see the
z/OS Communications Server: IP Configuration Guide. This is the
default.

Simulate
When the stack specified by the stackname value is active and
configured for IP security, it is managed by the DMD. All defensive
filters applied to that stack operate in simulate mode, overriding the
mode specified for the individual filters. Simulate mode simulates a
block. When a packet matches a defensive filter and the mode is
simulate, a message is logged to indicate that the packet would have
been discarded. However, the packet is not discarded and processing
continues with IP filtering. For more information about simulate block
behavior, see the z/OS Communications Server: IP Configuration
Guide.

Tip: Simulate mode would typically be used in a test environment.

Inactive
If the stack specified by the stackname value is active and configured
for IP security when the DMD starts, all defensive filters are removed
from that stack and also from the DMD memory. No new defensive
filters are installed in the stack while the mode is set to Inactive.

Tip: Use inactive mode to disable defensive filtering for the stack. If
you remove the DmStackConfig statement for the stack from the DMD
configuration file, the defensive filters currently installed in the stack
are not removed. Without the DmStackConfig statement, you cannot
use the z/OS UNIX ipsec command to delete defensive filters from the
stack.

Use the MODIFY DMD,REFRESH command to change this value. You can also
use the MODIFY DMD,FORCE_INACTIVE,stackname command to change the
mode to Inactive without refreshing the configuration.

Exclude
Specifies an IP address or subnet to exclude from the effects of defensive filters
installed in the stack specified by the stackname value. Inbound packets
originating from an IP address in the exclusion list are excluded from
defensive filter processing. Outbound packets destined to an IP address in the
exclusion list are excluded from defensive filter processing.

Chapter 10. Defense Manager daemon 477

Tip: Defensive filters are checked before IP security filters. To ensure that an
administrator is not blocked by a defensive filter, you can exclude the
administrator's IP address from defensive filter processing by specifying the
administrator's address on the Exclude statement.

ipaddress
Specifies a single IP address to be excluded from the effects of
defensive filters. This value can be an IPv4 or IPv6 address.

ipaddress/prefixLength
Specifies a prefix address specification that indicates the applicable IP
addresses to be excluded from the effects of defensive filters. The
prefixLength value is the number of unmasked leading bits in the
ipaddress value. The prefixLength value can be in the range 0 - 32 for
IPv4 addresses and 0 - 128 for IPv6 addresses. An IP address matches
this exclusion if its unmasked bits are identical to the defined
unmasked bits.

There is a limit of 10 Exclude keywords on the DmStackConfig statement.

Use the MODIFY DMD,REFRESH command to change this value. In case of a
successful refresh, the new list of exclusion addresses completely replaces the
prior list of exclusion addresses.

This is an optional parameter, and there is no default value.

MaxLifetime
Specifies the maximum lifetime of a defensive filter in minutes. This value
limits a defensive filter's lifetime when the defensive filter is first added or
later updated. Lifetime values that exceed the MaxLifetime value are truncated
to MaxLifetime minutes. Existing filters are not affected by a change to the
MaxLifetime value that results from a MODIFY DMD,REFRESH operation.

lifetime Specifies the maximum number of minutes that are allowed for a
defensive filter's lifetime. Valid values are in the range 1 - 20160 (2
weeks). The default is 1440 (1 day).

DefaultLogLimit
Specifies the default log limit for defensive filters that are added to this
TCP/IP stack. When a defensive filter is added and the loglimit parameter is
not specified on the z/OS UNIX ipsec add command, the DefaultLogLimit
value will be used. The log limit value is used to enable or disable the limiting
of defensive filter match messages (EZD1721I and EZD1722I). See filter-match
logging in z/OS Communications Server: IP Configuration Guide for more
information.

0 Disables the limiting of defensive filter match messages. If logging is
being done for this defensive filter, a message is generated for each
packet that matches the defensive filter. 0 is the default.

n Enables the limiting of defensive filter match messages. Valid values
are in the range 1 - 9999. The value limits the average rate of
filter-match messages generated in a 5-minute interval for a defensive
filter. For example, a value of 100 limits the average rate of filter-match
messages to 100 messages per 5-minute interval. A burst of up to 100
messages is allowed while maintaining the long-term average of 100
messages per 5-minute interval.

Result: The DMD installs and manages defensive filters only in TCP/IP stacks that
are configured with a DmStackConfig statement in the DMD configuration file.

478 z/OS V2R1.0 Communications Server: IP Configuration Reference

DMD configuration file sample
This topic shows the Defense Manager daemon configuration file sample.
#
IBM Communications Server for z/OS
SMP/E distribution path: /usr/lpp/tcpip/samples/dmd.conf
#
5650-ZOS Copyright IBM Corp. 2013.
Licensed Materials - Property of IBM
Status = CSV2R1
#
/etc/security/dmd.conf (Defense Manager daemon configuration)
#
This file contains sample Defense Manager daemon configuration
parameters. The search order used by the Defense Manager daemon to
locate the initial configuration file is (highest priority listed
first):
#
1) The name of a z/OS UNIX file or z/OS dataset specified by the
DMD_FILE environment variable.
2) /etc/security/dmd.conf
#
Some parameters are dynamically modifiable after the
Defense Manager daemon has been started. The parameters that are
dynamically modifiable are noted below.
#
One way of dynamically modifying parameters is to edit
the Defense Manager daemon configuration file after the Defense
Manager daemon has been started and then issue a MODIFY command
to cause the Defense Manager daemon to re-read the configuration file.
#
Example: MODIFY DMD,REFRESH
Note: DMD is the Defense Manager daemon procedure name.
#
After the Defense Manager daemon has been started, a different
configuration file can be specifed by using the Modify command with
the FILE parameter. This allows modifiable parameters to be
dynamically altered while the Defense Manager daemon is running. Note
that the parameter values modified in this fashion are not
persistent. To make the changes persistent, edit the dmd.conf
file that is located at the Defense Manager daemon initialization
time according to the search order described previously.
#
Example: MODIFY DMD,REFRESH,FILE=’/etc/security/dmd.conf2’
Note: DMD is the Defense Manager daemon procedure name.
#
See the IP System Administrator’s Commands book for more information
about the modify command.
#
See the IP Configuration Reference book for more information about
the individual parameters.
#
Blank lines, empty lines and lines beginning with the ’#’ char as the
first non-space character are ignored.

#
DMConfig
{
SyslogLevel 0-255 (dynamically modifiable)
#
Specifies the level of logging to obtain from the Defense Manager
daemon. To specify a combination of log levels, add the level numbers.
The supported levels are:
0 - DM_SYSLOG_LEVEL_NONE - Disable the Defense Manager daemon syslog
messages
1 - DM_SYSLOG_LEVEL_MINIMUM - Minimal Defense Manager daemon syslog
output
2 - DM_SYSLOG_LEVEL_LIFECYCLE_CLIENT - Include info about the connect
and disconnect of clients.
4 - DM_SYSLOG_LEVEL_LIFECYCLE_STACK - Include info about the cycling
of stacks and the installation, deletion or modification of
defensive filters to the stack.
8 - DM_SYSLOG_LEVEL_VERBOSE - Include cascaded internal error messages
(for IBM service)
16 - reserved
32 - reserved
64 - reserved
128 - reserved
Default: 7

Chapter 10. Defense Manager daemon 479

|

|

SyslogLevel 7
#
DefensiveFilterDirectory dirname (not dynamically modifiable)
#
The name of the directory where the Defense Manager daemon will
create a file for each stack with a copy of that stack’s
active defensive filters. These are binary files managed
by the Defense Manager daemon and must not be manually modified.
This directory must exist when the Defense Manager daemon starts and
the Defense Manager daemon must have authority to create, delete,
read and write files in this directory.
#
This is not a refreshable parameter. Any REFRESH attempt
will fail if the new value of the DefensiveFilterDirectory
parameter differs from the value used at server startup.
Default: /var/dm/filters
DefensiveFilterDirectory /var/dm/filters
}
#DmStackConfig TCPCS
#{
Mode Active|Simulate|Inactive (dynamically modifiable)
#
This specifies the defensive filter mode for the TCP/IP stack.
#
Valid options are:
#
Active When stackname is active and configured for IP security,
it will be managed by the DMD. Each defensive filter
applied to stackname will operate in the mode specified
for the individual defensive filter, block or simulate.
Blocking mode will discard packets that match the defensive
filter. Simulate mode will simulate a block for packets
that match the defensive filter. When a packet matches a
defensive filter with a mode of simulate, a message will
be logged indicating that the packet would have been
discarded. However, the packet will not be discarded and
IP filtering will continue. For more information on
simulate block behavior see the IP Configuration Guide.
Simulate When stackname is active and configured for IP security,
it will be managed by the DMD. All defensive filters
applied to stackname will operate in simulate mode,
overriding the mode specified for the individual filters.
Simulate mode simulates a block. When a packet matches a
defensive filter and the mode is simulate, a message will
be logged indicating that the packet would have been
discarded. However, the packet will not be discarded
and IP filtering will continue. For more information on
simulate block behavior see the IP Configuration Guide.
Tip: Simulate mode would typically be used in a test
environment.
Inactive If stackname is active and configured for IP security
when the DMD starts, then all defensive filters will be
removed from stackname and also from the DMD memory. No
new defensive filters will be installed in stackname
while the mode is Inactive.
Tip: Use Inactive mode to disable defensive filtering for
stackname. Removing the DmStackConfig statement for
stackname from the DMD configuration file does not
remove defensive filters currently installed in
stackname, and without the DmStackConfig statement,
the z/OS UNIX ipsec command cannot delete defensive
filters from stackname.
Default: Active
Mode Active
#
MaxLifetime lifetime (dynamically modifiable)
#
Valid values are 1-20160 minutes.
#
Maximum number of minutes allowed for a defensive filter’s lifetime.
This value limits a defensive filter’s lifetime when the defensive
filter is first added or later updated. Lifetime values that exceed
MaxLifetime are truncated to MaxLifetime minutes. Existing filters
are not affected by a change to MaxLifetime resulting from a
MODIFY DMD,REFRESH operation.
#
Default: 1440 minutes (one day)
MaxLifetime 1440
#
DefaultLogLimit loglimit (dynamically modifiable)

480 z/OS V2R1.0 Communications Server: IP Configuration Reference

|

#
Valid values are 0-9999.
#
Default log limit for defensive filters added to this TCP/IP stack.
When a defensive filter is added and the loglimit parameter is not
specified on the add command, the DefaultLogLimit value will be used.
The log limit value is used to enable or disable limiting of
defensive filter match messages (EZD1721I and EZD1722I).
#
Valid values are:
#
0 - Disables limiting of defensive filter match messages. If logging
is being done for this defensive filter, a message is generated
for each packet that matches the defensive filter.
1-9999 - Enables limiting of defensive filter match messages. The
value limits the average rate of defensive filter match
messages generated in a 5-minute interval. For example, a
value of 100 would limit the average rate of defensive
filter match messages to 100 messages per 5 minutes,
allowing up to 100 messages to be issued in a burst, while
maintaining the long-term average.
#
Default: 0
DefaultLogLimit 0
#
Exclude ipaddress | ipaddress/prefixLength (dynamically modifiable)
#
Specifies an IP address or subnet to exclude from the effects of
defensive filters. The ipaddress can be an IPv4 address or an IPv6
address. Hostnames are not supported.
#
There is a limit of 10 Exclude keywords on the DmStackConfig
statement.
#
In the case of a successful REFRESH, the new list of exclusion
addresses will completely replace the prior list of exclusion
addresses.
#
Default: None.
#Exclude 9.29.4.25
#Exclude 9.29.4.26
#}

Figure 18. DMD configuration file sample

Chapter 10. Defense Manager daemon 481

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

482 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 11. OMPROUTE

This topic includes the following information:
v “Starting OMPROUTE using z/OS UNIX (optional)”
v “OMPROUTE cataloged procedure (optional)”
v “OMPROUTE parameters” on page 484
v “OMPROUTE environment variables” on page 485
v “OMPROUTE configuration file statements” on page 487

Starting OMPROUTE using z/OS UNIX (optional)
If OMPROUTE is to be started from the z/OS shell, use the following syntax:

�� omproute
-tn -dn -sn -6tn -6dn

��

OMPROUTE cataloged procedure (optional)
If OMPROUTE is to be started by a procedure, update the cataloged procedure
OMPROUTE by copying the sample in SEZAINST(OMPROUTE) to your system or
recognized PROCLIB. Specify OMPROUTE parameters and change the data set
names to suit your local configuration.
//*
//* TCP/IP for MVS
//* SMP/E Distribution Name: EZBORPRC
//*
//* 5650-ZOS Copyright IBM Corp. 1998, 2013
//* Licensed Materials - Property of IBM
//* This product contains "Restricted Materials of IBM"
//* All rights reserved.
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//* See IBM Copyright Instructions.
//*
//OMPROUTE PROC
//OMPROUTE EXEC PGM=OMPROUTE,REGION=10M,TIME=NOLIMIT,
// PARM=(’ENVAR("_CEE_ENVFILE_S=DD:STDENV")/’)
//*
//* Example of start parameters to OMPROUTE:
//*
//* PARM=(’ENVAR("_CEE_ENVFILE_S=DD:STDENV")/-t1 -6t1’)
//*
//* Provide environment variables to run with the
//* desired stack and configuration. As an example,
//* the file specified by STDENV could have these
//* lines in it:
//*
//* RESOLVER_CONFIG=//’SYS1.TCPPARMS(TCPDATA2)’
//* OMPROUTE_FILE=/u/usernnn/config.tcpcs2
//* OMPROUTE_DEBUG_FILE=/tmp/logs/omproute.debug
//* OMPROUTE_IPV6_DEBUG_FILE=/tmp/logs/omprout6.debug
//* OMPROUTE_DEBUG_FILE_CONTROL=1000,5
//*
//* For information on the above environment variables,
//* refer to the IP CONFIGURATION GUIDE.

© Copyright IBM Corp. 2000, 2015 483

|

|
|
|
|
|
|
|
|

|

//*
//* If you want to include comments in the data set or
//* z/OS UNIX file, specify the _CEE_ENVFILE_COMMENT
//* environment variable as the first environment variable
//* in the data set or file. The value specified for
//* the _CEE_ENVFILE_COMMENT variable is the comment character.
//* For example, if you want to use the semicolon sign, ;, as
//* the comment character, specify this as the first
//* statement:
//* _CEE_ENVFILE_COMMENT=;
//*
//STDENV DD PATH=’/u/usernnn/envcs2’,
// PATHOPTS=(ORDONLY)
//*
//* The stdout stream may be redirected to a HFS file as
//* shown below.
//* The PATHOPTS OTRUNC option will clear the stdout file
//* every time OMPROUTE is started. If you want to retain
//* previous stdout information, change it to OAPPEND.
//*
//SYSPRINT DD SYSOUT=*
//*SYSPRINT DD PATH=’/tmp/omproute.stdout’,
//* PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
//* PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//*
//* The stderr stream may be redirected to a HFS file as
//* shown below.
//* The PATHOPTS OTRUNC option will clear the stderr file
//* every time OMPROUTE is started. If you want to retain
//* previous stderr information, change it to OAPPEND.
//*
//SYSOUT DD SYSOUT=*
//*SYSOUT DD PATH=’/tmp/omproute.stderr’,
//* PATHOPTS=(OWRONLY,OCREAT,OTRUNC),
//* PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//*
//CEEDUMP DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)

Restriction: When using _CEE_ENVFILE with an MVS data set, the data set must
be allocated with RECFM=V. To use a RECFM=F data set, _CEE_ENVFILE_S
should be used to prevent the environment variable values from being padded
with blanks.

OMPROUTE parameters
-tn

External tracing level for OMPROUTE initialization and IPv4 routing protocols,
where n is a supported trace level. The following values are supported:
1. Informational messages
2. Formatted packet trace and informational messages

-dn
Internal debugging level for OMPROUTE initialization and IPv4 routing
protocols, where n is a supported debug level. This parameter is intended for
service, as it provides information needed for debugging problems.

Figure 19. OMPROUTE cataloged procedure

484 z/OS V2R1.0 Communications Server: IP Configuration Reference

|
|
|
|
|
|
|
|
|
|

|

-sn
Internal subagent debugging level, where n is a supported debug level. This
parameter is intended for service, as it provides information needed for
debugging problems.

-6tn
External tracing level for IPv6 routing protocols, where n is a supported trace
level. The following values are supported:
1. Informational messages
2. Formatted packet trace and informational messages

-6dn
Internal debugging level for IPv6 routing protocols, where n is a supported
debug level. This parameter is intended for service, as it provides information
needed for debugging problems.

For more information about the -dn, -6dn, and -sn parameters, see z/OS
Communications Server: IP Diagnosis Guide.

IBM Health Checker for z/OS can be used to check whether the total number of
indirect routes in a TCP/IP stack routing table exceeds a maximum threshold.
When this threshold is exceeded, OMPROUTE and the TCP/IP stack may
potentially experience high CPU consumption from routing changes. A large
routing table is considered to be inefficient in network design and operation. For
more details about IBM Health Checker for z/OS, see z/OS Communications
Server: IP Diagnosis Guide and IBM Health Checker for z/OS: User's Guide .

OMPROUTE environment variables
Table 24 provides a list of environment variables used by OMPROUTE and that be
tailored to a particular installation:

Table 24. OMPROUTE environment variables

Environment variable Description Any specific coding rules (or a link
to syntax)

RESOLVER_CONFIG The RESOLVER_CONFIG variable is
used by OMPROUTE to locate the
resolver configuration file.

For more information about
OMPROUTE's use of the resolver
configuration file, see z/OS
Communications Server: IP
Configuration Guide. For more
information about the
RESOLVER_CONFIG environment
variable, see z/OS UNIX System
Services Planning.

OMPROUTE_CTRACE_MEMBER The
OMPROUTE_CTRACE_MEMBER
variable is used by OMPROUTE to
specify the name of the parmlib
member containing CTRACE default
settings. Use this environment
variable to set different CTRACE
options and buffer sizes for multiple
OMPROUTE instances.

If not defined, the default value is
CTIORA00.

Chapter 11. OMPROUTE 485

Table 24. OMPROUTE environment variables (continued)

Environment variable Description Any specific coding rules (or a link
to syntax)

OMPROUTE_DEBUG_FILE The OMPROUTE_DEBUG_FILE
variable is used by OMPROUTE to
override the debug output
destination for IPv4 dynamic routing
protocols and for processing common
to both IPv4 and IPv6 routing
protocols. For more information
about using this environment
variable, see z/OS Communications
Server: IP Configuration Guide.

Restriction: Ensure that the two
debug file names are not identical in
the characters up to the first period
(.). This prevents problems when the
initial debug files fill up and
OMPROUTE tries to rename them,
using the name up to the first period
(.) with a sequence number
substituted for the rest of the
name.For more information about
using this environment variable, see
z/OS Communications Server: IP
Configuration Guide.

OMPROUTE_IPV6_DEBUG_FILE The OMPROUTE_IPV6_DEBUG_FILE
variable is used by OMPROUTE to
override the debug output
destination for IPv6 routing
protocols.

Restriction: Ensure that the two
debug file names are not identical in
the characters up to the first period
(.). This prevents problems when the
initial debug files fill up and
OMPROUTE tries to rename them,
using the name up to the first period
(.) with a sequence number
substituted for the rest of the
name.For more information about
using this environment variable, see
z/OS Communications Server: IP
Configuration Guide.

OMPROUTE_DEBUG_FILE_
CONTROL

The OMPROUTE_DEBUG_FILE_
CONTROL variable is used to specify
the size and quantity of the files
produced as a result of the
OMPROUTE_DEBUG_FILE and
OMPROUTE_IPV6_DEBUG_FILE
environment variable.

For more information about using
this environment variable, see z/OS
Communications Server: IP
Configuration Guide.

OMPROUTE_FILE Used by OMPROUTE in the search
order for the OMPROUTE
configuration file. It uses the value as
the name of an MVS data set or
z/OS UNIX file to access the
configuration data.

For more information about using
this environment variable, see z/OS
Communications Server: IP
Configuration Guide.

OMPROUTE_OPTIONS The OMPROUTE_OPTIONS variable
is ignored and will be retired in a
future release.

The only supported parameter is
hello_hi, which is ignored and will be
retired in a future release.

The behavior, which is previously
provided only when hello_hi is
coded, is now always enabled. The
hello_hi option is used to enforce
OMPROUTE to process the hello
packets at a higher priority than
other updates. The hello_hi option
also helps prevent adjacencies from
failing when OMPROUTE is being
flooded with protocol packets.

486 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 24. OMPROUTE environment variables (continued)

Environment variable Description Any specific coding rules (or a link
to syntax)

SNMP_PORT Specifies the port to which a DPI
subagent directs a connection query.
The default is 161 (the default port
on which the SNMP agent listens for
queries).

None

TMPDIR Holds the name of a directory where
shell commands are free to create
temporary working files. If TMPDIR
is not defined, the default directory is
/tmp.

For more information about using
this environment variable, see z/OS
UNIX System Services Command
Reference.

OMPROUTE configuration file statements
Statements in the OMPROUTE configuration file have the following syntax:
type tag=value tag=value..;
where:
type Specifies what is to be configured
tag=value Specifies a parameter and its associated value.
type=value Used for statements that have only a single parameter.

Rules: The following list shows the syntax rules for the OMPROUTE configuration
statements:
v Types, tags, and values can be specified in mixed case.
v Every configuration statement, with the exception of the INCLUDE statement,

must end with a semicolon (;).
v Blanks and comments are supported. Comments are identified by a semicolon in

any column. Comments cannot appear within a configuration statement.
v Statements can begin in any column.
v There must be no sequence numbers in the data set or file.
v Statements with only optional operands must have at least one operand coded,

even if all operands have defaults.
v You can use static system symbols in OMPROUTE configuration file statements.

A sample OMPROUTE configuration file is provided in SEZAINST(EZAORCFG).

INCLUDE statement

This statement causes configuration statements from the specified data set to be
included at the point at which the INCLUDE statement is encountered in the
configuration file.

Rules:

v The INCLUDE statement must be the only configuration statement on the line.
v The INCLUDE statement must not end with semicolon.
v There must be no more than 10 nested INCLUDE statements.
v You can specify static system symbols as part of the data set name.

Chapter 11. OMPROUTE 487

Syntax

�� INCLUDE //'fully qualified MVS dataset name'
/file system absolute pathname

��

Parameters

//'fully qualified MVS dataset name'
The complete name of the MVS data set that contains the OMPROUTE
configuration statements. The data set can be a sequential data set or a PDS
with the member name.

Requirement: The double slash (//) and beginning and ending quotation
marks are required.

/file system absolute pathname
The complete name of the file system that contains the OMPROUTE
configuration statements. The z/OS UNIX path name is case sensitive.

Requirement: The beginning slash (/) is required.

Guideline: If a syntax error is encountered in the final version of the
configuration file after one or more INCLUDE files were processed, use debug
level d1 to print a copy of the expanded configuration file to your
OMPROUTE trace. This helps to identify the correct line number where the
syntax error was found, as reported from the error message. For more
information about OMPROUTE traces and debug information, see z/OS
Communications Server: IP Diagnosis Guide.

OSPF configuration statements
This topic contains descriptions of the following OSPF configuration statements:
v AREA
v AS_BOUNDARY_ROUTING
v COMPARISON
v DEMAND_CIRCUIT
v OSPF
v OSPF_INTERFACE
v RANGE
v ROUTERID
v VIRTUAL _LINK

Use these statements to configure the OSPF environment for IPv4. For information
about the statements used to configure IPv6 OSPF, see “IPv6 OSPF configuration
statements” on page 518.

See z/OS Communications Server: IP System Administrator's Commands for
information about how to display configuration information.

AREA statement

Use the AREA statement to set the parameters for an OSPF area. If no areas are
defined, OMPROUTE assumes that all directly attached networks belong to the
backbone area (area ID 0.0.0.0).

488 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

�� Area
Area_Number=0.0.0.0

Area_Number = ospf_area_address
�

�
Authentication_Type=None

Authentication_Type = security_scheme

Stub_Area=NO

Stub_Area = value
�

�
Stub_Default_Cost=1

Stub_Default_Cost = cost

Import_Summaries=YES

Import_Summaries = value
��

Parameters

Area_Number
The OSPF area number in dotted decimal.

Authentication_Type
The default security scheme to be used in the area. Valid values for
authentication types are MD5, which indicates MD5 cryptographic
authentication as described in Appendix D of RFC 2328; PASSWORD, which
indicates a simple password; or NONE, which indicates that no authentication
is necessary to pass packets. The area's default security scheme can be
overridden on an interface basis by specifying the Authentication_Type
keyword on OSPF_INTERFACE or VIRTUAL_LINK statements.

Stub_Area
Specifies whether this area is a stub area or not. Valid values are YES or NO.

If you specify Stub_area = YES, the area does not receive any AS external link
advertisements, reducing the size of your database and decreasing memory
usage for routers in the stub area. You cannot configure virtual links through a
stub area. You cannot configure a router within the stub area as an AS
boundary router.

You cannot configure the backbone as a stub area. External routing in stub
areas is based on a default route. Each border area router attaching to a stub
area originates a default route for this purpose. The cost of this default route is
also configurable with the AREA statement.

Stub_Default_Cost
The cost that an OMPROUTE area border router associates with the default
route that it generates into the stub area. Valid values are in the range 1 -
16 777 215.

Import_Summaries
Determines whether this stub area mports a routing summary from a neighbor
area. Valid values are YES or NO.

AS_BOUNDARY_ROUTING statement

Use the AS_BOUNDARY_ROUTING statement to enables the AS boundary routing
capability, which allows you to import routes learned from other methods (RIP,
statically configured, and direct routes) into the OSPF domain. All routes are
imported as either Type 1 or Type 2 external routes, depending on what was coded
on the Comparison statement. The metric type used when importing routes
determines how the imported cost is viewed by the OSPF domain. When

Chapter 11. OMPROUTE 489

comparing Type 2 metrics, only the external cost is considered in picking the best
route. When comparing Type 1 metrics, the external and internal costs of the route
are combined before making the comparison.

Rules:

v This statement must be coded even if the only route you want to import is the
default route (destination 0.0.0.0).

v You can import into the OSPF domain only static routes that are configured in
the main route table. You cannot import static routes that are configured in a
policy-based route table.

Syntax

�� AS_Boundary_Routing
Import_RIP_Routes=No

Import_RIP_Routes = value
�

�
Import_Static_Routes=No

Import_Static_Routes = value

Import_Direct_Routes=No

Import_Direct_Routes = value
�

�
Import_Subnet_Routes=Yes

Import_Subnet_Routes = value

Originate_Default_Route=No

Originate_Default_Route = value
�

�
Originate_as_Type=2

Originate_as_Type = type

Default_Route_Cost=1

Default_Route_Cost = cost
�

�
Learn_Default_Route=NO

Learn_Default_Route = value
�

�
Default_Forwarding_Address = address

��

Parameters

Import_RIP_Routes
Specifies whether routes learned by RIP are imported into the OSPF routing
domain. Valid values are YES or NO.

Import_Static_Routes
Specifies whether static routes (routes defined to the TCP/IP stack using the
BEGINROUTES or GATEWAY statement) are imported into the OSPF routing
domain. Valid values are YES or NO.

Import_Direct_Routes
Specifies whether direct routes are imported into the OSPF routing domain.
Valid values are YES or NO.

Import_Subnet_Routes
Independent of the RIP, static, and direct routes you can choose to import, you
can also configure whether or not to import subnet routes into the OSPF
domain. Valid values are YES or NO.

Originate_Default_Route
Specifies whether or not this router originates an AS External default route into

490 z/OS V2R1.0 Communications Server: IP Configuration Reference

the OSPF domain. If YES and Default_Forwarding_Address is not also coded
(or is coded to 0.0.0.0), this router advertises itself as a default router. Valid
values are YES or NO.

Originate_as_Type
Specifies the external type assigned to the default route. Valid values are 1 or
2.

Default_Route_Cost
Specifies the cost that OSPF associates with the default route. Valid values are
in the range 0 - 16 777 215.

Learn_Default_Route
Specifies whether OSPF learns default routes from inbound RIP or OSPF
external packets when their cost is equal to or higher than the default route
originated by this host. Valid values are YES or NO.

Default_Forwarding_Address
If Originate_Default_Route is YES, this optional parameter can be used to
specify that this router should originate a default route on behalf of a different
router. This parameter is not needed if this router is to advertise itself as the
default router. It should be used only when the default router is another router
that this router can route to, which is not capable of advertising an OSPF
default route on its own behalf. In that case, this parameter should be set to a
reachable interface IP address on the other router.

Restriction: This address must be reachable using an OSPF intra-area or
inter-area route (labelled as SPF or SPIA in the RTTABLE display, or labelled as
DIR but using an OSPF interface). This route could be a host, subnet, network,
or default route. If no eligible route is found, the forwarding address is not
included in the advertisements generated by this statement.

COMPARISON statement

Use the COMPARISON statement as an alternate method for specifying the
Comparison parameter on the OSPF configuration statement. See “OSPF
statement” on page 492 for a description of this statement.

For additional information about the COMPARISON configuration statement, see
z/OS Communications Server: IP Configuration Guide.

Syntax

��
Comparison=Type2

Comparison = value
��

Parameters

Comparison
Compare to type 1 or 2 externals. Valid values are Type1 (or 1) or Type2 (or 2).

DEMAND_CIRCUIT statement

Use the DEMAND_CIRCUIT statement as an alternate method for specifying the
DEMAND_CIRCUIT parameter on the OSPF configuration statement. See “OSPF
statement” on page 492 for a description of this statement.

Chapter 11. OMPROUTE 491

Syntax

��
Demand_Circuit=YES

Demand_Circuit = value
��

Parameters

Demand_Circuit
Valid values are YES or NO.

OSPF statement

Use the OSPF statement to specify parameters that apply globally to IPv4 OSPF,
either to all interfaces or to the overall OSPF autonomous system.

The following parameters can also be specified as stand-alone configuration
statements:
v DEMAND_CIRCUIT
v ROUTERID
v COMPARISON

Guideline: You should use the OSPF statement for defining these parameters. If
both the OSPF statement and the standalone statements are coded, the last one
coded in the configuration file takes precedence.

Syntax

�� OSPF
RouterID = value

Comparison = Type2

Comparison = value
�

�
Demand_Circuit = YES

Demand_Circuit = value

DR_Max_Adj_Attempt = 0

DR_Max_Adj_Attempt = value
��

Parameters

RouterID
Every router in an IPv4 OSPF routing domain must be assigned a unique
32-bit router ID.

The value used for the OSPF router ID is chosen as follows:
v If this RouterID statement is specified, the value configured is used as the

OSPF router ID. This value must be one of the OSPF interface IP addresses
that is configured for the stack.
Rule: Loopback and reserved 0.0.0.0 addresses are not valid IP interface
addresses.

v If the router ID is not configured, one of the OSPF interface addresses will
be used as the OSPF router ID, provided that the interface exists in the
TCPIP profile and matches the corresponding OSPF interface statement in
the OMPROUTE configuration file at startup.
Result: When OMPROUTE has to assign the router ID, it does not use
dynamic VIPA IP addresses. This avoidance of dynamic VIPA IP addresses

492 z/OS V2R1.0 Communications Server: IP Configuration Reference

cannot be guaranteed; for example, if dynamic VIPAs are the only active
OSPF interfaces when OMPROUTE chooses the router ID, then one of them
will be chosen.
Guideline: Because dynamic VIPAs (DVIPAs) can move between z/OS
hosts, the router ID should be a physical interface or a static VIPA, not a
dynamic VIPA address. To ensure an appropriate router ID, specify the
router ID to OMPROUTE.

Valid values are any IPv4 dotted-decimal address that matches a configured
OSPF interface.

Comparison
Tells OMPROUTE where external routes fit in the IPv4 OSPF hierarchy. OSPF
supports two types of external metrics. Type 1 external metrics are equivalent
to the link state metric. Type 2 external metrics are greater than the cost of any
path internal to the autonomous system. Use of type 2 external metrics
assumes that routing between autonomous systems is the major cost of routing
a packet, and eliminates the need for conversion of external costs to internal
link state metrics. For more information about the COMPARISON
configuration parameter, see z/OS Communications Server: IP Configuration
Guide. Valid values are Type1 (or 1) or Type2 (or 2).

Demand_Circuit
This value determines the global demand circuit setting. Coding YES enables
demand circuits. Demand circuit parameters can then be coded on the
OSPF_Interface statement. Valid values are Yes or No.

DR_Max_Adj_Attempt
Specifies the maximum number of adjacency attempts to be used for reporting
and controlling futile neighbor state loops. After the adjacency attempt count
for a neighboring designated router reaches the threshold, an informational
message is issued to report the problem. If a redundant interface is available
that can reach the neighbor, adjacency formation is attempted over that
interface. An informational message is issued to report the interface switch and
adjacency formation attempt. Valid values are in the range 0 - 100. The value 0
specifies infinite retries.

For information about futile neighbor state loops, see the network design
considerations information in z/OS Communications Server: IP Configuration
Guide. For the types of interfaces that support the futile neighbor state loop
detection for OSPF, see “Interfaces supported by OMPROUTE” on page 548.

OSPF_INTERFACE statement

Use the OSPF_INTERFACE statement to set the OSPF parameters for interfaces.
Replicate this statement in the configuration file for each IP interface over which
OSPF operates.

Syntax

�� OSPF_Interface IP_address = ip_address Name = interface_name �

Chapter 11. OMPROUTE 493

� Subnet_Mask = subnet_mask
Destination_Addr = address

�

�
Attaches_To_Area=0.0.0.0

Attaches_To_Area = area

MTU=576

MTU = mtu_size
�

�
Retransmission_Interval=5

Retransmission_Interval = frequency

Transmission_Delay=1

Transmission_Delay = delay
�

�
Router_Priority=1

Router_Priority = priority

Hello_Interval=10

Hello_Interval = interval
�

�
DB_Exchange_Interval=40

DB_Exchange_Interval = interval

Dead_Router_Interval=40

Dead_Router_Interval = interval
�

�
Cost0=1

Cost0 = cost

Subnet=NO

Subnet = value
�

�
Advertise_VIPA_Routes=Host_And_Subnet

Advertise_VIPA_Routes = value Authentication_type=value
�

�
Authentication_Key_ID=0

Authentication_Key_ID=id

Authentication_Key=nulls

Authentication_Key = password
�

�
Demand_Circuit=no

Demand_Circuit = value

Hello_Suppression=Allow

Hello_Suppression = value
�

�
PP_Poll_Interval=60

PP_Poll_Interval = interval

Parallel_OSPF=Backup

Parallel_OSPF = value
�

�
Non_Broadcast=NO

Non_Broadcast = value

NB_Poll_Interval=120

NB_Poll_Interval = interval
�

� �

DR_Neighbor = value

�

No_DR_Neighbor = value
�

494 z/OS V2R1.0 Communications Server: IP Configuration Reference

�
Max_Xmit_Time=120

Max_Xmit_Time = time

Min_Xmit_Time=0.5

Min_Xmit_Time = time
�

�
RT_Gain=0.125

RT_Gain = value

Variance_Gain=0.25

Variance_Gain = value
�

�
Variance_Mult=2

Variance_Mult = mult

Delay_Acks=YES

Delay_Acks = value
��

Parameters

IP_address
IP address of the local interface to be configured for OSPF.

The IP address can be a valid IP address that is configured on the system, or it
can be specified with asterisks (*) as wildcards. The valid wildcard
specifications are shown in the following example. The result of coding a
wildcard value is that all configured interfaces whose IP address matches the
wildcard are configured as OSPF interfaces. Configured interface IP addresses
and names are matched against possible wildcards in the order they appear in
the following example with the name and any matching wildcard being the
best match, x.y.z.* being second best, and so on.
interface name and any matching wildcard
x.y.z.*
x.y.*.*
x.*.*.*
..*.* - Same as ALL
ALL - Same as *.*.*.*

Tip: For more information about how wildcard interfaces are parsed, see this
Method of assigning interface definitions to stack interfaces (wildcard and
explicit): in z/OS Communications Server: IP Configuration Guide.

Because a stack could have a large number of Dynamic VIPAs (DVIPAs)
defined, as well as DVIPA ranges, an additional wildcard capability exists on
the OSPF_INTERFACE statement for use only with DVIPAs. Ranges of DVIPA
interfaces can be defined using the subnet mask parameter on the
OSPF_INTERFACE statement. This mode of definition applies to Dynamic
VIPAs defined in the stack with VIPADEFINE, VIPABACKUP, or VIPARANGE.
The range defined in this way are all the IP addresses that fall within the
subnet defined by the mask and the IP address. When this type of wildcarding
is being used, the value of the IP_ADDRESS parameter must be the subnet
number of the range. Note that this subnet number is not equivalent to a
DVIPA address as defined in VIPADEFINE or VIPABACKUP parameter of the
VIPADYNAMIC statement in the TCP/IP profile. If VIPARANGE is defined,
you should code DVIPA subnet address for the subnet number. For example,
the following code defines a range of six addresses (9.67.101.9 to 9.67.101.14)
that can be used for DVIPA addresses and matches any DVIPA interface that
falls into the 9.67.101.8/29 subnet:
IP_ADDRESS = 9.67.101.8
SUBNET_MASK = 255.255.255.248

Chapter 11. OMPROUTE 495

Alternatively, the following code does not because 9.67.101.17 is an address
within the subnet range, not the subnet number itself (that would be
9.67.101.16). This second definition matches only an interface whose home
address is 9.67.101.17.
IP_ADDRESS= 9.67.101.17
SUBNET_MASK=255.255.255.248

Name
The name of the interface. A valid value is any string 1 - 16 characters in
length.

Rules:

v If this is not a wildcard interface definition, the name must match the link
name that is coded for the corresponding IP address on the HOME
statement or the interface name coded for the corresponding IPv4
INTERFACE statement in the TCP/IP profile.

v If this is a wildcard interface definition, then this parameter is used in
conjunction with the defined wildcard IP address when searching for
definitions to match a stack interface. For more details about this process,
see method of assigning interface definitions to stack interfaces (wildcard
and explicit): in z/OS Communications Server: IP Configuration Guide.

Subnet_Mask
The subnet mask of the subnet to which this interface attaches. This value
must be the same for all routers attached to a common network. For more
information, see z/OS Communications Server: IP Configuration Guide. If you
configure this interface in the TCP/IP profile using the IPv4 INTERFACE
statement and you configure a subnet mask on that statement that does not
match the value that you specify on this parameter, OMPROUTE issues
message EZZ8164I and uses this subnet mask.

Destination_Addr
IP address of the host at the remote end of this interface. This parameter is
valid only for point-to-point links. If this parameter is not specified for a
point-to-point link, a route to the host at the remote end of the interface is not
added to the appropriate TCP/IP route tables (main and policy-based tables)
until OSPF communication is established with that host. A subnet route for the
interface is added when OMPROUTE is initialized whether or not this
parameter is specified.

Attaches_To_Area
OSPF area to which this interface attaches. Valid values are 0.0.0.0 (the
backbone), or any area defined by the AREA statement.

MTU
The maximum transmission unit size that OSPF adds to the appropriate
routing tables (main and policy-based tables) for routes that use this interface.
Valid values are in the range 0 - 65535. If you configure this interface in the
TCP/IP profile using the IPv4 INTERFACE statement and you configure an
MTU on that statement and the MTU that you configure on that statement
does not match the MTU (the configured value or the default value) on this
statement, OMPROUTE issues message EZZ8163I and uses the MTU value on
this statement.

Tip: See z/OS Communications Server: IP Configuration Guide, in section
Maximum transmission unit considerations, for additional information about
how TCP/IP uses the MTU to determine the largest size frame to send.

496 z/OS V2R1.0 Communications Server: IP Configuration Reference

Retransmission_Interval
Sets the frequency (in seconds) of retransmitting link-state update packets,
link-state request packets, and database description packets. Valid values are in
the range 1 - 65535 seconds.

If this parameter is set too low, needless retransmissions occur that could affect
performance and interfere with neighbor adjacency establishment. It should be
set to a higher value for a slower machine.

Transmission_Delay
This parameter is an estimate of the number of seconds that it takes to
transmit link-state information over the interface. Each link-state advertisement
has a finite lifetime of 1 hour. As each link-state advertisement is sent out from
this interface, it is aged by this configured transmission delay. Valid values are
in the range 1 - 65535 seconds.

Router_Priority
This value is used for broadcast and nonbroadcast multiaccess networks to
elect the designated router, with the highest priority router being elected. Valid
values are in the range 0 - 255.

A value of 0 indicates that OMPROUTE never becomes the designated router.
A value of 1 indicates the lowest possible eligible priority and a value of 255
indicates the highest possible priority.

Hello_Interval
This parameter defines the number of seconds between OSPF Hello packets
being sent out on this interface. This value must be the same for all routers
attached to a common network. Valid values are in the range 1 - 255 seconds.

DB_Exchange_Interval
The interval in seconds that the database exchange process cannot exceed. If
the interval elapses, the procedure is restarted. This value must be larger than
the Hello_Interval. If no value is specified, the DB_Exchange_Interval is set to
the Dead_Router_Interval. Valid values are 2 through 65535.

Dead_Router_Interval
The interval in seconds, after not having received an OSPF Hello, that the
neighbor is declared to be down. This value must be larger than the
Hello_Interval. Setting this value too close to the Hello_Interval can result in
the collapse of adjacencies. A value of 4*Hello_Interval is preferred. This value
must be the same for all routers attached to a common network. Valid values
are 2 - 65535.

Cost0
The OSPF cost for this interface. The cost is used to determine the shortest
path to a destination. Valid values are in the range 1 - 65535.

Subnet
The meaning of this parameter depends on the interface type.

For an interface to a point-to-point link, this option enables the advertisement
of a stub route to the subnet that represents the link rather than the host route
for the other router's address. In effect, this parameter controls whether, for
this interface, OMPROUTE implements option 1 (SUBNET=NO) or option 2
(SUBNET=YES) described in RFC 2328 (OSPF version 2) topic 12.4.1.1. For a
detailed explanation of this option, see the IPv4 interface information in z/OS
Communications Server: IP Configuration Guide.

For a VIPA interface, this option suppresses advertisement of either the VIPA
host or subnet route. Normally z/OS Communications Server advertises both a

Chapter 11. OMPROUTE 497

host route and a subnet route for owned VIPA interfaces. With this option set
to NOVIPAHOST, the VIPA host route is suppressed and only the VIPA subnet
route is advertised. With this option set to NOVIPASUBNET, the VIPA subnet
route is suppressed and only the VIPA host route is advertised.

Legal values are:
v YES
v NO
v NOVIPASUBNET
v NOVIPAHOST

Guidelines:

v Using the NOVIPAHOST value has the same effect as setting SUBNET=YES
or ADVERTISE_VIPA_ROUTES=SUBNET_ONLY, using the
NOVIPASUBNET value is equivalent to setting
ADVERTISE_VIPA_ROUTES=HOST_ONLY

v The ADVERTISE_VIPA_ROUTES option is the preferred method to suppress
VIPA advertisements.

Rule: Do not use this option for dynamic VIPAs or for any VIPA whose subnet
might exist on multiple hosts. If you do, problems can occur routing to all
VIPAs that share the subnet.

Tips:

v Specifying SUBNET=YES on a VIPA interface has the same effect as
specifying SUBNET=NOVIPAHOST.

v In order to fully suppress the VIPA subnet route,
SUBNET=NOVIPASUBNET must be specified on every VIPA
OSPF_INTERFACE statement that defines a VIPA in a common subnet.

Advertise_VIPA_Routes
This option is valid only on VIPA interfaces and controls how OMPROUTE
advertises the VIPA address. The default value of HOST_AND_SUBNET
advertises both the VIPA host and subnet route. With this option set to
HOST_ONLY, only the VIPA host route is advertised. With this option set to
SUBNET_ONLY, only the VIPA subnet route is advertised.

The value specified on the ADVERTISE_VIPA_ROUTES option overrides any
value specified on the SUBNET option. Legal values are:
v HOST_AND_SUBNET
v HOST_ONLY
v SUBNET_ONLY

Rule: Do not specify SUBNET_ONLY for dynamic VIPAs or for any VIPA
whose subnet might exist on multiple hosts. Problems can occur routing to all
VIPAs that share the subnet when the subnet exists on multiple hosts.

Tip: The HOST_ONLY option must be specified for every VIPA in a common
subnet. If the HOST_ONLY option is not specified for every VIPA in a common
subnet, OMPROUTE still advertises the VIPA subnet route for the interfaces
not specifying HOST_ONLY.

Authentication_Type
The security scheme to be used on the network to which the interface attaches.
If parameter is not specified, takes on the default value specified for the area to
which the interface is attached. Valid values for authentication types are MD5,
which indicates MD5 cryptographic authentication as described in Appendix D
of RFC 2328; PASSWORD, which indicates a simple password; or NONE,

498 z/OS V2R1.0 Communications Server: IP Configuration Reference

which indicates that no authentication is necessary to pass packets. All hosts
on the network must be configured with the same security scheme.

Authentication_Key_ID
The identifier of the authentication key defined with the
AUTHENTICATION_KEY keyword. This is a constant numeric value from 0 -
255, with a default value of 0. It is relevant only when MD5 cryptographic
authentication is employed on the interface; otherwise, it is ignored. This field
is provided for compatibility with other routers that might require
identification of a key identifier with the authentication key.

Authentication_Key
The value of the authentication key for this interface. This value must be the
same for all routers attached to a common medium. The coding of this
parameter depends on the authentication type being used on this interface.

For authentication type none, this parameter is not required and is ignored if
coded.

For authentication type password, code the password for OSPF routers that are
attached to this subnet. Valid values are any characters from EBCDIC code
page 1047 up to 8 characters in length coded within double quotation marks or
any hexadecimal string up to 8 bytes (16 hexadecimal characters) long that
begins with 0x.

For authentication type MD5, code the 16-byte MD5 authentication key for
OSPF routers attached to this subnet. This value can be coded in one of the
following ways:
v The standard method is with a 16-byte hexadecimal string beginning with 0x

(0x plus 32 hexadecimal characters). In some cases, pwtokey can be used to
generate hexadecimal MD5 keys. See z/OS Communications Server: IP
System Administrator's Commands for more information.

v An additional method, which provides compatibility with Cisco, Extreme,
and other vendor routers that use a Cisco-compatible CLI interface is to code
the MD5 key as an ASCII string, specified in double quotation marks
prefixed with A. For example, to be compatible with this Cisco key
definition, use the following code:
ip ospf message-digest-key 4 md5 ABCDEFGHIJKLMNOP

This value would be coded in OMPROUTE as follows:
AUTHENTICATION_KEY_ID =4
AUTHENTICATION_KEY = A"ABCDEFGHIJKLMNOP"

Demand_Circuit
This parameter, when coded with YES, causes Link State Advertisements
(LSAs) to not be periodically refreshed over this interface. Only LSAs with real
changes are advertised. In addition, coding this parameter to YES causes LSAs
flooded over this interface to never age out. Valid values are YES or NO. For
more information about the Demand_Circuit=YES and related topics, such as
handling high cost links, see z/OS Communications Server: IP Configuration
Guide.

Hello_Suppression
This parameter is used only on point-to-point and point-to-multipoint
interfaces that are demand circuits. It allows you to configure the interface for
Hello Suppression. Valid values are ALLOW, REQUEST, or DISABLE.

Chapter 11. OMPROUTE 499

If either or both sides specify DISABLE, Hello_Suppression is disabled. If both
specify ALLOW, Hello_Suppression is disabled. If one specifies ALLOW and
the other REQUEST, or if both specify REQUEST, Hello_Suppression is
enabled.

PP_Poll_Interval
This parameter specifies the interval (in seconds) that OMPROUTE should use
when attempting to contact a neighbor to reestablish a neighbor relationship
when the relationship has failed, but the interface is still available. This
parameter is meaningful only if Demand_Circuit is coded YES and
Hello_Supression has been enabled. Valid values are in the range 0 - 65535.

Parallel_OSPF
This parameter designates whether the OSPF interface is primary or backup
when more than one OSPF interface is defined to the same subnet. Only one of
these interfaces can be configured as primary, meaning that it is the interface to
carry the OSPF protocol traffic between OMPROUTE and the subnet. Failure of
the primary interface results in automatic switching of OSPF traffic to one of
the backup interfaces. If the primary interface is later reactivated, OSPF traffic
is not automatically switched back from the backup interface to the primary
interface. If you want to switch OSPF traffic back to the primary interface, stop
the backup interface. If none of the interfaces to the common subnet are
configured as primary, a primary interface is selected by OMPROUTE. Valid
values are BACKUP and PRIMARY.

Non_Broadcast
If the router is connected to a nonbroadcast, multiaccess network (NBMA),
such as X.25, Frame Relay, Hyperchannel, or ATM networks, coding a
Non_Broadcast helps the router discover its neighbors. This can also be coded
for a broadcast-capable network when you want OMPROUTE to unicast its
packets instead of multicasting them. In addition to coding this parameter,
each neighbor must be configured with the DR_NEIGHBOR parameter, for
those neighbors that are eligible to become the designated router, or
NO_DR_NEIGHBOR for those neighbors that are not eligible to become the
designated router. This statement is ignored when this OSPF interface is coded
as a wildcard. Valid values are YES or NO.

NB_Poll_Interval
This parameter specifies the frequency (in seconds) of hellos sent to neighbors
that are inactive. You must set this poll interval consistently across all
interfaces that attach to the same subnetwork for OSPF to function correctly.
This statement is valid only when Non_Broadcast is coded as YES. Valid values
are in the range 1 - 65535.

DR_Neighbor
Configures the IP interface address of a designated router-eligible neighbor
adjacent to the router over this interface. In nonbroadcast multi-access
networks, neighbors need to be configured to all OSPF routers on the network.
Multiple DR_Neighbor statements can be coded on an OSPF_interface
statement as necessary.

Guideline:You should not define neighbors on broadcast-capable or
multicast-capable media. If you do define neighbors on these media,
OMPROUTE can communicate OSPF information only with those neighbors
that are defined (it does not form adjacencies with any additional neighbors).

No_DR_Neighbor
Configures the IP interface address of a nondesignated router-eligible neighbor
adjacent to the router over this interface. In nonbroadcast multi-access

500 z/OS V2R1.0 Communications Server: IP Configuration Reference

networks, neighbors need to be configured to all OSPF routers on the network.
Multiple No_DR_Neighbor statements can be coded on an OSPF_Interface
statement as necessary.

Guideline: You should not define neighbors on broadcast-capable or
multicast-capable media. If you do define neighbors on these media,
OMPROUTE can communicate OSPF information only with those neighbors
that are defined (it does not form adjacencies with any additional neighbors).

Retransmit Parameters

The following parameters are used by OMPROUTE to set values in the routes that
use this interface; the values are added to the TCP/IP route tables. The values
affect the TCP retransmit algorithms. When TCP packets are not acknowledged,
TCP begins to retransmit these packets at certain time intervals. If these packets are
not acknowledged after a certain number of retransmissions, TCP aborts the
connection. The time interval between retransmissions increases by approximately
twice the previous interval until the packets are acknowledged or the connection
times out.

The time intervals between retransmissions and the number of times packets are
retransmitted before the connection times out differs for initial connection
establishment and for data packets. For initial connection establishment, the initial
time interval is set at approximately 3 seconds and the SYN packet is retransmitted
5 times before the connection is timed out. Data packets use a smoothed Round
Trip Time (RTT) as the initial time interval and are retransmitted 15 times before
the connection is timed out. All of the following parameters affect the data packet
retransmission algorithm. Only the Min_Xmit_Time parameter affects the initial
connection establishment.

Tip: A new route lookup is performed after every two retransmissions for a data
packet. For more information about the route lookup process, see Route selection
algorithm in z/OS Communications Server: IP Configuration Guide. Be careful
when you design networks with firewalls. A firewall in an alternate routing path
can generate a RESET packet for the rerouted data packets, which causes TCP to
abort the connection.

Max_Xmit_Time
Limits the TCP retransmission interval. Decreasing this value might decrease
the total time it takes a connection to time out. Specifying Max_Xmit_Time
assures that the interval time never exceeds the specified limit. The minimum
value that can be specified for Max_Xmit_Time is 0. The maximum is 999.990.
The default is 120 seconds. This parameter affects the initial connection
establishment retransmission timeout for all APIs, except the Pascal API
(TcpOpen), that are using the socket connect function.

Min_Xmit_Time
Sets a minimum retransmit interval. Increasing this value might increase the
amount of time it takes for TCP to time out a connection. The minimum value
that can be specified for Min_Xmit_Time is 0. The maximum is 99.990. The
default is 0.5 (500 milliseconds).

RT_Gain
This value is the percentage of the latest Round Trip Time (RTT) to be applied
to the smoothed RTT average. The higher this value, the more influence the
latest packet's RTT has on the average. The minimum value that can be
specified for RT_Gain is 0. The maximum value is 1.0. The default is 0.125.
This parameter does not affect initial connection retransmission.

Chapter 11. OMPROUTE 501

Variance_Gain
This value is the percentage of the latest RTT variance from the RTT average to
be applied to the RTT variance average. The higher this value, the more
influence the latest packet's RTT has on the variance average. The minimum
value that can be specified for Variance_Gain is 0. The maximum value is 1.0.
The default is 0.25 . This parameter does not affect initial connection
retransmission.

Variance_Mult
This value is multiplied against the RTT variance in calculating the
retransmission interval. The higher this value, the more affect variation in RTT
has on calculating the retransmission interval. The minimum value that can be
specified for Variance_Mult is 0. The maximum value is 99.990. The default is
2. This parameter does not affect initial connection retransmission.

Delay_Acks
The delay acknowledgments value that is added to the routing tables for
routes that use this interface. Specify YES to delay transmission of
acknowledgments when a packet is received with the PUSH bit on in the TCP
header. Specify NO to return acknowledgments immediately when a packet is
received with the PUSH bit on in the TCP header. This parameter affects only
connections that use the routes associated with this interface.

Even if you specify YES, you can override the delay acknowledgments
behavior can be overridden by specifying the NODELAYACKS parameter on
the TCP/IP stack PORT, PORTRANGE, or TCPCONFIG profile statements. The
value NO can override the specification the DELAYACKS parameter on the
TCP/IP stack PORT, PORTRANGE, and TCPCONFIG profile statements.

Valid values are YES and NO. The default value is YES.

Usage notes

When you configure multiaccess parallel interfaces (primary and secondary
interfaces that have IP addresses in the same subnet) for OMPROUTE (OSPF), code
the Parallel_OSPF=Primary parameter to set a specific interface as the primary
interface. If none of the interfaces on the same subnet are coded as primary,
OMPROUTE will select the primary interface from the set of interfaces attached to
the subnet. In case of a primary interface failure, OMPROUTE uses the first
available secondary interface and marks it as the primary interface.

RANGE statement

Use the RANGE statement to add ranges to OSPF areas. OSPF areas can be defined
in terms of address ranges. External to the area, a single route is advertised for
each address range. For example, if an OSPF area were to consist of all subnets of
the class B network 128.185.0.0, it would be defined as consisting of a single
address range. The address range would be specified as an address of 128.185.0.0
together with a mask of 255.255.0.0. Outside of the area, the entire subnetted
network would be advertised as a single route to network 128.185.0.0.

Ranges can be defined to control which routes are advertised external to an area.

When OSPF is configured not to advertise the range, no interarea routes are
advertised for routes that fall within the range. Ranges cannot be used for areas
that serve as transit areas for virtual links. This does not prevent AS-external
routes from being advertised if used in conjunction with the AS_BOUNDARY
statement.

502 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

�� Range IP_address = address Subnet_Mask = mask �

�
Area_Number=0.0.0.0

Area_Number = area

Advertise=YES

Advertise = value
��

Parameters

IP_Address
Common subnet portion of IP addresses in this range. Valid values are valid
network and subnetwork addresses.

Subnet_Mask
Subnet mask with respect to the network range defined in IP_Address.

Area_Number
Area number for which to add this range. Valid values are any defined areas.

Advertise
Determines whether this range is advertised to other areas. Valid values are
YES or NO.

RouterID statement

Use the RouterID statement as an alternative to specifying the RouterID parameter
on the OSPF configuration statement. See “OSPF statement” on page 492 for the
statement descriptions. The following concepts apply to the RouterID statement:
v If the RouterID statement is specified, the value configured is used as the OSPF

router ID. This value must be one of the OSPF interface IP addresses that is
configured for the stack.
Rule: Loopback and reserved 0.0.0.0 addresses are not valid OSPF interface IP
addresses.

v If the router ID is not configured, one of the OSPF interface addresses will be
used as the OSPF router ID, provided that the interface exists in the TCPIP
profile and matches the corresponding OSPF interface statement in the
OMPROUTE configuration file at startup.
Result: When OMPROUTE has to assign the router ID, it does not use dynamic
VIPA IP addresses. This avoidance of dynamic VIPA IP addresses cannot be
guaranteed; for example, if dynamic VIPAs are the only active OSPF interfaces
when OMPROUTE chooses the router ID, then one of them will be chosen.
Guideline: Because dynamic VIPAs (DVIPAs) can move between z/OS hosts,
the router ID should be a physical interface or a static VIPA, not a dynamic
VIPA address. To ensure an appropriate router ID, specify the router ID to
OMPROUTE.

Syntax

�� RouterID = id ��

Parameters

RouterID
A dotted-decimal value.

Chapter 11. OMPROUTE 503

VIRTUAL_LINK statement

Use the VIRTUAL_LINK statement to configure a virtual link between two area
border routers. To maintain backbone connectivity you must have all of your
backbone routers interconnected either by permanent or virtual links. Virtual links
are considered to be separate router interfaces connecting to the backbone area.
Therefore, you are asked to specify many of the interface parameters when
configuring a virtual link.

Virtual links can be configured between any two backbone routers that have an
interface to a common nonbackbone, nonstub area. Virtual links are used to
maintain backbone connectivity and must be configured at both endpoints.

Tip: OSPF virtual links are not to be confused with Virtual IP Address support
(VIPA).

Syntax

�� Virtual_Link Virtual_Endpoint_RouterID = id �

�
Links_Transit_Area=0.0.0.1

Links_Transit_Area = area

Retransmission_Interval=10

Retransmission_Interval = frequency
�

�
Transmission_Delay=5

Transmission_Delay = delay

Hello_Interval=30

Hello_Interval = interval
�

�
DB_Exchange_Interval=180

DB_Exchange_Interval = interval

Dead_Router_Interval=180

Dead_Router_Interval = interval
�

�
Authentication_Key=nulls

Authentication_Key = password

Authentication_Key_ID=0

Authentication_Key_ID=id
�

�
Authentication_type=value

��

Parameters

Virtual_Endpoint_RouterID
Router ID of the virtual neighbor (other endpoint). Router IDs are entered in
the same form as IP addresses.

Links_Transit_Area
This is the nonbackbone, nonstub area through which the virtual link is
configured. Virtual links can be configured between any two area border
routers that have an interface to a common nonbackbone and nonstub area.
Virtual links must be configured in each of the link's two endpoints. Valid
values are any area defined by the AREA statement, except 0.0.0.0.

Retransmission_Interval
Sets the frequency (in seconds) of retransmitting link-state update packets,
link-state request packets, and database description packets. Valid values are
from 1 - 65 535 seconds.

504 z/OS V2R1.0 Communications Server: IP Configuration Reference

Guideline: If this parameter is set too low, needless retransmissions occur that
could affect performance and interfere with neighbor adjacency establishment.
It should be set to a higher value for a slower machine.

Transmission_Delay
This parameter is an estimate of the number of seconds that it takes to
transmit link-state information over the virtual link. Each link-state
advertisement has a finite lifetime of 1 hour. As each link-state advertisement
is sent out from this virtual link, it is aged by this configured transmission
delay. Valid values are in the range 1 - 65 535 seconds.

Hello_Interval
This parameter defines the number of seconds between OSPF Hello packets
being sent out from this virtual link. Valid values are in the range 1 - 255
seconds. The Hello_Interval should be set higher than the same value used on
the intervening, actual OSPF interfaces.

DB_Exchange_Interval
The interval in seconds that the database exchange process cannot exceed. If
the interval elapses, the procedure is restarted. This value must be larger than
the Hello_Interval. If no value is specified, the DB_Exchange_Interval is set to
the Dead_Router_Interval. Valid values are 2 - 65 535.

Dead_Router_Interval
The interval in seconds, after not having received an OSPF Hello, that the
neighbor is declared to be down. This value must be larger than the
Hello_Interval. Valid values are 2 - 65 535. The dead router interval should be
set higher than the same value used on the intervening, actual, OSPF
interfaces.

Authentication_Key
The value of the authentication key for this interface. This value must be the
same for all routers attached to a common medium. The coding of this
parameter depends on the authentication type being used on this interface.

For authentication type none, this parameter is not required and is ignored if
coded.

For authentication type password, code the password for OSPF routers that are
attached to this subnet. Valid values are any characters from EBCDIC code
page 1047 up to 8 characters in length coded within double quotation marks or
any hexadecimal string up to 8 bytes (16 hex characters) long that begins with
0x.

For authentication type MD5, code the 16-byte MD5 authentication key for
OSPF routers attached to this subnet. This value can be coded in one of the
following ways:
v The standard method is with a 16-byte hexadecimal string beginning with 0x

(0x plus 32 hexadecimal characters). In some cases, pwtokey can be used to
generate hexadecimal MD5 keys. See z/OS Communications Server: IP
System Administrator's Commands for more information.

v An additional method, which provides compatibility with Cisco, Extreme,
and other vendor routers that use a Cisco-compatible CLI interface is to code
the MD5 key as an ASCII string, specified in double quotation marks
prefixed with A. For example, to be compatible with this Cisco key
definition, use the following code:
ip ospf message-digest-key 4 md5 ABCDEFGHIJKLMNOP

This value would be coded in OMPROUTE as follows:

Chapter 11. OMPROUTE 505

AUTHENTICATION_KEY_ID =4
AUTHENTICATION_KEY = A"ABCDEFGHIJKLMNOP"

Authentication_Key_ID
The identifier of the authentication key defined with the
AUTHENTICATION_KEY keyword. This is a constant numeric value from 0 -
255, with a default value of 0. It is only relevant when MD5 cryptographic
authentication is employed on the virtual link; otherwise, it is ignored. This
field is provided for compatibility with other routers which might require
identification of a key identifier with the authentication key.

Authentication_Type
The security scheme to be used over the virtual link. If not specified, the
statement takes on the default value specified for the backbone area. Valid
values for authentication types are MD5, which indicates MD5 cryptographic
authentication as described in Appendix D of RFC 2328; PASSWORD, which
indicates a simple password; or NONE, which indicates that no authentication
is necessary to pass packets. Both hosts attached to the virtual link must be
configured with the same security scheme.

RIP configuration statements
This topic contains descriptions of the following RIP configuration statements:
v ACCEPT_RIP_ROUTE
v FILTER
v IGNORE_RIP_NEIGHBOR
v ORIGINATE_RIP_DEFAULT
v RIP_INTERFACE
v SEND_ONLY

These statements are for configuring the RIP environment for IPv4. For information
about the statements to be used for configuring IPv6 RIP, see “IPv6 RIP
configuration statements” on page 529.

ACCEPT_RIP_ROUTE statement

Use the ACCEPT_RIP_ROUTE statement to allow a network, subnet, or host route
to be accepted independent of whether the interface it was received on has the
corresponding reception parameter enabled (network, subnet, or host). Routes
added in this manner can be thought of as a list of exception conditions.

Restriction: Coding this statement does not enable updates for this destination to
be received on RIP interfaces with RECEIVE_RIP=NO coded. Also, this does not
override RIP version filters coded using the RECEIVE_RIP parameter on
RIP_INTERFACE statements. For example, on a RIP_INTERFACE with
RECEIVE_RIP=RIP2, a RIPV1 route that would otherwise be allowed by this
statement is not received.

Syntax

�� Accept_RIP_Route IP_address = address ��

Parameters

IP_address
Destination route to be unconditionally accepted.

506 z/OS V2R1.0 Communications Server: IP Configuration Reference

FILTER statement

Use the FILTER statement can be coded stand-alone in the OMPROUTE
configuration file (nosend and noreceive only) to apply to all configured RIP
interfaces.

Syntax

�� filter = (filter_type,dest_route,filter_mask) ��

Parameters

filter_type
The filter_type can be any of the following values:

nosend
Specifies that routes matching the dest_route and filter_mask are not to
be broadcast over RIP interfaces. This option serves as an RIP output
filter.

noreceive
Specifies that routes matching the dest_route and filter_mask are to be
ignored in broadcasts received over RIP interfaces. This option serves
as a RIP input filter.

dest_route
The dest_route specifies the destination route in network, subnetwork, or host
format in dotted decimal form. Alternatively, an asterisk (*), which matches any
destination, can be coded to filter out all routes sent or received over an
interface. The use of the asterisk is also referred to as a blackhole filter. This
should be used in conjunction with either additional send or receive filters to
allow only certain routes to be received, or advertised over an interface or set
of interfaces.

Tip: When the Originate_RIP_Default statement is configured, the blackhole
nosend filter does not prevent sending of the default route.

filter_mask
The filter_mask specifies the filter mask in dotted decimal form. If this value is
not coded, the default filter mask is 255.255.255.255, meaning apply the filter to
the dest_route as coded. Coding the filter mask has no meaning and is not valid
if the dest_route is coded as an asterisk (*) for a blackhole filter.

IGNORE_RIP_NEIGHBOR statement

Use the IGNORE_RIP_NEIGHBOR statement to specify that RIP routing table
broadcasts from the specified gateway are to be ignored. This option can be a RIP
input filter.

Syntax

�� Ignore_Rip_Neighbor IP_address = address ��

Chapter 11. OMPROUTE 507

Parameters

IP_address
Specifies the IP address of the gateway from which routing table broadcasts are
ignored. For multiple IP addresses, you must repeat the statement for each IP
address.

ORIGINATE_RIP_DEFAULT statement

Use the ORIGINATE_RIP_DEFAULT statement to indicate under what conditions
RIP supports Default route (destination/mask 0.0.0.0/0.0.0.0) generation.

This statement determines whether or not a default route is considered available
by OMPROUTE RIP. The SEND_DEFAULT_ROUTES parameter on the
RIP_INTERFACE statement determines whether or not an available default route is
advertised by a particular RIP interface.

Syntax

�� Originate_RIP_Default
Condition=Always

Condition = condition

Cost=1

Cost = cost
�

�
Accept_Default=NO

Accept_Default = value
��

Parameters

Condition
Condition for when RIP is to advertise this router as a default router. Valid
values are:

Always
Always originate RIP default. This is the default value.

OSPF Originate RIP default if OSPF routes are available.

Never Never advertise this router as a default router.

Cost
Specifies the cost that RIP advertises with the default route that it originates.
Valid values are in the range 1 - 16. The default value is 1.

Accept_Default
Specifies whether or not OMPROUTE RIP accepts default routes from inbound
RIP packets whose cost is higher than default routes originated by the host.

Tip: OMPROUTE RIP always accept default routes from inbound RIP packets
whose cost is lower than default routes originated by the host.

A value of YES indicates that OMPROUTE RIP replaces this router's originated
default route with a default route learned from inbound RIP packets, even if
that learned default route has a higher cost than this router's originated default
route.

Results:

v When YES is coded, this router's originated default route is only used if no
other default routes are learned from inbound RIP packets. A value of NO
indicates that OMPROUTE RIP replaces this router's originated default route

508 z/OS V2R1.0 Communications Server: IP Configuration Reference

with a default route learned from inbound RIP packets only when the
learned RIP route has a lower cost than this router's originated default route.
This is the default value.

v When this parameter value is NO (either coded or by default), and the other
parameters in this statement take their default values
(CONDITION=ALWAYS and COST=1), OMPROUTE RIP never accepts
default routes learned from RIP packets because it is not possible to learn a
RIP route whose cost is less than 1.

RIP_INTERFACE statement

Use the RIP_INTERFACE statement to configure the RIP parameters for each IP
interface. Replicated this statement in the configuration file for each IP interface
over which RIP operates.

Syntax

�� RIP_Interface IP_address = address Name = interface_name �

� Subnet_mask = subnet_mask
Destination_Addr = address

�

�
MTU=576

MTU = size

Receive_RIP=YES

Receive_RIP = value
�

�
Receive_Dynamic_Nets=YES

Receive_Dynamic_Nets = value

Receive_Dynamic_Subnets=YES

Receive_Dynamic_Subnets = value
�

�
Receive_Dynamic_Hosts=NO

Receive_Dynamic_Hosts = value
�

� �

filter = (filter_type,dest_route,filter_mask)
�

�
Send_Only=ALL

Send_Only = (values)

Send_RIP=YES

Send_RIP = value
�

�
Send_Default_Routes=NO

Send_Default_Routes = value

Send_Net_Routes=YES

Send_Net_Routes = value
�

Chapter 11. OMPROUTE 509

�
Send_Subnet_Routes=YES

Send_Subnet_Routes = value

Send_Static_Routes=NO

Send_Static_Routes = value
�

�
Send_Host_Routes=NO

Send_Host_Routes = value

Send_Poisoned_Reverse_Routes=YES

Send_Poisoned_Reverse_Routes = value
�

�
In_Metric=1

In_Metric = metric

Out_Metric=0

Out_Metric = metric

RipV2=NO

RipV2 = value
�

�
RipV1_Routes=NO

RipV1_Routes = value

Authentication_Key=nulls

Authentication_Key = key
�

� �

Neighbor = value

Max_Xmit_Time=120

Max_Xmit_Time = time
�

�
Min_Xmit_Time=0.5

Min_Xmit_Time = time

RT_Gain=0.125

RT_Gain = value
�

�
Variance_Gain=0.25

Variance_Gain = value

Variance_Mult=2

Variance_Mult = mult
�

�
Delay_Acks=YES

Delay_Acks = value
��

Parameters

IP_address
IP address of interface to be configured for RIP.

The IP address can be a valid IP address that is configured on the system or it
can be specified with asterisks (*) as wildcards. The valid wildcard
specifications are below. The result of coding a wildcard value are that all
configured interfaces whose IP address matches the wildcard are configured as
RIP interfaces. Configured interface IP addresses and names are matched
against possible wildcards in the order they are in the following example with
the name and any matching wildcard being the best match, x.y.z.* being
second best, and so on.
interface name and any matching wildcard
x.y.z.*
x.y.*.*
x.*.*.*
..*.* - Same as ALL
ALL - Same as *.*.*.*

510 z/OS V2R1.0 Communications Server: IP Configuration Reference

Tip: For more information about how wildcard interfaces are parsed, see this
Method of assigning interface definitions to stack interfaces (wildcard and
explicit): in z/OS Communications Server: IP Configuration Guide.

Because a stack could have a large number of Dynamic VIPAs (DVIPAs)
defined, as well as DVIPA ranges, an additional wildcard capability exists on
the RIP_INTERFACE statement for use only with DVIPAs. Ranges of DVIPA
interfaces can be defined using the subnet mask parameter on the
RIP_INTERFACE statement. This mode of definition applies to Dynamic VIPAs
defined in the stack with VIPADEFINE, VIPABACKUP, or VIPARANGE. The
range defined in this way is all the IP addresses that fall within the subnet
defined by the mask and the IP address. When this type of wildcard search is
being used, the value of the IP_ADDRESS parameter must be the subnet
number of the range. For example, the following defines a range of 6 addresses
(9.67.101.9 to 9.67.101.14) that can be used for DVIPA addresses and match any
DVIPA interface that falls into the 9.67.101.8/29 subnet:
IP_ADDRESS = 9.67.101.8
SUBNET_MASK = 255.255.255.248

Alternatively, the following code does not because 9.67.101.17 is an address
within the subnet range, not the subnet number itself (that would be
9.67.101.16). This second definition only matches an interface whose home
address is 9.67.101.17.
IP_ADDRESS= 9.67.101.17
SUBNET_MASK=255.255.255.248

Name
The name of the interface. A valid value is any string 1 - 16 characters in
length.

Rules:

v If this is not a wildcard interface definition, the name must match the link
name that is coded for the corresponding IP address on the HOME
statement or the interface name coded for the corresponding IPv4
INTERFACE statement in the TCP/IP profile.

v If this is a wildcard interface definition, then this parameter is used in
conjunction with the defined wildcard IP address when searching for
definitions to match a stack interface. For more details about this process,
see method of assigning interface definitions to stack interfaces (wildcard
and explicit): in z/OS Communications Server: IP Configuration Guide.

For Dynamic VIPA (DVIPA), link names are assigned programmatically by the
stack when the DVIPA is created; therefore, the name field set on the
RIP_INTERFACE statement is ignored by OMPROUTE for DVIPAs.

Subnet_Mask
Subnet mask for the associated interface IP address. For more information, see
z/OS Communications Server: IP Configuration Guide. If you configure this
interface in the TCP/IP profile using the IPv4 INTERFACE statement and you
configure a subnet mask on that statement that does not match the value that
you specify on this parameter, OMPROUTE issues message EZZ8164I and uses
this subnet mask.

Destination_Addr
IP address of the host at the remote-end of this interface. This parameter is
valid only for point-to-point links; it is a required parameter for point-to-point
links that cannot receive RIP2 packets (see the description of the RECEIVE_RIP
parameter for more information about the level of RIP packets that an interface
can receive). If this parameter is not specified for a point-to-point link that can

Chapter 11. OMPROUTE 511

receive RIP2 packets, a route to the host at the remote end of the interface is
not added to the appropriate TCP/IP route tables (main and policy-based
tables) until RIP communication is established with that host. A subnet route
for the interface is added when OMPROUTE is initialized, whether or not this
parameter is specified.

MTU
The maximum transmission unit size that RIP adds to the appropriate routing
tables (main and policy-based tables) for routes that use this interface. Valid
values are in the range 0 - 65535. If you configure this interface in the TCP/IP
profile using the IPv4 INTERFACE statement and you configure an MTU on
that statement and the MTU that you configure on that statement does not
match the MTU (the configured value or the default value) on this statement,
OMPROUTE issues message EZZ8163I and uses the MTU value on this
statement.

Tip: See z/OS Communications Server: IP Configuration Guide, in section
Maximum transmission unit considerations, for additional information about
how TCP/IP uses the MTU to determine the largest size frame to send.

Receive_RIP
Specifies what type of RIP updates are accepted over this interface. Valid
values are:

RIP1 Accept only RIP version 1 updates over this interface.

RIP2 Accept only RIP version 2 updates over this interface.

ANY Accept RIP Version 1 and RIP Version 2 updates over this interface.

Rule: If RIP2 authentication is required and this value is coded,
unauthenticated RIP1 packets are received over this interface. Also, if
RIP2 authentication is not required, authenticated RIP2 packets are not
be received over this interface, regardless of the value of RIPV2.

YES If RIPV2=YES, then receive only RIP Version 2 updates over this
interface. If RIPV2=No, then receive only RIP Version 1 updates over
this interface. This is the default value.

NO No RIP packets are received over this interface, regardless of any other
filters.

Receive_Dynamic_Nets
Specifies whether or not to learn routes for networks over this interface. If this
is not set, only nets explicitly allowed using the Accept_RIP_Route
configuration statement is accepted on this interface. Valid values are YES or
NO.

Receive_Dynamic_Subnets
Specifies whether or not to learn routes for subnets over this interface. If this is
not set, only subnets explicitly allowed using the Accept_RIP_Route
configuration statement is accepted on this interface. Valid values are YES or
NO.

Receive_Dynamic_Hosts
Specifies whether or not to learn routes for hosts over this interface. If this is
not set, only hosts explicitly allowed using the Accept_RIP_Route configuration
statement is accepted on this interface. Valid values are YES or NO.

filter
Multiple filter parameters can be coded on a RIP_Interface statement. When
specified on the RIP_Interface statement, the filter parameter applies only to

512 z/OS V2R1.0 Communications Server: IP Configuration Reference

the corresponding RIP interface. The filter statement can also be coded
stand-alone in the OMPROUTE configuration file (nosend and noreceive only)
to apply to all configured RIP interfaces.

The filter_type can be any of the following values:

Value Description

nosend
Specifies that routes matching the dest_route and filter_mask are not to
be broadcast over this interface. This option serves as an RIP output
filter.

noreceive
Specifies that routes matching the dest_route and filter_mask are to be
ignored in broadcasts received over this interface. This option serves as
an RIP input filter.

send Specifies that routes matching the dest_route and filter_mask are to be
broadcast over only this interface (or any other RIP interface with an
equivalent filter). This option serves as an RIP output filter and can be
used for inbound and outbound traffic splitting.

send_cond
Specifies that routes matching the dest_route and filter_mask are to be
broadcast over only this interface when this interface is active (or any
other active RIP interface with an equivalent filter). If this interface is
inactive, the routes can be broadcast over other interfaces. This option
serves as an RIP output filter and can be used for inbound and
outbound traffic splitting.

receive
Specifies that routes matching the dest_route and filter_mask are to be
received over only this interface (or any other RIP interface with an
equivalent filter). If received over other RIP interfaces, the routes are
discarded. This option serves as an RIP input filter.

receive_cond
Specifies that routes matching the dest_route and filter_mask are to be
received over only this interface when this interface is active (or any
other active RIP interface with an equivalent filter). If this interface is
inactive, the routes can be received over all other active RIP interfaces.
This option serves as an RIP input filter.

The dest_route specifies the destination route in network, subnetwork, or host
format in dotted decimal form. Alternatively, an asterisk (*) can be coded in
conjunction with the nosend and noreceive filter types. This serves as a
blackhole filter that can be used to filter out all routes broadcast or received
over an interface. This should be used in conjunction with either additional
send or receive filters to allow only certain routes to be received, or advertised
over an interface or set of interfaces.

Tip: If the blackhole nosend filter is used, it does not filter out the sending of
the default route when the Originate_RIP_Default statement is also configured.

The filter_mask specifies the filter mask in dotted decimal form. If not coded,
the default filter mask is 255.255.255.255, meaning apply the filter to the dest
route as coded. Coding the filter mask has no meaning and is not valid if the
dest route is coded as an asterisk (*) for a blackhole filter.

Chapter 11. OMPROUTE 513

Send_Only
Specifies broadcast restrictions. Multiple values can be coded by separating the
values with commas, unless ALL is coded. The valid values are:

ALL Specifies no broadcast restrictions.

VIRTUAL
Broadcasts virtual IP addresses.

DEFAULT
Broadcasts the default route.

DIRECT
Broadcasts direct routes.

TRIGGERED
Only broadcasts routes when requested or when a route becomes
inactive (metric 16).

VIRTUAL, DEFAULT, and DIRECT are Or'd together to determine what should
be broadcast. Thus, coding SEND_ONLY=(VIRTUAL, DEFAULT) broadcasts
virtual IP addresses and the default route.

Restriction: When ALL is coded it must not be enclosed within parentheses.
When any of the other possible values are coded, they must be enclosed within
parentheses.

When specified on the RIP_Interface statement, the Send_Only parameter
applies only to the corresponding RIP interface. The Send_Only statement can
also be coded stand-alone in the OMPROUTE configuration file to apply to all
RIP interfaces.

Send_RIP
Specifies whether or not RIP advertisements are broadcast over this interface.
Valid values are YES or NO.

Send_Default_Routes
Advertise the default route (destination 0.0.0.0), if it is available, in RIP
responses sent from this IP source address. Valid values are YES or NO.

Restriction: If DEFAULT is coded on the Send_Only parameter or the
stand-alone Send_Only statement, the Send_Default_Routes parameter is
ignored and is set to YES.

Send_Net_Routes
Advertise all network level routes in RIP responses sent from this IP address.
Valid values are YES or NO.

Send_Subnet_Routes
Advertise appropriate subnet-level routes in RIP responses sent from this IP
address. Valid values are YES or NO.

In this context an appropriate subnet is one that meets RFC 1058 subnet
advertisement constraints as follows:
v Natural Net must be the same as the IP source's natural net.
v Subnet mask must be the same.

Send_Static_Routes
Advertise static and direct routes in RIP responses sent from this IP source
address. Split horizon is applied; that is, static routes configured over an
interface are not included in RIP responses sent from that interface. Valid
values are YES or NO.

514 z/OS V2R1.0 Communications Server: IP Configuration Reference

Send_Host_Routes
Advertise host routes in RIP responses sent from this IP source address. In this
context, a host route is one with a mask of 255.255.255.255. Valid values are
YES or NO.

Send_Poisoned_Reverse_Routes
Advertise poisoned reverse routes over the interface corresponding to the next
hop. A poison reverse route is one with an infinite metric (16). Valid values are
YES or NO. If NO is specified, OMPROUTE still uses split horizon.

In_Metric
Specifies the value of the metric to be added to RIP routes that are received
over this interface before the routes are installed in the appropriate routing
tables (main and policy-based tables). Valid values are in the range 1 - 15.

Out_Metric
Specifies the value of the metric to be added to RIP routes advertised over this
interface. Valid values are in the range 0 - 15.

RipV2
Enables RIP V2 packets to be sent on this link. Valid values are YES or NO. If
YES, all RIP packets sent on this link are RIPV2. If NO, all RIP packets sent on
this link are RIPV1. See the RECEIVE_RIP description in this list for
information about configuring the level of RIP packets that can be received on
this link.

RipV1_Routes
Specifies whether RIP V1 routes should be advertised on this RIP V2 link.
Valid values are YES or NO.

Authentication_Key
RIP V2 authentication key. Only used for RIP V2 packets. Coding this key does
not prevent reception of unauthenticated RIP V1 packets. To ensure that only
authenticated RIP packets can be received over this interface, code
RECEIVE_RIP=RIP2 in addition to this parameter. Valid values are any
alphanumeric string from code page 1047 up to 16 characters in length coded
within double quotation marks, or any hexadecimal string which begins with
0x.

Rules:

v If the value is entered in characters (rather than the hexadecimal string), that
value is case sensitive.

v If an authentication key is not provided, authenticated RIP V2 packets are
not received, even if RECEIVE_RIP=ANY.

Neighbor
Specifies the IP address of a single neighboring router. Multiple Neighbor
parameters can be coded on a RIP_Interface statement to specify each adjacent
RIP router. Use the Neighbor parameter when the interface is not
point-to-point, does not support broadcast, and either does not support
multicast or is using RIP version 1. Examples of interface types for which the
Neighbor parameter must be used are:
v Hyperchannel
v ATM
v For RIP V1, OSA QDIO that does not have the IPBCAST keyword specified

on the LINK or INTERFACE statement in the TCPIP PROFILE

Guideline: Do not define neighbors on multicast-capable media if this interface
supports RIP V2, or broadcast-capable media for interfaces that support RIP V1

Chapter 11. OMPROUTE 515

or RIP V2. If you define neighbors on these media, OMPROUTE is able to
communicate RIP information only with those neighbors that are defined (it
does not learn about any additional neighbors).

Retransmit Parameters

The following parameters are used by OMPROUTE to set values in the routes that
use this interface; the values are added to the TCP/IP route tables. The values
affect the TCP retransmit algorithms. When TCP packets are not acknowledged,
TCP begins to retransmit these packets at certain time intervals. If these packets are
not acknowledged after a certain number of retransmits, TCP aborts the
connection. The time interval between retransmissions increases by approximately
twice the previous interval until the packets are acknowledged or the connection
times out.

The time intervals between retransmissions and the number of times packets are
retransmitted before the connection times out differs for initial connection
establishment and for data packets. For initial connection establishment, the initial
time interval is set at approximately 3 seconds, and the SYN packet is
retransmitted 5 times before the connection is timed out. Data packets use a
smoothed Round Trip Time (RTT) as the initial time interval and are retransmitted
15 times before the connection is timed out. All of the following parameters affect
the data packet retransmission algorithm. Only the Min_Xmit_Time parameter
affects the initial connection establishment.

Tip: A new route lookup is performed after every two retransmissions for a data
packet. For more information about the route lookup process, see Route selection
algorithm in z/OS Communications Server: IP Configuration Guide. Be careful
when you design networks with firewalls. A firewall in an alternate routing path
can generate a RESET packet for the rerouted data packets, which causes TCP to
abort the connection.

Max_Xmit_Time
Limits the TCP retransmission interval. Decreasing this value might decrease
the total time it takes a connection to time out. Specifying Max_Xmit_Time
assures that the interval time never exceeds the specified limit. The minimum
value that can be specified for Max_Xmit_Time is 0. The maximum is 999.990.
The default is 120 seconds. This parameter affects the initial connection
establishment retransmission timeout for all APIs, except the Pascal API
(TcpOpen), that are using the socket connect function.

Min_Xmit_Time
Sets a minimum retransmit interval. Increasing this value might increase the
amount of time it takes for TCP to time out a connection. The minimum value
that can be specified for Min_Xmit_Time is 0. The maximum is 99.990. The
default is 0.5 (500 milliseconds).

RT_Gain
This value is the percentage of the latest Round Trip Time (RTT) to be applied
to the smoothed RTT average. The higher this value, the more influence the
latest packet's RTT has on the average. The minimum value that can be
specified for RT_Gain is 0. The maximum value is 1.0. The default is 0.125.
This parameter does not affect initial connection retransmission.

Variance_Gain
This value is the percentage of the latest RTT variance from the RTT average to
be applied to the RTT variance average. The higher this value, the more
influence the latest packet's RTT has on the variance average. The minimum

516 z/OS V2R1.0 Communications Server: IP Configuration Reference

value that can be specified for Variance_Gain is 0. The maximum value is 1.0.
The default is 0.25. This parameter does not affect initial connection
retransmission.

Variance_Mult
This value is multiplied against the RTT variance in calculating the
retransmission interval. The higher this value, the more affect variation in RTT
has on calculating the retransmission interval. The minimum value that can be
specified for Variance_Mult is 0. The maximum value is 999.990. The default is
2. This parameter does not affect initial connection retransmission.

Delay_Acks
The delay acknowledgments value that is added to the routing tables for
routes that use this interface. Specify YES to delay transmission of
acknowledgments when a packet is received with the PUSH bit on in the TCP
header. Specify NO to return acknowledgments immediately when a packet is
received with the PUSH bit on in the TCP header. This parameter affects only
connections that use the routes associated with this interface.

Even if you specify YES, you can override the delay acknowledgments
behavior by specifying the NODELAYACKS parameter on the TCP/IP stack
PORT, PORTRANGE, or TCPCONFIG profile statements. A value of NO can
override the specification of the DELAYACKS parameter on the TCP/IP stack
PORT, PORTRANGE, and TCPCONFIG profile statements.

Valid values are YES and NO. The default value is YES.

SEND_ONLY statement

The SEND_ONLY statement can be coded stand-alone in the OMPROUTE
configuration file to apply to all RIP interfaces.

Syntax

��
Send_Only=ALL

Send_Only = (values)
��

Parameters

(values)
Specifies broadcast restrictions. Multiple values can be coded by separating the
values with commas, unless ALL is coded. The valid values are:

ALL Specifies no broadcast restrictions.

VIRTUAL
Broadcasts virtual IP addresses.

DEFAULT
Broadcasts the default route.

DIRECT
Broadcasts direct routes.

TRIGGERED
Only broadcast routes when requested or when a route becomes
inactive (metric 16).

Chapter 11. OMPROUTE 517

VIRTUAL, DEFAULT, and DIRECT are OR'd together to determine what
should be broadcast. Thus, coding SEND_ONLY=(VIRTUAL, DEFAULT)
broadcasts virtual IP addresses and the default route. When ALL is coded, it
must not be enclosed within parentheses. When any of the other possible
values are coded, they must be enclosed within parentheses.

When specified on the SEND_ONLY statement in the OMPROUTE
configuration file, it applies to all RIP_Interfaces. The SEND_ONLY parameter
can also be coded on the RIP_INTERFACE statement. When specified on the
RIP_INTERFACE statement, the SEND_ONLY parameter applies only to the
corresponding RIP_Interface.

IPv6 OSPF configuration statements
This topic contains descriptions of the following IPv6 OSPF configuration
statements:
v IPv6_AREA
v IPv6_AS_BOUNDARY_ROUTING
v IPv6_OSPF
v IPv6_OSPF_INTERFACE
v IPv6_RANGE
v IPv6_VIRTUAL _LINK

See z/OS Communications Server: IP System Administrator's Commands for
information about how to display configuration information.

IPv6_AREA statement

Use the IPv6_AREA statement to set the parameters for an IPv6 OSPF area. If no
areas are defined, OMPROUTE assumes that all the router's directly attached
networks belong to the backbone area (area ID 0.0.0.0).

Syntax

�� IPv6_Area Area_Number = ospf_area_address
Stub_Area=NO

Stub_Area = value
�

�
Stub_Default_Cost=1

Stub_Default_Cost = cost

Import_Prefixes=YES

Import_Prefixes = value
��

Parameters

Area_Number
The 32–bit OSPF area number in dotted decimal.

Stub_Area
Specifies whether this area is a stub area or not. Valid values are YES or NO.

Restrictions: If you specify Stub_area = YES, the area does not receive any AS
external link advertisements, reducing the size of your database and decreasing
memory usage for routers in the stub area. The following restrictions apply:
v You cannot configure virtual links through a stub area.
v You cannot configure a router within the stub area as an AS boundary

router.

518 z/OS V2R1.0 Communications Server: IP Configuration Reference

v You cannot configure the backbone as a stub area.

External routing in stub areas is based on a default route. Each area border
router attaching to a stub area originates a default route for this purpose. The
cost of this default route is also configurable with the IPv6_AREA statement.

Stub_Default_Cost
The cost that an OMPROUTE area border router associates with the default
route that it generates into the stub area. Valid values are in the range 1 -
16 777 215.

Import_Prefixes
If this area is a stub area, indicates whether prefixes from neighboring areas
are imported. Valid values are YES or NO.

Tip: A stub area with Import_Prefixes set to NO is commonly referred to in
RFCs and other standards documentation as a Totally Stubby Area.

IPv6_AS_BOUNDARY_ROUTING statement

Use the IPv6_AS_BOUNDARY_ROUTING statement to enable the AS boundary
routing capability, which allows you to import routes learned from other methods
(IPv6 RIP, statically configured, or direct routes) into the IPv6 OSPF domain. All
routes are imported as either Type 1 or Type 2 external routes, depending on what
was coded on the Comparison statement. The metric type used when importing
routes determines how the imported cost is viewed by the IPv6 OSPF domain.
When comparing Type 2 metrics, only the external cost is considered in selecting
the best route. When comparing Type 1 metrics, the external and internal costs of
the route are combined before making the comparison.

Requirement: This statement must be coded even if the only route you want to
import is the default route (prefix length 0).

Syntax

�� IPv6_AS_Boundary_Routing
Import_RIP_Routes=No

Import_RIP_Routes = value
�

�
Import_Static_Routes=No

Import_Static_Routes = value

Import_Direct_Routes=No

Import_Direct_Routes = value
�

�
Import_Router_Advertisement_Routes=No

Import_Router_Advertisement_Routes value
�

�
Originate_Default_Route=No

Originate_Default_Route = value

Originate_as_Type=2

Originate_as_Type = type
�

�
Default_Route_Cost=1

Default_Route_Cost = cost

Learn_Default_Route=NO

Learn_Default_Route = value
�

�
Default_Forwarding_Address = ip-address

��

Chapter 11. OMPROUTE 519

Parameters

Import_RIP_Routes
Specifies whether routes learned by IPv6 RIP are imported into the IPv6 OSPF
routing domain. Valid values are YES or NO.

Import_Static_Routes
Specifies whether static routes (routes defined to the TCP/IP stack using the
BEGINROUTES or GATEWAY statements) are imported into the IPv6 OSPF
routing domain. Valid values are YES or NO.

Import_Direct_Routes
Specifies whether IPv6 direct routes are imported into the IPv6 OSPF routing
domain. Valid values are YES or NO.

Import_Router_Advertisement_Routes
Specifies whether routes learned by the TCP/IP stack from IPv6 Router
Advertisements are imported into the IPv6 OSPF routing domain. Valid values
are YES and NO.

Tip: If a router is advertising a route into the OSPF domain on a link LSA, it is
considered an OSPF internal route, regardless of whether or not it is also being
advertised in an IPv6 Router Advertisement. Therefore, this parameter only
controls routes that are only advertised by routers in IPv6 Router
Advertisements.

Originate_Default_Route
Specifies whether or not this host originates an AS External default route into
the IPv6 OSPF domain. If YES and Default_Forwarding_Address is not also
coded (or is coded to ::), this host advertises itself as a default router. Valid
values are YES or NO.

Originate_as_Type
Specifies the external type assigned to the default route originated by this host
if Originate_Default_Route is YES. Valid values are 1 or 2.

Tip: See the comparison parameter in “IPv6_OSPF statement” on page 521 for
more information about external route types.

Default_Route_Cost
Specifies the cost that IPv6 OSPF associates with the default route originated
by this host if Originate_Default_Route is YES. Valid values are in the range 0 -
16 777 215.

Learn_Default_Route
Specifies whether IPv6 OSPF learns default routes from inbound packets when
their cost is equal to or higher than the cost of the default route originated by
this host. Valid values are YES or NO. If this parameter is set to NO, then only
default routes with lower cost than the one originated by this host are learned.

Default_Forwarding_Address
If Orignate_Default_Route is YES, this optional parameter can be used to
specify that this host should originate a default route on behalf of a different
router. This parameter is not needed if this host is to advertise itself as the
default router. It should only be used when the default router is another router
that this host can route to, which is not capable of advertising an IPv6 OSPF
default route on its own behalf. In that case, this parameter should be set to a
reachable IP address on the other router.

Restriction: This address must be reachable using an OSPF intra-area or
inter-area route (labelled as SPF or SPIA in the RT6TABLE display, or labelled
as DIR but using an OSPF interface). This route could be a host, prefix, or

520 z/OS V2R1.0 Communications Server: IP Configuration Reference

default route. If no eligible route is found, the forwarding address is not
included in the advertisements generated by this statement.

IPv6_OSPF statement

Use the IPv6_OSPF statement to specify various parameters that apply globally to
IPv6 OSPF, either to all interfaces or to the overall IPv6 OSPF autonomous system.

Syntax

�� IPv6_OSPF
RouterID = value

Comparison = Type2

Comparison = value
�

�
Demand_Circuit = YES

Demand_Circuit = value

DR_Max_Adj_Attempt = 0

DR_Max_Adj_Attempt = value
�

�
Instance = 0

Instance = value
��

Parameters

RouterID
Every router in an IPv6 OSPF routing domain must be assigned a unique
32-bit router ID.

The value used for the IPv6 OSPF router ID is chosen as follows:
v If this router ID is configured, the value configured is used as the IPv6 OSPF

router ID.
Rule: The reserved 0.0.0.0 address cannot be used as a router ID.

v If this router ID is not configured and IPv4 OSPF is also active on
OMPROUTE, then the IPv4 Router ID value is also be used for IPv6.

Valid values are any 32-bit value, in dotted decimal format (in other words,
specified as an IPv4-style IP address).

Restriction: If IPv4 OSPF is NOT active, then RouterID is a required
configuration parameter.

Comparison
Tells OMPROUTE where external routes fit in the IPv6 OSPF hierarchy. IPv6
OSPF supports two types of external metrics. Type1 external metrics are
equivalent to the link state metric. Type2 external metrics are greater than the
cost of any path internal to the AS. Use of Type2 external metrics assumes that
routing between autonomous systems is the major cost of routing a packet, and
eliminates the need for conversion of external costs to internal link state
metrics. Valid values are Type1 (or 1) or Type2 (or 2).

For more information about the COMPARISON configuration parameter, see
z/OS Communications Server: IP Configuration Guide.

Demand_Circuit
Global demand circuit setting. Coding YES enables demand circuits for IPv6
OSPF. Demand circuit parameters can then be coded on the
IPv6_OSPF_Interface statement. Valid values are Yes or No.

Chapter 11. OMPROUTE 521

DR_Max_Adj_Attempt
Specifies the maximum number of adjacency attempts to be used for reporting
and controlling futile neighbor state loops. After the adjacency attempt count
for a neighboring designated router reaches the threshold, an informational
message is issued to report the problem. If a redundant interface is available
that can reach the neighbor, adjacency formation is attempted over that
interface. An informational message is issued to report the interface switch and
the adjacency formation attempt. Valid values are in the range 0 - 100. The
value 0 indicates infinite retries.

For information about futile neighbor state loops, see the network design
considerations information in z/OS Communications Server: IP Configuration
Guide. For the types of interfaces supporting the futile neighbor state loop
detection for OSPF, see “Interfaces supported by OMPROUTE” on page 548.

Instance
Provides the default instance number for OMPROUTE. OMPROUTE supports
only one instance of IPv6 OSPF on a link, and this parameter specifies the
default value for all IPv6 OSPF interfaces. This value can be overriden on
individual IPv6_OSPF_Interface statements. Valid values are any integer from 0
- 255.

IPv6_OSPF_INTERFACE statement

Use the IPv6_OSPF_INTERFACE statement to set the IPv6 OSPF parameters for the
TCP/IP network interfaces. Replicate this statement in the configuration file for
each IPv6 interface over which OSPF operates.

Syntax

�� IPv6_OSPF_Interface Name = interface_name �

� �

Prefix = prefix/prefixlen

Instance = 0

Instance = value
�

�
Attaches_To_Area = 0.0.0.0

Attaches_To_Area = area

Transmission_Delay=1

Transmission_Delay = delay
�

�
Retransmission_Interval=5

Retransmission_Interval = frequency

Router_Priority=1

Router_Priority = priority
�

�
Hello_Interval=10

Hello_Interval = interval

DB_Exchange_Interval=40

DB_Exchange_Interval = interval
�

522 z/OS V2R1.0 Communications Server: IP Configuration Reference

�
Dead_Router_Interval=40

Dead_Router_Interval = interval

Cost=1

Cost = cost
�

�
Demand_Circuit=no

Demand_Circuit = value

Hello_Suppression=Allow

Hello_Suppression = value
�

�
PP_Poll_Interval=60

PP_Poll_Interval = interval

Parallel_OSPF=Backup

Parallel_OSPF = value
�

�
Max_Xmit_Time=120

Max_Xmit_Time = time

RT_Gain=0.125

RT_Gain = value
�

�
Min_Xmit_Time=0.5

Min_Xmit_Time = time

Variance_Gain=0.25

Variance_Gain = value
�

�
Variance_Mult=2

Variance_Mult = mult

Delay_Acks=YES

Delay_Acks = value
��

Parameters

Name
The name of the interface.

This name must match the interface name coded on the INTERFACE or
VIPADYNAMIC statement in the TCP/IP profile. Valid values are any
character string of 1 - 16 characters in length. Wildcard names (terminating in
) can be coded. For example, OSAQDIO would match stack interfaces named
OSAQDIO1, OSAQDIO2, OSAQDIOABC, and so forth.

Tips:

v For more information about how wildcard interfaces are parsed, see the
step about defining IPv6 interfaces in z/OS Communications Server: IP
Configuration Guide.

v For the names to use when defining IPv6 dynamic XCF interfaces, see the
step about defining IPv6 interfaces in z/OS Communications Server: IP
Configuration Guide.

Prefix
Specifies a prefix that is on the link to which the interface attaches. For each
configured Prefix parameter, OMPROUTE adds a direct route to the prefix
identified by the first prefixlen bits of prefix. Valid values for prefix are any
colon-hexadecimal IPv6 address. Valid values for prefixlen are any integer value
from 1 - 127. The prefix identified by the first prefixlen bits of prefix must not be
a multicast prefix, a link-local prefix, or all zeros.

Guideline: If routers on the link are advertising prefixes using either IPv6
OSPF or IPv6 Router Discovery, prefixes being advertised as on-link by the

Chapter 11. OMPROUTE 523

routers should not be configured using this keyword. However, if IPv6 Router
Discovery or IPv6 OSPF is not in use by the routers on the link or there is a
need to supplement the list of prefixes being advertised as on-link by the
routers, this keyword can be used. If the prefix is configured using this
keyword and is also advertised by a router as being on-link, the route in the
TCPIP stack's route table is the route added by OMPROUTE as a result of this
keyword being specified. Any route for the same prefix that is learned from
IPv6 OSPF or Router Discovery is ignored as long as the OMPROUTE-
configured route exists.

Instance
Specifies the IPv6 protocol instance number for this interface. This value
should be the same as the instance value of other IPv6 OSPF hosts or routers
that OMPROUTE communicates with on this link. This value is set on all
outgoing IPv6 OSPF packets, and all incoming IPv6 OSPF packets whose
instance value does not match the value coded for this interface are ignored.
This permits multiple instances of OSPF to be run on this link. OMPROUTE
supports only one instance per link; however, by coding this parameter,
OMPROUTE can interact with other routers that can support multiple
instances. This value defaults to the value coded on the Instance parameter of
the IPv6_OSPF configuration statement. If that value is not coded, the default
is 0. Valid values are in the range 1 - 255.

Attaches_To_Area
IPv6 OSPF area to which this interface attaches. Valid values are 0.0.0.0 (the
backbone), or any area defined by the IPv6_AREA statement.

Retransmission_Interval
Sets the frequency (in seconds) of retransmitting link-state update packets,
link-state request packets, and database description packets. Valid values are in
the range 1 - 65535 seconds.

Guideline: If this parameter is set too low, needless retransmissions occur that
could affect performance and interfere with neighbor adjacency establishment.
It should be set to a higher value for a slower machine.

Transmission_Delay
This parameter is an estimate of the number of seconds that it takes to
transmit link-state information over the interface. Each link-state advertisement
has a finite lifetime of 1 hour. As each link-state advertisement is sent out from
this interface, it is aged by this configured transmission delay. Valid values are
in the range 1 - 65535 seconds.

Router_Priority
This value is used for multiaccess networks to elect the designated router, with
the highest priority router being elected. Valid values are in the range 0 - 255.
A value of 0 indicates that OMPROUTE cannot become designated router.

A value of 1 indicates the lowest possible eligible priority and a value of 255
indicates the highest possible priority. A value of 0 indicates that OMPROUTE
is not eligible to be a designated router on this link.

Hello_Interval
This parameter defines the number of seconds between IPv6 OSPF Hello
packets being sent out this interface. This value must be the same for all
routers attached to a common link. Valid values are in the range 1 - 255
seconds.

DB_Exchange_Interval
The interval in seconds that the database exchange process cannot exceed. If

524 z/OS V2R1.0 Communications Server: IP Configuration Reference

the interval elapses, the procedure is restarted. This value must be larger than
the Hello_Interval. If no value is specified, the DB_Exchange_Interval is set to
the Dead_Router_Interval. Valid values are 2 through 65535.

Dead_Router_Interval
The interval in seconds, after not having received an IPv6 OSPF Hello, that the
neighbor is declared to be down. This value must be larger than the
Hello_Interval. Setting this value too close to the Hello_Interval can result in
the collapse of adjacencies. A value of 4*Hello_Interval is preferred. This value
must be the same for all routers attached to a common link. Valid values are 2
to 65535.

Cost
The OSPF cost for this interface. The cost is used to determine the shortest
path to a destination. Valid values are in the range 1 - 65535.

Demand_Circuit
This parameter, when coded with YES, causes Link State Advertisements
(LSAs) to not be periodically refreshed over this interface. Only LSAs with real
changes are advertised. In addition, coding this parameter to YES causes LSAs
flooded over this interface to never age out. Valid values are YES or NO. For
more information about the Demand_Circuit=YES and related topics, such as
handling high cost links, see z/OS Communications Server: IP Configuration
Guide.

Hello_Suppression
This parameter is meaningful only for demand circuits. This parameter allows
you to configure the interface to request Hello_Suppression. This parameter is
used only on point-to-point and point-to-multipoint interfaces. Valid values are
ALLOW, REQUEST, or DISABLE.

If either or both sides specify DISABLE, Hello_Suppression is disabled. If both
specify ALLOW, Hello_Suppression is disabled. If one specifies ALLOW and
the other REQUEST, or if both specify REQUEST, Hello_Suppression is
enabled.

PP_Poll_Interval
This parameter specifies the interval (in seconds) that OMPROUTE should use
when attempting to contact a neighbor to reestablish a neighbor relationship
when the relationship has failed, but the interface is still available. This
parameter is meaningful only if Demand_Circuit is coded YES and
Hello_Supression has been enabled. Valid values are in the range 0 - 65535.

Parallel_OSPF
This parameter designates whether the IPv6 OSPF interface is primary or
backup when more than one IPv6 OSPF interface is defined to the same link.
Only one of these interfaces can be configured as primary, meaning that it is
the interface to carry the IPv6 OSPF protocol traffic between OMPROUTE and
the subnet. Failure of the primary interface results in automatic switching of
OSPF traffic to one of the backup interfaces. If the primary interface is later
reactivated, IPv6 OSPF traffic is not automatically switched back from the
backup interface to the primary interface. If you want to switch OSPF traffic
back to the primary interface, the backup interface must be stopped. If none of
the interfaces to the common subnet are configured as primary, a primary
interface is selected by OMPROUTE. Valid values are Backup and Primary.

Tip: For IPv6, OMPROUTE considers two interfaces to be on the same link if
they have any prefixes in common.

Retransmit Parameters

Chapter 11. OMPROUTE 525

The following parameters are used by OMPROUTE to set values in the routes
added to theTCP/IP route table, which use this interface. The values affect the TCP
retransmit algorithms. When TCP packets are not acknowledged, TCP begins to
retransmit these packets at certain time intervals. If these packets are not
acknowledged after a certain number of retransmits, TCP aborts the connection.
The time interval between retransmissions increases by approximately twice the
previous interval until the packets are acknowledged or the connection times out.

The time intervals between retransmissions and the number of times packets are
retransmitted before the connection times out differs for initial connection
establishment and for data packets. For initial connection establishment, the initial
time interval is set at approximately 3 seconds, and the SYN packet is
retransmitted 5 times before the connection is timed out. Data packets use a
smoothed Round Trip Time (RTT) as the initial time interval and are retransmitted
15 times before the connection is timed out. All of the following parameters affect
the data packet retransmission algorithm. Only the Min_Xmit_time parameter
affects the initial connection establishment.

Tip: A new route lookup is performed after every two retransmissions for a data
packet. For more information about the route lookup process, see Route selection
algorithm in z/OS Communications Server: IP Configuration Guide. Be careful
when you design networks with firewalls. A firewall in an alternate routing path
can generate a RESET packet for the rerouted data packets, which causes TCP to
abort the connection.

Max_Xmit_Time
Limits the TCP retransmission interval. Decreasing this value might decrease
the total time it takes a connection to time out. Specifying Max_Xmit_Time
assures that the interval time never exceeds the specified limit. The minimum
value that can be specified for Max_Xmit_Time is 0. The maximum is 999.990.
The default is 120 seconds. This parameter affects the initial connection
establishment retransmission timeout for all APIs, except the Pascal API
(TcpOpen), that are using the socket connect function.

Min_Xmit_Time
Sets a minimum retransmit interval. Increasing this value might increase the
amount of time it takes for TCP to time out a connection. The minimum value
that can be specified for Min_Xmit_Time is 0. The maximum is 99.990. The
default is 0.5 (500 milliseconds).

RT_Gain
This value is the percentage of the latest Round Trip Time (RTT) to be applied
to the smoothed RTT average. The higher this value, the more influence the
latest packet's RTT has on the average. The minimum value that can be
specified for RT_Gain is 0. The maximum value is 1.0. The default is 0.125.
This parameter does not affect initial connection retransmission.

Variance_Gain
This value is the percentage of the latest RTT variance from the RTT average to
be applied to the RTT variance average. The higher this value, the more
influence the latest packet's RTT has on the variance average. The minimum
value that can be specified for Variance_Gain is 0. The maximum value is 1.0.
The default is 0.25. This parameter does not affect initial connection
retransmission.

Variance_Mult
This value is multiplied against the RTT variance in calculating the
retransmission interval. The higher this value, the more affect variation in RTT

526 z/OS V2R1.0 Communications Server: IP Configuration Reference

has on calculating the retransmission interval. The minimum value that can be
specified for Variance_Mult is 0. The maximum value is 99.990. The default is
2. This parameter does not affect initial connection retransmission.

Delay_Acks
The delay acknowledgments value that is added to the routing tables for
routes that use this interface. Specify YES to delay transmission of
acknowledgments when a packet is received with the PUSH bit on in the TCP
header. Specify NO to return acknowledgments immediately when a packet is
received with the PUSH bit on in the TCP header. This parameter affects only
connections that use the routes associated with this interface.

Even if you specify YES, you can override the delay acknowledgments
behavior can be overridden by specifying the NODELAYACKS parameter on
the TCP/IP stack PORT, PORTRANGE, or TCPCONFIG profile statements. A
value of NO can override the specification of the DELAYACKS parameter on
the TCP/IP stack PORT, PORTRANGE, and TCPCONFIG profile statements.

Valid values are YES and NO. The default value is YES.

IPv6_RANGE statement

Use the IPv6_RANGE statements to ad ranges to IPv6 OSPF areas. External to the
area, a single route is advertised for each address range. For example, if an IPv6
OSPF area were to consist of the prefix 2001:0db8:1:2::/64, all addresses falling
within that prefix would be defined as consisting of a single address range. The
address range would be specified as an address of 2001:0db8:1:2:: together with a
prefix length of 64. Outside of the area, all addresses that fall within that prefix
would be advertised as a single route to prefix 2001:0db8:1:2::/64.

Ranges can be defined to control which routes are advertised external to an area.

There are two choices:
v When IPv6 OSPF is configured to advertise the range, a single interarea route is

advertised for the range if at least one component route of the range is active
within the area.

v When IPv6 OSPF is configured not to advertise the range, no interarea prefix
routes are advertised for routes that fall within the range. Ranges cannot be used
for areas that serve as transit areas for virtual links. Also, when ranges are
defined for an area, IPv6 OSPF does not function correctly if the area is
partitioned but is connected by the backbone.

Ranges cannot be used for areas that serve as transit areas for virtual links. Also,
when ranges are defined for an area, OSPF does not function correctly if the area is
partitioned but is connected by the backbone.

Syntax

�� IPv6_Range Prefix = prefix/prefixlen
Area_Number=0.0.0.0

Area_Number = area
�

�
Advertise=YES

Advertise = value
��

Chapter 11. OMPROUTE 527

Parameters

Prefix
Common prefix of IP addresses in this range, with the prefix length.

Area_Number
Area number for which to add this range. Valid values are any defined areas.

Advertise
Determines whether this range is advertised to other areas. Valid values are
YES or NO.

IPv6_VIRTUAL_LINK statement

Use the IPv6_VIRTUAL_LINK statement to configure a virtual link between two
area border routers. To maintain backbone connectivity you must have all of your
backbone routers interconnected either by permanent or virtual links. Virtual links
are considered to be separate router interfaces connecting to the backbone area.
Therefore, you are asked to specify many of the interface parameters when
configuring a virtual link.

Virtual links can be configured between any two backbone routers that have an
interface to a common nonbackbone, nonstub area. Virtual links are used to
maintain backbone connectivity and must be configured at both endpoints.

Tip: Do not confuse OSPF virtual links with Virtual IP Address support (VIPA).

Syntax

�� IPv6_Virtual_Link Virtual_Endpoint_RouterID = id �

� Links_Transit_Area = area
Retransmission_Interval=10

Retransmission_Interval = frequency
�

�
Transmission_Delay=5

Transmission_Delay = delay

Hello_Interval=30

Hello_Interval = interval
�

�
Dead_Router_Interval=180

Dead_Router_Interval = interval

DB_Exchange_Interval=180

DB_Exchange_Interval = interval
��

Parameters

Virtual_Endpoint_RouterID
32-bit IPv6 OSPF router ID of the virtual neighbor (other endpoint), specified
in dotted-decimal notation.

Links_Transit_Area
This is the nonbackbone, nonstub area through which the virtual link is
configured. Virtual links can be configured between any two area border
routers that have an interface to a common nonbackbone and nonstub area.
Virtual links must be configured in each of the link's two endpoints. Valid
values are 0.0.0.1 - 255.255.255.255.

528 z/OS V2R1.0 Communications Server: IP Configuration Reference

Retransmission_Interval
Sets the frequency (in seconds) of retransmitting link-state update packets,
link-state request packets, and database description packets. Valid values are
from in the range 1 - 65 535 seconds.

Guideline: If this parameter is set too low, needless retransmissions occur that
could affect performance and interfere with neighbor adjacency establishment.
It should be set to a higher value for a slower machine.

Transmission_Delay
This parameter is an estimate of the number of seconds that it takes to
transmit link-state information over the virtual link. Each link-state
advertisement has a finite lifetime of one hour. As each link-state
advertisement is sent out from this virtual link, it is aged by this configured
transmission delay. Valid values are in the range 1 - 65 535 seconds.

Hello_Interval
This parameter defines the number of seconds between OSPF Hello packets
being sent out from this virtual link. Valid values are in the range 1 - 255
seconds. The Hello_Interval should be set higher than the same value used on
the intervening, actual IPv6 OSPF interfaces.

Dead_Router_Interval
The interval in seconds, after not having received an OSPF Hello, that the
neighbor is declared to be down. This value must be larger than the
Hello_Interval. Valid values are 2 - 65 535. The dead router interval should be
set higher than the same value used on the intervening, actual, IPv6 OSPF
interfaces.

DB_Exchange_Interval
The interval in seconds that the database exchange process cannot exceed. If
the interval elapses, the procedure is restarted. This value must be larger than
the Hello_Interval. If no value is specified, the DB_Exchange_Interval is set to
the Dead_Router_Interval. Valid values are 2 - 65 535.

IPv6 RIP configuration statements
This topic contains descriptions of the following IPv6 RIP configuration statements:
v IPV6_ACCEPT_RIP_ROUTE
v IPV6_RIP_FILTER
v IPV6_IGNORE_RIP_NEIGHBOR
v IPV6_ORIGINATE_RIP_DEFAULT
v IPV6_RIP_INTERFACE
v IPV6_RIP_SEND_ONLY

IPv6_ACCEPT_RIP_ROUTE statement

Allows a prefix or host route to be accepted independent of whether the interface
it was received on has the corresponding reception parameter enabled (prefix or
host). Routes added in this manner can be thought of as a list of exception
conditions.

Syntax

�� IPv6_Accept_RIP_Route IP-address = address ��

Chapter 11. OMPROUTE 529

Parameters

IP_address
Destination route to be unconditionally accepted, specified in
colon-hexadecimal format.

IPv6_RIP_FILTER statement

Use the IPv6_RIP_FILTER statement to allow for the specification of routes that are
not to be sent or received over IPv6 RIP interfaces. The IPv6_RIP_Filter statement
can be coded stand-alone in the OMPROUTE configuration file (nosend and
noreceive only) to apply to all configured IPv6 RIP interfaces.

Syntax

�� IPv6_RIP_Filter=(type,dest/prefix_len) ��

Parameters

type
The type can be any of the following values:

nosend
Specifies that routes matching the dest and prefix_len are not to be
sent over IPv6 RIP interfaces. This option serves as an IPv6 RIP output
filter.

noreceive
Specifies that routes matching the dest and prefix_len are to be ignored
in messages received over IPv6 RIP interfaces. This option serves as an
IPv6 RIP input filter.

dest
The dest specifies the destination route in colon-hexadecimal format.
Alternatively, an asterisk (*), which matches any IPv6 destination, can be coded
to filter out all routes sent or received over an interface. The use of the asterisk
is also referred to as a blackhole filter. This should be used in conjunction with
either additional send or receive filters to allow only certain routes to be
received, or advertised over an interface or set of interfaces.

Tip: The blackhole nosend filter does not filter out the sending of the default
route when the IPv6_Originate_RIP_Default statement is also configured.

prefix_len
The prefix_len specifies the number of significant bits in the destination to be
filtered. If not coded, the default prefix_len is 128, meaning apply the filter to
the dest as coded. Coding the prefix_len has no meaning and is not valid if the
dest is coded as an asterisk (*) for a blackhole filter.

IPv6_IGNORE_RIP_NEIGHBOR statement

Use the IPv6_IGNORE_RIP_NEIGHBOR statement to specify that IPv6 RIP routing
table messages from the specified gateway are to be ignored. This option serves as
an IPv6 RIP input filter.

Syntax

530 z/OS V2R1.0 Communications Server: IP Configuration Reference

�� IPv6_Ignore_Rip_Neighbor IP_address=link_local_address ��

Parameters

IP_address
Specifies the link-local IP address, in colon-hexadecimal format, of the gateway
from which routing table messages are ignored. For multiple IP addresses, the
statement must be repeated for each IP address.

IPv6_ORIGINATE_RIP_DEFAULT statement

Indicates under what conditions IPv6 RIP supports Default route
(destination/prefix_len ::/0) generation.

Guideline: This statement determines whether or not a default route is considered
available by OMPROUTE IPv6 RIP. The SEND_DEFAULT_ROUTES parameter on
the IPV6_RIP_INTERFACE statement determines whether or not an available
default route is advertised by a particular IPV6 RIP interface.

Syntax

�� IPv6_Originate_RIP_Default
Condition=Always

Condition = condition

Cost=1

Cost = cost
�

�
Accept_Default=NO

Accept_Default = value
��

Parameters

Condition
Condition for when IPv6 RIP is to advertise this router as a default router.
Valid values are:

Always
Always originate IPv6 RIP default. This is the default value.

Never Never advertise this router as a default IPv6 RIP router.

OSPF Advertise this router as a default IPv6 RIP router if there are any IPv6
OSPF routes available.

Cost
Specifies the cost that IPv6 RIP dvertises with the default route that it
originates. Valid values are in the range 1 - 16. The default value is 1.

Accept_Default
Specifies whether or not OMPROUTE IPV6 RIP accepts default routes from
inbound IPv6 RIP packets whose cost is higher than default routes originated
by the host.

Tip: OMPROUTE IPv6 RIP always accepts default routes from inbound IPv6
RIP packets whose cost is lower than default routes originated by the host.

A value of YES indicates that OMPROUTE IPv6 RIP replaces this router's
originated default route with a default route learned from inbound IPv6 RIP
packets, even if that learned default route has a higher cost than this router's
originated default route.

Chapter 11. OMPROUTE 531

Result: When YES is coded, this router's originated default route is only used
if no other default routes are learned from inbound IPv6 RIP packets.

A value of NO indicates that OMPROUTE IPv6 RIP replaces this router's
originated default route with a default route learned from inbound IPv6 RIP
packets only when the learned IPv6 RIP route has a lower cost than this
router's originated default route. This is the default value.

Result: When this parameter value is NO (either coded or by default), and the
other parameters in this statement take their default values
(CONDITION=ALWAYS and COST=1), OMPROUTE IPv6 RIP never accepts
default routes learned from IPv6 RIP packets because it is not possible to learn
an IPv6 RIP route whose cost is less than 1.

IPv6_RIP_INTERFACE statement

Use the IPv6_RIP_INTERFACE statement to configure the IPv6 RIP parameters for
each IP interface. Replicate this statement in the configuration file for each IP
interface over which IPv6 RIP operates.

Syntax

�� IPv6_RIP_Interface Name = interface_name �

� �

Prefix = ipaddr/prefix_len

Receive_RIP=YES

Receive_RIP = value
�

�
Receive_Prefix_Routes=YES

Receive_Prefix_Routes = value

Receive_Host_Routes=NO

Receive_Host_Routes = value
�

� �

Filter=(type,dest/prefix_len)

Send_Only=ALL

Send_Only = (values)
�

�
Send_RIP=YES

Send_RIP = value

Send_Default_Routes=NO

Send_Default_Routes = value
�

�
Send_Prefix_Routes=YES

Send_Prefix_Routes = value

Send_Static_Routes=NO

Send_Static_Routes = value
�

�
Send_Host_Routes=NO

Send_Host_Routes = value
�

532 z/OS V2R1.0 Communications Server: IP Configuration Reference

�
Send_Router_Advertisement_Routes=YES

Send_Router_Advertisement_Routes = value
�

�
Send_Poisoned_Reverse_Routes=YES

Send_Poisoned_Reverse_Routes = value

In_Metric=1

In_Metric = metric
�

�
Out_Metric=0

Out_Metric = metric

Max_Xmit_Time=120

Max_Xmit_Time = time
�

�
Min_Xmit_Time=0.5

Min_Xmit_Time = time

RT_Gain=0.125

RT_Gain = value
�

�
Variance_Gain=0.25

Variance_Gain = value

Variance_Mult=2

Variance_Mult = mult
�

�
Delay_Acks=NO

Delay_Acks = value
��

Parameters

Name
The name of the interface. This name must match the interface name coded on
the INTERFACE statement in the TCP/IP profile. Valid values are any
character string of 1 - 16 characters in length. Wildcard names (terminating in
) can be coded. For example, OSAQDIO would match stack interfaces named
OSAQDIO1, OSAQDIO2, OSAQDIOABC, and so on.

Tips:

v For more information about how wildcard interfaces are parsed, see the
step about defining IPv6 interfaces in z/OS Communications Server: IP
Configuration Guide.

v For the names to use when defining IPv6 dynamic XCF interfaces, see the
routing information in z/OS Communications Server: IP Configuration
Guide.

Prefix
Specifies a prefix that is on the link to which the interface attaches. For each
configured Prefix parameter, OMPROUTE adds a direct route to the prefix
identified by the first prefixlen bits of ipaddr. Valid values for ipaddr are any
valid colon-hexadecimal IPv6 address. Valid values for prefixlen are in the
range 1 - 127. The prefix identified by the first prefixlen bits of ipaddr must not
be a multicast prefix, a link-local prefix, or all zeros.

Guideline: If IPv6 Router Discovery is in use by the routers on the link,
prefixes being advertised as on-link by the routers by way of Router Discovery
should not be configured using this keyword. However, if IPv6 Router
Discovery is not in use by the routers on the link or there is a need to

Chapter 11. OMPROUTE 533

supplement the list of prefixes being advertised as on-link by the routers, this
keyword can be used. If the same prefix is configured using this keyword and
learned from Router Discovery, the route in the TCPIP stack's route table is the
route added by OMPROUTE as a result of this keyword being specified. Any
route for the same prefix that is learned from Router Discovery is ignored as
long as the OMPROUTE route exists.

Receive_RIP
Specifies whether IPv6 RIP updates are accepted over this interface. Valid
values are:

YES IPv6 RIP packets are received over this interface, subject to other
filters. This is the default value.

NO No IPv6 RIP packets are received over this interface, regardless of any
other filters.

Receive_Prefix_Routes
Specifies whether or not to learn routes for prefixes over this interface. If this is
not set, only prefixes explicitly allowed using the IPv6_Accept_RIP_Route
configuration statement are accepted on this interface. Valid values are YES or
NO.

Receive_Host_Routes
Specifies whether or not to learn routes for hosts over this interface. If this is
not set, only hosts explicitly allowed using the IPv6_Accept_RIP_Route
configuration statement are accepted on this interface. Valid values are YES or
NO.

filter
Multiple filter parameters can be coded on a IPv6_RIP_Interface statement.
When specified on the IPv6_RIP_Interface statement, the filter parameter
applies only to the corresponding IPv6 RIP interface. The IPv6_RIP_Filter
statement can also be coded stand-alone in the OMPROUTE configuration file
(nosend and noreceive only) to apply to all configured IPv6 RIP interfaces.

The type can be any of the following values:

Value Description

nosend
Specifies that routes matching the dest and prefix_len are not to be sent
over this interface. This option serves as an IPv6 RIP output filter.

noreceive
Specifies that routes matching the dest and prefix_len are to be ignored
in messages received over this interface. This option serves as an IPv6
RIP input filter.

send Specifies that routes matching the dest and prefix_len are to be sent over
only this interface (or any other IPv6 RIP interface with an equivalent
filter). This option serves as an IPv6 RIP output filter and can be used
for inbound and outbound traffic splitting.

send_cond
Specifies that routes matching the dest and prefix_len are to be sent over
only this interface when this interface is active (or any other active
IPv6 RIP interface with an equivalent filter). If this interface is inactive,
the routes can be sent over other interfaces. This option serves as an
IPv6 RIP output filter and can be used for inbound and outbound
traffic splitting.

534 z/OS V2R1.0 Communications Server: IP Configuration Reference

receive
Specifies that routes matching the dest and prefix_len are to be received
over only this interface (or any other IPv6 RIP interface with an
equivalent filter). If received over other IPv6 RIP interfaces, the routes
are discarded. This option serves as an IPv6 RIP input filter.

receive_cond
Specifies that routes matching the dest and prefix_len are to be received
over only this interface when this interface is active (or any other
active IPv6 RIP interface with an equivalent filter). If this interface is
inactive, the routes can be received over all other active IPv6 RIP
interfaces. This option serves as an IPv6 RIP input filter.

The dest specifies the destination route in colon-hexadecimal format.
Alternatively, an asterisk (*) can be coded in conjunction with the nosend and
noreceive filter types. This serves as a blackhole filter that can be used to filter
out all routes sent or received over an interface. This should be used in
conjunction with either additional send or receive filters to allow only certain
routes to be received, or advertised over an interface or set of interfaces.

Tip: If the blackhole nosend filter is used, it does not filter out the sending of
the default route when the Originate_RIP_Default statement is also configured.

The prefix_len specifies the number of significant bits in the destination to be
filtered. If not coded, the default prefix_len is 128, meaning apply the filter to
the dest route as coded. Coding the prefix_len has no meaning and is not valid
if the dest is coded as an asterisk (*) for a blackhole filter.

Send_Only
Specifies send restrictions. Multiple values can be coded by separating the
values with commas, unless ALL is coded. The valid values are:

ALL Specifies no send restrictions.

VIRTUAL
Sends virtual IP addresses.

DEFAULT
Sends the default route.

DIRECT
Sends direct routes.

TRIGGERED
Only sends routes when requested or when a route becomes inactive
(metric 16).

VIRTUAL, DEFAULT, and DIRECT are OR'd together to determine what
should be sent. Thus, coding SEND_ONLY=(VIRTUAL, DEFAULT) sends
virtual IP addresses and the default route. When ALL is coded, it must not be
enclosed within parentheses. When any of the other possible values are coded,
they must be enclosed within parentheses.

When specified on the IPv6_RIP_Interface statement, the Send_Only parameter
applies only to the corresponding IPv6 RIP interface. The IPv6_RIP_Send_Only
statement can also be coded stand-alone in the OMPROUTE configuration file
to apply to all IPv6 RIP interfaces.

Send_RIP
Determines whether or not IPv6 RIP advertisements are sent over this
interface. Valid values are YES or NO.

Chapter 11. OMPROUTE 535

Send_Default_Routes
Advertise the default route (destination/prefix_len ::/0), if it is available, in
IPv6 RIP responses sent from this IP source address. Valid values are YES or
NO. If DEFAULT is coded on the Send_Only parameter or the stand-alone
IPv6_RIP_Send_Only statement, the Send_Default_Routes parameter is ignored
and is set to YES.

Send_Prefix_Routes
Advertise all prefix routes in IPv6 RIP responses sent from this IP address.
Valid values are YES or NO.

Send_Static_Routes
Advertise static and direct routes in IPv6 RIP responses sent from this IP
source address. Split horizon is applied; that is, static routes configured over
an interface are not included in IPv6 RIP responses sent from that interface.
Valid values are YES or NO.

Send_Host_Routes
Advertise host routes in IPv6 RIP responses sent from this IP source address.
In this context, a host route is one with a prefix length of 128. Valid values are
YES or NO.

Send_Router_Advertisement_Routes
Advertise router advertisement routes in IPv6 RIP responses sent from this IP
source address. These are routes that have been learned by the stack using
IPv6 Router Discovery and that OMPROUTE has learned from the stack. Split
horizon is applied; that is, router advertisement routes learned over an
interface are not included in IPv6 RIP responses sent from that interface. Valid
values are YES or NO.

Send_Poisoned_Reverse_Routes
Advertise poisoned reverse routes over the interface corresponding to the next
hop. A poison reverse route is one with an infinite metric (16). Valid values are
YES or NO. If NO is specified, OMPROUTE still uses split horizon.

In_Metric
Specifies the value of the metric to be added to IPv6 RIP routes received over
this interface prior to installation in the routing table. Valid values are in the
range 1 - 15.

Out_Metric
Specifies the value of the metric to be added to IPv6 RIP routes advertised
over this interface. Valid values are in the range 0 - 15.

Retransmit Parameters

The following parameters are used by OMPROUTE to set values in the routes
added to the TCP/IP route table which use this interface. The values affect the
TCP retransmit algorithms. When TCP packets are not acknowledged, TCP begins
to retransmit these packets at certain time intervals. If these packets are not
acknowledged after a certain number of retransmits, TCP aborts the connection.
The time interval between retransmissions increases by approximately twice the
previous interval until the packets are acknowledged or the connection times out.

The time intervals between retransmissions and the number of times packets are
retransmitted before the connection times out differs for initial connection
establishment and for data packets. For initial connection establishment, the initial
time interval is set at approximately 3 seconds, and the SYN packet is
retransmitted 5 times before the connection is timed out. Data packets use a

536 z/OS V2R1.0 Communications Server: IP Configuration Reference

smoothed Round Trip Time (RTT) as the initial time interval and are retransmitted
15 times before the connection is timed out. All of the following parameters affect
the data packet retransmission algorithm. Only the Min_Xmit_Time parameter
affects the initial connection establishment.

Tip: A new route lookup is performed after every two retransmissions for a data
packet. For more information about the route lookup process, see Route selection
algorithm in z/OS Communications Server: IP Configuration Guide. Be careful
when you design networks with firewalls. A firewall in an alternate routing path
can generate a RESET packet for the rerouted data packets, which causes TCP to
abort the connection.

Max_Xmit_Time
Limits the TCP retransmission interval. Decreasing this value might decrease
the total time it takes a connection to time out. Specifying Max_Xmit_Time
assures that the interval time never exceeds the specified limit. The minimum
value that can be specified for Max_Xmit_Time is 0. The maximum is 999.990.
The default is 120 seconds. This parameter affects the initial connection
establishment retransmission timeout for all APIs, except the Pascal API
(TcpOpen), that are using the socket connect function.

Min_Xmit_Time
Sets a minimum retransmit interval. Increasing this value might increase the
amount of time it takes for TCP to time out a connection. The minimum value
that can be specified for Min_Xmit_Time is 0. The maximum is 99.990. The
default is 0.5 (500 milliseconds).

RT_Gain
This value is the percentage of the latest Round Trip Time (RTT) to be applied
to the smoothed RTT average. The higher this value, the more influence the
latest packet's RTT has on the average. The minimum value that can be
specified for RT_Gain is 0. The maximum value is 1.0. The default is 0.125.
This parameter does not affect initial connection retransmission.

Variance_Gain
This value is the percentage of the latest RTT variance from the RTT average to
be applied to the RTT variance average. The higher this value, the more
influence the latest packet's RTT has on the variance average. The minimum
value that can be specified for Variance_Gain is 0. The maximum value is 1.0.
The default is 0.25 . This parameter does not affect initial connection
retransmission.

Variance_Mult
This value is multiplied against the RTT variance in calculating the
retransmission interval. The higher this value, the more affect variation in RTT
has on calculating the retransmission interval. The minimum value that can be
specified for Variance_Mult is 0. The maximum value is 99.990. The default is
2. This parameter does not affect initial connection retransmission.

Delay_Acks
The delay acknowledgments value that is added to the routing tables for
routes that use this interface. Specify YES to delay transmission of
acknowledgments when a packet is received with the PUSH bit on in the TCP
header. Specify NO to return acknowledgments immediately when a packet is
received with the PUSH bit on in the TCP header. This parameter affects only
connections that use the routes associated with this interface.

Even if you specify YES, you can override the delay acknowledgments
behavior can be overridden by specifying the NODELAYACKS parameter on

Chapter 11. OMPROUTE 537

the TCP/IP stack PORT, PORTRANGE, or TCPCONFIG profile statements. A
value of NO can override the specification of the DELAYACKS parameter on
the TCP/IP stack PORT, PORTRANGE, and TCPCONFIG profile statements.

Valid values are YES and NO. The default value is YES.

IPv6_RIP_SEND_ONLY statement

Use the IPv6_RIP_SEND_ONLY statement to allow for the specification of the
types of routes that are to be included in advertisements sent over IPv6 RIP
interfaces. The IPv6_RIP_Send_Only statement can be coded stand-alone in the
OMPROUTE configuration file to apply to all IPv6 RIP interfaces.

Syntax

��
IPv6_RIP_Send_Only=ALL

IPv6_RIP_Send_Only = (values)
��

Parameters

(values)
Specifies send restrictions. Multiple values can be coded by separating the
values with commas, unless ALL is coded. The valid values are:

ALL Specifies no send restrictions.

VIRTUAL
Sends virtual IP addresses.

DEFAULT
Sends the default route.

DIRECT
Sends direct routes.

TRIGGERED
Only sends routes when requested or when a route becomes inactive
(metric 16).

VIRTUAL, DEFAULT, and DIRECT are OR'd together to determine what
should be sent. Thus, coding SEND_ONLY=(VIRTUAL, DEFAULT) sends
virtual IP addresses and the default route. When ALL is coded, it must not be
enclosed within parentheses. When any of the other possible values are coded,
they must be enclosed within parentheses.

When specified on the IPv6_RIP_Send_Only statement in the OMPROUTE
configuration file, this statement applies to all IPv6 RIP interfaces. The
SEND_ONLY parameter can also be coded on the IPv6_RIP_Interface
statement. When specified on the IPv6_RIP_Interface statement, the
SEND_ONLY parameter applies only to the corresponding IPv6 RIP interface.

Common configuration statements for RIP and OSPF
This topic contains descriptions of the common configuration statements:
v DEFAULT_ROUTE
v ROUTESA_CONFIG
v INTERFACE
v GLOBAL_OPTIONS

538 z/OS V2R1.0 Communications Server: IP Configuration Reference

v IPV6_DEFAULT_ROUTE
v IPV6_INTERFACE

DEFAULT_ROUTE statement

Use the DEFAULT_ROUTE statement to specify IPv4 default routes to
OMPROUTE. Default routes are created in the following ways:
v Specify a BEGINROUTES or GATEWAY statement in the TCP/IP profile for a

default route in the main route table
v Specify a Policy Agent RouteTable statement for a default route in a policy-based

route table
v Specify a Default_Route statement
v Let the default route be learned by routing protocol

You can configure up to 16 default routes using the DEFAULT_ROUTE statement.
Each default route is added to the main route table. A default route is also added
to any policy-based route tables if the interface and next-hop values associated
with the default route are compatible with the dynamic routing parameters defined
for those route tables. The Send_Default_Routes keyword on the RIP_Interface
statement indicates whether the default routes over that interface should be
advertised.

Syntax

�� Default_Route � Name = interface_name Next_Hop = ip_address ��

Parameters

Name
The name of the interface used in the default route. This name must match a
link name coded on the HOME statement or the interface name coded on an
IPv4 INTERFACE statement in the TCP/IP profile. The name can be any 16
characters.

Restriction: VIPA interfaces cannot be used for the interface_name value.

Next_Hop
IP address of the next hop used in the default route.

ROUTESA_CONFIG statement

Use the ROUTESA_CONFIG statement to configure the OMPROUTE OSPF
subagent.

Syntax

�� ROUTESA_Config
Community="public"

Community= community_string
�

Chapter 11. OMPROUTE 539

�
Agent=161

Agent= agent_port_number

Enabled=YES

Enabled= value
��

Parameters

Community
A character string of 1 - 32 characters enclosed in double quotation marks ("")
used as the community name (or password) in establishing contact with the
SNMP agent. For the OMPROUTE subagent to communicate with the z/OS
Communications Server SNMP agent, the community name specified on the
COMMUNITY keyword must match one that is defined in the PW.SRC or
SNMPD.CONF data set configured to the SNMP agent or the -c parameter
when the SNMP agent is started.

For more information about how the community name is used to permit access
to the SNMP agent, see Step 1: Configure the SNMP agent (OSNMPD), in
z/OS Communications Server: IP Configuration Guide. The default value is
public.

Tip: The community name is case sensitive.

Agent
A port number in the range 1 - 65 535 used in establishing communication
with the SNMP agent. For the OMPROUTE subagent to communicate with the
z/OS Communications Server SNMP agent, the port number specified must
match the port number specified on the -p parameter when the SNMP agent is
started. The default value is 161.

Enabled
A value of YES indicates that the OMPROUTE subagent should be started
during OMPROUTE initialization. If there are no active OSPF interfaces, the
OMPROUTE subagent returns noSuchInstance for all GET and GETNEXT
requests. By default, the OMPROUTE subagent is started when OMPROUTE is
started.

A value of NO indicates that the OMPROUTE subagent should not be started.
Specify this keyword if little or no OSPF SNMP data is requested from this
OSPF image. SNMP MIB objects supported by the TCP/IP SNMP agent and
TCP/IP subagent (other than the OMPROUTE subagent) are still available. For
information about which MIB objects are supported by the SNMP agent and
OMPROUTE subagent, see the z/OS Communications Server: IP User's Guide
and Commands.

Examples
ROUTESA_CONFIG COMMUNITY="USACCESS" AGENT=528
ROUTESA_CONFIG ENABLED=NO

Usage notes
v If ENABLED=NO is specified, the OMPROUTE subagent is not started during

OMPROUTE initialization. If the ROUTESA_CONFIG statement itself is not
specified, the OMPROUTE subagent is started (this is the default).

v The community string is case sensitive and must be 1 - 32 characters. It is not
converted to uppercase by profile processing.

v A MODIFY command can be used to start or stop the OMPROUTE subagent,
but the setting of the parameters cannot be changed unless OMPROUTE is
recycled.

540 z/OS V2R1.0 Communications Server: IP Configuration Reference

INTERFACE statement

Use the INTERFACE statement to allow certain values to be specified for generic
IPv4 interfaces, which are interfaces that are neither OSPF nor RIP interfaces. Each
IPv4 interface that is neither an OSPF nor an RIP interface should be configured to
OMPROUTE using the INTERFACE statement unless it is a non-point-to-point
interface and the default values for Subnet_Mask and MTU are acceptable for that
interface.

Tip: To display information about INTERFACEs, use the d tcpip,tcpname,
OMP,GENERIC commands.

Syntax

�� Interface IP_address = ip_address Name = interface_name �

� Subnet_Mask = mask
Destination_Addr = address

MTU=576

MTU = size
�

�
Max_Xmit_Time=120

Max_Xmit_Time = time

Min_Xmit_Time=0.5

Min_Xmit_Time = time
�

�
RT_Gain=0.125

RT_Gain = value

Variance_Gain=0.25

Variance_Gain = value
�

�
Variance_Mult=2

Variance_Mult = mult

Delay_Acks=YES

Delay_Acks = value
��

Parameters

IP_address
The IP address can be a valid IP address that is configured on the system or it
can be specified with asterisks (*) as wildcards. The valid wildcard
specifications are below. The result of coding a wildcard value is that all
configured interfaces whose IP address matches the wildcard are configured as
interfaces. Configured interface IP addresses and names are matched against
possible wildcards in the order they appear below with the name and any
matching wildcard being the best match, x.y.z.* being second best, and so
forth.
interface name and any matching wildcard
x.y.z.*
x.y.*.*
x.*.*.*
..*.* - Same as ALL
ALL - Same as *.*.*.*

Tip: For more information about how wildcard interfaces are parsed, see this
Method of assigning interface definitions to stack interfaces (wildcard and
explicit): in z/OS Communications Server: IP Configuration Guide.

Because a stack could have a large number of Dynamic VIPAs (DVIPAs)
defined, as well as DVIPA ranges, additional wildcard capabilities exist on the
INTERFACE statement for use only with DVIPAs. Ranges of DVIPA interfaces

Chapter 11. OMPROUTE 541

can be defined using the subnet mask parameter on the INTERFACE
statement. The range defined in this way is all the IP addresses that fall within
the subnet defined by the mask and the IP address.

When this type of wildcarding is being used, the value of the IP_ADDRESS
parameter must be the subnet number of the range. For example, the following
code defines a range of six addresses (9.67.101.9 to 9.67.101.14) that can be
used for DVIPA addresses and matches any DVIPA interface that fall into the
9.67.101.8/29 subnet:
IP_ADDRESS= 9.67.101.8
SUBNET_MASK= 255.255.255.248

Alternatively, the following code is not because 9.67.101.17 is an address within
the subnet range, not the subnet number itself (that would be 9.67.101.16). This
second definition only matches an interface whose home address is 9.67.101.17.
IP_ADDRESS= 9.67.101.17
SUBNET_MASK=255.255.255.248

Name
The name of the interface. A valid value is any string 1 - 16 characters in
length.

Rules:

v If this is not a wildcard interface definition, the name must match the link
name that is coded for the corresponding IP address on the HOME
statement or the interface name coded for the corresponding IPv4
INTERFACE statement in the TCP/IP profile.

v If this is a wildcard interface definition, then this parameter is used in
conjunction with the defined wildcard IP address when searching for
definitions to match a stack interface. For more details about this process,
see method of assigning interface definitions to stack interfaces (wildcard
and explicit): in z/OS Communications Server: IP Configuration Guide.

For Dynamic VIPA (DVIPA), link names are assigned programmatically by the
stack when the DVIPA is created; therefore, the name field set on the
INTERFACE statement is ignored by OMPROUTE for DVIPAs.

Subnet_Mask
Subnet mask for the associated interface's IP address. If you configure this
interface in the TCP/IP profile using the IPv4 INTERFACE statement and you
configure a subnet mask on that statement that does not match the value that
you specify on this parameter, OMPROUTE issues message EZZ8164I and uses
this subnet mask.

Destination_Addr
IP address of the host at the remote end of this interface. This parameter is
valid only for point-to-point links. If this parameter is not specified for a
point-to-point link, a route to the host at the remote end of the interface is not
added to the appropriate TCP/IP route tables (main and policy-based tables).
A subnet route for the interface is added when OMPROUTE is initialized
whether or not this parameter is specified.

MTU
The maximum transmission unit size that OMPROUTE adds to the appropriate
routing tables (main and policy-based tables) for routes that use this interface.
Valid values are in the range 0 - 65535. If you configure this interface in the
TCP/IP profile using the IPv4 INTERFACE statement and you configure an
MTU on that statement and the MTU that you configure on that statement

542 z/OS V2R1.0 Communications Server: IP Configuration Reference

does not match the MTU (the configured value or the default value) on this
statement, OMPROUTE issues message EZZ8163I and uses the MTU value on
this statement.

Tip: See z/OS Communications Server: IP Configuration Guide, in section
Maximum transmission unit considerations, for additional information about
how TCP/IP uses the MTU to determine the largest size frame to send.

Retransmit Parameters

The following parameters are used by OMPROUTE to set values in the routes
which use this interface that are added to the TCP/IP route tables. The values
affect the TCP retransmit algorithms. When TCP packets are not acknowledged,
TCP begins to retransmit these packets at certain time intervals. If these packets are
not acknowledged after a certain number of retransmits, TCP aborts the
connection. The time interval between retransmissions increases by approximately
twice the previous interval until the packets are acknowledged or the connection
times out.

The time intervals between retransmissions and the number of times packets are
retransmitted before the connection times out differs for initial connection
establishment and for data packets . For initial connection establishment, the initial
time interval is set at approximately 3 seconds, and the SYN packet is
retransmitted 5 times before the connection is timed out. Data packets use a
smoothed Round Trip Time (RTT) as the initial time interval and are retransmitted
15 times before the connection is timed out. All of the following parameters affect
the data packet retransmission algorithm. Only the Min_Xmit_Time parameter
affects the initial connection establishment.

Tip: A new route lookup is performed after every two retransmissions for a data
packet. For more information about the route lookup process, see Route selection
algorithm in z/OS Communications Server: IP Configuration Guide. Be careful
when you design networks with firewalls. A firewall in an alternate routing path
can generate a RESET packet for the rerouted data packets, which causes TCP to
abort the connection.

Max_Xmit_Time
Limits the TCP retransmission interval. Decreasing this value might decrease
the total time it takes a connection to time out. Specifying Max_Xmit_Time
assures that the interval time never exceeds the specified limit. The minimum
value that can be specified for Max_Xmit_Time is 0. The maximum is 999.990.
The default is 120 seconds. This parameter affects the initial connection
establishment retransmission timeout for all APIs, except the Pascal API
(TcpOpen), that are using the socket connect function.

Min_Xmit_Time
Sets a minimum retransmit interval. Increasing this value might increase the
amount of time it takes for TCP to time out a connection. The minimum value
that can be specified for Min_Xmit_Time is 0. The maximum is 99.990. The
default is 0.5 (500 milliseconds).

RT_Gain
This value is the percentage of the latest Round Trip Time (RTT) to be applied
to the smoothed RTT average. The higher this value, the more influence the
latest packet's RTT has on the average. The minimum value that can be
specified for RT_Gain is 0. The maximum value is 1.0. The default is 0.125.
This parameter does not affect initial connection retransmission.

Chapter 11. OMPROUTE 543

Variance_Gain
This value is the percentage of the latest RTT variance from the RTT average to
be applied to the RTT variance average. The higher this value, the more
influence the latest packet's RTT has on the variance average. The minimum
value that can be specified for Variance_Gain is 0. The maximum value is 1.0.
The default is 0.25. This parameter does not affect initial connection
retransmission.

Variance_Mult
This value is multiplied against the RTT variance in calculating the
retransmission interval. The higher this value, the more affect variation in RTT
has on calculating the retransmission interval. The minimum value that can be
specified for Variance_Mult is 0. The maximum value is 99.990. The default is
2. This parameter does not affect initial connection retransmission.

Delay_Acks
The delay acknowledgments value that is added to the routing tables for
routes that use this interface. Specify YES to delay transmission of
acknowledgments when a packet is received with the PUSH bit on in the TCP
header. Specify NO to return acknowledgments immediately when a packet is
received with the PUSH bit on in the TCP header. This parameter affects only
connections that use the routes associated with this interface.

Even if you specify YES, you can override the delay acknowledgments
behavior can be overridden by specifying the NODELAYACKS parameter on
the TCP/IP stack PORT, PORTRANGE, or TCPCONFIG profile statements. A
value of NO can override the specification of the DELAYACKS parameter on
the TCP/IP stack PORT, PORTRANGE, and TCPCONFIG profile statements.

Valid values are YES and NO. The default value is YES.

GLOBAL_OPTIONS statement

Use the GLOBAL_OPTIONS statement to configure miscellaneous options to
OMPROUTE which apply to OSPF, RIP, or neither.

Syntax

�� Global_Options
Ignore_Undefined_Interfaces=NO

Ignore_Undefined_Interfaces=value
��

Parameters

Ignore_Undefined_Interfaces
Instructs OMPROUTE on how to handle stack interfaces that are not
configured by way of OSPF_INTERFACE, RIP_INTERFACE,
IPV6_RIP_INTERFACE, IPV6_OSPF_INTERFACE, INTERFACE, or
IPV6_INTERFACE statements, either explicit or wildcard. NO indicates that
OMPROUTE configures such interfaces with default values (including setting
the MTU size to 576 and using the class mask as the subnet mask and
overriding stack definition values with these default values for IPv4 interfaces),
and possibly advertises these interfaces to the rest of the network if OSPF
settings or RIP filters permit it.

544 z/OS V2R1.0 Communications Server: IP Configuration Reference

Result: By definition, the network class masks that are used for undefined IPv4
interfaces if GLOBAL_OPTIONS Ignore_Undefined_Interfaces=NO is coded, or
the GLOBAL_OPTIONS statement is not coded, (thereby taking the default of
NO) are as follows:
v Class A: 255.0.0.0
v Class B: 255.255.0.0
v Class C: 255.255.255.0

A YES value indicates that OMPROUTE ignores these interfaces, does not
configure them, and does not advertise them under any circumstances. IF YES
is coded, OMPROUTE does not advertise these interfaces or their attached
subnets or prefixes, and it does not update any stack definition values. Static
routes coded in the TCP/IP profile over interfaces that are ignored by
OMPROUTE are still advertised by OMPROUTE into OSPF, RIP, or both if
appropriate filters and settings permit the advertisement of static routes.

Guideline: Code YES to get additional reconfiguration capability. You can use
OMPROUTE reconfiguration to add a definition for an interface that has been
defined to the stack but is ignored by OMPROUTE. However, OMPROUTE
does not associate the interface with the new definition until it has been
deleted from the stack and re-added.

IPv6_DEFAULT_ROUTE statement

Use the IPv6_DEFAULT_ROUTE statement to allow IPv6 default routes to be
specified to OMPROUTE. IPv6 default routes are created using any of the
following methods:
v BEGINROUTES statement
v IPv6_Default_Route statement
v Learned by routing protocol
v Router advertisements

When IPv6 default routes are specified using more than one of these methods, the
method that is used to create the default routes is determined according to the
following list, in order of descending precedence:
1. Non-replaceable static default routes specified using the BEGINROUTES

statement
2. Default routes learned by routing protocol
3. Default routes specified using the IPv6_Default_Route statement
4. Router advertisements
5. Replaceable static default routes specified using the BEGINROUTES statement

Up to 16 default routes can be configured using this IPv6_Default_Route statement.
The Send_Default_Routes keyword on the IPv6_RIP_Interface statement indicates
whether or not to advertise the IPv6 default routes over that interface.

Syntax

�� IPv6_Default_Route � Name = interface_name Next_Hop = ip_address ��

Chapter 11. OMPROUTE 545

Parameters

Name
The name of the interface used in the default route. This name must match an
interface name coded on the INTERFACE statement in the TCP/IP profile.
Valid values are any 16 characters.

Restriction: You cannot use VIPA interfaces for the interface_name value.

Next_Hop
IP address of the next hop used in the default route, in colon-hexadecimal
format. This IP address must be reachable using a direct route over the
specified interface. If it is not, this next hop is not installed.

IPv6_INTERFACE statement

Use the IPv6_INTERFACE statement to allow certain values to be specified for
generic IPv6 interfaces, which are interfaces that are neither IPv6 OSPF nor IPv6
RIP interfaces. If GLOBAL_OPTIONS is coded with
IGNORE_UNDEFINED_INTERFACES=YES, then IPv6 interfaces that are not used
for routing but that OMPROUTE should be aware of should be coded in the
OMPROUTE configuration file. If that option is not coded, it is not necessary to
code all non-routing IPv6 interfaces to OMPROUTE if default values are acceptable
and you do not need to code additional prefixes on the interface.

Tip: Use the d tcpip, tcpname, omproute, and generic6 commands to display
information about IPv6_INTERFACEs.

Syntax

�� IPv6_Interface Name=interface_name �

Prefix=ipaddr/prefixlen
�

�
Max_Xmit_Time=120

Max_Xmit_Time = time

Min_Xmit_Time=0.5

Min_Xmit_Time = time

RT_Gain=0.125

RT_Gain = value
�

�
Variance_Gain=0.25

Variance_Gain = value

Variance_Mult=2

Variance_Mult = mult

Delay_Acks=YES

Delay_Acks = value
��

Parameters

Name
The name of the interface. This name must match the interface name coded on
the INTERFACE statement in the TCP/IP profile. Valid values are any
character string of 1 - 16 characters in length. Wildcard names (terminating in
) can be coded. For example, OSAQDIO would match stack interfaces named
OSAQDIO1, OSAQDIO2, OSAQDIOABC, and so on.

Tip: For more information about how wildcard interfaces are parsed, see the
step about defining IPv6 interfaces in z/OS Communications Server: IP
Configuration Guide.

546 z/OS V2R1.0 Communications Server: IP Configuration Reference

Prefix
Specifies a prefix that is on the link to which the interface attaches. For each
configured Prefix parameter, OMPROUTE adds a direct route to the prefix
identified by the first prefixlen bits of ipaddr. Valid values for ipaddr are any
valid colon-hexadecimal IPv6 address. Valid values for prefixlen are in the
range 1 - 127. The prefix identified by the first prefixlen bits of ipaddr must not
be a multicast prefix, a link-local prefix, or all zeros.

Guideline: If IPv6 Router Discovery is in use by the routers on the link,
prefixes being advertised as on-link by the routers by way of Router Discovery
should not be configured using this keyword. However, if IPv6 Router
Discovery is not in use by the routers on the link or there is a need to
supplement the list of prefixes being advertised as on-link by the routers, this
keyword can be used. If the same prefix is configured using this keyword and
learned from Router Discovery, the route in the TCPIP stack's route table is the
route added by OMPROUTE as a result of this keyword being specified. Any
route for the same prefix that is learned from Router Discovery is ignored as
long as the OMPROUTE route exists.

Retransmit Parameters

The following parameters are used by OMPROUTE to set values in the routes
added to the TCP/IP route table which use this interface. The values affect the
TCP retransmit algorithms. When TCP packets are not acknowledged, TCP begins
to retransmit these packets at certain time intervals. If these packets are not
acknowledged after a certain number of retransmits, TCP aborts the connection.
The time interval between retransmissions increases by approximately twice the
previous interval until the packets are acknowledged or the connection times out.

The time intervals between retransmissions and the number of times packets are
retransmitted before the connection times out differs for initial connection
establishment and for data packets . For initial connection establishment, the initial
time interval is set at approximately 3 seconds, and the SYN packet is
retransmitted 5 times before the connection is timed out. Data packets use a
smoothed Round Trip Time (RTT) as the initial time interval and are retransmitted
15 times before the connection is timed out. All of the following parameters affect
the data packet retransmission algorithm. Only the Min_Xmit_Time parameter
affects the initial connection establishment.

Tip: A new route lookup is performed after every two retransmissions for a data
packet. For more information about the route lookup process, see Route selection
algorithm in z/OS Communications Server: IP Configuration Guide. Be careful
when you design networks with firewalls. A firewall in an alternate routing path
can generate a RESET packet for the rerouted data packets, which causes TCP to
abort the connection.

Max_Xmit_Time
Limits the TCP retransmission interval. Decreasing this value might decrease
the total time it takes a connection to time out. Specifying Max_Xmit_Time
assures that the interval time never exceeds the specified limit. The minimum
value that can be specified for Max_Xmit_Time is 0. The maximum is 999.990.
The default is 120 seconds. This parameter affects the initial connection
establishment retransmission timeout for all APIs, except the Pascal API
(TcpOpen), that are using the socket connect function.

Min_Xmit_Time
Sets a minimum retransmit interval. Increasing this value might increase the

Chapter 11. OMPROUTE 547

amount of time it takes for TCP to time out a connection. The minimum value
that can be specified for Min_Xmit_Time is 0. The maximum is 99.990. The
default is 0.5 (500 milliseconds).

RT_Gain
This value is the percentage of the latest Round Trip Time (RTT) to be applied
to the smoothed RTT average. The higher this value, the more influence the
latest packet's RTT has on the average. The minimum value that can be
specified for RT_Gain is 0. The maximum value is 1.0. The default is 0.125.
This parameter does not affect initial connection retransmission.

Variance_Gain
This value is the percentage of the latest RTT variance from the RTT average to
be applied to the RTT variance average. The higher this value, the more
influence the latest packet's RTT has on the variance average. The minimum
value that can be specified for Variance_Gain is 0. The maximum value is 1.0.
The default is 0.25 . This parameter does not affect initial connection
retransmission.

Variance_Mult
This value is multiplied against the RTT variance in calculating the
retransmission interval. The higher this value, the more affect variation in RTT
has on calculating the retransmission interval. The minimum value that can be
specified for Variance_Mult is 0. The maximum value is 99.990. The default is
2. This parameter does not affect initial connection retransmission.

Delay_Acks
The delay acknowledgments value that is added to the routing tables for
routes that use this interface. Specify YES to delay transmission of
acknowledgments when a packet is received with the PUSH bit on in the TCP
header. Specify NO to return acknowledgments immediately when a packet is
received with the PUSH bit on in the TCP header. This parameter affects only
connections that use the routes associated with this interface.

Even if you specify YES, you can override the delay acknowledgments
behavior can be overridden by specifying the NODELAYACKS parameter on
the TCP/IP stack PORT, PORTRANGE, or TCPCONFIG profile statements. A
value of NO can override the specification of the DELAYACKS parameter on
the TCP/IP stack PORT, PORTRANGE, and TCPCONFIG profile statements.

Valid values are YES and NO. The default value is YES.

Interfaces supported by OMPROUTE
Table 25, Table 26 on page 550, and Table 27 on page 551 show the types of
interfaces supported by OMPROUTE.

Table 25. Types of IPv4 interfaces (using DEVICE and LINK statements) supported by OMPROUTE

Interface type Link type Connectivity

Multi-
access
broadcast

Non-
broadcast
multiaccess
(NBMA)

Point-to-
point

Point-to-
multi-
point

Futile neighbor
state loop
detection
support

ATM ATM ATM network
through OSA-2
or
OSA-Express in
ATM native
mode

No Yes No No No

548 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 25. Types of IPv4 interfaces (using DEVICE and LINK statements) supported by OMPROUTE (continued)

Interface type Link type Connectivity

Multi-
access
broadcast

Non-
broadcast
multiaccess
(NBMA)

Point-to-
point

Point-to-
multi-
point

Futile neighbor
state loop
detection
support

CDLC CDLC 3745/3746
network
through NCP

No No Yes No No

CLAW IP pSeries or
OEM

No No Yes Yes and
no (See
Note 2)

No

CTC CTC z/OS through
channel-
channel
adapter

No No Yes No No

HCH HCH Another host
through a
hyperchannel
adapter

No Yes No No No

LCS IBMTR,
ETHERNET,
802.3

LAN through
OSA in LCS
mode
(including
ATM LAN
emulation),
3172, 2216,
Token Ring,
Ethernet,
Ethernet 802.3,
FDDI

Yes No No No Yes

MPCIPA IPAQENET,
IPAQTR

LAN through
OSA-Express in
QDIO mode
(Gigabit
Ethernet, Fast
Ethernet, ATM
Ethernet
LANE, High
Speed Token
Ring)

Yes No No No Yes

MPCIPA:
IPAQIDIO (for
internal QDIO)

IPAQIDIO
(for internal
QDIO)

Another
TCP/IP within
same CPC

Yes No No No Yes

MPCOSA OSAENET,
OSAFDD

Fast Ethernet,
FDDI

No Yes No No No

MPCPTP MPCPTP z/OS, pSeries,
Cisco CIP,
CS/NT, or
OEM z/OS,

No No Yes Yes No

MPCPTP MPCPTP (for
XCF)

Another
TCP/IP within
same z/OS
sysplex

No No Yes Yes No

Chapter 11. OMPROUTE 549

Table 25. Types of IPv4 interfaces (using DEVICE and LINK statements) supported by OMPROUTE (continued)

Interface type Link type Connectivity

Multi-
access
broadcast

Non-
broadcast
multiaccess
(NBMA)

Point-to-
point

Point-to-
multi-
point

Futile neighbor
state loop
detection
support

MPCPTP (for
IUTSAMEH)

MPCPTP (for
IUTSAMEH)

Another
TCP/IP within
same z/OS
sysplex

No No Yes Yes No

SNAIUCV SAMEHOST SNA network
through a
SNALINK LU
0 application
on same z/OS

No No Yes No No

SNALU62 SAMEHOST SNA network
through
SNALINK
LU6.2
application on
same z/OS

No No Yes No No

X25NPSI SAMEHOST X.25 network
through X.25
appl on same
z/OS

No Yes Yes (See
Note 3)

No No

Notes:

1. For more information about the DEVICE and LINK statements for the interfaces, see Figure 1 on page 48.

2. Becomes point-to-multipoint capable when the P2MP parameter option is specified on the LINK statement.

3. In general, SAMEHOST link type is treated as point-to-point. X.25 NPSI established as a SAMEHOST connection
is also treated as NBMA because it is a switched virtual circuit (SVC) that appears to VTAM as a switched link.
In a X.25 network, SVCs provide multi-access support but they are not broadcast capable.

4. For more information about IPv4 interfaces using the INTERFACE statement, see Table 26

Table 26. Types of IPv4 interfaces (using INTERFACE statement) supported by OMPROUTE

Interface type Connectivity

Multi-
access
broadcast

Non- broadcast
multiaccess
(NBMA) Point-to-point

Point-to-
multi-point

Futile
neighbor state
loop detection
support

IPAQENET LAN through
OSA-Express
in QDIO
mode (Gigabit
Ethernet, Fast
Ethernet,
ATM Ethernet
LANE)

Yes No No No Yes

Note: For more information about the alternative INTERFACE statements for the interfaces, see “Summary of
INTERFACE statements” on page 141.

550 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 27. Types of IPv6 interfaces supported by OMPROUTE

Interface type Connectivity
Multi-access
broadcast

Non- broadcast
multiaccess (NBMA)

Point-to-
point

Point-to-
multi-point

Futile
neighbor
state loop
detection
support

IPAQENET6 LAN through
OSA-Express in
QDIO mode
(Gigabit
Ethernet, Fast
Ethernet, ATM
Ethernet
LANE)

Yes No No No Yes

IPAQIDIO6
(for internal
QDIO)

Another
TCP/IP within
the same CEC

Yes No No No Yes

MPCPTP6 z/OS, pSeries,
Cisco CIP,
CS/NT, or
OEM

No No Yes Yes No

MPCPTP6 (for
IUTSAMEH)

Another
TCP/IP within
same z/OS
sysplex

No No Yes Yes No

MPCPTP6 (for
XCF)

Another
TCP/IP within
same z/OS
sysplex

No No Yes Yes No

Note: For more information about the INTERFACE statements for the interfaces, see “Summary of INTERFACE
statements” on page 141.

Chapter 11. OMPROUTE 551

552 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 12. SNALINK

This topic contains the following information:
v “SNALINK cataloged procedure (SNALPROC)”
v “SNALINK parameters”

SNALINK cataloged procedure (SNALPROC)
This topic shows the SNALINK cataloged procedure (SNALPROC).

SNALINK parameters
The system parameters required by SNALINK are passed by the PARM parameter
on the EXEC statement of the SNALINK cataloged procedure. The parameters are
order-dependent and appear in the following list:

DEBUG
Enables detailed tracing into an internal buffer. If specified, it must be the
first parameter in the list.

TCP=‘tcpid’
Specifies the name of the TCP/IP address space, in quotation marks.

//SNALINK PROC MODULE=SNALINK,TCP=’TCPIP’,APPLID=’APPLID’
//*
//* z/OS Communications Server
//* SMP/E Distribution Name: EZAEB01U SEZAINST(SNALPROC)
//*
//* Copyright: Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* 5647-A01
//* (C) Copyright IBM Corp. 1989, 2001
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//*
//* Status: CSV1R2
//*
//SNALINK EXEC PGM=&MODULE,REGION=2048K,TIME=1440,PARM=’&TCP &APPLID’
//STEPLIB DD DSN=TCPIP.SEZATCP,DISP=SHR
//*
//* The SYSMDUMP DD statement will cause MVS to provide
//* an IPCS readable dump for ABENDs.
//*SYSMDUMP DD DISP=SHR,DSN=your.dump.data.set
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//*
//SYSTCPD DD DSN=TCPIP.SEZAINST(TCPDATA),DISP=SHR

Figure 20. SNALINK cataloged procedure (SNALPROC)

© Copyright IBM Corp. 2000, 2015 553

APPLID=‘applid’
Specifies the name of the VTAM application (LU name), in quotation
marks, that SNALINK uses for this system.

max_ru_size
This parameter is optional, and is the maximum RU size in hexadecimal.
The default size is 88 (in form mn). Set max_ru_size to specify the
maximum request or response unit (RU) size that SNALINK sends. The
value is of the form mn, where m is between 8 and F, and n is between 0
and F. The corresponding maximum RU size is m2n (m multiplied by 2 to
the power of n). Use the largest size that works on your SNA network, to
provide the best performance and the least overhead. See z/OS
Communications Server: SNA Programming for more information about
this parameter as well as z/OS Communications Server: IP Configuration
Guide.

max_session
The maximum number of sessions; a decimal value from 1 to 9 999. The
default value is 6. To use different values for max_session, you also have to
specify the max_ru_size.

retry The delay time for VTAM to try sense codes again. It has the following
format: hhmm. Where:

hh Hours 0 - 24

mm Minutes 0 - 59

For example:
v 0005 is a 5-minute delay.
v 0200 is a 2-hour delay.
v 1030 is a 10-hour and 30-minute delay

The default delay is 15 minutes and the maximum delay is 24 hours. To
use a different retry interval, you must specify both max_ru_size and
max_session.

session_type
Defines the SNALINK communication session mode. The session_type can
have the values of SINGLE, DUAL, or be omitted. If the parameter is
omitted, session_type defaults to DUAL. If the session_type is set to SINGLE,
SNALINK creates a single duplex session. If DUAL is specified, SNALINK
creates two sessions, a send session and a receive session. Like max_session
and retry, if session_type is specified, you must also specify the previous
parameters.

NCPROUTE and 3745 Communication Controller Ethernet links require
session_type of SINGLE.

554 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 13. SNALINK LU6.2

This topic contains the following information:
v “SNALINK LU6.2 cataloged procedure (LU62PROC)”
v “Sample SNALINK LU6.2 configuration data set (LU62CFG)” on page 556
v “Summary of SNALINK LU6.2 configuration statements” on page 557
v “SNALINK LU6.2 configuration statements” on page 557

The DD statements in the cataloged procedure should be defined as follows:

DD Name Description

SYSTCPD TCPIP.DATA configuration data set

LU62CFG SNALINK LU6.2 configuration data set

SYSPRINT Runtime diagnosis or trace output

SYSUDUMP User abend dump output (optional)

SNALINK LU6.2 cataloged procedure (LU62PROC)
This topic shows the SNALINK LU6.2 cataloged procedure (LU62PROC).

© Copyright IBM Corp. 2000, 2015 555

Sample SNALINK LU6.2 configuration data set (LU62CFG)
This topic shows a sample of SNALINK LU6.2 configuration data set (LU62CFG).

//TCPIPL62 PROC MODULE=SNALNK62
//*
//* z/OS Communications Server
//* SMP/E Distribution Name: EZAEB023
//*
//* Copyright: Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* 5647-A01
//* (C) Copyright IBM Corp. 1989, 2001
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//*
//* Status: CSV1R2
//*
//SNALNK62 EXEC PGM=&MODULE,TIME=1440,REGION=256K
//STEPLIB DD DSN=TCPIP.SEZATCP,DISP=SHR
//*
//* The SYSMDUMP DD statement will cause MVS to provide
//* an IPCS readable dump for ABENDs.
//*SYSMDUMP DD DISP=SHR,DSN=your.dump.data.set
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//*
//SYSTCPD DD DSN=TCPIP.SEZAINST(TCPDATA),DISP=SHR
//LU62CFG DD DSN=TCPIP.SEZAINST(LU62CFG),DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSUDUMP DD SYSOUT=*

Figure 21. SNALINK LU6.2 cataloged procedure (LU62PROC)

556 z/OS V2R1.0 Communications Server: IP Configuration Reference

Summary of SNALINK LU6.2 configuration statements
Table 28 shows a summary of SNALINK LU6.2 configuration statements.

Table 28. Summary of SNALINK LU6.2 configuration statements

Statement Description See

BUFFERS Specifies the allocation of buffer pools for IP
datagrams

“BUFFERS” on page 558

DEST Defines an IP-to-LU mapping for a destination
node

“DEST” on page 559

LINK Defines a link between two TCPIP address
spaces

“LINK” on page 560

TRACE Defines the required level of tracing for the
connections

“TRACE” on page 561

VTAM Specifies the VTAM application for the
connection

“VTAM” on page 561

SNALINK LU6.2 configuration statements
This topic contains the statements for the SNALINK LU6.2 configuration data set.

Statement syntax
Rules: Use the following syntax rules:
v Each statement must be entered on a separate line in the configuration data set.

--
* Sample configuration file for SNALNK62 *
* *
* COPYRIGHT = NONE. *
* *
--
*
*-- VTAM Application definition:
*
* ApplID Password
* -------- --------
VTAM LU62APPL QWERTY
*
*-- Link Definition:
* Idle
* TCP/IP Link Name LogMode Time-out
* ---------------- -------- --------
LINK LNKLU62 LU62MODE 600
*
*-- Destination address list for this link:
*
* *--- REMOTE ----* Start
* IP Address Send LU Recv LU Type
* --------------- -------- -------- ----
DEST 192.9.207.39 LU6LBK11 LU6LBK12 INIT
DEST 192.9.207.40 LU6LBK13 =
DEST 192.9.207.41 LU6LBK14 =
*
*-- Buffer specifications:
*
* Datagram Add Snd Snd Queue
* Max Size Buffers Limit
* ----- ----- -----
BUFFERS 32758 10 11
*
*-- Trace level specifications:
*
* Trace
* Level Connection Range
* ------ ------------------
TRACE OFF ALL

Figure 22. Sample of LU62CFG

Chapter 13. SNALINK LU6.2 557

v Each statement consists of a keyword, followed by one or more parameter fields
separated by a blank.

v Case is not significant and leading blanks are ignored.
v Comment lines are marked with an asterisk (*) in column 1.

Statement ordering
Restrictions: Follow these restrictions for statements:
v At least one of each type of statement, except the TRACE statement, must

appear in the configuration data set. TRACE is the only optional statement.
v Only one BUFFERS statement can be defined, and it can appear anywhere in the

data set.
v Only one VTAM statement can be defined, and it must appear before the first

LINK statement.
v You must have one LINK statement for each network directly connected to the

SNALINK LU6.2 address space.
v You must have one DEST statement for each distinct IP address on the directly

connected networks.
v A DEST statement defining a destination IP address must appear before a

TRACE statement for the same destination IP address. The DEST statements for
a particular network must appear after the LINK statement for that network and
before the next LINK statement.
For example:

LINK
DEST
.
.
.
LINK

v The data set can have any number of TRACE statements. If the ranges specified
in any of the TRACE statements overlap, the resulting trace levels are
determined by invoking the TRACE statements in the order in which they
appear in the data set.

BUFFERS

Use the BUFFERS statement to specify the parameters used to allocate buffer pools
for storing IP datagrams.

Syntax

�� BUFFERS max_packet_size
add_send_buffers send_queue_limit

��

Parameters

max_packet_size
The maximum IP packet size. This value should match the max_packet_size
parameter on the BEGINROUTES or GATEWAY statement in the
PROFILE.TCPIP data set and it must be less than the maximum path
information unit (PIU) in the VTAM definition for your LU6.2 connection. The
maximum PIU is set by the MAXDATA parameter of the PCCU macro that is
part of the NCP generation program in the VTAMLST library. The value for

558 z/OS V2R1.0 Communications Server: IP Configuration Reference

this parameter differs for each device. Check the documentation for your
device to determine the appropriate value.

The max_packet_size value must be an integer in the range 20 - 32 758. Any
datagrams exceeding this length that are received from either the local or
remote TCP/IP are discarded.

add_send_buffers
The number of additional buffers for storing datagrams waiting to be passed to
VTAM. These are in addition to the initial allocation of one for every
destination (DEST) defined in the SNALINK LU6.2 configuration data set. If an
add_send_buffers value is not specified, no additional buffers are allocated. The
minimum value allowed for add_send_buffers is 1; the maximum value allowed
is 2 147 483 647.

send_queue_limit
The maximum number of buffers that can be allocated to any connection for
storing datagrams waiting to be passed to VTAM. This parameter allows you
to prevent a single connection from restricting other connections' access to the
free buffers from the VTAM send buffer pool. Once this maximum limit is
reached on the VTAM send queue, further datagrams received from TCP/IP
for this connection are discarded, until the number of buffers on the send
queue is reduced below the limit. For this parameter to be effective, its value
should leave enough free buffers in the VTAM send buffer pool to service the
other active connections when full throughput is reached on the main
connections. See the description of the add_send_buffers parameter to calculate
the size of the VTAM send buffer pool. If a send_queue_limit value is not
specified, no limit is placed on the lengths of individual send queues. The
minimum value allowed for send_queue_limit is 1; the maximum value allowed
is 2 147 483 647.

Examples
*-- Buffer specifications:
*
* Datagram Add Snd Snd Queue
* Max Size Buffers Limit
* ----- ----- -----
BUFFERS 32758 10 11
*

DEST

Use the DEST statement to define an IP-address-to-LU-name mapping for a
destination node associated with the link specified in the most recent LINK
statement.

The IP addresses listed must be consistent with the direct connections defined for
the current link in the GATEWAY statement of the hlq.PROFILE.TCPIP data set.

Syntax

�� DEST ip_addr send_lu receive_lu
DATA

INIT
��

Chapter 13. SNALINK LU6.2 559

Parameters

ip_addr
The IP address in dotted decimal format. The value entered must be in the
correct format for an IP address of a network node (a fully qualified IP
address).

send_lu
The remote LU name for the send connection.

receive_lu
The remote LU name for the receive connection. For independent logical units
using parallel sessions, the send and receive LU names are the same. In this
case, you can enter an equal sign (=) as the value for the receive_lu parameter.

DATA
Definition of when the connection to the destination node is to be established.
If the DATA parameter is specified, the connection is only established after
there is IP data to be transferred to and from the destination node. If neither
INIT nor DATA is specified, DATA is used as the default setting.

INIT
Definition of when the connection to the destination node is to be established.
If the INIT parameter is specified, the connection is established during
initialization of the SNALINK LU6.2 address space.

Examples
* IP Address Send LU Recv LU Type
* --------------- -------- -------- ----
DEST 192.9.207.39 LU6LBK11 LU6LBK12 INIT
DEST 192.9.207.40 LU6LBK13 =
DEST 192.9.207.41 LU6LBK14 =

LINK

Use the LINK statement to define the link between the main TCP/IP address space
and the SNALINK LU6.2 interface.

Syntax

�� LINK link_name log_mode
idle_disconnect

��

Parameters

link_name
The name of the TCP/IP link, as defined in the hlq.PROFILE.TCPIP data set, to
which the destinations in the subsequent DEST statements are to apply. The
maximum length is eight characters.

log_mode
The name of the VTAM LOGMODE entry to be used when establishing an
SNA LU type 6.2 session for this link.

idle_disconnect
Time, in seconds, after which an idle or inactive session is terminated. If blank
or 0, no inactivity checking or timeout is to apply to connections defined for
this link. If not blank, the value of this parameter must lie within the inclusive
range 0 to 2³¹–1.

560 z/OS V2R1.0 Communications Server: IP Configuration Reference

Examples
*-- Link Definition:
* Idle
* TCP/IP Link Name LogMode Time-out
* ---------------- -------- --------
LINK LNKLU62 LU62MODE 600

TRACE

Use the TRACE statement to define the required level of tracing for a specified
range of connections. All tracing levels default to OFF unless overridden by any
appropriate TRACE statement. Trace output is written to the SYSPRINT data set.

Syntax

��
TRACE OFF ALL

OFF
TRACE IP= dest_ip

DETAIL ALL
ON

��

Parameters

OFF
Disables tracing for all connections in the specified range. If OFF, DETAIL, or
ON is not specified, OFF is the default. For example, specifying TRACE
IP=dest_ip would disable tracing for only the connection associated with
dest_ip.

DETAIL
Enables a detailed level of tracing for all connections in the specified range.

ON Enables a basic level of tracing for all connections in the specified range.

IP=dest_ip
The destination IP address associated with the connection for which tracing is
enabled or disabled. A DEST statement defining a destination IP address must
appear before a TRACE statement for the same destination IP address.

ALL
If the ALL parameter is specified, tracing for all destinations (either currently
defined or still to be defined) is set to the requested level.

Examples
*-- Trace level specifications:
*
* Trace
* Level Connection Range
* ------ ------------------
TRACE OFF ALL

VTAM

Use the VTAM statement to specify the VTAM application definition to be used to
establish the connections.

The VTAM statement must precede the first LINK statement.

Chapter 13. SNALINK LU6.2 561

Syntax

�� VTAM application_id password ��

Parameters

application_id
The VTAM application identifier as defined by the VTAM APPL statement.
This name identifies the local logical unit used by this SNALINK LU6.2
address space. Remote SNALINK LU6.2 interfaces configure this name as their
remote logical unit name for a connection to this SNALINK LU6.2 address
space.

The maximum length is eight characters.

password
The password for the VTAM application specified in application_id. This must
match the password specified by the PRCT parameter in the VTAM APPL
statement.

Examples

The following example shows the connection between the VTAM APPL statement
and the VTAM configuration statement.
LU62APPL APPL ACBNAME=LU62APPL, *

PRTCT=QWERTY, *

*-- VTAM Application definition:
*
* ApplID Password
* -------- --------
VTAM LU62APPL QWERTY

562 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 14. X.25 NPSI

This topic contains the following information
v “X.25 NPSI cataloged procedure (X25PROC)”
v “Sample X.25 NPSI server configuration data set (X25CONF)”
v “Summary of X.25 NPSI server configuration statements” on page 565
v “X.25 NPSI server configuration statements” on page 565

X.25 NPSI cataloged procedure (X25PROC)
This topic shows the X.25 NPSI cataloged procedure (X25PROC).

Sample X.25 NPSI server configuration data set (X25CONF)
Following is a copy of the sample, X.25 NPSI configuration data set, that is
shipped as SEZAINST(X25CONF).

* Sample configuration file for TCPIPX25 *
* *
* COPYRIGHT = NONE. *

//TCPIPX25 PROC MODULE=XNX25IPI
//*
//* z/OS Communications Server
//* SMP/E Distribution Name: EZAEB020
//*
//* Copyright: Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* 5647-A01
//* (C) Copyright IBM Corp. 1989, 2001
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//*
//* Status: CSV1R2
//*
//X25IPI EXEC PGM=&MODULE,REGION=256K,TIME=1440
//STEPLIB DD DSN=TCPIP.SEZATCP,DISP=SHR
//X25IPI DD DSN=TCPIP.SEZAINST(X25CONF),DISP=SHR
//SYSPRINT DD SYSOUT=*
//*
//* The SYSMDUMP DD statement will cause MVS to provide
//* an IPCS readable dump for ABENDs.
//*SYSMDUMP DD DISP=SHR,DSN=your.dump.data.set
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//*
//SYSTCPD DD DSN=TCPIP.SEZAINST(TCPDATA),DISP=SHR

Figure 23. X.25 NPSI cataloged procedure (X25PROC)

© Copyright IBM Corp. 2000, 2015 563

*-- Trace level and debug flags
* 01234567
Trace OFF 00000000
*
*-- VTAM Application definition:
* ApplID Password
* -------- --------
VTAM TCPIPX25 TCPX25
*

* Definitions for a public network connection with two-line hunt
* group, using NPSI GATE Fast Connect. Network default packet size
* is 128; packet size 1024 negotiated on call request
*
* NPSI MCH DTE Window Packet Logical
* LU Name DNIC Address Size Size Channels
* -------- ---- --------------- - ---- ---
Link XU021 3110 23456789 2 128 16
FAST XU021
Options PacketSize 1024
AltLink XU022 3110 34567890 2 128 8
FAST XU022
Options PacketSize 1024
Options AcceptReverse
*
* Destination address list for this link Destination
* IP Address X.25 DTE Addr C.U.D. Facilities
* --------------- --------------- -------- ---------------
Dest 192.005.058.001 131106170015300 CC
Dest 192.005.058.004 131106170015320 CC
Dest 192.005.058.005 131106170015350 CC 02AA
* * this dest. requires throughput class on
* call request
*

* Definitions for a DDN connection
* Note: DDN and non-DDN links cannot be mixed
*
* NPSI MCH DTE Window Packet Logical
* LU Name DNIC Address Size Size Channels
* -------- ---- --------------- - ---- ---
*Link XU023 DDN 2 128 16
*Options GATE
*
* DDN network 10 uses RFC 1236 address calculation, no explicit
* X.25 DTE addresses
*
* IP Address X.25 DTE Addr
* --------------- ---------------
*Dest 10
*

* Definitions for a private point-to-point link to a router
*
* NPSI MCH DTE Window Packet Logical
* LU Name DNIC Address Size Size Channels
* -------- ---- --------------- - ---- ---
Link XU024 PRIV 1 2 1024 2
Options GATE
*
* IP Address X.25 DTE Addr C.U.D.
* --------------- --------------- --------
Dest 192.5.57.2 2
*

*-- Buffer specifications:
* Datagram Addn’l VC Queue

564 z/OS V2R1.0 Communications Server: IP Configuration Reference

* Max Size Buffers Limit
* -------- -- --
Buffers 1024 50 4
*
*-- Timers:
* Idle Minimum
* Disconn. Open
* -------- -------
Timers 300 60

Summary of X.25 NPSI server configuration statements
Table 29 lists the X.25 NPSI server configuration statements.

Table 29. Summary of X.25 NPSI server configuration statements

Statement Description See

ALTLINK Specifies the members of a link's hunt group for
incoming calls

“ALTLINK statement” on page 566

BUFFERS Specifies the buffer size to use for IP datagrams “BUFFERS statement” on page 567

DEST Specifies the destination address list for a link “DEST statement” on page 568

FAST Specifies that a link has NPSI GATE fast connect “FAST statement” on page 569

LINK Defines the link to an NPSI physical circuit
logical unit

“LINK statement” on page 569

OPTIONS Specifies the call handling options for incoming
calls on a link

“OPTIONS statement” on page 570

TIMERS Defines the time limits for holding or clearing
connections on all links

“TIMERS statement” on page 572

TRACE Specifies the trace and debug levels for the X.25
NPSI server

“TRACE statement” on page 572

VTAM Identifies the VTAM APPL definition for the
X.25 NPSI server

“VTAM statement” on page 574

X.25 NPSI server configuration statements
Following are the syntax and description of the valid statements used in the data
set pointed to by the //X25IPI DD statement in your X.25 NPSI cataloged
procedure.

Statement syntax
Rules: Follow these statement syntax rules:
v Each statement is on a separate line in the configuration data set.
v Each statement starts with the keyword followed by the parameter fields,

separated by one or more blanks.
v The statements are not case sensitive. You can enter them in both upper- and

lowercase.
v Comment lines are marked with an asterisk (*) in column 1.

Figure 24. Sample X.25 NPSI server configuration data set (X25CONF)

Chapter 14. X.25 NPSI 565

ALTLINK statement

Use the ALTLINK statement to specify members of a hunt group for incoming
calls. The collection of lines in this group is assigned a single X.25 address.
Incoming X.25 calls are accepted from any of the lines in the group and outgoing
calls are rotated across the lines. If one of the lines is not operational, outgoing
calls are rotated on to the next available line in the group.

Syntax

�� ALTLINK mchlu_name DDN
dnic dte_addr

�

� window_size packet_size logical_channels ��

Parameters

mchlu_name
The name of the physical circuit logical unit (NPSI MCH LU).

DDN
Use DDN for the Defense Data Network.

dnic
The X.121 Data Network Identifier Code (DNIC) for the public data network.
dnic can be coded as PRIVATE or PRIV to denote a private X.25 network.

dte_addr
The X.25 DTE address for the link. The address must be from 1 - 15 decimal
digits. This parameter is not coded for DDN links. Specify dte_addr as NONE
to omit the calling address from the call request packet.

window_size
The window size to negotiate on switched virtual circuits, in the range of 1 - 7
for a modulo-8 network, or 1 - 127 for a modulo-128 network.

packet_size
Choose one of the following X.25 packet sizes as the default: 32, 64, 128, 256,
512, 1 024, 2 048, or 4 096 bytes.

logical_channels
The number of logical channels (switched virtual circuits) subscribed, in the
range of 1 to 1 023.

Examples

The following example shows the LINK, ALTLINK, FAST, and OPTIONS
statements for a public network connection with a two-line hunt group:
* NPSI MCH DTE Window Packet Logical
* LU Name DNIC Address Size Size Channels
* -------- ---- --------------- - ---- ---
Link XU021 3110 23456789 2 128 16
FAST XU021
Options PacketSize 1024
AltLink XU022 3110 34567890 2 128 8
FAST XU022
Options PacketSize 1024
Options AcceptReverse

566 z/OS V2R1.0 Communications Server: IP Configuration Reference

Usage notes
v The ALTLINK statement must follow a LINK statement.
v A DEST statement follows the last ALTLINK statement for a hunt group.
v If special options are required or fast connect is used, OPTIONS or FAST

statements must immediately follow the ALTLINK to which they apply.

Related topics
v “DEST statement” on page 568
v “FAST statement” on page 569
v “LINK statement” on page 569

BUFFERS statement

Use the BUFFERS statement to specify the buffer size for IP datagrams.

Syntax

�� BUFFERS max_packet_size add_buffers vc_queue_limit ��

Parameters

max_packet_size
The maximum IP packet size. This value must match the max_packet_size
parameter on the GATEWAY statement in the hlq.PROFILE.TCPIP data set, and
must be in the range of 576 - 2 048.

add_buffers
The number of additional buffers to allocate, in addition to the minimum of 2
for each logical channel.

vc_queue_limit
The limit on the number of buffers queued outbound on any single virtual
circuit.

Examples

The following statement specifies a maximum IP packet size of 1024, an allocation
of 50 additional buffers, and a limit of 4 queued outbound buffers on any SVC:
*
Buffers 1024 50 4
*

Usage notes
v This maximum IP packet size must be at least as large as the largest

max_packet_size parameter on the GATEWAY entries for X.25 NPSI LINKS in the
hlq.PROFILE.TCPIP data set.

v Additional buffers are required for coping with traffic peaks and holding
outbound IP datagrams while new X.25 connections are being established. Use a
larger value when many X.25 destinations are called in a short period of time.

Related topics
v “GATEWAY statement” on page 109
v “OPTIONS statement” on page 570

Chapter 14. X.25 NPSI 567

v z/OS Communications Server: IP Diagnosis Guide

DEST statement

Use one or more DEST statements to specify the destination address list for the
link.

Syntax

�� DEST ip_addr
X25_dte_addr cud dest_facilities

��

Parameters

ip_addr
The IP address in dotted decimal format. At least 1 byte must be supplied;
omitted trailing bytes are not checked when determining a match.

X25_dte_addr
The corresponding X.25 DTE destination address for the link (1 to 15 decimal
digits). Do not code this parameter for Defense Data Network (DDN)
destinations.

cud
The call user data (CUD) protocol identifier used. A hexadecimal number with
a default value of X'CC'. Do not code this parameter for DDN destinations.

dest_facilities
The X.25 facilities field to be used on outgoing calls for this destination. This
value overrides the FACILITIES value in the OPTIONS statement for this
destination. Specify this value as an even number of hexadecimal digits. The
field is inserted in outgoing call packets following facilities generated from
window or packet size negotiation or reverse charging. The facilities length
byte is calculated automatically and should not be coded here.

Examples

The following example shows the LINK and DEST statement for a DDN
connection.
* NPSI MCH DTE Window Packet Logical
* LU Name DNIC Address Size Size Channels
* -------- ---- --------------- - ---- ---
Link XU023 DDN 2 128 16
*
* IP address X.25 DTE addr
* --------------- ---------------
Dest 10
*

Usage notes
v The DEST statements must follow the LINK statement.
v Data Defense Network destinations do not use the X.25 DTE address and the

CUD protocol identifier.

568 z/OS V2R1.0 Communications Server: IP Configuration Reference

FAST statement

Use the FAST statement to provide NPSI fast connect for links with heavy activity.
Fast connect is only used for SVCs connected to non-SNA data terminal equipment
(DTE). See X.25 NPSI Host Programming for more information.

�� FAST prefix
HEX

DEC

001

suffix
��

Parameters

prefix
The fast connect VC LU name prefix. This is the MCH LU name unless the
PRFLU option is coded on the NPSI X25.VC statement.

HEX or DEC
The fast connect VC LU numbering scheme (if the HEXNAME parameter is
coded in the NPSI X25.VC statement). The default is HEX.

suffix
The fast connect VC LU numbering base (if the SUFFIX parameter is coded in
the NPSI X25.VC statement). The default is 001.

Examples

The following example shows the placement of a FAST statement that specifies a
prefix of XU021 and takes the default values of HEX and 001.
* NPSI MCH DTE Window Packet Logical
* LU Name DNIC Address Size Size Channels
* -------- ---- --------------- - ---- ---
LINK XU021 3110 23456789 2 128 16
FAST XU021
OPTIONS GATE
*

Usage notes
v The OPTIONS GATE statement is required.
v The FAST statement must follow the LINK or ALTLINK statement to which it

applies.
v The prefix value must match the value in your NPSI configuration.

LINK statement

Use the LINK statement to define the NPSI MCH LU names. One SNA control
session is established for each MCH LU defined by a LINK statement.

Syntax

�� LINK mchlu_name DDN
dnic dte_addr

�

� window_size packet_size logical_channels ��

Chapter 14. X.25 NPSI 569

Parameters

mchlu_name
The name of the physical circuit logical unit (NPSI MCH LU).

DDN
Use DDN for the Defense Data Network.

dnic
The X.121 Data Network Identifier Code (DNIC) for the public data network.
The dnic parameter can be coded as PRIVATE or PRIV to denote a private X.25
network.

dte_addr
The X.25 DTE address for the link. The address must be from 1 - 15 decimal
digits. This parameter is not coded for DDN links. Specify dte_addr as NONE
to omit the calling address from the call request packet.

window_size
The window size to negotiate on switched virtual circuits, in the range of 1 - 7
for a modulo-8 network, or 1 - 127 for a modulo-128 network.

packet_size
Choose one of the following X.25 packet sizes as the default: 32, 64, 128, 256,
512, 1 024, 2 048, or 4 096 bytes.

logical_channels
The number of logical channels (switched virtual circuits) subscribed, in the
range of 1 - 1 023.

Examples

In the following example, AU20 is the name of a non-DDN network, and AU16 is
the name of a DDN network.
* NPSI MCH DTE Window Packet Logical
* LU Name DNIC Address Size Size Channels
* -------- ---- --------------- - ---- ---
LINK AU20 3020 90201234548 2 1024 5
LINK AU16 DDN 2 1024 5
*

OPTIONS statement

Use the OPTIONS statement to specify the call handling options for each link.
Values specified on the OPTIONS statement apply to all outgoing calls on the
LINK MCH, but can be overridden for individual destination addresses by the
DEST statement. More than one OPTIONS statement can be coded after each LINK
statement.

Restriction: Several parameters can be placed in a single OPTIONS statement, but
cannot continue on the next line. If all the parameters do not fit on one line, use
additional OPTIONS statements.

Syntax

570 z/OS V2R1.0 Communications Server: IP Configuration Reference

�� � OPTIONS ACCEPTFACILITIES hex_facilities
ACCEPTREVERSE
REVERSE
PACKETSIZE packet_size
WINDOWSIZE window_size
GATE
CALLDATA call_user_data
FACILITIES hex_facilities

��

Parameters

ACCEPTFACILITIES hex_facilities
The X.25 facilities field to be used when accepting incoming calls. Specify this
value as an even number of hexadecimal digits. The facilities length byte is
calculated automatically and should not be coded here.

ACCEPTREVERSE
Causes incoming calls with the reverse charging facility to be accepted. The
default action is to clear reverse charge calls.

REVERSE
Includes the reverse charging facility in all outgoing call request packets.

PACKETSIZE packet_size
The packet size to negotiate on switched virtual circuits, one of the values 32,
64, 128, 256, 512, 1 024, 2 048, or 4 096 bytes.

WINDOWSIZE window_size
The window size to negotiate on switched virtual circuits, in the range of 1 - 7
for a modulo-8 network, or 1 - 127 for a modulo-128 network.

GATE
Specified if the NPSI MCH is defined with GATE=GENERAL to permit sharing
of an X.25 physical link with other services.

CALLDATA call_user_data
The call user data field to be used on outgoing X.25 calls, specified as an even
number of hexadecimal digits. The standard value for IP traffic must begin
with the protocol identifier CC.

FACILITIES hex_facilities
The X.25 facilities field to be used on outgoing calls for this destination.
Specify this value as an even number of hexadecimal digits. The field is
inserted in outgoing call packets following facilities generated from window or
packet size negotiation or reverse charging. The facilities length byte is
calculated automatically and should not be coded here.

Examples

The following example shows the proper placement of the OPTIONS statements
when using both LINK and ALTLINK statements.
Link XU021 3110 23456789 2 128 16
FAST XU021
Options PacketSize 1024
AltLink XU022 3110 34567890 2 128 8
FAST XU022
Options PacketSize 1024
Options AcceptReverse
*

Chapter 14. X.25 NPSI 571

Usage notes
v The OPTIONS statements must follow the LINK or ALTLINK statements to

which they apply.
v Negotiation takes place on outgoing calls if the window size or packet size on

the OPTIONS statement is different from the network defaults coded in the
LINK statement.

v The max_packet_size, also called the maximum transmission unit (MTU), coded in
the BUFFERS statement must be large enough to hold the largest IP datagram to
be transmitted or received over the link. If the MTU is greater than the X.25
packet size, an IP datagram is sent as an X.25 packet sequence. The buffer size
must be sufficient to hold the combined data of the sequence. The MTU for
DDN networks is 1007. See RFC 877 for more information. information about
how to obtain RFCs is included in z/OS Communications Server: IP
Configuration Guide.

Related topics
v “BUFFERS statement” on page 567
v “GATEWAY statement” on page 109

TIMERS statement

Use the TIMERS statement to specify the limits for various timers.

Syntax

�� TIMERS idle_disconnect min_open ��

Parameters

idle_disconnect
Time, in seconds, after which an idle or inactive connection is cleared.

min_open
The minimum time, in seconds, a connection is held before it can be
preempted by a new destination.

Examples

The following statement clears inactive connections after 5 minutes and holds a
connection open for 1 minute.
* Idle Minimum
* Disconn. Open
* -------- -------
Timers 300 60
*

TRACE statement

Use the TRACE statement to specify the trace and debug levels for the X.25 NPSI
server. The trace and debug functions are independent of one another. You can
turn tracing off and still request debug options.

572 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

�� TRACE OFF
DATA
CONTROL
EBCDIC
ASCII
IA5

debug_flags ��

Parameters

OFF
Turns tracing off. If you specify OFF, data on the connection is not traced.

DATA
Traces the data packets on the connection and displays the full contents of the
IP datagrams. This is equivalent to the ASCII option.

CONTROL
Traces the data packets on the connection and displays only the X.25 control
packet.

EBCDIC
Traces the data packets on the connection and displays the data in EBCDIC.

ASCII
Traces the data packets on the connection and displays the data in ASCII.

IA5
Traces the data packets on the connection and displays the data in IA5.

debug_flags
A string of eight positional flags that control the display of debugging
information. Each flag has the value of 1 or 0, where 1 turns the flag on and 0
turns the flag off. The flags are:

Position
Description

0 Display configuration records

1 Display commands

2 Trace DLC events

3 Trace VTAM events

4 Display control block addresses

5 Main loop dispatching

6 Reserved for internal use

7 Send information and warning messages to the operator console

Examples

The following statement turns tracing off and sets two debug flags:

Value 1 in position 0
Displays configuration records

Value 1 in position 7
Sends information and warning messages to the operator console

Chapter 14. X.25 NPSI 573

* 01234567
Trace OFF 10000001
*

Related topics

See z/OS Communications Server: IP Diagnosis Guide for more information.

VTAM statement

Use the VTAM statement to access the VTAM definition for the application. The
VTAM statement must precede the LINK statement.

Syntax

�� VTAM application_id password ��

Parameters

application_id
The application identifier in the VTAM APPL definition. This is either the
name specified in the first 8 columns or the ACBNAME if one is defined.

password
The password for the VTAM application specified in the VTAM APPL
definition.

Examples

This VTAM statement is correct for either of the VTAM APPL definitions that
follow it.
*--
VTAM TCPIPX25 TCPX25
*--

VTAM APPL definitions:
X25APPL2 APPL ACBNAME=TCPIPX25,

PRTCT=TCPX25,
AUTH=(ACQ),
PARSESS=YES,
EAS=20

TCPIPX25 APPL PRTCT=TCPX25,
AUTH=(ACQ),
PARSESS=YES,
EAS=20

574 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 15. NCPROUTE server

This topic includes the following information:
v “NCPROUTE cataloged procedure (NCPROUT)” on page 582
v “Specifying the NCPROUTE parameters” on page 583
v “NCPROUTE profile data set” on page 584
v “NCPROUTE gateways statements and syntax rules”

Restriction: OSPF and IPv6 is not supported for NCPROUTE.

Related topics
See the following topics for more information:
v “BEGINROUTES statement” on page 28
v “BSDROUTINGPARMS statement” on page 36
v “DEVICE and LINK — SNA LU0 links statement” on page 95
v “DEVICE and LINK — 3745/46 channel DLC devices statement” on page 105
v “GATEWAY statement” on page 109
v “HOME statement” on page 136
v “IPCONFIG statement” on page 190
v Chapter 4, “Protocol number and port assignments,” on page 347
v Chapter 11, “OMPROUTE,” on page 483
v Chapter 12, “SNALINK,” on page 553
v z/OS Communications Server: IP Configuration Guide
v z/OS Communications Server: IP Diagnosis Guide
v z/OS Communications Server: IP System Administrator's Commands

NCPROUTE gateways statements and syntax rules
This topic includes the NCPROUTE gateways statements.

Observe the following rules:
v You can specify multiple GATEWAY statements.
v Keywords can be specified in mixed case.
v Blanks and comments are supported in the gateways data set. Comments are

identified by a semicolon (;) as the first non-whitespace character in a file record.
v GATEWAY statements can start in any column, but they cannot wrap from one

file record to the next.
v There should be no sequence numbers in the data set.

Table 30 on page 576 shows how the selected parameters affect the advertising
algorithm for routes in RIP responses to adjacent routers. The parameters can be
used as router-wide RIP output filters. To configure interface-wide RIP input and
output filters, see the OPTIONS statement in the NCPROUTE Gateways
configuration data set.

© Copyright IBM Corp. 2000, 2015 575

Table 30. NCPRoute parameters and options

Parameter or
Option

Host routes
(direct or
indirect)

Direct (local)
network
routes

Indirect
network
routes

Default
routes

Unreachable
routes

default.router Yes Yes Yes Yes

Supply
default.route

Yes Yes

-h or supply
hosts

Yes Yes Yes Yes

-sl or supply
locals

Yes Yes

-s or supply
on

Yes Yes Yes

-sq or supply
off

None Yes Yes Yes

GATEWAY statement

This topic describes how to use the GATEWAY statement.

Syntax

�� net
host
active

name1 gateway name2 metric value gateway options ��

gateway options:

passive
external
active

mask subnetmask

Parameters

net
Indicates that the route goes to a network.

host
Indicates that the route goes to a specific host.

active
Indicates that the route to the gateway is treated as a network interface.

name1
Either a symbolic name or the IP address of the destination network or host.

Restriction: If this is for an active gateway, name1 must be specified as active.

gateway
The parameters that follow this keyword identify the gateway or router for this
destination.

576 z/OS V2R1.0 Communications Server: IP Configuration Reference

name2
Either a symbolic name or the IP address of the gateway or router for this
destination.

metric
The value that follows this keyword is the hop count to the destination.

value
Indicates the hop count to this destination. This number is an integer from 1 to
15, where 15 indicates that the network cannot be reached.

passive
A passive gateway does not exchange routing information. Information about
the passive gateway is maintained in the local routing tables indefinitely and is
only local to this NCPROUTE server. Passive gateway entries for indirect
routes are not included in any routing information that is transmitted. Directly
connected passive routes are included.

external
Indicates that entries for this destination should never be added to the routing
table. The NCPROUTE server discards any routes for this destination that it
receives from other routers. Only the destination field is significant; the
gateway and metric fields are ignored.

active
Indicates that the router is treated as a network interface. An active gateway is
a router that is running RIP, but can only be reached through a network that
does not allow link-level broadcasting or multicasting and is not point-to-point.

mask
A constant. The value that follows this keyword is the subnet mask for the
route.

subnetmask
A bit mask (expressed in dotted-decimal form) defining the subnetwork mask
for a network route. If the subnetmask is not specified, NCPROUTE defaults the
subnetwork mask to an interface subnetwork mask that matches the route's
network. If there is no interface match, then the network class mask for the
route is used.

Requirement: The bits must be contiguous in the network portion of the
subnetmask.

OPTIONS statement

This topic describes how to use the OPTIONS statement.

Syntax

Chapter 15. NCPROUTE server 577

�� �
no

OPTIONS default.router yes
on

supply off
default.route
hosts
locals

0
trace.level 1

2
3
4

gateway ip_addr block
noreceive
none

interface name ip_addr interface options

��

interface options:

block destination fmask mask
forward destination fmask mask
forward.cond destination fmask mask
metric
noforward destination fmask mask
receive destination fmask mask
receive.cond destination fmask mask
noreceive destination fmask mask
none
passive
ripon
ripoff

off
supply on
key authentication_key
nokey
supply.control supply_control
receive.control rec._control

Parameters

default.router
Enables the default router. When this option is specified, NCPROUTE adds a
default route to its routing information and propagates it over all local
interfaces. If the adjacent routers add the default route to their routing tables,
NCPROUTE receives all unknown packets from them and funnel them to a
destination router, provided that a default route is defined. If this option is
used, define a default route to a destination router on an IPROUTE statement
in NCP generation definition or in the NCPROUTE gateways data set. See
z/OS Communications Server: IP Configuration Guide.

yes This is the default router.

no This is not the default router.

interface
A constant. The parameters name and ipaddr follow this keyword.

name Specifies the name of the interface according to NCP clients-NCP

578 z/OS V2R1.0 Communications Server: IP Configuration Reference

generation. A specification of an asterisk (*) can only be used with the
NONE parameter option to indicate all interface names.

ipaddr Specifies the IP address of the interface associated with the interface
name. A specification of an asterisk (*) can only be used with the
NONE parameter option to indicate all IP addresses of the interfaces.

noreceive (or block)
If an interface option, specifies that the destination route in the received
RIP packets for this interface are to be ignored. If a gateway option,
specifies that routing table broadcasts from this gateway are to be
ignored. This option is provided as an RIP input filter.

destination
Specifies that the destination route is in network, subnetwork, or host
format. A specification of an asterisk (*) indicates that all destination
routes are to be used with the noforward and noreceive options. This
serves as a blackhole filter option which can be used to filter out all
routes RIP packets over an interface and allow routes with specified
forward and receive filters to be used.

fmask A constant. The value that follows this keyword is the filter mask for
the route.

mask Optional bit mask (expressed in dotted-decimal form) defining the
routing filter mask associated with the destination route. This mask is
to be used as an optional parameter to the forward and receive
parameters to filter in and filter out multiple routes matching the mask
of the destination route. This option can be used to define a single RIP
input or output filter representing multiple routes as opposed to
defining individual RIP input or output filters for each route.

forward
Specifies that the destination route in the RIP responses is to be
forwarded to this interface only. This option is provided as an RIP
output filter and can be used for inbound and outbound traffic
splitting.

forward.cond
Specifies that the destination route is to be forwarded to this interface
only when the interface is active. In case of an interface outage,
NCPROUTE includes the destination route in the RIP responses to other
active interfaces. After recovery of an interface outage, NCPROUTE
resumes to sending the destination route over this interface only. This
option is provided as an RIP output filter and can be used for inbound
and outbound traffic splitting.

metric The metric associated with the cost of use for the link. When sending
routing information over this link, NCPROUTE uses the new_metric
value in the routing metrics for the routes that are advertised over this
link. If this option is not used, the metric value that is used is the
value specified in the IPLOCAL statement of NCP generation
definition. This option allows you to override the genned metric. If a
metric of 1 is specified, a metric value of 1 is used; this is the default
cost for a directly connected network. If a metric of 2 is specified, a
metric value of 2 is used. As the metric gets higher, the routes sent
over this link become less preferred. The range is from 1 to 15. A
metric of 1 is usually coded so that the routes sent over the interface is
the most preferred.

Chapter 15. NCPROUTE server 579

noforward
Specifies that the destination route in the RIP responses is not to be
forwarded. This option is provided as an RIP output filter.

none If an interface option, specifies that any RIP filter options for this
interface are to be turned off or reset. If asterisks (*) are specified for
interface name and ipaddr, all options are cleared from all interfaces. If
a gateway option, specifies that any RIP filter options for the gateway
are to be turned off or reset. If an asterisk (*) is specified for the IP
addresses, all gateway entries with gateway options are cleared.

receive
Specifies that the destination route in the RIP responses is to be
received over this interface only. This option is provided as an RIP
input filter.

receive.cond
Specifies that the destination route is to be received over this interface
only when it is active. In case of an interface outage, NCPROUTE
allows the destination route in the RIP responses to be received over
other active interfaces. This option is provided as an RIP input filter
and can be used for inbound and outbound traffic splitting.

ripoff (or passive)
Specifies that RIP is disabled for this interface. NCPROUTE does not
supply nor receive RIP updates.

ripon Specifies that RIP is enabled for this interface. RIP responses are
allowed to be sent or received over this interface.

supply
Defines the supply routing setting. The default is on. This option is provided
as an RIP input and output filter.

on Supply routing information for this NCP client or interface.

off Suppresses supply of routing information for this NCP client or
interface. NCPROUTE continues to receive routing updates.

default.route
Supply the default route only for this NCP client. When this option is
specified, yes is internally set for the default.router option. This option is
provided as an RIP output filter.

hosts Supply routing information with host routes added.

locals Supply only local (directly connected) routes.

trace.level
Specifies the trace level to be used for this NCP client. The default is 0.

0 Do not allow tracing.

1 Activates tracing of actions by the NCPROUTE server.

2 Activates tracing of actions and packets sent or received.

3 Activates tracing of actions, packets sent or received, and packet
history. Circular trace buffers are used for each interface to record the
history of all packets traced and are displayed whenever an interface
goes inactive.

580 z/OS V2R1.0 Communications Server: IP Configuration Reference

4 Activates tracing of actions, packets sent or received, packet history,
and packet contents. The packet contents display the RIP network
routing information.

key
Specifies a plain text password authentication key containing up to 16
characters to be used for this interface and that is used to override the
server-wide setting defined in the NCPROUTE profile. It can contain mixed
case and blank characters. Single quotation marks (') can be included as
delimiters to include leading and trailing blanks. A null or blank key indicates
that the server-wide key is used as the default. For examples on authentication
passwords, see the RIP2_AUTHENTICATION_KEY statement in “NCPROUTE
profile data set” on page 584.

nokey
Specifies that authentication is disabled for this interface even though the
server-wide specification from the NCPROUTE profile is defined.

supply.control
Specifies that the RIP supply_control is to be used for this client or interface and
is used to override the NCPROUTE profile setting.

supply_control
Specifies one of the RIP supply control options. The default is set to the
NCPROUTE profile setting. The following values are valid options:
v RIP1
v RIP2B
v RIP2M
v RIP2
v NONE

receive.control
Specifies that the RIP receive_control is to be used for this client or interface and
is used to override the NCPROUTE profile setting.

rec_control
Specifies one of the RIP receive control options. The default is set to the
NCPROUTE profile setting. Valid options are RIP1, RIP2, ANY, and NONE.

gateway
A constant. The value that follows this keyword identifies the gateway or
router.

ipaddr
If an interface option, specifies the IP address of the interface associated with
the interface name. If a gateway option, specifies the gateway address of the
adjacent router. A specification of an asterisk (*) applies to all gateway
addresses.

none
If an interface option, specifies that any RIP filter options for this interface are
to be turned off or reset. If a gateway option, specifies that any RIP filter
options for this gateway are to be turned off or reset. A specification of an
asterisk (*) indicates all interface IP addresses or all gateway addresses.

noreceive (or block)
If an interface option, specifies that the destination route in the RIP responses
propagates is not to be received over this interface only. If a gateway option,
specifies that no RIP packets are to be received from the specified gateway
address of the adjacent router. This option provides an RIP input filter.

Chapter 15. NCPROUTE server 581

Result: All traces go to a standard output referred to in the //SYSPRINT DD
statement in the NCPROUTE cataloged procedure.

The options can be specified in any order. For example:
options default.router yes supply on trace.level 2
options interface ETH1 10.1.1.1 passive
options interface ETH1 10.1.1.1 supply off
options interface TR1 9.67.112.25 metric 2
options interface TR1 9.67.112.25 forward 11.0.0.0
options interface TR1 9.67.112.25 forward.cond 12.0.0.0
options interface TR1 9.67.112.25 block 9.1.0.0
options interface TR1 9.67.112.25 supply.control rip1
options interface ETH1 10.1.1.1 receive.control rip2
options interface ETH2 9.1.1.1 forward 9.2.0.0 fmask 255.255.0.0
options interface ETH1 10.1.1.1 none
options interface * * none
options gateway 9.67.112.77 noreceive
options gateway 9.67.112.77 none
options gateway * none

NCPROUTE cataloged procedure (NCPROUT)
This topic shows the NCPROUTE cataloged procedure (NCPROUT).
//NCPROUT PROC MODULE=NCPROUTE,PARMS=’/’
//*
//* z/OS Communications Server
//* SMP/E Distribution Name: EZBNRJCL
//*
//* Copyright: Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* 5647-A01
//* (C) Copyright IBM Corp. 1994, 2001
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//*
//* Status: CSV1R2
//*
//NCPROUT EXEC PGM=&MODULE,
// PARM=’&PARMS’,
// REGION=4096K,TIME=1440
//*
//* STEPLIB contains libraries to be accessed by NCPROUT. Required
//* libraries are the TCPIP executable module library and the NCP
//* load library which contains a client’s NCP load module and its
//* Routing Information Table (RIT).
//*
//* The C runtime libraries should be in the system’s link list or add
//* them to the STEPLIB definition here. If you add them to STEPLIB,
//* they must be APF authorized.
//*
//STEPLIB DD DSN=TCPIP.SEZATCP,DISP=SHR
//* DD DSN=ncp.v7r1.ncpload,DISP=SHR
//*
//* SYSPRINT contains output from NCPROUTE plus any enabled tracing.
//* It can be a data set or SYSOUT.
//*
//SYSPRINT DD SYSOUT=*
//*
//* SYSERR contains abnormal run-time error messages from NCPROUTE.
//* It can be a data set or SYSOUT.
//*
//SYSERR DD SYSOUT=*
//*
//* The SYSMDUMP DD statement will cause MVS to provide

582 z/OS V2R1.0 Communications Server: IP Configuration Reference

//* an IPCS readable dump for ABENDs.
//*SYSMDUMP DD DISP=SHR,DSN=your.dump.data.set
//*
//* NCPRPROF contains profile configuration information such as SNMP
//* agent specifications and the name of a GATEWAYS partitioned data
//* set (PDS). A data set member can be optionally created for each
//* NCP client and it can contain gateway definitions and NCPROUTE
//* server options such as tracing and broadcasting of route tables.
//*
//* The data set can be any sequential data set or a member of a
//* partitioned data set (PDS). For a sequential data set, specify
//* FREE=CLOSE parameter for dynamic allocation support.
//*
//NCPRPROF DD DSN=TCPIP.SEZAINST(EZBNRPRF),DISP=SHR
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//*
//SYSTCPD DD DSN=TCPIP.SEZAINST(TCPDATA),DISP=SHR
//*
//* SERVICES points to an optional etc.services data set which can be
//* used to override well-known ports in the ETC.SERVICES.
//*
//*SERVICES DD DSN=TCPIP.SEZAINST(EZAEB02J),DISP=SHR
//*
//* MSNCPROU contains NCPROUTE’s optional message repository for NLS
//* support.
//*
//*MSNCPROU DD DSN=TCPIP.SEZAINST(EZBNRMSG),DISP=SHR,FREE=CLOSE

Specifying the NCPROUTE parameters
The system parameters required by NCPROUTE are passed by the PARM
parameter on the EXEC statement of the NCPROUTE cataloged procedure. Add
your parameters to PARMS=’/’ in the PROC statement of the NCPROUTE cataloged
procedure, making certain that:
v A slash (/) precedes the first parameter.
v Each parameter is separated by a blank.
v Mixed case is allowed for the parameters.
v Blanks and comments are supported in the gateways data set. Comments are

identified by a semicolon (;).

For example: //NCPROUT PROC MODULE=NCPROUT,PARMS=’/-s -t -t’

Guideline: These parameters are also valid when starting the NCPROUTE server
with the START command or when modifying NCPROUTE with the MODIFY
command. For more information about parameters used with the MODIFY
command, see z/OS Communications Server: IP System Administrator's
Commands.

Parameters

Figure 25. NCPROUTE catalogued procedure

Chapter 15. NCPROUTE server 583

-dp
Trace packets coming in and out of NCPROUTE for all NCP clients. The
packets are displayed in data format.

-h Include host routes in the RIP responses. Adjacent routers to an NCP client
must be able to receive host routes. Otherwise, NETWORK UNREACHABLE
problems occur.

-s Supply routing information for all NCP clients and override the supply
settings in the NCP clients’ gateways data sets.

-sl
Supply local (directly connected) routes only for NCP clients. This option is
provided as an RIP output filter.

-sq
Suppress supplying routing information to all NCP clients and override the
supply settings in the NCP clients' gateways data set.

-t
Activate global tracing of actions for all NCP clients.

-tq
Deactivate tracing at all levels. This parameter suppresses tracing for all NCP
clients and overrides the trace settings in the NCP clients gateway data set.

-t -t
Activate global tracing of packets for all NCP clients.

Guideline: There are no third or fourth level global tracing options like those in
the NCPROUTE gateways data set members. However, additional levels can be
specified using the MODIFY command for a specific NCP client. In any case, the
system uses the highest setting.

For more information, see z/OS Communications Server: IP Configuration Guide.

All traces go to a standard output referred to by the //SYSPRINT DD statement in
the NCPROUTE cataloged procedure. All abnormal runtime error messages go to
the data set specified by the //SYSERR DD statement in the NCPROUTE
cataloged procedure.

NCPROUTE profile data set
To build the NCPROUTE profile, create a data set and specify its name in the
//NCPRPROF DD statement in the NCPROUTE cataloged procedure. A sample is
in SEZAINST(EZBNRPRF). Include configuration statements in this data set to
define SNMP functions and to identify the NCPROUTE gateways data set. For
more information about configuring SNMP, see z/OS Communications Server: IP
Configuration Guide.

The following statements can be included in the NCPROUTE profile:

RIP_SUPPLY_CONTROL supply_control
Specifies one of the following options on a server-wide basis:
v RIP1—Unicast/Broadcast RIP Version 1 packets (Default)
v RIP2B—Unicast/Broadcast RIP Version 2 packets (Not preferred)
v RIP2M—Unicast/Multicast/Broadcast RIP packets (Migration)
v RIP2—Unicast/Multicast RIP Version 2 packets
v NONE—Disables sending RIP packets

584 z/OS V2R1.0 Communications Server: IP Configuration Reference

Guidelines:

v If RIP2 is specified, the RIP Version 2 packets are multicast over
multicast-capable interfaces only. No RIP packets are sent over
multicast-incapable interfaces.

v For RIP2M, the RIP Version 2 packets are multicast over multicast-capable
interfaces and RIP Version 1 packets over multicast-incapable interfaces.

v For RIP2B, the RIP Version 2 packets are unicast or broadcast; do not use
this option because host route misinterpretations by adjacent routers running
RIP Version 1 can occur. For this reason, RIP2B might become obsolete in a
future release. For point-to-point interfaces that are nonbroadcast and
multicast-incapable, the RIP Version 2 packets are unicast.

RIP RECEIVE CONTROL receive_control
Specifies one of the following options on a server-wide basis:
v RIP1—Receive RIP Version 1 packets only
v RIP2—Receive RIP Version 2 packets only
v ANY—Receive any RIP Version 1 and 2 packets (Default)
v NONE—Disables receiving RIP packets

Restriction: If the client NCP does not support variable subnetting, the default
of ANY is changed to RIP1.

RIP2_AUTHENTICATION_KEY authentication_key
Specifies a plain text password authentication_key containing up to 16
characters. The key is used on a router-wide basis and can contain mixed case
and blank characters. Single quotation marks (') can be included as delimiters
to include leading and trailing blanks. The key is used to authenticate RIP
Version 2 packets and be included in the RIP updates for authentication by
adjacent routers running RIP Version 2. For maximum security, set
RIP_SUPPLY_CONTROL and RIP RECEIVE CONTROL to RIP2. This discards
RIP1 and unauthenticated RIP2 packets. A blank key indicates that
authentication is disabled. Following are examples of authentication
passwords:
my password (no leading or trailing blanks)
’ my password ’ (leading and trailing blanks)
’’abc’’ (single quotes part of password)
’ ’ (5-character blanks)

SNMP_AGENT host_name
Specifies the host name or IP address of the host running an SNMP daemon.

Restriction: Only one NCPROUTE server can use a particular SNMP agent at a
time.

SNMP_COMMUNITY community_name
Specifies a community name that SNMP applications must use to access data
that the agent manages. Protect this information accordingly.

GATEWAY_PDS dsname
Specifies the optional partitioned data set that contains GATEWAY information
for each client NCP. Quotation marks are not needed when specifying dsname.
One member for each NCP client of this data set must be configured to match
the NCP NEWNAME parameter with the P suffix, which is the same as the
NCP’s RIT member name. See the information about configuring NCPROUTE
gateways in z/OS Communications Server: IP Configuration Guide for
additional information about defining the statements necessary for the
members of this data set.

Chapter 15. NCPROUTE server 585

586 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 16. TN3270E Telnet server

This topic describes the TN3270E Telnet server (Telnet) parameter and mapping
statements.

Telnet profile statements overview
These statements define the characteristics of connections, which host VTAM
applications can be accessed, what LU name represents the client, and other
functions. For a detailed discussion of Telnet functions, see z/OS Communications
Server: IP Configuration Guide.

TELNETGLOBALS statements
The TELNETGLOBALS block is an optional statement block that contains Telnet
parameter statements that apply to all connections on all Telnet ports.

Use the following format in the PROFILE dataset:

��
TELNETGLOBALS ENDTELNETGLOBALS

Telnet parameter statements

��

TELNETPARMS statements
The TELNETPARMS block is a required statement block that contains Telnet
parameter statements that apply to all connections of the Telnet port defined in the
block. Use the following format in the PROFILE dataset:

�� TELNETPARMS ENDTELNETPARMS
Telnet parameter statements

��

PARMSGROUP statements
The PARMSGROUP Object statement is an optional statement that applies to
connections which have the PARMSGROUP mapped by either their client
identifiers or a matching LUMAP statement. Use the following format in the
PROFILE dataset:

��
PARMSGROUP pg_name ENDPARMSGROUP

Telnet parameter statements

��

BEGINVTAM block
The BEGINVTAM block is a required block that contains Telnet mapping statements
used to map objects to clients based on Client Identifier. Use the following format in
the PROFILE dataset:

�� BEGINVTAM ENDVTAM
Telnet mapping statements

��

© Copyright IBM Corp. 2000, 2015 587

INCLUDE statement

The INCLUDE statement causes profile statements from the named data set to be
included at the point that the INCLUDE statement is encountered.

Use the following format in the PROFILE dataset:

�� INCLude data_set_name ��

Telnet statement syntax
The statement syntax is the same in the configuration data set specified on the
PROFILE DD card and the VARY TCPIP,tnproc,OBEYFILE command data set.
v A TELNETPARMS block and a BEGINVTAM block are required for each port.
v If a duplicate TELNETGLOBALS, TELNETPARMS for a port, BEGINVTAM for a

port blocks, or PARMSGROUP name within a BEGINVTAM parameter is
specified, the last statement block is used.

v If duplicate statements appear in the TELNETGLOBALS, TELNETPARMS,
PARMSGROUP, or BEGINVTAM blocks, Telnet uses the last valid statement that
was specified. However, if the REPLACEMENT statement is not valid, the
statement being replaced is removed and replacement does not occur. This is
referred to as the last one wins rule. The only exception to the last one wins rule
is in the case of Client Identifiers defined in their respective group statement.
For details, see “Telnet mapping statements in the Telnet profile” on page 635.

v Do not use the name of a Profile statement or parameter as a variable name in a
statement. For example, do not assign the names USSTCP to USS table. Do not
use the value GENERIC as a PRTGROUP name.

v For update capability and procedures, see z/OS Communications Server: IP
Configuration Guide for information about managing Telnet.

v An END statement terminates a number of statements, such as the LUGROUP
statement. If the END statement is omitted, all subsequent tokens in the data set
are interpreted as parameters for that configuration statement until another
statement is found.

v In general, if a syntax error is encountered in a list of parameters, such as an
LUGROUP list, the parameter in error is ignored and the remaining entries are
processed.

v Profile statements have some order restrictions. Basically, any statement that
references a that is name defined in another statement must follow that
statement. For example, LUMAP statements must follow the IPGROUP
statement that defines the IPGROUP statement that is referenced by the
mapping.

v During configuration, Telnet ensures that names are the appropriate length. If a
name is too long, Telnet issues a message and the statement fails.

v Error messages are issued for incorrect statements. A DEBUG message displays
the profile line number of the statement in error and other pertinent information.
Error messages can be turned off by coding DEBUG OFF or DEBUG SUMMARY
in the TELNETGLOBALS statement.

v A semicolon begins a comment. Comments act as blanks, separating words
without affecting their meaning.

v An argument followed by a comment must have a blank before the semicolon.
v Statements can be split across multiple lines.
v Sequence numbers are not allowed.

588 z/OS V2R1.0 Communications Server: IP Configuration Reference

Rules: User-defined names on configuration statements must adhere to the
following rules:
v Entries in a configuration data set are free format; blanks, comments, and

end-of-record are ignored.
v A configuration statement consists of a statement name followed by a required

blank, and usually one or more positional arguments. Separate each argument
by one or more blanks or end-of-records.

v Lowercase letters are translated to uppercase letters before the statements are
executed, except for those parameters that support mixed case entries. For
example, the KEYRING name is case sensitive.

v Static system symbols can be used in profile statements.
v Any IP address reference can be either an IPv4 format or IPv6 format IP address

when the stack is running in IPv6-enabled mode.
v Each character must be a non-blank printable character.
v All characters must be entered in code page IBM-1047. The following are

considered printable characters:

Table 31. Printable characters

Character EBCDIC Description

a-z 81-89, 91-99, A2-A9 Lowercase alphabetic

A-Z C1-C9, D1-D9, E2-E9 Uppercase alphabetic

0-9 F0-F9 Numeric

¢ 4A Cent symbol

. 4B Period

< 4C Less than

(4D Left parenthesis

+ 4E Plus

| 4F Vertical bar

& 50 Ampersand

! 5A Exclamation

$ 5B Dollar

* 5C Asterisk

) 5D Right parenthesis

; 5E Semicolon

^ 5F Hat

- 60 Minus, hyphen

/ 61 Slash

, 6B Comma

% 6C Percent

_ 6D Underscore

> 6E Greater than

? 6F Question mark

` 79 Grave

: 7A Colon

7B Pound

Chapter 16. TN3270E Telnet server 589

Table 31. Printable characters (continued)

Character EBCDIC Description

@ 7C At

' 7D Apostrophe

= 7E Equal

" 7F Double quote

~ A1 Tilda

[AD Left bracket

¬ BO Logical not

] BD Right bracket

} CO Left brace

} DO Right brace

\ EO Backslash

v The following printable characters cannot be used for many names. See specific
statements for details.

Table 32. Restricted printable characters

Character EBCDIC Description

. 4B Period

* 5C Asterisk

; 5E Semicolon

, 6B Comma

= 7E Equal

Telnet parameter statements in the Telnet profile
Table 33 provides a list of Telnet parameter statements and the location of more
information.

The letter Y (with note references in parentheses) in a column indicates that the
parameter can be coded in the indicated block. For example, CLIENTAUTH can be
coded in TELNETGLOBALS, TELNETPARMS, or PARMSGROUP (affecting all
connections on all ports, all connections on one port, or a subset of connections on
one port, respectively).

Table 33. Telnet parameter statements

Statement TELNET
GLOBALS

TELNET
PARMS

PARMS
GROUP

See

BINARYLINEMODE
NOBINARYLINEMODE

Y Y Y
See note 1.

“BINARYLINEMODE
statement” on page 594

CHECKCLIENTCONN
NOCHECKCLIENTCONN

Y Y Y
See note 3.

“CHECKCLIENTCONN
statement” on page 594

CLIENTAUTH Y Y Y
See note 2.

“CLIENTAUTH statement” on
page 595

CODEPAGE Y Y Y
See note 1.

“CODEPAGE statement” on
page 596

590 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 33. Telnet parameter statements (continued)

Statement TELNET
GLOBALS

TELNET
PARMS

PARMS
GROUP

See

CONNTYPE Y Y
See note 2.

“CONNTYPE statement” on
page 597

CRLLDAPSERVER Y “CRLLDAPSERVER statement”
on page 598

DBCSTRACE
NODBCSTRACE

Y Y “DBCSTRACE statement” on
page 599

DBCSTRANSFORM
NODBSCTRANSFORM

Y Y
See note 3.

“DBCSTRANSFORM
statement” on page 599

DEBUG Y Y Y “DEBUG statement” on page
600

DISABLEGSA Y Y Y “DISABLESGA statement” on
page 602

DROPASSOCPRINTER
NODROPASSOCPRINTER

Y Y Y “DROPASSOCPRINTER
statement” on page 602

ENCRYPTION Y Y Y
See note 2.

“ENCRYPTION statement” on
page 602

EXPRESSLOGON
NOEXPRESSLOGON

Y Y Y
See note 3.

“EXPRESSLOGON statement”
on page 603

FORMAT Y “FORMAT statement” on page
604

FULLDATATRACE
NOFULLDATATRACE

Y Y Y “FULLDATATRACE statement”
on page 605

INACTIVE Y Y Y “INACTIVE statement” on
page 605

KEEPINACTIVE Y Y Y “KEEPINACTIVE statement”
on page 606

KEEPLU Y Y Y “KEEPLU statement” on page
607

KEYRING Y Y “KEYRING statement” on page
607

LUSESSIONPEND
NOLUSESSIONPEND

Y Y Y “LUSESSIONPEND statement”
on page 609

MAXRECEIVE Y Y Y “MAXRECEIVE statement” on
page 609

MAXREQSESS Y Y Y “MAXREQSESS statement” on
page 610

MAXRUCHAIN Y Y Y “MAXRUCHAIN statement”
on page 610

MAXTCPSENDQ Y Y Y “MAXTCPSENDQ statement”
on page 611

MAXVTAMSENDQ Y Y Y “MAXVTAMSENDQ
statement” on page 611

MSG07
NOMSG07

Y Y Y
See note 1.

“MSG07 statement” on page
612

NACUSERID
NONACUSERID

Y Y “NACUSERID statement” on
page 612

Chapter 16. TN3270E Telnet server 591

Table 33. Telnet parameter statements (continued)

Statement TELNET
GLOBALS

TELNET
PARMS

PARMS
GROUP

See

OLDSOLICITOR
NOOLDSOLICITOR

Y Y Y “OLDSOLICITOR statement”
on page 613

PASSWORDPHRASE
NOPASSWORDPHRASE
DISABLEPASSWORDPHRASE

Y Y Y “PASSWORDPHRASE
statement” on page 613

PORT
SECUREPORT
TTLSPORT

Y “PORT, SECUREPORT, and
TTLSPORT statements” on
page 614

PRTINACTIVE Y Y Y “PRTINACTIVE statement” on
page 616

PROFILEINACTIVE Y Y Y “PROFILEINACTIVE
statement” on page 615

REFRESHMSG10
NOREFRESHMSG10

Y Y Y “REFRESHMSG10 statement”
on page 616

SCANINTERVAL
TIMEMARK

Y Y Y “SCANINTERVAL and
TIMEMARK statements” on
page 617

SEQUENTIALLU
NOSEQUENTIALLU

Y Y Y “SEQUENTIALLU statement”
on page 617

SGA
NOSGA (DISABLESGA)

Y Y Y
See note 3.

“SGA statement” on page 618

SHAREACB
NOSHAREACB

Y “SHAREACB statement” on
page 618

SIMCLIENTLU
NOSIMCLIENTLU

Y Y Y
See note 3.

“SIMCLIENTLU statement” on
page 619

SINGLEATTN
NOSINGLEATTN

Y Y Y “SINGLEATTN statement” on
page 619

SMFINIT
SMFTERM

Y Y Y “SMFINIT and SMFTERM
statements” on page 620

SMFPROFILE
NOSMFPROFILE

Y “SMFPROFILE statement” on
page 621

SNAEXT
NOSNAEXT

Y Y Y “SNAEXT statement” on page
622

SSLTIMEOUT Y Y Y
See note 2.

“SSLTIMEOUT statement” on
page 622

SSLV2
NOSSLV2

Y Y Y “SSLV2 and NOSSLV2
statements” on page 623

SSLV3
NOSSLV3

Y Y Y “SSLV3 and NOSSLV3
statements” on page 623

TCPIPJOBNAME
NOTCPIPJOBNAME

Y “TCPIPJOBNAME statement”
on page 624

TELNETDEVICE Y Y Y “TELNETDEVICE statement”
on page 624

TESTMODE Y “TESTMODE statement” on
page 626

TIMEMARK Y Y Y “TIMEMARK statement” on
page 626

592 z/OS V2R1.0 Communications Server: IP Configuration Reference

|

|
|
||||
|

Table 33. Telnet parameter statements (continued)

Statement TELNET
GLOBALS

TELNET
PARMS

PARMS
GROUP

See

TKOGENLU
TKOGENLURECON
NOTKO

Y Y Y “TKOGENLU,
TKOGENLURECON, and
NOTKO statements” on page
627

TKOSPECLU
TKOSPECLURECON
NOTKO

Y Y Y “TKOSPECLU,
TKOSPECLURECON, and
NOTKO statements” on page
628

TN3270E
NOTN3270E

Y Y Y
See note 3.

“TN3270E statement” on page
630

TNSACONFIG Y “TNSACONFIG statement” on
page 631

UNLOCKKEYBOARD Y Y Y “UNLOCKKEYBOARD
statement” on page 632

XCFGROUP Y “XCFGROUP statement” on
page 633

Note:

1. Changing or setting the function at LU assignment time using the LUMAP-PMAP statement might not provide
the expected results. Use PARMSMAP for consistent results.

2. The statement definition is used before the user ID Client Identifier is determined and before LU assignment is
performed. To use the statement in PARMSGROUP, the group must be mapped using PARMSMAP to any Client
Identifier other than user ID or user group.

3. The function is negotiated with the client before LU assignment; therefore, LUMAP PMAP has no affect on these
statements.

Rules for Telnet parameter statements and security
parameters

Observe the following rules for parameter statements:
v The value of parameter statements used by a connection is determined by the

parameter hierarchy. All parameter values are initially set to Telnet default
values and can then be modified using the TELNETGLOBALS block,
TELNETPARMS block, or PARMSGROUP object. TELNETGLOBALS parameters
affect all connections on all ports, TELNETPARMS parameters affect all
connections on a single port, and PARMSGROUP parameters affect a subset of
connections within a single port.

v If no statements are entered between TELNETPARMS and ENDTELNETPARMS,
Telnet uses the default values for each of the TELNETPARMS statements.

Specific rules apply to security statements.

The CONNTYPE parameter statement is valid on a port with the value of
SECUREPORT or TTLSPORT specified but not on a basic port.

Restrictions: The following parameter statements are valid on a SECUREPORT
port only. The equivalent function for a TTLSPORT port is defined in AT-TLS
policy.
v CRLLDAPSERVER
v CLIENTAUTH

Chapter 16. TN3270E Telnet server 593

v KEYRING
v ENCRYPTION
v SSLV2/NOSSLV2
v SSLV3/NOSSLV3

If any of these parameters are coded on or sift down to a basic port, or if any of
these parameters are coded on or sift down to a TTLSPORT port, they are handled
in the following ways:
v Security parameters in the TELNETGLOBALS block that sift down to basic or

TTLSPORT ports are ignored, and a DEBUG warning message is issued. To
avoid the DEBUG message, code the Security parameters in the TELNETPARMS
block instead of in the TELNETGLOBALS block.

v Security parameters in the TELNETPARMS block for a basic or TTLSPORT port
cause the port update to fail, and a DEBUG error message is issued. It is
assumed that the port was meant to be a SECUREPORT port because of the
presence of these parameters. Either specify the SECUREPORT parameter or
remove the security parameters.

v Security parameters in the PARMSGROUP Object statement mapped in a basic
or TTLSPORT port are ignored, and a DEBUG warning message is issued. To
avoid the DEBUG messages, remove these parameters. If the BEGINVTAM block
supports multiple ports (basic, TTLSPORT, and SECUREPORT), duplicate the
BEGINVTAM block into multiple blocks and remove the security parameters
from the basic or TTLSPORT port.

BINARYLINEMODE statement

The BINARYLINEMODE parameter statement is used to prohibit translation of
characters between EBCDIC and ASCII during linemode sessions. If
NOBINARYLINEMODE is specified, standard linemode translation is
implemented.

Syntax

��
NOBINARYLINEMODE
BINARYLINEMODE

��

Parameters

This statement has no parameters.

Telnet is initialized with the value NOBINARYLINEMODE.

BINARYLINEMODE and NOBINARYLINEMODE can be coded in
TELNETGLOBALS, TELNETPARMS, or PARMSGROUP. See “Rules for Telnet
parameter statements and security parameters” on page 593 for more information
about the hierarchy of parameter values.

CHECKCLIENTCONN statement

Use the CHECKCLIENTCONN parameter statement to trigger the checking of the
connectivity of all pre-existing connections associated with the client identifier of
the new connection being established. The new connection is delayed early during

594 z/OS V2R1.0 Communications Server: IP Configuration Reference

|

connection negotiation until either all existing connections have responded or the
specified wait time has elapsed. The number of existing connections checked can
be limited with the maxconns parameter.

Guideline: No specific order is used when a limited number of connections are
checked.

Syntax

��
NOCHECKCLIENTCONN

,50
CHECKCLIENTCONN sec

,maxconns

��

Parameters

maxconns
The maximum number of connections checked for a single client identifer. The
connections are not checked in any particular order. The range is 1 - 99999999.
The default value for maxconns is 50.

Tip: This parameter can be important if you are using a proxy server. A proxy
server causes all client connections to appear as if they are coming from the
same client IP address. If you have a large number of connections coming in
through a proxy server, Telnet sends timemarks out to each existing connection
every time a new connection is established. The proxy server can be managed
in either of the follow ways:
v Use the Parmsgroup/Parmsmap statements to specify the

NoCheckClientConn option for the proxy server.
v Specify a small maxconns value to keep the number of connections checked

for the proxy server low.

Telnet is initialized with the value NOCHECKCLIENTCONN.

The CHECKCLIENTCONN and NOCHECKCLIENTCONN statements can be
coded in the TELNETGLOBALS, TELNETPARMS, or PARMSGROUP statement
block. See “Rules for Telnet parameter statements and security parameters” on
page 593 for more information about the hierarchy of parameter values.

sec
Number of seconds Telnet waits before checking whether a response was
received from the client connections. Valid values are in the range 1 -
99 999 999.

CLIENTAUTH statement

Use the CLIENTAUTH parameter statement to specify whether or not client
authentication is used for the SECUREPORT port.

Telnet is initialized with the value CLIENTAUTH NONE.

CLIENTUATH can be coded in TELNETGLOBALS, TELNETPARMS, or
PARMSGROUP. See “Rules for Telnet parameter statements and security
parameters” on page 593 for more information about the hierarchy of parameter
values.

Chapter 16. TN3270E Telnet server 595

CLIENTAUTH is valid only with a secure port. See “Rules for Telnet parameter
statements and security parameters” on page 593 for details.

Syntax

��
CLIENTAUTH SSLCERT

SAFCERT
NONE

��

Parameters

SSLCERT
Specifies that the SSL handshake process authenticates the client certificate as
well as the server certificate. This check verifies that the client has received a
certificate from a trusted certificate authority (CA).

SAFCERT
Specifies that the SSL handshake process authenticates the client certificate.
Prior to completing connection negotiation, additional access control is
provided through the installation's SAF compliant security product (for
example, RACF) as follows:
v Verifies that the client certificate has an associated user ID defined to the

security product. The certificate must first be defined to the security product
to obtain this validation. For more information about adding certificates to
RACF, see the description of the RACDCERT command in the z/OS Security
Server RACF Command Language Reference.

v For security products that support the 'SERVAUTH' class, installations can
also obtain a more granular level of access control. If the installation has
activated the SERVAUTH class and provided a profile for the port in the
'SERVAUTH' class, only users specified in the profile are allowed to connect
into the port. See z/OS Communications Server: IP Configuration Guide for
more information. The security product profile name is specified in the
following format:
EZB.TN3270.sysname.tcpname.PORTnnnnn

NONE
No client authentication checks are to be done.

CODEPAGE statement

Use the CODEPAGE parameter statement to specify ASCII-EBCDIC translation
tables for linemode connections.

Telnet is initialized to use the ISO859-1 code page for ASCII and the IBM-1047 code
page for EBCDIC.

CODEPAGE can be coded in TELNETGLOBALS, TELNETPARMS, or
PARMSGROUP. See “Rules for Telnet parameter statements and security
parameters” on page 593 for more information about the hierarchy of parameter
values. If there is an error in the syntax, a default code page of ISO8859-1 is used
for ASCII and the language environment code page taken from locale information
is used as the EBCDIC code page. If the EBCDIC code page is in error, a default
code page of IBM-1047 is used for EBCDIC.

596 z/OS V2R1.0 Communications Server: IP Configuration Reference

If TNSTD is specified as either parameter, TNSTD is used for both. The Telnet table
is based on the ISO08859-1/IBM-1047 translation tables with the following
exceptions:
EBCDIC ASCII
x’0D25’ -----> x’0D0085’ using ISO8859-1/IBM-1047
x’0D25’ -----> x’0D0A’ using internal tables
x’15’ <---- x’0A’ using ISO8859-1/IBM-1047
x’25’ <---- x’0A’ using internal tables

Syntax

��
CODEPAGE TNSTD TNSTD

ascii ebcdic

��

Parameters

ascii
The ASCII code page name. If TNSTD is specified, the TELNET-created
translation table is used.

ebcdic
The EBCDIC code page name. If TNSTD is specified, the TELNET-created
translation table is used.

CONNTYPE statement

Use the CONNTYPE parameter statement select different connection types.

CONNTYPE can be coded in TELNETPARMS or PARMSGROUP. See “Rules for
Telnet parameter statements and security parameters” on page 593 for parameter
statements for more information about the hierarchy of parameter values.

CONNTYPE is valid only with a secure port. See “Rules for Telnet parameter
statements and security parameters” on page 593 for details.

Syntax

��
CONNTYPE SECURE

NEGTSECURE
BASIC
ANY
NONE

��

Parameters

SECURE
Indicates that the traditional SSL handshake is used to start the SSL connection.
If the client does not start the handshake within the time specified by
SSLTIMEOUT, an attempt is made to do a negotiated SSL handshake. If the
client rejects the negotiated attempt, the connection is closed.

Telnet is initialized for secure ports SECUREPORT or TTLSPORT with
CONNTYPE SECURE and for basic ports with CONNTYPE BASIC.

Chapter 16. TN3270E Telnet server 597

NEGTSECURE
Indicates that a TN3270 negotiation with the client determines if the client is
willing to enter into a secure connection. If the client agrees, SSL protocols are
used for all subsequent communication. If the client does not agree, the
connection is closed.

BASIC
Indicates that a basic (non-SSL) connection is used.

ANY
Indicates that the client can connect as secure or basic. Telnet first tries a
standard SSL handshake. If the handshake times out, negotiated SSL (see
CONNTYPE NEGTSECURE) is attempted.
v If the client is willing to enter into a secure connection, SSL protocols are

used for all subsequent communication.
v If the client is not willing to enter into a secure connection, a basic

connection is used.

NONE
Indicates that any client connection request is rejected.

CRLLDAPSERVER statement

Use the CRLLDAPSERVER parameter statement to specify the LDAP server or
servers to be used for Telnet's Certificate Revocation List (CRL) processing. CRL
processing using the LDAP server is done in conjunction with Telnet's SSL client
authentication of client certificates. If the client's certificate is found on the
certificate revocation list, the connection is closed. The anonymous user ID is used
to connect to the CRLLDAPSERVER.

Restrictions:

v This statement does not support the IPv6 format.
v A maximum of five server names can be specified for a total length of 255

characters including blank separators. If specified, the optional :port_num value
overrides the required port number specified. There must be no space between
the server name and the :port_num.

v The CRLLDAPSERVER statement can be coded only in TELNETGLOBALS.
v The CRLLDAPSERVER statement is valid only with a SECUREPORT port. See

“Rules for Telnet parameter statements and security parameters” on page 593 for
details.

If a SECUREPORT port is active during a profile update, the CRLLDAPSERVER
parameters cannot be changed. If a change is attempted, an error message is issued
and the profile updates for the SECUREPORT port are rejected. To change
CRLLDAPSERVER parameters, all SECUREPORT ports must be stopped first.

If all SECUREPORTs are stopped when a profile update occurs, the
CRLLDAPSERVER is refreshed if a new SECUREPORT is activated.

598 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

��

�CRLLDAPSERVER server IP addr port_num ENDCRLLDAPSERVER
:port_num

server name
:port_num

��

Parameters

server IP addr
The IP address of the CRL LDAP server.

server name
The name of the CRL LDAP server.

port_num
The port number of the CRL LDAP server.

DBCSTRACE statement

Use the DBCSTRACE parameter statement to activate additional, detailed tracing
within the DBCS load module. The trace records are written to the SYSPRINT and
TNDBCSER file. If NODBCSTRACE is specified, detailed trace records are not
written.

Syntax

��
NODBCSTRACE
DBCSTRACE

��

Parameters

This statement has no parameters.

Telnet is initialized with the value NODBCSTRACE. DBCSTRACE and
NODBCSTRACE can be coded in TELNETPARMS or PARMSGROUP. See “Rules
for Telnet parameter statements and security parameters” on page 593 for more
information about the hierarchy of parameter values.

DBCSTRANSFORM statement

Use the DBCSTRANSFORM parameter statement to configure Telnet linemode to
support 3270 SBCS or DBCS ASCII-EBCDIC transformations. The
DBCSTRANSFORM statement specifies that Telnet should load the 3270 DBCS
transform module, TNDBCSTM, at initialization. If the NODBCSTRANSFORM
statement is specified, standard linemode translation is performed.

Telnet is initialized with the value NODBCSTRANSFORM. DBCSTRANSFORM
and NODBCSTRANSFORM can be coded in TELNETPARMS or PARMSGROUP.
See “Rules for Telnet parameter statements and security parameters” on page 593
for more information about the hierarchy of parameter values.

Chapter 16. TN3270E Telnet server 599

The TNDBCSTM module must be in a data set in the system search list. You can
find the module in the installation data set, SEZALOAD. If you are using the 3270
DBCS transform mode, the TCP/IP address space might require additional virtual
storage. The TNDBCSCN, TNDBCSXL, and TNDBCSER DD statements must be
provided in the started procedure's JCL when DBCSTRANSFORM is specified. See
the linemode operation information in z/OS Communications Server: IP
Configuration Guide for details about their usage.

Transform is supported only on a single port. To use transform on a different port,
the port using transform must be stopped using VARY TCPIP,,T,STOP. Then an
OBEYFILE command can be used to process a new Telnet profile, which defines
transform support on another port.

If DBCSTRANSFORM is coded in multiple parameter blocks, the last port
identified as DBCSTRANSFORM is the DBCSTRANSFORM port. The maximum
number of transform connections is 250.

Syntax

��
NODBCSTRANSFORM
DBCSTRANSFORM

��

Parameters

This statement has no parameters.

DEBUG statement

Use the DEBUG parameter statement to provide different levels of debug
information for Telnet problems or tracking. Without this statement, only certain
connection drop reasons are reported to the operator console.

Telnet is initialized with DEBUG CONN EXCEPTION, DEBUG TASK EXCEPTION,
and DEBUG CONFIG EXCEPTION settings.

You can code DEBUG CONN in TELNETGLOBALS, TELNETPARMS, or
PARMSGROUP. See “Rules for Telnet parameter statements and security
parameters” on page 593 for more information about the hierarchy of parameter
values. You can code DEBUG CONFIG and DEBUG TASK only in
TELNETGLOBALS.

DEBUG CONN, DEBUG TASK, and DEBUG CONFIG can each be specified once
in TelenetGlobals without generating a duplicate statement exception. The
parameters EXCEPTION, SUMMARY, DEBUG, and TRACE are mutually exclusive
on each of the three types of debug statements.

Use the V TCPIP,,T,DEBUG,OFF command to turn off all active debug reporting.
This command also turns off the reporting of connection drops that were caused
by timeouts or errors.

Syntax

600 z/OS V2R1.0 Communications Server: IP Configuration Reference

�� �

�

CONN CONSOLE
DEBUG EXCEPTION

CONN SUMMARY CONSOLE
DETAIL JOBLOG

DEBUG TASK EXCEPTION CTRACE
DETAIL

DEBUG CONFIG EXCEPTION
CONN CTRACE

DEBUG TRACE
CONN CONSOLE

JOBLOG
CTRACE

CTRACE
DEBUG CONFIG TRACE ,statement

CONSOLE
JOBLOG
CTRACE

CONN
DEBUG OFF

CONN
TASK
CONFIG

��

Parameters

CONN
Specify CONN to issue debug messages for connections. CONN is the default.

TASK
Specify TASK to issue debug messages for Telnet tasks.

CONFIG
Specify CONFIG to issue debug messages for Telnet configuration statements.
A CONFIG debug message (EZZ6035I) is issued showing the statements and
parameters read by Telnet. Another EZZ6035I message is issued showing the
structure of the statement as it is passed to Telnet database processing.

OFF
When OFF is specified, no debug messages are issued.

EXCEPTION
When EXCEPTION is specified, only exception debug messages are issued.
Telnet is initialized with the value DEBUG CONN EXCEPTION.

SUMMARY
When SUMMARY is specified, summary debug messages (EZZ6034I) are
issued indicating major state changes. EXCEPTION debug messages are also
issued when SUMMARY is specified.

DETAIL
When DETAIL is specified, detail debug messages (EZZ6035I) are issued to
show key events occurring. You should specify DETAIL when you are solving
problems; otherwise, too many messages are generated. EXCEPTION and
SUMMARY messages are also issued when DETAIL is specified.

TRACE
When TRACE is specified, data to and from the client and to and from VTAM

Chapter 16. TN3270E Telnet server 601

for one connection is displayed by debug message EZZ6035I. Detail and
summary messages are also issued when TRACE is specified. When DEBUG
CONFIG is specified, you can optionally specify statement names immediately
after the TRACE parameter to indicate that only those statements should be
displayed. You can specify a maximum of 20 statement names.

JOBLOG
When JOBLOG is specified, the debug messages are routed to the joblog
(routing code 11) instead of the console.

CONSOLE
When CONSOLE is specified, the debug messages are routed to the master
console (routing code 2) and to the teleprocessing console (routing code 8).

CTRACE
When CTRACE is specified, the debug messages are not issued and appear in
the Component Trace only.

DISABLESGA statement

See the “SGA statement” on page 618 for information about this statement.

DROPASSOCPRINTER statement

Use the DROPASSOCPRINTER parameter statement to control whether or not the
associated printer is dropped when the terminal connection is dropped.

Telnet is initialized with the value NODROPASSOCPRINTER.

DROPASSOCPRINTER and NODROPASSOCPRINTER can be coded in
TELNETGLOBALS, TELNETPARMS, or PARMSGROUP. See “Rules for Telnet
parameter statements and security parameters” on page 593 for more information
about the hierarchy of parameter values.

Syntax

��
NODROPASSOCPRINTER
DROPASSOCPRINTER

��

Parameters

This statement has no parameters.

ENCRYPTION statement

Use the ENCRYPTION parameter statement to allow the selection of a subset of
the supported algorithms to use for this port. Each z/OS system level supports a
specific set of encryption algorithms.

The ENCRYPTION statement can be coded in the TELNETGLOBALS,
TELNETPARMS, or PARMSGROUP statement blocks. See “Rules for Telnet
parameter statements and security parameters” on page 593 for more information
about the hierarchy of parameter values.

602 z/OS V2R1.0 Communications Server: IP Configuration Reference

Restriction: The ENCRYPTION/ENDENCRYPTION block applies only to a Telnet
SECUREPORT that serves SSLv3/TLSv1 and later clients.

Syntax

��

�ENCRYPTion cipher_spec ENDENCRYPTion
DEFAULT

��

Parameters

cipher_spec
The cipher specification (cipher_spec) to use for this port. The order in which
the cipher specifications are specified is significant. The server controls which
of the available cipher specifications are used for data encryption by specifying
the desired cipher specification in order of preference. The actual cipher_spec
used is the best match between what the server requests and what the client
supports. If the client does not support any of the cipher specifications the
server requests, the secure handshake fails and the connection is closed.

DEFAULT
Indicates that the cipher specifications, in the order listed below, are used for
SSLv3 and TLSv1 negotiated connections.

Following are the cipher specifications that can be specified:
cipher_spec Telnet Display Abbreviation Cipher number
-------------- -------------------- ---------------
SSL_RC4_SHA 4S 05
SSL_RC4_MD5 4M 04
SSL_AES_256_SHA A2 35
SSL_AES_128_SHA A1 2F
SSL_3DES_SHA 3S 0A
SSL_DES_SHA DS 09
SSL_RC4_MD5_EX 4E 03
SSL_RC2_MD5_EX 2E 06
SSL_NULL_SHA NS 02
SSL_NULL_MD5 NM 01
SSL_NULL_Null NN 00

All SSLv2 cipher specifications supported by System SSL are used for SSLv2
negotiated connections. The DEFAULT keyword provides a way to override
specific choices made in TELNETGLOBALS or TELNETPARMS statements. If
the DEFAULT keyword is specified along with a cipher_spec value, only
DEFAULT is recognized.

EXPRESSLOGON statement

Use the EXPRESSLOGON parameter statement to allow a user at a workstation,
with a TELNET client and a X.509 certificate, to log on to an SNA application
without entering a user ID or password. If NOEXPRESSLOGON is specified,
EXPRESSLOGON function is not available to the client.

Telnet is initialized with the value NOEXPRESSLOGON.

The EXPRESSLOGON and NOEXPRESSLOGON statements can be coded in the
TELNETGLOBALS, TELNETPARMS, or PARMSGROUP statement blocks. See

Chapter 16. TN3270E Telnet server 603

“Rules for Telnet parameter statements and security parameters” on page 593 for
more information about the hierarchy of parameter values.

Requirements:

v The client must support the new environment Telnet option as defined in RFC
1572.

v When you are configuring the SECUREPORT value, you must specify
CLIENTAUTH SAFCERT.

v When you are configuring the TTLSPORT value, the AT-TLS policy must specify
HandshakeRole ServerWithClientAuth, a certificate must be received from the
client, and the certificate must have an associated user ID.

Syntax

��
NOEXPRESSLOGON
EXPRESSLOGON

��

Parameters

This statement has no parameters.

FORMAT statement

Use the FORMAT parameter statement to select the print format for display
messages that are affected by longer IPv6 addresses.

Restriction: The FORMAT statement can be coded only in the TELNETGLOBALS
statement block.

Syntax

��
FORMAT SHORT

LONG

��

Parameters

SHORT
The affected displays are presented in the existing one-line format. Telnet is
initialized with a one-line format (FORMAT SHORT) in an IPv4 environment.
A value of FORMAT SHORT cannot be coded in an IPv6 environment. All
affected displays in an IPv6 environment use the new-wrapped line format.

LONG
The affected displays are presented in a new format that accommodate IPv6
addresses. Even if the Client Identifier is short enough for the existing one-line
format, the new two-line format is used. This parameter can be used as a
migration tool to see the new two-line display formats without specifying an
IPv6 environment. Telnet is initialized with a two-line format (FORMAT
LONG) in an IPv6 environment or whenever an IPv6 address is specified in
the profile.

604 z/OS V2R1.0 Communications Server: IP Configuration Reference

FULLDATATRACE statement

Use the FULLDATATRACE parameter statement to specify that all data to and
from the client and all data to and from VTAM is completely traced when the
CTRACE, TELNET OPTION, is chosen. If NOFULLDATATRACE is specified, the
first 64 bytes of data are traced.

Telnet is initialized with the value NOFULLDATATRACE.

The FULLDATATRACE and NOFULLDATATRACE statements can be coded in the
TELNETGLOBALS, TELNETPARMS, or PARMSGROUP statement blocks. See
“Rules for Telnet parameter statements and security parameters” on page 593 for
more information about the hierarchy of parameter values.

Syntax

��
NOFULLDATATRACE
FULLDATATRACE

��

Parameters

This statement has no parameters.

INACTIVE statement

Use the INACTIVE parameter statement to define the terminal SNA session
inactivity timeout. A connection that has no client-VTAM session activity for the
specified time is dropped.

Telnet is initialized with a INACTIVE value of 0.

The INACTIVE statement can be coded in TELNETGLOBALS, TELNETPARMS, or
PARMSGROUP statement blocks. See “Rules for Telnet parameter statements and
security parameters” on page 593 for more information about the hierarchy of
parameter values.

Restriction: The INACTIVE statement applies to a KEEPOPEN connection only
when an SNA session, with the VTAM application, is active.

Telnet uses one timer for the INACTIVE, PRTINACTIVE, and KEEPINACTIVE
statements. See z/OS Communications Server: IP Configuration Guide for details.

Syntax

��
INACTIVE 0
INACTIVE sec

��

Parameters

0 An INACTIVE timeout value of 0 disables the inactivity timeout.

Chapter 16. TN3270E Telnet server 605

sec
Sets the inactivity timeout to the specified number of seconds. When a
connection has had no session activity for the specified number of seconds, it
is closed. This number must be an integer in the range 0 - 99 999 999.

INCLUDE statement

This statement causes profile statements from the named data set to be included at
the point that the INCLUDE statement is encountered. In general, a profile
statement must begin and end within the same data set. For example, the
statement beginning with BSDROUTINGPARMS and ending with
ENDBSDROUTINGPARMS must be contained within the same data set. There are
two exceptions to this requirement:
v INCLUDE statements can be used within the BEGINVTAM - ENDVTAM block

of statements.
v INCLUDE statements can be used within a list of LUNAMES.

Syntax

�� INCLude data_set_name ��

Parameters

data_set_name
A fully qualified data set name that identifies a sequential file. The sequential
file can be a sequential data set or a PDS with the member name. It cannot be
a z/OS UNIX file.

KEEPINACTIVE statement

Use the KEEPINACTIVE parameter statement to define the session setup inactivity
timeout. A KEEPOPEN connection with no active SNA session that has no
client-VTAM activity for the specified time is dropped.

Telnet is initialized with a KEEPINACTIVE value of 0.

The KEEPINACTIVE statement can be coded in the TELNETGLOBALS,
TELNETPARMS, or PARMSGROUP statement blocks. See “Rules for Telnet
parameter statements and security parameters” on page 593 for more information
about the hierarchy of parameter values.

Restriction: The KEEPINACTIVE statement applies to a KEEPOPEN connection
only when the connection does not have an active SNA session.

Telnet uses one timer for the INACTIVE, PRTINACTIVE, and KEEPINACTIVE
statements. See z/OS Communications Server: IP Configuration Guide for details.

Syntax

��
KEEPINACTIVE 0
KEEPINACTIVE sec

��

606 z/OS V2R1.0 Communications Server: IP Configuration Reference

Parameters

0 A KEEPINACTIVE timeout of 0 disables the inactivity timeout.

sec
Sets the inactivity timeout to the specified number of seconds. When a
KEEPOPEN connection has had no session for the specified number of
seconds, it is closed. This number must be an integer in the range 0 -
99 999 999.

KEEPLU statement

Use the KEEPLU parameter statement to reserve the LU for the Client Identifier
when the LU is unassigned from the connection. The first reconnection request
from the same Client Identifier mimics an end user requesting a specific connection
with the kept LU name.

Telnet is initialized with a KEEPLU value of 0.

The KEEPLU statement can be coded in the TELNETGLOBALS, TELNETPARMS,
or PARMSGROUP statement blocks. See “Rules for Telnet parameter statements
and security parameters” on page 593 for more information about the hierarchy of
parameter values.

Restriction: The KeepLU function cannot be performed for specific connection
requests or associated printer requests.

If both KEEPLU and SEQUENTIALLU statements are active, the KEEPLU value is
used.

Syntax

��
KEEPLU 0
KEEPLU sec

��

Parameters

0 A KEEPLU timeout of 0 disables the KEEPLU function.

sec
Sets the KEEPLU timeout to the specified number of seconds. When the LU
has remained unassigned for the specified number of seconds, it becomes
generally available. This number must be an integer in the range 0 -
99 999 999.

KEYRING statement

Use the KEYRING parameter statement to define the key ring to be used by Telnet
SSL processing. This key ring contains the server certificate and keys to be used by
Telnet and any CA Certificates required to do client authentication checks. If this
statement is not coded, a secure port cannot be started.

Chapter 16. TN3270E Telnet server 607

The KEYRING statement can be coded in the TELNETGLOBALS or
TELNETPARMS statement blocks. See “Rules for Telnet parameter statements and
security parameters” on page 593 for more information about the hierarchy of
parameter values.

All uses of the KEYRING statement must specify the same data type and name. If
coded in the TELNETGLOBALS statement block, any TELNETPARMS KEYRING
values must match. If they do not, the port update is rejected. If KEYRING is not
coded in TELNETGLOBALS but is coded on several TELNETPARMS, the last
TELNETPARMS KEYRING value is assumed to be correct, and all other values
must match it.

If all SECUREPORT ports (specified on the SECUREPORT statement) are stopped
when a profile update occurs, the KEYRING file is refreshed when a new
SECUREPORT port is activated.

Restrictions:

v The KEYRING statement is valid only with a SECUREPORT port. See “Rules for
Telnet parameter statements and security parameters” on page 593 for details.

v If a SECUREPORT port is active during a profile update, the KEYRING name
cannot change. If a change is attempted, an error message is issued for this
parameter and the profile update for the related port is rejected. To change the
KEYRING name, all SECUREPORT ports must first be stopped.

Syntax

��
KEYRING HFS hfsdsname

MVS mvsdsname
SAF keyringname

��

Parameters

HFS hfsdsname
The path and file name of the key ring file. The name is case sensitive and can
be any printable character except slash (/), which has an EBCDIC value of 61.

MVS mvsdsname
The fully-qualified MVS data set name of the key ring that uses the RACF
ADDRING function.

SAF keyringname
The ring name specified when creating a key ring using the RACF ADDRING
function. The name is case sensitive and can be any printable character except
those shown in Table 34.

Table 34. SAF keyringname printable character exceptions

Character EBCDIC Description

(4D Left parenthesis

& 50 Ampersand

* 5C Asterisk

) 5D Right parenthesis

; 5E Semicolon

, 6B Comma

608 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 34. SAF keyringname printable character exceptions (continued)

Character EBCDIC Description

% 6C Percent

[AD Left bracket

¬ BO Logical no

] BD Right bracket

LUSESSIONPEND statement

Use the LUSESSIONPEND parameter statement to enable Telnet to redrive the
DEFAULTAPPL, USS, or Solicitor screen after LOGOFF of the current session. If
the NOLUSESSIONPEND value is specified, the Telnet connection is dropped after
session LOGOFF.

Telnet is initialized with a value of NOLUSESSIONPEND.

The LUSESSIONPEND and NOLUSESSIONPEND statements can be coded in
TELNETGLOBALS, TELNETPARMS, and PARMSGROUP statement blocks. See
“Rules for Telnet parameter statements and security parameters” on page 593 for
more information about the hierarchy of parameter values.

Syntax

��
NOLUSESSIONPEND
LUSESSIONPEND

��

Parameters

This statement has no parameters.

MAXRECEIVE statement

Use the MAXRECEIVE parameter statement to limit the number of bytes received
from a client without an End of Record (EOR) being received. If the amount of
data received exceeds the limit, the connection is dropped. This parameter protects
against a client in a send-data loop.

Telnet is initialized with a MAXRECEIVE value of 65 535.

The MAXRECEIVE statement can be coded in the TELNETGLOBALS,
TELNETPARMS, or PARMSGROUP statement blocks. See “Rules for Telnet
parameter statements and security parameters” on page 593 for more information
about the hierarchy of parameter values. A low value (less than 10 000) can cause
unintended connection drops.

Syntax

��
MAXRECEIVE 0
MAXRECEIVE num_bytes

��

Chapter 16. TN3270E Telnet server 609

Parameters

0 A MAXRECEIVE value of 0 disables the limit check function.

num_bytes
Sets the number of data bytes permitted to be received without receiving an
EOR. This number must be an integer in the range 0 - 99 999 999.

MAXREQSESS statement

Use the MAXREQSESS parameter statement to limit the number of session
requests received by Telnet in a 10-second period. For this parameter, a BIND
received by Telnet defines a session request. If the number of BINDs received in a
10-second period exceeds the limit, the connection is dropped and an error is
reported.

Telnet is initialized with a MAXREQSESS value of 20.

The MAXREQSESS statement can be coded in the TELNETGLOBALS,
TELNETPARMS, or PARMSGROUP statement blocks. See “Rules for Telnet
parameter statements and security parameters” on page 593 for more information
about the hierarchy of parameter values.

Syntax

��
MAXREQSESS 0
MAXREQSESS num_req

��

Parameters

0 A MAXREQSESS value of 0 disables the limit check function.

num_req
Sets the number of session requests permitted in a 10-second period. This
number must be an integer in the range 0 - 99 999 999.

MAXRUCHAIN statement

Use the MAXRUCHAIN parameter statement to limit the number of chained RUs
received from an application without an end of chain (EC) being received. If the
number of RUs received exceeds the limit, the session, and conditionally the
connection, is dropped. This parameter protects against a host application from
sending too much chained data.

Telnet is initialized with a MAXRUCHAIN value of 0.

The MAXRUCHAIN statement can be coded in the TELNETGLOBALS,
TELNETPARMS, or PARMSGROUP statement blocks. See “Rules for Telnet
parameter statements and security parameters” on page 593 for more information
about the hierarchy of parameter values.

610 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

��
MAXRUCHAIN 0
MAXRUCHAIN num_RUs

��

Parameters

0 A MAXRUCHAIN value of 0 disables the function.

num_RUs
Sets the number of chained RUs permitted to be received before the RU chain
is ended. This number must be an integer in the range 0 - 99 999 999.

MAXTCPSENDQ statement

Use the MAXTCPSENDQ parameter statement to limit the number of bytes that
are queued to be sent to a Telnet client. If the queue size exceeds the limit, the
connection is dropped. This parameter prevents large amounts of storage from
being held for data that is destined for an unresponsive Telnet client.

Telnet is initialized with a MAXTCPSENDQ value of 0.

The MAXTCPSENDQ statement can be coded in the TELNETGLOBALS,
TELNETPARMS, or PARMSGROUP statement block. See “Rules for Telnet
parameter statements and security parameters” on page 593 for more information
about the hierarchy of parameter values.

Syntax

��
MAXTCPSENDQ 0
MAXTCPSENDQ num_bytes

��

Parameters

0 A MAXTCPSENDQ value of 0 disables the limit check function.

num_bytes
Sets the number of bytes that can be queued to a Telnet client at one time. This
number must be an integer in the range 0 - 99999999. A low value can cause
unintended connection drops.

MAXVTAMSENDQ statement

Use the MAXVTAMSENDQ parameter statement to limit the number of data
segments (RPLs) queued to be sent to VTAM. If the queue size exceeds the limit,
the connection is dropped. This parameter protects against using large amounts of
storage to contain data destined for a host VTAM application that is not receiving
data.

Telnet is initialized with a MAXVTAMSENDQ value of 50.

The MAXVTAMSENDQ statement can be coded in the TELNETGLOBALS,
TELNETPARMS, or PARMSGROUP statement block. See “Rules for Telnet

Chapter 16. TN3270E Telnet server 611

parameter statements and security parameters” on page 593 for more information
about the hierarchy of parameter values.

Syntax

��
MAXVTAMSENDQ 0
MAXVTAMSENDQ num_rpls

��

Parameters

0 A MAXVTAMSENDQ value of 0 disables the limit check function.

num_rpls
Sets the number of RPLs permitted to be queued to VTAM at one time. This
number must be an integer in the range 0 - 99 999 999. A value less than 10
can cause unintended connection drops.

MSG07 statement

Use the MSG07 parameter statement to activate logon error message processing.
Specifying this statement provides information to the client when a session attempt
to the target application fails. If NOMSG07 is specified, the connection is dropped
if a session initiation error occurs.

Telnet is initialized with a value of NOMSG07.

The MSG07 and NOMSG07 statements can be coded in TELNETGLOBALS,
TELNETPARMS, and PARMSGROUP statement blocks. See “Rules for Telnet
parameter statements and security parameters” on page 593 for more information
about the hierarchy of parameter values.

Syntax

��
NOMSG07
MSG07

��

Parameters

This statement has no parameters.

NACUSERID statement

Use the NACUSERID statement to associate one or more Telnet ports with a user
ID defined to the security server. This provides Network Access Control checking
with a user ID other than Telnet's address space user ID. If NONACUSERID is
specified, Network Access Control uses Telnet's address space user ID.

Telnet is initialized with a value of NONACUSERID.

The NACUSERID and NONACUSERID statements can be coded in the
TELNETGLOBALS or TELNETPARMS statement blocks.

612 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

��
NACUSERID NAC_name
NONACUSERID

��

Parameters

NAC_name
Any valid user ID up to 8 characters in length.

OLDSOLICITOR statement

Use the OLDSOLICITOR parameter statement to place the initial cursor on the
solicitor panel after the following prompt:
Enter Your Userid:

If NOOLDSOLICITOR is specified, the cursor is placed after the following prompt:
Application:

Telnet is initialized with a value of NOOLDSOLICITOR.

The OLDSOLICITOR and NOOLDSOLICITOR statements can be coded in
TELNETGLOBALS, TELNETPARMS, or PARMSGROUP statement block. See
“Rules for Telnet parameter statements and security parameters” on page 593 for
more information about the hierarchy of parameter values.

Syntax

��
NOOLDSOLICITOR
OLDSOLICITOR

��

Parameters

This statement has no parameters.

PASSWORDPHRASE statement

Use the PASSWORDPHRASE statement to provide additional entry space on the
solicitor screen for end users to enter either a password or a password phrase.
When a new password or password phrase is entered, the user is asked to verify
the new value.

Rule: The PASSWORDPHRASE statement is only effective if RESTRICTAPPL is
coded. This operand affects only the solicitor screen and does not affect the
password phrase capability of applications accessed using Telnet.

If NOPASSWORDPHRASE is specified, the solicitor screen continues to provide
space for only a password.

If DISABLEPASSWORDPHRASE is specified, the solicitor screen provides support
for only a password. The password is sent in the same format as it was in before
z/OS V1R13.

Chapter 16. TN3270E Telnet server 613

|
|
|

Tip: The layout of the solicitor screen is changed to accommodate the larger
password phrase. If you use a screen scraper, you must account for this change. If
your client does not use 3270 data stream commands, code
DISABLEPASSWORDPHRASE until the client is updated.

TELNET is initialized with the value NOPASSWORDPHRASE.

The DISABLEPASSWORDPHRASE, PASSWORDPHRASE and
NOPASSWORDPHRASE statements can be coded in the TELNETGLOBALS,
TELNETPARMS, or PARMSGROUP statement block. See “Rules for Telnet
parameter statements and security parameters” on page 593 for more information
about the hierarchy of parameter values.

Syntax

��
DISABLEPASSWORDPHRASE
NOPASSWORDPHRASE
PASSWORDPHRASE

��

Parameters

This statement has no parameters.

PORT, SECUREPORT, and TTLSPORT statements

Use the PORT parameter statement to define the port that Telnet listens on for
non-secure (basic) connection requests.

Use the SECUREPORT parameter statement to define the port that Telnet listens on
for secure connection requests from a client using the SSL protocol. If the
SECUREPORT parameter statement is not coded, Telnet does not support secure
access from a client.

Use the TTLSPORT parameter statement to define the port that Telnet listens on
for secure connection requests from a client that uses the TCP/IP AT-TLS interface.
If you use the TTLSPORT statement, then you can define security parameters in
AT-TLS policy and not in the Telnet profile.

Telnet is initialized with a value of PORT 23.

Restrictions:

v You can code the PORT, SECUREPORT, or TTLSPORT statements only in the
TELNETPARMS statement block.

v If you code a qualifier value (qual), it must match the qualifier used in the PORT
statement in the BEGINVTAM block.

If you code SECUREPORT, you can also specify several Telnet security parameter
statements; see “Rules for Telnet parameter statements and security parameters” on
page 593 for details. Specifying SECUREPORT or TTLSPORT is the same as
specifying CONNTYPE SECURE; PORT is the same as specifying CONNTYPE
BASIC. See “CONNTYPE statement” on page 597 for more information.

614 z/OS V2R1.0 Communications Server: IP Configuration Reference

|
|
|
|

|

|

In the BEGINVTAM block, the PORT statement serves a different purpose. It links
the BEGINVTAM block to the TELNETPARMS block with the same port number.

Syntax

��
PORT 23
PORT num

num,qual
SECUREPORT num

num,qual
TTLSPORT num

num,qual

��

Parameters

num
A specified port number.

,qual
Qualifies the port address (PORT) with a destination IP address or with a
specific link name.

PROFILEINACTIVE statement

Use the PROFILEINACTIVE parameter statement to define the timeout for
connections associated with a non-current profile that do not have a SNA session.
A connection that does not have a SNA session for the specified time and that is
associated with a non-current profile is dropped. Telnet uses one timer for the
INACTIVE, PROFILEINACTIVE, PRTINACTIVE, and KEEPINACTIVE statements.
See z/OS Communications Server: IP Configuration Guide for more information.
You can code the PROFILEINACTIVE statement in the TELNETGLOBALS,
TELNETPARMS, or PARMSGROUP statement blocks. See “Rules for Telnet
parameter statements and security parameters” on page 593 for more information
about the hierarchy of parameter values.

Telnet is initialized with a PROFILEINACTIVE timeout value of 1800 seconds.

Syntax

��
PROFILEINACTIVE 1800
PROFILEINACTIVE sec

��

Parameters

1800
This PROFILEINACTIVE timeout value sets the inactivity value to 1800
seconds.

sec
Sets the inactivity timeout to the specified number of seconds. This number
must be an integer in the range 0-99 999 999. A PROFILEINACTIVE timeout
value of 0 disables the function.

Chapter 16. TN3270E Telnet server 615

PRTINACTIVE statement

Use the PRTINACTIVE parameter statement to define the printer inactivity
timeout. A printer connection with no client-VTAM activity for the specified time is
dropped.

Telnet is initialized with a PRTINACTIVE value of 0.

The PRTINACTIVE statement can be coded in the TELNETGLOBALS,
TELNETPARMS, or PARMSGROUP statement blocks. See “Rules for Telnet
parameter statements and security parameters” on page 593 for more information
about the hierarchy of parameter values.

Telnet uses one timer for INACTIVE, PRTINACTIVE, and KEEPINACTIVE. See
z/OS Communications Server: IP Configuration Guide for more details.

Syntax

��
PRTINACTIVE 0
PRTINACTIVE sec

��

Parameters

0 A PRTINACTIVE timeout value of 0 disables inactivity timeout.

sec
Sets the inactivity timeout to a specified number of seconds. When a printer
connection has been inactive for the specified number of seconds, it is closed.
The number must be an integer in the range 0 - 99 999 999.

REFRESHMSG10 statement

Use the REFRESHMSG10 parameter statement to specify the action to be taken
when a clear key is entered from a USSMSG message. If the REFRESHMSG10
parameter statement is specified, Telnet toggles between clearing the screen and
returning to the USSMSG10 panel. When the screen is cleared, the cursor is placed
at location row one and column two.

If the NOREFRESHMSG10 parameter statement is specified, the screen is always
cleared, and the cursor is placed at location row one and column one.

Telnet is initialized with the REFRESHMSG10 parameter statement.

The REFRESHMSG10 and NOREFRESHMSG10 parameter statements can be coded
in the TELNETGLOBALS, TELNETPARMS and PARMSGROUP statement blocks.

Syntax

��
REFRESHMSG10
NOREFRESHMSG10

��

616 z/OS V2R1.0 Communications Server: IP Configuration Reference

Parameters

This statement has no parameters.

SCANINTERVAL and TIMEMARK statements

Use the SCANINTERVAL parameter statement to define the interval at which
Telnet checks connections for inbound TCP/IP activity. It is used in conjunction
with the TIMEMARK parameter statement, which defines the elapsed time Telnet
uses to determine whether a connection to the client is considered broken. During
SCANINTERVAL processing, if the elapsed time since the last inbound activity is
greater than the TIMEMARK value, the connection is considered possibly broken
and a TIMEMARK request is sent to the client. At the next interval, if neither a
TIMEMARK request nor data is received, the connection is considered broken.
Telnet drops the connection.

SCANINTERVAL and TIMEMARK can be coded in TELNETGLOBALS,
TELNETPARMS, or PARMSGROUP. See “Rules for Telnet parameter statements
and security parameters” on page 593 for more information about the hierarchy of
parameter values.

If for any reason the TIMEMARK cannot be sent immediately on five consecutive
tries and no data or TIMEMARK response is received, the connection is dropped.
When TIMEMARK cannot be sent immediately, Telnet tries again at the next
SCANINTERVAL time. If the SCANINTERVAL is greater than the TIMEMARK
value, it is reset to the TIMEMARK value.

Syntax

��
SCANINTERVAL 1800
SCANINTERVAL sec1

TIMEMARK 10,800
TIMEMARK sec2

��

Parameters

1800
Telnet is initialized with a SCANINTERVAL value of 1800 seconds.

sec1
Sets the SCANINTERVAL time to a specified number of seconds. This value is
in the range 1 - 99 999 999. A value of 0 is not valid.

10,800
Telnet is initialized with a TIMEMARK value of 10 800 seconds.

sec2
Sets the TIMEMARK time to a specified number of seconds. This value is in
the range 1 - 99 999 999. A value of 0 is not valid.

SEQUENTIALLU statement

Use the SEQUENTIALLU parameter statement allows sequential LU selection from
the LU group. If NOSEQUENTIALLU is specified, the first LU available in the
group is used.

Telnet is initialized with SEQUENTIALLU.

Chapter 16. TN3270E Telnet server 617

SEQUENTIALLU and NOSEQUENTIALLU can be coded in TELNETGLOBALS,
TELNETPARMS, or PARMSGROUP. See “Rules for Telnet parameter statements
and security parameters” on page 593 for more information about the hierarchy of
parameter values.

Syntax

��
SEQUENTIALLU
NOSEQUENTIALLU

��

Parameters

This statement has no parameters.

SGA statement

Use the NOSGA (DISABLESGA) parameter statement to permit the transmission of
GO AHEAD by Telnet. It is negotiated by both client and server. Using NoSGA
increases the overhead for a full duplex terminal and a full duplex connection. If
SGA is specified, transmission of GO AHEAD is suppressed.

Telnet is initialized with a value of SGA.

The SGA and NOSGA statements can be coded in the TELNETGLOBALS,
TELNETPARMS, or PARMSGROUP statement block. See “Rules for Telnet
parameter statements and security parameters” on page 593 for more information
about the hierarchy of parameter values.

Syntax

��
SGA
NOSGA (DISABLESGA)

��

Parameters

This statement has no parameters.

SHAREACB statement

Use the SHAREACB parameter statement to allow multiple Telnet LUs to share an
ACB. Telnet server can use ECSA storage more efficiently by using this parameter.
If NOSHAREACB is specified, ACB sharing does not occur.

Telnet is initialized with a value of NOSHAREACB.

Guideline: Use of the SHAREACB statement requires Telnet LUs to be defined
with model APPL names in the VTAM configuration data set.

The SHAREACB and NOSHAREACB statements can be coded in the
TELNETGLOBALS statement block only.

618 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

��
NOSHAREACB
SHAREACB

��

Parameters

This statement has no parameters.

SIMCLIENTLU statement

Use the SIMCLIENTLU parameter statement to cause Telnet to send a standard LU
name (EZBSIMLU) during negotiation to any TN3270E client requesting a Generic
connection. Instead of assigning a Telnet LU, the LU assignment is deferred until
after application selection, just like TN3270 clients. If NOSIMCLIENTLU is
specified, normal device name negotiation occurs for TN3270E connections.

Telnet is initialized with a value of NOSIMCLIENTLU.

The SIMCLIENTLU and NOSIMCLIENTLU statements can be coded in the
TELNETGLOBALS, TELNETPARMS, or PARMSGROUP statement blocks. See
“Rules for Telnet parameter statements and security parameters” on page 593 for
more information about the hierarchy of parameter values.

When the TN3270E client requests a connection with a specific LU, the selection of
the LU is handled like normal TN3270E specific processing, regardless of the
SIMCLIENTLU statement. Printer requests are not affected by the SIMCLIENTLU
statement.

Syntax

��
NOSIMCLIENTLU
SIMCLIENTLU

��

Parameters

This statement has no parameters.

SINGLEATTN statement

Use the SINGLEATTN parameter statement to cause Telnet to check the data for a
double ATTENTION key combination, x'6CFFEFFFF3', in the data stream sent from
the client. If a double ATTENTION key combination is found, Telnet sends only a
single ATTENTION. If NOSINGLEATTN is specified, the data is not checked.

Telnet is initialized with a value of NOSINGLEATTN.

The SINGLEATTN and NOSINGLEATTN statements can be coded in the
TELNETGLOBALS, TELNETPARMS, or PARMSGROUP statement blocks. See
“Rules for Telnet parameter statements and security parameters” on page 593 for
more information about the hierarchy of parameter values.

Chapter 16. TN3270E Telnet server 619

Syntax

��
NOSINGLEATTN
SINGLEATTN

��

Parameters

This statement has no parameters.

SMFINIT and SMFTERM statements

Use the SMFINIT and SMFTERM parameter statements to configure Telnet to write
SMF records. These statements control the invocation of Telnet SNA Session
Initiation (or LOGON, subtype 20) and Telnet SNA Session Termination (or
LOGOFF, subtype 21) SMF records.

Two different record formats are available:
v Format 118
v Format 119

The format 119 records are controlled by use of the TYPE119 operand on the
SMFINIT and SMFTERM statements. The specification of the STD operand or a
nonstandard subtype number on the SMFINIT and SMFTERM statements control
the usage of the older format 118 record processing.

Telnet is initialized with the following values:
v SMFINIT 0
v SMFINIT NOTYPE119
v SMFTERM 0
v SMFTERM NOTYPE119

SMFINIT and SMFTERM can be coded in TELNETGLOBALS, TELNETPARMS,
and PARMSGROUP. See “Rules for Telnet parameter statements and security
parameters” on page 593 for more information about the hierarchy of parameter
values.

TCP/IP SMF records are independent of the IP connection. They are created for
Telnet LU/HOST application sessions.

Many products use standard SMF record subtypes. A standard subtype avoids
potential double usage and makes it easier for other vendors to write SMF output
processing programming and for Telnet administrators to be consistent across
multiple machines.

Syntax

��
SMFINIT STD

nn
SMFINIT TYPE119

NOTYPE119
SMFTERM STD

nn

�

620 z/OS V2R1.0 Communications Server: IP Configuration Reference

�
SMFTERM TYPE119

NOTYPE119

��

Parameters

STD
Specifies that format 118 SMF records should be written using standard
subtypes for LOGON (20) or LOGOFF (21) records.

nn Specifies the format 118 SMF record subtype for LOGON or LOGOFF records.
Valid values are integers in the range 0 - 255. A value of 0 for SMFINIT and
SMFTERM indicates that no SMF record is written for that function. The user
can change the subtype value only for the format 118 records.

TYPE119
Specifies that format 119 SMF records should be written for Telnet SNA Session
Initiation (subtype 20) or Telnet SNA Session Termination (subtype 21) records.

NOTYPE119
Specifies that format 119 SMF records should not be written.

SMFPROFILE statement

Use the SMFPROFILE parameter statement to configure Telnet to write SMF
configuration records. The Telnet configuration records are written as type 119,
subtype 24. For more information about the layout of the configuration records, see
z/OS Communications Server: IP Configuration Guide.

Telnet is initialized with a value of NOSMFPROFILE.

The SMFPROFILE and NOSMFPROFILE statements can be coded in only the
TELNETGLOBALS statement block. See “Rules for Telnet parameter statements
and security parameters” on page 593 for more information about the hierarchy of
parameter values.

Syntax

��
NOSMFPROFILE

GROUPDETAIL
SMFPROFILE

NOGROUPDETAIL
GROUPDETAIL

��

Parameters

GROUPDETAIL | NOGROUPDETAIL
GROUPDETAIL includes all of the individual members of the Telnet group
statements in the SMF records. NOGROUPDETAIL includes only the first 10
members of each group. GROUPDETAIL is the default. The following list
shows Telnet group statements:
v ALLOWAPPL or RESTRICTAPPL
v DEFAULTLUS or SDEFAULTLUS
v DEFAULTLUSSPEC or SDEFAULTLUSSPEC
v DEFAULTPRT or SDEFAULTPRT

Chapter 16. TN3270E Telnet server 621

v DEFAULTPRTSPEC or SDEFAULTPRTSPEC
v DESTIPGROUP
v HNGROUP
v IPGROUP
v LINKGROUP
v LUGROUP or SLUGROUP
v PRTGROUP or SPRTGROUP
v USERGROUP

Tip: GROUPDETAIL can greatly increase the number of SMF records
generated for each Telnet profile. Use only if each individual member of a
group is needed in the records.

SNAEXT statement

Use the SNAEXT parameter statement to enable negotiation for contention
resolution and SNA sense functions for TN3270E connections. If NOSNAEXT is
specified, Telnet does not negotiate these SNA functional extensions.

Telnet is initialized with a value of SNAEXT.

The SNAEXT and NOSNAEXT statements can be coded in TELNETGLOBALS,
TELNETPARMS, or PARMSGROUP statement block. See “Rules for Telnet
parameter statements and security parameters” on page 593 for more information
about the hierarchy of parameter values.

The NOSNAEXT statement is useful in the unlikely case there are a significant
number of clients that cannot tolerate the negotiation of these functions. Most
clients do not have a problem with the SNAEXT specification in Telnet, but, in the
unlikely case that some do, specify and map NOSNAEXT to that set of clients.

Syntax

��
SNAEXT
NOSNAEXT

��

Parameters

This statement has no parameters.

SSLTIMEOUT statement

Use the SSLTIMEOUT parameter statement to provide a unique timeout value for
SSL handshake processing. This timeout limits the time SSL handshake processing
waits for a client response.

Telnet is initialized with a SSLTIMEOUT value of 5.

The SSLTIMEOUT statement can be coded in the TELNETGLOBALS,
TELNETPARMS, or PARMSGROUP statement block. See “Rules for Telnet
parameter statements and security parameters” on page 593 for more information
about the hierarchy of parameter values.

622 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

��
SSLTIMEOUT 5
SSLTIMEOUT sec

��

Parameters

5 Telnet is initialized with an SSLTIMEOUT value of 5 seconds.

sec
Sets the SSLTIMEOUT time to a specified number of seconds in the range 1 -
864 00.

SSLV2 and NOSSLV2 statements

Use the SSLV2 parameter statement to enable the SSLV2 protocol to be used on
SECUREPORT connections. If NOSSLV2 is specified, the SECUREPORT connection
supports SSLV3 or Transport Layer Security (TLS) only.

Telnet is initialized with a value of NOSSLV2.

The SSLV2 and NOSSLV2 statements can be coded in the TELNETGLOBALS,
TELNETPARMS, or PARMSGROUP statement block. See “Rules for Telnet
parameter statements and security parameters” on page 593 for more information
about the hierarchy of parameter values.

Syntax

��
NOSSLV2
SSLV2

��

Parameters

This statement has no parameters.

SSLV3 and NOSSLV3 statements

Use the SSLV3 parameter statement to enable the SSLV3 protocol to be used on
SECUREPORT connections. If NOSSLV3 is specified, the SECUREPORT connection
supports SSLV2 or Transport Layer Security (TLS) only.

Telnet is initialized with a value of NOSSLV3.

The SSLV3 and NOSSLV3 statements can be coded in the TELNETGLOBALS,
TELNETPARMS, or PARMSGROUP statement block. See “Rules for Telnet
parameter statements and security parameters” on page 593 for more information
about the hierarchy of parameter values.

Chapter 16. TN3270E Telnet server 623

|

|
|
|

|

|
|
|
|

Syntax

��
NOSSLV3
SSLV3

��

Parameters

This statement has no parameters.

TCPIPJOBNAME statement

Use the TCPIPJOBNAME parameter statement to give the Telnet port affinity to
the specified TCPIP stack. If NOTCPIPJOBNAME is specified, the port is an
undirected port and binds with all stacks that have the port available.

Telnet is initialized with a value of NOTCPIPJOBNAME.

Restriction: You cannot change the TCPIPJOBNAME statement in a subsequent
Telnet OBEYFILE command; you must restart Telnet to change its stack affinity.

The TCPIPJOBNAME and NOTCPIPJOBNAME statements can be coded in the
TELNETGLOBALS statement block only. See “Rules for Telnet parameter
statements and security parameters” on page 593 for more information about the
hierarchy of parameter values.

Syntax

��
TCPIPJOBNAME tcp_stack_name
NOTCPIPJOBNAME

��

Parameters

tcp_stack_name
The name of the TCPIP stack to which the Telnet port binds.

TELNETDEVICE statement

Use the TELNETDEVICE parameter statement to specify a logmode for a device
type. This statement accepts two logmodes:
v TN3270 connections
v TN3270E connections

Syntax

��
TELNETDEVICE telnet_device_type tn3270_logmode,tn3270e_logmode

tn3270_logmode
,tn3270e_logmode

��

624 z/OS V2R1.0 Communications Server: IP Configuration Reference

|

|||||||||||||||

|

|

|

Parameters

telnet_device_type
The type of Telnet device. See Table 35 for accepted device types.

tn3270_logmode
The logmode name used on TN3270 connections for the specified
telnet_device_type.

tn3270e_logmode
The logmode name used on TN3270E connections for the specified
telnet_device_type.

Device type and logmode table

Table 35. Device type and logmode table

Telnet device type TN3270 logmode entry TN3270E logmode entry

IBM-3277 D4B32782 Not applicable

IBM-3278-2-E NSX32702 SNX32702

IBM-3278-2 D4B32782 SNX32702

IBM-3278-3-E NSX32702 SNX32703

IBM-3278-3 D4B32783 SNX32703

IBM-3278-4-E NSX32702 SNX32704

IBM-3278-4 D4B32784 SNX32704

IBM-3278-5-E NSX32702 SNX32705

IBM-3278-5 D4B32785 SNX32705

IBM-3279-2-E NSX32702 SNX32702

IBM-3279-2 D4B32782 SNX32702

IBM-3279-3-E NSX32702 SNX32703

IBM-3279-3 D4B32783 SNX32703

IBM-3279-4-E NSX32702 SNX32704

IBM-3279-4 D4B32784 SNX32704

IBM-3279-5-E NSX32702 SNX32705

IBM-3279-5 D4B32785 SNX32705

IBM-3287-1 Not applicable D6328904

IBM-DYNAMIC D4C32XX3 D4C32XX3

LINEMODE INTERACT Not applicable

TRANSFORM D4B32782 Not applicable

Telnet is initialized to the logmode names listed in Table 35. All the named
logmode entries are defined to VTAM in the default logmode table, ISTINCLM.
The TN3270 logmodes are non-SNA, and the TN3270E logmodes are SNA. For
more details, see z/OS Communications Server: SNA Resource Definition
Reference.

The TELNETDEVICE parameter statement can be coded in TELNETGLOBALS,
TELNETPARMS, or PARMSGROUP statement blocks. See “Rules for Telnet
parameter statements and security parameters” on page 593 for more information
about the hierarchy of parameter values.

Chapter 16. TN3270E Telnet server 625

Telnet supports non-SNA (LU0) and SNA (LU2) terminal sessions. Telnet supports
SNA character stream (SCS) (LU1) and 3270 data character stream (DCS) (LU3)
printer sessions.

The specified logmode name can be an IBM-supplied logmode or user-created. If
user-created, the BIND characteristics must be compatible with the LU type.
TN3270 and TN3270E connections support either non-SNA or SNA BINDs.

The LOGMODE name NONE prevents Telnet from specifying a LOGMODE
request with the REQSESS.

Telnet cannot verify that the logmode specified is valid at configuration time.
Problems are detected at run time. For more information about logmodes, see
z/OS Communications Server: SNA Resource Definition Reference.

TESTMODE statement

An operator can use the TESTMODE statement to test the new statements for a
port without applying them. All the processing and checking is done for an actual
port update, but at the end of the process, instead of applying the new statements,
all data structures for that port are released. TESTMODE applies only to the port
that is defined in the TELNETPARMS section where it is coded and not to the
entire profile. If this statement is not coded, the profile for the port becomes the
current profile when it is processed.

TESTMODE can be coded only in the TELNETPARMS statement block.

With the TESTMODE statement coded in all of the TELNETPARMS blocks, a Telnet
administrator can issue a VARY TCPIP,,OBEYFILE command for a profile data set
and can determine whether there are any syntax or semantic errors without
concern for applying a profile that is not valid. TESTMODE profiles can be
processed as often as necessary.

The TESTMODE statement can be specified in the initial startup profile. However,
the end result is that the port is not opened and clients cannot connect. It would be
as if no profile statements existed for that port.

Syntax

��
TESTMODE

��

Parameters

This statement has no parameters.

TIMEMARK statement

For a description of the TELNETPARMS TIMEMARK statement, see
“SCANINTERVAL and TIMEMARK statements” on page 617.

626 z/OS V2R1.0 Communications Server: IP Configuration Reference

TKOGENLU, TKOGENLURECON, and NOTKO statements

Use the TKOGENLU and TKOGENLURECON statements to enable an existing
Telnet connection and its emulator, the target, to be taken over by a new Telnet
connection and its emulator, the taker, under certain circumstances.
NOTKOGENLU blocks generic takeover attempts and NOTKO blocks any
takeover attempt of the target connection.

Two types of takeover exist:
v Specific LU takeover
v Generic LU takeover

The way a target can be taken over is defined in the profile associated with the
target connection. The target can be set up to allow either or both takeover
methods. The taker determines which takeover method is tried. If the taker
specifies an LU name, a specific LU takeover is attempted, and the target must
allow either TKOSPECLU or TKOSPECLURECON. If the taker specifies no LU
name, a generic LU takeover is being attempted, and the target must allow either
TKOGENLU or TKOGENLURECON.

When the profile indicates that generic takeover is allowed, Telnet saves the LU
name of the first connection for each unique client identifier for all connections
that allow generic takeover. Use generic takeover when there is only one
connection per client identifier.

When generic takeover is allowed and a new generic connection request arrives,
Telnet checks to determine whether the new connection client identifier already is
already associated with an LU name. If client identifier does, Telnet attempts to
take over the connection associated with that LU name. Telnet LU lookup suspends
the new connection request. After the new connection is suspended, a TIMEMARK
is sent to the original connection that is using the requested LU name. After the
specified period of time, Telnet checks whether or not there was a response to the
TIMEMARK. If a response or any data is received by the original connection since
the TIMEMARK was sent out, Telnet fails the new connection takeover attempt
and then assigns the next available LU name to the new connection. If no response
is received, the target connection is dropped and the new taker connection is
established with the saved LU name. If TKOGENLU is in effect, the session is also
dropped. If TKOGENLURECON is in effect, the session is transferred to the taker
connection.

Restriction: If the NOTKOGENLU or NOTKO statement is specified, generic
takeover of the target cannot be performed.

Telnet is initialized with a value of NOTKO.

The TKOGENLU, TKOGENLURECON, NOTKOGENLU and NOTKO statements
can be coded in the TELNETGLOBALS, TELNETPARMS, or PARMSGROUP
statement block. See “Rules for Telnet parameter statements and security
parameters” on page 593 for more information about the hierarchy of parameter
values.

Generic LU takeover and specific LU takeover can coexist. TKOGENLU and
TKOGENLURECON are mutually exclusive. TKOSPECLU and
TKOSPECLURECON are mutually exclusive.

Chapter 16. TN3270E Telnet server 627

When the TKOGENLU or TKOGENLURECON statement is specified and one
connection exists for a client, any additional connection request first tries takeover
using the first connection LU name. After the takeover request fails, Telnet
continues generic LU lookup. Therefore, all additional connection requests are
delayed by the takeover time specified.

In some cases, the TKOGENLURECON session cannot be maintained. See z/OS
Communications Server: IP Configuration Guide, Advanced Application topics for
details.

Syntax

��
NOTKOGENLU
NOTKO

TKOGENLU sec
NOKEEPONTMRESET NOSAMEIPADDR NOSAMECONNTYPE

TKOGENLURECON sec
KEEPONTMRESET SAMEIPADDR SAMECONNTYPE

��

Parameters

sec Number of seconds Telnet waits before checking to determine whether a
response was received from the original client. The range is 0 - 99 999 999.
Zero is a special case value. If you code 0 in the sec field, Telnet always
performs the takeover, whether the original session is active or not.

KEEPONTMRESET
If a reset is received from the target during takeover, the session is saved
and transferred to the taker. If the KEEPONTMRESET parameter is not
specified, or if the NOKEEPONTMRESET parameter is specified, the
session is dropped if a reset is received from the target.

SAMEIPADDR
Ensures that the taker has the same IP address as the target. If the
SAMEIPADDR parameter is not specified, or if the NOSAMEIPADDR
parameter is specified, a taker with a different IP address can take over the
target. The changed IP address is not forwarded to the application, which
could cause possible reporting errors.

SAMECONNTYPE
Ensures that the taker has the same basic or secure connection type as the
target. If the SAMECONNTYPE parameter is not specified, or if the
NOSAMECONNTYPE parameter is specified, a taker with a secure
connection can take over a target with a basic connection. The original
connection type is forwarded to the application as part of the CINIT CV64
information. The changed connection type from basic to secure is not
forwarded to the application, which could cause possible reporting errors.

TKOSPECLU, TKOSPECLURECON, and NOTKO statements

Use the TKOSPECLU and TKOSPECLURECON statements to enable an existing
Telnet connection and its emulator, the target, to be taken over by a new Telnet
connection and its emulator, the taker, under certain circumstances.
NOTKOSPECLU blocks specific takeover attempts and NOTKO blocks any
takeover attempt of the target connection.

The following types of takeover exist:

628 z/OS V2R1.0 Communications Server: IP Configuration Reference

v Specific LU takeover
v Generic LU takeover

The way a target can be taken over is defined in the profile associated with the
target connection. The target can be set up to allow either or both takeover
methods. The taker determines which takeover method is tried. If the taker
specifies an LU name, a specific LU takeover is attempted, and the target must
allow either TKOSPECLU or TKOSPECLURECON. If the taker does not specify an
LU name, a generic LU takeover is being attempted, and the target must allow
either TKOGENLU or TKOGENLURECON.

When specific LU takeover is allowed, Telnet LU lookup suspends a new
connection request that specifies an already active LU name. After the new
connection is suspended, a TIMEMARK is sent to the original connection that is
using the requested LU name. After the specified period of time, Telnet checks
whether there was a response to the TIMEMARK. If a response or any data is
received by the original connection since the TIMEMARK was sent out, Telnet fails
the new connection takeover attempt by indicating the LU name is already in use.
If no response is received, the target connection is dropped and the new taker
connection is established with the specified LU name. If TKOSPECLU is in effect,
the session is also dropped. If TKOSPECLURECON is in effect, the session is
transferred to the taker connection.

Restriction: If the NOTKO statement or the NOTKOSPECLU statement is
specified, specific takeover of the target cannot be performed.

Telnet is initialized with a value of NOTKO.

The TKOSPECLU, TKOSPECLURECON, NOTKOSPECLU and NOTKO statements
can be coded in the TELNETGLOBALS, TELNETPARMS, or PARMSGROUP
statement block. See “Rules for Telnet parameter statements and security
parameters” on page 593 for more information about the hierarchy of parameter
values.

Generic LU takeover and specific LU takeover can coexist. The TKOGENLU and
TKOGENLURECON statements are mutually exclusive. The TKOSPECLU and
TKOSPECLURECON statements are mutually exclusive.

Requirements:

v To take over the session using the TKOSPECLU or TKOSPECLURECON
statement, the new connection must specify the LU name. If administrators want
to use this function for a more general purpose, code the @@LUNAME character
substitution in the MSG10 screen so end users know their LU name if they need
to issue a takeover. Also, some clients display the LU name assigned by Telnet.

v You must have a specific LU pool for a specific LU connection request. If you
are switching from generic LU connection requests to specific LU connection
requests and are using the DEFAULTLUS pool, a DEFAULTLUSSPEC pool must
be defined.

In some cases, the TKOSPECLURECON session cannot be maintained. See z/OS
Communications Server: IP Configuration Guide, Advanced Application topics for
details

Chapter 16. TN3270E Telnet server 629

Syntax

��
NOTKOSPECLU
NOTKO

TKOSPECLU sec
NOKEEPONTMRESET NOSAMEIPADDR NOSAMECONNTYPE

TKOSPECLURECON sec
KEEPONTMRESET SAMEIPADDR SAMECONNTYPE

��

Parameters

sec Number of seconds Telnet waits before checking whether a response was
received from the original client. Valid values are in the range is 0 -
99 999 999. The value 0 is a special case value. If you code 0 in the sec
field, Telnet always performs the takeover, whether the original session is
active or not.

KEEPONTMRESET
If a reset is received from the target during takeover, the session is saved
and transferred to the taker. Without KEEPONTMRESET or if
NOKEEPONTMRESET is specified, the session is dropped if a reset is
received from the target.

SAMEIPADDR
Ensures that the taker has the same IP address as the target. Without
SAMEIPADDR or if NOSAMEIPADDR is specified, a taker with a different
IP address can take over the target. The changed IP address is not be
forwarded to the application, which could cause possible reporting errors.

SAMECONNTYPE
Ensures that the taker has the same basic or secure connection type as the
target. If the SAMECONNTYPE parameter is not specified, or if the
NOSAMECONNTYPE parameter is specified, a taker with a secure
connection can take over a target with a basic connection. The original
connection type is forwarded to the application as part of the CINIT CV64
information. The changed connection type from basic to secure is not
forwarded to the application, which could cause possible reporting errors.

TN3270E statement

Use the TN3270E parameter statement to allow TN3270E functions to be negotiated
by Telnet. If NOTN3270E is specified, all TN3270E functions, such as printer
support and client response, are disabled.

Telnet is initialized with a value of TN3270E.

The TN3270E and NOTN3270E statements can be coded in the TELNETGLOBALS,
TELNETPARMS, or PARMSGROUP statement block. See “Rules for Telnet
parameter statements and security parameters” on page 593 for more information
about the hierarchy of parameter values.

The NOTN3270E value is useful in the unlikely case there are a significant number
of clients that cannot tolerate negotiating for a TN3270E connection. Most clients
do not have a problem with the TN3270E specification in the server, but, in the
unlikely case that some do, specify and map NOTN3270E to that set of clients.

630 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

��
TN3270E
NOTN3270E

��

Parameters

This statement has no parameters.

TNSACONFIG statement

Use the optional TNSACONFIG statement to configure the SNMP TN3270E Telnet
subagent.

The Telnet defaults are:
v DISABLED
v AGENT 161
v COMMUNITY PUBLIC
v NOTNSATRACE
v CACHETIME 30

Restrictions:

v The TNSACONFIG statement can be coded only in the TELNETGLOBALS
statement block.

v No parameters can change while the Telnet subagent is active. To make a
change, the Telnet subagent must be disabled and then enabled again with the
new parameter values.

Syntax

��

�TNSACONFIG
DISABLED

ENABLED
AGENT 161

AGENT agent_port_number
CACHETIME 30

CACHETIME cachetime
NOTNSATRACE

TNSATRACE
COMMUNITY public

COMMUNITY community_string

��

Chapter 16. TN3270E Telnet server 631

Parameters

AGENT
A port number in the range 1 - 65 535 used in establishing communication
with the SNMP agent. For the Telnet SNMP subagent to communicate with the
z/OS CS SNMP agent, the port number specified must match the port number
specified on the -p parameter when the SNMP agent is started. See “OSNMPD
parameters” on page 1243 for a description of how to specify the port when
the SNMP agent is started.

CACHETIME
Amount of time in seconds to elapse before rebuilding the MIB object tables.
The valid range is 0 - 99 999 999.

COMMUNITY
A character string 1- 32 characters in length used as the community name (or
password) in establishing contact with the SNMP agent. Because the
community name is case sensitive, it is not converted to uppercase by profile
processing. It cannot contain any imbedded white space or control characters
(such as blank, tab, end of line, or end of file) and cannot contain any
imbedded semicolons (semicolons are treated as comment delimiters). For the
Telnet SNMP subagent to communicate with the z/OS Communications Server
SNMP agent, the community name specified on the COMMUNITY keyword
must match one that is defined in the PW.SRC or SNMPD.CONF data set used
by the SNMP agent or specified on the -c parameter when the SNMP agent is
started.

For more information about how the community name is used to permit access
to the SNMP agent, see Step 1: Configure the SNMP agent (OSNMPD), in
z/OS Communications Server: IP Configuration Guide.

DISABLED|ENABLED
DISABLED specifies that you do not require any of the SNMP MIB data
supported by the Telnet subagent. By default, the Telnet SNMP subagent is not
started during Telnet initialization. If specified using the VARY
TCPIP,,OBEYFILE command, this statement indicates that the currently active
Telnet subagent task should be terminated. SNMP MIB objects supported by
the z/OS CS SNMP agent and subagents other than the Telnet SNMP subagent
are still available. For information about which MIB objects are supported by
the SNMP agent and subagent, see z/OS Communications Server: IP User's
Guide and Commands.

ENABLED indicates that the Telnet SNMP subagent should be started at the
completion of profile processing, either of the initial profile or of the data set
referenced on a VARY TCPIP,,OBEYFILE command.

NOTNSATRACE|TNSATRACE
TNSATRACE generates trace points throughout Telnet subagent processing in
addition to tracing data passed between the Telnet subagent and the agent,
Telnet, and TCP/IP stack. The trace data is written to the syslog daemon.

UNLOCKKEYBOARD statement

Use the UNLOCKKEYBOARD statement to customize an unlock keyboard
sequence being forwarded to the client from the host application.

Telnet is initialized with a value of UNLOCKKEYBOARD BEFOREREAD
TN3270BIND.

632 z/OS V2R1.0 Communications Server: IP Configuration Reference

The UNLOCKKEYBOARD statement can be coded in the TELNETGLOBALS,
TELNETPARMS, or PARMSGROUP statement block. See “Rules for Telnet
parameter statements and security parameters” on page 593 for more information
about the hierarchy of parameter values.

Syntax

��
BEFOREREAD TN3270BIND

UNLOCKKEYBOARD
BEFOREREAD TN3270BIND
AFTERREAD NOTN3270BIND

��

Parameters

BEFOREREAD
Indicates that when conditions warrant, an unlock keyboard sequence is sent
to the client before forwarding a read command from the host application.

AFTERREAD
Indicates that when conditions warrant, an unlock keyboard sequence is sent
to the client after forwarding a read command from the host application.

TN3270BIND
Indicates that when a BIND from the VTAM host application is received by
Telnet for a TN3270 connection, a clear screen and an unlock keyboard is sent
to the client.

NOTN3270BIND
Indicates that when a BIND from the VTAM host application is received by
Telnet for a TN3270 connection, neither a clear screen, nor an unlock keyboard
are sent to the client.

XCFGROUP statement

Use the optional XCFGROUP statement block to define and join the Telnet XCF
group and to provide parameter values for the shared LU name management
services. When an XCF Telnet joins the Telnet XCF group, that XCF Telnet can
support the LU name server (LUNS) function, the LU name requester (LUNR)
function, or both, based on which parameters are coded in the XCFGROUP
statement and the BEGINVTAM block.

If the XCFGROUP statement is not coded, Telnet is initialized with the NOJOIN
parameter.

The XCFGROUP statement can be coded only in the TELNETGLOBALS statement
block. See “Rules for Telnet parameter statements and security parameters” on
page 593 for more information about the hierarchy of parameter values.

Syntax

Chapter 16. TN3270E Telnet server 633

��

�XCFGROUP ENDXCFGROUP
JOIN

NOJOIN
JOIN

SUBPLEX suffix
XCFMONITOR 60

XCFMONITOR sec
CONNECTTIMEOUT 60

CONNECTTIMEOUT sec
RECOVERYTIMEOUT 60

RECOVERYTIMEOUT sec
PRIMARY RANK 255

LUNS ipaddr port
RANK 255

PRIMARY
RANK num
RANK 1

BACKUP
RANK num

��

Parameters

JOIN
Specifies that this Telnet should join the Telnet XCF group. Telnet uses only the
XCF features available at the XCF-local level of functionality; the system does
not need to be a member of a sysplex. Members of the XCF group are visible
from any member of the group in XCF group status displays. A Telnet member
of the XCF group is a potential LUNS if the LUNS parameter is coded. A
member is a LUNR if shared LU names are defined in the BEGINVTAM block.

NOJOIN
Specifies that this Telnet should not join the Telnet XCF group. XCF group
status displays are not available from this Telnet and this Telnet is not be
visible in XCF group status displays from any member of the XCF group. This
Telnet cannot become a LUNR and cannot define shared LU name objects.

SUBPLEX suffix
Specifies the character suffix (1 - 4 characters in length) to use for the Telnet
XCF group name and ENQUE names to partition a sysplex into multiple Telnet
subplexes. Telnet is initialized to use the string EZZTLUNS. The specified
suffix is right-aligned and overlays the end of this string to form unique
subplex strings. For example, if the suffix value is 23, Telnet joins XCF group
EZZTLU23.

XCFMONITOR sec
Sets the XCF monitor interval to the number of seconds that a LUNR attempts
to establish a connection to the LUNS before quiescing its LUNR capabilities.
At the specified time interval, Telnet checks the health of the LUNS, LUNR,
and XCF Telnet tasks and checks the health of the connection between the
LUNS and LUNR. If any of these tasks or connections appear to be
unresponsive, message EZZ6099I is issued and the X indicator is set to on
under the PDMON column in the XCFGROUP display.

The valid values for this timer are in the range 10 - 3600.

CONNECTTIMEOUT sec
This parameter applies only to LUNR. Sets the monitor interval to the number

634 z/OS V2R1.0 Communications Server: IP Configuration Reference

seconds that a LUNR attempts to establish a connection to the LUNS before
quiescing its LUNR capabilities. If the LUNR has not been able to connect to
the LUNS within the amount of time, then the LUNR has not been able to
connect with the LUNS, the LUNR drops all connections that are waiting in
negotiation for an LU name and quiesces all ports that have shared groups.
This action frees clients to reconnect to a working LUNR. The value 0 disables
the connect timeout interval. Valid values are 0 or an integer in the range 10 -
99 999 999.

RECOVERYTIMEOUT sec
This paramete applies only to LUNRr. Sets the number of seconds that a
LUNR attempts to establish a connection to the recovering LUNS before
dropping connections using shared LU names. When a LUNS takeover occurs
and a new LUNS becomes available, each Telnet LUNR repeatedly attempts to
connect to the new LUNS. The recovery of the LUNS cannot complete until all
LUNRs have recognized the new LUNS and all LUNRs that have allocated LU
names have connected to the new LUNS and re-registered all previously
allocated shared LU names. If the LUNR does not successfully connect within
the specified time, it drops all existing client connections that are using shared
LU names. The recovery of the LUNS completes and shared shared LU name
management resumes without this LUNR. The value 0 disables the recovery
timeout interval.

Valid values are 0 or an integer in the range 10 - 99 999 999.

LUNS PRIMARY
Specifies that this Telnet becomes the active LUNS at job initiation if there is
not already an active LUNS. If there is already an active LUNS, this Telnet
becomes a standby. Telnet must join the XCF group to be a LUNS.

LUNS BACKUP
Specifies that this Telnet becomes a standby LUNS at job initiation. Telnet must
join the XCF group to be a LUNS.

ipaddr
Specifies the IP address that this Telnet listens on for shared LU name
management requests when the address becomes the active LUNS.

port
Specifies the port that this Telnet listens on for shared LU name management
requests when the port becomes the active LUNS.

RANK
Specifies the takeover rank of this LUNS when it is in standby mode and the
active LUNS fails. The standby LUNS with the highest rank becomes the new
LUNS. If there is more than one standby LUNSs with the same rank, they
compete for a sysplex scope ENQUEUE. The winner becomes the new LUNS,
and the others return to standby mode. Valid values are in the range 1 - 255.

Telnet mapping statements in the Telnet profile
Mapping statements for Telnet are specified in the BEGINVTAM block. All
mapping statements are optional for the BEGINVTAM block.

Some statements combine mapping and object functions. For example,
DEFAULTLUS defines the LU GROUP Object and implicitly maps the group to the
NULL Client Identifier. ALLOWAPPL defines the security level of application
Objects and optionally provides LU mapping function.

Chapter 16. TN3270E Telnet server 635

Table 36 provides a list of Telnet mapping statements and the location of more
information.

Table 36. Telnet mapping statements

Statement Mapping
statement

Client
identifier

Object See page

ALLOWAPPL X X “ALLOWAPPL statement” on page 640

DEFAULTAPPL X “DEFAULTAPPL statement” on page 641

DEFAULTLUS and
SDEFAULTLUS

X X “DEFAULTLUS or SDEFAULTLUS
statement” on page 642

DEFAULTLUSSPEC and
SDEFAULTLUSSPEC

X X “DEFAULTLUSSPEC or
SDEFAULTLUSSPEC statement” on page
643

DEFAULTPRT and
SDEFAULTPRT

X X “DEFAULTPRT or SDEFAULTPRT
statement” on page 644

DEFAULTPRTSPEC and
SDEFAULTPRTSPEC

X X “DEFAULTPRTSPEC or
SDEFAULTPRTSPEC statement” on page
645

DESTIPGROUP X “DESTIPGROUP statement” on page 645

HNGROUP X “HNGROUP statement” on page 646

INTERPTCP X “INTERPTCP statement” on page 647

IPGROUP X “IPGROUP statement” on page 648

LINEMODEAPPL X “LINEMODEAPPL statement” on page
649

LINKGROUP X “LINKGROUP statement” on page 650

LUGROUP and SLUGROUP X “LUGROUP or SLUGROUP statement”
on page 651

LUMAP X “LUMAP statement” on page 652

MONITORGROUP X “MONITORGROUP statement” on page
654

MONITORMAP X “MONITORMAP statement” on page
655

PARMSGROUP X “PARMSGROUP statement” on page 656

PARMSMAP X “PARMSMAP statement” on page 656

PORT “PORT statement” on page 657

PRTDEFAULTAPPL X “PRTDEFAULTAPPL statement” on page
657

PRTGROUP and SPRTGROUP X “PRTGROUP or SPRTGROUP
statement” on page 658

PRTMAP X “PRTMAP statement” on page 660

RESTRICTAPPL X X “RESTRICTAPPL statement” on page
661

USERGROUP X “USERGROUP statement” on page 663

USSTCP X “USSTCP statement” on page 664

Rules: Observe the following rules for BEGINVTAM statements:
v If the BEGINVTAM block represents more than one port, the first statement in

the BEGINVTAM block must be the port designation statement.

636 z/OS V2R1.0 Communications Server: IP Configuration Reference

v Telnet must have an application and Telnet LUs defined in order to connect to a
host application.

v Object and Client Identifier group names can include any printable character
except those in Table 37:

Table 37. Object and Client Identifier group name printable character exceptions

Character EBCDIC Description

. 4B Period

* 5C Asterisk

; 5E Semicolon

, 6B Comma

= 7E Equal

v Any Object or Client Identifier group name must be defined before it can be
specified on a mapping statement. Otherwise, the group name is interpreted as a
linkname.

v LUGROUPs and PRTGROUPs must be mapped to a Client Identifier to be used.
v If one element in a group is not valid, Telnet flags the element that is not valid

and processes the statement as if the element were not part of the statement. If
all elements are not valid, Telnet issues a debug message indicating the GROUP
is empty.

v The second instance of the Client Identifier in the second group is ignored and a
message is issued. For example:
IPGROUP ABC 1.1.1.1 2.2.2.2 ENDIPGROUP
IPGROUP XYZ 2.2.2.2 3.3.3.3 ENDIPGROUP

The second IPGROUP statement generates a debug warning message indicating
that “2.2.2.2” is already defined in an IPGROUP.

v An IPGROUP with a subnet mask of 0.0.0.0:0.0.0.0 specified matches all clients.

Rules for LU name specification
Rules: Observe the following rules for LU name specification:
v The first character must be in the range A through Z, @, #, or $. In addition,

remaining characters can also be numeric (any single digit 0 through 9).
Unprintable characters are not allowed. If a name that is not valid is found, an
error message is issued and the statement is ignored.

v LUs can be defined as a range. Use the following syntax to specify a range of
LUs:

�� LowerRange..UpperRange
..rangerule

��

– No spaces are allowed within a range definition.
– UpperRange must be greater than the LowerRange.
– The lengths of LowerRange or UpperRange, and rangerule must be the same and

each must be less than or equal to eight characters.
– All LUs in the range must be valid and defined to VTAM for a successful

session.
– The number of LU names in one range is limited to 4 294 967 295. The total

number of LU names in the group is also limited to 4 294 967 295. Storage is
not used until the LU name is assigned to the connection.

Chapter 16. TN3270E Telnet server 637

– The rangerule represents the variant used for wildcarding. For example:
TCP000A0..TCP9F$ZZ..FFFNX?AB

where:

F The position is fixed and does not change.

A Alphabetic range.

N Numeric range.

B Alphanumeric range.

X Hexadecimal range.

? Alphanumeric including national characters @, #, and $.
If an incorrect range definition is parsed, it is ignored and a debug warning
message is issued.
Result: The range specification AB100..CB299..AFNNN defines AB100-AB999
(900), BB000-BB999 (1000) and CB000-CB299 (300) (2200 names). If a specification
of AB100-AB299, BB100-BB299 and CB100-CB299 (600 names) is desired, then
two range specifications are required: AB100..CB199..AFFNN
AB200..CB299..AFFNN.
See z/OS Communications Server: IP Configuration Guide for LU range usage
examples.

v If the range rule is omitted, Telnet assumes the following style, where the
LowerRange and UpperRange values must be all numeric or all alphabetic:
LuBase+LowerRange..LuBase+UpperRange

Client identifier types and definitions
Table 38 shows the Client Identifier types and their definitions available for use on
mapping statements.

Table 38. Client identifier types and definitions

Client identifier
type

Definition

USERID The client User ID derived from the client certificate at connection
time when ClientAuth SAFcert is specified on an SSL connection.

HOSTNAME The completely qualified client host name.

IPADDR The client IP address expressed in dotted decimal form. This can be
an IPv4 address only.

USERGRP The USERGROUP name that contains exact or wildcard client user
IDs.

HNGRP The HNGROUP name that contains exact or wildcard client host
names.

IPGRP The IPGROUP name that contains exact or subnetted client IP
addresses.

DESTIP The destination IP address expressed in dotted decimal form.

LINKNAME The link or interface name defined by the LINK or INTERFACE
statement in PROFILE.TCPIP.

DESTIPGRP The DESTIPGROUP name that contains exact or subnetted
destination IP addresses.

LINKGRP The LINKGROUP object name that contains exact or wildcard link or
interface names.

638 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 38. Client identifier types and definitions (continued)

Client identifier
type

Definition

NULL Not coded, but listed here for completeness. This Client Identifier
type indicates that no Client Identifier was specified. This is valid for
the DEFAULTAPPL, LINEMODEAPPL, USSTCP, and INTERPTCP
mapping statements. It is the implied Client Identifier for the
DEFAULTLUS, DEFAULTLUSSPEC, DEFAULTPRT, and
DEFAULTPRTSPEC Object statements.

See z/OS Communications Server: IP Configuration Guide for Object selection
priority based on Client Identifiers.

Rules for client identifier specification
Observe the following rules for client identifier specification:
v When the Client Identifier is a single entity on a mapping statement rather than

part of a group, no wildcarding is allowed.
v A group name must be defined with the appropriate statement before it can be

specified on a MAPPING statement. Otherwise, the name is assumed to be a
link or interface name.

v User ID and destination IP address require the clid_type keyword to correctly
identify the Client Identifier. If clid_type is not used, a user ID Client Identifier is
assumed to be a link or interface name and a destination IP address Client
Identifier is assumed to be the traditional client (source) IP address.

v Client Identifiers of a particular type, such as IP address or host name, can be
defined within only one group of that type. If the Client Identifier is defined in
more than one group, a debug warning message is issued showing the Client
Identifier that is ignored and the name of the owning group. No error is issued
if a Client Identifier is listed twice in the same group.
See z/OS Communications Server: IP Configuration Guide for exact mapping
rules.

Rules for host name specification
Observe the following rules for host name specification:
v Host name specification requires that Telnet be able to resolve a host name from

an IP address by use of the resolver. To do this, a valid TCPIP.DATA data set
must be provided. For overview information about TCP/IP application
configuration files, see z/OS Communications Server: IP Configuration Guide
for a description of how TCPIP.DATA is located. Telnet uses the native MVS
sockets search order to find a resolver. Neither the z/OS environmental variable
(Resolver_Config) nor the /etc/resolv.conf z/OS UNIX is used when searching
for TCPIP.DATA.

v The Telnet client IP address and port are automatically added to the z/OS
Communications Server SNA displays. An HNGROUP statement is required if
you also want the DNS name of the client. If you are mapping objects using host
names, the DNS names of the Telnet clients is provided to the z/OS
Communications Server SNA displays automatically. This occurs automatically
because the names must have been resolved for mapping purposes. If you are
not mapping by host names, but want to have Telnet client host names provided
to the z/OS Communications Server SNA displays, add an HNGROUP name
and ENDHGGROUP name to your Telnet profile. Choose an unused host name

Chapter 16. TN3270E Telnet server 639

(such as AA.AA). If you add the HNGROUP statement to get DNS name
resolution, some delay might occur during connection processing for name
resolution.

ALLOWAPPL statement

Use the optional ALLOWAPPL mapping and security statement to specify which
VTAM application names clients can access and optionally, which LU names are
valid.

Syntax

��

�

ALLOWAPPL application_name QSESSion
DISCONNECTABLE ,sec

LU lu_name
LUG lu_group_name

��

Parameters

application_name
The host application name, as specified in VTAMLST.

Single-character position wildcards (%) are permitted anywhere in the
application name and the multi-character wildcard (*) is permitted at the end
of an application name. For example, A%CICS* allows connections to
A1CICS01, A1CICS02, ABCICS4A, and so on. A single * allows all applications.

DISCONNECTABLE
When DISCONNECTABLE is specified, VTAM notifies the application to
disconnect, rather than log off a user, when the session is dropped.

QSESSion
Indicates this application queues a session request when passing the session to
another primary application. When Telnet receives an UNBIND of the new
session, Telnet waits for a BIND to reestablish the original queued session.

sec
When QSESSion is coded, this value determines the number of seconds Telnet
waits before checking whether a BIND was received. The range is 1 -
99 999 999. If no BIND is received in the time specified, Telnet stops waiting
and continues cleaning up the connection as if QSESSion had not been coded.
There is no default value. If sec is not coded, the connection never checks
whether a BIND is received. Telnet waits until a BIND is received or the
connection is dropped.

LU lu_name
The logical name of the Telnet terminal LU. This parameter allows you to
optionally specify which terminal LUs can be used to establish a session with
the named VTAM host application.

LUG lu_group_name
The name of the LUGROUP or PRTGROUP. This option allows you to specify
an LUGROUP or PRTGROUP, where any LU in the group can be used to
establish a session with the named VTAM host application. If the same name
defines both an LUGROUP and a PRTGROUP, the LUGROUP is used. The
group can be a new group consisting of a combination of names or range list
names from existing LUGROUPs and PRTGROUPs. This allows both terminals
and printers to be on the same ALLOWAPPL statement.

640 z/OS V2R1.0 Communications Server: IP Configuration Reference

Usage notes
v Applications that perform CLSDST PASS also require an ALLOWAPPL or

RESTRICTAPPL statement for the target application.
v LU and LUG keywords are mutually exclusive. If both are specified in any

order, only the last LUG is accepted and processed. If multiple LUG keywords
are specified, only the last is accepted and processed.

v If the LU assigned to the connection is defined in LU groups mapped by both a
LUG statement and an LUMAP/PRTMAP statement, neither LU group can be
defined as an LU exit.

DEFAULTAPPL statement

Use the optional DEFAULTAPPL mapping statement to map the initial application
to be tried when a Telnet client establishes a connection other than linemode. The
application might be a particular VTAM application such as CICS® or could be a
network solicitor or front-end menu system such as TPX. DEFAULTAPPL allows a
user to establish a session with an application without having to know the actual
VTAM name of the application.

Syntax

�� DEFAULTAPPL application_name
Client_Identifier
clid_type,Client_Identifier

�

�
FIRSTONLY LOGAPPL

QINIT
DEFONLY

��

Parameters

application_name
The host application name, as specified in VTAMLST. The application_name can
be network qualified in the format of a 1- to 8-character name of the network
ID separated by a period (.), followed by a 1- to 8-character application name.

clid_type
Specifies the type of Client Identifier. It is required if USERID or DESTIP are
specified. See “Rules for client identifier specification” on page 639 for details.

Client_Identifier
One of several Client Identifiers. See “Client identifier types and definitions”
on page 638 for details. If no Client Identifier is specified, then it is considered
the NULL Client Identifier.

FIRSTONLY
When FIRSTONLY is specified, a solicitor or USSMSG10 screen is sent to the
client after logoff from a default session when LUSESSIONPEND is coded.
When FIRSTONLY is not specified, Telnet always requests a new session to the
default application after logoff from the session when LUSESSIONPEND is
coded. If LUSESSIONPEND is not coded, the connection is dropped.

LOGAPPL
When LOGAPPL is specified, a session request to a host application that is not
active is queued in VTAM instead of rejected. Telnet keeps the ACB open for
the LU representing the client. When the application becomes active, VTAM
initiates a session between the application and the Telnet LU.

Chapter 16. TN3270E Telnet server 641

QINIT
Indicates that session requests should be queued, and when logging off the
default application, Telnet should redrive the default application instead of
issuing a USSMSG10 or Solicitor screen.

DEFONLY
When DEFONLY is specified, the client is blocked from specifying any
application name other than the one specified on the default application
statement.

Usage notes
v Always map a unique Client Identifier on each DEFAULTAPPL statement.

Otherwise, the last DEFAULTAPPL mapping for the Client Identifier is used.
v If a USS table is mapped to the Client based on a higher priority Client

Identifier, the DEFAULTAPPL statement is ignored.

DEFAULTLUS or SDEFAULTLUS statement

Use the optional DEFAULTLUS or SDEFAULTLUS object and mapping statement to
define a list or range of LUs that have a default mapping to the NULL client
identifier. This LU pool is used by a terminal emulator that is requesting a generic
connection if no other LU group maps generically to the client. The
SDEFAULTLUS statement defines shared LU names rather than private ones.

Restrictions:

v This Telnet must have joined the XCF group to define shared objects. An active
Telnet LU name server (LUNS) must exist in order for the profile to be
processed and for the shared LUs to be usable.

v A profile can have either DEFAULTLUS or SDEFAULTLUS defined, but not
both.

Syntax

�� �DEFAULTLUS lu_name ENDDEFAULTLUS
,nnn% lu_name1..lu_name2

..range_rule

�

� �SDEFAULTLUS lu_name ENDSDEFAULTLUS
,nnn% lu_name1..lu_name2

..range_rule

��

Parameters

nnn%
Checks the capacity remaining in the group when Telnet assigns an LU from
that group. A message is issued when the specified percentage is reached. After
the group exceeds the specified capacity, no other message is issued. After the
capacity being used drops below 10 percent of the total capacity check amount,
another capacity warning message is issued. Leave a blank space between
DEFAULTLUS or SDEFAULTLUS and the comma (,) that is part of the capacity
field.

lu_name
The name of the terminal LU.

642 z/OS V2R1.0 Communications Server: IP Configuration Reference

lu_name1..lu_name2
A range of terminal LUs.

range_rule
The wildcard method used for each character position.

Usage notes
v See “Rules for LU name specification” on page 637 for LU name and LU range

specification rules.

DEFAULTLUSSPEC or SDEFAULTLUSSPEC statement

Use the optional DEFAULTLUSSPEC or SDEFAULTLUSPEC object and mapping
statements to define a list or range of LUs that have a default mapping to the
NULL client identifier. This pool is used by a terminal emulator that is requesting
a specific connection if no other LU group maps specifically or generically to the
client. The SDEFAULTLUSSPEC statement defines shared LU names rather than
private ones.

Restrictions:

v This Telnet must have joined the XCF group to define shared objects. An active
Telnet LU name server (LUNS) must exist in order for the profile to be
processed and for the shared LUs to be usable.

v A profile can have either DEFAULTLUSSPEC or SDEFAULTLUSSPEC defined,
but not both.

Syntax

�� �DEFAULTLUSSPEC lu_name ENDDEFAULTLUSSPEC
,nnn% lu_name1..lu_name2

..range_rule

�

� �SDEFAULTLUSSPEC lu_name ENDSDEFAULTLUSSPEC
,nnn% lu_name1..lu_name2

..range_rule

��

Parameters

nnn%
Checks the capacity remaining in the group when Telnet assigns an LU from
that group. A message is issued when the specified percentage is reached. After
the group exceeds the specified capacity, no other message is issued. After the
capacity being used drops below 10 percent of the total capacity check amount,
another capacity warning message is issued. Leave a blank space between
DEFAULTLUS or SDEFAULTLUS and the comma (,) that is part of the capacity
field.

lu_name
The name of the terminal LU.

lu_name1..lu_name2
A range of terminal LUs.

range_rule
The wildcard method used for each character position.

Chapter 16. TN3270E Telnet server 643

Usage notes

See “Rules for LU name specification” on page 637 for LU name and LU range
specification rules.

DEFAULTPRT or SDEFAULTPRT statement

Use the optional DEFAULTPRT or SDEFAULTPRT object and mapping statements
to define a list or range of printer LUs that have a default mapping to the NULL
client identifier. This LU pool is used by a printer emulator that is requesting a
generic connection if no other printer LU group maps to the client. The
SDEFAULTPRT statement defines shared LU names rather than private ones.

Restrictions:

v This Telnet must have joined the XCF group to define shared objects. An active
Telnet LU name server (LUNS) must exist in order for the profile to be
processed and for the shared LUs to be usable.

v A profile can have either DEFAULTPRT or SDEFAULTPRT defined, but not both.

Syntax

�� �DEFAULTPRT prt_name ENDDEFAULTPRT
,nnn% prt_name1..prt_name2

..range_rule

�

� �SDEFAULTPRT prt_name ENDSDEFAULTPRT
,nnn% prt_name1..prt_name2

..range_rule

��

Parameters

nnn%
Checks the capacity remaining in the GROUP when Telnet assigns an LU from
that group. A message is issued when the specified percentage is reached. After
the group exceeds the specified capacity, no other message is issued. After the
capacity drops below 10 percent of the total capacity check amount, another
capacity warning message is issued. Leave a blank space between
DEFAULTLUS or SDEFAULTLUS and the comma (,) that is part of the capacity
field.

prt_name
The name of the printer LU.

prt_name1..lu_name2
A range of printer LUs.

range_rule
The wildcard method used for each character position.

Usage notes

See “Rules for LU name specification” on page 637 for LU name and LU range
specification rules.

644 z/OS V2R1.0 Communications Server: IP Configuration Reference

DEFAULTPRTSPEC or SDEFAULTPRTSPEC statement

Use the optional DEFAULTPRTSPEC or SDEFAULTPRTSPEC object and mapping
statements to define a list or range of printer LUs with a default mapping to the
NULL client identifier. This LU pool is used by a printer emulator requesting a
specific connection if no other printer LU group maps specifically or generically to
the client. The SDEFAULTPRTSPEC statement defines shared LU names rather
than private ones.

Restrictions:

v This Telnet must have joined the XCF group to define shared objects. An active
Telnet LU name server (LUNS) must exist in order for the profile to be
processed and for the shared LUs to be usable.

v A profile can have either DEFAULTPRTSPEC or SDEFAULTPRTSPEC defined,
but not both.

Syntax

�� �DEFAULTPRTSPEC prt_name ENDDEFAULTPRTSPEC
,nnn% prt_name1..prt_name2

..range_rule

�

� �SDEFAULTPRTSPEC prt_name ENDSDEFAULTPRTSPEC
,nnn% prt_name1..prt_name2

..range_rule

��

Parameters

nnn%
Checks the capacity remaining in the group when Telnet assigns an LU from
that group. A message is issued when the specified percentage is reached. After
the group exceeds the specified capacity, no other message is issued. After the
capacity drops below 10 percent of the total capacity check amount, another
capacity warning message is issued. Leave a blank space between
DEFAULTLUS or SDEFAULTLUS and the comma (,) that is part of the capacity
field.

prt_name
The name of the printer LU.

prt_name1..lu_name2
A range of printer LUs.

range_rule
The wildcard method used for each character position.

Usage notes

See “Rules for LU name specification” on page 637 for LU name and LU range
specification rules.

DESTIPGROUP statement

Use the optional DESTIPGROUP Client Identifier statement to define a group of
destination IP addresses. The group name can be used on several mapping
statements.

Chapter 16. TN3270E Telnet server 645

Syntax

�� �DESTIPGROUP DESTIP_group_name ip_addr ENDDESTIPGROUP
ipv4_subnet_mask : ipv4_subnet
ipv6_subnet/prefix_len
ip_range1..ip_range2

��

Parameters

DESTIP_group_name
The group name (up to 16 characters) that contains the destination IP
addresses or subnets.

ipv4_subnet_mask:ipv4_subnet
An IPv4 format subnet. The ipv4_subnet_mask is a bit mask (expressed in
dotted-decimal form) defining the subnetwork mask for a network route. The
bits must be contiguous and start in the leftmost bit. The subnet_mask
indicates the significant portion of the subnet. The subnet and an incoming IP
address are each ANDed with the subnet_mask and then compared with each
other to determine a match.

ipv6_subnet/prefix_len
An IPv6 format subnet. The prefix_len indicates how many significant bits
there are starting from the leftmost bit. The subnet and an incoming IP address
are each ANDed with the prefix_len number of bits and then compared with
each other to determine a match.

ip_addr
The exact IP address of the destination host address that is the destination for
a Telnet connection.

ip_range1..ip_range2
A range of IP addresses.

Restriction: Only the last octet of the IPv4 address and the last two
hexadecimal bytes of the IPv6 address can be used as variables for the range.

Usage notes
v Any given IP address or combination of IP subnet mask and IP subnet can only

appear once within all destination IP groups.
v The subnet and mask combination has no restrictions, including specific class

address specifications.

HNGROUP statement

Use the optional HNGROUP Client Identifier statement to define a group of host
names. The group name can be used on several mapping statements.

Tip: To cause the host name to be present in the control vector (CV64) information,
or to make the host name that is used to inform the mechanism be associated with
the CHECKCLIENTCONN statement, add a dummy HNGROUP-ENDHNGROUP
statement block.

Syntax

646 z/OS V2R1.0 Communications Server: IP Configuration Reference

�� �HNGROUP hngroup_name hn_name ENDHNGROUP ��

Parameters

hngroup_name
The group name (up to 16 characters) that contains the host names.

hn_name
An exact, completely qualified host name or a wildcard host name.

Wildcards can be specified in two ways:
v Use a single asterisk (*) to indicate that any value is acceptable for a

particular qualifier in a particular position within the host name. For
example, *.*.IBM.COM matches USER1.RALEIGH.IBM.COM, but does not
match USER1.TCP.RALEIGH.IBM.COM because this name includes an extra
qualifier.
Restriction: Use of a single asterisk cannot follow any non wildcarded name.
For example, RALEIGH.*.COM is not allowed.

v Use a double asterisk (**) to indicate that any number of qualifiers are
acceptable to the left of the asterisks. For example, **.IBM.COM matches
USER1.IBM.COM, USER1.RALEIGH.IBM.COM, and
USER1.TCP.RALEIGH.IBM.COM.

Both wildcard techniques require that the entire qualifier be wildcarded. For
example, *USER.IBM.COM is not a valid use of a wildcard. In this case, use
*.IBM.COM instead.

Usage notes
v Any given host name or wildcard host name can only appear one time within

all HNGROUPs.
v Results in DNS hostname resolution for every new connection processed by the

TN3270 server.
v See “Rules for host name specification” on page 639 for host name resolution

and display information.

INTERPTCP statement

Use the optional INTERPTCP mapping statement to allow you to map a customized
interpret table to a Client Identifier. This table is used to interpret incoming USS
commands before the USS command processor is invoked. If the input string does
not match any interpret table entry, the USS command processor parses the input
string.

Syntax

�� INTERPTCP table_name
Client_Identifier
clid_type,Client_Identifier

��

Parameters

table_name
The name of the interpret table load module.

Chapter 16. TN3270E Telnet server 647

clid_type
Specifies the type of Client Identifier. It is required if USERID or DESTIP are
specified. See “Rules for client identifier specification” on page 639 for details.

Client_Identifier
One of several Client Identifiers. See “Client identifier types and definitions”
on page 638 for details. If no Client Identifier is specified, then it is considered
the NULL Client Identifier.

Usage notes
v An assembled interpret table load module from VTAM can be used or one can

be created. See z/OS Communications Server: IP Configuration Guide for coding
details. Also see “Telnet INTERPRET table setup” on page 674.

v Always map a unique Client Identifier on each INTERPTCP statement.
Otherwise, the last INTERPRET table mapping for the Client Identifier is used.

v The most common setup error is to fail to include the table load module in a
load library accessible by TCP/IP.

v The INTERPRET table is used to check USS commands only. Therefore,
INTERPRET table function is provided only for connections that are using a USS
table.

IPGROUP statement

Use the optional IPGROUP Client Identifier statement to define a group of IP
addresses. The group name can be used on several mapping statements.

Syntax

�� �IPGROUP ip_group_name ip_addr ENDIPGROUP
ipv4_subnet_mask : ipv4_subnet
ipv6_subnet/prefix_len
ip_range1..ip_range2

��

Parameters

ip_group_name
The group name (up to 16 characters) that contains the Client IP addresses or
subnets.

ipv4_subnet_mask:ipv4_subnet
An IPv4 format subnet. The ipv4_subnet_mask is a bit mask (expressed in
dotted-decimal form) defining the subnetwork mask for a network route. The
bits must be contiguous and start in the leftmost bit. The subnet_mask
indicates the significant portion of the subnet. The subnet and an incoming IP
address are each ANDed with the subnet_mask and then compared with each
other to determine a match.

ipv6_subnet/prefix_len
An IPv6 format subnet. The prefix_len indicates how many significant bits
there are starting from the leftmost bit. The subnet and an incoming IP address
are each ANDed with the prefix_len number of bits and then compared with
each other to determine a match.

ip_addr
The exact IP address of a particular client.

648 z/OS V2R1.0 Communications Server: IP Configuration Reference

ip_range1..ip_range2
A range of IP addresses.

Restriction: Only the last octet of the IPv4 address and the last two
hexadecimal bytes of the IPv6 address can be used as variables for the range.

Usage notes
v Any given client IP address can only appear one time within all IP Groups. A

given combination of IP subnet mask and IP subnet can only appear once within
all IP groups.

v The subnet and mask combination has no restrictions, including specific class
address specifications.

LINEMODEAPPL statement

Use the optional LINEMODEAPPL mapping statement to map the initial
application to be attempted when a Telnet client establishes a linemode connection.

Syntax

�� LINEMODEAPPL application_name
Client_Identifier
clid_type,Client_Identifier

�

�
FIRSTONLY LOGAPPL

QINIT
DEFONLY

��

Parameters

application_name
The host application name, as specified in VTAMLST. The application_name can
be network qualified in the format of a 1- to 8-character name of the network
ID separated by a period (.), followed by a 1- to 8-character application name.

clid_type
Specifies the type of Client Identifier. It is required if USERID or DESTIP are
specified. See “Rules for client identifier specification” on page 639 for details.

Client_Identifier
One of several Client Identifiers. See “Client identifier types and definitions”
on page 638 for details. If no client identifier is specified, then it is considered
the NULL client identifier.

FIRSTONLY
When FIRSTONLY is specified, a solicitor or USSMSG10 screen is sent to the
client after logoff from a default session when LUSESSIONPEND is coded.
When FIRSTONLY is not specified, Telnet always requests a new session to the
default application after logoff from the session when LUSESSIONPEND is
coded. If LUSESSIONPEND is not coded the connection is dropped.

LOGAPPL
When LOGAPPL is specified, a session request to a host application that is not
active is queued in VTAM instead of rejected. Telnet keeps the ACB open for
the LU representing the client. When the application becomes active, VTAM
initiates a session between the application and the Telnet LU.

Chapter 16. TN3270E Telnet server 649

QINIT
Indicates that session requests should be queued, and when logging off the
default application, Telnet should redrive the default application instead of
issuing a USSMSG10 or Solicitor screen.

DEFONLY
When DEFONLY is specified, the client is blocked from specifying any
application name other than the one specified on the default application
statement.

Usage notes

Always map a unique Client Identifier on each LINEMODEAPPL statement.
Otherwise, the last LINEMODEAPPL mapping for the Client Identifier is used.

LINKGROUP statement

Use the optional LINKGROUP Client Identifier statement to define a group of link
or interface names. The group name can be used on several mapping statements.

Syntax

�� �LINKGROUP linkgroup_group_name linkname ENDLINKGROUP ��

Parameters

linkgroup_group_name
The group name (up to 16 characters) that contains the exact link or interface
names or wildcard link or interface names.

linkname
An exact link or interface or a wildcard link or interface name.

Linknames can be wildcarded when specified in a group.
v % or ? is a single-character position wildcard. It can be placed anywhere.
v * is a multi-position wildcard. It can only be placed at the end of the

linkname.
v The two wildcard types can be used together. For example, L%%V5* is a

valid wildcard name.

The position of the single wildcard (%) is used first to determine the most
specific match. For example, the following wildcard names are checked in the
order listed:
v C5CLINK*
v C5C%%%%*
v C5%LINK*
v C%CLINK*
v C%CLI%K*
v C%CLI%*
v C%CL%NK*
v C*

650 z/OS V2R1.0 Communications Server: IP Configuration Reference

LUGROUP or SLUGROUP statement

Use the optional LUGROUP or SLUGROUP object statements to define a group of
LUs. These group names can be used on the LUMAP statement to represent an LU
pool. The SLUGROUP statement defines shared LU names rather than private
ones.

Restrictions:

v This Telnet must have joined the XCF group to define shared LUs. An active
Telnet LU name server (LUNS) must exist for the profile to be processed and for
the shared LUs to be usable.

v All lu_group_name values on one profile must be unique, even though a profile
can have both LU group names and shared LU group names defined.

Syntax

�� �LUGROUP lu_group_name lu_name
,nnn% lu_name1..lu_name2
,EXIT ..range_rule

�

� ENDLUGROUP �

� �SLUGROUP lu_group_name lu_name
,nnn% lu_name1..lu_name2

..range_rule

�

� ENDSLUGROUP ��

Parameters

lu_group_name
The group name (1 - 8 characters in length) that contains the terminal LUs.

nnn%
Checks the capacity remaining in the LUGROUP or SLUGROUP when Telnet
assigns an LU from that group. A message is issued when the specified
percentage is reached. After the group exceeds the specified capacity, no other
message is issued. After the capacity drops below 10 percent of the capacity
check amount, another capacity warning message is issued. Do not leave a
blank space between the name and the comma that is part of the capacity field.

EXIT
Indicates that the lu_group_name value is a user-written exit routine. When the
LUGROUP statement is mapped to a Client Identifier, Telnet LU assignment
invokes the exit routine to select an LU name. When the LU group is defined
as an LU exit, the LU names or LU ranges are optional. When the names or
ranges are provided, they act as seed values for the LU exit to use however it
specifies. See “Telnet LU exit setup” on page 679 for exit details.

lu_name
The name of the terminal LU.

Chapter 16. TN3270E Telnet server 651

lu_name1..lu_name2
A range of terminal LUs.

range_rule
The wildcard method used for each character position.

Tip: When practical, define LU ranges instead of long lists of LU names. LU
name assignment from an LU range is more efficient than from a long list.

Usage notes
v See “Rules for LU name specification” on page 637 for LU name and LU Range

specification rules.
v If the LU assigned to the connection is defined in LU groups mapped by both a

LUG statement and an LUMAP statement, neither LU group can be defined as
an LU exit.

v If a printer group is associated with the LU group on the LUMAP statement, the
LU group cannot be defined as an LU exit.

LUMAP statement

Use the optional LUMAP mapping statement to define the mapping of an LU or
group of LU objects to a Client Identifier.

Syntax

�� LUMAP lu_name
lu_group_name

Client_Identifier
clid_type,Client_Identifier

GENERIC

SPECIFIC
�

�
DEFAPPL application_name

FIRSTONLY LOGAPPL DEFONLY
QINIT

�

�
PMAP parms_group_name KEEPOPEN prt_name

prt_group_name

��

Parameters

lu_name
The name of the terminal LU.

lu_group_name
The group name that contains the terminal LUs.

clid_type
Specifies the type of Client Identifier. It is required if USERID or DESTIP are
specified. See “Rules for client identifier specification” on page 639 for details.

Client_Identifier
One of several client identifiers. See “Client identifier types and definitions” on
page 638 for details.

GENERIC
Indicates that the LU or LUGROUP is checked for Generic connection requests.

652 z/OS V2R1.0 Communications Server: IP Configuration Reference

Generic mapping statements also support Specific connection requests if there
is no LU or LUGROUP mapped specifically to the client.

SPECIFIC
Indicates that the LU or LUGROUP is checked for Specific connection requests.
Specific mapping statements are not used for Generic connection requests.

DEFAPPL application_name
Specifying DEFAPPL indicates the initial application to which Telnet connects.
The application_name can be network qualified in the format of a 1- to
8-character name of the network separated by a period (.), followed by a 1- to
8-character application name.

FIRSTONLY
When FIRSTONLY is specified, a solicitor or USSMSG10 screen is sent to the
client after logoff from a default session when LUSESSIONPEND is coded.
When FIRSTONLY is not specified, Telnet always requests a new session to the
default application after logoff from the session when LUSESSIONPEND is
coded. If LUSESSIONPEND is not coded, the connection is dropped.

LOGAPPL
When LOGAPPL is specified, a session request to a host application that is not
active is queued in VTAM instead of rejected. Telnet keeps the ACB open for
the LU representing the client. When the application becomes active, VTAM
initiates a session between the application and the Telnet LU.

QINIT
Indicates that session requests should be queued, and when logging off the
default application, Telnet should redrive the default application instead of
issuing a USSMSG10 or Solicitor screen.

DEFONLY
When DEFONLY is specified, the client is blocked from specifying any
application name other than the one specified on the default application
statement.

PMAP parms_group_name
Maps a ParmsGroup to an LU group. With this, parameters can be assigned
based on the chosen LU name or group.

KEEPOPEN
Specifying KEEPOPEN means that all LUs identified in the lu_group_name or
the LU identified by lu_name always have an OPEN ACB as long as the
connection exists, whether or not a session exists. When KEEPOPEN is
mapped to a connection, the MSG07 and LUSESSIONPEND functions are in
effect whether or not they were explicitly coded.

prt_name
The name of an associated printer LU. Printer association requires a one-to-one
match. A single LU name or an LUGROUP with a single LU must be specified
when prt_name is used.

prt_group_name
The group that contains the printer LUs. Printer association requires a
one-to-one match. The number of single names in the print group must equal
the number of single names in the LUGROUP. The number of ranges and the
number of LUs in each range must also match. The group cannot be defined as
an LU exit.

Chapter 16. TN3270E Telnet server 653

Usage notes
v A single Client Identifier can have several LU names or LU groups mapped to it.

See the LU assignment information in the Telnet topic in z/OS Communications
Server: IP Configuration Guide for details.

v See “Rules for LU name specification” on page 637 for LU name specification
rules.

MONITORGROUP statement

Use the optional MONITORGROUP statement to define parameters for monitoring
the performance of connections mapped to this group.

Syntax

�� MONITORGROUP mon_group_name
Average

NoAverage

Buckets

NoBuckets
�

�
DynamicDR

NoDynamicDR

IncludeIP

NoIncludeIP

AvgSampPeriod 120

AvgSampPeriod Ssec
�

�
AvgSampMultiplier 5

AvgSampMultiplier mult

Boundary1 50

Boundary1 Bsec

Boundary2 100

Boundary2 Bsec
�

�
Boundary3 200

Boundary3 Bsec

Boundary4 500

Boundary4 Bsec
ENDMONITORGROUP ��

Parameters

mon_group_name
The name of the MonitorGroup.

DynamicDR/NoDynamicDR
Indicates whether or not Telnet should add the Definite Response (DR) request
to the outbound TN3270E header if it was not set on by the application. If this
option is not chosen, or the client does not support DR, Telnet uses a
TIMEMARK to approximate the IP transit time.

IncludeIP/NoIncludeIP
Indicates whether or not Telnet should measure the transit time on the IP side
of the connection.

Average/NoAverage
Indicates whether or not sliding averages should be calculated.

AvgSampPeriod Ssec
Specifies the sampling period for a sliding-window average. Default
value of 120 seconds. The valid range is 1 - 99 999 999.

AvgSampMultiplier mult
Specifies the averaging period multiplier. Default value is 5. The valid
range is 0 - 99 999 999.

Buckets/NoBuckets
Indicates whether or not time buckets are being used.

654 z/OS V2R1.0 Communications Server: IP Configuration Reference

Boundary1 Bsec
Defines the upper boundary time, in milliseconds, for bucket 1 that
contains the number of transactions whose transit times are greater
than 0 and less than or equal to boundary1. The default value is 50
milliseconds. The valid range is 0 - 99 999 999.

Boundary2 Bsec
Defines the upper boundary time, in milliseconds, for bucket 2 that
contains the number of transactions whose transit times are greater
than boundary1 and less than or equal to boundary2. The default value
is 100 milliseconds. The valid range is 0 - 99 999 999.

Boundary3 Bsec
Defines the upper boundary time, in milliseconds, for bucket 3 that
contains the number of transactions whose transit times are greater
than boundary2 and less than or equal to boundary3. The default value
is 200 milliseconds. The valid range is 0 - 99 999 999.

Boundary4 Bsec
Defines the upper boundary time, in milliseconds, for bucket 4 that
contains the number of transactions whose transit times are greater
than boundary3 and less than or equal to boundary4. The default value
is 500 milliseconds. The valid range is 0 - 99 999 999. Boundary4 also
acts as the lower boundary for bucket 5, which has no upper
boundary.

Usage notes

Each bucket maximum value must be higher than the preceding bucket maximum
value. Zero can be specified in the first and subsequent buckets if those buckets are
not wanted. After a positive value is specified, each succeeding bucket must have a
higher value. A very large value, such as 99 999 990 can be used as an infinity
value.

MONITORMAP statement

Use the optional MONITORMAP mapping statement to map a MONITORGROUP
to a Client Identifier.

Syntax

�� MONITORMAP mon_group_name Client_Identifier
clid_type,Client_Identifier

��

Parameters

mon_group_name
The name of the MONITORGROUP.

clid_type
Specifies the type of Client Identifier. It is required if USERID or DESTIP are
specified. See “Rules for client identifier specification” on page 639 for details.

Client_Identifier
One of several client identifiers. See “Client identifier types and definitions” on
page 638 for details.

Chapter 16. TN3270E Telnet server 655

Usage notes

See the connection monitoring mapping information in the z/OS Communications
Server: IP Configuration Guide.

PARMSGROUP statement

Use the optional PARMSGROUP Object statement to define parameters that are
mapped to a subset of all clients. The PARMSGROUP statements mapped to a
client override those defined in the TELNETGLOBALS, TELNETPARMS, or
BEGINVTAM block.

Syntax

�� �PARMSGROUP parmsgroup_name valid_stmts ENDPARMSGROUP ��

Parameters

parmsgroup_name
The group name (up to eight characters) that contains the Telnet parameter
statements.

valid_stmts
Any Telnet statement that is permitted in PARMSGROUP. See Table 33 on page
590 for a list of valid statements.

Usage notes

Security parameters are accepted for ports defined as SECUREPORT ports. See
“Rules for Telnet parameter statements and security parameters” on page 593 for
details.

PARMSMAP statement

Use the optional PARMSMAP mapping statement to map a PARMSGROUP to a
Client Identifier.

Syntax

�� PARMSMAP parmsgroup_name Client_Identifier
clid_type,Client_Identifier

��

Parameters

parmsgroup_name
The name of the PARMSGROUP.

clid_type
Specifies the type of Client Identifier. It is required if USERID or DESTIP are
specified. See “Rules for client identifier specification” on page 639 for details.

Client_Identifier
One of several client identifiers. See “Client identifier types and definitions” on
page 638 for details.

656 z/OS V2R1.0 Communications Server: IP Configuration Reference

Usage notes

A single Client Identifier can have several PARMSGROUPS mapped to it. See the
PARMSGROUP assignment information in the Telnet topic in z/OS
Communications Server: IP Configuration Guide for details.

PORT statement

Use the optional PORT statement to associate the BEGINVTAM block with the
correct TELNETPARMS block when multiple ports are used.

Syntax

�� �PORT num
,qual

num1..num2

��

Parameters

num
A specified port number.

,qual
Qualifies the PORT address with a destination IP address or with a specific
link or interface name.

num1..num2
A consecutive range of ports starting with num1 and ending with num2. num2
must be greater than num1.

Usage notes
v If port,qual is coded, it must match the qualifier used in the PORT,

SECUREPORT, or TTLSPORT statement in the TELNETPARMS block.
v The PORT statement must be the first statement following the BEGINVTAM

statement.

PRTDEFAULTAPPL statement

Use the optional PRTDEFAULTAPPL mapping statement to map the initial
application to be tried when a Telnet client establishes a printer connection. The
application can be a particular VTAM application, such as CICS.

Syntax

�� PRTDEFAULTAPPL application_name
Client_Identifier
clid_type,Client_Identifier

�

�
FIRSTONLY LOGAPPL

QINIT
DEFONLY

��

Chapter 16. TN3270E Telnet server 657

Parameters

application_name
The host application name, as specified in VTAMLST. The application_name can
be network qualified in the format of a 1- to 8-character name of the network
ID separated by a period (.), followed by a 1- to 8-character application name.

clid_type
Specifies the type of Client Identifier. It is required if USERID or DESTIP are
specified. See “Rules for client identifier specification” on page 639 for details.

Client_Identifier
One of several Client Identifiers. See “Client identifier types and definitions”
on page 638 for details. If no Client Identifier is specified, then it is considered
the NULL Client Identifier.

FIRSTONLY
When FIRSTONLY is specified, the printer LU remains active with an open
ACB after initial session logoff. When FIRSTONLY is not specified, Telnet
always requests a new session to the default application after logoff from the
session when LUSESSIONPEND is coded. If LUSESSIONPEND is not coded,
the connection is dropped.

LOGAPPL
When LOGAPPL is specified, a session request to a host application that is not
active is queued in VTAM instead of rejected. Telnet keeps the ACB open for
the LU representing the client. When the application becomes active, VTAM
initiates a session between the application and the Telnet LU.

QINIT
Indicates that session requests should be queued, and when logging off the
default application, Telnet should redrive the default application instead of
issuing a USSMSG10 or Solicitor screen.

DEFONLY
When DEFONLY is specified, the client is blocked from specifying any
application name other than the one specified on the default application
statement.

Usage notes

Always map a unique Client Identifier on each PRTDEFAULTAPPL statement.
Otherwise, the last PRTDEFAULTAPPL mapping for the Client Identifier is used.

PRTGROUP or SPRTGROUP statement

Use the optional PRTGROUP or SPRTGROUP object statements to define a group of
printer LUs. These group names can be used on the PRTMAP statement to
represent a printer pool. The SPRTGROUP statement defines shared LU names
rather than private ones.

Restrictions:

v This Telnet must have joined the XCF group to define shared printer LUs. An
active Telnet printer LU name server (LUNS) must exist for the profile to be
processed and for the shared printer LUs to be usable.

v All prt_group_name values on one profile must be unique, even though a profile
can have both PRTGROUPs and SPRTGROUPs defined.

658 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

�� �PRTGROUP prt_group_name prt_name
,nnn% prt_name1..prt_name2
,EXIT ..range_rule

�

� ENDPRTGROUP �

� �SPRTGROUP prt_group_name prt_name
,nnn% prt_name1..prt_name2

..range_rule

�

� ENDSPRTGROUP ��

Parameters

prt_group_name
The group name (1 - 8 characters in length) that contains the printer LUs.

prt_name
The name of the printer LU.

nnn%
Checks the capacity remaining in the PRTGROUP or SPRTGROUP when Telnet
assigns an LU from that group. A message is issued when the specified
percentage is reached. After the group exceeds the specified capacity, no other
message is issued. After the capacity drops below 10 percent of the total
capacity check amount, another capacity warning message is issued. Do not
leave a blank space between the name and the comma that is part of the
capacity field.

EXIT
Indicates that the prt_group_name value is a user-written exit routine. When the
PRTGROUP statement is mapped to a Client Identifier, Telnet LU assignment
invokes the exit routine to select an LU name. When the LU group is defined
as an LU exit, the LU names or LU ranges are optional. When the names or
ranges are provided, they act as seed values for the LU exit to use however it
specifies. See “Telnet LU exit setup” on page 679 for exit details.

prt_name1..prt_name2
A range of printer LUs.

range_rule
The wildcard method used for each character position.

Tip: When practical, define LU ranges instead of long lists of LU names. LU
name assignment from an LU range is more efficient than from a long list.

Usage notes
v See “Rules for LU name specification” on page 637 for LU name and LU range

specification rules.
v If the LU assigned to the connection is defined in LU groups mapped by both a

LUG statement and an PRTMAP statement, neither LU group can be defined as
an LU exit.

Chapter 16. TN3270E Telnet server 659

v If the printer LU group is used as an associated printer group on an LUMAP
statement, the group cannot be defined as an LU exit.

PRTMAP statement

Use the optional PRTMAP mapping statement to define the mapping of a printer
LU or group of printer LUs objects to a client identifier.

Syntax

��
GENERIC

PRTMAP prt_name Client_Identifier
prt_group_name clid_type,Client_Identifier SPECIFIC

�

�
DEFAPPL application_name

FIRSTONLY LOGAPPL DEFONLY
QINIT

�

�
PMAP parms_group_name

KEEPOPEN
��

Parameters

prt_name
The name of the printer LU.

prt_group_name
The group name that contains the printer LUs.

clid_type
Specifies the type of Client Identifier. It is required if USERID or DESTIP are
specified. See “Rules for client identifier specification” on page 639 for details.

Client_Identifier
One of several client identifiers. See “Client identifier types and definitions” on
page 638 for details.

GENERIC
Indicates that the LU or PRTGROUP are checked for Generic connection
requests. Generic mapping statements also support Specific connection requests
if there is no LU or PRTGROUP mapped specifically to the client.

SPECIFIC
Indicates that the LU or PRTGROUP are checked for Specific connection
requests. Specific mapping statements are not used for Generic connection
requests.

DEFAPPL application_name
Specifying DEFAPPL indicates the initial application to which Telnet connects.
The application_name can be network qualified in the format of a 1- to
8-character name of the network separated by a period (.), followed by a 1- to
8-character application name.

FIRSTONLY
When FIRSTONLY is specified, the printer LU remains active with an open
ACB after initial session logoff from the default session. When FIRSTONLY is
not specified, Telnet always requests a new session to the default application

660 z/OS V2R1.0 Communications Server: IP Configuration Reference

after logoff from the session when LUSESSIONPEND is coded. If
LUSESSIONPEND is not coded, the connection is dropped.

LOGAPPL
When LOGAPPL is specified, a session request to a host application that is not
active is queued in VTAM instead of rejected. Telnet keeps the ACB open for
the LU representing the client. When the application becomes active, VTAM
initiates a session between the application and the Telnet LU.

QINIT
Indicates that session requests should be queued, and when logging off the
default application, Telnet should redrive the default application instead of
issuing a USSMSG10 or Solicitor screen.

DEFONLY
When DEFONLY is specified, the client is blocked from specifying any
application name other than the one specified on the default application
statement.

PMAP parms_group_name
Maps a ParmsGroup to an LU group. With this, parameters can be assigned
based on the chosen LU name or group.

KEEPOPEN
Specifying KEEPOPEN means that all LUs identified in the lu_group_name or
the LU identified by lu_name always have an OPEN ACB as long as the
connection exists, whether or not a session exists. For printers, this option is
always set. When KEEPOPEN is mapped to a connection, the MSG07 and
LUSESSIONPEND functions are in effect whether or not they were explicitly
coded.

Usage notes
v A single Client Identifier can have several printer LU names or printer LU

groups mapped to it. See the LU assignment information in the Telnet topic of
the z/OS Communications Server: IP Configuration Guide.

v See “Rules for LU name specification” on page 637 for LU name specification
rules.

RESTRICTAPPL statement

Use the optional RESTRICTAPPL mapping and security statement to restrict access
to the specified application. This statement should be followed by user parameters
defining each user who is authorized to use the application. Users are prompted to
identify themselves with a password. RACF or an equivalent security program is
used to validate the password. If no user parameters are specified, the application
cannot be accessed.

Syntax

�� RESTRICTAPPL application_name
DISCONNECTABLE

QSESSion
,sec

�

Chapter 16. TN3270E Telnet server 661

�
CERTAUTH ALLOWPRINTER

�

� �

�

USER – user_id

LU lu_name
LUG lu_group_name

��

Parameters

application_name
The host application name, as specified in VTAMLST.

Single-character position wildcards (%) are permitted anywhere in the
application name and the multi-character wildcard (*) is permitted at the end
of an application name. For example, A%CICS* restricts connections to
A1CICS01, A1CICS02, ABCICS4A, and so on. A single * restricts all
applications.

DISCONNECTABLE
When DISCONNECTABLE is specified, VTAM notifies the application to
disconnect, rather than log off a user, when the session is dropped.

QSESSion
Indicates this application queues a session request when passing the session to
another primary application. When Telnet receives an UNBIND of the new
session, Telnet waits for a BIND to reestablish the original queued session.

sec
When QSESSion is coded, this value determines the number of seconds Telnet
waits before checking whether a BIND was received. The range is 1 - 99999999.
If no BIND is received in the time specified, Telnet stops waiting and continues
cleaning up the connection as if QSESSion had not been coded. There is no
default value. If sec is not coded, the connection never checks whether a BIND
is received. Telnet waits until a BIND is received or the connection is dropped.

CERTAUTH
Specifies to use the derived User ID based on the SSL Client Certificate
(enhanced LU mapping support for dynamic IP environments) and skips the
Restrictappl password validation process. If Express Logon is being used, the
User ID returned from security lookup for the latest Client Certificate/Applid
combination is used. If not using Express Logon, the User ID returned at initial
connection time from security lookup for just the Client Certificate is used.

ALLOWPRINTER
Specifies that any printer connection matching this RESTRICTAPPL statement
is treated as if it matched an ALLOWAPPL statement. No user ID or password
is requested. Printer emulators do not support user ID and password requests.
The ALLOWPRINTER parameter gives you the ability to have terminal
connections and printer connections mapped on a single RESTRICTAPPL
statement. However, the printer connections exist at the lower security level
that is provided by the ALLOWAPPL statement.

662 z/OS V2R1.0 Communications Server: IP Configuration Reference

USER user_id
The user ID, one to eight characters long. Single-character wildcards (%) are
permitted anywhere in the user name and the multi-character wildcard (*) is
permitted at the end of the user name. A single * allows all users.

LU LU_name
The logical name of the Telnet terminal LU. This parameter allows you to
optionally specify which terminal LUs can be used to establish a session with
the named VTAM host application.

LUG LU_group_name
The name of an LUGROUP or PRTGROUP. This option allows you to specify
an LUGROUP or PRTGROUP, where any LU in the group can be used to
establish a session with the named VTAM host application. If the same name
defines both an LUGROUP and a PRTGROUP, the LUGROUP is used. The
group can be a new group consisting of a combination of names or range list
names from existing LUGROUPs and PRTGROUPs. This allows both terminals
and printers to be on the same RESTRICTAPPL-USER statement.

Usage notes
v LU and LUG keywords are mutually exclusive. If both are specified in any

order, only the LUG is processed. If multiple LUG keywords are specified, only
the last is accepted and processed.

v Applications that do CLSDST Pass also require a RESTRICTAPPL or
ALLOWAPPL statement for the target application.

v If the LU assigned to the connection is defined in LU groups mapped by both a
LUG statement and an LUMAP/PRTMAP statement, neither LU group can be
defined as an LU exit.

USERGROUP statement

Use the optional USERGROUP object statement to define a group of user IDs. The
group name can be used on several mapping statements.

Syntax

�� �USERGROUP user_group_name user_IDs ENDUSERGROUP ��

Parameters

user_group_name
The group name (up to 16 characters) that contains user ID names which
represent clients when the client certificate is translated into a user ID.

user_IDs
An exact user ID name or a wildcard user ID name.

User ID names can be wildcarded when specified in a group.
v % or ? is a single character position wildcard. It can be placed anywhere.
v * is a multi-position wildcard. It can only be placed at the end of the user

ID.
v The two wildcard types can be used together. For example, U%%V5* is a

valid wildcard name.

Chapter 16. TN3270E Telnet server 663

The position of the single wildcard (%) is used first to determine the most
specific match. For example, the following wildcard names are checked in the
order listed:
v M5MUSER*
v M5M%%%%*
v M5%USER*
v M%MUSER*
v M%MUS%R*
v M%MUS%*
v M%MU%ER*
v M*

USSTCP statement

Use the optional USSTCP mapping statement to map a customized USS table to a
Client Identifier. You can use an existing table or create a USS table, assemble it,
and load it into your system library.

Syntax

�� USSTCP 3270_table_name
3270_table_name,scs_table_name Client_Identifier

clid_type,Client_Identifier

��

Parameters

3270_table_name
The name of the 3270 format USS table load module.

scs_table_name
The name of the SCS format USS table load module.

clid_type
Specifies the type of Client Identifier. It is required if USERID or DESTIP are
specified. See “Rules for client identifier specification” on page 639 for details.

Client_Identifier
One of several client identifiers. See “Client identifier types and definitions” on
page 638 for details. If no Client Identifier is specified, then it is considered the
NULL Client Identifier.

Usage notes
v An assembled USS table load module from VTAM can be used or one can be

created. For coding details, see z/OS Communications Server: IP Configuration
Guide. Also see “Telnet USS table setup” on page 665.

v Always map a unique Client Identifier on each USSTCP statement. Otherwise,
the last USS table mapping for the Client Identifier is used.

v The most common setup error is to fail to include the table load module in a
load library accessible by TCP/IP.

v If a default application and a USS table are both mapped to the same Client
Identifier, the default application is used. The USS messages are used in case of
an error or if FIRSTONLY is specified on DEFAULTAPPL.

v If an SCS format USS table is specified, it is used for all TN3270E connections.
Non-TN3270E connections continue to use the 3270 format USS table. If no SCS

664 z/OS V2R1.0 Communications Server: IP Configuration Reference

format USS table is specified, all connections use the 3270 format USS table. In
this case, a BIND/UNBIND is sent to the TN3270E client before/after USS
processing.

Telnet USS table setup
This topic includes information about the Telnet USS table setup, including general
rules and macroinstructions.

USSCMD
The USSCMD macroinstruction is used to define Telnet terminal operator
commands.

USSMSG
The USSMSG macroinstruction defines Telnet terminal operator messages
(USSMSGxx).

USSPARM
The USSPARM macroinstruction defines an operand or positional
parameter that can be specified on a command identified by the USSCMD
macroinstruction. It also defines default values for the operand or
positional parameter.

There can be multiple USSPARM macroinstructions associated with a
USSCMD macroinstruction. For each operand (keyword or positional),
code a USSPARM macroinstruction.

USSEND
The USSEND macroinstruction delimits the end of the USS table.

USSTAB
The USSTAB macroinstruction indicates the beginning of a USS table.

General usage rules for Telnet USS macroinstructions
Observe the following general usage rules for Telnet USS macroinstructions:
v The Telnet USS macroinstructions can be coded exactly as the VTAM

macroinstructions. A few VTAM parameters are not supported by Telnet. In
these cases, the parameter value is ignored and does not interfere with the
execution of the macroinstruction. Differences between Telnet and VTAM are
listed under usage notes for each macroinstruction.

v An assembled and linked VTAM USS table can be used directly by Telnet.
Unsupported statements are ignored and do not interfere with the processing of
the command.

v For additional information about installing or changing an interpret table, See
the z/OS Communications Server: SNA Resource Definition Reference, which
contains instructions for using the Telnet solicitor or USS Logon Panel.

v A sample USS table is located in SEZAINST(EZBTPUST).
v The USS Macroinstructions can be found in hlq.SISTMAC1, the VTAM macro

library.

USSCMD macroinstruction

Use the USSCMD macroinstruction to define a Telnet operator or terminal operator
command.

Chapter 16. TN3270E Telnet server 665

Syntax

��
name

USSCMD CMD= command_name
FORMAT=PL1

PL1
FORMAT=

BAL

�

�
REP= replace_command_name

��

Parameters

name
Specifies the name assigned to the macroinstruction.

CMD=command_name
Specifies the command name assigned to the macroinstruction.

FORMAT=BAL
Specifies the user-defined command indicated on this USSCMD
macroinstruction in Basic Assembler Language (BAL) syntax.

�� �

�

command
, keyword =

value
p

��

command
Identifies the command. It is followed by one or more blanks.

p Specifies one or more positional operands. Positional operands are
entered in the format Pn, where n is the position number of the
operand. Each operand (unless it is the last in the command) is
followed by a comma. Positional operands must appear before any
keyword operands.

keyword
Specifies keyword operand associated with the command. Each
operand (unless it is the last in a command) is followed by a comma.

value Determines the value assigned to a keyword operand.

FORMAT=PL1
Specifies the user-defined command specified on this USSCMD
macroinstruction in PL/I programming syntax.

�� �

�

command
, keyword

(value)
(p)

��

666 z/OS V2R1.0 Communications Server: IP Configuration Reference

command
Identifies the command. It is followed by one or more blanks or by a
left parenthesis (that is, positional operands).

p Specifies one or more positional operands. Positional operands are
entered in the format Pn, where n is the position number. If positional
operands are used, the parentheses must be coded.

keyword
Used to enter each operand parameter. Each operand must be followed
by one or more blanks or by a value enclosed in parentheses.

value The value assigned to a keyword operand.

REP=replace_command_name
Specifies the valid command that is to replace the user-defined command
indicated by the CMD operand. If the REP operand is not coded, the value
specified in the CMD operator in used.

USSMSG macroinstruction

Use the USSMSG macroinstruction to define Telnet terminal operator messages
(USSMSGxx).

Syntax

��
name

USSMSG BUFFER= buffer_address
(buffer_address, LUNAME)
(buffer_address, SCAN)

OPT=BLKSUP
TEXT='MESSAGE_TEXT'

BLKSUP
OPT=

NOBLKSUP

�

�

�

MSG= message_id
,

(message_id)

��

Parameters

name
Specifies the name assigned to the macroinstruction.

buffer_address
Specifies the address (name) of an area of storage defined to contain the
message text and a header indicating the length of the message text. The
storage area must be formatted as shown in Figure 26 on page 668.

Chapter 16. TN3270E Telnet server 667

The message text defined in the storage area must follow the USSEND
macroinstruction.

The message text is sent to the terminal operator as it appears in the storage
area. Telnet does not modify or translate the message text. You are responsible
for including any device-dependent control characters within the message. The
data format must be 3270 data stream or SNA character stream (SCS). Both are
not supported by Telnet.

LUNAME|SCAN
Specifies that the character strings listed in Table 39 are replaced with the
appropriate values in the position in the message where the character string
occurred. The entire string specified by BUFFER is searched, using the
character @. System symbolics are also replaced with their appropriate value.
When using the system symbolics in the USS table, an extra ampersand (&)
must be prepended to the system symbolic for the assembler compiler to create
the correct output. For example, system symbolic &sysname. must be in the
table as '&&sysname. for the compiled output to be '&sysname.'

Table 39. Variables substituted for USSMSG

Character string Message text Format

@@@@DATE Current Date 8 bytes, in the format specified by the DATEFRM
and DATEDLM operands on the USSTAB
macroinstruction.

@@@@@@@@@IPADDR

@..@IPADDR(1)

Client IP Address 15 bytes, leading 0's suppressed, left-aligned, with
trailing blanks if needed.

@...@IPHOSTNAME (2) Client host name 40 bytes, name left-aligned with trailing blanks if
needed.

@@LUNAME (3) Client LU Name (SLU) 8 bytes, name left-aligned with trailing blanks if
needed.

@@PRT Client Port Address 5 bytes and leading 0's are not suppressed.

@@@@RUNAME Failing operation Name 10 bytes, name left-aligned with trailing blanks if
needed.

@@@SENSE Sense Code or Return Code 8 bytes.

@@@@TIME Current Time 8 bytes in the HH_MM_SS format, where an
underscore (_) is the delimiter specified on the
TIMEDLM operand of the USSTAB macroinstruction.

Figure 26. USS message layout in storage

668 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 39. Variables substituted for USSMSG (continued)

Character string Message text Format

@HOSTNET

@@@NETID

@...@NQN (4)

@@SSCPNM

@@@@@@@@@@ZONEID

Placeholders for Telnet. Accepted for use, but are set
to blanks.

Notes:

1. IPv6 IPADDR must be preceded by 33 @ symbols.

2. IPHOSTNAME must be preceded by 30 @ symbols.

3. @@LUNAME is substituted when it is known. For TN3270 connections, the LU name is not known until after
the MSG10 screen is sent to the end-user because the application name is not yet known.

4. NQN must be preceded by 14 @ symbols.

message_id
Specifies which message or messages are defined by this macroinstruction.
Table 40 shows the default table variable substitution and examples.

For terminal operator messages, enter decimal integers in the range 0 - 14. The
numbers 0 - 14 correspond to the USS messages with message IDs of
USSMSG00 through USSMSG14, respectively.

Restriction: USSMSG00 is not defined in the IBM-supplied USS table. If you
do not define this message, no message is sent in this case.

Table 40. Default table variable substitution

Message Variable Example

MSG00 Command % COMMAND ACCEPTED

MSG01 Command INVALID % COMMAND SYNTAX

MSG02 Command % COMMAND UNRECOGNIZED

MSG03 Command parameter % PARAMETER EXTRANEOUS

MSG04 v Command parameter

v Command parameter
value

% PARAMETER VALUE %(2) NOT VALID

MSG05 None UNSUPPORTED FUNCTION

MSG06 Message not used Not applicable — NOT USED BY TELNET

MSG07 v LU name

v Operation that failed

v Sense Code 3 or
Return Code. See
message EZZ6035I
for return code
explanation.

%(1) UNABLE TO ESTABLISH SESSION — %(2)
FAILED WITH SENSE %(3)

MSG08 None INSUFFICIENT STORAGE

MSG09 Message not used Not applicable — NOT USED BY TELNET

MSG10 None A 3270 data format screen

MSG11 Message not used Not applicable — NOT USED BY TELNET

Chapter 16. TN3270E Telnet server 669

Table 40. Default table variable substitution (continued)

Message Variable Example

MSG12 None REQUIRED PARAMETER OMITTED

MSG13 Text after IBMTEST
echoed back

IBMECHO %

MSG14 Message number that
could not be displayed

USS MESSAGE % NOT DEFINED

OPT=BLKSUP|NOBLKSUP
BLKSUP specifies that extraneous blanks are suppressed from the message.
Any sequence of two or more blanks is converted into a single blank.
NOBLKSUP specifies that extraneous blanks are not suppressed from the
message. Any sequence of two or more blanks is presented unchanged in the
message.

message_text

Specifies the text to use in the USS messages identified by the MSG operand.
Within message_text, place any combination of the character strings described in
Table 39 on page 668. Telnet places the strings with the values shown in the
table.

Rule: Blank suppression always occurs, even if OPT=NOBLKSUP is coded.

Usage notes

For TN3270E, this limitation exists. Unless specific IP-to-LU mapping is used, the
LU name is not known for non-TN3270E sessions until an application is chosen
from the MSG10 screen. Therefore, no @@LUNAME substitution takes place on the
MSG10 screen for non-TN3270E sessions.

USSPARM macroinstruction

Use the USSPARM macroinstruction to define an operand or positional parameter
that can be specified on a command identified by the USSCMD macroinstruction.
It also defines values for the operand or positional parameter. There can be
multiple USSPARM macroinstructions associated with a USSCMD
macroinstruction. For each operand (keyword and positional), code a USSPARM
macroinstruction.

Syntax

��
name

USSPARM PARM= parm_operand_name
P_number

�

�
DEFAULT= default_value REP= rep_operand_name

�

670 z/OS V2R1.0 Communications Server: IP Configuration Reference

�
TRANSLATE=YES

YES
TRANSLATE=

NO

VALUE= value_value
��

Parameters

name
Specifies the name assigned to the macroinstruction.

parm_operand_name
Specifies the keyword parameter in the user-entered command to which this
USSPARM macroinstruction applies. parm_operand_name must be 1–8
alphanumeric characters.

P_number
Specifies a positional parameter, where number is a decimal integer from 1 to
the maximum number of positional parameters for the command. P_number
indicates the positional parameter in the user-entered command to which this
USSPARM macroinstruction applies.

default_value
Specifies a default value to be used if the operand is omitted when the
command is entered. If DEFAULT is not specified, the operand is treated as if
it were not entered.

If the parameter in the PARM operand allows a network-qualified name to be
specified, then the value of DEFAULT can be a network-qualified name.

rep_operand_name
Specifies the parameter is replaced with rep_operand_name. The value for
rep_operand_name must be 1–8 alphanumeric characters. The value of the
operand is assigned from the parameter specified by PARM. If PARM specifies
a keyword parameter, its value is assigned to the operand specified by REP. If
PARM specifies a positional parameter, its value is treated as if it were an
operand value and it is assigned to the operand specified by REP.

If REP is not coded, it takes the value of PARM. (That is, the user-entered
parameter is used as entered.)

Positional parameters such as P1 and P2 can also be used as operands.

TRANSLATE=YES|NO
Controls translation of the specified USSPARM.

TRANSLATE=YES is the default and specifies that the USSPARM is translated
using the translation table associated with the USS table this USSPARM is
coded in, unless the character string is within single quotation marks.
Character strings within single quotation marks are not translated.

TRANSLATE=NO specifies that the USSPARM is not translated.
TRANSLATE=NO is intended to be coded only on the USSPARM for DATA
when the data contains a mixed-case password and the destination application
supports mixed-case passwords. For more information about mixed-case
passwords, see z/OS Communications Server: IP Configuration Guide.

value_value
Specifies the default value to be used if the operand specified by the PARM
operand is entered without a value.

Chapter 16. TN3270E Telnet server 671

VALUE is in contrast with the DEFAULT operand, which specifies the default
to be used if the operand itself is not entered.

If multiple VALUE operands are specified for the same operand, the first
VALUE operand is used.

If the parameter in the PARM operand allows a network-qualified name to be
specified, then the value of VALUE can be a network-qualified name.

Examples

The following code is an example using TRANSLATE=NO to bypass the
translation table and pass a mixed case user ID and password, assuming the
translation table is used to convert all text to upper case.
AUSSTAB USSTAB
APPL1 USSCMD CMD=APPL1,REP=LOGON,FORMAT=PL1

USSPARM PARM=APPLID,REP=APPLID,DEFAULT=APPL1
USSPARM PARM=P1,REP=DATA,TRANSLATE=NO
USSPARM PARM=P2,REP=LOGMODE
USSEND

The following terminal operator command is entered:
appl1 user1/PaSsWrD1 interact

The command sends DATA() and a LOGMODE() to application APPL1. The
LOGMODE value is translated to upper case. No character translation was
performed on user1/PaSsWrD1 because TRANSLATE=NO was coded on the
DATA USSPARM. The application receives a logmode value of INTERACT and
data value of user1/PaSsWrD1.

Usage notes
v The DEFAULT and VALUE operands cannot be coded on the same USSPARM

macroinstruction. To use both operands, code two USSPARM macroinstructions
with the same value specified for PARM. The macroinstruction specifying
VALUE must precede the one containing the DEFAULT operand. If REP is to be
specified, it must be on the macroinstruction containing the VALUE operand.
For example,
USSPARM P=T,REP=TYPE,VALUE=COND
USSPARM P=T,REP=TYPE,DEFAULT=COND

v For multiple specifications of the same parameter, the last value specified is
used. An exception is if positional parameters are used to represent the DATA
parameter. Specifying multiple data positional parameters permits a data string
with a blank to be entered. Each blank acts as a parameter delimiter. If the
number of blanks is known, multiple DATA parameters can be used instead of
using an interpret table. For example, a LOGON TSO command can have two
DATA parameters. The first could be USERID and the second could be the
PROC. Telnet accepts both parameters and passes both as data to the host
application with a blank between the parameters.

v Parameters used by Telnet are:
LOGON APPLID,LOGMODE,DATA
LOGOFF
IBMTEST # of retries

USSTAB macroinstruction

Use the USSTAB macroinstruction to indicate the beginning of a USS table.

672 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

��
name

USSTAB
FORMAT=DYNAMIC

TABLE= name
�

�
DATEDLM=/

DATEDLM= delimeter

DATEFRM=MDY

DATEFRM=
MDY
DMY
YMD

TIMEDLM=:

TIMEDLM= delimiter
��

Parameters

name
Specifies the required CSECT name for the USS table.

FORMAT= DYNAMIC
Specifies how the USS table is formatted. Dynamic is required for Telnet.

TABLE=name
Specifies the translation table that is used by Telnet to translate character-coded
commands. If a translation table is coded in the specified USS table, the table
that is used. If no table is coded, the table in the IBM default EZBTPUST is
used. If EZBTPUST has been altered and no longer contains a translation table,
an internal translation table is used that is the same as the table in EZBTPUST.

DATEDLM
Specifies the character to be used as a delimeter to separate the month, day,
and year parts of the date where @@@@DATE is specified in the message text.
The slash (/) is used if DATEDLM is not specified. An ampersand (&) and
single quotation mark (') are not valid delimiters.

DATEFRM
Specifies the date format to be used where @@@@DATE is specified in the
message text. Note that the delimiter used between the month, day, and year is
specified on the DATEDLM operand.

DMY Specifies the day, followed by month, followed by year as dd_mm_yy,
where an underscore (_) is the delimiter specified on the DATEDLM
operand.

MDY Specifies the month, followed by day, followed by year as mm_dd_yy,
where an underscore (_) is the delimiter specified on the DATEDLM
operand.

YMD Specifies the year, followed by month, followed by day as yy_mm_dd,
where an underscore (_) is the delimiter specified on the DATEDLM
operand.

TIMEDLM
Specifies the character to be used as a delimeter to separate the hour, minutes,
and seconds parts of the time where @@@@TIME is specified in the message
text. The colon (:) is used if TIMEDLM is not specified. An ampersand (&) and
single quotation mark (') are not valid delimiters.

USSEND macroinstruction

Use the USSEND macroinstruction to delimit the end of a USS table.

Chapter 16. TN3270E Telnet server 673

Syntax

��
name

USSEND ��

Parameters

name
Specifies the name assigned to the macroinstruction.

Telnet INTERPRET table setup
This topic includes information about the Telnet INTERPRET table setup, including
general rules and macroinstructions.

INTAB
The INTAB macroinstruction defines an interpret table that lists the Telnet
application programs with which one or more logical units can establish a
session. One INTAB macroinstruction defines the name of the interpret
table and a group of logon messages definitions.

LOGCHAR
The LOGCHAR (logon-characters) macroinstruction defines a single logon
message and the name of a host application program. More than one
LOGCHAR can be included in an interpret table.

General usage rules for Telnet INTERPRET macroinstructions
Observe the following general usage rules for Telnet INTERPRET
macroinstructions
v The Telnet interpret macroinstructions can be coded exactly as the VTAM

macroinstructions. Telnet supports all functions supported by VTAM.
v An assembled and linked VTAM interpret table can be used directly by Telnet.
v For additional information about installing or changing an interpret table, see

z/OS Communications Server: SNA Resource Definition Reference, which
contains instructions for using the Telnet solicitor or USS Logon Panel.

v A sample interpret table is located in SEZAINST(EZBTPINT).
v The INTERPRET macros can be found in hlq.SISTMAC1, the VTAM macro

library.

INTAB macroinstruction

Use the INTAB macroinstruction to define an interpret table that lists the VTAM
application programs with which one or more logical units can establish a session.
One INTAB macroinstruction defines the name of the interpret table and a group
of logon message definitions.

Syntax

��
name

INTAB
NAME

��

674 z/OS V2R1.0 Communications Server: IP Configuration Reference

Parameters

name
Specifies an optional name for the macroinstruction. If specified, name must be
unique and should be used as the operand for the assembler language END
statement. When the macroinstruction is assembled, this name is used to
identify the entry point to the interpret table CSECT.

LOGCHAR macroinstruction

Each LOGCHAR (logon-characters) macroinstruction defines a single logon
message and the name of an application program, a logon interpret routing, or a
USERVAR. You can include more than one LOGCHAR macroinstruction in an
interpret table.

Syntax

��
name

LOGCHAR APPLID = (APPLICID , application_name)
(ROUTINE , routine_name)
(USERVAR , uservar_name)

�

�
REMOVE = NO

REMOVE = NO
YES

SEQNCE = ' characters '
��

Parameters

name
Specifies an optional name on the macroinstruction. This name is not used by
Telnet and is ignored.

APPLID
Specifies the name of an application program, a logon interpret routine, or a
USERVAR.

(APPLICID,application_name)
Specifies the name of the application program. application_name can be any of
the following values:
v ACBNAME of an application program in this host
v applname of an application program in this host
v applname of an application program in another host
v USERVAR representing an application program

application_name can be a network-qualified name. A network-qualified name
takes the form of netid.application_name. If application_name is network-qualified,
the network identifier is considered real and is not allowed to change. The
resource name of the network-qualified name is considered Generic and can
undergo USERVAR translation.

Restriction: If ACBNAME and the network name on the APPL definition
statement for the application program are different, you cannot use a
network-qualified ACBNAME.

Chapter 16. TN3270E Telnet server 675

(ROUTINE,routine_name)
Specifies the routine name of the associated logon-interpret routine. All
logon-interpret routines specified in an interpret table must be assembled and
link-edited with that interpret table.

(USERVAR,user_var_name)
The same as specifying APPLICID.

REMOVE=YES
Specifies that Telnet is to remove the first nonblank set of characters from the
user logon sequence data being processed. The remaining data is left-aligned
and padded with blanks on the right. You can substitute Y for YES when
coding this parameter.

REMOVE=NO
Specifies that Telnet is not to remove any data from the user logon sequence.
You can substitute N for NO when coding this parameter.

For example, if the following information is sent and REMOVE=Y is specified,
Telnet removes “IMS10” before it passes the information to the application
program in the user data field of the CINIT RU.
IMS10 NAME PASSWORD =====> NAME PASSWORD

SEQNCE
Specifies the required part of a logical unit's logon message.

The logon message might have additional data beyond the characters specified
in the LOGCHAR macroinstruction. That data can be used and possibly
changed by the logon-interpret routine if the ROUTINE operand is specified.
Whether or not the data is changed or if a routine is called at all, the data is
passed to the application program as user data.

To specify an apostrophe (') or an ampersand (&) within the logon message,
code a double apostrophe ('') or a double ampersand (&&) within the character
string. If the terminal user enters the logon message in lowercase and the
message is not translated to uppercase (for example, by USS translate table),
the value for 'characters' must be coded in lowercase.

Do not specify leading and trailing device-control characters within a character
string that is to be interpreted, because the USS facility deletes these characters.
Device control characters coded within a logon message are deleted; therefore,
a blank should not be coded for each occurrence of these characters. However,
if a character within the logon message is translated to a blank by the interpret
table, code a blank to represent that character.

LOGCHAR without SEQNCE or with SEQNCE='*' is considered a default
match to the logon message. Telnet accepts the logon message and requests
logon to the application program specified in the LOGCHAR macroinstruction.
Therefore, place a default match LOGCHAR macroinstruction at the end of the
interpret table. Otherwise, the remaining logon messages in the interpret table
are not compared with the logon message entered by the terminal user.

Guideline: If you use two or more LOGCHAR macroinstructions, arrange
them so that their SEQNCE fields are in reverse collating order.

Usage notes
v Telnet compares the logon message (character by character) with successive

entries in the specified interpret table. If the leading characters in the logon
message correspond to all the characters in an entry in the interpret table, Telnet
accepts the logon message as valid (even though the logon message can be
longer than the corresponding entry in the interpret table). If the first character

676 z/OS V2R1.0 Communications Server: IP Configuration Reference

or characters of several logon messages are identical, you should arrange the
LOGCHAR macroinstructions so the logon sequences for the logon messages are
from the most restrictive (greatest number of characters) to the least restrictive
(fewest number of characters). For example:
SEQ1 LOGCHAR APPLID=(APPLICID,AP2),SEQNCE=’LOG2’
SEQ2 LOGCHAR APPLID=(APPLICID,AP1),SEQNCE=’LOG’

v Otherwise, in the preceding example, if sequence LOG had preceded LOG2 in
the interpret table, both logon messages LOG and LOG2 would be valid logons
to application program AP1. If you use two or more LOGCHAR
macroinstructions, they must be arranged so that their SEQNCE fields are in
reverse collating order.

Coding LOGON-INTERPRET routines

You can code logon-interpret routines to validate logons and determine the name
of the application program that is to receive the logons. The entry point name
must match the routine name specified in the APPLID=(ROUTINE,routine name)
operand in the LOGCHAR macroinstruction. All logon-interpret routines specified
in an interpret table must be assembled and link-edited with that interpret table.

The logon-interpret routine interface allows the routine to supply a
network-qualified application name for interpreted logons.

If you want the logon-interpret routine to supply a network-qualified application
name, you need to change the interpret routine parameter list. If you do not want
the routine to supply a network-qualified name, you do not need to change the
routine parameter list. You can use Registers 0 and 1 to supply the application
name.

Requirements for logon-interpret routines
Entry from:

Telnet

Entry point:
routine name

Contents of registers at entry:

Register 0:
Length of logon message (any length from 1 to 80)

Register 1:
Address of first byte of logon message. For LOGON requests, Telnet
searches the interpret table again, after USS translation, looking only for
the specified APPLID. After USS translation, register 1 contains the address
of the first byte of the APPLID.

Register 2:
Address of an 8-byte logical unit name

Register 4:
Address of parameter list for the network identifier and resource name.

Register 13:
Address of a 72-byte save area provided by Telnet.

Register 14:
Return address

Chapter 16. TN3270E Telnet server 677

Register 15:
Address of entry point of this routine.

Contents of Registers at Exit: If the interpreted name in the parameter list is
blank, Registers 0 and 1 contain the name of the VTAM application program (in
EBCDIC characters) with which Telnet is to establish a session:

Register 0:
First 4 characters of name (left-aligned).

Register 1:
Last 4 characters of name (left-aligned).

Registers 2–14:
Restored to condition at entry.

Register 15:
Return code:

00 Application program was found and the name is placed in
registers 0 and 1.

Non0 Application program was not found and the name is not placed in
registers 0 and 1.

If the name of the application program contains fewer than 8 characters, use blanks
to provide a name with 8 characters.

Logon-interpret routine parameter list

When the exit gets control, the address of the following parameter list is in register
4. Offsets 0 through 27 include information about the fixed or interpreted name.
Offset 28 includes the uninterpreted name.

Table 41. Logon interpret routine parameter list

Dec offset Size (bytes) Description Input or output

0 2 Length of parameter list Input

2 8 Name of requesting LU Input

10 17 Interpreted name (in the form
or either name or netid.name)

Output

27 1 Length of uninterpreted name Input

28 n Uninterpreted name Input

Operation: The logon-interpret routine is run synchronously in pageable storage
under the control of Telnet and not under the control of an application program.
For the application program to receive the logon, this routine must validate the
logon, obtain the name of the application program to receive control, and provide
this name back to Telnet. Otherwise, the routine specifies that the logon is not
valid or that the name of the application program was not found inTelnet.

The logon-interpret routine must also:
v Save and restore the contents of registers 2–14 when receiving and passing

control.
v Use re-enterable code (the routine must not store anything within itself or

modify itself during execution).

678 z/OS V2R1.0 Communications Server: IP Configuration Reference

v Perform no I/O operations; an I/O request causes the routine to terminate
abnormally.

The routine gets control in supervisor state with a Telnet storage key, so errors
within the routine could cause damage to Telnet or to system control blocks and
modules.

You can modify the logon message pointed to by register 1 that is passed to the
interpret routine. However, remember these two points:
v Telnet does not look at the changed storage; it is passed as user data to the

application.
v You should modify with caution, as modification outside the message storage

boundaries could result in Telnet or TCP/IP stack outages.

The uninterrupted Logon message in the parameter list should not be changed as
it is not passed as user data to the application.

ENDINTAB macroinstruction

Use the ENDINTAB macroinstruction to define the end of an interpret table. Code
one ENDINTAB macroinstruction after one or more LOGCHAR macroinstructions
to define the end of an interpret table. You can also follow the ENDINTAB
macroinstruction with an assembler language END statement.

Syntax

��
name

ENDINTAB
NAME

��

Parameters

name
Specifies an optional name on the macroinstruction. This name is not used by
Telnet and is ignored.

Usage notes
v If you code an assembler language END statement, it must be in the format:

END name

where name is the label of the INTAB macroinstruction and specifies the main
entry point.

v Follow the ENDINTAB macroinstruction with an assembler language END
statement unless the interpret table is to be followed by CSECTs containing one
or more user-written APPLID routines.

Telnet LU exit setup
You can code LU exit routines to specify the LU name used to represent the client.
You can optionally return a USS table name (3270 or SCS format) or an Interpret
table name to be used by Telnet. The entry point name must match the routine
name specified as the LUGROUP group name. Each LU exit routine specified must
be assembled and link-edited as a stand-alone load module.

The LU exit can be driven multiple times. If the LUNAME returned by the exit
cannot be registered, the exit is driven again for a different LUNAME. If the same

Chapter 16. TN3270E Telnet server 679

name is returned, the connection fails. If a different name is returned, it is
registered. If registration fails for the second name, the exit is driven a third time,
and the no additional retry flag is activated. If the second name is again returned,
the connection is terminated. If a third name is returned, registration is attempted
again. If registration fails, the connection is terminated.

The LUNAME exit can be mapped as GENERIC or SPECIFIC. If both mappings
are present, and the client presents Telnet with an LUNAME, the SPECIFIC
mapping is attempted. If this attempt fails, the GENERIC mapping is also
attempted. This conforms with the process used when TELNET assigns LUNAMEs.

Telnet LU exit setup operation
The LU exit routine runs synchronously in pageable storage under the control of
Telnet; it is not under the control of the application program. The LU exit Routine
can use non-reentrant code. Telnet ensures that only one process at a time calls the
LU exit so it can maintain local storage in the routine for LU name management.
The LU exit cannot perform I/O operations. An I/O request causes the routine to
terminate abnormally. The routine gets control in supervisor state with the Telnet
storage key. Errors in the LU exit might damage Telnet or the entire TCP/IP stack.
Telnet monitors the number of abends by the LU exit. If 3 abends occur within a
10-minute period, the LU exit is disabled by Telnet. Telnet fails any future LU exit
lookup without calling the LU exit.

Mapping rules apply to the LU exit as if it were an LU group. For example, if the
LU exit is mapped to a Client Identifier as a Specific group, only connections
requesting specific LUs use the LU exit. The only difference between an LU group
and an LU exit is whether Telnet or the LU exit generates the LU name to use. At
this time, the LU exit must be used on the LUMAP or PRTMAP statement alone. If
Associated Printer function is being used on the LUMAP statement, neither the LU
group nor the PRT group can be an LU exit. If the LU assigned to the connection is
defined in LU groups mapped by both a LUG statement and an LUMAP/PRTMAP
statement, neither LU group can be defined as an LU exit.

In addition to the several Client Identifiers passed to the LU exit using the
parameter list pointed to by Register 1, the parameter list also includes any LU
names or ranges that were coded in the LUGROUP and the requested application
name, if specified. Telnet does not use the LU list. The LUGROUP can be defined
without any LUs specified. The LUs specified can be used as seed values if the LU
name exit wants to use them.

Version 2 of the LU exit function supports USS/Interpret table name specification.
The parameter list for version 2 has been expanded to include specification of a
3270 format USS table name, SCS format USS table name, or an Interpret table
name. Be sure your LU Exit checks the version number before accessing the
expanded parameter list area. These fields are filled in with the mapped values, if
they exist, by Telnet before the LU exit is called. If a name or names are changed
upon return, Telnet attempts to load the table into storage if not already loaded.

Rules: The following rules apply:
v USS/Interpret table names are honored only for TN3270E connections. For

TN3270E connections, the LU exit assigns an LU during connection negotiation.
The LU exit is able to specify the USS table before end users receive their first
USSMSG10 screen. For TN3270 connections or connections with the
SIMCLIENTLU option defined, the LU exit does not assign an LU until an
application is chosen. In these cases, the end user receives a Telnet solicitor

680 z/OS V2R1.0 Communications Server: IP Configuration Reference

panel or a USSMSG10 message from a profile-mapped USS table. When the LU
exit is called for these connections, the Pl_UssIgnored flag is on, indicating that
the USS tables or Interpret tables assigned by the LU exit are ignored.

v Telnet loads the USS/Interpret tables the first time they are assigned by the LU
exit. If a table fails to load, the table mapped by the profile is used. If no profile
mapping exists, a solicitor panel is sent to the client. If both 3270-format and
SCS-format tables are specified by the exit, both tables must successfully load for
the pair to be used.

v After the USS/Interpret tables that were assigned by the LU exit are loaded,
Telnet replaces the currently assigned profile-mapped USS/Interpret tables (3270
or SCS format) with the LU exit tables. Telnet uses the new tables for all USS
messages and commands.

v Setting the table name field to blanks indicates to Telnet that no table should be
used for that table type. For example, if the profile mapping maps the
EZBTPUST/EZBTPSCS value to a connection and the exit returns the
EZBTPUST/, Telnet uses EZBTPUST only.

v The LU exit can assign USS/Interpret tables for TN3270E connections only.
SIMCLIENTLU must not be coded. If an SCS-format table name is specified, that
table is used; otherwise the 3270 format table is used.

The LU exit table specified remains in effect until the connection is dropped.

You can determine the USS tables used by a particular LU exit by issuing an OBJ
display command for the LuGroup that is the LU exit. For example, if you defined
the following LU group LUGROUP MyLuExit,EXIT ENDLUGROUP, you can issue
a D TCPIP,,TELNET,OBJ,ID=MyLuExit command to view all USS tables loaded to
support the LU Exit.

You can make changes to a USS table, and the changes become effective after the
next V TCPIP,,OBEYFILE is issued. Whenever a V TCPIP,,OBEYFILE is issued, the
USS tables specified by the LU Exit are reloaded.

Telnet specifies the function code in Register 0.

The following function codes are used:
v Function code 01 indicates the LU exit should create an LU name. Any

algorithm can be used in the LU exit to generate an LU name. The LU exit either
returns the LU name in the LU name field of the parameter list with a return
code of 0 in Register 15, or the LU exit indicates that no LU name should be
used and specifies a return code of 8 in Register 15. If Register 15 is 0, Telnet
uses the LU name value, tries to register the LU name in the Telnet master LU
database, and then assigns the LU to the connection. At this time, any nonzero
return code is treated by Telnet as an indicator that the function did not work.
Guideline: Use 8. In future releases, other values might be used to indicate
specific reasons.

v Function code 02 indicates the LU name is no longer representing the connection
and is being unassigned from the Telnet connection. The LU name is now
available for assignment to another connection. It is up to the LU exit to manage
the list of available LU names. If LU names are not reused, the LU exit might
ignore the unassign function code. Whether or not the LU exit records the state
change, Telnet ignores the return code value and deregisters the LU name from
the Telnet master LU database.

v Function code 03 indicates the LU name is being deactivated because the
operator issued the V TCPIP,,T,INACT,luname command or the ACB failed to

Chapter 16. TN3270E Telnet server 681

open. If the LU exit is tracking the state of LU names, an inactive LU should be
considered not available to represent a client. Whether or not the LU exit
changes the LU state within the exit, Telnet ignores the return code value, adds
the LU name to the inactive LU list, and does not allow it to be registered in the
master LU database.

v Function code 04 indicates the LU name is being activated because the operator
issued the V TCPIP,,T,ACT,luname command. If the LU exit is tracking the state
of LU names, the LU name should be considered available to represent a client.
Whether or not the LU exit changes the LU state within the exit, Telnet ignores
the return code value, removes the LU name from the inactive LU list, allows
registration in the master LU database, and allows assignment to a Telnet
connection.

v Function code 05 indicates the LU name is already in use. If the exit returns a
different LU name, Telnet attempts to register this new LU name in the Telnet
master LU name database. Telnet tries up to three LU names. If the third LU
name is in use, Telnet notifies the exit with a flag bit indicating that no
additional retries are attempted. Upon return from the third notification, Telnet
does not look at the LU name field and fails the connection. Other connections
have access to the exit between retry attempts.

If a specific LU name was requested by the client and it is not an LUGROUP
name, that LU name is in the LU name field of the parameter list as input to the
Exit. The LU exit can leave that LU name or override it with another name. In
either case, Telnet then attempts to register the returned LU name.

If the LU name is already assigned or has been deactivated, Telnet fails the
connection but does not notify the LU exit that the LU was already in use. If the
OPEN ACB fails, Telnet notifies the Exit that the LU name is being deactivated in
the Telnet Registration database by calling the LU exit with function code 03. If the
LU name is activated using the Telnet ACT command, the LU exit is called with
function code 04, indicating the LU name is reactivated.

Requirements for LU exit routines
This topic lists the requirements for LU exit routines.
Entry from: Telnet
Entry point: Routine name

Contents of registers at entry
The contents of registers at entry are as follows:
Register 0: Function code. 01 - Assign LU

02 - Unassign LU
03 - Inact LU
04 - Act LU
05 - LU in use

Register 1: Address of parameter list specifying LU name, LUGROUP, and
client known information.

Register 13: Address of a 72-byte save area provided by Telnet.

Register 14: Return address.

Register 15: Address of entry point of this routine.

Contents of registers at exit
The contents of registers at exit are as follows:

682 z/OS V2R1.0 Communications Server: IP Configuration Reference

Registers 0-14: Restored to condition at entry.

Register 15: Return code:
00 - Use the LU name in the parameter area.
08 - LU name is not to be used

If the name of the LU contains fewer than 8 characters, pad with blanks to the
right to provide a name with 8 characters. The LU exit routine must save and
restore the contents of registers 2-14 when receiving and passing control. Do not
modify any values in the parameter list other than the LU name field. Do not alter
more than the 8 bytes needed for the LU name. The R15 return code indicates to
Telnet what action to take.

LU exit routine parameter list
When the exit gets control, the address of the following parameter list is in register
1:

Dec Size Description Input Assign/Unassign Inact/ACT
Offset (Bytes) or Inact (ACB fail) Command

Output

Value if Value if
not set not set

0 8 LU name Both Blanks Always present
8 1 Flag Bytes

’80’x - 1 Client is a printer Input Always present Always 0
0 Client is a terminal

’40’x - 1 No additional retry Input Always present Always 0
0 retry will be allowed

’20’x - 1 IP Address is in IPv6 Input Always present Always 0
format

0 IP Address is in IPv4 format
’10’x - 1 USS/SCS/Int tables Input Always present Always 0

assigned by exit ignored for
this connection
0 USS/SCS/Int tables assigned
by exit will be used

9 1 Parameter list Version level Input Always set Always set
10 1 Available byte Both Always 0 Always 0
11 1 Available byte Both Always 0 Always 0
12 16 Client IP address in hex Input Always set Always 0
28 4 Client Port Input Always set Always 0
32 16 Destination IP address in hex Input Always set Always 0
48 4 Destination Port Input Always set Always 0
52 16 Linkname Input Blanks Always Blanks
68 8 Userid from Client Certificate Input Blanks Always Blanks
76 4 Ptr to hostname structure Input 0 Always 0
80 8 Application netid Input Blanks Always Blanks
88 8 Application name Input Blanks Always Blanks
96 8 Userid from solicitor panel Input Blanks Always Blanks
104 4 Ptr to LUGroup structure Input 0 0
108 8 USS table name - 3270 format Both Blanks Always Blanks
116 8 USS table name - SCS format Both Blanks Always Blanks
124 8 Interpret table name Both Blanks Always Blanks
132 16 Reserved Both Blanks Always Blanks

Hostname structure

0 1 Total length of Hostname Input 0
1 255 Client hostname Input

LuGroup structure

0 4 Number of single LU names Input

Chapter 16. TN3270E Telnet server 683

4 n List of all single LU names,
each 8 characters
(n=8*number of LUs) Input 0

n+4 4 Number of LU range structures Input 0
n+8 m List of all LU range structures,

each 24 characters (low/high/variant)
(m=24*number of structures) Input

684 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 17. EXPRESS LOGON using DCAS

The Digital Certificate Access Server (DCAS) is a host-based server that provides
some distributed z/OS security server services. The most common service is Pass
Ticket (like a password) generation services. It typically works in conjunction with
SSL-authenticated clients that provide logon services on behalf of end users
(typically workstation users) that want to log on to host applications. This allows
users to log on to host applications without having to know their password, and
possibly even their user ID. On the host, DCAS works with the resident security
server, such as RACF, to provide this function.

Tip: You can customize the DCAS to use IBM System SSL, but it is recommended
to implement TLS security by using AT-TLS policies. For more information about
using AT-TLS policies, see Customizing DCAS for TLS/SSL in z/OS
Communications Server: IP Configuration Guide.

Requirement: The application Pass Ticket generation must be configured in RACF.

DCAS can support several different client-types for express logon. For additional
overview and configuration information about Express Logon, see z/OS
Communications Server: IP Configuration Guide.

This topic contains the following information:
v “Starting Digital Certificate Access Server”
v “Digital Certificate Access Server (DCAS) environment variables” on page 687
v “Digital Certificate Access Server (DCAS) sample procedure (EZADCASP)” on

page 686
v “PassTicket server configuration file processing when using IBM System SSL” on

page 687
v “Digital Certificate Access Server (DCAS) configuration file keywords and

parameters” on page 688

Starting Digital Certificate Access Server
You can start the DCAS from the z/OS UNIX shell or with an MVS started
procedure using optional parameters for debugging, logging, and specifying the
configuration file. To start the DCAS from the z/OS UNIX shell, use the following
format:
dcas <parameter_1> <parameter_2> <parameter_3> &

To start the DCAS from an MVS started procedure, use the following format:
PARM=.../<parameter_1> <parameter_2> <parameter_3>

The following optional parameters can be used with both the DCAS UNIX
command and the MVS started procedure:

-d or -D
Indicates debugging. The following levels apply:

1 Specifies log error and warning messages.

2 Specifies log error, warning, and informational messages.

© Copyright IBM Corp. 2000, 2015 685

|
|
|
|

|

3 Specifies log error, warning, informational, and debug messages. This
is the default.

-l or -L
Indicates logging to SYSLOGD or to a designated log file. If you do not specify
this parameter, logging defaults to /tmp/dcas.log.

If you specify a debug level, but not logging, then the DCAS attempts to open
the default log file /tmp/dcas.log. If this fails, debugging is turned off.

For SYSLOGD, the DCAS uses the log facility local0.

-c or -C
Indicates the requested configuration file (for example, /u/userx/
passtick.conf). If you do not specify this parameter, the DCAS looks for the
configuration file using the following search order:
1. DCAS_CONFIG_FILE environment variable
2. /etc/dcas.conf
3. tsouserid.DCAS.CONF
4. TCPIP.DCAS.CONF

Restriction: If the DCAS does not find a valid configuration file, it does not
start.

The /tmp/dcas.tcpname.pid is a temporary DCAS pid file that the DCAS creates.
This file contains the process ID of the current invocation of the DCAS.

Restrictions:

v If /tmp/dcas.tcpname.pid is a symbolic link, it must have an owning UID or
GID that matches the EUID or EGID that is assigned to the DCAS.

v If /tmp/dcas.tcpname.pid is a hard link or the target of a hard link, users that
are outside the owner or group of the directory in which /tmp/dcas.tcpname.pid
is stored cannot have write access to the directory. Additionally, write access to
/tmp/dcas.tcpname.pid must be limited to the owning UID or group, for
example, --w--w----permissions.

Digital Certificate Access Server (DCAS) sample procedure
(EZADCASP)

686 z/OS V2R1.0 Communications Server: IP Configuration Reference

|
|

|

|
|

|
|
|
|
|

Digital Certificate Access Server (DCAS) environment variables
Table 42 provides a list of environment variables used by DCAS that can be
tailored to a particular installation:

Table 42. DCAS environment variables

Environment variable Server, Client or Command-type application Description Any specific
coding rules (or
a link to syntax)

DCAS_CONFIG_FILE DCAS (Digital Certificate Access Server) Identifies the
location of the
DCAS
configuration file

None

PassTicket server configuration file processing when using IBM
System SSL

The following list shows some rules for processing a PassTicket server
configuration file:
v The # symbol as the first character in a configuration file indicates a comment.

The format for specifying keywords and values is <keyword> <value> with a
space between the keyword and the value.

v If a keyword is unrecognized as one of the valid DCAS keywords, a message is
sent to the console indicating a keyword that is not valid was detected, but that

//DCAS PROC
//*
//* IBM Communications Server for z/OS
//* SMP/E distribution name: EZADCASP
//*
//* 5694-A01 (C) Copyright IBM Corp. 2000, 2005
//* Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* Status = CSV1R7
//*
//* Function: Sample procedure for running the Digital
//* Certificate Access Server (DCAS)
//*
//DCAS EXEC PGM=EZADCDMN,REGION=4096K,TIME=NOLIMIT,
// PARM=’POSIX(ON) ALL31(ON) / -d 1 -l SYSLOGD’
//*
//*** Notes:
//*
//* - DCAS can also be invoked from the Unix System Services shell
//* as a shell command: dcas
//*
//* - The z/OS Secure Socket Layer (SSL) product libraries must
//* be accessible at runtime to DCAS- hlq.mlq.SGSKLOAD.
//*
//* - The system link list concatenation must contain the TCP/IP
//* runtime libraries and the C runtime libraries. If they are
//* not in the link list concatenation, this procedure will need
//* to be changed to STEPLIB to them.
//*
//* - To pass parameters to DCAS, specify them after the final slash
//* on the PARM statement. For example:
//* // PARM=(’POSIX(ON) ALL31(ON)’,
//* // ’ENVAR("LIBPATH=/usr/lib")/-d 3 -l SYSLOGD’)
//*
//* - Other examples
//* // PARM=(’POSIX(ON) ALL31(ON) TERMTHDACT(UATRACE) TRAP(ON)’,
//* // ’ENVAR("DCAS_CONFIG_FILE=/u/us1/xxx.conf")/ -d 3 -l SYSLOGD’)
//*
//*
//*
//STDENV DD DUMMY
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//SYSIN DD DUMMY
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//CEEDUMP DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)

Figure 27. DCA server configuration file sample

Chapter 17. EXPRESS LOGON using DCAS 687

|

|

processing continues. If the same keyword is specified more than one time in the
profile, the last value specified for that keyword is used.

v You can use upper or lowercase for keywords and most values, but values
representing file names in the z/OS UNIX are case sensitive.

v z/OS UNIX file names can be 128 characters or fewer in length. This includes
the path name, file name, forward slashes (/), and periods (.). File names longer
than 128 characters are truncated.

Digital Certificate Access Server (DCAS) configuration file keywords
and parameters

This topic describes the keywords and parameters that are used in the DCAS
configuration file. It also describes tips for each DCAS parameter for AT-TLS
configuration when TLSMECHANMISM is set to AT-TLS. For more information
about AT-TLS policies, see Required AT-TLS policies when DCAS
TLSMECHANISM is set to ATTLS and Migrating existing DCAS server to use
AT-TLS policies in z/OS Communications Server: IP Configuration Guide.

CLIENTAUTH
Use the CLIENTAUTH keyword and parameters to specify client authentication.

Tip: Use this keyword regardless of the value that is configured on the
TLSMECHANISM keyword. For TLSMECHANISM ATTLS, you must also
configure the following values in the corresponding AT-TLS policy:
v TTLSEnvironmentAction HandshakeRole ServerWithClientAuth
v TTLSEnvironmentAction -> TTLSEnvironmentAdvancedParms

– LOCAL1 - ClientAuthType Required
– LOCAL2 - ClientAuthType SAFCHECK

�� CLIENTAUTH
LOCAL2
LOCAL1 LOCAL2 ��

Parameters

LOCAL1
Specifies that the SSL handshake process authenticates the client certificate as
well as the server certificate. This check verifies the client has received a
certificate from a trusted certificate CA.

LOCAL2
Specifies that the SSL handshake process authenticates the client certificate and
provides additional access control through the installation's SAF-compliant
security product (for example, RACF). The following conditions apply:
v LOCAL2 verifies the client certificate has an associated user ID defined to

the security product. The certificate must first be defined to the security
product to obtain this validation. For more information about adding
certificates to RACF, see the description of the RACDCERT command in the
z/OS Security Server RACF Command Language Reference.

v For security products that support the SERVAUTH class, installations can
also obtain a more granular level of access control. If the installation has
activated the SERVAUTH class and provided a profile for the DCAS in the

688 z/OS V2R1.0 Communications Server: IP Configuration Reference

|
|
|
|
|
|

|
|
|

|

|

|

|

SERVAUTH class, only users specified in the profile are allowed to connect
to the port. The security product profile name is specified using the
following format:
EZA.DCAS.sysname

where sysname is the name of the MVS system image.

Tip: Client certificate refers to the DCAS Client:
v TN3270 middle-tier server in the case of the IBM Express Logon Feature (ELF)
v Host on Demand (HoD) or HATS for WebExpress Logon
v The client connecting to DCAS for other enhanced logon solutions

IPADDR
Use this keyword to define the IP address to which the DCAS binds.

Tip: Use this keyword regardless of the value that is configured on the
TLSMECHANISM keyword. For TLSMECHANISM ATTLS, you must set the
TTLSRule LocalAddr parameter in the corresponding AT-TLS policy to match the
IPADDR value.

��
IPADDR ipaddr

��

Parameters

ipaddr
Specifies the IP address or host name to which the DCAS binds. If you do not
specify ipaddr, the DCAS binds to the IPv4 INADDR_ANY address or to the
IPv6 unspecified address (in6addr_any).

Restriction: Scope information cannot be specified with the IP address or the
host name.

Requirement: The TCP/IP stack must be IPv6-enabled if an IPv6 address (or
host name which resolves to an IPv6 address) is specified.

KEYRING
Use the KEYRING keyword to define the z/OS UNIX file containing the certificate
to be used during the SSL handshake.

Tip: Do not use this keyword if TLSMECHANISM is ATTLS. For
TLSMECHANISM ATTLS, you must set TTLSEnvironmentAction ->
TTLSKeyringParms Keyring in the corresponding AT-TLS policy with the value
that was used on the KEYRING or SAFKEYRING keyword.

�� KEYRING hfsfilename ��

Parameters

hsffilename
Specifies the path and file name of the key ring file.

Usage notes

Chapter 17. EXPRESS LOGON using DCAS 689

|
|
|
|

|
|
|
|

The keywords KEYRING and SAFKEYRING are mutually exclusive. If neither
KEYRING nor SAFKEYRING is specified, the default key ring file, key.kdb, is
used.

LDAPPORT
Use the LDAPPORT keyword to allow authentication of the client certificate by an
X.500 host. LDAPPORT is used in combination with LDAPSERVER.

Tip: Do not use this keyword if TLSMECHANISM is ATTLS. For
TLSMECHANISM ATTLS, set TTLSEnvironmentAction ->
TTLSGskAdvancedParms -> TTLSGskLdapParms GSK_LDAP_SERVER_PORT in
the corresponding AT-TLS policy to the LDAP port value.

��
LDAPPORT port

��

Parameters

port
Specifies the port number of the X.500 host.

LDAPSERVER

Use the LDAPSERVER keyword to allow authentication of the client certificate by
an X.500 host. LDAPSERVER is used in combination with LDAPPORT.

Tip: Do not use this keyword if TLSMECHANISM is ATTLS. For
TLSMECHANISM ATTLS, set TTLSEnvironmentAction ->
TTLSGskAdvancedParms -> TTLSGskLdapParms GSK_LDAP_SERVER in the
corresponding AT-TLS policy to the correct LDAP server location.

Restriction: An IPv6 address is not supported for this keyword.

�� LDAPSERVER
ipaddr

fqname ��

Parameters

fqname
Specifies the fully qualified host name of the X.500 host.

ipaddr
Specifies the dotted-decimal IP address of the X.500 host.

PORT
Use the PORT keyword to define a basic port to the DCAS.

Tip: Use this keyword regardless of the value that is configured on the
TLSMECHANISM keyword. For TLSMECHANISM ATTLS, you must set the
TTLSRule LocalPortRange parameter in the corresponding AT-TLS policy to match
the PORT value.

690 z/OS V2R1.0 Communications Server: IP Configuration Reference

|
|
|
|

|
|
|
|

|
|
|
|

��
PORT port num

��

Parameters

8990
Specifies the port over which the DCAS accepts incoming requests. Port 8990 is
the default.

num
Specifies a particular port number.

SAFKEYRING
Use the SAFKEYRING keyword to define the RACF-defined key ring containing
the certificate to be used during the SSL handshake.

Tip: Do not use this keyword if TLSMECHANISM is ATTLS. For
TLSMECHANISM ATTLS, you must set TTLSEnvironmentAction ->
TTLSKeyringParms Keyring in the corresponding AT-TLS policy with the value of
the keyring name.

�� SAFKEYRING keyringname ��

Parameters

keyringname
Specifies the name to use when creating a key ring with the RACF ADDRING
function. This name is case sensitive.

Usage notes

The keywords SAFKEYRING and KEYRING are mutually exclusive. If neither
SAFKEYRING nor KEYRING is specified, the default key ring file, key.kdb, is
used.

SERVERTYPE
Use the SERVERTYPE keyword and parameter to specify the type of input the
DCAS server receives.

The SERVERTYPE keyword definition can be specified multiple times in the DCAS
configuration file.

Subsequent definitions are logically ORed. For example, defining SERVERTYPE
ALLTYPES and then SERVERTYPE NOUSERIDTYPE means that DCAS no longer
accepts a user ID as input.

Tip: Use this keyword regardless of the value that is configured on the
TLSMECHANISM keyword.

Restriction: Because SERVERTYPE CERTTYPE is the default, it is not valid to only
specify SERVERTYPE NOCERTTYPE.

Chapter 17. EXPRESS LOGON using DCAS 691

|
|
|
|

|
|

��
SERVERTYPE CERTTYPE

SERVERTYPE CERTTYPE ALLTYPES
USERIDTYPE
KERBEROSTYPE
NOCERTTYPE
NOUSERIDTYPE
NOKERBEROSTYPE

��

Parameters

Guideline: For any SERVERTYPE parameter, DCAS returns a Pass Ticket for the
application name that it receives from the client.

SERVERTYPE CERTTYPE
Specifies that DCAS accepts only a X.509 certificate and application name as
input. This is the default.

SERVERTYPE ALLTYPES
Specifies that DCAS accepts any form of currently supported and future
inputs. This enables DCAS to accept a x.509 certificate, and application name
(SERVERTYPE CERTTYPE) as well as a user ID and application name
(SERVERTYPE USERIDTYPE).

SERVERTYPE USERIDTYPE
Specifies that DCAS accepts only a user ID and application name as input.

SERVERTYPE KERBEROSTYPE
Specifies that DCAS accepts a Kerberos principal name and application name
as input.

SERVERTYPE NOCERTTYPE
Specifies that DCAS not accept the x.509 certificate and application name as
input. You can use this to turn off a previous SERVERTYPE CERTTYPE
parameter.

SERVERTYPE NOUSERIDTYPE
Specifies that DCAS not accept user ID and application name as input. You can
use this to turn off a previous SERVERTYPE USERIDTYPE parameter.

Requirements: You must specify certain values for following IBM-enhanced
logon solutions:
v Express Logon Feature (ELF) requires a SERVERTYPE value of CERTTYPE

or ALLTYPES.
v Web Express Logon (WEL) requires a SERVERTYPE value of USERIDTYPE

or ALLTYPES.

For enhanced logon solutions other than those listed, see your product
documentation for the SERVERTYPE value you need to specify. You should
have an understanding of the DCAS function required by the solution prior to
configuring the SERVERTYPE parameter because the data that DCAS provides
is highly sensitive.

SERVERTYPE NOKERBEROSTYPE
Specifies that DCAS does not accept a Kerberos principal name and application
name as input. Use this parameter to turn off a previous SERVERTYPE
KERBEROSTYPE parameter.

Usage notes

692 z/OS V2R1.0 Communications Server: IP Configuration Reference

v The keywords SAFKEYRING and KEYRING are mutually exclusive. If neither
SAFKEYRING nor KEYRING is specified, the default key ring file, key.kdb, is
used.

v The KERBEROSTYPE support enables the DCAS client to provide a Kerberos
principle name and application ID. The Kerberos principal name must be
mapped to a RACF user ID. This allows DCAS to provide a Pass Ticket for the
user ID and application name. See z/OS Security Server RACF Security
Administrator's Guide for information about defining a KERBLINK profile.
The DCAS server has been enhanced to provide the new function. This requires
that the administrator of the single-signon solution use RACF or a similar
security product to map a valid z/OS user ID to a Kerberos principal name. In
RACF, do this by creating a KERBLINK profile in RACF.
See z/OS Security Server RACF Security Administrator's Guide for a description
of Kerberos principal names and how to map them to user IDs.

STASHFILE
Use the STASHFILE keyword to specify the key ring password file to the
associated key ring file. This password file contains the encrypted password.

Tip: Do not use this keyword if TLSMECHANISM is ATTLS. For
TLSMECHANISM ATTLS, if STASHFILE is required, you must set
TTLSEnvironmentAction -> TTLSKeyringParms KeyringStashFile in the
corresponding AT-TLS policy with the pathname of the stash file.

�� STASHFILE hfsfilename ��

Parameters

hfsfilename
Specifies the path and file name of the password file.

Usage notes

STASHFILE is normally associated with the file used on the KEYRING parameter.
The file name defaults to key.sth. The file is not needed for SAFKEYRING.

TCPIP
Use the TCPIP keyword to specify the active TCP/IP stack name with which the
DCAS establishes affinity.

Tip: Use this keyword regardless of the value that is configured on
TLSMECHANISM keyword.

�� TCPIP stackname ��

Parameters

stackname
Specifies the name of the TCP/IP stack with which the DCAS establishes
affinity.

Chapter 17. EXPRESS LOGON using DCAS 693

|
|
|
|

|
|

TLSMECHANISM
Use the TLSMECHANISM keyword and parameters to specify whether to use IBM
System SSL directly or AT-TLS policies. It is recommended to use AT-TLS to
implement TLS security. For more information about using AT-TLS policies, see
Customizing DCAS for TLS/SSL in z/OS Communications Server: IP
Configuration Guide.

�� TLSMECHANISM
DCAS

ATTLS
��

Parameters

DCAS
IBM System SSL is used directly for TLS/SSL. This is the default.

ATTLS
AT-TLS policies are used for TLS/SSL.

Tip: For more information about AT-TLS policies, see Required AT-TLS policies
when DCAS TLSMECHANISM is set to ATTLS and Migrating existing DCAS
server to use AT-TLS policies in z/OS Communications Server: IP
Configuration Guide.

TLSV1ONLY
Use the TLSV1ONLY keyword to control whether TLSv1.0 is the only supported
SSL version for connections that are secured using SSL implemented by DCAS.

�� TLSV1ONLY
TRUE

FALSE
��

Parameters

TRUE
Indicates that only TLSv1.0 can be enabled. This is the default.

FALSE
Indicates that SSLV2, SSLV3, and TLSV1.0 can be enabled.

Rule

TLSV1ONLY is honored only when TLSMECHANISM DCAS is specified.

V3CIPHER
Use the V3CIPHER keyword to specify a subset of the supported SSL V3 cipher
algorithms.

Tip: Do not use this keyword if TLSMECHANISM is ATTLS. For
TLSMECHANISM ATTLS, if V3CIPHER is required, you must set
TTLSEnvironmentAction -> TTLSCipherParms -> V3CipherSuites to the desired
cipher values in the corresponding AT-TLS policy. For more information about
cipher values, see Migrating existing DCAS server to use AT-TLS policies for
V3Cipher in z/OS Communications Server: IP Configuration Guide.

694 z/OS V2R1.0 Communications Server: IP Configuration Reference

|

|
|
|
|
|

|||||||||||||||||

|

|

|
|

|
|

|
|
|
|

|

|
|

|||||||||||||||||

|

|

|
|

|
|

|

|

|
|
|
|
|
|

��
V3CIPHER cipherspec

��

Parameters

cipherspec
Specifies the level of the SSL V3 cipher to use for a DCAS (for example,
V3CIPHER 0306090201). The following cipher levels are valid:
v 01 = NULL MD5
v 02 = NULL SHA
v 03 = RC4 MD5 Export
v 04 = RC4 MD5 US
v 05 = RC4 SHA US
v 06 = RC2 MD5 Export
v 09 = DES SHA
v 0A = Triple DES SHA US

Usage notes

If you do not specify V3CIPHER, it defaults to the cipher level supported by the
SSL library installed on your system.

Steps for setting up RACF for Digital Certificate Access Server
(DCAS)

This topic describes how to set up RACF for DCAS.

Procedure

Perform the following steps to set up RACF for DCAS:
1. Define a user ID as superuser to OMVS services.

The server requires that you define the user ID from which the server is started
to be defined to use OMVS services as a superuser. You can configure the
OMVS(UID(0)) on the ADDUSER command. However, if the user ID already
exists, the ADDUSER fails and the user ID is not altered to superuser. The
ALTUSER value sets the user ID to superuser whether the user ID existed
before or the ID was just created by the ADDUSER command.
ADDUSER DCAS ALTUSER DCAS DFLTGRP(OMVS) OMVS(UID(0)HOME('/'))

2. Give the user ID access to operator commands.
If the OPERCMDS class profile MVS.SERVMGR.DCAS is defined to control
who can start DCAS, then the user ID that starts DCAS must have CONTROL
access to the profile. Use the following commands to provide access:
RDEFINE OPERCMDS(MVS.SERVMGR.DCAS) UACC(NONE)
PERMIT MVS.SERVMGR.DCAS CLASS(OPERCMDS) ACCESS(CONTROL)
ID(DCAS)
SETROPTS RACLIST(OPERCMDS) REFRESH

3. Provide a RACF definition for MVS startup.
If the server is started as an MVS procedure, use the following RACF
definitions to define the server to RACF:
RDEFINE STARTED DCAS.* STDATA(USER(DCAS)) SETROPTS RACLIST(STARTED) REFRESH

Chapter 17. EXPRESS LOGON using DCAS 695

696 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 18. File Transfer Protocol

This topic contains z/OS File Transfer Protocol (FTP) client and server
configuration information and includes the following information:
v “FTP server cataloged procedure (FTPD)”
v “FTP server cataloged procedure (FTPD) parameters” on page 699
v “FTP configuration statements in FTP.DATA” on page 721
v “SOCKS configuration statements in SOCKSCONFIGFILE” on page 898

FTP clients and servers both use a configuration file, referred to as FTP.DATA.
FTP.DATA can be used to customize FTP behavior. The server's FTP.DATA file
customizes the behavior of the server system, and the client's FTP.DATA file
customizes the behavior of the client system.

For example, if you want to create data sets on the server's system with a logical
record length of 80 characters, and create data sets on the client's system with a
logical record length of 256, perform the following steps:
1. Specify the LRECL 80 configuration statement in the FTP server's FTP.DATA

configuration file.
2. Specify the LRECL 256 configuration statement in the FTP client's FTP.DATA

configuration file.

The setting in the FTP server's configuration file is used by the server when the
user creates a file on the server's system with an FTP subcommand, such as PUT.
Likewise, the setting in the FTP client's configuration file is used by the FTP client
when the user creates a file on the client's system with an FTP subcommand, such
as GET.

Guideline: The client setting does not override the server setting. Instead, the
server setting affects data sets created on the server's system, while the client
setting affects data sets created on the client system.

FTP server cataloged procedure (FTPD)
The following sample shows a start procedure for the FTP server. No start
procedure is required for the FTP client.
//FTPD PROC MODULE=’FTPD’,PARMS=’’
//***
//* Descriptive Name: FTP Server Start Procedure *
//* File Name: tcpip.SEZAINST(EZAFTPAP) *
//* tcpip.SEZAINST(FTPD) *
//* SMP/E Distribution Name: EZAFTPAP *
//* *
//* Licensed Materials - Property of IBM *
//* "Restricted Materials of IBM" *
//* 5694-A01 *
//* (C) Copyright IBM Corp. 1995, 2005 *
//* Status = CSV1R7 *
//***
//*
//* SET PARM1=TCPIVP.TCPPARMS(TCPDATA)
//*
//FTPD EXEC PGM=&MODULE,REGION=4096K,TIME=NOLIMIT,
// PARM=’/&PARMS’
//*
//* Uncomment the SET statement above when using the next two lines.
//* PARM=(’ENVAR("RESOLVER_CONFIG=//’’&PARM1’’")’,

© Copyright IBM Corp. 2000, 2015 697

//* ’/&PARMS’)
//*
//* PARM=(’ENVAR("_BPX_JOBNAME=myftp")’,
//* ’/&PARMS’)
//*
//* PARM=(’ENVAR("KRB5_SERVER_KEYTAB=1")’,
//* ’/&PARMS’)
//*
//**** IVP Note **
//*
//* If executing the FTP installation verification procedures (IVP),
//* - Comment the first PARM card and uncomment both lines of the
//* second PARM card
//* - Uncomment the appropriate SYSFTPD and SYSTCPD DD cards for the IVP
//*
//**
//**** _BPX_JOBNAME Note ***
//*
//* The environment variable _BPX_JOBNAME can be specified
//* here in the FTPD procedure, so that all of the logged on
//* FTP users will have the same jobname. This can then
//* be used for performance control and identifying all FTP users.
//* To use this:
//* - Comment the first PARM card and uncomment both lines of the
//* third PARM card
//*
//**
//**** KRB5_SERVER_KEYTAB Note ***************************************
//*
//* The environment variable KRB5_SERVER_KEYTAB can be specified
//* here in the FTPD procedure, so that the FTP server will use the
//* local instance of the Kerberos security server to decrypt tickets
//* instead of obtaining the key from the key table.
//* To use this:
//* - Comment the first PARM card and uncomment both lines of the
//* fourth PARM card
//*
//**
//*
//* The C runtime libraries should be in the system’s link
//* list or add them to the STEPLIB definition here. If you
//* add them to STEPLIB, they must be APF authorized.
//*
//* To submit SQL queries to DB2 through FTP, the DB2 load
//* library with the suffix DSNLOAD should be in the system’s
//* link list, or added to the STEPLIB definition here. If
//* you add it to STEPLIB, it must be APF authorized.
//*
//CEEDUMP DD SYSOUT=*
//*
//* SYSFTPD is used to specify the FTP.DATA file for the FTP
//* server. The file can be any sequential data set, member
//* of a partitioned data set (PDS), or HFS file.
//*
//* The SYSFTPD DD statement is optional. The search order for
//* FTP.DATA is:
//*
//* SYSFTPD DD statement
//* jobname.FTP.DATA
//* /etc/ftp.data
//* SYS1.TCPPARMS(FTPDATA)
//* tcpip.FTP.DATA
//*
//* If no FTP.DATA file is found, FTP default values are used.
//* For information on FTP defaults, see z/OS Communications
//* Server: IP Configuration Reference.
//*SYSFTPD DD DISP=SHR,
//* DSN=TCPIP.SEZAINST(FTPSDATA)
//*SYSFTPD DD DISP=SHR,
//* DSN=TCPIVP.TCPPARMS(FTPSDATA)
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//*SYSTCPD DD DISP=SHR,

698 z/OS V2R1.0 Communications Server: IP Configuration Reference

//* DSN=TCPIP.SEZAINST(TCPDATA)
//*SYSTCPD DD DISP=SHR,
//* DSN=TCPIVP.TCPPARMS(TCPDATA)
//*

FTP server cataloged procedure (FTPD) parameters
The system parameters required by the FTP server are passed by the PARM
parameter on the EXEC statement of the FTPD cataloged procedure. Add your
parameters to PARMS=’ in the PROC statement of the FTPD cataloged procedure,
making certain that:
v Each parameter is separated by a blank.
v All parameters are in uppercase, unless the security product administrator has

enabled mixed-case password support. In that case, any password you supply as
a parameter must be entered in the correct case.

For example: //FTPD PROC MODULE=’FTPD’,PARMS=’TRACE ANONYMOUS PORT 21’

ANONYMOUS
Specifying this start option is equivalent to coding the ANONYMOUS
statement in FTP.DATA with no parameters. See “ANONYMOUSLEVEL (FTP
server) statement” on page 748 and “ANONYMOUS (FTP server) statement”
on page 738 for more information.

ANONYMOUS=user_id
Specifying this start option is equivalent to coding the ANONYMOUS
user_id statement in FTP.DATA. See “ANONYMOUSLEVEL (FTP server)
statement” on page 748 and “ANONYMOUS (FTP server) statement” on
page 738 for more information.

ANONYMOUS=user_id/password
Specifying this start option is equivalent to coding the ANONYMOUS
user_id/password statement in FTP.DATA. See “ANONYMOUSLEVEL (FTP
server) statement” on page 748 and “ANONYMOUS (FTP server)
statement” on page 738 for more information.

Restriction: Do not code a password phrase as password.

ANONYMOUS=user_id/SURROGATE
Specifying this start option is equivalent to coding the ANONYMOUS
user_id/SURROGATE statement in FTP.DATA. See “ANONYMOUSLEVEL
(FTP server) statement” on page 748 and “ANONYMOUS (FTP server)
statement” on page 738 for more information.

Requirement: To use this option, ANONYMOUSLEVEL must be greater
than or equal to 3.

AUTOMOUNT
Permits a DASD volume to be mounted when attempts are made to access
data sets on that volume.

AUTORECALL
Permits data sets migrated by a storage manager, such as hierarchical storage
manager (HSM), to be recalled automatically.

Figure 28. Sample start procedure for the daemon

Chapter 18. File Transfer Protocol 699

DATASETMODE
Treats all lower qualifiers of address space names as part of the same directory.
This affects the behavior of DIR, LS, MGET, and MDLETE because all lower
qualifiers are returned.

DIRECTORYMODE
Treats each level of an address space name as if it were a directory. This affects
the behavior of DIR, LS, MGET, and MDLETE because only the next lower
qualifier is returned.

INACTIVE number_seconds
Sets the inactivity timeout to the specified number of seconds. A control
connection inactive for this amount of time is closed. The default inactivity
timeout is 300 seconds (5 minutes). The maximum inactive time is 86 400
seconds. A value of 0 disables the inactivity timer, and inactive control
connections do not time out.

NOAUTOMOUNT
Prevents a DASD volume from being mounted when attempts are made to
access data sets on that volume.

NOAUTORECALL
Prevents data sets migrated by a storage manager, such as HSM, from being
recalled automatically. Migrated data sets can still be deleted even though
NOAUTORECALL is specified.

Restriction: Only sequential and whole partitioned data sets can be deleted
without recalling. Partitioned data set members require the whole data set to
be recalled.

PORT port_num
Accepts incoming requests on the specified (decimal) port number rather than
the port specified in /etc/services or the default port of 21. (port_num – 1) is
used for data transfer. The maximum port number is 65534.

TRACE
Running TRACE might affect performance and should only be used when
diagnosing problems with FTP sessions.

FTP server user exits
To limit access to an FTP server, you can use any of the user exits described in this
topic. The FTP server provides increased security by using user exits.

A user exit is passed the address of a parameter list in register 1. The parameter
list is a series of pointers to values. The first word of the parameter list always
points to the return code. If the user exit sets the return code to 0, processing
continues as normal. If the return code is not 0, authorization is denied and the
user receives a negative reply indicating that the command has failed. Upon entry,
the return code is 0, so a correct return can be indicated by leaving the return code
alone. The return code field in the FTPOSTPR exit is included for consistency; it
has no effect on processing.

The second word of the parameter list always points to a word containing the
number of parameters that follow. This helps handle any future releases that might
increase the number of parameters in these parameter lists.

The remainder of the parameter list points to values the FTP user exit uses in its
processing.

700 z/OS V2R1.0 Communications Server: IP Configuration Reference

Requirements:

v The user exit load modules must be in a cataloged data set and placed in an
APF-authorized library to which the FTP server has access by way of STEPLIB,
linklist, or LPA.

v The authorization state (JSCBAUTH) must be the same after exiting from the
user exit as it was upon entry.

v User exit routines must be reentrant.
v User exit routines are invoked in TCB mode, problem program state, with

AMODE(31). If the user exit routine changes a setting, the user exit routine must
restore the setting before returning to the caller.

v The FTPCHKIP user exit is loaded when the FTP daemon initializes. If you want
the FTP daemon to use a new version of this exit routine, you must stop the FTP
daemon and start it again.

Rule: All data areas that are passed to the exit, including the Language
Environment save area stack, above the 31 bit addressing line. If the exit routine
uses any system services that require data areas below the 24 bit addressing line,
the exit routine must obtain the necessary storage below the line and copy any
data values there.

Guidelines:

v If you are debugging a user exit routine, you should have a test version of a
server to work with so that you can stop and start without affecting other users.
You can do that by putting a PORT parameter in the EXEC statement of the FTP
JCL, such as PARMS='PORT 1073'. To connect to this server, enter the following
code:
FTP remoteHost 1073

You can use any number as a port number for your test FTP server. IBM
suggests that you choose a number that does not conflict with any well-known
port numbers used on your host.

v z/OS FTP follows the MVS search order to load the FTP exit routines. If you are
not using the user exit facility, put a dummy user exit load module in the first
library in the MVS search order. This prevents other users from putting their
own modules in a library later in the concatenation sequence. This also increases
the need to have that library protected using SAF.

Restriction: You cannot use the System Programming C Facilities for the user exits.

See the detailed information about the following user exits:
v “The FTCHKCMD user exit” on page 702
v “The FTPOSTPR user exit” on page 703
v “The FTCHKIP user exit” on page 706
v “The FTCHKPWD user exit” on page 707
v “The FTCHKJES user exit” on page 708
v “The FTP server SMF user exit” on page 710

Sample server user exits
You can find sample user exit routines in SEZAINST:

User exit Location of sample

FTCHKIP SEZAINST(FTCHKIP)

Chapter 18. File Transfer Protocol 701

|

|
|
|

|
|
|
|
|

User exit Location of sample

FTCHKPWD SEZAINST(FTCHKPWD)

FTCHKCMD SEZAINST(FTCHKCMD), SEZAINST(FTCHKCM1),
SEZAINST(FTCHKCM2)

FTCHKJES SEZAINST(FTCHKJES)

FTPOSTPR SEZAINST(FTPOSTPA), SEZAINST(FTPOSTPR)

The FTCHKCMD user exit
FTCHKCMD is called when the server receives a command to run RETR, STOR, or
any other FTP command. The user exit is passed as follows:
v The user ID
v The command
v The command parameters
v The current directory type of MVS or z/OS UNIX
v The file type of SEQ, JES, or SQL
v The current working directory value
v The address of a buffer that can be used to return modified command

arguments
v A buffer to hold a 500 reply extension to explain why the exit denied the request
v The socket address structure of the client's control connection
v The socket address structure of the server's control connection
v A buffer containing the session instance identifier
v A 256-byte scratchpad buffer

The exit can accept the command, reject the command, or modify the arguments
passed to the command. When the exit rejects the command, the FTP server always
replies 500 User Exit denies Userid userid from using Command command. If the
exit routine places text into the 500 reply extension buffer, the FTP server replies to
the client with reply code 500 and the supplied text before it replies 500 User Exit
denies Userid userid from using Command command.

The FTP server sometimes replies to a client with the arguments of the
subcommand the client sent to the server. For example, if a client enters SITE
FNIDDER=FNAT, a 200 message is returned to the client: 200-Unrecognized
parameter ’FNIDDER=FNAT’ on site command. For such replies, the command
arguments included are those returned by FTCHKCMD rather than those
originally entered by the client.

The following parameter list is passed to FTCHKCMD:

Offset Value

+0 Pointer to the fullword return code. Return 0 to accept the command or to
pass new arguments to the command. Return a nonzero value to reject the
command.

+4 Pointer to a word containing the number of following parameters (12).

+8 Pointer to the 8-byte user ID that is logged in.

+12 Pointer to the 8-byte command being entered.

702 z/OS V2R1.0 Communications Server: IP Configuration Reference

+16 Pointer to a string containing arguments after the command. The first
halfword of the string contains the number of characters that follow.

+20 4-byte character string with current directory type: MVS or z/OS UNIX
(left-aligned).

+24 4-byte character string with current file type: SEQ, JES, or SQL.

+28 Buffer with current directory value. The first bytes hold length of
remaining buffer. This is an 1102-byte output buffer in which to return
modified argument strings. The first 2 bytes must be initialized to the
length of the returned command string.

+32 1102-byte output buffer in which to return modified argument strings. You
can modify the arguments passed to the command by placing the modified
arguments in this buffer. The first 2 bytes must be initialized to the length
of the returned command string.

+36 Pointer to a 71-byte buffer in which to return a 500 reply extension to be
used only when the exit denies the request. The exit can place text in this
buffer to explain why it denied the request. If the exit supplies text in this
buffer, the server appends this text to the string 500-UX- and sends this
reply prior to the reply 500 Userid userid from using Command command.
The buffer is initialized to blanks before each call to FTCHKCMD.

+40 Pointer to a copy of the socket address structure for the client's control
connection. This area is mapped by the SOCKADDR DSECT found in the
sample exit. The FAMILY field denotes whether the structure contains an
IPv4 or an IPv6 address. When the family is AF_INET, the structure
contains an IPv4 address. When the FAMILY is AF_INET6, you must
inspect the address itself to determine whether it is an IPv6 address or an
IPv4 mapped IPv6 address.

+44 Pointer to a copy of the socket address structure for the server's control
connection. This area is mapped by the SOCKADDR DSECT found in the
sample exit. The FAMILY field denotes whether the structure contains an
IPv4 or an IPv6 address. When the family is AF_INET, the structure
contains an IPv4 address. When the FAMILY is AF_INET6, you must
inspect the address itself to determine whether it is an IPv6 address or an
IPv4 mapped IPv6 address.

+48 Pointer to a buffer containing a 2-byte length followed by the session
identifier created by the daemon when the connection was first established
for this session. The identifier has a maximum length of 14 bytes and is
unique within this instance of the server.

+52 Pointer to a 256-byte scratchpad buffer, which can be used to pass
information between user exits. All exits receive a pointer to this buffer
except FTCHKIP and FTCHKPWD. FTP does not query or alter the
contents of the scratchpad at any time. The extended tracing (DUMP)
identifier of the scratchpad is 87. If extended tracing of the scratchpad is
requested, the contents are dumped after execution of the user exit.

Restriction: If the exit is used for USER/PASS command processing, the
scratchpad buffer should not contain a pointer unless the storage location
that is referenced is available to all address spaces.

The FTPOSTPR user exit
FTPOSTPR is called upon completion of the FTP commands RETR, STOR, STOU,
APPE, DELE, and RNTO. The user exit is passed as follows:

Chapter 18. File Transfer Protocol 703

v The user ID
v The client IP address
v The client port number
v The current directory type
v The length of the parameter string
v The current working directory
v The current file type
v The FTP reply code
v A buffer containing the FTP reply line sent to the client
v The FTP command code
v The current CONDDISP setting
v The file transfer completion code
v Name of the data set or z/OS UNIX file retrieved or stored
v Two words containing the bytes transferred during execution of this command
v The socket address structure of the client's control connection
v The socket address structure of the server's control connection
v A buffer containing the session instance identifier
v A 256-byte scratchpad buffer
v The one-byte description of the confidence level in successful completion of a

transfer
v A buffer containing the FTP reply

The user exit can take action based on any of the information passed to it. The
close reason code indicates whether the command completed successfully. The
scratchpad buffer can be used to communicate information to other exits or the
next instance of this exit.

The following parameter list is passed to FTPOSTPR:

Offset Value

+0 Pointer to the fullword return code. The value is always 0 and is passed
only for consistency with other FTP user exits and parameter lists.

+4 Pointer to a word containing the number of following parameters (17).

+8 Pointer to the 8-byte buffer containing the user ID.

+12 Pointer to the 4-byte client IP address. If the client's address is an IPv6
address, this field points to a word containing x'FFFFFFFF' and the passed
socket address structure for the client must be used instead. If the client's
address is an IPv4 address, either this field or the socket address structure
can be used.

+16 Pointer to the 2-byte client port number. Valid only when the 4-byte client
IP address is not x'FFFFFFFF'.

+20 Pointer to the 4-byte character string with current directory type: MVS or
z/OS UNIX (left-aligned).

+24 Pointer to a buffer containing the current directory value. The first 2 bytes
hold the length of the remaining buffer.

+28 Pointer to the 4-character byte field containing the current file type (SEQ,
JES, SQL) left-aligned.

+32 Pointer to the 3-character byte field containing the current FTP reply code.

704 z/OS V2R1.0 Communications Server: IP Configuration Reference

+36 Pointer to buffer containing the last line of the FTP reply. The first 2 bytes
contain the length of the remaining buffer.

+40 Pointer to the 4-byte field containing the current FTP command code.

+44 Pointer to the 1-character byte field containing the current CONDDISP
setting: C for catalog, D for delete.

+48 Pointer to the 4-byte binary field with close reason code:
v 0 — Transfer completed normally.
v 4 — Transfer completed with errors; see FTP reply code and text string.
v 8 — Transfer completed with socket communication errors; transfer is

ended and no response can be sent to client.
v 12 — Transfer aborted after data connection was established.
v 16 — Transfer aborted with SQL file errors after data connection was

established.

+52 Pointer to a buffer containing the name of the data set or z/OS UNIX file
just retrieved or stored. The first two bytes hold the length of the
remainder, and the remainder of the buffer (up to 1023 bytes) holds any
additional path specification beyond the current working directory and the
file name.

+56 Pointer to two contiguous words containing the bytes transferred during
execution of the current FTP command. The first word holds the number
of gigabytes transferred. The second word holds the number of bytes
transferred in addition to the number of gigabytes transferred. The number
of bytes value (word 2) can be up to 4 gigabytes.

+60 Pointer to a copy of the socket address structure for the client's control
connection. This area is mapped by the SOCKADDR DSECT found in the
sample exit. The FAMILY field denotes whether the structure contains an
IPv4 or an IPv6 address. When the family is AF_INET, the structure
contains an IPv4 address. When the FAMILY is AF_INET6, you must
inspect the address itself to determine whether it is an IPv6 address or an
IPv4 mapped IPv6 address.

+64 Pointer to a copy of the socket address structure for the server's control
connection. This area is mapped by the SOCKADDR DSECT found in the
sample exit. The FAMILY field denotes whether the structure contains an
IPv4 or an IPv6 address. When the family is AF_INET, the structure
contains an IPv4 address. When the FAMILY is AF_INET6, you must
inspect the address itself to determine whether it is an IPv6 address or an
IPv4 mapped IPv6 address.

+68 Pointer to a buffer containing a 2-byte length followed by the session
identifier created by the daemon when the connection was first established
for this session. The identifier has a maximum length of 14 bytes and is
unique within this instance of the server.

+72 Pointer to a 256-byte scratchpad buffer, which can be used to pass
information between user exits. All exits receive a pointer to this buffer
except FTCHKIP and FTCHKPWD. FTP does not query or alter the
contents of the scratchpad at any time. The extended tracing (DUMP)
identifier of the scratchpad is 87. If extended tracing of the scratchpad is
requested, the contents are dumped after execution of the user exit.

+76 Pointer to a 1-byte description of the confidence level in successful
completion of a transfer. Possible values are:

Chapter 18. File Transfer Protocol 705

X'00' Confidence level is High. No errors were detected on the inbound
transfer

X'01' Confidence level is NoEOF due to a missing EOF marker in an
inbound file being transferred using STRUCTURE RECORD,
MODE B, or MODE C.

X'02' Confidence level is Low because the client did not respond after
the inbound transfer or another error was reported. Low overrides
NoEOF if both conditions are present.

X'03' Confidence level is Unknown because this is an outbound transfer.
An outbound transfer reports a confidence level of Low if an error
occurs shutting down the data connection. Otherwise, outbound
transfers are reported as Unknown even if no error was detected
because not all checks can be done for outbound transfers

X'04' Confidence level checking is not active. See “CHKCONFIDENCE
statement (FTP client and server) statement” on page 760.

+80 Pointer to a buffer containing the complete text of the server reply
that was sent to the client. The first two bytes contain the length of
the remaining buffer.

When the length of the remaining buffer is 0, FTP could not obtain
sufficient storage to hold the complete text of the server reply. You
can obtain the last line of the reply by inspecting the parameter at
offset x'36'.

The FTCHKIP user exit
FTCHKIP is called at the initial stage of login or whenever the user issues an
OPEN command to open a new connection. The IP and PORT addresses of the
local and remote hosts are passed to the user exit. The user exit can use them to
determine whether the remote host's control connection should be canceled. The
message 421 User Exit rejects open for connection is sent to the user if the
connection is denied. The following parameter list is passed to FTCHKIP.

Offset Value

+0 Pointer to the word with the return code

+4 Pointer to a word containing the number of following parameters (7)

+8 Pointer to the fullword remote IP address. If the client's address is an IPv6
address, this field points to a word containing x'FFFFFFFF' and the passed
socket address structure for the client must be used instead. If the client's
address is an IPv4 address, either this field or the socket address structure
can be used.

+12 Pointer to the halfword remote port number. Valid only when the fullword
remote IP address is not x'FFFFFFFF'.

+16 Pointer to the fullword local IP address. If the server's address is an IPv6
address, this field points to a word containing x'FFFFFFFF' and the passed
socket address structure for the server should be used instead. If the
server's address is an IPv4 address, either this field or the socket address
structure can be used.

+20 Pointer to the halfword local port number. Valid only when the fullword
local IP address is not x'FFFFFFFF'.

+24 Pointer to a copy of the socket address structure for the client's control

706 z/OS V2R1.0 Communications Server: IP Configuration Reference

connection. This area is mapped by the SOCKADDR DSECT found in the
sample exit. The FAMILY field denotes whether the structure contains an
IPv4 or an IPv6 address. When the family is AF_INET, the structure
contains an IPv4 address. When the FAMILY is AF_INET6, you must
inspect the address itself to determine whether it is an IPv6 address or an
IPv4 mapped IPv6 address.

+28 Pointer to a copy of the socket address structure for the server's control
connection. This area is mapped by the SOCKADDR DSECT found in the
sample exit. The FAMILY field denotes whether the structure contains an
IPv4 or an IPv6 address. When the family is AF_INET, the structure
contains an IPv4 address. When the FAMILY is AF_INET6, you must
inspect the address itself to determine whether it is an IPv6 address or an
IPv4 mapped IPv6 address.

+32 Pointer to a buffer containing a 2-byte length followed by the session
identifier created by the daemon when the connection was first established
for this session. The identifier has a maximum length of 14 bytes and is
unique within this instance of the server.

FTCHKIP has been placed before the user logs in, and if access is denied, the user
receives a message and the control connection is severed. This message comes at a
point when most clients expect to continue with the login process by sending the
user ID and password. Even though it is possible, some FTP clients might not
expect a 421 message at this point, but it is the most appropriate place for this exit.

The FTCHKPWD user exit
The FTP server calls the FTCHKPWD exit after the server receives the user ID and
password from the FTP client, but before the server uses the password to
authenticate the user logging in. When the user logs in anonymously, and you
have coded ANONYMOUSLEVEL 3 in the server's FTP.DATA, and the server
prompts the user for an email address, the FTP server calls this exit:
v after the server receives the USER command,
v and again after it receives the PASS command.

The exit has the option of rejecting the attempt to log in to the FTP server. The
reply Login attempt by ’<user>’ rejected by user exit is sent to the user if the
exit rejects the request to log in to the FTP server. The following parameter list is
passed to FTCHKPWD.

Offset Value

+0 Pointer to the word with the return code

Requirement: The FTCHKPWD exit routine must set the return code to a
nonzero value to reject the attempt to log in. The FTCHKPWD exit routine
must set the return code to zero to permit the user to continue logging in.

+4 Pointer to a word containing the number of following parameters (8)

+8 Pointer to the 8-byte ID of the user logging in

+12 Pointer to the 8-byte password of the user logging in

Results:

v The password is passed without alteration to the exit routine when one
of the following situations occurs:
– You have enabled RACF mixed case password support

Chapter 18. File Transfer Protocol 707

– Your security product is not RACF, but it uses the RACF SAF
interface to indicate that mixed passwords are enabled.

Otherwise, the password is translated to uppercase before it is passed to
the exit routine.

v If the user logs in with a password phrase, this parameter is set to the
first eight characters of the password phrase.

Tip: The password or entire password phrase is also passed to the exit as
the parameter at offset +36.

+16 Pointer to a buffer containing a field that is 2 bytes in length followed by
the user data

See “ANONYMOUS (FTP server) statement” on page 738 for more
information about this field.

+20 Pointer to a word containing the total number of bad passwords entered
during this session

+24 Pointer to a copy of the socket address structure for the client's control
connection. This area is mapped by the SOCKADDR DSECT found in the
sample exit. The FAMILY field denotes whether the structure contains an
IPv4 or an IPv6 address. When the family is AF_INET, the structure
contains an IPv4 address. When the FAMILY is AF_INET6, you must
inspect the address itself to determine whether it is an IPv6 address or an
IPv4 mapped IPv6 address.

+28 Pointer to a copy of the socket address structure for the server's control
connection. This area is mapped by the SOCKADDR DSECT found in the
sample exit. The FAMILY field denotes whether the structure contains an
IPv4 or an IPv6 address. When the family is AF_INET, the structure
contains an IPv4 address. When the FAMILY is AF_INET6, you must
inspect the address itself to determine whether it is an IPv6 address or an
IPv4 mapped IPv6 address.

+32 Pointer to a buffer containing a field that is 2 bytes in length followed by
the session identifier that was created by the daemon when the connection
was first established for this session. The identifier has a maximum length
of 14 bytes and is unique within this instance of the server.

+36 Pointer to a buffer containing a field that is 2 bytes in length followed by
the password or password phrase the user entered to log in to the FTP
server.

Notes:

v When PASSPHRASE FALSE is configured in FTP.DATA of the server, the
pointed buffer consists of a 2-byte field, which contains zeros, and is
followed by 100 blanks.

v When PASSPHRASE TRUE is configured in FTP.DATA of the server, the
pointed buffer consists of a 2-byte field, which contains the length of the
password or password phrase, and is followed by a 100-byte field. The
100-byte field contains the password or password phrase that is used to
log in to FTP and is right-padded with blanks that are up to 100
characters in length.

The FTCHKJES user exit
FTCHKJES is called if the server is in FILETYPE=JES mode and the client tries to
submit a job. The exit can allow or refuse the job to be submitted to the JES

708 z/OS V2R1.0 Communications Server: IP Configuration Reference

internal reader based on any criteria passed to the exit. For example, the exit can
look for a USER= parameter on the JOB statement and check it against the client’s
user ID. The reply 550 User Exit refuses this job to be submitted by userid is
sent to the user if the remote job submission is denied. The following parameter
list is passed to FTCHKJES.

Offset Value

+0 Pointer to the word with the return code

+4 Pointer to a word containing the number of following parameters (13)

+8 Pointer to the 8-character user ID that is logged on

+12 Pointer to the buffer containing the current logical record being submitted

+16 Pointer to a word with the number of bytes in the buffer

+20 Pointer to a word containing the JES LRECL being used

+24 Pointer to a word containing the logical record number

+28 Pointer to a word containing the total number of bytes transferred so far

+32 Pointer to a word containing the unique client ID

+36 Pointer to a word containing the JES RECFM (0 for fixed, 1 for variable)

+40 Pointer to a word containing the JES user exit anchor. (One possible use of
this anchor is to provide the exit routine with a location to store the
address of a persistent storage area for handling multiple calls.)

+44 Pointer to a copy of the socket address structure for the client's control
connection. This area is mapped by the SOCKADDR DSECT found in the
sample exit. The FAMILY field denotes whether the structure contains an
IPv4 or an IPv6 address. When the family is AF_INET, the structure
contains an IPv4 address. When the FAMILY is AF_INET6, you must
inspect the address itself to determine whether it is an IPv6 address or an
IPv4 mapped IPv6 address.

+48 Pointer to a copy of the socket address structure for the server's control
connection. This area is mapped by the SOCKADDR DSECT found in the
sample exit. The FAMILY field denotes whether the structure contains an
IPv4 or an IPv6 address. When the family is AF_INET, the structure
contains an IPv4 address. When the FAMILY is AF_INET6, you must
inspect the address itself to determine whether it is an IPv6 address or an
IPv4 mapped IPv6 address.

+52 Pointer to a buffer containing a 2-byte length followed by the session
identifier created by the daemon when the connection was first established
for this session. The identifier is unique within this instance of the daemon.
It is included in messages written to SYSLOG and can be used similarly by
the exit. It is preferred over the similar client ID found at +32 in the
parameter list.

+56 Pointer to a 256-byte scratchpad buffer, which can be used to pass
information between user exits. All exits receive a pointer to this buffer,
except FTCHKIP and FTCHKPWD. FTP does not query or alter the
contents of the scratchpad at any time. The extended tracing (DUMP)
identifier of the scratchpad is 87. If extended tracing of the scratchpad is
requested, the contents are dumped after execution of the user exit.

Chapter 18. File Transfer Protocol 709

The return code word is initialized to 0 so the user exit can return without
changing it if there is a correct return code. Any other return code denies access to
the resource in question.

The FTP server SMF user exit
To access the (preferred) type 119 FTP SMF records, use the system-wide SMF user
exits IEFU83 and IEFU85. See z/OS MVS System Management Facilities (SMF) for
more information. For the FTP client, IEFU85 SMF exit is invoked, and for the FTP
server, IEFU83 SMF exit is invoked.

Restriction: This exit is called for type 118 records only.

Tip: Some FTP type 119 records are available to the NMI SYSTCPSM programming
interface. See the information about real time SMF data NMI (SYSTCPSM) record
formats in z/OS Communications Server: IP Programmer's Guide and Reference.

Type 118 SMF record types to be written are based on the SMFCONFIG statement
in SMF.DATA. The FTP server SMF user exit is called before a matching type 118
SMF record is written to the SYS1.MANx data set. The user exit allows site-specific
modifications to the record and can prevent the record's being written to the
SYS1.MANx data set.

To enable the exit, include the SMFEXIT statement in the FTP.DATA data set.

Requirement: The routine must be named FTPSMFEX and placed in an
installation-defined link library or an APF-authorized data set defined by a
STEPLIB DD statement in the FTPD cataloged procedure. FTP calls the SMF user
exit before each type 118 SMF record is written.

On entry to FTPSMFEX, register 1 contains a pointer to the following 2-word
parameter list:

Offset Value

0 Pointer to the return code

4 Pointer to the type 118 SMF record

Prior to calling the SMF user exit, the return code is set to 0. A return code of 0
specifies that the SMF record is written. To suppress writing the SMF record to the
SYS1.MANx data set, the user exit must change the return code to a nonzero value.

FTP client user exits
The FTP client uses user exits to provide security to enable the administrator to
control the FTP commands that are sent to the server or to monitor replies that are
sent from the FTP server. For example, an administrator can perform the following
actions:
v Protect some data sets, which a user has access to, from being transferred from

the z/OS host.
v Inspect or modify the names of data sets that are specified on file transfer

subcommands by end users.
v End an FTP client address space, if that client is in the process of sending an

unauthorized FTP command.
v Inspect each reply from the FTP server and, if certain replies are received, end

the client.

710 z/OS V2R1.0 Communications Server: IP Configuration Reference

Restrictions:

v User exit routines must be in a cataloged data set which is APF-authorized. The
data set must be made available to the FTP client via standard z/OS load
module search, such as adding the data set to the LNKLIST or via STEPLIB.

v User exit routines must be reentrant.
v User exit routines should be written in Assembler Language. Standard linkage

conventions must be used. See z/OS MVS Programming: Assembler Services
Guide for the linkage conventions.
Restriction: User exit routines can be written in C, but C exit routines cannot
return an exit reason code. If necessary, you can return a message in the optional
message field to display the reason code.

v User exit routines are invoked in TCB mode, program problem state, with
AMODE(31). If the user exit routine changes a setting, it must restore it before
returning to the caller.

v User exit routines must communicate the result of their processing back to FTP
client by setting a return code in register 15 and a reason code in register 0 (in
case of a non-zero return code) before returning to the caller.

v FTP client user exits are not supported when the FTP client is invoked in an
environment in which the FTP client cannot be executed as an authorized
program or command. For example, FTP client user exits are not supported in
the dynamic TSO environment that the IKJTSOEV service builds.

The parameter list that is passed to the user exit routine is an array of pointers to
values. The first word of the parameter list points to a word that contains the
number of parameters that follow. This helps you to handle any future releases
that might increase the number of parameters in these parameter lists. The FTP
client passes the TCP connection ID to each user exit. The TCP connection ID
parameter uniquely identifies a control connection, and remains the same for all
user exit calls that are associated with a specific control connection. You can use
the TCP connection ID to correlate user exit calls.

To install your user exit routines, associate them with the defined user exit by
using either of these methods:
v The EXIT statement of the PROGxx parmlib member. The EXIT statement allows

an installation to add exit routines to an exit. At IPL, you can use PROG=xx to
specify the particular PROGxx parmlib member that the system is to use. For
example, you can specify:
EXIT ADD EXITNAME(EZAFCCMD) MODNAME(CSFTPEX1)

v The SETPROG EXIT operator command. This command performs the same
functions as the EXIT statement of the PROGxx parmlib member. For example,
you can specify:
SETPROG EXIT, ADD, EXITNAME=EZAFCCMD, MODNAME=CSFTPEX1

For more information about user exits installation, see Exit Routines - Using
Dynamic Exit Services in z/OS MVS Programming: Authorized Assembler Services
Guide.

Dynamic exit services (DES) allows multiple exit routines to be run when a user
exit is called. Multiple user exit routines mean that an exit routine called earlier in
the sequence can end the client or the current command before the remaining exit
routines are called. In that case, no remaining exit routines are called.

Chapter 18. File Transfer Protocol 711

|
|
|
|

Multiple exit routines also mean that another exit routine might modify your
output before the FTP client can apply it, and might modify the input from the
FTP client before your exit routine receives it. Use caution when creating tokens or
handles based on input parameters to avoid conflicts with other user exit routines.

Restriction: FTP cannot control the call sequence of the multiple exit routines. Do
not assume your exit routine is called in any particular sequence, such as first or
last.

See the detailed information about the following user exits:
v “The EZAFCCMD user exit”
v “The EZAFCREP user exit” on page 718
v “Using both EZAFCCMD and EZAFCREP user exits” on page 720

Sample client user exits
You can find user exit samples in hlq.SEZAINST(EZAFCEXT). EZAFCEXT is a JCL
file. It creates user exit routine load modules. When the JCL is submitted, it creates
four load modules. EZAFCCMD and EZAFCREP are user exit routines.
EZAFCCOM and ASMTSYSL are assistant load modules that are called by the
EZAFCCMD and EZAFCREP user exit routines.

Table 43. User exit samples

Load module Language Description

EZAFCCMD Assembler EZAFCCMD works in conjunction with the EZAFCREP.
These two exits maintain a shared storage area where the
FTP session state is maintained. The EZAFCCMD
maintains information in the shared session data area
based on which commands are being sent to the server.
When a file transfer has completed successfully, a message
is written to syslogD.

EZAFCREP Assembler EZAFCREP works in conjunction with the EZAFCCMD.
These two exits maintain a shared storage area where the
FTP session state is maintained. EZAFCREP analyzes the
replies to the commands that were sent to the server and
parses information from a select set of replies. When a file
transfer has completed successfully, a message is written
to syslogD.

EZAFCCOM Assembler EZAFCCOM is called from both of these exits during
initialization. EZAFCCOM contains common code for the
EZAFCCMD (EZAFCCMD) and EZAFCREP (EZAFCREP)
FTP client exit routines.

ASMTSYSL Assembler ASMTSYSL provides an interface for writing messages to
z/OS syslogD from non-C programs.

The EZAFCCMD user exit
The EZAFCCMD user exit is called by the FTP client before each command is sent
to the FTP server. It can be used to inspect an FTP command, modify the
arguments of an FTP command, reject an FTP command, or end the FTP client
before the command is sent to the server.

The following table is the parameter list that is passed to the EZAFCCMD user
exit:

712 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 44. Parameter list passed to the EZAFCCMD user exit

+ Offset
(decimal) Value

0 Pointer to a binary fullword that contains the number of parameters that
follow (15).

4 Pointer to the 8-byte TCP connection ID. This is a character field. The TCP
connection ID parameter identifies a control connection, and remains the
same for all user exit calls that are associated with a specific control
connection.

8 Pointer to a 256-byte buffer that contains a 2-byte field followed by the
remote FTP user ID. The first two bytes hold the length of the remote FTP
user ID. The buffer is padded with NULLs.

12 Pointer to an 8-byte buffer that contains the FTP command that is being
sent to the server. The buffer is padded with blanks.

16 Pointer to a 5122-byte buffer that contains a 2-byte field followed by the
arguments of the FTP command reported at offset 12. The first two bytes
hold the length of the FTP command arguments. This buffer is padded
with NULLs.

20 A 4-byte character string with the current local FTP client directory type:
MVS or z/OS UNIX file system (left-aligned). The buffer is padded with
blanks.

24 A 4-byte character string with the local UNIX file type: FILE or FIFO. The
buffer is padded with blanks.

28 Pointer to a 1026-byte buffer that contains a 2-byte field followed by the
current local directory. The first two bytes of the buffer hold the length of
the current local directory. The buffer is padded with NULLs.

32 Pointer to a 1026-byte buffer that contains a 2-byte field followed by the
fully qualified local MVS data set name or the absolute path name of the
local z/OS UNIX file. The first two bytes hold the length of the MVS data
set name or path name. The value of the length is set to zero when the
command is not associated with a local MVS data set name or z/OS UNIX
file.

Chapter 18. File Transfer Protocol 713

Table 44. Parameter list passed to the EZAFCCMD user exit (continued)

+ Offset
(decimal) Value

36 Pointer to a 2-byte length field followed by a buffer containing the local
FTP client configuration options (See note 1 following this table). The
length field is set to the length of the buffer that follows. The
configuration options come from the z/OS FTP client default
configuration, the z/OS FTP client START parameters, and the z/OS FTP
client FTP.DATA file or data set. Data in the buffer is in the format of
2-byte binary total length2-byte binary lengthconfig_option = config_value, and
is printable EBCDIC apart from the length field. The 2-byte length field
does not include the length field itself. When you reach a length field with
the value zero, there are no more entries in the buffer. The buffer is
updated when a configuration option is changed by the following
subcommands:

v LOCSITE

v MODE

v TYPE

v STRUCT

v ASCII

v BIG5

v BINARY

v BLOCK

v EBCDIC

v EUCKANJI

v HANGEUL

v IBMKANJI

v JIS78KJ

v JIS83KJ

v KSC5601

v SCHINESE

v TCHINESE

v UCS2

v SJISKANJI

v STREAM

v RECORD

v STRUCTURE

v CCC

v PROTECT

v PROTECT

v SAFE

v CLEAR

v PRIVATE

Requirement: Do not assume that a specific configuration option is always
located at the same offset in this buffer. You must scan the buffer on each
call to your exit routine to locate the specific option you are interested in.

714 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 44. Parameter list passed to the EZAFCCMD user exit (continued)

+ Offset
(decimal) Value

40 Pointer to a copy of the socket address structure for the client control
connection. This area is mapped by the SOCKADDR DSECT (See note 2
following this table).

The FAMILY field denotes whether the structure contains an IPv4
(Family=2, AF_INET) or an IPv6 (Family=19, AF_INET6) address. When
the family is AF_INET, the structure contains an IPv4 address. When the
FAMILY is AF_INET6, you must inspect the address to determine whether
it is an IPv6 address or an IPv4 mapped IPv6 address. See note 2
following this table for a sample layout of the socket address structure.

44 Pointer to a copy of the socket address structure for the server control
connection. This area is mapped by the SOCKADDR DSECT (See note 2
following this table).

The FAMILY field denotes whether the structure contains an IPv4
(Family=2, AF_INET) or an IPv6 (Family=19, AF_INET6) address. When
the family is AF_INET, the structure contains an IPv4 address. When the
FAMILY is AF_INET6, you must inspect the address to determine whether
it is an IPv6 address or an IPv4 mapped IPv6 address. See note 2
following this table for a sample layout of the socket address structure.

48 Pointer to a copy of the socket address structure for the SOCKS server
connection when the client connects to the FTP server through a SOCKS
server. This area is mapped by the SOCKADDR DSECT (See note 2
following this table). If no SOCKS server is used, the first two bytes of the
address structure will be set to X'0000'. The SOCKS server IP address is in
the AF_INET address family.

52 Pointer to a 40-byte buffer containing the socket APPLDATA for the
current control connection

The FTP client APPLDATA for the control connection contains security
related information for the control connection. For more information about
APPLDATA, see FTP Client Application Programming Interface (API) in
z/OS Communications Server: IP Programmer's Guide and Reference.

56 Pointer to a 5122-byte output buffer to return modified command
arguments. Your exit routine can modify the arguments that are passed to
the command by placing the modified arguments in this buffer. The first
two bytes must be initialized to the length of the modified command
arguments.

60 Pointer to a 71-byte buffer to return a message when the user exit routine
ends the FTP client or rejects a command. Your exit routine can place text
in this buffer to explain why it ended the FTP client or rejected the
command. This buffer is initialized to the blanks before each call to the
EZAFCCMD user exit.

Note:

1. The following sample illustrates how the local configuration options structure is
built:
H’16’,C’OPTION1 = VALUE1’,H’18’,C’OPTION2 = VALUE234’,,,,H’0’

2-bytes binary with the value 16, followed by a 16-byte character string
2-bytes binary with the value 18, followed by an 18-byte character string
2-byte binary with the value zero (no more options in the structure)

Chapter 18. File Transfer Protocol 715

All entries use a common format with the option name followed by a space,
followed by an equal sign (=), followed by another space, followed by the
value of the option.

2. Sample socket address structure layout (based upon the SOCKADDR structure
in SYS1.MACLIB(BPXYSOCK):
*
* ---
*
* Socket address structure
*
* ---
*
SOCKADDR DSECT
SOCKLEN DC AL1(0) *If FAM=2, this field is zero
* *If FAM=19, this field is the
* *length of the structure
SOCKFAM DC AL1(0) *Socket family
SOCKIPV4 EQU 2 *IPv4 socket structure
SOCKIPV6 EQU 19 *IPv6 socket structure
SOCKPORT DC AL2(0) *Port number
IPV4SOCK DS 0C
IPV4ADDR DC A(0) *IPv4 address

ORG IPV4SOCK
IPV6FLOW DC A(0) *IPv6 flow label
IPV6ADDR DC XL16’00’ *IPv6 address

ORG

The EZAFCCMD user exit can return the following return codes to the FTP client
in register 15:

RC=0 The exit is to send the command to server.

RC=4 The exit accepts the command but modifies the arguments.

RC=8 The exit rejects the command.

RC=12 The exit is to end the FTP client address space.

The EZAFCCMD user exit can also return a reason code to the FTP client in
register 0 if the return code in register 15 is not 0.

Results
v When user exit EZAFCCMD returns code 0, FTP continues processing the

command.
v When user exit EZAFCCMD returns code 4,

– If the arguments of the FTP command are modified, message EZA1532I is
displayed.

– The commands PASS and ACCT have security sensitive data in the command
arguments and the arguments are not passed to the user exit. However, the
exit is allowed to replace the arguments of the commands.

– The command ADAT has security sensitive data in the command argument
and the argument is not passed to the user exit. Message EZA1545I indicates
that the modified argument will be ignored.

– Because the FTP server and client must remain synchronized, changing the
arguments of the following commands leads to unpredictable results:
- AUTH
- EPRT
- EPSV

716 z/OS V2R1.0 Communications Server: IP Configuration Reference

- MODE
- PBSZ
- PORT
- PROT
- REST
- SITE
- STRU
- TYPE
- XLMT
- RETR during a load module transfer
- STOR during a load module transfer
Therefore, the changed arguments of these commands are ignored and an
EZA1545I message is displayed.

– If more than one exit routine is associated with this user exit, the FTP client
passes the modified arguments to the next user exit routine. If this is the only
exit routine associated with this user exit, or it is the last exit routine in the
calling sequence for this user exit, the FTP client sends the command with
modified arguments to the server.

v When user exit EZAFCCMD returns code 8,
– FTP logs the reason code in register 0 with message EZA1533I, but does not

interpret the reason code. The exit routine determines what the reason codes
means.

– If the exit routine returned a message in the 71-byte buffer provided at offset
64 in the EZAFCCMD parameter list, the FTP client displays message
EZA1556I before message EZA1533I to explain why the user exit routine
rejected the command. The client always displays message EZA1533I.

– The exit cannot reject the QUIT command, no matter whether the QUIT
command is from the QUIT subcommand or from the CLOSE subcommand.

– If more than one exit routine is associated with this user exit, the FTP client
stops calling exit routines for this command.

v When user exit EZAFCCMD returns code 12,
– FTP logs the reason code in register 0 with message EZA1546I, but does not

interpret the reason code . The exit routine determines what the reason codes
means.

– If the exit routine returned a message in the 71-byte buffer provided at offset
64 in the EZAFCCMD parameter list, the client displays message EZA1556I
before message EZA1546I to explain why the user exit routine ended the FTP
client. The client always displays message EZA1556I.

– The exit cannot end the FTP client when the QUIT command is from the
QUIT subcommand. However, the client always ends as part of QUIT
subcommand processing.

– The exit can end the FTP client when the QUIT command is from the CLOSE
subcommand.

– If more than one exit routine is associated with this user exit, the FTP client
stops calling exit routines for this command.

Examples

Example 1: If the EZAFCCM1 user exit routine is installed for the EZAFCCMD
user exit, EZAFCCM1 modifies the argument of the CWD command to ’/u/user1’:

Chapter 18. File Transfer Protocol 717

EZA1460I Command:
cd ’user1’
EZA1532I User exit EZAFCCMD module EZAFCCM1 modified the FTP command arguments
EZA1701I >>> CWD /u/user1
250 HFS directory /u/user1 is the current working directory.

Example 2: If the EZAFCCM2 user exit routine is installed for the EZAFCCMD
user exit, EZAFCCM2 rejects the PORT command:
EZA1460I Command:
ls
EZA1556I EZAFCCMD message: EZAFCCM2 Rejected the FTP command
EZA1533I User exit EZAFCCMD module EZAFCCM2 prevented user USER1 from sending co
mmand PORT - exit reason code x’00000004’ (4)
EZA1636I *** I can’t open a data-transfer connection:
EZZ9830I USER13 FTP failed - Cmd = 20(ls) Reply = n/a NX CEE RC = 2720

Example 3: If the EZAFCCM3 user exit routine is installed for the EZAFCCMD
user exit, EZAFCCM3 ends the FTP client:
EZA1460I Command:
get ’/u/user1/ftp.example’ ’/u/user2/ftp.example’
EZA1556I EZAFCCMD message: EZAFCCM3 canelled the FTP client
EZA1546I User exit EZAFCCMD module EZAFCCM3 ended the FTP client - exit reason c
ode x’00000004’ (4)
EZA1636I *** I can’t open a data-transfer connection:
EZA1701I >>> QUIT
221 Quit command received. Goodbye.

Example 4: Multiple user exit routines can be installed for the EZAFCCMD user
exit. The EZAFCCM4 and EZAFCCM5 user exit routines are installed for the
EZAFCCMD user exit. EZAFCCM4 modifies the argument of the LIST command
to ’/u/user2’ and EZAFCCM5 ends the FTP client when it receives the LIST
command:
EZA1460I Command:
dir ’/u/user1’
EZA1701I >>> PORT 9,42,105,183,4,31
200 Port request OK.
EZA1532I User exit EZAFCCMD module EZAFCCM4 modified the FTP command arguments
EZA1556I EZAFCCMD message: EZAFCCM5 cancelled the FTP client
EZA1546I User exit EZAFCCMD module EZAFCCM5 ended the FTP client - exit reason c
ode x’00000004’ (4)
EZZ9830I USER11 FTP failed - Cmd = 14(dir) Reply = 200 NX CEE RC = 2814
EZA1701I >>> QUIT
221 Quit command received. Goodbye.

The EZAFCREP user exit
The EZAFCREP user exit is called when the FTP client receives a single-line reply
or one line of a multiple line reply over the control connection that is sent from the
server. A user exit routine that you write for EZAFCREP can inspect the FTP server
reply, or end the FTP client after the FTP client receives a certain line of the reply
sent from the server.

The following table is the parameter list that is passed to the EZAFCREP user exit:

Table 45. Parameter list passed to the EZAFCREP user exit

+ Offset
(decimal) Value

0 Pointer to a binary fullword that contains the number of parameters that
follow (4).

718 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 45. Parameter list passed to the EZAFCREP user exit (continued)

+ Offset
(decimal) Value

4 Pointer to the 8-byte TCP connection ID. This is a character field. The TCP
connection ID parameter uniquely identifies a control connection, and will
remain the same for all user exit calls that are associated with a specific
control connection.

8 Pointer to a buffer that contains a 2-byte length field followed by the FTP
server reply line. The first two bytes hold the length of FTP server reply
line. The buffer is padded with NULLs.

12 Pointer to a 40-byte buffer containing the socket APPLDATA for the
current control connection.

For more information about APPLDATA, see FTP Client Application
Programming Interface (API) in z/OS Communications Server: IP
Programmer's Guide and Reference.

16 Pointer to a 71-byte buffer to return a message when the user exit routine
ends the FTP client. The user exit can put text in this buffer to explain
why it ends the FTP client. If the exit supplies text in this buffer, the FTP
client displays this text as message EZZ1556I. This buffer is initialized to
blanks before each call to the EZAFCREP user exit.

The EZAFCREP user exit can return the following return codes to the FTP client in
register 15:

RC=0 The exit accepts the reply.

RC=12 The exit ends the FTP client address space.

It can also return a reason code to the FTP client in register 0 if the return code in
register 15 is not 0.

Results
v When the EZAFCREP user exit returns code 0, FTP continues processing the

reply.
v When the EZAFCREP user exit returns code 12,

– FTP logs the reason code in register 0 with message EZA1546I, but does not
interpret the reason code. The exit routine determines what the reason codes
means.

– If the exit routine places a message into the 71-byte buffer, the client displays
it as message EZA1556I before message EZA1546I. The client always displays
message EZA1556I.

– If the input to the EZAFCREP user exit was one line of a multiple line reply,
FTP flushes the remaining lines of the reply from its receive buffer, but does
not print them.

– The FTP client ignores the return code if the EZAFCREP user exit decides to
end the FTP client for a reply to the QUIT command.

– The FTP client ignores the return code if the EZAFCREP user exit decides to
end the FTP client for a reply with the reply code in the range 100 - 199.

Example

If the user exit EZAFCREP is active, it is called for each line of a reply as it is
received, and FTP displays each line of reply as it is received. If the user exit ends

Chapter 18. File Transfer Protocol 719

the FTP client in the middle of a multiple line reply, the FTP client will flush all
remaining lines of the reply but not print them. The user exit will not be called
again for this instance of the FTP client.

Suppose two user exit routines EZAFCRE1 and EZAFCRE2 are both installed for
user exit EZAFCREP. EZAFCRE1 ends the FTP client when it receives the reply
’214 – A fully qualified directory name (specified in quotes or’ from
subcommand help server cwd, EZAFCRE2 accepts any FTP reply. Suppose the
operator installs the two exit routines in this order: first EZAFCRE1, then
EZAFCRE2.
help server cwd
EZA1701I >>> HELP CWD
EZA1582I The foreign server has this help:
214-CWD directory-name: changes the working directory to this directory-name
214-by appending it to the present working directory name.
214-A fully qualified directory name (specified in quotes or
EZA1556I EZAFCREP message: EZAFCRE1 Cancelled the FTP client
EZA1546I User exit EZAFCREP module EZAFCRE1 ended the FTP client - exit reason c
ode x’00000001’ (1)
EZA1701I >>> QUIT
221 Quit command received. Goodbye.

The log on the system console:
- 00.07.42 EZAFCRE1 - Input - Offset: +00 Value: 00000003
- 00.07.42 EZAFCRE1 - Input - Offset: +04 Value: 00000088
- 00.07.42 EZAFCRE1 - Input - Offset: +08 Value: 214-CWD directory-

- name: changes the working directory to this directory-name
- 00.07.42 EZAFCRE2 - Input - Offset: +00 Value: 00000003
- 00.07.42 EZAFCRE2 - Input - Offset: +04 Value: 00000088
- 00.07.42 EZAFCRE2 - Input - Offset: +08 Value: 214-CWD directory-
- name: changes the working directory to this directory-name
- 00.07.42 EZAFCRE1 - Input - Offset: +00 Value: 00000003
- 00.07.42 EZAFCRE1 - Input - Offset: +04 Value: 00000088
- 00.07.42 EZAFCRE1 - Input - Offset: +08 Value: 214-by appending it

- to the present working directory name.
- 00.07.42 EZAFCRE2 - Input - Offset: +00 Value: 00000003
- 00.07.42 EZAFCRE2 - Input - Offset: +04 Value: 00000088
- 00.07.42 EZAFCRE2 - Input - Offset: +08 Value: 214-by appending it
- to the present working directory name.
- 00.07.42 EZAFCRE1 - Input - Offset: +00 Value: 00000003
- 00.07.42 EZAFCRE1 - Input - Offset: +04 Value: 00000088
- 00.07.42 EZAFCRE1 - Input - Offset: +08 Value: 214-A fully qualified
- directory name (specified in quotes or

In this example, the EZAFCRE1 user exit routine is called three times and the
EZAFCRE2 user exit routine is called two times. If EZAFCRE1 ends the FTP client
for a certain reply:
v EZAFCRE2 will not be called again for this invocation of EZAFCREP.
v EZAFCREP will not be called again for this FTP client.

The FTP client will flush remaining reply lines from command HELP CWD. The
FTP client sends a QUIT command to the server.

Using both EZAFCCMD and EZAFCREP user exits
Results:

v Usually a call to user exit EZAFCCMD will have a corresponding call to user
exit EZAFCREP, but not in the following situations:
– If the EZAFCCMD user exit decides to reject the command or end the FTP

client, the command will not be sent to the server, so the EZAFCREP user exit
will not be called.

720 z/OS V2R1.0 Communications Server: IP Configuration Reference

– You can install more than one EZAFCREP exit routine. If one of the exit
routines decides to end the client, the remaining EZAFCREP exit routines will
not be called for the corresponding EZAFCCMD call.

v Usually a call to the EZAFCREP user exit will have a corresponding call to user
exit EZAFCCMD, but not when the FTP server sends the Good Morning reply
220 to the client before the first command flows to the server from the client.
The EZAFCREP user exit is called, but there is no corresponding EZAFCCMD
call.

Requirements:

v Your EZAFCCMD exit routine must handle the possibility that your EZAFCREP
exit routine will not be called.

v Your EZAFCREP exit routine must handle the possibility that your EZAFCCMD
exit was not called.

FTP configuration statements in FTP.DATA
The FTP.DATA configuration data set is optional. The FTP daemon searches for this
data set during initialization.

The FTP server search order is:
1. A data set specified by the //SYSFTPD DD statement
2. ftpserve_job_name.FTP.DATA
3. /etc/ftp.data
4. SYS1.TCPPARMS(FTPDATA)
5. hlq.FTP.DATA data set

As shown in Table 46, the FTP client uses one of the following search orders to
obtain the local site parameter values:

Table 46. FTP client search orders

TSO shell UNIX System Services shell

1. -f

2. SYSFTPD DD statement

3. tso_prefix.FTP.DATA

4. userid.FTP.DATA

5. /etc/ftp.data

6. SYS1.TCPPARMS(FTPDATA) data set

7. tcpip_hlq.FTP.DATA file

1. -f

2. $HOME/ftp.data

3. userid.FTP.DATA

4. /etc/ftp.data

5. SYS1.TCPPARMS(FTPDATA) data set

6. tcpip_hlq.FTP.DATA file

If you use an MVS data set, this data set should have a logical record length of 80
and a block size that is a multiple of 80. If a UNIX file (such as /etc/ftp.data) is
the configuration input, ensure that there are no trailing blanks on the
configuration statements, because some specifications might be rejected if trailing
blanks are present.

FTP parameters have default values, and you can change these defaults using
statements in the FTP.DATA configuration data set. It is not necessary to include all
statements in the FTP.DATA data set.

Chapter 18. File Transfer Protocol 721

Guideline: Only include the statements if the default value is not what you want,
because the default is used for any statement not included in the FTP.DATA data
set.

The following names are shipped samples of the FTP.DATA data sets:
v SEZAINST(FTPSDATA) for the server
v SEZAINST(FTCDATA) for the client

The FTP client and server read FTP.DATA once at initialization. Therefore, any
changes you make to FTP.DATA are not applied until the next time you start the
FTP client and server.

Some FTP server parameters can be changed during an FTP session by issuing the
SITE command from the FTP client. Likewise, FTP client parameters can be
changed during an FTP session by issuing the subcommand from the FTP client.
See the z/OS Communications Server: IP User's Guide and Commands for more
information about the SITE command and the locsite subcommand.

Data set attributes play a significant role in FTP performance.

Guidelines: If your environment permits, tune both BLKSIZE and LRECL
according to the following guidelines:
v Use a value at or slightly below half of a DASD track as the block size. The

half-track threshold for IBM 3380 DASD is 23 476 and for IBM 3390 DASD is
27 998.

v Use FB as the data set allocation format.
v Use cached DASD controllers.
v If your environment permits, use a preallocated data set for FTP transfer

operations into MVS.

Summary of FTP client and server configuration statements
The statements for the FTP.DATA data set are summarized in Table 47 on page 723
and explained in detail in “FTP.DATA data set statements” on page 737.

Guidelines:

v Use separate FTP.DATA data sets for the FTP client and the FTP server if you are
specifying any conflicting statements.

v When you share the FTP server FTP.DATA data set with the FTP client,
understand that some of the values for the statements in the FTP.DATA data set
have different meanings in the two environments. If the files are shared, error
messages could be generated or values that are not valid could be used for each
client using the FTP.DATA data set containing server-only statements.

See “FTP configuration statements in FTP.DATA” on page 721 for more information
about the search order for both the client and server.

722 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 47. Summary of FTP client and server configuration statements

Statement Description Applies to
client,
server, or
both

See

ACCESSERRORMSGS Allow FTP Server to
send detailed login
failure replies.

Server “ACCESSERRORMSGS (FTP server)
statement” on page 737

ADMINEMAILADDRESS Specify a value to use
with %E keyword for
banner text.

Server “ADMINEMAILADDRESS (FTP
server) statement” on page 738

ANONYMOUS Allow a remote user to
issue USER
ANONYMOUS without
supplying a logon
password.

Server “ANONYMOUS (FTP server)
statement” on page 738

ANONYMOUSFILEACCESS Specify the type of files
(MVS or z/OS UNIX)
that anonymous clients
are allowed to access.

Server “ANONYMOUSFILEACCESS (FTP
server) statement” on page 741

ANONYMOUSFILETYPEJES Control access to the
FILETYPE SITE keyword
of anonymous users
when
ANONYMOUSLEVEL 3
or greater is specified.

Server “ANONYMOUSFILETYPEJES (FTP
server) statement” on page 742

ANONYMOUSFILETYPESEQ Control access to the
FILETYPE SITE keyword
of anonymous users
when
ANONYMOUSLEVEL 3
or greater is specified.

Server “ANONYMOUSFILETYPESEQ (FTP
server) statement” on page 743

ANONYMOUSFILETYPESQL Control access to the
FILETYPE SITE keyword
of anonymous users
when
ANONYMOUSLEVEL 3
or greater is specified.

Server “ANONYMOUSFILETYPESQL (FTP
server) statement” on page 743

ANONYMOUSFTPLOGGING Specify whether the FTP
server should log FTP
session activity for
anonymous users.

Server “ANONYMOUSFTPLOGGING (FTP
server) statement” on page 744

ANONYMOUSHFSDIRMODE Specify the mode bits
used for directories
created by anonymous
users.

Server “ANONYMOUSHFSDIRMODE (FTP
server) statement” on page 745

ANONYMOUSHFSFILEMODE Specify the mode bits
used when storing files
created by anonymous
users.

Server “ANONYMOUSHFSFILEMODE (FTP
server) statement” on page 746

ANONYMOUSHFSINFO Specify an anonymous
user z/OS UNIX
directory information file
mask.

Server “ANONYMOUSHFSINFO (FTP
server) statement” on page 747

Chapter 18. File Transfer Protocol 723

Table 47. Summary of FTP client and server configuration statements (continued)

Statement Description Applies to
client,
server, or
both

See

ANONYMOUSLEVEL Specify the type of
anonymous access
permitted to users who
issue USER
ANONYMOUS.

Server “ANONYMOUSLEVEL (FTP server)
statement” on page 748

ANONYMOUSLOGINMSG Specify anonymous user
login messages.

Server “ANONYMOUSLOGINMSG (FTP
server) statement” on page 750

ANONYMOUSMVSINFO Specify anonymous user
MVS information file
(LLQ).

Server “ANONYMOUSMVSINFO (FTP
server) statement” on page 751

APPLNAME Specify the FTP server
application name.

Server “APPLNAME (FTP server)
statement” on page 752

ASATRANS Specify how print
control characters should
be handled.

Both “ASATRANS (FTP client and server)
statement” on page 753

AUTOMOUNT Specify whether to
mount DASD volumes
containing data sets to
be accessed.

Both “AUTOMOUNT (FTP client and
server) statement” on page 753

AUTORECALL Automatically recall data
sets migrated by the
storage manager.

Both “AUTORECALL (FTP client and
server) statement” on page 754

AUTOTAPEMOUNT Specify whether to
mount tape volumes
containing data sets to
be accessed.

Both “AUTOTAPEMOUNT (FTP client and
server) statement” on page 755

BANNER Request that a welcome
banner is displayed
immediately after a new
connection is
established.

Server “BANNER (FTP server) statement”
on page 756

BLKSIZE Specify the block size of
newly allocated data
sets.

Both “BLKSIZE (FTP client and server)
statement” on page 756

BUFNO Specify the number of
access method buffers.

Both “BUFNO (FTP client and server)
statement” on page 758

CCONNTIME Defines the amount of
time to wait after
attempting to close a
control connection before
terminating it and
reporting an error.

Client “CCONNTIME (FTP client)
statement” on page 758

CCTRANS Specify the SBCS
translation table to be
used for the control
connection.

Client “CCTRANS (FTP client) statement”
on page 758

CCXLATE Specify the translation
table data set for the
control connection.

Server “CCXLATE (FTP server) statement”
on page 759

724 z/OS V2R1.0 Communications Server: IP Configuration Reference

||
|
||
|

Table 47. Summary of FTP client and server configuration statements (continued)

Statement Description Applies to
client,
server, or
both

See

CHKCONFIDENCE Specify that the FTP
client or server checks
and reports the
confidence level in the
successful completion of
file transfers.

Both “CHKCONFIDENCE statement (FTP
client and server) statement” on page
760

CHKPTINT Specify the checkpoint
interval when FTP is the
sending site in a file
transfer request.

Both “CHKPTINT (FTP client and server)
statement” on page 762

CHKPTPREFIX Used to determine the
hlq for the checkpoint
file.

Client “CHKPTPREFIX (FTP client)
statement” on page 764

CIPHERSUITE Specify the name of a
CipherSuite that is used
during the TLS
handshake.

Both “CIPHERSUITE (FTP client and
server) statement” on page 765

CLIENTERRCODES Specify whether FTP
return codes are to be
converted to client error
codes.

Client “CLIENTERRCODES (FTP client)
statement” on page 767

CONDDISP Specify whether FTP
should keep or delete a
new data set or file
when a file transfer ends
prematurely.

Both “CONDDISP (FTP client and server)
statement” on page 768

CTRLCONN Specify code set to be
used for the control
connection.

Both “CTRLCONN (FTP client and server)
statement” on page 769

DATACLASS Specify the
SMS-managed data class
as defined by your
organization for FTP.

Both “DATACLASS (FTP client and server)
statement” on page 770

DATACTTIME Specify the amount time
that the client waits after
attempting to send or
receive data before
terminating the
connection and reporting
an error to the user.

Client “DATACTTIME (FTP client)
statement” on page 772

DATAKEEPALIVE Specify the data
connection keepalive
timer.

Both “DATAKEEPALIVE (FTP client and
server) statement” on page 773

DATATIMEOUT Specify the time that the
server waits for a
response to a send or for
the completion of a
passive connection.

Server “DATATIMEOUT (FTP server)
statement” on page 774

Chapter 18. File Transfer Protocol 725

Table 47. Summary of FTP client and server configuration statements (continued)

Statement Description Applies to
client,
server, or
both

See

DB2 Specify the name of the
DB2 subsystem.

Both “DB2 (FTP client and server)
statement” on page 774

DB2PLAN Specify the name of the
DB2 plan to be used by
FTP.

Both “DB2PLAN (FTP cilent and server)
statement” on page 775

DBSUB Specify whether
substitution is allowed
for double-byte file data
that cannot be
translated.

Both “DBSUB (FTP client and server)
statement” on page 776

DCBDSN Specify a data set to be
used as a model for
allocation of new data
sets.

Both “DCBDSN (FTP client and server)
statement” on page 776

DCONNTIME Specify the amount of
time to wait after
attempting to close a
data transfer before
terminating the
connection and reporting
an error.

Both “DCONNTIME (FTP client and
server) statement” on page 777

DEBUG Specify to activate a
specific trace type.

Both “DEBUG (FTP client and server)
statement” on page 778

DEBUGONSITE Specify whether an FTP
client is allowed to enter
the SITE DEBUG
command to change
general tracing options.

Server “DEBUGONSITE (FTP server)
statement” on page 780

DEST Specify the NJE
destination to which the
files are routed when
you enter a PUT
subcommand.

Server “DEST (FTP server) statement” on
page 780

DIRECTORY Specify the number of
directory blocks to be
allocated for the
directory of a PDS.

Both “DIRECTORY (FTP client and server)
statement” on page 781

DIRECTORYMODE Specify how to treat the
data set qualifiers below
the current directory.

Both “DIRECTORYMODE (FTP client and
server) statement” on page 782

DSNTYPE Specify the data set
name type for new
physical sequential data
sets.

Both “DSNTYPE (FTP client and server)
statement” on page 783

726 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 47. Summary of FTP client and server configuration statements (continued)

Statement Description Applies to
client,
server, or
both

See

DSWAITTIME Specify the number of
minutes that FTP tries to
access an MVS data set
that could not be
obtained because
another job or process
was holding the data set.

Both “DSWAITTIME (FTP client and
server) statement” on page 784

DSWAITTIMEREPLY Specify how often to
send the following reply
message to the client
while the FTP server is
waiting for access to an
MVS data set.

Server “DSWAITTIMEREPLY (FTP server)
statement” on page 785

DUMP Specify to activate an
extended trace dump ID.

Both “DUMP (FTP client and server)
statement” on page 786

DUMPONSITE Specify whether an FTP
client is allowed to enter
the SITE DUMP
command to change the
extended tracing options.

Server “DUMPONSITE (FTP server)
statement” on page 787

EATTR Specify whether new
data sets can have
extended attributes and
whether the data sets
can reside in the EAS.

Both “EATTR (FTP client and server)
statement” on page 788

EMAILADDRCHECK Control the extent to
which the FTP server
validates e-mail
addresses entered by
FTP clients while
logging in to the FTP
server.

Server “EMAILADDRCHECK (FTP server)
statement” on page 789

ENCODING Specify the type of data
encoding on the
network.

Both “ENCODING (FTP client and server)
statement” on page 790

EPSV4 Direct the FTP client to
use EPSV and EPRT
commands on IPv4
sessions.

Client “EPSV4 (FTP client) statement” on
page 791

EXTENSIONS Enable FTP to recognize
extensions to FTP that
are not described in RFC
959.

Both “EXTENSIONS (FTP client and
server) statement” on page 792

FIFOIOTIME Specify the FIFOIOTIME
statement to set a
timeout for reads and
writes to a z/OS UNIX
named pipe.

Both “FIFOIOTIME (FTP client and server)
statement” on page 794

Chapter 18. File Transfer Protocol 727

Table 47. Summary of FTP client and server configuration statements (continued)

Statement Description Applies to
client,
server, or
both

See

FIFOOPENTIME Specify the
FIFOOPENTIME
statement to define the
length of time that FTP
waits after attempting to
open a z/OS UNIX
named pipe before
reporting an error.

Both “FIFOOPENTIME (FTP client and
server) statement” on page 795

FILETYPE Specify the operational
mode of FTP.

Both “FILETYPE (FTP client and server)
statement” on page 796

FTPKEEPALIVE Specify the control
connection keepalive
timer value in seconds.

Both “FTPKEEPALIVE (FTP client and
server) statement” on page 797

FTPLOGGING Specify whether the FTP
server logs FTP session
activity for unknown
users (that is, users that
are not anonymous
users).

Server “FTPLOGGING (FTP server)
statement” on page 797

FWFRIENDLY Specify how data
connections are to be set
up between the client
and the server.

Client “FWFRIENDLY (FTP client)
statement” on page 799

HFSINFO Specify a file containing
welcome messages
specific to each FTP
server directory visited
by an FTP client.

Server “HFSINFO (FTP server) statement”
on page 799

INACTIVE Set the inactivity timer
to a specified number of
seconds.

Server “INACTIVE (FTP Server) statement”
on page 800

INACTTIME Specify the amount of
time to wait for an
expected response from
the server, on either the
control or the data
connection, before
closing the session. Data
transfer times that
exceed this value does
not cause session
termination unless the
time between data
packet arrivals exceeds
this value.

Client “INACTTIME (FTP client) statement”
on page 801

ISPFSTATS Allow FTP to create and
maintain statistics for
partitioned data set
members.

Both “ISPFSTATS (FTP client and server)
statement” on page 802

728 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 47. Summary of FTP client and server configuration statements (continued)

Statement Description Applies to
client,
server, or
both

See

JESENTRYLIMIT Specify how many JES
entries can be displayed
at one time with the
LIST or NLST command.

Server “JESENTRYLIMIT (FTP server)
statement” on page 802

JESGETBYDSN Specify how to treat the
foreign file name on a
GET command when
FILETYPE=JES is
specified.

Server “JESGETBYDSN (FTP server)
statement” on page 803

JESINTERFACELEVEL Specify the JES interface
level.

Server “JESINTERFACELEVEL (FTP server)
statement” on page 804

JESLRECL Specify the record length
of the job being
submitted.

Server “JESLRECL (FTP server) statement”
on page 806

JESPUTGETTO Specify the number of
seconds for the JES
PutGet timeout.

Server “JESPUTGETTO (FTP server)
statement” on page 807

JESRECFM Specify the record
format of the job being
submitted.

Server “JESRECFM (FTP server) statement”
on page 808

KEYRING Define the key ring that
contains the certificate to
be used during the TLS
handshake.

Both “KEYRING (FTP client and server)
statement” on page 808

LISTLEVEL Specifies the format of
the LIST command reply.

Server “LISTLEVEL (FTP server) statement”
on page 809

LISTSUBDIR Specify whether
subdirectories of the
parent directory are
listed when FTP
generates a list of files.

Both “LISTSUBDIR (FTP client and server)
statement” on page 810

LOGCLIENTERR Specify to activate client
error logging feature.

Client “LOGCLIENTERR (FTP client)
statement” on page 812

LOGINMSG Specify the file
containing messages to
be displayed to FTP
clients when they have
successfully logged in.

Server “LOGINMSG (FTP server) statement”
on page 813

LRECL Specify the size of the
records in a data set.

Both “LRECL (FTP client and server)
statement” on page 813

MBDATACONN Specify the multibyte
data translation code
pages for data
connections.

Both “MBDATACONN (FTP client and
server) statement” on page 815

MBREQUIRELASTEOL Specify whether FTP
requires the last record
of incoming multibyte
files to end with the FTP
standard EOL sequence.

Both “MBREQUIRELASTEOL (FTP client
and server) statement” on page 816

Chapter 18. File Transfer Protocol 729

Table 47. Summary of FTP client and server configuration statements (continued)

Statement Description Applies to
client,
server, or
both

See

MBSENDEOL Specify to the FTP client
or server what EOL
sequence to use when
the ENcoding value is
MBCS.

Both “MBSENDEOL statement (FTP client
and server) statement” on page 817

MGMTCLASS Specify the SMS
management class to be
assigned to newly
allocated data sets.

Both “MGMTCLASS (FTP client and
server) statement” on page 818

MIGRATEVOL Specify the volume ID
for migrated data sets
not under the control of
IBM Storage
Management Systems.

Both “MIGRATEVOL (FTP client and
server) statement” on page 819

MVSINFO Specify the MVS data
sets whose contents are
to be returned to the
FTP client and displayed
to the end user when a
user changes directories.

Server “MVSINFO (FTP server) statement”
on page 820

MVSURLKEY Specify a token that
users can enter as part of
an FTP URL to encode
an MVS data set name.

Server “MVSURLKEY (FTP server)
statement” on page 820

MYOPENTIME Specify the amount of
time to wait for a session
to open before
terminating the attempt
and reporting an error.

Client “MYOPENTIME (FTP client)
statement” on page 821

NETRCLEVEL Specify how the FTP
client searches the
NETRC data set for FTP
server hostnames.

Client “NETRCLEVEL (FTP client)
statement” on page 821

NONSWAPD Specify whether the FTP
daemon is swappable.

Server “NONSWAPD (FTP server)
statement” on page 822

PASSIVEDATACONN Specify to direct the
server to verify the peer
IP address of the data
socket is the client's IP
address.

Server “PASSIVEDATACONN (FTP server)
statement” on page 823

PASSIVEDATAPORTS Specify a range of port
numbers for the FTP
server to use as listening
data socket ports.

Server “PASSIVEDATAPORTS (FTP server)
statement” on page 824

PASSIVEIGNOREADDR Specify to direct the FTP
client to ignore the IP
address returned from
the server on the PASV
reply on IPv4 sessions.

Client “PASSIVEIGNOREADDR (FTP client)
statement” on page 824

730 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 47. Summary of FTP client and server configuration statements (continued)

Statement Description Applies to
client,
server, or
both

See

PDSTYPE Specify the type of MVS
directories (PDS or
PDSE) FTP should
allocate.

Both “PDSTYPE (FTP client and server)
statement” on page 826

PORTCOMMAND Specify whether the
PORT and EPRT
commands are accepted
or rejected.

Server “PORTCOMMAND (FTP server)
statement” on page 827

PORTCOMMANDIPADDR Specify the server to
accept only PORT or
EPRT commands whose
IP address matches that
of the client.

Server “PORTCOMMANDIPADDR (FTP
server) statement” on page 828

PORTCOMMANDPORT Specify what range or
port values the server
accepts as a parameter
for the PORT and EPRT
commands.

Server “PORTCOMMANDPORT (FTP
server) statement” on page 828

PORTOFENTRY4 Specify the port of entry
resource class to use for
IPv4 login clients.

Server “PORTOFENTRY4 (FTP server)
statement” on page 829

PRIMARY Specify the number of
tracks, blocks, or
cylinders for primary
allocation.

Both “PRIMARY (FTP client and server)
statement” on page 830

PROGRESS Specify the interval
between progress report
messages generated by
the FTP client during an
inbound or outbound
file transfer.

Client “PROGRESS (FTP client) statement”
on page 831

QUOTESOVERRIDE Specify use of single
quotation marks in file
name.

Both “QUOTESOVERRIDE (FTP client and
server) statement” on page 831

RDW Specify whether RDWs
are discarded upon
retrieval.

Both “RDW (FTP client and server)
statement” on page 832

RECFM Specify the record
format of a data set.

Both “RECFM (FTP client and server)
statement” on page 833

REMOVEINBEOF Remove UNIX EOF on
inbound ASCII transfers.

Both “REMOVEINBEOF (FTP client and
server) statement” on page 835

REPLY226 (FTP server) Direct the FTP server to
reply to the FTP client
with reply code 226
instead of reply code
250.

Server “REPLY226 (FTP server) statement”
on page 835

REPLYSECURITYLEVEL Specify level of secure
information returned in
FTP replies.

Server “REPLYSECURITYLEVEL (FTP
server) statement” on page 836

Chapter 18. File Transfer Protocol 731

Table 47. Summary of FTP client and server configuration statements (continued)

Statement Description Applies to
client,
server, or
both

See

RESTGET Specify whether the
checkpoint data set is
opened for a GET
request.

Client “RESTGET (FTP client) statement” on
page 837

RESTPUT Specify whether the
server supports
checkpoint and restart
processing when
receiving data (put
operation).

Server “RESTPUT (FTP server) statement”
on page 838

RETPD Specify the number of
days a newly allocated
data set should be
retained.

Both “RETPD (FTP client and server)
statement” on page 838

SBDATACONN Specify single-byte data
translation for the data
connection.

Both “SBDATACONN (FTP client and
server) statement” on page 840

SBSENDEOL Specify to the FTP client
or server what end of
line (EOL sequence to
use for outbound ASCII
file transfer when the
ENcoding value is SBCS.

Both “SBSENDEOL statement (FTP client
and server) statement” on page 841

SBSUB Specifies whether a
substitution is allowed
for a data byte that
cannot be translated.

Both “SBSUB (FTP client and server)
statement” on page 843

SBSUBCHAR Specifies the single-byte
substitution character for
untranslatable data
characters.

Both “SBSUBCHAR (FTP client and
server) statement” on page 844

SBTRANS Specify the SBCS
translation table to be
used for the data
connection.

Client “SBTRANS (FTP client) statement”
on page 844

SECONDARY Specify the number of
tracks, blocks, or
cylinders for secondary
allocation.

Both “SECONDARY (FTP client and
server) statement” on page 845

SECURE_CTRLCONN Specify the
SECURE_CTRLCONN
statement to specify the
minimum level of
security allowed for the
control connection.

Both “SECURE_CTRLCONN (FTP client
and server) statement” on page 846

732 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 47. Summary of FTP client and server configuration statements (continued)

Statement Description Applies to
client,
server, or
both

See

SECURE_DATACONN Specify the
SECURE_DATACONN
statement to specify the
minimum level of
security required on the
data connection.

Both “SECURE_DATACONN (FTP client
and server) statement” on page 847

SECURE_FTP Specify the
SECURE_FTP statement
to specify whether
authentication is
required.

Both “SECURE_FTP (FTP client and
server) statement” on page 849

SECURE_HOSTNAME Specify the
SECURE_HOSTNAME
statement to specify
whether the client
verifies the host name in
the server's certificate.

Client “SECURE_HOSTNAME (FTP client)
statement” on page 851

SECUREIMPLICITZOS Specify when the
security of the session
should be negotiated for
implicit TLS connections.

Both “SECUREIMPLICITZOS (FTP client
and server) statement” on page 851

SECURE_LOGIN Specify the
SECURE_LOGIN
statement to set the
authorization level
required for users.

Server “SECURE_LOGIN (FTP server)
statement” on page 852

SECURE_MECHANISM Specifies which security
mechanism the client
uses.

Client “SECURE_MECHANISM (FTP client)
statement” on page 854

SECURE_PASSWORD Specify whether a
password is required by
the FTP server for an
TLS protected session.

Server “SECURE_PASSWORD (FTP server)
statement” on page 855

SECURE_PASSWORD_KERBEROS Specify whether a
password is required for
a Kerberos protected
session.

Server “SECURE_PASSWORD_KERBEROS
(FTP server) statement” on page 856

SECURE_PBSZ Specify the maximum
size of the encoded data
blocks sent during file
transfer.

Both “SECURE_PBSZ (FTP client and
server) statement” on page 858

SEQNUMSUPPORT Specify that sequence
numbers in files
designated by the
ddname INPUT are
ignored.

Client “SEQNUMSUPPORT (FTP client)
statement” on page 859

SMF Specify the default SMF
record subtype for all
SMF records.

Server “SMF (FTP server) statement” on
page 860

Chapter 18. File Transfer Protocol 733

Table 47. Summary of FTP client and server configuration statements (continued)

Statement Description Applies to
client,
server, or
both

See

SMFAPPE Specify the SMF record
subtype for the APPEND
subcommand.

Server “SMFAPPE (FTP server) statement”
on page 862

SMFDCFG Specify a type 119 SMF
record of subtype 71 is
collected for the FTP
daemon configuration
information when the
FTP daemon starts.

Server “SMFDCFG (FTP server) statement”
on page 863

SMFDEL Specify the SMF record
subtype for the DELETE
subcommand.

Server “SMFDEL (FTP server) statement” on
page 864

SMFEXIT Call the FTPSMFEX user
exit routine.

Server “SMFEXIT (FTP server) statement”
on page 865

SMFJES Collect SMF records
when FILETYPE is JES.

Server “SMFJES (FTP server) statement” on
page 866

SMFLOGN Specify the SMF record
subtype when recording
logon failures.

Server “SMFLOGN (FTP server) statement”
on page 867

SMFREN Specify the SMF record
subtype for the
RENAME subcommand.

Server “SMFREN (FTP server) statement” on
page 868

SMFRETR Specify the SMF record
subtype for the RETR
subcommand.

Server “SMFRETR (FTP server) statement”
on page 869

SMFSQL Collect SMF records
when FILETYPE is SQL.

Server “SMFSQL (FTP server) statement” on
page 870

SMFSTOR Specify the SMF record
subtype for the STOR
and STOU
subcommands.

Server “SMFSTOR (FTP server) statement”
on page 871

SOCKSCONFIGFILE Specify the SOCKS
server configuration file
the FTP client uses to
determine which FTP
servers require SOCKS
protocols.

Client “SOCKSCONFIGFILE (FTP client)
statement” on page 872

SPACETYPE Specify whether newly
allocated data sets are
allocated in blocks,
cylinders, or tracks.

Both “SPACETYPE (FTP client and server)
statement” on page 873

SPREAD Specify output in
spreadsheet format when
file type is SQL.

Both “SPREAD (FTP client and server)
statement” on page 874

SQLCOL Specify the column
headings of the output
file.

Both “SQLCOL (FTP client and server)
statement” on page 874

734 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 47. Summary of FTP client and server configuration statements (continued)

Statement Description Applies to
client,
server, or
both

See

SSLV3 Control whether SSLV3
is enabled for
connections that are
secured using TLS
implemented by FTP.

Both “SSLV3 (FTP client and server
connection) statement” on page 875

STARTDIRECTORY Specify which file
system is used initially
when a new user logs in.

Server “STARTDIRECTORY (FTP server)
statement” on page 876

STORCLASS Specify the
SMS-managed storage
class for the FTP server.

Both “STORCLASS (FTP client and server)
statement” on page 877

SUPPRESSIGNOREWARNINGS Instruct FTP not to issue
message EZYFT47I
whenever it ignores a
statement coded in
FTP.DATA

Both “SUPPRESSIGNOREWARNINGS
(FTP client and server) statement” on
page 877

TAPEREADSTREAM Specify whether to use a
more efficient read path
(read as stream) to
retrieve tape data sets
from the server.

Server “TAPEREADSTREAM (FTP server)
statement” on page 878

TLSMECHANISM Specify how TLS
security is implemented.

Both “TLSMECHANISM (FTP client and
server) statement” on page 879

TLSPORT Set the secure port on
which the FTP client or
the FTP server implicitly
protects the FTP session
with TLS.

Both “TLSPORT (FTP client and server)
statement” on page 880

TLSRFCLEVEL Specify the level of RFC
4217 (Securing FTP with
TLS) that FTP supports.

Both “TLSRFCLEVEL (FTP client and
server) statement” on page 880

TLSTIMEOUT Specify the maximum
time between full TLS
handshakes.

Both “TLSTIMEOUT (FTP client and
server) statement” on page 882

TRACE Start tracing. Both “TRACE (FTP client and server)
statement” on page 882

TRACECAPI Define a control for
tracing for a user-written
program that uses the
callable API interface for
the z/OS FTP client.

Client “TRACECAPI (FTP client) statement”
on page 883

TRAILINGBLANKS Include trailing blanks in
fixed format data sets
when retrieved.

Both “TRAILINGBLANKS (FTP client and
server) statement” on page 883

TRUNCATE Allow truncating records
that are longer than
LRECL.

Both “TRUNCATE (FTP client and server)
statement” on page 884

Chapter 18. File Transfer Protocol 735

||
|
|
|
|

||
|

Table 47. Summary of FTP client and server configuration statements (continued)

Statement Description Applies to
client,
server, or
both

See

UCOUNT Specify the unit count
for new data set
allocations.

Both “UCOUNT (FTP client and server)
statement” on page 885

UCSHOSTCS Specify the EBCDIC
code set to be used for
data conversion to or
from Unicode.

Both “UCSHOSTCS (FTP client and server)
statement” on page 886

UCSSUB Specify whether
Unicode-to-EBCDIC
conversion should use
the EBCDIC substitution
character or cause the
data transfer to be
terminated if a Unicode
character cannot be
converted to a character
in the target EBCDIC
code set.

Both “UCSSUB (FTP client and server)
statement” on page 886

UCSTRUNC Specify whether the
transfer of Unicode data
should be aborted if
truncation occurs at the
MVS host.

Both “UCSTRUNC (FTP client and server)
statement” on page 887

UMASK Specify the file mode
creation mask.

Both “UMASK (FTP client and server)
statement” on page 887

UNICODEFILESYSTEMBOM Specify whether to add a
Byte Order Mark (BOM)
to a file stored in the
local file system when
the file system code
page is UNICODE.

Both “UNICODEFILESYSTEMBOM (FTP
client and server) statement” on page
888

UNITNAME Specify the unit type for
allocation of new data
sets.

Both “UNITNAME (FTP client and server)
statement” on page 890

UNIXFILETYPE Specify the
UNIXFILETYPE
statement in the FTP
server and client to
indicate whether to treat
z/OS UNIX file system
files as regular files or as
z/OS UNIX named
pipes during file
transfer.

Both “UNIXFILETYPE (FTP client and
server) statement” on page 891

VCOUNT Specify the volume
count for allocation of
new data sets.

Both “VCOUNT (FTP client and server)
statement” on page 892

736 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 47. Summary of FTP client and server configuration statements (continued)

Statement Description Applies to
client,
server, or
both

See

VERIFYUSER Specify whether the FTP
server should verify
whether a user
attempting to log into
FTP has been granted
access to the server's
port profile in the
SERVAUTH class.

Server “VERIFYUSER (FTP server)
statement” on page 893

VOLUME Specify the volume serial
number or numbers for
allocation of new data
sets.

Both “VOLUME (FTP client and server)
statement” on page 895

WRAPRECORD Specify whether data is
wrapped or truncated if
no new-line character is
encountered before the
logical record length is
reached.

Both “WRAPRECORD (FTP client and
server) statement” on page 896

WRTAPEFASTIO Allow write to tape of
ASCII stream data to use
BSAM I/O routines.

Both “WRTAPEFASTIO (FTP client and
server) statement” on page 896

XLATE Specify the translation
table data set for the
data connection.

Server “XLATE (FTP server) statement” on
page 897

FTP.DATA data set statements
These topics cover, in detail, the statements you can use in the FTP.DATA data set.
Each statement heading identifies whether the statement applies to FTP client,
server, or both.

ACCESSERRORMSGS (FTP server) statement

Use the ACCESSERRORMSGS statement to allow FTP server to send detailed login
failure replies to an FTP client.

Syntax

��
ACCESSERRORMSGS FALSE
ACCESSERRORMSGS

FALSE
TRUE

��

Parameters

FALSE
Do not send detailed login failure replies to an FTP client.

Chapter 18. File Transfer Protocol 737

TRUE
Send detailed login failure replies to an FTP client.

Examples

To send detailed login failure replies to an FTP client, use the following code:
ACCESSERRORMSGS TRUE

Usage notes

The text of detailed login failure replies can be traced using the ACC parameter of
the DEBUG statement. You do not need to code ACCESSERRORMSGS TRUE to
trace this information.

Related topics
v “DEBUG (FTP client and server) statement” on page 778

ADMINEMAILADDRESS (FTP server) statement

Use the ADMINEMAILADDRESS statement to specify a value to substitute for the
%E keyword used for the data set or file specified in the BANNER, LOGINMSG,
ANONYMOUSMVSINFO, ANONYMOUSLOGINMSG, HFSINFO, and MVSINFO
statements. This statement is used to specify the e-mail address of the FTP server
administrator.

Syntax

�� ADMINEMAILADDRESS value ��

Parameters

value
The e-mail address displayed when %E is used in BANNER, LOGINMSG,
ANONYMOUSMVSINFO, ANONYMOUSLOGINMSG, HFSINFO, and
MVSINFO displays.

Examples
ADMINEMAILADDRESS TheWebMaster@Myhost.MyCompany.Com

Related topics
v “ANONYMOUSHFSINFO (FTP server) statement” on page 747
v “ANONYMOUSMVSINFO (FTP server) statement” on page 751
v “ANONYMOUSLOGINMSG (FTP server) statement” on page 750
v “BANNER (FTP server) statement” on page 756
v “HFSINFO (FTP server) statement” on page 799
v “LOGINMSG (FTP server) statement” on page 813
v “MVSINFO (FTP server) statement” on page 820

ANONYMOUS (FTP server) statement

Use the ANONYMOUS statement to allow remote users to log in as anonymous
users.

738 z/OS V2R1.0 Communications Server: IP Configuration Reference

You can use ANONYMOUSLEVEL, ANONYMOUSFILEACCESS,
ANONYMOUSFILETYPESQL, ANONYMOUSFILETYPEJES, and
ANONYMOUSFILETYPESEQ in conjunction with ANONYMOUSLEVEL 3 to
restrict anonymous users' access to data sets and files. Use
ANONYMOUSMVSINFO, ANONYMOUSLOGINMSG, ANONYMOUSHFSINFO,
and EMAILADDRCHECK to customize the FTP session for anonymous users.

Requirement: If you choose an ANONYMOUSLEVEL value greater than 1, and
you choose STARTDIRECTORY HFS, you must create an anonymous directory
structure in the z/OS UNIX. For more information about configuring anonymous
logins, see z/OS Communications Server: IP Configuration Guide.

Syntax

�� ANONYMOUS
user_id
user_id/password
user_id/SURROGATE

��

Parameters

user_id
The security access facility (SAF) identity of the anonymous user. When a
remote user enters ANONYMOUS as a user ID, the FTP server treats the login
request as though the specified user_id was entered instead of ANONYMOUS.
The user is prompted for the password to user_id. If the user enters the correct
password or password phrase, the user is logged in as the specified user_id.

If you are using RACF, the system builds a user accessor environment element
(ACEE), and the ANONYMOUS user has access to any resources available to
the specified user ID.

user_id/password
The security access facility (SAF) identity and password the FTP server uses
for anonymous user. When a remote user enters ANONYMOUS as the user ID,
the FTP server treats the login request as though the specified user_id was
entered instead of ANONYMOUS. The FTP server automatically provides the
password for the specified user_id and the user is logged in as the specified
user_id. If you are using RACF, the system builds the user ACEE for the
specified user_id and the ANONYMOUS user has authorized access to the
same resources as the specified user_id.

If ANONYMOUSLEVEL 3 is specified, the behavior is different. See
“ANONYMOUSLEVEL (FTP server) statement” on page 748 for details.

Restriction: Do not code a password phrase as password.

user_id/SURROGATE

Allows a remote user to enter ANONYMOUS as a user ID. When
ANONYMOUS is entered as the user ID, the FTP server treats the login
request as though the specified user_ID was entered instead of ANONYMOUS.
The FTP Server calls RACF and checks if this user_ID is allowed to login
without a password or password phrase.

Requirement: In order to use this option, ANONYMOUSLEVEL must be
greater or equal to 3. See “ANONYMOUSLEVEL (FTP server) statement” on
page 748 for details.

Chapter 18. File Transfer Protocol 739

Examples

Allow a remote user to enter ANONYMOUS as a user ID and be connected to the
server system with the user ID of TERMABC:
ANONYMOUS TERMABC/ILLBBACK

Tip:

v If you code ANONYMOUSLEVEL 3 in FTP.DATA, you can code additional
statements to configure ANONYMOUS support and security. See Related topics
for more information.

Requirements:

v If you specify a user ID on the ANONYMOUS statement, that user ID must be
defined and have a z/OS UNIX segment defined or set to the default value.

v If you code the ANONYMOUS statement without a user ID, the user ID
ANONYMO must be defined and must have a z/OS UNIX segment defined or
set to the default value.

Results:

v If you code the ANONYMOUS statement without a user ID:
– The end user is not prompted for a password.
– If you are using the FTCHKPWD user exit,

- the exit is called with user ID ANONYMO and password *.
- If ANONYMOUSLEVEL 3 is coded in FTP.DATA and the FTP server

prompts the FTP client for an email address, the email address is passed to
the exit as the userdata parameter.

– The user ID ANONYMO and the STARTDIRECTORY statement in FTP.DATA
determine the initial working directory. See initial working directory
considerations at the z/OS FTP server in the z/OS Communications Server:
IP User's Guide and Commands for more information.

– The initial working directory is ANONYMO when the STARTDIRECTORY
MVS statement is coded in FTP.DATA.

– The initial working directory is the home directory for the ANONYMO user
ID when the STARTDIRECTORY HFS statement is coded in FTP.DATA.

– If you are using RACF, a user who logs in as 'anonymous' has access to any
resources accessible to the ANONYMO user ID.

v If you code the ANONYMOUS statement with a user ID, the user ID you coded
and the STARTDIRECTORY statement determine the initial working directory.
See initial working directory considerations at the z/OS FTP server in the z/OS
Communications Server: IP User's Guide and Commands for more information.

v There is no default for ANONYMOUS. If you do not code the ANONYMOUS
statement in FTP.DATA, users are not allowed to log in anonymously.

v See z/OS Communications Server: IP Configuration Guide for more information
about anonymous FTP logins.

Related topics:

v “ANONYMOUSLEVEL (FTP server) statement” on page 748
v “ANONYMOUSFILEACCESS (FTP server) statement” on page 741
v “ANONYMOUSFILETYPEJES (FTP server) statement” on page 742
v “ANONYMOUSHFSFILEMODE (FTP server) statement” on page 746
v “ANONYMOUSHFSDIRMODE (FTP server) statement” on page 745

740 z/OS V2R1.0 Communications Server: IP Configuration Reference

v “ANONYMOUSHFSINFO (FTP server) statement” on page 747
v “ANONYMOUSLOGINMSG (FTP server) statement” on page 750
v “ANONYMOUSMVSINFO (FTP server) statement” on page 751
v “ANONYMOUSFILETYPESEQ (FTP server) statement” on page 743
v “ANONYMOUSFILETYPESQL (FTP server) statement” on page 743
v “EMAILADDRCHECK (FTP server) statement” on page 789
v “STARTDIRECTORY (FTP server) statement” on page 876
v “The FTCHKPWD user exit” on page 707

ANONYMOUSFILEACCESS (FTP server) statement

Use ANONYMOUSFILEACCESS to set the type of files (MVS, z/OS UNIX, or
both) that anonymous users are allowed to access. If STARTDIRECTORY is HFS
and ANONYMOUSFILEACCESS is HFS, the anonymous user is not allowed to
access MVS data sets. If STARTDIRECTORY is MVS and
ANONYMOUSFILEACCESS is MVS, the anonymous user is not allowed to access
z/OS UNIX files. If STARTDIRECTORY and ANONYMOUSFILEACCESS
contradict each other, the anonymous user is not allowed to log in (the login fails).
A value of BOTH allows the anonymous user to switch back and forth between
MVS and z/OS UNIX data sets.

Restriction: ANONYMOUSFILEACCESS is valid only when ANONYMOUSLEVEL
3 or greater is specified.

Syntax

��
ANONYMOUSFILEACCESS HFS

ANONYMOUSFILEACCESS BOTH
MVS
HFS

��

Parameters

BOTH
Allows anonymous users to access both z/OS UNIX and MVS.

MVS
Allows anonymous users access to only MVS data sets.

HFS
Allows anonymous users access to only z/OS UNIX data sets. This is the
default.

Examples

Allow the anonymous users to access both MVS and z/OS UNIX files:
ANONYMOUSFILEACCESS BOTH

Usage notes

ANONYMOUSFILEACCESS is valid only when ANONYMOUSLEVEL 3 is
specified.

Chapter 18. File Transfer Protocol 741

Related topics
v “ANONYMOUS (FTP server) statement” on page 738
v “ANONYMOUSLEVEL (FTP server) statement” on page 748
v “ANONYMOUSHFSDIRMODE (FTP server) statement” on page 745
v “ANONYMOUSHFSFILEMODE (FTP server) statement” on page 746
v “STARTDIRECTORY (FTP server) statement” on page 876

ANONYMOUSFILETYPEJES (FTP server) statement

Use the ANONYMOUSFILETYPEJES statement to control the access of anonymous
users to the FTP server running in JES operation mode (FILETYPE=JES).

Restriction: The ANONYMOUSFILETYPEJES statement is recognized only when
ANYMOUSLEVEL 3 or greater is specified.

Syntax

��
ANONYMOUSFILETYPEJES FALSE

ANONYMOUSFILETYPEJES FALSE
TRUE

��

Parameters

TRUE
Anonymous users can log in to an FTP server running with the FILETYPE=JES
setting, and anonymous users can issue the SITE FILETYPE=JES command.

FALSE
Anonymous users cannot log in to an FTP server running with the
FILETYPE=JES setting, and anonymous users cannot issue the SITE
FILETYPE=JES command.

Examples

Set the anonymous environment to allow anonymous clients to enter SITE
FILETYPE=JES:
ANONYMOUSFILETYPEJES TRUE

Usage notes

If you specify the FILETYPE statement, its setting must be consistent with the
ANONYMOUSFILEYTPEJES setting or anonymous users are not able to log in to
FTP.

Related topics
v “ANONYMOUSFILETYPESEQ (FTP server) statement” on page 743
v “ANONYMOUSFILETYPESQL (FTP server) statement” on page 743
v “ANONYMOUSLEVEL (FTP server) statement” on page 748
v “FILETYPE (FTP client and server) statement” on page 796
v “JESGETBYDSN (FTP server) statement” on page 803

742 z/OS V2R1.0 Communications Server: IP Configuration Reference

ANONYMOUSFILETYPESEQ (FTP server) statement

Use the ANONYMOUSFILETYPESEQ statement to control the access of
anonymous users to the FTP server running in normal mode (FILETYPE=SEQ).
This statement is recognized only when ANONYMOUSLEVEL 3 or greater is
specified.

Syntax

��
ANONYMOUSFILETYPESEQ TRUE

ANONYMOUSFILETYPESEQ TRUE
FALSE

��

Parameters

TRUE
Anonymous users can log into an FTP server running with the FILETYPE=SEQ
setting, and anonymous users can issue the SITE FILETYPE=SEQ command.

FALSE
Anonymous users cannot log into an FTP server running with the
FILETYPE=SEQ setting, and anonymous users cannot issue the SITE
FILETYPE=SEQ command.

Examples

Set the anonymous environment to allow anonymous users to enter SITE
FILETYPE=SEQ:
ANONYMOUSFILETYPESEQ TRUE

Usage notes

Most FTP servers allow anonymous users to use filetype SEQ.

If you specify the FILETYPE statement in FTP.DATA, its setting must be consistent
with ANONYMOUSFILETYPESEQ or anonymous users are not able to log in to
FTP.

Related topics
v “ANONYMOUSFILETYPEJES (FTP server) statement” on page 742
v “ANONYMOUSFILETYPESQL (FTP server) statement”
v “ANONYMOUSLEVEL (FTP server) statement” on page 748
v “FILETYPE (FTP client and server) statement” on page 796

ANONYMOUSFILETYPESQL (FTP server) statement

Use the ANONYMOUSFILETYPESQL statement to control the access of
anonymous users to the FTP server running in SQL mode (FILETYPE=SQL).

Restriction: This statement is recognized only when ANONYMOUSLEVEL 3 or
greater is specified.

Chapter 18. File Transfer Protocol 743

Syntax

��
ANONYMOUSFILETYPESQL FALSE

ANONYMOUSFILETYPESQL FALSE
TRUE

��

Parameters

TRUE
Anonymous users can log into an FTP server running with the
FILETYPE=SQLsetting, and anonymous users can issue the SITE
FILETYPE=SQL command.

FALSE
Anonymous users cannot log into an FTP server running with the
FILETYPE=SQL setting, and anonymous users cannot issue the SITE
FILETYPE=SQL command.

Examples

Set the anonymous environment to allow anonymous users to enter SITE
FILETYPE=SQL:
ANONYMOUSFILETYPESQL TRUE

Usage notes

If you specify the FILETYPE statement, its setting must be consistent with the
ANONYMOUSFILEYTPESQL setting or anonymous users are not able to log in to
FTP.

Related topics
v “ANONYMOUSFILETYPEJES (FTP server) statement” on page 742
v “ANONYMOUSFILETYPESEQ (FTP server) statement” on page 743
v “ANONYMOUSLEVEL (FTP server) statement” on page 748
v “FILETYPE (FTP client and server) statement” on page 796

ANONYMOUSFTPLOGGING (FTP server) statement

Use the ANONYMOUSFTPLOGGING statement to indicate whether the FTP
server should log FTP server activity for an anonymous user. The following types
of activities are logged:
v Connectivity
v Authentication
v Access
v Allocation
v Deallocation
v Data transfer
v JES job submission
v SQL query
v Abnormal end

744 z/OS V2R1.0 Communications Server: IP Configuration Reference

The activities are logged in the SYSLOGD file. Each logging entry has a message
number.

Syntax

��
ANONYMOUSFTPLOGGING FALSE

ANONYMOUSFTPLOGGING TRUE
FALSE

��

Parameters

TRUE
The FTP server should log FTP session activity.

When ANONYMOUSFTPLOGGING is TRUE, a long delay in login processing
might occur because the FTP server issues a DNS query to resolve the remote
host IP address.

FALSE
The FTP server should not log FTP session activity.

Examples

To request that the FTP server log session activity for an anonymous user:
ANONYMOUSFTPLOGGING TRUE

Usage notes
v Each activity logging message has a message number within the range of

EZYFS50 to EZYFS95.
v ANONYMOUSFTPLOGGING controls logging for anonymous users.
v If ANONYMOUSFTPLOGGING is TRUE, connectivity, authentication, and

access activity log entries are made for all sessions because the server does not
know whether the login is anonymous or not.

Related topics

See “FTPLOGGING (FTP server) statement” on page 797 to control logging for a
non-anonymous user.

ANONYMOUSHFSDIRMODE (FTP server) statement

Use the ANONYMOUSHFSDIRMODE statement to specify the mode bits used for
directories created by anonymous users.

Restriction: This statement is recognized only when ANONYMOUSLEVEL 3 or
greater is specified.

Syntax

��
ANONYMOUSHFSDIRMODE 333

ANONYMOUSHFSDIRMODE nnn
��

Chapter 18. File Transfer Protocol 745

Parameters

nnn
The three octal digits that describe the mode bits. It is passed directly to
chmod() function to set the mode bits for directories created by anonymous
users.

Examples

To prevent anyone from listing new directories created by anonymous users, use
the following example.
ANONYMOUSHFSDIRMODE 333

Usage notes
v This statement is recognized only when ANONYMOUSFILEACCESS HFS or

ANONYMOUSFILEACCESS BOTH is specified.

Related topics
v “ANONYMOUSFILEACCESS (FTP server) statement” on page 741
v “ANONYMOUSHFSFILEMODE (FTP server) statement”
v “ANONYMOUSLEVEL (FTP server) statement” on page 748

ANONYMOUSHFSFILEMODE (FTP server) statement

Use the ANONYMOUSHFSFILEMODE statement to specify the mode bits used
when storing files created by anonymous users.

Restriction: This statement is recognized only when ANONYMOUSLEVEL 3 or
greater is specified. This statement has no meaning if ANONYMOUSLEVEL 3 is
not specified.

Syntax

��
ANONYMOUSHFSFILEMODE 000

ANONYMOUSHFSFILEMODE nnn
��

Parameters

nnn
The three octal digits describing the mode bits. It is passed directly to the
chmod() function to set the mode bits for files created by anonymous users.

Examples

To prevent anyone from accessing files written by anonymous users, use the
following example.
ANONYMOUSHFSFILEMODE 000

Usage notes
v This statement is recognized only when ANONYMOUSFILEACCESS HFS or

ANONYMOUSFILEACCESS BOTH is specified.

746 z/OS V2R1.0 Communications Server: IP Configuration Reference

Related topics
v “ANONYMOUSFILEACCESS (FTP server) statement” on page 741
v “ANONYMOUSHFSDIRMODE (FTP server) statement” on page 745
v “ANONYMOUSLEVEL (FTP server) statement” on page 748

ANONYMOUSHFSINFO (FTP server) statement

Use the ANONYMOUSHFSINFO statement to specify a file containing information
messages specific to each FTP server directory during an FTP login session.

Restriction: This statement affects only FTP clients logged in as anonymous users.

Syntax

�� ANONYMOUSHFSINFO file-mask ��

Parameters

file-mask
The file-mask is an z/OS UNIX file mask used to find a z/OS UNIX
information file for anonymous users. The file mask can contain wildcards or it
can be a full file name (for example, readme*). When a user changes
directories, a search is made with the specified mask. The contents of the first
file found is returned to the FTP client and is displayed to the end user. If no
file matches the specified mask, no information is displayed to the end user. If
multiple files satisfy a generic file-mask, the first is chosen.

Restriction: The generic file name only works when an asterisk (*) is at the end
of a character string.

Examples

Use the following example to display the contents of the first file matching
readme* in any z/OS UNIX directory to which an anonymous user changes. If the
directory has no files matching readme*, no messages are displayed.
ANONYMOUSHFSINFO readme*
; Anonymous HFS info file-mask
; login

Usage notes
v If an anonymous user changes to a directory containing no files matching the

file-mask, no information is displayed to the anonymous user.

Related topics
v “ADMINEMAILADDRESS (FTP server) statement” on page 738
v “ANONYMOUS (FTP server) statement” on page 738
v “ANONYMOUSMVSINFO (FTP server) statement” on page 751
v “BANNER (FTP server) statement” on page 756
v “HFSINFO (FTP server) statement” on page 799
v “MVSINFO (FTP server) statement” on page 820

Chapter 18. File Transfer Protocol 747

ANONYMOUSLEVEL (FTP server) statement

Use the ANONYMOUSLEVEL statement to set the type of access permitted to
users who log in as anonymous users.

Syntax

��
ANONYMOUSLEVEL 1

ANONYMOUSLEVEL 1
2
3

��

Parameters

1 Anonymous logins are as documented in the ANONYMOUS statement.
Anonymous users are not affected by the keywords and function of the
following:
v ANONYMOUSFILETYPESEQ
v ANONYMOUSFILETYPEJES
v ANONYMOUSFILETYPESQL
v ANONYMOUSFILEACCESS
v ANONYMOUSHFSFILEMODE
v ANONYMOUSHFSDIRMODE
v EMAILADDRCHECK

2 Anonymous logins are allowed as documented in “ANONYMOUS (FTP
server) statement” on page 738, except that the anonymous user's root
directory is set with the UNIX call chroot() to the anonymous userid home
directory. This confines the anonymous user's z/OS UNIX access to the
anonymous userID home directory and its subdirectories. A umask of 777 is
used for all files and directories created by anonymous users.

3 Anonymous logins are allowed as is documented in the ANONYMOUS
statement, but more control is given to customize access.

The FTP.DATA statements used to give this control are:
v ANONYMOUSFILETYPESEQ
v ANONYMOUSFILETYPEJES
v ANONYMOUSFILETYPESQL
v ANONYMOUSFILEACCESS
v ANONYMOUSHFSFILEMODE
v ANONYMOUSHFSDIRMODE

The UNIX call chroot() is used to set the anonymous user's root directory to
that user's home directory.

Instead of establishing a fixed UMASK for files and directories created by the
anonymous user, the permission bits for files and directories are as defined by
the ANONYMOUSHFSFILEMODE and ANONYMOUSHFSDIRMODE
statements.

FTP clients are not allowed to issue the USER command to enter or leave
anonymous login mode.

748 z/OS V2R1.0 Communications Server: IP Configuration Reference

The password prompting behavior for anonymous users is different than for
ANONYMOUSLEVEL 1 and 2. When the ANONYMOUS statement is coded
with no user ID or password, the FTP server prompts the user to enter an
e-mail address as a password. When the ANONYMOUS statement is coded
with a user ID, the FTP server prompts the user to enter a password, as
documented in “ANONYMOUS (FTP server) statement” on page 738. When
the ANONYMOUS statement is coded with a user ID and password, the user
is prompted to enter an e-mail address as a password. Control the degree of
e-mail address validation with the EMAILADDRCHECK password.

When customizing FTP server to support ANONYMOUS logins, FTP server
supports a way to avoid placing a plain-text password in the ANONYMOUS
statement by supporting a special parameter, SURROGATE. This is shown in
the following example:
ANONYMOUS userid/SURROGATE

For more information about anonymous logins, see z/OS Communications
Server: IP Configuration Guide or “ANONYMOUS (FTP server) statement” on
page 738.

Requirement: In order to support this function, the FTP user ID must be
defined to process users without passwords.

Examples

Set the anonymous environment to use controls for accessing different resources:
ANONYMOUSLEVEL 3

Usage notes
v For ANONYMOUSLEVEL 2 and greater, when STARTDIRECTORY is z/OS

UNIX, you must create a specific directory structure and contents within the
anonymous user's home directory. This directory structure is needed so the FTP
client maintains addressability to needed executable applications after the
chroot() is executed. See z/OS Communications Server: IP Configuration Guide
for details about creating the required directory structure.

v If you specify ANONYMOUSLEVEL 3 and either ANONYMOUS with no
parameters or ANONYMOUS with both user ID and password, the user is
prompted for an e-mail address to log in to FTP. The EMAILADDRCHECK
keyword controls the extent to which the e-mail address entered is validated.
See “EMAILADDRCHECK (FTP server) statement” on page 789 for more
information.

Related topics
v “ANONYMOUS (FTP server) statement” on page 738
v “ANONYMOUSHFSFILEMODE (FTP server) statement” on page 746
v “ANONYMOUSHFSDIRMODE (FTP server) statement” on page 745
v “ANONYMOUSFILETYPEJES (FTP server) statement” on page 742
v “ANONYMOUSFILETYPESEQ (FTP server) statement” on page 743
v “ANONYMOUSFILETYPESQL (FTP server) statement” on page 743
v “EMAILADDRCHECK (FTP server) statement” on page 789
v “STARTDIRECTORY (FTP server) statement” on page 876

Chapter 18. File Transfer Protocol 749

ANONYMOUSLOGINMSG (FTP server) statement

Use the ANONYMOUSLOGINMSG statement to specify a z/OS UNIX file or MVS
data set whose contents are to be displayed to the end user when an anonymous
user logs in.

Syntax

�� ANONYMOUSLOGINMSG file-path ��

Parameters

file-path
Either a z/OS UNIX path name or a fully qualified MVS data set name. If the
first character is a slash, file-path is considered a z/OS UNIX name; otherwise,
it is treated as a fully qualified MVS data set name.

Rules:

v When specifying a z/OS UNIX file-path, file-path is always an absolute
pathname in the anonymous user's root directory. The anonymous user's
root directory depends on the values coded or set to the default value for
ANONYMOUSLEVEL and STARTDIRECTORY statements in FTP.DATA.

v When ANONYMOUSLEVEL 1 is coded in FTP.DATA, or when
STARTDIRECTORY MVS is coded in FTP.DATA, the anonymous user's root
directory is the z/OS UNIX root directory. Therefore, you specify file-path as
an absolute pathname in the z/OS UNIX without regard to the anonymous
user's home directory.

v When the ANONYMOUSLEVEL value is greater than one, and the
STARTDIRECTORY is z/OS UNIX, the anonymous user's root directory is
the anonymous userID home directory. Therefore, the file identified by
file-pathhas to reside within the anonymous user's home directory or one of
its subdirectories, and you specify file-path as an absolute pathname, but
relative to the anonymous userID home directory.

Examples

To display the contents of the TCPIP.ANONYM.LOGIN.MSG data set when an
anonymous user logs into FTP, enter the following code:
ANONYMOUSLOGINMSG TCPIP.ANONYM.LOGIN.MSG

For example, you might have created userID GUEST with home directory
/u/anonymous for anonymous logins, and you have coded these statements in
FTP.DATA:
v ANONYMOUS GUEST
v ANONYMOUSLEVEL 3
v STARTDIRECTORY HFS
v ANONYMOUSFILEACCESS HFS

To display the contents of /u/anonymous/banner when an anonymous user logs
into FTP, code the following statement in FTP.DATA:
ANONYMOUSLOGINMSG /banner

750 z/OS V2R1.0 Communications Server: IP Configuration Reference

To display the contents of /etc/banner when an anonymous user logs into FTP,
you must copy /etc/banner into /u/anonymous or into a subdirectory such as
/u/anonymous/etc because the z/OS UNIX directory /etc is outside the
anonymous userID's root directory.

Again, suppose you have created userID GUEST with home directory
/u/anonymous for anonymous logins, and you have coded these statements in
FTP.DATA:
v ANONYMOUS GUEST
v ANONYMOUSLEVEL 1

To display the contents of /u/anonymous/banner when an anymous user logs
into FTP, code the following statement in FTP.DATA:
ANONYMOUSLOGINMSG /u/anonymous/banner

In this case you specify the pathname /u/anonymous/banner because the
anonymous userID root directory is /.

Usage notes
v ANONYMOUSLOGINMSG is not dependent upon the value of

ANONYMOUSLEVEL.
v If an installation is required to display the same login messages to both

anonymous and known users, the same file-path can be specified on both the
ANONYMOUSLOGINMSG and LOGINMSG statements.

Related topics
v “ANONYMOUS (FTP server) statement” on page 738
v “ANONYMOUSLEVEL (FTP server) statement” on page 748
v “ANONYMOUSFILEACCESS (FTP server) statement” on page 741
v “ANONYMOUSMVSINFO (FTP server) statement”
v “BANNER (FTP server) statement” on page 756
v “HFSINFO (FTP server) statement” on page 799
v “LOGINMSG (FTP server) statement” on page 813
v “MVSINFO (FTP server) statement” on page 820
v “STARTDIRECTORY (FTP server) statement” on page 876

ANONYMOUSMVSINFO (FTP server) statement

Use the ANONYMOUSMVSINFO statement to specify the MVS data sets whose
contents should be displayed when an anonymous user changes directory. The
statement identifies a low-level qualifier (LLQ) to be appended to the current path
whenever an anonymous FTP user changes directories to an MVS data set.

Syntax

�� ANONYMOUSMVSINFO MVS-LLQ ��

Parameters

MVS-LLQ
The MVS-LLQ is the MVS low-level qualifier (LLQ) to be appended to the

Chapter 18. File Transfer Protocol 751

current MVS path whenever an anonymous FTP user changes directories to an
MVS data set. If a data set matches the current path appended LLQ, the
contents of the data set are to be returned to the FTP user and displayed to the
end user (when the end user is an anonymous user).

Examples

To display a readme file the first time an anonymous user changes directory to
high-level qualifiers, use the statement in the following example. In this example,
an MVS high-level qualifier of productname might have a readme file for each
product, and when an anonymous user changes directory to the product, the
readme file would be displayed.
ANONYMOUSMVSINFO README

Usage notes
v You can use MVSINFO to specify the same LLQ and ANONYMOUSMVSINFO.

In this way, anonymous and known users can display the same information.
v The ANONYMOUSMVSINFO data set is displayed only the first time a user

changes to a specific directory. The FTP server maintains a finite history of CD
commands entered by the FTP user. If the FTP user performs frequent CD
commands, it is possible the user sees the same ANONYMOUSMVSINFO file
more than once.

v ANONYMOUSMVSINFO applies only to anonymous users. For all other users,
a banner informational message can be displayed using the MVSINFO
statement.

Related topics
v “ANONYMOUS (FTP server) statement” on page 738
v “ANONYMOUSHFSINFO (FTP server) statement” on page 747
v “ANONYMOUSLOGINMSG (FTP server) statement” on page 750
v “BANNER (FTP server) statement” on page 756
v “HFSINFO (FTP server) statement” on page 799
v “MVSINFO (FTP server) statement” on page 820

APPLNAME (FTP server) statement

Use the APPLNAME statement to specify the FTP server application name
(applname).

Syntax

�� APPLNAME applname ��

Parameters

applname
The FTP server application name.

Examples

Use OMVSAPPL as the FTP server application name:
APPLNAME OMVSAPPL

752 z/OS V2R1.0 Communications Server: IP Configuration Reference

|

|
|

|

|||||||||
|

|

|
|

|

|

|

Usage notes

If you do not specify any value for APPLNAME, FTP server uses job name as the
application name. The maximum length of this statement is 8 bytes. Any invalid
value is ignored.

ASATRANS (FTP client and server) statement

Use the ASATRANS statement to control the way ASA file transfers are managed.
Choose either to have the control characters converted by the C runtime library
during a file transfer or transferred without conversion.

The complete conversion process is described in the z/OS XL C/C++
Programming Guide.

Server This setting applies when transferring files from the server's system (for
example, with a GET subcommand).

Client This setting applies when transferring files from the client's system (for
example, with a PUT subcommand).

Syntax

��
ASATRANS FALSE

ASATRANS TRUE
FALSE

��

Parameters

TRUE
Characters in column 1 of the file being transferred are converted to C control
character sequences.

FALSE
Characters in column 1 of the file being transferred are not converted. This is
the default.

Examples

Convert characters in column 1 of the file being transferred:
ASATRANS TRUE

AUTOMOUNT (FTP client and server) statement

Use the AUTOMOUNT statement to permit unmounted DASD volumes to be
mounted automatically.

Server This setting applies when accessing files on the server's system.

Client This setting applies when accessing files on the client's system.

Chapter 18. File Transfer Protocol 753

|

|
|
|

Syntax

��
AUTOMOUNT TRUE

AUTOMOUNT TRUE
FALSE

��

Parameters

TRUE
Permits unmounted DASD volumes to be mounted automatically. This is the
default.

FALSE
Prevents unmounted DASD volumes from being mounted automatically.

Examples

Mount DASD volumes that are not already mounted automatically:
AUTOMOUNT TRUE

Usage notes
v If AUTOMOUNT is allowed, FTP attempts to mount volumes, if necessary, to

obtain temporary storage for load module transfers. Otherwise, the load module
transfers fails with an allocation failed message if sufficient temporary storage
is not already mounted and available.

v When transferring load modules, this parameter also controls whether or not the
system attempts to mount additional temporary volumes if there is insufficient
temporary DASD available and mounted to fulfill a load module transfer
request.

AUTORECALL (FTP client and server) statement

Use the AUTORECALL statement to specify whether data sets that have been
migrated by a storage manager, such as HSM, are recalled automatically.

Server This setting applies when accessing files on the server's system.

Client This setting applies when accessing files on the client's system.

Syntax

��
AUTORECALL TRUE

AUTORECALL TRUE
FALSE

��

Parameters

TRUE
Permits data sets migrated by the storage manager, such as HSM, to be
recalled automatically. This is the default.

FALSE
Prevents migrated data sets from being recalled automatically.

754 z/OS V2R1.0 Communications Server: IP Configuration Reference

Examples

Recall migrated HSM files automatically:
AUTORECALL TRUE

Usage notes
v Migrated data sets can still be deleted even though you specify FALSE.
v Partitioned data set members require the entire data set to be recalled.

AUTOTAPEMOUNT (FTP client and server) statement

Use the AUTOTAPEMOUNT statement to specify whether unmounted tapes are to
be automatically allocated and mounted.

Server This setting applies when accessing files on the server's system.

Client This setting applies when accessing files on the client's system.

Syntax

Server syntax

��
AUTOTAPEMOUNT TRUE

AUTOTAPEMOUNT TRUE
FALSE

��

Client syntax

��
AUTOTAPEMOUNT FALSE

AUTOTAPEMOUNT TRUE
FALSE

��

Parameters

TRUE
Permits unmounted tapes to be automatically allocated and mounted. This is
the default for the server.

FALSE
Prevents unmounted tapes from being automatically allocated and mounted.
This is the default for the client.

Examples

Automatically mount tape volumes that are not already mounted:
AUTOTAPEMOUNT TRUE

Do not automatically mount tape volumes that are not already mounted:
AUTOTAPEMOUNT FALSE

Chapter 18. File Transfer Protocol 755

BANNER (FTP server) statement

Use the BANNER statement to identify the welcome banner to be displayed
immediately after a client connects to the server.

Syntax

�� BANNER file-path ��

Parameters

file-path
The file path is the z/OS UNIX absolute pathname or the fully qualified MVS
data set name whose contents are displayed whenever a user connects to FTP.
A z/OS UNIX pathname must begin with a slash (/) character. An MVS data
set must not begin with a slash character.

Examples

To display the contents /etc/ftp.banner each time an FTP client connects to the
FTP server, enter the following code in the server's FTP.DATA:
BANNER /etc/ftp.banner ; banner to be displayed for FTP

Usage notes
v If no BANNER statement is specified, no banner is displayed immediately after

a new connection is established.
v One hundred lines of the file are displayed to the FTP client as 220 replies. If the

file exceeds 100 lines, a final 220 reply is returned to the client indicating the
banner was truncated.

Related topics
v “ADMINEMAILADDRESS (FTP server) statement” on page 738
v “ANONYMOUSHFSINFO (FTP server) statement” on page 747
v “ANONYMOUSLOGINMSG (FTP server) statement” on page 750
v “ANONYMOUSMVSINFO (FTP server) statement” on page 751
v “HFSINFO (FTP server) statement” on page 799
v “MVSINFO (FTP server) statement” on page 820

BLKSIZE (FTP client and server) statement

Use the BLKSIZE statement to specify the block size of newly allocated data sets.

Server This setting applies when creating files on the server's system (for example,
with a PUT subcommand).

Client This setting applies when creating files on the client's system (for example,
with a GET subcommand).

756 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

��
BLKSIZE 6233

BLKSIZE
size

��

Parameters

size
Specifies the block size of newly allocated data sets. The valid range is 0 -
32 760. Specifying no value, or a value of 0 for block size, allows the block size
from a model DCB data set or SMS dataclass to be used. The default block size
is 6 233.

Examples

Set block size to 6 144 bytes:
BLKSIZE 6144

Allow the block size from a model DCB data set or SMS dataclass to be used:
BLKSIZE

Usage notes
v If you specify the BLKSIZE statement without a size, FTP does not specify the

block size when allocating new data sets.
v The block size attribute can be obtained from an SMS data class using the

DATACLASS configuration statement, from a model data set using the DCBDSN
configuration statement, or from the BLKSIZE statement.

v Use BLKSIZE without a size if you have:
– Specified a DATACLASS statement and want to use the blocksize from the

data class, or
– Specified a DCBDSN statement and want to use the blocksize from the model

data set.
v If you specify a DATACLASS, a DCBDSN, and BLKSIZE without size, the value

from the model data set is used.
v To override the blocksize attribute from the DATACLASS or DCBDSN settings:

– Specify BLKSIZE with a value other than 0, or
– Do not specify the BLKSIZE statement, and use the default.

Related topics
v See the information about storage management subsystem (SMS) in z/OS

Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

v “DATACLASS (FTP client and server) statement” on page 770
v “DCBDSN (FTP client and server) statement” on page 776
v “DSNTYPE (FTP client and server) statement” on page 783
v “EATTR (FTP client and server) statement” on page 788
v “MGMTCLASS (FTP client and server) statement” on page 818
v “STORCLASS (FTP client and server) statement” on page 877

Chapter 18. File Transfer Protocol 757

BUFNO (FTP client and server) statement

Use the BUFNO statement to specify the number of access method buffers used
when data is read from or written to a data set.

Server This setting applies when reading or writing files on the server's system.

Client This setting applies when reading or writing files on the client's system.

Syntax

��
BUFNO 5

BUFNO number
��

Parameters

number
Specifies the number of buffers allocated. The valid range is 1 - 35. The default
is 5.

CCONNTIME (FTP client) statement

Use the CCONNTIME statement to specify the amount of time that the FTP client
waits after attempting to close a control connection before terminating it and
reporting an error.

Syntax

��
CCONNTIME 30

CCONNTIME seconds
��

Parameters

seconds
The number of seconds to which the timer is set. The valid range is 0
(CCONNTIME not used) or 15-86400. The default is 30 seconds.

Examples
CCONNTIME 60 ; wait 60 seconds

Related topics

See the FTP command information in the z/OS Communications Server: IP User's
Guide and Commands for a description of the timeout parameter that can be used
to change the timer when FTP is started.

CCTRANS (FTP client) statement

Use the CCTRANS statement to specify the SBCS translation table the FTP client
uses for the control connection. The FTP client uses the translation table in the
user_id.dsn_qual.TCPXLBIN data set. If that data set does not exist, the FTP client
uses the hlq.dsn_qual.TCPXLBIN data set.

758 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

�� CCTRANS dsn_qual ��

Parameters

dsn_qual
The data set name qualifier for the translation table.

Examples
CCTRANS CTRL ; use USER33.CTRL.TCPXLBIN when ftp

; is used by USER33

Usage notes
v CTRLCONN and CCTRANS are mutually exclusive statements. If both

statements appear in the FTP.DATA file, CCTRANS is ignored.
v EXTENSION UTF8 and CCTRANS are mutually exclusive statements. If both

statements appear in the FTP.DATA file, CCTRANS is ignored.

Related topics
v “CTRLCONN (FTP client and server) statement” on page 769
v “EXTENSIONS (FTP client and server) statement” on page 792

CCXLATE (FTP server) statement

Use the CCXLATE statement to specify a data set containing translate tables to be
used for the control connection.

Syntax

�� CCXLATE name ��

Parameters

name
Specifies a 1- to 8-character name corresponding to a data set containing
translate tables.

FTP looks first for an environment variable called _FTPXLATE_name. If the
environment variable exists, its value is used as the data set name

Restriction: The environment variable name must be all uppercase, although
the CCXLATE parameter can be in mixed case.

If the environment variable does not exist, FTP looks for a data set called
hlq.name.TCPXLBIN.

Examples
CCXLATE FRED

If environment variable _FTPXLATE_FRED=FREDDYS.TABLES is defined for the
FTP server, this statement specifies that the translate tables in data set
FREDDYS.TABLES should be used for the control connection.

Chapter 18. File Transfer Protocol 759

If there is no such environment variable defined, this statement specifies that the
translate tables data set hlq.FRED.TCPXLBIN should be used.

Usage notes
v CCXLATE and CTRLCONN are mutually exclusive statements. If both

statements appear in your FTP.DATA file, CCXLATE is ignored.
v The CCXLATE statement (and its value) is not case sensitive but the name of the

corresponding environment variable must be all uppercase or FTP does not
recognize it.

v CCXLATE and EXTENSIONS UTF8 are mutually exclusive statements. If both
statements appear in FTP.DATA, the CCXLATE statement is ignored.

Related topics
v Appendix A, “Translation tables,” on page 1417
v “CTRLCONN (FTP client and server) statement” on page 769
v “EXTENSIONS (FTP client and server) statement” on page 792
v See z/OS Communications Server: IP Configuration Guide for more information

about defining optional environment variables.
v To see the search order that determines the conversion for the control

connection, see “SBCS translation table hierarchy” on page 1418.
v “XLATE (FTP server) statement” on page 897

CHKCONFIDENCE statement (FTP client and server) statement

Use the CHKCONFIDENCE statement to tell the FTP client or server whether to
check and report on the confidence level in the successful completion of file
transfers. Checks include reporting a missing EOF marker in an inbound data set
being transferred using record structure (STRUCTURE RECORD), or block mode
(MODE B), or compress mode (MODE C) and verifying that the sender is still
responding after the transfer.

Server The server reports the confidence level after each transfer with FTP log
message EZYFS86I and with a parameter passed to the FTPOSTPR user
exit.

Client The client reports the confidence level after each file transfer by issuing
message EZA2108I.

Tips:

v If the MBREQUIRELASTEOL statement is set to FALSE, the confidence level
reported when a multibyte file is received from the network without an EOL
sequence in the last record is High.

v If the MBREQUIRELASTEOL statement is set to TRUE, the confidence level
reported when a multibyte file is received from the network without an EOL
sequence in the last record is Low.

Syntax

��
CHKCONFIDENCE FALSE

CHKCONFIDENCE TRUE
FALSE

��

760 z/OS V2R1.0 Communications Server: IP Configuration Reference

Parameters

TRUE

Perform the following checks and report any detected conditions that cast
doubt on the successful completion of a transfer.

Use the following to make the determination:
v Whether a missing EOF marker condition is detected in an inbound

STRUCTURE RECORD, or MODE B, or MODE C file
v Whether the sender fails to respond following any type of transfer
v Whether some other condition causes the transfer to fail or establish doubt

about its completion

FALSE
Do not perform the checks or report on the confidence level in the successful
completion of a transfer. This does not suppress reporting of error conditions.

Tips: Consider the following information when using the CHKCONFIDENCE
statement:
v A missing EOF marker might or might not signal an error in the transmission,

and it is reported only if no other problem is detected. A confidence level of
NoEOF reflects a missing EOF marker. Any other problem changes the
confidence level to Low.

v FTP client

– See the message information for EZA2108I in z/OS Communications Server:
IP Messages Volume 1 (EZA) for more information.

v FTP server

– Either code FTPLOGGING TRUE in FTP.DATA or install the FTPOSTPR exit
routine, to determine what confidence level the server assigns to each file
transfer.

– Message EZYFS86I is logged only when FTPLOGGING TRUE is coded in
FTP.DATA. For additional information about EZYFS86I, see z/OS
Communications Server: IP Messages Volume 3 (EZY).

– The confidence level is passed to the FTPOSTPR exit. See “The FTPOSTPR
user exit” on page 703 for information about the FTPOSTPR exit routine.

Related topics
v “FTPLOGGING (FTP server) statement” on page 797
v “The FTPOSTPR user exit” on page 703

CHKPTFLUSH (FTP client) statement

If FTP saves checkpoint information in the checkpoint file or data set, z/OS might
buffer the records in volatile storage instead of writing the data to storage media
immediately. Use the CHKPTFLUSH statement to specify whether FTP forces z/OS
to flush checkpoint information to storage media when each record is written, or
allows z/OS to determine when checkpoints are flushed from volatile storage to
storage media.

Guideline: When you allow z/OS to buffer checkpoint records, if you configure a
large checkpoint interval and your operator cancels a file transfer operation when
check pointing is active, you might lose most or all of the checkpoint data. This is
because z/OS cannot flush buffered data to storage media when the FTP job is

Chapter 18. File Transfer Protocol 761

canceled. If you lose most or all of the checkpoint data, you cannot restart the file
transfer from the point where it is interrupted. This is inefficient for long running
file transfer operations. Code CHKPTFLUSH TRUE if this is a problem at your
installation.

Syntax

��
CHKPTFLUSH FALSE

CHKPTFLUSH FALSE
TRUE

��

Parameters

FALSE
z/OS is allowed to buffer checkpoint records in volatile storage when FTP
saves them. z/OS determines when to flush buffered records to storage media.
This is the default value.

TRUE
z/OS flushes checkpoint records to storage media as soon as FTP saves them.

Examples

z/OS flushes checkpoint records to storage media as soon as FTP saves them.
CHKPTFLUSH TRUE

Usage notes

None

Related topics
v “CHKPTINT (FTP client and server) statement”
v “CHKPTPREFIX (FTP client) statement” on page 764

CHKPTINT (FTP client and server) statement

Use the CHKPTINT statement to specify the number of records that can be sent
between restart markers when transferring files in EBCDIC block mode or EBCDIC
compress mode when the file type is SEQ.

Server This setting applies when the server is the sending site (when the server is
processing the RETR command).

The server ignores this setting when file type is not SEQ.

The server ignores this setting when it is retrieving data from a z/OS
UNIX named pipe.

Requirement: Do not specify a nonzero value unless the client supports
the checkpoint and restart function.

Client This setting applies when the client is processing the APPEnd, PUt, and
MPUt subcommands. When you have configured RESTGET TRUE at the
FTP client, this setting applies also to the GEt and MGEt subcommands.
For more information about configuring RESTGET, see the locsite

762 z/OS V2R1.0 Communications Server: IP Configuration Reference

subcommand in the z/OS Communications Server: IP User's Guide and
Commands and “RESTGET (FTP client) statement” on page 837.

The client ignores this setting when file type is not SEQ.

The client ignores this setting when you are transferring data to or from a
z/OS UNIX named pipe.

Rule: Do not specify a nonzero value unless the FTP server supports the
RESTart command and checkpoint and restart function.

Syntax

��
CHKPTINT 0

CHKPTINT number
��

Parameters

number
Used to determine when a restart marker is transmitted. The marker is
transmitted after the specified number of records are sent.

If the number value is set to 0, checkpointing does not occur and no marker
blocks are transmitted. The default is 0.

Examples

To send a restart marker of every 100000 records when the client is the sending
site:

Client's FTP.DATA:
CHKPTINT 100000

To enable the checkpoint restart function when the server is the sending site, code
the following statements in FTP.DATA:

Client's FTP.DATA:
RESTGET TRUE

Server's FTP.DATA:
CHKPTINT any non-zero value

Usage notes
v Specify a nonzero value to enable checkpointing during a file transfer. When

checkpointing is enabled during a file transfer, you can restart a failed file
transfer. To restart a failed transfer from the z/OS FTP client, use the restart
subcommand. See the restart subcommand information in z/OS
Communications Server: IP User's Guide and Commands.

v Client and server must both support the checkpoint/restart function. From the
z/OS FTP client, you can enable or disable the client's support after logging in
with a locsite subcommand. See z/OS Communications Server: IP User's Guide
and Commands for more information.

v The z/OS FTP server allows you to change the value with a SITE CHKPTINT
command. If only certain clients support the restart function, you should code
CHKPTINT 0 in the server's FTP.DATA and direct the user to use a SITE

Chapter 18. File Transfer Protocol 763

command to set the server value after logging in. See the SITE command
information in z/OS Communications Server: IP User's Guide and Commands
for more information.

Related topics
v “CONDDISP (FTP client and server) statement” on page 768
v “CHKPTPREFIX (FTP client) statement”
v “RESTGET (FTP client) statement” on page 837
v “RESTPUT (FTP server) statement” on page 838

CHKPTPREFIX (FTP client) statement

Use the CHKPTPREFIX statement to specify the high level qualifier (hlq) for the
FTP client checkpoint file. The FTP client uses the hlq to determine the name of the
local checkpoint data set or file.

Syntax

��
CHKPTPREFIX HOME

CHKPTPREFIX HOME
USERID
LOCAL

��

Parameters

HOME
If the client is running in the z/OS UNIX shell, the hlq is the current path and
the name of the checkpoint file is current_path/ftp.chkpoint. Otherwise, the hlq
is the TSO prefix and the checkpoint data set is named
tso_prefix.FTP.CHKPOINT.

This is the default.

USERID
Use the user ID associated with the address space where the FTP command is
issued as the hlq for the checkpoint data set. The name of the data set is
userID.FTP.CHKPOINT.

LOCAL
Use the local working directory (local_dir) as set by the lcd subcommand. If
the directory is a z/OS UNIX directory, the checkpoint file is
local_dir/ftp.chkpoint. If the directory is a partitioned data set, the checkpoint
data set name is local_dir(CHKPOINT). Otherwise, the checkpoint data set is
local_dir.FTP.CHKPOIN'.

Examples

To use the user ID, use the following code:
CHKPTPREFIX USERID

Usage notes

None

764 z/OS V2R1.0 Communications Server: IP Configuration Reference

Related topics
v “CHKPTINT (FTP client and server) statement” on page 762
v “RESTGET (FTP client) statement” on page 837

CIPHERSUITE (FTP client and server) statement

Use the CIPHERSUITE statement to specify the name of a cipher algorithm that is
used during the TLS handshake.

Server Indicates the server's preference of cipher algorithms.

Client Indicates the client's preference of cipher algorithms.

Syntax

�� CIPHERSUITE name ��

Parameters

name

The name of the cipher algorithm. The following values are allowed name
values:
v SSL_NULL_MD5
v SSL_NULL_SHA
v SSL_RC4_MD5_EX
v SSL_RC4_MD5
v SSL_RC4_SHA
v SSL_RC2_MD5_EX
v SSL_DES_SHA
v SSL_3DES_SHA
v SSL_AES_128_SHA
v SSL_AES_256_SHA

The name can be interpreted as follows:
SSL_<cipher>_<cipher hash>[_EX]

<cipher> specifies one of the following encryption algorithms:

AES_128
128–bit AES; Advanced Encryption Standard is established by the
National Institute of Standards and Technology (NIST).

AES_256
256–bit AES; Advanced Encryption Standard is established by the
National Institute of Standards and Technology (NIST).

RC2 Block cipher developed at RSA Data Security

RC4 Stream cipher developed at RSA Data Security

DES Digital Encryption Standard (56 bits of security)

3DES Digital Encryption Standard (168 bits of security)

NULL No algorithm is used. NULL indicates that there is no key exchange.

<cipher hash> specifies one of the following authentication algorithms:

Chapter 18. File Transfer Protocol 765

MD5 Algorithm that converts to fixed size (16 bytes)

SHA Secure Hash Algorithm that converts to a 20-byte output

The suffix _EX indicates that the corresponding cipher suite is exportable.

Restrictions:

v The following list shows the subject to export restrictions and might not be
available outside of the United States:
– SSL_3DES_SHA
– SSL_RC4_SHA
– SSL_RC4_MD5
– SSL_AES_128_SHA
– SSL_AES_256_SHA

v Only RSA key exchange is supported.

Examples

To indicate that you want to use the 3DES encryption and SHA authentication as
your first choice, and that RC4 encryption and MD5 authentication are your
second choice, code the following examples:
CIPHERSUITE SSL_3DES_SHA

CIPHERSUITE SSL_RC4_MD5

Authorization
v Multiple CIPHERSUITE statements can be coded in the FTP.DATA file.
v The order of CIPHERSUITE statements in the server's FTP.DATA file indicates

the priority of the algorithms listed. Specify the highest priority algorithm first
in the FTP.DATA file.

v The client and server specify the list of encryption types that they support. The
client and server negotiate which of the available ciphers is used for the data
encryption by specifying the desired ciphers in order of preference. The actual
cipher used is the best match between what the server supports and what the
client requests. If the server does not support any of the ciphers that the client
requests, the TLS handshake fails and the connection is closed. See the z/OS
Cryptographic Services System SSL Programming for a list of ciphers that are
included in the base product.

v The CIPHERSUITE statements are used by the FTP server when the
EXTENSIONS statement is coded with the AUTH_TLS value.

v The CIPHERSUITE statements are used by the FTP client when the
SECURE_MECHANISM TLS statement is coded or when the FTP client is
started with either the -a TLS or the -r TLS start parameter.

Related topics
v “EXTENSIONS (FTP client and server) statement” on page 792
v “SECURE_MECHANISM (FTP client) statement” on page 854
v “TLSMECHANISM (FTP client and server) statement” on page 879
v See z/OS Communications Server: IP Configuration Guide for more information

about customizing TLS and Kerberos.

766 z/OS V2R1.0 Communications Server: IP Configuration Reference

CLIENTERRCODES (FTP client) statement

Use the CLIENTERRCODES (FTP client) to specify whether FTP return codes are
to be converted to client error codes.

Syntax

��
CLIENTERRCODES FALSE

CLIENTERRCODES FALSE
TRUE
EXTENDED

��

Parameters

FALSE
Issue standard FTP return codes. See the FTP return codes topic in z/OS
Communications Server: IP User's Guide and Commands for a complete
description of standard FTP return codes.

TRUE
Convert FTP return codes into a set of codes defined in FTP client error codes
in the z/OS Communications Server: IP User's Guide and Commands.

EXTENDED
Convert FTP return codes into the client error code (as would be returned for
TRUE) concatenated with the subcommand number. See the FTP client error
codes extended topic of the z/OS Communications Server: IP User's Guide and
Commands for more information.

Examples
CLIENTERRCODES EXTENDED ; request extended error codes

Usage notes

When the FTP client is invoked from the FTP client application programming
Interface (API), the value on the CLIENTERRCODES statement does not affect the
operation of the client, as all return codes including client error codes are returned
to the application.

Related topics
v “LOGCLIENTERR (FTP client) statement” on page 812
v FTP client error logging in z/OS Communications Server: IP User's Guide and

Commands
v For more information, see using the FTP client API trace in z/OS

Communications Server: IP Programmer's Guide and Reference.

CLIENTEXIT (FTP client) statement

Use the CLIENTEXIT statement to specify whether the FTP client exits with a
nonzero MVS return code for certain FTP errors.

Chapter 18. File Transfer Protocol 767

Syntax

��
CLIENTEXIT FALSE

CLIENTEXIT FALSE
TRUE

��

Parameters

FALSE
FTP client does not exit with a nonzero MVS return code when certain errors
occur.

Result: Starting the FTP client with the EXIT parameter can override
CLIENTEXIT FALSE.

TRUE
FTP client exits with a nonzero MVS return code when certain errors occur.

Result: Coding CLIENTEXIT TRUE is equivalent to starting the FTP client
with the EXIT parameter. See FTP command — Entering the FTP environment
in the z/OS Communications Server: IP User's Guide and Commands for more
information about the EXIT parameter.

Examples
CLIENTEXIT TRUE ; FTP client will exit when an error occurs

; even though EXIT is not coded specified when
; starting the FTP client.

Related topics
v “CLIENTERRCODES (FTP client) statement” on page 767
v FTP command — Entering the FTP environment in the z/OS Communications

Server: IP User's Guide and Commands
v FTP return codes in the z/OS Communications Server: IP User's Guide and

Commands

CONDDISP (FTP client and server) statement

Specify whether to keep or delete a new data set, z/OS UNIX file, or z/OS UNIX
named pipe when an FTP file transfer ends prematurely.

Server This setting applies when writing new files, named pipes, or data sets on
the server system (for example, with a PUT subcommand).

Client This setting applies when writing new files, named pipes, or data sets on
the client system (for example, with a GET subcommand).

Syntax

��
CONDDISP CATLG

CONDDISP CATLG
DELETE

��

768 z/OS V2R1.0 Communications Server: IP Configuration Reference

Parameters

CATLG
Specifies that new data sets, z/OS UNIX files, and z/OS UNIX named pipes
are kept when an FTP file transfer ends prematurely. For MVS data set
transfers, the data set is also cataloged. This is the default.

DELETE
Specifies that new data sets, z/OS UNIX files, and z/OS UNIX named pipes
are deleted when a file transfer ends prematurely.

Examples

Specify that a new data set, z/OS UNIX file, or named pipe is deleted when a file
transfer ends prematurely:
CONDDISP DELETE

Rules:

v DELETE is ignored if the file transfer ended prematurely because FTP was
stopped.

v DELETE is ignored if a checkpoint marker is received.
v If you are running a job scheduling program that detects files as they are

cataloged and then schedules a subsequent job for processing, the job scheduler
must take into account that setting CONDDISP=DELETE causes FTP to delete
and uncatalog the data set when the file transfer fails. For generation data
groups, the following situations might occur:
– FTP intends to create a new GDG(+1) and generates GDG.G00023V00.
– The transfer of this data set fails, and the GDG.G00023V00 data set is deleted

and uncataloged.
– A follow-on reference for the current GDG, for example, GDG(0), would cause

the data set GDG.G00022V00 to be accessed and old data to be processed.
v If you are transferring a physical sequential data set with the MVSGet or

MVSPut subcommand, the data set that is created is disposed according to the
CONDDISP configuration if the transfer ends prematurely. However, if you are
transferring a PDS or library data set, the data set that is created is deleted
regardless of the CONDDISP configuration if the transfer ends prematurely.

Related topic
v “CHKPTINT (FTP client and server) statement” on page 762

CTRLCONN (FTP client and server) statement

This statement defines the ASCII code page to be used for the control connection.

Server Specifies the code page used by the server.

Client Specifies the code page used by the client.

Chapter 18. File Transfer Protocol 769

Syntax

��
CTRLCONN 7BIT

CTRLCONN 7BIT
iconv_ascii
FTP_STANDARD_TABLE

��

Parameters

7BIT
Indicates that the 7-bit ASCII code page is to be used. 7BIT is the default if
CTRLCONN is not used and no TCPXLBIN data set is found.

iconv_ascii
A name recognized by iconv to indicate an ASCII code page.

FTP_STANDARD_TABLE
Indicates that the FTP internal tables, which are the same as the tables that are
shipped in TCPXLBIN(STANDARD), are to be used.

Examples
CTRLCONN IBM-858

Usage notes
v 7BIT or an iconv_ascii name can be entered in lowercase or uppercase.
v To see the search order that determines the code page conversion for the control

connection, see z/OS Communications Server: IP Configuration Guide.
v EXTENSIONS UTF8 and CTRLCONN are mutually exclusive statements. If both

statements are coded in FTP.DATA, CTRLCONN is ignored.

Related topics
v “CCXLATE (FTP server) statement” on page 759
v “EXTENSIONS (FTP client and server) statement” on page 792
v For the code pages supported, see code set converters in the z/OS XL C/C++

Programming Guide.

DATACLASS (FTP client and server) statement

Use the DATACLASS statement to specify the SMS-managed data class as defined
by your organization for the FTP server.

Server This setting applies when creating files on the server's system (for example,
with a PUT subcommand).

Client This setting applies when creating files on the client's system (for example,
with a GET subcommand).

Syntax

�� DATACLASS class ��

770 z/OS V2R1.0 Communications Server: IP Configuration Reference

Parameters

class
The SMS-managed data class as defined by your organization. There is no
default.

Examples

Use the SMS data class SMSDATA when allocating new data sets:
DATACLASS SMSDATA

Results:

v If you code any of the following FTP.DATA statements or let FTP assign them
default values, the configured values or default values override the values
specified in the SMS DATACLASS:
– BLKSIZE
– DIRECTORY
– LRECL
– PRIMARY
– RECFM
– RETPD
– SECONDARY
Guideline: To prevent these statements from overriding the values specified in
the SMS DATACLASS, perform one of the following actions:
– Code the statements with no parameters.
– For client allocations, use the LOCSIte subcommand to configure these

options with no values before allocating a new data set.
– For server allocations, use the SIte subcommand or the server SITE command

to configure these options with no values before allocating a new data set.
v If you code the following statements in FTP.DATA with the default value or let

FTP assign the default value, FTP will use the value in the SMS DATACLASS.
– DNSTYPE
– EATTR
If the SMS DATACLASS does not specify the value, FTP will use the system
default.
Guideline: To override the SMS DATACLASS value and the system default
value, perform one of the following actions:
– Code statements in FTP.DATA with the values that you want.
– For client allocations, use the LOCSIte subcommand to configure the values

that you want.
– For server allocations, use the SIte subcommand or the server SITE command

to configure the values that you want.
v The PDSTYPE FTP.DATA statement has no default values. If you code this

statement in FTP.DATA with parameters, the configured value overrides the
value specified in the SMS DATACLASS.
Guideline: To prevent this statement from overriding the value specified in the
SMS DATACLASS, perform one of the following actions:
– Code the statement with no parameter.
– Remove the statement from FTP.DATA.

Chapter 18. File Transfer Protocol 771

– For client allocations, use the LOCSIte subcommand to configure this option
with no value before allocating a new data set.

– For server allocations, use the SIte subcommand or the server SITE command
to configure this option with no value before allocating a new data set.

v If you specify the DCBDSN statement, the LRECL, RECFM, BLKSIZE, and
RETPD (if specified) of the DCBDSN data set override the values specified in the
SMS DATACLASS.
Guideline: To prevent the DCBDSN values from overriding the values specified
in the SMS DATACLASS, perform one of the following actions:
– Code statements in FTP.DATA for LRECL, RECFM, BLKSIZE, and RETPD

with no keyword values.
– For client allocations, use the LOCSIte subcommand to configure these

options with no values before allocating a new data set.
– For server allocations, use the SIte subcommand or the server SITE command

to configure these options with no values before allocating a new data set.
v If you specify the MGMTCLASS statement and the requested management class

specifies a retention period, the RETPD value of the management class might
override the RETPD value of DATACLASS.

Related topics:

v “BLKSIZE (FTP client and server) statement” on page 756
v “DCBDSN (FTP client and server) statement” on page 776
v “DIRECTORY (FTP client and server) statement” on page 781
v “DSNTYPE (FTP client and server) statement” on page 783
v “EATTR (FTP client and server) statement” on page 788
v “LRECL (FTP client and server) statement” on page 813
v “MGMTCLASS (FTP client and server) statement” on page 818
v “PDSTYPE (FTP client and server) statement” on page 826
v “PRIMARY (FTP client and server) statement” on page 830
v “RECFM (FTP client and server) statement” on page 833
v “RETPD (FTP client and server) statement” on page 838
v “SECONDARY (FTP client and server) statement” on page 845
v “STORCLASS (FTP client and server) statement” on page 877
v See the information about storage management subsystem (SMS) in z/OS

Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

DATACTTIME (FTP client) statement

Use the DATACTTIME statement to specify the number of seconds that the FTP
client waits after attempting to send or receive data before terminating the
connection and reporting an error to the user. The default is 120. The valid range
for DATACTTIME is 0 (DATACTTIME not used) or 15-86 400.

Syntax

��
DATACTTIME 120

DATACTTIME seconds
��

772 z/OS V2R1.0 Communications Server: IP Configuration Reference

Parameters

seconds
The number of seconds to which the timer is set. The valid range is 0
(DATACTTIME not used) or 15-86 400. The default is 120 seconds.

Examples
DATACTTIME 160 ; wait 160 seconds

Related topics

See the FTP command and the FTP environment information in z/OS
Communications Server: IP User's Guide and Commands.

DATAKEEPALIVE (FTP client and server) statement

Use the DATAKEEPALIVE statement to specify the data connection keepalive
timer.

Results:

v The DATAKEEPALIVE statement overrides the keepalive timer value that you
configured in the PROFILE.TCPIP file.

v The keepalive timer causes TCP/IP to send a keepalive packet on the data
connection when the connection is idle for the length of time specified in the
DATAKEEPALIVE statement. Keepalive packets prevent the data connection
from timing out as a result of long periods of inactivity.

Server Specifies how often the server sends a keepalive packet.

Client Specifies how often the client sends a keepalive packet.

Syntax

��
DATAKEEPALIVE 0

DATAKEEPALIVE seconds
��

Parameters

seconds
The number of seconds of inactivity that passes before a keepalive packet is
sent out on the FTP data connection. Valid values are 0 (DATAKEEPALIVE not
used) or 60 - 86 400. The default is 0.

Rule: If you specify 0 seconds, the DATAKEEPALIVE timer is disabled, and
the only keepalive packets that flow on the data connection are controlled by
the interval for the keepalive packets that you configured in the stack.

Guidelines:

v Use the DATAKEEPALIVE statement if the DSWAITTIME configuration
option is a value other than 0.

v Use the DATAKEEPALIVE statement for FILETYPE=JES transfers.

Chapter 18. File Transfer Protocol 773

Examples

Use the following code to set the data connection keepalive timer to 60 seconds:
DATAKEEPALIVE 60

Related topics
v “DSWAITTIME (FTP client and server) statement” on page 784
v “FTPKEEPALIVE (FTP client and server) statement” on page 797

DATATIMEOUT (FTP server) statement

Use the DATATIMEOUT statement to specify the length of time to wait for the
send to complete before the connection is aborted.

Syntax

��
DATATIMEOUT 300

DATATIMEOUT seconds
��

Parameters

seconds
Used to determine when to abort the connection if a send() or recv() is not
completed or if a passive socket was opened, but never completed by the
remote client. Allowed values are 0 - 86 400. The default is 300 seconds.

Specifying 0 indicates no timeout value is used, and the transfer does not time
out.

Examples

To check for send completion at 30 seconds:
DATATIMEOUT 30

Usage notes

The DATATIMEOUT timer is set when the FTP server does a send() or recv() call
to TCP/IP or when a passive data connection is detected, and the server must wait
for the client to complete the session. If the process does not complete within the
timer value, the connection is aborted.

DB2 (FTP client and server) statement

Use the DB2 statement to specify the name of the DB2 subsystem.

Server This setting applies when FILETYPE=SQL and a GET subcommand is
processed.

Client This setting applies when FILETYPE=SQL and a PUT subcommand is
processed.

774 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

��
DB2 DB2

DB2 subsystem_name
��

Parameters

subsystem_name
The name of the DB2 subsystem. The default name is DB2.

Examples

Set the DB2 subsystem name to DB2X:
DB2 DB2X

Related topics
v “DB2PLAN (FTP cilent and server) statement”
v See the DB2 SQL queries information in z/OS Communications Server: IP User's

Guide and Commands.
v See the information about the SQL query function in z/OS Communications

Server: IP Configuration Guide.

DB2PLAN (FTP cilent and server) statement

Use the DB2PLAN statement to specify the DB2 plan to be used by the FTP server.

Server This setting applies when FILETYPE=SQL and a GET subcommand is
processed.

Client This setting applies when FILETYPE=SQL and a PUT subcommand is
processed.

Syntax

��
DB2PLAN EZAFTPMQ

DB2PLAN plan_name
��

Parameters

plan_name
The name of the DB2 plan bound in the DB2 subsystem.

Examples

Set the plan name to FTPPLAN:
DB2PLAN FTPPLAN

Related topic
v “DB2 (FTP client and server) statement” on page 774

Chapter 18. File Transfer Protocol 775

DBSUB (FTP client and server) statement

Use the DBSUB statement in server and client FTP.DATA to specify whether
substitution is allowed for double-byte data that cannot be translated. The site and
locsite subcommands are also available to set this keyword.

Server Specifies whether double-byte substitution is allowed on the server's
system.

Client Specifies whether double-byte substitution is allowed on the client's
system.

Syntax

��
DBSUB FALSE

DBSUB TRUE
FALSE

��

Parameters

FALSE
Substitution is not allowed for double-byte character translation. This causes a
data transfer failure if a character cannot be mapped during the transfer. This
is the default value.

TRUE
Substitution is allowed for double-byte character translation.

Examples

To allow substitution for double-byte character translation, use the following code:
DBSUB TRUE

DCBDSN (FTP client and server) statement

Use the DCBDSN statement to specify an MVS data set to be used as a model for
allocation of new data sets.

Server This setting applies when creating files on the server's system (for example,
with a PUT subcommand).

Client This setting applies when creating files on the client's system (for example,
with a GET subcommand).

Syntax

�� DCBDSN name ��

Parameters

name
The name of the data set to be used as a model for allocation of new data sets
created with a STOR or MKDIR command.

Requirement: This data set name must be a fully qualified MVS data set name;
z/OS UNIX file names are not allowed. There is no default.

776 z/OS V2R1.0 Communications Server: IP Configuration Reference

Usage notes
v If specified or set to the default value, the following FTP.DATA statements, SITE

command parameters, or locsite subcommand parameters override the DCB
values from the model data set:
– BLKSIZE
– LRECL
– RECFM
– RETPD

v If you specify the MGMTCLASS statement, the retention period from the model
data set can be overridden by the retention period specified by the SMS
management class.

v When using a model DCB at the server, SENDSITE must be toggled off at the
client. Otherwise, the SITE information sent automatically by the client overrides
the value provided by the model DCB.

v BLKSIZE can also be specified with no value to allow the attributes from the
model DCB to be used:
DCBDSN model.dcb
BLKSIZE
LRECL 0
RECFM
RETPD

Related topics
v “BLKSIZE (FTP client and server) statement” on page 756
v “DSNTYPE (FTP client and server) statement” on page 783
v “EATTR (FTP client and server) statement” on page 788
v “LRECL (FTP client and server) statement” on page 813
v “MGMTCLASS (FTP client and server) statement” on page 818
v “RECFM (FTP client and server) statement” on page 833
v “RETPD (FTP client and server) statement” on page 838
v See the information about storage management subsystem (SMS) in z/OS

Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

DCONNTIME (FTP client and server) statement

Use the DCONNTIME statement to define the amount of time that FTP waits
attempting to close a data a data transfer before terminating the connection and
reporting an error.

Server This setting specifies the time that the server waits on the client.

Client This setting specifies the time that the client waits on the server.

Syntax

��
DCONNTIME 120

DCONNTIME seconds
��

Chapter 18. File Transfer Protocol 777

Parameters

seconds
The number of seconds FTP waits to receive notification that the data
connection is closing. The valid range is 0 (DCONNTIME not used) or
15-86400. The default is 120.

Examples

Set the timer to 600 seconds:
DCONNTIME 600

Usage notes

If you specify 0 seconds, the DCONNTIME timer is disabled and FTP receives the
FIN before closing the data connection.

DEBUG (FTP client and server) statement

Use the DEBUG statement to activate a specific trace type.

Restriction: Only one trace type can be activated for a DEBUG statement.

Server Traces are recorded on server's system for server processing.

Client Traces are recorded on client's system for client processing.

Syntax

�� DEBUG parameter ��

Parameters

FLO
The FLO trace shows the flow of control within FTP. It is used to show which
services of FTP are used for an FTP request.

CMD
The CMD trace shows each command and the parsing of the parameters for
the command.

PAR
The PAR trace shows details of the FTP command parser. It is useful when
debugging problems with the processing of command parameters.

INT
The INT trace shows the details of the initialization and termination of the FTP
session.

ACC
The ACC trace shows the details of the login process.

UTL
The UTL trace shows the processing of utility functions such as CD and SITE.

FSC(n)
The FSC trace shows details of processing the file services server commands
APPE, STOR, STOU, RETR, DELE, RNFR, and RNTO. For the client, it shows
the details for subcommands, such as GET, PUT, APPEND, DELETE, and

778 z/OS V2R1.0 Communications Server: IP Configuration Reference

RENAME. This trace allows you to specify levels of detail for the trace points.
The level one tracing specified by entering FSC or FSC(1) is the level typically
used unless more data is requested by the TCP/IP service group. n can be an
integer between 1 and 8.

SEC
The SEC trace shows the processing of security functions such as TLS and
GSSAPI negotiations.

SOC(n)
The SOC trace shows details of the processing during the setup of the interface
between the FTP application and the network as well as details of the actual
amounts of data that are processed. This trace allows you to specify levels of
detail for the trace points. The level one tracing that is specified by entering
SOC or SOC(1) is the level typically used unless more data is requested by the
TCP/IP service group. n can be an integer between 1 and 8.

JES
The JES trace shows details of the processing for JES requests (that is, requests
when SITE FILETYPE=JES is in effect).

Restriction: This parameter applies to the server only.

SQL
The SQL trace shows details of the processing for SQL requests (that is,
requests when SITE or LOCSITE FILETYPE=SQL is in effect).

ALL
This value is used to set all of the trace points. Both the FSC and the SOC trace
are set to level one when the ALL parameter is processed.

BAS
This value is used to set a select group of traces that offer the best overall
details without the more excessive tracing some of the other traces provide.
Specifying this value is the same as the following values:
v DEBUG CMD
v DEBUG INT
v DEBUG FSC
v DEBUG SOC

USERID (filter_name)
This parameter is used to filter the trace for user IDs matching the filter_name
pattern. If the user ID matches the filter at the time the client logs in, tracing
options are set to the current value of the options. Otherwise, no tracing
options are set. The client can use the SITE command to set options after login
if the initial ones are not appropriate. An example for the USERID filter is:
DEBUG USERID(USER33)

which activates the trace for a user if the user ID is USER33.

Restriction: This parameter applies to the server only.

IPADDR (filter)
This parameter is used to filter the trace for IP addresses matching the filter
pattern. If the IP address matches the filter at the time the client connects,
tracing options are set to the current value of the options. Otherwise, no
tracing options are set. The client might use the SITE command to set options
after connect if the initial ones are not appropriate. Examples of the
IPADDR(filter) are:

Chapter 18. File Transfer Protocol 779

DEBUG IPADDR(9.67.113.57)
DEBUG IPADDR(FEDC:BA98:7654:3210:FEDC:BA98:7654:3210)

The first example activates the trace for a client whose IP address is 9.67.113.57;
the second activates the trace for a client whose IP address is
FEDC:BA98:7654:3210:FEDC:BA98:7654:3210. If the filter is an IPv4 address,
submasking can be indicated by using a slash followed by a dotted decimal
submask. For example, 192.48.32.0/255.255.255.0 allows addresses from
192.48.32.00 to 192.48.32.255.

If the filter is an IPv6 address, network prefixing can be indicated by using a
slash followed by a network prefix. For example, use FEDC:BA98::0/32 to
indicate the prefix: FEDCBA98.

Restriction: This parameter applies to the server only.

DEBUGONSITE (FTP server) statement

Use the DEBUGONSITE statement to specify whether the FTP server accepts a
SITE DEBUG command to change the general tracing options for the FTP session.

Syntax

��
DEBUGONSITE FALSE

DEBUGONSITE TRUE
FALSE

��

Parameters

TRUE
The server accepts a SITE DEBUG command from the client to change the
general trace options for the current session.

FALSE
The server does not accept a SITE DEBUG command from the client. This is
the default.

Related topics
v “DEBUG (FTP client and server) statement” on page 778
v See z/OS Communications Server: IP User's Guide and Commands for more

information about the SITE subcommand.

DEST (FTP server) statement

Use the DEST statement to specify the NJE destination to which the files are routed
when the server receives a STOR, STOU, or APPE command. Using the DEST
statement allows you to send data sets to other users on machines connected on a
network job entry (NJE) network rather than storing them at the server.

Syntax

�� DEST destination ��

780 z/OS V2R1.0 Communications Server: IP Configuration Reference

Parameters

destination
The NJE destination to which the files are routed when the server receives a
STOR, STOU, or APPE command. The format for destination should be one of
the following:
v userID@nodeID
v nodeID.userID
v nodeID
v DestID

There is no default.

Examples

Send files to user USER14 at system MVS1 instead of storing them in the server
file system:
DEST USER14@MVS1

DIRECTORY (FTP client and server) statement

Use the DIRECTORY statement to specify the number of directory blocks to be
allocated for the directory of a PDS.

Server This setting applies when creating files on the server's system (for example,
with a PUT subcommand).

Client This setting applies when creating files on the client's system (for example,
with a GET subcommand).

Syntax

��
DIRECTORY 27

DIRECTORY
size

��

Parameters

size
The number of directory blocks to be allocated for the directory of a PDS. The
valid range is 1 - 16 777 215 blocks (the operating system maximum). The
default is 27.

Examples

Allocate a PDS with 15 directory blocks:
Directory 15

Specify DIRECTORY with no value to allow the directory information from an
SMS dataclass to be used:
DIRECTORY

Chapter 18. File Transfer Protocol 781

Usage notes
v If you specify no value for the size, FTP does not specify the number of directory

blocks to be allocated for the directory of a PDS.
v You should specify no value for the size if the DATACLASS statement is

specified and the directory from the SMS data class is to be used.

Related topics
v “DATACLASS (FTP client and server) statement” on page 770
v “DSNTYPE (FTP client and server) statement” on page 783
v “EATTR (FTP client and server) statement” on page 788
v “MGMTCLASS (FTP client and server) statement” on page 818
v “PDSTYPE (FTP client and server) statement” on page 826
v “STORCLASS (FTP client and server) statement” on page 877
v See the storage management subsystem (SMS) information in z/OS

Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

DIRECTORYMODE (FTP client and server) statement

Use the DIRECTORYMODE statement to specify whether only the data set
qualifier immediately below the current directory is treated as an entry in the
directory or if all data set qualifiers below the current directory are treated as
entries in the directory.

Server This setting applies when issuing the MGET, LS, DIR, and MDELETE
subcommands.

Client This setting applies when issuing the MPUT subcommand.

Syntax

��
DIRECTORYMODE FALSE

DIRECTORYMODE TRUE
FALSE

��

Parameters

TRUE
Specifies that only the data set qualifier immediately below the current
directory is treated as an entry in the directory.

FALSE
Specifies that all data set qualifiers below the current directory are treated as
entries in the directory. This is the default.

Examples

If DIRECTORYMODE TRUE:
ftp> ls
200 Port request OK.
125 List started OK.
AREADME
BAILEY
BAILEY.MSYS.SPX001.I2.TEMP

782 z/OS V2R1.0 Communications Server: IP Configuration Reference

BAILEY.TRANS
EZACIMJA
ISPF.ISPROF
XMLS
XX.AREADME
250 List completed successfully.
101 bytes received in 0.03 seconds (3.37 Kbytees/sec)

If DIRECTORYMODE FALSE:
ftp> ls
200 Port request OK.
125 List started OK.
AREADME
BAILEY
BAILEY
EZACIMJA
ISPF
XMLS
XX
250 List completed successfully.
51 bytes received in 0.03 seconds (1.07 Kbytees/sec)

DSNTYPE (FTP client and server) statement

Use the DSNTYPE statement to specify whether FTP creates local physical
sequential data sets as physical sequential basic format data sets or physical
sequential large format data sets. You can also use the SIte and LOCSIte
subcommands to set this keyword.

Server This setting applies when creating data sets on the server's system.

Client This setting applies when creating data sets on the client's system.

Syntax

��
DSNTYPE SYSTEM

DSNTYPE BASIC
LARGE
SYSTEM

��

Parameters

BASIC
Allocates physical sequential data sets as physical sequential basic format data
sets.

LARGE
Allocates physical sequential data sets as physical sequential large format data
sets.

SYSTEM
Allocates physical sequential data sets with the SMS data class value, or the
system default value.

Examples

To allocate new physical sequential data sets as physical large format data sets,
code the following statement in FTP.DATA:
DSNTYPE LARGE

Chapter 18. File Transfer Protocol 783

Related topics:

v See the storage management subsystem (SMS) information in the z/OS
Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

v “BLKSIZE (FTP client and server) statement” on page 756
v “DATACLASS (FTP client and server) statement” on page 770
v “EATTR (FTP client and server) statement” on page 788
v “LRECL (FTP client and server) statement” on page 813
v “PRIMARY (FTP client and server) statement” on page 830
v “RECFM (FTP client and server) statement” on page 833
v “RETPD (FTP client and server) statement” on page 838
v “SECONDARY (FTP client and server) statement” on page 845
v “SPACETYPE (FTP client and server) statement” on page 873
v “VOLUME (FTP client and server) statement” on page 895

DSWAITTIME (FTP client and server) statement

Use the DSWAITTIME statement to specify the number of minutes that FTP tries to
access an MVS data set that could not be obtained because another job or process
was holding the data set. FTP tries to access the data set approximately every
minute for the number of minutes specified in the DSWAITTIME statement.

Restriction: The DSWAITTIME statement does not support tape data sets.

Server Specifies how many minutes the server tries to access to MVS data set.

Client Specifies how many minutes the client tries to access to MVS data set.

Rule: The FTP server reply that displays the holder and other useful information
related to the MVS data set is issued only when REPLYSECURITYLEVEL is 0.

Syntax

��
DSWAITTIME 0

DSWAITTIME minutes
��

Parameters

minutes
The number of minutes to wait for an MVS data set to become available. Valid
values are 0 (DSWAITTIME not used) or 1 - 14400. The default is 0.

Rule: If DSWAITTIME is set to 0, the timer is not set, and only one attempt is
made to access an MVS data set.

Guidelines:

v The FTP server ignores the DSWAITTIME configuration option for RENAME
FROM (RNFR), RENAME TO (RNTO), and DELETE (DELE) commands.

v If the DSWAITTIME configuration option is not 0, also specify the
DATAKEEPALIVE configuration option.

v If you experience control connection timeouts while the server is waiting for
access to an MVS data set, try configuring a nonzero value for

784 z/OS V2R1.0 Communications Server: IP Configuration Reference

FTPKEEPALIVE at the client or the server. If keepalive packets do not
prevent FTP control connection timeouts, configure a smaller
DSWAITTIMEREPLY value.

Examples

Use the following code to set the data set wait time to 10 minutes:
DSWAITTIME 10

Related topics
v “DSWAITTIMEREPLY (FTP server) statement”
v “DATAKEEPALIVE (FTP client and server) statement” on page 773
v “FTPKEEPALIVE (FTP client and server) statement” on page 797
v “REPLYSECURITYLEVEL (FTP server) statement” on page 836

DSWAITTIMEREPLY (FTP server) statement

Use the DSWAITTIMEREPLY statement to specify how often to send the following
reply message to the client while the FTP server is waiting for access to an MVS
data set.
125- Data set access will be retried in 1 minute intervals - number attempts remaining

Results:

v The server always issues the following reply at one-minute intervals while
waiting for access to a data set for the amount of time specified by the
DSWAITTIME configuration option.
125- FTP Server unable to obtain usage use of data set
which is held by asid jobname accessmode on qname

By default, the server also sends the following reply to the client at one-minute
intervals.
125- Data set access will be retried at 1 minute intervals - number attempts remaining

Set the DSWAITTIMEREPLY value to a number smaller than 60 to cause the
server to send this reply more frequently.

v The DSWAITTIMERREPLY value is applied only when you have configured a
DSWAITTIME value that is greater than zero.

Tip: Coding a DSWAITTIMEREPLY value that is smaller than 60 can prevent an
FTP client connection from timing out while the server is waiting for a data set.

Syntax

��
DSWAITTIMEREPLY 60

DSWAITTIMEREPLY seconds
��

Parameters

seconds
The number of seconds between reply messages that the server sends to the
client while it is waiting for access to an MVS data set. The valid range is 15 -
60. The default value is 60. The reply message that is sent:
125- Data set access will be retried at 1 minute intervals - number attempts remaining

Chapter 18. File Transfer Protocol 785

Examples

In this example, the DSWAITTIMEREPLY value is 30. The following reply message
is issued every 30 seconds:
125- Data set access will be retried at 1 minute intervals - number attempts remaining

If the DSWAITTIMEREPLY value is 3, the following would be the actual output:
125- FTP Server unable to obtain EXCLUSIVE use of
USER.TEST.DATA which is held by: 0035 USER2
EXCL on SYSDSN
125- Data set access will be retried in 1 minute
intervals - 3 attempts remaining
125- Data set access will be retried in 1 minute
intervals - 3 attempts remaining
125- FTP Server unable to obtain EXCLUSIVE use of
USER.TEST.DATA which is held by: 0035 USER2
EXCL on SYSDSN
125- Data set access will be retried in 1 minute
intervals - 2 attempts remaining
125- Data set access will be retried in 1 minute
intervals - 2 attempts remaining
125- FTP Server unable to obtain EXCLUSIVE use of
USER.TEST.DATA which is held by: 0035 USER2
EXCL on SYSDSN
125- Data set access will be retried in 1 minute
intervals - 1 attempts remaining
125- Data set access will be retried in 1 minute
intervals - 1 attempts remaining
125- FTP Server unable to obtain EXCLUSIVE use of
USER.TEST.DATA which is held by: 0035 USER2
EXCL on SYSDSN
125 Data set USER2.TEST.DATA is not available

Related topics
v “DSWAITTIME (FTP client and server) statement” on page 784
v “FTPKEEPALIVE (FTP client and server) statement” on page 797

DUMP (FTP client and server) statement

Use the DUMP statement to activate an extended trace.

Restriction: Only one dump parameter can be specified for a DUMP statement.

Server Extended traces are recorded on server's system for server debugging.

Client Extended traces are recorded on client's system for client debugging.

Syntax

�� DUMP parameter ��

Parameters

n Specifies the ID number of a specific extended trace point that is to be
activated in the FTP code. The number is an integer in the range 1 - 99.

FSC
Activates all of the extended trace points in the file services code.

786 z/OS V2R1.0 Communications Server: IP Configuration Reference

JES
Activates all of the extended trace points in the JES services code.

Restriction: This applies to the server only.

SOC
Activates all of the extended trace points in the network services code.

SQL
Activates all of the extended trace points in the SQL services code.

ALL
This parameter is used to set all of the trace points. It sets dump IDs 1 to 99.

USERID (filter_name)
This parameter is used to filter the extended trace for user IDs matching the
filter_name pattern. If the user ID matches the filter at the time the client logs
in, tracing options are set to the current value of the options. Otherwise, no
extended tracing options are set. The client might use the SITE command to set
options after login if the initial ones are not appropriate. An example for the
USERID filter is:
DUMP USERID(USER33)

which activates the dumpID trace for a user if the user ID is USER33.

Restriction: This applies to the server only.

IPADDR (filter/subnet mask)
This parameter is used to filter the extended trace for IP addresses matching
the filter pattern. If the IP address matches the filter at the time the client
connects, extended tracing options are set to the current value of the options.
Otherwise, no extended tracing options are set. The client might use the SITE
command to set options after connect if the initial ones are not appropriate.
Examples of the IPADDR filter are:
DUMP IPADDR(9.67.113.57)
DUMP IPADDR(FEDC:BA98:7654:3210:FEDC:BA98:7654:3210)

The first example activates the extended traces for a client whose IP address is
9.67.113.57; the second activates the extended traces for a client whose IP
address is FEDC:BA98:7654:3210:FEDC:BA98:7654:3210.

If the filter is an IPv4 address, submasking can be indicated by using a slash
followed by a dotted decimal submask. For example, 192.48.32/255.255.255.0
allows addresses from 192.48.32.00 to 192.48.32.255. If the filter is an IPv6
address, network prefixing can be indicated by using a slash followed by a
network prefix. For example, use FEDC:BA98::0/32 to indicate the prefix:
FEDCBA98.

Restriction: This applies to the server only.

DUMPONSITE (FTP server) statement

Use the DUMPONSITE statement to specify whether the FTP server accepts a SITE
DUMP command to change the extended tracing options for the FTP session.

Syntax

Chapter 18. File Transfer Protocol 787

��
DUMPONSITE FALSE

DUMPONSITE FALSE
TRUE

��

Parameters

TRUE
The FTP server allows an FTP client to change the extended trace options with
a SITE DUMP command.

FALSE
The FTP server does not allow an FTP client to change the extended trace
options with a SITE DUMP command. This is the default.

Related topics
v “DUMP (FTP client and server) statement” on page 786
v See z/OS Communications Server: IP User's Guide and Commands for more

information about the SITE subcommand.

EATTR (FTP client and server) statement

Use the EATTR statement to specify whether new data sets can have extended
attributes and whether the data sets can reside in the EAS of an EAV. You can also
use the SIte and LOCSIte subcommands to set this keyword.

Server This setting applies when creating data sets on the server's system.

Client This setting applies when creating data sets on the client's system.

Syntax

��
EATTR SYSTEM

EATTR NO
OPT
SYSTEM

��

Parameters

NO The new data set cannot reside in the EAS, and its VTOC entry cannot have
extended attributes.

OPT
The new data set can reside in the EAS, and its VTOC entry can have extended
attributes if the volume supports them.

SYSTEM
The new data set will use the SMS data class EATTR value. If no SMS data
class is defined, or if the data class contains no EATTR specification, the data
set will be allocated with the system default. This is the default.

Examples

To allow new data sets to have extended attributes if the volume supports them,
and to allow new data sets to reside in the EAS, code the following statement in
FTP.DATA:

788 z/OS V2R1.0 Communications Server: IP Configuration Reference

EATTR OPT

Related topics:

v See the storage management subsystem (SMS) information in the z/OS
Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

v “BLKSIZE (FTP client and server) statement” on page 756
v “DATACLASS (FTP client and server) statement” on page 770
v “DCBDSN (FTP client and server) statement” on page 776
v “DIRECTORY (FTP client and server) statement” on page 781
v “DSNTYPE (FTP client and server) statement” on page 783
v “LRECL (FTP client and server) statement” on page 813
v “PDSTYPE (FTP client and server) statement” on page 826
v “PRIMARY (FTP client and server) statement” on page 830
v “RECFM (FTP client and server) statement” on page 833
v “RETPD (FTP client and server) statement” on page 838
v “SECONDARY (FTP client and server) statement” on page 845
v “SPACETYPE (FTP client and server) statement” on page 873
v “VOLUME (FTP client and server) statement” on page 895

EMAILADDRCHECK (FTP server) statement

Use the EMAILADDRCHECK statement to control the extent to which the FTP
server validates e-mail addresses entered by FTP clients while logging in to the
FTP server.

Restriction: This statement is meaningful only when ANONYMOUSLEVEL is 3 or
greater.

Syntax

��
EMAILADDRCHECK NO

EMAILADDRCHECK NO
FAIL
WARNING

��

Parameters

NO The FTP server does not validate the e-mail address entered by the FTP client.
Whatever the user entered is accepted and the user can log in. This is the
default.

FAIL
The FTP server verifies that the e-mail address entered by the FTP client is a
valid e-mail address before allowing the user to log in. The FTP server rejects
the login if the e-mail address is not valid.

WARNING
The FTP server inspects the e-mail address entered by the FTP client. Any
value the client enters is accepted as valid; however, the FTP server returns a
warning reply to the client if the e-mail address is not plausible. In either case,
the FTP server allows the FTP client to log in.

Chapter 18. File Transfer Protocol 789

Examples

To ensure that only anonymous users entering valid e-mail addresses are allowed
successful login, set the following parameter in FTP.DATA:
EMAILADDRCHECK FAIL; Requires anonymous users to enter a valid email address.

Usage notes

The FTP server prompts anonymous users for an e-mail address instead of a
password when ANONYMOUSLEVEL is 3.

Related topics
v “ANONYMOUS (FTP server) statement” on page 738
v “ANONYMOUSLEVEL (FTP server) statement” on page 748
v “The FTCHKPWD user exit” on page 707

ENCODING (FTP client and server) statement

Use the ENCODING statement in the server and client FTP.DATA to indicate the
type of data encoding on the network. You can also use the SIte and LOCSIte
subcommands to set this keyword.

Server Specifies to the server whether to use single or double-byte code pages.

Client Specifies to the client whether to use single or double-byte code pages.

Syntax

��
ENCODING SBCS

ENCODING SBCS
MBCS

��

Parameters

SBCS
Specifies single byte encoding. Code pages are specified by way of the
SBDATACONN statement. This is the default value.

MBCS
Specifies multibyte encoding. Code pages are specified by way of the
MBDATACONN statement.

Rule: The data transfer Type must be ASCII to enable multibyte translation
when ENCODING=MBCS is set.

Tip: The type is always ASCII when the client initially logs into the server.

Server

v The data transfer Type remains ASCII until the server receives a Type
command from the client

v You can send a STAT command to the server to verify the Type setting by
issuing the stat subcommand from the z/OS FTP client, or by issuing a
QUOTE STAT command from any FTP client.

Client

790 z/OS V2R1.0 Communications Server: IP Configuration Reference

v Certain subcommands, such as TYPE, BIG5, and others, change the data
transfer Type.

v You can use the LOCSTAT subcommand to verify the Type setting.
v Use the TYPE subcommand to restore Type to ASCII

Examples

To indicate that data encoding was specified using MBDATACONN statement, use
the following code:
ENCODING MBCS

Related topics
v “MBDATACONN (FTP client and server) statement” on page 815
v “MBSENDEOL statement (FTP client and server) statement” on page 817
v “SBDATACONN (FTP client and server) statement” on page 840
v “SBSENDEOL statement (FTP client and server) statement” on page 841

EPSV4 (FTP client) statement

Use the EPSV4 statement to direct the FTP client to use EPSV and EPRT
commands on IPv4 sessions. The locsite subcommand is also available to set this
parameter.

Syntax

��
EPSV4 FALSE

EPSV4 FALSE
TRUE

��

Parameters

FALSE
Prevents the client from using EPRT and EPSV commands on IPv4 sessions.
This is the default.

TRUE
Directs the client to use EPRT and EPSV commands on IPv4 sessions.

Usage notes

EPRT and EPSV commands are described in RFC 2428. If the server rejects an
EPRT or EPSV command during the session, the client stops sending EPRT and
EPSV to that server regardless of how you have set EPSV4.

Guideline: If your client has trouble establishing a data connection on an IPv4
security protected, encrypted session through an NAT firewall, coding EPSV4
TRUE in the client's FTP.DATA can help.

Restrictions:

v The FTP server ignores this statement.

Chapter 18. File Transfer Protocol 791

v Socksified sessions use PASV or PORT commands to establish data connections,
as specified by the FWFRIENDLY setting. When EPSV4 is TRUE, the client
attempts EPSV but never EPRT to establish a socksified data connection.

v Some FTP servers support EPRT and EPSV commands, but do not reply as
described in RFC 2428. If the FTP server reply to EPSV or EPRT does not
conform to RFC 2428, the client reacts as if the server has rejected the command.

v RFC 2428 stipulates EPSV is the preferred command to establish data
connections. Therefore, when EPSV4 is TRUE, the client tries EPSV regardless of
how you have set FWFRIENDLY. The client uses EPRT only to set up a data
connection for proxy transfer.

Examples

To direct the client to use EPSV and EPRT commands on IPv4 FTP sessions, use
the following code:
EPSV4 TRUE

Related topics
v “FWFRIENDLY (FTP client) statement” on page 799
v “PASSIVEIGNOREADDR (FTP client) statement” on page 824

EXTENSIONS (FTP client and server) statement

Use the EXTENSIONS statement to enable FTP to support FTP extensions not
described in RFC 959.

Syntax

��
EXTENSIONS AUTH_GSSAPI
EXTENSIONS SIZE
EXTENSIONS MDTM
EXTENSIONS UTF8
EXTENSIONS REST_STREAM
EXTENSIONS AUTH_TLS

��

Parameters

AUTH_GSSAPI
Specifies that GSSAPI authentication is supported. The server supports
receiving the AUTH command with GSSAPI. AUTH_GSSAPI is supported for
IPv4 connections only.

Restriction: This parameter applies to the server only.

SIZE
Enables the FTP Server to respond to the SIZE command. SIZE is supported
for z/OS UNIX files only when the data transfer type is image, ASCII, or
EBCDIC, the structure is file, and the data transfer mode is stream. If an FTP
client requests MDTM or SIZE information for an MVS data set, or for any
other unsupported file, the server returns an FTP reply code and error message
instead of the requested information.

Restriction: This parameter applies to the server only.

792 z/OS V2R1.0 Communications Server: IP Configuration Reference

MDTM
Enables the FTP Server to respond to the MDTM command. MDTM is
supported for z/OS UNIX files only.

Restriction: This parameter applies to the server only.

UTF8
Enables the FTP server to respond to the LANG command, and to use UTF–8
encoding of pathnames on the control connection. The server ignores
configuration options that direct it to use a specific code page on the control
connection, as well as SITE commands that specify a specific code page on the
control connection. The server initializes the control connection to use 7-bit
ASCII until a LANG command from the client directs it to use UTF-8 encoding
of pathnames. The only language supported by the server is United States
English.

When the client has EXTENSIONS UTF8 encoded in FTP.DATA, the client has
the language and subcommands available. Configuration options that direct
the client to use a specific code page on the control connection, as well as
LOCSITE commands that specify a specific code page on the control
connection, are ignored. Initially the client uses 7-bit ASCII on the control
connection. During client login, the client queries the server to determine
whether it supports UTF-8 encoding. If so, it uses UTF-8 encoding of
pathnames on the control connection.

Restriction: This parameter applies to both the client and the server.

REST_STREAM
Enables the FTP server to restart stream mode file transfers. The server ignores
EXTENSIONS REST_STREAM unless EXTENSIONS SIZE is also coded,
because stream restarts rely on the SIZE command.

Restriction: This parameter applies to the server only.

AUTH_TLS
Specifies that TLS authentication is supported. The server supports receiving
the AUTH command with the following values:
v TLS: When the server successfully processes the AUTH TLS command and

completes the handshake with the FTP client, the control connection is
protected by TLS.

v TLS-C: When the server successfully processes the AUTH TLS-C command
and completes the handshake with the FTP client, the control connection is
protected by TLS.

v TLS-P: When the server successfully processes the AUTH TLS-P command
and completes the handshake with the FTP client, the control connection is
protected by TLS. The server also implicitly protects all data connections.

v SSL: When the server successfully processes the AUTH SSL command and
completes the handshake with the FTP client, the control connection is
protected by TLS.The server also implicitly protects all data connections.

Restriction: This parameter applies to the server only.

Results:

v This parameter also enables server support for the PROT and PBSZ
commands.

v Server support for TLS-secured sessions is affected by the TLSRFCLEVEL
setting.

Chapter 18. File Transfer Protocol 793

Examples
EXTENSIONS SIZE

EXTENSIONS MDTM

Usage notes
v The EXTENSIONS statement has no default value.
v If you do not include an EXTENSIONS statement in FTP.DATA, no extensions to

RFC 959 are recognized.
v Unlike other FTP.DATA statements, EXTENSIONS statements are cumulative. If

you include an EXTENSIONS SIZE statement in FTP.DATA and also an
EXTENSIONS MDTM statement, the FTP server receives both the SIZE and
MDTM commands.

v The only way to disable an EXTENSIONS statement is to remove that statement
from FTP.DATA. You can remove a statement by changing it to a comment or by
deleting the statement.

v The SIZE and MDTM commands are not part of RFC 959. They are proposed
commands described by an Internet-Draft published by the IETF (Internet
Engineering Task Force). Because these commands are not part of an RFC, the
FTP server supports them only if FTP.DATA includes EXTENSIONS statements
to explicitly enable them.

Related topics
v “TLSRFCLEVEL (FTP client and server) statement” on page 880
v See z/OS Communications Server: IP Configuration Guide for more information

about customizing TLS and Kerberos.

FIFOIOTIME (FTP client and server) statement

Use the FIFOIOTIME statement to set a timeout for reading and writing to a UNIX
named pipe. This timeout is the maximum length of time FTP waits for I/O to a
UNIX named pipe to complete. You can use the SIte and LOCSIte subcommands to
set this value.

Server Specifies how long the server waits for reads from and writes to a UNIX
named pipe to complete.

When you are retrieving data from a named pipe in the FTP server file
system, this statement specifies the length of time the server waits for
reads from the named pipe to complete.

When you are storing data into a named pipe in the FTP server file system,
this statement specifies the length of time the server waits for writes to the
named pipe to complete.

If no data is written to or read from the named pipe in the FIFOIOTIME
interval, the FTP server fails the file transfer.

Tip: Setting FIFOIOTIME to a small value interrupts the server needlessly.
This can have a deleterious impact on FTP performance.

Client Specifies the length of time that the client waits for reads from and writes
to a UNIX named pipe to complete.

When you are sending a file from a named pipe in the FTP client file
system to the FTP server, this statement specifies the length of time that
the client waits for reads from the named pipe to complete.

794 z/OS V2R1.0 Communications Server: IP Configuration Reference

When you are getting a file from the FTP server and storing it into a
named pipe in the FTP client server file system, this statement specifies the
length of time the client waits for writes to the named pipe to complete.

If no data is written to or read from the named pipe in the FIFOIOTIME
interval, the FTP client fails the file transfer.

Syntax

��
FIFOIOTIME 20

FIFOIOTIME seconds
��

Parameters

seconds
The number of seconds in the range 1 - 86 400. The default is 20.

Examples

Use the following code to set the timer to 60 seconds:
FIFOIOTIME 60

Related topics
v “FIFOOPENTIME (FTP client and server) statement”
v “UNIXFILETYPE (FTP client and server) statement” on page 891

FIFOOPENTIME (FTP client and server) statement

Use the FIFOOPENTIME statement to define the length of time that FTP waits
after attempting to open UNIX named pipe before reporting an error. You can use
the SIte and LOCSIte subcommands to set this value.

Server This setting specifies the length of time that the server waits for an open of
a UNIX named pipe to complete.

Client This setting specifies the length of time that the client waits for an open of
a UNIX named pipe to complete.

Syntax

��
FIFOOPENTIME 60

FIFOOPENTIME seconds
��

Parameters

seconds
The number of seconds that FTP waits for an open of a UNIX named pipe to
complete. Valid values are in the range 1 - 86 400. The default is 60.

Examples

Use the following code to set the timer to 600 seconds:
FIFOOPENTIME 600

Chapter 18. File Transfer Protocol 795

Related topics
v “FIFOIOTIME (FTP client and server) statement” on page 794
v “UNIXFILETYPE (FTP client and server) statement” on page 891

FILETYPE (FTP client and server) statement

Use the FILETYPE statement to specify the method of operation for FTP.

Syntax

��
FILETYPE SEQ

FILETYPE JES
SEQ
SQL

��

Parameters

JES
Remote job submission.

Restriction: This parameter applies to the server only.

SEQ
MVS data sets or z/OS UNIX files. SEQ is the method of operation supported
by all FTP platforms. This is the default.

SQL
SQL query function. SQL method affects the RETR command at the server and
the PUT subcommand at the client.

Examples

Set the operational method to SQL:
Filetype SQL

Usage notes
v SQL pertains to z/OS platform only. For more information about the effects on

command processing when FILETYPE is SQL, see z/OS Communications Server:
IP User's Guide and Commands.

v When the SQL method is in specified for the server, it affects the RETR
command only. When the SQL method is specified for the client, it affects the
STOR command only.

v JES pertains to the z/OS platform only and is valid only in the FTP.DATA file
for a server. For more information about the effects on command processing at
the server when the server's FILETYPE is JES, see z/OS Communications Server:
IP User's Guide and Commands.

v JES method affects the STOR, LIST, RETR, and NLST commands.

Related topics
v “ANONYMOUS (FTP server) statement” on page 738
v “ANONYMOUSLEVEL (FTP server) statement” on page 748
v “ANONYMOUSFILETYPEJES (FTP server) statement” on page 742
v “ANONYMOUSFILETYPESEQ (FTP server) statement” on page 743

796 z/OS V2R1.0 Communications Server: IP Configuration Reference

v “ANONYMOUSFILETYPESQL (FTP server) statement” on page 743
v “DB2 (FTP client and server) statement” on page 774
v “DB2PLAN (FTP cilent and server) statement” on page 775
v “JESENTRYLIMIT (FTP server) statement” on page 802
v “JESLRECL (FTP server) statement” on page 806
v “JESPUTGETTO (FTP server) statement” on page 807
v “JESGETBYDSN (FTP server) statement” on page 803
v “JESINTERFACELEVEL (FTP server) statement” on page 804
v z/OS Communications Server: IP Configuration Guide for information about

JESINTERFACELEVEL

FTPKEEPALIVE (FTP client and server) statement

Use the FTPKEEPALIVE statement to define the control connection keepalive timer
value in seconds. This sets a socket level keepalive timer for the control connection.
This allows the keepalive mechanism to send a packet on the idle control
connection every FTPKEEPALIVE seconds, and avoid the firewall timing out the
control connection.

Server Specifies how often the server sends a keepalive packet.

Client Specifies how often the client sends a keepalive packet.

Syntax

��
FTPKEEPALIVE 0

FTPKEEPALIVE seconds
��

Parameters

seconds
The number of seconds before a keepalive packet is sent out on the FTP
control connection. The valid range is 0 (FTPKEEPALIVE not used) or 60 -
86 400. The default is 0.

Examples

Set the FTP keepalive timer to 60 seconds:
FTPKEEPALIVE 60

Usage notes

If you specify 0 seconds, the FTPKEEPALIVE timer is disabled and the only
keepalive packets that flow on the control connection would be controlled by
whatever interval for keepalive packets you have configured in the stack.

FTPLOGGING (FTP server) statement

Use the FTPLOGGING statement to indicate whether the FTP server should log
FTP server activity. The following types of activities are logged:
v Connectivity
v Authentication

Chapter 18. File Transfer Protocol 797

v Access
v Allocation
v Deallocation
v Data transfer
v JES job submission
v SQL query
v Abnormal end
v Confidence of success level assigned to each file transfer when

CHKCONFIDENCE is coded

The activities are logged in the SYSLOGD file. Each logging entry has a message
number.

FTPLOGGING controls logging for non-anonymous user.

Syntax

��
FTPLOGGING FALSE

FTPLOGGING TRUE
TRUENODNS
FALSE

��

Parameters

TRUE
The FTP server should log FTP session activity.

Tip: If TRUE is used, a long delay in login processing might occur because the
FTP server issues a DNS query to resolve the remote host IP address.

TRUENODNS
The FTP server should log FTP session activity, however the client hostname
lookup done during connection initiation is disabled. Message EZYFS50I
contains UNKNOWN for the host name.

FALSE
The FTP server should not log FTP session activity.

Examples

To request that the FTP server log session activity:
FTPLOGGING TRUE

Usage notes
v Each activity logging message has a message number within the range of

EZYFS50 to EZYFS95.
v If FTPLOGGING is TRUE, connectivity, authentication, and access activity log

entries are made for all sessions because the server does not know whether the
login is anonymous or not.

Related topics
v “CHKCONFIDENCE statement (FTP client and server) statement” on page 760

798 z/OS V2R1.0 Communications Server: IP Configuration Reference

v See “ANONYMOUSFTPLOGGING (FTP server) statement” on page 744 to
control logging for an anonymous user.

FWFRIENDLY (FTP client) statement

Use the FWFRIENDLY statement to specify how data connections are to be set up
between the client and the server.

Syntax

��
FWFRIENDLY FALSE

FWFRIENDLY TRUE
FALSE

��

Parameters

TRUE
Specifies that the FTP client is firewall-friendly. This means that data
connections are set up from the FTP client to the FTP server.

FALSE
Specifies that the FTP client is not firewall-friendly. This means that data
connections are set up from the FTP server to the FTP client. This is the
default.

Examples
FWFRIENDLY TRUE ; FTP client is firewall-friendly

Usage notes

When the connection to the server is IPv6, data connections are set up from client
to the server regardless of the FWFRIENDLY setting.

Related topics
v “EPSV4 (FTP client) statement” on page 791
v “PASSIVEIGNOREADDR (FTP client) statement” on page 824

HFSINFO (FTP server) statement

Use the HFSINFO statement to specify a file containing welcome messages specific
to each FTP server directory visited by an FTP user. In contrast to FTP users that
are logged in as anonymous users, this statement affects only known users.

Syntax

�� HFSInfo file-mask ��

Parameters

file-mask
The file-mask is a z/OS UNIX file mask used to find a z/OS UNIX
information file for known users. The file mask can contain wildcards or it can
be a complete file name. When a user changes directories, a search is

Chapter 18. File Transfer Protocol 799

conducted with the specified mask. The contents of the first file found is
returned to the FTP client and is displayed to the end user. If no file is found
matching the specified mask, no information is displayed to the end user.

Restriction: Wildcards work only when an asterisk (*) is placed after a string
of characters.

Examples

Use the following code to direct the FTP server to search each directory to which a
named FTP client changes, for a file matching the pattern msg*. Each time a named
FTP client changes directory, the FTP server searches the target directory for files
matching the file-mask msg*. The contents of the first matching file in each
directory is returned to the FTP client.
HFSINFO msg* ; Real user HFS info file-mask
; login

Usage notes

The default value of HFSINFO is <null>, meaning no welcome messages are
displayed.

Related topics
v “ADMINEMAILADDRESS (FTP server) statement” on page 738
v “ANONYMOUSHFSINFO (FTP server) statement” on page 747
v “ANONYMOUSLOGINMSG (FTP server) statement” on page 750
v “ANONYMOUSMVSINFO (FTP server) statement” on page 751
v “BANNER (FTP server) statement” on page 756
v “LOGINMSG (FTP server) statement” on page 813
v “MVSINFO (FTP server) statement” on page 820

INACTIVE (FTP Server) statement

Use the INACTIVE statement to set the inactivity timer to a specified number of
seconds. Any control connection that is inactive for the amount of time specified
on this statement is closed by the server.

Syntax

��
INACTIVE 300

INACTIVE seconds
��

Parameters

seconds
The number of seconds to which the inactivity timer is set. The valid range is 0
- 86 400. The default is 300. A value of 0 indicates no inactivity time is
enabled, and the connection does not time out.

800 z/OS V2R1.0 Communications Server: IP Configuration Reference

Examples

Set the inactivity timer to 30 seconds:
INACTIVE 30

Usage notes
v This value has no effect on the data connections. To specify a timeout value for

the data connection, use the INTERVAL parameter of the TCPCONFIG statement
in PROFILE.TCPIP. See the FTP configuration process in z/OS Communications
Server: IP Configuration Guide for details.

v Specifying an INACTIVE value of zero can result in idle sessions remaining
open indefinitely, which consumes system resources in an unproductive way.
Code a nonzero value for INACTIVE to ensure that idle, unproductive sessions
eventually expire.

Related topics
v “FTPKEEPALIVE (FTP client and server) statement” on page 797

INACTTIME (FTP client) statement

Use the INACTTIME statement to specify the amount of time the FTP client waits
for an expected response from the server, on either the control or the data
connection, before closing the session. Data transfer times that exceed this value
does not cause session termination unless the time between data packet arrivals
exceeds this value.

Syntax

��
INACTTIME 120

INACTTIME seconds
��

Parameters

seconds
The number of seconds to which the timer is set. The valid range is 0
(INACTTIME not used) or 15-86400. The default is 120 seconds.

Examples
INACTTIME 160 ; wait 160 seconds

Usage notes

None

Related topics

See the FTP command and FTP environment information in z/OS Communications
Server: IP User's Guide and Commands.

Chapter 18. File Transfer Protocol 801

ISPFSTATS (FTP client and server) statement

Use the ISPFSTATS statement to allow FTP to create and maintain statistics for
partitioned data set members. You can also use the SIte and LOCSIte
subcommands to set this keyword.

Server This setting applies when creating or updating data sets on the server's
system.

Client This setting applies when creating or updating data sets on the client's
system.

Syntax

��
ISPFSTATS FALSE

ISPFSTATS TRUE
FALSE

��

Parameters

FALSE
FTP does not create statistics if the file does not already exist or does exist but
does not have statistics. If the file already exists and contains statistics, FTP
updates the statistics and sends the reply indicating the behavior.

TRUE
FTP creates or updates the statistics.

Examples

FTP creates the statistics:
ISPFSTATS TRUE

Usage notes
v The ISPFSTATS statement is ignored for sequential data sets; it applies to PDS

and PDSE data sets. The record format must be either variable or fixed, and the
record length must be less than 256.

v Transferring PDS member to PDS member in block mode or in compress mode
differs in behavior from transferring in stream mode. If the user wants to
preserve the statistics of the PDS member that already has statistics, and have
the same statistics copied over to targeted PDS member, transferring in block
mode or in compress mode is preferred.

JESENTRYLIMIT (FTP server) statement

Use the JESENTRYLIMIT statement to specify the number of entries that can be
displayed concurrently through a LIST or NLST command when FILETYPE=JES
and JESINTERFACELEVEL=2. You can also use the SITE command to set this
keyword.

802 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

��
JESENTRYLIMIT 200

JESENTRYLIMIT value
��

Parameters

value
A numeral in the range of 1 - 1 024.

Examples

The following example illustrates a JESENTRYLIMIT of 10:
dir
EZA1701I >>> PORT 127,0,0,1,4,10
200 Port request OK.
EZA1701I >>> LIST
125 List started OK for JESJOBNAME=USER1*, JESSTATUS=ALL and JESOWNER=USER1
EZA2284I JOBNAME JOBID OWNER STATUS CLASS
EZA2284I USER1 TSU00025 USER1 OUTPUT TSU ABEND=222 3 spool files
EZA2284I USER1A JOB00209 USER1 OUTPUT A ABEND=806 3 spool files
EZA2284I USER1 JOB00201 USER1 OUTPUT A RC=0000 5 spool files
EZA2284I USER1J JOB00208 USER1 OUTPUT A (JCL error) 3 spool files
EZA2284I USER1 JOB00193 USER1 OUTPUT A RC=0000 5 spool files
EZA2284I USER1A JOB00200 USER1 OUTPUT A ABEND=806 3 spool files
EZA2284I USER1 JOB00179 USER1 OUTPUT A RC=0000 5 spool files
EZA2284I USER1 JOB00166 USER1 OUTPUT A RC=0000 5 spool files
EZA2284I USER1J JOB00199 USER1 OUTPUT A (JCL error) 3 spool files
EZA2284I USER1A JOB00187 USER1 OUTPUT A ABEND=806 3 spool files
250-JESENTRYLIMIT of 10 reached. Additional entries not displayed
250 List completed successfully.
EZA1460I Command:

Usage notes
v If JESENTRYLIMIT is not specified in FTP.DATA, the default is 200.
v JESENTRYLIMIT is valid only when JESINTERFACELEVEL is set to 2.

Related topics
v “FILETYPE (FTP client and server) statement” on page 796
v “JESGETBYDSN (FTP server) statement”
v “JESINTERFACELEVEL (FTP server) statement” on page 804

JESGETBYDSN (FTP server) statement

Use the JESGETBYDSN statement to specify how to use the foreign file name when
retrieving a file with a value of FILETYPE=JES.

When the JESGETBYDSN statement value FALSE is coded or set to the default
value, the foreign file specified when retrieving a file with FILETYPE=JES is read
from the MVS system, submitted to JES as a batch job, and its output is retrieved
to the client.

When the JESGETBYDSN statement value TRUE is coded, the foreign file specified
when retrieving a file with FILETYPE=JES is read as a JES spool file data set name,
and its output retrieved to the client. The JES spool file data set name is the same

Chapter 18. File Transfer Protocol 803

format as an MVS data set name, but it is a case-sensitive JES data set name. The
JES data set name for a job can be found using SDSF on the Job Data Set panel
(JDS). See z/OS SDSF Operation and Customization for more information about
JES data set names.

Syntax

��
JESGETBYDSN FALSE

JESGETBYDSN TRUE
FALSE

��

Parameters

FALSE
Specifies that the foreign file specified when retrieving a file with
FILETYPE=JES is read from the MVS system, submitted to JES as a batch job,
and its output is retrieved to the client. This is the default setting.

TRUE
Specifies that the foreign file specified when retrieving a file with
FILETYPE=JES is read as a JES spool file data set name and its output is
retrieved to the client.

Examples

The following example illustrates a JESGETBYDSN of FALSE:
JESGETBYDSN FALSE

Rule: The JESGETBYDSN statement only has meaning when FILETYPE=JES is
specified and when JESINTERFACELEVEL 2 is coded in the FTP server's
FTP.DATA file.

Related topics
v “ANONYMOUSFILETYPEJES (FTP server) statement” on page 742
v “FILETYPE (FTP client and server) statement” on page 796
v “JESENTRYLIMIT (FTP server) statement” on page 802
v “JESINTERFACELEVEL (FTP server) statement”
v “JESLRECL (FTP server) statement” on page 806
v “JESRECFM (FTP server) statement” on page 808

JESINTERFACELEVEL (FTP server) statement

Use the JESINTERFACELEVEL statement to specify the FTP-to-JES interface to be
used by the installation. With JESINTERFACELEVEL 1, FTP users can submit jobs
to JES, retrieve held output matching their logged-in user ID plus one character,
and delete held jobs matching their logged-in user ID plus one character.

With JESINTERFACELEVEL 2, FTP users can retrieve and delete any job in the
system for which they have the security access facility (SAF) resource class
JESSPOOL access. Their ability to submit jobs is governed by the JESJOBS class
SAF resource. JESINTERFACELEVEL 2 should only be specified if security
measures are in place to ensure process access to JES output. For more information
about SDSF security see z/OS SDSF Operation and Customization.

804 z/OS V2R1.0 Communications Server: IP Configuration Reference

|

JESINTERFACELEVEL 2 uses the SAPI interface to JES, so READ authority to the
JESSPOOL resource is required to list job status or retrieve job output. See z/OS
JES2 Initialization and Tuning Guide for more information about JES security. See
z/OS MVS Using the Subsystem Interface for more information about the SAPI
interface.

The SAF controls used for JESINTERFACELEVEL 2 are essentially a subset of those
used by SDSF. Therefore, if an installation has customized SAF facilities for SDSF,
it is configured for FTP JES JESINTERFACELEVEL 2.

JESSPOOL defines resource names as [nodeid].[userid].[jobname].[Dsid].[dsname].
An FTP user can delete job output if it has ALTER access to the resource that
matches its node ID, user ID, and job name (generics can be used). If the FTP client
has READ access to the resource, it can list or retrieve the job output. FTP uses
three filters to control the display of jobs. These filters employ SDSF resources. The
first filter, JESSTATUS, can be changed by an FTP client by way of the SITE
command to filter jobs in INPUT, ACTIVE, or OUTPUT state. The second filter,
JESOWNER, has the value of the logged-in user ID by default. The third filter,
JESJOBNAME, has the value of the logged-in user ID plus an asterisk (*) by
default. JESSTATUS uses the SDSF resources ISFCMD.DSP.INPUT.jesx,
ISFCMD.DSP.ACTIVE.jesx, and ISFCMD.DSP.OUTPUT.jesx. At login time, the
default value for JESSTATUS is set to ALL if READ access is allowed to all three
classes. Otherwise, the server attempts to set the value to OUTPUT, ACTIVE, and
then INPUT if the appropriate READ access is allowed. If no READ access is
allowed to any of the classes, JESSTATUS is set to OUTPUT but JESOWNER and
JESJOBNAME cannot be changed from their default values. In this way, SAF
controls can be put in place to limit FTP users to whatever status of jobs an
installation requires.

Authority to change JESOWNER is obtained by way of READ access to RACF
profile ISFCMD.FILTER.OWNER. Authority to change JESJOBNAME is obtained
by way of of READ access to RACF profile ISFCMD.FILTER. An FTP client with
READ access to ISFCMD.FILTER.OWNER is allowed to change the JESOWNER
parameter by way of the SITE command. An FTP client with READ access to
ISFCMD.FILTER.PREFIX is allowed to change the JESJOBNAME parameter by way
of the SITE command.

Syntax

��
JESINTERFACELevel 1

JESINTERFACELlevel 1
JESINTERFACELlevel 2

��

Parameters

1 Specifies that FTP users can submit jobs to JES, retrieve held output matching
their logged-in user ID plus one character, and delete held jobs matching their
logged-in user ID plus one character. This is the default.

2 Specifies that FTP users can retrieve and delete any job in the system for which
they have the security access facility (SAF) resource class JESSPOOL access.
Their ability to submit jobs is governed by the JESJOBS class SAF resource.

Guideline: JESINTERFACELEVEL 2 should only be specified if security
measures are in place to ensure process access to JES output.

Chapter 18. File Transfer Protocol 805

||
|
|

||
|
|

|
|

Examples

The following code is an example of commands used to allow all FTP users other
than USER1 the ability to change JESOWNER. USER1 is only allowed the default
JESOWNER value and not allowed to change JESOWNER by way of the SITE
command.
JESOWNER: setropts classact(SDSF) refresh
rdefine SDSF (isfcmd.filter.owner) uacc(read)
permit isfcmd.filter.owner access(none) class(SDSF) id(user1)
setropts classact(SDSF) refresh

Requirement: If JESINTERFACELEVEL 2 is specified, an installation must ensure
that security measures are in place to control FTP client access to jobs.

Result: This statement applies only when FILETYPE JES is active.

Related topics
v “FILETYPE (FTP client and server) statement” on page 796
v “JESENTRYLIMIT (FTP server) statement” on page 802
v “JESGETBYDSN (FTP server) statement” on page 803
v z/OS Communications Server: IP Configuration Guide for information about

JESINTERFACELEVEL

JESLRECL (FTP server) statement

Use the JESLRECL statement to specify the record length of the jobs being
submitted. You can also use the SITE command to set this keyword.

Syntax

��
JESLRECL 80

JESLRECL length
��

Parameters

length
The record length of the job being submitted. The valid range is 1 - 254. The
default is 80. If you specify length as *, FTP uses the length value from the
LRECL statement.

Examples

Explicitly set the logical record length for JES jobs to 80:
JESLRECL 80

Usage notes
v If JESLRECL * is specified, the LRECL value is used for jobs being submitted.
v This statement applies only when FILETYPE JES is active.

Related topics
v “FILETYPE (FTP client and server) statement” on page 796
v “JESGETBYDSN (FTP server) statement” on page 803

806 z/OS V2R1.0 Communications Server: IP Configuration Reference

v “LRECL (FTP client and server) statement” on page 813

JESPUTGETTO (FTP server) statement

Use the JESPUTGETTO statement to specify the number of seconds of the JES
PutGet timeout.

The JES PutGet timeout is used when the FTP client performs a GET with a source
and a target name. The source job is submitted to JES. The server waits until the
JES PutGet timeout expires or until the job completes. If the job completes, it stores
the output in the target name file. If the job does not complete, the FTP client
displays the server reply to the end user.

Syntax

��
JESPUTGETTO 600

JESPUTGETTO seconds
��

Parameters

seconds
The number of seconds of the JES PutGet timeout. The valid range is 0 -
86 400 (24 hours). The default is 600 (10 minutes).

Examples

Set the number of seconds of the JES PutGet timeout to 300:
JESPUTGETTO 300

Usage notes
v The JESPUTGETTO value should be high enough for most jobs to complete

within the specified time but not be so high (for example, 86400) that end users
wait excessive amounts of time for job completion.

v Use 86400 if the JES PutGet is done only from batch jobs that must wait for the
job to complete and end user wait time is not an issue.

v This statement applies only when FILETYPE JES is active.

Related topics
v “ANONYMOUSFILETYPEJES (FTP server) statement” on page 742
v “FILETYPE (FTP client and server) statement” on page 796
v “JESENTRYLIMIT (FTP server) statement” on page 802
v “JESGETBYDSN (FTP server) statement” on page 803
v “JESINTERFACELEVEL (FTP server) statement” on page 804
v “JESLRECL (FTP server) statement” on page 806
v “JESRECFM (FTP server) statement” on page 808

Chapter 18. File Transfer Protocol 807

JESRECFM (FTP server) statement

Use the JESRECFM statement to specify the record format of jobs being submitted.
This is the record format used during dynamic allocation of the internal reader
when submitting jobs to JES. You can also use the SITE command to set this
keyword.

Syntax

��
JESRECFM F

JESRECFM F
V
*

��

Parameters

F Fixed record length. This is the default.

V Variable record format.

* Uses the record format specified on the RECFM statement.

Examples

Use fixed record format:
JESRECFM F

Usage notes
v Use only the value F when running on JES2 systems.
v If FTP cannot allocate the internal reader, the FTP client receives a 550 JES

internal reader allocation failed reply when submitting jobs to JES.
v This statement applies only when FILETYPE JES is active.

Related topics
v “FILETYPE (FTP client and server) statement” on page 796
v “JESGETBYDSN (FTP server) statement” on page 803
v “RECFM (FTP client and server) statement” on page 833

KEYRING (FTP client and server) statement

Use the KEYRING statement to define the key ring that contains the certificate to
be used during the TLS handshake.

Server Specifies the key ring database on the server's system.

Client Specifies the key ring database on the client's system.

Syntax

��
KEYRING keyringname

userid/keyringname

��

808 z/OS V2R1.0 Communications Server: IP Configuration Reference

Parameters

userid/keyringname
Allows multiple FTP users to share one key ring owned by another user. The
keyringname value is the SAF key ring created by using the RACF ADDRING
function.

Restrictions:

v The userid value must be the user that actually owns the key ring.
v All users must have READ and UPDATE access to the

IRR.DIGTCERT.LISTRING resource in the FACILITY class when using an
SAF key ring owned by another user.

Examples
KEYRING /u/user33/keyring/key.kdb

KEYRING user33/ftpring

KEYRING ftpring

Guideline: If the userid is omitted, the current user ID is used.

Usage notes
v KEYRING is required if TLS is used as a security mechanism.
v The EXTENSIONS AUTH_TLS statement must be coded for this statement to be

used by the FTP server.
v The SECURE_MECHANISM TLS statement must be coded for this statement to

be used by an FTP client.

Related topics
v “EXTENSIONS (FTP client and server) statement” on page 792
v “SECURE_MECHANISM (FTP client) statement” on page 854
v “TLSMECHANISM (FTP client and server) statement” on page 879
v See z/OS Communications Server: IP Configuration Guide for more information

about SSL/TLS security, key rings, and certificates and SSL/TLS.

LISTLEVEL (FTP server) statement

Use the LISTLEVEL statement to specify the format of the LIST reply.

Syntax

��
LISTLEVEL 0

LISTLEVEL 0
1

��

Parameters

0 Specifies that PDS, PDSE and z/OS UNIX data sets are displayed with a
DSORG value of PO.

1 Specifies that PDS data sets are displayed with a DSORG value of PO, PDSE
data sets are displayed with a DSORG value of PO-E, and z/OS UNIX data
sets are displayed with a DSORG value of z/OS UNIX file system.

Chapter 18. File Transfer Protocol 809

Examples

Set the LISTLEVEL parameter value to 1 when you want to distinguish PDS, PDSE
and z/OS UNIX data sets in the LIST reply:
LISTLEVEL 1

LISTSUBDIR (FTP client and server) statement

Use the LISTSUBDIR statement to indicate whether wildcard searches should span
subdirectories or apply only to the current working directory. You can use the SIte
and LOCSIte subcommands to reset this keyword.

Server This setting applies when processing the NLST command. The z/OS FTP
client sends an NLST command to the server when issuing any of the
following subcommands:
v LS *
v MDELETE *
v MGET *

Client This setting applies when the z/OS FTP client issues an MPUT *
subcommand.

This statement only applies when the asterisk (*) wildcard symbol is used
in the filename parameter and the GLOB subcommand is set to expand
metacharacters in file names. The ls, mdelete, mget and mput
subcommands search only the subdirectories of the current path. They do
not search multiple depths of subdirectories.

Syntax

��
LISTSUBDIR TRUE

LISTSUBDIR TRUE
FALSE

��

Parameters

TRUE
This is the default. Indicates the files in the subdirectories of the current
working directory are listed when processing wildcard searches.

FALSE
Indicates that the files in the subdirectories of the current working directory
are not listed when processing wildcard searches.

Examples

Directory /u/user1/xx contains the following files and subdirectory:
areadme (file)
file_xx (file)
readme_xx (file)
ggg (subdirectory)

Directory /u/user1/xx/ggg contains the following files and subdirectory:
file_ggg (file)
zzz (subdirectory)

810 z/OS V2R1.0 Communications Server: IP Configuration Reference

Directory /u/user1/xx/ggg/zzz contains the following files and subdirectory:
file_zzz (file)
rrr (subdirectory)

The following display shows these files and directories:
250 HFS directory /u/user1/xx is the current working directory
ftp> ls - l
200 Port request OK.
125 List started OK
total 40
-rwx------ 1 IBMUSER 0 48 Oct 29 21:14 areadme
-rwx------ 1 IBMUSER 0 10 Nov 1 16:02 file_xx
drwxrwxrwx 3 IBMUSER 0 8192 Nov 1 16:00 ggg
-rwx------ 1 IBMUSER 0 23 Oct 29 21:06 readme_xx
250 List completed successfully.
260 bytes received in 0.03 seconds (8.67 Kbytes/sec)
ftp> cd gg
260 HFS directory /u/user1/xx/ggg is the current working directory
ftp> ls - l
200 Port request OK.
125 List started OK
total 24
-rwx------ 1 IBMUSER 0 6 Oct 29 16:00 file_ggg
drwxr-x--- 3 IBMUSER 0 8192 Nov 1 16:01 zzz
250 List completed successfully.
133 bytes received in 0.02 seconds (6.65 Kbytes/sec)
cd zzz
250 HFS directory /u/user1/xx/ggg/zzz is the current working directory
ftp> ls - l
200 Port request OK.
125 List started OK
total 24
-rwx------ 1 IBMUSER 0 4 Nov 29 16:00 file_zzz
drwxr-xr-x 3 IBMUSER 0 8192 Nov 1 16:01 rrr
250 List completed successfully.
133 bytes received in 0.01 seconds (13.30 Kbytes/sec)

If you have coded LISTSUBDIR FALSE in the server's FTP.DATA file or specified
SITE NOLISTSUBDIR, the client sees the following display:
257 "/u/user1/xx" is the current working directory
ftp> ls *
200 Port request OK.
125 List started OK
areadme
file_xx
readme_xx
250 List completed successfully.
29 bytes received in 0.02 seconds (1.45 Kbytes/sec)

If you have coded LISTSUBDIR TRUE in the server's FTP.DATA file or specified
SITE LISTSUBDIR, the client sees the following display:
257 "/u/user1/xx" is the HFS working directory
ftp> ls *
200 Port request OK.
125 List started OK
areadme
file_xx
ggg/file_ggg
readme_xx
250 List completed successfully.
42 bytes received in 0.04 seconds (1.05 Kbytes/sec)

Chapter 18. File Transfer Protocol 811

When spanning subdirectories with the wildcard *, the file ggg/file_ggg is shown.
However, the file ggg/file_zzz is not shown because the subdirectory span is only
one level deep.

Restriction: The LISTSUBDIR statement applies to z/OS UNIX file operations only.
MVS data set operations are not affected.

Related topics

For more information about the following topics, see z/OS Communications
Server: IP User's Guide and Commands:
v ls
v mget
v mput
v mdelete
v glob
v site for the LISTSUBDIR option
v locsite for the LISTSUBDIR option

LOGCLIENTERR (FTP client) statement

Use the LOGCLIENTERR statement to specify whether the FTP client should log
client errors with message EZZ9830I.

Result: Message EZZ9830I is issued for any error that causes FTP to exit. If you
have not configured FTP to exit on error by specifying the EXIT or EXIT=nn
parameter on the FTP command, or by coding the CLIENTEXIT TRUE statement in
FTP.DATA, the FTP client will issue message EZZ9830I on the first error that
would have caused FTP to exit if you configured FTP to exit on error.

Syntax

��
LOGCLIENTERR FALSE

LOGCLIENTERR TRUE
FALSE

��

Parameters

TRUE
Specifies that the FTP client should log message EZZ9830I when an FTP client
subcommand fails.

FALSE
Specifies that the FTP client should not log message EZZ9830I when an FTP
client subcommand fails. This is the default.

Examples
LOGCLIENTERR TRUE ; log client errors

Related topics
v “CLIENTERRCODES (FTP client) statement” on page 767

812 z/OS V2R1.0 Communications Server: IP Configuration Reference

v FTP client error logging in z/OS Communications Server: IP User's Guide and
Commands

LOGINMSG (FTP server) statement

Use the LOGINMSG statement to specify the file containing messages to be
displayed to FTP users when they have successfully logged in. This statement
affects only named FTP clients as opposed to FTP clients logged in as anonymous.

Syntax

�� LOGINMSG file-path ��

Parameters

file-path
The fully qualified z/OS UNIX pathname or the fully qualified MVS data set
name of the file whose contents are displayed whenever a user logs in to FTP.

Requirements:

v A z/OS UNIX pathname must start with a slash (/).
v An MVS data set must not start with a slash character.

Examples

Use the following statement if the FTP login message is kept in the file
/etc/ftp.login:
LOGINMSG /etc/ftp.login
; Welcome message for FTP users

Usage notes
v LOGINMSG does not apply to anonymous user logins. To provide this function

to anonymous users, use the ANONYMOUSLOGINMSG statement.
v When a known FTP user successfully logs in, the FTP server searches for the file

specified by file-path. The contents of the file are returned to the FTP user as
230-prefixed replies. If the file specified by file-path does not exist, no messages
are returned to the FTP client and no login messages are displayed to the end
user.

Related topics
v “ANONYMOUSLOGINMSG (FTP server) statement” on page 750
v “BANNER (FTP server) statement” on page 756
v “HFSINFO (FTP server) statement” on page 799
v “MVSINFO (FTP server) statement” on page 820

LRECL (FTP client and server) statement

Use the LRECL statement to specify the size of the logical records in a data set.

Server This setting applies when creating files on the server's system. For
example, with a PUT subcommand.

Client This setting applies when creating files on the client's system. For example,
with a GET subcommand.

Chapter 18. File Transfer Protocol 813

Syntax

�� LRECL
256

length
��

Parameters

length
The size of the records in a data set. The valid range is 0 - 32 760 or x. The
default is 256. x corresponds to a length of 32 768.

Examples

Set the logical record length to 128 bytes:
LRECL 128

Specify no value for LRECL to allow the LRECL of a model DCB data set or SMS
dataclass to be used:
LRECL

Usage notes
v The record size attribute can be obtained from an SMS data class using the

DATACLASS configuration statement, from a model data set using the DCBDSN
configuration statement, or from the LRECL statement.

v Use LRECL without a size if you have:
– Specified a DATACLASS statement and want to use the record size from the

data class, or
– Specified a DCBDSN statement and want to use the record size from the

model data set.
v If you specify a DATACLASS, a DCBDSN, and LRECL without size, the value

from the model data set is used.
v To override the record size attribute from the DATACLASS or DCBDSN settings:

– Specify LRECL with a value other than 0, or
– Do not specify the LRECL statement, and use the default.

v If you specify no value for length, FTP does not specify the size of the records in
a data set.

Related topics
v “DATACLASS (FTP client and server) statement” on page 770
v “DSNTYPE (FTP client and server) statement” on page 783
v “EATTR (FTP client and server) statement” on page 788
v “DCBDSN (FTP client and server) statement” on page 776
v “JESLRECL (FTP server) statement” on page 806
v See the information about storage management subsystem (SMS) in z/OS

Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

814 z/OS V2R1.0 Communications Server: IP Configuration Reference

MBDATACONN (FTP client and server) statement

Use the MBDATACONN statement to define the conversions between a file system
code page and a network transfer code page during data transfer. This statement
affects the conversion of double-byte character set (DBCS) and multibyte character
set (MBCS) data and is used when the ENCODING MBCS statement is coded. You
can also use the SIte and LOCSIte subcommands to set this keyword and to set
ENCODING to MBCS.

Server Specifies the multibyte code pages used by the server.

Client Specifies the multibyte code pages used by the client.

Syntax

�� MBDATACONN (file_system_codepage,network_transfer_codepage) ��

Parameters

file_system_codepage
Specifies the name of the file system code page.

network_transfer_codepage
Specifies the network transfer code page.

Examples

To code MBDATACONN:
MBDATACONN (IBM-1388,IBM-5488)

Usage notes

MBDATACONN is in effect only when ENCODING has a value of MBCS.

Table 48 shows the supported code page pairs.

Table 48. Supported code page pairs

Support for: file_system_codepage network_transfer_codepage

Chinese standard
GB18030

IBM-1388 or UTF-8 IBM-5488

BIG5 IBM-937 IBM-950 or BIG5

EUCKANJI IBM-930 IBM-eucJP

JIS78KJ (JISROMAN IBM-930 IBM-5053

JIS78KJ (ASCII IBM-939 IBM-5055

JIS83KJ (JISROMAN IBM-930 IBM-5052

JIS83KJ (ASCII IBM-939 IBM-5054

KSC5601 IBM-933 IBM-949

SCHINESE IBM-935 IBM-1381

SJISKANJI SJISKANJI IBM-930 or IBM-939 IBM-932 or IBM-eucJC

TCHINESE IBM-937 IBM-948

UNICODE file
transfer

UTF-8, UTF-16 UTF-8, UTF-16, UTF-16BE,
UTF-16LE

Chapter 18. File Transfer Protocol 815

Other code page pairs might be accepted when specified. However, the ones listed
in Table 48 on page 815 have been verified to produce the support that is listed in
the table.

Related topics
v “ENCODING (FTP client and server) statement” on page 790
v “MBSENDEOL statement (FTP client and server) statement” on page 817
v “MBREQUIRELASTEOL (FTP client and server) statement”
v “SBDATACONN (FTP client and server) statement” on page 840
v Table 20 on page 450

MBREQUIRELASTEOL (FTP client and server) statement

Use the MBREQUIRELASTEOL statement to specify whether FTP requires the last
record of incoming multibyte files to end with the FTP standard EOL sequence.

Server This setting applies when the server is receiving a multibyte file from the
client.

Client This setting applies when the client is receiving a multibyte file from the
server.

Syntax

��
MBREQUIRELASTEOL TRUE

MBREQUIRELASTEOL
TRUE
FALSE

��

Parameters

TRUE
FTP reports an error when a multibyte file is received from the network
without an EOL sequence in the last record received and aborts the file
transfer. The CONDDISP configuration option determines whether the file or
data set is saved or deleted.

FALSE
FTP does not report an error when a multibyte file is received from the
network without an EOL sequence in the last record received. The file or data
set is stored.

Results:

v If MBREQUIRELASTEOL is set to FALSE, and you have coded
CHKCONFIDENCE TRUE in FTP.DATA, the confidence level reported when a
multibyte file is received from the network without an EOL sequence in the last
record is High.

v If MBREQUIRELASTEOL is set to TRUE, and you have coded
CHKCONFIDENCE TRUE in FTP.DATA, the confidence level reported when a
multibyte file is received from the network without an EOL sequence in the last
record is Low.

816 z/OS V2R1.0 Communications Server: IP Configuration Reference

Examples

To enable the FTP server to receive multibyte files that are sent with no EOL
sequence on the final record, code the following statement in the server's
FTP.DATA:
MBREQUIRELASTEOL FALSE

Related topics
v “ENCODING (FTP client and server) statement” on page 790
v “MBDATACONN (FTP client and server) statement” on page 815

MBSENDEOL statement (FTP client and server) statement

Use the MBSENDEOL statement to tell the FTP client or server what end-of-line
(EOL) sequence to use when ENCODING is MBCS, Type is ASCII, Mode is Stream,
and file transfer is outbound. You can also use the SIte and LOCSIte subcommands
to set this keyword.

Server When ENCODING is MBCS, data Type is ASCII, Mode is Stream, and files
are sent from the server, this statement instructs the server which EOL
sequence to append to each line of text.

Client When ENCODING is MBCS, data type is ASCII, Mode is Stream, and files
are sent from the client, this statement instructs the client which EOL
sequence to append to each line of text.

Syntax

��
MBSENDEOL CRLF

MBSENDEOL CRLF
CR
LF
NONE

��

Parameters

CRLF
When translating multi-byte data to ASCII, append a carriage return (x'0D')
and line feed (x'0A') to each line of text. This is the default and the standard
EOL sequence defined by RFC 959. The z/OS server and client can receive
ASCII data in this format only.

CR When translating multi-byte data to ASCII, append only a carriage return
(x'0D') to each line of text.

LF When translating multi-byte data to ASCII, append only a line feed (x'0A') to
each line of text.

NONE
When translating multi-byte data to ASCII, append no EOL sequence.

Results:

v This statement applies only to the end-of-line sequence used on the data
connection. The control connection end-of-line sequence is not affected.

Chapter 18. File Transfer Protocol 817

v SBCS, DBCS, and UCS-2 translations are not affected by this setting. UTF-8 and
UTF-16 translations are affected by this setting

Rule: The MBSENDEOL setting CRLF is appropriate for most file transfers. Do not
use an alternate MBSENDEOL setting unless you have verified that the recipient
FTP can handle the alternate value.

Client Do not code an alternate MBSENDEOL value if your server is a z/OS FTP
server. The z/OS FTP server does not support alternate MBSENDEOL
values for inbound file transfer.

Server Do not code an alternate MBSENDEOL value if your client is a z/OS FTP
client. The z/OS FTP client does not support alternate MBSENDEOL
values for inbound file transfer.

Examples

Use LF as the EOL sequence when ENCODING is MBCS, Type is ASCII, and data
transfer is outbound. Code as follows:
MBSENDEOL LF

Related topics
v “ENCODING (FTP client and server) statement” on page 790
v “MBDATACONN (FTP client and server) statement” on page 815
v “SBSENDEOL statement (FTP client and server) statement” on page 841

MGMTCLASS (FTP client and server) statement

Use the MGMTCLASS statement to specify the SMS management class to be
assigned to newly allocated data sets.

Server This setting applies when creating files on the server's system.

Client This setting applies when creating files on the client's system.

One of the attributes obtained from the management class is the retention period
setting. If you specify a management class, then the retention period is obtained
from the management class. The value of the management class's retention period
can be overridden.
v If a data class (DATACLASS) is specified, the retention period in the data class

can override it.
v If a model data set (DCBDSN) is specified, its retention period overrides both

the data class value and the management class value.
v If you specify a value for RETPD statement, the value you specify overrides any

data class setting, model data set value and any management class setting.

However, regardless of where the retention period value is obtained, when
attempting to override the value set in the management class, the actual resulting
retention period setting depends on the retention period limit defined in the
management class. A management class is defined with a retention limit value as
well as a retention period. If you attempt to override the management class's
retention period, the override value must be within the retention period limit
defined in the management class. Otherwise, the retention period used is the
management class's retention limit value.

818 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

�� MGMTCLASS class ��

Parameters

class
The SMS management class.

Examples

Set the SMS management class for new data sets to TCPMGMT:
MGMTCLASS TCPMGMT

Related topics
v “DATACLASS (FTP client and server) statement” on page 770
v See the information about storage management subsystem (SMS) in z/OS

Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

v “STORCLASS (FTP client and server) statement” on page 877

MIGRATEVOL (FTP client and server) statement

Use the MIGRATEVOL statement to specify the volume ID for migrated data sets
under the control of a storage management system other than HSM.

Server This setting applies when accessing files on the server's system.

Client This setting applies when accessing files on the client's system.

Syntax

��
MIGRATEVOL MIGRAT

MIGRATEVOL volume_id
��

Parameters

volume_id
The volume ID for migrated data sets. The default volume ID is MIGRAT.

Examples

Set the volume ID for migrated data sets to MIGRIX:
MIGRATEVOL MIGRIX

Related topics

“RETPD (FTP client and server) statement” on page 838

Chapter 18. File Transfer Protocol 819

MVSINFO (FTP server) statement

Use the MVSINFO statement to specify MVS data sets whose contents are
displayed to the user when the user changes directories. The statement identifies a
low-level qualifier (LLQ) that is appended to the current path whenever an FTP
user changes directories to an MVS data set.

Syntax

�� MVSINFO MVS-LLQ ��

Parameters

MVS-LLQ
The MVS-LLQ is the MVS low-level qualifier (LLQ) appended to the current
MVS path whenever an FTP client changes directories to an MVS data set. If a
data set matches the current path appended LLQ, the contents of the data set
are returned to the FTP client and displayed to the end user.

Examples

To display a readme file the first time a user changes directory to high-level
qualifiers, use the following statement. In this example, an MVS high-level
qualifier of productname might have a readme file for each product, and any time a
user changed directory to the productname, the readme file would be displayed.
MVSINFO README

Usage notes

MVSINFO does not apply to anonymous users. Use the ANONYMOUSMVSINFO
statement to define the informational banner used for anonymous users.

Related topics
v “ANONYMOUSHFSINFO (FTP server) statement” on page 747
v “ANONYMOUSMVSINFO (FTP server) statement” on page 751
v “BANNER (FTP server) statement” on page 756
v “HFSINFO (FTP server) statement” on page 799
v “LOGINMSG (FTP server) statement” on page 813

MVSURLKEY (FTP server) statement

Use the MVSURLKEY statement to specify a token that users can enter as part of
an FTP URL to encode an MVS data set name.

Syntax

�� MVSURLKEY key ��

Parameters

key
An arbitrary token users can enter in an FTP URL to signify that an MVS data

820 z/OS V2R1.0 Communications Server: IP Configuration Reference

set follows. Although the FTP server accepts any value, avoid symbols FTP
clients might interpret as special characters or meta characters. For example,
the # character is acceptable to the FTP server, but some Web browsers use the
character as a special character.

Examples

Use the following example to permit users to enter MVSDS in an FTP URL in
order to tell the FTP server an MVS data set name follows:
MVSURLKEY MVSDS
; code this in FTP.DATA

Code the following as an FTP URL to indicate that 'USER1.PROCLIB(FTPD)' is an
MVS data set, not a z/OS UNIX data set:
ftp://user1@mvs098.tcp.raleigh.ibm/MVSDS/’user1.proclib(ftpd)’;type=a

Usage notes
v The key specified for MVSURLKEY can be set to be the same key used for the

Websphere server to designate FTP URL encodings.
v The FTP server accepts an arbitrary string. Avoid characters the FTP client might

interpret as metacharacters or special characters.

MYOPENTIME (FTP client) statement

Use the MYOPENTIME statement to specify the amount of time the FTP client
waits for a session to open before terminating the attempt and reporting an error.

Syntax

��
MYOPENTIME 120

MYOPENTIME seconds
��

Parameters

seconds
The number of seconds to which the timer is set. The valid range is 0
(MYOPENTIME not used) or 15-86 400. The default is 60 seconds.

Examples
MYOPENTIME 60 ; wait 60 seconds

Related topics

See the FTP command and the FTP environment information in z/OS
Communications Server: IP User's Guide and Commands.

NETRCLEVEL (FTP client) statement

Use the NETRCLEVEL statement to specify how the FTP client searches the
NETRC data set for FTP server hostnames. This statement applies only if you have
defined a NETRC data set for the client to use.

Chapter 18. File Transfer Protocol 821

Syntax

��
NETRCLEVEL 1

NETRCLEVEL 1
2

��

Parameters

1 The FTP client searches the NETRC data set for the hostname as it was entered
by the user: IP address or DNS name. If the client is running in batch mode,
the client looks for the hostname in the NETRC data set only if a NETRC DD
card is part of the batch job. This is the way the FTP client processed server
hostnames up to and including release 320. This is the default.

2 The FTP client searches the NETRC data set for the hostname as it was entered
by the user if the user entered a DNS name, or an IP address that cannot be
resolved to a DNS name. If the hostname is an IP address that resolves to a
DNS name, the FTP client searches the NETRC data set for the DNS name. If
the FTP client is running as a batch job and no NETRC DD card is included,
the FTP client uses 'userid.NETRC' as the NETRC data set.

Examples
NETRCLEVEL 2 ; convert IP addresses

Usage notes

The FTP server hostname is the DNS name or IP address the user entered to log in
to the FTP server. This statement applies only if the FTP client is using a NETRC
data set or file.

Related topics

See z/OS Communications Server: IP User's Guide and Commands for information
about how to use the NETRC data set during the login process.

NONSWAPD (FTP server) statement

Use the NONSWAPD statement to allow the FTP daemon address space to run
with nonswappable memory.

Syntax

��
NONSWAPD FALSE

NONSWAPD FALSE
TRUE

��

Parameters

False
Do not set daemon nonswappable. This is the default.

True
Set daemon nonswappable.

822 z/OS V2R1.0 Communications Server: IP Configuration Reference

Examples

To request that the daemon address space be set nonswappable, code:
NONSWAPD TRUE

Usage notes
v The FTP daemon must have at least READ access to the FACILITY class resource

BPX.STOR.SWAP to enable this option.
v If the call to set the address space nonswappable fails for any reason, the

daemon uses swappable memory and continue.
v When an application makes an address space nonswappable, it might cause

additional real storage in the system to be converted to preferred storage.
Because preferred storage cannot be configured offline, using this option can
reduce the installation's ability to reconfigure storage in the future. See z/OS
MVS Programming: Resource Recovery for more information.

PASSIVEDATACONN (FTP server) statement

When the server receives a PASV or EPSV command, it opens a listening socket.
Any entity can connect to the listening socket. Use the PASSIVEDATACONN
statement to direct the server to verify the peer IP address of the data socket is the
client's IP address.

Syntax

��
PASSIVEDATACONN UNRESTRICTED

PASSIVEDATACONN UNRESTRICTED
NOREDIRECT

��

Parameters

UNRESTRICTED
The server accepts a passive data connection from any IP address. This is the
default.

NOREDIRECT
The server verifies the peer address of the data socket is the client's IP address.
If it is not, the server closes the data socket.

Guideline: The server cannot be the passive server in a three way (proxy) data
transfer when NOREDIRECT is coded, because the server rejects an attempt by the
active server to connect to its passive socket.

Examples

Use the following example to set the server to reject passive data connections with
IP address different from the IP addresses of the control connections:
PASSIVEDATACONN NOREDIRECT
PASSIVEDATACONN N

Chapter 18. File Transfer Protocol 823

PASSIVEDATAPORTS (FTP server) statement

Use the PASSIVEDATAPORTS statement to assign a range of port numbers for the
FTP server to use as listening data socket ports.

Syntax

�� PASSIVEDATAPORTS (low_port, high_port) ��

Parameters

low_port
The lowest port number the FTP server is allowed to use when creating a
listening data socket. The lowest number allowed for low_port is 1 024.

high_port
The highest port number the FTP server is allowed to use when creating a
listening data socket. The highest number allowed for high_port is 65 535.

By default, the FTP server allows the stack to select a port number from its entire
range of ephemeral ports for listening data sockets. PASSIVEDATAPORTS affects
ports selected for the data connection only; the control connection ports are not
affected. PASSIVEDATAPORTS is useful in conjunction with firewalls that restrict
the range of port numbers allowed to FTP.

Guideline: Code a PORTRANGE AUTHPORT statement in PROFILE.TCPIP to
reserve the ports you have specified with PASSIVEDATAPORTS. If you are using a
sysplex DVIPA to distribute the FTP server workload with sysplex ports, code the
same PORTRANGE AUTHPORT statement for each participating stack in the
sysplex.

Restriction: If you have PORTRANGE statements in PROFILE.TCPIP that reserve
ports for a different application, and those reserved ports intersect with the
PASSIVEDATAPORTS ports, the FTP server is never able to obtain those ports.

Examples

To restrict the server's choice of ports for listening data sockets to ports from 50000
to 50099, code the following statement in FTP.DATA:
PASSIVEDATAPORTS (50000,50099)

To prevent other applications from consuming ports in the range 50 000 - 50 099,
code the following statement in PROFILE.TCPIP:
PORTRANGE 50000 100 TCP AUTHPORT

PASSIVEIGNOREADDR (FTP client) statement

Use the PASSIVEIGNOREADDR statement to direct the FTP client to ignore the IP
address returned from the server on the PASV reply on IPv4 sessions. You can also
use the subcommand to set this parameter.

Restrictions:

v The FTP server ignores this statement.

824 z/OS V2R1.0 Communications Server: IP Configuration Reference

v When EPSV4 and PASSIVEIGNOREADDR are TRUE, the client tries the EPSV
command first. If the EPSV command does not succeed, and FRIENDLY is
TRUE, then the client tries the PASV command. The PASSIVEIGNOREADDR
value determines how the FTP client uses the IP address that is returned by the
PASV command.

Syntax

��
PASSIVEIGNOREADDR FALSE

PASSIVEIGNOREADDR FALSE
TRUE

��

Parameters

FALSE
For passive mode FTP, specifies that the FTP client uses the IP address and
port number from the PASV command reply that is returned by the FTP server
for the data connection. This is the default value.

TRUE
For passive mode FTP, specifies that the FTP client uses the port number from
the PASV command reply, and the IP address used to log into the FTP server,
for the data connection.

Guideline: If your client has trouble establishing a data connection on an IPv4
encrypted session through a NAT firewall, and the FTP server does not support
extended passive mode, coding PASSIVEIGNOREADDR TRUE might help.

Requirement: FWFRIENDLY must also be set to TRUE to enable this function.

Examples

To direct the client to ignore the IP address on the FTP server's PASV reply, use the
following code:
PASSIVEIGNOREADDR TRUE

Related topics
v “EPSV4 (FTP client) statement” on page 791
v “FWFRIENDLY (FTP client) statement” on page 799

PASSPHRASE (FTP server) statement

Use the PASSPHRASE statement to indicate whether the FTP server allows an FTP
client to log in to FTP with a password phrase.

Syntax

��
PASSPHRASE TRUE

PASSPHRASE FALSE
TRUE

��

Chapter 18. File Transfer Protocol 825

Parameters

TRUE
The FTP server allows an FTP client to log in to FTP with a password phrase.
This is the default value.

FALSE
The FTP server does not allow an FTP client to log in to FTP with a password
phrase.

Examples

To allow an FTP client to log in to FTP with a password phrase, code the following
statement:
PASSPHRASE TRUE

Usage notes

When PASSPHRASE FALSE is configured in FTP.DATA of the server, consider the
following two things:
v If an FTP client logs in to FTP with a password of a length that is greater than 8

characters, the password is truncated to 8 characters.
v The FTCHKPWD exit parameter at offset +36 points to a buffer that consists of a

2-byte field, which contains zeros, and is followed by 100 blanks.

PDSTYPE (FTP client and server) statement

Use the PDSTYPE statement in the FTP server and client to indicate whether to
allocate MVS directories as partitioned data sets or as partitioned data sets
extended. You can also use the SIte and LOCSIte subcommands to set this
keyword.

This is one of many statements available to control how MVS directories are
allocated when the server receives an MKD command with an MVS PDS name
argument.

You should specify PDSTYPE without the PDS or PDSE parameters if the
DATACLASS statement is specified and the PDS type from the SMS data class is
going to be used.

Server This setting applies when creating an MVS directory on the server's
system.

Client This setting applies when creating an MVS directory on the client's system.

Syntax

�� PDSTYPE
PDS
PDSE

��

Parameters

PDS
Allocate MVS directories as partitioned data sets.

826 z/OS V2R1.0 Communications Server: IP Configuration Reference

PDSE
Allocate MVS directories as partitioned data sets extended.

Note: If neither PDS or PDSE specified, the default is PDSTYPE.

Examples

Set the directory type to partitioned data set extended:
PDSTYPE PDSE

Specify PDSTYPE with no value to obtain the PDS type from an SMS data class.

Related topics
v “BLKSIZE (FTP client and server) statement” on page 756
v “DATACLASS (FTP client and server) statement” on page 770
v “DIRECTORY (FTP client and server) statement” on page 781
v “DSNTYPE (FTP client and server) statement” on page 783
v “EATTR (FTP client and server) statement” on page 788
v “LRECL (FTP client and server) statement” on page 813
v “PRIMARY (FTP client and server) statement” on page 830
v “RECFM (FTP client and server) statement” on page 833
v “SECONDARY (FTP client and server) statement” on page 845
v “SPACETYPE (FTP client and server) statement” on page 873

PORTCOMMAND (FTP server) statement

Use the PORTCOMMAND statement to specify whether the PORT command is
accepted or rejected. If REJECT is coded, this limits the use of commands such as
GET, PUT, MPUT, MGET, and APPEND in PROXY mode. If not in PROXY mode,
and REJECT is coded, the FTP server uses the same ephemeral port for the data
connection that is used for the control connection. When issuing multiple
commands that use the data connection, delays can occur.

Syntax

��
PORTCOMMAND ACCEPT

PORTCOMMAND ACCEPT
REJECT

��

Parameters

ACCEPT
The PORT and EPRT commands are accepted by the server.

REJECT
The PORT and EPRT commands are rejected by the server.

When PORTCOMMAND is set to REJECT, all PORT and EPRT commands are
rejected. PORTCOMMANDPORT and PORTCOMMANDIPADDR settings are
disregarded.

Chapter 18. File Transfer Protocol 827

Examples

Setting the server to reject all PORT and EPRT commands is shown in the
following example:
PORTCOMMAND REJECT

Related topics
v “PORTCOMMANDIPADDR (FTP server) statement”
v “PORTCOMMANDPORT (FTP server) statement”

PORTCOMMANDIPADDR (FTP server) statement

Use the PORTCOMMANDIPADDR statement to direct the server to accept only
PORT or EPRT commands whose IP address matches that of the client.

Syntax

��
PORTCOMMANDIPADDR UNRESTRICTED

PORTCOMMANDIPADDR UNRESTRICTED
NOREDIRECT

��

Parameters

UNRESTRICTED
If PORTCOMMAND is set to ACCEPT or unspecified, the server accepts any
IP address as a parameter for the PORT and EPRT commands.

NOREDIRECT
If PORTCOMMAND is set to ACCEPT or unspecified, the server rejects any
PORT or EPRT command whose IP address does not match that of the client.

Examples

Setting the server to reject all PORT or EPRT commands with an IP address
different from the IP address of the control connection is shown in the following
example:
PORTCOMMAND ACCEPT
PORTCOMMANDIPADDR NOREDIRECT

Usage notes

When PORTCOMMAND is set to REJECT, all PORT and EPRT commands are
rejected. PORTCOMMANDPORT and PORTCOMMANDIPADDR settings are
disregarded.

Related topics
v “PORTCOMMAND (FTP server) statement” on page 827
v “PORTCOMMANDPORT (FTP server) statement”

PORTCOMMANDPORT (FTP server) statement

Use the PORTCOMMANDPORT statement to specify what range of port values
the server accepts as a parameter for the PORT or EPRT command.

828 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

��
PORTCOMMANDPORT UNRESTRICTED

PORTCOMMANDPORT UNRESTRICTED
NOLOWPORTS

��

Parameters

UNRESTRICTED
If PORTCOMMAND is set to ACCEPT or unspecified, the server accepts any
port number as a parameter for the PORT or EPRT command.

NOLOWPORTS
If PORTCOMMAND is set to ACCEPT or unspecified, the server rejects any
PORT or EPRT command specifying a port number lower than 1024.

Examples

Setting the server to reject all PORT or EPRT commands with a port number less
than 1024 is shown in the following example:
PORTCOMMAND ACCEPT
PORTCOMMANDPORT NOLOWPORTS

Usage notes

When PORTCOMMAND is set to REJECT, all PORT and EPRT commands are
rejected. PORTCOMMANDPORT and PORTCOMMANDIPADDR settings are
disregarded.

Related topics
v “PORTCOMMAND (FTP server) statement” on page 827
v “PORTCOMMANDIPADDR (FTP server) statement” on page 828

PORTOFENTRY4 (FTP server) statement

Use the PORTOFENTRY4 statement to specify the resource profile class name the
FTP server should have the USS kernel pass to the security server during login
processing for IPv4 clients.

Syntax

��
PORTOFENTRY4 TERMINAL

PORTOFENTRY4 TERMINAL
SERVAUTH

��

Parameters

TERMINAL
The IPv4 client address is always passed as an 8-byte hexadecimal character
string resource name in the TERMINAL class.

SERVAUTH
If the IPv4 client address is mapped into a network security zone by a

Chapter 18. File Transfer Protocol 829

NETACCESS statement in the TCPIP PROFILE, the netaccess resource name in
the SERVAUTH class is passed. If the client address is not mapped, the
TERMINAL class resource name is passed.

Examples

To pass SERVAUTH resource names when mapped, use the following code:
PORTOFENTRY4 SERVAUTH

Related topics

For more information about network access control and port of entry access control
with the FTP server, see z/OS Communications Server: IP Configuration Guide.

PRIMARY (FTP client and server) statement

Use the PRIMARY statement to specify the number of tracks, blocks, or cylinders
(according to SPACETYPE) for primary allocation.

Server This setting applies when creating data sets on the server's system.

Client This setting applies when creating data sets on the client's system.

Syntax

��
PRIMARY 1

PRIMARY
amount

��

Parameters

amount
The number of tracks, blocks, or cylinders. The valid range is 1 - 16 777 215
blocks (the operating system maximum). The default is 1.
v If you specify no value for the amount parameter, FTP does not specify the

number of tracks, blocks, or cylinders for primary allocation.
v You should specify no value for the amount parameter if the DATACLASS

statement is specified and the space allocation from the SMS data class is to
be used. If the SMS data class is to be used for space allocation, both the
PRIMARY and SECONDARY values must be omitted and the value on the
SPACETYPE statement is ignored.
Restriction: If a UNIX file (such as /etc/ftp.data) is being used as the
configuration input and no value for the amount parameter is specified, the
statement should not have any trailing blanks. Ensure that the line ends
after the PRIMARY keyword or that a comment is also specified.

v For allocating partitioned data sets, amount is the quantity that is allocated
for the primary extent.

v For allocating sequential data sets, amount is the maximum quantity that is
allocated for the primary extent. If a lesser amount is needed to hold the
data being transferred, the unused amount is released after the transfer is
complete.

830 z/OS V2R1.0 Communications Server: IP Configuration Reference

Examples

Set the primary allocation to 5 tracks:
PRIMARY 5

Related topics
v “DATACLASS (FTP client and server) statement” on page 770
v “DSNTYPE (FTP client and server) statement” on page 783
v “EATTR (FTP client and server) statement” on page 788
v See the information about storage management subsystem (SMS) in z/OS

Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

v “SECONDARY (FTP client and server) statement” on page 845
v “SPACETYPE (FTP client and server) statement” on page 873

PROGRESS (FTP client) statement

Use the PROGRESS (FTP client) statement to control the interval between progress
report messages generated by the FTP client during an inbound or outbound file
transfer.

Client This setting applies when transferring data to or from the FTP client.

Syntax

��
PROGRESS 10

PROGRESS
seconds

��

Parameters

seconds
Specifies the interval in seconds between progress report messages generated
in the FTP client during an inbound or outbound file transfer. Valid values are
in the range 10 - 86400, or 0. A value of 0 turns progress reporting off in the
FTP client. The default value is 10 seconds. Messages EZA2509I and EZA1485I
are generated as part of progress reporting. These messages are generated
automatically at 10-second intervals by the FTP client in releases prior to V1R6.
Beginning in V1R6, the default behavior is the same as in prior releases, but
the length of the interval and whether to generate the messages can be
configured by using the PROGRESS parameter setting on the locsite
subcommand or by specifying the PROGRESS statement in FTP.DATA.

Examples

To set the progress reporting interval to 30 seconds, use the following code:
PROGRESS 30

QUOTESOVERRIDE (FTP client and server) statement

Use the QUOTESOVERRIDE statement to indicate the usage of single quotation
marks appearing at the beginning of or surrounding a file name.

Chapter 18. File Transfer Protocol 831

Server This setting applies to the processing of names by the server.

Client This setting applies to the processing of names by the client.

Syntax

��
QUOTESOVERRIDE TRUE

QUOTESOVERRIDE TRUE
FALSE

��

Parameters

TRUE
If TRUE is specified, single quotation marks appearing at the beginning and
end of a file name are interpreted as meaning the file name contained inside
the single quotation marks should override the current working directory
instead of being appended to the current working directory. Any single
quotation marks inside the beginning and ending quotion mark are treated as
part of the file name. This is the default.

FALSE
If FALSE is specified, a single quote at the beginning of the file name, as well
as all other single quotation marks contained in the file name, is treated as part
of the actual file name. The entire file name, including the leading single quote,
is appended to the current working directory.

Examples

To treat quotation marks as part of file names, enter the following code:
QUOTESOVERRIDE FALSE

RDW (FTP client and server) statement

Record Descriptor Words (RDWs) are the first 4 bytes at the start of a variable
record length file that tell the reading program the actual length of the current
record being read. Use the RDW statement to specify whether the RDW from
variable format data sets should be retained as data and transmitted or not
transmitted.

Server This setting applies when transferring data sets from the server's system.

Client This setting applies when transferring data sets from the client's system.

Syntax

��
RDW FALSE

RDW TRUE
FALSE

��

Parameters

TRUE
Record descriptor words are transferred as data. FTP returns the RDWs as part
of the data for variable record format data sets. Depending upon the FTP

832 z/OS V2R1.0 Communications Server: IP Configuration Reference

implementation, RDWs might not be handled as the user expects. For example,
the z/OS Communications Server FTP client might treat received RDWs as as
carriage control/line feeds.

FALSE
Record descriptor words are not transferred with the data.

Examples

To specify that a variable record format file's data is transmitted without the
descriptors showing the way it was stored on z/OS, use the following code:
RDW FALSE

Related topics

“RECFM (FTP client and server) statement”

RECFM (FTP client and server) statement

Use the RECFM statement to specify the record format of new, dynamically
allocated data sets.

Server This setting applies when creating data sets on the server's system.

Client This setting applies when creating data sets on the client's system.

Syntax

��
RECFM VB

RECFM
format

��

Parameters

format
The record format of a data set. Valid record formats are:
v F
v FM
v FA
v FS
v FSA
v FSM
v FB
v FBM
v FBA
v FBS
v FBSM
v FBSA
v V
v VM
v VA

Chapter 18. File Transfer Protocol 833

v VS
v VSM
v VSA
v VB
v VBM
v VBA
v VBS
v VBSA
v VBSM
v U
v UA
v UM

The default record format is VB. The meanings of the record formats are:

Format Description

A Records contain ISO/ANSI control.

B Blocked records.

F Fixed record length.

M Records contain machine code control characters.

S Spanned records (if variable) or Standard (if fixed).

U Undefined record length.

V Variable record length characters.

Examples

Use fixed blocked record format:
RECFM FB

Specify RECFM with no value to allow the RECFM value of a DCB data set or an
SMS dataclass to be used:
RECFM

Usage notes
v If you specify no value for format, no record format is specified when allocating

new data sets.
v The record format attribute can be obtained from an SMS data class using the

DATACLASS statement, from a model data set using the DCBDSN statement, or
from the RECFM statement.

v You should specify no value for format if you:
– Specify the DATACLASS statement and the record format from the SMS data

class is to be used, or
– Specify the DCBDSN and the record format from the model data set is to be

used.
v If you specify both a DATACLASS and a DCBDSN, and you specify RECFM

with no value, the record format attribute is obtained from the model data set.
v You can override the record format attribute from the DATACLASS or DCBDSN

settings by specifying RECFM with a value, or by not specifying the RECFM
statement and taking the default.

834 z/OS V2R1.0 Communications Server: IP Configuration Reference

Related topics
v “DATACLASS (FTP client and server) statement” on page 770
v “DCBDSN (FTP client and server) statement” on page 776
v “DSNTYPE (FTP client and server) statement” on page 783
v “EATTR (FTP client and server) statement” on page 788
v See the information about storage management subsystem (SMS) in z/OS

Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

REMOVEINBEOF (FTP client and server) statement

Use the REMOVEINBEOF statement to specify whether the z/OS UNIX EOF
(x'1A') is removed from inbound data before the data is stored.

This setting applies to type ASCII inbound file transfers when the data is stored
into an MVS sequential data set.

Server This setting applies when the server is the receiving site.

Client This setting applies when the client is the receiving site.

Syntax

��
REMOVEINBEOF FALSE

REMOVEINBEOF TRUE
FALSE

��

Parameters

TRUE
Specifies that if the inbound data contains a z/OS UNIX EOF (x'1A') as the
final byte, it is removed from the data.

FALSE
Specifies that if the inbound data contains a z/OS UNIX EOF (x'1A') as the
final byte, it is not removed from the data.

Examples

Remove the UNIX EOF from the inbound data:
REMOVEINBEOF TRUE

REPLY226 (FTP server) statement

Use the REPLY226 statement to direct the FTP server to reply to the FTP client
with reply code 226 instead of reply code 250 to command sequences described in
RFC 959; these command sequences enable the server to choose between reply
code 226 and reply code 250.

Tips:

v FTP reply codes are described in RFC 959.
v Generally, reply code 226 or 250 is used after a successful file transfer, after LIST

commands, and after NLST commands.

Chapter 18. File Transfer Protocol 835

v Reply code 250 (but not 226) is used for a broader class of FTP commands, such
as RNTO, DELE, MKD, RMD, CWD.

v RFC 959 describes the command sequences where a server is allowed to reply
with either reply code 226 or reply code 250.

Syntax

��
REPLY226 FALSE

REPLY226 FALSE
TRUE

��

Parameters

FALSE
Directs the server to reply to the client with code 250 after successful file
transfer, and after other FTP commands that enable the server to choose
between reply code 250 and reply code 226. This is the default.

TRUE
Directs the server to reply to the client with reply code 226 instead of reply
code 250 after successful file transfer, and after other FTP commands that
enable the server to choose between reply code 250 and reply code 226.

Restriction: A server is not always permitted to select reply 226 instead of reply
250. The REPLY226 setting does not override RFC 959 in these cases. For example,
RFC 959 stipulates the server must reply with reply code 250 to RMD (remove
directory); the REPLY226 setting does not affect the reply code selected for RMD
commands.

Examples

To direct the client to reply with code 226 instead of code 250 for successful file
transfer, and for other command sequences described in RFC 959 that enable the
server to choose between reply code 226 and reply code 250, enter the following
code in the server's FTP.DATA:
REPLY226 TRUE

REPLYSECURITYLEVEL (FTP server) statement

Use the REPLYSECURITYLEVEL statement to specify whether or not to include
secure information, such as IP addresses and port numbers, in FTP replies.

Syntax

��
REPLYSECURITYLEVEL 0

REPLYSECURITYLEVEL 0
REPLYSECURITYLEVEL 1

��

Parameters

REPLYSECURITYLEVEL 0
No restrictions are placed on information included in server FTP replies. This
is the default.

836 z/OS V2R1.0 Communications Server: IP Configuration Reference

REPLYSECURITYLEVEL 1
No IP addresses, hostnames, port numbers, or server operating system level
information is included in FTP replies.

Examples

Direct the server not to divulge secure information such as IP addresses and port
numbers in replies to the client:
REPLYSECURITYLEVEL 1

Usage notes

Suppressing sensitive information such as IP addresses from client replies increases
the security of your site; however, such information can be useful for debugging.
An alternative to getting this information from server replies is to activate the
server trace to capture this information. See z/OS Communications Server: IP
Diagnosis Guide for information about diagnosing problems with server traces.

Related topics

“DEBUG (FTP client and server) statement” on page 778

RESTGET (FTP client) statement

Use the RESTGET statement to specify whether the FTP client should open the
checkpoint data set for a GET request.

Syntax

��
RESTGET TRUE

RESTGET TRUE
FALSE

��

Parameters

TRUE
Specifies that the checkpoint data set is opened for a GET request. This is the
default.

FALSE
Specifies that the checkpoint data set is not opened for a GET request.

Examples
RESTGET FALSE ; do not open the checkpoint data set

Usage notes

The FTP client opens the checkpoint data set for a GET or MGET request when the
following conditions are met:
v The data type is EBCDIC
v The file type is SEQ
v The transmission mode is either block or compressed
v The UNIXFILETYPE value is FILE when the local file is a z/OS UNIX file

Chapter 18. File Transfer Protocol 837

Guideline: Use RESTGET FALSE to prevent the open of the data set. If the data set
is not opened, a failed data transfer in block or compressed mode cannot be
restarted.

Related topics
v “CHKPTINT (FTP client and server) statement” on page 762
v “CHKPTPREFIX (FTP client) statement” on page 764
v See REStart subcommand information in z/OS Communications Server: IP

User's Guide and Commands.
v “UNIXFILETYPE (FTP client and server) statement” on page 891

RESTPUT (FTP server) statement

Use the RESTPUT statement to specify whether the server supports checkpoint and
restart processing when receiving data (put operation).

Server This setting applies when the server is the receiving site.

Syntax

��
RESTPUT TRUE

RESTPUT TRUE
FALSE

��

Parameters

TRUE
Specifies that the server supports checkpoint and restart processing when
receiving data. This is the default.

FALSE
Specifies that the server does not support checkpoint and restart processing
when receiving data. This means that restart markers sent by the client are not
supported. When this value is specified, a failed data transfer in block or
compressed mode cannot be restarted.

Examples

Use the following code to specify that checkpoint and restart processing should not
be supported when the server is receiving data:
RESTPUT FALSE

Related topic
v “CHKPTINT (FTP client and server) statement” on page 762

RETPD (FTP client and server) statement

Use the RETPD statement to specify the number of days a newly allocated data set
should be retained. You can also use the SIte and LOCSIte subcommands to set
this keyword.

Server This setting applies when creating data sets on the server's system.

Client This setting applies when creating data sets on the client's system.

838 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

��
RETPD

RETPD
days

��

Parameters

days
The number of days a newly allocated data set should be retained. The valid
range is 0 - 9 999. The default is no retention period assigned to the data set.

If you specify 0 for days, newly allocated data sets are assigned a retention
period of 0 days. This means that the retention period of the data set expires
on the same day that the data set is created.

If you do not specify the RETPD statement or if you specify the RETPD
statement with no value, no retention period is assigned to newly allocated
data sets.

However, you should understand that the retention period attribute can be
obtained from an SMS data class (DATACLASS), an SMS management class
(MGMTCLASS), a model data set (DCBDSN), or from the RETPD statement.

You should specify no value for days if one of the following situations is true:
v The DATACLASS statement is specified and the retention period from the

SMS data class is to be used.
v The MGMTCLASS statement is specified and the retention period from the

SMS management class is to be used.
v The DCBDSN statement is specified and the retention period from the model

data set is to be used.

If you specify RETPD with a value, this value overrides the retention period
settings from any specified model data set (DCBDSN) or SMS data class
(DATACLASS) and might override the value of a specified SMS management
class (MGMTCLASS).

You should specify no value for days if one of the following situations is true:
v The DATACLASS statement is specified and the retention period from the

SMS data class is to be used.
v The MGMTCLASS statement is specified and the retention period from the

SMS management class is to be used.
v The DCBDSN statement is specified and the retention period from the model

data set is to be used.

If you specify RETPD with no value, and you specified both an SMS data class
and a model data set, then the retention period is obtained form the model
data set.

If the SMS data class or DCBDSN model data set have a retention period, this
retention period can be overridden to a new retention period. The retention
period cannot be overridden to have no assigned retention period.

If you specify a management class, then the retention period is obtained from
the management class. The value of the management class's retention period
can be overridden.

Chapter 18. File Transfer Protocol 839

v If a data class is specified, the retention period in the data class can override
it.

v If a model data set (DCBDSN) is specified, its retention period overrides
both the data class value and the management class value.

v If you specify RETPD with a value, the value you specify overrides any data
class setting, model data set value, and any management class setting.

However, regardless of where the retention period value is obtained, when
attempting to override the value set in the management class, the actual
resulting retention period setting depends on the retention period limit defined
in the management class. A management class is defined with a retention limit
value as well as a retention period. If you attempt to override the management
class's retention period, the override value must be within the retention period
limit defined in the management class. Otherwise, the retention period used is
the management class's retention limit value.

Examples
v Make the new data set expiration date equal to 30 days:

RETPD 30

v Use a retention period of 0 days:
RETPD 0

Related topics
v “DATACLASS (FTP client and server) statement” on page 770
v “DCBDSN (FTP client and server) statement” on page 776
v “DSNTYPE (FTP client and server) statement” on page 783
v “EATTR (FTP client and server) statement” on page 788
v “MGMTCLASS (FTP client and server) statement” on page 818
v See the information about storage management subsystem (SMS) in z/OS

Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

SBDATACONN (FTP client and server) statement

This statement defines the conversions between file system code pages and
network transfer code pages to be used for data transfer. You can also use the SIte
and LOCSIte subcommands to set this keyword.

Server Specifies the single-byte code pages used by the server for data
connections.

Client Specifies the single-byte code pages used by the client for data connections.

Syntax

�� SBDATACONN dsname
(file_system_codepage,network_transfer_codepage)
FTP_STANDARD_TABLE

��

Parameters

dsname
The fully qualified name of an MVS data set or z/OS UNIX file containing the
file system to network transfer translate table and the network transfer to file

840 z/OS V2R1.0 Communications Server: IP Configuration Reference

system translate table generated by the CONVXLAT utility. For more
information about translation tables, see Appendix A, “Translation tables,” on
page 1417.

file_system_codepage
The name of a code page that is recognized by iconv. The code page is used
for data that is written in the file system.

network_transfer_codepage
The name of a code page that is recognized by iconv. The code page is used
for data that is transferred on the network.

FTP_STANDARD_TABLE
Indicates that the FTP internal tables, which are the same as the tables that are
shipped in TCPXLBIN(STANDARD), are to be used.

Examples
SBDATACONN (IBM-037,IBM-858)

Usage notes
v If you specify SBDATACONN

(file_system_codepage,network_transfer_codepage), FTP uses the iconv()
application programming interface to translate between the two code pages. The
values that you enter on the SBDATACONN statement are used by FTP as
parameters to the C++ runtime function iconv(). You can find a valid list of code
sets in the z/OS XL C/C++ Programming Guide. See “SBSUB (FTP client and
server) statement” on page 843 and “SBSUBCHAR (FTP client and server)
statement” on page 844 for more information about using substitution characters
to replace unmapped code points during the data transfer.

v The SYSFTSX DD statement, if present, overrides the SBDATACONN statement.
v If neither the SYSFTSX DD statement nor the SBDATACONN statement is

present, the search order for a TCPXLBIN data set is followed. See “SBCS
translation table hierarchy” on page 1418 for this search order. If no TCPXLBIN
data set is found, the same conversion established for the control connection is
used for single-byte data transfer.

Related topics
v For the code pages supported by iconv(), see z/OS XL C/C++ Programming

Guide.
v “SBSUBCHAR (FTP client and server) statement” on page 844
v “SBSENDEOL statement (FTP client and server) statement”
v “SBSUB (FTP client and server) statement” on page 843

SBSENDEOL statement (FTP client and server) statement

Use the SBSENDEOL statement to tell the FTP client or server what end-of-line
(EOL) sequence to use for outbound data when ENcoding is SBCS, Mode is
stream, and Type is ASCII. You can also use the SIte and LOCSIte subcommands to
set this keyword.

Server Tell the server what EOL sequence to append to each line of text when
ENcoding is SBCS, Type is ASCII, and files are sent from the server to the
client.

Chapter 18. File Transfer Protocol 841

Client Tell the client what EOL sequence to append to each line of text when
ENcoding is SBCS, Type is ASCII, and files are sent from the client to the
server.

Syntax

��
SBSENDEOL CRLF

SBSENDEOL CRLF
CR
LF
NONE

��

Parameters

CRLF
When translating outbound single-byte data to ASCII, append a carriage return
(x'0D') and line feed (x'0A') to each line of text. This is the default and the
standard line terminator defined by RFC 959. The z/OS server and client can
receive ASCII data in this format only. It is the only setting permitted when
using the SRestart subcommand in the client.

CR When translating outbound single-byte data to ASCII, append only a carriage
return (x'0D') to each line of text.

LF When translating outbound single-byte data to ASCII, append only a line feed
(x'0A') to each line of text.

NONE
When translating outbound single-byte data to ASCII, append no EOL
sequence.

Examples

When translating outbound single-byte data to ASCII, to append LF only to each
line use the following code:
SBSENDEOL LF

To translate files sent from the FTP client to ASCII, without appending an EOL
sequence to each line, code the following statements in the client's FTP.DATA. At
login, the data type is ASCII and the mode is Stream unless you change the values
using subcommands.
ENCODING SBCS
SBSENDEOL NONE

Restrictions:

v This statement applies only to the end-of-line sequence used on the data
connection. The control connection end-of-line sequence is not affected.

v Double-byte, UCS-2, and multi-byte file transfers are not affected by this setting.
v This statement applies only when ENCODING is SBCS, Type is ASCII, and

Mode is Stream.

Rule: The SBSENDEOL setting CRLF is the default and the standard EOL sequence
defined by RFC 959. It is appropriate for most file transfers. Do not use an
alternate SBSENDEOL setting unless you have verified that the recipient FTP can
handle the alternate value.

842 z/OS V2R1.0 Communications Server: IP Configuration Reference

Client Do not code an alternate SBSENDEOL value if your server is a z/OS FTP
server. The z/OS FTP server does not support alternate SBSENDEOL
values for inbound file transfer.

Server Do not code an alternate SBSENDEOL value if your client is a z/OS FTP
client. The z/OS FTP client does not support alternate SBSENDEOL values
for inbound file transfer.

Result for FTP client: If you put a file while TYPE is ASCII, MODE is STREAM,
ENCODING is SBCS, and SBSENDEOL is not CRLF, the srestart put subcommand
is disabled.

Results for FTP server:

v If you code a SBSENDEOL value other than CRLF, the SIZE command is
disabled.

v If you transfer a file from the server while TYPE is ASCII, MODE is STREAM,
ENCODING is SBCS, and SBSENDEOL is not CRLF, the SIZE command is
disabled for the remainder of the session, and the command sequence REST -
RETR is disabled for MODE STREAM, TYPE ASCII, ENCODING SBCS file
transfers. This precludes stream-mode restart of file transfer to and from the
server.

v The REST command in Mode B (Block mode) is not affected by this setting.

Related topics
v “SBDATACONN (FTP client and server) statement” on page 840
v “ENCODING (FTP client and server) statement” on page 790

SBSUB (FTP client and server) statement

Use the SBSUB statement in the server and client FTP.DATA to specify whether a
substitution is allowed for data bytes that cannot be translated. You can also use
the SIte and LOCSIte subcommands to set this keyword.

Server Specifies the whether substitution is allowed on the server's system.

Client Specifies the whether substitution is allowed on the client's system.

Syntax

��
SBSUB FALSE

SBSUB FALSE
TRUE

��

Parameters

FALSE
Substitution is not allowed for single-byte character translation. This causes a
data transfer failure if a character cannot be mapped during the transfer. This
is the default value.

TRUE
Substitution is allowed for single-byte character translation. The SBSUBCHAR
statement defines the substitution value for untranslatable characters.

Chapter 18. File Transfer Protocol 843

Examples

To disable substitution for single-byte character translation, code the following:
SBSUB FALSE

Related topics
v “SBDATACONN (FTP client and server) statement” on page 840
v “SBSUBCHAR (FTP client and server) statement”

SBSUBCHAR (FTP client and server) statement

Use the SBSUBCHAR statement in the server and client FTP.DATA to specify the
substitution character for data transfers using SBCS encodings when SBSUB has a
value of TRUE. You can also use the SIte and LOCSIte subcommands to set this
keyword.

Server Specifies the substitution character on the server's system.

Client Specifies the substitution character on the client's system.

Syntax

��
SBSUBCHAR SPACE

SBSUBCHAR SPACE
nn

��

Parameters

SPACE
Specifies x'40' when target code set is an EBCDIC code set and x'20' when
target code set is an ASCII code set. This is the default value.

nn Hexadecimal value that represents a single-byte character. The value of nn can
be from 00 to FF.

Examples

To indicate the substitution character to be x'40', ues the following code:
SBSUBCHAR 40

Related topics
v “SBDATACONN (FTP client and server) statement” on page 840
v “SBSUB (FTP client and server) statement” on page 843

SBTRANS (FTP client) statement

Use the SBTRANS statement to specify the SBCS translation table to be used for
the data connection. This table is used for SBCS and DBCS data transfers. FTP uses
the translation table in the user_id.dsn_qual.TCPXLBIN data set. If the
user_id.dsn_qual.TCPXLBIN data set does not exist, FTP uses the
hlq.dsn_qual.TCPXLBIN data set.

844 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

�� SBTRANS dsn_qual ��

Parameters

dsn_qual
Specifies the data set qualifier used to name the translation table.

Examples
SBTRANS DATA ; use USER33.DATA.TCPXLBIN when ftp

; is used by USER33

Usage notes

SBDATACONN and SBTRANS are mutually exclusive statements. If both
statements appear in the FTP.DATA file, SBTRANS is ignored.

Related topics

“SBDATACONN (FTP client and server) statement” on page 840

SECONDARY (FTP client and server) statement

Use the SECONDARY statement to specify the number of tracks, blocks, or
cylinders (according to SPACETYPE) for secondary allocation.

Server This setting applies when creating data sets on the server's system.

Client This setting applies when creating data sets on the client's system.

Syntax

��
SECONDARY 1

SECONDARY
amount

��

Parameters

amount
The number of tracks, blocks, or cylinders. The valid range is 0 - 16 777 215
blocks (the operating system maximum). The default is 1.
v If you specify no value for amount, FTP does not specify the number of

tracks, blocks, or cylinders for secondary allocation.
v You should specify no value for amount if the DATACLASS statement is

specified and the space allocation from the SMS data class is to be used. If
the SMS data class is to be used for space allocation, both the PRIMARY and
SECONDARY values must be omitted, and the value on the SPACETYPE
statement is ignored.
Restriction: If a UNIX file (such as /etc/ftp.data) is being used as the
configuration input and no value for the amount parameter is specified, then
the statement should not have any trailing blanks. Ensure that the line ends
after the SECONDARY keyword or that a comment is also specified.

Chapter 18. File Transfer Protocol 845

Examples

Set the secondary allocation to two tracks:
SECONDARY 2

Related topics
v “DATACLASS (FTP client and server) statement” on page 770
v “DSNTYPE (FTP client and server) statement” on page 783
v “EATTR (FTP client and server) statement” on page 788
v “PRIMARY (FTP client and server) statement” on page 830
v “SPACETYPE (FTP client and server) statement” on page 873

SECURE_CTRLCONN (FTP client and server) statement

Use the SECURE_CTRLCONN statement to indicate the security level for a control
connection. This statement applies only to Kerberos.

Requirement: When using TLS, the control connection must be enciphered and
this setting has no effect on the TLS behavior.

Terminology

Integrity protected, data integrity, or data authentication
Indicates that an algorithm is applied to the data being transferred, which
modifies that data such that the receiving program can verify the data was
not modified or changed during the transfer.

Privacy protected
Indicates that an algorithm is applied to the data being transferred, which
encrypts or scrambles the data such that only the receiving program can
use a special key to decrypt or unscramble the data to its original format.
The original data cannot be seen or interpreted while the data is in transit.

Raw Indicates that data is transmitted without being modified by any
encryption or data integrity algorithms.

Encipher or cipher algorithm
Indicates that data being transferred is encrypted, integrity protected, or
both. This term does not imply which algorithm is used and does not
imply that it is encrypted.

Syntax

��
SECURE_CTRLCONN CLEAR

SECURE_CTRLCONN CLEAR
PRIVATE
SAFE

��

Parameters

Configuring an FTP server

CLEAR
Specifies that the client decides whether data is transferred raw, integrity
protected only, or both integrity and privacy protected.

846 z/OS V2R1.0 Communications Server: IP Configuration Reference

PRIVATE
Specifies that the server requires data to be transferred using both integrity
and privacy protection. Clients attempting to send raw data or data integrity
protect only are rejected.

SAFE
Specifies that the server requires data to be transferred using integrity
protection only, or using both integrity and privacy protection. Clients
attempting to send raw data are rejected.

Configuring an FTP client

CLEAR
Specifies that data can be transferred raw, integrity protected only, or both
integrity and privacy protected.

By default, data is transferred raw. However, you can issue the cprotect private
and cprotect safe commands during the FTP session to change the control
connection security level. Issuing the cprotect private command changes the
control connection security level so data is transferred both integrity and
privacy protected. Issuing the cprotect safe command changes the control
connection security level so data is transferred integrity protected only. Then,
you can also issue the cprotect clear command to reset the control connection
security level back, so that data is transferred raw again.

PRIVATE
Specifies that the client data is transferred both integrity and privacy protected.

SAFE
Specifies that the data can be transferred integrity protected only, or both
integrity and privacy protected.

By default, data is transferred integrity protected only. However, the client can
issue the cprotect private during the FTP session to change the control
connection security level so data is transferred both integrity and privacy
protected. The use can also issue the cprotect safe command to reset the
control connection security level back, so that data is transferred integrity
protected only.

Examples
SECURE_CTRLCONN PRIVATE

Requirements:

v You must code EXTENSIONS AUTH_GSSAPI for this statement to be used by
the FTP server.

v You must code SECURE_MECHANISM GSSAPI for this statement to be used by
the FTP client.

Restriction: This statement is ignored when the security mechanism is TLS.

Related topic
v “EXTENSIONS (FTP client and server) statement” on page 792

SECURE_DATACONN (FTP client and server) statement

Use the SECURE_DATACONN statement to indicate the level of security used on
data connections, and it applies to both TLS and Kerberos.

Chapter 18. File Transfer Protocol 847

See “SECURE_CTRLCONN (FTP client and server) statement” on page 846 for an
explanation of terminology for protected, raw, and enciphered data.

Syntax

��
SECURE_DATACONN CLEAR

SECURE_DATACONN CLEAR
NEVER
PRIVATE
SAFE

��

Parameters

Configuring an FTP server

NEVER
Indicates the server requires data to be transferred raw with no cipher
algorithm applied to the data. Clients attempting to use ciphers are rejected.

CLEAR
Indicates the client decides whether data is transferred raw or enciphered.

For TLS, the client decides whether data is enciphered or not. If it indicates it
should be enciphered, the cipher algorithm is chosen using TLS protocols.

For Kerberos, the client can specify whether data is transferred raw, integrity
protected only, or both integrity and privacy protected.

PRIVATE
Indicates the server requires data to be transferred enciphered. Clients
attempting to send raw data are rejected.

For TLS, the cipher algorithm is chosen using TLS protocols.

For Kerberos, the data must be transferred using both integrity and privacy
protection. Clients attempting to send data that is only integrity protected are
rejected.

SAFE
For TLS, specifying this option is identical to the PRIVATE specification.

For Kerberos, the data must be transferred using both integrity and privacy
protected. Clients attempting to send data that is only integrity protected are
rejected.

Configuring an FTP client

NEVER
Indicates the client requires data to be transferred raw with no cipher
algorithm applied to the data.

CLEAR
Indicates the data can be transferred raw or enciphered.

By default, data is transferred raw. However, you can issue the private
command during the FTP session to change the data connection security level
so the data is enciphered. You can also issue the clear command to reset the
data connection security level back, so that data is transferred raw again.

For TLS, if the private command is issued, the cipher algorithm is chosen
using TLS protocols.

848 z/OS V2R1.0 Communications Server: IP Configuration Reference

For Kerberos, if the private command is issued, data is transferred both
integrity and privacy protected. In addition to the private and clear
commands, you can issue the safe command to change the data connection
security level so data is transferred integrity protected only.

PRIVATE
Indicates the client requires data to be transferred enciphered.

For TLS, the cipher algorithm is chosen using TLS protocols.

For Kerberos, the data must be transferred using both integrity and privacy
protected.

SAFE
For TLS, specifying this option is identical to the PRIVATE specification.

For Kerberos, the data can be transferred integrity protected only, or both
integrity and privacy protected. By default, data is transferred integrity
protected only. However, you can issue the private command during the FTP
session to change the data connection security level so data is transferred both
integrity and privacy protected. You can also issue the safe command to reset
the data connection security level back, so data is transferred integrity
protected only.

Examples
SECURE_DATACONN NEVER

Usage notes

If the FTP server uses the secure port, the server behaves as if the value on this
statement is PRIVATE. See “TLSPORT (FTP client and server) statement” on page
880 for information about the secure port.

SECURE_FTP (FTP client and server) statement

Use the SECURE_FTP statement to specify whether use of a security mechanism is
optional or required.

Syntax

��
SECURE_FTP ALLOWED

SECURE_FTP ALLOWED
REQUIRED

��

Parameters

Configuring an FTP server

REQUIRED
Specifies that all clients log in using a security mechanism.

Rules:

v If the server is enabled for TLS only, clients must log in using TLS.
v If the server is enabled for Kerberos only, clients must log in using Kerberos.
v If the server is enabled for both TLS and Kerberos, clients must log in using

either TLS or Kerberos.

Chapter 18. File Transfer Protocol 849

ALLOWED
Allows clients to log in using a security mechanism, but it is not required.

Rules:

v If the server is enabled for TLS only, clients must log in using TLS or no
securiy mechanism.

v If the server is enabled for Kerberos only, clients must log in using Kerberos
or no security mechanism.

v If the server is enabled for both TLS and Kerberos, clients must log in using
TLS, Kerberos, or no security mechanism.

Configuring an FTP client

REQUIRED
Specify that a client log in must use a security mechanism. If the server does
not support the client's security mechanism, the login fails and the client
cannot log in.

Rules:

v If the client's security mechanism is TLS, clients must log in using TLS.
v If the client's security mechanism is Kerberos, clients must log in using

Kerberos.

ALLOWED
Allow the client to log in using a security mechanism, but it is not required.

Rules:

v If the client's security mechanism is TLS, clients must log in using TLS. If the
server does not support TLS, the server indicates this back to the client. The
client then completes the log in, but without using TLS.

v If the client's security mechanism is Kerberos, clients must log in using
Kerberos. If the server does not support Kerberos, the server indicates this
back to the client. The client then completes the log in, but without using
Kerberos.

Examples
SECURE_FTP ALLOWED

Usage notes
v If the FTP server used the secure port, the server behaves as if the value on this

statement is required. See “TLSPORT (FTP client and server) statement” on page
880 for information about the secure port.

v This statement is valid for FTP servers if either EXTENSIONS AUTH_TLS or
EXTENSIONS AUTH_GSSAPI is specified.

v This statement is valid for FTP clients if either SECURE_MECHANISM TLS or
SECURE_MECHANISM GSSAPI is specified.

Related topics
v “SECURE_MECHANISM (FTP client) statement” on page 854
v “EXTENSIONS (FTP client and server) statement” on page 792
v See z/OS Communications Server: IP Configuration Guide for more information

about customizing TLS and Kerberos and SSL/TLS.

850 z/OS V2R1.0 Communications Server: IP Configuration Reference

SECURE_HOSTNAME (FTP client) statement

Use the SECURE_HOSTNAME statement to specify whether the client verifies the
host name in the server's certificate.

The statement is ignored for sessions that are not protected by the TLS security
mechanism.

Syntax

��
SECURE_HOSTNAME OPTIONAL

SECURE_HOSTNAME OPTIONAL
REQUIRED

��

Parameters

REQUIRED
Specifies that the host name that the client is connecting to is verified against
the server's certificate. Either the common name or the subject alternate name
contained in the server's X.509 certificate is used to validate the host name. If
the verification fails, the connection is terminated.

OPTIONAL
Specifies that the host name is not validated. This is the default.

SECUREIMPLICITZOS (FTP client and server) statement

Use the SECUREIMPLICITZOS statement to specify when FTP should negotiate or
expect the security handshake for TLSPORT implicitly secured connections.

Rules:

v To enable a z/OS FTP client to log into the z/OS FTP server using the protected
port, specify the same SECUREIMPLICITZOS statement value and TLSPORT
value for the client and server.

v When using the implicit connection (FTP client is connecting to the port
specified by the TLSPORT statement), some FTP servers expect to negotiate the
security of the session immediately after the connection is issued. If you are
initiating a secure session with such a server, code SECUREIMPLICITZOS
FALSE in the client's FTP.DATA file.

v Many non-z/OS FTP clients negotiate the security immediately after the connect
and before the initial 220 reply is received from the server. To enable these
clients to log into the z/OS FTP server's protected port, code
SECUREIMPLICITZOS FALSE in the server's FTP.DATA file.

Server The first reply that the FTP server sends to a client uses reply code 220.
The reply is sometimes referred to as the good morning reply. The
SECUREIMPLICITZOS statement specifies whether the server expects the
TLS handshake to occur before or after it sends the initial reply 220.

Client The SECUREIMPLICITZOS statement specifies when the client initiates the
TLS handshake for connections to the TLSPORT (protected port). You can
change this setting using the locsite subcommand.

Chapter 18. File Transfer Protocol 851

Syntax

��
SECUREIMPLICITZOS TRUE

SECUREIMPLICITZOS TRUE
FALSE

��

Parameters

TRUE
This is the default.

Server Specifies that the FTP server expects the security handshake to occur
after it sends the reply 220.

Client Specifies that the FTP client initiates the security handshake after the
220 (good morning) reply is received from the server.

FALSE

Server Specifies that the FTP server expects the security handshake before it
sends the reply 220.

Client Specifies that the FTP client negotiates the security handshake
immediately after the connection and before the initial 220 reply is
received from the server.

Examples

To initiate an implicitly secured session between a z/OS FTP client and a z/OS
FTP server, code the following statements in the FTP client and server FTP.DATA
file:
SECUREIMPLICITZOS TRUE

You could also code the following statement in both the FTP client and server
FTP.DATA file:
SECUREIMPLICITZOS FALSE

To initiate an implicitly secured session between a non-z/OS FTP client and a
z/OS FTP server, code the following statement in the FTP server FTP.DATA file:
SECUREIMPLICITZOS FALSE

Related topic
v “TLSPORT (FTP client and server) statement” on page 880

SECURE_LOGIN (FTP server) statement

Use the SECURE_LOGIN statement to indicate whether the FTP server requires
client authentication.

The SECURE_LOGIN statement setting applies to TLS and Kerberos. Note that the
term certificate is actually TLS terminology. In Kerberos, the equivalent of a
certificate is a ticket, which contains credentials.

Rules:

852 z/OS V2R1.0 Communications Server: IP Configuration Reference

v This statement is valid only when you have coded EXTENSIONS TLS or
EXTENSIONS AUTH in the FTP.DATA file of the server.

v If you code VERIFYUSER TRUE in FTP.DATA, the server verifies the user's
access to the FTP server port profile in the SERVAUTH class regardless of the
SECURE_LOGIN value.

Syntax

��
SECURE_LOGIN NO_CLIENT_AUTH

SECURE_LOGIN VERIFY_USER
NO_CLIENT_AUTH
REQUIRED

��

Parameters

VERIFY_USER
Indicates that in addition to client certificate authentication, the user's ID is
further verified.

For Kerberos, the user ID in the client's ticket is verified to match the login
user ID.
EZB.FTP.MVS164.FTPD1.PORT21

For TLS:
v The server verifies that the certificate has been registered with your

SAF-compliant security product, such as RACF, and has an associated user
ID matching the login user ID.

v If the SERVAUTH RACF (or another security product) class is active and a
RACF resource has been defined for the port, the connection is allowed only
if the user ID associated with the client certificate has READ access to the
RACF resource.
The resource name would be:
EZB.FTP.<systemname>.<ftpdaemonname>.PORTxxxx

where xxxx is replaced by the port number for the FTP daemon. For
example, if the procedure FTPD is used to start the daemon on system
MVS164 and the daemon uses the default FTP port 21, then the resource
name is:
EZB.FTP.MVS164.FTPD1.PORT21

Tip: For sessions that are not secured with TLS, you can use the same resource
profile to control which users can log into the FTP server when you code
VERIFYUSER TRUE in the server's FTP.DATA file. However, if you do code
VERIFYUSER TRUE in FTP.DATA, the server verifies the user's access to the
resource profile regardless of the SECURE_LOGIN value.

REQUIRED
Indicates that the server should authenticate client certificates.

This does not affect Kerberos behavior; Kerberos always processes the client's
ticket.

For TLS, client certificate authentication occurs during the SSL handshake. To
pass authentication, the Certificate Authority (CA) that signed the client

Chapter 18. File Transfer Protocol 853

certificate must be considered trusted by the server. This means a certificate for
the CA that issued the client certificate is listed as trusted in the server's key
ring.

NO_CLIENT_AUTH
Specifies that the server should not request the client certificate for TLS.

This parameter has no effect for Kerberos.

Examples
SECURE_LOGIN REQUIRED

Related topics
v “EXTENSIONS (FTP client and server) statement” on page 792
v “SECURE_PASSWORD (FTP server) statement” on page 855
v “SECURE_PASSWORD_KERBEROS (FTP server) statement” on page 856
v “VERIFYUSER (FTP server) statement” on page 893

SECURE_MECHANISM (FTP client) statement

Use the SECURE_MECHANISM statement to specify whether the FTP client
should use a security mechanism when a session is established. The parameter on
the statement indicates which security mechanism to use.

Syntax

�� SECURE_MECHANISM TLS
GSSAPI

��

Parameters

TLS
Specifies that TLS is the security mechanism that is used by the client when it
establishes a session.

GSSAPI
Specifies that GSSAPI is the security mechanism that is used by the client
when it establishes a session.

Examples

To specify that TLS protocols should be use for the session, use the following code:
SECURE_MECHANISM TLS

Usage notes
v Security mechanism GSSAPI is supported for IPv4 connections only.
v The SECURE_MECHANISM statement can be overridden by the -a or the -r

start parameter on the FTP command.

Related topics
v “SECURE_FTP (FTP client and server) statement” on page 849
v See the FTP command and the FTP environment information in z/OS

Communications Server: IP User's Guide and Commands.

854 z/OS V2R1.0 Communications Server: IP Configuration Reference

v See z/OS Communications Server: IP Configuration Guide for more information
about customizing TLS and Kerberos and SSL/TLS.

SECURE_PASSWORD (FTP server) statement

Use the SECURE_PASSWORD statement to specify whether a password is required
by the FTP server for an TLS protected session. The statement is ignored for
sessions that are not protected by the TLS security mechanism.

Syntax

��
SECURE_PASSWORD REQUIRED

SECURE_PASSWORD REQUIRED
OPTIONAL

��

Parameters

REQUIRED
Specifies that a password is required to log in a user whose session is
protected by the TLS security mechanism.

OPTIONAL
Specifies that the password is not required if the client provides a certificate
that can be used to authenticate the user. See the Usage notes in this topic for
more information.

If the client certificate is used to authenticate the user and the authentication
fails, the login attempt fails.

Rule: The handshake that occurs when the TLS protected session is established
must include the transfer of the client certificate to the server. If you code
SECURE_PASSWORD OPTIONAL, you must code SECURE_LOGIN
VERIFY_USER or SECURE_LOGIN REQUIRED to require the client certificate.

Result: If you code SECURE_PASSWORD OPTIONAL and SECURE_LOGIN
NO_CLIENT_AUTH in the FTP.DATA file, the message EZYFS16I is logged to
inform you that the combination is not allowed. The value set by the
SECURE_PASSWORD statement is changed to REQUIRED.

Examples

To require the user to enter a password on an TLS protected session only when the
USER name does not match the name associated with the certificate, code the
following statements:
SECURE_LOGIN REQUIRED
SECURE_PASSWORD OPTIONAL

Usage notes

The certificate that is received from the client must be registered in the security
product and must be associated with the user ID that is passed on the USER
command to the FTP server. You can use RACDCERT ADD command to register
and associate the certificate.

Chapter 18. File Transfer Protocol 855

When the certificate is registered in the security product and is associated with the
user ID that is passed in on the USER command, the SECURE_PASSWORD
statement value determines the action taken during the login procedure.

Table 49 shows the statement value options.

Table 49. SECURE_PASSWORD statement value options

SECURE_PASSWORD SECURE_LOGIN Action

REQUIRED VERIFY_USER

or

REQUIRED

Prompt for a password.

OPTIONAL VERIFY_USER

or

REQUIRED

Authenticate with the
certificate (do not
prompt for password if
the authenticate fails).

When either the certificate is not registered in the security product or is not
associated with the user ID that is passed in on the USER command, the
SECURE_LOGIN statement value determines the action during the login
procedure.

Table 50 shows the statement value options.

Table 50. SECURE_LOGIN statement value options

SECURE_PASSWORD SECURE_LOGIN Action

REQUIRED

or

OPTIONAL

VERIFY_USER Fail the login.

REQUIRED

or

OPTIONAL

REQUIRED Prompt for a password.

Related topics
v “EXTENSIONS (FTP client and server) statement” on page 792
v “SECURE_LOGIN (FTP server) statement” on page 852
v See z/OS Communications Server: IP Configuration Guide for more information

about customizing TLS and Kerberos and SSL/TLS.

SECURE_PASSWORD_KERBEROS (FTP server) statement

Use the SECURE_PASSWORD_KERBEROS statement to specify whether a
password is required by the FTP server for a Kerberos-protected session. The
statement is ignored for sessions that are not protected by the Kerberos security
mechanism.

Rule: This statement is enabled only when EXTENSIONS AUTH_GSSAPI is coded
in the server's FTP.DATA file.

856 z/OS V2R1.0 Communications Server: IP Configuration Reference

When the user ID passed on the USER command matches the user ID that the
SAF-compliant security product maps to the user ID that the Kerberos principal
received from the client, the SECURE_PASSWORD_KERBEROS statement value
determines whether the server prompts the client for the password during the
login procedure.

Syntax

��
SECURE_PASSWORD_KERBEROS REQUIRED

SECURE_PASSWORD_KERBEROS REQUIRED
OPTIONAL

��

Parameters

REQUIRED
Specifies that a password is required to log in a user whose session is
protected by the Kerberos security mechanism.

This is the default.

OPTIONAL
Specifies that the password is not required if the user ID passed on the USER
command matches the user ID that the SAF-compliant security product
mapped to the user ID that the Kerberos principal received from the client.

Examples

To require the user to enter a password on a Kerberos-protected session only when
the user ID passed on the USER command does not match the user ID that the
SAF-compliant security product mapped to the user ID that the Kerberos principal
received from the client, code the following statement:
SECURE_PASSWORD_KERBEROS OPTIONAL

Usage notes

Table 51 shows how the SECURE_PASSWORD_KERBEROS statement affects user
authentication when the user ID to which the Kerberos principal is mapped
matches the user ID that is passed on the USER command.

Table 51. User identity in the Kerberos ticket matches user ID on USER command

SECURE_PASSWORD_KERBEROS SECURE_LOGIN Action

REQUIRED One of the following:

v VERIFY_USER

v REQUIRED

v NO_CLIENT_AUTH

Prompt for a
password.

OPTIONAL One of the following:

v VERIFY_USER

v REQUIRED

v NO_CLIENT_AUTH

Authenticate with
the Kerberos ticket
(if the Kerberos
authentication fails,
fail the login, do not
prompt for
password).

Chapter 18. File Transfer Protocol 857

When the user ID to which the Kerberos principal is mapped does not match the
user ID that is passed on the USER command, the SECURE_LOGIN statement
value determines the action that is necessary during the authentication procedure.

Table 52 shows how the SECURE_LOGIN statement affects user authentication
when the user ID to which the Kerberos principal is mapped does not match the
user ID that is passed on the USER command.

Table 52. User identity in the Kerberos ticket does not match user ID on USER command

SECURE_PASSWORD_KERBEROS SECURE_LOGIN Action

REQUIRED

or

OPTIONAL

VERIFY_USER Fail the login.

REQUIRED

or

OPTIONAL

REQUIRED

or

NO_CLIENT_AUTH

Prompt for a password.

Related topics
v “EXTENSIONS (FTP client and server) statement” on page 792
v “SECURE_LOGIN (FTP server) statement” on page 852
v See z/OS Communications Server: IP Configuration Guide for more information

about customizing TLS and Kerberos and SSL/TLS.

SECURE_PBSZ (FTP client and server) statement

Specifies the maximum size of the encoded data blocks sent during file transfer.

Server Specifies the maximum protection buffer size the server accepts.

Client Specifies the protection buffer size the client uses to negotiate with the
server.

Syntax

�� SECURE_PBSZ
16384

buffer-size
��

Parameters

buffer_size
The valid range is between 512 - 32 768. The default value is 16 384.

Usage notes
v The client initially issues the PBSZ command specifying buffer_size. If the PBSZ

command is rejected, the client reissues the PBSZ command with a smaller value
until it is accepted by the server.

v If the server receives a protection buffer size (PBSZ) larger than the value
configured in the server's FTP.DATA configuration file, the server defaults to its
configured value.

858 z/OS V2R1.0 Communications Server: IP Configuration Reference

v The setting applies only to the Kerberos protocol.

Related topics
v “EXTENSIONS (FTP client and server) statement” on page 792
v “SECURE_MECHANISM (FTP client) statement” on page 854

SEQNUMSUPPORT (FTP client) statement

Use the SEQNUMSUPPORT statement to ignore sequence numbers in files
designated by the ddname INPUT.

Syntax

��
SEQNUMSUPPORT FALSE

SEQNUMSUPPORT TRUE
FALSE

��

Parameters

TRUE
When reading FTP subcommands to be processed from the ddname INPUT,
FTP removes any sequence numbers before processing the command.

FALSE
When reading FTP subcommands, any sequence numbers in the input
designated by the ddname INPUT are considered to be part of the input. This
is the default.

Examples

The following example shows how data sets with different sequence number
schemes can be concatenated if SEQNUMSUPPORT TRUE is coded in the
FTP.DATA file:
Suppose dataset: FTP.SUBCMDS(LOGIN) contains no sequence numbers

mvs056.tcp.raleigh.ibm.com
user1
us3rpswd

Suppose dataset: FTP.SUBCMDS(FTPINFO) contains TRAILING sequence numbers

; This comment prevents 00000100 and subsequent sequence numbers 00000100
; from being interpreted as an ftp subcommand. 00000110
locstat 00000120
stat 00000130
pwd 00000140

Suppose dataset: FTP.SUBCMDS(FTPCMDS1) contains no sequence numbers

; This comment indicates no sequence numbers present
get remote.file.name local.name.

Suppose dataset: FTP.SUBCMDS(FTPCMDS2) contains LEADING sequence numbers

00000100; The file indicates leading sequence numbers present
00000110put local.file +
00000120 remote.file

Chapter 18. File Transfer Protocol 859

To specify the datasets listed previously as input to the FTP client, the following
sample JCL is used:
//FTP EXEC PGM=FTP
//SYSPRINT DD SYSOUT=*
//SYSFTPD DD DSN=SYS1.TCPPARMS(FTPCDATA),DISP=SHR
//* Insure that SEQNUMSUPPORT TRUE is coded
//* in the above clients FTP.DATA file
//INPUT DD DSN=FTP.SUBCMDS(LOGIN),DISP=SHR
// DD DSN=FTP.SUBCMDS(FTPINFO),DISP=SHR
// DD DSN=FTP.SUBCMDS(FTPCMDS1),DISP=SHR
// DD DSN=FTP.SUBCMDS(FTPCMDS2),DISP=SHR

Results:

v When SEQNUMSUPPORT TRUE is coded in the FTP.DATA file and the FTP
client reads the first record of the file specified by the ddname INPUT, the
record determines the type of sequence numbers that are to be processed.

v If the last eight columns are numeric and contain trailing sequence numbers, this
data is replaced with blanks before running this and subsequent records.
Otherwise, if the first eight columns are numeric and contain leading sequence
numbers, the data that begins in column 9 is shifted to column 1 before the
record is processed.

v If FTP detects no sequence numbers, the data is not modified.
v Each time a semicolon (;) is detected in the first data column, FTP determines

the sequencing mode to use to process sequence numbers that follow statement.

Requirements:

v If you concatenate files with the INPUT DD statement, the first statement in
each concatenated file must have a semicolon (;) in column 1; the semicolon to
enables the FTP client to correctly determine the sequence numbering scheme
that is being used.

v If no semicolon (;) is present in the concatenated files, sequence number
processing does not change.

SMF (FTP server) statement

Use the SMF statement to specify SMF recording options.

Syntax

�� SMF STD
number
TYPE119

��

Parameters

STD
Indicates that all FTP server SMF records of type 118 are issued with the
following subtypes:
v APPEND - 70
v DELETE - 71
v LOGIN FAILURE - 72
v RENAME - 73
v RETRIEVE - 74

860 z/OS V2R1.0 Communications Server: IP Configuration Reference

v STORE - 75
v STORE UNIQUE - 75

number
The SMF record subtype to be used for all FTP server records unless otherwise
specified for a particular record subtype. The valid range is 1 - 255. There is no
default value.

Restriction: This field applies to type 118 records only.

TYPE119
Indicates that all FTP server SMF records of type 119 are issued. Type 119
records have the following subtypes:
v APPEND - 70
v DELETE - 70
v DAEMON CONFIGURATION -71
v LOGIN FAILURE - 72
v RENAME - 70
v RETRIEVE - 70
v STORE - 70
v STORE UNIQUE - 70

Examples

To have all 118 FTP server records created with standard subtypes:
SMF STD

To have all type 119 FTP server records created:
SMF TYPE119

To have all type FTP server records of both types created with standard subtypes
for type 118 records:
SMF STD
SMF TYPE119

To log all FTP records of type 119, as well as type 118 APPEND records:
SMF TYPE119
SMFAPPE 99

To log all FTP records of type 118 with standard subtypes, as well as type 119
DELETE and RENAME records:
SMF STD
SMFDEL TYPE119
SMFREN TYPE119

Usage notes
v SMF statements for each record type (118 and 119) function independently of

each other.
v If the SMF statement is omitted, SMF recording occurs for only the events with a

statement coded. For example, if SMF is omitted but an SMFAPPE statement is
coded, only the APPEND command has SMF recording.

v If the SMF statement is coded with a value of STD, all other SMF-related
statements using type 118 records with a value coded (even if it is STD) are

Chapter 18. File Transfer Protocol 861

flagged with warning message EZYFT58 and their specifications are ignored.
SMF STD means standard type 118 values and no other type 118 values are
allowed.
For example, if SMF STD is specified, then specifying SMFAPPE STD is flagged
with message EZYFT58 and is ignored.

v If none of the SMF subtype statements are coded in the FTP.DATA data set, then
no SMF records are written by the FTP server.

v Records of type 118 and type 119 can both be requested; however, do not do this
due to performance implications of writing both record types. Use type 119
records instead of type 118 records, as type 119 records generally use more
standard formatting and provide more information.

Related topics
v “SMFAPPE (FTP server) statement”
v “SMFDCFG (FTP server) statement” on page 863
v “SMFDEL (FTP server) statement” on page 864
v “SMFEXIT (FTP server) statement” on page 865
v “SMFJES (FTP server) statement” on page 866
v “SMFLOGN (FTP server) statement” on page 867
v “SMFREN (FTP server) statement” on page 868
v “SMFRETR (FTP server) statement” on page 869
v “SMFSQL (FTP server) statement” on page 870
v “SMFSTOR (FTP server) statement” on page 871

SMFAPPE (FTP server) statement

Use the SMFAPPE statement to specify the SMF record subtype to be used for the
APPE (APPEND) command.

Syntax

�� SMFAPPE STD
number
TYPE119

��

Parameters

STD
Indicates that type 118 SMF APPEND records are issued with the standard
subtype of 70.

number
Indicates that type 118 SMF APPEND records are issued with the given record
subtype. The valid range is 1 - 255.

TYPE119
Indicates that type 119 SMF APPEND records are issued (subtype 70).

Examples

Set the type 118 SMF record subtype for APPEND to 70:
SMFAPPE 70

862 z/OS V2R1.0 Communications Server: IP Configuration Reference

To issue type 119 SMF APPEND records:
SMFAPPE TYPE119

Usage notes
v SMFAPPE statements for each record type (118 and 119) function independently

of each other.
v If you do not specify the SMFAPPE statement for a particular record type (118 or

119), SMF Append records of that type are still issued if the corresponding SMF
statement for that record type is present.

Related topics
v “SMF (FTP server) statement” on page 860
v “SMFDCFG (FTP server) statement”
v “SMFDEL (FTP server) statement” on page 864
v “SMFEXIT (FTP server) statement” on page 865
v “SMFJES (FTP server) statement” on page 866
v “SMFLOGN (FTP server) statement” on page 867
v “SMFREN (FTP server) statement” on page 868
v “SMFRETR (FTP server) statement” on page 869
v “SMFSQL (FTP server) statement” on page 870
v “SMFSTOR (FTP server) statement” on page 871

SMFDCFG (FTP server) statement
Use the SMFDCFG statement to specify that a type 119 SMF record of subtype 71
is collected for the FTP daemon configuration information when the FTP daemon
starts.

Syntax

�� SMFDCFG ��

Parameters

The SMFDCFG statement has no parameters. If you use the SMFDCGF statement
with a parameter, the parameter is ignored.

Examples

To record FTP daemon configuration information when the FTP daemon starts, use
the following statement:
SMFDCFG

Usage notes
v If you do not specify the SMFDCFG statement, the SMF record for the FTP

daemon configuration information is issued only when the SMF TYPE119
statement is present. If neither the SMF nor the SMFDCFG statement is
specified, no SMF records are collected for the FTP daemon configuration
information.

v Only type 119 SMF records are available for FTP daemon configuration
information. No corresponding type 118 SMF records are available.

Chapter 18. File Transfer Protocol 863

Related topics
v “SMF (FTP server) statement” on page 860
v “SMFAPPE (FTP server) statement” on page 862
v “SMFDEL (FTP server) statement”
v “SMFEXIT (FTP server) statement” on page 865
v “SMFJES (FTP server) statement” on page 866
v “SMFLOGN (FTP server) statement” on page 867
v “SMFREN (FTP server) statement” on page 868
v “SMFRETR (FTP server) statement” on page 869
v “SMFSQL (FTP server) statement” on page 870
v “SMFSTOR (FTP server) statement” on page 871

SMFDEL (FTP server) statement

Use the SMFDEL statement to specify SMF recording options for the DELE
(DELETE) command.

Syntax

�� SMFDEL STD
number
TYPE119

��

Parameters

STD
Indicates that type 118 SMF DELETE records are issued with the standard
subtype of 71.

number
Indicates that type 118 SMF DELETE records are issued with the given record
subtype. The valid range is 1 - 255.

TYPE119
Indicates that type 119 SMF DELETE records are issued (subtype 70).

Examples

Set the type 118 SMF record subtype for DELETE to 71:
SMFDEL 71

To issue type 119 SMF DELETE records:
SMFDEL TYPE119

Usage notes
v SMFDEL statements for each record type (118 and 119) function independently

of each other. To collect both types, you must specify both SMFDEL STD and
SMFDEL TYPE119.

v If you do not specify the SMFDEL statement, SMF records for the DELETE
command are still issued if the SMF statement is present. (Type 118 DELETE
records have the subtype specified with the SMF statement; type 119 DELETE
records are always subtype 70.) If neither the SMF or SMFDEL statement is
specified, no SMF records are collected for the DELETE command.

864 z/OS V2R1.0 Communications Server: IP Configuration Reference

Related topics
v “SMF (FTP server) statement” on page 860
v “SMFAPPE (FTP server) statement” on page 862
v “SMFDCFG (FTP server) statement” on page 863
v “SMFEXIT (FTP server) statement”
v “SMFJES (FTP server) statement” on page 866
v “SMFLOGN (FTP server) statement” on page 867
v “SMFREN (FTP server) statement” on page 868
v “SMFRETR (FTP server) statement” on page 869
v “SMFSQL (FTP server) statement” on page 870
v “SMFSTOR (FTP server) statement” on page 871

SMFEXIT (FTP server) statement

Use the SMFEXIT statement to specify that the user exit routine FTPSMFEX is
called before writing the Type 118 SMF record to SMF data sets.

Syntax

�� SMFEXIT ��

Parameters

This statement has no parameters.

Examples

To specify that the user exit FTPSMFEX is called before writing the Type 118 SMF
record to SMF data sets, use the following code:
SMFEXIT

Usage notes

The FTP SMF user exit has been discontinued for type 119 FTP SMF records. The
user exit routine FTPSMFEX is only to be called for any type 118 records that are
written; no FTP-specific exit is called for type 119 records. In order to obtain the
same functionality with type 119 records, the system-wide SMF user exits should
now be used (IEFU83, IEFU84, and IEFU85). See z/OS MVS System Management
Facilities (SMF) for more information.

Related topics
v “The FTP server SMF user exit” on page 710
v “FTP server user exits” on page 700
v “SMF (FTP server) statement” on page 860
v “SMFAPPE (FTP server) statement” on page 862
v “SMFDCFG (FTP server) statement” on page 863
v “SMFDEL (FTP server) statement” on page 864
v “SMFJES (FTP server) statement” on page 866
v “SMFLOGN (FTP server) statement” on page 867

Chapter 18. File Transfer Protocol 865

v “SMFREN (FTP server) statement” on page 868
v “SMFRETR (FTP server) statement” on page 869
v “SMFSQL (FTP server) statement” on page 870
v “SMFSTOR (FTP server) statement” on page 871

SMFJES (FTP server) statement

Use the SMFJES statement to specify that SMF records are collected when
FILETYPE is JES (remote job submission).

If SMFJES is not specified, no SMF records are issued when FILETYPE is JES.

Syntax

�� SMFJES
TYPE119

��

Parameters

TYPE119
Issue records for filetype JES for all type 119 SMF records. If no parameters are
given, records for filetype JES are issued for all type 118 SMF records.

Examples

To record SMF type 118 records for STOR when FILETYPE=JES, use the following
code:
SMFSTOR STD
SMFJES

To record SMF type 119 records for STOR when FILETYPE=JES, use the following
code:
SMFSTOR TYPE119
SMFJES TYPE119

Usage notes

SMFJES statements for each record type (118 and 119) function independently of
each other.

Related topics
v “FILETYPE (FTP client and server) statement” on page 796
v “JESINTERFACELEVEL (FTP server) statement” on page 804
v “SMF (FTP server) statement” on page 860
v “SMFAPPE (FTP server) statement” on page 862
v “SMFDCFG (FTP server) statement” on page 863
v “SMFDEL (FTP server) statement” on page 864
v “SMFEXIT (FTP server) statement” on page 865
v “SMFLOGN (FTP server) statement” on page 867
v “SMFREN (FTP server) statement” on page 868
v “SMFRETR (FTP server) statement” on page 869

866 z/OS V2R1.0 Communications Server: IP Configuration Reference

v “SMFSQL (FTP server) statement” on page 870
v “SMFSTOR (FTP server) statement” on page 871

SMFLOGN (FTP server) statement

Use the SMFLOGN statement to specify the SMF recording options when recording
logon failures.

Syntax

�� SMFLOGN STD
number
TYPE119

��

Parameters

STD
Indicates that type 118 SMF logon failure records are issued with the standard
subtype of 72.

number
Indicates that type 118 SMF logon failure records are issued with the given
record subtype. The valid range is 1 - 255.

TYPE119
Indicates that type 119 SMF logon failure records are issued (subtype 72).

Examples

Set the type 118 SMF record subtype for logon failures to 72:
SMFLOGN 72

To issue type 119 SMF LOGON records:
SMFLOGN TYPE119

Usage notes
v There is no default value; however, if the SMF statement is coded for type 118

records, the value specified for the SMF statement is used as the default.
v SMFLOGN statements for each record type (118 and 119) function independently

of each other.
v If you do not specify the SMFLOGN statement, SMF records for logon failures

are still issued if the SMF statement is present (type 118 logon failure records
have the subtype specified with the SMF statement; type 119 logon failure
records are always subtype 72). If neither the SMF or SMFLOGN statement is
specified, no SMF records are collected for logon failures.

Related topics
v “FTP server user exits” on page 700
v “SMF (FTP server) statement” on page 860
v “SMFAPPE (FTP server) statement” on page 862
v “SMFDCFG (FTP server) statement” on page 863
v “SMFDEL (FTP server) statement” on page 864
v “SMFEXIT (FTP server) statement” on page 865

Chapter 18. File Transfer Protocol 867

v “SMFJES (FTP server) statement” on page 866
v “SMFREN (FTP server) statement”
v “SMFRETR (FTP server) statement” on page 869
v “SMFSQL (FTP server) statement” on page 870
v “SMFSTOR (FTP server) statement” on page 871

SMFREN (FTP server) statement

Use the SMFREN statement to specify SMF recording options for the RNFR/RNTO
(RENAME) command.

Syntax

�� SMFREN STD
number
TYPE119

��

Parameters

STD
Indicates that type 118 SMF RENAME records are issued with the standard
subtype of 73.

number
Indicates that type 118 SMF RENAME records are issued with the given record
subtype. The valid range is 1 - 255.

TYPE119
Indicates that type 119 SMF RENAME records are issued (subtype 70).

Examples

Set the type 118 SMF record subtype for RENAME to 73:
SMFREN 73

To issue type 119 SMF RENAME records:
SMFREN TYPE119

Usage notes
v There is no default value; however, if the SMF statement is coded for type 118

records, the value specified for the SMF statement is used as the default.
v SMFREN statements for each record type (118 and 119) function independently

of each other.
v If you do not specify the SMFREN statement, SMF records for the RENAME

command is still issued if the SMF statement is present (type 118 RENAME
records have the subtype specified with the SMF statement; type 119 RENAME
records are always subtype 70). If neither the SMF or SMFREN statement is
specified, no SMF records are collected for the RENAME command.

Related topics
v “FTP server user exits” on page 700
v “SMF (FTP server) statement” on page 860
v “SMFAPPE (FTP server) statement” on page 862

868 z/OS V2R1.0 Communications Server: IP Configuration Reference

v “SMFDCFG (FTP server) statement” on page 863
v “SMFDEL (FTP server) statement” on page 864
v “SMFEXIT (FTP server) statement” on page 865
v “SMFJES (FTP server) statement” on page 866
v “SMFLOGN (FTP server) statement” on page 867
v “SMFRETR (FTP server) statement”
v “SMFSQL (FTP server) statement” on page 870
v “SMFSTOR (FTP server) statement” on page 871

SMFRETR (FTP server) statement

Use the SMFRETR statement to specify SMF recording options for the RETR
(RETRIEVE) command.

Syntax

�� SMFRETR STD
number
TYPE119

��

Parameters

STD
Indicates that type 118 SMF RETRIEVE records are issued with the standard
subtype of 74.

number
Indicates that type 118 SMF RETRIEVE records are issued with the given
record subtype. The valid range is 1 - 255.

TYPE119
Indicates that type 119 SMF RETRIEVE records are issued (subtype 70).

Examples

Set the type 118 SMF record subtype for RETRIEVE to 74:
SMFRETR 74

To issue type 119 SMF RETRIEVE records:
SMFRETR TYPE119

Usage notes
v There is no default value; however, if the SMF statement is coded for type 118

records, the value specified for the SMF statement is used as the default.
v SMFRETR statements for each record type (118 and 119) function independently

of each other.
v If you do not specify the SMFRETR statement, SMF records for the RETRIEVE

command are still issued if the SMF statement is present. (Type 118 RETRIEVE
records have the subtype specified with the SMF statement; type 119 RETRIEVE
records are always subtype 70.) If neither the SMF or SMFRETR statement is
specified, no SMF records are collected for the RETRIEVE command.

Chapter 18. File Transfer Protocol 869

Related topics
v “FTP server user exits” on page 700
v “SMF (FTP server) statement” on page 860
v “SMFAPPE (FTP server) statement” on page 862
v “SMFDCFG (FTP server) statement” on page 863
v “SMFDEL (FTP server) statement” on page 864
v “SMFEXIT (FTP server) statement” on page 865
v “SMFJES (FTP server) statement” on page 866
v “SMFLOGN (FTP server) statement” on page 867
v “SMFREN (FTP server) statement” on page 868
v “SMFSQL (FTP server) statement”
v “SMFSTOR (FTP server) statement” on page 871

SMFSQL (FTP server) statement

Use the SMFSQL statement to specify that SMF records are collected when
FILETYPE is SQL (SQL query function).

If SMFSQL is not specified, no SMF records are issued when FILETYPE is SQL.

Syntax

�� SMFSQL
TYPE119

��

Parameters

TYPE119
Issue records for filetype SQL for all type 119 SMF records. If no parameters
are given, records for filetype SQL are issued for all type 118 SMF records.

Examples

To record SMF type 118 records for RETR when FILETYPE=SQL, use the following
code:
SMFRETR STD
SMFSQL

To record SMF type 119 records for RETR when FILETYPE=SQL, use the following
code:
SMFRETR TYPE119
SMFSQL TYPE119

Usage notes

SMFSQL statements for each record type (118 and 119) function independently of
each other.

Related topics
v “DB2 (FTP client and server) statement” on page 774
v “DB2PLAN (FTP cilent and server) statement” on page 775

870 z/OS V2R1.0 Communications Server: IP Configuration Reference

v “FTP server user exits” on page 700
v “SMF (FTP server) statement” on page 860
v “SMFAPPE (FTP server) statement” on page 862
v “SMFDCFG (FTP server) statement” on page 863
v “SMFDEL (FTP server) statement” on page 864
v “SMFEXIT (FTP server) statement” on page 865
v “SMFJES (FTP server) statement” on page 866
v “SMFLOGN (FTP server) statement” on page 867
v “SMFREN (FTP server) statement” on page 868
v “SMFRETR (FTP server) statement” on page 869
v “SMFSTOR (FTP server) statement”

SMFSTOR (FTP server) statement

Use the SMFSTOR statement to specify SMF recording options for the STOR
(STORE) and STOU (STORE UNIQUE) commands

Syntax

�� SMFSTOR STD
number
TYPE119

��

Parameters

STD
Indicates that type 118 SMF STORE and STORE UNIQUE records are issued
with the standard subtype of 75.

number
Indicates that type 118 SMF STORE and STORE UNIQUE records are issued
with the given record subtype. The valid range is 1 - 255.

TYPE119
Indicates that type 119 SMF STORE and STORE UNIQUE records are issued
(subtype 70).

Examples

Set the type 118 SMF record subtype for STORE and STORE UNIQUE records to
75:
SMFSTOR 75

To issue type 119 SMF STORE and STORE UNIQUE records:
SMFSTOR TYPE119

Usage notes
v There is no default value; however, if the SMF statement is coded for type 118

records, the value specified for the SMF statement is used as the default.
v SMFSTOR statements for each record type (118 and 119) function independently

of each other.

Chapter 18. File Transfer Protocol 871

v If you do not specify the SMFSTOR statement, SMF records for the STORE and
STORE UNIQUE commands are still issued if the SMF statement is present.
(Type 118 STORE and STORE UNIQUE records have the subtype specified with
the SMF statement; type 119 STORE and STORE UNIQUE records are always
subtype 70.) If neither the SMF or SMFSTOR statement is specified, no SMF
records are collected for the STORE and STORE UNIQUE commands.

Related topics
v “FTP server user exits” on page 700
v “SMF (FTP server) statement” on page 860
v “SMFAPPE (FTP server) statement” on page 862
v “SMFDCFG (FTP server) statement” on page 863
v “SMFDEL (FTP server) statement” on page 864
v “SMFEXIT (FTP server) statement” on page 865
v “SMFJES (FTP server) statement” on page 866
v “SMFLOGN (FTP server) statement” on page 867
v “SMFREN (FTP server) statement” on page 868
v “SMFRETR (FTP server) statement” on page 869
v “SMFSQL (FTP server) statement” on page 870

SOCKSCONFIGFILE (FTP client) statement

Use the SOCKSCONFIGFILE statement to identify the SOCKS server configuration
file the FTP client uses to determine which FTP servers require SOCKS protocols.

Syntax

�� SOCKSCONFIGFILE file-path ��

Parameters

file-path
The z/OS UNIX absolute pathname or the fully qualified MVS data set name
of the SOCKS configuration file. In accordance with the convention for
absolute pathnames, a z/OS UNIX pathname must begin with a slash (/)
character. Any file path not beginning with a slash character is considered a
fully qualified MVS data set name.

Examples

To direct the client to use the file /etc/ftp/socks.conf for the SOCKS server
configuration, specify the following code:
SOCKSCONFIGFILE /etc/ftp/socks.conf

To direct the client to use the data set 'socks.config' for the SOCKS server
configuration, specify one of the following code:
SOCKSCONFIGFILE socks.config

SOCKSCONFIGFILE ’socks.config’

872 z/OS V2R1.0 Communications Server: IP Configuration Reference

Usage notes
v If no SOCKSCONFIGFILE statement is specified, the client does not use SOCKS

protocols during connection establishment.
v If the client is connecting to an IPv6 node, the client does not use SOCKS

protocols during connection establishment.
v The server ignores the SOCKSCONFIGFILE statement.

Related topic
v “SOCKS configuration statements in SOCKSCONFIGFILE” on page 898

SPACETYPE (FTP client and server) statement

Use the SPACETYPE statement to specify whether newly allocated data sets are
allocated in blocks, cylinders, or tracks.

Server This setting applies when creating files on the server's system.

Client This setting applies when creating files on the client's system.

Syntax

��
SPACETYPE TRACK

SPACETYPE BLOCK
CYLINDER
TRACK

��

Parameters

BLOCK
Use blocks when allocating new data sets.

CYLINDER
Use cylinders when allocating new data sets.

TRACK
Use tracks when allocating new data sets. This is the default.

Examples

Allocate data sets in tracks:
SPACETYPE TRACK

Usage notes

If you do not supply values on the PRIMARY and SECONDARY statements in
order to use the SMS data class, the value on the SPACETYPE statement is ignored
and SMS determines the spacetype.

Related topics
v “DATACLASS (FTP client and server) statement” on page 770
v “DSNTYPE (FTP client and server) statement” on page 783
v “EATTR (FTP client and server) statement” on page 788
v “PRIMARY (FTP client and server) statement” on page 830

Chapter 18. File Transfer Protocol 873

v See the information about storage management subsystem (SMS) in z/OS
Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

v “SECONDARY (FTP client and server) statement” on page 845

SPREAD (FTP client and server) statement

Use the SPREAD statement to specify whether or not the output is in spreadsheet
format when the file type is SQL.

Server This setting applies when format is output from the server.

Client This setting applies when format is output from the client.

Syntax

��
SPREAD FALSE

SPREAD TRUE
FALSE

��

Parameters

TRUE
Specifies the output is in spreadsheet format.

FALSE
Specifies the output is not in spreadsheet format. This is the default.

Examples

Format the output to spreadsheet format:
SPREAD TRUE

Related topics
v “DB2 (FTP client and server) statement” on page 774
v “DB2PLAN (FTP cilent and server) statement” on page 775
v “FILETYPE (FTP client and server) statement” on page 796
v “SQLCOL (FTP client and server) statement”

SQLCOL (FTP client and server) statement

Use the SQLCOL statement to specify the column headings of the output file when
FILETYPE is SQL.

Server This setting applies when format is output from the server.

Client This setting applies when format is output from the client.

874 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

��
SQLCOL NAMES

SQLCOL ANY
LABELS
NAMES

��

Parameters

ANY
Use the label, but if there is no label, the name becomes the column heading.

LABELS
Use the label of the column headings. If any of the columns do not have labels,
the server uses COLnumber, where number is the column number reading left
to right.

NAMES
Use the name of the column headings and ignore the labels. This is the default.

Examples

Use the label of the column headings:
SQLCOL LABELS

Related topics
v “DB2 (FTP client and server) statement” on page 774
v “DB2PLAN (FTP cilent and server) statement” on page 775
v “FILETYPE (FTP client and server) statement” on page 796
v “SPREAD (FTP client and server) statement” on page 874

SSLV3 (FTP client and server connection) statement

Use the SSLV3 statement to enable or disable SSLV3 support for connections that
are secured using TLS implemented by FTP (TLSMECHANISM FTP).

Syntax

��
SSLV3 FALSE

SSLV3 FALSE
TRUE

��

Parameters

FALSE
Specifies that SSLV3 is disabled. This is the default.

TRUE
Specifies that SSLV3 is enabled.

Chapter 18. File Transfer Protocol 875

|

|
|

|

||||||||||||||||||||||

|

|

|
|

|
|

Examples

To enable SSLV3 support for connections that are secured using TLS implemented
by FTP, code the following statement:
SSLV3 TRUE

Usage notes

SSLV3 is honored only when TLSMECHANISM FTP is specified.

STARTDIRECTORY (FTP server) statement

Use the STARTDIRECTORY statement to specify which file system is initially used
when a new user logs in.

Syntax

��
STARTDIRECTORY MVS

STARTDIRECTORY HFS
MVS

��

Parameters

HFS
Use the z/OS UNIX hierarchical file system. The initial directory is the user's
root directory in the z/OS UNIX file.

MVS
Use MVS partitioned data sets. The initial data set name has a prefix of the
user ID. See initial working directory consideration in z/OS Communications
Server: IP User's Guide and Commands for more information.

Examples

Set the initial user directory to the user's root directory in the z/OS UNIX:
STARTDIRECTORY HFS

Usage notes

The value of STARTDIRECTORY must be compatible with the
ANONYMOUSFILEACCESS value when anonymous logins are enabled and
ANONYMOUSLEVEL is 3 or greater.

For example, if ANONYMOUSLEVEL is 3, ANONYMOUSFILEACCESS is MVS,
and STARTDIRECTORY is z/OS UNIX, anonymous users receive a filetype error
when they attempt to log in to FTP. The anonymous login is rejected by the FTP
server.

Related topics
v “ANONYMOUSFILEACCESS (FTP server) statement” on page 741
v “ANONYMOUSLEVEL (FTP server) statement” on page 748

876 z/OS V2R1.0 Communications Server: IP Configuration Reference

|

|
|

|

|

|

STORCLASS (FTP client and server) statement

Use the STORCLASS statement to specify the SMS storage class as defined by your
organization for the FTP server.

Server This setting applies when transferring files from the server's system.

Client This setting applies when transferring files from the client's system.

Syntax

�� STORCLASS class ��

Parameters

class
The SMS storage class.

Examples

Use the SMS storage class SMSSTOR when allocating new data sets:
STORCLASS SMSSTOR

Related topics
v “DATACLASS (FTP client and server) statement” on page 770
v See the information about storage management subsystem (SMS) in z/OS

Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

v “UNITNAME (FTP client and server) statement” on page 890
v “UCOUNT (FTP client and server) statement” on page 885
v “VOLUME (FTP client and server) statement” on page 895

SUPPRESSIGNOREWARNINGS (FTP client and server) statement

Use the SUPPRESSIGNOREWARNINGS statement to specify whether FTP issues
message EZYFT47I each time it ignores a statement coded in FTP.DATA.

Server This setting applies when starting the FTP server.

Client This setting applies when starting the FTP client.

Syntax

��
SUPPRESSIGNOREWARNINGS FALSE

SUPPRESSIGNOREWARNINGS TRUE
FALSE

��

Parameters

TRUE
Specifies that FTP does not issue message EZYFT47I when ignoring statements
coded in FTP.DATA.

Chapter 18. File Transfer Protocol 877

Guideline: Do not set SUPRESSIGNOREWARNINGS TRUE until you have
verified that the statements in your FTP.DATA configuration file are correct.

FALSE
Specifies that FTP issues message EZYFT47I when ignoring statements coded
in FTP.DATA. This is the default.

Examples

Suppress message EZYFT47I while processing statements in FTP.DATA:
SUPPRESSIGNOREWARNINGS TRUE

Usage notes
v SUPPRESSIGNOREWARNINGS affects only statements in FTP.DATA that follow

it. Therefore, code SUPPRESSIGNOREWARNINGS TRUE ahead of any
statements for which you do not want the EZYFT47I warning.

v You can suppress EZYFT47I for some, but not all, statements in a single
FTP.DATA file, by coding more than one SUPPRESSIGNOREWARNINGS
statement. Each instance of SUPPRESSIGNOREWARNINGS is respected, so use
it multiple times in FTP.DATA to toggle suppression of warning messages on
and off.

TAPEREADSTREAM (FTP server) statement

Use the TAPEREADSTREAM statement to specify whether to use a more efficient
read path (read as stream) to retrieve tape data sets from the server.

Results: The TAPEREADSTREAM statement takes effect when all of the following
conditions are met:
v The file structure is File.
v The transfer mode is Stream.
v One of the following situations is true:

– The transfer type is E
– The transfer type is B
– The transfer type is A and the encoding is SBCS

v The file type is not SQL.

Restrictions: When TAPEREADSTREAM TRUE is configured at the server:
v You cannot retrieve American Standards Association (ASA) tape data sets. The

server responds with an error reply if you attempt to retrieve an ASA tape data
set.

v You cannot retrieve fixed format tape data sets when TRAILINGBLANKS TRUE
is configured. The server responds with an error reply if you attempt to retrieve
a fixed format tape data set when TRAILINGBLANKS TRUE is configured.

v If the tape data set contains <NL> characters that require translation, the data set
format will be incorrect.

878 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

��
TAPEREADSTREAM FALSE

TAPEREADSTREAM TRUE
FALSE

��

Parameters

FALSE
Use a common read path for tape data sets. This is the default value.

TRUE
Use a more efficient read path for tape data sets.

Examples

To use a more efficient read path for tape data sets:
TAPEREADSTREAM TRUE

TLSMECHANISM (FTP client and server) statement

Use the TLSMECHANISM statement to specify whether TLS is implemented by
AT-TLS or by FTP. AT-TLS is the preferred method for implementing TLS.

Server This setting specifies how TLS security is implemented on the server host.
This statement is valid for FTP servers if EXTENSIONS AUTH_TLS is
specified.

Client This setting specifies how TLS security is implemented on the client host.
This statement is valid for FTP clients if SECURE_MECHANISM TLS or
SECURE_MECHANISM SSL is specified.

Syntax

��
TLSMECHANISM FTP

TLSMECHANISM FTP
ATTLS

��

Parameters

FTP
Specifies that secure mechanism TLS is defined by FTP.

Requirement: The KEYRING statement is required if secure mechanism TLS is
defined by FTP.

ATTLS
Specifies that secure mechanism TLS is performed by AT-TLS.

Requirement: AT-TLS must be configured in the TCPIP stack. See z/OS
Communications Server: IP Configuration Guide for more information.

Restriction: The KEYRING, CIPHERSUITE, and TLSTIMEOUT statements are
ignored when using AT-TLS.

Chapter 18. File Transfer Protocol 879

Examples
TLSMECHANISM FTP

Related topics
v “EXTENSIONS (FTP client and server) statement” on page 792
v “SECURE_FTP (FTP client and server) statement” on page 849
v “SECURE_MECHANISM (FTP client) statement” on page 854
v See z/OS Communications Server: IP Configuration Guide for more information

about SSL/TLS security, key rings, and certificates and SSL/TLS.

TLSPORT (FTP client and server) statement

Use the TLSPORT statement to set the secure port on which the FTP client or the
FTP server implicitly protects the FTP session with TLS.

If you want to use port 990 for unsecured FTP sessions, use this statement to select
a different secure port for implicit secure FTP sessions. If you want to disable
support for implicit secure FTP, use a value of 0.

Syntax

�� TLSPORT
990

port
��

Parameters

port
The port number used for implicit secure FTP sessions. The default is 990. The
range of valid values is 0 - 65534.

Result: The specification of a TLSPORT does not cause the server to listen on that
port, it only specifies that when the port is used it will behave as an implicit TLS
port. See “FTP server cataloged procedure (FTPD) parameters” on page 699 for
information about how to specify the port for the listener.

Examples
TLSPORT 0

Related topics

“SECUREIMPLICITZOS (FTP client and server) statement” on page 851

TLSRFCLEVEL (FTP client and server) statement

Use the TLSRFCLEVEL statement to specify the level of RFC 4217 (Securing FTP
with TLS) that FTP supports. You can also use the locsite subcommand to set this
keyword. For information about RFCs, see Appendix C, “Related protocol
specifications,” on page 1465.

Server This setting applies when EXTENSIONS AUTH_TLS is coded in the
server's FTP.DATA file.

880 z/OS V2R1.0 Communications Server: IP Configuration Reference

Client This setting applies when SECURE_MECHANISM TLS is coded in the
client's FTP.DATA file.

Restrictions:

v FTP supports the TLSPORT statement regardless of the TLSRFCLEVEL setting.
FTP connections to the TLSPORT are implicitly secured with TLS as described in
the internet draft.

v The TLSRFCLEVEL parameters must be the same on the FTP client and server
when using RFC4217 or the CCCNONOTIFY parameter. If the parameters are
different, connections might be reset or sessions appear to lock up and
eventually timeout.

v The CCCNONOTIFY option is not valid with TLSMECHANISM ATTLS. If both
are specified, the use of the CCC command causes the FTP session to fail. If
CCCNONOTIFY is required for the partner system, configure TLSMECHANISM
FTP with associated statements and exemption in the TTLSRules.

Syntax

��
TLSRFCLEVEL DRAFT

TLSRFCLEVEL DRAFT
RFC4217
CCCNONOTIFY

��

Parameters

DRAFT
Specifies that FTP supports the Internet-draft revision of RFC 4217. This is the
level of RFC 4217 support that z/OS FTP has offered since Communications
Server V1R2. This is the default.

Guideline: Specify this option, or allow it to default, to maintain the pre-V1R9
support for FTP TLS-protected sessions.

RFC4217
Specifies that FTP supports RFC 4217.

CCCNONOTIFY
Specifies that FTP does not issue the TLSshutdown after sending or receiving
the CCC command. RFC 4217 did not mandate this flow until Internet draft
revision 14.

Examples

Code this statement in the client's FTP.DATA file to enable RFC 4217 compliance:
TLSRFCLEVEL RFC4217

Related topics
v “EXTENSIONS (FTP client and server) statement” on page 792
v “SECURE_MECHANISM (FTP client) statement” on page 854
v “TLSPORT (FTP client and server) statement” on page 880
v See z/OS Communications Server: IP Configuration Guide for more information

about customizing TLS and Kerberos.

Chapter 18. File Transfer Protocol 881

TLSTIMEOUT (FTP client and server) statement

Use the TLSTIMEOUT statement to set a timeout for TLS handshake processing.
This timeout is the maximum time between full TLS handshakes. If this time
period has not been reached since the last full handshake, a partial handshake
occurs when a data connection is protected by TLS.

Server Specifies how often the server requires a full handshake.

Client Specifies how often the client requires a full handshake.

Syntax

�� TLSTIMEOUT seconds ��

Parameters

seconds
The number of seconds in the range 0 - 86 400. Any value outside of this
range reverts to the default of 100.

Examples
TLSTIMEOUT 60

Related topics
v “EXTENSIONS (FTP client and server) statement” on page 792
v “SECURE_MECHANISM (FTP client) statement” on page 854
v “TLSMECHANISM (FTP client and server) statement” on page 879

TRACE (FTP client and server) statement

Use the TRACE statement to start tracing for FTP.

Server The trace output is written to syslog.

Client The trace output is written to stdout.

Syntax

�� TRACE ��

Parameters

This statement has no parameters.

Examples

To specify that FTP server trace output should be directed to syslog, code the
following in the server's FTP.DATA:
TRACE

Usage notes
v TRACE is equivalent to entering DEBUG BAS or to entering the following four

DEBUG statements:

882 z/OS V2R1.0 Communications Server: IP Configuration Reference

– DEBUG CMD
– DEBUG INT
– DEBUG FSC
– DEBUG SOC

Note that tracing can have a major performance impact on FTP. Consider using
the DEBUG statements to request only the kinds of general traces that are
needed.

Related topic
v “DEBUG (FTP client and server) statement” on page 778

TRACECAPI (FTP client) statement

Use the TRACECAPI statement to define a control for tracing for a user-written
program that uses the FTP client application programming Interface (API) to the
z/OS FTP client. This interface is described in z/OS Communications Server: IP
Programmer's Guide and Reference.

Syntax

��
TRACECAPI CONDITIONAL

TRACECAPI CONDITIONAL
ALL
NONE

��

Parameters

CONDITIONAL
Specifies that tracing by the FTP client API of requests from a user program is
conditional. Tracing is based on the setting of the FCAI_TraceIt field prior to
issuing the request to the interface. This is the default.

ALL
Specifies that all requests are traced by the FTP client API.

NONE
Specifies that none of the requests are traced by the FTP client API.

Examples

To specify that all requests are traced, use the following code:
TRACECAPI ALL

Related topics

For more information about the trace and the interface parameter that the user
program uses to control the trace, see the FTP client API information in z/OS
Communications Server: IP Programmer's Guide and Reference.

TRAILINGBLANKS (FTP client and server) statement

Use the TRAILINGBLANKS statement to specify whether trailing blanks in a fixed
format data set are transferred when the data set is transferred.

Chapter 18. File Transfer Protocol 883

Server This setting applies when the server is the sending site.

Client This setting applies when the client is the sending site.

Syntax

��
TRAILINGBLANKS FALSE

TRAILINGBLANKS TRUE
FALSE

��

Parameters

TRUE
Specifies that the trailing blanks in a fixed format data set are included when
the data set is sent.

FALSE
Specifies that the trailing blanks in a fixed format data set are not sent. This is
the default.

Examples

Send the fixed format data set and include trailing blanks:
TRAILINGBLANKS TRUE

TRUNCATE (FTP client and server) statement

Use the TRUNCATE statement to specify what action should be taken if
WRAPRECORD FALSE is specified, and it is determined that an input record is
longer than the LRECL of the new file.

Server This setting applies when transferring files to the server's system.

Client This setting applies when transferring files to the client's system.

Syntax

��
TRUNCATE TRUE

TRUNCATE TRUE
FALSE

��

Parameters

TRUE
Specifies that TRUNCATING records is allowed. Even if it is determined that
records were truncated, file transfer continues and a warning message is issued
when the transfer is complete.

FALSE
Specifies that TRUNCATING records is not allowed. If it is determined that
records are truncated, then set an error, and fail the file transfer. If the option
WRAPRECORD TRUE is set, the long records are wrapped, not truncated, and
no error is set.

884 z/OS V2R1.0 Communications Server: IP Configuration Reference

Examples

FTP detects a record longer than LRECL, sets an error of 1 003 and fails the
transfer of the file.
WRAPRECORD TRUE
TRUNCATE FALSE

UCOUNT (FTP client and server) statement

Use the UCOUNT statement to set the unit count for new data set allocations.

Server This setting applies when creating data sets on the server's system.

Client This setting applies when creating data sets on the client's system.

Syntax

�� UCOUNT
unit-count

��

Parameters

unit-count
The unit count to be specified for new data set allocations. Valid values are 1 -
59 (inclusive), or the letter P for parallel mount requests. UCOUNT has no
default value. If you do not specify a UCOUNT value, the FTP server does not
specify a unit count for new allocations. The unit count used is the system
default.

Examples

To specify a unit count of two, use the following code:
UCOUNT 2

To specify parallel mounts, use the following code:
UCOUNT P

Usage notes
v The UCOUNT statement should not be used with an SMS storage class. Any

UCOUNT value you specify overrides whatever is specified for the SMS
managed dataclass being used.

v UCOUNT can be dynamically modified using the SITE and LOCSITE
commands. See z/OS Communications Server: IP User's Guide and Commands
for more information about these commands.

Related topics
v See the information about storage management subsystem (SMS) in z/OS

Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

v “STORCLASS (FTP client and server) statement” on page 877

Chapter 18. File Transfer Protocol 885

UCSHOSTCS (FTP client and server) statement

Use the UCSHOSTCS statement to specify the EBCDIC code set to be used for data
conversion to or from Unicode. If the UCSHOSTCS statement is not used, the
current code set for FTP host is used.

Syntax

�� UCSHOSTCS code_set ��

Parameters

code_set
The EBCDIC code set that is to be used when converting to or from Unicode.
See the z/OS XL C/C++ Programming Guide for the valid EBCDIC code set
names.

Examples

To set up for conversion between Unicode and IBM 932, use the following code:
UCSHOSTCS IBM-932

Related topics
v “UCSSUB (FTP client and server) statement”
v “UCSTRUNC (FTP client and server) statement” on page 887

UCSSUB (FTP client and server) statement

Use the UCSSUB statement to specify whether Unicode-to-EBCDIC conversion
should use the EBCDIC substitution character or cause the data transfer to be
terminated if a Unicode character cannot be converted to a character in the target
EBCDIC code set.

Syntax

��
UCSSUB FALSE

UCSSUB TRUE
FALSE

��

Parameters

TRUE
Specifies that the EBCDIC substitution character is used to replace any Unicode
character that cannot successfully be converted. Data transfer continues.

FALSE
Specifies that the data transfer is terminated if any Unicode character cannot
be successfully converted.

Examples

To specify that data transfer should be terminated if unicode translation is
unsuccessful, use the following code:

886 z/OS V2R1.0 Communications Server: IP Configuration Reference

UCSSUB FALSE

Related topics
v “UCSHOSTCS (FTP client and server) statement” on page 886
v “UCSTRUNC (FTP client and server) statement”

UCSTRUNC (FTP client and server) statement

Use the UCSTRUNC statement to specify whether the transfer of Unicode data
should be aborted if truncation occurs at the MVS host. Truncation can occur if the
LRECL of the receiving data set is not large enough to contain a line of Unicode
data after it has been converted to EBCDIC.

UCSTRUNC applies to inbound data transfers only.

Syntax

��
UCSTRUNC FALSE

UCSTRUNC TRUE
FALSE

��

Parameters

TRUE
Specifies that truncation is allowed. The data transfer continues even if
EBCDIC data is truncated.

FALSE
Specifies that truncation is not allowed. The transfer is to be aborted if the
LRECL of the receiving data set is too small to contain the data after
conversion to EBCDIC.

Result: The setting of CONDDISP determines what happens to the target data
set if the transfer is aborted.

Examples

To specify that truncation is not allowed, use the following code:
UCSTRUNC FALSE

Related topics
v “UCSHOSTCS (FTP client and server) statement” on page 886
v “UCSSUB (FTP client and server) statement” on page 886

UMASK (FTP client and server) statement

Use the UMASK statement to define the file mode creation mask.

The file mode creation mask defines which permission bits are NOT to be set on
when a file is created. When a file is created, the permission bits requested by the
file creation are compared to the file mode creation mask, and any bits requested
by the file creation that are not allowed by the file mode creation mask are turned
off.

Chapter 18. File Transfer Protocol 887

Server This setting applies when creating z/OS UNIX files on the server's system.

Client This setting applies when creating z/OS UNIX files sets on the client's
system.

Syntax

��
UMASK 027

UMASK octal_umask
��

Parameters

octal_umask
The octal umask.

Examples

When a file is created, the permission bits for file creation are 666 (-rw-rw-rw-). If
the file mode creation mask is 027, the requested permissions and the file mode
creation mask are compared:

110110110 - 666
000010111 - 027

110100000 - 640

When the UMASK is set to 027, the actual permission bits set for a file when it is
created is 640 (-rw-r-----).

Usage notes

You cannot use FTP to create z/OS UNIX files that have execute permissions. If
you require execute permissions, use the site and chmod commands or locsite
chmod subcommand after the file is created. For more information about site and
locsite, see z/OS Communications Server: IP User's Guide and Commands.

UNICODEFILESYSTEMBOM (FTP client and server) statement

Use the UNICODEFILESYSTEMBOM statement to specify whether to add a byte
order mark (BOM) to a file stored in the local file system when the file system
code page is Unicode. You can also use the SIte and LOCSIte subcommands to set
this keyword.

Restriction: UTF-8 and UTF-16 are the only Unicode encodings supported in the
file system by z/OS FTP.

Result: The BOM stored with the file is determined by the encoding used to store
the file rather than by the format of the BOM sent with the file.

Server This setting applies when you are storing Unicode data into the server's
file system.

Client This setting applies when you are storing files as Unicode on the client's
file system.

888 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

��
UNICODEFILESYTEMBOM ASIS

UNICODEFILESYTEMBOM ASIS
ALWAYS
NEVER

��

Parameters

ASIS
If a BOMk is present in a Unicode file that is received from the network, store
the file with a BOM. If a BOM is not present, store the file without a BOM. The
default is ASIS.

ALWAYS
Always include a BOMwhen storing the file. If the file is received without a
BOM, insert a BOM into the file.

NEVER
Never include a BOM when storing a UNICODE file. If the file is received
with a BOM, discard it before storing the file.

The UNICODE BOM, U+FEFF, can also be interpreted as zero width nonbreaking
space. z/OS FTP considers only the first character of the file as a possible BOM.
No other instance of the BOM sequence in the file is affected by this setting.

Results:

v When appending to a nonexistent regular z/OS UNIX file or MVS data set, the
FTP server abides by the UNICODEFILESYTEMBOM setting.

v When appending to an existing regular z/OS UNIX file or MVS data set, the
FTP server always strips a leading BOM from the incoming file. This prevents a
superfluous BOM from being inserted in the middle of the server file.

v When storing or appending to a z/OS UNIX named pipe, the FTP server always
applies the UNICODEFILESYSTEMBOM setting. Multiple transfers into the
same named pipe can result in multiple BOM byte sequences inserted into the
named pipe.

Guidelines:

v The presence or absence of a BOM can affect applications that process
UNICODE files. Consult documentation for applications that process your files
or data sets.

v Do not use a BOM when storing UNIX system services configuration files.
v Multiple transfers into a z/OS UNIX named pipe can result in multiple BOM

byte sequences being inserted into the named pipe when the
UNICODEFILESYSTEMBOM value is ASIS or ALWAYS. To prevent superfluous
BOM byte sequences from being inserted in a named pipe, consider setting the
UNICODEFILESYSTEMBOM value to NEVER after the first transfer into the
named pipe.

Examples

To transfer a UTF-8 file to the server, save it in the server file system as UTF-8, and
to guarantee the destination file contains a Byte Order Mark, code the following
statements in the server's FTP.DATA:

Chapter 18. File Transfer Protocol 889

ENCODING MBCS
MBDATACONN(UTF-8,UTF-8)
UNICODEFILESYSTEMBOM ALWAYS

Related topics
v “MBDATACONN (FTP client and server) statement” on page 815
v “UNIXFILETYPE (FTP client and server) statement” on page 891

UNITNAME (FTP client and server) statement

Use the UNITNAME statement to specify the unit type for allocation of new data
sets.

Server This setting applies when creating data sets on the server's system.

Client This setting applies when creating data sets on the client's system.

Syntax

�� UNITNAME
type

��

Parameters

type
The type of either direct access or tape devices.

SYSDA
If type is not specified, the unit type used for allocation is the system default.

Examples
v Set the unit type for new data sets to 3380:

UNITNAME 3380

v Set the unit type for new data sets to TAPE:
UNITNAME TAPE

Usage notes
v If you do not use the UNITNAME statement to specify the type, the unit type

used for allocation is the system default unit.
v If the STORCLASS statement is also specified, the SMS storage class might

contain settings that override the UNITNAME type.
v It is preferable that you do not use the UNITNAME statement if you are using

an SMS storage class.
v The UNITNAME can name a dynamic device.

Related topics
v See the information about storage management subsystem (SMS) in z/OS

Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

v “STORCLASS (FTP client and server) statement” on page 877

890 z/OS V2R1.0 Communications Server: IP Configuration Reference

UNIXFILETYPE (FTP client and server) statement

Use the UNIXFILETYPE statement in the FTP server and client to indicate whether
to treat z/OS UNIX file system files as regular files or as UNIX named pipes
during file transfer. The site and locsite subcommands are also available to set this
value.

Server This setting applies to files in the server's z/OS UNIX file system when the
server is processing the APPE, RETR, and STOR commands.

The server ignores this setting when processing the RNFR, RNTO, and
DELE. commands. You can use these commands to rename or delete
regular files and named pipes regardless of the UNIXFILETYPE setting.

The server accepts the XFIF (create named pipe) command regardless of
the UNIXFILETYPE setting.

When the server is processing LIST and NLST commands to list files in the
z/OS UNIX file system, both named pipes and regular files appear
regardless of the UNIXFILETYPE setting.

Restrictions:

v You cannot restart a file transfer to a named pipe in the server z/OS
UNIX file system.

v The server does not support the STOU command when UNIXFILETYPE
is set to FIFO.

v Anonymous users are not allowed to read from or write to named pipes
in the server z/OS UNIX file system.

Requirements: When the server file exists before it receives the APPE or
STOR command, perform the following actions:
v Set UNIXFILETYPE to FILE when the file is a regular file.
v Set UNIXFILETYPE to FIFO when the file is a named pipe.

Client This setting applies to files in the client's z/OS UNIX file system when the
client is processing the following subcommands:
v APpend
v Get
v MGet
v MPut
v PUt

Restriction: You cannot restart a file transfer to a named pipe in the client
z/OS UNIX file system.

Syntax

��
UNIXFILETYPE FILE

UNIXFILETYPE FIFO
FILE

��

Chapter 18. File Transfer Protocol 891

Parameters

FILE
Treat files in the z/OS UNIX file system as regular files for file storage and
retrieval. This is the default value.

Result: When FTP stores a file that does not yet exist in the z/OS UNIX file
system, FTP stores the file as a regular file.

Requirement: When FTP stores to a file that already exists in the z/OS UNIX
file system, the file must be a regular file.

FIFO
Treat files stored in the z/OS UNIX file system as named pipes for file storage
and retrieval.

Result:

v When storing a file that does not yet exist in the z/OS UNIX file system,
FTP stores the file as a named pipe.

v When storing to a named pipe that already exists in the z/OS UNIX file
system, FTP appends the incoming data to the existing data. This is true for
both the APPE (append) and STOR (store) commands.

Requirement: When storing to a file that already exists in the z/OS UNIX file
system, the file must be a named pipe.

Restrictions:

v You can append only to existing named pipes.
v You cannot restart a transfer into a named pipe.
v The z/OS operating system does not serialize access to named pipes.

Multiple processes can read from or write to the same named pipe
simultaneously. When a process reads from a named pipe, data is removed
from the named pipe. That data is not presented to other processes that read
from the same named pipe. When a process writes to a named pipe, the data
it writes might appear in the named pipe interleaved with data written by
other processes.

Examples

To treat the files in the z/OS UNIX file system as UNIX named pipes for file
transfer, use the following code:
UNIXFILETYPE FIFO

Related topics
v “FIFOOPENTIME (FTP client and server) statement” on page 795
v “FIFOIOTIME (FTP client and server) statement” on page 794

VCOUNT (FTP client and server) statement

Use the VCOUNT statement to set the volume count for new data set allocations
when writing to tapes.

Server This setting applies when creating data sets on the server's system.

Client This setting applies when creating data sets on the client's system.

892 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

�� VCOUNT
59

volume-count
��

Parameters

volume-count
Valid values are integers from 1 - 255 (inclusive). The default value is 59.

Examples

To allow multiple volumes for data set allocation, use the following code:
VCOUNT 2
VOLUME (WRKLB1,WRKLB2)

Usage notes
v VCOUNT can be dynamically modified using the SITE and LOCSITE

commands. See z/OS Communications Server: IP User's Guide and Commands
for more information about these commands.

Related topics
v See the information about storage management subsystem (SMS) in z/OS

Communications Server: IP Configuration Guide for more information about
specifying attributes when allocating new data sets.

v “STORCLASS (FTP client and server) statement” on page 877
v “VOLUME (FTP client and server) statement” on page 895

VERIFYUSER (FTP server) statement

Use the VERIFYUSER statement to indicate whether the FTP server should verify
that every user ID used to log into FTP has been granted access to the server's port
profile in the SERVERAUTH class.

Tips:

v The FTP server port profile is the same profile that is checked for TLS secured
sessions when SECURE_LOGIN VERIFY_USER is coded in FTP.DATA. See
“SECURE_LOGIN (FTP server) statement” on page 852 for more information.

v When sessions are secured with TLS and VERIFYUSER TRUE is coded in
FTP.DATA, the server verifies the user access to the FTP server port profile
regardless of the SECURE_LOGIN value.

Syntax

��
VERIFYUSER FALSE

VERIFYUSER FALSE
TRUE

��

Chapter 18. File Transfer Protocol 893

Parameters

TRUE
If the SERVAUTH class is active and a profile has been defined for the FTP
port, the connection is allowed only if the user ID has a minimum of READ
access to the profile.

The resource name is as follows:
EZB.FTP.systemname.ftpdaemonname.PORTxxxx

xxxx is replaced by the port number for the FTP daemon. The profile name can
contain wildcard values to the extent that the security product allows. All
security product rules apply.

For example, if the procedure FTPD is used to start the FTP daemon on system
MVS164 and the FTP daemon uses the default FTP port 21, the resource name
is:
EZB.FTP.MVS164.FTPD1.PORT21

To protect all ports with a single profile, you could use the following security
product profile name:
EZB.FTP.*.FTPD1.PORT*

Result: If the VERIFYUSER value is TRUE, but the security product profile is
not defined, the FTP server does not verify access to the profile prior to
allowing users to log into FTP.

FALSE
The server does not verify access to the profile
EZB.FTP.systemname.ftpdaemonname.PORTxxxx before allowing the login.

Restriction: If the session is secured with TLS and SECURE_LOGIN
VERIFY_USER is coded in FTP.DATA, the server checks the user's access to the
profile as described in “SECURE_LOGIN (FTP server) statement” on page 852
regardless of the VERIFYUSER setting.

Examples

To request that the FTP server verify user access to the SERVAUTH profile for all
sessions regardless of whether they are secured with TLS and regardless of
whether TLS level 3 authentication is requested, code this statement in FTP.DATA:
VERIFYUSER TRUE

You should also define the port profile of the server in the SERVAUTH class of
your security product.

For example, if the FTPD procedure is used to start the FTP daemon on system
MVS164, and the FTP daemon uses the default FTP port 21, the resource name is
as follows:
EZB.FTP.MVS164.FTPD1.PORT21

If all systems use the same access list and generic profile checking is active for the
SERVAUTH class, you can use the following profile name:
EZB.FTP.*.FTPD1.PORT21

To protect all ports with a single profile, you can use the following security
product profile name:
EZB.FTP.*.FTPD1.PORT*

894 z/OS V2R1.0 Communications Server: IP Configuration Reference

Related topic
v “SECURE_LOGIN (FTP server) statement” on page 852

VOLUME (FTP client and server) statement

Use the VOLUME statement to specify the volume serial number or a list of
volume serial numbers for allocation of new data sets.

Server This setting applies when creating data sets on the server's system.

Client This setting applies when creating data sets on the client's system.

Syntax

�� VOLUME name
(serial-list)

��

Parameters

name
The volume serial number.

(serial-list)
A list of volume serial numbers for new data set allocations.

Examples

Use two volumes for new data set allocations:
VOLUME (WRKLB2,WRKLB4)

Usage notes
v If you do not use the VOLUME statement to specify the name, the volume serial

number used for allocation is the system default volume list.
v If the STORCLASS statement is also specified, the SMS storage class might

contain settings that override the VOLUME name.
v It is preferable that you do not use the VOLUME statement if you are using an

SMS storage class.
v When transferring a variable-length file to multiple volumes on MVS, only the

last file contains the correct DCB characteristics.
v If you specify multiple volumes, specify them in the order you prefer them to be

allocated.

Related topics
v See storage management subsystem (SMS) information in z/OS Communications

Server: IP Configuration Guide for more information about specifying attributes
when allocating new data sets.

v “DSNTYPE (FTP client and server) statement” on page 783
v “EATTR (FTP client and server) statement” on page 788
v “STORCLASS (FTP client and server) statement” on page 877
v “VCOUNT (FTP client and server) statement” on page 892

Chapter 18. File Transfer Protocol 895

WRAPRECORD (FTP client and server) statement

Use the WRAPRECORD statement to specify how the FTP server or client treats an
incoming data record longer than the logical record in which it is to be stored.

Server This setting applies when transferring data sets to the server's system.

Client This setting applies when transferring data sets to the client's system.

Syntax

��
WRAPRECORD FALSE

WRAPRECORD TRUE
FALSE

��

Parameters

TRUE
Indicates that data is wrapped to the next record if no new-line character is
encountered before the logical record length is reached.

FALSE
Indicates that data is truncated if no new-line character is encountered before
the logical record length is reached. This is the default. If TRUNCATE is also
set to FALSE, an error is set and the file transfer fails.

Examples

Truncate data if no new-line character is encountered before the logical record
length is reached:
WRAPRECORD FALSE

Results

If WRAPRECORD is specified and the data is multibyte characters, it is possible
that wrapping will occur in the middle of a multibyte character, making the data
unusable by some applications.

WRTAPEFASTIO (FTP client and server) statement

Use the WRTAPEFASTIO statement to specify whether a write to tape of ASCII
data in Stream mode can use the BSAM I/O routine instead of the Language
Environment Run-Time Library function fwrite().

Server This setting applies when transferring files to the server's system.

Client This setting applies when transferring files to the client's system.

Syntax

��
WRTAPEFASTIO FALSE

WRTAPEFASTIO TRUE
FALSE

��

896 z/OS V2R1.0 Communications Server: IP Configuration Reference

Parameters

TRUE
Indicates that a write to tape of ASCII data in Stream mode is allowed to use
the BSAM I/O routine instead of the Language Environment Run-Time Library
fwrite() function. This allows the data set to be processed without embedded
hexadecimal values being interpreted as print control characters.

FALSE
Indicates that a write to tape of ASCII data in Stream mode must use the
Language Environment Run-Time Library fwrite() function. This is the default
and is used to take advantage of the features of the Language Environment
Run-Time Library.

Examples

Allow ASCII Stream data to be written to tape using the BSAM I/O routine:
WRTAPEFASTIO TRUE

Require ASCII Stream data be written to tape using the Language Environment
Run-Time Library:
WRTAPEFASTIO FALSE

XLATE (FTP server) statement

Use the XLATE statement to specify a data set containing translate tables to be
used for the data connection.

Syntax

�� XLATE name ��

Parameters

name
Specifies a 1- to 8-character name corresponding to a data set that contains
translate tables.

FTP looks first for an environment variable called _FTPXLATE_name. If the
environment variable exists, its value is used as the data set name.

Restriction: The environment variable name must be all uppercase, although
the XLATE parameter can be in mixed case.

If the environment variable does not exist, FTP looks for a data set called
hlq.name.TCPXLBIN.

Examples
XLATE FRED

If environment variable _FTPXLATE_FRED=FREDDYS.TABLES is defined for the
FTP server, this statement specifies that the translate tables in data set
FREDDYS.TABLES should be used for the data connection.

If there is no such environment variable defined, this statement specifies that the
translate tables data set hlq.FRED.TCPXLBIN should be used.

Chapter 18. File Transfer Protocol 897

Usage notes
v SBDATACONN and XLATE are mutually exclusive statements. If both

statements appear in your FTP.DATA file, XLATE is ignored.
v The XLATE statement (and its value) is not case sensitive, but the name of the

corresponding environment variable must be all uppercase or FTP does not
recognize it.

Related topics
v Appendix A, “Translation tables,” on page 1417
v “CCXLATE (FTP server) statement” on page 759
v “CTRLCONN (FTP client and server) statement” on page 769
v To see the search order that determines the conversion for the control

connection, see z/OS Communications Server: IP Configuration Guide.

FTP server environment variables
Table 53 provides a list of environment variables used by FTP server that can be
tailored to a particular installation.

Table 53. FTP server environment variables

Environment variable Server, Client or Command-type
application

Description Any specific
coding rules (or a
link to syntax)

_ICONV_UCS2 FTP Instructs iconv_open(Y, X)
about which type of
conversion method to set up
when there is a choice
between direct conversion
from X to Y and indirect X
to UCS-2 to Y.

This environment
variable has no
affect on streams
that are based on
z/OS UNIX files.
You can always
read and write
0-byte records in
z/OS UNIX files.

RESOLVER_CONFIG FTP The resolver configuration
data sets or files.

None

SOCKS configuration statements in SOCKSCONFIGFILE
The FTP client uses configuration information in a SOCKS configuration data set or
file to determine whether to access a given IPv4 FTP server directly or through a
SOCKS server. The name of the SOCKS configuration data set or file is specified by
coding the SOCKSCONFIGFILE statement in the client's FTP.DATA file. For more
information about the SOCKSCONFIGFILE statement, see “SOCKSCONFIGFILE
(FTP client) statement” on page 872.

You can code DIRECT or SOCKD statements in the SOCKSCONFIGFILE. A
DIRECT statement instructs the FTP client to access the FTP server without using
SOCKS. A SOCKD statement directs the client to use SOCKS protocols and the
specified SOCKS server to access the FTP server.

You can include comments in the configuration file or data set. Comment lines
should start with a semicolon (;) character. Any data on any line that follows a
free-standing semicolon (a semicolon surrounded by at least one space on either
side) is considered to be a comment.

898 z/OS V2R1.0 Communications Server: IP Configuration Reference

The order of statements in the SOCKS configuration is important. The client
searches the statements in the order they are coded in the SOCKSCONFIGFILE.
The first statement that specifies the target FTP server is applied. Code statements
that apply to specific FTP servers first, and a general statement for all other servers
last.

The configuration information in the SOCKS configuration file consists of the
statements in the following topics.

DIRECT statement

Use the DIRECT statement to instruct the FTP client not to use SOCKS for the
destinations that are included in the DIRECT statement.

Syntax

�� DIRECT IPv4_address address_mask
IPv4_address/num_mask_bits

��

Parameters

direct
Access the FTP server indicated by this statement without using SOCKS
protocols.

IPv4_address
Dotted decimal IPv4 address of the FTP server host, or the dotted decimal IPv4
Network ID of the FTP server network or subnet. The network ID can include
subnet bits.

address_mask
Dotted decimal IPv4 subnet mask.

num_mask_bits
An integer in the range 1 - 32 that represents the number of bits, counting
from left to right, of the network and subnet portion of the IPv4 address mask.

Examples

The following statements instruct the FTP client not to use SOCKS for connections
to any FTP servers in the class A 9.0.0.0 network, nor to connections to the host's
loopback address.
;
; This is my socks configuration
;
direct 9.0.0.0 255.0.0.0 ; Internal net
direct 127.0.0.1 255.255.255.255 ; Loopback

The following statement directs the FTP server not to use SOCKS for connections
to the host's loopback address (num_mask_bits is coded instead of address_mask).
;
; This is my socks configuration
;
direct 127.0.0.1/32 ; Loopback

Chapter 18. File Transfer Protocol 899

Usage notes
v You can code as many DIRECT statements as needed to cover your

configuration.
v The FTP client always acts as if the statement direct 0.0.0.0 0.0.0.0 were coded

last in the SOCKSCONFIGFILE. This statement applies to every possible FTP
server and directs the client not to use SOCKS to access any server not covered
by a previous statement. Therefore, the client connects to any FTP server for
which no statement has been coded in SOCKSCONFIGFILE without using
SOCKS. Also, note that if you code this statement in the SOCKSCONFIGFILE
explicitly, any statements you coded after that would be ignored because the
client always uses the first statement that applies to the FTP server.

SOCKD statement

Use the SOCKD statement to instruct the FTP client to use a SOCKS server for the
destinations that are included in the sockd statement.

Syntax

�� SOCKD
SOCKD4
SOCKD5

@=SOCKS_srv_IPv4_Addr
@=SOCKS_srv_host_name

IPv4_address IPv4_address_mask
IPv4_address/num_mask_bits

��

Parameters

SOCKD
The SOCKS server requires the use of SOCKSv5 protocols.

SOCKD4
The SOCKS server requires the use of SOCKSv4 protocols.

SOCKD5
The SOCKS server requires the use of SOCKSv5 protocols.

SOCKS_srv_host_name
The DNS name of the SOCKS server host.

SOCKS_srv_IPv4_addr
The dotted decimal IPv4 IP address of the SOCKS server host.

IPv4_address
Dotted decimal IPv4 address of the FTP server host, or the dotted decimal IPv4
Network ID of the FTP server network or subnet. The network ID can include
subnet bits.

IPv4_address_mask
Dotted decimal IPv4 subnet mask.

num_mask_bits
An integer between 1 and 32 that represents the number of bits, counting from
left to right, of the network and subnet portion of the IPv4 address mask.

Examples

In the following example, the first statement instructs the client to use SOCKS V4
protocols and the SOCKSv4 server at IP address 9.1.2.3 for connections to FTP
severs within the class C 192.168.1.0 network. The second statement instructs the

900 z/OS V2R1.0 Communications Server: IP Configuration Reference

client to use SOCKSv5 protocols and the SOCKSv5 server at IP address 9.1.2.4 to
access any FTP server not covered by a previous statement.
sockd4 @=9.1.2.3 192.168.1.0 255.255.255.0 ; Test net
sockd5 @=9.1.2.4 0.0.0.0 0.0.0.0 ; Anything else

Usage notes
v You can code as many SOCKD statements as needed to cover your

configuration.
v DIRECT and SOCKD statements can be mixed in any order.

Chapter 18. File Transfer Protocol 901

902 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 19. Trivial file transfer protocol

This topic includes the following information about Trivial file transfer protocol
(TFTP):
v “Starting TFTPD as a procedure” on page 905
v “Step for starting the TFTP server” on page 907
v “Step for stopping the TFTP server” on page 907

TFTP is installed in the /usr/lpp/tcpip/sbin/ directory.

The TFTP server uses well-known port 69. The TFTP server has no user
authentication. Any client that can connect to port 69 on the server has access to
TFTP. If the TFTP server is started without a directory, it allows access to the entire
z/OS UNIX. To restrict access to the z/OS UNIX, start the TFTP server with a list
of directories.

Following are the parameters used for the tftpd command:

-l Logs all the incoming read and write requests and associated information
to the system log. Logged information includes the IP address of the
requester, the file requested, and whether the request was successful.

-p port
Uses the specified port. The TFTP server usually receives requests on
well-known port 69. You can specify the port on which requests are to be
received.

-t timeout
Sets the packet timeout. The TFTP server usually waits 5 seconds before
presuming that a transmitted packet has been lost. You can specify a
different timeout period in seconds.

-r maxretries
Sets the retry limit. The TFTP server usually limits the number of
retransmissions it performs because of lost packets to 5. You can specify a
different retry limit.

-c concurrency_limit
Sets the concurrency limit. The TFTP server spawns both threads and
processes to handle incoming requests. You can specify the limit for the
number of threads that can be concurrently processing requests under a
single process. When the limit is exceeded, a new process is spawned to
handle requests. The default is 200 threads.

-s maxsegsize
Sets the maximum block size that can be negotiated by the TFTP block size
option. The default is 8192.

-f file Specifies a cache file. You can specify a file containing information about
files to be preloaded and cached for transmission. A cache file consists of
one or more entries. For clarity, place each entry on a separate line. An
entry has the form:
a | b <pathname>

where:

© Copyright IBM Corp. 2000, 2015 903

v a indicates that the specified file is cached in ASCII form. The file is
preconverted to NETASCII format.

v b indicates that the specified file is cached in binary form, with no
conversion.

Following are examples of cache file entries:

a /usr/local/textfile
b local/binaryfile

If a relative pathname to the file is specified, the TFTP server searches the
specified directories for the file.

The cached version of a file is only used for requests requiring the
specified format. For example, the binary cached version of a file is not
used in satisfying a request for the file in netascii format. If a file is to be
retrieved in both binary and ASCII formats, the user must specify that two
copies of the file be cached with one in binary format, and the other in
NETASCII format.

Caching is not dynamic. The cache files are read in when the TFTP server
is started and are not updated, even if the file on disk is updated. To
update or refresh the cache, the TFTP server must be recycled.

-a archive directory
Specifies an archive directory. The files in this directory and its
subdirectories are treated as binary files for downloading. This option is
useful on EBCDIC machines that act as file servers for ASCII clients.
Multiple -a options can be specified; one directory per -a option.
Directories must be specified as absolute pathnames. You can specify no
more than 20 directories.

directory
Specifies an absolute pathname for a directory. You can specify no more
than 20 directories on the tftpd command line.

If the TFTP server is started without a list of directories, all mounted
directories are considered active.

If a list of directories is specified, only those specified directories are active.
That list is used as a search path for incoming requests that specify a
relative pathname for a file.

Activating a directory activates all of its subdirectories.

For a file to be readable by the TFTP server, the file must be in an active
directory and have world (other) read access enabled. For a file to be
writable by the TFTP server, the file must already exist in an active
directory and have world (other) write access.

-b IP address
Uses the specified IP address. The TFTP server usually binds to
in6addr_any or inaddr_any. You can specify the IP address on which
requests are to be received. TFTP requests that come in on other IP
addresses are not accepted by this instance of TFTPD.

The TFTP server preforks a child process to handle incoming requests when the
concurrency limit is exceeded. Consequently, immediately after starting the TFTP
server, two TFTP processes exist.

904 z/OS V2R1.0 Communications Server: IP Configuration Reference

In case of a flood of concurrent TFTP requests, the TFTP server might fork
additional processes. When the number of concurrent requests being processed
drops below the concurrency limit, the number of TFTP processes is decreased
back to two.

Starting TFTPD as a procedure
The following sample [shipped as SEZAINST(TFTPD)] shows how to start TFTPD
as a procedure:

Chapter 19. Trivial file transfer protocol 905

//TFTPSD PROC
//*
//* Communications Server IP
//* SMP/E distribution name: EZATTFDP
//*
//* 5694-A01 5655-HAL (C) Copyright IBM Corp. 1997, 2004.
//* Licensed Materials - Property of IBM
//* This product contains "Restricted Materials of IBM"
//* All rights reserved.
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//* See IBM Copyright Instructions.
//*
//* Function: Trivial File Transfer Protocol Server start
//*
//* Please note:
//*
//* -a Specify an archive directory. TFTPD treats files in this
//* directory and its subdirectories as binary files for uploads
//* and downloads, regardless of how they were requested by the
//* client. Use this option on EBCDIC machines that act as file
//* servers for ASCII clients.
//*
//* You can specify up to 20 -a options, one directory per -a
//* option. You must specify directories as absolute pathnames.
//*
//* -c the number of threads to use concurrently. Make the number
//* a some reasonable number like 20 and not the default, which
//* is 200.
//*
//* -t Set the packet timeout. The TFTP server usually waits 5 seconds
//* before presuming that a transmitted packet has been lost. You can
//* specify a different timeout period in seconds.
//*
//* -l Log all incoming read and write requests and associated
//* information to the system log. Logged information includes the IP
//* address of the requestor, the file requested, and whether the
//* request was successful.
//*
//* -p Specify the port. The TFTP server usually receives requests on
//* well-known port 69. You can specify the port in which requests
//* are to be received.
//*
//* -r Set the retry limit. The TFTP server usually limits the number
//* of retransmissions it performs due to lost packet to 5. You
//* can specify a different retry limit.
//*
//* -s Set the maximum block size that can be negotiated by the
//* TFTP block size option. The default is 8192.
//*
//* -f Secify a cache file. You can specify a file containing
//* information on files to be preloaded and cached for transmission.
//* A cache file consists of one or more entries. For clarity, place
//* each entry on a separate line. See the IP Configuration Guide for
//* details on this option.
//*
//* -b Specify IP address. The TFTP server usually binds to in6addr_any
//* or inaddr_any. You can specify the IP address on which requests
//* are to be received.
//* TFTP requests that come in on other IP addresses will not be
//* accepted by this instance of TFTPD.
//*
//TFTP EXEC PGM=TFTPD,REGION=0K,TIME=NOLIMIT,
// PARM=’POSIX(ON),ALL31(ON),TRAP(OFF)/
// -c 20 -t 300’
//*STEPLIB DD DISP=SHR,DSN=TCP.SEZALOAD,
//* VOL=SER=,UNIT=
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//SYSIN DD DUMMY
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//CEEDUMP DD SYSOUT=*
//SYSABEND DD SYSOUT=*
// PEND

Figure 29. TFTPD sample [shipped as SEZAINST(TFTPD)]

906 z/OS V2R1.0 Communications Server: IP Configuration Reference

Step for starting the TFTP server
To start the TFTP server from the z/OS command line, type the tftpd command.

tftpd [-l] [-p port] [-t timeout] [-r maxretries] [-c concurrency_limit]
[-s maxsegsize] [-f file] [-a archive directory [-a ...]]
[directory ...] [-b IP address]

Step for stopping the TFTP server
This topic describes the steps of stopping the TFTP server.

Procedure

Perform the following step to terminate the TFTP server.

Send a SIGTERM signal to the oldest existing TFTP process.

Note: This is the process that has a parent process ID of 1.

Results

When you are done, you have terminated this process, which causes all of its
children to terminate.

Chapter 19. Trivial file transfer protocol 907

908 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 20. Syslog daemon

This topic contains the following information:
v “Syslog daemon files”
v “Starting syslogd with a cataloged procedure”
v “Starting syslogd from the UNIX shell” on page 911
v “Syslogd environment variables” on page 914
v “Syslogd configuration statements” on page 915
v “Syslogd browser tool” on page 928

Syslog daemon files
The syslog daemon (syslogd) uses the following files:

/dev/console
Operator console

/dev/operlog
operlog log stream

/etc/syslog.pid
The syslogd cataloged procedure stores its process ID in this file when
running in normal or local-only mode

/etc/syslog_net.pid
syslogd stores its process ID in this file when running in the network-only
mode

/etc/syslog.conf
Default configuration file

/dev/log
Default log path for UNIX datagram socket

/usr/sbin/syslogd
Symbolic link to the server executable

Starting syslogd with a cataloged procedure
Update the cataloged procedure, syslogd, by copying the sample in
SEZAINST(SYSLOGD) to your system or recognized PROCLIB. Specify syslogd
parameters and change the data set names to suit your local configuration. See the
syslog daemon section of SEZAINST(EZARACF) for SAF considerations for started
procedures. When you start syslogd from a procedure that does not use
BPXBATCH, the resulting job name is the same as the procedure name. When you
start syslogd from the z/OS UNIX shell or from a procedure that uses BPXBATCH,
the resulting job name is the user ID or the value of the _BPX_JOBNAME
environment variable.

See “Starting syslogd from the UNIX shell” on page 911 for the syntax of the start
options for syslogd.

Below is a copy of the sample procedure:

© Copyright IBM Corp. 2000, 2015 909

//SYSLOGD PROC
//***
//* Descriptive Name: SYSLOGD Start Procedure *
//* *
//* File Name: tcpip.SEZAINST(EZASYSLG) *
//* tcpip.SEZAINST(SYSLOGD) *
//* *
//* SMP/E Distribution Name: EZASYSLG *
//* *
//* Licensed Materials - Property of IBM *
//* "Restricted Materials of IBM" *
//* 5650-ZOS *
//* Copyright IBM Corp. 1992, 2013 *
//* Status = CSV2R1 *
//* *
//* Note: *
//* The SYSLOGD Daemon can read its configuration file from either a *
//* PDS or the HFS. The procedure defaults to the HFS. *
//* If you are running the IVP for SYSLOGD or if you simply prefer *
//* to use a PDS to store your configuration file, *
//* either delete or comment the CONFHFS DD card *
//* then uncomment the CONFPDS DD card and specify the data set and *
//* member name. *
//* *
//* If you would like to run two instances of syslogd, make a second *
//* copy of this proc and replace -i with -n in the second instance. *
//* The instance using -n will process only log messages received *
//* over the well-known syslogd port via UDP. One instance must *
//* use -i and the other must use -n in order to run two instances. *
//* *
//* The -c command-line option specifies that syslogd should create *
//* any log files or directories which do not already exist. *
//* *
//* The -i command-line option specifies that syslogd should not *
//* process log messages sent to the well-known syslog port via UDP. *
//***
//CONFHFS EXEC PGM=SYSLOGD,REGION=4096K,TIME=NOLIMIT,
// PARM=’ENVAR("_CEE_ENVFILE_S=DD:STDENV")/-c -i’
//*
//*** Examples for specifying environment variables and parameters
//*** (parameters must extend to column 71 and be continued in
//*** column 16):
//*
//* Example 1: Environment variables inline, MVS config data set
//*
//*CONFPDS EXEC PGM=SYSLOGD,REGION=4096K,TIME=NOLIMIT,
//* PARM=’ENVAR("TZ=EST5EDT")/-c -i -f //’’TCPIP.TCPPARMS(SYSLOG
//*)’’’
//*
//* Example 2: Environment variables inline, UNIX config file
//*
//*CONFHFS EXEC PGM=SYSLOGD,REGION=4096K,TIME=NOLIMIT,
//* PARM=’ENVAR("TZ=EST5EDT")/-c -i -f /user1/syslogd.conf’
//*
//* Example 3: Environment variables in STDENV DD
//*
//*CONFSTD EXEC PGM=SYSLOGD,REGION=4096K,TIME=NOLIMIT,
//* PARM=’ENVAR("_CEE_ENVFILE_S=DD:STDENV")/-c -i’
//*
//* For this method, the STDENV DD statement below must be
//* changed to point to a MVS data set or UNIX file containing
//* settings for any environment variables. For example, it should
//* contain at least TZ (unless you choose to specify TZ in a
//* different fashion), but can contain other environment variables
//* as in this example:
//*
//* SYSLOGD_CODEPAGE=IBM-1047

910 z/OS V2R1.0 Communications Server: IP Configuration Reference

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

//* SYSLOGD_CONFIG_FILE=/user1/syslogd2.conf
//* SYSLOGD_DEBUG_LEVEL=127
//* TZ=EST5EDT
//*
//* If you want to include comments in the data set or
//* z/OS UNIX file, specify the _CEE_ENVFILE_COMMENT
//* environment variable as the first environment variable
//* in the data set or file. The value specified for
//* the _CEE_ENVFILE_COMMENT variable is the comment character.
//* For example, if you want to use the pound sign, #, as
//* the comment character, specify this as the first
//* statement:
//* _CEE_ENVFILE_COMMENT=#
//*
//* The use of the STDENV DD statement works well when more than
//* one environment variable is specified, as there is a JCL limit
//* of 100 characters on the PARM statement.
//*
//* Note: Language Environment recommends a variable record format
//* for the STDENV file.
//*
//* You can also set the TZ environment variable for all applications
//* in the CEEPRMxx PARMLIB member. You should define the TZ
//* environment variable for all three LE option sets (CEEDOPT,
//* CEECOPT, and CELQDOPT). For example:
//*
//* CEECOPT(ALL31(ON), ENVAR(’TZ=EST5EDT’))
//* CEEDOPT(ALL31(ON), ENVAR(’TZ=EST5EDT’))
//* CELQDOPT(ALL31(ON), ENVAR(’TZ=EST5EDT’))
//*
//* For more information on specifying run-time options, see z/OS
//* Language Environment Programming Guide. For details on setting
//* the LIBPATH and TZ environment variables, see z/OS UNIX System
//* Services Command Reference.
//*
//STDENV DD DUMMY
//* Sample MVS data set containing environment variables:
//*STDENV DD DSN=TCPIP.SYSLOGD.ENV(SYSLOGD),DISP=SHR
//* Sample UNIX file containing environment variables:
//*STDENV DD PATH=’/etc/syslogd.env’,PATHOPTS=(ORDONLY)
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//CEEDUMP DD SYSOUT=*

Starting syslogd from the UNIX shell
Start syslogd from the UNIX shell using the syntax described in this topic.

syslogd [-D value][-F value[-f conffile] [-m markinterval] [-p logpath] [-c] [-d] [-i]
[-n][-x][-u] [-?]&

Rules:

v You must start syslogd as a background shell command by specifying an
ampersand (&) as the last character on the command. If you do not specify the
ampersand (&), control does not return to the shell until syslogd ends. This is
especially important if syslogd is started from a shell script, such as /etc/rc.

Figure 30. Syslogd sample cataloged procedure

Chapter 20. Syslog daemon 911

|
|
|
|
|
|
|
|
|
|

v If you start syslogd from a cataloged procedure that uses BPXBATCH, you need
to include a sleep command in your script after you start syslogd. The sleep
command gives syslogd time to initialize before the shell script ends. For more
information about including a sleep command, see Starting daemons in z/OS
UNIX System Services Planning.

v If you start syslogd from a cataloged procedure that uses BPXBATCH, you need
to use a z/OS UNIX file for the STDOUT DD JCL statement and the STDERR
DD JCL statement; otherwise, the job will not end.

syslogd recognizes the following options:

-c Create log files and directories automatically.

-d Run syslogd in debugging mode.

-D Specify the default access permissions (modes) to be used by syslogd when
creating directories. This parameter is valid only when specified in
conjunction with the -c option. The parameter value is specified as an octal
number 1 - 4 characters in length. Leading zeros can be omitted. The
following values can be ORed together to form the parameter value:

2000 Set-GID

1000 Sticky Bit (deletion restricted to owner or superuser)

0400 User read

0200 User write

0100 User list directory

0040 Group read

0020 Group write

0010 Group list directory

0004 Other read

0002 Other write

0001 Other list directory

If the -D option is not specified, the default value 700 is used. Bits other
than the bits shown are not valid and are set to 0. For example, you cannot
set the set-UID bit for a directory.

-f Configuration file name.

-F Specify the default access permissions (modes) to be used by syslogd when
creating log files. This parameter is valid only when specified in
conjunction with the -c option. The parameter value is specified as an octal
number 1 - 4 characters in length. Leading zeros can be omitted. The
following values can be ORed together to form the parameter value:

0400 User read

0200 User write

0040 Group read

0020 Group write

0004 Other read

0002 Other write

912 z/OS V2R1.0 Communications Server: IP Configuration Reference

If the -F option is not specified, the default value 600 is used. The actual
permissions are modified by the syslogd process's umask value at the time
the file is created. This parameter is used only when syslogd must create a
log file dynamically; it has no effect on log files that already exist. Bits
other than the bits shown are not valid and are set to 0. For example, you
cannot set the execute bits, set-UID, set-GID, or the sticky bit for log files.

-i Start in local-only mode. Do not receive messages from the IP network.
Messages can be sent by syslogd to remote syslogd instances when
running in local-only mode.

-m Number of minutes between mark messages. The default value is 20
minutes.

-n Start in network-only mode. Process messages from the IP network only
(UDP datagram socket). Messages can be sent by syslogd to remote
syslogd instances when running in network-only mode.

-p Pathname of z/OS UNIX character device for the datagram socket. The
default value is /dev/log.

Guideline: This option is not used frequently. If you incorrectly use the -p
option, syslogd does not function properly.

-u For records received over the AF_UNIX socket (most messages generated
on the local system), include the user ID and job name in the record. In
this case, a forward slash (/), the user ID, and the job name follows the
local host name for messages received over the AF_UNIX socket. The
forward slash, which immediately follows the local host name, can be used
to determine whether or not the user ID and job name are being recorded.
If not recorded, a blank immediately follows the local host name. When
user ID or job name is not available, N/A is written in the corresponding
field.

-x Do not perform IP address-to-host name resolution for messages received
from the IP network.

-? Show syslogd options.

Chapter 20. Syslog daemon 913

Syslogd environment variables
Table 54 provides a list of environment variables used by syslogd that can be
tailored to a particular installation.

Table 54. Syslogd environment variables

Environment variable Description Specific coding rules

SYSLOGD_CODEPAGE Used by the syslog daemon to
specify the EBCDIC code page to
be used for the configuration file.
The default code page is
IBM-1047.

The following code pages are supported:

v IBM-037

v IBM-273

v IBM-274

v IBM-275

v IBM-277

v IBM-278

v IBM-280

v IBM-281

v IBM-282

v IBM-284

v IBM-285

v IBM-297

v IBM-500

v IBM-871

v IBM-1047

v IBM-1140

v IBM-1141

v IBM-1142

v IBM-1143

v IBM-1144

v IBM-1145

v IBM-1146

v IBM-1147

v IBM-1148

v IBM-1149

Example:

SYSLOGD_CODEPAGE=IBM-1141

SYSLOGD_CONFIG_FILE Specifies the name of the syslogd
configuration file.

The -f start option overrides this value. Example:

SYSLOGD_CONFIG_FILE=/etc/syslog.conf

SYSLOGD_DEBUG_DATASET If this environment variable is not
set, the debug output goes to
STDOUT. The environment
variable can be set to STDOUT,
which will also cause the output
to be written to STDOUT. On
SYSLOGD shutdown, the
SYSLOGD_DEBUG_VARIABLE is
reset, which causes residual
debug output to be written to
STDOUT.

Write debug output to an MVS dataset

export
SYSLOGD_DEBUG_DATASET="//’USER1.SYSLOGD.DEBUG’"

Write debug output to a UNIX file

export
SYSLOGD_DEBUG_DATASET="/tmp/syslogd_debug"

914 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 54. Syslogd environment variables (continued)

Environment variable Description Specific coding rules

SYSLOGD_DEBUG_LEVEL Specifies the debug level to be
used by syslogd.

You can specify the following debug levels. You can add
these together in any combination to select the type of
debug messages to be written.

1 Base debugging information.

2 Configuration file processing.

4 Processing of messages being logged by syslogd.

8 Automatic archive processing.

16 Operator command processing.

32 Thread-specific processing.

64 Mutex lock processing. Locks that are specific to
threads are logged only if the debug level includes
32.

For example, SYSLOGD_DEBUG_LEVEL=91 includes all
debugging information except for message handling and
thread-specific processing (including locks). The default
debug level is 127, which includes all debug information.

SYSLOGD_PATH_NAME Specifies the path name for the
datagram socket.

The -p start option overrides this value.

v When starting syslogd from a shell script, export the environment variables
before starting syslogd. The following example defines the syslogd configuration
file:
#
Shell script to start syslogd
#
export _BPX_JOBNAME=’SYSLOGD1’
export SYSLOGD_CONFIG_FILE="//’HLQ.SYSLOGD.CONFIG(DEFAULT)’"
/usr/sbin/syslogd &

v When starting syslogd directly from a started procedure, place the syslogd
environment variables in a z/OS UNIX file or MVS data set. Use the following
technique to pass the environment variables to syslogd.
// PARM=’ENVAR("_CEE_ENVFILE=DD:STDENV")/’

//STDENV DD PATH=’/etc/syslogd.env’,PATHOPTS=(ORDONLY)
or
//STDENV DD DSN=HLQ.SYSLOGD.ENV(DEFAULT),DISP=SHR

When you use an MVS data set for your syslogd environment variables, place
the environment variables in a data set with the VB record format [RECFM(VB)]
and a logical record length of 256 [LRECL(256)]. If you use any other record
format for the data set, use the _CEE_ENVFILE_S environment variable in place
of the _CEE_ENVFILE environment variable in your syslogd started procedure.
When the _CEE_ENVFILE_S environment variable is used, the system removes
trailing blank spaces from each NAME=VALUE line that is read. For additional
information about the _CEE_ENVFILE_S environment variable, see z/OS XL
C/C++ Programming Guide.

Syslogd configuration statements
There are two types of configuration information. The first type is a set of global
parameters that you use to configure some operational aspects of syslogd. The
second type is a set of rules that you use to define the mapping between the
information that is logged to syslogd and the destination of that information.

Chapter 20. Syslog daemon 915

A sample configuration file is included in /usr/lpp/tcpip/samples/syslog.conf.

Global syslogd configuration statements
This topic contains descriptions of the global syslogd configuration statements.

ArchiveCheckInterval statement
Use the ArchiveCheckInterval statement to specify the interval of time at which
syslogd checks UNIX file system utilization. Each configured rule that specifies a
UNIX file as the destination and that specifies the -N parameter to indicate that it
is eligible for archive processing is a candidate for automatic archival. If you also
configure the ArchiveThreshold statement with a nonzero value, the set of UNIX
file systems that contain the candidate UNIX files is checked for the percentage
used to determine whether threshold archiving needs to be performed.

If the ArchiveCheckInterval statement is specified multiple times, syslogd uses the
last instance of the statement.

�� ArchiveCheckInterval minutes ��

minutes
Specifies the interval at which syslogd checks file system utilization, in
minutes. Valid values range 1 - 1 440. If you do not specify this statement, the
default is 10 minutes.

ArchiveThreshold statement
Use the ArchiveThreshold statement to specify a percentage of UNIX file system
utilization. Each configured rule that specifies a UNIX file as the destination and
that specifies the -N parameter to indicate that it is eligible for archive processing
is a candidate for automatic archival. When you specify this statement with a
nonzero value, each UNIX file system that contains one or more candidate UNIX
files is checked at the interval that is configured or the default value to determine
the percentage of the file system being used. If the percentage of file use exceeds
the specified threshold, syslogd automatically archives a set of UNIX files until the
percentage of file use is below the minimum threshold. The minimum threshold is
50 percent of the value that you configure on this statement. For example, if you
specify an archive threshold of 80 percent, syslogd archives UNIX files until the
percentage of file use is below 40 percent. Syslogd archives files from the largest to
the smallest.

If the ArchiveThreshold statement is specified multiple times, syslogd uses the last
instance of the statement.

You can use this statement to perform archiving when one or more file systems
reach a configured threshold, or you can use the ArchiveTimeOfDay statement to
perform archiving at a specific time of day. You can also specify both statements.

Requirement: The -c start option is required when you use the ArchiveThreshold
statement.

�� ArchiveThreshold percentage ��

percentage
Specifies the percentage value of UNIX file system use that triggers automatic

916 z/OS V2R1.0 Communications Server: IP Configuration Reference

archival. Valid values for percentage are in the range 0 - 99. If you do not
specify this statement, the default is 70. If you specify 0, syslogd does not
perform automatic threshold archiving.

ArchiveTimeOfDay statement
Use the ArchiveTimeOfDay statement to specify a local time of day to perform an
archive of all eligible UNIX files. Each configured rule that specifies a UNIX file as
the destination and that specifies the -N parameter to indicate that it is eligible for
archive processing is a candidate for automatic archival.

You can use this statement to perform archiving at a specific local time of day, or
you can use the ArchiveThreshold statement to perform archiving when one or
more file systems reaches a configured threshold. You can also specify both
statements.

If the ArchiveTimeOfDay statement is specified multiple times, syslogd uses the
last instance of the statement.

Requirement: The -c start option is required when you use the ArchiveTimeOfDay
statement.

�� ArchiveTimeOfDay time ��

time
Specifies the local time of day to perform an automatic archival of all UNIX
files. Specify the local time value in hours and minutes, using a 24 hour clock.
For example, the value 00:01 means to archive at 1 minute past midnight.
There is no default; if you do not specify this statement, syslogd does not
perform automatic time of day archival.

BeginArchiveParms statement
Use the BeginArchiveParms statement to specify the prefix and allocation
information for the archive destination data set. UNIX files are archived only to
MVS data sets when the automatic archive function is used. The complete archive
data set name is composed of several components, depending on the type of
destination data set that is being used. Use the -N parameter on a specific syslogd
rule to specify the type of destination data set.

You should use this method of archiving files only if you do not offload files using
the provided sample configuration and procedure. See z/OS Communications
Server: IP Configuration Guide for more information about offloading log files.
Because both of these methods rely on creating new log files, results could be
unpredictable if you try to use both methods together.

When the destination is a Generation Data Group (GDG) data set, the complete
data set name is:

prefix.qualifier.gdg_suffix where:
v prefix is the value specified on the BeginArchiveParms statement.
v qualifier is the value specified on the -N parameter on a specific syslogd rule.
v gdg_suffix is the value automatically supplied for GDG data sets to make them

unique.

The following example shows a GDG data set name:
USER1.SYSARCH.TRACE.G0007V00

Chapter 20. Syslog daemon 917

When the destination is a sequential data set, the complete data set name is:

prefix.qualifier.date_suffix.time_suffix where:
v prefix is the value specified on the BeginArchiveParms statement.
v qualifier is the value specified on the -N parameter on a specific syslogd rule.
v date_suffix is the date value automatically supplied by syslogd for sequential

data sets to make them unique. The format of this suffix is Dyymmdd.
v time_suffix is the time of day value automatically supplied by syslogd for

sequential data sets to make them unique. The format of this suffix is Thhmmss.

The following example shows a sequential data set name:
USER1.SYSARCH.LOG.D080701.T081342

You can repeat this statement multiple times. Each specified statement applies to
the rules that follow it, until another instance of this statement is specified. Each
statement completely replaces the values from a previous statement. The following
sample shows a syslogd configuration file:
BeginArchiveParms

DSNPrefix USER1.SYSTRACE
Unit SYSDA

EndArchiveParms
ArchiveThreshold 80

daemon.debug /var/syslog/logs/daemon.trace -N DAEMON(+1)
local1.debug /var/syslog/logs/local1.trace -N LOCAL1(+1)

BeginArchiveParms
DSNPrefix USER1.SYSLOG
Unit SYSDA

EndArchiveParms

.;daemon.none /var/syslog/logs/syslog.log -N LOG

Given this configuration, the target archive data set names for the configured rules
are as follows:
v USER1.SYSTRACE.DAEMON.GnnnnVnn

v USER1.SYSTRACE.LOCAL1.GnnnnVnn

v USER1.SYSLOG.LOG.Dyymmdd.Thhmmss

�� BeginArchiveParms �

� Put Archive Parameters on Separate Lines EndArchiveParms ��

Put Archive Parameters on Separate Lines:

DSNPrefix prefix
Unit unit Volume volume MgmtClas class

�

�
StorClas class RetPd days

DSNPrefix
Specifies the archive data set name prefix value.

Rules:

918 z/OS V2R1.0 Communications Server: IP Configuration Reference

v The maximum number of characters for the data set prefix depends on the
type of data set. For a GDG data set, the maximum length is 35 characters,
and for a sequential data set, the maximum length is 28 characters. This
length provides space for the other components of the data set name to be
supplied. The maximum length of an MVS data set name is 44 characters.

v The data set prefix must conform to the rules for MVS data set names. The
maximum length of any component of the data set name is 8 characters.
Each component of the name must be composed of alphanumeric or national
characters ($ # @). See the DD statement information in the z/OS MVS JCL
Reference for more information about data set naming rules.

v The data set prefix can contain system symbolics, for example,
&SYSNAME..ARCHIVE. See the coding symbols in JCL in the z/OS MVS
JCL Reference for information about using system symbols.

Unit
Specifies the unit information for the dynamic allocation of the target data set.
The format of this parameter should conform to the UNIT parameter on the
DD JCL statement. This parameter is optional.

Volume
Specifies the volume information for the dynamic allocation of the target data
set. The format of this parameter should conform to the VOLUME parameter
on the DD JCL statement. This parameter is optional.

MgmtClas
Specifies the management class information for the dynamic allocation of the
target data set. The format of this parameter should conform to the
MGMTCLAS parameter on the DD JCL statement. This parameter is optional.

StorClas
Specifies the storage class information for the dynamic allocation of the target
data set. The format of this parameter should conform to the STORCLAS
parameter on the DD JCL statement. This parameter is optional.

RetPd
Specifies the retention period in days for the dynamic allocation of the target
sequential data set. Valid values are in the range 0 - 9 999. This parameter is
ignored for GDG data sets. The format of this parameter should conform to the
RETPD parameter on the DD JCL statement. This parameter is optional.

Syslogd rule configuration statement
This topic describes the syslogd rule configuration statement and associated
information.

See “Rule configuration statement” on page 926 for a syntax diagram of the rule
configuration statement.

Supported facility names for syslogd
The following facility names are supported and predefined in the syslogd
implementation:

user Message generated by a process (user).

mail Message generated by mail system.

news Message generated by news system.

uucp Message generated by UUCP system.

Chapter 20. Syslog daemon 919

daemon
This facility name is generally used by server processes. The FTPD server,
the RSHD server, the REXECD server, the SNMP agent, and the SNMP
subagent use this facility name to log trace messages.

auth/authpriv
Message generated by authorization daemon.

cron Message generated by the clock daemon.

lpr Message generated by the (USS lp command) print client.

local0-7
Names for local use. The z/OS UNIX Telnet server uses the local1 facility
name for its log messages.

mark Used for logging MARK messages.

kernel z/OS does not generate any log messages with the kernel facility, and it
does not accept log messages from local applications with the kernel
facility. However, syslogd on z/OS is capable of receiving log messages
over the network from other syslog daemons using the kernel facility. The
kernel facility can be used in rules to direct these log messages to specific
destinations.

Facilities used by z/OS Communications Server
Table 55 shows the facilities used by z/OS Communications Server.

Table 55. syslogd facilities

Application syslogd record
identifications

Primary syslog
facility

Other syslog facility

Application
Transparent
Transport Layer
Security (AT-TLS)

TTLS daemon auth

Automated domain
name registration
(ADNR)

adnr daemon None

Communications
Server SMTP
(CSSMTP)

CSSMTP mail None

Defense Manager
daemon (DMD)

DMD local4 None

FTP server ftpd, ftps daemon None

IKE daemon IKED local4 None

Network security
services (NSS) server

NSSD local4 None

Network SLAPM2
subagent

NSLAPM2 daemon None

OMPROUTE omproute user None

OPORTMAP server oportmap daemon None

OREXECD rexecd daemon auth

ORSHD rshd daemon auth

OTELNETD telnetd local1 auth

Policy Agent Pagent daemon None

920 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 55. syslogd facilities (continued)

Application syslogd record
identifications

Primary syslog
facility

Other syslog facility

POPPER popper mail None

PWCHANGE
command

pwchange daemon None

PWTOKEY command pwtokey daemon None

rpcbind rpcbind daemon None

SENDMAIL sendmail mail None

Simple Network
Time Protocol
daemon

sntpd daemon None

SNMP agent
(OSNMPD)

snmpagent daemon None

syslogd syslogd daemon None

TCP/IP subagent M2SubA daemon None

TFTP server tftpd user None

TIMED daemon timed user None

TN3270E Telnet
subagent

TNSubA daemon None

Traffic Regulation
Management
Daemon (TRMD)

TRMD daemon (used for
IDS logging)

local4 (used for
IPSEC logging and
defensive filter
logging)

Trap Forwarder
daemon

trapfwd daemon None

z/OS Load Balancing
Advisor

lbadv daemon None

z/OS Load Balancing
Agent

lbagent daemon None

Priority codes
When you specify a priority code, all messages with that priority and higher are
logged at the specified destination. For example, if you specify a priority code of
crit, all messages having alert, panic, emerg, and crit priorities are logged.

The following priority codes are supported. They are shown in priority sequence.

emerg/panic
A panic condition was reported to all processes.

alert A condition that should be corrected immediately.

crit A critical condition.

err(or) An error message.

warn(ing)
A warning message.

notice A condition requiring special handling.

info A general information message.

Chapter 20. Syslog daemon 921

debug A message useful for debugging programs.

none Do not log any messages for the facility.

* Place holder used to represent all priorities.

Supported destinations for syslogd
The following destinations are supported. File names are case sensitive:

/file A specific path (for example, /tmp/syslogd/auth.log). All log files used by
syslogd must be created in the z/OS UNIX file system before syslogd is
started unless the -c start option is specified. If the -c option is specified,
the file name can be followed by the -F and -D parameters.

You should use a cron job to signal syslogd at midnight, along with date
stamps in the log file directory names, to organize log files by year (%Y),
month (%m), and day (%d), only if you do not use the automatic archive
function of syslogd. See z/OS Communications Server: IP Configuration
Guide for more information about configuring syslogd for automatic
archiving. Because both of these methods rely on creating new log files,
results could be unpredictable if you try to use both methods together.

The -F parameter specifies the access permissions (modes) for the file if the
file must be created dynamically. This parameter has no effect if the file
already exists.

Restriction: You cannot specify the -F parameter with the -N or -X
parameter.

The -D parameter specifies the access permissions (modes) for the directory
part of the file name if the directory (or directories) containing the file
must be created dynamically. This parameter has no effect on a directory
that already exists.

Restriction: You cannot specify the -D parameter with the -N or -X
parameter.

The value following the -F parameter or the -D parameter uses the same
octal values as specified for the start options -F and -D. If the -F and -D
options are specified on a rule, these values override, for this rule only, the
default values specified by the start options. For example, for syslogd to
create the file (and directories if needed) for /tmp/syslogd/auth.log, you
could specify a rule like the following example:
auth.* /tmp/syslogd/auth.log -F 640 -D 770

The permissions in the previous example rule give the owner read/write
access to the file and give members of the file's group read-only access.
The file’s owner ID is set to the process’s effective user ID (UID), which for
syslogd is always UID 0. By default, the owning group ID (GID) is set to
that of the parent directory. However, if the FILE.GROUPOWNER.SETGID
profile exists in the UNIXPRIV class, the owning GID is determined by the
set-GID bit of the parent directory, as follows:
v If the parent’s set-gid bit is on, the owning GID is set to that of the

parent directory.
v If the parent’s set-gid bit is off, the owning GID is set to the effective

GID of the process.

If the /tmp or the /tmp/syslogd directories do not exist, they are created
with access permissions of 770.

922 z/OS V2R1.0 Communications Server: IP Configuration Reference

You can specify the -N parameter following the file name to specify
automatic archival options. The -N parameter is mutually exclusive with
the -X parameter.

You should use the -N or -X parameter only if you do not use a cron job to
signal syslogd at midnight, along with date stamps in log file directory
names, to organize log files by year (%Y), month (%m), and day (%d). See
z/OS Communications Server: IP Configuration Guide for more
information about offloading log files. Because both of these methods rely
on creating new log files, results could be unpredictable if you try to use
both methods together.

Results:

v If you specify the -N parameter multiple times on the same rule, the last
instance is used.

v If you have multiple rules that use the same destination file, and you
specify a mixture of -N and -X parameters on those rules, the parameter
you specify on the first such rule is used.

Restriction: You cannot specify the -N parameter with the -F or -D
parameter.

The -N parameter specifies a unique qualifier to append to the data set
prefix specified on the previous instance of the BeginArchiveParms
statement. This prefix forms the base archive data set name. Additional
information is appended to the base name to form the complete archive
data set name. The format of the additional information depends on the
type of data set. You can specify either a GDG or a sequential data set.

The syslogd application requires the correct SAF authorization to create the
target data sets that are needed for archival purposes.

For a GDG data set, specify (+1) at the end of the qualifier value. For
example, -N TRACE(+1). The GDG specifiers (+0) and (-n) are not valid.
The complete archive data set name for a GDG data set is:

prefix.qualifier.gdg_suffix

where:
v prefix is the value specified on the BeginArchiveParms statement.
v qualifier is the value specified on the -N parameter.
v gdg_suffix is the value automatically supplied for GDG data sets to make

them unique.

If you use GDG data sets as an archive destination, the GDG BASE must
already have been created. Also, be aware of the maximum number of
generation data sets to be kept for the GDG. It is possible for syslogd to
write more than one archive to the GDG per day, because of the multiple
triggers used to perform archives. For example, if you keep five generation
data sets, and syslogd performs five archives in one day, you are
effectively retaining only a single day's worth of data.

See the information about configuring syslogd for automatic archival in
z/OS Communications Server: IP Configuration Guide for sample JCL to
create a GDG BASE. See z/OS DFSMS Using Data Sets for more
information about GDG data sets.

For a sequential data set do not specify the GDG indicator (+1). The
complete archive data set name for a sequential data set is as follows:

prefix.qualifier.date_suffix.time_suffix

Chapter 20. Syslog daemon 923

where:
v prefix is the value specified on the BeginArchiveParms statement.
v qualifier is the value specified on the -N parameter.
v <date_suffix> is the date value automatically supplied by syslogd for

sequential data sets to make them unique. The format of this suffix is:
Dyymmdd.

v time_suffix is the time of day value automatically supplied by syslogd for
sequential data sets to make them unique. The format of this suffix is
Thhmmss.

For example, to make a z/OS UNIX file eligible for automatic archival, you
could specify the following rule:
auth.* /tmp/syslogd/auth.log -N TRACE

You can specify the-X parameter following the file name to indicate that
the contents of the z/OS UNIX file should be deleted when an archive
event occurs. This effectively reinitializes the file without saving the
contents. The -X parameter is mutually exclusive with the -N parameter.

Restriction: You cannot specify the -X parameter with the -F or -D
parameter.

@host A syslog daemon on another host (for example, @host.domain).

user1,user2,...
A list of users.

/dev/console
The MVS console.

/dev/operlog
The MVS operlog log stream. See the information about system logger
applications in z/OS MVS Setting Up a Sysplex.

Requirement: The MVS operlog stream must be active for syslogd to be
able to write to it.

SMF record changes

$SMF The log message is stored in SMF record type 109. See the information
about type 109 SMF records in z/OS Communications Server: IP
Programmer's Guide and Reference for a description of type 109 SMF
records. The maximum SMF message is 4096. If the BPX.SMF facility is
defined, then the user ID with which syslogd runs must be permitted to
BPX.SMF. See SEZAINST(EZARACF) for more information.
v For example, to send all log messages of severity critical or higher from

bpxroot or uswmaint to SMF, use the following statement.
bpxroot.*.*.crit;uswmaint.*.*.crit $SMF

Usage notes for syslogd
v If you run two instances of syslogd, one for local messages and another for

network messages, and you also configure the automatic archival function, do
not configure the same UNIX file destinations in the two configuration files. The
archival function renames, closes, and reopens the UNIX files. If two instances of
syslogd are performing the archival function on the same set of files, results of
the archival function are unpredictable. The same is true for the configured
archive destination data sets. Be sure to configure unique UNIX file destinations
and archive data set names for the two syslogd instances.

924 z/OS V2R1.0 Communications Server: IP Configuration Reference

v When you specify a priority code, all messages with that priority and higher are
logged at the specified destination. For example, if you specify a priority code of
crit, all messages having alert, panic, emerg, and crit priorities are logged. To
send all messages with a priority of crit or higher to a user ID of OPER1, you
can enter the following rule in /etc/syslog.conf:
*.crit OPER1

v You can combine logging rules and destinations in different ways. For example,
to send all messages from the facility name daemon into one file and all
messages with a priority of crit or higher into another file, enter the following
code:
daemon.* /tmp/syslogd/daemon.log
*.crit /tmp/syslogd/crit.log

Guideline: If a server sends a message to syslogd with a facility name of
daemon and a priority code of crit, the message is logged in both the
daemon.log and crit.log files. Likewise, if a server sends a message to syslogd
with a facility name of daemon and a priority code of alert, the message is
logged in both files.

v Syslogd rules may contain a series of conditions. Each condition is separated
from the previous condition by a semicolon. For example, if you want to log all
messages from facility name local1 or facility daemon into one file, use the
following code:
local1.*;daemon.* /tmp/syslogd/local1_daemon.log

v A priority code of none tells syslogd not to select any messages for the specified
facility. For example, if you want to log all messages from facility name local1
into one file, all messages from the daemon into another file, and all remaining
messages into a third file, use the following code:
local1.* /tmp/syslogd/local1.log
daemon.* /tmp/syslogd/daemon.log
.;local1.none;daemon.none /tmp/syslogd/the_rest.log

Conditions with a priority of none are called exclusionary conditions. When
using syslogd rules with a series of conditions separated by semicolons, all of
the individual conditions are evaluated left-to-right for each message. Each
matching condition results in either a TRUE (meaning log the message) or a
FALSE (meaning don't log the message). Conditions that don't match are
ignored. The final result of evaluating each matching condition left-to-right is the
result of the last matching condition. Rules that have no matching conditions for
a message result in a FALSE. Matching exclude conditions (those with priority of
none) result in a FALSE. As an example, consider the difference between the
following two rules for a message with facility of daemon and a priority of
emerg.
daemon.none;*.emerg /tmp/mylogfile
*.emerg;daemon.none /tmp/mylogfile

The first rule, first condition, results in FALSE. The first rule, second condition,
results in TRUE. Therefore, the message will be logged to the destination for this
rule. The second rule, first condition, results in TRUE. The second rule, second
condition, results in FALSE. The message will not be logged for this rule.
The order of conditions within the filter is significant.
Guideline: You should set up the /tmp/syslogd directory as a separate z/OS
UNIX file system. Unless managed properly, the syslogd daemon can fill up the
/tmp hfs, which can impact other applications that might require temporary
space in the /tmp directory.

Chapter 20. Syslog daemon 925

v You can define logging conditions that contain a userid and jobname along with
the facility and priority. The user ID value, the job name, or both can be
specified as an asterisk (*), which matches any user ID or any job name.
Restrictions:

– Only messages that are issued by a program running under the specified user
ID or job name and that also match the facility and priority are logged.

– The user ID and job name filter is used only for messages that originate on
the same system where syslogd is running. The filter does not apply for
messages received from the IP network.

For example, if you want to log all messages from programs running under
userid USER1 (with any jobname, facility or priority) to one file and log all
messages from any userid with jobname JOB1 with facility of daemon and any
priority to another file, use the following code:
user1.*.*.* /tmp/syslogd/user1.log
.job1.daemon. /tmp/syslogd/job1.daemon.log

v You can define logging conditions that contain an IP address or host name along
with the facility and priority. If you use a host name, it must be able to be
resolved to an IP address.
Restriction: Only messages received over the IP network use a filter containing
an IP address or host name.The IP address or host name filter is not used for
local messages received over the syslog AF_UNIX socket. For example, if you
want to log all messages from host1.xyz.com to one file and all messages from
192.168.0.1 with facility daemon and priority info or higher to another file, use
the following code:
(host1.xyz.com).*.* /tmp/syslogd/host1.log
(192.168.0.1).daemon.info /tmp/syslogd/host2.log

v It is possible to create rules that contain an IP address (or host name) in one
condition along with userid.jobname.facility.priority in another condition.
Rule: Conditions must be separated by semicolons.

v If using IP addresses in conditions, the address can be followed by an optional
forward slash and a number representing the number of significant bits of the
address. This is called the prefix length. The prefix length provides a means to
indicate that a condition applies to all IP addresses that have the bit pattern for
the specified number of bits. For example, the following rule matches all
messages received from IP addresses 192.168.0.0 - 192.168.0.255 that also have a
facility of daemon and a priority of info or higher:
(192.168.0.1/24).*.* /tmp/syslogd/host1.log

v IPv6 addresses or host names that resolve to IPv6 addresses can be used in the
rule conditions or as destinations (if forwarding to another host).
Restriction: Do not use IPv4-mapped IPv6 addresses or IPv6 addresses with the
reserved prefix ::/96.

Syntax
Each rule statement of the configuration file has the following syntax:

Rule configuration statement

�� �

;

condition � \t
\b

destination
-F value -D value

�

926 z/OS V2R1.0 Communications Server: IP Configuration Reference

�
-N qualifier -X

��

condition (option 1):

�

;

facility . priority
userid . jobname.

condition (option 2):

�

;

facility . priority
(hostspec).

Parameters
hostspec

v An IPv4 address, for example, 192.168.0.1
v An IPv4 address with a subnet length, for example, 192.168.0.1/24
v An IPv6 address, for example, FEC0::9:42:105:19
v An IPv6 address with a prefix length, for example, FEC0::9:42:105:19/64
v A host name that resolves to an IPv4 or IPv6 address. The host name can be

specified with or without the DNS suffix. If specified without the suffix, the
suffix is assumed to be one of the suffixes defined to resolver for the host
where syslogd is running.

facility
See “Supported facility names for syslogd” on page 919 for details.

priority
See “Priority codes” on page 921 for details.

destination
See “Supported destinations for syslogd” on page 922 for details.

-F When the destination is a UNIX file, this parameter specifies the access
permissions (modes) for the file if the file must be created dynamically. See the
description of the /file destination in “Supported destinations for syslogd” on
page 922 for details.

-D When the destination is a UNIX file, this parameter specifies the access
permissions (modes) for the directory part of the file name if the directory (or
directories) containing the file must be created dynamically. See the description
of the /file destination in “Supported destinations for syslogd” on page 922 for
details.

-N When the destination is a UNIX file, this parameter specifies a unique qualifier
to append to the archive data set prefix specified on the previous instance of
the BeginArchiveParms statement. The existing UNIX file is left empty and
ready to receive more messages. The original contents of the file are moved

Chapter 20. Syslog daemon 927

into the specified archive dataset. See the description of the /file destination in
“Supported destinations for syslogd” on page 922 for details.

Result: The destination log file will be deleted as a part of the archival process,
and a new one created at the next use. Ensure that the desired permission bits
and file ownership attributes are set as described in Setting permissions for log
files and directories in z/OS Communications Server: IP Configuration Guide.

-X When the destination is a UNIX file, this parameter indicates that the contents
of the z/OS UNIX file should be deleted when an archive event occurs. The
existing UNIX file is left empty and ready to receive more messages. The
original contents of the file are lost. Even though -X is not archiving a file, it is
still governed by archive events. See the description of the /file destination in
“Supported destinations for syslogd” on page 922 for details.

Result: The destination log file will be deleted as a part of the archival process,
and a new one created at the next use. Ensure that the desired permission bits
and file ownership attributes are set as described in Setting permissions for log
files and directories in z/OS Communications Server: IP Configuration Guide.

Restrictions:

v The -F, -D, -N, and -X parameters are only valid when the destination is a z/OS
UNIX file system file.

v You cannot specify scope information as part of an IP address or a host name.
v You cannot specify the -F or -D parameter with the -N or -X parameter.
v You cannot specify the -N parameter with the -X parameter.

The \t parameter in the syntax diagram is a tab character; the \b parameter is a
blank space.

Syslogd browser tool
The two steps to enable the syslogd browser ISPF interface are as follows:
1. Provide ISPF library access. You must provide access to the z/OS

Communications Server ISPF libraries. You can do this by modifying the TSO
logon procedures or by running a CLIST.

2. Add the syslogd browser to the ISPF Primary Option menu or to an ISPF
options menu of your choice. To be able to select the syslogd browser interface
from your ISPF Primary Option menu, you need to update the menu and
processing sections of the ISR@PRIM panel.

Requirement: You must be able to scroll forward and backward in the ISPF
interface to access specific information. Be sure that your keyboard has specific
keys for Page Up and Page Down or that you have set PF keys for these functions
using option 0.3 on the ISPF Primary Option menu. UP or FORWARD works for
scrolling forward. DOWN, BACK, or BACKWARD works for scrolling back.

Providing library access
You must provide access to the z/OS Communications Server ISPF libraries. You
can do this by performing either of the following actions:
v Adding DD statements to your TSO logon procedure
v Allocating the libraries with a REXX exec

The following ISPF libraries are required for using the syslogd browser ISPF
interface:

928 z/OS V2R1.0 Communications Server: IP Configuration Reference

v hlq.SEZAPENU (ISPF panel library; member names all start with EZASY)
v hlq.SEZAMENU (ISPF message library; member names all start with EZASY)
v hlq.SEZAEXEC (REXX program library)

Using the TSO logon procedure
One method of providing access to the z/OS Communications Server ISPF libraries
is to add them to the TSO logon procedure.

Add the following DD statements to your TSO logon procedure, and replace hlq
with your installation's high level qualifier for z/OS Communications Server
libraries:
//ISPPLIB DD DSN=hlq.SEZAPENU,DISP=SHR
//ISPMLIB DD DSN=hlq.SEZAMENU,DISP=SHR

and
//SYSEXEC DD DSN=hlq.SEZAEXEC,DISP=SHR

or
//SYSPROC DD DSN=hlq.SEZAEXEC,DISP=SHR

Using a CLIST
Another method of providing access to the z/OS Communications Server ISPF
libraries is to run a CLIST or a REXX program to allocate the z/OS
Communications Server ISPF libraries. Copy hlq.SEZAEXEC(EZABROWS) into
your system CLIST or REXX library and make changes as indicated in the
comments of that member.

Adding the syslogd browser to the ISPF primary option menu
ISR@PRIM is the default ISPF Primary Option menu panel and a member in the
ISPPLIB library. If you want all of your users to have access to the syslogd browser
from the ISPF primary option menu, you must update the ISR@PRIM member in
the following two places:
v In the menu section (Part 1 of ISR@PRIM) to have an option for the syslogd

browser appear on the ISPF Primary Option menu. See the example in this topic.
v In the processing section (Part 2 of ISR@PRIM) so that the selection invoke the

syslogd browser ISPF interface. You can optionally have the selection execute the
initialization CLIST before invoking the syslogd browser. See the examples in
Figure 31 on page 930 and Figure 32 on page 930.

After you update ISR@PRIM, the option that you added for the syslogd browser
appears on the ISPF Primary Option menu after the next ISPF logon.

Figure 31 on page 930 shows the menu section of the ISPF Primary Option menu
for ISR@PRIM.

Chapter 20. Syslog daemon 929

Figure 32 shows the processing section of the ISPF Primary Option menu for
ISR@PRIM.

)AREA SAREA39
.0 .Settings .Terminal and user parameters .
.1 .View .Display source data or listings .
.2 .Edit .Create or change source data .
.3 .Utilities .Perform utility functions .
.4 .Foreground .Interactive language processing .
.5 .Batch .Submit job for language processing .
.6 .Command .Enter TSO or Workstation commands .
.7 .Dialog Test .Perform dialog testing .
.9 .IBM Products .IBM program development products .
.10.SCLM .SW Configuration Library Manager .
.11.Workplace .ISPF Object/Action Workplace .
.12.z/OS System .z/OS system programmer applications .
.13.z/OS User .z/OS user applications .
.14.Syslogd .z/OS CS Syslogd browser . <=======

Figure 31. Menu section of the ISPF primary option menu for ISR@PRIM

&ZSEL = TRANS (TRUNC (&ZCMD,’.’)
0,’PGM(ISPISM) SCRNAME(SETTINGS)’
1,’PGM(ISRBRO) PARM(ISRBRO01) SCRNAME(VIEW)’
2,’PGM(ISREDIT) PARM(P,ISREDM01) SCRNAME(EDIT)’
3,’PANEL(ISRUTIL) SCRNAME(UTIL)’
4,’PANEL(ISRFPA) SCRNAME(FOREGRND)’
5,’PGM(ISRJB1) PARM(ISRJPA) SCRNAME(BATCH) NOCHECK’
6,’PGM(ISRPTC) SCRNAME(CMD)’
7,’PGM(ISPYXDR) PARM(&ZTAPPLID) SCRNAME(DTEST) NOCHECK’
9,’PANEL(ISRDIIS) ADDPOP’
10,’PGM(ISRSCLM) SCRNAME(SCLM) NOCHECK’
11,’PGM(ISRUDA) PARM(ISRWORK) SCRNAME(WORK)’
12,’PANEL(ISR@390S) SCRNAME(OS390S)’
13,’PANEL(ISR@390U) SCRNAME(OS390U)’
14,’CMD(EZASYRGO) NEWPOOL PASSLIB NEWAPPL(EZAS)" ’ <======
X,EXIT

Figure 32. Processing section of the ISPF Primary Option menu for ISR@PRIM

930 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 21. Policy Agent and policy applications

For related information about Policy Agent and the policy applications, see the
policy based networking information in z/OS Communications Server: IP
Configuration Guide.

Also, for more information about policy schema definition files, see Chapter 23,
“Intrusion detection services policy,” on page 1225.

Policy configuration files
This topic contains information about the policy configuration files, including
overviews and syntax rules.

Policy Agent configuration files overview
When the Policy Agent is started, the main policy configuration file is used. Use
this initial configuration file to point to other policy files that contain specific
policies for other corresponding TCP/IP images. Policy files can be stored locally
or on a remote system.

There are multiple types of configuration files. The role of the Policy Agent
determines which files are used and for what purpose. Policy Agent can act in the
role of a policy server, providing centralized policy services for a set of policy
clients. It can also act as a policy client, retrieving remote policies from the policy
server. The policy client installs these remote policies in the corresponding TCP/IP
image. In either case (policy client or policy server), local policies can also be
stored in local configuration files. The following configuration files are used on the
policy client or policy server to configure operational characteristics or to define
local policies:
v Main configuration file (determined using a standard search order); can refer to

policy common configuration files
v Common IPSec configuration file (specified on the CommonIpSecConfig

statement)
v Common Application Transparent Transport Layer Security (AT-TLS)

configuration file (specified on the CommonTTLSConfig statement)
v Common IDS configuration file (specified on the CommonIDSConfig statement)
v Common Routing configuration file (specified on the CommonRoutingConfig

statement)
v Image configuration files (specified on the TcpImage or PEPInstance statement);

can refer to policy specific image configuration files
v Image IPSec configuration files (specified on the IpSecConfig statement)
v Image AT-TLS configuration files (specified on the TTLSConfig statement)
v Image IDS configuration files (specified on the IDSConfig statement)
v Image QoS configuration files (specified on the QOSConfig statement)
v Image Routing configuration files (specified on the RoutingConfig statement)

On the policy server, the following configuration files are used to define policies
for policy clients:
v Policy client common configuration files (specified on the

DynamicConfigPolicyLoad statement)

© Copyright IBM Corp. 2000, 2015 931

v Policy client image configuration files (specified on the
DynamicConfigPolicyLoad statement

Tips:

v If the TcpImage or PEPInstance statement does not specify an image
configuration file, then the main configuration file is also the image
configuration file for that TCP/IP image.

v If the QOSConfig statement is not specified, then QoS policies are defined in the
image configuration file, not in a separate image QoS configuration file.

Policy Agent configuration statements overview
The following statements configure basic operational parameters for the Policy
Agent, and you can specify them only in the main configuration file:
v AutoMonitorApps
v AutoMonitorParms
v ClientConnection (on the policy server)
v Codepage
v DynamicConfigPolicyLoad (on the policy server)
v LogLevel
v ServerConnection (on the policy client)
v ServicesConnection
v TcpImage or PEPInstance

Use the following statement to configure a policy client to retrieve remote policies
from a policy server. Specify this statement in the image configuration file, on a
per-stack basis:
v PolicyServer

Use the following statements to configure optional files for some policy types (both
common and image-specific files) to obtain local policies:
v CommonIDSConfig
v CommonIPSecConfig
v CommonRoutingConfig
v CommonTTLSConfig
v IdsConfig
v IPSecConfig
v QOSConfig
v RoutingConfig
v TTLSConfig

The ReadFromDirectory statement optionally configures the Policy Agent as an
LDAP client, and you can specify them in the image configuration files, on a
per-stack basis.

The following statements configure functional parameters for the Policy Agent and
you can specify them in the image QoS configuration files, on a per-stack basis:
v PolicyPerfMonitorForSDR
v PolicyPerformanceCollection
v SetSubnetPrioTosMask

932 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 65 on page 945 shows statements that define policies; you can specify these
statements in the image configuration files for each policy type, on a per-stack
basis.

General syntax rules for Policy Agent
The following list shows the general configuration rules. Unless otherwise noted,
these rules apply to both the configuration file and the Lightweight Directory
Access Protocol (LDAP) server:
v Specify Policy Agent configuration files using code page IBM-1047 for EBCDIC,

unless the Codepage statement is configured.
v Only one attribute and its values can be specified per line.
v Text beyond the specified attribute and value is ignored.
v Text beginning with the # character is a comment and is ignored, unless

documented otherwise.
v Comments beginning with the # character in an LDAP server ldif configuration

file might only be recognized as comments at the beginning of the file; therefore
do not specify such comments elsewhere in the file, as they are interpreted as
part of an attribute or attribute value.

v For most range specifications, the ranges can be delimited by a colon (:), a dash
(-), or a blank (), but these delimiters cannot be mixed within a single range
specification. IP address ranges cannot use the colon or blank delimiter, unless
stated otherwise.

v See z/OS Communications Server: IPv6 Network and Application Design Guide
for information about types of policies that support IPv6.

v IPv6 policy is installed but is not enforceable in a stack that is not IPv6 enabled.
v IPv4-mapped IPv6 addresses and IPv6 addresses with the reserved prefix ::/96

are valid only for IP filter rules and for the Identity parameter on local and
remote security end points.

v The maximum decimal value for numeric values is 4294967295, unless otherwise
noted.

v Policy rule and action names are limited to 32 characters. If QoS and IDS LDAP
statement names longer than 32 characters are specified, they are silently
truncated. All other statements longer than 32 characters cause an error message
to be written to the log.

v If a configuration file or LDAP configuration contains duplicate statement or
object names, Policy Agent keeps the first or the last statement or object, as
follows. The following situations are considered warnings, not errors.
– For IDS (LDAP) and QoS, Policy Agent keeps the first entry.
– For IDS (configuration file), IPSec, Routing, and AT-TLS, Policy Agent keeps

the last entry.
v If a QoS or IDS statement or object is defined with the same name in both a

configuration file and LDAP, Policy Agent keeps the first such statement or
object that it reads. This is typically the statement or object in the configuration
file, but as a result of timing constraints, it could also be the statement in LDAP.
The last duplicate statement or object is discarded; this is considered an error.

v Specify most attributes for configuration file statements only once per statement
(exceptions are noted where appropriate). If you specify multiple attributes, no
error or warning messages are written to the log, and the last instance of the
attribute is used.

v Attributes for policies defined on an LDAP server can be single- or multi-valued
(meaning a single value or multiple values are allowed for that attribute). The

Chapter 21. Policy Agent and policy applications 933

Policy Agent detects multiple values for attributes that are defined as single
valued, and treats the policy object as in error.

v The policy version is specified by the configuration file statement name, as
follows:
– ServicePolicyRules and ServiceCategories statements specify version 1

policies.
– PolicyRule and PolicyAction statements specify version 2 policies.

Result: The policy version of LDAP-defined objects is determined by the
LDAP_SchemaVersion parameter on the ReadFromDirectory statement.

For more information about policy version definitions, see z/OS
Communications Server: IP Configuration Guide. For more information about
policy version differences, see z/OS Communications Server: IP Diagnosis
Guide.

v Some configuration statements use an inline statement syntax. When a given
statement is specified inline within another statement, only the inline statement
name is shown in the syntax diagrams. However, the entire statement being
inlined must be specified, including its own set of start and end braces ({}) and
all parameters.
Tip: The name parameter on the statement name might or might not be
optional, depending on the specific statement. In the following example, the
IpFilterRule statement is included inline within the IpFilterGroup statement. A
name is required on the IpFilterRule statement, for example, Rule1All-Permit, as
follows:
IpFilterGroup ZoneAll
{

IpFilterRule Rule1All-Permit
{
IpSourceAddr All
IpDestAddr All
IpServiceGroupRef Resolver
IpServiceRef PathMtuDiscovery
IpServiceGroupRef Ping-Outbound-Only
IpGenericFilterActionRef permit
}

}

v For named inline statements where the name is optional, a nonpersistent system
name is created using the named portion of the statement name with a unique
identifier. This prevents reuse of the named inline statement as a reference name.

v Errors detected in a policy rule or action result in that policy object being
discarded.

v For IPSec, Routing, or AT-TLS policies, any errors detected during parsing
results in no new policies being installed. For all other policy types, only the
policy objects that contain errors are discarded.

v If a rule refers to an action that does not exist (or has been discarded due to an
error) then the rule is also discarded.

v If a Routing action refers to a route table that does not exist (or has been
discarded as the result of an error), the action is also discarded.

v Some statements, parameters, parameter values, rules, or restrictions apply only
to certain release levels. See the Policy-based networking information in z/OS
Communications Server: IP Configuration Guide for more details about mixed
release levels when using policy clients with a policy server. The following
tables list the definitions that are supported for each release level.

934 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 56 lists statements, parameters, and parameter values that are no longer
supported:

Table 56. Statements, parameters, and parameter values that are no longer supported

Statement Parameter Parameter value Description/Notes
Last release
supported

PolicyAction PolicyScope TR TR indicates that the
scope is Traffic
Regulation.

z/OS V1R9

PolicyAction v TypeActions

v TotalConnections

v Percentage

v TimeInterval

v LoggingLevel

z/OS V1R9

IpFilterPolicy RFC4301Compliance This parameter is
deprecated. RFC 4301
compliance is no
longer optional as of
V1R12.

z/OS V1R11

Table 57. Valid statements, parameters, and parameter values for z/OS V2R1 and later releases

Statement Parameter Parameter value Description of change

RouteTable DynamicRoutingParms gateway_addr Value can be an IPv4
address, an IPv6 address,
the keyword IPV4, or the
keyword IPV6.

RouteTable Route ipaddress Value can be an IPv4
address, an IPv6 address,
the keyword DEFAULT, or
the keyword DEFAULT6.

RouteTable Route gateway_addr Value can be an IPv4
address or an IPv6
address.

RouteTable Multipath6

RouteTable DynamicXCFRoutes6

RouteTable IgnorePathMtuUpdate6

RoutingRule IpSourceAddr ipaddress Value can be an IPv4
address, an IPv6 address,
or the keyword All. If a
source address is not
specified, the default
value is All.

RoutingRule v IpSourceAddrRef

v IpSourceAddrSetRef

v IpSourceAddrGroupRef

An IPv4 addresses, an
IPv6 addresses, or both,
can be referenced. If a
source address is not
specified, the default
value is All.

Chapter 21. Policy Agent and policy applications 935

Table 57. Valid statements, parameters, and parameter values for z/OS V2R1 and later releases (continued)

Statement Parameter Parameter value Description of change

RoutingRule IpDestAddr ipaddress Value can be an IPv4
address, an IPv6 address,
or the keyword All. If a
destination address is not
specified, the default
value is All.

RoutingRule v IpDestAddrRef

v IpDestAddrSetRef

v IpDestAddrGroupRef

An IPv4 addresses, an
IPv6 addresses, or both,
can be referenced. If a
destination address is not
specified, the default
value is All.

TTLSCipherParms v V3CipherSuites

v V3CipherSuites4Char

See Table 78 for list of new
cipher names and 2 or 4
hexadecimal character values.

v V3CipherSuites

– New 2-hexadecimal
character values

– New cipher names
defined

v V3CipherSuites4Char

– New 4-hexadecimal
character values

TTLSConnection
Action

v TTLSSignatureParms

v TTLSSignatureParmsRef

TTLSConnection
AdvancedParms

TLSv1.2 v Off

v On

TTLSEnvironment
Action

v SuiteBProfile

v TTLSSignatureParms

v TTLSSignatureParmsRef

v SuiteBProfile

v Off

v 128

v 192

v All

TTLSEnvironment
AdvancedParms

v TLSv1.2

v Renegotiation

v RenegotiationIndicator

v RenegotiationCertCheck

v TTLSv1.2

v Off

v On

v Renegotiation

v Default

v Disabled

v All

v Abbreviated

v RenegotiationIndicator

v Optional

v Client

v Server

v Both

v RenegotiationCertCheck

v Off

v On

936 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 57. Valid statements, parameters, and parameter values for z/OS V2R1 and later releases (continued)

Statement Parameter Parameter value Description of change

TTLSSignatureParms v ClientECurves

v SignaturePairs
ClientECurves

Specifies the list of
elliptic curves that are
supported by the
client, in order of
preference for use.
The elliptical curve
specifications are
used by the client to
tell the server which
elliptical curves can
be used when using
cipher suites that use
elliptical curve
cryptography for the
TLSv1.0 protocol or
later.

SignaturePairs
Specifies the TLS
version 1.2 signature
algorithm pairs that
are supported for the
server certificate.
These pairs are sent
by the client when
proposing use of the
TLSv1.2 protocol to
indicate to the server
which signature/hash
algorithm pairs might
be used in digital
signatures of the
server certificate.
SignaturePairs is
meaningful only
when performing a
handshake with a
Server that supports
the TLSv1.2 protocol
and will be ignored
by any Server that
only supports
TLSv1.1 protocol or
earlier.

Table 58. Valid statements, parameters, and parameter values for z/OS V1R13 and later releases

Statement Parameter Parameter value
Description of
change

IDSAction ActionType Attack v ResetConn

v NoResetconn

Chapter 21. Policy Agent and policy applications 937

Table 58. Valid statements, parameters, and parameter values for z/OS V1R13 and later releases (continued)

Statement Parameter Parameter value
Description of
change

IDSAttackCondition AttackType v DATA_HIDING

v OUTBOUND_RAW_IPV6

v

RESTRICTED_IPV6_DST_OPTIONS

v

RESTRICTED_IPV6_HOP_OPTIONS

v RESTRICTED_IPV6_NEXT_HDR

v TCP_QUEUE_SIZE

v GLOBAL_TCP_STALL

v EE_MALFORMED_PACKET

v EE_LDLC_CHECK

v EE_PORT_CHECK

v EE_XID_FLOOD

IDSAttackCondition v OptionPadChk

v IcmpEmbedPktChk

v RestrictedIPv6OptionRange

v

RestrictedIPv6OptionRangeRef

v

RestrictedIPv6OptionGroupRef

v IPv6NextHdrRange

v IPv6NextHdrRangeRef

v IPv6NextHdrGroupRef

v TcpQueueSize

v IDSExclusion

v IDSExclusionRef

v EEXIDTimeout

IDSExclusion

IDSScanEvent
Condition

Protocol v Icmpv6

v 58

IDSScanEvent
Condition

LocalHostAddr v ipaddress

v All

Value can be an
IPv4 address or an
IPv6 address. All
includes both IPv4
and IPv6 addresses.

IDSScanExclusion ExcludedAddrPort ipaddress Value can be an
IPv4 address or an
IPv6 address.

IDSTRCondition LocalHostAddr v ipaddress

v All

Value can be an
IPv4 address or an
IPv6 address. All
includes both IPv4
and IPv6 addresses.

Ipv6NextHdrGroup

Ipv6NextHdrRange

938 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 58. Valid statements, parameters, and parameter values for z/OS V1R13 and later releases (continued)

Statement Parameter Parameter value
Description of
change

IpAddr Addr ipaddress Value can be an
IPv4 address or an
IPv6 address

IpAddrSet
Prefix

Range

ipaddress Value can be an
IPv4 address or an
IPv6 address

Table 59. Valid statements, parameters, and parameter values for z/OS V1R12 and later releases

Statement Parameter Parameter value Description of change

IpDataOffer HowToEncap This is no longer a
required parameter. The
default is Tunnel.

HowToEncrypt v AES

v AES_CBC KeyLength
128

v AES_CBC KeyLength
256

v AES_GCM_16
KeyLength 128

v AES_GCM_16
KeyLength 256

AES is deprecated and
treated as a synonym for
AES_CBC KeyLength 128.

HowToAuth v Null

v AES128_XCBC_96

v AES_GMAC_128

v AES_GMAC_256

v HMAC_SHA

v HMAC_SHA1

v HMAC_SHA2_256_128

v HMAC_SHA2_384_192

v HMAC_SHA2_512_256

v Null is allowed only in
combination with
HowToEncrypt
AES_GCM_16.

v AES_GMAC_128 and
AES_GMAC_256 are
allowed only in
combination with
HowToEncrypt DoNot.

v HMAC_SHA is
deprecated and treated
as a synonym for
HMAC_SHA1.

IpDynVpnAction HowToEncapIKEv2

v InitiateWithPFS

v AcceptablePFS

v Group19

v Group20

v Group21

v Group24

IpFilterPolicy FIPS140

IpLocalStartAction ICMPCodeGranularity

ICMPTypeGranularity

ICMPv6CodeGranularity

ICMPv6TypeGranularity

MIPv6TypeGranularity

Chapter 21. Policy Agent and policy applications 939

Table 59. Valid statements, parameters, and parameter values for z/OS V1R12 and later releases (continued)

Statement Parameter Parameter value Description of change

IpManVpnAction AuthInboundSa New values are allowed
for the key length, for the
new algorithms added to
the HowToAuth
parameter.

AuthOutboundSa New values are allowed
for the key length, for the
new algorithms added to
the HowToAuth
parameter.

EncryptInboundSa New values are allowed
for the key length, for the
new algorithms added to
the HowToEncrypt
parameter.

EncryptOutboundSa New values are allowed
for the key length, for the
new algorithms added to
the HowToEncrypt
parameter.

HowToAuth v AES128_XCBC_96

v HMAC_SHA

v HMAC_SHA1

v HMAC_SHA2_256_128

v HMAC_SHA2_384_192

v HMAC_SHA2_512_256

HMAC_SHA is deprecated
and treated as a synonym
for HMAC_SHA1.

HowToEncrypt v AES

v AES_CBC KeyLength
128

v AES_CBC KeyLength
256

AES is deprecated and
treated as a synonym for
AES_CBC KeyLength 128.

KeyExchangeAction BypassIpValidation

CertificateURLLookupPreference

HowToAuthMe

HowToInitiate IKEv2 The default for this
parameter is now obtained
from the HowToInitiate
parameter on the
KeyExchangePolicy
statement.

HowToRespond Deprecated and treated as
a synonym for
HowToRespondIKEv1.

HowToRespondIKEv1 This is introduced as a
more accurate synonym
for HowToRespond, which
is now deprecated.

ReauthInterval

RevocationChecking

940 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 59. Valid statements, parameters, and parameter values for z/OS V1R12 and later releases (continued)

Statement Parameter Parameter value Description of change

KeyExchangeOffer DHGroup v Group19

v Group20

v Group21

v Group24

HowToEncrypt v AES

v AES_CBC KeyLength
128

v AES_CBC KeyLength
256

AES is deprecated and
treated as a synonym for
AES_CBC KeyLength 128.

HowToAuthMsgs v SHA2_256

v SHA2_384

v SHA2_512

HowToVerifyMsgs

PseudoRandomFunction

KeyExchangePolicy BypassIpValidation

CertificateURLLookupPreference

HowToInitiate

LivenessInterval

RevocationChecking

LocalSecurityEndpoint Identity KeyId

RemoteIdentity Identity KeyId

RemoteSecurityEndpoint Identity KeyId

Table 60. Valid statements, parameters, and parameter values for z/OS V1R10 and later releases

Statement Parameter Parameter value
Description of
change

IpDynVpnAction v PassthroughDF

v PassthroughDSCP

IPFilterPolicy v ImplicitDiscardAction

v RFC4301Compliance

IPFilterRule v RemoteIdentity

v RemoteIdentityRef

IpGenericFilterAction DiscardAction

IpManVpnAction v PassthroughDF

v PassthroughDSCP

IpManVpnAction v LocalSecurityEndpointAddr

v RemoteSecurityEndpointAdd

v Any

v Any4

IpService Protocol v MIPv6

v Opaque

IpService FragmentsOnly

Chapter 21. Policy Agent and policy applications 941

Table 60. Valid statements, parameters, and parameter values for z/OS V1R10 and later releases (continued)

Statement Parameter Parameter value
Description of
change

IpService Type Code A range of
values is
allowed when
the Protocol
parameter
value is Icmp
or Icmpv6.

IpService Protocol IPv6Frag IPv6Frag is not
valid. This
IPv6Frag value
does not match
any traffic.

KeyExchangeAction v FilterByIdentity

v ConstrainSource

v ConstrainSourceRef

v ConstrainSourceSetRef

v ConstrainSourceGroupRef

v ConstrainDest

v ConstrainDestRef

v ConstrainDestSetRef

v ConstrainDestGroupRef

LocalSecurityEndpoint Location v ipaddress/
prefixLength

v

ipaddress-ipaddress

LocalSecurityEndpoint v LocationSetRef

v LocationGroupRef

RemoteIdentity

RemoteSecurityEndpoint v LocationGroupRef

v RemoteIdentityRef

Table 61 lists statements, parameters, and parameter values that contain rules or
restrictions that differ for z/OS V1R12 and later releases, as compared to earlier
releases.

Table 61. Valid rules and restrictions for V1R12 and later releases

Statement Parameter Parameter value Description of change

IpService v Type

v Code

The rule about certain Type and
Code values not being allowed
in combination with the
IpDynVpnAction statement is
removed.

Table 62 on page 943 lists statements, parameters, and parameter values that
contain rules or restrictions that differ for z/OS V1R10 and later releases, as
compared to earlier releases.

942 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 62. Valid rules and restrictions for V1R10 and later releases

Statement Parameter Parameter value Description of change

IpManVpnAction v LocalSecurityEndpointAddr

v RemoteSecurityEndpointAdd

address The IPv6 and IPv4 unspecified
addresses are not allowed.

IpManVpnAction v AuthInboundSa

v EncryptInboundSa

spi In prior releases,
IpManVpnAction objects were
required to have unique
inbound AH or ESP spi values.
spi values no longer need to be
unique if the
LocalSecurityEndpointAddr
specification differs from that of
other IpManVpnAction objects
that share the same AH or ESP
spi value.

IpService v SourcePortRange

v DestinationPortRange

v Type Code

For V1R12 and later releases, or
if RFC4301Compliance Yes is
specified on the IpFilterPolicy
statement, the Routing
specification Routed or Either
must have one of the following
configurations:

v A SourcePortRange and
DestinationPortRange
specification configured to 0
(if applicable)

v A Type and Code
specification configured to
Any (if applicable)

Policy Agent general configuration file statements
Table 63 and Table 64 on page 944 list the Policy Agent general configuration file
statements, including the purpose of each statement.

Table 63. Policy Agent main configuration file statements

Statement Purpose See

AutoMonitorApps Specifies applications to be monitored
and automatically started or restarted
by Policy Agent.

“AutoMonitorApps statement”
on page 950

AutoMonitorParms Specifies global parameters that
control how Policy Agent monitors
and starts or restarts applications.

“AutoMonitorParms
statement” on page 954

ClientConnection Configures the Policy Agent as a
policy server, listening on the specified
port for remote connections.

“ClientConnection statement”
on page 955

Codepage Specifies the EBCDIC code page to be
used when reading configuration files
and policy definition files.

“Codepage statement” on
page 956

CommonIDSConfig Specifies the path of an IDS policy file
that contains common IDS policy
statements.

“CommonIDSConfig
statement” on page 957

Chapter 21. Policy Agent and policy applications 943

Table 63. Policy Agent main configuration file statements (continued)

Statement Purpose See

CommonIPSecConfig Specifies the path of an IPSec policy
file that contains common IPSec policy
statements.

“CommonIPSecConfig
statement” on page 958

CommonRoutingConfig Specifies the path of a Routing policy
file that contains common Routing
policy statements.

“CommonRoutingConfig
statement” on page 959

CommonTTLSConfig Specifies the path of an AT-TLS policy
file that contains common AT-TLS
policy statements.

“CommonTTLSConfig
statement” on page 960

DynamicConfigPolicyLoad Specifies the configuration file names
to use on the policy server for policy
client policies.

“DynamicConfigPolicyLoad
statement” on page 961

LogLevel Specifies level of tracing. “LogLevel statement” on page
970

ServerConnection Specifies the connection information
used by a policy client to connect to
the policy server. This statement
includes security information and the
location of the policy server.

“ServerConnection statement”
on page 988

ServicesConnection Specifies the listening port, listening
TCP/IP image, and security level for
connections to this Policy Agent.

“ServicesConnection
statement” on page 993

TcpImage and PEPInstance Defines a TCP/IP image and its
associated configurations.

“TcpImage and PEPInstance
statement” on page 999

Table 64. Policy Agent image configuration file statements

Statement Purpose File See

IDSConfig Specifies the path of an
IDS policy file that
contains stack-specific IDS
policy statements. This
statement is required to
read an IDS configuration
file for a given stack.

Image “IDSConfig statement” on page 967

IPSecConfig Specifies the path of an
IPSec policy file that
contains stack-specific
IPSec policy statements.
This statement is required
to define IPSec policy for a
given stack.

Image “IPSecConfig statement” on page 969

PolicyPerfMonitorForSDR Enables or disables the
policy performance
monitor function.

QoS
image

“PolicyPerfMonitorForSDR statement” on
page 971

PolicyPerformanceCollection Enables or disables the
policy performance
collection function.

QoS
image

“PolicyPerformanceCollection statement” on
page 974

944 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 64. Policy Agent image configuration file statements (continued)

Statement Purpose File See

PolicyServer Configures the Policy
Agent as a policy client,
and specifies what types of
policies to retrieve from
the policy server. This
statement also specifies
security and processing
information that is passed
to the policy server.

Image “PolicyServer statement” on page 977

QOSConfig Specifies the path of a QoS
policy file that contains
stack-specific QoS policy
statements.

Image “QOSConfig statement” on page 981

ReadFromDirectory Initializes Policy Agent as
an LDAP client.

Image “ReadFromDirectory statement” on page 981

RoutingConfig Specifies the path of a
Routing policy file that
contains stack-specific
Routing policy statements.
This statement is required
to read a Routing
configuration file for a
given stack.

Image “RoutingConfig statement” on page 987

SetSubnetPrioTosMask Defines IPv4 ToS byte or
IPv6 Traffic Class to device
and virtual LAN (VLAN)
user priority mapping.

QoS
image

“SetSubnetPrioTosMask statement” on page
996

TTLSConfig Specifies the path of an
AT-TLS policy file that
contains stack-specific
AT-TLS policy statements.
This statement is required
to define AT-TLS policy for
a given stack.

Image “TTLSConfig statement” on page 1001

Table 65 lists the configuration file statements that define policies, and the purpose
and policy type of each.

Table 65. Policy Agent configuration file policy statements

Statement Purpose Type See

IDSAction Defines IDS
action.

IDS “IDSAction statement” on page 1043

IDSAttackCondition Defines IDS
rule attack
condition.

IDS “IDSAttackCondition statement” on page 1046

IDSExclusion Defines IDS
rule exclusion

IDS “IDSExclusion statement” on page 1055

IDSReportSet Defines IDS
action report
set.

IDS “IDSReportSet statement” on page 1057

IDSRule Defines IDS
rule.

IDS “IDSRule statement” on page 1060

Chapter 21. Policy Agent and policy applications 945

Table 65. Policy Agent configuration file policy statements (continued)

Statement Purpose Type See

IDSScanEventCondition Defines IDS
rule scan event
condition.

IDS “IDSScanEventCondition statement” on page
1063

IDSScanExclusion Defines IDS
rule scan
exclusion.

IDS “IDSScanExclusion statement” on page 1065

IDSScanGlobalCondition Defines IDS
rule scan
global
condition.

IDS “IDSScanGlobalCondition statement” on page
1067

IDSTRCondition Defines IDS
rule TR
condition.

IDS “IDSTRCondition statement” on page 1068

IpAddr Defines IP
address.

Reusable “IpAddr statement” on page 1191

IpAddrGroup Defines IP
address group.

Reusable “IpAddrGroup statement” on page 1192

IpAddrSet Defines a
single IP
address or
range of IP
addresses.

Reusable “IpAddrSet statement” on page 1193

IPDataOffer Defines
dynamic VPN
data offer.

IPSec “IpDataOffer statement” on page 1072

IPDynVpnAction Defines IP
filter dynamic
VPN action.

IPSec “IpDynVpnAction statement” on page 1077

IpFilterGroup Defines IP
filter policy
group.

IPSec “IpFilterGroup statement” on page 1083

IpFilterPolicy Defines IP
filter global
policy
information.

IPSec “IpFilterPolicy statement” on page 1084

IPFilterRule Defines IP
filter policy
rule.

IPSec “IpFilterRule statement” on page 1087

IpGenericFilterAction Defines IP
filter generic
action.

IPSec “IpGenericFilterAction statement” on page
1091

IpLocalStartAction Defines IP
filter local start
action.

IPSec “IpLocalStartAction statement” on page 1093

IpManVpnAction Defines IP
filter manual
VPN action.

IPSec “IpManVpnAction statement” on page 1098

IpOptionGroup Defines IP
options group.

Reusable “IpOptionGroup statement” on page 1195

946 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 65. Policy Agent configuration file policy statements (continued)

Statement Purpose Type See

IpOptionRange Defines IP
options.

Reusable “IpOptionRange statement” on page 1195

IpProtocolGroup Defines IP
protocols
group.

Reusable “IpProtocolGroup statement” on page 1196

IpProtocolRange Defines IP
protocols.

Reusable “IpProtocolRange statement” on page 1197

IpService Defines IP
filter rule
service.

IPSec “IpService statement” on page 1106

IpServiceGroup Defines IP
filter rule
service group.

IPSec “IpServiceGroup statement” on page 1111

IpTimeCondition Defines time
condition.

Reusable “IpTimeCondition statement” on page 1198

Ipv6NextHdrGroup Defines a
group of IPv6
next header
values

Reusable “Ipv6NextHdrGroup statement” on page 1200

Ipv6NextHdrRange Defines a
range of IPv6
next header
values

Reusable “Ipv6NextHdrRange statement” on page 1200

KeyExchangeAction Defines a key
exchange
action for a
dynamic VPN.

IPSec “KeyExchangeAction statement” on page 1111

KeyExchangeGroup Defines a key
exchange
group.

IPSec “KeyExchangeGroup statement” on page 1119

KeyExchangeOffer Defines key
exchange
dynamic VPN
offer.

IPSec “KeyExchangeOffer statement” on page 1120

KeyExchangePolicy Defines key
exchange
global policy
information.

IPSec “KeyExchangePolicy statement” on page 1126

KeyExchangeRule Defines key
exchange
policy rule.

IPSec “KeyExchangeRule statement” on page 1131

LocalDynVpnGroup Defines local
dynamic VPN
policy group.

IPSec “LocalDynVpnGroup statement” on page 1133

LocalDynVpnPolicy Defines local
dynamic VPN
global policy
information.

IPSec “LocalDynVpnPolicy statement” on page 1134

LocalDynVpnRule Defines local
dynamic VPN
policy rule.

IPSec “LocalDynVpnRule statement” on page 1135

Chapter 21. Policy Agent and policy applications 947

Table 65. Policy Agent configuration file policy statements (continued)

Statement Purpose Type See

LocalSecurityEndpoint Defines local
security
endpoint for
IPSec policies.

IPSec “LocalSecurityEndpoint statement” on page
1138

PolicyAction Defines QoS
policy action.

QoS “PolicyAction statement” on page 1168

PolicyRule Defines QoS
policy rule.

QoS “PolicyRule statement” on page 1176

PortGroup Defines a port
group.

Reusable “PortGroup statement” on page 1201

PortRange Defines a
single port or
range of ports.

Reusable “PortRange statement” on page 1202

RemoteIdentity Defines a
single or
wildcard value
remote
identity to use
when
negotiating
dynamic VPN
tunnels.

IPSec “RemoteIdentity statement” on page 1144

RemoteSecurityEndpoint Defines remote
security
endpoint for
IPSec policies.

IPSec “RemoteSecurityEndpoint statement” on page
1146

RouteTable Defines
Routing route
table.

Routing “RouteTable statement” on page 1152

RoutingAction Defines
Routing policy
action.

Routing “RoutingAction statement” on page 1163

RoutingRule Defines
Routing policy
rule.

Routing “RoutingRule statement” on page 1164

ServiceCategories Defines V1
QoS policy
action.

QoS “ServiceCategories statement” on page 1183

ServicePolicyRules Defines V1
QoS policy
rule.

QoS “ServicePolicyRules statement” on page 1187

TrafficDescriptor Defines traffic
descriptors.

Reusable “TrafficDescriptor statement” on page 1203

TrafficDescriptorGroup Defines traffic
descriptor
groups.

Reusable “TrafficDescriptorGroup statement” on page
1205

TTLSCipherParms Defines cipher
specification
for AT-TLS
policies.

AT-TLS “TTLSCipherParms statement” on page 1004

948 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 65. Policy Agent configuration file policy statements (continued)

Statement Purpose Type See

TTLSConnectionAction Defines
AT-TLS
connection
action.

AT-TLS “TTLSConnectionAction statement” on page
1009

TTLSConnectionAdvancedParms Defines
AT-TLS
advanced
connection
parameters.

AT-TLS “TTLSConnectionAdvancedParms statement”
on page 1012

TTLSEnvironmentAction Defines
AT-TLS
environment
action.

AT-TLS “TTLSEnvironmentAction statement” on page
1017

TTLSEnvironmentAdvancedParms Defines
AT-TLS
advanced
environment
parameters

AT-TLS “TTLSEnvironmentAdvancedParms
statement” on page 1020

TTLSGroupAction Defines
AT-TLS group
action.

AT-TLS “TTLSGroupAction statement” on page 1028

TTLSGroupAdvancedParms Defines
AT-TLS
advanced
group
parameters.

AT-TLS “TTLSGroupAdvancedParms statement” on
page 1030

TTLSGskAdvancedParms Defines
AT-TLS System
SSL advanced
parameters.

AT-TLS “TTLSGskAdvancedParms statement” on page
1032

TTLSGskLdapParms Defines set of
LDAP
parameters for
AT-TLS
policies.

AT-TLS “TTLSGskLdapParms statement” on page 1033

TTLSKeyringParms Defines set of
key ring
parameters for
AT-TLS
policies.

AT-TLS “TTLSKeyringParms statement” on page 1035

TTLSRule Defines
AT-TLS policy
rule.

AT-TLS “TTLSRule statement” on page 1036

TTLSignatureParms Defines
AT-TLS client
elliptic curve
preferences
and signature
algorithm pair
specifications

AT-TLS “TTLSSignatureParms statement” on page
1041

Rules:

Chapter 21. Policy Agent and policy applications 949

v For statements of type QoS, policies are configured in the image or QoS image
configuration file.

v For statements of type IDS, policies are configured in the common or image IDS
configuration files.

v For statements of type IPSec, policies are configured in the common or image
IPSec configuration files.

v For statements of type Routing, policies are configured in the common or image
Routing configuration file.

v For statements of type AT-TLS, policies are configured in the common or image
AT-TLS configuration files.

v For statements of type Reusable, policies are configured in the common or image
IDS, IPSec, AT-TLS, or Routing configuration files.

AutoMonitorApps statement

You can configure the Policy Agent to monitor and automatically start or restart a
set of related applications. The following set of applications can be monitored:
v Defense Manager daemon (DMD)
v IKE daemon (IKED)
v Network Security Server daemon (NSSD)
v Syslog daemon (SYSLOGD)
v Traffic Regulation Manager daemon (TRMD)

Use the AutoMonitorParms statement to configure global parameters that control
how the Policy Agent monitors and starts or restarts these applications.

Use the AutoMonitorApps statement to configure which applications should be
monitored and to specify application-specific parameters.

Restriction: To automatically monitor applications, Policy Agent must be started
with a user ID that has superuser authority UID(0). For sample RACF commands,
see the EZARACF member of SEZAINST.

Results:
v If you configure applications to be automatically started and restarted, be aware

of the following results:
– If you start the Policy Agent after you have already started an application to

be monitored, Policy Agent starts monitoring the application (if it was
originally started with the same job name that is configured to the Policy
Agent). If the application needs to be restarted later, it is restarted using the
cataloged procedure configured to the Policy Agent. This might not be the
same procedure that was originally used to start the application.

– If you start the Policy Agent after you have already started an application to
be monitored, but the application does not use the same job name that is
configured to the Policy Agent, the Policy Agent cannot detect that the
application is active. Policy Agent tries to start another instance of the
application, and this start is likely to fail.
Tip: If you configure applications to be monitored by the Policy Agent, ensure
that those applications are not running before you start the Policy Agent.
Sometimes you might need to start syslogd before starting the Policy Agent. If
you start syslogd before starting the Policy Agent, ensure that Policy Agent is
configured with the correct syslogd job name.

950 z/OS V2R1.0 Communications Server: IP Configuration Reference

v If this statement is removed, or one or more AppName parameters or instances
of the TcpImageName parameter are removed, Policy Agent stops monitoring
the affected applications. You must stop or restart the applications if needed.

v If one or more AppName parameters, or instances of the TcpImageName
parameter are added, Policy Agent starts the affected applications and begins
monitoring them.

v If any of the parameters other than AppName or TcpImageName are added,
removed, or changed, Policy Agent stops and restarts the affected applications.

Syntax

�� AutoMonitorApps Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
AutoMonitorApps Parameters

}

AutoMonitorApps Parameters:

�

AppName DMD AppName Specification
IKED
NSSD
SYSLOGD
TRMD

AppName Specification:

{
AppName Specification Parameters
MultiImage Specification

}

MultiImage Specification:

TcpImageName image
TcpImageName Specification

TcpImageName Specification:

{
AppName Specification Parameters

}

AppName Specification Parameters:

Chapter 21. Policy Agent and policy applications 951

ProcName name
Jobname name StartParms parms

�

� �

EnvVar envvar=value

Parameters

AppName
Specifies which applications you need to monitor and automatically start and
restart. Repeat this parameter for each application.

TcpImageName
A string 1 - 8 characters in length that specifies the TCP/IP images on which
the application runs. Repeat this parameter for each image.

Rules:

v This parameter is required and valid only for applications that run a
separate instance for each TCP/IP image. Currently, the only application that
does this is TRMD.

v You can specify a maximum of eight unique TcpImageName parameters for
a given AppName parameter.

v You must configure the specified TCP/IP image on a TcpImage statement.

Results:

v In a single stack (INET) environment, the application runs on the active
TCP/IP image.

v In a common INET (CINET) environment, if you do not specify the TCP/IP
image name, the application runs on the default TCP/IP image (resolver
supplied TCPIPuserid statement or TCPIPjobname statement). If the default
TCP/IP image cannot be determined, the Policy Agent uses the name INET
and the Policy agent creates an internal TcpImage statement with default
values to represent the specified TCP/IP image.

v If the TcpImage statement for the specified TcpImageName is removed,
Policy Agent stops monitoring the application for that TCP/IP image.

ProcName
A string 1 - 8 characters in length that specifies the name of a cataloged
procedure that is used to start the application. A sample procedure is included
in SEZAINST(EZAPOLPR).

Tip: You can use a single generic cataloged procedure for all configured
applications. Parameters are passed to the start procedure to identify the
application name and application-specific parameters. If you use a single
procedure, then all started applications run under the same user ID. If you
want to use different user IDs for each application, specify different procedure
names for the applications using this parameter.

Rule: The specified procedure must contain the JCL parameters listed in
Table 66 on page 953.

952 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 66. JCL parameters

Procedure variable Description
Value passed by the Policy
Agent

PROG Specifies the name of the
application program
executable.

One of the following
supported application names:

v DMD

v IKED

v NSSD

v SYSLOGD

v TRMD

VARS Specifies the name of a
temporary file containing
environment variables for the
application.

Temporary file name
generated by the Policy
Agent.

PARMS Specifies start parameters for
the application.

The string specified on the
StartParms parameter on the
AutoMonitorApps statement,
or a null string.

Jobname
A string 1 - 8 characters in length that specifies the runtime job name for
the application.

Rules:

v For applications that do not use the TcpImageName parameter, this
parameter is optional. The default is the value specified with the
AppName parameter.

v For applications that use the TcpImageName parameter, this parameter
is required so that the job name for each instance is unique.

StartParms
A string 1 - 45 characters in length that specifies the start parameters for
the application. Specify the parameters in the same way that you would
specify them on the PARM parameter on the EXEC JCL statement, but do
not include single quotation marks. For example:
StartParms -d 1

EnvVar
A string 1 - 1 024 characters in length that specifies environment variables
for the application. Repeat this parameter for each environment variable.
Specify the environment variable name and the value, separated by an
equal sign. The following examples show how this parameter can be used:
v To specify the configuration file for the IKED, use the following code:

EnvVar IKED_FILE=/etc/iked.conf

v To specify the resolver configuration file for the TRMD, use the
following code:
EnvVar RESOLVER_CONFIG=//’SYS1.TCPPARMS(TCPDATA2)’

v To specify the time zone for the NSSD, use the following code:
EnvVar TZ=EST5EDT

Examples

This example shows how to specify parameters for the following types of
applications:

Chapter 21. Policy Agent and policy applications 953

v An application without stack affinity, which means that a single copy of the
application runs regardless of how many TCP/IP stacks are running. This
example uses the IKED as such an application.

v An application with stack affinity, which means that one instance of the
application runs on each TCP/IP stack. This example uses TRMD as such an
application.

AutoMonitorApps
{

AppName IKED
{

Procname POLPROC
}
AppName TRMD
{

TcpImageName TCPIP1
{

Procname POLPROC
Jobname TRMD1

}
TcpImageName TCPIP3
{

Procname POLPROC
Jobname TRMD3

}
}

}

AutoMonitorParms statement

Use the AutoMonitorParms statement to configure the Policy Agent to monitor and
automatically start or restart a set of related applications. The following set of
applications can be monitored:
v Defense Manager daemon (DMD)
v IKE daemon (IKED)
v Network Security Server daemon (NSSD)
v Syslog daemon (SYSLOGD)
v Traffic Regulation Manager daemon (TRMD)

Use the AutoMonitorApps statement to configure what applications should be
monitored and to specify application-specific parameters.

Use this statement to configure global parameters that control how the Policy
Agent monitors and starts or restarts the configured applications. If the default
values for all parameters are acceptable, you do not need to use this statement.

Results:
v If this statement is removed, the default values are applied when the previously

specified MonitorInterval value expires.
v If this statement is added, the new values are applied when the previous default

MonitorInterval value expires.
v If any changes are made to this statement, the new values are applied when the

previously specified MonitorInterval value expires.

954 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

�� AutoMonitorParms Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
AutoMonitorParms Parameters

}

AutoMonitorParms Parameters:

MonitorInterval 10

MonitorInterval n

RetryLimitCount 5

RetryLimitCount n

RetryLimitPeriod 600

RetryLimitPeriod n

Parameters

MonitorInterval
Specifies the interval, in seconds, at which an application should be monitored
to determine if that application is still running. Valid values are in the range 1
- 86400. The default value is 10 seconds.

RetryLimitCount
Specifies the number of times that Policy Agent should start or restart an
application within the time period specified by the RetryLimitPeriod
parameter. Valid values are in the range 1 - 99. The default value is 5.

Each time an application is started, Policy Agent waits 1 minute for the
application to start. If it does not start, Policy Agent tries to start it again until
the limit specified by this parameter is reached. If the application still has not
started, Policy Agent stops monitoring the application until a MODIFY
MON,START command is issued for the application. For example, if the
application is the IKED, the MODIFY procname,MON,START,IKED command
causes Policy Agent to resume trying to start the application. See MODIFY
command: Policy Agent in z/OS Communications Server: IP System
Administrator's Commands for information about using MODIFY commands
to manage the monitored applications.

RetryLimitPeriod
Specifies the time interval, in seconds, at which Policy Agent should try to
start or restart an application. See the RetryLimitCount parameter in this topic
for more details. Valid values are in the range 1 - 86400. The default value is
600 (10 minutes).

ClientConnection statement

The Policy Agent acting as a policy server uses the ClientConnection statement to
specify the listening port. The Policy Agent acting as a policy client uses this
connection to retrieve remote policies.

Results:

v An error is flagged if both the ClientConnection and ServerConnection
statements are configured on the same Policy Agent. The result is that there is
no connection between the policy server and policy client.

Chapter 21. Policy Agent and policy applications 955

|
|

|

v If the ClientConnection statement is removed, all connections to policy clients
are disconnected.

v Updates to the ClientConnection statement are used only for new client
connections to the policy server.

Syntax

�� ClientConnection
16310

port
��

Parameters

port
Specifies the port that the policy server listens on for TCP connections from
policy clients. This port must be the same as the ServerPort value specified on
the ServerConnection statement for any policy clients that connect to this
policy server.

The valid port values are in the range 1 - 65 535. The default port value is
16 310.

This statement is optional. If a ClientConnection statement is not configured,
then the Policy Agent does not act as a policy server, and only listens for local
connections using AF_UNIX sockets.

Result: If the port value is updated, then the policy server listens for TCP
connections using the updated value.

Restriction: The port value cannot match the port value configured on the
ServicesConnection statement.

Codepage statement

Use the Codepage statement to specify the EBCDIC code page to be used for
reading all configuration files and policy definition files. The default is IBM-1047.
All statements read from the files are converted to the IBM-1047 code page from
the specified code page.

Result: If you specify a code page that is not one of the supported values, then
Policy Agent issues a warning message to the log file and tries to read the
configuration files using the IBM-1047 code page. It is possible that configuration
errors might be detected in this case.

Syntax

�� Codepage codepage ��

Parameters

codepage
Specifies the EBCDIC code page to be used. The default code page is IBM-1047
if this statement is not specified. The following code pages are supported:
v IBM-037
v IBM-273
v IBM-274

956 z/OS V2R1.0 Communications Server: IP Configuration Reference

v IBM-275
v IBM-277
v IBM-278
v IBM-280
v IBM-281
v IBM-282
v IBM-284
v IBM-285
v IBM-297
v IBM-500
v IBM-871
v IBM-1047
v IBM-1140
v IBM-1141
v IBM-1142
v IBM-1143
v IBM-1144
v IBM-1145
v IBM-1146
v IBM-1147
v IBM-1148
v IBM-1149

CommonIDSConfig statement

Use the CommonIDSConfig statement to specify the path of a local IDS policy file
that contains common IDS policy statements. These common statements can be
referenced from a stack-specific IDS policy file. To define a common set of policies
for multiple stacks, use the IDSConfig statement to specify the same file as the
CommonIDSConfig statement.

Stack-specific IDS policies are defined in a stack-specific IDS policy file. A
stack-specific IDS policy file is identified by an IDSConfig statement.

The refresh interval for the CommonIDSConfig file is inherited from the main
configuration file.

Specify the IDSConfig statement without a path name in each image configuration
file to define a common set of policies for multiple stacks.

Restriction: The CommonIDSConfig statement can appear only in the main
configuration file.

If a CommonIDSConfig statement appears multiple times in the main configuration
file, the last occurrence of the statement is used. If the CommonIDSConfig
statement appears in an image configuration file, it is ignored.

Chapter 21. Policy Agent and policy applications 957

The configuration information defined in the file identified with the
CommonIDSConfig statement is prepended to the configuration information
defined in files identified with the IDSConfig statement. This action has the
following consequences:
v If no IDSConfig statements are specified, then the CommonIDSConfig file is not

parsed by Policy Agent.
Requirement: The IDSConfig statement is required if IDS configuration files
exist for a given stack.

v If multiple stacks are defined, the CommonIDSConfig file is parsed for each
stack; thus, any errors contained in the file are reported multiple times.

Syntax

�� CommonIDSConfig path ��

Parameters

path
The path of the common IDS policy file to be installed.

You can specify an MVS data set name or a z/OS UNIX file name. MVS data
set names must be enclosed in single quotation marks (") and must be
preceded by a double slash (for example, //). The following examples show
both types of names:
CommonIDSConfig //’USER1.PAGENT.CONF(COMIDS)’
CommonIDSConfig /u/user1/pagent.common.ids

Restriction: Dynamic monitoring for file updates using the -i startup option is
supported only for file-system files; MVS data sets are not monitored for
changes.

CommonIPSecConfig statement

Use the CommonIpSecConfig statement to specify the path of a local IPSec policy
file that contains common IPSec policy statements. These common statements can
be referenced from a stack-specific IPSec policy file. To define a common set of
policies for multiple stacks, the IpSecConfig statement can specify the same file as
the CommonIpSecConfig statement.

Stack-specific IPSec policies are defined in an IPSec stack-specific policy file. A
stack-specific IPSec policy file is identified by an IpSecConfig statement. The
refresh interval for the CommonIpSecConfig file is inherited from the main
configuration file.

Specify the IPSecConfig statement without a path name in each image
configuration file to define a common set of policies for multiple stacks.

Restriction: The CommonIpSecConfig statement can appear only in the main
configuration file.

If a CommonIpSecConfig statement appears multiple times in the main
configuration file, the last occurrence of the statement is used. If the
CommonIpSecConfig statement appears in the image configuration file, it is
ignored (unless the main and image configuration files are the same file).

958 z/OS V2R1.0 Communications Server: IP Configuration Reference

The configuration information defined in the file identified with the
CommonIPSecConfig statement is prepended to the configuration information
defined in files identified with the IPSecConfig statement. This action has the
following consequences:
v If no IPSecConfig statements are specified, then the CommonIPSecConfig file is

not parsed by Policy Agent.
Requirement: The IPSecConfig statement is required to define IPSec policy for a
given stack.

v If multiple stacks are defined, the CommonIPSecConfig file is parsed for each
stack; any errors contained in the file are reported multiple times.

Syntax

�� CommonIpSecConfig path ��

Parameters

path
The path of the common IPSec policy file to be installed.

You can specify an MVS data set name or a UNIX file name. MVS data set
names must be enclosed in single quotation marks (' ') and preceded by a
double slash (//). The following examples show both types of names:
CommonIPSecConfig //’USER1.PAGENT.CONF(COMIPSEC)’
CommonIPSecConfig /u/user1/pagent.common.ipsec

Restriction: Dynamic monitoring for file updates using the -i startup option is
supported only for z/OS UNIX files; MVS data sets are not monitored for
changes.

CommonRoutingConfig statement

Use the CommonRoutingConfig statement to specify the path of a local Routing
policy file that contains common Routing policy statements. These common
statements can be referenced from a stack-specific Routing policy file. To define a
common set of policies for multiple stacks, use the RoutingConfig statement to
specify the same file as the CommonRoutingConfig statement.

Stack-specific Routing policies are defined in a stack-specific Routing policy file. A
stack-specific Routing policy file is identified by a RoutingConfig statement.

The refresh interval for the CommonRoutingConfig file is inherited from the main
configuration file.

Specify the RoutingConfig statement without a path name in each image
configuration file to define a common set of policies for multiple stacks.

Restriction: The CommonRoutingConfig statement can appear only in the main
configuration file.

If a CommonRoutingConfig statement appears multiple times in the main
configuration file, the last occurrence of the statement is used. If the
CommonRoutingConfig statement appears in an image configuration file, it is
ignored.

Chapter 21. Policy Agent and policy applications 959

The configuration information defined in the file identified with the
CommonRoutingConfig statement is prepended to the configuration information
defined in files identified with the RoutingConfig statement. This action has the
following consequences:
v If no RoutingConfig statements are specified, then the CommonRoutingConfig

file is not parsed by Policy Agent.
Requirement: The RoutingConfig statement is required if Routing configuration
files exist for a given stack.

v If multiple stacks are defined, the CommonRoutingConfig file is parsed for each
stack; thus, any errors contained in the file are reported multiple times.

Syntax

�� CommonRoutingConfig path ��

Parameters

path
The path of the common Routing policy file to be installed.

You can specify an MVS data set name or a UNIX file name. MVS data set
names must be enclosed in single quotation marks (' ') and preceded by a
double slash (//). Following are examples of both types of names:
CommonRoutingConfig //’USER1.PAGENT.CONF(COMROUT)’
CommonRoutingConfig /u/user1/pagent.common.routing

Restriction: Dynamic monitoring for file updates using the -i startup option is
supported for z/OS UNIX files only; MVS data sets are not monitored for
changes.

CommonTTLSConfig statement

Use the CommonTTLSConfig statement to specify the path of a local AT-TLS policy
file that contains common AT-TLS policy statements. These common statements
can be referenced from a stack-specific AT-TLS policy file. To define a common set
of policies for multiple stacks, the TTLSConfig statement can specify the same file
as the CommonTTLSConfig statement.

Stack-specific AT-TLS policies are defined in a stack-specific AT-TLS policy file. A
stack-specific AT-TLS policy file is identified by a TTLSConfig statement.

The refresh interval for the CommonTTLSConfig file is inherited from the main
configuration file.

Specify the TTLSConfig statement without a path name in each image
configuration file to define a common set of policies for multiple stacks.

Restriction: The CommonTTLSConfig statement can appear only in the main
configuration file.

If a CommonTTLSConfig statement appears multiple times in the main
configuration file, the last occurrence of the statement is used. If the
CommonTTLSConfig statement appears in an image configuration file, it is ignored
(unless the main and image configuration files are the same file).

960 z/OS V2R1.0 Communications Server: IP Configuration Reference

The configuration information defined in the file identified with the
CommonTTLSConfig statement is prepended to the configuration information
defined in files identified with the TTLSConfig statement. This action has the
following consequences:
v If no TTLSConfig statements are specified, then the CommonTTLSConfig file is

not parsed by Policy Agent.
Requirement: The TTLSConfig statement is required to define AT-TLS policy for
a given stack.

v If multiple stacks are defined, the CommonTTLSConfig file is parsed for each
stack, so any errors contained in the file are reported multiple times.

Syntax

�� CommonTTLSConfig path ��

Parameters

path
The path of the common AT-TLS policy file to be installed.

You can specify an MVS data set name or a UNIX file name. MVS data set
names must be enclosed in single quotation marks (' ') and preceded by a
double slash (//). Following are examples of both types of names:
CommonTTLSConfig //’USER1.PAGENT.CONF(COMTTLS)’
CommonTTLSConfig /u/user1/pagent.common.ttls

Restriction: Dynamic monitoring for file updates using the -i startup option is
supported for z/OS UNIX files only; MVS data sets are not monitored for
changes.

DynamicConfigPolicyLoad statement

The Policy Agent acting as a policy server uses the DynamicConfigPolicyLoad
statement to obtain the file names of the configuration files to be retrieved by
policy clients.

The DynamicConfigPolicyLoad statement can appear only in the main
configuration file.

For each policy type the policy client files are read only after the policy client
connects to the policy server. A DynamicConfigPolicyLoad statement (or default
values) is bound to a policy client for the life of that client, until one of the
following occurs:
v The policy client disconnects from the policy server.
v The connection between the policy server and policy client ends.
v The associated DynamicConfigPolicyLoad statement is removed.

Result: When a DynamicConfigPolicyLoad statement is removed, the policy clients
that were using that statement change to use another statement, or default values.

The policy client policies are removed from the policy server in the following
cases:
v The policy client disconnects from the policy server.
v The connection between the policy server and the policy client ends.

Chapter 21. Policy Agent and policy applications 961

v The policy client requests that remote policies for a specific policy type be
unloaded from the policy server.

v The associated DynamicConfigPolicyLoad statement is removed.

To retrieve remote policies with the policy client, you must define security product
authority in the SERVAUTH class for the policy client's user ID; the user ID is
defined on the Userid parameter on the PolicyServer statement. The ClientName
parameter on the PolicyServer statement is used as the image name. For more
information, see the general policy agent configuration information in z/OS
Communications Server: IP Configuration Guide. Wildcard values are allowed in
profile names. The following example shows the structure of the security product
profile:
EZB.PAGENT.sysname.image.ptype

Multiple DynamicConfigPolicyLoad statements can appear in the main
configuration file. The policy server maintains a list of these
DynamicConfigPolicyLoad statements. When a policy client connects to the policy
server, then the policy client name configured on the PolicyServer statement is
matched to the clientname parameter. The names are case sensitive with regard to
matching. This clientname parameter can be a regular expression. The policy server
matches these names in the following order:
1. A clientname parameter that has an exact match to the policy client name. The

policy client name must not contain any regular expression characters.
2. A regular expression clientname parameter that matches the policy client name.

The longest matching regular expression is chosen. If multiple statements
match with the same length clientname parameter, the statement chosen is based
on alphabetical order.

3. If there is no matching clientname parameter or a matching clientname value
does not have a corresponding PolicyType parameter for this policy type, then
the following default remote files are used:
v Stack-specific remote files used for each policy type:

– IDS - /etc/pagent_remote.ids
– IPSec - /etc/pagent_remote.ipsec
– QoS - /etc/pagent_remote.qos
– Routing - /etc/pagent_remote.routing
– AT-TLS - /etc/pagent_remote.ttls

v For any default stack-specific remote file used, there is no corresponding
common configuration file.

v If no matching clientname parameter is found, then the refresh interval is set
to 30 minutes.

Result: The PolicyLoad and CommonPolicyLoad parameters are optional; however,
if neither the PolicyLoad parameter or the CommonPolicyLoad parameters are
configured, this DynamicConfigPolicyLoad statement results in an error and the
statement is discarded.

Syntax

�� DynamicConfigPolicyLoad clientname Put Braces and Parameters on Separate Lines ��

962 z/OS V2R1.0 Communications Server: IP Configuration Reference

Put Braces and Parameters on Separate Lines:

{
DynamicConfigPolicyLoad Parameters

}

DynamicConfigPolicyLoad Parameters:

�

PolicyType IDS PolicyTypeSpecification
IPSec
QoS
Routing
TTLS

�

�
RefreshInterval 1800

RefreshInterval i

PolicyTypeSpecification:

{
PolicyTypeSpecification Parameters

}

PolicyTypeSpecification Parameters:

CommonPolicyLoad path PolicyLoad path

Parameters

clientname
A string 1 - 24 characters in length specifying the client name to be matched to
the policy client name.

Requirement: If this is a regular expression, the string must consist of 1 - 511
characters. Otherwise, it must consist of 1-24 characters.

This clientname parameter is used to match the policy client name when it
connects to Policy Agent to derive its policy files.

The clientname parameter can also consist of a regular expression. The simplest
form of regular expression is a string of characters without a special meaning.
Such a string matches only itself. Table 67 shows the characters with special
meaning:

Table 67. Characters with special meaning

Symbol Description

. The period symbol matches any one
character except the terminal newline
character.

Chapter 21. Policy Agent and policy applications 963

Table 67. Characters with special meaning (continued)

Symbol Description

[character–character] The hyphen symbol (-), within square
brackets, means through. It fills in the
intervening characters according to the
current collating sequence. For example,
[a–z] can be equivalent to [abc...xyz] or, with
a different collating sequence, it can be
equivalent to [aAbBcC...xXyYzZ].

[string] A string within square brackets specifies any
of the characters in the string. Thus [abc], if
compared to other strings, matches any that
contain a, b, or c.

[m] [m,] [m,u] Integer values enclosed within square
brackets indicate the number of times to
apply the preceding regular expression. The
m value is the minimum number, and the u
value is the maximum number. The u value
must be less than 256. If you specify only
the m value, it indicates the exact number of
times to apply the regular expression.

[m,] is equivalent to [m,u]. They both match
m or more occurrences of the expression.
The plus (+) and asterisk (*) operations are
equivalent to [1,] and [0,], respectively.

* The asterisk (*) indicates 0 or more of any
characters. For example, [a*e] matches any
of the following: 99ae9, aaaaae, or a999e99.

^ The caret symbol matches the beginning of
the string.

$ The dollar symbol matches the end of the
string. (Use \n to match a newline
character.)

+ The plus symbol specifies one or more
occurrences of a character. Thus, smith+ern
is equivalent to smithhhern.

[^string] The caret symbol inside square brackets,
negates the characters within the square
brackets. Thus [^abc] matches any characters
except a, b, or c.

(expression) Groups a sub-expression allowing an
operator, such as * or +, to work on the
sub-expression enclosed in parentheses. For
example, (a*(cb+)*).

Rules:

v Do not use multibyte characters.
v You can use the right square bracket (]) alone within a pair of square

brackets, but only if it immediately follows either the opening left square
bracket or if it immediately follows [^. For example, []–] matches the] and –
characters.

v All the preceding symbols are special. Precede them with a slash (\) to use
the symbol itself. For example, a\.e is equivalent to a.e.

964 z/OS V2R1.0 Communications Server: IP Configuration Reference

v You can use the hyphen (-) by itself, but only if it is the first or last character
in the expression. For example, the expression []--0] matches either the] or
else the characters – through 0. Otherwise, use \–.

v If duplicate DynamicConfigPolicyLoad statements with the same clientname
parameter are specified, Policy Agent keeps the last entry.

v If a matching DynamicConfigPolicyLoad statement cannot be found, then
the default stack-specific remote policy file is used.

v You cannot specify duplicate symbolic values in a single file name. For
example, you cannot specify /etc/$1.$2_$1.

v You cannot use both wildcard and symbolic values in the same file name.
For example, you cannot use /etc/$1.* .

PolicyType
Indicates additional policy configuration information for a specific policy type.

Rule: If duplicate PolicyType parameters for the same policy type are
configured, then the policy server keeps the last entry for that policy type.

RefreshInterval
Specifies the time interval (in seconds) that lapses between checks for changes
to the creation or modification time of the common and stack-specific remote
policy files. This attribute applies to all configured policy types. In the
following cases, the update interval is changed:
v If a value is not specified, the default is 1 800 seconds (30 minutes).
v If a value of 0 is specified, the default value of 1 800 seconds (30 minutes) is

used.
v Any value from 1 to 299 is rounded up to 300 seconds (5 minutes).

For example, if the refresh interval is set to 300, the corresponding policy file is
checked for changes every five minutes. If the policy file changed within the
last 5 minutes, it is read again. Any new, changed, or deleted policies are either
added to or removed from the policy client configuration.

Result: If the RefreshInterval parameter is updated, this new refresh interval
takes effect the next time these policies are refreshed.

Restriction: Dynamic monitoring for file updates using the -i startup option is
not supported for files configured on the DynamicConfigPolicyLoad statement.

CommonPolicyLoad
The path of the common remote policy file to be used for the defined policy
type.

You can specify an MVS data set name or a z/OS UNIX file name. MVS data
set names must be enclosed in single quotation marks (' ') and preceded by a
double slash (//). Following are examples of both types of names:
DynamicConfigPolicyLoad (.*)_(.*)
{
PolicyType IDS
{
CommonPolicyLoad //’USER1.PAGENT.REMCONF(COMIDS)’
PolicyLoad //’USER1.PAGENT.REMCONF(IDS)’
}
PolicyType TTLS
{
CommonPolicyLoad /u/user1/pagent.remote.common.ttls
PolicyLoad /u/user1/pagent.remote.ttls
}
}

Chapter 21. Policy Agent and policy applications 965

The common remote policy file statements can be referenced from the
stack-specific remote policy file of the associated policy configuration.
Stack-specific remote policies are defined in the stack-specific remote policy file
within the same policy configuration. A stack-specific remote policy file is
identified by the PolicyLoad parameter.

The configuration information defined in the file identified with the
CommonPolicyLoad parameter is prepended to the configuration information
defined in the file identified with the PolicyLoad parameter.

Rule: If the DynamicConfigPolicyLoad statement matches multiple policy
clients, then the CommonPolicyLoad file is parsed for each policy client. Any
errors contained in the file are reported multiple times.

Restrictions:

v Dynamic monitoring for file updates using the-istartup option is not
supported for the common remote policy file.

v The CommonPolicyLoad parameter is not supported for PolicyType QoS.

Results:

v When the common remote policy file is an MVS data set, it is reread at each
refresh interval, regardless of whether it has actually been changed or not.
The policy server also rereads all the associated stack-specific remote policy
files when the common remote policy file is reread.

v If the CommonPolicyLoad parameter file name is updated, this new
common file is read when policies are refreshed.

PolicyLoad
The path of the stack-specific remote policy file to be used for the defined
policy type.

You can specify an MVS data set name or a z/OS UNIX file name. MVS data
set names must be enclosed in single quotation marks (' ') and preceded by a
double slash (//). Following are examples of both types of names:
DynamicConfigPolicyLoad (.*)_(.*)
{
PolicyType IDS
{
CommonPolicyLoad //’USER1.PAGENT.REMCONF(COMIDS)’
PolicyLoad //’USER1.PAGENT.REMCONF(IDS)’
}
PolicyType TTLS
{
CommonPolicyLoad /u/user1/pagent.remote.common.ttls
PolicyLoad /u/user1/pagent.remote.ttls
}
}

Rules:

v If the PolicyLoad parameter is not specified, then the associated common
remote policy file specified on the CommonPolicyLoad parameter is used.

v The client names and DynamicConfigPolicyLoad statement names are case
sensitive, but MVS data set names are not. Therefore, use caution when
defining MVS data set configuration files that include a wildcard to be
substituted with the client name. For example, the client names client42 and
Client42, if used as a substitution variable in an MVS data set name, would
result in the same configuration file being used for both clients.

Results:

966 z/OS V2R1.0 Communications Server: IP Configuration Reference

v The path name can contain a single wildcard character (*). The policy client
name replaces the wildcard position to obtain the stack-specific remote
policy file.
The following examples use a wildcard path for an IPSec file:
PolicyLoad //’ETC.REMOTE.CONF(*)’
policy client name = Remote1
Stack-specific remote IPSec policy file is:
//’ETC.REMOTE.CONF(REMOTE1)’

PolicyLoad /etc/*.remote
policy client name = REMOTE1
Stack-specific remote IPSec policy file is:
/etc/REMOTE1.remote

v The path name can contain symbolic replacement values $0 through $9. $0
represents the entire portion of the client name that matched, while $1
through $9 represent portions of the client name that match corresponding
parenthesized sub-expressions in the regular expression.
Example of using symbolic replacement values for an IDS file:
Regular expression = ^([A-Z].+[a-z]+)\.([A-Z].+[a-z]+)$

PolicyLoad //’ETC.$1($2)’

policy client name = SYSa.IDSClient
Stack-specific remote IDS policy file will be: //’ETC.SYSA(IDSCLIENT)

Result: If more symbolic replacement values are specified in a file name
than there are parenthesized sub-expressions in the regular expression, the
extra symbolic replacement values are not replaced and exist as literal values
in the file name.

Restriction: Dynamic monitoring for file updates using the -istartup option is
not supported for the stack-specific remote policy file.

Results:

v When the stack-specific remote policy file is an MVS data set, it is reread at
each refresh interval, regardless of whether it has actually been changed or
not.

v If the PolicyLoad parameter file name is updated, the new stack-specific file
is read when policies are refreshed.

IDSConfig statement

Use the IDSConfig statement to specify the path of a local IDS policy file that
contains stack-specific IDS policy statements.

Requirement: The IDSConfig statement is required to define IDS configuration file
policy for a given stack.

Specify the IDSConfig statement without a path name in each image configuration
file to define a common set of policies for multiple stacks.

Results: For the associated TCP/IP image on the policy client, if the PolicyServer
statement specifies remote IDS policies, then the following occurs:
v If no local IDS policies are installed, then the IDSConfig statement is ignored.
v If local IDS policies are already installed, the result is the same as if the

IDSConfig statement had been deleted.

Chapter 21. Policy Agent and policy applications 967

Use the FLUSH/NOFLUSH and PURGE/NOPURGE parameters to specify
whether or not IDS policies are deleted at startup (and when a MODIFY
PAGENT,REFRESH command is issued) and shutdown, respectively.

The refresh interval for the IDSConfig file is inherited from the image
configuration file containing the corresponding IDSConfig statement.

Restriction: The IDSConfig statement can appear only in an image configuration
file.

If an IDSConfig statement appears multiple times in an image configuration file,
the last occurrence of the statement is used. If the IDSConfig statement appears in
the main configuration file, it is ignored (unless the main and image configuration
files are the same file).

Syntax

�� IDSConfig
path FLUSH

NOFLUSH
PURGE
NOPURGE

��

Parameters

path
Specifies the path of the stack-specific IDS policy file to be installed. If no path
name is specified, the common IDS policy file specified on the
CommonIDSConfig statement is used.

You can specify an MVS data set name or a x/OS UNIX file name. MVS data
set names must be enclosed in single quotation marks (' ') and preceded by a
double slash (//). Following are examples of both types of names:
IDSConfig //’USER1.PAGENT.CONF(IDS)’
IDSConfig /u/user1/pagent.ids

Restriction: Dynamic monitoring for file updates using the -i startup option is
supported only for file-system files; MVS data sets are not monitored for
changes.

FLUSH
Specifies that all policies installed in the Policy Agent and the TCP/IP stack are
deleted. Policies are flushed when the following occurs:
v A new TcpImage statement is processed for the first time, including Policy

Agent starting
v A MODIFY PAGENT,REFRESH command is entered

NOFLUSH
Specifies that all policies installed in the Policy Agent and the TCP/IP stack are
to remain during initial startup and at each refresh interval. In addition,
policies that are deleted from a configuration are not deleted from the Policy
Agent or the TCP/IP stack.

PURGE
Specifies that all policies installed in the TCP/IP stack are deleted during
normal termination and when a TcpImage or PEPInstance statement is deleted.

968 z/OS V2R1.0 Communications Server: IP Configuration Reference

NOPURGE
Specifies that no policies that are installed in the TCP/IP stack are deleted
during normal termination and when a TcpImage or PEPInstance statement is
deleted.

For details, see the FLUSH and PURGE information in z/OS Communications
Server: IP Configuration Guide.

Result: If the IDSConfig statement is deleted and the FLUSH parameter is
configured, then all IDS configuration file policies are deleted from the
corresponding stack.

IPSecConfig statement

Use the IpSecConfig statement to specify the path of a local IPSec policy file that
contains stack-specific IPSec policy statements.

Specify the IPSecConfig statement without a path name in each image
configuration file to define a common set of policies for multiple stacks.

Requirement: The IpSecConfig statement is required to define IPSec policy for a
given stack.

The refresh interval for the IpSecConfig file is inherited from the image
configuration file containing the corresponding IpSecConfig statement.

Results: For the associated TCP/IP image on the policy client, if the PolicyServer
statement specifies remote IPSec policies, then the following occurs:
v If no local IPSec policies are installed, then the IPSecConfig statement is ignored.
v If local IPSec policies are already installed, the result is the same as if the

IPSecConfig statement had been deleted.

Rule: For IPSec policies, when errors are detected during parsing, no new policies
are installed.

The IpSecConfig statement can appear only in an image configuration file. If an
IpSecConfig statement appears multiple times in an image configuration file, the
last occurrence of the statement is used. If the IpSecConfig statement appears in
the main configuration file, it is ignored (unless the main and image configuration
files are the same file).

Syntax

�� IPSecConfig
path

��

Parameters

path
The path of the stack-specific IPSec policy file to be installed. If no path name
is specified, then the common IPSec policy file specified on the
CommonIpSecConfig statement is used.

Chapter 21. Policy Agent and policy applications 969

You can specify an MVS data set name or a z/OS UNIX file name. MVS data
set names must be enclosed in single quotation marks (' ') and preceded by a
double slash (//). Following are examples of both types of names:
IPSecConfig //’USER1.PAGENT.CONF(IPSEC)’
IPSecConfig /u/user1/pagent.ipsec

Restriction: Dynamic monitoring for file updates using the -i startup option is
supported only for z/OS UNIX files; MVS data sets are not monitored for
change.

Result: If the IPSecConfig statement is deleted, then all IPSec policies are
deleted from the corresponding stack. The stack reverts to using the filter
policy defined using the IPSEC statement in the TCP/IP profile. All IPSec
policies for the stack are deleted from IKE.

LogLevel statement

Use the LogLevel statement to specify the level of tracing for the Policy Agent. use
the trace records to help debug errors in policy definition.

Syntax

�� LogLevel i ��

Parameters

i

An integer that specifies the level of logging and tracing. The following levels
are supported:
v 1 - SYSERR - System error messages
v 2 - OBJERR - Object error messages
v 4 - PROTERR - Protocol error messages
v 8 - WARNING - Warning messages
v 16 - EVENT - Event messages
v 32 - ACTION - Action messages
v 64 - INFO - Informational messages
v 128 - ACNTING - Accounting messages
v 256 - TRACE - Trace messages

Usage notes

Use this statement to specify a desired log level or a combination of levels. If this
statement is absent, the default level is 31.

To combine log levels, add log level numbers. For example, to request SYSERR
messages (level 1) and EVENT messages (level 16), request log level 17.

Examples

The following example turns on all trace levels for Policy Agent:

LogLevel 511

970 z/OS V2R1.0 Communications Server: IP Configuration Reference

PolicyPerfMonitorForSDR statement

Use the PolicyPerfMonitorForSDR statement to enable or disable the policy
performance monitor function. This function assigns weight fractions to the
monitored policy performance data and sends them to the sysplex distributor (SD)
distributing stack as the monitored data crosses defined thresholds. The SD
distributing stack uses these weight fractions to influence its routing decisions for
incoming connection requests toward appropriate hosts within a group responsible
for processing the requests. These connection requests are for a specific application
(for example, HTTP web) for which one or more policies have been defined. For
more information about sysplex distributor policy performance monitoring, see
z/OS Communications Server: IP Configuration Guide.

Restriction: This statement applies only when policies are defined for the TCP
protocol.

Syntax

�� PolicyPerfMonitorForSDR Enable Put Braces and Parameters on Separate Lines
Disable

��

Put Braces and Parameters on Separate Lines:

{
PolicyPerfMonitorForSDR Parameters

}

PolicyPerfMonitorForSDR Parameters:

SamplingInterval 60

SamplingInterval n

LossRatioAndWeightFr 10 10

LossRatioAndWeightFr r f
0

�

�
LossMaxWeightFr 100

LossMaxWeightFr n

TimeoutRatioAndWeightFr 10 20

TimeoutRatioAndWeightFr r f
0

�

�
TimeoutMaxWeightFr 100

TimeoutMaxWeightFr n

MaxConnWeightFr 70 85 95

MaxConnWeightFr n n n

Parameters

Enable | Disable
Enables or disables the policy performance monitor function. When active, this
function monitors policy performance data on sysplex distributor target stacks
and sends information to the Sysplex Distributor distributing stack to be used
in balancing the workload among the target stacks. The policy performance
data is based on statistics for traffic that maps to defined service policies.

The weight fractions determined for the loss ratio and timeout ratio are added
together to form a single weight fraction before being sent to the SD

Chapter 21. Policy Agent and policy applications 971

distributing stack. One weight fraction is generated for each DVIPA/port pair
on SD target stacks that have at least one policy defined that maps to traffic
sent from the target DVIPA/port pair.

SamplingInterval
Specifies the interval in seconds for sampling policy performance data. The
default is 60.

LossRatioAndWeightFr
Specifies two numbers. The first is the unit ratio of retransmitted bytes (loss)
over transmitted bytes, in tenths of a percent (1 - 1 000). The second number is
the weight fraction to be returned to the sysplex distributor distributing stack,
in percentage (1 - 100). When present, this parameter results in creation of a
threshold table. The first number defines the loss ratio initial threshold value.
The second number defines the starting weight fraction that the sysplex
distributor distributing stack is to use to reduce the WLM weight for this
target stack. For example, if the weight fraction is 50% and the WLM weight is
64, then the resulting weight used for this target stack is 32. The
LossMaxWeightFr parameter determines the maximum weight fraction that is
reached. The default values for each number is 10. A weight fraction of 0
instructs the system to suppress the loss ratio factor in sysplex distributor
computations.

Use the following formula to calculate the threshold table:
if x(n)% <= % Packet Loss < x(n+1)%, then weight fraction is y(n)%

x Initial loss ratio percentage (first number)

y Initial weight fraction (second number)

n Integer multiplier

For example, if the first and second numbers are 10 and 10, then the threshold
table is:
n=0 : 0% <= % packet loss < 1%; weight fraction is 0%
n=1 : 1% <= % packet loss < 2%; weight fraction is 10%
n=2 : 2% <= % packet loss < 3%; weight fraction is 20%
n=3 : 3% <= % packet loss < 4%; weight fraction is 30%
.
.
.
1(n)% <= % packet loss < 1(n+1)%; weight fraction is 10(n)%

If the first and second numbers are 30 and 20, then the threshold table is:
n=0: 0% <= % packet loss < 3%; weight fraction is 0%
n=1: 3% <= % packet loss < 6%; weight fraction is 20%
n=2: 6% <= % packet loss < 9%; weight fraction is 40%
n=3: 9% <= % packet loss < 12%; weight fraction is 60%
.
.
.
3(n)% <= % packet loss < 3(n)%; weight fraction is 20(n)%

Tip: These ratios are not only used as input to create the these weight
fractions, but are also used to create the service level fractions. See z/OS
Communications Server: IP Configuration Guide for more information about
policy based networking.

LossMaxWeightFr
Specifies the maximum weight fraction to be assigned for the loss ratio factor.
The default is 100 %.

972 z/OS V2R1.0 Communications Server: IP Configuration Reference

TimeoutRatioAndWeightFr
Specifies two numbers. The first number is the unit ratio of the number of
timeouts over transmitted packets, in tenths of a percent (1 - 1 000). The
second number is the weight fraction to be returned to the sysplex distributor
distributing stack, in percentage (1 - 100). When present, this parameter results
in a creation of a threshold table. The first number defines the timeout ratio
initial threshold value. The second number defines the starting weight fraction
that the sysplex distributor distributing stack is to use to reduce the WLM
weight for this target stack. For example, if the weight fraction is 50% and the
WLM weight is 64, the resulting weight used for this target stack is 32. The
maximum weight fraction reached is determined by the TimeoutMaxWeightFr
parameter. The default values are 10 and 20. A weight fraction of 0 instructs
the system to suppress the timeout ratio factor in sysplex distributor
computations. See the LossRatioAndWeightFr parameter for more information
about how the threshold table is calculated.

TimeoutMaxWeightFr
Specifies the maximum weight fraction to be assigned for the timeout ratio
factor. The default is 100%.

MaxConnWeightFr
Specifies three percentages that are used in calculating the connection limit
portion of the policy action (service level) weight fractions.

Restriction: Each percentage must be in the range 1 - 100, and each value must
be greater than or equal to the preceding value. The default values are 70, 85,
and 95. When calculating the policy action weight fraction, the number of
active connections to a target DVIPA/Port is compared with the maximum
connections allowed for the associated policy action as follows:
v When the number of active connections reaches the percentage of maximum

connections specified by the first number, the policy action weight fraction is
set to MAX (50%, current calculated value).

v When the number of active connections reaches the percentage of maximum
connections specified by the second number, the Policy Action weight
fraction is set to MAX (85%, current calculated value).

v When the number of active connections reaches the percentage of maximum
connections specified by the third number, the Policy Action weight fraction
is set to 100%.

For more information about how the Policy Agent calculates policy action
weight fractions, see z/OS Communications Server: IP Configuration Guide.

Examples

In this example, Policy Agent sends a message to the SD distributing Stack when
the loss (retransmission) ratio begins to exceed 1% but not above 2%, with a
weight fraction of 20% . This means that the WLM weight is reduced by 20%
before it is used as a measure to route incoming connection requests. When the
loss (retransmission) ratio exceeds 2%, but not above 3%, a message is sent with a
weight fraction of 40%, and so on. When the loss exceeds 5%, a maximum weight
fraction of 100% is used. The same is true with the timeout ratio. When the
timeout ratio exceeds 0.5%, but not above 1%, a weight fraction of 50% is added to
the weight in the message sent to the SD distributing Stack, and so on.

PolicyPerfMonitorForSDR Enable
{
SamplingInterval 120

LossRatioAndWeightFr 10 20

Chapter 21. Policy Agent and policy applications 973

LossMaxWeightFr 100
TimeoutRatioAndWeightFr 5 50
TimeoutMaxWeightFr 100

}

PolicyPerformanceCollection statement

Use the PolicyPerformanceCollection statement to enable or disable the policy
performance collection function. Use this function to collect QoS performance
monitoring data. The performance data can be collected on a policy rule or action
or on both rules and actions. The collected data can also be logged to a specified
performance log file for offline collection and monitoring by a user application, or
can be accessed in near real time using the Policy API (PAPI).

Syntax

��
Disable

PolicyPerformanceCollection Put Braces and Parameters on Separate Lines
Enable

��

Put Braces and Parameters on Separate Lines:

{
PolicyPerformanceCollection Parameters

}

PolicyPerformanceCollection Parameters:

�

DataCollection Rule

DataCollection Rule
Action

MinimumSamplingInterval 30

MinimumSamplingInterval n
�

�
LogSamplingInterval n PerformanceLogFile filename

�

�
NumberOfLogFiles 3

NumberOfLogFiles n

SizeOfLogFile 300

SizeOfLogFile n

Parameters

Enable | Disable
Enables or disables policy performance collection. When active, this function
collects the QoS performance data from the stack. The default is Disable.

DataCollection
Specifies the type of performance data that needs to be collected. The accepted
values are:

Rule To collect performance information for rules

Action
To collect performance information for actions.

974 z/OS V2R1.0 Communications Server: IP Configuration Reference

Tip: Any combination of Rule, Action, or Rule Action can be used. If
multiple types are used, separate them with a space (for example, Rule
Action). The default value is Rule. The information returned for a
policy action is an aggregate of the information for all the policy rules
that use that policy action.

When FLUSH is specified on the TcpImage statement that defines the stack
that is collecting performance data, the performance metrics are reset to 0 at
the following times:
v When a new TcpImage statement is processed for the first time, including

Policy Agent starting
v When a MODIFY PAGENT,REFRESH command is entered

If NOFLUSH is specified, the performance metrics are not reset.

MinimumSamplingInterval
Specifies the minimum sampling interval (in seconds) at which the
performance data is retrieved from the stack. If the client, using the PAPI
papi_get_perf_data() function, specified the acceptableCachedTime that is
smaller than this value, the acceptableCachedTime value is overridden by
MinimumSamplingInterval. See z/OS Communications Server: IP
Programmer's Guide and Reference for more information about PAPI. The
default value is 30 seconds. The values for MinimumSamplingInterval are in
the range 30 - 2 147 483 647.

LogSamplingInterval
Specifies the log sampling interval in seconds at which the performance data is
retrieved from the stack and logged into the log file defined by
PerformanceLogFile parameter. The values for LogSamplingInterval are in the
range 30 - 2 147 483 647.

Restriction: If LogSamplingInterval and PerformanceLogFile are not both
specified, Policy Agent does not log the performance information.

PerformanceLogFile
Specifies the name of the file where collected performance data is written.

Restriction: If LogSamplingInterval and PerformanceLogFile are not both
specified, Policy Agent does not log the performance information. This must be
a z/OS UNIX file name. The file is created if it does not exist.

The TcpImage name for the stack for which this statement is configured is
appended to the log file name, along with a numeric digit when
NumberOfLogFiles is greater than 1. The format of the file name is
PerformanceLogFile.TcpImage.n

For example, if PerformanceLogFile specified /u/user10/perflog,
NumberOfLogFiles is 2, and TcpImage is TCPCS, the files is named:
/u/user10/perflog.TCPCS
/u/user10/perflog.TCPCS.1

The data in the log file is in binary format. The format is as follows. See the
descriptions of the output from the NETSTAT SLAP or netstat -j report in
z/OS Communications Server: IP System Administrator's Commands for more
detail on the meaning of the various fields. Also, see the Network SLAPM2
MIB, shipped as a sample file, for additional information about the
performance data.
v 4–byte time stamp in time_t format, as output by the C currentTime()

function, when the record was created

Chapter 21. Policy Agent and policy applications 975

v 4–byte version identifier, as defined by PCOL_LOG_VERSION in the
papiuser.h header file

v 48–byte policy name
v 4–byte record type
v 4–byte record ID
v 4–byte time stamp in time_t format, when the policy was last activated
v 4–byte time stamp in time_t format, when the policy was last mapped to

any traffic
v 8–byte count of total bytes transmitted
v 8–byte count of total packets transmitted
v 4–byte count of active connections
v 4–byte reserved field
v 8–byte count of total accepted connections
v 4–byte average smoothed TCP round trip time (RTT)
v 4–byte mean deviation of smoothed TCP RTT
v 8– byte count of total bytes retransmitted
v 8–byte count of total packets retransmitted
v 4–byte average smoothed TCP connection delay
v 4–byte mean deviation of smoothed TCP connection delay
v 4–byte average TCP accept queue delay
v 4–byte mean deviation of TCP accept queue delay
v 8–byte count of total packets transmitted in profile
v 8–byte count of total bytes transmitted in profile
v 16–byte reserved field network slpa
v 8–byte count of total packets received
v 8–byte count of total bytes received
v 8–byte count of total retransmitted packets timed out
v 8–byte count of total denied connections
v 24–byte reserved field

NumberOfLogFiles
Specifies the number of performance log files to be maintained. The default
value is 3. The values for NumberOfLogFiles are in the range 1 - 255. The log
files are maintained in a round-robin fashion. When the current log file fills up,
a new log file is created and all existing log files are renamed, with the oldest
file being deleted if the total number of files would exceed the
NumberOfLogFiles parameter. Each renamed file has a numeric digit added to
the end of the name.

SizeOfLogFile
Specifies the log file size in kilobytes (Kb). The default value is 300 Kb. The
values for SizeOfLogFile are in the range 1 Kb - 1 000 000 Kb.

The amount of data that fits in the log files, and therefore the amount of time
that elapses before the files wrap, depends on a number of factors. Each
performance data record is 232 bytes in length. You can use the following
formulas:
v Size of log file in bytes * number of log files / 232 = number of records
v Number of records / number of policies = number of refresh cycles

976 z/OS V2R1.0 Communications Server: IP Configuration Reference

v Number of refresh cycles * refresh interval in minutes = minutes worth of
data

For example, assume 5 log files with a size of 400 kilobytes. Also, assume that
only policy rule data is being collected, 25 policy rules exist, and the refresh
interval is 120.
v Size of log file in bytes (409600) * number of log files (5) / 232 = number of

records (8827)
v Number of records (8827) / number of policies (25) = number of refresh

cycles (353)
v Number of refresh cycles (353) * refresh interval in minutes (2) = 706

minutes worth of data

The previous formulas can be reversed to help arrive at the needed size of the
log files:
v Number of refresh cycles = minutes worth of data / refresh interval in

minutes
v Number of records = number of refresh cycles * number of policies
v Size of log file in bytes = (number of records * 232) / number of log files

PolicyServer statement

The Policy Agent acting as a policy client uses the PolicyServer statement to
determine what type of policies to retrieve from the policy server. This statement
also specifies security information and processing information that is passed to the
policy server.

Requirement: Connectivity to the policy server is needed for all images that
specify the PolicyServer statement.

Restriction: The PolicyServer statement can appear only in an image configuration
file (unless the main and image configuration files are the same file).

Results:

v If a ServerConnection statement is not configured in the main configuration file,
then this statement is ignored.

v For a policy type, if remote policies are used, then the local policies of the same
type are ignored.

v The policy client disconnects from the policy server when one of the following
occurs:
– The ServerConnection or PolicyServer statement is removed. The result is that

all remote policies are uninstalled. If local policies are configured, then they
are installed.

– The PolicyServer statement is updated and all PolicyType parameters are
removed. The result is that the remote policies for the associated TCP/IP
stack are uninstalled. If the local policies for the associated TCP/IP stack are
configured, they are installed.

v The policy client disconnects from and reconnects to the policy server when one
of the following occurs:
– The PolicyServer statement is updated and the client name, user identification

or authorization parameters have changed.
– The connection between the policy server and the policy client ends.

Chapter 21. Policy Agent and policy applications 977

v If a PolicyType parameter is removed, then the remote policies for this policy
type are removed for the associated TCP/IP stack. If the local policies for this
policy type are configured, they are installed.

You must have defined security product authority in the SERVAUTH class for the
policy client's user ID. The policy client's client name is used as the image name.
For details, see the general policy agent configuration information in z/OS
Communications Server: IP Configuration Guide. Wildcard values are allowed in
profile names. The following example shows the structure of the security product
profile:
EZB.PAGENT.sysname.image.ptype

If a PolicyServer statement appears multiple times in an image configuration file,
the last occurrence of the statement is used. If the PolicyServer statement appears
in the main configuration file, it is ignored (unless the main and image
configuration files are the same file).

Syntax

�� PolicyServer Place Braces and Parameters on Separate Lines ��

Place Braces and Parameters on Separate Lines:

{
PolicyServer Parameters

}

PolicyServer Parameters:

Userid userid AuthBy Password password
Passticket ClientName clientName

�

� �

PolicyType IDS PolicyTypeSpecification
IPSec
QoS
Routing
TTLS

PolicyTypeSpecification:

{
PolicyTypeSpecification Parameters

}

978 z/OS V2R1.0 Communications Server: IP Configuration Reference

PolicyTypeSpecification Parameters:

FLUSH
NOFLUSH

PURGE
NOPURGE

Parameters

UserId
Specifies the policy client's user identification string. The policy server uses this
parameter to identify which resources the client can access. The user ID is a
string 1 - 8 alphanumeric characters in length. The first character cannot be a
number. No special characters, such as the following, are allowed.

at sign (@)
dollar sigh ($)
number sign (#)
asterisk (*)

AuthBy
Indicates which method the policy server uses for authentication of the user
ID. The options are Password and the more secure PassTicket.

Password
This option causes the client to send the configured password to the policy
server for authentication. The password is 1 - 8 characters in length.

Rule: The password must match the password defined in the security
product for the user ID.

PassTicket
The PassTicket option causes the client to generate a one-time session key.
See the information about the secured signon function in z/OS Security
Server RACF Security Administrator's Guide.

ClientName
A string 1 - 24 characters in length that specifies the client name (PEPInstance
name) for this policy client. This client name is used by the policy server to
determine which configuration files to use to load the client's policies and
whether proper security authorization is configured. See
“DynamicConfigPolicyLoad statement” on page 961 for details about how this
name is used to select the remote configuration file names.

Result: If no client name is configured, then the policy client generates this
parameter based on the system's host name and the associated TcpImage or
PEPInstance statement image name.

For example, if the system host name is MVSIBM and TcpImage name is
TCPCS, then the generated client name is MVSIBM_TCPCS.

PolicyType
Indicates what policy types the policy client retrieves from the policy server.

Tip: If the policy client or policy server is running release V1R9, do not define
QoS policies with PolicyScope TR if you retrieve QoS and IDS policies
differently (one local and the other remote). These types of policies are
transformed into IDS policies by the Policy Agent; there are different
implications depending on which of the following policy types are locally or
remotely retrieved:

Chapter 21. Policy Agent and policy applications 979

v When IDS policies are retrieved locally and QoS policies are retrieved
remotely, the following outcomes result:
– Any TR scope policies that are specified in local QoS configuration files

do not exist because the local QoS configuration files are not read.
– Any TR scope policies that are specified in remote QoS configuration files

do not exist because they exist as IDS policies on the policy server; IDS
policies are retrieved locally.

v When IDS policies are retrieved remotely and QoS policies are retrieved
locally, any local TR scope policies do not exist, because the are not part of
the remote IDS configuration. The local TR scope policies are installed for
the interval of time between when the local configuration is read and the
remote configuration is retrieved. This interval of time might be lengthy if
the policy server cannot be contacted.

Results:

v When QoS policies are retrieved remotely, any QoS policies retrieved from
the LDAP server are discarded. When IDS policies are retrieved remotely,
any IDS policies retrieved from the LDAP server are discarded.

v If you retrieve both QoS and IDS policies remotely, the ReadFromDirectory
statement is ignored. This means no QoS or IDS policies being retrieved
from the LDAP server.

v If you specify the policy type IPSec, but IPSec policies are not enabled for
the client's TCP/IP stack, then this parameter is ignored. This means that no
IPSec policies are retrieved from the policy server. To enable IPSec in the
TCP/IP stack, use the IPSECURITY parameter on the IPCONFIG statement
in the TCP/IP profile.

FLUSH
Specifies that all policies installed in the Policy Agent and the TCP/IP stack are
deleted at the following times:
v When a new TcpImage statement is processed for the first time, including

starting Policy Agent.
v When a MODIFY PAGENT,REFRESH command is entered.

NOFLUSH
Specifies that all policies installed in the Policy Agent and the TCP/IP stack are
to remain during initial startup and at each refresh interval. In addition,
policies that are deleted from a configuration are not deleted from the Policy
Agent or the TCP/IP stack.

PURGE
Specifies that all policies installed in the TCP/IP stack are deleted during
normal termination, and also when a TcpImage or PEPInstance statement is
deleted.

NOPURGE
Specifies that all policies installed in the TCP/IP stack remain during normal
termination and when a TcpImage or PEPInstance statement is deleted.

For details, see the FLUSH and PURGE information in z/OS Communications
Server: IP Configuration Guide.

Results:

v The FLUSH, NOFLUSH, PURGE, and NOPURGE parameters are ignored for
the policy types IPSec and Routing.

980 z/OS V2R1.0 Communications Server: IP Configuration Reference

v To delete all remote policies for a given policy type, delete the appropriate
PolicyType parameter from the PolicyServer statement. This deletes these
policies from the policy client and the policy server.

QOSConfig statement

Use the QOSConfig statement to specify the path of a local QoS policy file that
contains stack-specific QoS policy statements.

Results: For the associated TCP/IP image on the policy client, if the PolicyServer
statement specifies remote QoS policies, then one the following situations occurs:
v If no local QoS policies are installed, then the QOSConfig statement is ignored.
v If local QoS policies are already installed, the result is the same as if the

QoSConfig statement had been deleted.

The refresh interval for the QOSConfig file is inherited from the image
configuration file containing the corresponding QOSConfig statement.

The QOSConfig statement can appear only in an image configuration file. If a
QOSConfig statement appears multiple times in an image configuration file, the
last occurrence of the statement is used. If the QOSConfig statement appears in the
main configuration file, it is ignored (unless the main and image configuration files
are the same file).

Syntax

�� QOSConfig path ��

Parameters

path
The path of the stack-specific QOS policy file to be installed.

You can specify an MVS data set name or a z/OS UNIX file name. MVS data
set names must be enclosed in single quotation marks (' ') and preceded by a
double slash (//). Following are examples of both types of names:
QOSConfig //’USER1.PAGENT.CONF(QOS)’
QOSConfig /u/user1/pagent.qos

Restriction: Dynamic monitoring for file updates using the -i startup option is
supported only for z/OS UNIX files; MVS data sets are not monitored for
change.

Results:

v If the QOSConfig statement is not specified, then QoS policies are defined in
the image configuration file.

v If the QOSConfig statement is deleted and FLUSH is configured, then all
QoS policies that are defined in this QoS policy file are deleted from the
corresponding stack.

ReadFromDirectory statement

Use the ReadFromDirectory statement to initialize Policy Agent as an LDAP client.
The policies are downloaded from the LDAP server, along with the policies

Chapter 21. Policy Agent and policy applications 981

specified in this Policy Agent configuration file (the current one being used by
Policy Agent that contains this statement). All the policies are installed to the
appropriate TCP images.

You can use a set of sample files to help set up the LDAP server and populate it
with policies. These files reside in the /usr/lpp/tcpip/samples directory.

One set of sample files defines the schema object classes and attributes for LDAP
protocol version 3 servers. These files are:
v pagent_r8qosschema.ldif
v pagent_r5idsschema.ldif

Requirement: These files must be installed on the LDAP server as a subschema of
the cn=schema object by using the command.

See the prologs in these sample files and z/OS Communications Server: IP
Configuration Guide for more information.

The remaining sample files are examples of policy objects that can be installed on
an LDAP server after the schema has been defined using this schema definition
files. These files are:
v pagent.ldif contains a top level structure of policy objects.
v pagent_starter_IDS.ldif contains a starter set of IDS policies.
v pagent_starter_QoS.ldif contains a starter set of QoS policies.
v pagent_advanced_IDS.ldif contains an advanced set of IDS policies.
v pagent_advanced_QoS.ldif contains an advanced set of QoS policies.

See the prologs in these sample files and z/OS Communications Server: IP
Configuration Guide for more information.

Tip: These policies are not intended to be used as shipped, but they can be copied
to a custom set (defined in pagent.ldif) and modified as needed.

For more information about how to use LDAP and for other LDAP references, see
Understanding LDAP (SG24–4986).

Syntax

�� ReadFromDirectory Place Braces and Parameters on Separate Lines ��

Place Braces and Parameters on Separate Lines:

{
ReadFromDirectory Parameters

}

ReadFromDirectory Parameters:

LDAP_Server 127.0.0.1

LDAP_Server address

LDAP_Port 389

LDAP_Port port
�

982 z/OS V2R1.0 Communications Server: IP Configuration Reference

�
LDAP_BackupServer address

LDAP_BackupPort 389

LDAP_BackupPort port
�

�
LDAP_DistinguishedName string LDAP_Password string

�

�
LDAP_SessionPersistent No

LDAP_SessionPersistent Yes
No

LDAP_ProtocolVersion 3

LDAP_ProtocolVersion 3
�

�
LDAP_SchemaVersion 3

LDAP_SchemaVersion 1
2
3

Base string
�

�
LDAP_SelectedTag string SearchPolicyBaseDN string

�

�

� SearchPolicyKeyword keyword � PolicyRole role

�

�

� SearchPolicyGroupKeyWord string

�

�

� SearchPolicyRuleKeyWord string

LDAP_AbstractPolicy Yes

Yes
LDAP_AbstractPolicy No

�

� LDAP_SSL Place Braces and Parameters on Separate Lines

Place Braces and Parameters on Separate Lines:

{
LDAP_SSL Parameters

}

LDAP_SSL Parameters:

LDAP_SSLKeyringFile filename
LDAP_SSLKeyringPassword password

�

Chapter 21. Policy Agent and policy applications 983

�
LDAP_SSLName string

Parameters

LDAP_Server
The name of the server that contains policy definitions. The name can be
specified as a character string (for example, 'ldapserver.mynetwork.com') or as
an IPv4 address (for example, 9.11.12.13). The default is the LDAP server in the
local host (127.0.0.1).

LDAP_Port
The port on which the directory server is running. If not specified, the default,
well-known LDAP port of 389, is used.

LDAP_BackupServer
This attribute specifies the name or IPv4 address of the backup LDAP server
for which the search is performed if the Policy Agent cannot connect to the
LDAP server as specified in the LDAP_Server and LDAP_Port parameters. The
default is no backup server.

LDAP_BackupPort
This attribute specifies the port number on which the backup LDAP server is
running. The default is the well-known LDAP port 389.

LDAP_DistinguishedName
This attribute is a character string value that specifies the distinguished name
for user ID to connect to the LDAP server. If this attribute is not specified,
anonymous user ID is used for the connect. If this attribute is specified,
LDAP_Password must also be specified.

Restriction: Case sensitivity of this attribute is determined by the LDAP server.

LDAP_Password
The password of the connection to the LDAP server. If this attribute is
specified, LDAP_DistinguishedName must also be specified.

LDAP_SessionPersistent
A string that specifies whether the LDAP session with the directory server
should be kept open or closed during an update interval time. If this value is
not specified, the session is closed after every query from the directory server.
Valid values are yes or no. If the LDAP session update interval is small, the
value of keeping the session open is greater, because it reduces the overhead of
opening the session for each query.

LDAP_ProtocolVersion
This attribute indicates to Policy Agent what version of the LDAP protocol to
use. The default value is 3.

LDAP_SchemaVersion
This attribute indicates to Policy Agent what version of the schemas to retrieve
from LDAP. The value can be 1, 2, or 3. The value should be selected based on
your LDAP configuration. The default value is 3.

Base
The distinguished name of the subtree in the directory containing the policies.

Requirement: This is required when using schema Version 1 only.

LDAP_SelectedTag
A string used to select a subset of the policies under the base tree. If not
specified, the first machine name returned by gethostname is used.

984 z/OS V2R1.0 Communications Server: IP Configuration Reference

|
|
|

Restriction: This is allowed only when using schema Version 1.

SearchPolicyBaseDN
This attribute is a character string value (a base distinguished name) that is
used as a key to search the LDAP server for policies. It is considered as the
initial subtree/group/object to start the search.

Requirement: This attribute is only allowed, and is required, if
LDAP_SchemaVersion 2 or higher is specified.

Guideline: Case-sensitivity of this attribute is determined by the LDAP server.

SearchPolicyKeyword
This attribute specifies a generic search keyword to match against all policy
objects. Use this attribute to filter the policy objects to be retrieved.

Restriction: This attribute is valid only with LDAP_SchemaVersion 3. You can
specify up to eight instances of this attribute. Specify either a single keyword
delimited by blanks or any string containing blanks or other special characters,
contained in double quotation marks. For example:
SearchPolicyKeyword singleword
SearchPolicyKeyword "quoted string"

SearchPolicyGroupKeyWord
This attribute is a character string value used to scope the search for all group
objects.

Restrictions:

v Only policy groups that have a matching PolicyGroupKeywords attribute are
returned in the initial search.

v This attribute is allowed only if LDAP_SchemaVersion 2 or higher is
specified.

This is similar to the LDAPSelectedTag attribute that is used with
LDAP_SchemaVersion 1.

Guidelines:

v Up to eight instances of this attribute are allowed.
v Case-sensitivity of this attribute is determined by the LDAP server.

SearchPolicyRuleKeyWord
This attribute is a character string value that allows users to limit the scope of
the policyRule search.

Restrictions:

v Only policy rules that have a matching policyRuleKeywords attribute are
returned in the initial search.

v This attribute is allowed only if LDAP_SchemaVersion 2 or higher is
specified.

This attribute can also be used when there is no group association in the LDAP
server (for example, there is no group hierarchy defined, only rule objects
exist) for the policyRule objects.

Guidelines:

v Up to eight instances of this attribute are allowed.
v Case-sensitivity of this attribute is determined by the LDAP server.

PolicyRole
Specifies a policy role or role-combination. Use this parameter to filter the
policy rules to be retrieved.

Chapter 21. Policy Agent and policy applications 985

Restriction: This parameter is valid only with LDAP_SchemaVersion 3.

Guidelines:

v This parameter can be repeated as many times as necessary.
v Either a single role or a set of roles, known as a role-combination, can be

specified.
v The roles can be single words, or any strings containing blanks or other

special characters, contained in double quotation marks.

Role-combinations are specified as follows. The first role is specified the same
way that a single role is specified. Each additional role in the role-combination
is prefixed with the characters &&. For example:
PolicyRole role1
PolicyRole &&"quoted role 2"
PolicyRole "quoted role 3"
PolicyRole role4

Use this parameter to filter out policy rules that do not contain any of the
specified roles or role-combinations, using the attribute ibm-policyRoles. For
example, the set of roles specified in this example result in the retrieval of any
policy rules that specify "role1&"ed rule 2" or "quoted role3" or "role4" in
their ibm-policyRoles values.

LDAP_AbstractPolicy
Specifies whether or not the Policy Agent should search the LDAP server using
a search filter that only selects policy object classes. Valid values are YES or
NO, and YES is the default. If the LDAP server supports matching of auxiliary
classes for the objectClass attribute, specify YES. Otherwise, specify NO. This
attribute is valid only with LDAP_SchemaVersion 3 and LDAP protocol
version 3.

LDAP_SSL
Indicates that additional SSL parameters follow.

LDAP_SSLKeyringFile
LDAP_SSLKeyringFile is the name of the key ring file created by gskkyman. It
usually contains the certificates of the trusted (by the client) Certificate
Authorities. It can also contain a public key and the associated certificate.

Restriction: This is only needed when client authentication is required.This
attribute is required when LDAP_SSL is specified.

LDAP_SSLKeyringPassword
LDAP_SSLKeyringPassword is the password which protects the key ring file. It
is set when the key ring file is created with the gskkyman tool.

LDAP_SSLName
LDAP_SSLName is a case-sensitive value that specifies the label assigned when
creating a private key/certificate pair with gskkyman. This is used when the
client is authenticated.

Restriction: Some servers do not support client authentication; therefore, this
parameter is not used.

Examples

The following is a Version 1 schema example:
ReadFromDirectory

{
Ldap_server ldapserver.mynetwork.com

986 z/OS V2R1.0 Communications Server: IP Configuration Reference

Ldap_port 9000
Base o=ibm,c=us
Ldap_selectedtag MVS1

}

The following is a Version 2 schema example:
ReadFromDirectory

{
LDAP_Server 9.11.12.13
LDAP_Port 9000
LDAP_SessionPersistent Yes
LDAP_BackupServer 9.11.22.23
LDAP_BackupPort 555
LDAP_DistinguishedName cn=root, o=IBM, c=US
LDAP_Password secret
LDAP_SchemaVersion 2
LDAP_ProtocolVersion 3
SearchPolicyBaseDN o=ibm, c=us
SearchPolicyGroupKeyword MVSA
SearchPolicyRuleKeyword cherryPicker
SearchPolicyRuleKeyword ripe

}

The following is a Version 3 schema example:
ReadFromDirectory

{
LDAP_Server ldapv3server
LDAP_BackupServer 10.100.1.5
LDAP_BackupPort 7500
LDAP_DistinguishedName cn=root, o=IBM, c=US
LDAP_Password secret
LDAP_SchemaVersion 3
LDAP_ProtocolVersion 3
LDAP_AbstractPolicy Yes
SearchPolicyBaseDN cn=policy, o=ibm, c=us
SearchPolicyKeyword QoS
SearchPolicyKeyword Diffserv

}

RoutingConfig statement

Use the RoutingConfig statement to specify the path of a local Routing policy file
that contains stack-specific Routing policy statements.

Requirement: The RoutingConfig statement is required to define Routing policy
for a given stack.

Result: For the associated TCP/IP image on the policy client, if the PolicyServer
statement specifies remote Routing policies, then the following occurs:
v If no local Routing policies are installed, then the RoutingConfig statement is

ignored.
v If local Routing policies are already installed, then the result is the same as if the

RoutingConfig statement had been deleted.

Specify the RoutingConfig statement without a path name in each image
configuration file to define a common set of policies for multiple stacks.

The refresh interval for the RoutingConfig file is inherited from the image
configuration file containing the corresponding RoutingConfig statement.

Chapter 21. Policy Agent and policy applications 987

Restriction: The RoutingConfig statement can appear only in an image
configuration file.

If a RoutingConfig statement appears multiple times in an image configuration file,
the last occurrence of the statement is used. If the RoutingConfig statement
appears in the main configuration file, it is ignored (unless the main and image
configuration files are the same file).

Syntax

�� RoutingConfig
path

��

Parameters

path
Specifies the path of the stack-specific Routing policy file to be installed. If no
path name is specified, the common Routing policy file specified on the
CommonRoutingConfig statement is used.

You can specify an MVS data set name or a z/OS UNIX file name. MVS data
set names must be enclosed in single quotation marks (' ') and preceded by a
double slash (//). Following are examples of both types of names:
RoutingConfig //’USER1.PAGENT.CONF(ROUTING)’
RoutingConfig /u/user1/pagent.routing

Restriction: Dynamic monitoring for file updates using the -i startup option is
supported only for z/OS UNIX files; MVS data sets are not monitored for
changes.

Results:

v After a TCP/IP stack has been recycled, all active policies are reinstalled.
v If the RoutingConfig statement is deleted, all Routing policies are deleted

from the corresponding stack.

ServerConnection statement

The Policy Agent acting as a policy client uses the ServerConnection statement to
connect to the Policy Agent acting as a policy server. This statement includes
security information and the location of the policy server. The policy client uses
this connection to retrieve remote policies. See “PolicyServer statement” on page
977 for more details.

Results:

v An error is flagged if both the ClientConnection and ServerConnection
statements are configured on the same Policy Agent. As a result, there is no
connection between the policy server and policy client.

v If a PolicyServer statement is not configured in any image configuration file, this
statement is ignored, and no connections to the policy server exist.

v If any parameters on the ServerConnection statement are updated after a remote
connection is established, the changed values take effect for new connections.
The ServerConnectWait and ServerConnectRetries parameters take effect
immediately for any connections that require retry processing.

988 z/OS V2R1.0 Communications Server: IP Configuration Reference

v If the ServerConnection statement is deleted, all established remote connections
are stopped. As a result, all remote policies are uninstalled. If configured, then
the local policies are now installed.

Syntax

�� ServerConnection Place Braces and Parameters on Separate Lines ��

Place Braces and Parameters on Separate Lines:

{
ServerConnection Parameters

}

ServerConnection Parameters:

ServerHost host
ServerPort 16310

ServerPort port ServerHostBackup host
�

�
ServerPortBackup 16310

ServerPortBackup port

ServerConnectWait 60

ServerConnectWait seconds
�

�
ServerConnectRetries 3

ServerConnectRetries times ServerSSL | ServerSSL Specification

ServerSSL Specification:

{
ServerSSL Parameters

}

ServerSSL Parameters:

ServerSSLKeyring value ServerSSLKeyringPassword password
�

�
ServerSSLKeyringStashFile filename ServerSSLName string

�

�
ServerSSLV3CipherSuites ciphers

ServerSSLv3 Off

ServerSSLv3 On

Parameters

ServerHost
A string 1 - 512 characters in length that specifies the name of the primary
policy server host that contains policy definitions. Specify the name as a host

Chapter 21. Policy Agent and policy applications 989

||

name (for example, policyserver.mynetwork.com) or as an IP address (for
example, 9.11.12.13). The IP address can be either IPv4 or IPv6. This parameter
is required.

ServerPort
The policy server listening port number. The policy client connects using this
port number.

The valid port values are in the range 1 - 65 535. The default is 16 310.

ServerHostBackup
A string 1 - 512 characters in length specifying the name of the backup policy
server that contains policy definitions. The name can be specified as a host
name (for example, policyserver.mynetwork.com) or as an IP address (for
example, 9.11.12.13). The IP address can be either IPv4 or IPv6. The default is
no backup server.

ServerPortBackup
The backup policy server listening port number. The policy client connects
using this port number.

The valid port values are in the range 1 - 65 535. The default is 16 310.

Result: This parameter is ignored if the ServerHostBackup parameter is not
specified.

ServerConnectWait
Specifies the number of seconds (1-300) that the policy client waits between
connection attempts when trying to establish a connection with a policy server.
The default value is 60 seconds.

The product of the ServerConnectWait value multiplied by the
ServerConnectRetries value defines the maximum number of seconds that the
policy client attempts to connect with a policy server before switching to
another policy server (if a backup server is configured). For example, if the
ServerConnectWait value is 60 and the ServerConnectRetries value is 3, then
the policy client waits a maximum of 180 seconds for a successful connection.

This parameter is also used if policies cannot be loaded from the policy server.
The policy client waits for the specified amount of time before trying to load
the policies again.

ServerConnectRetries
Specifies the number of times (1-10) that the policy client attempts to establish
a connection with a policy server. The default value is 3 retries.

The product of the ServerConnectWait value multiplied by the
ServerConnectRetries value defines the maximum number of seconds that the
policy client attempts to connect with a policy server before switching to
another policy server (if a backup server is configured) . For example, if the
ServerConnectWait value is 60 and the ServerConnectRetries value is 3, then
the policy client waits a maximum of 180 seconds for a successful connection.

ServerSSL
Indicates that additional SSL parameters follow.

This parameter is optional. If you want to use a secure connection to the policy
server, specify this parameter and other SSL parameters as needed.

ServerSSLKeyring
A string 1 - 1023 characters in length specifying the name of the key ring file
created by gskkyman, or the ring name of the SAF key ring. This key ring
usually contains the certificates of the trusted (by the client) Certificate

990 z/OS V2R1.0 Communications Server: IP Configuration Reference

Authorities. The key ring can also contain a public key and the associated
certificate (this is needed only when client authentication is required).

This parameter is required if ServerSSL is specified.

ServerSSLKeyringStashFile
A string 1 - 1023 characters in length that specifies the name of the key ring
stash file. The stash file is created when the key ring file is created with the
gskkyman tool. If the ServerSSLKeyringPassword parameter is specified, then
it is used instead of this parameter. The password and the stash file parameter
are not required with a SAF keyring.

ServerSSLKeyringPassword
A string 1 - 128 characters in length that specifies the password for the key
database that protects the key ring file. It is set when the key ring file is
created with the gskkyman tool. This parameter is optional. As an alternative,
you can specify the more secure ServerSSLKeyringStashFile parameter to use a
key database that was created with the gskkyman tool. The password and the
stash file parameter are not required with a SAF key ring.

ServerSSLName
A string 1 - 256 characters in length specifying a case-sensitive value that
specifies the label assigned when creating a private key/certificate pair with
gskkyman. This value is used when the client is authenticated.

Rules (for servers that use client authentication:

v If the AT-TLS policy on the policy server specifies HandshakeRole Server,
the ServerSSLName parameter must specify the name of the server's
certificate.

v If the AT-TLS policy on the policy server specifies HandshakeRole
ServerWithClientAuth, the ServerSSLName parameter must specify the name
of the client's certificate.

Restriction: Some servers do not support client authentication; therefore, this
parameter is not used.

ServerSSLV3CipherSuites

Tip: If the System SSL needs to access z/OS Integrated Cryptographic Services
Facility (ICSF), ICSF must be started before you start the Policy Agent. For
more information about using hardware Cryptographic Features with System
SSL, see z/OS Cryptographic Services System SSL Programming.
Specifies the SSL version 3 TLS version 1.0, TLS version 1.1, or TLS version 1.2
cipher suites in order of preference. If a ServerSSLV3CipherSuites parameter is
specified more than once, the values are concatenated to create a single list of
cipher suites. For System SSL, the GSK_V3_CIPHER_SPECS value is set to the
concatenated value. The ciphers value is a string of one or more 2-hexadecimal
character ciphers that are SSL version 3 TLS version 1.0, TLS version 1.1, or
TLS version 1.2 ciphers, or a single cipher constant. The cipher string cannot
have blanks between each cipher. If duplicate ciphers, the first instance of the
cipher is used and all other instances you specify are ignored. The maximum
number of ciphers is 255. For System SSL, see the description of the
gsk_environment_open() call in z/OS Cryptographic Services System SSL
Programming for a list of valid cipher suites. Table 68 on page 992 lists cipher
constants that are supported.

Chapter 21. Policy Agent and policy applications 991

|
|
|
|
|
|

|
|

Table 68. Supported cipher constants for the ServerSSLV3CipherSuites parameter

Cipher constant Hexadecimal character

TLS_NULL_WITH_NULL_NULL 00

TLS_RSA_WITH_NULL_MD5 01

TLS_RSA_WITH_NULL_SHA 02

TLS_RSA_EXPORT_WITH_RC4_40_MD5 03

TLS_RSA_WITH_RC4_128_MD5 04

TLS_RSA_WITH_RC4_128_SHA 05

TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 06

TLS_RSA_WITH_DES_CBC_SHA 09

TLS_RSA_WITH_3DES_EDE_CBC_SHA 0A

TLS_DH_DSS_WITH_DES_CBC_SHA 0C

TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA 0D

TLS_DH_RSA_WITH_DES_CBC_SHA 0F

TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA 10

TLS_DHE_DSS_WITH_DES_CBC_SHA 12

TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA 13

TLS_DHE_RSA_WITH_DES_CBC_SHA 15

TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA 16

TLS_RSA_WITH_AES_128_CBC_SHA 2F

TLS_DH_DSS_WITH_AES_128_CBC_SHA 30

TLS_DH_RSA_WITH_AES_128_CBC_SHA 31

TLS_DHE_DSS_WITH_AES_128_CBC_SHA 32

TLS_DHE_RSA_WITH_AES_128_CBC_SHA 33

TLS_RSA_WITH_AES_256_CBC_SHA 35

TLS_DH_DSS_WITH_AES_256_CBC_SHA 36

TLS_DH_RSA_WITH_AES_256_CBC_SHA 37

TLS_DHE_DSS_WITH_AES_256_CBC_SHA 38

TLS_DHE_RSA_WITH_AES_256_CBC_SHA 39

TLS_RSA_WITH_NULL_SHA256 3B

TLS_RSA_WITH_AES_128_CBC_SHA256 3C

TLS_RSA_WITH_AES_256_CBC_SHA256 3D

TLS_DH_DSS_WITH_AES_128_CBC_SHA256 3E

TLS_DH_RSA_WITH_AES_128_CBC_SHA256 3F

TLS_DHE_DSS_WITH_AES_128_CBC_SHA256 40

TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 67

TLS_DH_DSS_WITH_AES_256_CBC_SHA256 68

TLS_DH_RSA_WITH_AES_256_CBC_SHA256 69

TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 6A

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 6B

TLS_RSA_WITH_AES_128_GCM_SHA256 9C

TLS_RSA_WITH_AES_256_GCM_SHA384 9D

992 z/OS V2R1.0 Communications Server: IP Configuration Reference

||

||

||

||

||

||

||

||

||

||

||

||

||

Table 68. Supported cipher constants for the ServerSSLV3CipherSuites
parameter (continued)

Cipher constant Hexadecimal character

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 9E

TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 9F

TLS_DH_RSA_WITH_AES_128_GCM_SHA256 A0

TLS_DH_RSA_WITH_AES_256_GCM_SHA384 A1

TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 A2

TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 A3

TLS_DH_DSS_WITH_AES_128_GCM_SHA256 A4

TLS_DH_DSS_WITH_AES_256_GCM_SHA384 A5

ServerSSLv3
Indicates whether SSLv3 is enabled for the policy client that connects to the
server.

On SSLv3 is enabled.

Off SSLv3 is disabled. This is the default.

ServicesConnection statement

The Policy Agent uses the ServicesConnection statement to specify the listening
port, listening TCP/IP image, and security level for connections to the Policy
Agent. Applications that use this connection are known as services requestors. One
such services requestor is the IBM Configuration Assistant for z/OS
Communications Server, which is an import requestor that uses this connection to
retrieve import policies or TCP/IP profile information.

Consider the following characteristics when using the ServicesConnection
statement:
v If you want to use default values for all parameters, you can specify the

ServicesConnection statement without a set of braces.
v If you specify Security Basic, you can either use a default unsecure connection or

supply user defined AT-TLS policies for this import services connection to create
a secure SSL connection.

v If you specify Security Secure, the Policy Agent generates an AT-TLS policy and
installs it at the lowest priority (lower than any configured policies) into the
specified TCP/IP image after any configured local or remote AT-TLS policies
have been installed.

v If you update any parameters that are used in the generated policy (Port, Trace
or Keyring parameters), the Policy Agent reinstalls the generated policy.

v The Policy Agent listens for TCP connections on the specified TCP/IP image
name only.

v If you remove the ServicesConnection statement, all services requestor
connections to this Policy Agent are disconnected.

v Updates to the ServicesConnection statement are used for only new services
requestor connections to the Policy Agent.

v If you do not configure the ServicesConnection statement, or the image name is
not an active TCP/IP image, the Policy Agent does not listen on any port for
services requestor connections.

Chapter 21. Policy Agent and policy applications 993

||

||

||

||

||

||

||

||

|
|
|

||

||

|
|
|

v To restart the listen for services requestor connections and to reinstall the
generated AT-TLS policy, issue the MODIFY SRVLSTN command. See z/OS
Communications Server: IP System Administrator's Commands for more
information about this command.

Syntax

�� ServicesConnection Place Braces and Parameters on Separate Lines ��

Place Braces and Parameters on Separate Lines:

{
ServicesConnection Parameters

}

ServicesConnection Parameters:

Port 16311

Port value ImageName imagename

Security Basic

Security Secure
Basic

�

�
Trace 2

Trace n Keyring value

Parameters

Port
Specifies the port that the Policy Agent listens on for TCP connections from
services requestors on the specified TCP/IP image name. If you are using the
IBM Configuration Assistant for z/OS Communications Server, this port must
be the same as the host connection port that is specified on the Configuration
Assistant Import Policy Data request panel for any import requestor that
connects to this Policy Agent or on the request panels for discovery import (for
example, on the Discover Stack Local Addresses panel).

If you change the Port parameter value, the Policy Agent listens for new TCP
connections using the updated value on the specified TCP/IP image name.

Valid port values are in the range 1 - 65 535. The default port value is 16 311.

Restriction: The port value cannot match the port value configured on the
ClientConnection statement.

ImageName
A string 1 - 8 characters in length that specifies the TCP/IP image name. The
Policy Agent listens for services connections only on this TCP/IP image.

If you change the ImageName value, the Policy Agent listens for new TCP
connections on the newly specified TCP/IP image name. If you specify the
Security parameter with the Secure value and update the ImageName
parameter, the Policy Agent removes the generated policy from the original
TCP/IP image and installs it on the newly specified image.

994 z/OS V2R1.0 Communications Server: IP Configuration Reference

If you specify Security Basic and define AT-TLS policies for this import services
connection to create a secure SSL connection, these policies must be installed
for this ImageName.

Results:

v In a single stack (INET) environment, the Policy Agent uses the active
TCP/IP image to listen for services connection requests.

v In a common INET (CINET) environment, if you do not specify the TCP/IP
image name, the Policy Agent uses the default TCP/IP image (resolver
supplied TCPIPuserid statement or TCPIPjobname statement). If the Policy
Agent cannot determine the default TCP/IP image, the Policy Agent uses
the name INET.

v If you specify an image name that does not have a corresponding TcpImage
or PEPInstance statement, the Policy Agent creates an internal TcpImage
statement with default values to represent the specified TCP/IP image. You
can specify only 7 (instead of 8) TcpImage or PEPInstance statements.

v If you specify an image name that is not active, the Policy Agent does not
listen for services requestor connections until the TCP/IP image becomes
active.

Security
Indicates the level of security that is used for the services requestor connection.
If you change the Security parameter from Secure to Basic, the Policy Agent
uninstalls the generated AT-TLS policy from the specified TCP/IP image.

Basic Specifies one of the following connections:
v The connection does not use SSL and is unsecure.
v You define AT-TLS policies for this import services connection to

create a secure SSL connection.

Result: If you specify the Security Basic setting without defining
AT-TLS policies, the user ID and password that the services requestor
provides flow without encryption.

Tip: For secure SSL, it is recommended to configure Security Basic and
to supply user defined AT-TLS policies to protect the import service
connection with the required SSL/TLS protection.

Secure
Specifies that the connection uses SSL. The Policy Agent installs a
generated AT-TLS policy similar to the following example into the
specified TCP/IP image to protect the connection.

Restriction: This option supports only TLSv1.0 and is not
recommended for secure SSL.
TTLSRule TTLS_RULE_______________GENERATED
{

LocalPortRange <ServicesConnection port value>
Direction Inbound
TTLSGroupActionRef TTLS_GROUP_ACTION_______GENERATED
TTLSEnvironmentActionRef TTLS_ENVIRONMENT_ACTION_GENERATED

}
TTLSGroupAction TTLS_GROUP_ACTION_______GENERATED
{

TTLSEnabled On
Trace <ServicesConnection trace value>

}
TTLSEnvironmentAction TTLS_ENVIRONMENT_ACTION_GENERATED
{

HandshakeRole Server

Chapter 21. Policy Agent and policy applications 995

|
|
|

|

|

|
|

|
|
|

|
|
|

|
|

TTLSKeyRingParms
{

Keyring <ServicesConnection keyring value>
}

}

Rule: If you specify Security Secure, the Keyring parameter is required.

Trace
Specifies the level of AT-TLS tracing to be used for the generated AT-TLS
policy. Valid values for n are in the range 0 - 255. The sum of the numbers
associated with each level of selected tracing is the value you should specify
for n. If n is an odd number, errors are written to joblog, and all other
configured traces are sent to syslogd.

0 No tracing is enabled.

1 (Error)
Errors are traced to the TCP/IP joblog.

2 (Error)
Errors are traced to syslogd. This is the default. The messages are
issued with syslogd priority code err.

4 (Info)
Enables tracing of instances when a connection is mapped to an
AT-TLS rule and when a secure connection is successfully initiated. The
messages are issued with syslogd priority code info.

8 (Event)
Enables tracing of major events. The messages are issued with syslogd
priority code debug.

16 (Flow)
Enables tracing of system SSL calls. The messages are issued with
syslogd priority code debug.

32 (Data)
Enables tracing of encrypted negotiation and headers. This value traces
the negotiation of secure sessions. The messages are issued with
syslogd priority code debug.

64 Reserved.

128 Reserved.

255 Enables all tracing.

If you specify Security Basic, this parameter is ignored.

Keyring
A string 1 - 1 023 in length that specifies the ring name of the SAF key ring.
This key ring typically contains the certificates of the trusted (by the client)
Certificate Authorities.

Restriction: If Security is configured with Secure, then this parameter is
required.

If you specify Security Basic, this parameter is ignored.

SetSubnetPrioTosMask statement

Use the SetSubnetPrioTosMask statement to define a mapping of IPv4 Type of
Service (ToS) byte or IPv6 Traffic Class to outbound interface device and virtual

996 z/OS V2R1.0 Communications Server: IP Configuration Reference

LAN (VLAN) user priority values. It maps priorities for interfaces that use
OSA-Express configured in QDIO mode. If this statement is not specified, TCP/IP
uses the system default ToS or Traffic Class mask and priority levels for all
interfaces currently defined for IPv4 (RFC 791).

The current IPv4 ToS byte format defines the first 3 bits to be the precedence bits
(for example, priority). Therefore, the default for the subnet ToS mask, if this
statement is not specified, is 11 100 000. The same default mask also applies to
IPv6 Traffic Class.

Restrictions:

v Only Queued Direct I/O (QDIO) devices can support priorities.
v A maximum of 16 SetSubnetPrioTosMask statements can be specified for each

TCP/IP stack.

This statement sets up ToS or Traffic Class to priority mapping for those devices.
QDIO supports four priority levels, 1 - 4, with 4 being the lowest priority.
Following is the default mapping of these four priorities to the various ToS byte or
Traffic Class values:
TOS Priority
00000000 4
00100000 4
01000000 3
01100000 2
10000000 1
10100000 1
11000000 1
11100000 1

The ToS byte or Traffic Class is also used by other network devices (for example,
routers and switches) to determine the priority of a packet.

Guideline: If Enterprise Extender has set ToS bytes, this overrides those settings.

Tip: An outbound packet with a ToS or Traffic Class value that consists of zeros
allows for prioritizing outbound OSA-Express data using the WorkLoad Manager
service class importance level. See the information about Prioritizing outbound
OSA-Express data using the WorkLoad Manager service class in z/OS
Communications Server: IP Configuration Guide for more information about using
WorkLoad Manager service class importance level values with OSA-Express QDIO
interfaces.

Syntax

�� SetSubnetPrioTosMask Place Braces and Parameters on Separate Lines ��

Place Braces and Parameters on Separate Lines:

{
SetSubnetPrioTosMask Parameters

}

Chapter 21. Policy Agent and policy applications 997

SetSubnetPrioTosMask Parameters:

SubnetAddr 0.0.0.0

SubnetAddr address
SubnetTosMask mask �

� �
PriorityTosMapping 4tos 0

PriorityTosMapping priority tos
user_priority

Parameters

SubnetAddr
The local subnet interface address. This can be an IPv4 address or an interface
name. A value of 0 indicates that the mask is the same for all interfaces. The
default is all interfaces. All interfaces are the same as coding a value of 0, or
not specifying this parameter.

Requirement: If an interface name is specified, it must match a name specified
on one of the following statements in the TCP/IP profile:
v LINK statement for an IPv4 interface
v INTERFACE statement for an IPv4 or IPv6 interface

SubnetTosMask
SubnetTosMask contains eight bits, left-aligned, for the ToS or Traffic Class
mask. For example, 101 would be 10 100 000. There is no default.

Requirement: This is a required parameter.

PriorityTosMapping
Three values to indicate each priority level to ToS or Traffic Class value
mapping. The first value of each mapping is an integer to indicate the device
priority level, the second value is eight bits, left-aligned, to indicate the ToS or
Traffic Class value, and the third value is an optional integer to indicate the
user priority (0 - 7, where 0 is the lowest priority). User priority is also known
as virtual LAN (VLAN) priority.

Restrictions:

v If this parameter is not specified for a ToS or Traffic Class value, that value
maps to a device priority value of 4, and a user priority value of 0.

v A maximum of 32 PriorityTosMapping parameters can be specified.

Result: Coding the virtual LAN (VLAN) user priority causes a frame to be sent
out based on the IEEE 802.1Q specification, which establishes a standard
method for tagging Ethernet frames with VLAN priority and membership
information. Specifically, a VLAN priority-tagged frame is used to convey
packet priority to the switches; it has a value of NULL for VLANID. A full
VLAN-tagged frame contains both the priority and non-null VLANID. If you
have switches in your network that do not support the IEEE 802.1Q standard
or that are not properly configured for these types of frames, the frames might
be dropped by the switch.

998 z/OS V2R1.0 Communications Server: IP Configuration Reference

Examples
SetSubnetPrioTosMask
{
SubnetAddr NSQDIO3
SubnetTosMask 11100000
PriorityTosMapping 1 11100000 7
PriorityTosMapping 1 11000000 7
PriorityTosMapping 2 10100000 6
PriorityTosMapping 2 10000000 5
PriorityTosMapping 2 01100000 5
PriorityTosMapping 3 01000000 3
PriorityTosMapping 4 00100000 2
PriorityTosMapping 4 00000000 0
}

SetSubnetPrioTosMask
{
SubnetTosMask 11100000
PriorityTosMapping 1 11100000
PriorityTosMapping 1 11000000
PriorityTosMapping 1 10100000
PriorityTosMapping 1 10000000
PriorityTosMapping 2 01100000
PriorityTosMapping 2 01000000
PriorityTosMapping 3 00100000
PriorityTosMapping 4 00000000
}

TcpImage and PEPInstance statement

Use the TcpImage and PEPInstance statements to specify a TCP/IP image and its
associated image configuration file to be installed to that image. These statements
are synonyms and you can use either of them. If no TcpImage statement is
specified, any policy definitions are installed to the default TCP/IP image (resolver
supplied TCPIPuserid statement or TCPIPjobname statement). The parameters
FLUSH or NOFLUSH can be used to force deletion of some policy types from the
stack at startup and certain other events. The parameters PURGE or NOPURGE
can be used to delete some policy types from the stack during normal shutdown
(for example, KILL or STOP).

A single stack environment is defined in BPXPRMxx parmlib member by setting
'FILESYSTYPE TYPE(INET)'. For more information, see z/OS UNIX System
Services Planning.

The Policy Agent uses the TcpImage statement within a single stack environment
in the following ways:
v If one or more TcpImage statements are specified, Policy Agent always uses the

default TCP/IP image (resolver supplied TCPIPuserid statement or
TCPIPjobname statement). All associated policy control statements are installed
to the active TCP/IP stack.

v If no TcpImage statement is specified, any control statements are installed to the
active TCP/IP stack.

v If Policy Agent cannot determine the name of the TCP/IP image (resolver
supplied TCPIPuserid statement or TCPIPjobname statement), INET is the
default name used. Any control statements are installed to the active TCP/IP
stack.

Chapter 21. Policy Agent and policy applications 999

Result: If the default TCP/IP image (resolver supplied TCPIPuserid statement or
TCPIPjobname statement) is not the same as the active TCP/IP stack, the following
situations occur:
v The default TCP/IP stack name is used in messages and displays. Policy Agent

creates an internal TcpImage statement with default values to represent the
specified TCP/IP image.

v The interface used by the stack to inform the Policy Agent about stack restarts
does not function.

Syntax

�� TcpImage
PEPInstance

name
path

NOFLUSH

FLUSH
NOFLUSH

NOPURGE

PURGE
NOPURGE

1800

i
��

Parameters

name
The jobname of the TCP/IP image.

Requirement: The name must be one to eight characters in length.

path
The path of the image configuration file to be installed. If an image
configuration file is not specified, the following policy definitions (if any) in
this policy configuration file are installed.

You can specify an MVS data set name or a z/OS UNIX file name. MVS data
set names must be enclosed in single quotation marks (' ') and preceded by a
double slash (//). Following are examples of both types of names:
TcpImage TCPIP1 //’USER1.PAGENT.CONF(TCPIP1)’ FLUSH PURGE
TcpImage TCPIP1 /u/user1/pagent.tcpip1 FLUSH PURGE

FLUSH
Specifies that all policies installed in the Policy Agent and the TCP/IP stack are
deleted when:
v A new TcpImage statement is processed for the first time, including Policy

Agent starting.
v A MODIFY PAGENT,REFRESH command is entered.

NOFLUSH
Specifies that all policies installed in the Policy Agent and the TCP/IP stack are
to remain during initial startup and at each refresh interval. In addition,
policies that are deleted from a configuration are not deleted from the Policy
Agent or the TCP/IP stack. This is the default.

PURGE
Specifies that all policies installed in the TCP/IP stack are deleted during
normal termination, and also when a TcpImage or PEPInstance statement is
deleted.

NOPURGE
Specifies that all policies installed in the TCP/IP stack remain during normal
termination and when a TcpImage or PEPInstance statement is deleted. This is
the default.

For details, see the FLUSH and PURGE considerations in z/OS
Communications Server: IP Configuration Guide.

1000 z/OS V2R1.0 Communications Server: IP Configuration Reference

i

An integer that specifies the time interval (in seconds) for checking the creation
or modification time of the configuration file or files, and for refreshing
policies from the LDAP server. The maximum value is 2 147 483 647. In the
following cases, the update interval is changed:
v If a value is not specified, the default is 1 800 seconds (30 minutes).
v If a value of 0 is specified, the default value of 1 800 (30 minutes) is used.
v Any value in the range 1 - 59 is rounded up to 60 seconds (1 minute).

The Policy Agent always uses this time interval to check for changes, but also
monitors the configuration file or files in real time if the -i startup option is
specified. The smallest refresh interval specified on the set of TcpImage
statements is used as the refresh interval for the main configuration file.

For example, if -i is set to 300, the corresponding configuration files and LDAP
server are checked for changes every five minutes. If the configuration file or
files have changed within the last 5 minutes, they are read again. The LDAP
server (if configured) is also queried again for policies. Any new, changed, or
deleted policies are installed to or removed from the stack as appropriate.

Restriction: Dynamic monitoring for file updates using the -i startup option is
supported only for z/OS UNIX files; MVS data sets are not monitored for changes.

Rules: To dynamically add a TCP/IP stack to the Policy Agent configuration, take
one of the following actions in addition to adding the TcpImage statement to the
configuration file. This automatically installs active policies.
v If the Policy Agent was started with the -i startup option, no further action is

necessary. Active policies are automatically installed to the stack when it
becomes active.

v If the Policy Agent was not started with the -i startup option, take one of the
following actions:
– Issue the MODIFY REFRESH or MODIFY UPDATE command after the stack

becomes active. If the MODIFY REFRESH or MODIFY UPDATE command is
issued before the stack becomes active, policies are not automatically
installed.

– Wait on the next update interval to check for configuration changes. If the
stack is not active, policies are not automatically installed.

Examples

The following example installs the image configuration file /tmp/TCPCS.policy to
the TCPCS TCP/IP image, after flushing existing policy control data:
TcpImage TCPCS /tmp/TCPCS.policy FLUSH

TTLSConfig statement

Use the TTLSConfig statement to specify the path of a local AT-TLS policy file that
contains stack-specific AT-TLS policy statements. The TTLSConfig statement is
required to define AT-TLS policy for a given stack. To define a common set of
policies for multiple stacks, the TTLSConfig statement can be specified without a
path name.

Requirement: The TTLSConfig statement is required to define AT-TLS policy for a
given stack.

Chapter 21. Policy Agent and policy applications 1001

Results: For the associated TCP/IP image on the policy client, if the PolicyServer
statement specifies remote AT-TLS policies, then one the following situations
occurs:
v If no local AT-TLS policies are installed, then the TTLSConfig statement is

ignored.
v If local AT-TLS policies are already installed, then the result is the same as if the

TTLSConfig statement had been deleted.

Rule: For AT-TLS policies, if errors are detected during parsing, no new policies
are installed.

The FLUSH/NOFLUSH and PURGE/NOPURGE parameters can be used to
specify whether or not AT-TLS policies are deleted at startup (and when a
MODIFY REFRESH command is entered) and shutdown, respectively.

The refresh interval for the TTLSConfig file is inherited from the image
configuration file containing the corresponding TTLSConfig statement.

Specify the TTLSConfig statement without a path name in each image
configuration file to define a common set of policies for multiple stacks.

The TTLSConfig statement can appear only in an image configuration file. If a
TTLSConfig statement appears multiple times in an image configuration file, the
last occurrence of the statement is used. If the TTLSConfig statement appears in
the main configuration file, it is ignored (unless the main and image configuration
files are the same file).

Syntax

�� TTLSConfig
path FLUSH

NOFLUSH
PURGE
NOPURGE

��

Parameters

path
The path of the stack-specific AT-TLS policy file to be installed. If no path
name is specified, then the common AT-TLS policy file specified on the
CommonTTLSConfig statement is used.

You can specify an MVS data set name or a z/OS UNIX file name. MVS data
set names must be enclosed in single quotation marks (' ') and preceded by a
double slash (//). Following are examples of both types of names:
TTLSConfig //’USER1.PAGENT.CONF(TTLS)’
TTLSConfig /u/user1/pagent.ttls

Restriction: Dynamic monitoring for file updates using the -i startup option is
supported only for z/OS UNIX files; MVS data sets are not monitored for
change.

FLUSH
FLUSH specifies that all policies installed in the Policy Agent and the TCP/IP
stack are deleted. Policies are flushed at the following times:
v When a new TcpImage statement is processed for the first time, including

Policy Agent starting
v When a MODIFY REFRESH command is entered

1002 z/OS V2R1.0 Communications Server: IP Configuration Reference

NOFLUSH
NOFLUSH specifies that all policies installed in the Policy Agent and the
TCP/IP stack are to remain during initial startup and at each refresh interval.
In addition, policies that are deleted from a configuration are not deleted from
the Policy Agent or the TCP/IP stack.

PURGE
Specifies that all policies installed in the TCP/IP stack are deleted during
normal termination, and also when a TcpImage or PEPInstance statement is
deleted.

NOPURGE
Specifies that all policies installed in the TCP/IP stack remain during normal
termination and when a TcpImage or PEPInstance statement is deleted.

For details, see the FLUSH and PURGE information in z/OS Communications
Server: IP Configuration Guide.

Result: If the TTLSConfig statement is deleted and FLUSH configured, then all
AT-TLS policies are deleted from the corresponding stack.

AT-TLS policy statements
This topic contains information about the following AT-TLS policy statements:
v “TTLSCipherParms statement” on page 1004
v “TTLSConnectionAction statement” on page 1009
v “TTLSConnectionAdvancedParms statement” on page 1012
v “TTLSEnvironmentAction statement” on page 1017
v “TTLSEnvironmentAdvancedParms statement” on page 1020
v “TTLSGroupAction statement” on page 1028
v “TTLSGroupAdvancedParms statement” on page 1030
v “TTLSGskAdvancedParms statement” on page 1032
v “TTLSGskLdapParms statement” on page 1033
v “TTLSKeyringParms statement” on page 1035
v “TTLSRule statement” on page 1036
v “TTLSSignatureParms statement” on page 1041

Consider the following guidelines when using the AT-TLS policy statements.

Guidelines:

v While configuring AT-TLS policy, see z/OS Cryptographic Services System SSL
Programming for a detailed description of each of the System SSL attributes that
are being configured using the AT-TLS policy statements (System SSL attributes
are those that begin with GSK). See the information describing the
gsk_attribute_set_buffer API, the gsk_attribute_set_enum API, and the
gsk_attribute_set_numeric_value API descriptions of how each attribute is used
by System SSL, as well as the meaning of available attribute settings and default
attribute settings.

v AT-TLS requires a valid z/OS UNIX key database, SAF key ring, or z/OS PKCS
#11 token. For more information about AT-TLS configuration, see z/OS
Communications Server: IP Configuration Guide.

Chapter 21. Policy Agent and policy applications 1003

v AT-TLS can be configured to write trace data to syslogd. AT-TLS writes
messages to syslogd using the daemon or auth facility. See Chapter 20, “Syslog
daemon,” on page 909 for more information about configuring syslogd.

v If System SSL needs to access ICSF, ICSF must be started before you start the
Policy Agent. For information about using hardware Cryptographic Features
with System SSL, see z/OS Cryptographic Services System SSL Programming.

Note the following results when using the AT-TLS policy statements.

Results: When using AT-TLS policy statements, consider the following results:
v When an IpAddrGroup statement contains non-continuous ranges of IP

addresses, or a PortGroup statement contains non-continuous ranges of port
numbers, Policy Agent cannot merge these conditions into a single condition.
The group's ranges are displayed by pasearch, as configured, with the summary
condition for each of these respective attributes equal to the lowest from value
in the group to the highest to value in the group. If an IP address of value
0.0.0.0 exists in an IpAddrGroup statement, the summary condition for this
attribute is set to All. If a Port of value 0 exists in a PortGroup statement, the
summary condition for this attribute is set to the range 0-0. When an
IpAddrGroup statement contains a mixture of IPv4 and IPv6 addresses, a
summary condition cannot be created. The group's ranges are displayed by
pasearch, as configured, with a summary condition for this attribute of All.

v For optional parameters that have default values and are not specified, pasearch
displays the default value when the parameter is not configured.

v For optional parameters that do not have default values and are not specified,
pasearch does not display the parameter.

v If an optional parameter is not specified for a GSK statement, System SSL uses
its default value.

v For parameters that can be specified in multiple action types, the value used by
a connection is determined by the following hierarchical rule set.
1. If the parameter is specified in the TTLSConnectionAction statement that is

the value used.
2. If the parameter is specified in the TTLSEnvironmentAction statement that is

the value used.
3. If the parameter is specified in the TTLSGroupAction statement that is the

value used.
4. If a default value is defined, that is the value used.
5. No value is used by AT-TLS and no parameter is explicitly passed to System

SSL.
v Each AT-TLS action has a user instance variable (GroupUserInstance,

EnvironmentUserInstance, and ConnectionUserInstance). These parameters can
be used to cause Policy Agent to refresh a specific action, when using the -i
startup option or when a refresh interval is coded.

Tip: For an example of AT-TLS policy definitions see /usr/lpp/tcpip/samples/
pagent_TTLS.conf

TTLSCipherParms statement

Use the TTLSCipherParms statement to define the cipher specifications for an
AT-TLS environment or an AT-TLS connection. A TTLSCipherParms statement can
be specified inline in a TTLSEnvironmentAction or TTLSConnectionAction

1004 z/OS V2R1.0 Communications Server: IP Configuration Reference

statement or referenced by a TTLSEnvironmentAction or TTLSConnectionAction
statement.

Syntax

�� TTLSCipherParms Put Braces and Parameters on Separate Lines
name

��

Put Braces and Parameters on Separate Lines:

{
TTLSCipherParms Parameters

}

TTLSCipherParms Parameters:

� � �

V2CipherSuites ciphers V3CipherSuites ciphers V3CipherSuites4Char ciphers4

Parameters

name
A string 1 - 32 characters in length specifying the name of this
TTLSCipherParms statement.

Rule: If this TTLSCipherParms statement is not specified inline within another
statement, a name value must be provided. If a name is not specified for an
inline TTLSCipherParms statement, a nonpersistent system name is created.

V2CipherSuites
Specifies the SSL version 2 cipher suites in order of preference. If a
V2CipherSuites parameter is specified more than once, the values are
concatenated to create a single list of cipher suites. For System SSL, the
GSK_V2_CIPHER_SPECS value is set to the concatenated value.

The ciphers value is a string of one or more 1-character SSL version 2 ciphers or
a single cipher constant. The cipher string cannot have blanks between each
SSL version 2 cipher. If duplicate ciphers are specified, the first instance is used
and all other instances are ignored. The maximum number of SSL version 2
ciphers is 10. For System SSL, see gsk_environment_open() in z/OS
Cryptographic Services System SSL Programming for a list of valid cipher
suites. Table 69 lists the supported cipher constants.

Table 69. V2CipherSuites

Cipher constant
Hexadecimal
character

TLS_RC4_128_WITH_MD5 1

TLS_RC4_128_EXPORT40_WITH_MD5 2

TLS_RC2_CBC_128_CBC_WITH_MD5 3

TLS_RC2_CBC_128_CBC_EXPORT40_WITH_MD5 4

TLS_DES_64_CBC_WITH_MD5 6

TLS_DES_192_EDE3_CBC_WITH_MD5 7

Chapter 21. Policy Agent and policy applications 1005

V3CipherSuites
Specifies the SSL ciphers Version 3, TLS Version 1.0, TLS Version 1.1, or TLS
Version 1.2 cipher suites in order of preference. If a V3CipherSuites or
V3CipherSuites4Char parameter is specified more than once, the values are
concatenated to create a single list of cipher suites. For System SSL, the
GSK_V3_CIPHER_SPECS_EXPANDED value is set to the concatenated value.

The ciphers value is a string of one or more 2-hexadecimal character SSL ciphers
Version 3, TLS version 1.0, TLS Version 1.1, or TLS Version 1.2 ciphers or a
single cipher constant. The cipher string cannot have blanks between each SSL
ciphers Version 3, TLS version 1.0, TLS Version 1.1, or TLS Version 1.2 cipher. If
the string notation is used, you cannot specify any cipher values that require
four character representation. Use the V3CipherSuites4Char parameter to
specify four character cipher string values. If duplicate ciphers are specified,
the first instance is used and all other instances ignored. The maximum
number of ciphers that can be specified is 255. For System SSL, see
gsk_environment_open() in z/OS Cryptographic Services System SSL
Programming for a list of valid cipher suites. Table 70 lists the supported
cipher constants.

V3CipherSuites4Char
Specifies the SSL ciphers Version 3, TLS Version 1.0, TLS Version 1.1, or TLS
Version 1.2 cipher suites in order of preference. If a V3CipherSuites or
V3CipherSuites4Char parameter is specified more than once, the values are
concatenated to create a single list of cipher suites. For System SSL, the
GSK_V3_CIPHER_SPECS_EXPANDED value is set to the concatenated value.

The ciphers value is a string of one or more 4-hexadecimal character SSL ciphers
Version 3, TLS version 1.0, TLS Version 1.1, or TLS Version 1.2 ciphers. The
cipher string cannot have blanks between each SSL ciphers Version 3, TLS
version 1.0, TLS Version 1.1, or TLS Version 1.2 cipher. Use the V3CipherSuites
parameter to specify a cipher constant or 2-character cipher string values. If
duplicate ciphers are specified, the first instance is used and all other instances
ignored. The maximum number of ciphers that can be specified is 255.

For System SSL, see gsk_environment_open() in z/OS Cryptographic Services
System SSL Programming for a list of valid cipher suites. Table 70 lists the
supported cipher constants.

Table 70. V3CipherSuites

Cipher constant
Hexadecimal
character

Expanded
character

TLS_NULL_WITH_NULL_NULL 00 0000

TLS_RSA_WITH_NULL_MD5 01 0001

TLS_RSA_WITH_NULL_SHA 02 0002

TLS_RSA_EXPORT_WITH_RC4_40_MD5 03 0003

TLS_RSA_WITH_RC4_128_MD5 04 0004

TLS_RSA_WITH_RC4_128_SHA 05 0005

TLS_RSA_EXPORT_WITH_RC2_CBC_40_MD5 06 0006

TLS_RSA_WITH_DES_CBC_SHA 09 0009

TLS_RSA_WITH_3DES_EDE_CBC_SHA 0A 000A

TLS_DH_DSS_WITH_DES_CBC_SHA 0C 000C

TLS_DH_DSS_WITH_3DES_EDE_CBC_SHA 0D 000D

TLS_DH_RSA_WITH_DES_CBC_SHA 0F 000F

1006 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 70. V3CipherSuites (continued)

Cipher constant
Hexadecimal
character

Expanded
character

TLS_DH_RSA_WITH_3DES_EDE_CBC_SHA 10 0010

TLS_DHE_DSS_WITH_DES_CBC_SHA 12 0012

TLS_DHE_DSS_WITH_3DES_EDE_CBC_SHA 13 0013

TLS_DHE_RSA_WITH_DES_CBC_SHA 15 0015

TLS_DHE_RSA_WITH_3DES_EDE_CBC_SHA 16 0016

TLS_RSA_WITH_AES_128_CBC_SHA 2F 002F

TLS_DH_DSS_WITH_AES_128_CBC_SHA 30 0030

TLS_DH_RSA_WITH_AES_128_CBC_SHA 31 0031

TLS_DHE_DSS_WITH_AES_128_CBC_SHA 32 0032

TLS_DHE_RSA_WITH_AES_128_CBC_SHA 33 0033

TLS_RSA_WITH_AES_256_CBC_SHA 35 0035

TLS_DH_DSS_WITH_AES_256_CBC_SHA 36 0036

TLS_DH_RSA_WITH_AES_256_CBC_SHA 37 0037

TLS_DHE_DSS_WITH_AES_256_CBC_SHA 38 0038

TLS_DHE_RSA_WITH_AES_256_CBC_SHA 39 0039

TLS_RSA_WITH_NULL_SHA256 3B 003B

TLS_RSA_WITH_AES_128_CBC_SHA256 3C 003C

TLS_RSA_WITH_AES_256_CBC_SHA256 3D 003D

TLS_DH_DSS_WITH_AES_128_CBC_SHA256 3E 003E

TLS_DH_RSA_WITH_AES_128_CBC_SHA256 3F 003F

TLS_DHE_DSS_WITH_AES_128_CBC_SHA256 40 0040

TLS_DHE_RSA_WITH_AES_128_CBC_SHA256 67 0067

TLS_DH_DSS_WITH_AES_256_CBC_SHA256 68 0068

TLS_DH_RSA_WITH_AES_256_CBC_SHA256 69 0069

TLS_DHE_DSS_WITH_AES_256_CBC_SHA256 6A 006A

TLS_DHE_RSA_WITH_AES_256_CBC_SHA256 6B 006B

TLS_RSA_WITH_AES_128_GCM_SHA256 9C 009C

TLS_RSA_WITH_AES_256_GCM_SHA384 9D 009D

TLS_DHE_RSA_WITH_AES_128_GCM_SHA256 9E 009E

TLS_DHE_RSA_WITH_AES_256_GCM_SHA384 9F 009F

TLS_DH_RSA_WITH_AES_128_GCM_SHA256 A0 00A0

TLS_DH_RSA_WITH_AES_256_GCM_SHA384 A1 00A1

TLS_DHE_DSS_WITH_AES_128_GCM_SHA256 A2 00A2

TLS_DHE_DSS_WITH_AES_256_GCM_SHA384 A3 00A3

TLS_DH_DSS_WITH_AES_128_GCM_SHA256 A4 00A4

TLS_DH_DSS_WITH_AES_256_GCM_SHA384 A5 00A5

TLS_ECDH_ECDSA_WITH_NULL_SHA C001

TLS_ECDH_ECDSA_WITH_RC4_128_SHA C002

TLS_ECDH_ECDSA_WITH_3DES_EDE_CBC_SHA C003

Chapter 21. Policy Agent and policy applications 1007

Table 70. V3CipherSuites (continued)

Cipher constant
Hexadecimal
character

Expanded
character

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA C004

TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA C005

TLS_ECDHE_ECDSA_WITH_NULL_SHA C006

TLS_ECDHE_ECDSA_WITH_RC4_128_SHA C007

TLS_ECDHE_ECDSA_WITH_3DES_EDE_CBC_SHA C008

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA C009

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA C00A

TLS_ECDH_RSA_WITH_NULL_SHA C00B

TLS_ECDH_RSA_WITH_RC4_128_SHA C00C

TLS_ECDH_RSA_WITH_3DES_EDE_CBC_SHA C00D

TLS_ECDH_RSA_WITH_AES_128_CBC_SHA C00E

TLS_ECDH_RSA_WITH_AES_256_CBC_SHA C00F

TLS_ECDHE_RSA_WITH_NULL_SHA C010

TLS_ECDHE_RSA_WITH_RC4_128_SHA C011

TLS_ECDHE_RSA_WITH_3DES_EDE_CBC_SHA C012

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA C013

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA C014

TLS_ECDHE_ECDSA_WITH_AES_128_CBC_SHA256 C023

TLS_ECDHE_ECDSA_WITH_AES_256_CBC_SHA384 C024

TLS_ECDH_ECDSA_WITH_AES_128_CBC_SHA256 C025

TLS_ECDH_ECDSA_WITH_AES_256_CBC_SHA384 C026

TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA256 C027

TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA384 C028

TLS_ECDH_RSA_WITH_AES_128_CBC_SHA256 C029

TLS_ECDH_RSA_WITH_AES_256_CBC_SHA384 C02A

TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256 C02B

TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384 C02C

TLS_ECDH_ECDSA_WITH_AES_128_GCM_SHA256 C02D

TLS_ECDH_ECDSA_WITH_AES_256_GCM_SHA384 C02E

TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256 C02F

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 C030

TLS_ECDH_RSA_WITH_AES_128_GCM_SHA256 C031

TLS_ECDH_RSA_WITH_AES_256_GCM_SHA384 C032

Requirement: If you plan to control access to the ICSF cryptographic support,
TCP/IP and other applications must be permitted to access the ICSF/MVS
cryptographic services (CSFSERV).

Guideline: If you do not have any reason to restrict access to the ICSF
cryptographic support, you should not activate the CSFSERV resource class, define

1008 z/OS V2R1.0 Communications Server: IP Configuration Reference

any of the profiles listed below, or permit any applications or users to these
profiles. If you do need to set up controls in the CSFSERV resource class, enable
the following resources.

Requirement: Elliptic Curve ciphers, defined as TLS_ECDH, TLS_ECDHE or
TLS_ECDSA, require ICSF to be active.

The user ID running the AT-TLS application must have READ access to the
following resources in the CSFSERV class:
v CSF1DVK
v CSF1GKP
v CSF1GAV
v CSF1PKS
v CSF1PKV
v CSF1TRC
v CSF1TRD

See Elliptic Curve Cryptography Support in z/OS Cryptographic Services System
SSL Programming for additional information.

Requirement: AES-GCM ciphers require ICSF to be active.

The user ID running the AT-TLS application must have READ access to the
following resources in the CSFSERV class:
v CSF1TRC
v CSF1SKD
v CSF1SKE
v CSF1TRD

TTLSConnectionAction statement

Use the TTLSConnectionAction statement to specify attributes for a subset of
connections that need attributes different from those specified on the
TTLSEnvironmentAction or TTLSGroupAction statement that is referenced by the
same TTLSRule statement.

Syntax

�� TTLSConnectionAction name Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
TTLSConnectionAction Parameters

}

TTLSConnectionAction Parameters:

HandshakeRole Client
Server
ServerWithClientAuth

TTLSCipherParms
TTLSCipherParmsRef name

�

Chapter 21. Policy Agent and policy applications 1009

�
TTLSSignatureParms
TTLSSignatureParmsRef name

CtraceClearText Off
On

Trace n
�

�
TTLSConnectionAdvancedParms
TTLSConnectionAdvancedParmsRef name

ConnectionUserInstance n

Parameters

name
A string 1 - 32 characters in length specifying the name of this
TTLSConnectionAction statement.

HandshakeRole
Specifies the SSL handshake role to be taken. For System SSL, the
GSK_SESSION_TYPE value is set to the same value as the HandshakeRole. If
this value is specified on the TTLSConnectionAction statement, it is used
instead of the value from the TTLSEnvironmentAction statement referenced by
the same TTLSRule statement. Valid values are:

Client Perform the SSL handshake as a client.

Server Perform the SSL handshake as a server.

ServerWithClientAuth
Perform the SSL handshake as a server requiring client authentication.

TTLSCipherParms
An inline specification of a TTLSCipherParms statement. If this value is
specified on the TTLSConnectionAction statement, it is used instead of the
value from the TTLSEnvironmentAction statement referenced by the same
TTLSRule statement.

TTLSCipherParmsRef
The name of a globally defined TTLSCipherParms statement. If this value is
specified on the TTLSConnectionAction statement, it is used instead of the
value from the TTLSEnvironmentAction statement referenced by the same
TTLSRule statement.

TTLSSignatureParms
An inline specification of a TTLSSignatureParms statement. If this value is
specified on the TTLSConnectionAction statement, it is used instead of the
value from the TTLSEnvironmentAction statement that is referenced by the
same TTLSRule statement.

TTLSSignatureParmsRef
The name of a globally defined TTLSSignatureParms statement. If this value is
specified on the TTLSConnectionAction statement, it is used instead of the
value from the TTLSEnvironmentAction statement that is referenced by the
same TTLSRule statement.

CtraceClearText
Specifies whether application data traced using Ctrace or data trace are shown
as unencrypted data. This parameter is applied only to connections that have
active AT-TLS security on the connection. If this value is specified on the
TTLSConnectionAction statement, it is used instead of the value from the
TTLSEnvironmentAction or TTLSGroupAction statement referenced by the
same TTLSRule statement. Valid values are:

Off Application data is not traced as clear text.

1010 z/OS V2R1.0 Communications Server: IP Configuration Reference

On Application data is traced as clear text.

Trace
Specifies the level of Application Transparent Transport Layer Security
(AT-TLS) tracing. The valid values for n are in the range 0 - 255. The sum of
the numbers associated with each level of tracing selected is the value that
should be specified as n. If n is an odd number, errors are written to joblog,
and all other configured traces are sent to syslogd. If this value is specified on
the TTLSConnectionAction statement, it is used instead of the value from the
TTLSEnvironmentAction or TTLSGroupAction statement referenced by the
same TTLSRule statement.

0 No tracing is enabled.

1 (Error)
Errors are traced to the TCP/IP joblog.

2 (Error)
Errors are traced to syslogd. The messages are issued with syslogd
priority code err.

4 (Info)
Tracing of when a connection is mapped to an AT-TLS rule and when a
secure connection is successfully initiated is enabled. The messages are
issued with syslogd priority code info.

8 (Event)
Tracing of major events is enabled. The messages are issued with
syslogd priority code debug.

16 (Flow)
Tracing of system SSL calls is enabled. The messages are issued with
syslogd priority code debug.

32 (Data)
Tracing of encrypted negotiation and headers is enabled. This traces
the negotiation of secure sessions. The messages are issued with
syslogd priority code debug.

64 Reserved.

128 Reserved.

255 All tracing is enabled.

TTLSConnectionAdvancedParms
An inline specification of a TTLSConnectionAdvancedParms statement.

TTLSConnectionAdvancedParmsRef
The name of a globally defined TTLSConnectionAdvancedParms statement.

ConnectionUserInstance
Defines a configurable instance identifier for this TTLSConnectionAction
statement. The n value can be in the range 0 - 65535. This parameter can be
used to signal a change to the Policy Agent without modifying any of the other
AT-TLS configuration statements. This parameter can also be used as a field to
be updated when a change is made to this TTLSConnectionAction statement.
This enables the user to differentiate TTLSConnectionAction statements, based
on the instance identifier.

Chapter 21. Policy Agent and policy applications 1011

TTLSConnectionAdvancedParms statement

Use the TTLSConnectionAdvancedParms statement to specify attributes for a
subset of connections that need attributes different from those specified on the
TTLSEnvironmentAdvancedParms statement that is referenced by the same
TTLSRule statement.

Syntax

�� TTLSConnectionAdvancedParms Put Braces and Parameters on Separate Lines
name

��

Put Braces and Parameters on Separate Lines:

{
TTLSConnectionAdvancedParms Parameters

}

TTLSConnectionAdvancedParms Parmeters:

SSLv2 On
Off

SSLv3 On
Off

TLSv1 On
Off

TLSv1.1 On
Off

TLSv1.2 On
Off

�

�
ApplicationControlled Off

On
HandshakeTimeout n ResetCipherTimer n CertificateLabel value

�

�
SecondaryMap On

Off
TruncatedHMAC Required

Optional
Off

�

�
ClientMaxSSLFragment Required ClientMaxSSLFragmentLength 512

Optional 1024
2048
4096

ClientMaxSSLFragment Off

ServerMaxSSLFragment Required
Optional
Off

�

�

�ClientHandshakeSNI Required ClientHandshakeSNIMatch Required ClientHandshakeSNIList value
Optional Optional

ClientHandshakeSNI Off

�

�

�ServerHandshakeSNI Required ServerHandshakeSNIMatch Required ServerHandshakeSNIList value
Optional Optional

ServerHandshakeSNI Off

Parameters

name
A string 1 - 32 characters in length specifying the name of this
TTLSConnectionAdvancedParms statement.

Rule: If this TTLSConnectionAdvancedParms statement is not specified inline
within another statement, a name value must be provided. If a name value is
not specified for an inline TTLSConnectionAdvancedParms statement, a
nonpersistent system name is created.

SSLv2
Specifies the state of the SSL Version 2 protocol. For System SSL, the
GSK_PROTOCOL_SSLV2 value is set to this value. Possible values are:

1012 z/OS V2R1.0 Communications Server: IP Configuration Reference

On Enables the SSL Version 2 protocol.

Off Disable the SSL Version 2 protocol.

SSLv3
Specifies the state of the SSL Version 3 protocol. For System SSL, the
GSK_PROTOCOL_SSLV3 value is set to this value. Possible values are:

On Enable the SSL Version 3 protocol.

Off Disable the SSL Version 3 protocol.

TLSv1
Specifies the state of the TLS Version 1 protocol. For System SSL, the
GSK_PROTOCOL_TLSV1 value is set to this value. Possible values are:

On Enable the TLS Version 1.0 protocol.

Off Disable the TLS Version 1.0 protocol.

TLSv1.1
Specifies the state of the TLS version 1.1 protocol. For System SSL, the
GSK_PROTOCOL_TLSV1.1 value is set to this value. Possible values are:

On Enable the TLS Version 1.1 protocol.

Off Disable the TLS Version 1.1 protocol.

TLSv1.2
Specifies the state of the TLS version 1.2 protocol. For System SSL, the
GSK_PROTOCOL_TLSV1.2 value is set to this value. Possible values are:

On Enable the TLS Version 1.2 protocol.

Off Disable the TLS Version 1.2 protocol.

TruncatedHMAC
For TLSv1.0 protocol or later, this keyword specifies whether clients and
servers support the use of 80-bit truncated HMACs. For System SSL, the
extension ID is set to GSK_TLS_SET_TRUNCATED_HMAC and a flag is set in
the gsk_tls_extension structure if it is required. Possible values are:

Required
Specifies that 80-bit truncated HMAC support must be accepted by
both endpoints. Connections fail if the remote endpoint does not
support the 80-bit truncated HMAC.

Tip: When you specify TruncatedHMAC as Required, specify SSLv3 as
Off.

Optional
Specifies that support is provided for 80-bit truncated HMAC
negotiation, but connections with endpoints that do not support the
truncated 80-bit HMAC are allowed.

Off Specifies that support is not provided for 80-bit truncated HMAC
negotiation. The function is not enabled. Connections fail if the remote
endpoint requires support for the 80-bit truncated HMAC.

ClientMaxSSLFragment
For TLSv1.0 protocol or later, this keyword specifies whether the maximum
SSL fragment function is supported when AT-TLS is the TLS client on the
connection. For System SSL, the extension ID is set to
GSK_TLS_SET_CLIENT_MFL and a flag is set in the gsk_tls_extension
structure if it is required. Possible values are:

Chapter 21. Policy Agent and policy applications 1013

Required
Specifies that maximum SSL fragment function support must be
accepted by the server. Connections fail if the server does not support
the maximum SSL fragment function.

Tip: When you specify ClientMaxSSLFragment as Required, specify
SSLv3 as Off.

Optional
Specifies support for maximum SSL fragment function negotiation, but
allows connections with servers that do not support maximum SSL
fragment function.

Off Specifies that maximum SSL fragment function negotiation is not
supported. The function is not enabled. Connections fail if the server
requires support for maximum SSL fragment function.

ClientMaxSSLFragmentLength
Specifies the maximum SSL fragment function, in bytes, to request on the
connection when AT-TLS is the TLS client using TLSv1.0 protocol or later. The
valid values are 512, 1024, 2048, and 4096. For System SSL, the maximum
fragment function is set to GSK_TLS_MFL_512, GSK_TLS_MFL_1024,
GSK_TLS_MFL_2048, or GSK_TLS_MFL_4096. This parameter is required when
ClientMaxSSLFragment is set to Required or Optional.

ServerMaxSSLFragment
For TLSv1.0 protocol or later, this keyword specifies whether the maximum
SSL fragment function is supported when AT-TLS is the TLS server on the
connection. For System SSL, the extension ID is set to
GSK_TLS_SET_SERVER_MFL and a flag is set in the gsk_tls_extension
structure if it is required. Possible values are:

Required
Specifies that maximum SSL fragment function support must be
accepted by the client. Connections fail if the client does not support
the maximum SSL fragment function.

Tip: When you specify ServerMaxSSLFragment as Required, specify
SSLv3 as Off.

Optional
Specifies that support is provided for maximum SSL fragment function,
but allow connections with clients that do not support the maximum
SSL fragment function.

Off Specifies that maximum SSL fragment function is not supported. The
function is not enabled. Connections fail if the client requires support
for maximum SSL fragment function.

ClientHandshakeSNI
For TLSv1.0 protocol or later, this keyword specifies whether a client can
specify a list of server names. The server chooses a certificate based on that
server name list for this connection. For System SSL, the extension ID is set to
GSK_TLS_SET_SNI_CLIENT_SNAMES and a flag is set in the
gsk_tls_extension structure if it is required. Valid values are:

Required
Specifies that server name indication support must be accepted by the
server. Connections fail if the server does not support server name
indication.

1014 z/OS V2R1.0 Communications Server: IP Configuration Reference

Tip: When you specify ClientHandshakeSNI as required, specify SSLv3
as Off.

Optional
Specifies that server name indication negotiation is supported, but
allows connections with servers that do not support server name
indication negotiation.

Off Specifies that server name indication is not supported. The function is
not enabled. Connections fail if the server requires support for server
name indication. This is the default.

ClientHandshakeSNIMatch
Code this parameter if ClientHandshakeSNI is set to Required or Optional. For
system SSL, a flag is set in the gsk_sni_client_snames structure if a match is
required. Possible values are:

Required
Specifies that a server name in the list of server names provided by the
TLS client must match a server name in the list of server names and
certificate labels on the TLS server. The connection ends if no match
was found for the server name at the server.

Optional
Specifies that connections can continue if no match is found for the
server name.

ClientHandshakeSNIList
For SSL clients using TLSv1.0 protocol or later, this keyword specifies a server
name. You can code multiple ClientHandshakeSNIList statements. The list of
server names is passed to the server in the SSL handshake. For System SSL, the
server names are anchored in the gsk_sni_client_snames structure. A server
name can be 1 - 255 characters in length. This parameter is required when
ClientHandshakeSNI is set to Required or Optional.

Restriction: The total length of all the server names specified must be less than
32K.

ServerHandshakeSNI
For TLSv1.0 protocol or later, this keyword specifies whether a certificate is
chosen based on the server name list provided by the TLS client. For System
SSL, the extension ID is set to GSK_TLS_SET_SNI_SERVER_SNAMES and a
flag is set in the gsk_tls_extension structure if it is required. Possible values
are:

Required
Specifies that server name indication support must be accepted by the
client. Connections fail if the client does not support server name
indication.

Tip: When you specify ServerHandshakeSNI as Required, specify
SSLv3 as Off.

Optional
Specifies that server name indication negotiation is supported, but
allow connections with clients that do not support server name
indication.

Off Specifies that server name indication is not supported. The function is
not enabled. Connections fail if the client requires support for server
name indication.

Chapter 21. Policy Agent and policy applications 1015

ServerHandshakeSNIMatch
You must code this parameter when ServerHandshakeSNI is set to Required or
Optional. For system SSL, a flag is set in the gsk_sni_server_labels structure if
a match is required. Possible values are:

Required
Specifies that a server name in the list of server names provided by the
TLS client must match a server name in the ServerHandshakeSNIList.
The connection ends if no match can be found for the server name.

Optional
Specifies that connections to continue if no match is found for the
server name.

ServerHandshakeSNIList
For SSL servers using TLSv1.0 protocol or later, this keyword specifies a server
name and certificate label pair to be used by the server, separated by a slash
(/). Multiple ServerHandshakeSNIList statements can be coded. The server
matches the server name provided by the client to a certificate label. For
System SSL, the server names and labels are anchored in the
gsk_sni_server_labels structure. A server name can be 1 - 255 characters in
length. A certificate label can be 1 - 127 characters in length. This parameter is
required when ServerHandshakeSNI is set to Required or Optional.

Rule: You can use comment indicators and embedded blanks as part of the
certificate label value for this attribute. For example:
ServerHandshakeSNIList myservername/Root#CA Certificate
value used: myservername/Root#CA Certificate

Restrictions:

v The total length of all the server names and certificate labels specified must
be less than 32K.

v When the certificate label value contains embedded blanks, you must specify
the entire parameter value within the first 1 536 characters of the
configuration file line.

ApplicationControlled
Specifies whether the application can control AT-TLS security for a connection.
Valid values are:

Off An application cannot control AT-TLS security. The connection
automatically negotiates AT-TLS security.

On An application can control AT-TLS security. AT-TLS security is used
only when requested by the application, using the SIOCTTLSCTL ioctl.

HandshakeTimeout
Specifies the number of seconds to wait for the initial handshake to complete.
Valid values of n are in the range 0 - 600.

For connections with the HandshakeRole parameter set to Client, the timer is
initially set to 5 times the value of n, allowing for network delay and any
delay on the server in processing the connection. When the initial response is
received from the server, the timer is set again for n seconds, to allow the
initial handshake to complete.

For connections with the HandshakeRole parameter set to Server or
ServerWithClientAuth, when the server starts to process the new connection
the timer is set to n seconds, waiting for the initial request from the client. The
timer is reset to n seconds when the server sends the initial response, to allow
the initial handshake to complete.

1016 z/OS V2R1.0 Communications Server: IP Configuration Reference

If the timer expires, the TCP connection is reset. A value of 0 indicates that the
connection does not time out waiting for the initial handshake to complete.

ResetCipherTimer
Specifies the number of minutes a secure connection can be active before a new
session key is generated for the connection. AT-TLS initiates a handshake on
the next read or write after the timer expires. For System SSL, the
GSK_RESET_CIPHER function is used to initiate handshake. This timer applies
only to connections using SSLv3 or TLSv1 protocol. If the session ID has
expired, a full handshake is performed. Otherwise, a short handshake is
performed. For System SSL, session expiration is controlled by the
GSK_V3_SESSION_TIMEOUT statement. Valid values of n are in the range 0 -
1440. Specifying 0 means that the session key refresh is not initiated by AT-TLS
for the life of the connection.

CertificateLabel
Specifies the label of the certificate to be used for authentication. Valid values
are in the range 1 - 127 characters in length. For System SSL, the
GSK_KEYRING_LABEL value is set to this value.

Rule: Comment indicators and embedded blanks are treated as part of the
value for this attribute. For example:
CertificateLabel Root#CA Certificate
value used: Root#CA Certificate

Restriction: When the value contains embedded blanks, you must specify the
entire value within the first 1 536 characters of the configuration file line.

SecondaryMap
Specifies whether the application establishes secondary connections that should
use the secondary policy mapping method. When specified in the
TTLSConnectionAdvancedParms, this statement overrides the values specified
in the TTLSEnvironmentAdvancedParms and TTLSGroupAdvancedParms.
Valid values are:

Off A connection that maps to this policy should not be used as a primary
connection in the secondary policy mapping method.

On A connection that maps to this policy should be used as a primary
connection in the secondary policy mapping method. Future
connections established between the same two IP addresses by the
same process that do not map to any policy or map to a policy with a
lower priority are considered secondary connections. These secondary
connections use the same policy mapped by the associated primary
connection.

TTLSEnvironmentAction statement

Use the TTLSEnvironmentAction statement to specify the attributes for an AT-TLS
environment. A TTLSEnvironmentAction statement is required if the
TTLSGroupAction statement, referenced on the same TTLSRule statement, specifies
TTLSEnabled as On.

Syntax

�� TTLSEnvironmentAction name Put Braces and Parameters on Separate Lines ��

Chapter 21. Policy Agent and policy applications 1017

Put Braces and Parameters on Separate Lines:

{
TTLSEnvironmentAction Parameters

}

TTLSEnvironmentAction Parameters:

TTLSKeyringParms
TTLSKeyringParmsRef name

HandshakeRole Client
Server
ServerWithClientAuth

�

�
SuiteBProfile Off

SuiteBProfile Off
128
192
All

TTLSCipherParms
TTLSCipherParmsRef name

�

�
TTLSSignatureParms
TTLSSignatureParmsRefname

CtraceClearText Off
On

Trace n
�

�
TTLSEnvironmentAdvancedParms
TTLSEnvironmentAdvancedParmsRefname

TTLSGskAdvancedParms
TTLSGskAdvancedParmsRef name

�

�
EnvironmentUserInstance n

Parameters

name
A string 1 - 32 characters in length specifying the name of this
TTLSEnvironmentAction statement.

TTLSKeyringParms
An inline specification of a TTLSKeyringParms statement. This is a required
parameter.

TTLSKeyringParmsRef
The name of a globally defined TTLSKeyringParms statement.

HandshakeRole
Specifies the SSL handshake role to be taken for connections in this AT-TLS
environment. For System SSL, the GSK_SESSION_TYPE value is set to the
same value as the HandshakeRole. This is a required parameter. Valid values
are:

Client Perform the SSL handshake as a client.

Server Perform the SSL handshake as a server.

ServerWithClientAuth
Perform the SSL handshake as a server requiring client authentication.

1018 z/OS V2R1.0 Communications Server: IP Configuration Reference

SuiteBProfile
Specified the RFC5430 Suite B cipher suites to apply to TLS sessions. For
System SSL, the GSK_SUITE_B_PROFILE value is set to the value of
SuiteBProfile. Valid values are:

Off The use of TLS V1.2 and Suite B cipher suites is not required. This is
the default.

128 Suite B 128 bit cipher suites will be used.

192 Suite B 192 bit cipher suites will be used.

All All Suite B cipher suites will be used.

Result: When 128, 192, or All is coded, any TTLSCipherParms statements are
ignored. Only the ciphers that are defined in the Suite B profile will be used.

TTLSCipherParms
An inline specification of a TTLSCipherParms statement.

TTLSCipherParmsRef
The name of a globally defined TTLSCipherParms statement.

TTLSSignatureParms
An inline specification of a TTLSSignatureParms statement.

TTLSSignatureParmsRef
The name of a globally defined TTLSSignatureParms statement.

CtraceClearText
Specifies whether application data traced using Ctrace or data trace is shown
as unencrypted data. This parameter is applied only to connections that have
active AT-TLS security on the connection. If this value is specified on the
TTLSEnvironmentAction statement, it is used instead of the value from the
TTLSGroupAction statement referenced by the same TTLSRule statement. Valid
values are:

Off Application data is not traced as clear text.

On Application data is traced as clear text.

Trace
Specifies the level of AT-TLS tracing. The valid values for n are in the range 0 -
255. The sum of the numbers associated with each level of tracing selected is
the value that should be specified as n. If n is an odd number, errors are
written to joblog and all other configured traces are sent to syslogd. If this
value is specified on the TTLSEnvironmentAction statement, it is used instead
of the value from the TTLSGroupAction statement referenced by the same
TTLSRule statement.

0 No tracing is enabled.

1 (Error)
Errors are traced to the TCP/IP joblog

2 (Error)
Errors are traced to syslogd. The messages are issued with syslogd
priority code err.

4 (Info)
Tracing of when a connection is mapped to an AT-TLS rule and when a
secure connection is successfully initiated is enabled. The messages are
issued with syslogd priority code info.

Chapter 21. Policy Agent and policy applications 1019

8 (Event)
Tracing of major events is enabled. The messages are issued with
syslogd priority code debug.

16 (Flow)
Tracing of system SSL calls is enabled. The messages are issued with
syslogd priority code debug.

32 (Data)
Tracing of encrypted negotiation and headers is enabled. This traces
the negotiation of secure sessions. The messages are issued with
syslogd priority code debug.

64 Reserved.

128 Reserved.

255 All tracing is enabled.

TTLSEnvironmentAdvancedParms
An inline specification of a TTLSEnvironmentAdvancedParms statement.

TTLSEnvironmentAdvancedParmsRef
The name of a globally defined TTLSEnvironmentAdvancedParms statement.

TTLSGskAdvancedParms
An inline specification of a TTLSGskAdvancedParms statement.

TTLSGskAdvancedParmsRef
The name of a globally defined TTLSGskAdvancedParms statement.

EnvironmentUserInstance
Defines a configurable instance identifier for this TTLSEnvironmentAction
statement. The n value can be in the range 0 - 65535. This parameter can be
used to signal a change to the Policy Agent without modifying any of the other
AT-TLS configuration statements. For example, when the contents of the key
ring has changed, but the key ring name is unchanged. Adding or updating
the EnvironmentUserInstance parameter would signal Policy Agent to install a
new TTLSEnvironmentAction statement. This parameter can also be used as a
field to be updated when a change is made to this TTLSEnvironmentAction
statement. This enables the user to differentiate TTLSEnvironmentAction
statements, based on the instance identifier.

TTLSEnvironmentAdvancedParms statement

Use the TTLSEnvironmentAdvancedParms statement to specify advanced attributes
for an AT-TLS environment.

Syntax

�� TTLSEnvironmentAdvancedParms Put Braces and Parameters on Separate Lines
name

��

Put Braces and Parameters on Separate Lines:

{
TTLSEnvironmentAdvancedParms Parameters

}

1020 z/OS V2R1.0 Communications Server: IP Configuration Reference

TTLSEnvironmentAdvancedParms Parameters:

SSLv2 Off

SSLv2 On
Off

SSLv3 Off

SSLv3 On
Off

TLSv1 On

TLSv1 On
Off

TLSv1.1 On

TLSv1.1 On
Off

TLSv1.2 Off

TLSv1.2 On
Off

�

�
ApplicationControlled Off

ApplicationControlled On
Off

HandshakeTimeout 10

HandshakeTimeout n

ResetCipherTimer 0

ResetCipherTimer n
�

�
Renegotiation Default

Renegotiation Disabled
All
Abbreviated

RenegotiationIndicator Optional

RenegotiationIndicator Client
Server
Both

RenegotiationCertCheck Off

RenegotiationCertCheck On
�

�
CertificateLabel value

ClientAuthType Required

ClientAuthType PassThru
Full
Required
SAFCheck

SecondaryMap On
Off

�

�
TruncatedHMAC Off

TruncatedHMAC Required
Optional
Off

CertValidationMode Any

CertValidationMode Any
RFC2459
RFC3280

�

�
ClientMaxSSLFragment Off

ClientMaxSSLFragment Required ClientMaxSSLFragmentLength 512
Optional 1024

2048
4096

ClientMaxSSLFragment Off

ServerMaxSSLFragment Off

ServerMaxSSLFragment Required
Optional
Off

�

�

�

ClientHandshakeSNI Off

ClientHandshakeSNI Required ClientHandshakeSNIMatch Required ClientHandshakeSNIList value
Optional Optional

ClientHandshakeSNI Off

�

�

�

ServerHandshakeSNI Off

ServerHandshakeSNI Required ServerHandshakeSNIMatch Required ServerHandshakeSNIList value
Optional Optional

ServerHandshakeSNI Off

Parameters

name
A string 1 - 32 characters in length specifying the name of this
TTLSEnvironmentAdvancedParms statement.

Rule: If this TTLSEnvironmentAdvancedParms statement is not specified inline
within another statement, a name value must be provided. If a name value is
not specified for an inlineTTLSEnvironmentAdvancedParms statement, a
nonpersistent system name is created.

SSLv2
Specifies the state of the SSL Version 2 protocol. For System SSL, the
GSK_PROTOCOL_SSLV2 value is set to this value. Possible values are:

On Enables the SSL Version 2 protocol.

Chapter 21. Policy Agent and policy applications 1021

|

Off Disables the SSL Version 2 protocol. This is the default.

SSLv3
Specifies the state of the SSL Version 3 protocol. For System SSL, the
GSK_PROTOCOL_SSLV3 value is set to this value. Possible values are:

On Enable the SSL Version 3 protocol.

Off Disable the SSL Version 3 protocol. This is the default.

TLSv1
Specifies the state of the TLS Version 1 protocol. For System SSL, the
GSK_PROTOCOL_TLSV1 value is set to this value. Possible values are:

On Enable the TLS Version 1.0 protocol. This is the default.

Off Disable the TLS Version 1.0 protocol.

TLSv1.1
Specifies the state of the TLS Version 1.1 protocol. For System SSL, the
GSK_PROTOCOL_TLSV1_1 value is set to this value. Possible values are:

On Enable the TLS Version 1.1 protocol. This is the default.

Off Disable the TLS Version 1.1 protocol.

TLSv1.2
Specifies the state of the TLS Version 1.2 protocol. For System SSL, the
GSK_PROTOCOL_TLSV1_2 value is set to this value. Possible values are:

On Enable the TLS Version 1.2 protocol.

Tip: When you specify TLSv1.2 as On, System SSL will not negotiate
SSLv2 sessions even if you specify SSLv2 as On.

Off Disable the TLS Version 1.2 protocol. This is the default.

CertValidationMode
Specifies the method of certificate validation. For System SSL, the
GSK_CERT_VALIDATION_MODE value is set to this value. Possible values
are:

Any Specifies that certificate validation can use any supported X.509
certificate validation method. This is the default.

RFC2459
Specifies that certificates are validated using the method described in
RFC 2459.

RFC3280
Specifies that certificates are validated using the method described in
RFC 3280.

TruncatedHMAC
For TLSv1.0 protocol and later, this keyword specifies whether clients and
servers support the use of 80-bit truncated HMACs. For System SSL, the
extension ID is set to GSK_TLS_SET_TRUNCATED_HMAC and a flag is set in
the gsk_tls_extension structure, if it is required. Possible values are:

Required
Specifies that 80-bit truncated HMAC support must be accepted by
both endpoints. Connections fail if the remote endpoint does not
support the 80-bit truncated HMAC.

1022 z/OS V2R1.0 Communications Server: IP Configuration Reference

|

|

Tip: When you specify TruncatedHMAC as Required, specify SSLv3 as
Off.

Optional
Specifies that support is provided for 80-bit truncated HMAC
negotiation, but connections with endpoints that do not support the
truncated 80-bit HMAC are allowed.

Off Specifies that support is not provided for 80-bit truncated HMAC
negotiation. The function is not enabled. Connections fail if the remote
endpoint requires support for the 80-bit truncated HMAC. This is the
default.

ClientMaxSSLFragment
For TLSv1.0 protocol and later, this keyword specifies whether maximum SSL
fragment function is supported when AT-TLS is the TLS client on the
connection. For System SSL, the extension ID is set to
GSK_TLS_SET_CLIENT_MFL and a flag is set in the gsk_tls_extension
structure if it is required. Possible values are:

Required
Specifies that maximum SSL fragment function support must be
accepted by the server. Connections fail if the server does not support
maximum SSL fragment function.

Tip: When you specify ClientMaxSSLFragment as Required, specify
SSLv3 as Off.

Optional
Specifies support for maximum SSL fragment function negotiation, but
allows connections with servers that do not support maximum SSL
fragment function.

Off Specifies that maximum SSL fragment function negotiation is not
supported. The function is not enabled. Connections fail if the server
requires support for maximum SSL fragment function. This is the
default.

ClientMaxSSLFragmentLength
For TLSv1.0 protocol and later, this value specifies maximum SSL fragment
function, in bytes, to request on the connection when AT-TLS is the TLS client
using TLSv1.0 and TLSv1.1 protocols. The valid values are 512, 1024, 2048, and
4096. For System SSL, the maximum fragment length is set to
GSK_TLS_MFL_512, GSK_TLS_MFL_1024, GSK_TLS_MFL_2048, or
GSK_TLS_MFL_4096. This parameter is required when ClientMaxSSLFragment
is set to Required or Optional.

ServerMaxSSLFragment
For TLSv1.0 protocol and later, this keyword specifies whether the maximum
SSL fragment function is supported when AT-TLS is the TLS server on the
connection. For System SSL, the extension ID is set to
GSK_TLS_SET_SERVER_MFL and a flag is set in the gsk_tls_extension
structure if it is required. Possible values are:

Required
Specifies that maximum SSL fragment function support must be
accepted by the client. Connections fail if the client does not support
maximum SSL fragment function.

Tip: When you specify ServerMaxSSLFragment as Required, specify
SSLv3 as Off.

Chapter 21. Policy Agent and policy applications 1023

Optional
Specifies that support is provided for maximum SSL fragment function,
but allow connections with clients that do not support maximum SSL
fragment function.

Off Specifies that maximum SSL fragment function is not supported. The
function is not enabled. Connections fail if the client requires support
for maximum SSL fragment function. This is the default value.

ClientHandshakeSNI
For TLSv1.0 protocol and later, this keyword specifies whether a client can
specify a list of server names. The server chooses a certificate based on that
server name list for this connection. For System SSL, the extension ID is set to
GSK_TLS_SET_SNI_CLIENT_SNAMES and a flag is set in the
gsk_tls_extension structure if it is required. Valid values are:

Required
Specifies that server name indication support must be accepted by the
server. Connections fail if the server does not support server name
indication.

Tip: When you specify ClientHandshakeSNI as required, specify SSLv3
as Off.

Optional
Specifies that server name indication negotiation is supported, but
allows connections with servers that do not support server name
indication negotiation.

Off Specifies that server name indication is not supported. The function is
not enabled. Connections fail if the server requires support for server
name indication. This is the default.

ClientHandshakeSNIMatch
Code this parameter if ClientHandshakeSNI is set to Required or Optional. For
system SSL, a flag is set in the gsk_sni_client_snames structure if a match is
required. Possible values are:

Required
Specifies that a server name in the list of server names provided by the
TLS client must match a server name in the list of server names and
certificate labels on the TLS server. The connection ends if no match
was found for the server name at the server.

Optional
Specifies that connections can continue if no match is found for the
server name.

ClientHandshakeSNIList
For SSL clients using TLSv1.0 protocol and later, this keyword specifies a
server name. You can code multiple ClientHandshakeSNIList statements. The
list of server names is passed to the server in the SSL handshake. For System
SSL, the server names are anchored in the gsk_sni_client_snames structure. A
server name can be 1 - 255 characters in length. This parameter is required
when ClientHandshakeSNI is set to Required or Optional.

Restriction: The total length of all the server names specified must be less than
32K.

ServerHandshakeSNI
For TLSv1.0 protocol and later, this keyword specifies whether a certificate is
chosen based on the server name list provided by the TLS client. For System

1024 z/OS V2R1.0 Communications Server: IP Configuration Reference

SSL, the extension ID is set to GSK_TLS_SET_SNI_SERVER_SNAMES and a
flag is set in the gsk_tls_extension structure if it is required. Possible values
are:

Required
Specifies that server name indication support must be accepted by the
client. Connections fail if the client does not support server name
indication.

Tip: When you specify ServerHandshakeSNI as Required, specify
SSLv3 as Off.

Optional
Specifies that server name indication negotiation is supported, but
allow connections with clients that do not support server name
indication.

Off Specifies that server name indication is not supported. The function is
not enabled. Connections fail if the client requires support for server
name indication. This is the default value.

ServerHandshakeSNIMatch
You must code this parameter when ServerHandshakeSNI is set to Required or
Optional. For system SSL, a flag is set in the gsk_sni_server_labels structure if
a match is required. Possible values are:

Required
Specifies that a server name in the list of server names provided by the
TLS client must match a server name in the ServerHandshakeSNIList .
The connection ends if no match can be found for the server name.

Optional
Specifies that connections continue if no match is found for the server
name.

ServerHandshakeSNIList
For SSL servers using TLSv1.0 protocol and later, this keyword specifies a
server name and certificate label pair to be used by the server, separated by a
slash (/). Multiple ServerHandshakeSNIList statements can be coded. The
server matches the server name provided by the client to a certificate label. For
System SSL, the server names and labels are anchored in the
gsk_sni_server_labels structure. A server name can be 1 - 255 characters in
length. A certificate label can be 1 - 127 characters in length. This parameter is
required when ServerHandshakeSNI is set to Required or Optional.

Rule: You can use comment indicators and embedded blanks as part of the
certificate label value for this attribute. For example:
ServerHandshakeSNIList myservername/Root#CA Certificate
value used: myservername/Root#CA Certificate

Restrictions:

v The total length of all the server names and certificate labels specified must
be less than 32K.

v When the certificate label value contains embedded blanks, you must specify
the entire parameter value within the first 1 536 characters of the
configuration file line.

ApplicationControlled
Specifies whether the application can control AT-TLS security for a connection.
Valid values are:

Chapter 21. Policy Agent and policy applications 1025

Off An application cannot control AT-TLS security. The connection
automatically negotiates AT-TLS security. This is the default.

On An application can control AT-TLS security. AT-TLS security is used
only when requested by the application, using the SIOCTTLSCTL ioctl.

HandshakeTimeout
Specifies the number of seconds to wait for the initial handshake to complete.
Valid values of n are in the range 0 - 600. The default value is 10.

For connections with the HandshakeRole parameter set to Client, the timer is
initially set to 5 times the value of n, allowing for network delay and any
delay on the server in processing the connection. When the initial response is
received from the server, the timer is set again for n seconds, to allow the
initial handshake to complete.

For connections with that HandshakeRole parameter set to Server or
ServerWithClientAuth, when the server starts to process the new connection
the timer is set to n seconds, waiting for the initial request from the client. The
timer is reset to n seconds when the server sends the initial response, to allow
the initial handshake to complete.

If the timer expires, the TCP connection is reset. A value of 0 indicates that the
connection does not time out waiting for the initial handshake to complete.

ResetCipherTimer
Specifies the number of minutes a secure connection can be active before a new
session key is generated for the connection. AT-TLS initiates a handshake on
the next read or write after the timer expires. For System SSL, the
GSK_RESET_CIPHER function is used to initiate this. If the session ID has
expired, controlled by the GSK_V3_SESSION_TIMEOUT statement, a full
handshake is performed. Otherwise, a short handshake is performed. This
timer applies only to connections using SSLv3 or TLSv1 protocol. Valid values
of n are in the range 0 - 1440. Specifying 0 means that session key refresh is
not initiated by AT-TLS for the life of the connection. The default value is 0.

Renegotiation
Specifies the type of session key renegotiation that is allowed. For System SSL,
the GSK_RENEGOTIATION value is set. The following values are valid:

Default
GSK_RENEGOTIATION set to NONE. Disables SSL V3 and TLS
handshake renegotiation as a server and allows RFC 5746
renegotiation. This is the default.

Disabled
Disables SSL V3 and TLS handshake renegotiation as a server and
disables RFC 5746 renegotiation.

All Allows SSL V3 and TLS handshake renegotiation as a server and
allows RFC 5746 renegotiation.

Abbreviated
Allows SSL V3 and TLS abbreviated handshake renegotiation as a
server for resuming the current session only, while disabling SSL V3
and TLS full handshake renegotiation as a server. The System SSL
session ID cache is not checked when resuming the current session.
Allows RFC 5746 renegotiation.

RenegotiationIndicator
Sets the enforcement level of the initial handshake renegotiation indication as

1026 z/OS V2R1.0 Communications Server: IP Configuration Reference

|

RFC 5746 specifies. For System SSL, the
GSK_EXTENDED_RENEGOTIATION_INDICATOR value is set to this value.
The following values are valid:

Optional
The renegotiation indicator is not required during initial handshake.

Client Allow the client initial handshake to proceed only when the server
indicates support for RFC 5746 renegotiation.

Server Allow the server initial handshake to proceed only when the client
indicates support for RFC 5746 renegotiation.

Both Allow the client and server initial handshakes to proceed only when
the partner indicates support for RFC 5746 renegotiation.

RenegotiationCertCheck
Specifies whether to perform an identity check against the peer's certificate
during renegotiation. For System SSL, the
GSK_RENEGOTIATION_PEER_CERT_CHECK value is set to this value. Valid
values are:

Off An identity check is not performed. This allows the peer certificate to
change during renegotiation.

On An identity check is performed. This ensures that the peer certificate
does not change during renegotiation.

CertificateLabel
Specifies the label of the certificate to be used for authentication. Valid values
are in the range 1 - 127 characters in length. For System SSL, the
GSK_KEYRING_LABEL value is set to this value.

Rule: Comment indicators and embedded blanks are treated as part of the
value for this attribute. For example:
CertificateLabel Root#CA Certificate
value used: Root#CA Certificate

Restriction: When the value contains embedded blanks, you must specify the
entire value within the first 1 536 characters of the configuration file line.

ClientAuthType
Specifies the type of client certificate validation to be performed for
connections in this AT-TLS environment. Client certificates are requested only
if HandshakeRole is set to ServerWithClientAuth. Valid values are:

PassThru
Bypasses client certificate validation.

Full Performs client certificate validation if the client presents a certificate.

Required
Requires the client to present a certificate and performs client
certificate validation. This is the default.

SAFCheck
Requires the client to present a certificate, performs client certificate
validation and requires the client certificate to have an associated user
ID defined to the security product.

SecondaryMap
Specifies whether the application establishes secondary connections that should
use the secondary policy mapping method. When specified in the

Chapter 21. Policy Agent and policy applications 1027

TTLSEnvironmentAdvancedParms, this statement overrides the value specified
in the TTLSGroupAdvancedParms. Valid values are:

Off A connection that maps to this policy should not be used as a primary
connection in the secondary policy mapping method.

On A connection that maps to this policy should be used as a primary
connection in the secondary policy mapping method. Future
connections established between the same two IP addresses by the
same process that do not map to any policy or map to a policy with a
lower priority are considered secondary connections. These secondary
connections use the same policy mapped by the associated primary
connection.

TTLSGroupAction statement

Use the TTLSGroupAction statement to specify parameters for a Language
Environment process required to support secure connections. The
TTLSGroupAction statement indicates whether a selected connection should use
AT-TLS security. It can also specify the environment variables the Language
Environment process should be initiated with.

Syntax

�� TTLSGroupAction name Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
TTLSGroupAction Parameters

}

TTLSGroupAction Parameters:

TTLSEnabled On
Off

CtraceClearText Off

CtraceClearText On
Off

Trace 2

Trace n
�

�
TTLSGroupAdvancedParms
TTLSGroupAdvancedParmsRef name

FIPS140 Off

FIPS140 On
Off

�

�
GroupUserInstance n

Parameters

name
A string 1 - 32 characters in length specifying the name of this
TTLSGroupAction statement.

1028 z/OS V2R1.0 Communications Server: IP Configuration Reference

TTLSEnabled
Indicates the action that should be applied to connections using this
TTLSGroupAction statement.

On AT-TLS security is active. Data might be encrypted, based on other
policy statements.

Off AT-TLS security is not active. Data is sent in the clear.

CtraceClearText
Specifies whether application data traced using Ctrace or data trace is shown
as unencrypted data. This parameter is applied only to connections that have
active AT-TLS security on the connection. CtraceClearText can be specified on
multiple actions referenced by a common TTLSRule statement. The value
specified on the TTLSGroupAction statement can be overriden for particular
AT-TLS environments by specifying it on the TTLSEnvironmentAction
statement, or for particular connections by specifying it on the
TTLSConnectionAction statement. Valid values are:

Off Application data is not traced as clear text. This is the default.

On Application data is traced as clear text.

Trace
Specifies the level of AT-TLS tracing. The valid values for n are in the range 0 -
255. The sum of the numbers associated with each level of tracing selected is
the value that should be specified as n. If n is an odd number, errors are
written to joblog and all other configured traces are sent to syslogd.

The trace parameter can be specified on multiple actions referenced by a
common TTLSRule statement. The value specified on the TTLSGroupAction
statement can be overriden for particular AT-TLS environments by specifying it
on the TTLSEnvironmentAction statement or for particular connections by
specifying it on the TTLSConnectionAction statement.

0 No tracing is enabled.

1 (Error)
Errors are traced to the TCP/IP joblog.

2 (Error)
Errors are traced to syslogd. This is the default. The messages are
issued with syslogd priority code err.

4 (Info)
Tracing of instances when a connection is mapped to an AT-TLS rule
and when a secure connection is successfully initiated is enabled. The
messages are issued with syslogd priority code info.

8 (Event)
Tracing of major events is enabled. The messages are issued with
syslogd priority code debug.

16 (Flow)
Tracing of system SSL calls is enabled. The messages are issued with
syslogd priority code debug.

32 (Data)
Tracing of encrypted negotiation and headers is enabled. This traces
the negotiation of secure sessions. The messages are issued with
syslogd priority code debug.

64 Reserved.

Chapter 21. Policy Agent and policy applications 1029

128 Reserved.

255 All tracing is enabled.

TTLSGroupAdvancedParms
An inline specification of a TTLSGroupAdvancedParms statement.

TTLSGroupAdvancedParmsRef
The name of a globally defined TTLSGroupAdvancedParms statement.

FIPS140
Specifies whether FIPS 140 support is enabled for this group. Enabling FIPS
140 mode provides a higher degree of assurance of the integrity of the
cryptographic modules that AT-TLS uses, including ICSF and System SSL.
However, enabling FIPS 140 mode might require additional setup and
configuration and it will restrict the available set of cryptographic algorithms.
Valid values are:

Off Indicates that FIPS 140 is not supported for this group. This is the
default.

On Indicates that FIPS 140 is supported for this group.

Requirement: ICSF must be active before starting AT-TLS groups configured to
support FIPS140. For information about configuring ICSF to support FIPS
140-2, see Operating in compliance with FIPS 140-2 in z/OS Cryptographic
Services ICSF Writing PKCS #11 Applications.

If the CSFSERV class is defined, give the userID that is associated with the
TCPIP stack and any application userID using the TTLSGroup READ access to
the CSFRNG resource within the RACF CSFSERV class. If the CSFSERV class is
defined and Diffie Hellman is being used, give the application userID READ
access to the CSF1TRC, CSF1DVK, CSF1GKP, CSF1GSK, CSF1GAV, and
CSF1TRD resources within the RACF CSFSERV class.

GroupUserInstance
Defines a configurable instance identifier for this TTLSGroupAction statement.
The n value can be in the range 0 - 65535. This parameter can be used to signal
a change to the Policy Agent without modifying any of the other AT-TLS
configuration statements. For example, when the contents of the Envfile has
changed, but the Envfile file name is unchanged. Adding or updating the
GroupUserInstance parameter would signal policy agent to install a new
TTLSGroupAction statement. This parameter can also be used as a field to be
updated when a change is made to this TTLSGroupAction statement. This
enables the user to differentiate TTLSGroupAction statements, based on the
instance identifier.

TTLSGroupAdvancedParms statement

Use the TTLSGroupAdvancedParms statement to specify advanced attributes for
an AT-TLS group.

Syntax

�� TTLSGroupAdvancedParms Put Braces and Parameters on Separate Lines
name

��

1030 z/OS V2R1.0 Communications Server: IP Configuration Reference

Put Braces and Parameters on Separate Lines:

{
TTLSGroupAdvancedParms Parameters

}

TTLSGroupAdvancedParms Parameters:

SecondaryMap Off

SecondaryMap On
Off

SyslogFacility daemon

SyslogFacility daemon
auth

Envfile file

Parameters

name
A string 1 - 32 characters in length specifying the name of this
TTLSGroupAdvancedParms statement.

Rule: If this TTLSGroupAdvancedParms statement is not specified inline
within another statement, a name value must be provided. If a name value is
not specified for an inline TTLSGroupAdvancedParms statement a
nonpersistent system name is created.

SecondaryMap
Specifies whether the application establishes secondary connections that should
use the secondary policy mapping method. Valid values are:

Off A connection that maps to this policy should not be used as a primary
connection in the secondary policy mapping method. This is the
default.

On A connection that maps to this policy should be used as a primary
connection in the secondary policy mapping method. Future
connections established between the same two IP addresses by the
same process that do not map to any policy or map to a policy with a
lower priority are considered secondary connections. These secondary
connections use the same policy mapped by the associated primary
connection.

SyslogFacility
Specifies which syslog facility name this group should use when writing
messages to syslogd. The daemon facility is currently used by other TCP/IP
stack functions. See Chapter 20, “Syslog daemon,” on page 909 for more
information about these functions. Specifying auth enables syslog messages
written by this AT-TLS group to be easily separated from messages written by
other AT-TLS groups or other applications running in the same TCP/IP
address space. Valid values are:

daemon
The daemon facility name is used. This is the default.

auth The auth facility name is used.

Envfile
Specifies the name of a file that contains environment variables. The Language
Environment process is initialized with the _CEE_ENVFILE environment
variable set to this file. See z/OS XL C/C++ Programming Guide for more
information about the _CEE_ENVFILE environment variable.

Chapter 21. Policy Agent and policy applications 1031

The file value is a z/OS UNIX path and file name, a fully qualified MVS data
set, specified as //fully.qualified.name, or a DD statement defined to the
TCP/IP stack, specified as DD:ddname, containing environment variables. The
maximum length is 1 023 characters. MVS data sets should be defined with
variable-length records.

Restriction: The GSK_TRACE environment variable should not be set using
the Envfile parameter. Setting this variable could cause unpredictable results or
abends when running applications using AT-TLS. If System SSL trace data is
needed, see z/OS Cryptographic Services System SSL Programming for
information about running the SSL started task to gather trace data.

TTLSGskAdvancedParms statement

Use the TTLSGskAdvancedParms statement to specify advanced attributes for an
AT-TLS environment that are specific to System SSL.

Syntax

�� TTLSGskAdvancedParms Put Braces and Parameters on Separate Lines
name

��

Put Braces and Parameters on Separate Lines:

{
TTLSGskAdvancedParms Parameters

}

TTLSGskAdvancedParms Parameters:

TTLSGskLdapParms
TTLSGskLdapParmsRef name

GSK_SYSPLEX_SIDCACHE On
Off

�

�
GSK_V2_SESSION_TIMEOUT value GSK_V2_SIDCACHE_SIZE value

�

�
GSK_V3_SESSION_TIMEOUT value GSK_V3_SIDCACHE_SIZE value

Parameters

name
A string 1 - 32 characters in length specifying the name of this
TTLSGskAdvancedParms statement.

Rule: If this TTLSGskAdvancedParms statement is not specified inline within
another statement, a name value must be provided. If a name is not specified
for an inlineTTLSGskAdvancedParms statement, a nonpersistent system name
is created.

TTLSGskLdapParms
An inline specification of a TTLSGskLdapParms statement.

TTLSGskLdapParmsRef
The name of a globally defined TTLSGskLdapParms statement.

1032 z/OS V2R1.0 Communications Server: IP Configuration Reference

GSK_SYSPLEX_SIDCACHE
Specifies whether sysplex session identifier caching is to be enabled for
connections in this AT-TLS environment. Valid values are:

On Sysplex session identifier caching is to be enabled.

Off Sysplex session identifier caching is not to be enabled.

GSK_V2_SESSION_TIMEOUT
Specifies the SSL Version 2 session timeout. This is the number of seconds until
a session identifier expires. Valid values are in the range 0 - 100.

GSK_V2_SIDCACHE_SIZE
Specifies the number of SSL Version 2 session identifiers to cache. Valid values
are in the range 0 - 32 000.

GSK_V3_SESSION_TIMEOUT
Specifies the SSL Version 3, TLS Version 1.0, or TLS Version 1.1 session timeout.
This value is the number of seconds that lapse until a session identifier expires.
Valid values are in the range 0 - 86 400.

GSK_V3_SIDCACHE_SIZE
Specifies the number of SSL Version 3, TLS version 1.0, or TLS version 1.1
session identifiers to cache. Valid values are in the range 0 - 64 000.

TTLSGskLdapParms statement

Use the TTLSGskLdapParms statement to define a set of LDAP parameters to be
used for Certificate Revocation List (CRL) checking for an AT-TLS environment
action. A TTLSGskLdapParms statement can be specified inline in a
TTLSEnvironmentAction statement or referenced by an TTLSEnvironmentAction
statement.

Syntax

�� TTLSGskLdapParms Put Braces and Parameters on Separate Lines
name

��

Put Braces and Parameters on Separate Lines:

{
TTLSGskLdapParms Parameters

}

TTLSGskLdapParms Parameters:

� GSK_LDAP_SERVER value �

�
GSK_LDAP_USER value GSK_LDAP_USER_PW value

�

Chapter 21. Policy Agent and policy applications 1033

�
GSK_LDAP_SERVER_PORT value GSK_CRL_CACHE_TIMEOUT value

�

�
GSK_CRL_SECURITY_LEVEL Low

Medium
High

Parameters

name
A string 1 - 32 characters in length specifying the name of this
TTLSGskLdapParms statement.

Rule: If this TTLSGskLdapParms statement is not specified inline within
another statement, a name value must be provided. If a name is not specified
for an inlineTTLSGskLdapParms statement, a nonpersistent system name is
created.

GSK_LDAP_SERVER
Specifies an LDAP server host name. The name can contain an optional port
number separated from the name by a colon. The name can be a DNS resource
name, a dotted-decimal IPv4 address or a colon-separated IPv6 address
enclosed in square brackets (for example, [1080::8:800:200C:417A]). The
maximum length of the host name is 255 characters. Valid values for the port
number, if specified, are 1 - 65 535. Up to five GSK_LDAP_SERVER statements
can be defined.

GSK_LDAP_USER
Specifies the distinguished name to use when connecting to the LDAP server.
The maximum length of the name is 512 characters.

Rule: Comment indicators and embedded blanks are treated as part of the
value for this attribute. For example:
GSK_LDAP_USER cn=cert #label
value used: cn=cert #label

Restriction: When the value contains embedded blanks, you must specify the
entire value within the first 1 536 characters of the configuration file line.

GSK_LDAP_USER_PW
Specifies the password to use when connecting to the LDAP server. The
maximum length of the password is 512 characters.

GSK_LDAP_SERVER_PORT
Specifies the LDAP server port. This port is used if a port is not specified on
the LDAP server host name. Valid values are in the range 1 - 65 535.

GSK_CRL_CACHE_TIMEOUT
Sets the CRL cache timeout in hours. Valid values are in the range 0 - 720.

GSK_CRL_SECURITY_LEVEL
Specifies the level of security to use when contacting an LDAP server. Valid
values are:

Low Specifies that certificate validation does not fail if the LDAP server
cannot be contacted.

1034 z/OS V2R1.0 Communications Server: IP Configuration Reference

Medium
Specifies that certificate validation requires the LDAP server to be able
to be contacted, but it does not require a CRL to be defined.

High Specifies that certificate validation requires the LDAP server to be
contactable, and a CRL must be defined.

Tip: The located CRLs are cached according to the
GSK_CRL_CACHE_TIMEOUT paramenter setting of the SSL environment.

TTLSKeyringParms statement

Use the TTLSKeyringParms statement to define a set of key ring parameters for an
AT-TLS environment action. A TTLSKeyringParms statement can be specified inline
in a TTLSEnvironmentAction statement or referenced by a
TTLSEnvironmentAction statement.

Syntax

�� TTLSKeyringParms Put Braces and Parameters on Separate Lines
name

��

Put Braces and Parameters on Separate Lines:

{
TTLSKeyringParms Parameters

}

TTLSKeyringParms Parameters:

Keyring value
KeyringPw value KeyringStashFile value

Parameters

name
A string 1 - 32 characters in length specifying the name of this
TTLSKeyringParms statement.

Rule: If this TTLSKeyringParms statement is not specified inline within
another statement, a name value must be provided. If a name is not specified
for an inline TTLSKeyringParms statement, a nonpersistent system name is
created.

Keyring
Specifies the path and file name of the key database z/OS UNIX file, the ring
name of the SAF key ring, or the name of the z/OS PKCS #11 token. For
System SSL, a key database is assumed if KeyringPw or KeyringStashFile is
also specified. For System SSL, a z/OS PKCS #11 token name is specified as
TOKEN/token-name. *TOKEN* indicates that the specified key ring is actually a
token name. Otherwise, a SAF key ring is used. For System SSL, the
GSK_KEYRING_FILE value is set to the value specified. Valid values are 1 -
1 023 characters in length.

Chapter 21. Policy Agent and policy applications 1035

KeyringPw
Specifies the password for the key database. For System SSL,
GSK_KEYRING_PW is set to this value. Valid values are in the range 1 - 128
characters in length.

KeyringStashFile
Specifies the path and file name of the key database password stash file. For
System SSL, the KeyringPw value is used instead of the KeyringStashFile
value, if that value is also specified. For System SSL,
GSK_KEYRING_STASH_FILE is set to this value. Valid values are in the range
1 - 1 023 characters in length.

TTLSRule statement

Use the TTLSRule statement to define an AT-TLS rule.

The FLUSH/NOFLUSH and PURGE/NOPURGE parameters can be used to
specify whether or not AT-TLS policies are deleted at startup (and when a
MODIFY REFRESH command is entered) and shutdown, respectively.

The information provided on the TTLSRule statement defines an AT-TLS rule. The
AT-TLS rule must have at least one local IP address, remote IP address, local port,
remote port, job name, or user ID specification. The AT-TLS rule must have a
direction specification and a TTLSGroupActionRef parameter. The AT-TLS rule can
contain a priority, a TTLSConnectionActionRef parameter, a
TTLSEnvironmentActionRef parameter and an IpTimeCondition specification. An
IpTimeCondition specification identifies a time period when the AT-TLS rule is in
effect.

Syntax

�� TTLSRule name Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
TTLSRule Parameters

}

TTLSRule Parameters:

LocalAddr All

LocalAddr ipaddress
ipaddress/prefixLength
ipaddress-ipaddress
All

LocalAddrRef name
LocalAddrSetRef name
LocalAddrGroupRef name

�

1036 z/OS V2R1.0 Communications Server: IP Configuration Reference

�
RemoteAddr All

RemoteAddr ipaddress
ipaddress/prefixLength
ipaddress-ipaddress
All

RemoteAddrRef name
RemoteAddrSetRef name
RemoteAddrGroupRef name

LocalPortRange 0

LocalPortRange n
n m

LocalPortRangeRef name
LocalPortGroupRef name

�

�
RemotePortRange 0

RemotePortRange n
n m

RemotePortRangeRef name
RemotePortGroupRef name

Jobname name Userid name
�

� Direction Inbound
Outbound
Both

�

IpTimeCondition
IpTimeConditionRef name

Priority 1

Priority n
�

� TTLSGroupActionRef name
TTLSEnvironmentActionRef name

�

�
TTLSConnectionActionRef name

Parameters

name
A string 1 - 32 characters in length specifying the name of this TTLSRule
statement.

LocalAddr
A local IP address the application is using for the connection that must match
for this rule's action to be performed. The application can be explicitly bound
to the IP address, or it can be chosen by the TCP/IP stack.

All Any local IP address matches this rule.

ipaddress
A single IP address.

ipaddress/prefixLength
The number of unmasked leading bits in the ipaddress value. The
prefixLength value can be in the range 0 - 32 for IPv4 addresses and 0 -
128 for IPv6 addresses. An IP address matches this condition if its
unmasked bits are identical to the unmasked bits defined.

ipaddress-ipaddress
A range of IP addresses.

Chapter 21. Policy Agent and policy applications 1037

Tip: To create a rule that matches only on local IPv4 addresses, code
0.0.0.0/0. To create a rule that matches only on local IPv6 addresses,
code ::/0.

LocalAddrRef
The name of a globally defined IpAddr statement to be used for the local IP
address specification.

LocalAddrSetRef
The name of a globally defined IpAddrSet statement to be used for the local IP
address prefix or range specification.

LocalAddrGroupRef
The name of a globally defined IpAddrGroup statement to be used for the
local IP address specification.

RemoteAddr
A remote IP address specification that must match for this rule's action to be
performed.

All Any remote IP address matches this rule.

ipaddress
A single IP address.

ipaddress/prefixLength
The number of unmasked leading bits in the ipaddress value. The
prefixLength value can be in the ranges of 0 - 32 for IPv4 addresses and
0 - 128 for IPv6 addresses. An IP packet matches this condition if its
unmasked bits are identical to the unmasked bits defined.

ipaddress-ipaddress
A range of IP addresses.

Tip: To create a rule that matches only on remote IPv4 addresses, code
0.0.0.0/0. To create a rule that matches only on remote IPv6 addresses,
code ::/0.

RemoteAddrRef
The name of a globally defined IpAddr statement to be used for the remote IP
address specification.

RemoteAddrSetRef
The name of a globally defined IpAddrSet statement to be used for the remote
IP address prefix or range specification.

RemoteAddrGroupRef
The name of a globally defined IpAddrGroup statement to be used for the
remote IP address specification.

LocalPortRange
A local port the application is bound to for this rule's action to be performed.

Valid values for n are in the range 0 - 65535. If 0 is specified for n then the rule
applies to any local port. If n is specified as the beginning value for a range,
then 0 is not a valid value.

If an m value is specified, it must be greater than or equal to n and less than
65536.

Rule: Include a blank, a colon (:), or a dash (-) as a delimiter.

1038 z/OS V2R1.0 Communications Server: IP Configuration Reference

LocalPortRangeRef
The name of a globally defined PortRange statement to be used for the local
port specification.

LocalPortGroupRef
The name of a globally defined PortGroup statement to be used for the local
port specification.

RemotePortRange
A remote port the application must be connecting to for this rule's action to be
performed.

Valid values for n are in the range 0 - 65535. If 0 is specified for n, then the
rule applies to any remote port. If n is specified as the beginning value for a
range, then 0 is not a valid value.

If an m value is specified, then it must be greater than or equal to n and less
than 65536.

Rule: Include a blank, a colon (:), or a dash (-) as a delimiter.

RemotePortRangeRef
The name of a globally defined PortRange statement to be used for the remote
port specification.

RemotePortGroupRef
The name of a globally defined PortGroup statement to be used for the remote
port specification.

Jobname
The name value specifies the job name of the application. This optional value
specifies that, when the traffic is mapped to an AT-TLS security level, a packet
must be flowing to or from an application with this job name for that packet to
match the set of traffic characteristics. The name value must be 1 to 8 characters
in length. It cannot include blanks or the "#" characters. A trailing asterisk
indicates a wildcard specification. The specified job name is not case sensitive,
and is translated to uppercase before being compared.

Userid
The name value specifies the corresponding user name. This optional value
specifies that, when the traffic is mapped to an AT-TLS security level, a packet
must be flowing to or from an application that is running under this user ID
for that packet to match the set of traffic characteristics. The name value must
be 1 to 8 characters in length. It cannot include blanks or the "#" characters. A
trailing asterisk indicates a wildcard specification. The specified user ID is not
case sensitive, and is translated to uppercase before being compared.

Direction
Specifies the direction the connection must be initiated from for this rule's
action to be performed.

Inbound
A connection request has arrived inbound to the local host. An
application must do an accept to service this connection.

Outbound
A connection request is being initiated by the local host. An application
must have done a connect to initiate this connection.

Both Inbound and Outbound connection requests match this rule.

Chapter 21. Policy Agent and policy applications 1039

IpTimeCondition
An inline specification of a IpTimeCondition statement. There is a limit of 25
IpTimeCondition specifications on the TTLSRule statement.

IpTimeConditionRef
The name of a globally defined IpTimeCondition statement. There is a limit of
25 IpTimeCondition references on the TTLSRule statement.

Priority
An integer value in the range 1 - 2000000000 that represent the priority
associated with the rule. The highest priority value is 2000000000.

Only one rule is ever mapped per connection. Rules are searched for a match
starting at the highest priority, so if multiple rules could possibly be matched
for a connection, the rule with the highest priority is matched first. If multiple
rules of the same priority match, the rule that is mapped is difficult to predict.
If this attribute is not specified, the default priority is 1.

Guideline: When setting the priority for multiple rules, do not set the priority
as a sequential value, for example, 2, 3 ,4, 5. Instead, set the priority to provide
space to change the priority or to insert additional rules, such that this rule is
preferred over another rule, without duplicating a priority. For example, the
priorities could be configured as 20, 30, 40, 50.

TTLSGroupActionRef
The name of a globally defined TTLSGroupAction statement.

TTLSEnvironmentActionRef
The name of a globally defined TTLSEnvironmentAction statement.

TTLSConnectionActionRef
The name of a globally defined TTLSConnectionAction statement.

Rules:

v One of the following values must be specified:
– Local address
– Remote address
– Local port
– Remote port
– Job name
– Userid

v A TTLSEnvironmentActionRef is required if the TTLSGroupAction specifies
TTLSEnabled as On.

v CNF logic is used to evaluate complex AT-TLS rules (rules containing multiple
conditions). For a detailed description of AT-TLS condition evaluation using
CNF logic, see z/OS Communications Server: IP Configuration Guide. An
AT-TLS condition is comprised of the following values from the TTLSRule
statement:
– Local IP Address
– Remote IP Address
– Local Port
– Remote Port
– Jobname
– Userid
– Service Direction

1040 z/OS V2R1.0 Communications Server: IP Configuration Reference

TTLSSignatureParms statement

Use the TTLSSignatureParms statement to define the client elliptic curve
preferences and the signature algorithm pair specifications for an AT-TLS
environment or an AT-TLS connection. A TTLSSignatureParms statement can be
specified inline in a TTLSEnvironmentAction or TTLSConnectionAction statement
or referenced by a TTLSEnvironmentAction or TTLSConnectionAction statement.

Syntax

�� TTLSSignatureParms Put Braces and Parameters on Separate Lines
name

��

Put Braces and Parameters on Separate Lines:

{
TTLSSignatureParms Parameters

}

TTLSSignatureParms Parameters:

ClientECurves Any
ClientECurveParms parameters

SignaturePairsParms parameters

ClientECurveParms Parameters:

� ClientECurves curves

SignaturePairsParms Parameters:

� SignaturePairs algorithms

Parameters

name
A string 1 - 32 characters in length that specifies the name of this
TTLSSignatureParms statement.

Rule: If this TTLSSignatureParms statement is not specified inline in another
statement, a name value must be provided. If a name is not specified for an
inline TTLSSignatureParms statement, a nonpersistent system name is created.

ClientECurves
Specifies the list of elliptic curves that are supported by the client, in order of
preference for use. The elliptical curve specifications are used by the client to
tell the server which elliptical curves can be used when using cipher suites that
use elliptical curve cryptography for the TLSv1.0 protocol or later.

Chapter 21. Policy Agent and policy applications 1041

Only curves that are recommended by NIST can be specified. To allow the use
of Brainpool standard curves in addition to NIST standard curves for an SSL
connection, the list must contain only the ANY curve name constant. If a
ClientECurves parameter is specified more than once, the values are
concatenated to create a single list of elliptic curve enumerators. The ANY
curve name constant cannot be specified in combination with any NIST curves.
For System SSL, the GSK_CLIENT_ECURVE_LIST value is set to the
concatenated value or to NULL if ANY is specified.

The curves value is a string of one or more 4-character curve enumerators or a
single curve name constant. The curve string cannot have blanks between the
curve enumerators. If duplicate curves are specified, the first instance is used
and all other instances are ignored. The maximum number of curves is 16. For
System SSL, see Table 16. Supported elliptic curve definitions for TLS V1.0,
TLS V1.1 and TLS V1.2 in z/OS Cryptographic Services System SSL
Programming for a list of valid elliptic curves. Table 71 lists the supported
elliptic curve name constants.

Table 71. ClientEcurves

Elliptic curve name constants Elliptic Curve Enumerator

secp192r1 0019

secp224r1 0021

secp256r1 0023

secp384r1 0024

secp521r1 0025

Requirement: Elliptic Curve requires ICSF to be active. See Elliptic Curve
Cryptography Support in z/OS Cryptographic Services System SSL
Programming for more information.

SignaturePairs
Specifies the TLS version 1.2 signature algorithm pairs supported for the server
certificate. These pairs are sent by the client when proposing use of the
TLSv1.2 protocol to indicate to the server which signature/hash algorithm
pairs may be used in digital signatures of the server certificate. SignaturePairs
is only meaningful when performing a handshake with a Server that supports
the TLSv1.2 protocol and will be ignored by any Server that only supports
TLSv1.1 or earlier.

If a SignaturePairs parameter is specified more than once, the values are
concatenated to create a single list of signature algorithm pairs. For System
SSL, the GSK_TLS_SIG_ALG_PAIRS value is set to the concatenated value. If
not specified, then System SSL will use a default list of acceptable signature
algorithm pairs.

The algorithms value is a string of one or more 4-character TLS version 1.2
signature algorithm pairs or a single signature algorithm pair constant. The
algorithm string cannot have blanks between each TLS version 1.2 signature
algorithm pair. If duplicate signature algorithm pairs are specified, the first
instance is used and all other instances are ignored. The maximum number of
TLS version 1.2 signature algorithm pairs is 64. For System SSL, see Table 17.
Signature Algorithm pair definitions for TLS V1.2 in z/OS Cryptographic
Services System SSL Programming for a list of valid signature algorithm pairs.
Table 72 on page 1043 lists the supported signature algorithm pair constants.

1042 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 72. SignaturePairs

Signature algorithm pair constant Hexadecimal characters

TLS_SIGALG_MD5_WITH_RSA 0101

TLS_SIGALG_SHA1_WITH_RSA 0201

TLS_SIGALG_SHA1_WITH_DSA 0202

TLS_SIGALG_SHA1_WITH_ECDSA 0203

TLS_SIGALG_SHA224_WITH_RSA 0301

TLS_SIGALG_SHA224_WITH_DSA 0302

TLS_SIGALG_SHA224_WITH_ECDSA 0303

TLS_SIGALG_SHA256_WITH_RSA 0401

TLS_SIGALG_SHA256_WITH_DSA 0402

TLS_SIGALG_SHA256_WITH_ECDSA 0403

TLS_SIGALG_SHA384_WITH_RSA 0501

TLS_SIGALG_SHA384_WITH_ECDSA 0503

TLS_SIGALG_SHA512_WITH_RSA 0601

TLS_SIGALG_SHA512_WITH_ECDSA 0603

IDS policy statements
This topic contains information about the following IDS policy statements:
v “IDSAction statement”
v “IDSAttackCondition statement” on page 1046
v “IDSExclusion statement” on page 1055
v “IDSReportSet statement” on page 1057
v “IDSRule statement” on page 1060
v “IDSScanEventCondition statement” on page 1063
v “IDSScanExclusion statement” on page 1065
v “IDSScanGlobalCondition statement” on page 1067
v “IDSTRCondition statement” on page 1068

IDSAction statement

Use the IDSAction statement to define the action taken by the IDS rule. This
statement is associated with an IDS rule with the same ActionType value.

�� IDSAction name Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
IDSAction Parameters

}

Chapter 21. Policy Agent and policy applications 1043

IDSAction Parameters:

� ActionType Attack discard
nodiscard
resetconn
noresetconn

TR limit
nolimit

ScanGlobal
ScanEvent count

ReportSet

ReportSet:

IDSReportSet
IDSReportSetRef name

Parameters

name
A string 1 - 32 characters in length that specifies the name of this IDSAction
statement.

ActionType
Indicates the type of IDS action associated with a policy rule.

Attack Indicates that this is an attack action.

Discard
Discard packets that match the associated rule.

NoDiscard
Do not discard packets that match the associated rule.

ResetConn
Reset the TCP connection or connections associated with the
attack.

Restriction: This value is valid only for V1R13 and later
releases. See “General syntax rules for Policy Agent” on page
933 for details.

NoResetConn
Do not reset the TCP connection or connections associated with
the attack.

Restriction: This value is valid only for V1R13 and later
releases. See “General syntax rules for Policy Agent” on page
933 for details.

Rules:

v The Discard and NoDiscard values are valid for the following attack
types:
– DATA_HIDING
– ICMP_REDIRECT
– IP_FRAGMENT
– OUTBOUND_RAW

1044 z/OS V2R1.0 Communications Server: IP Configuration Reference

– OUTBOUND_RAW_IPV6
– PERPETUAL_ECHO
– RESTRICTED_IP_OPTIONS
– RESTRICTED_IP_PROTOCOL
– RESTRICTED_IPV6_DST_OPTIONS
– RESTRICTED_IPV6_HOP_OPTIONS
– RESTRICTED_IPV6_NEXT_HDR
– FLOOD (NoDiscard is ignored because the stack always discards

packets associated with a flood.)
– MALFORMED_PACKET (NoDiscard is ignored because the stack

always discards malformed packets.)
– EE_MALFORMED_PACKET
– EE_PORT_CHECK
– EE_LDLC_CHECK
– EE_XID_FLOOD (The Discard value is not valid. Use the

NoDiscard value.)

The Discard and NoDiscard values are ignored for all other attack
types. For more information, see “IDSAttackCondition statement” on
page 1046.

v The ResetConn and NoResetConn values are valid for the following
attack types:
– TCP_QUEUE_SIZE
– GLOBAL_TCP_STALL

ResetConn and NoResetConn will be ignored for all other attack
types. For more information, see “IDSAttackCondition statement” on
page 1046.

v An IDSAction statement can include two ActionType attack
parameters, one with the action Discard or NoDiscard and the other
with the action ResetConn or NoResetConn. If more than one
ActionType attack parameter is coded with the action Discard or
NoDiscard, the last action is used. If more than one ActionType
attack parameter is coded with the action ResetConn or
NoResetConn, the last action is used.

ScanGlobal
Indicates that this is a scan global action that specifies global scan
detection values.

ScanEvent count
Indicates that this is a scan event action for individual scan detection.

count Increment the scan event counter for this rule.

TR Indicates that this is a traffic regulation action.

Limit For TCP, this value prevents connections, for UDP, it limits the
length of inbound UDP queues.

NoLimit
No limits are placed on the number of TCP connections or the
length of inbound UDP queues.

Rule: If you specify more than one ActionType TR parameter, the
setting from the last parameter that you specified is used.

Chapter 21. Policy Agent and policy applications 1045

IDSReportSet
An inline specification of an IDSReportSet statement.

IDSReportSetRef name
The name of a globally defined IDSReportSet statement.

Rules:

v The IDSReportSet parameter is allowed for all ActionType values. However, it
has no effect if specified for ActionType ScanEvent.

v Not all parameters specified on the IDSReportSet statement apply to all
ActionType values. Such values are ignored by the stack when not applicable to
the IDS policy.

IDSAttackCondition statement

Use the IDSAttackCondition statement for attack detection, reporting, and
prevention. There are several attack types. For each attack type, the single highest
priority rule is used.

The IDSAttackCondition statement can specify values for LocalPortRange,
RemotePortRange, or both, or these values can be specified with references to
global definitions on the PortRange or PortGroup statements.

The IDSAttackCondition statement can specify values for ProtocolRange, or this
value can be specified with a reference to global definitions on the IPProtocolRange
or IPProtocolGroup statements.

The IDSAttackCondition statement can specify values for the
RestrictedIpOptionRange parameter, or this value can be specified with a reference
to global definitions on the IpOptionRange or IpOptionGroup statements.

The IDSAttackCondition statement can specify values for the IPv6NextHdrRange
parameter, or this value can be specified with a reference to global definitions on
the IPv6NextHdrRange or IPv6NextHdrGroup statements.

The IDSAttackCondition statement can specify values for the
RestrictedIpv6OptionRange parameter, or this value can be specified with a
reference to global definitions on the IpOptionRange or IpOptionGroup statements.

The IDSAttackCondition statement can contain an inline definition of an
IDSExclusion, or this value can be specified with a reference to a global definition
of an IDSExclusion statement.

Syntax

�� IDSAttackCondition Put Braces and Parameters on Separate Lines
name

��

Put Braces and Parameters on Separate Lines:

{
IDSAttackCondition Parameters

}

1046 z/OS V2R1.0 Communications Server: IP Configuration Reference

IDSAttackCondition Parameters:

AttackType DATA_HIDING DataHidingCond
EE_LDLC_CHECK IDSExclusionCond
EE_MALFORMED_PACKET IDSExclusionCond
EE_PORT_CHECK IDSExclusionCond
EE_XID_FLOOD EEXIDFloodCond
FLOOD FloodCond
GLOBAL_TCP_STALL
ICMP_REDIRECT
IP_FRAGMENT
MALFORMED_PACKET
OUTBOUND_RAW IpProtocolCond
OUTBOUND_RAW_IPv6 IpProtocolCond
PERPETUAL_ECHO PerpetualEchoCond
RESTRICTED_IP_OPTIONS RestrictedIpOptionsCond
RESTRICTED_IP_PROTOCOL IpProtocolCond
RESTRICTED_IPV6_DST_OPTIONS RestrictedIPv6OptionsCond
RESTRICTED_IPV6_HOP_OPTIONS RestrictedIPv6OptionsCond
RESTRICTED_IPV6_NEXT_HDR RestrictedIPv6NextHdrCond
TCP_QUEUE_SIZE TcpQueueSizeCond

DataHidingCond:

OptionPadChk Enable

OptionPadChk Disable
Enable

IcmpEmbedPktChk Enable

IcmpEmbedPktChk Disable
Enable

EEXIDFloodCond:

EEXIDTimeout 100

EEXIDTimeout n IDSExclusion
IDSExclusionRef name

FloodCond:

IfcFloodMinDiscard 1000

IfcFloodMinDiscard n

IfcFloodPercentage 10

IfcFloodPercentage n

IDSExclusionCond:

IDSExclusion
IDSExclusionRef name

Chapter 21. Policy Agent and policy applications 1047

IpProtocolCond:

ProtocolRange n
n m

ProtocolRangeRef name
ProtocolGroupRef name

PerpetualEchoCond:

LocalPortRange n
n m

LocalPortRangeRef name
LocalPortGroupRef name

RemotePortRange n
n m

RemotePortRangeRef name
RemotePortGroupRef name

RestrictedIPOptionsCond:

RestrictedIpOptionRange All

RestrictedIpOptionRange n
n m
All

RestrictedIpOptionRangeRef name
RestrictedIpOptionGroupRef name

RestrictedIPv6OptionsCond:

RestrictedIpv6OptionRange n
n m

RestrictedIpv6OptionRangeRef name
RestrictedIpv6OptionGroupRef name

RestrictedIPv6NextHdrCond:

IPv6NextHdrRange n
n m

IPv6NextHdrRangeRef name
IPv6NextHdrGroupRef name

TcpQueueSizeCond:

TcpQueueSize SHORT

TcpQueueSize LONG
VERY_LONG
VERY_SHORT
SHORT

IDSExclusion
IDSExclusionRef name

Parameters

name
A string 1 - 32 characters in length that specifies the name of this
IDSAttackCondition statement.

1048 z/OS V2R1.0 Communications Server: IP Configuration Reference

Rule: If this IDSAttackCondition statement is not specified inline within
another statement, name must be provided. If a name is not specified for an
inline IDSAttackCondition statement, a nonpersistent system name is created.

AttackType

DATA_HIDING
Indicates that the rule is for detecting hidden data. The
DATA_HIDING attack type applies to both IPv4 and IPv6 inbound
packets.

Restriction: This value is valid only for V1R13 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details.

EE_MALFORMED_PACKET
Indicates that the rule is for EE malformed packets. The packets can be
discarded by TCP/IP or forwarded to VTAM. The
EE_MALFORMED_PACKET attack type applies to both IPv4 and IPv6
malformed packets.

Restriction: This value is valid only for V1R13 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details.

EE_PORT_CHECK
Indicates that the rule checks the source port number for inbound
Enterprise Extender (EE) packets. The source port number must be the
same as the destination port number. The EE_PORT_CHECK attack
type applies to both IPv4 and IPv6 packets.

Restriction: This value is valid only for V1R13 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details.

EE_LDLC_CHECK
Indicates that the rule is for LDLC control commands received on a
port other than the signalling port. The EE_LDLC_CHECK attack type
applies to both IPv4 and IPv6 packets.

Restriction: This value is valid only for V1R13 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details.

EE_XID_FLOOD
Indicates that the rule is for an EE XID flood attack. The
EE_XID_FLOOD attack type applies to both IPv4 and IPv6.

Restriction: This value is valid only for V1R13 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details.

FLOOD
Indicates that the rule is for flooding attacks. For FLOOD attacks, the
packets are always discarded regardless of what ActionType is
configured on the IDSAction. The FLOOD attack type applies to both
IPv4 and IPv6.

GLOBAL_TCP_STALL
Indicates that the rule is to detect an attack that causes a large number
of TCP connections to be stalled and unable to send data. The
GLOBAL_TCP_STALL attack type applies to both IPv4 and IPv6
connections.

Results:

v A global TCP stall condition is detected for a TCP/IP stack when at
least 50% of the active TCP connections are stalled and at least 1000
TCP connections are active.

Chapter 21. Policy Agent and policy applications 1049

v When the condition is detected, the stalled TCP connections are reset
if the policy action specifies resetconn.

v When the condition is detected, a syslogd message is generated for
each stalled connection if TypeActions Log LogDetail is specified.
Message EZZ8673I is generated if the stalled connection is reset.
Otherwise, message EZZ8674I is generated.

Restriction: This value is valid only for V1R13 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details.

ICMP_REDIRECT
Indicates that the rule is for ICMP redirect detection. This includes
both ICMP redirects and ICMPv6 redirects.

IP_FRAGMENT
Indicates that the rule is for detecting suspicious fragmented packets
(fragments that overlay and change data in the packet, including
changes to the length of the packet).

MALFORMED_PACKET
Indicates that the rule is for a number of specific malformed packets
that are detected on inbound traffic. For MALFORMED_PACKET
attacks, the packets are always discarded regardless of what
ActionType is configured on the IDSAction. The
MALFORMED_PACKET attack type applies to both IPv4 and IPv6
inbound packets.

OUTBOUND_RAW
Indicates that the rule is to enforce restrictions on the use of IPv4 RAW
sockets for outbound processing, which prevents this stack from being
used to attack other systems. A list of restricted IP protocols is also
specified in the rule's conditions.

Restriction: The OUTBOUND_RAW attack type applies only to IPv4
packets. The OUTBOUND_RAW_IPV6 attack type provides analogous
function for IPv6 packets.

OUTBOUND_RAW_IPV6
Indicates that the rule is to enforce restrictions on the use of IPv6 RAW
sockets for outbound processing, which prevents this stack from being
used to attack other systems. A list of restricted protocols is also
specified in the rule's conditions.

Rule: IPv6 policy is installed but is not enforceable in a stack that is
not IPv6 enabled.

Restrictions:

v The OUTBOUND_RAW_IPV6 attack type applies only to IPv6
packets. The OUTBOUND_RAW attack type provides analogous
function for IPv4 packets.

v This value is valid only for V1R13 and later releases. See “General
syntax rules for Policy Agent” on page 933 for details.

PERPETUAL_ECHO
Indicates that the rule is to prevent perpetual echos over UDP ports. A
list of local UDP ports that always respond to an input packet is also
specified in the rule's conditions, and a separate list of remote
(network) UDP ports that always respond is specified. The
PERPETUAL_ECHO attack type applies to both IPv4 and IPv6 packets.

1050 z/OS V2R1.0 Communications Server: IP Configuration Reference

Rule: For PERPETUAL_ECHO attacks, only the first 20 ports specified
in the local list and in the remote list are used.

RESTRICTED_IP_OPTIONS
Indicates that the rule is to detect inbound IPv4 packets that have IP
options that are not allowed. A list of restricted IP options is also
specified in the rule's conditions.

For RESTRICTED_IP_OPTIONS attacks, if no option ranges are
specified, all options are restricted. Option 0 (end of option list) and 1
(no-operation) are always allowed; they are ignored if present in the
list of restricted IP options.

Restriction: The RESTRICTED_IP_OPTIONS attack type applies only
to IPv4 packets. The RESTRICTED_IPV6_NEXT_HDR,
RESTRICTED_IPV6_DST_OPTIONS, and
RESTRICTED_IPV6_HOP_OPTIONS attack types provide analogous
function for IPv6 packets.

RESTRICTED_IP_PROTOCOL
Indicates that the rule is to detect inbound IPv4 packets that have IP
protocols that are not allowed. A list of restricted IP protocols is also
specified in the rule's conditions.

For RESTRICTED_IP_PROTOCOL attacks, Protocol 1 (ICMP), 6 (TCP),
and 17 (UDP) are ignored if present in the list of restricted IP
protocols..

Restriction: The RESTRICTED_IP_PROTOCOLS attack type applies
only to IPv4 packets. The RESTRICTED_IPV6_NEXT_HDR attack type
provides analogous function for IPv6 packets.

RESTRICTED_IPV6_DST_OPTIONS
Indicates that the rule is to detect inbound IPv6 packets that have an
IPv6 destination options extension header with options that are not
allowed. A list of restricted IPv6 destination option values is specified
in the rule's conditions.

Rule: IPv6 policy is installed but is not enforceable in a stack that is
not IPv6 enabled.

Restrictions:

v The RESTRICTED_IPV6_DST_OPTIONS attack type applies only to
IPv6 packets. The RESTRICTED_IP_OPTIONS attack type provides
analogous function for IPv4 packets.

v You cannot restrict options 0 (Pad1) or 1 (PadN).
v This value is valid only for V1R13 and later releases. See “General

syntax rules for Policy Agent” on page 933 for details.

RESTRICTED_IPV6_HOP_OPTIONS
Indicates that the rule is to detect inbound IPv6 packets that have an
IPv6 hop-by-hop options extension header with options that are not
allowed. A list of restricted IPv6 hop-by-hop option values is specified
in the rule's conditions.

Rule: IPv6 policy is installed but is not enforceable in a stack that is
not IPv6 enabled.

Restrictions:

Chapter 21. Policy Agent and policy applications 1051

v The RESTRICTED_IPV6_HOP_OPTIONS attack type applies only to
IPv6 packets. The RESTRICTED_IP_OPTIONS attack type provides
analogous function for IPv4 packets.

v You cannot restrict options 0 (Pad1) or 1 (PadN).
v This value is valid only for V1R13 and later releases. See “General

syntax rules for Policy Agent” on page 933 for details.

RESTRICTED_IPV6_NEXT_HDR
Indicates that the rule is to detect inbound IPv6 packets that have a
next header value that is not allowed. A list of restricted IPv6 next
header values is specified in the rule's conditions. The IPv6 packet
header and any subsequent extension headers include a next header
field that will be checked. The value in the next header field identifies
the next header in the packet, either an upper layer protocol header
(such as a TCP or UDP header) or an extension header (such as a
fragmentation or routing header).

Rule: IPv6 policy is installed but is not enforceable in a stack that is
not IPv6 enabled.

Restrictions:

v The RESTRICTED_IPV6_NEXT_HDR attack type applies only to
IPv6 packets. The RESTRICTED_IP_OPTIONS and
RESTRICTED_IP_PROTOCOL attack types provide analogous
function for IPv4 packets.

v You cannot restrict next header values 6 (TCP), 17 (UDP), or 58
(ICMPv6).

v This value is valid only for V1R13 and later releases. See “General
syntax rules for Policy Agent” on page 933 for details.

TCP_QUEUE_SIZE
Indicates that the rule is to detect TCP send, receive, and out-of-order
queues that are constrained. A queue can be constrained due to the
amount of data on the queue or the age of the data on the queue. A
queue size is specified in the rule's conditions. An exclusion list can
optionally be specified in the rule's conditions. The TCP_QUEUE_SIZE
attack type applies to both IPv4 and IPv6 connections.

Restriction: This value is valid only for V1R13 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details.

OptionPadChk
Indicates whether checking for non-zero IP option pad fields in inbound
packets should be enabled or disabled. The default is Enable. For IPv4 packets,
the options field is in the IP header and can contain zero filled padding for
alignment purposes. For IPv6 packets, a hop-by-hop options extension header
or a destination options extension header can include one or more zero filled
padding options for alignment purposes.

Restriction: This parameter is valid only for V1R13 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details.

IcmpEmbedPktChk
Indicates whether checking of embedded packets within an inbound ICMP or
ICMPv6 error message should be enabled or disabled. The default is Enable.

Restriction: This parameter is valid only for V1R13 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details.

1052 z/OS V2R1.0 Communications Server: IP Configuration Reference

EEXIDTimeout
Indicates the number of XID exchange timeouts that must occur within a
1-minute period in order to be detected as an EE XID flood attack. Valid values
are in the range 1- 2 000 000 000. The default value is 100.

Restriction: This parameter is valid only for V1R13 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details.

IfcFloodMinDiscard
Indicates the minimum number of discarded packets that must occur on an
interface within a 1 minute period in order to be recognized as an interface
flood attack. Valid values are in the range 100 - 4294967295. The default value
is 1000.

IfcFloodPercentage
Indicates the percentage of discarded packets for an interface above which an
interface flood attack is recognized. Valid values are in the range 5 - 100. The
default value is 10.

ProtocolRange
Indicates the restricted protocols for this IDS attack rule.

n m Integers that specify a protocol range. Valid values for n are in the
range 0 - 255. If an m value is specified, then it must be greater than or
equal to n and less than 256.

Rule: You must include a blank, a colon (:), or a dash (-) as a delimiter.

ProtocolRangeRef
The name of a globally defined IpProtocolRange statement.

ProtocolGroupRef
The name of a globally defined IpProtocolGroup statement.

RestrictedIpOptionRange
Indicates the restricted IPv4 options for this IDS attack rule.

All IP options 2 through 255 are restricted. Option 0 (end of option list)
and 1 (no-operation) are always allowed and cannot be restricted by
policy. This is the default value.

n m Integers that specify a restricted IP option range. Valid values for n are
in the range 1 - 255. If an m value is specified, then it must be greater
than or equal to n and less than 256.

Rule: You must include a blank, a colon (:), or a dash (-) as a delimiter.

RestrictedIpOptionRangeRef
The name of a globally defined IpOptionRange statement.

RestrictedIpOptionGroupRef
The name of a globally defined IpOptionGroup statement.

RestrictedIpv6OptionRange
Indicates the restricted IPv6 options for this IDS attack rule.

n m Integers that specify a restricted option range. Valid values for n are in
the range 2 - 255. If an m value is specified, then it must be greater
than or equal to n and less than 256.

Rule: You must include a blank, a colon (:), or a dash (-) as a delimiter.

Restriction: This parameter is valid only for V1R13 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details.

Chapter 21. Policy Agent and policy applications 1053

RestrictedIpv6OptionRangeRef
The name of a globally defined IpOptionRange statement.

Restriction: This parameter is valid only for V1R13 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details.

RestrictedIpv6OptionGroupRef
The name of a globally defined IpOptionGroup statement.

Restriction: This parameter is valid only for V1R13 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details.

IPv6NextHdrRange
Indicates the restricted IPv6 next header values for this IDS attack rule. The
value in the next header field of an IPv6 header or extension header identifies
the next header in the packet, either an upper layer protocol (such as TCP or
UDP) or an extension header (such as fragmentation or routing).

n m Integers that specify a restricted IPv6 next header value range. Valid
values for n are in the range 0 - 255. If an m value is specified, then it
must be greater than or equal to n and less than 256.

Rule: You must include a blank, a colon (:), or a dash (-) as a delimiter.

Restrictions:

v You cannot restrict next header values 6 (TCP), 17 (UDP), or 58 (ICMPv6).
They are always allowed.

v This parameter is valid only for V1R13 and later releases. See “General
syntax rules for Policy Agent” on page 933 for details.

IPv6NextHdrRangeRef
The name of a globally defined IPv6NextHdrRange statement.

Restriction: This parameter is valid only for V1R13 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details.

IPv6NextHdrGroupRef
The name of a globally defined IPv6NextHdrGroup statement.

Restriction: This parameter is valid only for V1R13 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details.

LocalPortRange
A list of local ports for this IDS attack rule. Valid values for n are in the range
1 - 65535. If an m value is specified, then it must be greater than or equal to n
and less than 65536.

Rule: You must include a blank, a colon (:), or a dash (-) as a delimiter.

Restriction: A LocalPortRange or RemotePortRange of 0 is not allowed.

LocalPortRangeRef
The name of a globally defined PortRange statement to be used for the local
port specification.

LocalPortGroupRef
The name of a globally defined PortGroup statement to be used for the local
port specification.

RemotePortRange
A list of remote ports for this IDS attack rule. Valid values for n are in the
range 1 - 65535. If an m value is specified then it must be greater than or equal
to n and less than 65536.

1054 z/OS V2R1.0 Communications Server: IP Configuration Reference

Rule: You must include a blank, a colon (:), or a dash (-) as a delimiter.

Restriction: A LocalPortRange or RemotePortRange of 0 is not allowed.

RemotePortRangeRef
The name of a globally defined PortRange statement to be used for the remote
port specification.

RemotePortGroupRef
The name of a globally defined PortGroup statement to be used for the remote
port specification.

TcpQueueSize
Indicates the amount of data that must remain on a TCP send, receive, or
out-of-order queue for at least thirty seconds before the queue will become
constrained. Note that a queue will also become constrained if any amount of
data remains on the queue for at least sixty seconds. This parameter is used to
select one of a number of abstract queue sizes that map to internally defined
limits. For details about queue sizes, see the Attack policies information in
z/OS Communications Server: IP Configuration Guide.
v VERY_SHORT
v SHORT (this is the default)
v LONG
v VERY_LONG

Restriction: This parameter is valid only for V1R13 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details.

IDSExclusion
An inline specification of an IDSExclusion statement.

Restriction: This parameter is valid only for V1R13 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details.

IDSExclusionRef
The name of a globally defined IDSExclusion statement.

Restriction: This parameter is valid only for V1R13 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details.

IDSExclusion statement

Use the IDSExclusion statement to specify IP addresses, and optionally ports, that
are to be excluded when monitoring for certain attacks. For example, you can use
an IDSExclusion statement to exclude a printer connection from being reset by
TCP_QUEUE_SIZE attack detection if the printer remains in a persist state for a
period of time while out of paper. You can also use the IDSExclusion statement to
exclude a host from the EE_PORT_CHECK attack detection if you know that the
host uses ephemeral source ports for Enterprise Extender (EE) traffic.

Restriction: This statement is valid only for V1R13 and later releases. See “General
syntax rules for Policy Agent” on page 933 for details.

Syntax

�� IDSExclusion Put Braces and Parameters on Separate Lines
name

��

Chapter 21. Policy Agent and policy applications 1055

Put Braces and Parameters on Separate Lines:

{
IDSExclusion Parameters

}

IDSExclusion Parameters:

� ExcludedAddrPort ipaddress
ipaddress n
ipaddress n m
ipaddress/prefixLength
ipaddress/prefixLength n
ipaddress/prefixLength n m

Parameters

name
A string 1 - 32 characters in length that specifies the name of this IDSExclusion
statement.

Rule: If you do not specify this IDSExclusion statement inline within another
statement, you must provide a name value. If you do not specify a name for an
inline IDSExclusion statement, a nonpersistent system name is created.

ExcludedAddrPort
Indicates the IP addresses, and optionally ports, that are to be excluded.

ipaddress
A single IPv4 or IPv6 address.

ipaddress n
A single IPv4 or IPv6 address and port. Valid port values for n are 0 -
65535. If you specify 0 for n, then all ports are excluded.

ipaddress n m
A single IPv4 or IPv6 address and range of ports. Valid port values for
n are 1 - 65535. The m value must be greater than or equal to n and
less than 65536.

ipaddress/prefixLength
An IPv4 or IPv6 prefix address specification. Valid values for the
prefixLength value are in the range 0 - 32 for IPv4 addresses and 0 - 128
for IPv6 addresses. An IP address matches this condition if its
unmasked bits are identical to the defined unmasked bits.

ipaddress/prefixLength n
An IPv4 or IPv6 prefix address specification and a port. Valid values
for the prefixLength value are in the range 0 - 32 for IPv4 addresses and
0 - 128 for IPv6 addresses. An IP address matches this condition if its
unmasked bits are identical to the defined unmasked bits. Valid port
values for n are 0 - 65535. If you specify 0 for n, all ports are excluded.

ipaddress/prefixLength n m
An IPv4 or IPv6 prefix address specification and a range of ports. Valid
values for the prefixLength value are in the range 0 - 32 for IPv4
addresses and 0 - 128 for IPv6 addresses. An IP address matches this

1056 z/OS V2R1.0 Communications Server: IP Configuration Reference

condition if its unmasked bits are identical to the defined unmasked
bits. Valid port values for n are 1 - 65535. The m value must be greater
than or equal to n and less than 65536.

Result: Only the first 10,000 ExcludedAddrPort entries are saved and used.

Rule: You can specify a mix of IPv4 and IPv6 addresses in one IDSExclusion
statement.

IDSReportSet statement

Use the IDSReportSet statement to specify a report set that you want to associate
with actions. A report set can include type of action, statistics interval, logging
level, trace data, and trace record size. If a packet meets a policy rule's condition
during its validity period, the reports specified in the policy rule's action, such as
logging the packet, are produced.

Syntax

�� IDSReportSet Put Braces and Parameters on Separate Lines
name

��

Put Braces and Parameters on Separate Lines:

{
IDSReportSet Parameters

}

IDSReportSet Parameters:

�

TypeActions CONSOLE ConsoleData
LOG LogData
STATISTICS StatsData
TRACE TraceData

ConsoleData:

MaxEventMessage 5

MaxEventMessage n

LogData:

LogDetail No

LogDetail Yes
No

LoggingLevel 4

LoggingLevel n

Chapter 21. Policy Agent and policy applications 1057

StatsData:

StatType Normal

StatType Exception
Normal

StatInterval 60

StatInterval n

TraceData:

TraceData HEADER

TraceData FULL
HEADER
NONE
RECORDSIZE

TraceRecordSize 100

TraceRecordSize n

Parameters

name
A string 1 - 32 characters in length specifying the name of this IDSReportSet
statement.

Rule: If this IDSReportSet statement is not specified inline within another
statement, you must provide a name value. If a name is not specified for an
inline IDSReportSet statement, a nonpersistent system name is created.

TypeActions
Indicates the type of actions to be taken for IDS events. The default value is no
TypeActions are defined.

CONSOLE
Report IDS events to the system console.

LOG Log IDS information to the syslog daemon. Low-level detail records are
optionally logged based on the LogDetail value.

STATISTICS
Log statistics to the syslog daemon based on the StatType value.

Result: Statistics are always written to the syslog INFO level.

Rule: The statistics value is applicable when the ConditionType
parameter on the IDSRule statement is Attack or TR. For other
ConditionType values, the STATISTICS value is ignored.

TRACE
Trace IDS information to the IDS event trace based on the TraceData
value. For attack types TCP_QUEUE_SIZE, GLOBAL_TCP_STALL, and
EE_XID_FLOOD, the TRACE value is ignored. No tracing is done for
those attack types.

MaxEventMessage
Indicates the maximum number of event messages to be displayed on the
console during a 5-minute period for an IDS attack type. Valid values are in
the range 0 - 4 294 967 295. A value of 0 indicates that attack console
messages are not limited. The default value is 5.

Rule: The MaxEventMessage parameter is applicable when the ConditionType
parameter in the IDSRule statement is Attack. For other ConditionType values,
the MaxEventMessage parameter is ignored.

1058 z/OS V2R1.0 Communications Server: IP Configuration Reference

LogDetail
Indicates whether detailed information is logged to the syslog daemon.

No Do not log low-level details to the syslog daemon. This is the default
value.

Yes Log low-level details to the syslog daemon when detailed information
is available. Low-level details are available when a scan is detected and
when a Global TCP Stall attack is detected.

LoggingLevel
Indicates the syslog daemon logging level for logging IDS information. Valid
values are in the range 0 - 7. The following values map to syslog daemon
priority levels.

0 Emerg/Panic

1 Alert

2 Crit

3 Error

4 Warning

5 Notice

6 Info

7 Debug

The default value is 4.

StatType
Indicates the type of statistics to be gathered.

Normal
Gather all statistics. This is the default value.

Exception
Gather only exception statistics.

StatInterval
Indicates the interval length in minutes for collecting IDS statistics. Valid
values are in the range 0 - 4 294 967 295. The default value is 60.

TraceData
Specifies the amount of information written to the IDS event trace.

HEADER
For IPv4 packets, trace the IP and transport headers in the packets. For
IPv6 packets, trace the IPv6 header, any extension headers, and the
transport header. This is the default value.

FULL Trace the entire packet.

NONE
No tracing is done.

RECORDSIZE
Trace the amount of data specified by the TraceRecordSize parameter.

TraceRecordSize
Indicates the amount in bytes of packet data to trace, when TraceData is set to
RECORDSIZE. Valid values are in the range 0 - 4 294 967 295. The default
value is 100.

Chapter 21. Policy Agent and policy applications 1059

IDSRule statement

Use the IDSRule statement to enable intrusion detection services based on the
ConditionType parameter for an IDSRule statement. See the appropriate condition
statement (IDSAttackCondition, IDSScanEventCondition, IDSScanGlobalCondition,
or IDSTRCondition) for what is required for each IDS condition type.

Rules:

v An IDSRule statement must contain a reference to a global definition of an
IDSAction statement.

v An IDSRule statement must contain one of the following references to a global
or inline definition. The condition statement included must match the
ConditionType parameter.
– IDSAttackCondition statement
– IDSScanEventCondition statement
– IDSScanGlobalCondition statement
– IDSTRCondition statement

v The IDS rule can contain a priority, and inline definitions or references to global
definitions of the IpTimeCondition statement. An IpTimeCondition specification
identifies a time period when the IDS rule is in effect.

Syntax

�� IDSRule name Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
IDSRule Parameters

}

IDSRule Parameters:

Priority n
ConditionType Attack AttackCondition

ScanEvent ScanEventCondition
ScanGlobal ScanGlobalCondition
TR TRCondition

�

� IDSActionRef name �

IpTimeCondition
IpTimeConditionRef name

AttackCondition:

IDSAttackCondition
IDSAttackConditionRef name

1060 z/OS V2R1.0 Communications Server: IP Configuration Reference

ScanEventCondition:

IDSScanEventCondition
IDSScanEventConditionRef name

ScanGlobalCondition:

IDSScanGlobalCondition
IDSScanGlobalConditionRef name

TRCondition:

IDSTRCondition
IDSTRConditionRef name

Parameters

name
A string 1 - 32 characters in length that specifies the name of this IDSRule
statement.

Priority
An integer value in the range 1 - 2 000 000 000 representing the priority
associated with the rule. Only one rule is ever mapped for a given condition
type. Rules are searched for a match starting at the highest priority, so if
multiple rules can be matched for a given condition type, the rule with the
highest priority gets matched first. If multiple rules of the same priority match,
the rule that is mapped is difficult to predict.

If this parameter is specified, the computed priority of the rule is the specified
value plus 100. If this parameter is not specified, the computed priority of the
rule is determined by the number of selection criteria specified, but is always
less than 100.

The selection criteria that affect the priority calculation are the following
IDSAttackCondition parameters:
v AttackType
v RestrictedIpOptionRange or RestrictedIPOptionRangeRef
v LocalPortRange or LocalPortRangeRef
v RemotePortRange or RemotePortRangeRef
v ProtocolRange or ProtocalRangeRef
v IPv6NextHdrRange or IPv6NextHdrRangeRef
v RestrictedIpv6OptionRange or RestrictedIpv6OptionRangeRef

The selection criteria that affect the priority calculation are the following
IDSScanEventCondition parameters:
v LocalPortRange or LocalPortRangeRef
v LocalHostAddr or LocalHostAddrRef
v Protocol

The selection criteria that affect the priority calculation are the following
IDSTRCondition parameters:
v LocalPortRange or LocalPortRangeRef

Chapter 21. Policy Agent and policy applications 1061

v LocalHostAddr or LocalHostAddrRef
v Protocol

Guideline: When setting the priority for multiple rules, you should not set the
priority as a sequential value, for example 2, 3, 4, and 5. Instead, set the
priority so there is room to change the priority, such that the rule would be
preferred over another rule, without duplicating a priority. For example, you
could configure the priorities as 20, 30, 40, and 50.

ConditionType

Attack Indicates that this is an Attack IDS rule. This rule is for attack
detection, reporting, and prevention.

ScanEvent
Indicates that this is a scan event IDS rule. This rule defines the type of
inbound traffic to be monitored by scan detection. A scan global IDS
rule is also required for scan detection activation.

ScanGlobal
Indicates that this is a scan global IDS rule. This rule is for global
definitions used for scan detection such as fast scan and slow scan
conditions. It also defines the type of reporting used when a scan is
detected.

TR Indicates that this is a traffic regulation IDS rule. This rule is for traffic
regulation for TCP connections and UDP receive queues.

Result: An IDSRule should include one ConditionType parameter. If more than
one is present the last one is used.

IDSAttackCondition
An inline specification of an IDSAttackCondition statement.

IDSAttackConditionRef
The name of a globally defined IDSAttackCondition statement.

IDSScanEventCondition
An inline specification of an IDSScanEventCondition statement.

IDSScanEventConditionRef
The name of a globally defined IDSScanEventCondition statement.

IDSScanGlobalCondition
An inline specification of an IDSScanGlobalCondition statement.

Rule: Only one scan global IDS rule can be configured for a stack.

IDSScanGlobalConditionRef
The name of a globally defined IDSScanGlobalCondition statement.

Rule: Only one scan global IDS rule can be configured for a stack.

IDSTRCondition
An inline specification of an IDSTRCondition statement.

IDSTRConditionRef
The name of a globally defined IDSTRCondition statement.

IDSActionRef
The name of a globally defined IDSAction statement.

IpTimeCondition
An inline specification of an IpTimeCondition statement. There is a limit of 25
IpTimeCondition specifications on the IDSRule.

1062 z/OS V2R1.0 Communications Server: IP Configuration Reference

IpTimeConditionRef
The name of a globally defined IpTimeCondition statement. There is a limit of
25 IpTimeCondition references on the IDSRule.

IDSScanEventCondition statement

Use the IDSScanEventCondition statement to define the conditions that scan
processing monitors. These policies are searched by this ScanEvent condition type
and a protocol condition of ICMP, ICMPv6, TCP, or UDP. For protocols TCP and
UDP, the policy search also includes local destination port and bound IP address.

The IDSScanEventCondition statements can contain a definition of LocalHostAddr,
or this value can be specified with references to global definitions of IpAddr,
IpAddrSet, or IpAddrGroup statements.

The IDSScanEventCondition statements can contain an inline definition of
IDSScanExclusion, or this value can be specified with references to global
definitions of IDSScanExclusion statements.

The IDSScanEventCondition statements can contain a definition of LocalPortRange
or this value can be specified with references to global definitions of PortRange or
PortGroup statements.

Syntax

�� IDSScanEventCondition Put Braces and Parameters on Separate Lines
name

��

Put Braces and Parameters on Separate Lines:

{
IDSScanEventCondition Parameters

}

IDSScanEventCondition Parameters:

IDSScanExclusion
IDSScanExclusionRef name

Sensitivity MEDIUM

Sensitivity HIGH
LOW
MEDIUM
NONE

�

� Protocol Tcp TcpUdpScanEventData
6
Udp TcpUdpScanEventData
17
Icmp
1
Icmpv6
58

Chapter 21. Policy Agent and policy applications 1063

TcpUdpScanEventData:

LocalHostAddr All

LocalHostAddr ipaddress
ipaddress/prefixLength
ipaddress-ipaddress
All

LocalHostAddrRef name
LocalHostAddrSetRef name
LocalHostAddrGroupRef name

LocalPortRange 0

LocalPortRange n
n m

LocalPortRangeRef name
LocalPortGroupRef name

Parameters

name
A string 1 -32 characters in length specifying the name of this
IDSScanEventCondition statement.

Rule: If this IDSScanEventCondition statement is not specified inline within
another statement, a name value must be provided. If a name is not specified
for an inline IDSScanEventCondition statement, a nonpersistent system name is
created.

IDSScanExclusion
An inline specification of an IDSScanExclusion statement.

IDSScanExclusionRef
The name of a globally defined IDSScanExclusion statement.

Sensitivity
Indicates the sensitivity of events monitored for fast and slow scan detection.
Events that are monitored can be classified as normal, possibly suspicious, or
very suspicious. This parameter indicates which of these types of events
should be counted for scan detection.

None Indicates that no events are counted.

High Indicates that all event types are counted.

Medium
Indicates that possibly suspicious and very suspicious events are
counted. This is the default value.

Low Indicates that only very suspicious events are counted.

Protocol
Indicates the protocol name or number for this IDS ScanEvent rule.

Restriction: The values Icmpv6 and 58 are valid only for V1R13 and later
releases. See “General syntax rules for Policy Agent” on page 933 for details.

LocalHostAddr
A local host IP address for this IDS ScanEvent rule. The specified IP address is
used to match applications that either explicitly bind to this address, or that
have the IP address assigned by the TCP/IP stack. All indicates than any local
IP address matches this rule. The default value is All.

ipaddress
A single IPv4 or IPv6 address.

ipaddress/prefixLength
The number of unmasked leading bits in the ipaddress value. The
prefixLength value can be in the range 0 - 32 for IPv4 addresses and in

1064 z/OS V2R1.0 Communications Server: IP Configuration Reference

the range 0 - 128 for IPv6 addresses. An IP address matches this
condition if its unmasked bits are identical to the defined unmasked
bits.

ipaddress-ipaddress
A range of IPv4 or IPv6 addresses.

Tip: All includes all IPv4 and IPv6 addresses. If you want to include only IPv4
addresses specify LocalHostAddr 0.0.0.0/0. If you want to include only IPv6
addresses specify LocalHostAddr ::0/0.

Result: When centralized policy is used, All includes all IPv4 and IPv6
addresses regardless of the release level of the policy server.

Rule: An IPv6 address specified for LocalHostAddr cannot be an IPv4-mapped
IPv6 address (in hexadecimal or dotted decimal format) or an IPv6 address
with the reserved prefix ::/96.

LocalHostAddrRef
The name of a globally defined IpAddr statement to be used for the local IP
address specification.

LocalHostAddrSetRef
The name of a globally defined IpAddrSet statement to be used for the local IP
address prefix or range specification.

LocalHostAddrGroupRef
The name of a globally defined IpAddrGroup statement to be used for the
local IP address specification.

LocalPortRange
A local port for this IDS scan event rule. Valid values for n are 0 - 65535. If 0 is
specified for n then the rule applies to any local port. If n is specified as the
beginning value for a range, then 0 is not a valid value. If an m value is
specified, then it must be greater than or equal to n and less than 65536. The
default value is 0.

Rule: You must include a blank, a colon (:), or a dash (-) as a delimiter.

LocalPortRangeRef
The name of a globally defined PortRange statement to be used for the local
port specification

LocalPortGroupRef
The name of a globally defined PortGroup statement to be used for the local
port specification.

IDSScanExclusion statement

Use the IDSScanExclusion statement to specify IP addresses and optionally, ports,
that are to be excluded when monitoring for scans. For example, responses from
name servers might appear to be scans, unless the name servers are excluded
using this statement.

Syntax

�� IDSScanExclusion Put Braces and Parameters on Separate Lines
name

��

Chapter 21. Policy Agent and policy applications 1065

Put Braces and Parameters on Separate Lines:

{
IDSScanExclusion Parameters

}

IDSScanExclusion Parameters:

� ExcludedAddrPort ipaddress
ipaddress n
ipaddress n m
ipaddress/prefixLength
ipaddress/prefixLength n
ipaddress/prefixLength n m

Parameters

name
A string 1-32 characters in length specifying the name of this IDSScanExclusion
statement.

Rule: If this IDSScanExclusion statement is not specified inline within another
statement, a name value must be provided. If a name is not specified for an
inline IDSScanExclusion statement, a nonpersistent system name is created.

ExcludedAddrPort
Indicates the IP addresses and optionally ports that are to be excluded when
monitoring for scans.

ipaddress
A single IPv4 or IPv6 address.

ipaddress n
A single IPv4 or IPv6 address and port. Valid port values for n are 0 -
65535. If 0 is specified for n, then all ports are excluded.

ipaddress n m
A single IPv4 or IPv6 address and range of ports. Valid port values for
n are 1 - 65535. The m value must be greater than or equal to n and
less than 65536.

ipaddress/prefixLength
An IPv4 or IPv6 prefix address specification. Valid values for the
prefixLength value are in the range 0 - 32 for IPv4 addresses and 0 - 128
for IPv6 addresses. An IP address matches this condition if its
unmasked bits are identical to the defined unmasked bits.

ipaddress/prefixLength n
An IPv4 or IPv6 prefix address specification and a port. Valid values
for the prefixLength value are in the range 0 - 32 for IPv4 addresses and
0 - 128 for IPv6 addresses. An IP address matches this condition if its
unmasked bits are identical to the defined unmasked bits. Valid port
values for n are 0 - 65535. If 0 is specified for n, all ports are excluded.

ipaddress/prefixLength n m
An IPv4 or IPv6 prefix address specification and a range of ports. Valid
values for the prefixLength value are in the range 0 - 32 for IPv4

1066 z/OS V2R1.0 Communications Server: IP Configuration Reference

addresses and 0 - 128 for IPv6 addresses. An IP address matches this
condition if its unmasked bits are identical to the defined unmasked
bits. Valid port values for n are 1 - 65535. The m value must be greater
than or equal to n and less than 65536.

Result: Only the first 10000 ExcludedAddrPort entries are saved and used.

Rule: You can specify a mix of IPv4 and IPv6 addresses within one
IDSScanExclusion statement.

IDSScanGlobalCondition statement

Use the IDSScanGlobalCondition statement for global scan detection and reporting.
The action defines the reporting and tracing actions to take when a scan event is
detected.

Rule: You can configure only one IDSRule statement with an
IDSScanGlobalCondition parameter. If you configure multiple scan global rules
with different names, the first instance is used and all others are discarded as
errors. If you configure multiple scan global rules with the same name, the last
instance is used.

Syntax

�� IDSScanGlobalCondition Put Braces and Parameters on Separate Lines
name

��

Put Braces and Parameters on Separate Lines:

{
IDSScanGlobalCondition Parameters

}

IDSScanGlobalCondition Parameters:

FSInterval 1

FSInterval n

FSThreshold 5

FSThreshold n

SSInterval 120

SSInterval n

SSThreshold 10

SSThreshold n

Parameters

name
A string 1 -32 characters in length specifying the name of this
IDSScanGlobalCondition statement.

Rule: If this IDSScanGlobalCondition statement is not specified inline within
another statement, a name value must be provided. If a name is not specified
for an inline IDSScanGlobalCondition statement, a nonpersistent system name
is created.

FSInterval
Indicates the interval in minutes for monitoring for fast scans. Valid values are
in the range 1 - 1440. The default value is 1.

FSThreshold
Indicates the fast scanning threshold. A fast scan is detected if the number of

Chapter 21. Policy Agent and policy applications 1067

events from a single source meets or exceeds this threshold and occur within
the interval defined by the FSInterval value. Valid values are in the range 1 -
64. The default value is 5.

SSInterval
Indicates the interval in minutes for monitoring for slow scans. Valid values
are in the range 0 - 1440. The default value is 120. The value specified must be
greater than the value specified for the FSInterval parameter. However, a value
of 0 can be specified to indicate that no slow scan processing should be
performed.

SSThreshold
Indicates the slow scanning threshold. A slow scan is detected if the number of
events from a single source meets or exceeds this threshold and occurs within
the interval defined by the SSInterval value. Valid values are in the range 0 -
64. The default value is 10. The value specified must be greater than the value
specified for the FSThreshold parameter. However, a value of 0 can be
specified to indicate that no slow scan processing should be performed.

IDSTRCondition statement

Use the IDSTRCondition statement for traffic regulation for TCP connections and
UDP receive queues. TCP rules are mapped when a local application does a listen
on a socket or when an inbound connection handshake completes. UDP rules are
mapped when an inbound packet arrives at a local bound socket. UDP TR policy
supersedes the TCPIP PROFILE setting of UDPQUEUELIMIT for covered ports.

Syntax

�� IDSTRCondition Put Braces and Parameters on Separate Lines
name

��

Put Braces and Parameters on Separate Lines:

{
IDSTRCondition Parameters

}

IDSTRCondition Parameters:

LocalHostAddr All

LocalHostAddr ipaddress
ipaddress/prefixLength
ipaddress-ipaddress
All

LocalHostAddrRef name
LocalHostAddrSetRef name
LocalHostAddrGroupRef name

LocalPortRange 0

LocalPortRange n
n m

LocalPortRangeRef name
LocalPortGroupRef name

�

1068 z/OS V2R1.0 Communications Server: IP Configuration Reference

� Protocol Tcp TRTcpData
6
Udp TRUdpData
17

TRTcpData:

TRtcpTotalConnections 65535

TRtcpTotalConnections n

TRtcpPercentage 100

TRtcpPercentage n
�

�
TRtcpLimitScope PORT_INSTANCE

TRtcpLimitScope PORT_INSTANCE
PORT

TRUdpData:

TRudpQueueSize VERY_LONG

TRudpQueueSize VERY_LONG
LONG
SHORT
VERY_SHORT

Parameters

name
A string 1 - 32 characters in length specifying the name of this IDSTRCondition
statement.

Rule: If this IDSTRCondition statement is not specified inline within another
statement, a name value must be provided. If a name is not specified for an
inline IDSTRCondition statement, a nonpersistent system name is created.

LocalHostAddr
A local IP host address for this IDS TR rule. The specified IP address is used to
match applications that either explicitly bind to this address, or that have the
IP address assigned by the TCP/IP stack. All indicates that any local IP
address matches this rule. The default value is All.

ipaddress
A single IPv4 or IPv6 address.

ipaddress/prefixLength
An IPv4 or IPv6 prefix address specification. The number of unmasked
leading bits in ipaddress. The prefixLength can be in the range 0 - 32 for
IPv4 addresses or 0 - 128 for IPv6 addresses. An IP address matches
this condition if its unmasked bits are identical to the defined
unmasked bits.

ipaddress- ipaddress
A range of IPv4 or IPv6 addresses.

Tip: The value ALL includes all IPv4 and IPv6 addresses. If you want to
include only IPv4 addresses specify LocalHostAddr 0.0.0.0/0. If you want to
include only IPv6 addresses specify LocalHostAddr ::0/0.

Chapter 21. Policy Agent and policy applications 1069

Result: When centralized policy is used, All includes all IPv4 and IPv6
addresses regardless of the release level of the policy server.

Rules:

v The LocalHostAddr parameter cannot be specified if TRtcpLimitScope PORT
was specified.

v An IPv6 address specified for LocalHostAddr cannot be an IPv4-mapped
IPv6 address (in hexadecimal or dotted decimal format) or an IPv6 address
with the reserved prefix ::/96.

LocalHostAddrRef
The name of a globally defined IpAddr statement to be used for the local IP
address specification.

LocalHostAddrSetRef
The name of a globally defined IpAddrSet statement to be used for the local IP
address prefix or range specification.

LocalHostAddrGroupRef
The name of a globally defined IpAddrGroup statement to be used for the
local IP address specification.

LocalPortRange
Indicates the local ports for this IDS TR rule. Valid values for n are 0 - 65535. If
0 is specified for n, the rule applies to any local port. If n is specified as the
beginning value for a range, 0 is not a valid value. If an m value is specified, it
must be greater than or equal to n and less than 65536. The default value is 0.

Rule: You must include a blank, a colon (:), or a dash (-) as a delimiter.

LocalPortRangeRef
The name of a globally defined PortRange statement to be used for the local
port specification.

LocalPortGroupRef
The name of a globally defined PortGroup statement to be used for the local
port specification.

Protocol
Indicates the protocol name or number for this IDS TR rule.

TRtcpTotalConnections
Indicates the size of the total connection pool for IDS TCP traffic regulation
functions. Valid values are in the range 0 - 65535. The default value is 65535.

TRtcpPercentage
Indicates the percentage of connections that can be used by a single host. The
percentage is applied to the number of available connections in the pool
established by TRtcpTotalConnections. Valid values are in the range 0 - 100.
The default value is 100.

TRtcpLimitScope
Indicates the scope of TCP traffic regulation.

PORT_INSTANCE
Indicates that traffic regulation parameters apply to each socket that is
bound to the target port individually. This is the default value.

PORT Indicates that traffic regulation parameters apply to the aggregate of all
sockets that are bound to the target port.

Rule: The LocalHostAddr parameter cannot be specified if
TRtcpLimitScope PORT was specified.

1070 z/OS V2R1.0 Communications Server: IP Configuration Reference

TRudpQueueSize
Indicates the size of the port backlog queue. This parameter is used to select
one of a number of abstract queue sizes that map to internally defined limits.
For details about queue sizes, see the TR UDP information in z/OS
Communications Server: IP Configuration Guide.
v LONG
v SHORT
v VERY_LONG (this is the default)
v VERY_SHORT

IPSec policy statements
This topic contains information about the following IPSec policy statements:
v “IpDataOffer statement” on page 1072
v “IpDynVpnAction statement” on page 1077
v “IpFilterGroup statement” on page 1083
v “IpFilterPolicy statement” on page 1084
v “IpFilterRule statement” on page 1087
v “IpGenericFilterAction statement” on page 1091
v “IpLocalStartAction statement” on page 1093
v “IpManVpnAction statement” on page 1098
v “IpService statement” on page 1106
v “IpServiceGroup statement” on page 1111
v “KeyExchangeAction statement” on page 1111
v “KeyExchangeGroup statement” on page 1119
v “KeyExchangeOffer statement” on page 1120
v “KeyExchangePolicy statement” on page 1126
v “KeyExchangeRule statement” on page 1131
v “LocalDynVpnGroup statement” on page 1133
v “LocalDynVpnPolicy statement” on page 1134
v “LocalDynVpnRule statement” on page 1135
v “LocalSecurityEndpoint statement” on page 1138
v “RemoteIdentity statement” on page 1144
v “RemoteSecurityEndpoint statement” on page 1146

The IPSec sample files are: /usr/lpp/tcpip/samples/pagent_CommonIPSec.conf
/usr/lpp/tcpip/samples/pagent_IPSec.conf

Tip: The terms phase 1 and phase 2 refer to different types of security associations
(SAs) that the z/OS IKE daemon can negotiate with its peers. Although the specific
terminology for these types of security associations differs between the IKE version
1 and IKE version 2 protocols, the terms phase 1 and phase 2 refers to both
versions, as shown in Table 73.

Table 73. IKE terminology: phase 1 and phase 2

Term Usage in regard to IKE protocol version

Phase 1 security association (SA) Refers to IKE version 1 phase 1 SAs as well as IKE
version 2 IKE SAs. When a specific version is intended,
that version is identified in this document.

Chapter 21. Policy Agent and policy applications 1071

Table 73. IKE terminology: phase 1 and phase 2 (continued)

Term Usage in regard to IKE protocol version

Phase 2 security association (SA) Refers to IKE version 1 phase 2 SAs as well as IKE
version 2 child SAs. When a specific version is intended,
that version is identified in this document.

IpDataOffer statement

Use the IpDataOffer statement to define a data offer for a dynamic VPN. An IP
data offer indicates one acceptable way to protect data sent through a dynamic
VPN. An IpDataOffer statement can be referenced by an IpDynVpnAction
statement.

Syntax

�� IpDataOffer Put Braces and Parameters on Separate Lines
name

��

Put Braces and Parameters on Separate Lines:

{
IpDataOffer Parameters

}

IpDataOffer Parameters:

HowToEncap Tunnel

HowToEncap Tunnel
Transport

�

�
HowToEncrypt DES

HowToEncrypt DES
3DES
AES
AES_CBC KeyLength keylen
AES_GCM_16 KeyLength keylen
DoNot

�

�
HowToAuth ESP HMAC_MD5

HowToAuth AH Null
ESP AES_GMAC_128

AES_GMAC_256
AES128_XCBC_96
HMAC_MD5
HMAC_SHA
HMAC_SHA1
HMAC_SHA2_256_128
HMAC_SHA2_384_192
HMAC_SHA2_512_256

�

1072 z/OS V2R1.0 Communications Server: IP Configuration Reference

�
RefreshLifetimeProposed 240

RefreshLifetimeProposed proposedtime
�

�
RefreshLifetimeAccepted 120 480

RefreshLifetimeAccepted mintime maxtime
�

�
RefreshLifesizeProposed None

RefreshLifesizeProposed proposedsize
None

�

�
RefreshLifesizeAccepted None

RefreshLifesizeAccepted minsize maxsize
None

Parameters

name
A string 1 - 32 characters in length specifying the name of this IpDataOffer
statement.

Rule: If this IpDataOffer statement is not specified inline within another
statement, a name value must be provided. If a name is not specified for an
inline IpDataOffer statement, a nonpersistent system name is created.

HowToEncap
The encapsulation mode of the dynamic VPN's security associations when IKE
version 1 is used. The default is tunnel mode.

Tunnel
Specifies that the security association operates in tunnel mode, which
protects the entire IP packet. This mode must be used for a secure
tunnel between two security gateways or between a security gateway
and a remote system. One or both of the communication endpoints can
be on different systems than the security endpoints.

Transport
Specifies that the security association operates in transport mode,
which protects only the transport-layer headers and data (for example,
TCP or UDP packet) inside an IP packet. This mode can be used only
when the endpoints of the security association are the two
communicating systems (that is, neither system acts as a gateway).

Restriction: HowToEncap is ignored for dynamic VPNs that are negotiated
using IKE version 2. The encapsulation mode for IKE version 2 security
associations is determined by the HowToEncapIKEv2 parameter on the
IPDynVpnAction statement.

HowToEncrypt
Encryption is done using the ESP protocol. Specify the encryption algorithm
used to provide data confidentiality. The default is DES.

DES DES encryption is used with a 56–bit key and a 64–bit initialization
vector.

Restriction: DES is not accepted when the TCP/IP stack is configured
for FIPS 140 mode on the IpFilterPolicy statement.

Chapter 21. Policy Agent and policy applications 1073

3DES Triple DES runs the DES encryption algorithm three times and uses
192-bits, including 24 parity bits.

Rule: If 3DES is specified but is not supported by the system, the
Policy Agent fails the policy.

AES Deprecated and treated as a synonym for AES_CBC KeyLength 128.

Rule: If AES is specified but AES encryption in CBC mode is not
supported by this TCP/IP stack, Policy Agent fails the policy.

AES_CBC
The Advanced Encryption Standard (AES) algorithm is used in Cipher
Block Chaining (CBC) mode.

Rules:

v The key length is measured in bits, and a keylen of either 128 or 256
must be specified.

v If AES_CBC is specified but AES encryption in CBC mode is not
supported by this TCP/IP stack, Policy Agent fails the policy.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

AES_GCM_16
The AES algorithm is used in Galois Counter Mode (GCM) and with a
16-byte Integrity Check Value (ICV). Galois Counter Mode is a
combined-mode algorithm that performs both encryption and
authentication simultaneously.

Rules:

v The key length is measured in bits, and a keylen of either 128 or 256
must be specified.

v HowToAuth ESP NULL must be specified if AES_GCM_16 is
specified.

v If AES_GCM_16 is specified but AES encryption in Galois Counter
Mode is not supported by this TCP/IP stack, Policy Agent fails the
policy.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details.

DoNot
No encryption is used.

If the HowToEncrypt value DoNot is specified with a HowToAuth ESP
value, the ESP header is present, but the payload is not encrypted
(ESP_NULL).

HowToAuth
The desired authentication policy indicating which protocol and which
algorithm to use when authenticating data. The default is ESP HMAC_MD5.

AH Carry authentication in AH headers.

ESP Carry authentication in ESP headers.

AES_GMAC_128
Use the AES_GMAC algorithm to encode authentication data in either
AH or ESP headers, with 128-bit keys. AES_GMAC functions as a
combined-mode algorithm that provides authentication without
encryption.

1074 z/OS V2R1.0 Communications Server: IP Configuration Reference

Rule: AES_GMAC_128 may be specified only in combination with
HowToEncrypt DoNot.

Tip: If you want a combined-mode algorithm that provides both
authentication and encryption, choose HowToEncrypt AES_GCM_16.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details.

AES_GMAC_256
Use the AES_GMAC algorithm to encode authentication data in either
AH or ESP headers, with 256-bit keys. AES_GMAC functions as a
combined-mode algorithm that provides authentication without
encryption.

Rule: AES_GMAC_256 may be specified only in combination with
HowToEncrypt DoNot.

Tip: If you want a combined-mode algorithm that provides both
authentication and encryption, choose HowToEncrypt AES_GCM_16.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details.

AES128_XCBC_96
Use the AES128_XCBC algorithm to encode authentication data in
either AH or ESP headers, with 128-bit keys and hash truncation to 96
bits.

Restriction: AES128_XCBC_96 is not accepted when the TCP/IP stack
is configured for FIPS 140 mode on the IpFilterPolicy statement.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

HMAC_MD5
Use the HMAC_MD5 algorithm to encode authentication data in either
AH or ESP headers.

Restriction: HMAC_MD5 is not accepted when the TCP/IP stack is
configured for FIPS 140 mode on the IpFilterPolicy statement.

HMAC_SHA
Deprecated and treated as a synonym for HMAC_SHA1.

HMAC_SHA1
Use the HMAC_SHA1 algorithm to encode authentication data in
either AH or ESP headers.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

HMAC_SHA2_256_128
Use the HMAC_SHA2_256 algorithm to encode authentication data in
either AH or ESP headers, with 256-bit keys and hash truncation to 128
bits.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

HMAC_SHA2_384_192
Use the HMAC_SHA2_384 algorithm to encode authentication data in
either AH or ESP headers, with 384-bit keys and hash truncation to 192
bits.

Chapter 21. Policy Agent and policy applications 1075

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

HMAC_SHA2_512_256
Use the HMAC_SHA2_512 algorithm to encode authentication data in
either AH or ESP headers, with 512-bit keys and hash truncation to 256
bits.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

Null Use no authentication.

Rule: NULL may only be specified with HowToAuth ESP and only in
combination with HowToEncrypt AES_GCM_16.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

Restriction: HowToAuth AH may be specified in combination with
HowToEncrypt only if the security association is negotiated using IKE version
1 because IKE version 2 does not permit the combining of AH and ESP. If this
combination is specified for an IKE version 2 security association, the
IPDataOffer is ignored.

RefreshLifetimeProposed
The security association lifetime in minutes. For IKE version 1, this value is
proposed when acting as the initiator of a key exchange negotiation. For IKE
version 2, this value determines the refresh lifetime.The default is 240.

proposedtime
The lifetime proposed (for IKE version 1) or used (for IKE version 2)
for the phase 2 tunnel. Valid values are in the range 1 - 9 999. The
proposed lifetime value should be within the range specified by the
RefreshLifetimeAccepted parameter.

Tip: For IKE version 2 security associations, if the RefreshLifetimeProposed
value is longer than that of the ReauthInterval on the associated
KeyExchangeAction, the reauthentication will usually occur before the
re-keying occurs.

RefreshLifetimeAccepted
A range of acceptable security association lifetimes in minutes. This range is
accepted when acting as the responder of IKE version 1 key exchange
negotiation. The default is 120 480.

mintime
The minimum lifetime that can be accepted.

maxtime
The maximum lifetime that can be accepted. This value must be ≥ to
the mintime value.

Valid values for each option are in the range 1 - 9 999.

Restriction: This parameter is ignored for IKE version 2 SAs.

RefreshLifesizeProposed
The security association lifesize in Kbytes. If a proposedsize value is specified,
then this value is proposed when acting as the IKE version 1 initiator of a key
exchange negotiation. For IKE version 2, this value determines the refresh
lifesize. If None is specified, then no lifesize is proposed for IKE version 1 or
used for IKE version 2. The default is None.

1076 z/OS V2R1.0 Communications Server: IP Configuration Reference

proposedsize
The proposed lifesize for the negotiation. Valid values are in the range
1 - 4 194 300. The proposed lifesize value should be within the range
specified by RefreshLifesizeAccepted parameter, if that parameter is
not specified as None.

None No lifesize should be proposed for IKE version 1 or used for IKE
version 2. If this parameter is specified as None, then
RefreshLifesizeAccepted parameter should also be specified as None.

RefreshLifesizeAccepted
The security association lifesize in Kbytes. If minsize and maxsize values are
specified, then this range is accepted when acting as the responder of an IKE
version 1 key exchange negotiation. If None is specified, then no lifesize is
accepted when acting as the responder of a key exchange negotiation. The
default is None.

Result: The IKED accepts a proposed lifesize greater than 4 194 300, only if a
maxsize of exactly 4 194 300 is specified. If the IKED accepts a lifesize greater
than 4 194 300, it assigns an actual lifesize of 4 194 300 to the security
association.

minsize
The minimum lifesize that can be accepted.

maxsize
The maximum lifesize that can be accepted. This value must be ≥ to the
minsize value.

None No lifesize is accepted. If this parameter is specified as None, then
RefreshLifesizeProposed value should also be specified as None.

Valid values for the minsize and maxsize options are 1 - 4 194 300.

Restriction: This parameter is ignored for IKE version 2 SAs.

Rules:

v The IpDataOffer statement allows for 0 - 1 authentication proposals and 0 - 1
encryption proposals. Multiple authentication proposals or multiple encryption
proposals cannot be specified in the same IpDataOffer statement.

v To propose authentication using only the ESP header, specify HowToEncrypt
DoNot and HowToAuth ESP xxx where xxx represents a valid authentication
algorithm.. The ESP header is present, but the payload is not encrypted.

Result: If both HowToAuth AH and HowToEncrypt are specified when using IKE
version 1, then for outbound traffic the encryption proposal is always applied
before the authentication proposal (IKE version 2 does not permit combining AH
and ESP). For example, if HowToEncrypt DES and HowToAuth AH HMAC_SHA
are specified, this is understood to mean that data is first encrypted and the results
are then authenticated and carried in an AH header.

IpDynVpnAction statement

Use the IpDynVpnAction statement to indicate how selected data traffic between
two security endpoints should be protected utilizing dynamically established
security associations. An IpDynVpnAction statement contains inline definitions or
references to IpDataOffer statements, or both.

Chapter 21. Policy Agent and policy applications 1077

Dynamically established security associations are created by the IKE daemon and
are used to protect data sent through a dynamic VPN. Dynamic VPNs can be
established in the following ways:
v Automatically established when the TCP/IP stack comes up or when the IKE

daemon comes up, or both. This is known as an autoactivation.
v Established with an ipsec command. This is known as a command-line

activation.
v Automatically established with an outbound IP packet. This is known as an

on-demand activation.
v Established with a phase 2 IKE negotiation initiated by a remote security

endpoint. This is known as a remote activation.

Syntax

�� IpDynVpnAction name Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
IpDynVpnAction Parameters

}

IpDynVpnAction Parameters:

Pfs None

Pfs Group1
Group2
Group5
Group14
None

Initiation Either

Initiation LocalOnly
RemoteOnly
Either

VpnLife 1440

VpnLife n
�

�
InitiateWithPfs None

InitiateWithPfs Group1
Group2
Group5
Group14
Group19
Group20
Group21
Group24
None

�
AcceptablePfs None

AcceptablePfs Group1
Group2
Group5
Group14
Group19
Group20
Group21
Group24
None

�

�
HowToEncapIKEv2 Either

HowToEncapIKEv2 Tunnel
Transport
Either

PassthroughDF Yes

Clear
PassthroughDF No

Set
Clear

Yes

�

1078 z/OS V2R1.0 Communications Server: IP Configuration Reference

�
PassthroughDSCP Yes

PassthroughDSCP No
Yes

� IpDataOffer
IpDataOfferRef name

Parameters

name
A string 1 - 32 characters in length specifying the name of this
IpDynVpnAction statement. The name cannot start with a dash (-) or contain
any commas (,).

Pfs
Specifies whether perfect forward secrecy (PFS) is used when negotiating the
security association, and if so, what Diffie-Hellman group is used. The default
is None.

None Do not use perfect forward secrecy.

Group1
Modular exponentiation group with a 768-bit modulus.

Restriction: Group 1 is not accepted when the TCP/IP stack is
configured for FIPS 140 mode on the IpFilterPolicy statement.

Group2
Modular exponentiation group with a 1024-bit modulus.

Restriction: Group 2 is not accepted when the TCP/IP stack is
configured for FIPS 140 mode on the IpFilterPolicy statement.

Group5
Modular exponentiation group with a 1536-bit modulus.

Restriction: Group 5 is not accepted when the TCP/IP stack is
configured for FIPS 140 mode on the IpFilterPolicy statement.

Group14
Modular exponentiation group with a 2048-bit modulus.

Guideline: If you are using encryption or authentication algorithms with a
128-bit key, use Diffie-Hellman groups 5,14,19,20, or 24. If you are using
encryption or authentication algorithms with a key length of 256 bits or
greater, use Diffie-Hellman group 21.

Rule: Pfs is deprecated. Use InitiateWithPfs and AcceptablePfs parameters
instead. If you use Pfs, then InitiateWithPfs and AcceptablePfs are set to the Pfs
value.

Restriction: Do not use the Pfs parameter in conjunction with the
InitiateWithPfs or AcceptablePfs parameters.

Initiation
Specifies which system can initiate the security associations for this dynamic
tunnel. The default is Either.

LocalOnly
Specifies that this system must initiate the negotiation.

RemoteOnly
Specifies that another system must initiate the negotiation.

Chapter 21. Policy Agent and policy applications 1079

Either Specifies that this system can either initiate a negotiation or respond to
a negotiation initiated by another system.

VpnLife
Maximum length of time that phase 2 SAs should continue to be refreshed, in
minutes. The VpnLife parameter is set for a dynamic VPN tunnel when the
first SA is established for the tunnel. The VpnLife value for a dynamic VPN
tunnel can be changed by deactivating the tunnel, changing the configured
VpnLife value, and then activating the tunnel. Valid values are in the range 0 -
525 600 minutes. Specifying a value of 0 means that the maximum lifetime is
infinite. The default is 1440 minutes. In any case, regardless of the VpnLife
setting, SAs that are configured with AllowOnDemand Yes may cease to be
refreshed if they have not protected any network traffic during their previous
refresh interval.

AcceptablePfs
Specifies acceptable Diffie-Hellman groups to use for perfect forward secrecy
(PFS). The default is None.

None Do not use perfect forward secrecy.

Group1
Modular exponentiation group with a 768-bit modulus.

Restriction: Group 1 is not accepted when the TCP/IP stack is
configured for FIPS 140 mode on the IpFilterPolicy statement.

Group2
Modular exponentiation group with a 1024-bit modulus.

Restriction: Group 2 is not accepted when the TCP/IP stack is
configured for FIPS 140 mode on the IpFilterPolicy statement.

Group5
Modular exponentiation group with a 1536-bit modulus.

Restriction: Group 5 is not accepted when the TCP/IP stack is
configured for FIPS 140 mode on the IpFilterPolicy statement.

Group14
Use modular exponentiation group with a 2048-bit modulus.

Group19
Random 256-bit elliptic curve group.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

Group20
Random 384-bit elliptic curve group.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

Group21
Random 521-bit elliptic curve group.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

Group24
Modular exponentiation group with a 2048-bit modulus and 256-bit
prime order subgroup.

1080 z/OS V2R1.0 Communications Server: IP Configuration Reference

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

Result: For negotiations using IKE version 1, the AcceptablePfs list is used
when the z/OS IKE daemon is the responder for a security association. For
negotiations using IKE version 2, the AcceptablePfs list is used in both initiator
and responder modes.

Guideline: If you are using encryption or authentication algorithms with a
128-bit key, use Diffie-Hellman groups 5,14,19,20, or 24. If you are using
encryption or authentication algorithms with a key length of 256 bits or
greater, use Diffie-Hellman group 21.

Rule: The InitiateWithPfs Diffie-Hellman group must be specified as one of the
values in the AcceptablePfsList parameter.

Restriction: Do not use the Pfs parameter in conjunction with the
InitiateWithPfs or AcceptablePfs parameters.

InitiateWithPfs
Specifies whether perfect forward secrecy (PFS) is used as initiator of the
security association, and if so, what Diffie-Hellman group is used. The default
is None.

None Do not use perfect forward secrecy.

Group1
Modular exponentiation group with a 768-bit modulus.

Restriction: Group 1 is not accepted when the TCP/IP stack is
configured for FIPS 140 mode on the IpFilterPolicy statement.

Group2
Modular exponentiation group with a 1024-bit modulus.

Restriction: Group 2 is not accepted when the TCP/IP stack is
configured for FIPS 140 mode on the IpFilterPolicy statement.

Group5
Modular exponentiation group with a 1536-bit modulus.

Restriction: Group 5 is not accepted when the TCP/IP stack is
configured for FIPS 140 mode on the IpFilterPolicy statement.

Group 14
Modular exponentiation group with a 2 048-bit modulus.

Group19
Random 256-bit elliptic curve group.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

Group20
Random 384-bit elliptic curve group.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

Group21
Random 521-bit elliptic curve group.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

Chapter 21. Policy Agent and policy applications 1081

Group24
Modular exponentiation group with a 2048-bit modulus and 256-bit
prime order subgroup.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

Result: For negotiations using IKE version 1, the InitiateWithPfs selection is
used when sending the proposal. For negotiations using IKE version 2, all PFS
selections specified on the AcceptablePfs list are included when sending the
proposal, but the InitiateWithPfs selection is sent as the first choice.

Guideline: If you are using encryption or authentication algorithms with a
128-bit key, use Diffie-Hellman groups 5,14,19,20, or 24. If you are using
encryption or authentication algorithms with a key length of 256 bits or
greater, use Diffie-Hellman group 21.

HowToEncapIKEv2
Specifies the encapsulation mode to use when establishing IKE version 2
security associations. The default is Either.

Either Support both tunnel and transport mode. When initiating the security
association, the choice is made based on the topology of the
connection. Specifically:
v If both IKE peers are hosts, then a transport mode SA is proposed. If

the peer accepts the use of transport mode, then transport mode is
used for the SA. If the peer responds requiring tunnel mode, then
tunnel mode is used for the SA.
Tip: Specify the Transport keyword on the HowToEncapIKEv2
parameter if you want to reject the SA if the peer responds requiring
tunnel mode.

v If either IKE peer is a gateway, then tunnel mode is used.

Use the mode proposed by the initiator when responding to a
negotiation that was initiated by an IKE peer.

Transport
Supports only transport mode security associations. When initiating the
SA, the behavior depends on the topology of the connection.
Specifically:
v If both IKE peers are hosts, then a transport mode SA is proposed. If

the peer accepts the use of transport mode, then transport mode is
used for the SA. If the peer responds requiring tunnel mode, then
the SA is deactivated and an error message logged.
Tip: Specify the Either keyword on the HowToEncapIKEv2
parameter if you want to propose transport mode but are willing to
use tunnel mode if the peer responds requiring tunnel mode.

v If either IKE peer is a gateway, the local activation fails and an error
message is logged.

When responding to a remote initiation, if the initiator requests tunnel
mode, the negotiation is rejected with a NO_PROPOSAL_CHOSEN
notification.

Tunnel
Supports only tunnel mode security associations. When initiating, only
tunnel mode is proposed. When responding to a remote initiation, if

1082 z/OS V2R1.0 Communications Server: IP Configuration Reference

the initiator requests transport mode, IKE responds without
acknowledging the transport mode notification, thus forcing a tunnel
mode SA to be established.

Restriction: The HowToEncapIKEv2 parameter is ignored when negotiating
IKE version 1 tunnels. The encapsulation mode for IKE version 1 security
associations is determined by the HowToEncap value on the selected
IpDataOffer.

Restriction: This parameter is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

PassthroughDF
When this parameter is set to No, the do not fragment bit is set to 0 (if the
value Clear is specified) or 1 (if the value Set is specified) on the outer IP
header for an IPv4 tunnel mode SA. When this parameter is set to Yes, the do
not fragment bit is copied from the inner IP header to the outer IP header for
an IPv4 tunnel mode SA. This parameter's setting is ignored for IPv6 or
transport mode SAs.

Restriction: This parameter is valid only for V1R10 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details.

PassthroughDSCP
When this parameter is set to No, the Differentiated Services Code Point
(DSCP) field is set to 0 on the outer IP header for a tunnel mode SA. When
this parameter is set to Yes, the DSCP field is copied from the inner IP header
to the outer IP header for a tunnel mode SA. This setting is ignored for
transport mode SAs.

Restriction: This parameter is valid only for V1R10 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details.

IpDataOffer
An inline specification of an IpDataOffer statement to be used when initiating
a phase 2 negotiation.

Restriction: A IpDynVpnAction statement is limited to a maximum of 48
IpDataOffer or IpDataOfferRef statements.

IpDataOfferRef
The name of a globally defined IpDataOffer statement to be used when
initiating a phase 2 negotiation.

Restriction: A IpDynVpnAction statement is limited to a maximum of 48
IpDataOffer or IpDataOfferRef statements.

IpFilterGroup statement

Use the IpFilterGroup statement to define an IP filter group. An IpFilterGroup
statement identifies a set of IpFilterRule statements that make up the IP filter
group. An IpFilterGroup statement can be referenced by an IpFilterPolicy
statement.

Syntax

�� IpFilterGroup name Put Braces and Parameters on Separate Lines ��

Chapter 21. Policy Agent and policy applications 1083

Put Braces and Parameters on Separate Lines:

�

{

IpFilterRuleRef name
IpFilterRule

}

Parameters

name
A string of 1–32 characters for the name of this IP Filter Group.

IpFilterRuleRef
The name of a globally defined IpFilterRule statement to be included in the
group.

IpFilterRule
An inline specification of an IpFilterRule to be included in this group.

IpFilterPolicy statement

Use the IpFilterPolicy statement to define an IP filter policy. The IpFilterPolicy
statement can contain a combination of references to IpFilterGroup statements and
IpFilterRule statements and inline IpFilterRule statements.

Communication Server's integrated IP filtering is enabled for a stack when
IPSECURITY is specified on the IPCONFIG statement of that stack's TCP/IP
profile. When Communication Server's integrated IP filtering is enabled, IP packets
are subject to the IP filters generated by the applicable IpFilterPolicy statement. IP
filters are generated in the order specified on the IpFilterPolicy statement. If a
reference to an IpFilterGroup statement is encountered, all the IP filters for that
group are generated in the order referenced by the IpFilterGroup statement.

Requirement: The IpFilterPolicy statement is required in order to define IP filters
to the Policy Agent.

The IpFilterPolicy statement can appear in the common IPSec policy file, a
stack-specific IPSec policy file, or both. If it appears in both, Policy Agent only uses
the statement contained in the stack-specific IPSec policy file. It should appear at
most once only in each file. If it appears multiple times in a file, the last one
encountered is used.

Syntax

�� IpFilterPolicy Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
IPFilterPolicy Parameters

}

1084 z/OS V2R1.0 Communications Server: IP Configuration Reference

IPFilterPolicy Parameters:

PreDecap On

PreDecap On
Off
Yes
No

FilterLogging Off

FilterLogging On
Off
Yes
No

�

�
IpFilterLogImplicit No

IpFilterLogImplicit Yes
No
On
Off

AllowOnDemand No

AllowOnDemand Yes
No
On
Off

�

�
ImplicitDiscardAction Silent

ImplicitDiscardAction ICMP
Silent

FIPS140 No

FIPS140 Yes
No
On
Off

�

� � IpFilterRule
IpFilterRuleRef name
IpFilterGroupRef name

Parameters

PreDecap
Indicates whether AH/ESP packets should be filtered before being
decapsulated.

FilterLogging
Indicates whether packet filter logging is enabled or disabled. The log
messages controlled by this parameter are EZD0814I, EZD0815I, EZD0821I,
EZD0832I, EZD0833I, EZD0836I, and EZD0822I.

If FilterLogging is enabled, then the log setting on the individual filter rules is
honored. The log setting for individual rules is specified with the
IpFilterLogging parameter on the IpGenericFilterAction statement referenced
by the IpFilterRule statement.

If FilterLogging is disabled, then the log setting on the individual filter rules is
ignored and no packet filter logging is done.

IpFilterLogImplicit
Indicates whether packet filter logging should be done for packets that are
denied by the implicit deny all rule at the end of the filter table. If a packet
does not match any of the filter rules defined in Policy Agent, then the packet
is denied by an implicit deny all rule. Logging is done for this deny if the
value of the IpFilterLogImplicit parameter is Yes and FilterLogging is enabled.

Chapter 21. Policy Agent and policy applications 1085

AllowOnDemand
Indicates whether OnDemand negotiations of security associations should be
allowed for the case where an IpLocalStartAction is not referenced from the
IpFilterRule.

ImplicitDiscardAction
Indicates the discard action that is to be applied to packets that are denied by
the implicit deny all rule at the end of the filter table. If a packet does not
match any of the filter rules defined in Policy Agent, then the packet is denied
by an implicit deny all rule.

Silent Specify this value to discard the packet silently.

ICMP Specify this value to send an ICMP or ICMPv6 destination unreachable
error with reason administratively prohibited to the origin of the
discarded packet. ICMP errors are not generated for locally originated
traffic; they are generated only for remote traffic that is being received
or forwarded.

Guideline: If you specify ImplicitDiscardAction ICMP, you should
create a filter rule permitting these ICMP errors.

Restriction: This parameter is valid only for V1R10 and later releases.
See “General syntax rules for Policy Agent” on page 933 for details.

FIPS140
Specifies whether the TCP/IP stack should perform cryptographic operations
by invoking cryptographic modules that are designed to meet the Level 1
security requirements documented in the Federal Information Processing
Standard (FIPS) publication 140 (FIPS 140).

Yes or On
Perform all IPSec-related TCP/IP cryptographic operations using
cryptographic modules that are designed to meet FIPS 140
requirements. When the value of yes or on is specified, the TCP/IP
stack is running in FIPS 140 mode.

No or Off
The TCP/IP stack might perform some IPSec-related cryptographic
operations using cryptographic modules that do not adhere to the FIPS
140 requirements. When the value of no or off is specified, the TCP/IP
stack is not running in FIPS 140 mode.

Rule: The FIPS140 parameter may not be modified while the TCP/IP stack is
running. Attempts to change the FIPS140 setting while the TCP/IP stack is
running will be treated as policy configuration errors by Policy Agent.

Tip: Enabling FIPS 140 mode provides a higher degree of assurance of the
integrity of the cryptographic modules that the TCP/IP stack uses, including
ICSF and System SSL. However, enabling FIPS 140 mode might require
additional setup and configuration, it will restrict the available set of
cryptographic algorithms, and it might result in a reduction in performance.
See Cryptographic standards and FIPS 140 in z/OS Communications Server: IP
Configuration Guide for more information.

Restriction: This parameter is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

IpFilterRule
An inline specification of an IpFilterRule statement to be included in the policy.

1086 z/OS V2R1.0 Communications Server: IP Configuration Reference

IpFilterRuleRef
The name of a globally defined IpFilterRule statement to be included in the
policy.

IpFilterGroupRef
The name of a globally defined IpFilterGroup statement to be included in the
policy.

Result: If the IpFilterPolicy statement is deleted, then all IpFilter policies are
deleted from the corresponding stack. The stack reverts to using the filter policy
defined using the IPSEC statement in the TCP/IP profile. Any IpLocalStartAction
actions contained in the IpFilterPolicy statement are deleted from the IKE daemon.

IpFilterRule statement

Use the IpFilterRule statement to define one or more IP filters.

The information provided on the IpFilterRule statement is combined to generate IP
filters. An IpFilterRule statement that is globally defined can be referenced by an
IpFilterPolicy statement and an IpFilterGroup statement.

A generated IP filter consists of a source and destination IP address specification, a
service specification, an optional time period specification, a security action, and an
optional local start action. The policy condition is formed by combining IP address
information with port, protocol, security class, direction, and routing information
from the IpService statement or the IpServiceGroup statement. An
IpTimeCondition statement identifies when the generated IP filter is in effect.
Security actions include the generic (permit, deny, or ipsec) action
(IpGenericFilterAction), the manual VPN tunnel action (IpManVpnAction) and the
dynamic VPN tunnel action (IpDynVpnAction). The optional local start action
(IpLocalStartAction) is used for local on-demand or command-line activation of
dynamic VPN tunnels.

Syntax

�� IpFilterRule name Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
IPFilterRule Parameters

}

IPFilterRule Parameters:

IpSourceAddr All

IpSourceAddr ipaddress
ipaddress/prefixLength
ipaddress-ipaddress
All
All4
All6

IpSourceAddrRef name
IpSourceAddrSetRef name
IpSourceAddrGroupRef name

IpDestAddr All

IpDestAddr ipaddress
ipaddress/prefixLength
ipaddress-ipaddress
All
All4
All6

IpDestAddrRef name
IpDestAddrSetRef name
IpDestAddrGroupRef name

�

Chapter 21. Policy Agent and policy applications 1087

�
RemoteIdentity
RemoteIdentityRef name

�

IpTimeCondition

� IpService
IpServiceRef name
IpServiceGroupRef name

�

� IpGenericFilterActionRef name
IpManVpnActionRef name
IpDynVpnActionRef name

IpLocalStartActionRef name

Parameters

name
A string of 1–32 characters specifying the name of this IpFilterRule statement.
The name cannot start with a dash (-) or contain any commas (,).

IpSourceAddr
A source IP address specification.

ipaddress
A single IP address indicating the source address that must be
contained in an IP packet for this rule's action to be performed.

ipaddress/prefixLength
A prefix address specification indicating the applicable source IP
addresses that can be contained in an IP packet for this rule's action to
be performed. The prefixLength is the number of unmasked leading bits
in the ipaddress value. The prefixLength value can be in the range 0 - 32
for IPv4 addresses and 0 - 128 for IPv6 addresses. An IP packet
matches this condition if its source address unmasked bits are identical
to the defined unmasked bits.

ipaddress-ipaddress
A range of IP addresses indicating applicable source addresses that can
be contained in an IP packet for this rule's action to be performed.

All Indicates that any source IPv4 address can be contained in an IP packet
for this rule's action to be performed. All and All4 are interchangeable
values.

All4 Indicates that any source IPv4 address can be contained in an IP packet
for this rule’s action to be performed.

All6 Indicates that any source IPv6 address can be contained in an IP packet
for this rule’s action to be performed.

IpSourceAddrRef
The name of a globally defined IpAddr statement to be used for the source IP
address specification.

IpSourceAddrSetRef
The name of a globally defined IpAddrSet statement to be used for the source
IP address prefix or range specification.

IpSourceAddrGroupRef
The name of a globally defined IpAddrGroup statement to be used for the
source IP address specification.

IpDestAddr
A destination IP address specification.

1088 z/OS V2R1.0 Communications Server: IP Configuration Reference

ipaddress
A single IP address indicating the destination address that must be
contained in an IP packet for this rule's action to be performed.

ipaddress/prefixLength
A prefix address specification indicating the applicable destination IP
addresses that can be contained in an IP packet for this rule's action to
be performed. The prefixLength value is the number of unmasked
leading bits in the specified ipaddress value. The prefixLength value can
be in the range 0 - 32 for IPv4 addresses and 0 - 128 for IPv6
addresses. An IP packet matches this condition if its destination
address unmasked bits are identical to the defined unmasked bits.

ipaddress-ipaddress
A range of IP addresses indicating applicable destination addresses
that can be contained in an IP packet for this rule's action to be
performed.

All Indicates that any destination IPv4 address can be contained in an IP
packet for this rule's action to be performed. All and All4 are
interchangeable values.

All4 Indicates that any destination IPv4 address can be contained in an IP
packet for this rule’s action to be performed.

All6 Indicates that any destination IPv6 address can be contained in an IP
packet for this rule’s action to be performed.

IpDestAddrRef
The name of a globally defined IpAddr statement to be used for the
destination IP address specification.

IpDestAddrSetRef
The name of a globally defined IpAddrSet statement to be used for the
destination IP address prefix or range specification.

IpDestAddrGroupRef
The name of a globally defined IpAddrGroup statement to be used for the
destination IP address specification.

IpTimeCondition
An inline specification of an IpTimeCondition statement. There is a limit of 25
IpTimeCondition specifications and references on the IpFilterRule statement.

RemoteIdentity
An inline specification of a RemoteIdentity statement. If specified, the
RemoteIdentity value limits traffic that matches this filter rule. Only IPSec
traffic for which the remote IKE identity matches or is contained by the
RemoteIdentity matches this filter rule.

Rules:

v You can specify the RemoteIdentity parameter only for filter rules that
reference an IpDynVpnAction statement.

v This parameter requires a remote activation so that the user's identity and
location become known.

v Because local activations are not valid, you cannot specify the
RemoteIdentity parameter for filter rules that reference an IpLocalStartAction
statement.

Tip: Specify the RemoteIdentity for mobile users whose IKE identity is known
but whose IP address is unknown or unpredictable.

Chapter 21. Policy Agent and policy applications 1089

Guideline: When you create an IpFilterRule and you specify RemoteIdentity,
specify FilterByIdentity Yes on the KeyExchangeAction statement for the
corresponding KeyExchangeRule statement. When you create an IPSec
IpFilterRule without a RemoteIdentity, specify FilterByIdentity No on the
KeyExchangeAction statement for the corresponding KeyExchangeRule
statement.

Restriction: This parameter, as well as the RemoteIdentityRef parameter, is
valid only for V1R10 and later releases. See “General syntax rules for Policy
Agent” on page 933 for details.

RemoteIdentityRef
The name of a globally defined RemoteIdentity statement.

IpTimeConditionRef
The name of a globally defined IpTimeCondition statement. There is a limit of
25 IpTimeCondition specifications and references on the IpFilterRule statement.

IpService
An inline specification of an IpService statement.

IpServiceRef
The name of a globally defined IpService statement.

IpServiceGroupRef
The name of a globally defined IpServiceGroup statement.

IpGenericFilterActionRef
The name of a globally defined IpGenericFilterAction statement.

IpManVpnActionRef
The name of a globally defined IpManVpnAction statement.

Rule: If a manual tunnel should be used to provide IPSec protection of the
data, then an IpManVpnAction reference is needed in addition to the
IpGenericFilterAction reference. The IpGenericFilterAction reference must
specify an IpFilterAction value of IpSec.

IpDynVpnActionRef
The name of a globally defined IpDynVpnAction statement.

Rule: If a dynamic tunnel should be used to provide IPSec protection, then an
IpDynVpnAction reference is needed in addition to the IpGenericFilterAction
reference. The IpGenericFilterAction must specify an IpFilterAction value of
IpSec.

IpLocalStartActionRef
The name of a globally defined IpLocalStartAction statement.

Requirement: An IpLocalStartAction statement can be specified only in
conjunction with an IpDynVpnAction statement. The IpLocalStartAction
statement is required if the dynamic VPN is not a host-to-host configuration
and is locally activated.

Results:

v If the IpSourceAddrGroupRef, IpDestAddrGroupRef, or IpServiceGroupRef
statement is specified, multiple filters might be generated. If more than one
inline or referenced IpService statement is specified, multiple filters might be
generated. If the associated IpService is bidirectional, then multiple filters are
generated. In this case, the base name has a number appended to uniquely
identify the generated filters.

1090 z/OS V2R1.0 Communications Server: IP Configuration Reference

v On an ipsec -f display -n IpFilterRuleName command, all IP filter rules with a
base name matching the IpFilterRuleName value are displayed.

Guideline: The IP address of a remote system, represented by a filter rule's
destination address specification, is always a public address when the peer is
behind a NAT device. The NAT device uses the private IP address of the peer to
choose a public address and replaces it in the IP header. If the peer system is
behind a security gateway that is behind a NAT device, the NAT device uses the
private IP address of the gateway to choose a public address because the gateway
first encapsulates the peer packet in a packet with the private address of the
gateway.

Rules:

v Filter rules that reference an IpManVpnAction or IpDynVpnAction statement
must have a direction of bidirectional specified in the IpService statement.

v All IpFilterRule statement addresses must be in the same address family (IPv4 or
IPv6).

v For any IpFilterRule statement, all of its associated actions and the associated IP
addresses must be in the same address family (IPv4 or IPv6).

IpGenericFilterAction statement

Use the IpGenericFilterAction statement to indicate whether selected traffic should
be denied, permitted, or permitted with IPSec protection. It is also used to indicate
actions (for example, logging) that are applicable to both IPSec and non-IPSec
traffic.

Syntax

�� IpGenericFilterAction name Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
IpGenericFilterAction Parameters

}

IpGenericFilterAction Parmeters:

IpFilterAction
IpFilterLogging No

Permit
Deny IpFilterLogging Yes

No
IpFilterLogging No

IpSec
IpFilterLogging Yes

LogPermit
LogDeny

No

�

Chapter 21. Policy Agent and policy applications 1091

�
DiscardAction Silent

DiscardAction ICMP
Silent

Parameters

name
A string 1 - 32 characters in length specifying the name of this
IpGenericFilterAction statement. The name cannot start with a dash (-) or
contain any commas (,).

IpFilterAction
Indicates the action that should be applied to a packet matching this rule.

Permit
Traffic is permitted to flow without IPSec protection.

Deny Traffic is denied.

IpSec Traffic must be protected by IPSec. The IpFilterRule statement must
also specify an IpManVpnAction statement or an IpDynVpnAction
statement based on the type of tunnel (manual or dynamic) that is
going to be used to provide IPSec protection for the traffic.

IpFilterLogging
Specifies a logging action that is applied to one or more filter rules (those that
reference the IpGenericFilterAction statement). The logging action can be
disabled by the setting of the FilterLogging parameter on the IpFilterPolicy
statement.

IpFilterLogging (for IpFilterAction Permit or Deny)
Indicates whether a log record should be written when a packet
matches this rule.

IpFilterLogging (for IpFilterAction IpSec)

No Log record is not written when a packet matches this rule.

Yes Log record is written when a packet matches this rule
regardless of whether a valid SA is found or not.

LogPermit
Log record is written when a packet matches this rule and a
valid SA is found.

LogDeny
Log record is written when a packet matches this rule and a
valid SA is not found.

DiscardAction
Specifies a discard action that is applied to one or more filter rules (those that
reference the IpGenericFilterAction statement). The discard action is applied
whenever a packet is discarded. A packet might be discarded because the
value deny is specified on the IpFilterAction parameter, but it might also be
discarded for having a mismatch with filter policy (for example, a packet
arrived over the wrong tunnel, or was sent in the clear when a tunnel was
required).

Silent Specify this value to discard the packet silently.

ICMP Specify this value to send an ICMP or ICMPv6 destination unreachable
error with reason administratively prohibited to the originating

1092 z/OS V2R1.0 Communications Server: IP Configuration Reference

address of the discarded packet. ICMP errors are not generated for
locally originated traffic; they are generated only for remote traffic that
is being received or forwarded.

Guideline: If you specify ImplicitDiscardAction ICMP, create a filter
rule permitting these ICMP errors.

Restriction: This parameter is valid only for V1R10 and later releases.
See “General syntax rules for Policy Agent” on page 933 for more
information.

IpLocalStartAction statement

Use the IpLocalStartAction statement to indicate how to determine the local IP,
remote IP, local port, remote port, protocol specification, ICMP type and code
specifications, and mobility header type specification for the local activation of a
dynamic VPN. It provides information about the remote and local security
endpoints with which dynamic SAs should be negotiated.

The IpLocalStartAction is optional for host-to-host dynamic SAs that are initiated
locally. If this action is not specified, default values are used to locate a matching
KeyExchangeRule keyword. The KeyExchangeRule keyword is searched based on
the local and remote dynamic SA endpoints to be negotiated. If the
IpLocalStartAction is not specified on the IpFilterRule statement, the remote IP
security endpoint is supplied based on the destination IP address in an outbound
packet in the case of an OnDemand request, or the RemoteIp keyword value in the
case of activation based on a LocalDynVpnRule. The local IP security endpoint is
supplied based on the source IP address in an outbound packet, or the LocalIp
keyword value in the case of activation based on the LocalDynVpnRule statement.

If the IpLocalStartAction statement is not specified, the AllowOnDemand default
policy specified on the IpFilterPolicy is used to determine whether OnDemand
requests are allowed. Additionally, defaults for granularity of locally initiated SAs
are determined as follows:
v The IP addresses used for the security endpoints are determined based on the

outbound packet (OnDemand) or the LocalIp and RemoteIp keywords from the
LocalDynVpnRule statement.

v The negotiated SA is based on the protocol value specified in the rule which can
either be a specific protocol or all protocols.

v For both source port and destination port, if the matching filter rule specifies a
single port value or all ports, the SA is negotiated with the port value from the
rule. IKE version 1 negotiation can be done only with a single port or all ports.
When the rule specifies a port range and IKE version 1 is used, the negotiation
is done with the port specification from the outbound packet or the
LocalDynVpnRule statement. When the rule specifies a port range and IKE
version 2 is used, the negotiation is done with the port range specification.

v If the filter rule specifies an ICMP type and code, ICMPv6 type and code, or
mobility header type, the negotiated SA is based on those specifications. IKE
version 1 negotiation can only be done with ICMP type and code, ICMPv6 type
and code, or mobility header type specification of any.

Syntax

�� IpLocalStartAction name Put Braces and Parameters on Separate Lines ��

Chapter 21. Policy Agent and policy applications 1093

Put Braces and Parameters on Separate Lines:

{
IpLocalStartAction Parameters

}

IpLocalStartAction Parameters:

AllowOnDemand No

AllowOnDemand Yes
No

LocalPortGranularity Rule

LocalPortGranularity Rule
Packet

�

�
RemotePortGranularity Rule

RemotePortGranularity Rule
Packet

ProtocolGranularity Rule

ProtocolGranularity Rule
Packet

�

�
ICMPCodeGranularity Rule

ICMPCodeGranularity Rule
Packet

ICMPTypeGranularity Rule

ICMPTypeGranularity Rule
Packet

�

�
ICMPv6CodeGranularity Rule

ICMPv6CodeGranularity Rule
Packet

ICMPv6TypeGranularity Rule

ICMPv6TypeGranularity Rule
Packet

�

�
MIPv6TypeGranularity Rule

MIPv6TypeGranularity Rule
Packet

RemoteIpGranularity Packet

RemoteIpGranularity Rule
Packet

�

�
LocalIpGranularity Packet

LocalIpGranularity Rule
Packet

LocalSecurityEndpoint
LocalSecurityEndpointRef name

�

�
RemoteSecurityEndpoint
RemoteSecurityEndpointRef name

�

�
InitiateToLocation IpAddr ipaddress

Dns dnsname
InitiateToLocationRef name

Parameters

name
A string 1 - 32 characters in length specifying the name of this
IpLocalStartAction statement. The name cannot start with a dash (-) or contain
any commas (,).

1094 z/OS V2R1.0 Communications Server: IP Configuration Reference

AllowOnDemand
Indicates whether outbound IP packets can result in an on demand activation
of a phase 2 negotiation. The default of No disallows on-demand activations.

LocalIpGranularity
The LocalIpGranularity value is consulted only when creating an on-demand
dynamic VPN. It specifies which of the following IP addresses should be used
as the local IP address during a phase 2 negotiation:
v The source IP address specification of the matching IP filter rule
v The source IP address in the IP packet that resulted in the on-demand

activation

RemoteIpGranularity
The RemoteIpGranularity is consulted only when creating an on-demand
dynamic VPN. It specifies which of the following IP addresses should be used
as the remote IP address during a phase 2 negotiation:
v The destination IP address specification of the matching IP filter rule
v The destination IP address in the IP packet that resulted in the on-demand

activation

LocalPortGranularity
Specifies which of the following port values should be used as the local port
specification during a phase 2 negotiation:
v The source port specification of the matching IP filter rule.
v The source port specification in the IP packet that resulted in the on-demand

activation.

Restriction: If the matching IP filter rule has an IpService statement that
specifies a local port range and the dynamic VPN is negotiated using IKE
version 1, then the source port from the IP packet is used. IKE version 1 does
not support port ranges for this purpose.

Tip: IKE version 1 does not support negotiating a single SA for a port range
other than All ports. When using IKE version 1, if you want to negotiate a
single phase 2 SA to cover all ports for local activations, then you must code a
port specification of All on your IpService statement, in addition to a
LocalPortGranularity of Rule.

RemotePortGranularity
Specifies which of the following port values should be used as the remote port
specification during a phase 2 negotiation:
v The destination port specification of the matching IP filter rule.
v The destination port specification in the IP packet that resulted in the

on-demand activation.

Restriction: If the matching IP filter rule has an IpService statement that
specifies a destination port range and the dynamic VPN is negotiated using
IKE version 1, then the destination port from the IP packet is used. IKE version
1 does not support port ranges for this purpose.

Tip: IKE version 1 does not support negotiating a single SA for a port range
other than All ports. When using IKE version 1, if you want to negotiate a
single phase 2 SA to cover all ports for local activations, then you must code a
port specification of All on your IpService statement, in addition to a
RemotePortGranularity of Rule.

Chapter 21. Policy Agent and policy applications 1095

ProtocolGranularity
Specifies which of the following protocol values should be used as the protocol
specification during a phase 2 negotiation:
v The protocol specification of the matching IP filter rule
v The protocol specification in the IP packet that resulted in the on-demand

activation

ICMPCodeGranularity
Specifies which of the following ICMP code values should be used during an
IKE version 2 phase 2 negotiation:
v The ICMP code specification of the matching IP filter rule
v The ICMP code specification in the IP packet that resulted in the on-demand

activation

The ICMPCodeGranularity parameter is ignored when IKE version 1 is used.
The ICMP code specification of the matching IP filter rule is used during an
IKE version 1 phase 2 negotiation. An IKE version 1 negotiation fails if the
matching IP filter rule ICMP code specification contains a value other than any.

Restriction: This parameter is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

ICMPTypeGranularity
Specifies which of the following ICMP type values should be used during an
IKE version 2 phase 2 negotiation:
v The ICMP type specification of the matching IP filter rule
v The ICMP type specification in the IP packet that resulted in the on-demand

activation

The ICMPTypeGranularity parameter is ignored when IKE version 1 is used.
The ICMP type specification of the matching IP filter rule is used during an
IKE version 1 phase 2 negotiation. An IKE version 1 negotiation fails if the
matching IP filter rule ICMP type specification contains a value other than any.

Restriction: This parameter is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

ICMPv6CodeGranularity
Specifies which of the following ICMPv6 code values should be used during
an IKE version 2 phase 2 negotiation:
v The ICMPv6 code specification of the matching IP filter rule
v The ICMPv6 code specification in the IP packet that resulted in the

on-demand activation

The ICMPv6CodeGranularity parameter is ignored when IKE version 1 is used.
The ICMPv6 code specification of the matching IP filter rule is used during an
IKE version 1 phase 2 negotiation. An IKE version 1 negotiation fails if the
matching IP filter rule ICMPv6 code specification contains a value other than
any.

Restriction: This parameter is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

ICMPv6TypeGranularity
Specifies which of the following ICMPv6 type values should be used during an
IKE version 2 phase 2 negotiation:
v The ICMPv6 type specification of the matching IP filter rule

1096 z/OS V2R1.0 Communications Server: IP Configuration Reference

v The ICMPv6 type specification in the IP packet that resulted in the
on-demand activation

The ICMPv6TypeGranularity parameter is ignored when IKE version 1 is used.
The ICMPv6 type specification of the matching IP filter rule is used during an
IKE version 1 phase 2 negotiation. An IKE version 1 negotiation fails if the
matching IP filter rule ICMPv6 type specification contains a value other than
any.

Restriction: This parameter is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

MIPv6TypeGranularity
Specifies which of the following mobility header type values should be used
during an IKE version 2 phase 2 negotiation:
v The MIPv6 type specification of the matching IP filter rule
v The MIPv6 type specification in the IP packet that resulted in the

on-demand activation

The MIPv6TypeGranularity parameter is ignored when IKE version 1 is used.
The MIPv6 type specification of the matching IP filter rule is used during an
IKE version 1 phase 2 negotiation. An IKE version 1 negotiation fails if the
matching IP filter rule MIPv6 type specification contains a value other than
any.

Restriction: This parameter is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

LocalSecurityEndpoint
An inline specification of a LocalSecurityEndpoint statement.

The LocalSecurityEndpoint statement is used to locate a KeyExchangeRule
statement that indicates how IKE negotiations are to be protected.

The LocalSecurityEndpoint statement is optional for host-to-host and
host-to-gateway configurations. If this statement is not specified, default values
are used to locate a matching KeyExchangeRule statement. The
KeyExchangeRule statement is located based on the local and remote dynamic
SA endpoints to be negotiated. The local IP security endpoint is supplied based
on the source IP address in an outbound packet in the case of an on-demand
activation or the LocalIp keyword in the case of activation based on a
LocalDynVpnRule statement.

LocalSecurityEndpointRef
The name of a globally defined LocalSecurityEndpoint statement. The
LocalSecurityEndpoint statement is used to locate a KeyExchangeRule
statement that indicates how IKE negotiations are to be protected.

RemoteSecurityEndpoint
An inline specification of an RemoteSecurityEndpoint statement. The
RemoteSecurityEndpoint statement is used to locate a KeyExchangeRule
statement that indicates how IKE negotiations are to be protected.

RemoteSecurityEndpointRef
The name of a globally defined RemoteSecurityEndpoint statement. The
RemoteSecurityEndpoint statement is used to locate a KeyExchangeRule
statement that indicates how IKE negotiations are to be protected.

InitiateToLocation

Chapter 21. Policy Agent and policy applications 1097

IpAddr
The IP address specification of the remote security endpoint to be used
when initiating a dynamic VPN tunnel.

Dns The DNS name of the remote security endpoint to be used when
initiating a dynamic VPN tunnel. The maximum length of DNS name
is 512.

The InitiateToLocation parameter is optional for host-to-host or
gateway-to-host configurations. If the parameter is not specified, the
InitiateToLocation parameter is determined at run time. For on-demand
activations, the destination address in the IP packet that triggered the
activation is used. For activations based on a LocalDynVpnRule statement, the
IP address from the RemoteIP keyword is used. The IP Address specified for
InitiateToLocation should be included within the subnet or range of IP
addresses specified on the RemoteSecurityEndpoint parameter location. If the
RemoteSecurityEndpoint parameter specifies a single IP address for location,
the InitiateToLocation parameter should match the RemoteSecurityEndpoint
parameters location value.

InitiateToLocationRef
The name of a globally defined IpAddr statement for the remote security
endpoint to be used when initiating a dynamic VPN tunnel.

Rules:

v All Location addresses in LocalSecurityEndpoint and
RemoteSecurityEndpoint for this action must be in the same address family
(IPv4 or IPv6).

v The address for the IpFilterRule statement associated with this action must
be in the same address family as the Location addresses in the
LocalSecurityEndpoint and RemoteSecurityEndpoint parameters.

IpManVpnAction statement

Use the IpManVpnAction statement to indicate how selected traffic between two
security endpoints should be protected utilizing manually established security
associations. An IpTimeCondition statement can be used to identify when the
manual tunnel is installed in the stack. Activation of the manual tunnel is
controlled by the Active parameter and the ipsec command activate/deactivate
function.

Syntax

�� IpManVpnAction name Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
IpManVpnAction Parameters

}

IpManVpnAction Parameters:

1098 z/OS V2R1.0 Communications Server: IP Configuration Reference

Active Yes

Active Yes
No

LocalSecurityEndpointAddr address
Any
Any4
Any6

LocalSecurityEndpointAddrRef name

�

� RemoteSecurityEndpointAddr address
Any
Any4
Any6

RemoteSecurityEndpointAddrRef name

PassthroughDF Yes

Clear
PassthroughDF No

Set
Clear

Yes

�

�
PassthroughDSCP Yes

PassthroughDSCP No
Yes

�

� HowToAuth AH AES128_XCBC_96 AuthOutboundSa AuthInboundSa
ESP HMAC_MD5

HMAC_SHA
HMAC_SHA1
HMAC_SHA2_256_128
HMAC_SHA2_384_192
HMAC_SHA2_512_256

�

�
HowToEncrypt DES EncryptOutboundSa EncryptInboundSa

3DES
AES
AES_CBC KeyLength keylen

�

� HowToEncap Tunnel
Transport

�
IpTimeCondition
IpTimeConditionRef name

AuthOutboundSa:

AuthOutboundSa spi key

AuthInboundSa:

AuthInboundSa spi key

EncryptOutboundSa:

EncryptOutboundSa spi key

Chapter 21. Policy Agent and policy applications 1099

EncryptInboundSa:

EncryptInboundSa spi key

Parameters

name
A string 1 - 32 characters in length specifying the name of this
IpManVpnAction statement. The name cannot start with a dash (-) or contain
any commas (,).

Active
An indication of whether the tunnel state is set to active or inactive when the
manual tunnel is installed in the stack. If a Active value of No is specified,
then the ipsec command must be used to activate the manual tunnel.

Results:

v If Active Yes is specified (default), the IpManVpnAction statement is
activated automatically when the policy is installed. If an IpTimeCondition is
present on the action, that controls when the policy is installed.

v If Active No is specified, the IpManVpnAction statement must be manually
activated using the ipsec command before it can be used to protect IP
traffic. IP packets matching on the associated IpFilterRule are dropped until
the IpManVpnAction statement is activated.

LocalSecurityEndpointAddr name

address The IP address of the local security endpoint.

Restriction: The IPv6 unspecified address (::0) and IPv4 unspecified
address (0.0.0.0) are not allowed.

Any Indicates that any local IPv4 address can be used for the local security
endpoint. Any and Any4 are interchangeable values.

Restriction: This parameter is valid only for V1R10 and later releases.
See “General syntax rules for Policy Agent” on page 933 for details.

Any4 Indicates that any local IPv4 address can be used for the local security
endpoint.

Restriction: This parameter is valid only for V1R10 and later releases.
See “General syntax rules for Policy Agent” on page 933 for details.

Any6 Indicates that any local IPv6 address can be used for the local security
endpoint.

LocalSecurityEndpointAddrRef
The name of a globally defined IpAddr statement for the local security
endpoint.

RemoteSecurityEndpointAddr

address The IP address of the remote security endpoint.

Restriction: The IPv6 unspecified address (::0) and IPv4 unspecified
address (0.0.0.0) are not allowed.

Any Indicates that any remote IPv4 address can be used for the remote
security endpoint. Any and Any4 are interchangeable values.

Restriction: This parameter is valid only for V1R10 and later releases.
See “General syntax rules for Policy Agent” on page 933 for details.

1100 z/OS V2R1.0 Communications Server: IP Configuration Reference

Any4 Indicates that any remote IPv4 address can be used for the remote
security endpoint.

Restriction: This parameter is valid only for V1R10 and later releases.
See “General syntax rules for Policy Agent” on page 933 for details

Any6 Indicates that any remote IPv6 address can be used for the remote
security endpoint.

RemoteSecurityEndpointAddrRef name
The name of a globally defined IpAddr statement for the remote security
endpoint.

PassthroughDF
When this value is set to No, the do not fragment bit is set to 0 (if the value
Clear is specified) or 1 (if the value Set is specified) on the outer IP header for
an IPv4 tunnel mode SA. When this value is set to Yes, the do not fragment bit
is copied from the inner IP header to the outer IP header for an IPv4 tunnel
mode SA. This setting is ignored for IPv6 or transport mode SAs.

Restriction: This parameter is valid only for V1R10 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details.

PassthroughDSCP
When this value is set to No, the Differentiated Services Code Point (DSCP)
field is set to 0 on the outer IP header for a tunnel mode SA. When this value
is set to Yes, the DSCP field is copied from the inner IP header to the outer IP
header for a tunnel mode SA. This setting is ignored for transport mode SAs.

Restriction: This parameter is valid only for V1R10 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details.

HowToAuth
The authentication protocol and algorithm used to provide data integrity. The
following protocols can be specified.

AH Use AH headers to carry authentication data.

ESP Use ESP headers to carry authentication data.

The following algorithms can be specified. The algorithms are ordered from
least to most secure.

HMAC_MD5
Computes the authentication checksum by combining a 128–bit key, the
Hash-based Message Authentication Code (HMAC) authentication
algorithm and the MD5 hash algorithm.

Restriction: HMAC_MD5 is not accepted when the TCP/IP stack is
configured for FIPS 140 mode on the IpFilterPolicy statement.

AES128_XCBC_96
Computes the authentication checksum using the AES128_XCBC keyed
hash algorithm with a 128-bit key and a 96-bit Integrity Check Value
(ICV).

Restriction: AES128_XCBC_96 is not accepted when the TCP/IP stack
is configured for FIPS 140 mode on the IpFilterPolicy statement.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

HMAC_SHA
Deprecated and treated as a synonym for HMAC_SHA1.

Chapter 21. Policy Agent and policy applications 1101

HMAC_SHA1
Computes the authentication checksum by combining a 160–bit key, the
HMAC authentication algorithm and the Secure Hash Algorithm
(SHA) hash algorithm.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

HMAC_SHA2_256_128
Computes the authentication checksum using the HMAC_SHA2_256
keyed hash algorithm with a 256-bit key and 128-bit ICV.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

HMAC_SHA2_384_192
Computes the authentication checksum using the HMAC_SHA2_384
keyed hash algorithm with a 384-bit key and a 192-bit ICV.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

HMAC_SHA2_512_256
Computes the authentication checksum using the HMAC_SHA2_512
keyed hash algorithm with a 512-bit key and a 256-bit ICV.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

AuthOutboundSa
Specifies the SA parameters for authentication traffic transmitted outbound to
the remote security endpoint.

spi Specifies the remote Security Parameter Index. Valid values for spi are
in the range 1 - 4 294 967 294. The set of SPI values in the range 1 -
255 are reserved to the Internet Assigned Numbers Authority (IANA)
for future use.

key Specifies the authentication key. The key must be specified in
hexadecimal prefixed with ’0x’. Each byte of the key represents a value
in the range 00 - FF. The length of the key is determined by the
associated algorithm. The key length (in bytes) for each algorithm type
is:
v HMAC_MD5 (16)
v AES128_XCBC_96 (16)
v HMAC_SHA1 (20)
v HMAC_SHA2_256_128 (32)
v HMAC_SHA2_384_192 (48)
v HMAC_SHA2_512_256 (64)

AuthInboundSa
Specifies the SA parameters for authentication traffic received inbound from
the remote security endpoint.

spi Specifies the local Security Parameter Index. Valid values for spi are in
the range 1 - 4 294 967 294.

Guidelines:

v The set of SPI values in the range 1 - 255 is reserved to the Internet
Assigned Numbers Authority (IANA) for future use.

1102 z/OS V2R1.0 Communications Server: IP Configuration Reference

v Consider choosing an inbound SPI value in the range 256 - 4096.
These values are reserved by TCP/IP for use by manual tunnels and
do not conflict with any dynamic tunnels.

key Specifies the authentication key. The key must be specified in
hexadecimal prefixed with ’0x’. Each byte of the key represents a value
in the range 00-FF. The length of the key is determined by the
associated algorithm. The key length (in bytes) for each algorithm type
is:
v HMAC_MD5 (16)
v AES128_XCBC_96 (16)
v HMAC_SHA1 (20)
v HMAC_SHA2_256_128 (32)
v HMAC_SHA2_384_192 (48)
v HMAC_SHA2_512_256 (64)

HowToEncrypt
Encryption is done using the ESP protocol. Specify the encryption algorithm
used to provide data confidentiality. The algorithms are ordered from least to
most secure.

DES DES encryption is used with a 56–bit key and a 64–bit initialization
vector.

Restriction: DES is not accepted when the TCP/IP stack is configured
for FIPS 140 mode on the IpFilterPolicy statement.

3DES Triple DES runs the DES encryption algorithm three times and uses
192-bits, including 24 parity bits.

Rule: If 3DES is specified but is not supported by the system, then the
Policy Agent fails the policy.

AES Deprecated and treated as a synonym for AES_CBC KeyLength 128.

Rule: If AES is specified but AES encryption in CBC mode is not
supported by TCP/IP, Policy Agent fails the policy.

AES_CBC KeyLength keylen
The AES algorithm is used in Cipher Block Chaining (CBC) mode with
a key length length, either 128 or 256 bits.

Rule: If AES_CBC is specified but AES encryption in CBC mode is not
supported by TCP/IP, Policy Agent fails the policy.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

EncryptOutboundSa
Specifies the SA parameters for encryption traffic transmitted outbound to the
remote security endpoint.

spi Specifies the remote Security Parameter Index. Valid values for spi are
in the range 1 - 4 294 967 294. The set of SPI values in the range 1 -
255 are reserved to the Internet Assigned Numbers Authority (IANA)
for future use.

key Specifies the encryption key. The key must be specified in hexadecimal
prefixed with ’0x’. Each byte of the key represents a value 00-FF. The
length of the key is determined by the associated algorithm. The key
length (in bytes) for each algorithm type is:

Chapter 21. Policy Agent and policy applications 1103

v DES (8)
v 3DES_CBC (24)
v AES_CBC KeyLength 128 (16)
v AES_CBC KeyLength 256 (32)

EncryptInboundSa
Specifies the SA parameters for encryption traffic received inbound from the
remote security endpoint.

spi Specifies the local Security Parameter Index. Valid values for spi are in
the range 1 - 4 294 967 294.

Guidelines:

v The set of SPI values in the range 1 - 255 is reserved to the Internet
Assigned Numbers Authority (IANA) for future use.

v Consider choosing an inbound SPI value in the range 256 - 4 096.
These values are reserved by TCP/IP for use by manual tunnels and
do not conflict with any dynamic tunnels.

key Specifies the encryption key. The key must be specified in hexadecimal
prefixed with ’0x’. Each byte of the key represents a value in the range
00 - FF. The length of the key is determined by the associated
algorithm. The key length (in bytes) for each algorithm type is:
v DES (8)
v 3DES_CBC (24)
v AES_CBC KeyLength 128 (16)
v AES_CBC KeyLength 256 (32)

HowToEncap
An indication of whether IPSec-protected packets should be created using
tunnel mode encapsulation or transport mode encapsulation.

Transport mode provides protection for the transport-layer headers and data
(for example, TCP or UDP packet) inside an IP packet. This mode is used
when the endpoints of the secure tunnel are the two communicating systems.

Tunnel mode provides protection for the entire IP packet. This mode is usually
used for a secure tunnel between two gateways or between a gateway and a
remote system.

IpTimeCondition
An inline specification of an IpTimeCondition statement. There is a limit of 25
IpTimeCondition specifications and references on the IpManVpnAction
statement.

IpTimeConditionRef
The name of a globally defined IpTimeCondition statement. There is a limit of
25 IpTimeCondition specifications and references on the IpManVpnAction
statement.

Rules:

v If ESP authentication is being used with encryption, the SPI values on the
EncryptInboundSa and AuthInboundSa parameters must be the same value.
Also, the SPI values on EncryptOutboundSa and AuthOutboundSa parameters
must be the same value.

1104 z/OS V2R1.0 Communications Server: IP Configuration Reference

v The combination of inbound SPI value, LocalSecurityEndpointAddr, and
RemoteSecurityEndpointAddr that you specify for ESP encapsulation must be
unique across the entire set of IpManVpnAction statements. The following
values are ESP encapsulation SPI values:
– SPI value specified on the EncryptInboundSa parameter
– SPI value specified on the AuthInboundSa parameter, if HowToAuth ESP is

specified
v The combination of inbound SPI value, LocalSecurityEndpointAddr, and

RemoteSecurityEndpointAddr that you specify for AH encapsulation must be
unique across the entire set of IpManVpnAction statements. The following value
is the AH encapsulation SPI value:
– SPI value specified on the AuthInboundSa parameter, if HowToAuth AH is

specified
v If ESP authentication is being used without encryption, the ESP header is

present, but the payload is not encrypted (ESP_NULL).
v Replay prevention is not supported for manual security associations.
v All IpManVpnAction addresses must be in the same address family (IPv4 or

IPv6).
v The addresses for the IpFilterRule statement associated with this action must be

in the same address family as the addresses for this action.

Results:

v The setting of the Active parameter is applied each time the manual tunnel is
installed in the stack. A change to any parameter on the IpManVpnAction
statement (including the Active parameter) results in the manual tunnel being
reinstalled in the stack and the Active parameter being applied. For example, in
the case where the Active parameter is set to No and the manual tunnel has
been activated with the ipsec -m activate command, a change to the encryption
key results in the tunnel being reinstalled and the state being set to inactive.

v If both HowToAuth and HowToEncrypt are specified, the semantic is that
encryption is always applied to the payload before authentication.

v If you specify Any, Any4, or Any6 for the LocalSecurityEndpointAddr or
RemoteSecurityEndpointAddr parameters, and you set HowToEncap to
Transport, then encapsulation preserves the original source or destination
address in the IP header.

v If you specify Any, Any4, or Any6 for the LocalSecurityEndpointAddr or
RemoteSecurityEndpointAddr parameters, and you set HowToEncap to Tunnel,
then encapsulation preserves the original source or destination address in the IP
header, if possible. If necessary, the source address is changed to an appropriate
source address on the local stack.

Tips:

v Use the ipsec command to activate and deactivate manual tunnels.
v Manual tunnels must be activated at both security endpoints. Unlike dynamic

tunnels, there is no responder mode activation for manual tunnels.
v Because multicast traffic is one-to-many but can be used both for sending and

receiving, using manual tunnels for multicast requires the same SPI and keys for
inbound and outbound traffic.

Chapter 21. Policy Agent and policy applications 1105

IpService statement

Use the IpService statement to provide a coupling between IP transport conditions,
IP routing conditions, and actions.

Syntax

�� IpService Put Braces and Parameter on Separate Lines
name

��

Put Braces and Parameters on Separate Lines:

{
IpService Parameters

}

IpService Parameters:

Protocol All

Protocol Tcp PortSpecification
6
Udp PortSpecification
17
Icmp IcmpSpecification
1
Icmpv6 IcmpSpecification
58
Ospf OspfSpecification
89
MIPv6 MIPv6Specification
135
Ip
4
Ipip
94

Ah
Esp
Igmp
All
Opaque
n

�

� Direction Inbound
Outbound
Bidirectional

InboundConnect
OutboundConnect

�

� Routing Local
Routed FragmentSpecification
Either

SecurityClass 0

SecurityClass n

1106 z/OS V2R1.0 Communications Server: IP Configuration Reference

PortSpecification:

SourcePortRange 0

SourcePortRange n
n m

DestinationPortRange 0

DestinationPortRange n
n m

IcmpSpecification:

Type Any

Type Any
n
n m

Code Any

Code Any
n
n m

MIPv6Specification:

Type Any
Type Any

n
n m

OspfSpecification:

Type Any

Type Any
n

FragmentSpecification:

FragmentsOnly No

FragmentsOnly No
Yes

Parameters

name
A string 1 - 32 characters in length specifying the name of this IpService
statement.

Rule: If this IpService statement is not specified inline within another
statement, a name value must be provided. If a name is not specified for an
inline IpService, a nonpersistent system name is created.

Protocol
Indicates the protocol that must be contained in an IP packet for this rule's
action to be performed. If an n value is specified it identifies a protocol
number. The value for n can be in the range 0 - 255. If a value of All is
specified, then the rule applies to any protocol.

The value Opaque matches any IPv6 packet for which the upper-layer protocol
is not known as a result of fragmentation. This parameter always matches
non-initial fragments, and it also matches initial fragments if the upper-layer

Chapter 21. Policy Agent and policy applications 1107

protocol value is not included in the first fragment. The Opaque value is
applicable only to routed fragments because, for all local traffic, the stack
applies IP filter rules only to fully assembled packets.

The protocol name Ip maps to the value 4, representing IP in IP encapsulation,
for which IANA has assigned the name IP.

The name Ipip maps to the value 94, representing IP within IP encapsulation,
for which IANA has assigned the name IPIP.

Restriction: The values MIPv6 and Opaque are valid only for V1R10 and later
releases. See “General syntax rules for Policy Agent” on page 933 for details.

SourcePortRange
If a Protocol of TCP or UDP is specified, then a SourcePortRange value can be
specified. The SourcePortRange value indicates the applicable source ports that
must be contained in an IP packet for this rule's action to be performed.

Valid values for n are 0 - 65 535. If 0 is specified for n, then the rule applies to
any source port. If n is specified as the beginning value for a range, then 0 is
not a valid value.

If an m value is specified, it must be greater than or equal to n and less than
65 536.

DestinationPortRange
If a Protocol of TCP or UDP is specified, then a DestinationPortRange value
can be specified. The DestinationPortRange value indicates the applicable
destination ports that can be contained in an IP packet for this rule's action to
be performed.

Valid values for n are in the range 0 - 65 535. If 0 is specified for n, then the
rule applies to any destination port. If n is specified as the beginning value for
a range, then 0 is not a valid value.

If an m value is specified, then it must be greater than or equal to n and less
than 65 536.

Type
If you specify Protocol ICMP or ICMPv6, then you can specify a Type value or
range. The Type value indicates the ICMP types that must be contained in an
IP packet for this rule's action to be performed. Valid values for n are in the
range 0 - 255. If you specify an m value, it must be greater than or equal to n
and less than or equal to 255.

If you specify Protocol Ospf, then you can specify Type. The Type value
indicates the OSPF types that must be contained in an IP packet for this rule's
action to be performed. Valid values for n are in the range 0 - 255.

If you specify Protocol MIPv6, then you can specify a Type value or range. The
Type value indicates the mobility header types that must be contained in an IP
packet for this rule's action to be performed. Valid values for n are in the range
0 - 255. If you specify an m value, it must be greater than or equal to n and
less than or equal to 255.

Restrictions:

v The use of a range of values for certain protocols is valid only for V1R10
and later releases. See “General syntax rules for Policy Agent” on page 933
for details.

v ICMP, ICMPv6 and Mobility header Type specifications other than Any are
allowed for filter rules that reference an IpDynVpnAction statement, but it is
valid only when the SA is negotiated using IKE version 2. Because the IKE

1108 z/OS V2R1.0 Communications Server: IP Configuration Reference

version is not determined until IKE negotiations begin, the IKE daemon fails
an SA negotiation under such a rule if the chosen KeyExchangeRule calls for
IKE version 1.

Code
If you specify Protocol ICMP or ICMPv6, then you can specify a Code value or
range. The Code value indicates the ICMP codes that must be contained in an
IP packet for this rule's action to be performed. Valid values for n are in the
range 0 - 255. If an m value is specified, it must be greater than or equal to n
and less than or equal to 255.

Restrictions:

v The use of a range of values for certain protocols is valid only for V1R10
and later releases. See “General syntax rules for Policy Agent” on page 933
for details.

v ICMP and ICMPv6 Code specifications other than Any are allowed for filter
rules that reference an IpDynVpnAction statement, but it is valid only when
the SA is negotiated using IKE version 2. Because the IKE version is not
determined until IKE negotiations begin, the IKE daemon fails an SA
negotiation under such a rule if the chosen KeyExchangeRule calls for IKE
version 1.

Direction
Specifies the direction a packet must take in order for the generated IP filters
to apply.

Outbound
This value generates one IP filter. The generated rule permits or denies
a packet with the specified source and destination to travel outbound.

Inbound
This value generates one IP filter. The generated rule permits or denies
a packet with the specified source and destination to travel inbound.

Bidirectional
This value generates two IP filters. The first generated rule permits or
denies a packet with the specified source and destination IP address or
port to travel outbound. The second generated rule switches the source
and destination specifications and permits or denies a packet with the
switched source and destination specification to travel inbound.

InboundConnect/OutboundConnect
When Bidirectional is specified for Direction, an additional
InboundConnect or OutboundConnect keyword can also be
specified. These values are ignored if the protocol is not TCP.
InboundConnect or OutboundConnect controls the type of
packet that can send the first packet of a TCP connection (for
example, the type of packet that can initiate a TCP connection).
If InboundConnect and Protocol TCP are specified, then a TCP
connection can be initiated only by an inbound packet. If
OutboundConnect and Protocol TCP are specified, then a TCP
connection can be initiated only by an outbound packet.

Routing
Specifies the type of packet that applies to this rule.

Local Indicates that this rule applies to packets destined for this stack.

Chapter 21. Policy Agent and policy applications 1109

Routed
Indicates that this rule applies to packets being forwarded by this
stack.

Either Indicates that this rule applies to forwarded and non-forwarded
packets.

SecurityClass
An IP packet must traverse a physical interface with a SecurityClass value of n
to match the generated rule. The interface security class is defined on the
LINK, INTERFACE, or DYNAMICXCF statement in the TCP/IP profile. Valid
values for n can be a value in the range 0 - 255. The value 0 indicates that any
interface is allowed. The SecurityClass parameter must be specified as 0 if the
IpService statement is referenced by an IpFilterRule statement that also
references an IpDynVpnAction statement.

FragmentsOnly
When this parameter is set to Yes, this rule matches only fragmented packets.
When this parameter is set to No, this rule matches both fragments and
non-fragments.

Restriction: This parameter is valid only for V1R10 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details.

Tip: Fragments are only matched in routed traffic, because the TCP/IP stack
applies IP filter rules for local traffic only to fully reassembled packets.

Rule: An FragmentsOnly specification of Yes is not allowed for filter rules that
reference an IpDynVpnAction statement.

Tip: To specify all ephemeral ports for the SourcePortRange or
DestinationPortRange keywords, you can specify ports in the range 1 024 - 65 535.

Rules:

v Filter rules that reference an IpManVpnAction statement or IpDynVpnAction
statement must have a Direction of Bidirectional specified on the IpService
parameter.

v A Routing specification of Routed or Either must have one of the following:
– A SourcePortRange and DestinationPortRange specification defaulted or

configured to 0 (if applicable)
– A Type and Code specification defaulted or configured to Any (if applicable)

This restriction is valid only for V1R10 and later releases. See “General syntax
rules for Policy Agent” on page 933 for details.

v Filter rules that reference an IpDynVpnAction must have a SecurityClass value
of 0 specified on the IpService statement.

v An ICMP or ICMPv6 Type and Code specification other than Any is allowed for
filter rules that reference an IpDynVpnAction statement but it is valid only when
the SA is negotiated using IKE version 2. Because the IKE version is not
determined until IKE negotiations begin, the IKE daemon fails an SA negotiation
under such a rule if the chosen KeyExchangeRule calls for IKE version 1.

v The ICMP or ICMPv6 Code specification must be set to the Any value if a range
of ICMP or ICMPv6 Types is specified.

v An OSPF Type specification is not allowed for filter rules that reference an
IpDynVpnAction statement.

v A mobility header Type specification other than Any is allowed for filter rules
that reference an IpDynVpnAction statement, but it is valid only when the SA is

1110 z/OS V2R1.0 Communications Server: IP Configuration Reference

negotiated using IKE version 2. Because the IKE version is not determined until
IKE negotiations begin, the IKE daemon fails an SA negotiation under such a
rule if the chosen KeyExchangeRule calls for IKE version 1.

v A protocol specification of Opaque can be used only in combination with IPv6
addresses on an IpFilterRule.

v A protocol specification of Opaque is not allowed for filter rules that reference
an IpDynVpnAction statement.

IpServiceGroup statement

Use the IpServiceGroup statement to define an IP service group. An
IpServiceGroup statement identifies a set of IpService statements that make up the
IP service group. An IpServiceGroup statement can be referenced by an
IpFilterRule statement. The IpServiceGroup statement is an advanced configuration
feature that results in multiple IpFilterRules being generated if the group contains
or references more than one IP service condition.

Syntax

�� IpServiceGroup name Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

�

{

IPService
IpServiceRef name

}

Parameters

name
A string 1 - 32 characters in length specifying the name of this IpServiceGroup
statement.

IpService
An inline specification of an IpService statement to be included in this group.

IpServiceRef
The name of a globally defined IpService statement to be included in the
group.

KeyExchangeAction statement

Use the KeyExchangeAction statement to define a key exchange action for a
dynamic VPN. A key exchange indicates how key exchanges between the security
endpoints should be protected. A KeyExchangeAction statement can be referenced
by a KeyExchangeRule statement.

Syntax

�� KeyExchangeAction name Put Braces and Parameters on Separate Lines ��

Chapter 21. Policy Agent and policy applications 1111

Put Braces and Parameters on Separate Lines:

{
KeyExchangeAction Parameters

}

KeyExchangeAction Parameters:

HowToInitiate Main
Aggressive
IKEv2
DoNot

HowToRespond Either

HowToRespond Main
Aggressive
Either

�

�
AllowNat Yes

No

HowToRespondIKEv1 Either

HowToRespondIKEv1 Main
Aggressive
Either

�

�
DigitalSignature

HowToAuthMe
PresharedKey
RsaSignature
ECDSA-256
ECDSA-384
ECDSA-521
DigitalSignature

� KeyExchangeOffer
KeyExchangeOfferRef name

�

�
ReauthInterval 0

ReauthInterval n

FilterByIdentity No

FilterByIdentity No
Yes

�

�
ConstrainSource ipaddress

ipaddress/prefixLength
ipaddress-ipaddress
All
All4
All6

ConstrainSourceRef name
ConstrainSourceSetRef name
ConstrainSourceGroupRef name

�

1112 z/OS V2R1.0 Communications Server: IP Configuration Reference

�
ConstrainDest ipaddress

ipaddress/prefixLength
ipaddress-ipaddress
All
All4
All6

ConstrainDestRefname
ConstrainDestSetRefname
ConstrainDestGroupRefname

�

�
BypassIpValidation Yes

No

�

�
CertificateURLLookupPreference Allow

Tolerate
Disallow

�

�
RevocationChecking None

Loose
Strict

Parameters

name
A string 1 - 32 characters in length specifying the name of this
KeyExchangeAction statement. The name cannot start with a dash (-) or
contain any commas (,).

HowToInitiate
The negotiation mode to use as the phase 1 initiator. If this parameter is not
specified, the IKE daemon will use the value from the HowToInitiate
parameter in the KeyExchangePolicy.

Main Indicates that IKE version 1 with identity protection is used when key
negotiations are initiated by this system.

Aggressive
Indicates that IKE version 1 without identity protection is used when
key negotiations are initiated by this system.

IKEv2 Indicates that IKE version 2 is used when key negotiations are initiated
by this system.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

DoNot
Indicates that the local system cannot initiate a key exchange
negotiation.

Chapter 21. Policy Agent and policy applications 1113

HowToRespond
Deprecated and treated as a synonym for HowToRespondIKEv1.

HowToRespondIKEv1
The negotiation mode to assume as the IKE version 1 phase 1 responder. The
default is Either.

Restriction: This parameter is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

Main Requires remote systems to initiate key negotiations using IKE version
1 with identity protection.

Aggressive
Requires remote systems to initiate key negotiations using IKE version
1 without identity protection.

Either Allows remote systems to initiate key exchange negotiations using IKE
version 1 with or without identity protection.

Tip: The z/OS IKE daemon is always capable of responding with the IKE
version 2 protocol. The HowToRespondIKEv1 parameter determines which IKE
version 1 modes are allowed when z/OS is the responder.

HowToAuthMe
Specifies the method that remote security endpoints are to use to authenticate
this security endpoint during IKE version 2 IKE_SA negotiation. If not
specified, this value defaults to DigitalSignature.

PresharedKey
Indicates that the remote security endpoint is expected to authenticate
this security endpoint with a pre-shared key.

RsaSignature
Indicates that the remote security endpoint is expected to authenticate
this security endpoint with RSA signatures.

ECDSA-256
Indicates that the remote security endpoint is expected to authenticate
this security endpoint using ECDSA with SHA-256 on the P-256 curve.

ECDSA-384
Indicates that the remote security endpoint is expected to authenticate
this security endpoint using ECDSA with SHA-384 on the P-384 curve.

ECDSA-521
Indicates that the remote security endpoint is expected to authenticate
this security endpoint using ECDSA with SHA-512 on the P-521 curve.

DigitalSignature
Indicates that the local security endpoint may use either RsaSignature,
ECDSA-256, ECDSA-384 or ECDSA-521 when creating the digital
signature for the remote security endpoint to verify. This is the default.

Restrictions:

v The HowToAuthMe keyword is ignored when IKE version 1 IKE SAs are
negotiated because IKE version 1 requires that both security endpoints use
the same authentication method.

v If PresharedKey is specified, the KeyExchangeRule that references the
KeyExchangeAction must specify the SharedKey parameter.

v This parameter is valid only for V1R12 and later releases. See “General
syntax rules for Policy Agent” on page 933 for details.

1114 z/OS V2R1.0 Communications Server: IP Configuration Reference

AllowNat
Indicates whether the use of NAT traversal techniques is allowed when
negotiating a phase 1 SA and subsequent phase 2 SAs that are using that phase
1 SA. The value Yes indicates that negotiations that use NAT traversal
techniques are allowed. The value No indicates that negotiations that use NAT
traversal techniques are not allowed. If the AllowNat parameter is specified, it
overrides the AllowNat setting from the KeyExchangePolicy statement. If the
AllowNat parameter is not specified, the AllowNat setting from the
KeyExchangePolicy statement is used as the default.

Tip: Setting AllowNat to No prevents the IKE daemon from sending NAT
payloads or processing received NAT payloads as part of the tunnel
negotiation. In some cases, tunnels traversing one or more NATs can still be
activated even when AllowNat is set to No. However, such tunnels are
normally unusable because of the known incompatibilities between IPsec and
NAT documented in RFC 3715.

KeyExchangeOffer
An inline specification of a KeyExchangeOffer statement.

Restriction: A KeyExchangeAction statement is limited to a maximum of 48
KeyExchangeOffer or KeyExchangeOfferRef statements.

KeyExchangeOfferRef
The name of a globally defined KeyExchangeOffer statement.

Restriction: A KeyExchangeAction statement is limited to a maximum of 48
KeyExchangeOffer or KeyExchangeOfferRef statements.

Rule: When you specify multiple KeyExchangeOffer parameters, configure the
HowToInitiate parameter with the value Main to send multiple key exchange
offers when a negotiation is initiated.

Result: When you specify multiple KeyExchangeOffer parameters, if the
KeyExchangeAction parameter is configured with the value HowToInitiate
Aggressive and contains multiple KeyExchangeOffer statements, the
parameters of the first KeyExchangeOffer statement are used for initiating an
Aggressive mode negotiation.

ReauthInterval
Specifies how often, in minutes, IKE version 2 peers reauthenticate themselves.
Valid values are in the range 0-9999. The value 0 indicates that the endpoints
should never reauthenticate. The default value is 0 (do not perform automatic
reauthentication). Reauthentication renegotiates the keys for the IKE and
reauthenticates the security endpoints. When IKE version 2 peers
reauthenticate, the IKE SA and all associated child SAs must be terminated and
renegotiated.

Restriction: The ReauthInterval keyword is ignored when IKE version 1 is
being used between IKE peers.

Restriction: This parameter is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details.

Tip: When the remote IKE version 2 peer initiates a reauthentication at the
same time as the local IKE version 2 peer, it is called a simultaneous
reauthentication. Simultaneous reauthentication often results in redundant SAs.
To reduce the probability of a simultaneous reauthentication, IKED shifts the
timing of reauthentication by a small, random length of time. To further reduce
the probability of a simultaneous reauthentication, use a higher ReauthInterval
value or configure only one peer to initiate reauthentication.

Chapter 21. Policy Agent and policy applications 1115

FilterByIdentity
Indicates whether the peer's IKE identity is used for IP filtering purposes.
IpFilterRule objects support the specification of a RemoteIdentity parameter.
When this value is Yes, all IP tunnels negotiated with this peer use the
RemoteIdentity parameter in addition to the traffic specification to locate the
appropriate dynamic anchor IpFilterRule. When this value is No, all IP tunnels
negotiated with this peer do not use the RemoteIdentity parameter to locate
the appropriate dynamic anchor.

Restrictions:

v Because the RemoteIdentity parameter is supported only in combination
with remote activation, FilterByIdentity Yes can be used only in combination
with HowToInitiate DoNot.

v The peer is restricted to negotiating data protection only for its security
endpoint address. RemoteIdentity support is intended for mobile users, who
are not permitted to function as a security gateway.

v This parameter is valid only for V1R10 and later releases. See “General
syntax rules for Policy Agent” on page 933 for details.

Guideline: When creating an IpFilterRule using a RemoteIdentity value,
specify FilterByIdentity Yes on the KeyExchangeAction statement for the
corresponding KeyExchangeRule statement. When creating an IPSec
IpFilterRule without a RemoteIdentity value, specify FilterByIdentity No on the
KeyExchangeAction statement for the corresponding KeyExchangeRule
statement.

ConstrainSource
Indicates a source IP address constraint specification. Dynamic tunnel
negotiations that take place under this KeyExchangeAction statement are
constrained to include source data addresses that are in the range of this
specification.

ipaddress
A single IP address constraining the source data address for all
dynamic tunnel negotiations under this KeyExchangeAction statement.

ipaddress/prefixLength
A prefix address specification indicating the applicable source data
addresses that can be included in dynamic tunnel negotiations under
this KeyExchangeAction statement. The prefixLength value is the
number of unmasked leading bits in the ipaddress value. The
prefixLength value can be in the range 0 - 32 for IPv4 addresses and 0 -
128 for IPv6 addresses. A dynamic tunnel negotiation matches this
condition if its source data address specification is entirely contained in
the range defined by the unmasked bits for this prefix specification.

ipaddress-ipaddress
The range of IP addresses that are applicable source data addresses
that can be included in dynamic tunnel negotiations under this
KeyExchangeAction statement.

All Indicates that dynamic tunnel negotiations under this
KeyExchangeAction statement can include any IPv4 source data
address specification. All and All4 are interchangeable values.

All4 Indicates that dynamic tunnel negotiations under this
KeyExchangeAction statement can include any IPv4 source data
address specification.

1116 z/OS V2R1.0 Communications Server: IP Configuration Reference

All6 Indicates that dynamic tunnel negotiations under this
KeyExchangeAction statement can include any IPv6 source data
address specification.

Restriction: This parameter, and the ConstrainSourceRef,
ConstrainSourceSetRef, and ConstrainSourceGroupRef parameters are valid
only for V1R10 and later releases. See“General syntax rules for Policy Agent”
on page 933 for details.

ConstrainSourceRef
The name of a globally defined IpAddr statement that you should use to
specify the source data address constraint.

ConstrainSourceSetRef
The name of a globally defined IpAddrSet statement that you should use to
specify the source data address prefix or range constraint.

ConstrainSourceGroupRef
The name of a globally defined IpAddrGroup statement that you can use to
specify the source data address constraint.

ConstrainDest
Indicates a destination IP address constraint specification. Dynamic tunnel
negotiations that take place under this KeyExchangeAction statement are
constrained to include only destination data addresses that are in the range of
this specification.

ipaddress
A single IP address that constrains the destination data address for all
dynamic tunnel negotiations under this KeyExchangeAction statement.

ipaddress/prefixLength
A prefix address specification indicating the applicable destination data
addresses that can be included in dynamic tunnel negotiations under
this KeyExchangeAction statement. The prefixLength value is the
number of unmasked leading bits in the ipaddress value. The
prefixLength value can be in the range 0 - 32 for IPv4 addresses and 0 -
128 for IPv6 addresses. A dynamic tunnel negotiation matches this
condition if its destination data address specification is entirely
contained within the range defined by the unmasked bits for this
prefix specification.

ipaddress-ipaddress
The range of IP addresses that are applicable destination data
addresses that can be included in dynamic tunnel negotiations under
this KeyExchangeAction statement.

All Indicates that dynamic tunnel negotiations under this
KeyExchangeAction statement can include any IPv4 destination data
address specification. All and All4 are interchangeable values.

All4 Indicates that dynamic tunnel negotiations under this
KeyExchangeAction statement can include any IPv4 destination data
address specification.

All6 Indicates that dynamic tunnel negotiations under this
KeyExchangeAction statement can include any IPv6 destination data
address specification.

Restriction: This parameter, and the ConstrainDestRef, ConstrainDestSetRef,
and ConstrainDestGroupRef parameters are valid only for V1R10 and later
releases. See “General syntax rules for Policy Agent” on page 933 for details.

Chapter 21. Policy Agent and policy applications 1117

ConstrainDestRef name
The name of a globally defined IpAddr statement to be used for the
destination data address constraint.

ConstrainDestSetRef name
The name of a globally defined IpAddrSet statement to be used for the
destination data address prefix or range constraint.

ConstrainDestGroupRef name
The name of a globally defined IpAddrGroup statement to be used for the
destination data address constraint.

BypassIpValidation
Indicates whether a check should be made to verify that the remote peer's
identity matches the peer's remote IP address. A value of Yes indicates the
check should be bypassed. A value of No indicates the check should be
enforced. If this parameter is not specified, the BypassIpValidation setting from
the KeyExchangePolicy statement is used as the default.

Restriction: The BypassIpValidation keyword is ignored when identity of the
peer is not an IPv4 or IPv6 address.

Restriction: This parameter is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

Tip: If the remote security endpoint is expected to be behind a NAT, specify a
value of Yes.

CertificateURLLookupPreference
Indicates the hash and URL encoding preference of certificate payloads. If this
parameter is not specified, the CertificateURLLookupPreference setting from
the KeyExchangePolicy statement is used as the default.

Allow IKED provides the remote security endpoint with an indication that it
prefers to receive certificate payloads encoded in a hash and URL
format. IKED processes certificate payloads encoded using a hash and
URL format when they are received. IKED attempts to send certificate
payloads using a hash and URL format encoding when the remote
security endpoint indicates a preference to receive certificate payloads
encoded in a hash and URL format.

Tolerate
IKED does not provide the remote security endpoint with an indication
that it prefers to receive certificate payloads encoded in a hash and
URL format. IKED processes certificate payloads encoded using a hash
and URL format when they are received. IKED attempts to send
certificate payloads using a hash and URL format encoding when the
remote security endpoint indicates a preference to receive certificate
payloads encoded in a hash and URL format.

Disallow
IKED does not provide the remote security endpoint with an indication
that it prefers to receive certificate payloads encoded in a hash and
URL format. IKED ignores certificate payloads encoded using a hash
and URL format when they are received. IKED does not send
certificate payloads using a hash and URL format.

Restriction: This keyword is ignored when IKE version 1 IKE SAs are
negotiated since IKE version 1 does not support hash and URL encoding of
certificate data.

1118 z/OS V2R1.0 Communications Server: IP Configuration Reference

Restriction: This parameter is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

RevocationChecking
Indicates the level of revocation checking to be performed on a remote security
endpoint's certificate and its corresponding certificate authority certificates.

None No revocation checking is performed.

Loose Revocation information is checked if available.

Strict Revocation information must be available for all certificates and is
checked for all certificates

If this parameter is not specified, the RevocationChecking setting from the
KeyExchangePolicy statement is used as the default. .

Rules:
v Revocation checking is only applicable to digital signature authentication

methods.
v When the mode is Loose and revocation information for a certificate is

unavailable, then that certificate is considered valid.
v When the mode is Strict and revocation information for a certificate is

unavailable, then that certificate is considered invalid.
v When the mode is Strict or Loose and a source of revocation information

checked indicates that a certificate is revoked then the certificate is
considered invalid.

v If a CRL can be obtained using the CRLDistributionPoints extension and a
certificate bundle file, the CRL obtained from the CRLDistributionPoints
extension is used and the CRL in the certificate bundle or certificate payload
is ignored.

v When IKED is configured to use the native IKE daemon certificate service
the RevocationChecking parameter is ignored.

Rule: Certificate revocation lists (CRL) received in a certificate payload are
ignored.

Restrictions:

v This parameter is valid only for V1R12 and later releases. See “General
syntax rules for Policy Agent” on page 933 for details.

v Certificate revocation lists (CRL) are the only source of revocation
information consulted. The CRL must be identified in the
CRLDistributionPoints extension of the certificate being checked or
contained in a certificate bundle file identified by the remote security
endpoint.

v When the CRLDistributionPoints extension is used to retrieve a CRL at least
one distribution point must contain an HTTP URL.

v IKED will only consult a CRL that contain entries for all revocation reasons.
v The native IKE daemon certificate service does not consult certificate

revocation information when authenticating a digital signature. If certificate
revocation information is consulted then IKED must be configured as a
network security client.

KeyExchangeGroup statement

Use the KeyExchangeGroup statement to define a key exchange group. A
KeyExchangeGroup statement identifies a set of KeyExchangeRule statements that

Chapter 21. Policy Agent and policy applications 1119

make up the key exchange group. A globally defined KeyExchangeGroup
statement can be referenced by a KeyExchangePolicy statement.

Syntax

�� KeyExchangeGroup name Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

�

{

KeyExchangeRuleRef name
KeyExchangeRule

}

Parameters

name
A string 1 - 32 characters in length specifying the name of this
KeyExchangeGroup statement.

KeyExchangeRuleRef
The name of a globally defined KeyExchangeRule statement to be included in
the group.

KeyExchangeRule
An inline specification of a KeyExchangeRule statement to be included in this
group.

KeyExchangeOffer statement

Use the KeyExchangeOffer statement to define a key exchange offer for a dynamic
VPN. A key exchange offer indicates one acceptable way to protect a key exchange
for a dynamic VPN. A key exchange offer can be referenced by a
KeyExchangeAction statement.

Syntax

�� KeyExchangeOffer Put Braces and Parameters on Separate Lines
name

��

Put Braces and Parameters on Separate Lines:

{
KeyExchangeOffer Parameters

}

KeyExchangeOffer Parameters:

HowToEncrypt DES

HowToEncrypt DES
3DES
AES
AES_CBC KeyLength keylen

�

1120 z/OS V2R1.0 Communications Server: IP Configuration Reference

�
HowToAuthMsgs MD5

HowToAuthMsgs MD5
SHA1
SHA2_256
SHA2_384
SHA2_512

HowToVerifyMsgs HMAC_SHA1_96

HowToVerifyMsgs AES128_XCBC_96
HMAC_MD5_96
HMAC_SHA1_96
HMAC_SHA2_256_128
HMAC_SHA2_384_192
HMAC_SHA2_512_256

�

�
PseudoRandomFunction HMAC_SHA1

PseudoRandomFunction AES128_XCBC
HMAC_MD5
HMAC_SHA1
HMAC_SHA2_256
HMAC_SHA2_384
HMAC_SHA2_512

�

� HowToAuthPeers PresharedKey
RsaSignature

DHGroup Group1

DHGroup Group1
Group2
Group5
Group14
Group19
Group20
Group21
Group24

�

�
RefreshLifetimeProposed 480

RefreshLifetimeProposed proposedtime
�

�
RefreshLifetimeAccepted 240 1440

RefreshLifetimeAccepted mintime maxtime
�

�
RefreshLifesizeProposed None

RefreshLifesizeProposed proposedsize
None

�

�
RefreshLifesizeAccepted None

RefreshLifesizeAccepted minsize maxsize
None

Parameters

name
A string 1 - 32 characters in length specifying the name of this
KeyExchangeOffer statement.

Rule: If this KeyExchangeOffer statement is not specified inline within another
statement, a name value must be provided. If a name is not specified for an
inline KeyExchangeOffer statement, a nonpersistent system name is created.

HowToEncrypt
The desired encryption policy for protecting key exchanges. The default is
DES.

Chapter 21. Policy Agent and policy applications 1121

DES Use DES encryption, which uses a 56–bit key and a 64–bit initialization
vector.

Restriction: DES is not accepted when the TCP/IP stack is configured
for FIPS 140 mode on the IpFilterPolicy statement.

3DES Triple DES runs the DES encryption algorithm three times and uses
192-bits, including 24 parity bits.

Rule: If 3DES is specified but is not supported by the system, then the
Policy Agent fails the policy.

AES Deprecated and treated as a synonym for AES_CBC KeyLength 128.

Rule: If AES is specified but AES encryption in CBC mode is not
supported by this TCP/IP stack, Policy Agent fails the policy.

AES_CBC
The AES algorithm is used in Cipher Block Chaining (CBC) mode.

Rules:

v The key length is measured in bits, and a keylen of either 128 or 256
must be specified.

v If AES_CBC is specified but AES encryption is not supported by this
TCP/IP stack, Policy Agent fails the policy.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

HowToAuthMsgs
The desired hash algorithm for authenticating IKE version 1 key exchange
messages. The default is MD5.

MD5 Use the HMAC MD5 algorithm.

Restriction: MD5 is not accepted when the TCP/IP stack is configured
for FIPS 140 mode on the IpFilterPolicy statement.

SHA1 Use the HMAC_SHA1 algorithm.

SHA2_256
Use the HMAC_SHA2_256_128 algorithm.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

SHA2_384
Use the HMAC_SHA2_384_192 algorithm.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

SHA2_512
Use the HMAC_SHA2_512_256 algorithm.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

Restriction: The HowToAuthMsgs parameter is ignored for IKE version 2 SAs.

HowToVerifyMsgs
The desired authentication algorithm for verifying message integrity of IKE
version 2 key exchange messages. The default is HMAC_SHA1_96.

1122 z/OS V2R1.0 Communications Server: IP Configuration Reference

AES128_XCBC_96
Use the AES128_XCBC algorithm to encode authentication data, with
128-bit keys and hash truncation to 96 bits.

Restriction: AES128_XCBC_96 is not accepted when the TCP/IP stack
is configured for FIPS 140 mode on the IpFilterPolicy statement.

HMAC_MD5_96
Use the HMAC_MD5_96 algorithm.

Restriction: HMAC_MD5_96 is not accepted when the TCP/IP stack is
configured for FIPS 140 mode on the IpFilterPolicy statement.

HMAC_SHA1_96
Use the HMAC_SHA1_96 algorithm.

HMAC_SHA2_256_128
Use the HMAC_SHA2_256 algorithm to encode authentication data,
with 256-bit keys and hash truncation to 128 bits.

HMAC_SHA2_384_192
Use the HMAC_SHA2_384 algorithm to encode authentication data,
with 384-bit keys and hash truncation to 192 bits.

HMAC_SHA2_512_256
Use the HMAC_SHA2_512 algorithm to encode authentication data,
with 512-bit keys and hash truncation to 256 bits.

Restrictions:

v The HowToVerifyMsgs parameter is ignored for IKE version 1 SAs.
v This HowToVerifyMsgs parameter is valid only for V1R12 and later releases.

See “General syntax rules for Policy Agent” on page 933 for details.

PseudoRandomFunction
Indicates which pseudo-random function (PRF) to use when generating keying
material for IKE version 2 SAs. The default is HMAC_SHA1.

AES128_XCBC
Use the AES128_XCBC algorithm.

Restriction: AES128_XCBC is not accepted when the TCP/IP stack is
configured for FIPS 140 mode on the IpFilterPolicy statement.

HMAC_MD5
Use the HMAC_MD5 algorithm.

Restriction: HMAC_MD5 is not accepted when the TCP/IP stack is
configured for FIPS 140 mode on the IpFilterPolicy statement.

HMAC_SHA1
Use the HMAC_SHA1 algorithm.

HMAC_SHA2_256
Use the HMAC_SHA2_256 algorithm

HMAC_SHA2_384
Use the HMAC_SHA2_384 algorithm.

HMAC_SHA2_512
Use the HMAC_SHA2_512 algorithm.

Restrictions:

v The PseudoRandomFunction parameter is ignored for IKE version 1 SAs.
IKE version 1 always uses the algorithm specified on HowToAuthMsgs to

Chapter 21. Policy Agent and policy applications 1123

determine its pseudo-random function. For example, if the HowToAuthMsgs
value is MD5, then HMAC_MD5 is used.

v This PseudoRandomFunction parameter is valid only for V1R12 and later
releases. See “General syntax rules for Policy Agent” on page 933 for details.

HowToAuthPeers
Specifies the method for authenticating peers during IKE version 1 phase 1
negotiation.

PresharedKey
Use a pre-shared key to authenticate the peer.

RsaSignature
Use an RSA signature to authenticate the peer.

Restriction: The HowToAuthPeers parameter is ignored for IKE version 2 SAs.

DHGroup
Specifies the Diffie-Hellman group used during the phase 1 key exchange. The
default is Group1.

Group1
Modular exponentiation group with a 768-bit modulus.

Restriction: Group1 is not accepted when the TCP/IP stack is
configured for FIPS 140 mode on the IpFilterPolicy statement.

Group2
Modular exponentiation group with a 1024-bit modulus.

Restriction: Group2 is not accepted when the TCP/IP stack is
configured for FIPS 140 mode on the IpFilterPolicy statement.

Group5
Modular exponentiation group with a 1536-bit modulus.

Restriction: Group5 is not accepted when the TCP/IP stack is
configured for FIPS 140 mode on the IpFilterPolicy statement.

Group14
Modular exponentiation group with a 2048-bit modulus.

Group19
Random 256-bit elliptic curve group.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

Group20
Random 384-bit elliptic curve group.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

Group21
Random 521-bit elliptic curve group.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

Group24
Modular exponentiation group with a 2048-bit modulus and 256-bit
prime order subgroup.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

1124 z/OS V2R1.0 Communications Server: IP Configuration Reference

Guideline: If you are using encryption or authentication algorithms with a
128-bit key, use Diffie-Hellman groups 5,14,19,20, or 24. If you are using
encryption or authentication algorithms with a key length of 256 bits or
greater, use Diffie-Hellman group 21.

Tip: When negotiating a new phase 1 SA and when the negotiation mode is
IKE version 1 aggressive mode, only the first offer and its DH group are
proposed to the peer. If the negotiation mode is IKE version 1 main mode, all
offers and DH groups are proposed to the peer, who will select a particular
offer and group. If the negotiation uses IKE version 2, then all offers and DH
groups will be proposed, but only one DH group will be calculated in the
proposal. The peer is free to either accept the DH group value used or choose
a different value from one of the other offers. In that case, the IKE daemon
starts the exchange again using the chosen group.

RefreshLifetimeProposed
The security association lifetime in minutes. This value is proposed when
acting as the IKE version 1 initiator of a key exchange negotiation. For IKE
version 2, this value determines the refresh lifetime. The default is 480.

proposedtime
The lifetime proposed (for IKE version 1) or used (for IKE version 2)
for the phase 1 tunnel. Valid values are in the range 1 - 9 999. The
proposed lifetime value should be within the range specified by
RefreshLifetimeAccepted.

Tip: When negotiating an IKE version 2 SA, the IKE daemon uses the
RefreshLifetimeProposed value in the first matching offer for the SA
lifetime. Unlike IKE version 1, SA lifetimes are not negotiated under
IKE version 2.

RefreshLifetimeAccepted
A range of acceptable security association lifetimes in minutes. This range is
accepted when acting as the responder of an IKE version 1 key exchange
negotiation. The default is 240 1440.

mintime
The minimum lifetime that can be accepted.

maxtime
The maximum lifetime that can be accepted. This value must be ≥ to
the mintime value.

Valid values for each option are in the range 1 - 9 999.

Restriction: The RefreshLifetimeAccepted parameter is ignored for IKE version
2 SAs.

RefreshLifesizeProposed
The security association lifesize in Kilobytes. If a proposedsize value is specified,
then this value is proposed when acting as the IKE version 1 initiator of a key
exchange negotiation. For IKE version 2, this value determines the refresh
lifesize. If None is specified, then no lifesize is proposed for IKE version 1 or
used for IKE version 2. The default is None.

proposedsize
The proposed lifesize for the negotiation. Valid values are in the range
1 - 4 194 300. The proposed lifetime value should be within the range
specified by RefreshLifesizeAccepted value, if that parameter is not
specified as None.

Chapter 21. Policy Agent and policy applications 1125

None No lifesize should be proposed for IKE version 1 or used for IKE
version 2. If the RefreshLifesizeProposed parameter is specified as
None, then RefreshLifesizeAccepted value should also be specified as
None.

Tip: When negotiating an IKE version 2 SA, the IKE daemon uses the
RefreshLifesizeProposed value in the first matching offer for the SA lifesize.
Unlike IKE version 1, SA lifesizes are not negotiated under IKE version 2.

RefreshLifesizeAccepted
The security association lifesize in Kbytes. If minsize and maxsize values are
specified, this range is accepted when acting as the responder of key exchange
negotiation. If None is specified, no lifesize is accepted when acting as the
responder of a key exchange negotiation. The default is None.

minsize
The minimum lifesize that can be accepted.

maxsize
The maximum lifesize that can be accepted. This value must be ≥ to
the minsize value.

None No lifesize is accepted. If this parameter is specified as None, then
RefreshLifesizeProposed should also be specified as None.

Valid values for the minsize and maxsize options are in the range 1 - 4 194 300.

Restriction: The RefreshLifesizeAccepted parameter is ignored for IKE version
2 SAs.

KeyExchangePolicy statement

Use the KeyExchangePolicy statement to define a key exchange policy. The Key
exchange policy is consulted when creating a phase 1 security association for a
dynamic VPN. The KeyExchangePolicy statement can contain a combination of
references to global KeyExchangeGroup statements, references to global
KeyExchangeRule statements, and inline KeyExchangeRule statements.

When acting as the responder of an IKE version 1 main mode or an IKE version 2
phase 1 exchange, the IKE daemon continues negotiation without knowing the
identity of the remote endpoint, as long as the suggested algorithms are supported
by the IKE daemon.

Any SA agreed to before the identity of both parties are known is verified when
the identity of both parties become known. If the SA is not consistent with the
defined key exchange policy, the phase 1 negotiation fails. If the SA is consistent
with the defined key exchange policy, the phase 1 negotiation continues.

The KeyExchangePolicy statement can appear in the common IPSec policy file, a
stack-specific IPSec policy file, or both. If it appears in both, Policy Agent only uses
the statement contained in the stack-specific IPSec policy file. It should appear at
most only once in each file. If it appears multiple times in a file, the last one
encountered is used.

Requirement: The KeyExchangePolicy statement is required to define key
exchange policies to the Policy Agent.

1126 z/OS V2R1.0 Communications Server: IP Configuration Reference

Result: If the KeyExchangePolicy statement is deleted, then all KeyExchange
policies are deleted from the IKE daemon for the corresponding stack.

Syntax

�� KeyExchangePolicy Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
KeyExchangePolicy Parameters

}

KeyExchangePolicy Parameters:

AllowNat no NatKeepAliveInterval 20 LivenessInterval 30 HowToInitiate Main

AllowNat Yes NatKeepAliveInterval interval LivenessInterval interval HowToInitiate Main
No Aggressive

IKEv2
DoNot

� KeyExchangeRule
KeyExchangeRuleRef name
KeyExchangeGroupRef name

BypassIpValidation No

BypassIpValidation Yes
No

�

�
RevocationChecking Loose

RevocationChecking None
Loose
Strict

CertificateURLLookupPreference Tolerate

CertificateURLLookupPreference Allow
Tolerate
Disallow

Parameters

AllowNat
Indicates whether negotiations that use NAT traversal techniques are allowed
when the AllowNat parameter is omitted from a KeyExchangeAction
statement. The value Yes indicates that negotiations that use NAT traversal
techniques are allowed when the AllowNat parameter is omitted from a
KeyExchangeAction statement. The value No indicates that negotiations that
use NAT traversal techniques are not allowed when the AllowNat parameter is
omitted from a KeyExchangeAction statement. The default value is No.

Rule: If you change the AllowNat setting, the change is effective immediately
for any new phase 1 security associations (SAs) that are negotiated. For
existing phase 1 SAs, the change takes effect when the phase 1 SA is refreshed.

Tip: Setting the AllowNat to No prevents the IKE daemon from sending NAT
payloads or processing received NAT payloads as part of the tunnel
negotiation. In some cases. tunnels traversing one or more NATs can still be
activated even when AllowNat is set to No. However, such tunnels are
normally unusable because of the known incompatibilities between IPsec and
NAT documented in RFC 3715.

Chapter 21. Policy Agent and policy applications 1127

NatKeepAliveInterval
When the IKE server is behind a NAT device it might need to send NAT
keepalive messages to remote security endpoints. These keepalive messages
must be sent to a remote security endpoint when all of the following
conditions are true:
v IKE is behind a NAT device that dynamically maps IKE's IP address to a

public IP address.
v A phase 1 SA exists with that remote security endpoint.
v No other packets have been sent to that remote security endpoint within a

configured inactivity interval.

The purpose of a NAT keepalive message is to prevent a NAT device from
expiring dynamic NAT mappings. NAT keep alive messages are not required
when no NAT device is in front of the IKE server or when the NAT device in
front of the IKE server statically maps the IKE servers IP address to a public IP
address.

interval
The configured inactivity interval in seconds. Valid values are 0 or
within the range 20-999. A value of 0 indicates that NAT keepalive
messages should never be sent. A value in the range 20 - 999 indicates
the number of seconds of inactivity that triggers the sending of a NAT
keepalive message. The default is 20 seconds.

Rule: A change to the NatKeepAliveInterval interval is effective immediately
for any new timer started. For existing timers a change takes effect when the
timer expires. It is rescheduled with the new interval value.

Tip: The following should be considered in defining the interval value for the
NatKeepAliveInterval parameter:
v The KeepAlive timer runs only if there is a NAT device in front of z/OS.
v If a static NAT device is in front of z/OS, then a value of 0 should be

defined for the interval.
v If a dynamic NAT device is in front of z/OS, then a value less than the

mapping expiration of the NAT device should be defined.

LivenessInterval
When IKE negotiates a security association using IKE version 2 (IKEv2), IKE
can perform periodic liveness checks as prescribed in RFC 5996 to test whether
the peer remains active. When traffic was sent but not received on an IKE SA
or any of its associated dynamic tunnels, IKE initiates a liveness check after the
liveness interval period is exceeded. IKE does this by sending the peer a
request to which the peer is expected to respond. If, after the normal series of
IKE retransmissions, the peer has not responded, the IKE SA and associated
dynamic tunnels are considered non-responsive and are deleted. See the
IkeInitWait parameter and the IkeRetries parameter for more information.

The purpose of the liveness check is to verify whether an IKEv2 peer is still
active. This allows IKE to detect cases such as when a peer has rebooted or
when dynamic tunnels are non-responsive. This allows IKE to re-establish
communications with the peer in a timely manner.

Restriction: This parameter is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

interval
The configured liveness interval in seconds. Valid values are 0 - 20999.
A value of 0 indicates that liveness checks should never be performed.

1128 z/OS V2R1.0 Communications Server: IP Configuration Reference

A value in the range 1 - 20999 indicates the number of seconds of
inactivity that triggers the sending of liveness check request. The
default is 30 seconds.

Rule: A change to the LivenessInterval is effective immediately for any new
timer started. For existing timers a change takes effect when the timer expires.
It is rescheduled with the new interval value.

Results:

1. LivenessInterval is used only for IKE version 2 security associations. This
value is ignored for IKE version 1 security associations.

2. Liveness checks are performed only when data has been sent over the IKE
SA or dynamic tunnels but not received. If no data is being either sent or
received, then no liveness checks are performed.

HowToInitiate
The negotiation mode to use when initiating a KeyExchangeAction statement
does not contain a HowToInitiate parameter. The default is Main.

Restriction: This parameter is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

Main Indicates that IKE version 1 with identity protection is used when key
negotiations are initiated by this system.

Aggressive
Indicates that IKE version 1 without identity protection is used when
key negotiations are initiated by this system.

IKEv2 Indicates that IKE version 2 is used when key negotiations are initiated
by this system.

DoNot
Indicates that the local system cannot initiate a key exchange
negotiation.

KeyExchangeRule
An inline specification of a KeyExchangeRule statement to be included in the
policy.

KeyExchangeRuleRef
The name of a globally defined KeyExchangeRule statement to be included in
the policy.

KeyExchangeGroupRef
The name of a globally defined KeyExchangeGroup statement to be included
in the policy.

BypassIpValidation
Indicates whether a check should be made to verify that the remote peer's
identity matches the peer's remote IP address. A value of Yes indicates the
check should be bypassed. A value of No indicates the check should be
enforced. The default is No,

Restriction:The BypassIpValidation keyword is ignored when the identity of
the peer is not an IPv4 or IPv6 address.

Restriction: This parameter is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

Tip: If the remote security endpoint is expected to be behind a NAT, specify a
value of Yes.

Chapter 21. Policy Agent and policy applications 1129

CertificateURLLookupPreference
Indicates hash and URL encoding preference in certificate payloads and
certificate request payloads sent and received.

Allow IKED provides the remote security endpoint with an indication that it
prefers to receive certificate payloads encoded in a hash and URL
format. IKED processes certificate payloads encoded using a hash and
URL format when they are received. IKED attempts to send certificate
payloads using a hash and URL format encoding when the remote
security endpoint indicates a preference to receive certificate payloads
encoded in a hash and URL format.

Tolerate
IKED does not provide the remote security endpoint with an indication
that it prefers to receive certificate payloads encoded in a hash and
URL format. IKED processes certificate payloads encoded using a hash
and URL format when they are received. IKED attempts to send
certificate payloads using a hash and URL format encoding when the
remote security endpoint indicates a preference to receive certificate
payloads encoded in a hash and URL format. This is the default value.

Disallow
IKED does not provide the remote security endpoint with an indication
that it prefers to receive certificate payloads encoded in a hash and
URL format. IKED ignores certificate payloads encoded using a hash
and URL format when they are received. IKED does not send
certificate payloads using a hash and URL format.

Restriction: This keyword is ignored when IKE version 1 IKE SAs are
negotiated since IKE version 1 does not support hash and URL encoding of
certificate data.

Restriction: This parameter is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

RevocationChecking
Indicates the level of revocation checking to be performed on a remote security
endpoint's certificate and its corresponding certificate authority certificates. The
default is Loose.

None No revocation checking is performed.

Loose Revocation information is checked if available.

Strict Revocation information must be available for all certificates and is
checked for all certificates

Rules:
v Revocation checking is only applicable to digital signature authentication

methods.
v When the mode is Loose and revocation information for a certificate is

unavailable, then that certificate is considered valid.
v When the mode is Strict and revocation information for a certificate is

unavailable, then that certificate is considered invalid.
v When the mode is Strict or Loose and a source of revocation information

checked indicates that a certificate is revoked then the certificate is
considered invalid.

1130 z/OS V2R1.0 Communications Server: IP Configuration Reference

v If a CRL can be obtained using the CRLDistributionPoints extension and a
certificate bundle file, the CRL obtained from the CRLDistributionPoints
extension is used and the CRL in the certificate bundle or certificate payload
is ignored.

v When IKED is configured to use the native IKE daemon certificate service
the RevocationChecking parameter is ignored.

Rule: A CRL received in a certificate payload is ignored.

Restrictions:

v This parameter is valid only for V1R12 and later releases. See “General
syntax rules for Policy Agent” on page 933 for details.

v Certificate revocation lists (CRL) are the only source of revocation
information consulted. The CRL must be identified in the
CRLDistributionPoints extension of the certificate being checked or
contained in a certificate bundle file identified by the remote security
endpoint.

v When the CRLDistributionPoints extension is used to retrieve a CRL at least
one distribution point must contain an HTTP URL.

v IKED will only consult a CRL that contain entries for all revocation reasons.
v The native IKE daemon certificate service does not consult certificate

revocation information when authenticating a digital signature. If certificate
revocation information is consulted then IKED must be configured as a
network security client.

KeyExchangeRule statement

An IKE SA establishment might be initiated from the local system or from a
remote system, and it involves several message exchanges. Depending on the
initiator/responder state, and the message sequence, the IKE daemon locates a
KeyExchangeRule statement to govern the policy that is used during the
negotiation. The following base values are used in some combination to locate a
KeyExchangeRule statement:
v Local IP address
v Local ID value
v Remote IP address
v Remote ID value

Depending on the message sequence, one or more of the base values might not be
available, but the KeyExchangeRule statement lookup returns the best rule match
available.

Syntax

�� KeyExchangeRule name Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
KeyExchangeRule Parameters

}

Chapter 21. Policy Agent and policy applications 1131

KeyExchangeRule Parameters:

LocalSecurityEndpoint
LocalSecurityEndpointRef name

RemoteSecurityEndpoint
RemoteSecurityEndpointRef name

�

� KeyExchangeActionRef name
SharedKey Ascii string

Ebcdic string
Hex hexstring

Parameters

name
A string 1 - 32 characters in length specifying the name of this
KeyExchangeRule statement. The name cannot start with a dash (-) or contain
any commas (,).

LocalSecurityEndpoint
An inline specification of a LocalSecurityEndpoint statement.

LocalSecurityEndpointRef
The name of a globally defined LocalSecurityEndpoint statement.

RemoteSecurityEndpoint
An inline specification of a RemoteSecurityEndpoint statement.

RemoteSecurityEndpointRef
The name of a globally defined RemoteSecurityEndpoint statement.

KeyExchangeActionRef
The name of a globally defined KeyExchangeAction statement.

SharedKey
The shared key to use with the LocalSecurityEndpoint statement and
RemoteSecurityEndpoint statement pair when using a pre-shared key for
authentication. The maximum length for an ASCII or EBCDIC string is 900
characters. The maximum length for a hexadecimal string is 450 bytes. The
hexstring must begin with a 0x.

Examples:

SharedKey Ascii SharedKeyValue
The value is treated as an ASCII string. This specification is valuable if
the sharedkey has been defined to the other endpoint as an ASCII
string.

SharedKey Ebcdic SharedKeyValue
The value is treated as an EBCDIC string.

SharedKey Hex 0xC1C2C3F1F2F3
The value is treated as a hexadecimal string.

The ASCII or EBCDIC SharedKey value can be defined as a quoted string or a
single value.

Rules:

v A quoted string must start and end with a double-quote (").
v A quoted string allows the SharedKey value to have embedded blanks for

the attribute.
v If SharedKey value is not a quoted string then it as treated as a single value.

Results:

1132 z/OS V2R1.0 Communications Server: IP Configuration Reference

v Leading blanks and trailing blanks within the quoted string are removed.
v Within a quoted string, comment indicators, embedded blanks, and

additional quotes are treated as part of the value for this attribute.

Restriction: When the value contains embedded blanks, you must specify the
entire parameter value within the first 1-536 characters of the configuration file
line.

Example SharedKey values:
SharedKey ASCII ASC # comment" value used: ASC
SharedKey EBCDIC EBC comment value used: EBC
SharedKey ASCII "ASC 98Z" value used: ASC 98Z
SharedKey EBCDIC EBC 98Z" value used: EBC
SharedKey ASCII "AsC 98Z value used: "AsC
SharedKey EBCDIC "Ebc " " Ebc" value used: Ebc " " Ebc
SharedKey ASCII "Asc Asc" " value used: Asc Asc

Tip: When negotiating using IKE version 1, the authentication method used in
both directions is determined by the HowToAuthPeers parameter on the
KeyExchangeOffer statement. When negotiating using IKE version 2, the IKE
peers may choose different authentication methods. If you are negotiating
using IKE version 2, the HowToAuthPeers parameter is ignored, and instead
the HowToAuthMe parameter on the KeyExchangeAction statement
determines the authentication method that the IKED uses for its local identity.
When negotiating using IKE version 2, the peer will choose its own
authentication method. If either the IKED or the remote IKE peer uses a
pre-shared key for authentication, that key is to be configured using the
SharedKey statement.

Rule: The z/OS IKE daemon requires that both security endpoints use the
same pre-shared key value to authenticate itself to the remote security
endpoint and to authenticate the remote security endpoint's identity.

Rule: If the z/OS IKE daemon is enabled for FIPS 140 mode, the pre-shared
key's length must be at least half the length of the key size of the chosen
KeyExchangeOffer's HowToAuthMsgs (IKEv1) or PseudoRandomFunction
(IKEv2) algorithm.

Rule: All Location addresses in the LocalSecurityEndpoint and
RemoteSecurityEndpoint parameters for this rule, as well as all IP addresses in the
ConstrainSource and ConstrainDest specification for this rule's action, must be in
the same address family (IPv4 or IPv6).

LocalDynVpnGroup statement

Use the LocalDynVpnGroup statement to define a local dynamic VPN group. A
LocalDynVpnGroup statement identifies a set of LocalDynVpnRule statements that
make up the local dynamic VPN group. A globally defined LocalDynVpnGroup
statement can be referenced by a LocalDynVpnPolicy statement.

Syntax

�� LocalDynVpnGroup name Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

Chapter 21. Policy Agent and policy applications 1133

�

{

LocalDynVpnRuleRef name
LocalDynVpnRule

}

Parameters

name
A string 1 - 32 characters in length the name of this LocalDynVpnGroup.

LocalDynVpnRuleRef
The name of a globally defined LocalDynVpnRule statement to be included in
the group.

LocalDynVpnRule
An inline specification of a LocalDynVpnRule statement to be included in this
group.

LocalDynVpnPolicy statement

Use the LocalDynVpnPolicy statement to identify a set of LocalDynVpnRule and
LocalDynVpnGroup statements that make up the local dynamic VPN policy.

The LocalDynVpn Policy statement can appear in the common IPSec policy file, a
stack-specific IPSec policy file, or both. If it appears in both, Policy Agent only uses
the statement contained in the stack-specific IPSec policy file. It should appear at
most only once in each file. If it appears multiple times in a file, the last one
encountered is used.

Requirement: The LocalDynVpnPolicy statement is required in order to define
local dynamic VPN policies to the Policy Agent.

Syntax

�� LocalDynVpnPolicy Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
LocalDynVpnPolicy Parameters

}

LocalDynVpnPolicy Parameters:

� LocalDynVpnGroupRef name
LocalDynVpnRuleRef name
LocalDynVpnRule

1134 z/OS V2R1.0 Communications Server: IP Configuration Reference

Parameters

LocalDynVpnRule
An inline specification of a LocalDynVpnRule statement to be included in the
policy.

LocalDynVpnRuleRef
The name of a globally defined LocalDynVpnRule statement to be included in
the policy.

LocalDynVpnGroupRef
The name of a globally defined LocalDynVpnGroup statement to be included
in the policy.

Result: If the LocalDynVpnPolicy statement is deleted, then all LocalDynVpn
policies are deleted from the IKE daemon for the corresponding stack.

LocalDynVpnRule statement

Use the LocalDynVpnRule statement to specify the parameters that are used to
negotiate a dynamic VPN that can be autoactivated or activated by an ipsec
command. The parameters describe the traffic pattern of the data to be protected
by the dynamic VPN.

Syntax

�� LocalDynVpnRule name Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
LocalDynVpnRule Parameters

}

LocalDynVpnRule Parameters:

LocalIP ipaddress
ipaddress/prefixLength
ipaddress-ipaddress
All
All4
All6

LocalIpRef name
LocalIpSetRef name

�

� RemoteIP ipaddress
ipaddress/prefixLength
ipaddress-ipaddress
All
All4
All6

RemoteIpRef name
RemoteIpSetRef name

AutoActivate No

AutoActivate Yes
No

�

Chapter 21. Policy Agent and policy applications 1135

�
Protocol All

Protocol Tcp PortSpecification
6
Udp PortSpecification
17

Icmp
Icmpv6
Ip
Ipip
Ah
Esp
Ospf
Igmp
All
n

PortSpecification:

LocalDataPort 0

LocalDataPort port

RemoteDataPort 0

RemoteDataPort port

Parameters

name
A string 1 - 32 characters in length specifying the name of this
LocalDynVpnRule statement. The name cannot start with a dash (-) or contain
any commas (,).

LocalIp
Indicates the applicable local IP specification.

ipaddress
A single IP address indicating the applicable local IP specification.

ipaddress/prefixLength
A prefix address specification indicating the applicable local IP
addresses. The prefixLength value is the number of unmasked leading
bits in the ipaddress value. The prefixLength value can be in the range 0 -
32 for IPv4 addresses and 0 - 128 for IPv6 addresses.

ipaddress-ipaddress
A range of IP addresses indicating applicable local addresses.

All Any local IPv4 address is applicable. All and All4 are interchangeable
values.

All4 Any local IPv4 address is applicable.

All6 Any local IPv6 address is applicable.

LocalIpRef
The name of a globally defined IpAddr statement to be used for the local IP
address specification.

LocalIpSetRef
The name of a globally defined IpAddrSet statement to be used for the local IP
address specification.

1136 z/OS V2R1.0 Communications Server: IP Configuration Reference

RemoteIp
Indicates the applicable remote IP specification.

ipaddress
A single IP address indicating the applicable remote IP specification.

ipaddress/prefixLength
A prefix address specification indicating the applicable remote IP
addresses. The prefixLength value is the number of unmasked leading
bits in the ipaddress value. The prefixLength value can be in the range 0 -
32 for IPv4 addresses and 0 - 128 for IPv6 addresses. An IP packet
matches this condition if its remote address unmasked bits are identical
to the defined unmasked bits.

ipaddress-ipaddress
A range of IP addresses indicating applicable remote addresses.

All Any remote IPv4 address is applicable. All and All4 are
interchangeable values.

All4 Any remote IPv4 address is applicable.

All6 Any remote IPv6 address is applicable.

RemoteIpRef
The name of a globally defined IpAddr statement to be used for the remote IP
address specification.

RemoteIpSetRef
The name of a globally defined IpAddrSet statement to be used for the remote
IP address specification.

LocalDataPort
Indicates the applicable local port specification. Valid values for n are in the
range 0 - 65 535. If 0 is specified for n, then the rule applies to any local port.

Restriction: This parameter can be specified only with Protocol TCP or
Protocol UDP.

RemoteDataPort
Indicates the applicable remote port specification. Valid values for n are in the
range 0 - 65 535. If 0 is specified for n, then the rule applies to any remote
port.

Restriction: This parameter can be specified only with Protocol TCP or
Protocol UDP.

Protocol
Indicates the protocol. If a numeric value is specified for n, it identifies an
actual protocol number. The value for n must be less than 256.

If a value of All is specified, then the rule applies to any protocol.

The protocol name Ip maps to a value of 4, representing ip in ip
encapsulation, for which the Internet Assigned Numbers Authority (IANA)
has assigned the name IP.

The name Ipip maps to a value of 94, representing ip within ip encapsulation,
for which IANA has assigned the name IPIP.

AutoActivate
If set to Yes, IKE attempts to activate a dynamic VPN tunnel to protect the IP
traffic described by the LocalDynVpnRule statement. An activation is

Chapter 21. Policy Agent and policy applications 1137

attempted when IKE connects to the corresponding stack and when an ipsec -f
reload is issued for the stack associated with the LocalDynVpnRule statement.

Rules: In order for an autoactivation to occur the following conditions are
required:
v A LocalDynVpnRule statement describing the traffic pattern to be protected

must be defined and that statement must specify that the autoactivate option is
in effect.

v The LocalDynVpnPolicy statement in effect for a stack must contain a reference
to that LocalDynVpnRule statement. The reference can be a direct reference to
the LocalDynVpnRule statement or a reference to a LocalDynVpnGroup
statement containing the LocalDynVpnRule statement.

v A matching IP filter rule must exist and the action of that IP filter rule must be
an IpDynVpnAction statement.

v A matching KeyExchangeRule value must exist.
v If IKE is configured for this stack as an NSS client for certificate services, the

NSS server must be active and IKE must be connected to NSS before
autoactivation is attempted.

v The remote security endpoint's IKE daemon must be active. If the IKE daemon
initiates negotiation and the remote security endpoint does not respond, the IKE
daemon uses its configuration parameters (IkeRetries and IkeInitWait on the
IkeConfig statement) to control retry attempts. If the retries all fail, then the
autoactivation fails.

v LocalIP and RemoteIP addresses must be in the same address family (IPv4 or
IPv6).

Result: VPN policy is located by finding the first matching IP filter rule based on
the LocalIP, RemoteIp, LocalDataPort, RemoteDataPort, and Protocol specifications.

LocalSecurityEndpoint statement

Use the LocalSecurityEndpoint statement to encapsulate a local security endpoint's
IP address or host name and identity information.

Guideline: Do not use the same local identity on more than one TCP/IP stack or
z/OS system image. IKED assumes that an identity is not used by any other stack,
and this assumption can lead to a disruption of IPsec service for other stacks if
identities are shared between stacks.

Syntax

�� LocalSecurityEndpoint Put Braces and Parameters on Separate Lines
name

��

Put Braces and Parameters on Separate Lines:

{
LocalSecurityEndpoint Parameters

}

1138 z/OS V2R1.0 Communications Server: IP Configuration Reference

LocalSecurityEndpoint Parameters:

Identity IpAddr authid
KeyID Ascii authid

Ebcdic authid
Hex authid

Fqdn authid
UserAtFqdn authid
X500dn authid

�

�
Location Any4

Location ipaddress
ipaddress/prefixLength
ipaddress-ipaddress
Any
Any4
Any6

LocationRef name
LocationSetRef name
LocationGroupRef name

Parameters

name
A string 1 - 32 characters in length specifying the name of this
LocalSecurityEndpoint statement.

Rule: If this LocalSecurityEndpoint statement is not specified inline within
another statement, a name value must be provided. If a name is not specified
for an inline LocalSecurityEndpoint statement, a nonpersistent system name is
created.

Identity
The identity of the local security endpoint. This identity cannot be wildcarded.

The following identity types and formats are supported:

IpAddr
Indicates that the authid value is an IP address, for example, 1.2.3.4 or
1::9.

KeyID
Indicates that the authid value is an opaque byte stream. This identity
type is intended for use with pre-shared key authentication. The ID
value can be specified as an ASCII string, an EBCDIC string, or a
hexadecimal string. The maximum length for an ASCII or EBCDIC
string is 900 characters. The maximum length for a hexadecimal string
is 450 bytes. The hexstring must begin with a 0x.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

Examples:

KeyID Ascii SharedKeyValue
The value is treated as an ASCII string. This specification is
valuable if the key ID is defined to the other endpoint as an
ASCII string.

Chapter 21. Policy Agent and policy applications 1139

KeyID Ebcdic SharedKeyValue
The value is treated as an EBCDIC string.

KeyID Hex 0xC1C2C3F1F2F3
The value is treated as a hexadecimal string.

The ASCII or EBCDIC KeyID value can be defined as a quoted string
or a single value.

Rules:

v A quoted string must start and end with a double-quote (").
v A quoted string allows the KeyID value to have embedded blanks

for the attribute.
v If KeyID value is not a quoted string then it as treated as a single

value.

Results:

v Leading blanks and trailing blanks within the quoted string are
removed.

v Within a quoted string, comment indicators, embedded blanks, and
additional quotes are treated as part of the value for this attribute.

Restriction: When the value contains embedded blanks, you must
specify the entire parameter value within the first 1 536 characters of
the configuration file line.

Example KeyID values:
Identity KeyID Ascii ASC # comment" value used: ASC
Identity KeyID EBCDIC EBC comment value used: EBC
Identity KeyID ASCII "ASC 98Z" value used: ASC 98Z
Identity KeyID EBCDIC EBC 98Z" value used: EBC
Identity KeyID ASCII "AsC 98Z value used: "AsC
Identity KeyID EBCDIC "Ebc " " Ebc" value used: Ebc " " Ebc
Identity KeyID ASCII "Asc Asc" " value used: Asc Asc"

Fqdn Indicates that a authid value is a fully qualified domain name or host
name. For example: vnet.ibm.com. The maximum length accepted is
1024 characters. The Fqdn value cannot begin or end with a dot (.), or
contain consecutive dots.

UserAtFqdn
Indicates that a authid value is a user at a fully qualified domain name
or host name. The user name cannot contain a blank. For example:
ibm@vnet.ibm.com. The maximum length accepted is 1024 characters.
The UserAtFqdn value cannot begin or end with a dot (.), or contain
consecutive dots.

X500dn
Indicates that the authid value is an X.500 distinguished name (DN).
The DN must be specified in accordance with RFC 2253. A double-byte
character is represented using the escaped UTF-8 encoding of the
double-byte character in the Unicode character set. Attribute types can
be specified using either attribute names or numeric object identifiers.
Attribute values must represent string values. The maximum length
accepted is 1024 characters.

Table 74 on page 1141 lists the DN attribute names that are recognized
by the System SSL run time. An error is returned if the DN contains an
unrecognized attribute name.

1140 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 74. DN attribute names

Attribute Name

C Country

CN Common name

DC Domain component

E E-mail address

EMAIL E-mail address (preferred)

EMAILADDRESS E-mail address

L Locality

O Organization name

OU Organizational unit name

PC Postal code

S State or province

SN Surname

SP State or province

ST State or province (preferred)

STREET Street

T Title

The following code is an example of a DN using attribute names and
string values:
CN=Ronald Hoffman,OU=Endicott,O=IBM,C=US

The following code is the same DN using object identifiers and
encoded string values. The encoded string values represent the ASN.1
DER encoding of the string. The System SSL run time supports these
ASN.1 string types:

PRINTABLE, VISIBLE, TELETEX, IA5, UTF8, BMP, and UCS.
2.5.4.3=#130E526F6E616C6420486F66666D616E,2.5.4.11=#1308456E6469636F7474,
2.5.4.10=#130349424D,2.5.4.6=#13025553

Individual characters can be represented using escape sequences. This
is useful when the character cannot be represented in a single-byte
character set. The hexadecimal value for the escape sequence is the
UTF-8 encoding of the character in the Unicode character set. Table 75
shows some Unicode example letter descriptions.

Table 75. Unicode letter descriptions

Unicode letter description 10646 code UTF-8 Quoted

LATIN CAPITAL LETTER L U0000004C 0x4C L

LATIN SMALL LETTER U U00000075 0x75 u

LATIN SMALL LETTER C WITH
CARON

U0000010D 0xC48D \C4\8D

LATIN SMALL LETTER I U00000069 0x69 i

LATIN SMALL LETTER C WITH
ACUTE

U00000107 0xC487 \C4\87

Guidelines:

Chapter 21. Policy Agent and policy applications 1141

v The letters in the Quoted column in Table 75 on page 1141 can be
used to encode a surname as follows:
SN=Lu\C4\8Di\C4\87

v An X500dn type identity with a length of 256 characters is
guaranteed to be accepted when it is DER-encoded. An X500dn type
identity with a length approaching 1024 characters may not be
accepted when it is DER-encoded.

An escape sequence can also be used for special characters that are
part of the name and are not to be interpreted as delimiters. The
following special characters must be represented as an escape sequence
(prefixed with a backslash '\') when used as part of the name:
v A space or # character occurring at the beginning of the string
v A space character occurring at the end of the string
v One of the following characters , + " \ < > ;.

For example:
CN=L. Eagle,OU=Jones\, Dale and Mian,O=IBM,C=US

Rules:

v When an X500dn type identity is specified, the DN attributes must
have the same order as those of the corresponding certificate subject
name.

v When an X500dn type identity is parsed, it is converted to an ASN.1
stream and DER-encoded. The maximum length accepted for the
DER-encoded name is 1024 bytes.

v You can use comment indicators and embedded blanks as part of the
value for this attribute. For example:
Identity X500DN cn=#my identity
value used: cn=#my identity

Restriction: When the value contains embedded blanks, you must
specify the entire parameter value within the first 1 536 characters of
the configuration file line.

Location

ipaddress
A single IP address that represents the location of the local security
endpoint.

Rule: The IPv6 unspecified address (::0) is not allowed.

ipaddress/prefixLength
The range of acceptable local security endpoint IP addresses. The
prefixLength value is the number of unmasked leading bits in the
specified IP address and can have a value in the range 0 - 32 for IPv4
addresses and a value in the range 0 - 128 for IPv6 addresses.

Rule: The IPv6 unspecified address (::0/128) is not allowed.

Restrictions:

v You cannot specify a range of IP addresses for a local security
endpoint that is referenced by an IpLocalStartAction statement.

v This value is valid only for V1R10 and later releases. See “General
syntax rules for Policy Agent” on page 933 for details.

1142 z/OS V2R1.0 Communications Server: IP Configuration Reference

ipaddress-ipaddress
The range of IP addresses that are acceptable local security endpoint
addresses.

Rule: The IPv6 unspecified address (::0-::0) is not allowed.

Restrictions:

v You cannot specify a range of IP addresses for a local security
endpoint that is referenced by an IpLocalStartAction statement.

v This value is valid only for V1R10 and later releases. See “General
syntax rules for Policy Agent” on page 933 for details.

Any The value Any is valid only in a host-to-host or host-to-gateway
configuration. In the context of a KeyExchangeRule statement, Any
indicates that any local IPv4 address can represent the location of the
local security endpoint for this KeyExchangeRule statement. In the
context of an IpLocalStartAction statement, Any indicates that the
source IPv4 address from the outbound packet (in the case of an
on-demand activation), or the LocalIp keyword (in the case of
activation based on a LocalDynVpnRule statement) is used as the
location of the local security endpoint. Any and Any4 are
interchangable values.

Any4 The value of Any4 is valid only in a host-to-host or host-to-gateway
configuration. In the context of a KeyExchangeRule statement, Any4
indicates that any local IPv4 address can represent the location of the
local security endpoint for this KeyExchangeRule statement. In the
context of an IpLocalStartAction statement, Any4 indicates that the
source IPv4 address from the outbound packet in the case of an
on-demand activation, or the LocalIp keyword (in the case of activation
based on a LocalDynVpnRule statement) is used as the location of the
local security endpoint.

Any6 A value of Any6 is valid only in a host-to-host or host-to-gateway
configuration. In the context of a KeyExchangeRule statement, Location
Any6 indicates that any local IPv6 address can represent the location of
the local security endpoint for this KeyExchangeRule statement. In the
context of an IpLocalStartAction statement, Location Any6 indicates
that the source IPv6 address from the outbound packet (in the case of
an on-demand activation), or the LocalIp keyword (in the case of
activation based on a LocalDynVpnRule statement) is used as the
location of the local security endpoint.

If LocalSecurityEndpoint is configured, then the default value is set to Any4.

LocationRef
The name of a globally defined IPAddr statement that represents the location
of the local security endpoint.

LocationSetRef
The name of a globally defined IPAddrSet statement that represents the
location of the local security endpoints.

Restrictions:

v You cannot specify a range of IP addresses for a local security endpoint that
is referenced by an IpLocalStartAction statement.

v This value is valid only for V1R10 and later releases. See “General syntax
rules for Policy Agent” on page 933 for details.

Chapter 21. Policy Agent and policy applications 1143

LocationGroupRef
The name of a globally defined IPAddrGroup statement that represents the
location of the local security endpoints

Restrictions:

v You cannot specify a group of IP addresses for a local security endpoint that
is referenced by an IpLocalStartAction statement.

v This value is valid only for V1R10 and later releases. See “General syntax
rules for Policy Agent” on page 933 for details.

RemoteIdentity statement

Use the RemoteIdentity statement to encapsulate remote IKE identity information.
This statement defines a singule or wildcard value remote identity for use in
negotiation of dynamic VPN tunnels.

Restriction: This statement is valid only for V1R12 and later releases. See “General
syntax rules for Policy Agent” on page 933 for details.

Syntax

�� RemoteIdentity Put Braces and Parameters on Separate Lines
name

��

Put Braces and Parameters on Separate Lines:

{
RemoteIdentity Parameters

}

RemoteIdentity Parameters:

Identity IpAddr authid
KeyID Ascii authid

Ebcdic authid
Hex authid

Fqdn authid
UserAtFqdn authid
X500dn authid

Parameters

name
A string 1 - 32 characters in length specifying the name of this RemoteIdentity
statement.

Rule: If this RemoteIdentity statement is not specified as an inline statement,
you must specify a name value. If you do not specify a name for an inline
RemoteIdentity statement, a nonpersistent system name results.

Identity
The identity of a remote security endpoint with which dynamic VPN tunnel
negotiations should be allowed. The RemoteIdentity statement supports the
following identity types and formats, which can be coded with a wildcard
value to indicate a set of remote endpoints:

1144 z/OS V2R1.0 Communications Server: IP Configuration Reference

IpAddr
Indicates that the authid value is an IP address, for example: 1.2.3.4 or
1::9. This value can be coded with a wildcard value as a subnet or
range.

The following code is a subnet example:
1.2.3.0/24 or 1::9/124

The following code is a range example:
1.2.3.4-1.2.3.100 or 1::0-1::F

KeyID
Indicates that the authid value is an opaque byte stream. This identity
type is intended for use with pre-shared key authentication. The ID
value can be specified as an ASCII string, an EBCDIC string, or a
hexadecimal string. The maximum length for an ASCII or EBCDIC
string is 900 characters. The maximum length for a hexadecimal string
is 450 bytes. The hexstring must begin with a 0x.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details.

Examples:

KeyID Ascii SharedKeyValue
The value is treated as an ASCII string. This specification is
valuable if the key ID is defined to the other endpoint as an
ASCII string.

KeyID Ebcdic SharedKeyValue
The value is treated as an EBCDIC string.

KeyID Hex 0xC1C2C3F1F2F3
The value is treated as a hexadecimal string.

The ASCII or EBCDIC KeyID value can be defined as a quoted string
or a single value.

Rules:

v A quoted string must start and end with a double-quote (").
v A quoted string allows the KeyID value to have embedded blanks

for the attribute.
v If KeyID value is not a quoted string then it as treated as a single

value.

Results:

v Leading blanks and trailing blanks within the quoted string are
removed.

v Within a quoted string, comment indicators, embedded blanks, and
additional quotes are treated as part of the value for this attribute.

Restriction: When the value contains embedded blanks, you must
specify the entire parameter value within the first 1 536 characters of
the configuration file line.

Example KeyID values:
Identity KeyID Ascii ASC # comment" value used: ASC
Identity KeyID EBCDIC EBC comment value used: EBC
Identity KeyID ASCII "ASC 98Z" value used: ASC 98Z
Identity KeyID EBCDIC EBC 98Z" value used: EBC

Chapter 21. Policy Agent and policy applications 1145

Identity KeyID ASCII "AsC 98Z value used: "AsC
Identity KeyID EBCDIC "Ebc " " Ebc" value used: Ebc " " Ebc
Identity KeyID ASCII "Asc Asc" " value used: Asc Asc"

Fqdn Indicates that the authid value is a fully qualified domain name or host
name. For example, vnet.ibm.com. The maximum length accepted is
1024 characters. The Fqdn value cannot begin or end with a dot (.) and
cannot contain consecutive dots.

The Fqdn value can be coded with a wildcard value in the leftmost
portion preceding the first period. For example, *.ibm.com is allowed.

The leftmost portion cannot be a partial wildcard value. For example,
*net.ibm.com is not allowed.

UserAtFqdn
Indicates that the authid value is a user at a fully qualified domain
name or host name. The user name cannot contain a blank.

For example, ibm@vnet.ibm.com is allowed. The maximum length
accepted is 1024 characters. The UserAtFqdn value cannot begin or end
with a dot (.) and cannot contain consecutive dots.

The user portion can be a wildcard value (for example,
*@vnet.ibm.com). Alternatively, the leftmost portion of the Fqdn value
can be a wildcard value. For example, *.ibm.com is allowed.

X500dn
Indicates that the authid value is an X.500 distinguished name (DN).
See “LocalSecurityEndpoint statement” on page 1138 for the DN
specification.

The leftmost portion of the DN can be a wildcard value. For example,
*,OU=endicott,O=ibm,C=US is allowed.

Non-initial RDNs cannot be a wildcard value. For example, CN="John
Doe",*,O=ibm,C=US is not allowed.

Rule: You can use comment indicators and embedded blanks as part of the
value for this attribute. For example:
Identity X500DN cn=#my identity
value used: cn=#my identity

Restriction: When the value contains embedded blanks, you must specify the
entire parameter value within the first 1 536 characters of the configuration file
line.

RemoteSecurityEndpoint statement

Use the RemoteSecurityEndpoint statement to encapsulate remote security
endpoint IP addresses or hostnames and identity information. This statement
defines identity requirements for remote security endpoints with which
negotiations for dynamic VPN tunnels are allowed. The statement can also list one
or more Certificate Authorities to be used with the allowed security endpoints.

Guideline: The IP address of a remote system is always a public address when the
remote security endpoint is behind a NAT device. The NAT device uses the private
IP address of the remote security endpoint to choose a public address and replaces
it in the IP header.

1146 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

�� RemoteSecurityEndpoint Put Braces and Parameters on Separate Lines
name

��

Put Braces and Parameters on Separate Lines:

{
RemoteSecurityEndpoint Parameters

}

RemoteSecurityEndpoint Parameters:

Identity IpAddr authid
KeyID Ascii authid

Ebcdic authid
Hex authid

Fqdn authid
UserAtFqdn authid
X500dn authid

RemoteIdentityRef name

�

�
Location Any4

Location ipaddress
ipaddress/prefixLength
ipaddress-ipaddress
Any
Any4
Any6

LocationRef name
LocationSetRef name
LocationGroupRef

�

CaLabel label

Parameters

name
A string 1 - 32 characters in length specifying the name of this
RemoteSecurityEndpoint statement.

Rule: If this RemoteSecurityEndpoint statement is not specified inline within
another statement, a name value must be provided. If a name is not specified
for an inline RemoteSecurityEndpoint statement, a nonpersistent system name
is created.

Identity
The identity of a remote security endpoint with which dynamic VPN tunnel
negotiations should be allowed. The RemoteSecurityEndpoint identity supports
the same identity types and formats as the LocalSecurityEndpoint identity. In
addition, the RemoteSecurityEndpoint identity can be wildcarded to indicate a
set of acceptable endpoints.

The following identity types and formats are supported:

Chapter 21. Policy Agent and policy applications 1147

IpAddr
Indicates that the authid value is an IP address, for example: 1.2.3.4 or
1::9. This value can be wildcarded as a subnet or range.

The following code is a subnet example:
1.2.3.0/24 or 1::9/124

The following code is a range example:
1.2.3.4-1.2.3.100 or 1::0-1::F

KeyID
Indicates that the authid value is an opaque byte stream. This identity
type is intended for use with pre-shared key authentication. The ID
value can be specified as an ASCII string, an EBCDIC string, or a
hexadecimal string. The maximum length for an ASCII or EBCDIC
string is 900 characters. The maximum length for a hexadecimal string
is 450 bytes. The hexstring must begin with a 0x.

Examples:

KeyID Ascii SharedKeyValue
The value is treated as an ASCII string. This specification is
valuable if the key ID is defined to the other endpoint as an
ASCII string.

KeyID Ebcdic SharedKeyValue
The value is treated as an EBCDIC string.

KeyID Hex 0xC1C2C3F1F2F3
The value is treated as a hexadecimal string.

The ASCII or EBCDIC KeyID value can be defined as a quoted string
or a single value.

Rules:

v A quoted string must start and end with a double-quote (").
v A quoted string allows the KeyID value to have embedded blanks

for the attribute.
v If KeyID value is not a quoted string then it as treated as a single

value.

Results:

v Leading blanks and trailing blanks within the quoted string are
removed.

v Within a quoted string, comment indicators, embedded blanks, and
additional quotes are treated as part of the value for this attribute.

Restriction: This value is valid only for V1R12 and later releases. See
“General syntax rules for Policy Agent” on page 933 for details

Restriction: When the value contains embedded blanks, you must
specify the entire parameter value within the first 1 536 characters of
the configuration file line.

Example KeyID values:
Identity KeyID Ascii ASC # comment" value used: ASC
Identity KeyID EBCDIC EBC comment value used: EBC
Identity KeyID ASCII "ASC 98Z" value used: ASC 98Z
Identity KeyID EBCDIC EBC 98Z" value used: EBC
Identity KeyID ASCII "AsC 98Z value used: "AsC
Identity KeyID EBCDIC "Ebc " " Ebc" value used: Ebc " " Ebc
Identity KeyID ASCII "Asc Asc" " value used: Asc Asc"

1148 z/OS V2R1.0 Communications Server: IP Configuration Reference

Fqdn Indicates that the authid value is a fully qualified domain name or host
name. For example, vnet.ibm.com. The maximum length accepted is
1024 characters. The Fqdn value cannot begin or end with a dot (.), or
contain consecutive dots.

The fqdn value can be wildcarded in the leftmost portion preceding
the first period. For example, *.ibm.com is allowed.

The leftmost portion cannot be partially wildcarded. For example,
*net.ibm.com is not allowed.

UserAtFqdn
Indicates that the authid value is a user at a fully qualified domain
name or host name. The user name cannot contain a blank.

For example, ibm@vnet.ibm.com. The maximum length accepted is
1024 characters. The UserAtFqdn value cannot begin or end with a dot
(.), or contain consecutive dots.

The user portion can be wildcarded. For example, *@vnet.ibm.com.
Alternatively, the leftmost portion of the fqdn can be wildcarded. For
example, *.ibm.com

X500dn
Indicates that the authid value is an X.500 distinguished name (DN).
See “LocalSecurityEndpoint statement” on page 1138 for the DN
specification.

The leftmost portion of the DN can be wildcarded. For example,
*,OU=endicott,O=ibm,C=US is allowed.

Non-initial RDNs cannot be wildcarded. For example, CN="John
Doe",*,O=ibm,C=US is not allowed.

Rule: You can use comment indicators and embedded blanks as part of the
value for this attribute. For example:
Identity X500DN cn=#my identity
value used: cn=#my identity

Restriction: When the value contains embedded blanks, you must specify the
entire parameter value within the first 1 536 characters of the configuration file
line.

RemoteIdentityRef
The name of a globally defined RemoteIdentity statement that indicates the
identity of a remote security endpoint with which dynamic VPN tunnel
negotiations should be allowed.

Restriction: This parameter is valid only for V1R10 and later releases.
See“General syntax rules for Policy Agent” on page 933 for details.

Location

ipaddress
A single IP address specification of a remote security endpoint with
which dynamic VPN tunnel negotiations should be allowed.

Rule: The IPv6 unspecified address (::0) is not allowed.

ipaddress/prefixLength
A prefix address specification of a range of acceptable remote security
endpoint IP addresses. The prefixLength value is the number of

Chapter 21. Policy Agent and policy applications 1149

unmasked leading bits in the specified IP address and can have a value
in the range 0 - 32 for IPv4 addresses and from 0 - 128 for IPv6
addresses.

Rule: The IPv6 unspecified address (::0/128) is not allowed.

ipaddress-ipaddress
A range of IP address specifications of acceptable remote security
endpoint addresses for dynamic VPN tunnel negotiations.

Rule: The IPv6 unspecified address (::0-::0) is not allowed.

Any Specifies all IPv4 addresses. Any and Any4 are interchangeable values.

Any4 Specifies all IPv4 addresses.

Any6 Specifies all IPv6 addresses.

Result: If RemoteSecurityEndpoint is configured then the default value is set to
Any4.

LocationRef
The name of a globally defined IPAddr statement for the remote security
endpoint with which dynamic VPN tunnel negotiations should be allowed.

LocationSetRef
The name of a globally defined IPAddrSet statement for the remote security
endpoint set with which dynamic VPN tunnel negotiations should be allowed.

LocationGroupRef
The name of a globally defined IPAddrGroup statement for the remote security
endpoint group with which dynamic VPN tunnel negotiations should be
allowed.

Restrictions:

v You cannot specify a group of IP addresses for a remote security endpoint
that is referenced by an IpLocalStartAction statement.

v This parameter is valid only for V1R10 and later releases. See “General
syntax rules for Policy Agent” on page 933 for details.

CaLabel
Use CaLabel to indicate which certificate authority the remote security
endpoint should use when sending a certificate. Multiple instances of this
keyword are permitted, indicating that there may be more than one acceptable
certificate authority. The remote security endpoint may choose not to honor the
request, in which case the negotiation may fail.

label A label identifying a portion of a certificate authority hierarchy.

Rule: When IKED is configured to use local certificate services the label
specified on the CaLabel parameter must be the label of a certificate authority
certificate on the IKE servers key ring. This label must also be specified on the
SupportedCertAuth parameter of the IkeConfig statement. See the description
of SupportedCertAuth parameter in “IkeConfig statement” on page 443 for
more information. This label identifies a specific certificate authority that the
local security endpoint prefers. For example, consider a certificate hierarchy
that consists of a Root CA, a subordinate CA X created by the Root CA, and a
subordinate CA Y created by CA X.
v If the peers certificate should only be issued by the CA Y, then a CaLabel

parameter with the label CA Y should be specified.

1150 z/OS V2R1.0 Communications Server: IP Configuration Reference

v If it is acceptable for the peers certificate to be issued by the CA Y or CA X,
then a CaLabel parameter with label CA Y and a second CaLabel parameter
with label CA X should be specified.

v If it is acceptable for the peers certificate to be issued by the Root CA, CA Y
or CA X, then multiple CaLabel parameters should be specified, one for each
of the acceptable certificate authorities.

Result: When IKED is configured to use local certificate services and no
CaLabel parameters are specified, the SupportedCertAuth parameter on the
IkeConfig statement provides the list of acceptable certificate authorities that
the remote security endpoint should use. See the description of
SupportedCertAuth parameter in “IkeConfig statement” on page 443 for more
information.

Rule: When IKED is configured to use the Network Security Server's certificate
services the label specified on the CaLabel parameter must be the label of a
certificate authority certificate on the NSSD servers key ring and the stack
must be authorized to the EZB.NSSCERT.sysname.mappedlabelname.CERTAUTH
profile. This label identifies the start of a sub-hierarchy that the local security
endpoint prefers. For example, consider a certificate hierarchy that consists of a
Root CA, a subordinate CA X created by the root CA, and a subordinate CA Y
created by CA X.
v If the peers certificate should only be issued by CA Y then a CaLabel

parameter with the label of CA Y should be specified.
v If it is acceptable for the peers certificate to be issued by CA Y or CA X then

only a CaLabel parameter with the label of CA X would need to be
specified.

v If it is acceptable for the peers certificate to be issued by the Root CA, CA Y
or CA X then only a CaLabel parameter with the label of the Root CA would
need to be specified.

Result: When IKED is configured to use the Network Security Servers
certificate services and no CaLabel parameters are specified, any certificate
authority that has a certificate authority certificate on the NSSD keyring to
which the stack is authorized is acceptable for the remote security endpoint to
use. The EZB.NSSCERT.sysname.mappedlabelname.CERTAUTH profile is used to
authorize a stack to a certificate authority certificate.

Rule: Comment indicators and embedded blanks are treated as part of the
value for this attribute. For example:
CaLabel Root#CA Certificate
value used: Root#CA Certificate

Restriction: When the value contains embedded blanks, you must specify the
entire value within the first 1 536 characters of the configuration file line.

Policy-based routing policy statements
This topic contains information about the following Routing policy statements:
v “RouteTable statement” on page 1152
v “RoutingAction statement” on page 1163
v “RoutingRule statement” on page 1164

For an example of Routing policy definitions see the pagent_routing.conf file in the
/usr/lpp/tcpip/samples/ directory.

Chapter 21. Policy Agent and policy applications 1151

RouteTable statement

Use the RouteTable statement to create a table of the routes that can be used to
route IP packets based on policy. A RoutingRule statement specifies the
characteristics of IP packets and references a RoutingAction statement, which can
reference one or more RouteTable statements.

The RouteTable statement is used to create a table of static and dynamic routes.
The RouteTable statement is made up of Route entries and DynamicRoutingParms
entries. A route entry is used to create a static route in the route table. The syntax
for the route entry is compatible with UNIX standards and similar to the syntax
for static routes in the TCP/IP profile's BEGINROUTES block. Dynamic routes are
added to the route table by OMPROUTE based on the information provided in
DynamicRoutingParms entries. IPv6 router advertisement routes are also added to
the route table based on the information that is provided in the
DynamicRoutingParms entries.

Restrictions:

v A limit of 255 route tables is allowed.
v Duplicate RouteTableRef parameters are not allowed within a RoutingAction

statement

The route table can be modified as follows:
v Incoming ICMP and ICMPv6 redirect packets can replace static routes, and can

also add routes to the route table.
v The OMPROUTE dynamic routing daemon can replace replaceable static routes,

and can add dynamic routes to the route table.
v IPv6 router advertisement routes can be added to the route table based on

received IPv6 router advertisements, and can replace replaceable static routes.
v Direct host routes to dynamic XCF addresses on other TCP/IP stacks are added

when both of the following conditions are true:
– The dynamic XCF links to those stacks are active.
– DynamicXCFRoutes Yes or DynamicXCFRoutes6 Yes is specified on the

RouteTable statement.

When a RouteTable statement is updated, the route table in the TCP/IP stack is
updated. When a route entry is added, deleted, or updated, the static routes in the
route table are updated and routes learned by way of ICMP or ICMPv6 redirect
are deleted from the route table. When a DynamicRoutingParms entry is added,
deleted, or updated, OMPROUTE updates the dynamic routes in the route table as
needed, and any IPv6 router advertisement routes in the route table are updated as
needed.

Route precedence is as follows:
1. If a route exists to the destination address (a host route), it is chosen first.
2. For IPv4, if subnet, network, or supernetwork routes exist to the destination,

the route with the most specific network mask is chosen second. The most
specific network mask is the mask with the most bits on. For IPv6, if prefix
routes exist to the destination, the route with the most specific prefix is chosen
second.

3. For IPv4, if the destination is a multicast destination and multicast default
routes exist, the route with the most specific multicast address is chosen third.

4. Default routes are chosen when no other route exists to a destination.

1152 z/OS V2R1.0 Communications Server: IP Configuration Reference

Rules:

v The RouteTable statement must contain at least one Route entry or one
DynamicRoutingParms entry; otherwise, you must specify either
DynamicXCFRoutes Yes or DynamicXCFRoutes6 Yes.

v The required parameters for the route entry must be specified in the order
shown. The optional parameters can be specified in any order.

v The parameters for the DynamicRoutingParms entry must be specified in the
order shown.

Tip: The Options parameters on the route entry can be abbreviated using the same
syntax that is used for static routes in the TCP/IP profile's BEGINROUTES block.

Syntax

�� RouteTable name Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
RouteTable Parameters

{

RouteTable Parameters:

IgnorePathMtuUpdate No

IgnorePathMtuUpdate Yes
No

IgnorePathMtuUpdate6 No

IgnorePathMtuUpdate6 Yes
No

�

�
Multipath UseGlobal

Multipath PerConnection
PerPacket
Disable
UseGlobal

Multipath6 UseGlobal

Multipath6 PerConnection
PerPacket
Disable
UseGlobal

�

�
DynamicXCFRoutes No

DynamicXCFRoutes Yes
No

DynamicXCFRoutes6 No

DynamicXCFRoutes6 Yes
No

�

� � �

Route Destination First Hop Packet Size Options
�

� �

IPV4
DynamicRoutingParms intf_name

IPV6
gateway_addr

Chapter 21. Policy Agent and policy applications 1153

Destination:

ipaddress/prefixLength
ipaddress
DEFAULT6
DEFAULT

First Hop:

gateway_addr
=

intf_name

Packet Size:

MTU mtu_size
DEFAULTSIZE

Options:

NOREPLaceable

REPLaceable
NOREPLaceable

MAXImumretransmittime 120.00

MAXImumretransmittime seconds
�

�
MINImumretransmittime 0.50

MINImumretransmittime seconds

ROUNDTRIPGain 0.125

ROUNDTRIPGain value
�

�
VARIANCEGain 0.25

VARIANCEGain value

VARIANCEMultiplier 2.00

VARIANCEMultiplier value

DELAYAcks

NODELAYAcks
DELAYAcks

Parameters

name
A string 1 - 8 characters in length specifying the name of this RouteTable
statement.

Restriction: Do not specify the values EZBMAIN or ALL (in any combination
of upper and lower case letters) for the name value. The name EZBMAIN is
reserved for the main route table that is generated by the TCP/IP profile's
BEGINROUTES or GATEWAY statements. The name ALL is reserved for use
with the PR modifier of the Netstat ROUTE/-r command.

IgnorePathMtuUpdate
Indicates whether IPv4 ICMP Fragmentation Needed messages should be
ignored for this route table. When IPv4 path MTU discovery is enabled
(PATHMTUDISCOVERY parameter on the IPCONFIG statement in the TCP/IP
profile), IPv4 ICMP Fragmentation Needed messages are used to lower the
MTU value that is used to send data to a specific IPv4 destination.

No IPv4 ICMP Fragmentation Needed messages should be processed for
this route table. This is the default.

1154 z/OS V2R1.0 Communications Server: IP Configuration Reference

Yes IPv4 ICMP Fragmentation Needed messages should be ignored for this
route table.

You might want to ignore the path MTU update for a policy-based
route table that contains routes that are known to support large path
MTU values. If routes in another route table are defined to the same
destination or destinations that need a smaller path MTU value,
specifying IgnorePathMtuUpdate Yes ensures that a path MTU update
that is the result of sending data on a small MTU route does not cause
an update to the path MTU for the route in the policy-based route
table.

Guideline: The IgnorePathMtuUpdate option is an advanced option.
You do not need to set IgnorePathMtuUpdate Yes. If you specify
IgnorePathMtuUpdate Yes, path MTU updates are ignored for all IPv4
routes in the route table.

IgnorePathMtuUpdate6
Indicates whether IPv6 ICMP Packet Too Big messages should be ignored for
this route table. IPv6 ICMP Packet Too Big messages are used to lower the
MTU value that is used to send data to a specific IPv6 destination.

No IPv6 ICMP Packet Too Big messages should be processed for this route
table. This is the default.

Yes IPv6 ICMP Packet Too Big messages should be ignored for this route
table.

You might want to ignore the path MTU update for a policy-based
route table that contains routes that are known to support large path
MTU values. If routes in another route table are defined to the same
destination or destinations that need a smaller path MTU value,
specifying IgnorePathMtuUpdate6 Yes ensures that a path MTU update
that is the result of sending data on a small MTU route does not cause
an update to the path MTU for the route in the policy-based route
table.

Guideline: The IgnorePathMtuUpdate6 option is an advanced option.
You do not need to set IgnorePathMtuUpdate6 Yes. If you specify
IgnorePathMtuUpdate6 Yes, path MTU updates are ignored for all IPv6
routes in the route table.

Multipath
Indicates whether the multipath routing selection algorithm is enabled for
outbound IPv4 traffic that uses this policy-based route table.

UseGlobal
Use the MULTIPATH or NOMULTIPATH setting from the IPCONFIG
statement in the TCP/IP profile to determine multipath processing.
This is the default.

PerConnection
Enables the multipath routing selection algorithm for outbound IPv4
traffic that uses this policy-based route table. If multiple equal-cost
routes to an IPv4 destination exist in this policy-based route table, a
round-robin algorithm is used to select a route. After a route is
selected, connection-oriented or connectionless-oriented IP packets
using the same association always use the same route, as long as that
route is active.

Chapter 21. Policy Agent and policy applications 1155

PerPacket
Enables the multipath routing selection algorithm for outbound IPv4
traffic that uses this policy-based route table. If multiple equal-cost
routes to an IPv4 destination exist in this policy-based route table, a
round-robin algorithm is used to select a route. Connection or
connectionless oriented IP packets using the same association do not
always use the same route, but do use all possible active routes to the
destination.

The PerPacket option should not be used if IP security is enabled on
the IPCONFIG statement in the TCP/IP profile. If Multipath PerPacket
is specified for a policy-based route table and the route table is
installed in a TCP/IP stack with IPv4 security enabled, multipath
routing for IPv4 traffic is disabled. The following message is displayed:
EZD0028I IPV4 MULTIPATH PERPACKET NOT VALID WITH IPV4 SECURITY -
MULTIPATH SUPPORT DISABLED FOR ROUTE TABLE table

The Netstat ROUTE/-r PR command displays the MultiPath setting
No(Policy) if multipath routing for IPv4 traffic has been disabled. This
occurs because IPv4 security is enabled.

Disable
Disables the multipath routing selection algorithm for outbound IPv4
traffic that uses this policy-based route table. If multiple equal-cost
routes to an IPv4 destination exist in this policy-based route table, the
first active route that is found is used to send each IP packet to that
destination.

Multipath6
Indicates whether the multipath routing selection algorithm is enabled for
outbound IPv6 traffic that uses this policy-based route table.

UseGlobal
Uses the MULTIPATH or NOMULTIPATH setting from the IPCONFIG6
statement in the TCP/IP profile to determine multipath processing.
This is the default.

PerConnection
Enables the multipath routing selection algorithm for outbound IPv6
traffic that uses this policy-based route table. If multiple equal-cost
routes to an IPv6 destination exist in this policy-based route table, a
round-robin algorithm is used to select a route. After a route is
selected, connection-oriented or connectionless-oriented IP packets that
use the same association always use the same route, as long as that
route is active.

PerPacket
Enables the multipath routing selection algorithm for outbound IPv6
traffic that uses this policy-based route table. If multiple equal-cost
routes to an IPV6 destination exist in this policy-based route table, a
round-robin algorithm is used to select a route. Connection-oriented or
connectionless-oriented IP packets that use the same association do not
always use the same route, but use all possible active routes to the
destination.

If IP security is enabled on the IPCONFIG6 statement in the TCP/IP
profile, do not use the PerPacket option. If Multipath6 PerPacket is
specified for a policy-based route table and the route table is installed
in a TCP/IP stack with IPv6 security enabled, multipath routing for
IPv6 traffic is disabled. The following message is displayed: EZD0028I

1156 z/OS V2R1.0 Communications Server: IP Configuration Reference

IPV6 MULTIPATH PERPACKET NOT VALID WITH IPV6 SECURITY -
MULTIPATH SUPPORT DISABLED FOR ROUTE TABLE table

The Netstat ROUTE/-r PR command displays the MultiPath6 setting
No(Policy) if multipath routing for IPv6 traffic has been disabled. This
occurs because IPv6 security is enabled.

Disable
Disables the multipath routing selection algorithm for outbound IPv6
traffic that uses this policy-based route table. If multiple equal-cost
routes to an IPv6 destination exist in this policy-based route table, the
first active route that is found is used to send each IP packet to that
destination.

DynamicXCFRoutes
Indicates whether direct routes to IPv4 dynamic XCF addresses on other
TCP/IP stacks should be added to this route table. The same routes are
automatically generated in the main route table when IPv4 dynamic XCF links
are active. See the dynamic XCF information in z/OS Communications Server:
IP Configuration Guide for information about the dynamic XCF function and
the definitions that are automatically generated when IPCONFIG
DYNAMICXCF is specified in the TCP/IP profile.

Yes Add direct routes to IPv4 dynamic XCF addresses on other TCP/IP
stacks when the dynamic XCF links are active.

No Do not add direct routes to IPv4 dynamic XCF addresses on other
TCP/IP stacks. This is the default.

Rule: Duplicate routes are not allowed within a route table. If a statically
defined route is a duplicate of a route generated by DynamicXCFRoutes Yes,
the statically defined route takes precedence.

DynamicXCFRoutes6
Indicates whether direct routes to IPv6 dynamic XCF addresses on other
TCP/IP stacks should be added to this route table. The same routes are
automatically generated in the main route table when IPv6 dynamic XCF links
are active. See the dynamic XCF information in z/OS Communications Server:
IP Configuration Guide for information about the dynamic XCF function and
the definitions that are automatically generated when IPCONFIG6
DYNAMICXCF is specified in the TCP/IP profile.

Yes Add direct routes to IPv6 dynamic XCF addresses on other TCP/IP
stacks when the dynamic XCF links are active.

No Do not add direct routes to IPv6 dynamic XCF addresses on other
TCP/IP stacks. This is the default.

Rule: Duplicate routes are not allowed within a route table. If a statically
defined route is a duplicate of a route that the DynamicXCFRoutes6 Yes
generates, the statically defined route takes precedence.

Route
A route entry is used to create a static route in the route table.

Restriction: Duplicate routes are not allowed within a RouteTable statement.
Duplicate routes have the same destination and first hop specification
(interface name and gateway address).

DynamicRoutingParms

Chapter 21. Policy Agent and policy applications 1157

A DynamicRoutingParms entry provides parameters for OMPROUTE to use
when generating dynamic routes for the route table and for the stack to use
when adding IPv6 router advertisement routes to the route table.

Restriction: Duplicate and overlapping DynamicRoutingParms values are not
allowed within a RouteTable statement.

In the following example, the DynamicRoutingParms in both Table1 and Table2
are treated as routing policy errors because the DynamicRoutingParms values
overlap:
RouteTable Table1
{

DynamicRoutingParms Link1
DynamicRoutingParms Link1 10.1.2.3

}

RouteTable Table2
{

DynamicRoutingParms Link2 IPv6
DynamicRoutingParms Link2 FE80::1:2:3

}

In the following example, the DynamicRoutingParms in both Table3 and Table4
are treated as Routing policy errors because the DynamicRoutingParms values
are duplicates.
RouteTable Table3
{

DynamicRoutingParms Link1
DynamicRoutingParms Link1

}
RouteTable Table4
{

DynamicRoutingParms Link2 FE80::1:2:3
DynamicRoutingParms Link2 FE80::1:2:3}

ipaddress
The destination address. The address must be a fully qualified IP address.

The DEFAULT or DEFAULT6 keyword in this field specifies a default route.
The destination address can be a host, network, subnetwork, supernetwork, or
default address. For IPv6, the address cannot be an IPv4-mapped IPv6 address
in hexadecimal or dotted decimal format or an IP address with the reserved
prefix ::/96. A local address is not valid for the destination address. Multiple
routes that have an identical destination can be specified. When multiple
routes are specified, all of them are used when multipath is enabled; otherwise,
only the first active route that is specified is used.

prefixLength
An integer value that represents the number of bits in the ipaddress value that
are used to determine the destination address of the route. For an IPv4
destination, the value is in the range 1 - 32. For an IPv6 destination, the value
is in the range 1 - 128.

gateway_addr
On a route entry, the gateway_addr value is the host IP address of a gateway or
router that you can reach directly, and that forwards packets for the destination
network or host. The value must be either a fully qualified address or an equal
sign (=), which indicates that the messages are routed directly to destinations
on that network or directly to that host. A local address is not valid for the
gateway address. The equal sign is not supported for a default route entry. For
IPv6, the address cannot be an IPv4-mapped IPv6 address in hexadecimal or
dotted decimal format or an IP address with the reserved prefix ::/96.

1158 z/OS V2R1.0 Communications Server: IP Configuration Reference

On a DynamicRoutingParms entry, the gateway_addr value is one of the
following values:
v IPv4

Indicates that the intf_name value that is specified on this
DynamicRoutingParms entry is an IPv4 interface. This is the default.

v IPv6
Indicates that the intf_name value that is specified on this
DynamicRoutingParms entry is an IPv6 interface.

v The host IP address of a gateway or router that you can reach directly, and
that forwards packets for the destination network or host.
It must be a fully qualified address. A local address is not valid for the
gateway address. If an IPv6 address is specified, it must be a link-local
address. OMPROUTE uses the IP address and the intf_name value to select
dynamic routes to be included in this route table. If the gateway_addr value is
an IPv6 address, the value is used with the intf_name value to determine
which IPv6 router advertisement routes are added to this route table.

intf_name
The name of an interface as defined on the LINK or INTERFACE statement in
the TCP/IP profile.

Restriction: Loopback and VIPA links are not allowed.

On a route entry, the intf_name value is the name of the interface through
which packets are sent to the specified destination. If an intf_name value is
specified that is not defined in the TCP/IP profile, the route is created but is
not usable until that interface value is defined in the TCP/IP profile.

Tip: Routes that are configured for an undefined interface name are flagged as
invalid on a Netstat ROUTE/-r PR display. The flags field includes the letter I.

On a DynamicRoutingParms entry, the intf_name value is the name of an
interface through which packets can be sent. OMPROUTE uses the intf_name
value to select dynamic routes to be included in this route table. If intf_name is
the name of an IPv6 interface, the value is used to determine which IPv6
router advertisement routes are added to this route table. If gateway_addr has
been specified, then intf_name is used in combination with the gateway_addr
value. If an interface name is specified that is not defined in the TCP/IP
profile, no dynamic routes or IPv6 router advertisement routes are created
until the interface name is defined in the TCP/IP profile.

MTU mtu_size

The maximum transmission unit (MTU) in bytes for the destination. This value
can be up to 65535. The keyword DEFAULTSIZE in this field requests that
TCP/IP supply a default value of 576 for IPv4 routes and 1280 for IPv6 routes.

See Figure 1 on page 48 for more information about the largest MTU value that
each IPv4 link type supports.

See Table 5 on page 142 for more information about the largest MTU value that
each IPv4 interface type supports.

See Table 6 on page 142 for more information about the largest MTU value that
each IPv6 interface type supports.

Packet size considerations

Chapter 21. Policy Agent and policy applications 1159

v The largest mtu_size value that z/OS Communications Server can handle
varies for different networks. For example, although the largest packet size
for the Ethernet protocol is 1500 bytes, the largest packet size for the 802.3
protocol is 1492 bytes.

v The actual packet size is determined by the total network connection.
– If a locally attached host has a packet size smaller than your packet size,

transfers to that host use the smaller size.
– The TCP maximum segment size for the 3172 Interconnect Controller

Program is 4096. Any packet specifications over 4096 are limited by this
restriction. For example, if you specified the packet size 4352, the
resulting packet size would still only be 4096 plus the header size, for a
total packet size of 4132.

v Large packets can be fragmented by intervening gateways for IPv4 only.
Fragmenting and reassembling packets is expensive because of high
bandwidth use and CPU time. Packets sent through gateways to other
networks should use the default size, DEFAULTSIZE, unless one of the
following conditions is true:
– All intervening gateways and networks are known to accept larger

packets.
– IPv4 Path MTU discovery is enabled by using PATHMTUDISCOVERY on

the IPCONFIG statement, which results in the TCP/IP stack dynamically
learning the maximum MTU for the total network connection. For IPv6,
Path MTU discovery is always enabled.

v If this is a CLAW link, the mtu_size cannot exceed the write_size specified on
the corresponding DEVICE statement.

v You cannot specify an MTU value that is smaller than the default MTU size.
For IPv4, the default MTU value is 576 and for IPv6 it is 1280.

REPLACEABLE
Indicates that the static route can be replaced by OMPROUTE or IPv6 router
advertisements if a dynamic route to the same destination is discovered. This
parameter can be abbreviated to REPL.

Restrictions:

v Only one type (replaceable or nonreplaceable) of static route can be defined
to the same destination. If multiple route entries are specified to the same
destination and the REPLACEABLE or NOREPLACEABLE setting is not the
same, it is considered to be a Routing policy error.

v Do not define replaceable static routes to destination addresses that
correspond to dynamic VIPAs for which the TCP/IP stack is a sysplex
distributor target. This is not validated by Policy Agent.

Tip: You can use the Netstat ROUTE/-r PR ALL RSTAT command to display
all replaceable static routes currently configured in policy-based routing tables.

NOREPLACEABLE
Indicates that the static route cannot be replaced by dynamic routes. The static
route is always used to reach the destination, regardless of any information
that dynamic routes might be available. This is the default behavior. This
parameter can be abbreviated NOREPL.

Restriction: Only one type (replaceable or nonreplaceable) of static route can
be defined to the same destination. If multiple route entries are specified to the
same destination and the REPLACEABLE or NOREPLACEABLE setting is not
the same, it is considered to be a Routing policy error.

1160 z/OS V2R1.0 Communications Server: IP Configuration Reference

Retransmission parameter considerations

The parameters listed in this topic affect the TCP retransmit algorithms. When TCP
packets are not acknowledged, TCP begins to retransmit these packets at certain
time intervals. If these packets are not acknowledged after a specified number of
retransmits, TCP aborts the connection. The time interval between retransmissions
increases by approximately twice the previous interval until the packets are
acknowledged or the connection times out.

The time intervals between retransmissions and the number of times that packets
are retransmitted before the connection times out differs for initial connection
establishment and for data packets . For initial connection establishment, the initial
time interval is set at approximately 3 seconds and the SYN packet is retransmitted
5 times before the connection is timed out. Data packets use a smoothed Round
Trip Time (RTT) as the initial time interval, and data packets are retransmitted 15
times before the connection is timed out. All of the remaining parameters listed in
this topic affect the data packet retransmission algorithm. Only the
MINIMUMRETRANSMITTIME parameter affects the initial connection
establishment.

Tip: A new route lookup is performed after every two retransmissions for a data
packet. For more information about the route lookup process, see Route selection
algorithm in z/OS Communications Server: IP Configuration Guide. Be careful
when you design networks with firewalls. A firewall in an alternate routing path
can generate a RESET packet for the rerouted data packets, which causes TCP to
abort the connection.

The retransmission parameters enable system administrators who are familiar with
TCP/IP transmission performance to alter the flow of TCP/IP data packets and
acknowledgments. Under normal circumstances, the following occurs:
v TCP typically waits to receive two packets before sending one ACK to

acknowledge the data within them.
v When TCP sends a packet, it waits for an acknowledgment. If it times out before

getting an acknowledgment, it resends the packet.

Use the following parameters to adjust the retransmission time-out calculations;
slower transmission times prevent packets from being resent as quickly:
v MAXIMUMRETRANSMITTIME
v MINIMUMRETRANSMITTIME
v ROUNDTRIPGAIN
v VARIANCEGAIN
v VARIANCEMULTIPLIER
v DELAYACKS
v NODELAYACKS

TCP uses these values in an algorithm called the TCP Retransmission Timeout
Calculation, which is described in RFC 793. When you use this calculation, the
following occurs:
v A smoothed round trip time (SRTT) and variance (VAR) is updated from the

individual RTT derived from each packet acknowledgement.
v The retransmit time for a new packet is set to twice (approximately) the current

SRTT value plus the VAR value.
v Each time a packet is retransmitted, the retransmit time value is doubled.

Chapter 21. Policy Agent and policy applications 1161

v The actual interval time used for the initial packet and each retransmission is the
retransmit time calculated previously, but limited by the configured
MINIMUMRETRANSMITTIME and MAXIMUMRETRANSMITTIME values.

DELAYACKS | NODELAYACKS
Controls transmission of acknowledgments when a packet is received with the
PUSH bit on in the TCP header.

NODELAYACKS
Specifies that an acknowledgment is returned immediately when a
packet is received with the PUSH bit on in the TCP header. The
NODELAYACKS parameter on the BEGINROUTES, GATEWAY, and
RouteTable statements affects only the connections that use this route.
Specifying NODELAYACKS on the TCP/IP stack BEGINROUTES or
GATEWAY profile statements, or on the Policy Agent RouteTable
statement, overrides the specification of the DELAYACKS parameter on
the TCP/IP stack PORT, PORTRANGE, and TCPCONFIG profile
statements.

DELAYACKS
Delays transmission of acknowledgments when a packet is received
with the PUSH bit on in the TCP header. The DELAYACKS parameter
on the BEGINROUTES, GATEWAY, and RouteTable statements affects
only the connections that use this route. This is the default, but you
can override the default by specifying the NODELAYACKS parameter
on the TCP/IP stack PORT, PORTRANGE, or TCPCONFIG profile
statements.

MAXIMUMRETRANSMITTIME
Limits the TCP retransmission interval. Decreasing this value might decrease
the total time it takes a connection to timeout. Specifying
MAXIMUMRETRANSMITTIME assures that the interval time never exceeds
the specified limit. The minimum value that can be specified for
MAXIMUMRETRANSMITTIME is 0. The maximum is 999.990. The default is
120 seconds. This parameter does not affect initial connection retransmission.

MINIMUMRETRANSMITTIME
Sets a minimum retransmit interval. Increasing this value might increase the
amount of time it takes for TCP to time out a connection. The minimum value
that can be specified for MINIMUMRETRANSMITTIME is 0. The maximum is
99.990. The default is 0.5 (500 milliseconds).

ROUNDTRIPGAIN
This value is the percentage of the latest Round Trip Time (RTT) to be applied
to the smoothed RTT average. The higher this value, the more influence the
latest packet RTT has on the average. The minimum value that can be specified
for ROUNDTRIPGAIN is 0. The maximum value is 1.0. The default is 0.125.
This parameter does not affect initial connection retransmission.

VARIANCEGAIN
This value is the percentage of the latest RTT variance from the RTT average to
be applied to the RTT variance average. The higher this value, the more
influence the latest packet's RTT has on the variance average. The minimum
value that can be specified for VARIANCEGAIN is 0. The maximum value is
1.0. The default is 0.25. This parameter does not affect initial connection
retransmission.

VARIANCEMULTIPLIER
This value is multiplied against the RTT variance in calculating the
retransmission interval. The higher this value, the more affect variation in RTT

1162 z/OS V2R1.0 Communications Server: IP Configuration Reference

has on calculating the retransmission interval. The minimum value that can be
specified for VARIANCEMULTIPLIER is 0. The maximum value is 99.990. The
default is 2. This parameter does not affect initial connection retransmission.

Retransmission parameters

Use the ROUNDTRIPGAIN, VARIANCEGAIN, and VARIANCEMULTIPLIER
parameters to instruct TCP how heavily to weigh the most recent behavior of the
network versus the long term behavior for updating the SRTT and VAR values. If
you specify smaller values for these parameters, TCP attempts to correct for
congestion only if the congestion is sustained. With larger values, TCP corrects for
congestion more quickly, and the system is more sensitive to variations in network
performance. Use the default values (unless your retransmission rate is too high).

Use DELAYACKS to delay the acknowledgments so that they can be combined
with data sent to the foreign host.

Results:

v If a HOME entry or INTERFACE is deleted from the TCP/IP profile, all routes
for the associated interface become unusable. The routes remain in the route
table and become usable again if the HOME entry or INTERFACE is added back
to the profile.

v If an interface becomes inactive, then all routes that are associated with that
interface are marked inactive by the stack.

v If an interface becomes active, then all static routes that are associated with that
interface are marked active by the stack.

Rules:

v There is no limit to the number of equal-cost multipath routes that can be
associated with a single destination.

v Multicast routes can be specified using a host specification. You can also specify
multicast network routes or prefix routes.

v A valid host address must contain a nonzero value in the host portion of the
address. The host portion of an IPv4 address cannot be all ones, which is
considered the broadcast address.

v On an IPv4 route entry, the destination IP address can be either a network or a
host IPv4 address, and the gateway_addr value must be a host IPv4 address.

v On an IPv6 route entry, the destination IP address can be either a prefix or host
IPv6 address, and the gateway_addr value must be a host IPv6 address.

RoutingAction statement

Use the RoutingAction statement to provide an ordered list of RouteTable
references and to specify whether the TCP/IP stack's main route table should be
used if a usable route is not found in any of the referenced route tables. The stack's
main route table is defined in the TCP/IP profile and updated by dynamic routing
protocols if configured to do so. A RoutingAction statement can be referenced by a
RoutingRule statement.

�� RoutingAction name Put Braces and Parameters on Separate Lines ��

Chapter 21. Policy Agent and policy applications 1163

Put Braces and Parameters on Separate Lines:

{
RoutingAction Parameters

{

RoutingAction Parameters:

UseMainRouteTable Yes

UseMainRouteTable Yes
No

�

RouteTableRef name

Parameters

name
A string 1 - 32 characters in length specifying the name of this RoutingAction
statement.

UseMainRouteTable
Indicates the action taken by the stack when a usable route is not found in any
of the referenced route tables.

Yes When a usable route is not found in any of the referenced route tables,
use the stack's main route table to look up a route. This is the default
value.

No When a usable route is not found in any of the referenced route tables,
do not use the stack's main route table to look up a route. The packet
is not routed.

RouteTableRef
The name of a globally defined RouteTable statement.

Restriction: Duplicate RouteTableRef parameters are not allowed in a
RoutingAction statement.

Rules:

v If the UseMainRouteTable No value is specified, then at least one RouteTableRef
parameter is required.

v A maximum of eight RouteTableRef parameters can be configured for a routing
action. Route tables are searched in the order in which the RouteTableRef
parameters are specified.

RoutingRule statement

Use the RoutingRule statement to specify characteristics of IP packets that are used
to control the route over which the packets can be sent. The RoutingRule statement
references a corresponding RoutingAction statement that indicates which route
tables to search.

The information provided on the RoutingRule statement defines a routing rule.
The routing rule can contain a source IP address, destination IP address, and traffic
descriptor specification. The traffic descriptor specification identifies characteristics
of IP packets in addition to the IP addresses (for example, source and destination

1164 z/OS V2R1.0 Communications Server: IP Configuration Reference

ports). The routing rule can contain a priority and an IpTimeCondition statement
specification. An IpTimeCondition statement specification identifies the time period
during which the routing rule is in effect.

Restriction: Policy-based routing applies only to TCP and UDP traffic that
originates at the TCP/IP stack. Traffic that uses protocols other than TCP and UDP
and all traffic that the TCP/IP stack forwards are always routed by using the main
route table, even when policy-based routing is in use.

Rules:

v A RoutingRule statement must contain a reference to a globally defined
RoutingAction statement.

v If you use default values for the source IP address, destination IP address, and
traffic descriptor specifications, the RoutingRule statement applies to all TCP
and UDP traffic that originates from this TCP/IP stack.

�� RoutingRule name Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
RoutingRule Parameters

{

RoutingRule Parameters:

IpSourceAddr All

IpSourceAddr ipaddress
ipaddress/prefixLength
ipaddress-ipaddress
All

IpSourceAddrRef name
IpSourceAddrSetRef name
IpSourceAddrGroupRef name

�

�
IpDestAddr All

IpDestAddr ipaddress
ipaddress/prefixLength
ipaddress-ipaddress
All

IpDestAddrRef name
IpDestAddrSetRef name
IpDestAddrGroupRef name

�

�
TrafficDescriptor
TrafficDescriptorRef name
TrafficDescriptorGroupRef name

�

IpTimeCondition
IpTimeConditionRef name

�

Chapter 21. Policy Agent and policy applications 1165

�
Priority 1

Priority n
RoutingActionRef name

Parameters

name
A string 1 - 32 characters in length specifying the name of this RoutingRule
statement.

IpSourceAddr
A source address in an outbound IP packet that matches this rule so that the
action of the rule can be performed. The default value is All, which indicates
that any source address matches this rule.

Guideline: The source IP address for a TCP outbound connection, or for a
UDP outbound packet, can be influenced by a number of configuration and
application options. See the source IP address information in z/OS
Communications Server: IP Configuration Guide for the hierarchy of ways that
the source IP address of an outbound packet is determined. For the following
source IP address selection methods, a route lookup is needed to determine the
source IP address:
v SOURCEVIPA: Static VIPA address from the HOME list (IPv4 interface

defined with the LINK statement) or from the SOURCEVIPAINTERFACE
parameter (IPv4 or IPv6 interface defined with the INTERFACE statement)

v HOME: IP address of the interface over which the packet is sent

Do not use the IpSourceAddr value to select traffic that relies on these methods
to select its source IP address. At the time that route lookup is performed, the
source IP address has not yet been selected.

All Any source IP address matches this rule.

ipaddress
A single IP address.

ipaddress/prefixLength
A prefix address specification. The prefixLength value is the number of
unmasked leading bits in the ipaddress value. The prefixLength value can
be in the range 0 - 32 for IPv4 addresses and 0 - 128 for IPv6
addresses. An IP packet matches this condition if its unmasked bits are
identical to the defined unmasked bits.

Results:

v 0.0.0.0/0 indicates that any IPv4 source address matches this rule.
v ::/0 indicates that any IPv6 source address matches this rule.

ipaddress-ipaddress
A range of IP addresses.

Restriction: If the IP address is an IPv6 address, it cannot be an IPv4-mapped
IPv6 address in hexadecimal or dotted decimal format or an IP address with
the reserved prefix ::/96. If the IPv6 address is one of these types, an error
message is logged.

IpSourceAddrRef
The name of a globally defined IpAddr statement that is used for the source IP
address specification.

1166 z/OS V2R1.0 Communications Server: IP Configuration Reference

IpSourceAddrSetRef
The name of a globally defined IpAddrSet statement that is used for the source
IP address prefix or range specification.

IpSourceAddrGroupRef
The name of a globally defined IpAddrGroup statement that is used for the
source IP address specification.

IpDestAddr
A destination address in an outbound IP packet that matches this rule so that
the action of the rule can be performed. The default is All, which indicates that
any destination address matches this rule.

All Any destination IP address matches this rule.

ipaddress
A destination IP address.

ipaddress/prefixLength
A prefix address specification. The prefixLength value is the number of
unmasked leading bits in the ipaddress value. The prefixLength value can
be in the range 0 - 32 for IPv4 addresses and 0 - 128 for IPv6
addresses. An IP packet matches this condition if its unmasked bits are
identical to the defined unmasked bits.

Results:

v 0.0.0.0/0 indicates that any IPv4 destination address matches this
rule.

v ::/0 indicates that any IPv6 destination address matches this rule.

ipaddress-ipaddress
A range of IP addresses.

Restriction: If the IP address is an IPv6 address, it cannot be an IPv4-mapped
IPv6 address in hexadecimal or dotted decimal format or an IP address with
the reserved prefix ::/96. If the IPv6 address is one of these types, an error
message is logged.

IpDestAddrRef
The name of a globally defined IpAddr statement that is used for the
destination IP address specification.

IpDestAddrSetRef
The name of a globally defined IpAddrSet statement that is used for the
destination IP address prefix or range specification.

IpDestAddrGroupRef
The name of a globally defined IpAddrGroup statement that is used for the
destination IP address specification.

TrafficDescriptor
An inline specification of a TrafficDescriptor statement.

TrafficDescriptorRef
The name of a globally defined TrafficDescriptor statement.

TrafficDescriptorGroupRef
The name of a globally defined TrafficDescriptorGroup statement.

IpTimeCondition
An inline specification of an IpTimeCondition statement. There is a limit of 25
IpTimeCondition specifications in the RoutingRule statement.

Chapter 21. Policy Agent and policy applications 1167

IpTimeConditionRef
The name of a globally defined IpTimeCondition statement. There is a limit of
25 IpTimeCondition references in the RoutingRule statement.

Priority
This is an integer value in the range 1 - 2000000000 representing the priority
associated with the rule.

Restriction: Only one rule is mapped to a route request. Rules are searched for
a match starting at the highest priority, so if multiple rules could possibly be
matched for a given route request, the rule with the highest priority gets
matched first. If multiple rules of the same priority match, the rule mapped is
difficult to predict. If this attribute is not specified, the default priority is 1.

Guideline: When setting the priority for multiple rules, do not set the priority
as a sequential value, for example 2, 3 ,4, and 5. Instead, set the priority to
provide space to change the priority or to insert additional rules, such that the
rule would be preferred before another rule, without duplicating a priority. For
example, the priorities could be configured as 20, 30, 40, and 50.

RoutingActionRef
The name of a globally defined RoutingAction statement.

QoS policy statements
This topic contains information about the following QoS policy statements:
v “PolicyAction statement”
v “PolicyRule statement” on page 1176
v “ServiceCategories statement” on page 1183
v “ServicePolicyRules statement” on page 1187

PolicyAction statement

Use the PolicyAction statement to specify the type of service a flow of IP packets
(for example, from a TCP connection, or UDP data) should receive end-to-end as
they traverse the network. PolicyAction can be repeated with each having a
different name so that they can be referenced later.

This statement defines a Version 2 policy action.

Syntax

�� PolicyAction name Place Braces and Parameters on Separate Lines ��

Place Braces and Parameters on Separate Lines:

{
PolicyAction Parameters

}

PolicyAction Parameters:

1168 z/OS V2R1.0 Communications Server: IP Configuration Reference

PolicyScope Both

PolicyScope DataTraffic
RSVP
Both � OutboundInterface address

�

�
MaxRate Kbps MinRate Kbps

OutgoingTOS 0

OutgoingTOS n
�

�
MaxDelay milliseconds MaxConnections value

�

�
FlowServiceType ControlledLoad

FlowServiceType ControlledLoad
Guaranteed

MaxRatePerFlow Kbps
�

�
MaxTokenBucketPerFlow Kbps MaxFlows n

�

�
Permission Allowed

Permission Allowed
Blocked

DiffServInProfileRate Kbps
�

�
DiffServInProfilePeakRate Kbps

DiffServInProfileTokenBucket 100

DiffServInProfileTokenBucket Kb
�

�
DiffServInProfileMaxPacketSize Kbps

�

�
DiffServExcessTrafficTreatment BestEffort

DiffServExcessTrafficTreatment Drop
BestEffort

�

�
DiffServOutProfileTransmittedTOSByte 0

DiffServOutProfileTransmittedTOSByte n

Parameters

name
A string 1 - 32 characters in length specifying the name of this policy action.

PolicyScope
Indicates the scope of this PolicyAction. The following values are allowed:
v DataTraffic indicates the scope is Differentiated Services.
v RSVP indicates the scope is Integrated Services (for example, RSVP).
v Both indicates the scope is both DataTraffic + RSVP (this is the default).

Certain attributes of the policy action are used only with certain scope values,
as follows:

Chapter 21. Policy Agent and policy applications 1169

RSVP FlowServiceType, MaxRatePerFlow, MaxTokenBucketPerFlow,
MaxFlows

DataTraffic
All other attributes (Permission applies to all scope values)

When the scope value is specified as Both, both RSVP and DataTraffic
attributes can be specified, but the attributes are only applied to the
appropriate scope.

OutboundInterface
Specifies an outbound interface used for sysplex distributor distributing stack.
Incoming connection requests can be distributed to different target stacks
within the sysplex by the sysplex distributor distributing stack based on
VIPADIST statements (which define DXCF interfaces) defined for the
corresponding distributing stack.

This attribute selects the DXCF interfaces that are available for the incoming
connection request that maps to this policy. You can specify IPv4 and IPv6
addresses. You can specify up to 32 instances of this attribute. The value 0 for
IPv4 or :: for IPv6 can be specified for the interface, which indicates to the
sysplex distributor distributing stack that if it cannot distribute the request to a
target stack on one of the other specified interfaces, then the request can be
distributed to any of the other eligible target stacks.

For example, suppose 5 target stacks are defined by VIPADIST statements
(1.1.1.1 - 5.5.5.5), and 3 interfaces are defined using the OutboundInterface
attribute (1.1.1.1, 2.2.2.2, and 0.0.0.0). If an incoming request cannot be
distributed to either 1.1.1.1 or 2.2.2.2, then the specification of the 0 interface
indicates that the request should be distributed to any of the remaining stacks
(3.3.3.3 - 5.5.5.5) that are eligible to service the request. The PolicyScope
attribute must specify either DataTraffic or Both to define interfaces using this
attribute.

Result: If OutboundInterface specifies only one type of address (IPv4 or IPv6),
then inbound connections of the other type is distributed to all available
targets. For example, if only IPv6 addresses are specified for
OutboundInterface, then incoming connections to IPv4 DVIPAs are not
restricted by OutboundInterface; instead, they are distributed to all available
IPv4 targets.

Rules:

v If the IP address is IPv6, it cannot be an IPv4-mapped IPv6 address (in
hexadecimal or dotted decimal format) or an IPv6 address with the reserved
prefix ::/96. If the IPv6 address is one of these two types, an error message
is logged.

v IPv6 policy is installed but is not enforceable in a stack that is not IPv6
enabled.

MaxRate
An integer value representing the maximum rate in kilobits per second (Kbps)
allowed for traffic in this service class. This attribute is valid only for TCP. If
not specified or specified as 0, there is no enforcement of the maximum rate of
a connection by the local host. If a number other than 0 is specified, each TCP
connection that is mapped to this PolicyAction has its rate limited to this
MaxRate. Enforcement of the MaxRate is performed by the TCP/IP stack by
adjusting the TCP congestion window based on the connection round-trip time
(the rate is obtained by taking the congestion window and dividing it by the
round-trip time; note the units, for example, byte versus bit, second versus

1170 z/OS V2R1.0 Communications Server: IP Configuration Reference

millisecond). Because the minimum of the congestion window is one TCP
segment size, the minimum of the MaxRate that can be enforced is one TCP
segment over the round-trip time. If a TCP connection has a very small
round-trip delay and traverses over a very high bandwidth network (for
example, Gbit Ethernet LAN), the minimum rate that this TCP connection can
send (one segment per round-trip time) can be high. Therefore, users and
network administrators need to know their network characteristics when
setting this MaxRate; it might not be enforceable if the minimum TCP rate (for
example, one segment over round-trip time) already exceeds this specified
MaxRate. As noted, TCP segment size can play a role in this TCP minimum
rate; for example, for a given round-trip delay, the larger the segment size, the
higher the minimum TCP rate. There are different factors that can affect the
TCP segment size, for example, the local MTU size definition, the Path MTU
discovery flow (this mechanism is used to discover the maximum MTU size
that can be sent into the network without resulting in IP fragmentation), the
receivers maximum segment size, and so on.

MinRate
An integer value representing the minimum rate or throughput (Kbps) allowed
for traffic in this service class. This attribute is valid only for TCP. If not
specified or specified as 0, there is no enforcement on the minimum rate of a
connection by the local host. If a number other than 0 is specified, the rate for
any TCP connection that is mapped to this PolicyAction does not fall below
this MinRate, unless the network is really congested and by maintaining the
minimum rate the network throughput might collapse. Enforcement of the
MinRate is performed by the TCP/IP stack by manipulating the congestion
window over the connection round-trip time. Unlike the enforcement of
MaxRate, if TCP minimum rate due to the segment size or the round-trip time,
or both, is already high, and the specified MinRate is already below this rate, it
is not necessary for the TCP/IP stack to enforce the MinRate.

OutgoingTOS
Eight bits, left-aligned, representing the ToS or Traffic Class value of outbound
traffic belonging to this service class. The default is 0.

Tip: An outbound packet with a ToS or Traffic Class value that consists of
zeros enables prioritizing outbound OSA-Express data using the WorkLoad
Manager service class importance level. This function is enabled with the
WLMPriorityQ parameter. For more information about Workload Manager
provided-priorities, see prioritizing outbound OSA-Express data using the
WorkLoad Manager service class importance level in z/OS Communications
Server: IP Configuration Guide. When WLMPriorityQ is enabled, specify an
OutgoingTOS value other than 0 if you want to prevent the assignment of
QDIO priority based on the WorkLoad Manager service class importance level.

MaxDelay
An integer value representing the maximum delay (in milliseconds) allowed
for traffic in this service class. This attribute is valid only for TCP. The TCP/IP
stack does not enforce this delay.

Result: This parameter is no longer supported and is ignored.

MaxConnections
An integer value representing the maximum number of end-to-end connections
at any instant in time. This attribute is valid only with TCP. It places a limit on
the number of TCP connections mapped to this PolicyAction that can be active
at a time. If there is a request for a new TCP connection that maps to this
PolicyAction and this limit is exceeded, the connection request is rejected. The
default is that there is no policy limit. The MaxConnections attribute is

Chapter 21. Policy Agent and policy applications 1171

enforced by the TCP/IP stack. If the connection request is sent by a remote
client, a TCP RST segment is returned to notify the client that the connection is
refused. The number of rejected connections is maintained and can be retrieved
with the netstat command using the -j option. If the connection request is sent
by an application in the local host (for example, using a connect socket call), a
return code of permission denied is returned.

Restriction: This attribute only affects new connection requests, not already
active connections. For example, if a policy is activated that limits the
maximum number of connections to 10, but 15 connections already existed for
traffic that maps to the policy rule, then only 10 of the existing connections are
mapped to the policy and no new connections are accepted. However, the five
other existing connections over the limit remain active and unmapped by the
policy.

FlowServiceType
Limits the Type of Service being requested by RSVP applications. Valid values
are ControlledLoad (the default) and Guaranteed. Guaranteed service is
considered to be greater than ControlledLoad service. If ControlledLoad service
is specified, and an application requests Guaranteed, the requested service is
downgraded to ControlledLoad. To allow RSVP applications to request
Guaranteed service, specify Guaranteed for this parameter. All RSVP
parameters, FlowServiceType, MaxRatePerFlow, MaxTokenBucketPerFlow, and
MaxFlows, are enforced by the RSVP daemon application and not by the
TCP/IP stack. The TCP/IP stack, however, maintains traffic statistics of RSVP
policies, which can be retrieved with the netstat command with option -j.

MaxRatePerFlow
Specifies the maximum rate in kilobits per second for RSVP flows. RSVP
reservations are based on a traffic specification (Tspec) from the sending
application. The Tspec consists of the following values:
v r is the token bucket rate in bytes per second.
v b is the token bucket depth in bytes.
v p is the peak rate in bytes per second.
v m is the minimum packet size in bytes.
v M is the maximum packet size (MTU) in bytes.

Use this parameter to limit the r value of the Tspec. If an RSVP sender
application requests a Tspec r value larger than this parameter, the request is
downgraded to this parameter value.

RSVP receiving applications also specify a resource specification (Rspec) when
using Guaranteed service, as part of the reservation request. The Rspec consists
of the following values:
v R is the rate in bytes per second.
v S is the slack term in microseconds.

This parameter is also used to limit the R value of the Rspec for reservation
requests from RSVP receiver applications using Guaranteed service.

Guideline: This parameter is specified in kilobits per second, while the Tspec
and Rspec use bytes per second. To arrive at a compatible specification,
multiply the desired Tspec or Rspec value by 8, then divide by 1000. For
example, to specify a Tspec r value of 500000 bytes per second, specify a
MaxRatePerFlow value of 4000 (500000 * 8 / 1000 = 4000).

The default for this parameter is a system defined maximum.

1172 z/OS V2R1.0 Communications Server: IP Configuration Reference

MaxTokenBucketPerFlow
Specifies the maximum token bucket size in kilobits per second for RSVP
flows. RSVP reservations are based on a traffic specification (Tspec) from the
sending application. The Tspec consists of the following values:
v r is the token bucket rate in bytes per second.
v b is the token bucket depth in bytes.
v p is the peak rate in bytes per second.
v m is the minimum packet size in bytes.
v M is the maximum packet size (MTU) in bytes.

This parameter limits the b value of the Tspec. If an RSVP sender application
requests a Tspec b value larger than this parameter, the request is downgraded
to this parameter value.

Guideline: This parameter is specified in kilobits, while the Tspec uses bytes.
To arrive at a compatible specification, multiply the desired Tspec value by 8,
then divide by 1000. For example, to specify a Tspec b value of 75000 bytes,
specify a MaxTokenBucketPerFlow value of 600 (75000 * 8 / 1000 = 600).

The default for this parameter is a system defined maximum.

MaxFlows
Specifies the maximum number of reserved flows allowed for RSVP
applications. The default is no limit on the number of reserved flows.

Permission
Indicates whether packets belonging to this policy rule should be discarded or
allowed to proceed. Valid values are Allowed and Blocked. The default is
Allowed.

DiffServInProfileRate
Specifies the mean rate at which traffic belonging to the corresponding policy
must be policed. It is a Kbps value and must be policed in kilobits per second
(Kbps). The default value is 0, meaning no policing mechanism is enforced.
The DiffServ parameters are enforced by the TCP/IP stack. Statistics regarding
in-profile byte count can be retrieved using the netstat command with option
-j. This in-profile count can be used to calculate the amount of traffic sent out
of profile. The in-profile count should be equal to or less than the total
transmitted byte count unless the count wraps.

Unlike MaxRate/MinRate, which applies on a per TCP connection basis, these
DiffServ parameters apply to aggregated flows (multiple TCP connections can
be mapped to a single policy action). Also, it is important to note that when
DiffServ parameters are enforced against TCP traffic, the TCP minimum rate
determines whether the DiffServ parameters are enforceable, as described in
the attribute MaxRate. This is due to an optimization provision where TCP is
forced to slow down when it attempts to send beyond the committed
bandwidth specified with DiffServ parameters in the policy action with
DiffServExcessTrafficTreatment specified as Drop. TCP cannot slow down
beyond the TCP minimum rate, even if a violation occurs.

This rate that is used to generate tokens in the token bucket traffic policing
mechanism, but it is not necessarily the user/application generated traffic
rate.If this attribute is a nonzero value, the DiffServInProfileTokenBucket value
must also be nonzero.

Guideline: This parameter is used by a token bucket mechanism to control the
outbound traffic.

Chapter 21. Policy Agent and policy applications 1173

DiffServInProfilePeakRate
Specifies the peak rate that traffic belonging to the corresponding policy must
be policed. It is a Kbps value and must be policed in kilobits per second
(Kbps). The default is 0, which means no policing mechanism is enforced
against the peak rate if DiffServInProfileRate is nonzero. When nonzero, it
must not be less than that of the DiffServInProfileRate. If this attribute is
nonzero, DiffServInProfileRate and DiffServInProfileMaxPacketSize must also
be nonzero.

A token bucket mechanism used this parameter to control the outbound traffic.

DiffServInProfileTokenBucket
Specifies the maximum burst size that traffic belonging to the corresponding
policy must be policed. It is a kilobits value and must be policed in kilobits
(Kb). The default is 100 if DiffServInProfileRate is not 0. The
DiffServInProfileTokenBucket attribute is used only when the policy action also
uses the DiffServInProfileRate attribute.

A token bucket mechanism used this parameter to control the outbound traffic.

DiffServInProfileMaxPacketSize
Specifies the maximum packet size of traffic belonging to the corresponding
policy. Its value is used to police traffic against the peak rate. It is a kilobits
value with corresponding policy, in kilobits (Kb). The default is 100 if
DiffServInProfilePeakRate is not 0.

Guideline: Due to blocking in z/OS Communications Server, multiple packets
tend to be sent back to back. If the maximum packet size is set to the size of
one packet, traffic exceeds the peak rate, and those packets are sent as out of
profile packets (either with a different ToS or Traffic Class value or dropped) if
peak rate enforcement is in effect. To prevent this, the attribute must be set in
multiples of the maximum packet size or equal to the token bucket size.

DiffServExcessTrafficTreatment

Specifies what action to take when traffic exceeds its profile. Two values can be
specified with this attribute:
v Drop
v BestEffort

The default is BestEffort. These are described directly below.

When the DiffServExcessTrafficTreatment is Drop and the corresponding policy
is defined for TCP traffic, z/OS Communications Server optimizes performance
by simulating the TCP packet drop and reducing the TCP transmit rate in
order to force the outbound traffic to conform to the policy defined bandwidth.
This means that the TCP packets that result in excess traffic are transmitted,
but the corresponding TCP connections are forced to slow down immediately
(by half, which is the TCP behavior under packet loss). This helps avoid
retransmissions and prevents further excess traffic. If the policy is defined for
UDP, because there is no slowdown mechanism in UDP as in TCP, excess
traffic is discarded as specified in the policy definition.

When the DiffServExcessTrafficTreatment is BestEffort, the excess packets are
still sent; however, they are sent with the ToS or Traffic Class value specified
on DiffServOutProfileTransmittedTOSByte.

DiffServOutProfileTransmittedTOSByte
Specifies the ToS/DS or Traffic Class value to send with the excess traffic (if
action is to send excess traffic as best effort instead of dropping).

1174 z/OS V2R1.0 Communications Server: IP Configuration Reference

The normal in profile ToS or Traffic Class value comes from the current
OutgoingTOS attribute. This value is specified as a string of eight 1s and 0s.
The default is 00000000.

Tip: An outbound packet with a ToS or Traffic Class value that consists of
zeros enables prioritizing outbound OSA-Express data using the WorkLoad
Manager service class importance level. This function is enabled with the
WLMPriorityQ parameter. For more information about Workload Manager
provided-priorities, see prioritizing outbound OSA-Express data using the
WorkLoad Manager service class importance level in z/OS Communications
Server: IP Configuration Guide. When WLMPriorityQ is enabled, specify a
DiffServOutProfileTransmittedTOSByte value othle er than 0 if you want to
prevent the assignment of QDIO priority based on the WorkLoad Manager
service class importance level.

Table 76 provides a mapping of PolicyAction statement parameters to LDAP object
classes and attributes.

Table 76. PolicyAction mapping to LDAP

PolicyAction statement
parameter

Object class LDAP attribute

DiffServExcessTraffic

Treatment

ibm-serviceCategoriesAuxClass ibm-diffServExcessTrafficTreatment

DiffServInProfile

MaxPacketSize

ibm-serviceCategoriesAuxClass ibm-diffServInProfileMaxPacketSize

DiffServInProfile

PeakRate

ibm-serviceCategoriesAuxClass ibm-diffServInProfilePeakRate

DiffServInProfile

TokenBucket

ibm-serviceCategoriesAuxClass ibm-diffServInProfileTokenBucket

DiffServInProfileRate ibm-serviceCategoriesAuxClass ibm-diffServInProfileRate

DiffServOutProfile

TransmittedTOSByte

ibm-serviceCategoriesAuxClass ibm-diffServOutProfileTransmittedTOSByte

FlowServiceType ibm-serviceCategoriesAuxClass ibm-flowServiceType

MaxConnections ibm-serviceCategoriesAuxClass ibm-maxConnections

MaxDelay ibm-serviceCategoriesAuxClass ibm-maxDelay

MaxFlows ibm-serviceCategoriesAuxClass ibm-maxFlows

MaxRate ibm-serviceCategoriesAuxClass ibm-maxRate

MaxRatePerFlow ibm-serviceCategoriesAuxClass ibm-maxRatePerFlow

MaxTokenBucketPerFlow ibm-serviceCategoriesAuxClass ibm-maxTokenBucketPerFlow

MinRate ibm-serviceCategoriesAuxClass ibm-minRate

OutboundInterface ibm-serviceCategoriesAuxClass ibm-interface

OutgoingTOS ibm-serviceCategoriesAuxClass ibm-outgoingTOS

Permission ibm-serviceCategoriesAuxClass ibm-Permission

PolicyScope ibm-serviceCategoriesAuxClass ibm-policyScope

Chapter 21. Policy Agent and policy applications 1175

Examples

For an example of the PolicyAction statement, see /usr/lpp/tcpip/samples/
pagent.conf.

PolicyRule statement

Use the PolicyRule statement to specify characteristics of IP packets that are used
to map to a corresponding policy action. It defines a set of IP datagrams that
should receive a particular service.

Restriction: This statement defines a Version 2 policy rule.

Syntax

�� PolicyRule name Place Braces and Parameters on Separate Lines ��

Place Braces and Parameters on Separate Lines:

{
PolicyRule Parameters

}

PolicyRule Parameters:

PolicyRulePriority n

SourceAddressRange all

SourceAddressRange address address
�

�
DestinationAddressRange all

DestinationAddressRange address address

SourcePortRange all

SourcePortRange n n
�

�
DestinationPortRange all

DestinationPortRange n n

ProtocolNumberRange all

ProtocolNumberRange n
�

�
InboundInterface all

InboundInterface n

OutboundInterface all

OutboundInterface n
�

�
ApplicationName all

ApplicationName name ApplicationData string
�

�
ApplicationPriority n ConditionTimeRange range

�

�
MonthOfYearMask 111111111111

MonthOfYearMask n

DayOfMonthMask 31 n's

DayOfMonthMask 62 n's
�

1176 z/OS V2R1.0 Communications Server: IP Configuration Reference

�
DayOfWeekMask 1111111

DayOfWeekMask n

TimeOfDayRange 0-24

TimeOfDayRange n-m
�

�

� PolicyActionReference name

ForLoadDistribution FALSE

ForLoadDistribution
TRUE
FALSE

Parameters

name
A string 1 - 32 characters in length specifying the name of this policy rule.

PolicyRulePriority
PolicyRulePriority specifies the location of the PolicyRule entry in the
PolicyRule list. This is an integer type field. Rules are searched for a match
starting at the highest priority, so if multiple rules could possibly be matched
for a given set of traffic, the rule with the highest priority gets matched first. If
multiple rules have the same priority, then the rule with the greatest number of
attributes specified gets matched first. If the match criteria is equal, the rule
that gets mapped is unpredictable. Only one policy is ever mapped, per
PolicyScope attribute. The maximum value for this attribute is 2000000000. If
this attribute is specified, the computed priority of the rule is the specified
value plus 100. If this attribute is not specified, the computed priority of the
rule is determined by the number of selection criteria specified, but is always
less than 100. The higher the number defined, the higher the assigned priority.

SourceAddressRange
Specifies the source addresses of the sender of the traffic flow. The destination
of the data can be the client or the server. For TCP connections, the destination
of the connection is the client. For inbound connections or traffic, the source is
the remote device. For outbound connections or traffic, the source is this host.
Both IPv4 and IPv6 addresses can be specified.

Rules:

v Include a blank or a dash (-) as a delimiter.
v If the IP address is IPv6, it cannot be an IPv4-mapped IPv6 address (in

hexadecimal or dotted decimal format) or an IPv6 address with the reserved
prefix ::/96. If the IPv6 address is one of these two types, an error message
is logged.

v IPv6 policy is installed but is not enforceable in a stack that is not IPv6
enabled.

When the source address range is specified on an LDAP server using the
syntax that means all local addresses, loopback and loopback-like traffic (for
example, otracert from and to a local address), are not mapped due to
performance reasons. However, the interface attribute can be specified in
addition to the source address to accomplish this mapping.

DestinationAddressRange
Specifies the destination addresses of the receiver of the traffic flow. The
destination of the data might be the client or the server. For inbound
connections or traffic, the destination of the connection is this host. For
outbound connections or traffic, the destination of the connection is the remote
device. Both IPv4 and IPv6 addresses can be specified.

Chapter 21. Policy Agent and policy applications 1177

Rules:

v Include a blank or a dash (-) as a delimiter.
v If the IP address is IPv6, it cannot be an IPv4-mapped IPv6 address (in

hexadecimal or dotted decimal format) or an IPv6 address with the reserved
prefix ::/96. If the IPv6 address is one of these two types, an error message
is logged.

v IPv6 policy is installed but is not enforceable in a stack that is not IPv6
enabled.

When the destination address range is specified on an LDAP server using the
syntax that means all local addresses, loopback and loopback-like traffic (for
example, otracert from and to a local address), it are not mapped due to
performance reasons. However, the interface attribute can be specified in
addition to the destination address to accomplish this mapping.

SourcePortRange
The source port range. This field consists of two port numbers, separated by a
space, where the first port number is less than or equal to the second port
number. The default is 0, which is all inclusive. The source of the data can be
the client or the server. For inbound connections or traffic, the source is the
remote device. For outbound connections or traffic, the source is this host.

Rule: Include a blank, a colon (:), or a dash (-) as a delimiter.

DestinationPortRange
The destination port range. This field consists of two port numbers, separated
by a space, where the first port number is less than or equal to the second port
number. The default is 0, which is all inclusive. The destination of the data can
be the client or the server. For inbound connections or traffic, the destination is
this host. For outbound connections or traffic, the destination is the remote
device.

Rule: Include a blank, a colon (:), or a dash (-) as a delimiter.

ProtocolNumberRange
This attribute specifies the protocol range for which this policy rule applies.
The format is i1:i2, where i2 >=i1. The maximum value for this attribute is 255.
The minimum value is 0, and the default is all protocols. The default and
minimum value is 0 and designates all protocols.

Rule: Include a blank, a colon (:), or a dash (-) as a delimiter.

InboundInterface
This attribute specifies the inbound local IP subnet for which this policy rule
applies. This can be an IPv4 address or an interface name. The default is all
interfaces. If an interface name is specified, it must match a name specified on
one of the following statements in the TCP/IP profile:
v LINK statement for an IPv4 interface
v INTERFACE statement for an IPv4 or IPv6 interface

Rules:

v InboundInterface and OutboundInterface attributes should not be specified
for the same rule, because that would imply a function that is provided by a
router.

v The IPv4 address or interface that is defined must be a physical IP address
or a physical device, not a virtual device.

OutboundInterface
This attribute specifies the outbound local IP subnet for which this policy rule

1178 z/OS V2R1.0 Communications Server: IP Configuration Reference

applies. This can be an IPv4 address or an interface name. The default is all
interfaces. If an interface name is specified, it must match a name specified on
one of the following statements in the TCP/IP profile:
v LINK statement for an IPv4 interface
v INTERFACE statement for an IPv4 or IPv6 interface

Rules:

v InboundInterface and OutboundInterface attributes should not be specified
for the same rule, because that would imply a function that is provided by a
router.

v The IPv4 address or interface that is defined must be a physical IP address
or a physical device, not a virtual device.

ApplicationName
ApplicationName is a field of type string (up to eight characters) that specifies
the job name of the application. Names longer than eight characters are
truncated. A trailing asterisk indicates a wildcard specification. For example, if
FTPD* is specified, job names of FTPD and FTPD1 match. The application
name maps to the sending application for outbound data, and to the receiving
application name for inbound data. The name specified here is not case
sensitive, and is translated to uppercase before being compared to application
names.

The default is all applications.

ApplicationData
This string field of up to 128 characters specifies the application selector data
(for example, a URI for the Internet). Strings longer than 128 characters are
truncated. Conceptually, this is a virtual URL or URL template that is used for
selection; it is not necessarily the entire URL. The string specified here is case
sensitive.

This parameter is matched against a token provided by application programs.
This token might be implicitly provided by users of the Fast Response Cache
Accelerator (FRCA) function, in which case the token is a web URI. It might
also be explicitly provided by applications using the sendmsg() function with
QoS classification ancillary data. See z/OS Communications Server: IP
Programmer's Guide and Reference for more details on this support.

Tip: The specified character string can be a subset of the application-defined
token. Specified URIs should begin with the first character of the path
component of the URL.

For example, to select a URL of http://www.ibm.com:80/account/order.html,
specify the following:
ibm-ApplicationData = /account/order.html

Granularity can be determined when defining policy rules based on
application defined data. For example, if the installation wants to assign a
service level for all URLs under the account path, specify:
ibm-ApplicationData = /account

This specification would match all URLs beginning with /account (for
example, /account/order/info.html).

Note:

Chapter 21. Policy Agent and policy applications 1179

1. When URIs are specified for Web Server requests, they have an affect on
both static and dynamic content (assuming that the corresponding Web
Server support is installed).

2. This parameter provides the ability to specify rules that match the
application-defined token specified by any applications that are providing
QoS application classification data. For more information, see z/OS
Communications Server: IP Sockets Application Programming Interface
Guide and Reference.

ApplicationPriority n
Specifies the QoS service level assigned for each application-specified priority
and can have the following values:

0 Any application priority. This specification matches any
application-specified priority value.

1 Specifies EXPIDITED priority.

2 Specifies HIGH priority.

3 Specifies MEDIUM priority.

4 Specifies LOW priority.

5 Specifies BESTEFFORT priority.

Restriction: ApplicationPriority is used to select traffic with a matching
application-specified priority value. It does not assign a QoS service level to
the traffic. That function is provided by the corresponding PolicyAction.

For more information about providing classification data for differentiated
services policies from an application, see z/OS Communications Server: IP
Programmer's Guide and Reference.

ConditionTimeRange
This field specifies an overall range of calendar dates and times over which a
policy rule is valid. It is a string consisting of a start date and time, then a
colon (:) followed by an end date and time. The first date indicates the
beginning of the range, and the second date indicates the end of the range.
Thus, the second date and time must be later than the first. Dates are
expressed as substrings of the form yyyymmddhhmmss. Seconds are rounded
to the nearest minute. Because all dates and times are converted internally to
the Posix time format, do not specify dates and times before the start of the
Posix epoch, which is January 1, 1970, 00:00:00 UTC.

For example, 20010101080000:20010131120000 is January 1, 2001, 0800 through
January 31, 2001, noon.

Note:

1. The internal Posix time format is expressed in terms of seconds since the
epoch, which means the time wraps sometime early in the year 2038.
Therefore, do not specify dates or times later than this.

2. All dates and times refer to local time.

MonthOfYearMask
This string field specifies which months of the year the policy rule is valid.
This attribute is formatted as a string containing 12 0’s and 1’s, where the 1’s
identify the months (beginning with January) in which the policy rule is valid.
The value 000010010000, for example, indicates that a policy rule is valid only
in the months May and August. If this attribute is omitted, then the policy
assumes that it is valid for all twelve months.

1180 z/OS V2R1.0 Communications Server: IP Configuration Reference

DayOfMonthMask
This string field specifies which days of the month the policy rule is valid. The
day of month mask can be 31 or 62 bits. The second 31 bits specify the days of
the month in reverse order. Bit 32 is the last day of the month, bit 33 is the
second from last day of month, and so on. This attribute is formatted as a
string containing 31 or 62 0’s and 1’s, where the 1’s identify the days of the
month in which the policy rule is valid. The value
111000000000000000000000000000, for example, indicates that a policy rule is
valid only on the first three days of each month. For months with less than 31
days, the digits corresponding to the missing days are ignored.

The default is every day of the month.

DayOfWeekMask
A mask of seven bits representing the days in a week (Sunday through
Saturday) that this policy rule is active. For example, 0111110 represents
weekdays. The default is all week.

TimeOfDayRange
A series of time intervals that indicate the time of day, expressed in local time,
during which this policy rule is active. Separate intervals with a comma. You
can specify hours and optional minutes, separated by a colon. The values 0
and 24 both indicate midnight. Each interval consists of two values separated
by a dash. If the second value is smaller than or equal to the first value, then
the interval spans midnight. For example, the following statement would result
in this policy rule being active from 5:30 PM until 8:30 AM:
TimeOfDayRange 0-8:30, 17:30-24

You can also configure the same time interval as follows:
TimeOfDayRange 17:30-8:30

The default is 24 hours.

PolicyActionReference
Indicates the name of a policy action from a policy action statement (for
example, interactive) that this policy rule uses.

A maximum of four action references can be specified.

ForLoadDistribution
Specifies whether or not the policy rule is intended for Sysplex Distribution.
Valid values are TRUE and FALSE. The default is FALSE. When TRUE is
specified, the policy rule is used on sysplex distributor distributing stacks to
route connection requests inbound from the network to one or more target
stacks.

Table 77 provides mapping of the PolicyRule statement parameters to LDAP object
classes and attributes.

Table 77. PolicyRule mapping to LDAP

PolicyRuleStatement
parameter

LDAP object class LDAP attribute

PolicyRulePriority ibm-policyRule ibm-policyRulePriority

PolicyActionReference ibm-policyRule ibm-policyRuleActionList

Not applicable ibm-policyRule ibm-policyRuleEnabled

Not applicable ibm-policyRule ibm-policyRuleConditionListType

Chapter 21. Policy Agent and policy applications 1181

Table 77. PolicyRule mapping to LDAP (continued)

PolicyRuleStatement
parameter

LDAP object class LDAP attribute

Not applicable ibm-policyRule ibm-policyRuleConditionList

or

ibm-policyRuleConditionListDN

Not applicable ibm-policyRule ibm-policyRuleValidityPeriodList

Not applicable ibm-policyRule ibm-policyRuleSequenceActions

Not applicable ibm-policyRule ibm-policyRoles

ForLoadDistribution ibm-policyGroupLoadDistribution

AuxClass

ibm-policyGroupForLoadDistribution

SourceAddressRange ibm-hostConditionAuxClass ibm-sourceIPAddressRange

DestinationAddress

Range

ibm-hostConditionAuxClass ibm-destinationIPAddressRange

SourcePortRange ibm-applicationConditionAuxClass ibm-sourcePortRange

DestinationPortRange ibm-applicationConditionAuxClass ibm-destinationPortRange

ProtocolNumberRange ibm-applicationConditionAuxClass ibm-protocolNumberRange

InboundInterface ibm-routeConditionAuxClass ibm-interface

OutboundInterface ibm-routeConditionAuxClass ibm-interface

ApplicationName ibm-applicationConditionAuxClass ibm-applicationName

ApplicationData ibm-applicationConditionAuxClass ibm-applicationData

ApplicationPriority ibm-applicationConditionAuxClass ibm-applicationPriority

Not applicable ibm-idsIPAttackConditionAuxClass ibm-idsIPOptionRange

Not applicable ibm-idsTransportConditionAuxClass ibm-idsLocalPortRange

Not applicable ibm-idsTransportConditonAuxClass ibm-idsRemotePortRange

Not applicable ibm-idsTransportConditonAuxClass ibm-idsProtocolRange

Not applicable ibm-idsHostConditionAuxClass ibm-idsLocalHostIPAddress

Not applicable ibm-idsHostConditionAuxClass ibm-idsRemoteHostIPAddress

ConditionTimeRange ibm-policyTimePeriodConditionAuxClass ibm-ptpConditionTime

MonthOfYearMask ibm-policyTimePeriodConditionAuxClass ibm-ptpConditionMonthOfYearMask

DayOfMonthMask ibm-policyTimePeriodConditionAuxClass ibm-ptpConditionDayOfMonthMask

DayOfWeekMask ibm-policyTimePeriodConditionAuxClass ibm-ptpConditionDayOfWeekMask

TimeOfDayRange ibm-policyTimePeriodConditionAuxClass ibm-ptpConditionTimeOfDayMask

Not applicable ibm-policyTimePeriodConditionAuxClass ibm-ptpConditionTimeZone

Not applicable ibm-policyTimePeriodConditionAuxClass ibm-ptpConditionLocalOrUtcTime

Also, for more information about policy schema definition files, see Chapter 23,
“Intrusion detection services policy,” on page 1225.

Examples

For an example of the PolicyRule statement, see /usr/lpp/tcpip/samples/
pagent.conf.

1182 z/OS V2R1.0 Communications Server: IP Configuration Reference

Usage notes

If PolicyRulePriority is specified, the weight of PolicyRule is equal to the specified
priority plus 100. Otherwise, the weight is determined by the number of
parameters that are specified in the PolicyRule. The parameters that affect this
weight are:
v ApplicationName
v ApplicationData
v ApplicationPriority
v SourceAddressRange
v DestinationAddressRange
v SourcePortRange
v DestinationPortRange
v InboundInterface
v OutboundInterface
v Direction not equal to BOTH
v ProtocolNumberRange

ServiceCategories statement

Use the ServiceCategories statement to specify the Type of Service that a flow of IP
packets (for example, from a TCP connection, or UDP data) should receive end to
end as they traverse the network. ServiceCategories can be repeated, with each
having a different name so that they can be referenced later.

Restriction: This statement defines a Version 1 policy action.

Syntax

�� ServiceCategories name Place Braces and Parameters on Separate Lines ��

Place Braces and Parameters on Separate Lines:

{
ServiceCategories Parameters

}

ServiceCategories Parameters:

MaxRate Kbps MinRate Kbps MaxDelay milliseconds
�

�
Interface All

Interface addr

OutgoingTOS 0

OutgoingTOS n MaxConnections n
�

Chapter 21. Policy Agent and policy applications 1183

�
DaysOfWeekMask 1111111

DaysOfWeekMask n

�

TimeOfDayRange 0-24

TimeOfDayRange n

�

�
FlowServiceType ControlledLoad

FlowServiceType ControlledLoad
Guaranteed

MaxRatePerFlow Kbps
�

�
MaxTokenBucketPerFlow Kbps MaxFlows n

Parameters

name
A string 1 - 32 characters in length specifying the name of this service category.

MaxRate
An integer value representing the maximum rate in kilobits per second (Kbps)
allowed for traffic in this service class. This attribute is valid for only or TCP. If
not specified or specified as 0, there is no enforcement of the maximum rate of
a connection by the local host. If a number other than 0 is specified, each TCP
connection that is mapped to this ServiceCategories has its rate limited to this
MaxRate. Enforcement of the MaxRate is performed by the TCP/IP stack by
adjusting the TCP congestion window based on the connection round-trip time
(the rate is obtained by taking the congestion window and dividing it by the
round-trip time; pay attention to the units, for example, byte versus bit, second
versus millisecond). Because the minimum of the congestion window is one
TCP segment size, the minimum of the MaxRate that can be enforced is one
TCP segment over the round-trip time. If a TCP connection has a very small
round-trip delay and traverses over a very high bandwidth network (for
example, Gbit Ethernet LAN), the minimum rate that this TCP connection can
send (one segment per round-trip time) can be high. Therefore, users and
network administrators need to know their network characteristics when
setting this MaxRate; it might not be enforceable if the minimum TCP rate (for
example, one segment over round-trip time) already exceeds this specified
MaxRate. As noted, TCP segment size can play a role in this TCP minimum
rate; for example, for a given round-trip delay, the larger the segment size the
higher the minimum TCP rate. There are different factors that can affect the
TCP segment size, such as the local MTU size definition, the Path MTU
discovery flow (for example, this mechanism is used to discover the maximum
MTU size that can be sent into the network without resulting in IP
fragmentation), the receivers maximum segment size, and so on.

MinRate
An integer value representing the minimum rate or throughput (Kbps) allowed
for traffic in this service class. This attribute is valid only for TCP. If not
specified or specified as 0, there is no enforcement on the minimum rate of a
connection by the local host. If a number other than 0 is specified, the rate for
any TCP connection that is mapped to this ServiceCategories does not fall
below this MinRate, unless the network is really congested and by maintaining
the minimum rate the network throughput might collapse. Enforcement of the
MinRate is performed by the TCP/IP stack by manipulating the congestion
window over the connection round-trip time. Unlike the enforcement of
MaxRate, if TCP minimum rate due to the segment size or the round-trip time,

1184 z/OS V2R1.0 Communications Server: IP Configuration Reference

or both, is already high, and the specified MinRate is already below this rate, it
is not necessary for the TCP/IP stack to enforce the MinRate.

MaxDelay
An integer value representing the maximum delay (in milliseconds) allowed
for traffic in this service class. This attribute is valid only for TCP. The TCP/IP
stack does not enforce this delay.

Result: This parameter is no longer supported and is ignored.

Interface
The local IP subnet (for example, HOME statements) for which this service
category applies. The default is all interfaces.

OutgoingTOS
Eight bits, left-aligned, representing the ToS value of outbound traffic
belonging to this service class. The default is 0.

MaxConnections
An integer value representing the maximum number of end to end connections
at any instant in time. This attribute is valid only with TCP. It places a limit on
the number of TCP connections mapped to this ServiceCategories that can be
active at a time. If there is a request for a new TCP connection that maps to
this ServiceCategories and this limit is exceeded, the connection request is
rejected. The default is that there is no policy limit. The MaxConnections
attribute is enforced by the TCP/IP stack. If the connection request comes from
a remote client, a TCP RST segment is returned to notify the client that the
connection is refused. The number of rejected connections is kept and can be
retrieved by the netstat command with -j option. If the connection request
comes from an application in the local host (for example, using a connect
socket call), a return code of permission denied is returned.

DaysOfWeekMask
A mask of seven bits representing the days in a week (Sunday through
Saturday) that this service policy is active. For example, 0111110 represents
weekdays. The default is all week.

TimeOfDayRange
A series of time intervals that indicate the time, expressed in local time, during
which this service policy is active. Separate intervals with a comma. You can
specify hours and optional minutes, separated by a colon. The values 0 and 24
both indicate midnight. Each interval consists of two values separated by a
dash. If the second value is smaller than or equal to the first value, then the
interval spans midnight. For example, the following statement results in this
service policy being active from 5:30 PM until 8:30 AM:
TimeOfDayRange 0-8:30, 17:30-24

You can also configure the same time interval as follows:
TimeOfDayRange 17:30-8:30

The default is 24 hours.

FlowServiceType
Limits the Type of Service being requested by RSVP applications. Valid values
are ControlledLoad (the default) and Guaranteed. Guaranteed service is
considered to be greater than ControlledLoad service. If ControlledLoad service
is specified, and an application requests Guaranteed, the requested service is
downgraded to ControlledLoad. To allow RSVP applications to request
Guaranteed service, specify Guaranteed for this parameter. All RSVP
parameters, FlowServiceType, MaxRatePerFlow, MaxTokenBucketPerFlow, and

Chapter 21. Policy Agent and policy applications 1185

MaxFlows are enforced by the RSVP daemon application and not by the
TCP/IP stack. The TCP/IP stack, however, keeps traffic statistics of RSVP
policies, which can be retrieved by using netstat command with the option -j.

MaxRatePerFlow
Specifies the maximum rate in kilobits per second for RSVP flows. RSVP
reservations are based on a traffic specification (Tspec) from the sending
application. The Tspec consists of the following values:
v r is the token bucket rate in bytes per second.
v b is the token bucket depth in bytes.
v p is the peak rate in bytes per second.
v m is the minimum packet size in bytes.
v M is the maximum packet size (MTU) in bytes.

Use this parameter to limit the r value of the Tspec. If an RSVP sender
application requests a Tspec r value larger than this parameter, the request is
downgraded to this parameter value.

RSVP receiving applications also specify a resource specification (Rspec) when
using Guaranteed service, as part of the reservation request. The Rspec consists
of the following values:
v R is the rate in bytes per second.
v S is the slack term in microseconds.

This parameter is also used to limit the R value of the Rspec for reservation
requests from RSVP receiver applications using Guaranteed service.

This parameter is specified in kilobits per second, while the Tspec and Rspec
use bytes per second. To arrive at a compatible specification, multiply the
desired Tspec or Rspec value by 8, then divide by 1 000. For example, to
specify a Tspec r value of 500 000 bytes per second, specify a MaxRatePerFlow
value of 4 000 (500 000 * 8 / 1 000 = 4 000).

The default for this parameter is a system defined maximum.

MaxTokenBucketPerFlow
Specifies the maximum token bucket size in kilobits per second for RSVP
flows. RSVP reservations are based on a traffic specification (Tspec) from the
sending application. The Tspec consists of the following values:
v r is the token bucket rate in bytes per second.
v b is the token bucket depth in bytes.
v p is the peak rate in bytes per second.
v m is the minimum packet size in bytes.
v M is the maximum packet size (MTU) in bytes.

This parameter is used to limit the b value of the Tspec. If an RSVP sender
application requests a Tspec b value larger than this parameter, the request is
downgraded to this parameter value.

This parameter is specified in kilobits, while the Tspec uses bytes. To arrive at
a compatible specification, multiply the desired Tspec value by 8, then divide
by 1 000. For example, to specify a Tspec b value of 75 000 bytes, specify a
MaxTokenBucketPerFlow value of 600 (75 000 * 8 / 1000 = 600).

The default for this parameter is a system defined maximum.

1186 z/OS V2R1.0 Communications Server: IP Configuration Reference

MaxFlows
Specifies the maximum number of reserved flows allowed for RSVP
applications. The default is no limit on the number of reserved flows.

Examples

Following is an example of the ServiceCategories Version 1 Action statement.

ServicePolicyRules statement

Use the ServicePolicyRules statement to specify characteristics of IP packets that
are used to map to a corresponding service category; it defines a set of IP
datagrams that should receive a particular service.

Restriction: This statement defines a Version 1 Service Policy Rule.

Syntax

�� ServicePolicyRules name Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
ServicePolicyRules Parameters

}

ServicePolicyRules Parameters:

PolicyScope DataTraffic

PolicyScope DataTraffic
RSVP
Both

Direction Outgoing

Direction Incoming
Outgoing
Both

�

ServiceCategories V1Action
{
PolicyScope Both
MaxRate 10000
MinRate 2000
MaxTokenBucket 5000
Interface 9.67.116.98
OutgoingTOS 11100000
MaxDelay 50
MaxConnections 100
DaysOfWeekMask 1111111
TimeOfDayRange 08:00-13:45,13:50-24:00
FlowServiceType Guaranteed
MaxRatePerFlow 440# 55000 bytes/second
MaxTokenBucketPerFlow 48 # 6000 bytes
MaxFlows 10
}

Figure 33. Example of the ServiceCategories Version 1 Action statement

Chapter 21. Policy Agent and policy applications 1187

�
Permission Allowed

Permission Allowed
Blocked

ProtocolNumber All

ProtocolNumber n

Interface All

Interface addr
�

�
SourceAddressRange All

SourceAddressRange addr addr

DestinationAddressRange All

DestinationAddressRange addr addr
�

�
SourcePortRange All

SourcePortRange n n

DestinationPortRange All

DestinationPortRange n n
�

�
DaysOfWeekMask 1111111

DaysOfWeekMask n

TimeOfDayRange 0-24

TimeOfDayRange n
�

�

� ServiceReference name

Parameters

name
A string 1 - 32 characters in length specifying the name of this policy rule.

PolicyScope
Indicates to what traffic this policy rule applies. Valid values are DataTraffic,
RSVP, and Both. The default is DataTraffic. When RSVP (Resource reSerVation
Protocol, a network protocol running on top of IP) is specified, this policy only
applies to data that are specifically reserved by using RSVP. When DataTraffic is
specified, the policy applies to all other non-RSVP data.

Direction
Indicates the direction of traffic for which this policy rule applies. Valid values
are Incoming, Outgoing, and Both. The default is Outgoing.

Restriction: Policies are applied to TCP on a connection basis, whereas they are
applied to UDP/RAW on a per-packet basis. Therefore, the Direction attribute
is also mapped accordingly. More specifically, if a policy is defined for TCP, the
Direction attribute applies to the direction of the connection (inbound if the
local 390 host is to receive the connection request, such as incoming TCP SYN
segments). If a policy is defined for UDP/RAW, Direction applies to individual
packets.

Permission
Indicates whether packets belonging to this policy rule should be discarded or
allowed to proceed. Valid values are Allowed and Blocked. The default is
Allowed.

ProtocolNumber
This is a 1-byte field in the IP header to identify the protocol running on top of
IP. Common protocols are UDP and TCP. For UDP, TCP, and RAW, this field
can be specified with these names. For others, a number has to be specified
(for example, 1 for ping). The default is all protocols.

1188 z/OS V2R1.0 Communications Server: IP Configuration Reference

Interface
The local IP subnet for which this policy rule applies. The default is all
interfaces.

SourceAddressRange
The local IP address range. This field consists of two addresses, separated by a
space, where the first address is less than or equal to the second address. The
default is 0, which is all inclusive.

SourceAddressRange is the address range of addresses that are local to the 390
host (for example, defined by way of HOME statements in the TCP/IP
configuration).

Rules:

v Include a blank or a dash (-) as a delimiter.
v If the IP address is IPv6, it cannot be an IPv4-mapped IPv6 address (in

hexadecimal or dotted decimal format) or an IPv6 address with the reserved
prefix ::/96. If the IPv6 address is one of these two types, an error message
is logged.

DestinationAddressRange
The remote IP address range. This field consists of two addresses, separated by
a space, where the first address is less than or equal to the second address. The
default is 0, which is all inclusive.

DestinationAddressRange is the address range of the remote hosts that are
communicating with the local 390 host.

Rules:

v Include a blank or a dash (-) as a delimiter.
v If the IP address is IPv6, it cannot be an IPv4-mapped IPv6 address (in

hexadecimal or dotted decimal format) or an IPv6 address with the reserved
prefix ::/96. If the IPv6 address is one of these two types, an error message
is logged.

SourcePortRange
The local port range. This field consists of two port numbers, separated by a
space, where the first port number is less than or equal to the second port
number. The default is 0, which is all inclusive.

SourcePortRange contains the port range of the remote hosts that are
communicating with the local 390 host.

Rule: Include a blank, a colon (:), or a dash (-) as a delimiter.

DestinationPortRange
The remote port range. This field consists of two port numbers, separated by a
space, where the first port number is less than or equal to the second port
number. The default is 0, which is all inclusive.

DestinationPortRange contains the address range of the remote hosts that are
communicating with the local 390 host.

Rule: Include a blank, a colon (:), or a dash (-) as a delimiter.

DaysOfWeekMask
A mask of seven bits representing the days in a week (Sunday through
Saturday) that this policy rule is active. For example, 0111110 represents
weekdays. The default is all week.

TimeOfDayRange
A series of time intervals that indicate the time, expressed in local time, during

Chapter 21. Policy Agent and policy applications 1189

which this policy rule is active. Separate intervals with a comma. You can
specify hours and optional minutes, separated by a colon. The values 0 and 24
both indicate midnight. Each interval consists of two values separated by a
dash. If the second value is smaller than or equal to the first value, then the
interval spans midnight. For example, the following statement results in this
policy being active from 5:30 PM until 8:30 AM:
TimeOfDayRange 0-8:30, 17:30-24

You can also configure the same time interval as follows:
TimeOfDayRange 17:30-8:30

The default is 24 hours.

ServiceReference
Indicates the name of a service category from a service category statement (for
example, interactive) that this policy rule uses. One or more service category
names can be specified to associate this policy rule with different interfaces or
different service policies depending, for example, on the time when each of
those service policies are active.

Examples

Following is an example of the ServicePolicyRules Version 1 statement.

Usage notes

The weight of ServicePolicyRules is determined by the number of parameters that
are specified in the ServicePolicyRules. The parameters that affect this weight are:
v SourceAddressRange
v DestinationAddressRange
v SourcePortRange
v DestinationPortRange
v Interface
v ProtocolNumber
v Direction not equal to BOTH
v PolicyScope not equal to BOTH

ServicePolicyRules V1Rule
{
PolicyScope Both
Direction Both
Permission Allowed
ProtocolNumber TCP
Interface 9.67.116.98
SourceAddressRange 9.67.100.7.9.67.100.11
DestinationPortRange 100-5000
DaysOfWeekMask 1111111
TimeOfDayRange 08:00-23:00
ServiceReference V1Action
}

Figure 34. Example of the ServicePolicyRules Version 1 statement

1190 z/OS V2R1.0 Communications Server: IP Configuration Reference

Reusable policy statements
This topic contains information about the following reusable policy statements:
v “IpAddr statement”
v “IpAddrGroup statement” on page 1192
v “IpAddrSet statement” on page 1193
v “IpOptionGroup statement” on page 1195
v “IpOptionRange statement” on page 1195
v “IpProtocolGroup statement” on page 1196
v “IpProtocolRange statement” on page 1197
v “IpTimeCondition statement” on page 1198
v “Ipv6NextHdrGroup statement” on page 1200
v “Ipv6NextHdrRange statement” on page 1200
v “PortGroup statement” on page 1201
v “PortRange statement” on page 1202
v “TrafficDescriptor statement” on page 1203
v “TrafficDescriptorGroup statement” on page 1205

IpAddr statement

Use the IpAddr statement to encapsulate a single IP address specification. It can be
referenced from any statement that requires a single address specification. It can
also be referenced from an IpAddrGroup statement.

Syntax

�� IpAddr
name

Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
Addr ipaddress
}

Parameters

name
A string 1 - 32 characters in length specifying the name of this IpAddr
statement.

Rule: If this IpAddr statement is not specified inline within another statement,
a name value must be provided. If a name is not specified for an inline IpAddr
statement, a nonpersistent system name is created.

Addr
A single IP address.

Rules for AT-TLS policies:

Chapter 21. Policy Agent and policy applications 1191

v If the IP address is IPv6, it cannot be an IPv4-mapped IPv6 address
(in hexadecimal or dotted decimal format) or an IPv6 address with
the reserved prefix ::/96. If the IPv6 address is one of these two
types, an error message is logged.

v IPv6 policy is installed but is not enforceable in a stack that is not
IPv6 enabled.

Rules for IPSec policies:

v IPv4-mapped IPv6 addresses and IPv6 addresses with the reserved
prefix ::/96 are valid only for IP filter rules and for the Identity
parameter on local and remote security end points. If the IPv6
address is one of these types for any other IPSec policies, an error
message is logged.

v IPv6 policy is installed but is not enforceable in a stack that is not
IPv6 enabled.

Rules for IDS policies:

v If the IP address is an IPv6 address, it cannot be an IPv4-mapped
IPv6 address (in hexadecimal or dotted decimal format) or an IPv6
address with the reserved prefix ::/96. If the IPv6 address is one of
these types, an error message is logged.

v IPv6 policy is installed but is not enforceable in a stack that is not
IPv6 enabled.

Rules for Routing policies:

v If the IP address is an IPv6 address, it cannot be an IPv4-mapped
address in hexadecimal or dotted decimal format or an IP address
with the reserved prefix ::/96. If the IPv6 address is one of these
types, then an error message is logged.

v IPv6 policy is installed but is not enforceable in a stack that is not
IPv6 enabled.

Restriction:

v This statement is not available for use with QoS policies.

IpAddrGroup statement

Use the IpAddrGroup statement to define an IP address group. An IpAddrGroup
statement identifies a set of IP specifications that make up the IP address group.

Syntax

�� IpAddrGroup name Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

�

{

IpAddr
IpAddrRef name
IpAddrSet
IpAddrSetRef name

}

1192 z/OS V2R1.0 Communications Server: IP Configuration Reference

Parameters

name
A string 1 - 32 characters in length specifying the name of this IP address
group.

IpAddr
An inline specification of an IpAddr statement to be included in this group.

IpAddrRef
The name of a globally defined IpAddr statement.

IpAddrSet
An inline specification of an IpAddrSet statement to be included in this group.

IpAddrSetRef
The name of a globally defined IpAddrSet statement.

Result for AT-TLS policies:
When an IpAddrGroup statement contains non-continuous ranges of IP
addresses, Policy Agent cannot merge these conditions into a single
condition. The group's ranges are displayed by pasearch, as configured,
with the summary condition equal to the lowest from value in the group to
the highest to value in the group. If an IP address of 0.0.0.0 exists in an
IpAddrGroup statement, the summary condition for this attribute is set to
All. When an IpAddrGroup statement contains a mixture of IPv4 and IPv6
addresses, a summary condition cannot be created. The group's ranges are
displayed by pasearch, as configured, with a summary condition for this
attribute of All.

Result for Routing policies:
When an IpAddrGroup statement contains non-continuous ranges of IP
addresses, Policy Agent cannot merge these conditions into a single
condition. The ranges of the group are displayed by pasearch, as
configured, with the summary condition equal to the lowest from value in
the group to the highest to value in the group. If an IP address of 0.0.0.0
exists in an IpAddrGroup statement, the summary condition for this
attribute is set to All. When an IpAddrGroup statement contains a mixture
of IPv4 and IPv6 addresses, a summary condition cannot be created. The
ranges of the group are displayed by pasearch, as configured, with a
summary condition for this attribute of All.

Rule: For IPSec, all addresses defined within this address group must be in the
same address family (IPv4 or IPv6).

IpAddrSet statement

Use the IpAddrSet statement to encapsulate either a prefix or range of IP address
specifications. It can be referenced from any statement that allows for a set
specification of IP addresses.

Syntax

�� IpAddrSet
name

Put Braces and Parameters on Separate Lines ��

Chapter 21. Policy Agent and policy applications 1193

Put Braces and Parameters on Separate Lines:

{
Prefix ipaddress/prefixLength
Range ipaddress-ipaddress

}

Parameters

name
A string 1 - 32 characters in length specifying the name of this IpAddrSet
statement.

Rule: If this IpAddrSet statement is not specified inline within another
statement, a name value must be provided. If a name is not specified for an
inline IpAddrSet statement, a nonpersistent system name is created.

Prefix
A prefix IP address specification.

The prefixLength value is the number of unmasked leading bits in the ipaddress
value. The prefixLength value can be in the range 0 - 32 for IPv4 addresses and
from 0 - 128 for IPv6 addresses. A packet matches this condition if its
unmasked bits are identical to the unmasked bits defined.

Range
A range of IP addresses.

Rules for AT-TLS policies:

v If the IP address is an IPv6 address, it cannot be an IPv4-mapped IPv6
address in hexadecimal or dotted decimal format or an IPv6 address
with the reserved prefix ::/96. If the IPv6 address is one of these types,
an error message is logged.

v IPv6 policy is installed but is not enforceable in a stack that is not IPv6
enabled.

Rules for IPSec policies:

v IPv4-mapped IPv6 addresses and IPv6 addresses with the reserved
prefix ::/96 are valid only for IP filter rules and for the Identity
parameter on local and remote security end points. If the IPv6 address is
one of these types for any other IPSec policies, an error message is
logged.

v IPv6 policy is installed, but is not enforceable in a stack that is not IPv6
enabled.

Rules for IDS policies:

v If the IP address is an IPv6 address, it cannot be an IPv4-mapped IPv6
address in hexadecimal or dotted decimal format or an IPv6 address
with the reserved prefix ::/96. If the IPv6 address is one of these types,
an error message is logged.

v IPv6 policy is installed but is not enforceable in a stack that is not IPv6
enabled.

Rules for Routing policies:

v If the IP address is an IPv6 address, it cannot be an IPv4-mapped
address in hexadecimal or dotted decimal format or an IP address with
the reserved prefix ::/96. If the IPv6 address is one of these types, then
an error message is logged.

1194 z/OS V2R1.0 Communications Server: IP Configuration Reference

v IPv6 policy is installed but is not enforceable in a stack that is not IPv6
enabled.

Restriction:

v This statement is not available for use with QoS policies.

IpOptionGroup statement

Use the IpOptionGroup statement to define an IP option group. An IpOptionGroup
statement identifies a set of IP option specifications that make up the IP option
group.

Restriction: This statement is available for use only with IDS configuration
policies.

Syntax

�� IpOptionGroup name Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
IpOptionGroup Parameters

}

IpOptionGroup Parameters:

� IpOptionRange
IpOptionRangeRef name

Parameters

name
A string 1 - 32 characters in length for the name of this IpOptionGroup.

IpOptionRange
An inline specification of an IpOptionRange statement to be included in this
group.

IpOptionRangeRef
The name of a globally defined IpOptionRange statement.

IpOptionRange statement

Use the IpOptionRange statement to encapsulate a single IP option or range of IP
options. It can be referenced from any statement that allows for a set specification
of IP options.

Restriction: This statement is available for use only with IDS configuration
policies.

Chapter 21. Policy Agent and policy applications 1195

Syntax

�� IpOptionRange Put Braces and Parameters on Separate Lines
name

��

Put Braces and Parameters on Separate Lines:

{
IpOptionRange Parameters

}

IpOptionRange Parameters:

IpOption n
n m

Parameters

name
A string 1 - 32 characters in length specifying the name of this IPOptionRange
statement.

Rule: If this IPOptionRange statement is not specified inline within another
statement, name must be provided. If a name is not specified for an inline
IPOptionRange statement, a nonpersistent system name is created.

IpOption
A single IP option or range of options.

Valid values for n are 1 - 255. While there are 255 possible valid IP options,
only a few are in common usage today. If an m value is specified, it must be
greater than or equal to n and less than 256.

Restriction: For IDS policy attack types RESTRICTED_IPV6_DST_OPTIONS
and RESTRICTED_IPV6_HOP_OPTIONS, you cannot restrict options 0 (Pad1)
or 1 (PadN). They are always allowed.

IpProtocolGroup statement

Use the IpProtocolGroup statement to define a protocol group. An
IpProtocolGroup statement identifies a set of protocol specifications that make up
the protocol group.

Restriction: This statement is available for use only with IDS configuration
policies.

Syntax

�� IpProtocolGroup name Put Braces and Parameters on Separate Lines ��

1196 z/OS V2R1.0 Communications Server: IP Configuration Reference

Put Braces and Parameters on Separate Lines:

{
IpProtocolGroup Parameters

}

IpProtocolGroup Parameters:

IpProtocolRange
IpProtocolRangeRef name

Parameters

name
A string 1 - 32 characters in length specifying the name of this
IpProtocolGroup.

IpProtocolRange
An inline specification of an IpProtocolRange statement to be included in this
group.

IpProtocolRangeRef
The name of a globally defined IpProtocolRange statement.

IpProtocolRange statement

Use the IpProtocolRange statement to encapsulate a single protocol or range of
protocols. This statement can be referenced from any statement that allows for a
set specification of protocols.

Restriction: This statement is available for use only with IDS configuration
policies.

Syntax

�� IpProtocolRange Put Braces and Parameters on Separate Lines
name

��

Put Braces and Parameters on Separate Lines:

{
IpProtocolRange Parameters

}

IpProtocolRange Parameters:

IpProtocol n
n m

Parameters

name
A string 1 -32 characters in length specifying the name of this IpProtocolRange
statement.

Chapter 21. Policy Agent and policy applications 1197

Rule: If this IpProtocolRange statement is not specified inline within another
statement, a name value must be provided. If a name is not specified for an
inline IpProtocolRange statement, a nonpersistent system name is created.

IpProtocol
A single protocol or range of protocols.

Valid values for n are in the range 0 - 255. A protocol range consists of one or
more consecutive protocol numbers. If an m value is specified, it must be
greater than or equal to n and less than 256.

Rule: You must include a blank, a colon (:), or a dash (-) as a delimiter.

IpTimeCondition statement

Use the IpTimeCondition statement to define when the associated rule or action is
in effect.

Syntax

�� IpTimeCondition Put Braces and Parameters on Separate Lines
name

��

Put Braces and Parameters on Separate Lines:

{
IpTimeCondition Parameters

}

IpTimeCondition Parameters:

ConditionTimeRange range

MonthOfYearMask 111111111111

MonthOfYearMask 12 n's
�

�
DayOfMonthMask 31 1's

DayOfMonthMask 31 n's
DayOfMonthMask 62 n's

TimeofDayRange 0-24

TimeofDayRange n-m
�

�
DayOfWeekMask 1111111

DayOfWeekMask 7 n's

Parameters

name
A string 1 - 32 characters in length specifying the name of this
IpTimeCondition statement.

Rule: If this IpTimeCondition statement is not specified inline within another
statement, a name value must be provided. If a name is not specified for an
inline IpTimeCondition, a nonpersistent system name is created.

ConditionTimeRange
This field specifies an overall range of calendar dates and times over which a
policy rule or action is active. It is a string consisting of a start date and time,

1198 z/OS V2R1.0 Communications Server: IP Configuration Reference

then a colon (:) followed by an end date and time. The first date indicates the
beginning of the range, and the second date indicates the end of the range.
Thus, the second date and time must be later than the first. Dates are
expressed as substrings of the form yyyymmddhhmmss. Seconds are rounded
to the nearest minute. Because all dates and times are converted internally to
the Posix time format, do not specify dates and times before the start of the
Posix epoch, which is January 1, 1970, 00:00:00 UTC.

For example, 20010101080000:20010131120000 is January 1, 2001, 0800 through
January 31, 2001, noon.

Tips:

v The internal Posix time format is expressed in terms of seconds since the
epoch, which means the time wraps sometime early in the year 2038.
Therefore, do not specify dates or times later than this.

v All dates and times refer to local time.

MonthOfYearMask
This string field specifies which months of the year the policy rule or action is
valid. This attribute is formatted as a string containing 12 0's and 1's, where
the 1's identify the months (beginning with January) in which the policy rule
or action is valid. The value 000010010000, for example, indicates that a policy
rule or action is valid only in the months May and August. The default is that
the policy assumes that it is valid for all twelve months.

DayOfMonthMask
This string field specifies which days of the month the policy rule or action is
valid. The day of month mask can be 31 or 62 bits. The second 31 bits specify
the days of the month in reverse order. Bit 32 is the last day of the month, bit
33 is the second from last day of month, and so on. This attribute is formatted
as a string containing 31 or 62 0's and 1's, where the 1's identify the days of the
month in which the policy rule or action is valid. The value
111000000000000000000000000000, for example, indicates that a policy rule or
action is valid only on the first three days of each month. For months with less
than 31 days, the digits corresponding to the missing days are ignored.

The default is every day of the month.

DayOfWeekMask
A mask of seven bits representing the days in a week (Sunday through
Saturday) that this policy rule or action is active. For example, 0111110
represents weekdays. The default is every day of the week.

TimeOfDayRange
A time interval that indicates the time of day, expressed in local time, during
which this policy rule or action is active. You can specify hours and optional
minutes, separated by a colon. The values 0 and 24 both indicate midnight.
The interval consists of two values separated by a dash. If the second value is
smaller than or equal to the first value, then the interval spans midnight. For
example, the following statement results in this policy rule or action being
active from midnight until 8:30 AM:
TimeOfDayRange 0-8:30

The following statement results in this policy rule or action being active from
5:30 PM until 8:30 AM:
TimeOfDayRange 17:30-8:30

Chapter 21. Policy Agent and policy applications 1199

Ipv6NextHdrGroup statement

Use the Ipv6NextHdrGroup statement to define an IPv6 next-header group. An
Ipv6NextHdrGroup statement identifies a set of IPv6 next-header specifications
that make up the IPv6 next-header group.

Restrictions:

v This statement is available for use only with IDS configuration policies.
v This statement is valid only for V1R13 and later releases. See “General syntax

rules for Policy Agent” on page 933 for details.

Syntax

�� Ipv6NextHdrGroup name Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
Ipv6NextHdrGroup Parameters

}

Ipv6NextHdrGroup Parameters:

� Ipv6NextHdrRange
Ipv6NextHdrRangeRef name

Parameters

name
A string 1 - 32 characters in length that specifies the name of this
Ipv6NextHdrGroup statement.

Ipv6NextHdrRange
An inline specification of an Ipv6NextHdrRange statement to be included in
this group.

Ipv6NextHdrRangeRef
The name of a globally defined Ipv6NextHdrRange statement.

Ipv6NextHdrRange statement

Use the Ipv6NextHdrRange statement to encapsulate a single IPv6 next-header
value or a range of IPv6 next-header values. This statement can be referenced from
any statement that allows for a set specification of IPv6 next-header values.

Restrictions:

v This statement is available for use only with IDS configuration policies.
v This statement is valid only for V1R13 and later releases. See “General syntax

rules for Policy Agent” on page 933 for details.

1200 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

�� Ipv6NextHdrRange Put Braces and Parameters on Separate Lines
name

��

Put Braces and Parameters on Separate Lines:

{
Ipv6NextHdrRange Parameters

}

Ipv6NextHdrRange Parameters:

Ipv6NextHdr n
n m

Parameters

name
A string 1 - 32 characters in length that specifies the name of this
Ipv6NextHdrRange statement.

Rule: If you do not specify this Ipv6NextHdrRange statement inline within
another statement, you must provide a name. If you do not specify a name for
an inline Ipv6NextHdrRange statement, a nonpersistent system name is
created.

Ipv6NextHdr
A single IPv6 next-header value or a range of IPv6 next-header values. The
value in the next-header field of an IPv6 header or extension header identifies
the next-header in the packet, either an upper layer protocol header (such as a
TCP or UDP header) or an extension header (such as a fragmentation or
routing header).

Valid values for n are in the range 0 - 255. If you specify an m value, it must be
greater than or equal to n and less than 256.

Rule: You must include a blank, a colon (:), or a dash (-) as a delimiter.

PortGroup statement

Use the PortGroup statement to define a port group. A PortGroup statement
identifies a set of port specifications that make up the port group.

Syntax

�� PortGroup name Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{ � PortRange
PortRangeRef name

}

Chapter 21. Policy Agent and policy applications 1201

Parameters

name
A string 1 - 32 characters in length specifying the name of this Port group.

PortRange
An inline specification of a PortRange statement to be included in this group.

PortRangeRef
The name of a globally defined PortRange.

Restriction: This statement is available for use only with IDS configuration and
AT-TLS policies.

Tip: When a PortGroup contains non-continuous ranges of port numbers, Policy
Agent cannot merge these conditions into a single condition. The group's ranges
are displayed by pasearch, as configured, with the summary condition for each of
these respective attributes equal to the lowest from value in the group to the
highest to value in the group. If a Port of value 0 exists in a PortGroup, the
summary condition for this attribute is set to the range 0 - 0.

PortRange statement

Use the PortRange statement to encapsulate a single port or range of ports. It can
be referenced from any statement that allows for a set specification of ports.

Syntax

�� PortRange
name

Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
Port n

n m
}

Parameters

name
A string 1 - 32 characters in length specifying the name of this PortRange
statement.

Rule: If this PortRange statement is not specified inline within another
statement, a name value must be provided. If a name is not specified for an
inline PortRange statement, a nonpersistent system name is created.

Port
A single port or range of ports.

Valid values for n are in the range 0 - 65 535. If 0 is specified for n, then any
port can be used. If n is specified as the beginning value for a range, then 0 is
not a valid value.

If an m value is specified, it must be greater than or equal to n and less than
65 536.

Rule: Include a blank, a colon (:), or a dash (-) as a delimiter.

1202 z/OS V2R1.0 Communications Server: IP Configuration Reference

Restrictions:

v For IDSAttackCondition the only valid port values for n are 1 - 65 535.
v PortRange is available for use only with IDS configuration and AT-TLS policies.

TrafficDescriptor statement

Use the TrafficDescriptor statement to describe IP traffic in terms of one or more of
the following characteristics: IP protocol, source and destination port values, job
name, NetAccess security zone, and multilevel-security (MLS) label.

Restriction: The TrafficDescriptor statement is available for use only with Routing
policies.

Syntax

�� TrafficDescriptor
name

�

� Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
TrafficDescriptor Parameters

}

TrafficDescriptor Parameters:

Protocol All

Protocol Tcp
6
Udp
17
All

SourcePortRange 0

SourcePortRange n
n m

�

�
DestinationPortRange 0

DestinationPortRange n
n m

Jobname name SecurityZone name
�

�
SecurityLabel name

Parameters

name
A string 1 - 32 characters in length specifying the name of this TrafficDescriptor
statement.

Rule: If this TrafficDescriptor statement is not specified inline within another
statement, a name value must be provided. If a name is not specified for an
inline TrafficDescriptor statement, a nonpersistent system name is created.

Chapter 21. Policy Agent and policy applications 1203

Protocol
A protocol that must be contained in an IP packet for the rule's action to be
performed.

TCP or 6
Indicates TCP protocol.

UDP or 17
Indicates that the UDP protocol must be in the packet.

All Indicates that all protocols that are relevant to the policy type that
references the TrafficDescriptor statement must be in the packet. This is
the default value.

Rule: For the Routing policy type, the relevant protocols are TCP and
UDP.

SourcePortRange
A source port that must be contained in a TCP or UDP packet for the rule's
action to be performed.

Valid values for n are in the range 0 - 65 535. If 0 is specified for n, the rule
applies to any source port. If n is specified as the beginning value for a range,
then 0 is not a valid value.

If an m value is specified, it must be greater than or equal to the n value and
less than 65 536.

Rule: Include a blank, a colon (:), or a dash (-) as a delimiter.

Restrictions:

v The SourcePortRange value is used only as a selector for a TCP or UDP
packet. If the value TCP or UDP is specified for the Protocol parameter, the
SourcePortRange parameter is further restricted to the protocol specified.

v For Routing policies, the value specified for the SourcePortRange parameter
is the source port that must be contained in an outbound TCP or UDP
packet.

DestinationPortRange
A destination port that must be contained in a TCP or UDP packet for the
rule's action to be performed.

Valid values for n are in the range 0 - 65 535. If 0 is specified for n, then the
rule applies to any destination port. If n is specified as the beginning value for
a range, then 0 is not a valid value.

If an m value is specified, it must be greater than or equal to the n value and
less than 65 536.

Rule: Include a blank, a colon (:), or a dash (-) as a delimiter.

Restrictions:

v The DestinationPortRange value is used only as a selector for a TCP or UDP
packet. If the value TCP or UDP is specified for the Protocol parameter, the
DestinationPortRange is further restricted to the protocol specified.

v For Routing policies, the value specified for the DestinationPortRange
parameter is the destination port that must be contained in an outbound
TCP or UDP packet.

Jobname
The name value specifies the job name of the application. The name value can

1204 z/OS V2R1.0 Communications Server: IP Configuration Reference

be up to 8 characters in length. A trailing asterisk indicates a wildcard
specification. The specified name is not case sensitive, and is translated to
uppercase before being compared.

SecurityZone
The name value specifies the NetAccess security zone that an IP packet must
match for the rule's action to be performed. The name value can be up to 8
characters in length. The specified name is not case sensitive.

For Routing policies, the name value specifies the NetAccess security zone that
an outbound IP packet must match. The outbound packet's destination IP
address is used to determine the packet's NetAccess security zone in the
NetAccess table defined in the TCP/IP profile. For more information about
network access control, see “NETACCESS statement” on page 229.

SecurityLabel
The name value specifies the MLS security label that an IP packet must match
for the rule's action to be performed. The name value can be up to 8 characters
in length. The specified name is not case sensitive.

For Routing policies, the name value specifies the MLS security label that an
outbound IP packet must match. The outbound packet's destination IP address
is used to determine the packet's NetAccess security zone in the NetAccess
table defined in the TCP/IP profile. The MLS security label is the label
associated with the NetAccess zone. For more information, see the TCP/IP
networking in a multilevel-secure environment information in z/OS
Communications Server: IP Configuration Guide.

TrafficDescriptorGroup statement

Use the TrafficDescriptorGroup statement to define a traffic descriptor group. A
TrafficDescriptorGroup statement identifies a set of TrafficDescriptor statements
that make up the traffic descriptor group

Restriction: The TrafficDescriptorGroup statement is available for use only with
Routing policies.

Syntax

�� TrafficDescriptorGroup name �

� Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

�

{

TrafficDescriptor
TrafficDescriptorRef name

}

Parameters

name
A string 1 - 32 characters in length specifying the name of this
TrafficDescriptorGroup statement.

Chapter 21. Policy Agent and policy applications 1205

TrafficDescriptor
An inline specification of a TrafficDescriptor statement to be included in this
group.

TrafficDescriptorRef
The name of a globally defined TrafficDescriptor statement to be included in
the group.

Policy Agent search order
The search order for accessing PAGENT.CONF information is as follows. The first
file found in the search order is used.
1. File or data set specified with the -c startup option
2. File or data set specified with the PAGENT_CONFIG_FILE environment

variable
3. /etc/pagent.conf

Starting Policy Agent from the z/OS shell
The Policy Agent executable program resides in /usr/lpp/tcpip/sbin. There is also
a link from /usr/sbin. Make sure the PATH statement contains either /usr/sbin or
/usr/lpp/tcpip/sbin.

The Policy Agent requires access to one or more DLLs at runtime. The LIBPATH
environment variable must be set to include the /usr/lib directory, which normally
includes all the required DLLs.

In order for policy time specifications to be properly acted upon, the TZ
environment variable needs to be set to local time.

Set the LIBPATH and TZ environment variables as follows:

Export the LIBPATH and TZ environment variables before starting the Policy
Agent. Use /etc/profile or in .profile in the HOME directory. For example, in the
Eastern time zone in the United States:
export LIBPATH=/usr/lib
export TZ=EST5EDT4

See z/OS Language Environment Programming Guide for more information about
specifying run time options and environment variables. Also, see z/OS UNIX
System Services Command Reference for details about setting the LIBPATH and TZ
environment variables.

�� pagent �

�
-c/C filename -d/D n -i/I -t/T n -l/L logfile -m/M n &

��

Guideline: The options can be in either upper- or lowercase (for example, C or c).

Rule: To avoid interfering with the shell session, run Policy Agent in the
background. To run Policy Agent in the background, add a trailing & to the
command line used to start Policy Agent.

1206 z/OS V2R1.0 Communications Server: IP Configuration Reference

Parameters

-c/C
The -c/C option allows a policy configuration file name to be specified. If it is
not specified, the configuration file is located using the search order.

This value can be an z/OS UNIX or MVS data set.

The z/OS UNIX file or MVS data set is specified by the -c startup option. The
syntax for a z/OS UNIX file is '/dir/file' and the syntax for an MVS data set is
"//'MVS.DATASET.NAME'".

Tip: Note the differences in the single and double quotation marks.

-d/D
When -d is specified, all debug messages are logged in the Policy Agent log
file. If -d is not used, log messages are written to the Policy Agent log file as
specified by the LogLevel configuration statement. The log file should be the
first place checked for error messages.

n is an integer that specifies the level of debugging. Specify a desired debug
level or a combination of levels. If this start option is absent, the default level
is 0. To combine debug levels, add debug level numbers. For example, to
request base messages (level 1) and sysplex summary messages (Level 4),
request a debug level of 5 (for example, -d 5).

0 None. No debug messages are logged. This is the default.

1 Base. The Policy Agent logs internal debug information.

When this level is selected, the Policy Agent also uses the maximum
LogLevel value, regardless of what is configured.

2 LDAP. The Policy Agent logs information about each LDAP object
attribute that is processed.

4 Sysplex summary. The Policy Agent logs summary information about
performance monitor QoS fraction calculations at target stacks.

8 Sysplex detail. The Policy Agent logs detailed information about
performance monitor QoS fraction calculations at target stacks, and
additional sysplex distributor information.

16 Memory trace. The Policy Agent logs inline details of all memory
allocation and free requests. This debug level is independent of the -m
startup option.

32 Policy install trace. The Policy Agent logs details of all policies as the
policies are installed in the TCP/IP stack.

64 Lock trace. The Policy Agent logs information about locks.

128 Remote connection trace. The Policy Agent logs details about remote
PAPI connections on the policy server and about connections to the
policy server on the policy client.

256 Discovery connection trace. The Policy Agent logs details about
requests to discover TCP/IP profile information from import
requestors.

-i/I
When specified, the Policy Agent monitors its local files (all configuration files)
in real time for changes. The time interval configured on the TcpImage
statement is also used to monitor configuration files and the LDAP server for
updates. Use of the -i/I option provides more timely updating of policy

Chapter 21. Policy Agent and policy applications 1207

statements when a configuration file is changed. Change the configuration file
to cause an immediate refresh of policy from the LDAP server, which causes
the file to be reread. If the file is configured to read policy from the LDAP
server, Policy Agent does so at that time.

Restrictions:

v Dynamic monitoring for file updates using the -i startup option is not
supported for files configured with the DynamicConfigPolicyLoad statement.

v Dynamic monitoring for file updates using the -i startup option is supported
only for z/OS UNIX files; MVS data sets are not monitored for changes
(these files are reread at each refresh interval).

-t/T
The -t/T options specify whether to turn on LDAP client debugging. The
following levels are supported:

0 No LDAP client debugging. This is the default.

1 This level turns on LDAP client debugging.

Tip: The destination of LDAP client debug messages is stderr.This is
controlled by the LDAP client library, not the Policy Agent. This turns
on the following LDAP DEBUG Options:
v LDAP_DEBUG_TRACE
v LDAP_DEBUG_PACKETS
v LDAP_DEBUG_ARGS
v LDAP_DEBUG_CONNS
v LDAP_DEBUG_BER
v LDAP_DEBUG_FILTER
v LDAP_DEBUG_MESSAGE
v LDAP_DEBUG_STATS
v LDAP_DEBUG_THREAD
v LDAP_DEBUG_PARSE
v LDAP_DEBUG_PERFORMANCE
v LDAP_DEBUG_REFERRAL
v LDAP_DEBUG_ERROR

For details about debug options, see z/OS Security Server LDAP Client
Application Development Guide and Reference.

Restriction: If Policy Agent was started with the trace option disabled, then the
output destination of stderr is closed. This option cannot later be enabled by
using the MODIFY command.

-l/L logfile
The -l/L option can be used to specify the destination of the log output file.
Either SYSLOGD or a z/OS UNIX file can be specified. If you specify
SYSLOGD, you can take advantage of a centralized logging mechanism. The
environment variable PAGENT_LOG_FILE also specifies the destination of the
log file, using the same format as this option. The -l/-L option overrides the
PAGENT_LOG_FILE environment variable. Another environment variable,
PAGENT_LOG_FILE_CONTROL, specifies the number and size of log files (if
SYSLOGD is not specified). The format is:
PAGENT_LOG_FILE_CONTROL=x,y where x is the log file size (kilobytes). A
maximum value of 1 000 000 can be specified. y is the number of log files. The
default is 3 log files, each 300 kilobytes in size.

1208 z/OS V2R1.0 Communications Server: IP Configuration Reference

The default is /tmp/pagent.log.

Result: If for some reason Policy Agent cannot read the start options, then it
does not have a log file destination and Policy Agent might fail to open a
z/OS UNIX log file. In these situations, Policy Agent logs error messages to
the syslog daemon and exits abnormally.

If you run Policy Agent with a nonzero UID and you are using a z/OS UNIX
log file, be sure to perform the following tasks:
v Specify the file permissions as either 776 or 766.
v Ensure that the syslog daemon is not configured to log the same z/OS UNIX

file. The syslog daemon runs with UID 0 so Policy Agent might not be able
to access its log file if syslogd creates the file before Policy Agent starts.

-m/M n
When specified, the Policy Agent records all memory allocation and free
requests in a buffer. The number of entries in this buffer is specified on the -m
option. The minimum value is 1 000 and the maximum value is 25 000. Values
specified outside of this range are rounded up or down as needed. The
number of entries in the buffer determines how many concurrent memory
allocations can be recorded.

The memory request buffer can be used in two ways:
v To provide a snapshot of Policy Agent memory allocations, by using the

MODIFY MEMTRC command. See z/OS Communications Server: IP System
Administrator's Commands and z/OS Communications Server: IP Diagnosis
Guide for more information about this command.

v To detect memory leakage by the Policy Agent. Memory leakage can only be
determined when Policy Agent terminates. At the end of termination, after
all memory free requests have been processed, any entries left in the
memory request buffer are by definition memory leaks. If the -m option was
specified, Policy Agent logs the contents of the memory request buffer at the
end of Policy Agent termination.

If the number of entries specified on the -m option is too small to contain the
total number of concurrent memory allocations at any point in time, Policy
Agent turns off the memory trace function and stops recording in the buffer. If
this occurs, the contents of the buffer are not usable, and Policy Agent logs this
fact along with the high water mark number of entries at termination. Increase
the number of entries the next time Policy Agent is started.

If the Policy Agent cannot successfully parse the start options, log output is written
to the syslog daemon (SYSLOGD).

Starting Policy Agent as a started task
Use the S PAGENT command on an MVS console or SDSF to start Policy Agent. A
sample procedure is included in member EZAPAGSP in SEZAINST. All of the
information regarding default locations for the configuration and log files is the
same as for starting from the z/OS shell.

The Policy Agent requires access to one or more DLLs at runtime. The LIBPATH
environment variable must be set to include the /usr/lib directory, which normally
includes all the required DLLs.

In order for policy time specifications to be properly acted upon, the TZ
environment variable needs to be set to local time.

Chapter 21. Policy Agent and policy applications 1209

Set the LIBPATH and TZ environment variables as follows:
v Specify LIBPATH and TZ using the ENVAR parameter on the PARM statement

in the started procedure. For example:
// PARM=(’POSIX(ON) ALL31(ON)’,
// ’ENVAR("LIBPATH=/usr/lib"’,
// ’"TZ=EST5EDT4")/’)

v Export the LIBPATH and TZ environment variables in a file specified with the
STDENV DD statement. For example:
//STDENV DD PATH=’/etc/pagent.env’,PATHOPTS=(ORDONLY)

In the /etc/pagent.env file:
LIBPATH=/usr/lib
TZ=EST5EDT4

See z/OS Language Environment Programming Guide for more information
about specifying runtime options and environment variables. See z/OS UNIX
System Services Command Reference for details about setting the LIBPATH and
TZ environment variables.

Below is a copy of the sample procedure:
//PAGENT PROC
//*
//* IBM Communications Server for z/OS
//* SMP/E distribution name: EZAPAGSP
//*
//* 5650-ZOS Copyright IBM Corp. 1998, 2013
//* Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* Status = CSV2R1
//*
//PAGENT EXEC PGM=PAGENT,REGION=0K,TIME=NOLIMIT,
// PARM=’ENVAR("_CEE_ENVFILE_S=DD:STDENV")/’
//*
//*** Policy Agent parameters:
//*
//* -c filename
//*
//* Specifies the MVS data set or z/OS UNIX main configuration file.
//* The syntax for an MVS data set is "//’MVS.DATASET.NAME’" and the
//* syntax for a z/OS UNIX file is /dir/file. This start option
//* overrides the environment variable PAGENT_CONFIG_FILE if it is
//* specified. The default value is /etc/pagent.conf.
//*
//* -d n
//*
//* Specifies a debug level. See Communications Server IP
//* Diagnosis for a decscription of the debug levels.
//*
//* -i
//*
//* Specifies that Policy Agent should read configuration files
//* immediately if they are changed.
//*
//* -t n
//*
//* Specifies the LDAP client trace level. The only supported values
//* are 1 to turn on tracing or 0 to turn off tracing.
//*
//* -l filename | SYSLOGD
//*
//* Specifies the destination of the Policy Agent log file. You
//* can specify a z/OS UNIX file name or the value SYSLOGD in
//* uppercase. SYSLOGD is recommended because it routes log output
//* to the syslog daemon. This start option overrides the environment
//* variable PAGENT_LOG_FILE if it is specified. The default value
//* is /tmp/pagent.log.
//*
//* -m n
//*
//* Specifies that Policy Agent should enable memory tracing. See
//* Communications Server IP Diagnosis for more information on

1210 z/OS V2R1.0 Communications Server: IP Configuration Reference

|

|

|
|
|
|
|
|
|

//* memory tracing.
//*
//*** Examples for specifying environment variables and parameters
//*** (parameters must extend to column 71 and be continued in
//*** column 16):
//*
//* Example 1: Environment variables inline, MVS config data set
//*
//* PARM=(’ENVAR("LIBPATH=/usr/lib","TZ=EST5EDT")/-c //’’USER.TCPP
//* ARMS(PAGENT)’’ -l SYSLOGD’)
//*
//* Example 2: Environment variables inline, UNIX config file
//*
//* PARM=(’ENVAR("LIBPATH=/usr/lib","TZ=EST5EDT")/-c /etc/pagent3.
//* conf -l SYSLOGD’)
//*
//* Example 3: Environment variables in STDENV DD
//*
//* PARM=’ENVAR("_CEE_ENVFILE_S=DD:STDENV")/’
//*
//* For this method, the STDENV DD statement below must be
//* changed to point to a MVS data set or UNIX file containing
//* settings for any environment variables. For example, it should
//* contain at least LIBPATH and TZ (unless you choose to specify TZ
//* in a different fashion), but can contain other environment
//* variables as in this example:
//*
//* PAGENT_CONFIG_FILE=/etc/pagent2.conf
//* PAGENT_LOG_FILE=SYSLOGD
//* LIBPATH=/usr/lib
//* TZ=EST5EDT
//*
//* If you want to include comments in the data set or
//* z/OS UNIX file, specify the _CEE_ENVFILE_COMMENT
//* environment variable as the first environment variable
//* in the data set or file. The value specified for
//* the _CEE_ENVFILE_COMMENT variable is the comment character.
//* For example, if you want to use the pound sign, #, as
//* the comment character, specify this as the first
//* statement:
//* _CEE_ENVFILE_COMMENT=#
//*
//* The use of the STDENV DD statement works well when more than
//* one environment variable is specified, as there is a JCL limit
//* of 100 characters on the PARM statement.
//*
//* Note: Language Environment recommends a variable record format
//* for the STDENV file.
//*
//* You can also set the TZ environment variable for all applications
//* in the CEEPRMxx PARMLIB member. You should define the TZ
//* environment variable for all three LE option sets (CEEDOPT,
//* CEECOPT, and CELQDOPT). For example:
//*
//* CEECOPT(ALL31(ON), ENVAR(’TZ=EST5EDT’))
//* CEEDOPT(ALL31(ON), ENVAR(’TZ=EST5EDT’))
//* CELQDOPT(ALL31(ON), ENVAR(’TZ=EST5EDT’))
//*
//* For more information on specifying run-time options, see z/OS
//* Language Environment Programming Guide. For details on setting
//* the LIBPATH and TZ environment variables, see z/OS UNIX System
//* Services Command Reference.
//*
//STDENV DD DUMMY
//* Sample MVS data set containing environment variables:
//*STDENV DD DSN=TCPIP.PAGENT.ENV(PAGENT),DISP=SHR
//* Sample UNIX file containing environment variables:
//*STDENV DD PATH=’/etc/pagent.env’,PATHOPTS=(ORDONLY)
//*
//* Output written to stdout and stderr goes to the data set or
//* file specified with SYSPRINT or SYSOUT, respectively. But
//* normally, PAGENT doesn’t write output to stdout or stderr.
//* Instead, output is written to the log file, which is specified
//* by the -c startup option, the PAGENT_LOG_FILE environment
//* variable, or the default of /tmp/pagent.log. For severe
//* startup errors, such as incorrect startup options specified,
//* or being unable to open the log file, log output is instead
//* written to the syslog daemon, and help text is written to
//* stdout.
//*

Chapter 21. Policy Agent and policy applications 1211

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//*
//CEEDUMP DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)

Restriction: When you use the environment variable _CEE_ENVFILE with an MVS
data set, allocate the data set with the value RECFM=V. You should not use
RECFM=F because RECFM=F causes the environment variable values to be
padded with blanks.

Policy Agent environment variables
Table 78 provides a list of environment variables used by Policy Agent that can be
tailored to a particular installation:

Table 78. Policy Agent environment variables

Environment variable Server, Client or Command-type
application

Description Any specific
coding rules (or a
link to syntax)

PAGENT_CONFIG_FILE PAGENT This variable points
to the location of the
Policy Agent
configuration file or
data set.

None

PAGENT_LOG_FILE PAGENT Policy agent should
log messages to
either the syslog
daemon
(recommended) or a
z/OS UNIX file.

Default is
/tmp/pagent.log

PAGENT_LOG_FILE_CONTROL PAGENT Control the number
and size of Policy
Agent log files.

Starting the network SLAPM2 subagent from the z/OS shell
The Network SLAPM2 Subagent executable program resides in
/usr/lpp/tcpip/bin. There is also a link from /bin. Ensure that the path statement
(in the profile) contains either /bin or /usr/lpp/tcpip/bin.

The Network SLAPM2 subagent requires access to one or more DLLs at runtime.
The LIBPATH environment variable must be set to include the /usr/lib directory,
which normally includes all the required DLLs.

Export the LIBPATH environment variable before starting the subagent. Use
/etc/profile or .profile in the HOME directory. For example:
export LIBPATH=/usr/lib

For more information about specifying runtime options and environment variables,
see z/OS Language Environment Programming Guide. For details about setting
the LIBPATH environment variable, see z/OS UNIX System Services Command
Reference.

Figure 35. PAGENT sample procedure

1212 z/OS V2R1.0 Communications Server: IP Configuration Reference

�� nslapm2 �

-d n
-o
-c community
-P port
-p tcpipProcName
-t cacheTime
-?

��

Parameters

-d n
Specifies the level of tracing to be started. The valid values for level are in the
range 0 - 511. If the -d parameter is not specified, then a level of 3 is used,
meaning all Network SLAPM2 Subagent Error, System Console and Warning
Messages are traced. There are nine levels of tracing provided. Each level
selected has a corresponding number. The sum of the numbers associated with
each level of tracing selected is the value which should be specified as level.
After the Network SLAPM2 Subagent is started, tracing options can be
dynamically changed using the MVS MODIFY command. For more
information about agent tracing, see z/OS Communications Server: IP
Diagnosis Guide.

The numbers for the trace levels are:

0 No tracing

1 Trace Network SLAPM2 Subagent Error and System Console Messages

2 Trace Network SLAPM2 Subagent Warning Message

4 Trace Network SLAPM2 Subagent Informational Message

8 Trace Network SLAPM2 Subagent Internal statistics table

16 Trace Network SLAPM2 Subagent Internal monitor table

32 Trace Network SLAPM2 Subagent Internal traps

64 Trace Network SLAPM2 Subagent Internal monitoring

128 Trace Network SLAPM2 Subagent Internal Policy Agent API

256 Trace DPIdebug()level 2

Output from the -d parameter is written to syslogd or stdout depending on the
-o parameter. The debug level can be dynamically changed using a MODIFY
command.

-o Specifies that debug output is written to stdout. The default is to write to
syslogd.

-c community
A string 1 - 32 characters in length used as the SNMP community name (or
password) in establishing contact with the SNMP Agent. For nslapm2 to
communicate with the z/OS CS SNMP Agent, the community name specified
on the -c startup option must match one that is defined in a data set
configured to the SNMP Agent on the -c parameter when the SNMP Agent is
started.

Chapter 21. Policy Agent and policy applications 1213

For more information about how the community name is used to permit access
to the SNMP agent, see Step 1: Configure the SNMP agent (OSNMPD), in
z/OS Communications Server: IP Configuration Guide. The default value is
public.

Tip: The community name is case sensitive.

-P port
A port number in the range 1 - 65 535 used in establishing communication
with the SNMP Agent. For nslapm2 to communicate with the z/OS CS SNMP
Agent, the port number specified must match the port number specified on the
-p parameter when the SNMP Agent is started. The default value is 161.

-p tcpipProcName
The tcpipProcName is an 8-byte procedure name that is used to start TCP/IP.
If this parameter is not specified, nslapm2 uses the standard resolver
configuration search order to determine this parameter.

-t cacheTime
Amount of time in seconds to elapse before rebuilding the MIB object tables.
Default value is 30 seconds.

The MinimumSamplingInterval value on the Policy Agent configuration
statement PolicyPerformanceCollection is used to rebuild the MIB object tables,
if the cacheTime is smaller than the MinimumSamplingInterval value.

If the MinimumSamplingInterval is updated in Pagent, then the Network
SLAPM2 Subagent becomes aware of the updated time the next time it
rebuilds the MIB objects.

The cache Time can be dynamically changed using a MODIFY command.

The MODIFY,QUERY command can be issued to determine the value for the
MinimumSamplingInterval and this cacheTime value.

-? Display nslapm2 options help information.

Starting the network SLAPM2 subagent as a started task
Use the S NSLAPM2 command on an MVS console or SDSF to start the Network
SLAPM2 subagent. A sample procedure is included in member EZAPAGSB in
SEZAINST.
v Specify LIBPATH using the ENVAR parameter on the PARM statement in the

started procedure. For example:
// PARM=('POSIX(ON) ALL31(ON)',
// 'ENVAR("LIBPATH=/usr/lib")/')

v Export the LIBPATH environment variable in a file specified with the STDENV
DD statement. For example:
//STDENV DD PATH='/etc/nslapm2.env',PATHOPTS=(ORDONLY)

In the /etc/nslapm2.env file:
LIBPATH=/usr/lib

For more information about specifying runtime options and environment variables,
see z/OS Language Environment Programming Guide. For details about setting
the LIBPATH environment variable, also see z/OS UNIX System Services
Command Reference.

Following is a copy of the sample procedure:

1214 z/OS V2R1.0 Communications Server: IP Configuration Reference

Restriction: When you use the environment variable _CEE_ENVFILE with an MVS
data set, allocate the data set with the value RECFM=V. You should not use
RECFM=F because RECFM=F causes the environment variable values to be
padded with blanks.

//NSLAPM2 PROC
//*
//* z/OS Communications Server IP
//* SMP/E distribution name: EZAPAGSB
//*
//* 5650-ZOS Copyright IBM Corp. 2006, 2013
//* Licensed Materials - Property of IBM
//*
//NSLAPM2 EXEC PGM=NSLAPM2,REGION=0K,TIME=NOLIMIT,
// PARM=’ENVAR("_CEE_ENVFILE_S=DD:STDENV")/’
//*
//* Example of passing parameters to the program (parameters must
//* extend to column 71 and be continued in column 16):
//* PARM=’ENVAR("_CEE_ENVFILE_S=DD:STDENV")/-c public -P 1234 -p TCP
//* IP’
//*
//* Provide environment variables to run with the desired stack. As
//* an example, the data set or file specified by STDENV could
//* contain:
//*
//* RESOLVER_CONFIG=//’SYS1.TCPPARMS(TCPDATA)’
//* LIBPATH=/usr/lib
//*
//* If you want to include comments in the data set or
//* z/OS UNIX file, specify the _CEE_ENVFILE_COMMENT
//* environment variable as the first environment variable
//* in the data set or file. The value specified for
//* the _CEE_ENVFILE_COMMENT variable is the comment character.
//* For example, if you want to use the pound sign, #, as
//* the comment character, specify this as the first
//* statement:
//* _CEE_ENVFILE_COMMENT=#
//*
//* For information on the above environment variable, refer to the
//* IP Configuration Guide. Other environment variables can also be
//* specified via STDENV.
//*
//STDENV DD DUMMY
//* Sample MVS data set containing environment variables:
//*STDENV DD DSN=TCPIP.NSLAPM2.ENV(NSLAPM2),DISP=SHR
//* Sample HFS file containing environment variables:
//*STDENV DD PATH=’/etc/nslapm2.env’,PATHOPTS=(ORDONLY)
//*
//* Output written to stdout and stderr goes to the data set or
//* file specified with SYSPRINT or SYSOUT, respectively. But
//* normally, NSLAPM2 doesn’t write output to stdout or stderr.
//* Instead, output is written to syslogd. When the -o parameter
//* is specified, however, output is written to stdout instead of
//* syslogd.
//*
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//*
//CEEDUMP DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)

Figure 36. NSLAPM2 sample procedure

Chapter 21. Policy Agent and policy applications 1215

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

Network SLAPM2 subagent environment variables
Table 79 provides a list of environment variables used by Network SLAPM2
subagent that can be tailored to a particular installation:

Table 79. Network SLAPM2 subagent environment variables

Environment variable Server, Client or Command-type
application

Description Any specific
coding rules
(or a link to
syntax)

SNMP_PORT nslapm2 Specifies the port to which a
DPI subagent directs a
connection query. The default
is 161 (the default port on
which the SNMP agent
listens for queries).

None

Starting the traffic regulation manager daemon (TRMD) from the z/OS
shell

TRMD is used with Traffic Regulation (TR), intrusion detection services (IDS) and
IP Security to write event messages and statistics to the syslog daemon (syslogd).

The offset from Coordinated Universal Time (UTC) of the syslog time in the
timestamp of TRMD messages is determined by the TZ environment variable
described in z/OS UNIX System Services User's Guide.

To cause the timestamp to appear in Coordinated Universal Time (UTC), change
the TZ specification in /etc/profile or export TZ=“0” before starting TRMD.

The -p start option or the resolver configuration file is used to determine the stack
that TRMD uses.

Syntax

�� trmd
-d n -p stackname

��

Parameters

-d n
Specifies that the TRMD should run in debugging mode. The following modes
are supported:

1 Internal debugging messages are written.

2 Internal and API debugging messages are written.

3 Internal debugging messages and output from the ioctls issued to the
stack are written.

-p stackname
Specifies the TCP/IP stack name that TRMD uses. If this parameter is not
specified, TRMD uses the resolver configuration file to determine the stack
name.

1216 z/OS V2R1.0 Communications Server: IP Configuration Reference

Output is written to syslogd.

Starting the traffic regulation manager daemon (TRMD) as a started
task

The offset from Coordinated Universal Time (UTC) of the syslog time in the
timestamp of TRMD messages is determined by the TZ environment variable
described in z/OS UNIX System Services User's Guide.

To cause the timestamp to appear in coordinated universal time (UTC), specify the
TZ environment variable in the start TRMD procedure. For example:
// PARM=(’POSIX(ON) ALL31(ON)’,
// ’ENVAR("LIBPATH=/usr/lib"’,
// ’"TZ=0")/-d 1’)

Use the S TRMD command on an MVS console or SDSF to start the TRM daemon.
A sample procedure is included in member EZATRMD in SEZAINST.
//TRMD PROC
//*
//* IBM Communications Server for z/OS
//* SMP/E distribution name: EZATRMDP
//*
//* 5650-ZOS Copyright IBM Corp. 1996, 2013
//* Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//*
//* Status = CSV2R1
//*
//* Function: Sample procedure for running the Traffic
//* Regulator Management Daemon (TRMD)
//*
//TRMD EXEC PGM=EZATRMD,REGION=4096K,TIME=NOLIMIT,
// PARM=(’POSIX(ON) ALL31(ON)’,
// ’ENVAR("LIBPATH=/usr/lib")/’)
//*
//*** Notes:
//*
//* - TRMD can also be invoked from the Unix System Services shell
//* as a shell command: trmd
//*
//* - The system link list concatenation must contain the TCP/IP
//* runtime libraries and the C runtime libraries. If they are
//* not in the link list concatenation, this procedure will need
//* to be changed to STEPLIB to them.
//*
//* - To pass parameters to TRMD, specify them after the final slash
//* on the PARM statement. For example:
//* // PARM=(’POSIX(ON) ALL31(ON)/-d 1’)
//*
//* - TRMD must find the TCP/IP job name with which it should be
//* associated. It uses the -p start option or the TCPIPJOBNAME value
//* from the TCPIP.DATA file. The TCPIP.DATA file used can be
//* controlled by setting the RESOLVER_CONFIG environment variable.
//* See examples below.
//*
//*** Examples for specifying environment variables and parameters
//*** (parameters must extend to column 71 and be continued in
//*** column 16):
//*
//* Example 1: Environment variables inline, MVS resolver data set
//*
//* PARM=(’POSIX(ON) ALL31(ON)’,
//* ’ENVAR("RESOLVER_CONFIG=//’’SYS1.TCPPARMS(TCPDATA)’’","TZ=EST5EDT
//* ")/’)
//*
//* Example 2: Environment variables inline, UNIX resolver file
//*
//* PARM=(’POSIX(ON) ALL31(ON)’,
//* ’ENVAR("RESOLVER_CONFIG=/etc/resolv.conf","TZ=EST5EDT")/’)
//*
//* Example 3: Environment variables in STDENV DD
//*

Chapter 21. Policy Agent and policy applications 1217

|

|

//* PARM=(’POSIX(ON) ALL31(ON)’,
//* ’ENVAR("_CEE_ENVFILE_S=DD:STDENV")/’)
//*
//* For this method, the STDENV DD statement below must be
//* changed to point to a MVS data set or UNIX file containing
//* settings for any environment variables. For example, it should
//* contain at least TZ (unless you choose to specify TZ in a
//* different fashion), but can contain other environment variables
//* as in this example:
//*
//* RESOLVER_CONFIG=//’SYS1.TCPPARMS(TCPDATA)’
//* TZ=EST5EDT
//*
//* If you want to include comments in the data set or
//* z/OS UNIX file, specify the _CEE_ENVFILE_COMMENT
//* environment variable as the first environment variable
//* in the data set or file. The value specified for
//* the _CEE_ENVFILE_COMMENT variable is the comment character.
//* For example, if you want to use the pound sign, #, as
//* the comment character, specify this as the first
//* statement:
//* _CEE_ENVFILE_COMMENT=#
//*
//* The use of the STDENV DD statement works well when more than
//* one environment variable is specified, as there is a JCL limit
//* of 100 characters on the PARM statement.
//*
//* Note: Language Environment recommends a variable record format
//* for the STDENV file.
//*
//* You can also set the TZ environment variable for all applications
//* in the CEEPRMxx PARMLIB member. You should define the TZ
//* environment variable for all three LE option sets (CEEDOPT,
//* CEECOPT, and CELQDOPT). For example:
//*
//* CEECOPT(ALL31(ON), ENVAR(’TZ=EST5EDT’))
//* CEEDOPT(ALL31(ON), ENVAR(’TZ=EST5EDT’))
//* CELQDOPT(ALL31(ON), ENVAR(’TZ=EST5EDT’))
//*
//* For more information on specifying run-time options, see z/OS
//* Language Environment Programming Guide. For details on setting
//* the LIBPATH and TZ environment variables, see z/OS UNIX System
//* Services Command Reference.
//*
//STDENV DD DUMMY
//* Sample MVS data set containing environment variables:
//*STDENV DD DSN=TCPIP.TRMD.ENV(TRMD),DISP=SHR
//* Sample UNIX file containing environment variables:
//*STDENV DD PATH=’/etc/trmd.env’,PATHOPTS=(ORDONLY)
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//SYSIN DD DUMMY
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//CEEDUMP DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)

Figure 37. TRMD sample procedure

1218 z/OS V2R1.0 Communications Server: IP Configuration Reference

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

Chapter 22. RSVP Agent

Restriction: IPv6 support is not provided for RSVP agent at this time.

For related information about RSVP Agent, see the policy based networking
information in z/OS Communications Server: IP Configuration Guide.

RSVP Agent configuration file
The RSVP Agent uses the following search order to locate the configuration file
(highest priority is listed first):
v z/OS UNIX file or MVS data set specified by the -c startup option. The syntax

for a z/OS UNIX file is '/dir/file' and the syntax for an MVS data set is
"//'MVS.DATASET.NAME'".

v z/OS UNIX file or MVS data set specified with the RSVPD_CONFIG_FILE
environment variable.

v /etc/rsvpd.conf z/OS UNIX file.
v 'hlq.RSVPD.CONF' MVS data set.

Restriction: If this file is not present, RSVP is enabled on all network interfaces
with default parameters.

LogLevel statement

Use the LogLevel statement to specify the level of tracing.

Syntax

�� LogLevel i ��

Parameters

i

An integer that specifies the level of logging/tracing. The supported levels are:
v 1 - SYSERR - System error messages
v 2 - OBJERR - Object error messages
v 4 - PROTERR - Protocol error messages
v 8 - WARNING - Warning messages
v 16 - EVENT - Event messages
v 32 - ACTION - Action messages
v 64 - INFO - Informational messages
v 128 - ACNTING - Accounting messages
v 256 - TRACE - Trace messages

Usage notes

Specify a desired log level or a combination of levels. If this statement is absent,
the default level is 15.

© Copyright IBM Corp. 2000, 2015 1219

To combine log levels, add log level numbers. For example, to request SYSERR
messages (level 1) and EVENT messages (level 16), you would request log level 17.

Examples

The following example turns on all trace levels for RSVP.

LogLevel 511

TcpImage statement

Use the TcpImage statement to identify the name of the stack to which the RSVP
agent should establish affinity.

Rule: If the TcpImage statement is absent, the RSVP agent establishes affinity with
the default stack.

Syntax

�� TcpImage name ��

Parameters

name
The name of the TCP/IP image. The name must be one to eight characters.

Examples
TcpImage TCPCS2

Interface statement

Use the Interface statement to make available to the RSVP agent one or more of
the network interfaces of the local host.

Rule: If the Interface statement is absent, none of the network interfaces are
available to the RSVP agent.

Syntax

��
ENABLED

Interface ALL See Note 1
OTHERS off
ip_address ENABLED

DISABLED

��

Note 1: Place braces and parameters on separate lines:

{
Interface parameters

}

1220 z/OS V2R1.0 Communications Server: IP Configuration Reference

Interface Parameters:

ENABLED
TrafficControl

off
ENABLED
DISABLED

Parameters

IP_address
The IP address (dotted decimal format) of the interface. You can choose a
specific interface IP address such as all, which means all configured interfaces
(currently configured on the HOME statement or dynamically added in the
future), or others, which means all interfaces except those previously
configured.

In the following example, all interfaces except 9.10.11.12 would be enabled.

Interface 9.10.11.12 Disabled
Interface others Enabled

Enabled
Specifies that RSVP should use this interface.

Disabled
Specifies that RSVP should not use this interface.

Off
Specifies to ignore this statement.

TrafficControl
Specifies whether or not traffic control is in effect. When traffic control is
disabled, the RSVP agent does not install any filters (resource reservations). If
off is specified, the traffic control specification portion of the Interface
statement is ignored.

Examples
Interface 9.23.78.13
{

trafficcontrol enabled
}

interface others disabled

interface all

RSVP statement

Use the RSVP statement to enable RSVP processing on one or more of the network
interfaces of the local host.

Rule: If this statement is absent, RSVP processing is disabled on all network
interfaces.

Syntax

Chapter 22. RSVP Agent 1221

��
ENABLED

RSVP ALL RSVP Parameters
OTHERS off
ip_address ENABLED

DISABLED

��

Put Braces and Parameters on Separate Lines:

{
RSVP Parameters

}

RSVP Parameters:

MaxFlows i

Parameters

IP_address
The IP address (dotted decimal format) of the interface. You can choose a
specific interface IP address such as all, which means all configured interfaces
(currently configured on the HOME statement or dynamically added in the
future), or others which means all interfaces except those previously configured.

In the following example, all interfaces except 9.10.11.12 would be enabled.

Interface 9.10.11.12 Disabled
Interface others Enabled

Enabled
Specifies that RSVP processing should use this interface.

Disabled
Specifies that RSVP processing should not use this interface.

Off
Specifies to ignore this statement.

MaxFlows
Specifies the maximum number of data flows.

i An integer defining the maximum number of data flows to be allowed using
this interface. The default is 32.

Examples
rsvp 87.13.112.6

{
maxflows 100
}

rsvp others

rsvp all

RSVPD.CONF search order
The search order for accessing RSVPD.CONF information is as follows. The first
file found in the search order is used.

1222 z/OS V2R1.0 Communications Server: IP Configuration Reference

1. z/OS UNIX file or MVS data set specified by the -c startup option. The syntax
for a z/OS UNIX file is '/dir/file' and the syntax for an MVS data set is
"//'MVS.DATASET.NAME'".

2. z/OS UNIX file or MVS data set specified with the RSVPD_CONFIG_FILE
environment variable.

3. /etc/rsvpd.conf z/OS UNIX file.
4. 'hlq.RSVPD.CONF' MVS data set.

Restriction: If this file is not present, RSVP is enabled on all network interfaces
with default parameters.

Starting RSVP from the z/OS shell
The rsvp executable program resides in /usr/lpp/tcpip/sbin. There is also a link
from /usr/sbin.

Requirement: Make sure your path statement (in the profile) contains either
/usr/sbin or /usr/lpp/tcpip/sbin.

�� rsvpd
-c filename

��

-c The -c option allows an RSVP Agent configuration file to be specified. If it is
not specified, the configuration file is located using the search order.

Starting RSVP as a started task
Use the S RSVPD command on an MVS console or SDSF to start RSVP. A sample
procedure is shipped in member EZARSVPP in SEZAINST. All of the information
regarding default locations for the configuration and log files is the same as for
starting from the z/OS shell. Following is a copy of the sample procedure:

Chapter 22. RSVP Agent 1223

Restriction: When you use the environment variable _CEE_ENVFILE with an MVS
data set, allocate the data set with the value RECFM=V. To use a RECFM=F data
set, _CEE_ENVFILE_S should be used to prevent the environment variable values
from being padded with blanks.

//RSVPD PROC
//*
//* SecureWay Communications Server IP
//* SMP/E distribution name: EZARSVPP
//*
//* 5650-ZOS (C) Copyright IBM Corp. 1999, 2013
//* Licensed Materials - Property of IBM
//*
//RSVPD EXEC PGM=RSVPD,REGION=0K,TIME=NOLIMIT,
// PARM=’POSIX(ON) ALL31(ON) ENVAR("_CEE_ENVFILE_S=DD:STDENV")/’
//*
//* Example of passing parameters to the program (parameters must
//* extend to column 71 and be continued in column 16):
//* PARM=’POSIX(ON) ALL31(ON) ENVAR("_CEE_ENVFILE_S=DD:STDENV")/-c /
//* etc/rsvpd25.conf’
//*
//* Provide environment variables to run with the desired stack and
//* configuration. As an example, the data set or file specified by
//* STDENV could contain:
//*
//* RESOLVER_CONFIG=//’SYS1.TCPPARMS(TCPDATA2)’
//* RSVPD_CONFIG_FILE=/etc/rsvpd2.conf
//* RSVPD_LOG_FILE=/tmp/rsvpd2.log
//*
//* If you want to include comments in the data set or
//* z/OS UNIX file, specify the _CEE_ENVFILE_COMMENT
//* environment variable as the first environment variable
//* in the data set or file. The value specified for
//* the _CEE_ENVFILE_COMMENT variable is the comment character.
//* For example, if you want to use the pound sign, #, as
//* the comment character, specify this as the first
//* statement:
//* _CEE_ENVFILE_COMMENT=#
//*
//* For information on the above environment variables, refer to the
//* IP CONFIGURATION GUIDE. Other environment variables can also be
//* specified via STDENV.
//*
//STDENV DD DUMMY
//* Sample MVS data set containing environment variables:
//*STDENV DD DSN=TCPIP.RSVPD.ENV(RSVPD2),DISP=SHR
//* Sample HFS file containing environment variables:
//*STDENV DD PATH=’/etc/rsvpd2.env’,PATHOPTS=(ORDONLY)
//*
//* Output written to stdout and stderr goes to the data set or
//* file specified with SYSPRINT or SYSOUT, respectively. But
//* normally, RSVPD doesn’t write output to stdout or stderr.
//* Instead, output is written to the log file, which is specified
//* by the RSVPD_LOG_FILE environment variable, and defaults to
//* /tmp/rsvpd.log.
//*
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//*
//CEEDUMP DD SYSOUT=*,DCB=(RECFM=FB,LRECL=132,BLKSIZE=132)

Figure 38. RSVP sample procedure

1224 z/OS V2R1.0 Communications Server: IP Configuration Reference

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

Chapter 23. Intrusion detection services policy

This topic contains the following information about the intrusion detection services
(IDS) policy:
v “IDS policies defined in IDS configuration files”
v “IDS Policies defined in LDAP”

IDS policies defined in IDS configuration files
For information about configuring the intrusion detection services (IDS) rules and
actions in the IDS configuration files, see Chapter 21, “Policy Agent and policy
applications,” on page 931.

If you are migrating your IDS policy from Lightweight Directory Access Protocol
(LDAP) to IDS configuration files, be aware that the IDS configuration file policy
rule and action parameters are consistent with the IDS LDAP policy rule and
action parameters, except for the following parameters:
v IDSAttackCondition

– IfcFloodPercentage
– IfcFloodMinDiscard

v IDSScanEventCondition
– Sensitivity
– IDSScanExclusion
– IDSScanExclusionRef

v IDSScanGlobalCondition
– FSInterval
– FSThreshold
– SSInterval
– SSThreshold

v IDSTRCondition
– TRtcpTotalConnections
– TRudpQueueSize
– TRtcpPercentage
– TRtcpLimitScope

IDS Policies defined in LDAP
This topic lists the LDAP object classes and attributes used to define IDS policy
objects. The default and allowable values for IDS-specific attributes are included, as
well as information showing the allowable combinations of attributes in various
types of IDS policies. See Appendix B, “LDAP definition files,” on page 1433 for
more information about object classes and their attributes. See z/OS
Communications Server: IP Configuration Guide for additional guidance about
defining IDS policies.

Restriction: Not all IDS policy options are available in Lightweight Directory
Access Protocol (LDAP) configuration file. You cannot use LDAP to do the
following tasks:

© Copyright IBM Corp. 2000, 2015 1225

v Specify that ICMPv6 traffic should be monitored for scan events
v Exclude IPv6 addresses from the scan exclusion list
v Define rules for the following attack types:

– DATA_HIDING
– EE_LDLC_CHECK
– EE_MALFORMED_PACKET
– EE_PORT_CHECK
– EE_XID_FLOOD
– GLOBAL_TCP_STALL
– OUTBOUND_RAW_IPV6
– RESTRICTED_IPV6_DST_OPTIONS
– RESTRICTED_IPV6_HOP_OPTIONS
– RESTRICTED_IPV6_NEXT_HDR
– TCP_QUEUE_SIZE

v Define TCP traffic regulation policy that specifies IPv6 addresses
v Define UDP traffic regulation policy that specifies IPv6 addresses

The following Object classes are useful in building an LDAP tree structure of
policy groups of rules and policy repositories of reusable conditions and actions.
v objectclass ibm-policy
v objectclass ibm-policyGroup
v objectclass ibm-policyRepository
v objectclass ibm-policyGroupContainmentAuxClass
v objectclass ibm-policyRuleContainmentAuxClass

The following Object classes are useful in building IDS rule, condition association,
rule-specific condition, reusable condition, action association, rule-specific action
and reusable action objects.
v objectclass ibm-policyRule
v objectclass ibm-policyRuleConditionAssociation
v objectclass ibm-policyRuleActionAssociation
v objectclass ibm-policyInstance
v objectclass ibm-policyConditionInstance
v objectclass ibm-policyActionInstance
v objectclass ibm-policyConditionAuxClass
v objectclass ibm-policyActionAuxClass
v objectclass ibm-policyTimePeriodConditionAuxClass

The following Object classes are required for IDS-specific condition objects. These
classes are not permitted in QoS specific policies.
v objectclass ibm-idsConditionAuxClass
v objectclass ibm-idsAttackConditionAuxClass
v objectclass ibm-idsIPAttackConditionAuxClass
v objectclass ibm-idsFloodAttackActionsAuxClass
v objectclass ibm-idsTrafficRegulationConditionAuxClass
v objectclass ibm-idsScanConditionAuxClass
v objectclass ibm-idsScanEventConditionAuxClass

1226 z/OS V2R1.0 Communications Server: IP Configuration Reference

v objectclass ibm-idsTransportConditionAuxClass
v objectclass ibm-idsHostConditionAuxClass

The following Object classes are required for IDS-specific action objects. These
classes are not permitted in QoS specific policies.
v objectclass ibm-idsActionAuxClass
v objectclass ibm-idsNotificationAuxClass
v objectclass ibm-idsAttackActionsAuxClass
v objectclass ibm-idsTrafficRegulationActionAuxClass
v objectclass ibm-idsTRtcpActionAuxClass
v objectclass ibm-idsTRudpActionAuxClass
v objectclass ibm-idsScanActionAuxClass
v objectclass ibm-idsScanSensitivityActionAuxClass
v objectclass ibm-idsScanExclusionActionAuxClass

The following Object classes are not permitted in IDS specific objects either because
they are only valid for Version 2 policies or because they are only permitted in
QoS specific objects.
v objectclass ibm-policyCondition
v objectclass ibm-policyTimePeriodCondition
v objectclass ibm-networkingPolicyCondition
v objectclass ibm-policyAction
v objectclass ibm-serviceCategories
v objectclass ibm-networkingPolicyConditionAuxClass
v objectclass ibm-routeConditionAuxClass
v objectclass ibm-hostConditionAuxClass
v objectclass ibm-applicationConditionAuxClass
v objectclass ibm-serviceCategoriesAuxClass
v objectclass ibm-policyGroupLoadDistributionAuxClass
v objectclass SetSubnetPrioTosMask

IDS-specific condition attributes, their object class, as well as allowed and default
values are listed in Table 80.

Table 80. IDS-specific condition attributes

Attribute Class Allowed and default
values

ibm-idsConditionType ibm-idsConditionAuxClass v ATTACK

v TR

v SCAN_GLOBAL

v SCAN_EVENT

No default

Chapter 23. Intrusion detection services policy 1227

Table 80. IDS-specific condition attributes (continued)

Attribute Class Allowed and default
values

ibm-idsAttackType ibm-idsAttackConditionAuxClass v MALFORMED_

PACKET

v FLOOD

v OUTBOUND_RAW

v PERPETUAL_ECHO

v IP_FRAGMENT

v RESTRICTED_IP_

OPTIONS

v RESTRICTED_IP_

PROTOCOL

v ICMP_REDIRECT

No default

ibm-idsIPOptionRange ibm-
idsIPAttackConditionAuxClass

1 - 255

Default is 0 (all)

ibm-idsLocalPortRange ibm-
idsTransportConditionAuxClass

0–65535

Default is 0 (all)

ibm-idsRemotePortRange ibm-
idsTransportConditionAuxClass

0 - 65535

Default is 0 (all)

ibm-idsProtocolRange ibm-
idsTransportConditionAuxClass

0 - 255

Default is Protocol 0

ibm-idsLocalHostIPAddress ibm-idsHostConditionAuxClass Any valid IP address

Default is 0 (all)

ibm-idsRemoteHostIPAddress ibm-idsHostConditionAuxClass Any valid IP address

Default is 0 (all)

IDS-specific action attributes, their object class, and allowed and default values are
shown in Table 81.

Table 81. IDS-specific action attributes

Attribute Class Allowed values

ibm-idsIfcFloodPercentage ibm-idsFloodAttackActionsAuxClass 5 - 100

Default is 10.

ibm-idsIfcFloodMinDiscard ibm-idsFloodAttackActionsAuxClass 100 - 4 294 967 295

Minimum number of discards
that must occur in a one minute
interval for an interface flood
condition to exist. Default is
1 000.

1228 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 81. IDS-specific action attributes (continued)

Attribute Class Allowed values

ibm-idsActionType ibm-idsActionAuxClass v ATTACK

v TR

v SCAN_GLOBAL

v SCAN_EVENT

No default

ibm-idsNotification ibm-idsNotificationAuxClass v NONE

v SYSLOG

v SYSLOGDETAIL

v CONSOLE

No default

ibm-idsStatInterval ibm-idsNotificationAuxClass 0 - 4 294 967 295

Default is 60

ibm-idsLoggingLevel ibm-idsNotificationAuxClass 0 - 7

These values map to syslogd
priority levels as follows:
0 Emerg/panic
1 Alert
2 Crit
3 Error
4 Warning
5 Notice
6 Info
7 Debug

Default is 0

ibm-idsTypeActions ibm-idsNotificationAuxClass v STATISTICS

v EXCEPTSTATS

v LOG

v LIMIT

No default

ibm-idsTraceData ibm-idsNotificationAuxClass v NONE

v HEADER

v FULL

v RECORDSIZE

Default is HEADER

ibm-idsTraceRecordSize ibm-idsNotificationAuxClass 0 - 4 294 967 295

Default is 100

ibm-idsMaxEventMessage ibm-idsAttackActionsAuxClass 0 - 4 294 967 295

Default is 0

ibm-idsTRtcpTotalConnections ibm-idsTRtcpActionAuxClass 0 - 65 535

Default is 65535

Chapter 23. Intrusion detection services policy 1229

Table 81. IDS-specific action attributes (continued)

Attribute Class Allowed values

ibm-idsTRtcpPercentage ibm-idsTRtcpActionAuxClass 0 - 100

Default is100

ibm-idsTRtcpLimitScope ibm-idsTRtcpActionAuxClass v PORT

v PORT_INSTANCE

Default is PORT_INSTANCE

ibm-idsTRudpQueueSize ibm-idsTRudpActionAuxClass v VERY_LONG

v LONG

v SHORT

v VERY_SHORT

Default is VERY_LONG

ibm-idsFSInterval ibm-idsScanActionAuxClass 1 - 1440

Default is 1

ibm-idsFSThreshold ibm-idsScanActionAuxClass 1 - 64

Default is 5

ibm-idsSSInterval ibm-idsScanActionAuxClass 0 - 1 440

Default is 120

ibm-idsSSThreshold ibm-idsScanActionAuxClass 0 - 64

Default is 10

ibm-idsSensitivity ibm-idsScanSensitivityActionAuxClass v NONE

v HIGH

v MEDIUM

v LOW

No default

ibm-idsScanExclusion ibm-idsScanExclusionActionAuxClass Any valid IP address, 0 - 65 535
for ports

Default is 0 (none)

The tables in this topic list the combinations of attributes that are used for different
types of IDS policy. Mapping conditions are the attributes used by the code when
searching for rules.

Use the following guidelines for interpreting the following tables:
v Quoted strings are literal attribute values.
v X indicates not supported; the containing policy is not mapped.
v I indicates ignored.
v A indicates allowed.
v R indicates required.

Table 82 on page 1231 lists the IDS scan global policies.

1230 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 82. IDS scan global policies

Mapping conditions

ibm-idsConditionType "SCAN_GLOBAL"

Other Conditions

ibm-idsAttackType X

ibm-idsIPOptionRange X

ibm-idsLocalPortRange X

ibm-idsRemotePortRange X

ibm-idsProtocolRange X

ibm-idsLocalHostIPAddress X

ibm-idsRemoteHostIPAddress X

Actions

ibm-idsActionType "SCAN_GLOBAL" (1)

ibm-idsTypeActions A (2)

ibm-idsNotification A

ibm-idsLoggingLevel A

ibm-idsStatInterval I

ibm-idsMaxEventMessage I

ibm-idsTraceData A

ibm-idsTraceRecordSize A

ibm-idsTRtcpTotalConnections I

ibm-idsTRtcpPercentage I

ibm-idsTRtcpLimitScope I

ibm-idsTRudpQueueSize I

ibm-idsFSInterval A

ibm-idsFSThreshold A

ibm-idsSSInterval A

ibm-idsSSThreshold A

ibm-idsSensitivity I

ibm-idsScanExclusion I

ibm-idsIfcFloodPercentage I

ibm-idsIfcFloodMinDiscard I

Notes:

1. Additional values are allowed in same action.

2. STATISTICS, EXCEPTSTATS ignored.

Table 83 lists the IDS scan event policies.

Table 83. IDS scan event policies (ICMP)

Mapping conditions

ibm-idsConditionType "SCAN_EVENT" (1)

ibm-idsProtocolRange "1" (ICMP)

Other Conditions

Chapter 23. Intrusion detection services policy 1231

Table 83. IDS scan event policies (ICMP) (continued)

Mapping conditions

ibm-idsAttackType X

ibm-idsIPOptionRange X

ibm-idsLocalPortRange X

ibm-idsRemotePortRange X

ibm-idsLocalHostIPAddress X

ibm-idsRemoteHostIPAddress X

Actions

ibm-idsActionType "SCAN_EVENT" (2)

ibm-idsTypeActions I

ibm-idsNotification I

ibm-idsLoggingLevel I

ibm-idsStatInterval I

ibm-idsMaxEventMessage I

ibm-idsTraceData I

ibm-idsTraceRecordSize I

ibm-idsTRtcpTotalConnections I

ibm-idsTRtcpPercentage I

ibm-idsTRtcpLimitScope I

ibm-idsTRudpQueueSize I

ibm-idsFSInterval I

ibm-idsFSThreshold I

ibm-idsSSInterval I

ibm-idsSSThreshold I

ibm-idsSensitivity A

ibm-idsScanExclusion A

ibm-idsIfcFloodPercentage I

ibm-idsIfcFloodMinDiscard I

Notes:

1. A SCAN EVENT rule that includes ICMP in the protocol range is not mapped for
ICMP if it also includes a local host IP address or port condition.

2. Additional values are allowed in same action.

Table 84 lists more IDS scan event policies.

Table 84. IDS scan event policies (TCP and UDP)

Mapping conditions

ibm-idsConditionType "SCAN_EVENT" (1)

ibm-idsProtocolRange "6" (TCP) | "17" (UDP)

ibm-idsLocalHostIPAddress A

ibm-idsLocalPortRange A

Other conditions

1232 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 84. IDS scan event policies (TCP and UDP) (continued)

Mapping conditions

ibm-idsAttackType X

ibm-idsIPOptionRange X

ibm-idsRemotePortRange X

ibm-idsRemoteHostIPAddress X

Actions

ibm-idsActionType "SCAN_EVENT" (2)

ibm-idsTypeActions I

ibm-idsNotification I

ibm-idsLoggingLevel I

ibm-idsStatInterval I

ibm-idsMaxEventMessage I

ibm-idsTraceData I

ibm-idsTraceRecordSize I

ibm-idsTRtcpTotalConnections I

ibm-idsTRtcpPercentage I

ibm-idsTRtcpLimitScope I

ibm-idsTRudpQueueSize I

ibm-idsFSInterval I

ibm-idsFSThreshold I

ibm-idsSSInterval I

ibm-idsSSThreshold I

ibm-idsSensitivity A

ibm-idsScanExclusion A

ibm-idsIfcFloodPercentage I

ibm-idsIfcFloodMinDiscard I

Notes:

1. A SCAN EVENT rule that includes ICMP in the protocol range is not mapped for
ICMP if it also includes a local host IP address or port condition.

2. Additional values are allowed in same action.

Table 85 lists IDS attack policies.

Table 85. IDS attack policies (FLOOD)

Mapping conditions

ibm-idsConditionType "ATTACK"

ibm-idsAttackType "FLOOD"

Other conditions

ibm-idsIPOptionRange I

ibm-idsLocalPortRange I

ibm-idsRemotePortRange I

ibm-idsProtocolRange I

Chapter 23. Intrusion detection services policy 1233

Table 85. IDS attack policies (FLOOD) (continued)

Mapping conditions

ibm-idsLocalHostIPAddress I

ibm-idsRemoteHostIPAddress I

Actions

ibm-idsActionType "ATTACK" (1)

ibm-idsTypeActions A (2)

ibm-idsNotification A (3)

ibm-idsLoggingLevel A

ibm-idsStatInterval A

ibm-idsMaxEventMessage A

ibm-idsTraceData A

ibm-idsTraceRecordSize A

ibm-idsTRtcpTotalConnections I

ibm-idsTRtcpPercentage I

ibm-idsTRtcpLimitScope I

ibm-idsTRudpQueueSize I

ibm-idsFSInterval I

ibm-idsFSThreshold I

ibm-idsSSInterval I

ibm-idsSSThreshold I

ibm-idsSensitivity I

ibm-idsScanExclusion I

ibm-idsIfcFloodPercentage A

ibm-idsIfcFloodMinDiscard A

Notes:

1. Additional values are allowed in same action.

2. LIMIT is ignored. Packets identified as part of a flood are always discarded.

3. SYSLOGDETAIL is equivalent to SYSLOG.

Table 86 lists the IDS attack policies (MALFORMED).

Table 86. IDS attack policies (MALFORMED)

Mapping conditions

ibm-idsConditionType "ATTACK"

ibm-idsAttackType "MALFORMED_PACKET"

Other conditions

ibm-idsIPOptionRange I

ibm-idsLocalPortRange I

ibm-idsRemotePortRange I

ibm-idsProtocolRange I

ibm-idsLocalHostIPAddress I

ibm-idsRemoteHostIPAddress I

1234 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 86. IDS attack policies (MALFORMED) (continued)

Mapping conditions

Actions

ibm-idsActionType "ATTACK" (1)

ibm-idsTypeActions A (2)

ibm-idsNotification A (3)

ibm-idsLoggingLevel A

ibm-idsStatInterval A

ibm-idsMaxEventMessage A

ibm-idsTraceData A

ibm-idsTraceRecordSize A

ibm-idsTRtcpTotalConnections I

ibm-idsTRtcpPercentage I

ibm-idsTRtcpLimitScope I

ibm-idsTRudpQueueSize I

ibm-idsFSInterval I

ibm-idsFSThreshold I

ibm-idsSSInterval I

ibm-idsSSThreshold I

ibm-idsSensitivity I

ibm-idsScanExclusion I

ibm-idsIfcFloodPercentage I

ibm-idsIfcFloodMinDiscard I

Notes:

1. Additional values are allowed in same action.

2. LIMIT is ignored. Malformed packets are always discarded.

3. SYSLOGDETAIL is equivalent to SYSLOG.

Table 87 lists more IDS attack policies.

Table 87. IDS attack policies (FRAGMENT and REDIRECT)

Mapping conditions

ibm-idsConditionType "ATTACK"

ibm-idsAttackType "IP_FRAGMENT" | "ICMP_REDIRECT"

Other conditions

ibm-idsIPOptionRange I

ibm-idsLocalPortRange I

ibm-idsRemotePortRange I

ibm-idsProtocolRange I

ibm-idsLocalHostIPAddress I

ibm-idsRemoteHostIPAddress I

Actions

ibm-idsActionType "ATTACK" (1)

Chapter 23. Intrusion detection services policy 1235

Table 87. IDS attack policies (FRAGMENT and REDIRECT) (continued)

Mapping conditions

ibm-idsTypeActions A

ibm-idsNotification A (2)

ibm-idsLoggingLevel A

ibm-idsStatInterval A

ibm-idsMaxEventMessage A

ibm-idsTraceData A

ibm-idsTraceRecordSize A

ibm-idsTRtcpTotalConnections I

ibm-idsTRtcpPercentage I

ibm-idsTRtcpLimitScope I

ibm-idsTRudpQueueSize I

ibm-idsFSInterval I

ibm-idsFSThreshold I

ibm-idsSSInterval I

ibm-idsSSThreshold I

ibm-idsSensitivity I

ibm-idsScanExclusion I

ibm-idsIfcFloodPercentage I

ibm-idsIfcFloodMinDiscard I

Notes:

1. Additional values are allowed in same action.

2. SYSLOGDETAIL is equivalent to SYSLOG.

Table 88 lists more IDS attack policies.

Table 88. IDS attack policies (RESTRICTED PROTOCOL and RAW)

Mapping conditions

ibm-idsConditionType "ATTACK"

ibm-idsAttackType "RESTRICTED_IP_PROTOCOL" |
"OUTBOUND_RAW"

Other conditions

ibm-idsIPOptionRange I

ibm-idsLocalPortRange I

ibm-idsRemotePortRange I

ibm-idsProtocolRange A (1)

ibm-idsLocalHostIPAddress I

ibm-idsRemoteHostIPAddress I

Actions

ibm-idsActionType "ATTACK" (2)

ibm-idsTypeActions A

ibm-idsNotification A (3)

1236 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 88. IDS attack policies (RESTRICTED PROTOCOL and RAW) (continued)

Mapping conditions

ibm-idsLoggingLevel A

ibm-idsStatInterval A

ibm-idsMaxEventMessage A

ibm-idsTraceData A

ibm-idsTraceRecordSize A

ibm-idsTRtcpTotalConnections I

ibm-idsTRtcpPercentage I

ibm-idsTRtcpLimitScope I

ibm-idsTRudpQueueSize I

ibm-idsFSInterval I

ibm-idsFSThreshold I

ibm-idsSSInterval I

ibm-idsSSThreshold I

ibm-idsSensitivity I

ibm-idsScanExclusion I

ibm-idsIfcFloodPercentage I

ibm-idsIfcFloodMinDiscard I

Notes:

1. If no protocol ranges are specified, no protocols are restricted. Protocols 1 (ICMP), 6
(TCP), and 17 (UDP) are treated differently for RESTRICTED_IP_PROTOCOL and
OUTBOUND_RAW. They are ignored if present in a RESTRICTED_IP_PROTOCOL
policy. They are obeyed if present in an OUTBOUND_RAW policy.

2. Additional values are allowed in same action.

3. SYSLOGDETAIL is equivalent to SYSLOG.

Table 89 lists more IDS attack policies.

Table 89. IDS attack policies (RESTRICTED OPTIONS)

Mapping conditions

ibm-idsConditionType "ATTACK"

ibm-idsAttackType "RESTRICTED_IP_OPTIONS"

Other conditions

ibm-idsIPOptionRange (3) A

ibm-idsLocalPortRange I

ibm-idsRemotePortRange I

ibm-idsProtocolRange I

ibm-idsLocalHostIPAddress I

ibm-idsRemoteHostIPAddress I

Actions

ibm-idsActionType "ATTACK" (1)

ibm-idsTypeActions A

ibm-idsNotification A (2)

Chapter 23. Intrusion detection services policy 1237

Table 89. IDS attack policies (RESTRICTED OPTIONS) (continued)

Mapping conditions

ibm-idsLoggingLevel A

ibm-idsStatInterval A

ibm-idsMaxEventMessage A

ibm-idsTraceData A

ibm-idsTraceRecordSize A

ibm-idsTRtcpTotalConnections I

ibm-idsTRtcpPercentage I

ibm-idsTRtcpLimitScope I

ibm-idsTRudpQueueSize I

ibm-idsFSInterval I

ibm-idsFSThreshold I

ibm-idsSSInterval I

ibm-idsSSThreshold I

ibm-idsSensitivity I

ibm-idsScanExclusion I

ibm-idsIfcFloodPercentage I

ibm-idsIfcFloodMinDiscard I

Notes:

1. Additional values are allowed in same action.

2. SYSLOGDETAIL is equivalent to SYSLOG.

3. If no option ranges are specified, all options are restricted. Options 0 (end of option list)
and 1 (no-operation) are always allowed. They are ignored if present.

Table 90 lists more IDS attack policies.

Table 90. IDS attack policies (PERPETUAL ECHO)

Mapping conditions

ibm-idsConditionType "ATTACK"

ibm-idsAttackType "PERPETUAL_ECHO" (1)

Other conditions

ibm-idsIPOptionRange I

ibm-idsLocalPortRange R (1), (2)

ibm-idsRemotePortRange R (1), (2)

ibm-idsProtocolRange I

ibm-idsLocalHostIPAddress I

ibm-idsRemoteHostIPAddress I

Actions

ibm-idsActionType "ATTACK" (3)

ibm-idsTypeActions A

ibm-idsNotification A (4)

ibm-idsLoggingLevel A

1238 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 90. IDS attack policies (PERPETUAL ECHO) (continued)

Mapping conditions

ibm-idsStatInterval A

ibm-idsMaxEventMessage A

ibm-idsTraceData A

ibm-idsTraceRecordSize A

ibm-idsTRtcpTotalConnections I

ibm-idsTRtcpPercentage I

ibm-idsTRtcpLimitScope I

ibm-idsTRudpQueueSize I

ibm-idsFSInterval I

ibm-idsFSThreshold I

ibm-idsSSInterval I

ibm-idsSSThreshold I

ibm-idsSensitivity I

ibm-idsScanExclusion I

ibm-idsIfcFloodPercentage I

ibm-idsIfcFloodMinDiscard I

Notes:

1. This must be CNF with three condition levels. One condition level has
ibm-idsAttackType, a second has one or more ibm-idsLocalPortRange conditions, and a
third has one or more ibm-idsRemotePortRange conditions.

2. Only the first 20 ports specified is used.

3. Additional values are allowed in same action.

4. SYSLOGDETAIL is equivalent to SYSLOG.

Table 91 lists IDS traffic regulation (TR) policies.

Table 91. IDS TR policies

Mapping Conditions

ibm-idsConditionType

ibm-idsProtocolRange

ibm-idsLocalHostIPAddress

ibm-idsLocalPortRange

"TR"

"6" (TCP)

A

A

"TR"

"17" (UDP)

A

A

Other conditions

ibm-idsAttackType

ibm-idsIPOptionRangeLocalPortRange

ibm-idsRemotePortRange

ibm-idsRemoteHostIPAddress

X

X

X

X

X

X

X

X

Actions

Chapter 23. Intrusion detection services policy 1239

Table 91. IDS TR policies (continued)

Mapping Conditions

ibm-idsActionType

ibm-idsTypeActions

ibm-idsNotification

ibm-idsLoggingLevel

ibm-idsStatInterval

ibm-idsMaxEventMessage

ibm-idsTraceData

ibm-idsTraceRecordSize

ibm-idsTRtcpTotalConnections

ibm-idsTRtcpPercentage

ibm-idsTRtcpLimitScope

ibm-idsTRudpQueueSize

ibm-idsFSInterval

ibm-idsFSThreshold

ibm-idsSSInterval

ibm-idsSSThreshold

ibm-idsSensitivity

ibm-idsScanExclusion

ibm-idsIfcFloodPercentage

ibm-idsIfcFloodMinDiscard

ibm-idsIfcFloodMinDiscard

"TR" (1)

A

A

A

A

I

A

A

A

A

A

I

I

I

I

I

I

I

I

I

I

"TR" (1)

A

A

A

A

I

A

A

I

I

I

A

I

I

I

I

I

I

I

I

I

Notes:

1. Additional values are allowed in same action.

1240 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 24. Simple Network Management Protocol

This topic provides information about configuring and starting the following
SNMP functions:
v “SNMP agent (OSNMPD)”
v “SNMP query engine (SNMPQE)” on page 1276
v “z/OS UNIX snmp command” on page 1280
v “TRAPFWD daemon” on page 1286

SNMP agent (OSNMPD)
This topic includes information about the SNMP agent (OSNMPD).

Starting OSNMPD from MVS
If you want to start the SNMP agent by using an MVS cataloged procedure, you
can use the sample cataloged procedure, OSNMPDPR. Copy member OSNMPDPR
from SEZAINST to your system or recognized PROCLIB. The default name for the
SNMP agent is OSNMPD. Specify the SNMP agent parameters that you need and
change the data set or file names to suit your local configuration.

Sample SNMP agent cataloged procedure
Following is the sample SNMP agent cataloged procedure, OSNMPDPR. See the
comments after the JCL EXEC statement for examples of how to specify
configuration files, environment variables, and parameters to the SNMP agent.
//OSNMPD PROC
//*
//* Sample procedure for running the z/OS UNIX SNMP agent
//*
//* z/OS Communications Server Version 2 Release 1
//* SMP/E Distribution Name: SEZAINST(EZASNDPR)
//*
//*
//* Copyright: Licensed Materials - Property of IBM
//* 5650-ZOS
//* Copyright IBM Corp. 1997, 2013
//*
//* Status: CSV2R1
//*
//OSNMPD EXEC PGM=EZASNMPD,REGION=4096K,TIME=NOLIMIT,
// PARM=’-d 0’
//*
//*** Notes:
//*
//* - The C runtime libraries should be in the system’s link list
//* or this sample procedure will need to STEPLIB to them.
//*
//* - TCP/IP runtime libraries should also be in the system’s link
//* list.
//*
//* - OSNMPD must find the name (TCPIPJOBNAME in TCPIP.DATA) that
//* it should be associated with. The OE function __iptcpn() is
//* used to find this name. It is suggested that the parmlist
//* be modified to set the environment variable
//* RESOLVER_CONFIG to point to the correct resolver file when
//* multiple INET Physical File Systems are started. See the
//* examples below.

© Copyright IBM Corp. 2000, 2015 1241

|

|
|

|

//*
//* If only one INET PFS will be started then /etc/resolv.conf
//* may be used.
//*
//* - The OSNMPD agent can also be invoked from the OMVS shell as
//* a shell command.
//*
//*** Examples for specifying configuration data sets
//*
//* Example 1: TCPIP.DATA in partioned data set on the
//* RESOLVER_CONFIG environment variable
//*
//* // PARM=(,
//* // ’ENVAR("RESOLVER_CONFIG=//’’TCPA.MYFILE(TCPDATA)’’")/-d 0’)
//*
//* Example 2: TCPIP.DATA on a SYSTCPD DD statement
//*
//* As an alternative to setting the RESOLVER_CONFIG environment
//* variable, the SYSTCPD DD card may be specified.
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//*
//* //SYSTCPD DD DSN=TCPIP.SEZAINST(TCPDATA),DISP=SHR
//*
//* Example 3: TCPIP.DATA and SNMPD.CONF in HFS files
//*
//* // PARM=(’ENVAR("RESOLVER_CONFIG=/etc/tcpa.data"’,
//* // ’"SNMPD_CONF=/etc/snmpd.conf.tcpa")’,
//* // ’/-d 0’)
//*
//* Example 4: Specification of data sets via STDENV DD statement
//*
//* // PARM=(’ENVAR("_CEE_ENVFILE_S=DD:STDENV")/-d 0’)
//*
//* For this method, the STDENV DD statement below must be
//* uncommented and set to point to a data set containing
//* settings for any environment variables. For example, it
//* can contain
//*
//* RESOLVER_CONFIG=//’TCPIVP.TCPPARMS(TCPDATA)’
//* SNMPD_CONF=//’TCPIVP.TCPPARMS(SNMPDIVP)’
//*
//* If you want to include comments in the data set or
//* z/OS UNIX file, specify the _CEE_ENVFILE_COMMENT
//* environment variable as the first environment variable
//* in the data set or file. The value specified for
//* the _CEE_ENVFILE_COMMENT variable is the comment character.
//* For example, if you want to use the pound sign, #, as
//* the comment character, specify this as the first
//* statement:
//* _CEE_ENVFILE_COMMENT=#
//*
//* The use of the STDENV DD statement works well when more than
//* one environment variable is specified, as there is a JCL limit
//* of 100 characters on the PARM= statement.
//*
//*** Example for specifying z/OS UNIX pathname
//*
//* If you have configured a common INET (CINET) environment, and
//* you want to start an SNMP agent for more than one TCP/IP stack,
//* and you are going to enable SNMP subagents that connect to
//* the agent using a z/OS UNIX connection, you will need to

1242 z/OS V2R1.0 Communications Server: IP Configuration Reference

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

//* define unique z/OS UNIX pathnames for each agent. You do
//* this by specify the -s parameter:
//*
//* // PARM=’-d 0 -s /var/tcpip1_dpi_socket’
//*
//*** See the SNMP chapters in the IP Configuration Guide and the
//* IP Configuration Reference for details on the configuration
//* files used by the SNMP agent, the search orders associated
//* with them, and the SNMP agent start parameters.
//*
//*
//*
//*SYSTCPD DD DSN=TCPIP.SEZAINST(TCPDATA),DISP=SHR
//*STDENV DD DSN=TCPIVP.TCPPARMS(SNMPENV),DISP=SHR
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//SYSIN DD DUMMY
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//CEEDUMP DD SYSOUT=*

Restriction: When you use the environment variable _CEE_ENVFILE with an MVS
data set, allocate the data set with the value RECFM=V. You should not use
RECFM=F because RECFM=F causes the environment variable values to be
padded with blanks.

Starting OSNMPD from the z/OS UNIX System Services shell
To start OSNMPD from the z/OS UNIX System Services shell, use the following
syntax:

�� osnmpd
-A -a -C class -c community -d level

�

�
-i interval -p port -s socketname ?

-help

��

OSNMPD parameters
The SNMP agent (OSNMPD) runs in a separate address space that executes load
module EZASNMPD. OSNMPD can be started without parameters or you can add
any of the parameters in this topic.

When starting OSNMPD from MVS, add the parameters to the PARMS= keyword on
the EXEC statement of the OSNMPD cataloged procedure. When starting
OSNMPD from z/OS UNIX System Services, specify the desired parameters on the
osnmpd command.

Rule: The parameters must be entered in lowercase because they are case sensitive.

Parameter
Description

-A Forces the SNMP Agent to obtain an IPv4 address for itself when it
initializes. If no IPv4 addresses are available, then the IPv4 loopback
address (127.0.0.1) is used. If this parameter is not specified, the SNMP
Agent uses an IP address that might be IPv6 or IPv4.

Figure 39. OSNMPD MVS started procedure

Chapter 24. Simple Network Management Protocol 1243

|
|
|
|
|
|
|
|
|
|
|
|
|

-a Specifies that the packets sent by the SNMP Agent for responses and
notifications should be sent using the physical interface address, rather
than a VIPA address (if SOURCEVIPA is configured).

-C class
Permits you to control SNMP subagent connections to the SNMP agent via
a z/OS UNIX connection. For z/OS UNIX connections, a z/OS UNIX path
name is used. This path name can be specified on the agent's -s parameter.
See the description of the -s parameter in this topic for more information.
All of the z/OS Communications Server SNMP subagents use a z/OS
UNIX connection to connect to the agent.

In order for subagents to successfully connect to the agent, either the
subagents must be defined with superuser authority or the path name's
read and write file access permission bits must be set for the class
associated with the subagent's user ID. For more detailed information
about file access permission bits, see the information about handling
security for your files in z/OS UNIX System Services User's Guide.

This parameter's class value specifies the class or classes of the subagent
user IDs, for those subagents that you want to permit to connect to the
SNMP agent using a z/OS UNIX connection. This parameter causes the
path name's read and write file access permission bits to be set for the
specified classes.

The valid values for the class variable are 1 - 4 and are defined as follows:

1 Group class
Specify this value if you want only those subagents whose user IDs
are associated with the same security product group as the agent to
be able to connect. The resulting file access permission bit value in
octal is 660.

2 Other class
Specify this value if you want only those subagents whose user IDs
are not associated with the same security product group as the
agent to be able to connect. The resulting file access permission bit
value in octal is 606.

3 Both Group and Other class
Specify this value if you want all subagents to be able to connect to
the agent. The resulting file access permission bit value in octal is
666.

4 Only User class
Specify this value if you do not want any subagents to be able to
connect to the agent using a z/OS UNIX connection.

If the -C parameter is not specified, default level 1 is used. This means that
the group read and write permission bits for the path name are set and
that subagents whose user IDs are associated with the same security
product group as the SNMP agent are able to connect.

-c community
This parameter can be used to dynamically configure a community name
to the agent instead of defining it in the SNMP agent configuration file. A
community name is a password that can accompany an SNMP request that
the agent receives. Use community names with community-based security
to restrict access to SNMP management data. See Configure the SNMP

1244 z/OS V2R1.0 Communications Server: IP Configuration Reference

agent and Configure the SNMP agent (OSNMPD) in z/OS
Communications Server: IP Configuration Guide for more information
about community-based security.

The value that you specify for community is configured as both an ASCII
and an EBCDIC community name. This parameter should be specified only
if you are using community-based security with the SNMP agent, and you
want to dynamically define a community name that any requestor can use
to retrieve SNMP management data. Specifying a community name on this
parameter when starting the agent causes the community to be defined to
the agent with a mask and an IP address of zeros. Therefore, any request
received with this community value would be authenticated (for example,
the request would be accepted from any IP address). If the specified
community name is also defined in the SNMP agent configuration file, the
definition for this community name in the configuration file is overridden
by specifying the community name on the -c parameter. This parameter is
case sensitive.

The default value for this parameter is the community name public, but this
default community name is dynamically defined to the agent only if no
agent configuration file is found.

-d level
Specifies the level of tracing to be started. The valid values for level are
0–255. If the -d parameter is not specified, then the default level of 0 is
used, meaning no tracing is done. If the -d parameter is specified without
a level, then a level of 31 is used, meaning all SNMP requests/responses/
traps and DPI activity is traced.

There are eight levels of tracing provided. Each level selected has a
corresponding number. The sum of the numbers associated with each level
of tracing selected is the value which should be specified as level. If the
agent is started, tracing options can be dynamically changed using the
MVS MODIFY command. For more information about agent tracing, see
the z/OS Communications Server: IP Diagnosis Guide.

The numbers for the trace levels are:

0 No tracing (default)

1 Trace SNMP requests

2 Trace SNMP responses

4 Trace SNMP traps

8 Trace DPI packets

16 Trace DPI internals (currently, no specific traces are recorded for
this trace level)

32 Agent internal trace

64 Agent internal trace plus extended storage dump traces

128 Agent internal trace plus extended storage dump traces and
additional information

-i interval
Specifies the interval (in minutes) at which dynamic configuration changes
to the SNMP agent should be written out to the SNMPD.CONF

Chapter 24. Simple Network Management Protocol 1245

configuration file. Valid values are 0–10. The default value is 5. This
parameter is only relevant when the SNMPD.CONF file is used for
SNMPv3 configuration.

Guideline: Configuration updates made dynamically (by SNMP SET
requests) cause the SNMPD.CONF file to be overwritten by the SNMP
agent.

-p port Listens for SNMP packets on this port. The default is port 161. If you
change the port to something other than 161, you must also configure any
subagents and managers, such as osnmp, to use the new port.

-s socketname
Specifies the path name of the z/OS UNIX file to be used in accepting
requests from subagents that communicate with the agent by way of z/OS
UNIX connections. This value can be configured either by specifying it on
the -s parameter or by specifying it as the value of the
dpiPathNameForUnixStream MIB object in OSNMPD.DATA. The default is
/var/dpi_socket. All of the z/OS Communications Server SNMP subagents
use a z/OS UNIX connection to connect to the agent.

The SNMP agent creates this path name every time it initializes. In order
for subagents to successfully connect to the agent using this path name,
either the subagents must be defined with superuser authority or, the file
access permission bits for this path name must be set to read and write.
v If the subagent's user ID is associated with the same security product

group as the SNMP agent, the Group read and write permission bits
must be set.

v If the subagent's user ID is not associated with the same security
product group as the SNMP agent, the Other read and write permission
bits must be set.

You can use the agent's -C parameter to ensure that the agent sets the
appropriate permission bits when the agent creates the path name.

For more detailed information about file access permission bits, see
information about handling security for your files in z/OS UNIX System
Services User's Guide. If you need to change the path name's file access
permission bits after the agent has initialized, you can use the z/OS UNIX
chmod command. For more information about the chmod command, see
z/OS UNIX System Services Command Reference.

? | -help
Displays the usage statement for the command. If this parameter is
specified, all other parameters are ignored. If OSNMPD was started from
MVS, the usage information is written to syslogd. If OSNMPD was started
from z/OS UNIX System Services, the usage information is displayed to
the invoker of the command.

OSNMPD environment variables
Table 92 on page 1247 provides a list of environment variables used by OSNMPD
that can be tailored to a particular installation:

1246 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 92. OSNMPD environment variables

Environment variable Server, Client or Command-type
application

Description Any specific
coding rules (or a
link to syntax)

OSNMPD_DATA SNMP agent Specifies the location of
the OSNMPD.DATA
configuration file.

None

PW_SRC SNMP agent Specifies the location of
the PW.SRC configuration
file.

None

SNMPD_BOOTS SNMP agent Specifies the location of
the SNMPD.BOOTS
configuration file.

None

SNMPD_CONF SNMP agent Specifies the location of
the SNMPD.CONF
configuration file.

None

SNMPTRAP_DEST SNMP agent Specifies the location of
the SNMPTRAP.DEST
configuration file.

None

OSNMPD.DATA statement syntax
The OSNMPD.DATA statements specify MIB objects and their values. The format
of each statement is:
object_name value

Note:

1. There can only be one object_name and associated value per statement.
2. The value (if the value is a display or octet string) is case sensitive and is saved

in mixed case.
3. Any display or octet string value that has imbedded white space must be

enclosed in double quotation marks. For an example, see the sysDescr setting in
the sample OSNMPD.DATA shipped as /usr/lpp/tcpip/samples/osnmpd.data.

4. An entry must be contained on one line.
5. Sequence numbers are not allowed on the statements.
6. Comments begin with either an asterisk (*) or a # character.

Guideline: If an error is detected in processing an entry and no appropriate
default value can be assumed, the entry is discarded and an error message is
written to the syslog daemon.

OSNMPD.DATA search order
The search order for accessing OSNMPD.DATA information is as follows. The first
file found in the search order is used.
1. The name of a z/OS UNIX file or MVS data set specified by the

OSNMPD_DATA environment variable
2. /etc/osnmpd.data z/OS UNIX file
3. The data set specified on the OSNMPD DD statement in the agent procedure
4. jobname.OSNMPD.DATA, where jobname is the name of the job used to start the

SNMP agent
5. SYS1.TCPPARMS(OSNMPD)

Chapter 24. Simple Network Management Protocol 1247

6. hlq.OSNMPD.DATA, where hlq either defaults to TCPIP or is specified on the
DATASETPREFIX statement in the TCPIP.DATA file being used

If creating a data set, you can specify a sequential data set with the following
attributes: RECFM=FB, LRECL=80, and BLKSZ=3120. Other data set attributes
might also work, depending on your installation parameters.

OSNMPD.DATA example
A sample of OSNMPD.DATA is installed as z/OS UNIX file /usr/lpp/tcpip/
samples/osnmpd.data. This sample can be modified for your installation.

PW.SRC statement syntax
The PW.SRC statements specify community names and hosts that can use each
community name. The format of a statement is:
community_name desired_network snmp_mask

The community_name can be up to 32 characters in length. This value can contain
both uppercase and lowercase letters; however, it is case sensitive. In any requests
received by the SNMP agent, the community_name must match the community_name
specified in PW.SRC exactly, including the correct case.

#
osnmpd.data sample
#
Sample file for setting MIB variables and options for
the SNMPv3 Agent provided by z/OS Communications Server
#
Licensed Materials - Property of IBM
5650-ZOS
Copyright IBM Corp. 1996, 2013
Status = CSV2R1
#

sysDescr "SNMPv3 agent version 1.0 with DPI version 2.0"
sysContact "Unknown"
sysLocation "Unknown"
sysName "z/OS V2R1 Communications Server"

Default value of sysObjectID is equivalent to ibmTcpIpMvs
in the ibmAgents subtree; this is the sysObjectID representing
IBM z/OS Communications Server
Changing this value is not recommended, as it is intended to allow
network management applications to identify this agent as the
z/OS Communication Server SNMP agent. The ability to change it
will be disabled in a subsequent release.
sysObjectID "1.3.6.1.4.1.2.3.13"

snmpEnableAuthenTraps 1
saDefaultTimeout 6
saMaxTimeout 700

saAllowDuplicateIDs must be set to 1 to allow multiple DPI version 1
subagents

saAllowDuplicateIDs 1
dpiPathNameForUnixStream "/var/dpi_socket"

Default value of sysServices indicates support for
internet, end-to-end, and application layers as
defined in RFC 1907.

sysServices 76

Figure 40. OSNMPD.DATA example

1248 z/OS V2R1.0 Communications Server: IP Configuration Reference

|
|
|

|

The desired_network is the IPv4 address in dotted decimal notation or IPv6 address
in colon hexadecimal notation representing the range of addresses for which this
community_name can be used. The desired_network must be specified; there is no
default value.

If desired_network is an IPv6 address, then snmp_mask is either an IPv6 address
mask in colon hexadecimal notation or an integer from 0 to 128 specifying the
number of IPv6 address prefix bits used to construct an IPv6 address mask. The IP
address mask is logically ANDed with the origin address of the incoming SNMP
message.

If desired_network is an IPv4 address, then snmp_mask is either an IPv4 address
mask (for example, 255.255.255.0) or an integer from 0 to 32 specifying the number
of IPv4 address prefix bits used to construct an IPv4 address mask. The IP address
mask is logically ANDed with the origin address of the incoming SNMP message.

Restriction: Scope information cannot be specified as part of the desired_network
value.

If the value resulting from this logical ANDing equals the value of desired_network,
the incoming message is accepted. snmp_mask must be specified; there is no default
value.
v All parameters for each community must be on the same statement.
v Sequence numbers are not allowed on the statements.
v Comments begin with either an asterisk (*) or a # character.

Guidelines:

v If an error is detected in processing an entry and no appropriate default value
can be assumed, the entry is discarded and an error message is written to the
syslog daemon.

PW.SRC search order
The search order for accessing PW.SRC information is as follows. The first file
found in the search order is used.
1. The name of a z/OS UNIX file or an MVS data set specified by the PW_SRC

environment variable
2. /etc/pw.src z/OS UNIX file
3. The data set specified on SYSPWSRC DD statement in the agent procedure
4. jobname.PW.SRC, where jobname is the name of the job used to start the SNMP

agent
5. SYS1.TCPPARMS(PWSRC)
6. hlq.PW.SRC, where hlq either defaults to TCPIP or is specified on the

DATASETPREFIX statement in the TCPIP.DATA file being used

Because this file can only be used with SNMPv3, you should verify that there is no
SNMPD.CONF file . If an SNMPD.CONF file is found, the PW.SRC file is not used.

SNMPTRAP.DEST statement syntax
The SNMPTRAP.DEST statements list managers who are to receive the traps, and
the protocol used to send traps. The format of a statement is:
manager UDP

Chapter 24. Simple Network Management Protocol 1249

The manager is the host to which the trap is to be sent. This can be a host name, or
it can be the IP address of the host in IPv4 dotted decimal or IPv6 colon
hexadecimal notation. If a host name is specified, the value can contain both
uppercase and lowercase letters and it is not case sensitive. The protocol must be
UDP. There should be one entry in the data set for each host to which you want to
send traps.
v All parameters for each host must be on the same statement.
v Sequence numbers are not allowed on the statements.
v Comments begin with an asterisk (*) or a # character.

Restriction: Scope information cannot be specified as part of the manager value.

Guideline: If an error is detected in processing an entry and no appropriate
default value can be assumed, the entry is discarded and an error message is
written to the syslog daemon.

SNMPTRAP.DEST search order
The search order for accessing SNMPTRAP.DEST is as follows. The first file found
in the search order is used.
1. The name of a z/OS UNIX file or an MVS data set specified by the

SNMPTRAP_DEST environment variable
2. /etc/snmptrap.dest z/OS UNIX file
3. The data set specified on SNMPTRAP DD statement in the agent procedure
4. jobname.SNMPTRAP.DEST, where jobname is the name of the job used to start

the SNMP agent
5. SYS1.TCPPARMS(SNMPTRAP)
6. hlq.SNMPTRAP.DEST, where hlq either defaults to TCPIP or is specified on the

DATASETPREFIX statement in the TCPIP.DATA file being used

Verify that there is no SNMPD.CONF file. If an SNMPD.CONF file is found, the
SNMPTRAP.DEST file is not used.

SNMPD.CONF search order
The search order for accessing SNMPD.CONF information is as follows. The first
file found in the search order is used.
1. The name of a z/OS UNIX file or an MVS file specified by the SNMPD_CONF

environment variable.
2. /etc/snmpd.conf

If the SNMPD.CONF file is found, the PW.SRC file and the SNMPTRAP.DEST file
are not used.

SNMPD.CONF statements
If you want to migrate your community-based configuration information from the
PW.SRC and SNMPTRAP.DEST files to the SNMPD.CONF file, see “Migrating the
PW.SRC file and SNMPTRAP.DEST file to the SNMPD.CONF file” on page 1274
for help with coding the SNMPD.CONF statements.

The SNMPD.CONF file supports the following types of entries:

USM_USER
Defines a user for the user-based security model (USM).

1250 z/OS V2R1.0 Communications Server: IP Configuration Reference

VACM_GROUP
Defines a security group (made up of users or communities) for the
view-based access control model (VACM).

VACM_VIEW
Defines a particular set of MIB objects, called a view, for the VACM.

VACM_ACCESS
Identifies the access permitted to different security groups for the VACM.

NOTIFY
Identifies management targets to receive notifications.

NOTIFY_FILTER_PROFILE
Associates a notify filter with a particular set of target parameters.

NOTIFY_FILTER
Defines a filter profile used to filter notifications (for example, traps or
informs).

TARGET_ADDRESS
Defines a management application's address and identifies parameters to
be used in sending notifications or in processing requests when using
community-based security.

TARGET_PARAMETERS
Defines the message processing and identifies security parameters to be
used in sending notifications to a particular management target or when
processing requests when using community-based security.

COMMUNITY
Defines a community for community-based security. Communities defined
with this syntax are supported for compatibility purposes with the
statements from the PW.SRC file, but they cannot be changed dynamically
by way of SNMP SET commands. If you are defining community-based
security for the first time, you should use the SNMP_COMMUNITY
statement.

SNMP_COMMUNITY
Defines a community for community-based security. Communities defined
with this statement can be dynamically changed by way of SNMP SET
commands to the snmpCommunityTable.

The following statements must also be configured to complete the
definition of a community:
v VACM_GROUP specifies the group associated with the community.
v VACM_ACCESS specifies the access allowed for the community group.
v TARGET_ADDRESS defines the address range permitted to use a

particular community name and the maximum size of a response from
the SNMP agent. The transportTag field of the SNMP_COMMUNITY
statement specifies the name of the associated TARGET_ADDRESS
statement.

v TARGET_PARAMETERS defines the SNMP protocol to be used with this
community name.

DEFAULT_SECURITY
Identifies the default security posture configured for the SNMP agent.
Additional security definitions defined by the use of the preceding eight
entry definition types augment any default security configurations defined
as a result of the DEFAULT_SECURITY statement.

Chapter 24. Simple Network Management Protocol 1251

Steps for configuring the SNMP agent for community-based
security and SNMPv3 user-based security

This topic provides steps for coding the SNMPD.CONF statements required for
configuring community-based security and SNMPv3 user-based security.

Steps for configuring community-based security
This topic describes the steps of configuring the SNMP agent for community-based
security.

Procedure

To configure the SNMP agent for community-based security, perform the following
steps:
1. For each community name, create an SNMP_COMMUNITY statement in the

SNMPD.CONF file. This identifies the community names defined to the agent.
For the security name field on the statement, you can use the community name,
or you can define a different security name value. The value in the security
name field is used to correlate the community with its associated
VACM_GROUP and TARGET_PARAMETERS entries. The
SNMP_COMMUNITY statement also refers to the associated
TARGET_ADDRESS entry.

2. Create TARGET_ADDRESS entries to identify the address range permitted to
use a particular community name. For each SNMP_COMMUNITY entry and
for each range of addresses for which it is used, create a TARGET_ADDRESS
entry. The TARGET_ADDRESS entries refer to related TARGET_PARAMETERS
entries.

3. Create TARGET_PARAMETERS entries to identify the message processing and
security models (SNMPv1 or SNMPv2c) to be used with the address on the
corresponding TARGET_ADDRESS entry.

4. Define the following entries to determine which SNMP communities get access
to which pieces of data and the type of access that they are allowed:

VACM_GROUP
Specify one entry for each community per security model (SNMPv1 or
SNMPv2c). The security name field associates this group with its
SNMP_COMMUNITY entry.

VACM_VIEW
Specify one entry for each set of MIB object identifiers that you want to
protect.

VACM_ACCESS
Specify one entry that ties together the VACM_GROUP and
VACM_VIEW entries and defines each group or view permission. You
can define the group's permission to read, write, and receive
notifications for the defined views.

5. To configure the managers to which traps or notifications should be sent, create

the following entries:
v Add one NOTIFY entry for each manager for each security model (SNMPv1

and SNMPv2c).

1252 z/OS V2R1.0 Communications Server: IP Configuration Reference

v Add one TARGET_ADDRESS statement for each manager for each security
model (SNMPv1 and SNMPv2c) to define the IP addresses to which traps or
notification should be sent. The TARGET_ADDRESS entry references the
TARGET_PARAMETERS entry where the security model is defined.

v Add one TARGET_PARAMETERS entry to identify the security model
(SNMPv1 or SNMPv2c) used in sending notifications to particular
destination.

v If you want to send the trap or notification with a community name, add an
SNMP_COMMUNITY statement.

Example

Figure 41 on page 1254 shows how to define the SNMPD.CONF statements for
community-based security.
#--
SNMPD.CONF file for SNMP community-based security
#--
VACM_GROUP entries
Format is:
grpName secModel secName storType
#--
VACM_GROUP statements for SNMP community-based security requests
VACM_GROUP group1 SNMPv1 reqsnv1 -
VACM_GROUP group1 SNMPv2c reqsnv2c -
VACM_GROUP statements for traps
VACM_GROUP group2 SNMPv1 trapsnv1 -
VACM_GROUP group2 SNMPv2c trapsnv2c -
#--
VACM_VIEW entries
Format is:
viewName viewSubtree viewMask viewType storType
#--
VACM_VIEW bigView internet - included -
#--
VACM_ACCESS entries
Format is:
grpName cP cM secLevel secModel readView writeView notifyView storType
#--
VACM_ACCESS group1 - - noAuthNoPriv SNMPv1 bigView bigView bigView -
VACM_ACCESS group1 - - noAuthNoPriv SNMPv2c bigView bigView bigView -
VACM_ACCESS group2 - - noAuthNoPriv SNMPv1 bigView bigView bigView -
VACM_ACCESS group2 - - noAuthNoPriv SNMPv2c bigView bigView bigView -
#--
SNMP_COMMUNITY
Format is:
commIndx commName secName cI cN transTag storType
#--
SNMP_COMMUNITY statements for SNMP community-based security
SNMP_COMMUNITY commreqv1 reqpwv1 reqsnv1 - - tagv1 -
SNMP_COMMUNITY commreqv2c reqpwv2c reqsnv2c - - tagv2c -
SNMP_COMMUNITY statements for traps
SNMP_COMMUNITY commtrpv1 trappwv1 trapsnv1 - - tagtrapv1 -
SNMP_COMMUNITY commtrpv2c trappwv2c trapsnv2c - - tagtrapv2c -
#--
NOTIFY entries
Format is:
notifyName tag type storType
#--
NOTIFY notify1 tagtrapv1 trap -
NOTIFY notify2 tagtrapv2c trap -
#--
TARGET_ADDRESS
Format is:
taName Dom tAddress tagList taParms tI rC sT tMask tMMS
#--
TARGET_ADDRESS statements for SNMP community-based security

Chapter 24. Simple Network Management Protocol 1253

TARGET_ADDRESS targad1 UDP ipaddress tagv1 targp1 - - - 255.255.255.255..0 65535
TARGET_ADDRESS targad2 UDP ipaddress tagv2c targp2 - - - 255.255.255.255..0 65535
TARGET_ADDRESS statements for traps
TARGET_ADDRESS targad3 UDP ipaddress tagtrapv1 targp3 - - - - -
TARGET_ADDRESS targad4 UDP ipaddress tagtrapv2c targp4 - - - - -
#--
TARGET_PARAMETERS
Format is:
pName Model secModel secName secLevel storType
#--
TARGET_PARAMETERS statements for SNMP community-based security
TARGET_PARAMETERS targp1 SNMPv1 SNMPv1 reqsnv1 noAuthNoPriv -
TARGET_PARAMETERS targp2 SNMPv2c SNMPv2c reqsnv2c noAuthNoPriv -
TARGET_PARAMETERS statements for traps
TARGET_PARAMETERS targp3 SNMPv1 SNMPv1 trapsnv1 noAuthNoPriv -
TARGET_PARAMETERS targp4 SNMPv2c SNMPv2c trapsnv2c noAuthNoPriv -

Steps for configuring SNMPv3 user-based security
This topic describes the steps of configuring the SNMP agent for SNMPv3
user-based security.

Procedure

To configure the SNMP agent for SNMPv3, perform the following steps to
determine which SNMPD.CONF statements you need to specify:
1. Determine which SNMP users (typically managers) communicate SNMP

requests to the agent. Define the USM_USER statement to define the name, the
protocol, and key to authenticate messages for the user, and the protocol and
key to encrypt messages for the user. The command can be used to generate
the keys.

2. Determine which SNMP users get access to which pieces of data, and the type
of access they are allowed. Define the following VACM_* statements:

VACM_GROUP
To identify members of a group with the same access privileges. The
security model for SNMPv3 is USM.

VACM_VIEW
To identify the MIB object identifiers to which access is permitted or
denied.

VACM_ACCESS
To tie together the VACM_GROUP and VACM_VIEW statements by
defining the group’s permission to read, write, and receive notifications
for the defined views.

3. To send notifications, define the following configuration statements:
v Add one NOTIFY statement for each type of notification, such as TRAP or

INFORM notifications.
v Add one TARGET_ADDRESS entry for each manager that receives a

notification.
v Optionally, configure a TARGET_PARAMETERS entry to define the security

parameters, such as encryption and authentication, used when sending
notifications

Figure 41. Example of SNMPD.CONF statements for community-based security

1254 z/OS V2R1.0 Communications Server: IP Configuration Reference

Coding the SNMPD.CONF entries

This topic describes how to code the SNMPD.CONF entries.

Defining the USM_USER entry

�� USM_USER userName engineID authProto authKey �

� privProto privKey keyType storageType ��

Defining the VACM_GROUP entry

�� VACM_GROUP groupName securityModel securityName storageType ��

Defining the VACM_VIEW entry

�� VACM_VIEW viewName viewSubtree viewMask viewType storageType ��

Defining the VACM_ACCESS entry

�� VACM_ACCESS groupName contextPrefix contextMatch securityLevel �

� securityModel readView writeView notifyView storageType ��

Defining the NOTIFY entry

�� NOTIFY notifyName tag type storageType ��

Defining the NOTIFY_FILTER_PROFILE entry

�� NOTIFY_FILTER_PROFILE targetParamsName profileName storageType ��

Defining the NOTIFY_FILTER entry

�� NOTIFY_FILTER profileName filterSubtree filterMask filterType storageType ��

Defining the TARGET_ADDRESS entry

�� TARGET_ADDRESS targetAddrName tDomain tAddress tagList �

� targetParams timeout retryCount storageType tMask tMMS ��

Defining the TARGET_PARAMETERS entry

�� TARGET_PARAMETERS paramsName mpModel securityModel �

Chapter 24. Simple Network Management Protocol 1255

� securityName securityLevel storageType ��

Defining the COMMUNITY entry

�� COMMUNITY communityName securityName securityLevel netAddr �

� netMask storageType ��

Defining the SNMP_COMMUNITY entry

�� SNMP_COMMUNITY communityIndex communityName securityName �

� contextEngineID contextName transportTag storageType ��

Defining the DEFAULT_SECURITY entry

�� DEFAULT_SECURITY securityPosture password privacy ��

Parameters

USM_USER entry
USM_USER userName engineID authProto authKey privProto privKey keyType storageType

Field definitions

userName
Indicates the name of the user for the User-Based Security Model (USM).
The userName must be unique to the SNMP agent. The userName is used
as the security name for the User-based Security Model; the contents of
this field are used as the securityName value for other entries (such as the
VACM_GROUP entry) when the securityModel is USM. The userName
field is a 1–32 character string. There is no default value.

engineID
Indicates the engineID of the authoritative side of the message. The
engineID for the z/OS Communications Server SNMP agent is determined
at agent initialization; it is either read in from the SNMPD.BOOTS file or it
is generated automatically and stored in the SNMPD.BOOTS file. It can be
retrieved dynamically by issuing a get request for object snmpEngineID.0.
Use the following information to determine which engineID should be
specified for a user:
v For get, getbulk, set, response, and trap messages, the authoritative side

is the SNMP agent. Therefore, either specify its engineID or use a dash
(-) for the default value.

v For inform messages, the authoritative side is the notification receiver.
Therefore, you must configure the engineID of the notification receiver.

Valid values are a string of 2–64 hexadecimal digits or a dash (-) to indicate
the default value (the local SNMP agent's engineID).

authProto
Indicates the authentication protocol to be used on authenticated messages
on behalf of this user. The following values are valid:

1256 z/OS V2R1.0 Communications Server: IP Configuration Reference

v HMAC-MD5
v HMAC-SHA
v none. Indicates that no authentication is to be done.
v dash (-). Indicates the default value, which is HMAC-MD5.

authKey
Indicates the authentication key to be used in authenticating messages on
behalf of this user. This field is ignored when authProto is specified as
none. The keyType field indicates whether the key is localized or
nonlocalized. Valid values are 32 hexadecimal digits when authProto is
HMAC-MD5 and 40 hexadecimal digits when authProto is HMAC-SHA. A
(-) dash indicates the default (no key, indicating no authentication). For
information about generating authentication and privacy keys using the
pwtokey command, see z/OS Communications Server: IP System
Administrator's Commands.

privProto
Indicates the privacy protocol to be used on encrypted messages on behalf
of this user. Privacy can be requested only if authentication is also
requested. If authentication is not requested, this field is ignored. The
following values are valid:

DES
Indicates CBC 56-bit DES.

AESCFB128
Indicates AES 128-bit CFB mode.

none
Indicates no privacy.

dash (-)
Indicates the default value, which is no privacy.

Requirement: For the AES privacy protocol, z/OS Integrated
Cryptographic Service Facility (ICSF) must be active. For detailed
information about configuring ICSF, see z/OS Cryptographic Services ICSF
Administrator's Guide.

privKey
Is used in authenticating messages to and from this user. This field is
ignored when privProto is specified as none. The keyType field indicates
whether the key is localized or nonlocalized. Privacy can be requested only
if authentication is also requested. If authentication is not requested, this
field is ignored. The privacy key and the authentication key are assumed
to have been generated using the same authentication protocol
(HMAC-MD5 or HMAC-SHA). Valid values are 32 hexadecimal digits if
the key is localized or if the key is nonlocalized and the authProto is
HMAC-MD5; 40 hexadecimal digits if the key is nonlocalized and the
authProto is HMAC-SHA; or a dash (-) to indicate the default of no key,
indicating no encryption. For information about generating privacy keys
using the pwtokey command, see z/OS Communications Server: IP System
Administrator's Commands.

keyType
Indicates whether the keys defined by authKey and privKey are localized or
nonlocalized. Localized indicates that they have been generated with the
appropriate engineID, making the key usable only at one snmpEngine. If
you use this user to send inform messages and localize the key, you must

Chapter 24. Simple Network Management Protocol 1257

|
|

|
|

|
|

|
|

|
|

|
|
|
|

use the engineID of the notification receiver in the localized key. The
notification receiver must define the user keys as nonlocalized. A
nonlocalized key indicates that the key can be used at different
snmpEngines. The authKey and privKey, if both are specified, must both be
localized or both be nonlocalized. This field is ignored if no authentication
or privacy is requested. Valid values are L to indicate keys are localized, N
to indicate keys are nonlocalized, or a dash (-) to indicate the default value
of localized.

storageType
Indicates the type of storage in which this definition is to be maintained.
Storage types are defined in RFC 1903. Note that the value of volatile is
not supported in the SNMPD.CONF file. Valid values are:

nonVolatile
Indicates the entry definition persists across reboots of the SNMP
agent, but it can, however, be changed or even deleted by dynamic
configuration requests.

permanent
Indicates the entry definition persists across reboots of the SNMP
agent; it can be changed but not deleted by dynamic configuration
requests.

readonly
Indicates the entry definition persists across reboots of the SNMP
agent; it cannot be changed or deleted by dynamic configuration
requests. For the USM_USER entry, readOnly is not allowed unless
the authentication protocol is none because protocols require that
user keys be changeable.

dash (-)
Indicates the default value of nonVolatile.

VACM_GROUP entry
VACM_GROUP groupName securityModel securityName storageType

Field definitions

groupName
The group name for the View-Based Access Control Model (VACM). The
groupName must be specified; there is no default value. It must be a 1–32
character string.

securityModel
Indicates the SNMP security model for this entry. When an SNMP message
comes in, the securityModel and the securityName are used to determine the
group to which the user (or community) represented by the securityName
belongs. Valid values are SNMPv1 to indicate community-based security
using SNMPv1 message processing; SNMPv2c to indicate
community-based security using SNMPv2c message processing; USM to
indicate the User-Based Security Model; or a dash (-) to indicate the default
value of USM.

securityName
Indicates a member of this group. Valid values are 1–32 characters and
indicate one of the following members:
v A USM userName when securityModel is USM
v A securityName from an SNMP_COMMUNITY statement whose

community is associated with this group

1258 z/OS V2R1.0 Communications Server: IP Configuration Reference

v A securityName from a COMMUNITY statement whose community is
associated with this group. In this case the securityName is the
community name.

There is no default value.

storageType
Indicates the type of storage in which this definition is to be maintained.
Storage types are defined in RFC 1903. Note that the value of volatile is
not supported in the SNMPD.CONF file. Valid values are:

nonVolatile
Indicates the entry definition persists across reboots of the SNMP
agent; it can, however, be changed or even deleted by dynamic
configuration requests.

permanent
Indicates the entry definition persists across reboots of the SNMP
agent; it can be changed but not deleted by dynamic configuration
requests.

readonly
Indicates the entry definition persists across reboots of the SNMP
agent; it cannot be changed or deleted by dynamic configuration
requests.

dash (-)
Indicates the default value of nonVolatile.

VACM_VIEW entry
VACM_VIEW viewName viewSubtree viewMask viewType storageType

Field definitions

viewName
Indicates the textual name of the view for the View-Based Access Control
Model. View names do not need to be unique. Multiple entries with the
same name together define one view. However, the viewName, together
with the subtree object ID, must be unique to an SNMP engine. Valid
values are 1–32 characters in length. There is no default value.

viewSubtree
Indicates the MIB object prefix of the MIB objects in the view. Valid values
are an object ID of up to 128 sub-OIDs, a textual object name (or object
prefix), or a combination of textual object name followed by numeric
sub-OIDs. The name must be found within the compiled MIB or in the
logical extension to the MIB, the /etc/mibs.data file. There is no default
value.

Guideline: For views that govern notify operations (traps or informs), the
viewSubtree and viewMask are used to verify access to all the MIB objects
in the notification, and access to the notification OID (for example, the
value in the snmpTrapOID MIB object). All notifications that the SNMP
agent sends include the following MIB objects:
v sysUpTime
v snmpTrapOID
v snmpTrapEnterprise

Chapter 24. Simple Network Management Protocol 1259

Therefore, the most granular viewSubtree that can be specified for
notifications is internet (an OID of 1.3.6.1) to permit the members of a
group access to these standard notification MIB objects.

viewMask
Indicates a mask that specifies which of the sub-OIDs in the subtree are
relevant. See RFC 3415 for further information about the viewMask. Valid
values are a hex string of up to 16 bytes (up to 128 bits), where each
hexadecimal digit represents four bits. Each bit indicates whether or not
the corresponding sub-OID in the subtree is relevant, or a dash (-) to
indicate the default value (a mask of all ones meaning all sub-OIDs are
relevant).

viewType
Indicates the type of the view definition. Valid values are included to
indicate the MIB objects identified by this view definition are within the
view, excluded to indicate the MIB objects identified by this view
definition are excluded from the view, or a dash (-) to indicate the default
value of included.

storageType
Indicates the type of storage in which this definition is to be maintained.
Storage types are defined in RFC 1903. Note that the value of volatile is
not supported in the SNMPD.CONF file. Valid values are:

nonVolatile
Indicates the entry definition persists across reboots of the SNMP
agent; it can, however, be changed or even deleted by dynamic
configuration requests.

permanent
Indicates the entry definition persists across reboots of the SNMP
agent; it can be changed but not deleted by dynamic configuration
requests.

readonly
Indicates the entry definition persists across reboots of the SNMP
agent; it cannot be changed or deleted by dynamic configuration
requests.

dash (-)
Indicates the default value of nonVolatile

VACM_ACCESS entry
VACM_ACCESS groupName contextPrefix contextMatch securityLevel
securityModel readView writeView notifyView storageType

Field definitions

groupName
The group name for the View-Based Access Control Model (VACM) for
which access is being defined. The groupName must be specified; there is
no default value. It must be a 1–32 character string.

contextPrefix
Indicates a character string to be compared with the incoming
contextName, if the value specified for the contextMatch field is prefix.
Note, however, that the SNMP agent in z/OS Communications Server
supports MIB objects in only the local (null) context. Valid values are 1–32
characters, or a dash (-) to indicate the default value of the null context
("").

1260 z/OS V2R1.0 Communications Server: IP Configuration Reference

contextMatch
Indicates whether the incoming contextName must be compared with (and
match exactly) the entire contextName or whether only the first part of the
contextName (up to the length of the indicated value of the contextPrefix)
must match. Valid values are exact to indicate that the entire contextName
must match, prefix to indicate that only the prefix of the contextName
must match, or a dash (-) to indicate the default value of exact.

securityLevel
Indicates the securityLevel for this entry and is used in determining which
access table entry to use. Valid values are noAuthNoPriv or none to
indicate no authentication or privacy protocols are applied; AuthNoPriv or
auth to indicate authentication protocols are applied but no privacy
protocol is applied; AuthPriv or priv to indicate both authentication and
privacy protocols are applied; or a dash (-) to indicate the default value of
noAuthNoPriv.

securityModel
Indicates the SNMP security model for this entry and is used in
determining which access table entry to use. Valid values are SNMPv1 to
indicate community-based security using SNMPv1 message processing,
SNMPv2c to indicate community-based security using SNMPv2c message
processing, USM to indicate the User-Based Security Model, or a dash (-) to
indicate the default value of USM.

readView
Indicates the name of the view to be applied when read operations (get,
getnext, getbulk) are performed under control of this entry in the access
table. Valid values are 1–32 characters identifying a view defined by a
VACM_VIEW definition or a dash (-) to indicate the default value of no
view (no readView defined for members of this group). If no view is
defined, read operations fail with access authorization errors for the
members of the group.

writeView
Indicates the name of the view to be applied when write operations (set)
are performed under control of this entry in the access table. Valid values
are 1–32 characters identifying a view defined by a VACM_VIEW
definition or a dash (-) to indicate the default value of no view (no
writeView defined for members of this group). If no view is defined, write
operations fail with access authorization errors for the members of the
group.

notifyView
Indicates the name of the view to be applied when notify operations (traps
or informs) are performed under control of this entry in the access table.
Valid values are 1–32 characters identifying a view defined by a
VACM_VIEW definition or a dash (-) to indicate the default value of no
view (no notifyView defined for members of this group). If no view is
defined, notify operations fail with access authorization errors for the
members of the group.

storageType
Indicates the type of storage in which this definition is to be maintained.
Storage types are defined in RFC 1903. Note that the value of volatile is
not supported in the SNMPD.CONF file. Valid values are:

Chapter 24. Simple Network Management Protocol 1261

nonVolatile
Indicates the entry definition persists across reboots of the SNMP
agent; it can, however, be changed or even deleted by dynamic
configuration requests.

permanent
Indicates the entry definition persists across reboots of the SNMP
agent; it can be changed but not deleted by dynamic configuration
requests.

readonly
Indicates the entry definition persists across reboots of the SNMP
agent; it cannot be changed or deleted by dynamic configuration
requests.

dash (-)
Indicates the default value of nonVolatile.

NOTIFY entry
NOTIFY notifyName tag type storageType

Field definitions

notifyName
A locally unique identifier for this notify definition. Valid values are 1–32
characters in length. There is no default value.

tag Indicates a tag value to be compared with the values in the tagLists
defined in the snmpTargetAddrTable (either on TARGET_ADDRESS entries
or by way of dynamic configuration). For each match of this tag with a
value in the tagLists defined in the snmpTargetAddrTable, a notification
can be sent. See RFC 2573 for a definition of SnmpTagValue. Valid values
are 1 - 255 characters. No delimiters are allowed. A dash (-) indicates the
default, which is no tag value.

type Indicates which type of notification should be generated. Valid values are:
v A trap; an unconfirmed notification; notification sent with trap PDUs
v An inform; a confirmed notification; notification sent with inform PDUs
v dash (-) Indicates the default value of trap

storageType
Indicates the type of storage in which this definition is to be maintained.
Storage types are defined in RFC 1903. Note that the value of volatile is
not supported in the SNMPD.CONF file. Valid values are:

nonVolatile
Indicates the entry definition persists across reboots of the SNMP
agent, but it can, however, be changed or even deleted by dynamic
configuration requests.

permanent
Indicates the entry definition persists across reboots of the SNMP
agent; it can be changed but not deleted by dynamic configuration
requests.

readonly
Indicates the entry definition persists across reboots of the SNMP
agent; it cannot be changed or deleted by dynamic configuration
requests.

1262 z/OS V2R1.0 Communications Server: IP Configuration Reference

dash (-)
Indicates the default value of nonVolatile.

NOTIFY_FILTER_PROFILE entry
NOTIFY_FILTER_PROFILE targetParamsName profileName storageType

Field definitions

targetParamsName
Indicates the name of the target parameter definition (paramsName in the
TARGET_PARAMETERS entry) for which the specified notify filter profile
is used. Valid values are 1 - 32 characters in length. There is no default
value.

profileName
Indicates the name of the notify filter profile (profileName on the
NOTIFY_FILTER entry) used. Valid values are 1–32 characters in length.
There is no default value.

storageType
Indicates the type of storage in which this definition is to be maintained.
Storage types are defined in RFC 1903. Note that the value of volatile is
not supported in the SNMPD.CONF file. Valid values are:

nonVolatile
Indicates the entry definition persists across reboots of the SNMP
agent, but it can, however, be changed or even deleted by dynamic
configuration requests.

permanent
Indicates the entry definition persists across reboots of the SNMP
agent; it can be changed but not deleted by dynamic configuration
requests.

readonly
Indicates the entry definition persists across reboots of the SNMP
agent; it cannot be changed or deleted by dynamic configuration
requests.

dash (-)
Indicates the default value of nonVolatile.

NOTIFY_FILTER entry
NOTIFY_FILTER profileName filterSubtree filterMask filtertype storageType

Field definitions

profileName
Indicates the name of the filter profile defined by this entry. Valid values
are 1–32 characters. There is no default value.

filterSubtree
Identifies the MIB subtree that, when combined with the corresponding
filterMask, defines a family of subtrees which are included in or excluded
from the filter profile. Valid values are an object ID of up to 128 sub-OIDs
or a textual object name (or object prefix). There is no default value.

filterMask
Indicates the bit mask that, in combination with the corresponding
filterSubtree, defines a family of subtrees that are included in or excluded
from the filter profile. See RFC 2573 for a definition of the viewMask. Valid

Chapter 24. Simple Network Management Protocol 1263

values are a hex string of up to 16 octets (up to 128 bits). Each bit indicates
whether or not the corresponding subtree sub-OID is relevant, or a dash (-)
to indicate the default value (a mask of all ones meaning that all sub-OIDs
are relevant). inform indicates a confirmed notification (for example,
notification sent with inform PDUs).

filterType
Indicates whether the family of filter subtrees defined by this entry are
included in or excluded from a filter. Valid values are included to indicate
the MIB objects identified by this definition are within the filter, excluded
to indicate the MIB objects identified by this definition are excluded from
the filter, or a dash (-) to indicate the default value of included.

storageType
Indicates the type of storage in which this definition is to be maintained.
Storage types are defined in RFC 1903. Note that the value of volatile is
not supported in the SNMPD.CONF file. Valid values are:

nonVolatile
Indicates the entry definition persists across reboots of the SNMP
agent, but it can, however, be changed or even deleted by dynamic
configuration requests.

permanent
Indicates the entry definition persists across reboots of the SNMP
agent; it can be changed but not deleted by dynamic configuration
requests.

readonly
Indicates the entry definition persists across reboots of the SNMP
agent; it cannot be changed or deleted by dynamic configuration
requests.

dash (-)
Indicates the default value of nonVolatile.

TARGET_ADDRESS entry
TARGET_ADDRESS targetAddrName tDomain tAddress tagList targetParams
timeout retryCount storageType tMask tMMS

Field definitions

targetAddrName
Indicates a locally unique identifier for this target address definition. Valid
values are 1–32 characters in length. There is no default value.

tDomain
Indicates the transport type of the address indicated by tAddress. Valid
values are UDP, UDP6, or a dash (-) for the default value of UDP. If
tAddress is an IPv6 colon hexadecimal address, the value UDP6 must be
used; otherwise, if tAddress is an IPv4 dotted decimal address, then UDP or
a dash (-) must be used.

tAddress
For notifications, tAddress indicates the transport address and port to which
notifications are sent. For community-based security, tAddress indicates the
value that is used to determine whether the IP address and port of an
SNMP request should be permitted to the community name.
v For IPv4 tAddress values, specify an IPv4 dotted decimal address that is

optionally followed by two periods and a port number (for example,

1264 z/OS V2R1.0 Communications Server: IP Configuration Reference

10.10.1.1..1162). You can use a colon instead of two periods to separate
the IPv4 address value from the port number (for example,
10.10.1.1:1162).

v For IPv6 tAddress values, specify an IPv6 address in colon hexadecimal
notation that is optionally followed by two periods and a port number
(for example, 2001:0db8::1..1162).

For community-based security, when an SNMP request is received, the IP
address mask portion of the tMask value is logically ANDed with the
origin address of the request. The resulting value must equal the value of
tAddress for the SNMP request to be permitted to the community name.
The tagListvalue is used to find the community name.

tagList For notifications, tagList indicates a list of tag values that are used to select
target addresses for a notification operation. For community-based security,
the tagList value is used to find the associated SNMP_COMMUNITY
statement containing the community name used for verification of the IP
address of an SNMP request. The z/OS Communications Server
implementation supports, by way of the configuration file, only one tag in
a tag list. RFC 2573 contains the complete definition of SnmpTagList and
SnmpTagValue. The z/OS Communications Server implementation accepts
as valid values a string of 1–255 characters. No delimiters are allowed. A
dash (-) indicates the default value, an empty list.

targetParams
For notifications, targetParams indicates a TARGET_PARAMETERS
paramsName value that indicates which security and message processing is
to be used when sending notifications to this target. For community-based
security, targetParams indicates the TARGET_PARAMETERS paramsName
value that contains the security module to be used to determine whether
an SNMP request should be permitted to a community name. Valid values
are 1–32 characters in length. There is no default value.

timeout
Indicates the expected maximum round-trip time for communicating with
this target address (in 1/100ths of a second). Valid values are 0 -
2147483647, or a dash (-) to indicate the default value of 1500. Timeout is
used only for inform type notifications; it is not used for traps.

retryCount
Indicates the number of retries to be attempted when a response is not
received for a generated message. Valid values are 0 - 255, or a dash (-) to
indicate the default value of 3. RetryCount is used only for inform type
notifications; it is not used for traps.

storageType
Indicates the type of storage in which this definition is to be maintained.
Storage types are defined in RFC 1903. Note that the value of volatile is
not supported in the SNMPD.CONF file. Valid values are:

nonVolatile
Indicates the entry definition persists across reboots of the SNMP
agent; it can, however, be changed or even deleted by dynamic
configuration requests.

permanent
Indicates the entry definition persists across reboots of the SNMP
agent; it can be changed but not deleted by dynamic configuration
requests.

Chapter 24. Simple Network Management Protocol 1265

readonly
Indicates the entry definition persists across reboots of the SNMP
agent; it cannot be changed or deleted by dynamic configuration
requests.

dash (-)
Indicates the default value of nonVolatile.

tMask Indicates the IP address mask and port mask associated with this Target
Address entry. If tAddress is an IPv4 dotted decimal address, then tMask
must be either an IPv4 address mask in dotted decimal notation or an IPv4
prefix value (0-32), optionally followed by two periods and a port mask
(for example, 255.255.0.0..65535). A colon can be used instead of two
periods to separate the IPv4 address mask or prefix value from the port
mask if a port mask is specified (for example, 255.255.0.0:65535). If tAddress
is an IPv6 colon hexadecimal address, then tMask must be either an IPv6
address mask in colon hexadecimal notation or an IPv6 prefix value
(0-128), optionally followed by two periods and a port mask (for example,
48..65535). A dash (-) specified for tMask indicates the default value. If
tAddress is an IPv4 dotted decimal address, the default tMask value is
255.255.255.255..65535. If tAddress is an IPv6 colon hexadecimal address, the
default tMask value is 128..65535.

Guideline: The default port mask is 65535, regardless if the port is
specified in the tAddress field.

tMMS Indicates the maximum message size value associated with this target
address entry. Valid values are in the range 0 - 2147483647. A dash (-)
indicates the default, which is 484. When the TARGET_ADDRESS
statement is used as part of the definition of an SNMP community name,
this parameter controls the size of the response from the SNMP agent.

TARGET_PARAMETERS entry
TARGET_PARAMETERS paramsName mpModel securityModel securityName
securityLevel storageType

Field definitions

paramsName
A locally unique identifier for this target parameters definition. Valid
values are 1–32 characters in length. There is no default value.

mpModel
For notifications, mpModel is the message processing model to be used in
sending notifications to targets with this parameter definition. For
community-based security, mpModel designates the SNMP protocol of the
SNMP requests received from the IP address defined by the associated
TARGET_ADDRESS statement. Valid values are SNMPv1, SNMPv2c, and
SNMPv3. There is no default value.

securityModel
For notifications, securityModel indicates the security model to be used in
sending notifications to targets with this parameter definition. For
community-based security, securityModel designates the SNMP protocol of
the SNMP request to be used, along with the IP address, to determine
whether the IP address should be permitted to the community name. Valid
values are SNMPv1, SNMPv2c, or USM to indicate User-Based Security
Model. There is no default value.

1266 z/OS V2R1.0 Communications Server: IP Configuration Reference

securityName
For notifications, securityName identifies the principal (user or community)
on whose behalf SNMP messages are generated using this parameter
definition. For community-based security, this is the securityName value
from the associated SNMP_COMMUNITY statement. For user-based
security, this is a userName value from a USM_USER statement. Valid
values are 1 - 32 characters in length. There is no default value.

securityLevel
Indicates the security level to be used in sending notifications to targets
with this parameter definition. Valid values are noAuthNoPriv or none to
indicate no authentication or privacy protocols are applied, AuthNoPriv or
auth to indicate that authentication protocols are applied but no privacy
protocol is applied, AuthPriv or priv to indicate that both authentication
and privacy protocols are applied (If the additional encryption product is
not applied, this level can be configured, but not actually used), or a dash
(-) to indicate the default value of noAuthNoPriv. For community-based
security, specify the default value of a dash(-).

storageType
Indicates the type of storage in which this definition is to be maintained.
Storage types are defined in RFC 1903. Note that the value of volatile is
not supported in the SNMPD.CONF file. Valid values are:

nonVolatile
Indicates the entry definition persists across reboots of the SNMP
agent; it can, however, be changed or even deleted by dynamic
configuration requests.

permanent
Indicates the entry definition persists across reboots of the SNMP
agent; it can be changed but not deleted by dynamic configuration
requests.

readonly
Indicates the entry definition persists across reboots of the SNMP
agent; it cannot be changed or deleted by dynamic configuration
requests.

dash (-)
Indicates the default value of nonVolatile.

COMMUNITY entry
COMMUNITY communityName securityName securityLevel netAddr netMask storageType

Field definitions

communityName
The community name for community-based security (SNMPv1 or
SNMPv2c). The netAddr must be specified; there is no default value. It
must be a 1 - 32 character string.

securityName
The securityName defined for this communityName. The securityName is the
more generic term for the principal (user or community) for which other
entries, such as VACM_GROUP and TARGET_PARAMETERS, are defined.
The community name must match the securityName exactly. The
securityName is 1 - 32 characters. A dash (-) indicates the default value; a
securityName equal to the specified communityName.

Chapter 24. Simple Network Management Protocol 1267

securityLevel
Indicates the security level to be applied when processing incoming or
outgoing messages with this community name. Valid values are
noAuthNoPriv or none to indicate no authentication or privacy protocols
are applied, or dash (-) to indicate the default value of noAuthNoPriv.
Encryption is not supported on SNMPv1 and SNMPv2c messages.

netAddr
The host IP address or network address, in IPv4 dotted decimal or IPv6
colon hexadecimal notation, representing the range of addresses for which
this community name can be used. When an SNMP request is received, the
netMask value is logically ANDed with the origin address of the request.
The resulting value must equal the value of netAddr for the SNMP request
to be permitted to the community name. The netAddr must be specified;
there is no default value.

netMask
The IP address mask or IP address prefix defined for this
communityName. If netAddr is an IPv6 colon hexadecimal address, then
netMask is either an IPv6 colon hexadecimal address mask (for example,
FFFF:FFFF::) or an integer from 0 to 128 specifying the number of IPv6
address prefix bits used to construct an IPv6 address mask. If netAddr is an
IPv4 dotted decimal address, then netMask is either an IPv4 address mask
(for example, 255.255.255.0) or an integer from 0 to 32 specifying the
number of IPv4 address prefix bits used to construct an IPv4 address mask.
The mask is logically ANDed with the origin address of the incoming
SNMP message. If the resulting value equals the value of netAddr, the
incoming message is accepted. netMask must be specified; there is no
default value.

storageType
Indicates the type of storage in which this definition is to be maintained.
Storage types are defined in RFC 1903. Note that the value of volatile is
not supported in the SNMPD.CONF file. Valid values are:

nonVolatile
Indicates the entry definition persists across reboots of the SNMP
agent; it can, however, be changed or even deleted by dynamic
configuration requests.

permanent
Indicates the entry definition persists across reboots of the SNMP
agent; it can be changed but not deleted by dynamic configuration
requests.

readonly
Indicates the entry definition persists across reboots of the SNMP
agent; it cannot be changed or deleted by dynamic configuration
requests.

dash (-)
Indicates the default value of nonVolatile.

SNMP_COMMUNITY entry
SNMP_COMMUNITY communityIndex communityName securityName contextEngineID
contextName transportTag storageType

1268 z/OS V2R1.0 Communications Server: IP Configuration Reference

Field definitions

communityIndex
Indicates a locally unique identifier for this SNMP_Community definition.
Valid values are 1 - 32 characters in length. There is no default value.

communityName
The community name for community-based security (SNMPv1 or
SNMPv2c) . Valid values are 1 - 32 characters in length. There is no default
value. The agent assumes that community names are encoded in ASCII. If
an EBCDIC-encoded community name is needed, it must be specified as a
UTF-8 name. See the Usage Note topic for an explanation about how to
configure a UTF-8 name.

securityName
The securityName defined for this communityName. The securityName is the
more generic term for the principal (user or community) for which other
entries, such as VACM_GROUP and TARGET_PARAMETERS, are defined.
Valid values are 1 - 32 characters in length. There is no default value.

contextEngineID
Indicates the location of the context in which information is accessed. A
dash (-) indicates the default value of the local SNMP agent's engine ID.
Only the default value is supported.

contextName
The corresponding context value. Valid values are 1-32 characters in length.
Only a dash (-) indicating the default, which is an empty string, is
supported.

transportTag
Indicates a tag value to be compared with the values in the tagLists
defined in the snmpTargetAddrTable (either on TARGET_ADDRESS entries
or by way of dynamic configuration). Those target addresses (whose tag
value match this tag) identify the transport endpoints from which a request
containing this community are accepted. Valid values are 1 - 255 characters.
No delimiters are allowed. A dash (-) indicates the default, which is no tag
value.

storageType
Indicates the type of storage in which this definition is to be maintained.
Valid values are:

nonVolatile
Indicates the entry definition persists across reboots of the SNMP
agent; it can, however, be changed or even deleted by dynamic
configuration requests.

permanent
Indicates the entry definition persists across reboots of the SNMP
agent; it can be changed but not deleted by dynamic configuration
requests.

readonly
Indicates the entry definition persists across reboots of the SNMP
agent; it cannot be changed or deleted by dynamic configuration
requests.

dash (-)
Indicates the default value of nonVolatile.

Chapter 24. Simple Network Management Protocol 1269

DEFAULT_SECURITY entry
DEFAULT_SECURITY securityPosture password privacy

Field definitions

securityPosture
Indicates the default security posture to be configured for the SNMP agent,
as defined by Appendix A of RFC 2575. Valid values are minimum-secure
to indicate the SNMP agent is configured with the least secure default
configurations; semi-secure to indicate the SNMP agent is configured with
moderately secure default configurations; and no-access to indicate the
SNMP agent is configured with no default configurations. The default
value is no-access.

Following are the default security definitions based on the selected security
posture:

no-access
No initial configurations are done.

semi-secure

If privacy is not requested, a default user is configured as if the
following USM_USER entry had been specified:
USM_USER initial- HMAC-MD5 ### none - N permanent

where ### indicates the key generated from the password specified
on the DEFAULT_SECURITY entry.

If privacy is requested, a default user is configured as if the
following USM_USER entry had been specified:
USM_USER initial - HMAC-MD5 ### DES ### N permanent

where ### indicates the key generated from the password specified
on the DEFAULT_SECURITY entry.

A default group is configured as if the following VACM_GROUP
entry had been specified:
VACM_GROUP initial USM initial readOnly

Three default access entries are configured as if the following
VACM_ACCESS entries had been specified:
VACM_ACCESS initial - exact none USM restricted - restricted readOnly
VACM_ACCESS initial - exact auth USM internet internet internet readOnly
VACM_ACCESS initial - exact priv USM internet internet internet readOnly

Two default MIB views are configured as if the following
VACM_VIEW entries had been specified:
VACM_VIEW internet internet - included readOnly
VACM_VIEW restricted system - included readOnly
VACM_VIEW restricted snmp - included readOnly
VACM_VIEW restricted snmpEngine - included readOnly
VACM_VIEW restricted snmpMPDStats - included readOnly
VACM_VIEW restricted usmStats - included readOnly

minimum-secure

If privacy is not requested, a default user is configured as if the
following USM_USER entry had been specified:
USM_USER initial - HMAC-MD5 ### none - N permanent

1270 z/OS V2R1.0 Communications Server: IP Configuration Reference

where ### indicates the key generated from the password specified
on the DEFAULT_SECURITY entry.

If privacy is requested, a default user is configured as if the
following USM_USER entry had been specified:
USM_USER initial - HMAC-MD5 ### DES ### N permanent

where ### indicates the key generated from the password specified
on the DEFAULT_SECURITY entry.

A default group is configured as if the following VACM_GROUP
entry had been specified:
VACM_GROUP initial USM initial readOnly

Three default access entries are configured as if the following
VACM_ACCESS entries had been specified:
VACM_ACCESS initial - exact none USM restricted - restricted readOnly
VACM_ACCESS initial - exact auth USM internet internet internet readOnly
VACM_ACCESS initial - exact priv USM internet internet internet readOnly

Two default MIB views are configured as if the following
VACM_VIEW entries had been specified:
VACM_VIEW internet internet - included readOnly
VACM_VIEW restricted internet - included readOnly

password
Indicates the password to be used to generate authentication and privacy
keys for user initial. If no-access is specified as the securityPosture, this
keyword is ignored. Valid values are 8 - 255 characters string, or a dash (-)
to indicate the default value (no password). The default is only accepted if
securityPosture is no-access.

privacy Indicates whether or not encryption is to be supported for messages on
behalf of user 'initial'. Valid values are Yes to indicate that privacy is
supported for user initial, No to indicate that privacy is not supported for
user initial, or a dash (-) to indicate the default value of no. If no-access is
selected as the security posture, this value is ignored.

Usage notes
v The SNMP Agent supports the ASCII character set and UTF-8 encoding for the

values specified for the name fields on the configuration statements. Use UTF-8
values to define EBCDIC name field values to the agent. To specify a UTF-8
value for a name field, specify the value in the following format:
– The first character must be a cent sign (¢)
– The remaining characters are the octet string representing the name value

For example, to define the EBCDIC value, TEST, in a name field, specify the
name value as follows:
¢e3c5e2e3

v If an error is detected in processing an entry and no appropriate default value
can be assumed, the entry is discarded and an error message is written to the
syslog daemon.

v An entry must be contained on one line.
v Keywords in the SNMPD.CONF file are accepted in any case (that is, they are

not case sensitive.)
v Values in the SNMPD.CONF file are case sensitive. For example, a userName of

user1 is not equivalent to a userName of USER1.

Chapter 24. Simple Network Management Protocol 1271

v All of these entry definitions require that all fields be specified, either with a
specific value or with a dash (-). A dash indicates that the appropriate default
value should be applied.

v If an error is detected in processing an entry and no appropriate default value
can be assumed, the entry is discarded and an error message is generated.

v Statements in the SNMPD.CONF file are not order dependent. However, if more
than one DEFAULT_SECURITY statement is found, the last one in the file is the
one that is used.

v If there are no valid entries in the SNMPD.CONF file (but the file exists) and no
-c parameter specified at agent invocation, no requests are accepted.

v Comments can be entered in the SNMPD.CONF file. They must must begin with
an asterisk (*) or a # character in column 1.

v The SNMP agent uses a ¢ character to precede a hex string that represents a
value for an SnmpAdminString syntax object for which the value cannot be
printed. Use of the ¢ is reserved for this purpose. Do not change the contents of
the entries in the configuration file that have a ¢ character preceding them.

v You cannot specify scope information about any values in the SNMPD.CONF
file that represent IP addresses or host names.

SNMPD.CONF sample
The following code shows the SNMPD.CONF sample:

snmpd.conf sample
#
Sample file showing format of configuration file for the SNMP agent
#
Licensed Materials - Property of IBM
"Restricted Materials of IBM"
5650-ZOS
Copyright IBM Corp. 1997, 2013
Status = CSV2R1
SMP/E distribution path: /usr/lpp/tcpip/samples/IBM/EZASNDCO
#
#---
Notes
- All values for an entry must be on the same line.
- Dynamic changes to the SNMP agent configuration made by SNMP SET
commands may cause entries to be written to this file that are
wider than the original entries. If this file is maintained in
an MVS data set, the record length should allow for longer entries.
- All localized keys need to be regenerated using the pwtokey command
in order for these sample entries to actually be used.
- In this sample:
- Keys are generated for use with engineID 00000002000000000943714F
- Authentication keys were generated with password of
username+"password", such as "u1password"
- Privacy keys were generated with password of
username+"privpass", such as "u1privpass"
#---
#---
USM_USER entries
Format is:
userName engineID authProto authKey privProto privKey keyType storageType
#
Note: Users u3 and u4 use non-localized keys. Not recommended, but allowed.
Note: Users u5 and u6 use the same password for generating the authkey and privkey. Not recommended, but allowed.
#---
USM_USER u1 - HMAC-MD5 6da6c69c64b7737360f8319d90e4d511 DES 959709e534eade82cecbacb42a10c90a L -
USM_USER u2 - HMAC-SHA f26562da268f21a916792d3f45500cd5a8163071 DES 3b3249ad3eb10d46d2731ee6fbaf8591 L -
USM_USER u3 - HMAC-MD5 d1f86e9c9346253c10a4cd2da339b1db DES cfccde3249ba521ae4da0ddfc2b76ee7 N -
USM_USER u4 - HMAC-SHA 42529b3c6c138c173e70db1050de8d74c04205cb DES ef70a0a98d399a9189f3169e82010f3b46e694e2 N -
USM_USER u5 - HMAC-MD5 2b0e2c55d452b5ada056d50e8a66ea35 DES 2b0e2c55d452b5ada056d50e8a66ea35 L -
USM_USER u6 - HMAC-SHA aaa2f3b36f840549b6e8916b7b90430765dd3858 DES aaa2f3b36f840549b6e8916b7b904307 L -
USM_USER u7 - HMAC-MD5 5fbd3ad2fa6569d6c1e9ab4b83728b87 AESCFB128 bf686267600ff8f4b1354b857d186b55 L -
#---
VACM_GROUP entries
Format is:
groupName securityModel securityName storageType
#---
VACM_GROUP group1 USM u1 -
VACM_GROUP group1 USM u2 -
VACM_GROUP group1 USM u3 -
VACM_GROUP group1 USM u4 -
VACM_GROUP group2 USM u5 -
VACM_GROUP group2 USM u6 -

1272 z/OS V2R1.0 Communications Server: IP Configuration Reference

|
|
|

|

VACM_GROUP group2 USM u7 -
VACM_GROUP group3 SNMPv1 publicv1 -
VACM_GROUP group3 SNMPv2c publicv2c -
VACM_GROUP group4 SNMPv1 MVSsubagent -
VACM_GROUP group4 SNMPv2c MVSsubagent -
VACM_GROUP group5 SNMPv1 scsecnamev1 -
VACM_GROUP group5 SNMPv2c scsecnamev2c -
VACM_GROUP group5 SNMPv2c scsecnameIPv6v2c -
VACM_GROUP group6 SNMPv1 publicIPv6v1 -
VACM_GROUP group6 SNMPv2c publicIPv6v2c -
#---
VACM_VIEW entries
Format is:
viewName viewSubtree viewMask viewType storageType
#---
VACM_VIEW bigView internet - included -
VACM_VIEW prettyBigView internet - included -
VACM_VIEW prettyBigView interfaces - excluded -
VACM_VIEW mediumView system - included -
VACM_VIEW mediumView interfaces - included -
VACM_VIEW mediumView tcp - included -
VACM_VIEW mediumView udp - included -
VACM_VIEW mediumView icmp - included -
VACM_VIEW smallView snmp - included -
VACM_VIEW subagentView dpiPort - included -
#---
VACM_ACCESS entries
Format is:
groupName contextPrefix contextMatch securityLevel securityModel readView writeView notifyView storageType
#---
VACM_ACCESS group1 - - AuthPriv USM bigView bigView bigView -
VACM_ACCESS group1 - - AuthNoPriv USM bigView prettyBigView bigView -
VACM_ACCESS group1 - - noAuthNoPriv USM smallView smallView smallView -
VACM_ACCESS group2 - - AuthPriv USM bigView bigView bigView -
VACM_ACCESS group2 - - AuthNoPriv USM bigView mediumView smallView -
VACM_ACCESS group2 - - noAuthNoPriv USM bigView mediumView - -
VACM_ACCESS group3 - - noAuthNoPriv SNMPv1 mediumView mediumView mediumView -
VACM_ACCESS group3 - - noAuthNoPriv SNMPv2c bigView bigView bigView -
VACM_ACCESS group4 - - noAuthNoPriv SNMPv1 subagentView - - -
VACM_ACCESS group4 - - noAuthNoPriv SNMPv2c subagentView - - -
VACM_ACCESS group5 - - noAuthNoPriv SNMPv1 mediumView mediumView mediumView -
VACM_ACCESS group5 - - noAuthNoPriv SNMPv2c bigView bigView bigView -
VACM_ACCESS group6 - - noAuthNoPriv SNMPv1 bigView bigView bigView -
VACM_ACCESS group6 - - noAuthNoPriv SNMPv2c bigView bigView bigView -
#---
NOTIFY entries
Format is:
notifyName tag type storageType
#---
NOTIFY notify1 traptag trap -
*NOTIFY notify2 informtag inform -
#---
TARGET_ADDRESS
Format is:
targetAddrName tDomain tAddress tagList targetParams timeout retryCount storageType tMask tMMS
#---
TARGET_ADDRESS Target1 UDP 9.67.113.10 traptag trapparms1 - - - - -
TARGET_ADDRESS Target2 UDP 9.67.113.5:2162 traptag trapparms2 - - - - -
TARGET_ADDRESS Target3 UDP 127.0.0.1 traptag trapparms3 - - - - -
*TARGET_ADDRESS Target4 UDP 127.0.0.1 informtag informparms - - - - -
TARGET_ADDRESS Target5 UDP6 ::1 traptag trapparms2 - - - - -
TARGET_ADDRESS Target6 UDP6 12AB::2 tagIPv6 comparmsIPv6 - - - 128..0 -
#---
TARGET_PARAMETERS
Format is:
paramsName mpModel securityModel securityName securityLevel storageType
#---
TARGET_PARAMETERS trapparms1 SNMPv1 SNMPv1 publicv1 noAuthNoPriv -
TARGET_PARAMETERS trapparms2 SNMPv2c SNMPv2c publicv2c noAuthNoPriv -
TARGET_PARAMETERS trapparms3 SNMPv3 USM u2 AuthNoPriv -
*TARGET_PARAMETERS informparms SNMPv3 USM u4 noAuthNoPriv -
TARGET_PARAMETERS comparmsIPv6 SNMPv2c SNMPv2c scsecnameIPv6v2c noAuthNoPriv -
#---
NOTIFY_FILTER_PROFILE
Format is:
targetParamsName profileName storageType
#---
NOTIFY_FILTER_PROFILE trapparms3 filProf -
#---
NOTIFY_FILTER
Format is:
profileName filterSubtree filterMask filterType storageType
#---
NOTIFY_FILTER filProf authenticationFailure - included -
#---
COMMUNITY
Format is:
communityName securityName securityLevel netAddr netMask storageType
NOTE:
For CSV1R2 and later releases, the SNMP_COMMUNITY statement is recommended

Chapter 24. Simple Network Management Protocol 1273

|

rather than the COMMUNITY statement for community-based security.
#---
COMMUNITY publicv1 publicv1 noAuthNoPriv 9.67.113.79 255.255.255.255 -
COMMUNITY publicv2c publicv2c noAuthNoPriv 0.0.0.0 0.0.0.0 -
COMMUNITY publicIPv6v1 publicIPv6v1 noAuthNoPriv 12ab::0 16 -
COMMUNITY publicIPv6v2c publicIPv6v2c noAuthNoPriv 0::0 0 -
COMMUNITY MVSsubagent MVSsubagent noAuthNoPriv 9.0.0.0 255.0.0.0 -
#---
SNMP_COMMUNITY
Format is:
communityIndex communityName securityName contextEngineID contextName transportTag storageType
#---
SNMP_COMMUNITY scindexv1 sccomnamev1 scsecnamev1 - - - -
SNMP_COMMUNITY scindexv2c sccomnamev2c scsecnamev2c - - - -
SNMP_COMMUNITY scindexIPv6v2c sccomnameIPv6v2c scsecnameIPv6v2c - - tagIPv6 -
#---
DEFAULT_SECURITY
Format is:
securityPosture password privacy
#---
DEFAULT_SECURITY semi-secure defaultpassword no
#---
Any SNMP agent configuration entries added by dynamic configuration
(SET) requests get added to the end of the SNMPD.CONF file.
#---

Migrating the PW.SRC file and SNMPTRAP.DEST file to the
SNMPD.CONF file

If you want to continue to use community-based security (for SNMP protocols,
SNMPv1 and SNMPv2c), but take advantage of some of the new SNMPv3
functions, or if you want to use the new SNMPV3 user-based security along with
community-based security, you need to migrate your current configuration, defined
in the PW.SRC and SNMPTRAP.DEST files, to the SNMPD.CONF format.

Steps for migrating the PW.SRC and SNMPTRAP.DEST files
This topic describes the steps of migrating the PW.SRC and SNMPTRAP.DEST files
to the SNMPD.CONF file.

Procedure

Perform the following steps to migrate the PW.SRC and SNMPTRAP.DEST files to
the SNMPD.CONF file:
1. For each community name defined in the the PW.SRC file, create an

SNMP_COMMUNITY statement in the SNMPD.CONF file. This identifies the
community names defined to the agent.

2. Create TARGET_ADDRESS entries to identify the address range permitted to
use a particular community name. For each SNMP_COMMUNITY entry and
for each range of addresses for which it is used, create a TARGET_ADDRESS
entry. The TARGET_ADDRESS entries refer to related TARGET_PARAMETERS
entries.

3. Create TARGET_PARAMETERS entries to identify the security model (SNMPv1
or SNMPv2c) to be used with the address on the corresponding
TARGET_ADDRESS entries.

4. Define the following entries to determine which SNMP communities get access
to which pieces of data and the type of access that they are allowed:

Figure 42. SNMPD.CONF sample

1274 z/OS V2R1.0 Communications Server: IP Configuration Reference

VACM_GROUP
Specify one entry for each security model (in this case SNMPv1 or
SNMPv2c) and use the community names from the PW.SRC file.

VACM_VIEW
Specify one entry for each set of MIB object identifiers that you want to
protect.

VACM_ACCESS
Specify one entry that ties together the VACM_GROUP and
VACM_VIEW entries and defines each group/view permission. You can
define the group’s permission to read, write, and receive notifications
for the defined views.

5. To continue sending notifications, convert the entries in the SNMPTRAP.DEST

file to entries in the SNMPD.CONF file.
v Add one NOTIFY entry for type TRAP.
v Add one TARGET_ADDRESS statement for each manager that receives a

TRAP.
v Optionally, configure a TARGET_PARAMETERS entry to identify the

message model used in sending notifications to particular destinations. The
default is SNMPv1, or specify SNMPv2c. Encryption and authentication are
not used.

Results

Tip: For more detailed information about migrating z/OS SNMP configuration
files from SNMPv1 and SNMPv2c to SNMPv3, see Technote Migrating z/OS
SNMP to SNMPv3 at http://www-01.ibm.com/support/
docview.wss?uid=swg27004972.

Example

For an example of using SNMPD.CONF statements to configure community-based
security, see Figure 41 on page 1254.

SNMPD.BOOTS statement syntax
The syntax is:

engineID engineBoots

where:

engineID
A string of 2–64 (must be an even number) hexadecimal digits. The engine
identifier uniquely identifies the agent within an administrative domain.
By default, the engine identifier is created using a vendor-specific formula
and incorporates the IP address of the agent. However, a customer can
choose to use any engine identifier that is consistent with the
snmpEngineID definition in RFC 3411 and that is also unique within the
administrative domain.

engineBoots
The number of times (in decimal) the agent has been restarted since the
engineID was last changed.

Chapter 24. Simple Network Management Protocol 1275

http://www-01.ibm.com/support/docview.wss?uid=swg27004972
http://www-01.ibm.com/support/docview.wss?uid=swg27004972

Note:

1. engineID and engineBoots must be specified in order and on the same line.
2. Comments are specified in the file by starting the line with either an asterisk (*)

or a # character.
3. No comments are allowed between the engineID and engineBoots values.
4. Only the first non-comment line is read. Subsequent lines are ignored.
5. If an error is detected in processing an entry and no appropriate default value

can be assumed, the entry is discarded and an error message is written to the
syslog daemon.

SNMPD.BOOTS search order
The search order for accessing SNMPD.BOOTS information is as follows. The first
file found in the search order is used.
1. The name of a z/OS UNIX file or an MVS data set specified by the

SNMPD_BOOTS environment variable.
2. /etc/snmpd.boots

Guideline: If the SNMPD.BOOTS file is not provided, the SNMP agent creates the
file. If multiple SNMPv3 agents are running on the same MVS image, use the
environment variable to specify different SNMPD.BOOTS files for the different
agents. For security reasons, ensure unique engineIDs are used for different SNMP
agents.

SNMP query engine (SNMPQE)
This topic describes the SNMP query engine (SNMPQE).

SNMP query engine cataloged procedure (SNMPPROC)
This topic shows the SNMPPROC cataloged procedure.
//SNMPQE PROC MODULE=SQESERV,PARMS=’’
//*
//* z/OS Communications Server
//* SMP/E Distribution Name: EZAEB01W
//*
//* Copyright: Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* 5694-A01
//* (C) Copyright IBM Corp. 1989, 2002
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//*
//* Status: CSV1R4
//*
//SNMPQE EXEC PGM=&MODULE,PARM=’&PARMS’,
// REGION=4096K,TIME=1440
//*
//* The C runtime libraries should be in the system’s link list
//* or add them to the STEPLIB definition here. If you add
//* them to STEPLIB, they must be APF authorized.
//*
//STEPLIB DD DSN=TCPIP.SEZADSIL,DISP=SHR
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//SYSIN DD DUMMY
//*
//* The SYSMDUMP DD statement will cause MVS to provide
//* an IPCS readable dump for ABENDs.
//*SYSMDUMP DD DISP=SHR,DSN=your.dump.data.set

1276 z/OS V2R1.0 Communications Server: IP Configuration Reference

//*
//* MSSNMPMS identifies an optional data set for NLS support.
//* It specifies the SNMP message repository.
//*
//*MSSNMPMS DD DSN=TCPIP.SEZAINST(MSSNMP),DISP=SHR
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//*
//SYSTCPD DD DSN=TCPIP.SEZAINST(TCPDATA),DISP=SHR

Specifying the SNMPQE parameters
The SQESERV module can be configured to start without parameters or you can
add any of the following parameters to PARMS=’ in the PROC statement of the
SNMPQE cataloged procedure. For example,
//SNMPQE PROC MODULE=SNMPQE,PARMS=’-h MVSA’

Note:

1. These parameters are also valid when starting SNMPQE with the START
command.

2. The commands are case sensitive. They must be entered in lowercase.
3. When starting SNMPQE in batch, do not use the 'POSIX(ON)' parameter. This

alters the search order the query engine uses to find the configuration files,
which could prevent it from locating any configuration files not explicitly
pointed to using a standard environment variable. It can also have other
unexpected results.

Parameter
Description

-d trace_level
Specifies the level of tracing to be run. Valid values for the trace level are:

0 No tracing (default)

1 Displays errors

2 In addition to errors, also displays SNMP query engine protocol
packets sent and received

3 In addition to 2, also displays the SNMP packets sent and received

4 In addition to 3, also displays the buffers in hexadecimal format

-h host_name
Specifies the IP address to which to bind, so that SQESERV accepts
connections only through that IP address. This parameter is useful if
multiple IP addresses exist for a single host, and you want to restrict access
from one side.

-it Specifies that a trace of IUCV communication be done. This is only used
for debugging the socket layer in a user’s application. It can result in a
large amount of STDOUT output.

Figure 43. SNMP query engine cataloged procedure (SNMPPROC)

Chapter 24. Simple Network Management Protocol 1277

-tp port_number
Specifies the port at which the SNMP Query Engine listens for traps. If this
option is not specified, the SNMP Query Engine listens on the well-known
port 162. The valid values are 1 - 65 535.

See z/OS Communications Server: IP Diagnosis Guide for more information about
tracing.

SNMP parameter data set (SNMPARMS) sample
Following is the SNMPARMS sample:

* Member name: *
* SNMPARMS *
* *
* *
* Copyright: Licensed Materials - Property of IBM *
* *
* "Restricted Materials of IBM" *
* *
* 5647-A01 *
* *
* (C) Copyright IBM Corp. 1977, 1998 *
* *
* US Government Users Restricted Rights - *
* Use, duplication or disclosure restricted by *
* GSA ADP Schedule Contract with IBM Corp. *
* *
* Status: CSV2R6 *
* *
* *
* Function: *
* Externalized paramters for SNMPIUCV module, the task *
* that communicates with the SNMP Query Engine. *
* *
* Attributes: *
* Read by DSIDKS to obtain actual parameters. *
* *
* Library: *
* On MVS: Member SNMPARMS in NetView’s DSIPRM dataset. *
* On VM: File SNMPARMS NCCFLST on a NetView minidisk. *
* *
* Change activity: *
* *
* PTM DATE DESCRIPTION *
* ------- ------- ---*
* 24Sep89 Initial version *
* 09Nov89 Final version *
* 20Feb90 Adapt defaults as recommended during test*
* 27Mar90 Adapt defaults for new AF_IUCV sockets *
* 09Jul90 Remove not needed paramters *
* *

*

SNMPQE SNMPQE * Userid of SNMP Query Engine
SNMPQERT 60 * Retry timer (seconds) for IUCV CONNECT
SNMPRCNT 2 * Retry count for sending SNMP requests
SNMPRITO 10 * Retry initial timeout (10ths of a second)
SNMPRETO 2 * Retry backoff exponent (1=linear, 2=exponential)
SNMPMMLL 80 * Line length for Multiline Messages 38/44

Figure 44. SNMP parameter data set (SNMPARMS) sample

1278 z/OS V2R1.0 Communications Server: IP Configuration Reference

Specifying the SNMPARMS parameters
You can change the following parameters in SNMPARMS:

Parameter
Description

SNMPQE name
The name of the SNMP query engine started procedure. This value is case
sensitive. The default address space name is SNMPQE. If you change the
name of the SNMP query engine started procedure, you must change this
parameter to match the new procedure name.

SNMPQERT seconds
The retry timer, in seconds, for IUCV CONNECT. When SNMPIUCV is
started, it tries to connect to the SNMP query engine. If the connection fails
or breaks, SNMPIUCV retries a connect every n seconds, as specified by
this parameter. The valid range of values is 0 - 9999. The default is 60
seconds.

SNMPRCNT number
The retry count for sending SNMP requests. This is the number of times
the SNMP query engine resends an SNMP PDU when no response was
received. If no response is received after all retries have been exhausted,
the SNMP query engine returns a no response error for the SNMP request.
The valid range of values is 0 - 255. The default is 2.

If the request being sent by the SNMP query engine contains a community
name that is not valid, no response is received. This causes the SNMP
query engine to resend the request until the retry count is exhausted. If
authentication failure traps are enabled, the agent generates multiple
authentication-Failure traps, one for the initial request and one for each of
the retries.

SNMPMMLL length
The line length for multiline messages 38 and 44. The maximum length is
255. A value of 80 allows the complete text to appear on an
80-character-wide screen. The default and minimum acceptable line length
value is 80.

SNMPRETO exp
The retry back-off exponent. Specifies whether the timeout value between
retries of an SNMP request is calculated linearly or exponentially. The valid
values are 1 (linear) or 2 (exponential). The default is 2.

For example, if the retry timeout was 1 second, SNMPRETO of 1 causes a
new retry to be sent at constant 1-second intervals until all retries have
been sent. SNMPRETO of 2 causes the first retry to be sent after 1 second,
the second retry 2 seconds later, the third retry 4 seconds later, and so on
until all retries have been sent.

SNMPRITO tenths_seconds
The timeout value for a request specified in tenths of a second. After
sending an SNMP request to an agent, the SNMP query engine waits the
specified number of tenths of a second for a response.
v If the retry count (SNMPRCNT) is greater than 0, the SNMP request is

sent again if a response is not received in this time.
v If the retry count (SNMPRCNT) is 0, a no response error is sent to the

NetView program, if a response is not received within this period of
time.

Chapter 24. Simple Network Management Protocol 1279

The valid range of values is 0 - 255. The default is 10 tenths of a second.

MIBDESC.DATA statement
The MIBDESC.DATA statement syntax is:
short_name asn.1_name type time_to_live

where:
v short name is the textual name for the MIB object, either as defined in the MIB

definition or chosen by the customer.
v asn.1_name is the MIB object identifier that describes the location of the object in

the MIB tree.
v type is the syntax of the MIB object.
v time_to_live is the number of seconds the SNMP Query Engine can cache the

object before requesting an updated copy from the SNMP agent.

The following SNMP variable type values (from SMI version 1) are supported in
the type field of the MIBDESC.DATA statement:
v Number for integers
v String for octet strings
v Object for object identifiers
v Internet for IP addresses
v Counter for counters (unsigned)
v Gauge for gauge (unsigned)
v Ticks for time ticks
v Display for display strings
v Table for table header variables
v Empty for no value

MIBDESC.DATA search order
The search order for accessing MIBDESC.DATA is as follows. The first file found in
the search order is used.
1. The name of a z/OS UNIX file or an MVS data set specified by the MIB_DESC

environment variable.
2. hlq.MIBDESC.DATA, where hlq either defaults to TCPIP or is specified on the

DATASETPREFIX statement in the TCPIP.DATA file being used .

MIBDESC environment variables
Table 93 provides a list of environment variables used by MIBDESC that can be
tailored to a particular installation:

Table 93. MIBDESC environment variables

Environment variable Server, Client or Command-type
application

Description Any specific
coding rules (or a
link to syntax)

MIB_DESC SNMP Query Engine Specifies the location of
the MIBDESC.DATA
configuration file

None

z/OS UNIX snmp command
This topic describes the z/OS UNIX snmp command.

1280 z/OS V2R1.0 Communications Server: IP Configuration Reference

Environment variables
Table 94 provides a list of environment variables used by the command that you
can modify to use with your installation environment:

Table 94. z/OS UNIX snmp command environment variables

Environment variable Server, Client or Command-type
application

Description Any specific
coding rules (or
a link to
syntax)

MIBS_DATA z/OS UNIX snmp command Specifies the location of the
MIBS.DATA configuration
file.

None

OSNMP_CONF z/OS UNIX snmp command Specifies the location of the
OSNMP.CONF
configuration file.

None

OSNMP.CONF search order
The following search order for this file enables different copies of the file to be
used by different users:
1. A z/OS UNIX file or MVS data set pointed to by the OSNMP_CONF

environment variable
2. /etc/osnmp.conf
3. /etc/snmpv2.conf

OSNMP.CONF statement syntax
The configuration file is required when sending requests to the SNMPv2 or
SNMPv3 nodes in your network. The configuration file can also be used to send
SNMPv1 requests.

The syntax of a statement in the configuration file is:
winSNMPname targetAgent admin secName password context secLevel
authProto authKey privProto privKey NOSVIPA

Field definitions

winSNMPname
An administrative name that the snmp command uses to locate an entry in
the configuration file. There is no default value. This field is specified on
the -h option (maximum 32 characters).

targetAgent
Host name or IP address (IPv4 dotted decimal or IPv6 colon hexadecimal)
of the node of the target agent (maximum 80 characters). There is no
default value. To direct the command to a port other than 161, specify
host..port# (with two periods between the host and port number). For
example, for port 222 at mvs150, specify mvs150..222. Port number, if
specified, must be in the range of 1 to 65535. If the host is specified by a
host name or an IPv4 dotted decimal address and a port number is also
specified, a colon (:) can be used to separate the two values instead of two
periods.

admin Specifies the administrative model supported by the targetAgent. Valid
values are:
v snmpv1 - Community-based SNMPV1 security

Chapter 24. Simple Network Management Protocol 1281

v snmpv2c - Community-based SNMPV2 security
v snmpv3 - User-based SNMPV3 security

There is no default value.

secName
Specifies the security name of the principal using this configuration file
entry. For user-based security, this is the userName. The user must be
defined at the targetAgent. This field is ignored unless snmpv3 is specified
for the admin keyword. A valid value is a user name of 1–32 characters.
There is no default.

password
Specifies the password to be used in generating the authentication and
privacy keys for this user. If a password is specified, it is used to
automatically generate any needed keys and the "authKey" and "privKey"
fields below are ignored. This field is ignored unless snmpv3 is specified
for the admin keyword. If no password is desired, set field to a single dash
(-). (The minimum is eight characters, and the maximum is 64 characters.)

Guideline: You should not use the password instead of keys in this
configuration file, because using keys is more secure than storing
passwords in this file.

context
The SNMP contextName to be used at the target agent. The contextName
is needed only at agents that support multiple contexts; otherwise, the only
context supported is the null context, which is the default value of this
keyword. The z/OS Communications Server SNMP agent does not support
multiple contexts. This field is ignored unless snmpv3 is specified for the
admin keyword. If the blank "" context selector is desired, set this field to a
single dash (-). (The maximum is 32 characters).

secLevel
Specifies the security level to be used in communicating with the target
SNMP agent when this entry is used. This field is ignored unless snmpv3
is specified for the admin keyword. Valid values are noAuthNoPriv or
none to indicate that no authentication or privacy is requested;
AuthNoPriv or auth to indicate that authentication is requested but privacy
is not requested; AuthPriv or priv to indicate that both authentication and
privacy are requested; or a dash (-) to indicate the default value
(noAuthNoPriv).

authProto
SNMP authentication protocol to be used in communicating with the target
SNMP agent when this entry is used. This field is ignored unless snmpv3
is specified for the admin keyword. The following values are valid:
v HMAC-MD5
v HMAC-SHA
v dash (-). Indicates no authentication.

authKey
Specifies the SNMP authentication key to be used in communicating with
the target SNMP agent when this entry is used. This key must be the
nonlocalized key. This field is ignored if the password keyword is used.
This field is ignored unless snmpv3 is specified for the admin keyword
and a nondefault value is specified for authProto. Valid values are 16 bytes

1282 z/OS V2R1.0 Communications Server: IP Configuration Reference

(32 hex digits) when authProto is HMAC-MD5 and 20 bytes (40 hex digits)
when authProto is HMAC-SHA. A dash (-) indicates the default value,
which is no key.

privProto
Specifies the SNMP privacy protocol to be used in communicating with the
target SNMP agent when this entry is used. This field is ignored unless
snmpv3 is specified for the admin keyword. The following values are
valid:

DES
Indicates CBC-DES.

AESCFB128
Indicates AES 128-bit CFB mode.

dash (-)
Indicates the default value, which is no privacy.

Requirement: For the AES privacy protocol, ICSF must be active. For
detailed information about configuring ICSF, see z/OS Cryptographic
Services ICSF Administrator's Guide.

privKey
Specifies the SNMP privacy key to be used in communicating with the
target SNMP agent when this entry is used. This key must be the
nonlocalized key. This field is ignored if the password keyword is used.
The privacy and authentication keys are assumed to have been generated
using the same authentication protocol (for example, both with
HMAC-MD5 or both with HMAC-SHA). This field is ignored unless
snmpv3 is specified for the admin keyword and a nondefault value is
specified for privProto. Valid values are 16 bytes (32 hex digits) when
authProto is HMAC-MD5, 20 bytes (40 hex digits) when authProto is
HMAC-SHA, or a dash (-) to indicate the default value (no key).

NOSVIPA
The NOSVIPA keyword is an optional value. If specified, it indicates the
osnmp command should cause physical interface addresses to be used as
the originating address in packets sent by the osnmp command to this
host. NOSVIPA is disabled by default, meaning that SOURCE VIPA
addresses can be used. If specified, NOSVIPA must be either the fourth
parameter (for community-based security) or the twelfth parameter (for
user-based security).

Statement syntax rules
v All parameters for an entry must be contained on one line in the configuration

file.
v A dash (-) indicates the default value for a keyword.
v Sequence numbers are not allowed on the statements.
v Comments begin with a # character in column 1.
v The secName and password parameters are case sensitive.
v The pwtokey command can be used to generate the authentication and privacy

keys. For information about the pwtokey command, see z/OS Communications
Server: IP System Administrator's Commands.

v Because the osnmp command supports both issuance of SNMP requests and
receipt of SNMP traps, the entries in the OSNMP.CONF file must be defined for
both uses. Multiple entries for the same USM user are allowed within the file.

Chapter 24. Simple Network Management Protocol 1283

|
|

|
|

|
|

|
|

|
|
|

This can be useful when defining different security levels for the same user. If
multiple entries for the same USM user are defined, be aware that only the first
one in the file can be used for receiving notifications. If multiple entries for the
same USM user are defined and the user receives notifications, the definition
with the highest (most stringent) securityLevel should be defined first. Doing so
allows the user to be used for any level of security equal to or lower (less
stringent) than the securityLevel defined.

Restriction: You cannot specify scope information about any values in the
OSNMP.CONF file that represent IP addresses or host names.

OSNMP.CONF sample
Requirement: The osnmp command requires that all fields for a given entry are
specified on a single line. For readability, the following sample has been formatted
such that long entries are wrapped to the next line.

osnmp.conf sample
(used as /etc/snmpv2.conf unless OSNMP_CONF environment variable set)
#
Sample file showing format of configuration file for the osnmp command
#
Licensed Materials - Property of IBM
"Restricted Materials of IBM"
5650-ZOS
Copyright IBM Corp. 1996, 2013
Status = CSV2R1
SMP/E distribution path: /usr/lpp/tcpip/samples/IBM/EZASNV2C
#
#--
#
Format of entries (SNMPv1 and SNMPv2c):
#
winSnmpName targetAgent admin nosvipa
#
Format of entries (SNMPv3):
#
winSnmpName targetAgent admin secName password context secLevel authProto authKey privProto privKey
#
#--
#--
Community-based security (SNMPv1 and SNMPv2c)
#--
v1 127.0.0.1 snmpv1
v2c 127.0.0.1 snmpv2c
v2c_ipv6 ::1 snmpv2c
mvs1 9.67.113.79 snmpv2c
mvs2 mvs2c snmpv2c nosvipa
mvs3 mvs3:1061 snmpv2c
mvs4 12ab::2 snmpv2c
#
#--
User-based Security Model (USM with SNMPV3)
#
Notes
- Keys in this file must not be localized.
- All keys need to be regenerated using the pwtokey command in order
for these sample entries to actually be used.
- In this sample:
- Keys are generated for use with engineID 00000002000000000943714F
- Authentication keys were generated with password of
username+"password", such as "u1password"
- Privacy keys were generated with password of
username+"privpass", such as "u1privpass"
#
Format of entries (SNMPv3):
#
winSnmpName targetAgent admin secName password context secLevel authProto authKey privProto privKey
#--
#
v3mpk: SNMPv3 with HMAC-MD5, authentication and privacy, using keys
v3mpk 127.0.0.1 snmpv3 u1 - - AuthPriv HMAC-MD5 7a3e34265e0e029f27d8b4235ecfa987 DES eac02a0d9fe90eca7911fdcaba20deae
#
v3mak: SNMPv3 with HMAC-MD5, authentication without privacy, using keys
v3mak 127.0.0.1 snmpv3 u1 - - AuthNoPriv HMAC-MD5 7a3e34265e0e029f27d8b4235ecfa987 - -
#
v3n: SNMPv3 with no authentication or privacy
v3n 127.0.0.1 snmpv3 u1 - - noAuthNoPriv - - - -
#
v3mpk_ipv6: SNMPv3 with HMAC-MD5, authentication and privacy, using keys, with IPv6 target host address
v3mpk_ipv6 ::1 snmpv3 u1 - - AuthPriv HMAC-MD5 7a3e34265e0e029f27d8b4235ecfa987 DES eac02a0d9fe90eca7911fdcaba20deae
#
v3spk: SNMPv3 with HMAC-SHA, authentication and privacy, using keys
v3spk 127.0.0.1 snmpv3 u2 - - AuthPriv HMAC-SHA 76784e5935acd6033a855df1fac42acb187aa867 DES adaaf313277a55a3df3a8d2fb70192c427799e0c
#
v3sak: SNMPv3 with HMAC-SHA, authentication without privacy, using keys
v3sak 127.0.0.1 snmpv3 u2 - - AuthNoPriv HMAC-SHA 76784e5935acd6033a855df1fac42acb187aa867 - -
#
v3mpk2: SNMPv3 with HMAC-MD5, authentication and privacy, using non-localized keys at agent
v3mpk2 127.0.0.1 snmpv3 u3 - - AuthPriv HMAC-MD5 d1f86e9c9346253c10a4cd2da339b1db DES cfccde3249ba521ae4da0ddfc2b76ee7
#
v3spk2: SNMPv3 with HMAC-SHA, authentication and privacy, using non-localized keys at agent
v3spk2 127.0.0.1 snmpv3 u4 - - AuthPriv HMAC-SHA 42529b3c6c138c173e70db1050de8d74c04205cb DES ef70a0a98d399a9189f3169e82010f3b46e694e2

1284 z/OS V2R1.0 Communications Server: IP Configuration Reference

|
|
|

|
|
|

#
v3mpp: SNMPv3 with HMAC-MD5, authentication and privacy, using password to generate keys
v3mpp 127.0.0.1 snmpv3 u5 u5password - AuthPriv HMAC-MD5 - DES - nosvipa
#
v3map: SNMPv3 with HMAC-MD5, authentication without privacy, using password to generate keys
v3map 127.0.0.1 snmpv3 u5 u5password - AuthNoPriv HMAC-MD5 - - - nosvipa
#
v3spp: SNMPv3 with HMAC-SHA, authentication and privacy, using password to generate keys
v3spp 127.0.0.1 snmpv3 u6 u6password - AuthPriv HMAC-SHA - DES -
#
v3sap: SNMPv3 with HMAC-SHA, authentication without privacy, using password to generate keys
v3sap 127.0.0.1 snmpv3 u6 u6password - AuthNoPriv HMAC-SHA - - -
#
v3mpka: SNMPv3 with HMAC-MD5, authentication and privacy protocol AESCFB128, using keys
v3mpka 127.0.0.1 snmpv3 u7 - - AuthPriv HMAC-MD5 15549009e2401748e8077fa17bf64c9b AESCFB128 90009683501c78a6f87575bdad5455bc

MIBS.DATA statement syntax
The MIBS.DATA statements can be used to specify character (usually called
textual) names for MIB objects not defined in any compiled MIB supplied with
z/OS Communications Server. You can then use these character/textual names as
the name of the objects on the osnmp command.

The format of a statement in this file is:
character_object_name object_identifier object_type

Field definitions

character_object_name
The character or textual name of the MIB object. The character_object_name
value can contain both uppercase and lowercase letters.

object_identifier
The ASN.1 value for the MIB object.

object_type
The SMI_type for the MIB object. The valid SMI_type values are:
v bitstring
v counter
v counter32
v counter64
v dateAndTime
v display or display string
v integer
v integer32
v ipaddress
v gauge
v gauge32
v nsapaddress
v null
v objectidentifier or OID
v octetstring
v opaque
v opaqueascii
v snmpAdminString
v timeticks

Figure 45. OSNMP.CONF sample

Chapter 24. Simple Network Management Protocol 1285

|
|
|

v uinteger
v The maximum length of each statement in this file is 2048 bytes.
v All parameters for each character or textual name must be on the same

statement.
v Sequence numbers are not allowed on the statements.
v Comments begin with a # character in column 1.

MIBS.DATA search order
The search order for accessing the MIBS.DATA information is as follows. The first
file found in the search order is used.
v The name of a z/OS UNIX file or an MVS data set specified by the MIBS_DATA

environment variable
v /etc/mibs.data z/OS UNIX file

TRAPFWD daemon
The TRAPFWD daemon forwards traps from the SNMP agent to network
management applications. It listens for traps on port 162 and forwards them to all
configured managers.

Starting TRAPFWD from an MVS console
Update cataloged procedure TRAPFWD by copying the sample in
SEZAINST(TRAPFWD) to your system.

The following is a sample JCL Procedure for starting TRAPFWD from MVS:

1286 z/OS V2R1.0 Communications Server: IP Configuration Reference

Specifying TRAPFWD parameters
The following parameters are available for TRAPFWD:

Parameter
Description

-d n The -d flag indicates the level of debug information that is desired. The
valid values are:
v 0 - No tracing
v 1 - Minimal tracing. Ttrace address from which the trap is received.
v 2 - In addition to 1, trace addresses to which the trap packet is

forwarded.
v 3 - In addition to 2, trace trap packets.

If the -d parameter is not specified, the default value of 0 is used.

//TRAPFWD PROC
//*
//* Sample procedure for running the z/OS UNIX Trap Forwarder daemon
//*
//* z/OS Communications Server Version 1 Release 7
//* SMP/E Distribution Name: SEZAINST(EZASNTPR)
//*
//*
//* Copyright: Licensed Materials - Property of IBM
//* 5694-A01
//* (C) Copyright IBM Corp. 2000, 2005
//*
//* Status: CSV1R7
//*
//TRAPFWD EXEC PGM=EZASNTRA,REGION=4096K,TIME=NOLIMIT,
// PARM=’POSIX(ON) ALL31(ON)/-d 0’
//*
//*** Notes:
//*
//* - The C runtime libraries should be in the system’s link list
//* or this sample procedure will need to STEPLIB to them.
//*
//* - TCP/IP runtime libraries should also be in the system’s link
//* list.
//*
//* - TRAPFWD must find the name (TCPIPJOBNAME in TCPIP.DATA) that
//* it should be associated with. The OE function __iptcpn() is
//* used to find this name. It is suggested that the parmlist
//* be modified to set the environment variable
//* RESOLVER_CONFIG to point to the correct resolver file when
//* multiple INET Physical File Systems are started.
//*
//* If only one INET PFS will be started then /etc/resolv.conf
//* may be used.
//*
//* - The TRAPFWD daemon can also be invoked from the OMVS shell as
//* a shell command.
//*
//*
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//SYSIN DD DUMMY
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//CEEDUMP DD SYSOUT=*

Figure 46. TRAPFWD cataloged procedure

Chapter 24. Simple Network Management Protocol 1287

-p port_number
The -p flag indicates the UDP port at which the daemon should listen for
traps. The default is UDP port 162.

-l max_packet_len
The -l flag indicates the maximum packet length of the trap datagram that
has to be forwarded. The valid values are 4096 (4K) to 16384 (16K). The
default value is 4096. Note that if the ADD_RECVFROM_INFO option is
specified, then the maximum packet size is be max_packet_len minus the
length of the address information.

-? The -? flag displays the usage statement for the trap forwarder daemon. If
the -? option is specified, all the other options are ignored.

TRAPFWD environment variables
Table 95 provides a list of environment variables used by TRAPFWD that can be
tailored to a particular installation:

Table 95. TRAPFWD environment variables

Environment variable Server, Client or Command-type
application

Description Any specific
coding rules
(or a link to
syntax)

TRAPFWD_CONF TRAPFWD daemon Specifies the location of
the TRAPFWD.CONF
configuration file

None

Starting TRAPFWD from the UNIX shell
The trapfwd command is used to start the trap forwarder daemon.

To start TRAPFWD from the UNIX shell:

�� trapfwd
-d 0 -p 162 -l 4096

-d n -p port_number -l max_packet_len
?

��

TRAPFWD.CONF statement syntax
The format of a statement in this file is:
host_name port_number number

Field definitions

host_name
The host name or IP address (IPv4 dotted decimal or IPv6 colon
hexadecimal) to which the trap should be forwarded. If a dash (-) is used,
then the local host name is used.

Restriction: Scope information cannot be specified for the host_name value.

port_number
The port number to which the trap should be forwarded. There is no
default value.

number
This field is optional. If a value of ADD_RECVFROM_INFO is specified,

1288 z/OS V2R1.0 Communications Server: IP Configuration Reference

the received from information is appended to the trap. The default is not
to append the received from information.

Usage notes

Lines starting with an asterisk (*) or a # character are considered comment lines.

TRAPFWD.CONF search order
The following search order is used to access the TRAPFWD.CONF information:
1. A z/OS UNIX file or an MVS data set specified by the TRAPFWD_CONF

environment variable
2. /etc/trapfwd.conf

The first file found in the search order is used.

If the environment variable is set and if the file specified by the environment
variable is not found, the Trap Forwarder daemon terminates.

TRAPFWD examples
To start the trap forwarder daemon on the standard port (port 162), enter:
trapfwd

To start the trap forwarder daemon on a particular port (port 5062), enter:
trapfwd -p 5062

Chapter 24. Simple Network Management Protocol 1289

1290 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 25. Remote print server

This topic contains the following information:
v “LPD server cataloged procedure (LPSPROC)”
v “Sample LPD server configuration data set (LPDDATA)” on page 1292
v “Specifying LPD server parameters” on page 1294
v “Summary of LPD server configuration statements” on page 1295
v “LPD server configuration data set statements” on page 1295

LPD server cataloged procedure (LPSPROC)
The following sample shows the Remote print server (LPD) server cataloged
procedure (LPSPROC).

© Copyright IBM Corp. 2000, 2015 1291

Sample LPD server configuration data set (LPDDATA)
The following sample shows the LPD server configuration data set (LPDDATA).
;LPD CONFIGURATION DATA SET
;==========================
;

//LPSERVE PROC MODULE=LPD,
// LPDDATA=TCPIP.SEZAINST(LPDDATA),
// LPDPRFX=’PREFIX TCPIP’,
// DIAG=’’
//*
//* z/OS Communications Server
//* SMP/E Name: EZAEB019 alias LPSPROC in library SEZAINST
//*
//* Copyright: Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* 5694-A01
//* Copyright IBM Corp. 1996, 2008
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//*
//* Status: CSV1R10
//LPD EXEC PGM=MVPMAIN,
// PARM=(’&MODULE,ERRFILE(SYSERR),HEAP(512)’,
// ’NOSPIE/ ’’&LPDDATA’’ &LPDPRFX &DIAG’),
// REGION=6M,TIME=1440
//SPOOL OUTPUT CHARS=GT12
//STEPLIB DD DSN=TCPIP.SEZATCP,DISP=SHR
//LPD1 OUTPUT CHARS=GT12
//*
//* SYSPRINT contains runtime diagnostics from LPD. It
//* can be a data set or SYSOUT.
//*
//SYSPRINT DD SYSOUT=*
//*
//* SYSERR contains runtime diagnostics from Pascal. It can be
//* a data set or SYSOUT.
//*
//SYSERR DD SYSOUT=*
//*
//* SYSDEBUG receives output that is generated when the TRACE
//* parameter is specified in the PARM on the EXEC card.
//* It can be a data set or SYSOUT.
//*
//SYSDEBUG DD SYSOUT=*
//OUTPUT DD SYSOUT=*
//SYSIN DD DUMMY
//*
//* The SYSMDUMP DD statement will cause MVS to provide
//* an IPCS readable dump for ABENDs.
//*SYSMDUMP DD DISP=SHR,DSN=your.dump.data.set
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//SYSTCPD DD DISP=SHR,DSN=TCPIP.SEZAINST(TCPDATA)

Figure 47. LPD Server cataloged procedure (LPSPROC)

1292 z/OS V2R1.0 Communications Server: IP Configuration Reference

; COPYRIGHT = NONE.
; Change Activity
; $L1=MV11199 HTP320 951206 RTPMCL: Added comments
; $01=PN66730 HTP310 960131 RTPMCL: Added change flag
; =MV14695 TCPV34 970910 YANG : Removed sequence numbers
; =MV15117 TCPV34 970929 AGIUS : Added OBEY statement
;
; This data set describes the printers and punches (which are both
; called SERVICE) that are usable from LPR client programs for this
; host.
;
; Each SERVICE must be described as LOCAL, NJE, or REMOTE. Data for
; LOCAL services are managed directly by JES. Data for NJE services
; are managed by NJE. REMOTE services’ data are forwarded to another
; LPD (print server).
;
; You can control which types of printing or punching can be done
; through a particular SERVICE with FILTERS. The 4 currently
; available FILTERS are:
;
; f which paginates the data set at the size of the page given.
; It also truncates lines if they exceed a maximum length.
; l which does not insert pagination but will truncate lines
; as the "f" filter does.
; p which paginates the data set, adding titles, the date, and
; page numbers as well as providing line truncation.
; r which prints the data set, interpreting the first column
; of each line as FORTRAN carriage control.
;
;
; Most printer SERVICEs should allow all three but you probably only
; want to specify "l" for punches.
;
; The LINESIZE option can be used to limit the length of lines written
; by the filters.
;
; The PAGESIZE option can be used for filters that do pagination to
; specify how many lines should appear on a page.
;
; The RACF option will cause the server to verify that a user knows
; the account password for a user ID on this host.
;
; These statements define a LOCAL PRINTER SERVICE called locprt1, which
; is a conventional printer that will use the JES printing facilities.
;
;DEBUG
SERVICE locprt1 PRINTER

LOCAL
FILTERS f l p r
LINESIZE 132
PAGESIZE 60

;
; These statements define an NJE PRINTER SERVICE called njeprt1, which
; provides access to the NJE service on this system.
;
;SERVICE njeprt1 PRINTER
; NJE DEST=RALVMM IDENTIFIER=JOHN OUTPUT=LPD1
; FILTERS f l p r
; LINESIZE 132
; PAGESIZE 60
;
; These statements define a REMOTE SERVICE called pebprt, which
; provides access to the printing queues on another system.
; From an LPR client, specify the printer name defined on the SERVICE
; statement and the hostname or IP address of the host that this LPD
; is running on, NOT the names on the REMOTE statement.
; Example: LPR fn (p pebprt h LPDSrvHostName
; The above is required if you wish to send the data to the REMOTE
; printer via this LPD.
;
;SERVICE pebprt PRINTER
; REMOTE lpt1@PEBBLES.TCP.RALEIGH.IBM.COM
; FAILEDJOB MAIL
;
; These statements define a PUNCH SERVICE called pun1, which
; provides access to the JES controlled PUNCH.
;
;SERVICE pun1 PUNCH
; LOCAL
; FILTERS l

Chapter 25. Remote print server 1293

; LINESIZE 80
;
; This statement specifys user IDs authorized to use the SMSG
; interface provided with LPD server. The syntax is "OBEY user_id",
; where "user_id" is the list of authorized user IDs. The following
; example allows three test user IDs to use the SMSG interface:
;
;OBEY TESTER01 TESTER02 TESTER03
;

Specifying LPD server parameters
The system parameters required by the LPD server are passed by the PARM option
on the EXEC statement of the LPD cataloged procedure. Update the following
parameters as required.

LPDDATA=‘data_set_name’
Specifies the fully qualified name of the data set containing the LPD
configuration statements.

Guideline: This data set can be sequential or a member of a PDS.

LPDPRFX=‘PREFIX your_prefix’
Specifies the high-level qualifier to be used for temporary data sets created by
the LPD server. Include both the PREFIX keyword and your qualifier in the
quoted string. The qualifier can be up to 26 characters. If it is blank, it defaults
to the procedure name. The LPD task requires the authority to create and
modify data sets with this prefix.

DIAG=‘options’
Specifies any of the following diagnostic options in a quoted string of
keywords separated by blanks. For example, DIAG=’VERSION TRACE’

VERSION
Displays the version number.

TYPE Activates high-level trace facility in the LPD server. Significant events,
such as the receipt of a job for printing, are recorded in the //SYSOUT
DD data set specified in your LPD server cataloged procedure.

TRACE
Causes a detailed trace of activities within the LPD server to record in
the //SYSOUT DD data set specified in your LPD server cataloged
procedure.

Tip: The detailed tracing can also be activated with the DEBUG
statement in the LPD server configuration data set and with the
TRACE command of the SMSG interface.

Restriction: The JCL PARM= statement has a limit of 100 characters.

Figure 48. Sample LPD server configuration data set (LPDDATA)

1294 z/OS V2R1.0 Communications Server: IP Configuration Reference

Summary of LPD server configuration statements
The valid statements for this data set are listed in the following table.

Table 96. Summary of LPD server configuration statements

Statement Description See

DEBUG Turns on tracing of all LPD processes. “DEBUG statement”

JOBPACING Restricts parallel processing of jobs to
conserve memory.

“JOBPACING statement” on
page 1296

OBEY Specifies users IDs that can use the SMSG
interface.

“OBEY statement” on page
1296

SERVICE Specifies the name and Type of Service. “SERVICE statement” on
page 1297

STEPLIMIT Restricts complexity of jobs received to
conserve memory.

“STEPLIMIT statement” on
page 1306

UNIT Specifies type of DASD that LPD should use
for temporary data sets.

“UNIT statement” on page
1307

VOLUME Specifies the volume that LPD should use for
temporary data sets.

“VOLUME statement” on
page 1307

LPD server configuration data set statements
This topic includes the syntax rules and alphabetically listed definitions of the
statements for the data set used to configure the LPD Server.

Syntax rules
In the LPD server configuration data set, tokens are delimited by blanks and
record boundaries. All characters to the right of and including a semicolon are
treated as comments.

DEBUG statement

Use the DEBUG statement to activate full tracing of the processing within the LPD
server.

Syntax

�� DEBUG ��

Parameters

There are no parameters for this statement.

Usage notes
v Detailed tracing can also be activated using the TRACE parameter on the PROC

statement of the LPD server procedure or by specifying TRACE ON with the
SMSG interface. The DEBUG statement can be placed anywhere in the data set
but only affects those services following it. Including DEBUG as the first
statement in the configuration data set allows trace messages to be written from
the point LPD is initialized.

v LPD generates minimal tracing under the following conditions:

Chapter 25. Remote print server 1295

– No value in DIAG parameter
– TRACE not passed as a parameter
– DEBUG not defined in the LPD configuration file

v Coding LPD with DIAG=Version results in minimal tracing plus the message
EZB0614I. Coding LPD with DIAG=Type results in minimal tracing plus brief
messages describing JOB status, such as:
– JOBreceived
– JobStartPRINTING
– JOBcontinuePRINTING
– JOBfinishPRINTING
Coding LPD with DIAG=Trace results in configuration messages and details of
print job.

v TRACE passed as a parameter yields the same results coding DIAG=TYPE.

JOBPACING statement

Use the JOBPACING statement to limit the number of jobs that the LPD server
concurrently writes to the JES spool or send to another LPD server. This limits
memory requirements in LPD, but does not cause any jobs to be lost. Received jobs
are queued until they can be processed.

Syntax

�� JOBPACING � limit ��

Parameters

limit
An integer specifying the maximum number of jobs that the LPD server
concurrently writes to the JES spool or send to another LPD server.

Usage notes
v Concurrent processing of jobs requires memory for control blocks and large I/O

buffers. Some concurrent job processing keeps a long job or slow receiving LPD
from delaying all the other jobs. Too much concurrent processing causes
thrashing and requires extensive memory.

v JOBPACING defaults to the preferred value 5 when the keyword is not
specified. Increasing this value might cause memory allocation problems with
certain system configurations.

v If LPD runs out of memory, reduce the value of either JOBPACING or
STEPLIMIT.

OBEY statement

Use the OBEY statement to specify user IDs authorized to use the SMSG interface
provided with LPD server.

1296 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

�� OBEY � user_id ��

Parameters

user_id
The user IDs authorized to use the SMSG interface. See z/OS Communications
Server: IP Configuration Guide for more information.

Examples

Code the following statement to allow three test user IDs to use the SMSG
interface:
OBEY TESTER01 TESTER02 TESTER03

Usage notes

Multiple user IDs can be specified on the OBEY statement. More than one OBEY
statement can be included in the data set.

SERVICE statement

Use the SERVICE statement to specify the name and Type of Service for the
printers and punches used by the LPD server. This service name is used in the
LPR command.

Requirement: The parameters shown on separate lines must be coded on separate
lines. Follow the example in the sample configuration data set shown in “Sample
LPD server configuration data set (LPDDATA)” on page 1292.

Syntax

�� SERVICE name PRINTER
RECFMU
RECFMUA
PUNCH
NONE

LOCAL local_options
NJE nje_options
REMOTE printer@host

EPORT

�

Chapter 25. Remote print server 1297

� �

�

EXIT START program
END

FAILEDJOB MAIL
DISCARD

FILTERS f
l
lASf
p
r

LINESIZE 132

LINESIZE length
NLSTRANSLATE ... see separate diagram ...

PAGESIZE 60

PAGESIZE lines
RACF

SMTP SMTP

SMTP server_name
CLASS= class DEST= node

TRANSLATETABLE name
XLATETABLE name

��

local_options:

CLASS=A or B

CLASS= class
OUTPUT=name

nje_options:

CLASS=A or B

CLASS= class

DEST= local_node

DEST= node

IDENTIFIER=SYSTEM

IDENTIFIER= user_id
�

�
PRIORITY=50

PRIORITY= priority
OUTPUT=name

Syntax

1298 z/OS V2R1.0 Communications Server: IP Configuration Reference

�� NLSTRANSLATE BIG5
(

ASCII
SOSI

EBCDIC
SPACE

EUckanji
(

ASCII
SOSI

EBCDIC
SPACE

HAngeul
(

ASCII
SOSI

EBCDIC
SPACE

Ibmkanji
JIS78kj

(
ASCII

JISROMAN
JIS83kj

(
ASCII

JISROMAN
Ksc5601

(
ASCII

SOSI
EBCDIC
SPACE

SChinese
(

ASCII
SOSI

EBCDIC
SPACE

SJiskanji
(

ASCII
SOSI

EBCDIC
SPACE

TChinese
(

ASCII
SOSI

EBCDIC
SPACE

��

Parameters

name
The service name must be one to eight characters in length. This value is case
sensitive.

Chapter 25. Remote print server 1299

Restriction: Only characters permitted in MVS data set names are valid.

PRINTER
Specifies the service is to a printer. For LOCAL or NJE devices, the JES spool
file created is allocated with RECFM=UM and machine carriage control is
written in column 1 of the file. For filter 1, this is always a single space ('09'X).
For other filters, it is determined from the data received.

RECFMU
Specifies the service is to a printer. For LOCAL or NJE devices, the JES spool
file created is allocated with RECFM=U and carriage control characters are not
added to the beginning of each line. The JES spool file is like PRINTER, but
carriage control is not added.

RECFMUA
Specifies the service is to a printer. For LOCAL or NJE devices, the JES spool
file created is allocated with RECFM=UA. The carriage control (CC) character
is taken from the first column of user data after any LPD processing.

Restriction: Only filter 1 should be allowed with this device type. Specify
filters 1 in the SERVICE statement so LPD does not print jobs requesting other
filter options. The LPD trace would show message EZA0801I for these aborted
jobs.

PUNCH
Specifies the service is to a punch device. For LOCAL or NJE devices, the JES
spool file created is allocated with RECFM=UM and machine carriage control
is written in column 1 of the file.

NONE
Specifies that the service is not currently in use.

LOCAL
Specifies that the data sets sent to a service are written to the local MVS
printer or punch.

CLASS=class
The SYSOUT class. The default is A for printers and B for punches.

OUTPUT=name
Specifies the name of an OUTPUT DD statement that contains additional
spool parameters.

NJE
Specifies that the data sets sent to a service are delivered to the NJE system.

CLASS=class
The SYSOUT class. The default is A for printers and B for punches.

DEST=node
The name of the NJE node. The default is the local node.

IDENTIFIER=user_id
The device user ID. The default is SYSTEM.

PRIORITY=priority
Specifies the transmission priority. The default is 50.

OUTPUT=name
Specifies the name of an OUTPUT DD statement that contains additional
spool parameters.

1300 z/OS V2R1.0 Communications Server: IP Configuration Reference

REMOTE
Specifies that data sets (jobs) sent to this service queue are forwarded
immediately to the specified remote printer. If the remote printer is not
available, the job is discarded.

Guideline: If discarded jobs are a problem, consider sending the jobs directly
to the final LPD with LPR, instead of using the MVS LPD as an intermediate
router.

printer@host
The destination printer at a specified Internet host. This can be an Internet
name or an IP address.

EPORT
For the Remote service, when LPR ports 721-731 are in use, LPD tries to use
non-reserved ports in the 732 - 1 023 range. The default action, when
EPORT is not specified, is to only use the ports 721 - 731 defined by RFC
1179.

EXIT
Specifies any program to be executed before closing, but after allocating and
opening, an output data set.

START
Specifies that the program is invoked after allocating and opening the
output data set, but before anything is written to the data set. This
parameter is mutually exclusive of the END parameter.

END
Specifies that the program is invoked just before closing the output data
set. This parameter is mutually exclusive of the START parameter.

program
Name of the program to be invoked. See z/OS Communications Server: IP
Configuration Guide for information about using the default LPBANNER
or creating your own banner program. The library containing the program
should be in the system’s link list (LNKLSTxx), or a STEPLIB definition
can be used if the library is APF authorized.

FAILEDJOB
Specifies whether a notice of failed jobs should be mailed to users or a job is
discarded without notice.

MAIL
Specifies that notices of failed jobs are mailed to users.

Requirement: To use the MAIL parameter, you must also specify the SMTP
parameter. Messages are logged in the LPD joblog, showing the
information sent to SMTP.

DISCARD
Specifies that failed jobs are discarded without notice.

FILTERS
The control file received by LPD specifies the filter actually used. LPD
formatting for each possible filter is described here. When lASf is specified,
any filter l received is treated as filter f, described as follows:

f Print formatted file paginates the data set at the size of the page given. It
also truncates lines if they exceed a maximum length.

This filter causes the data file to be printed as a plain text file, providing
page breaks as necessary.

Chapter 25. Remote print server 1301

Restriction: Only the following ASCII control characters are honored:
v HT
v CR
v FF
v LF
v VT
v BS

They are removed from the data stream (not printed) and changed into
equivalent spacing and machine carriage control. Any ASCII code that
translates to an EBCDIC NL is also honored. However, standard ASCII
tables do not have an NL (new line) control character.

JES writers start each job on a new page. Therefore, LPD suppresses any
FF (form feed) at the beginning of the data to avoid an extra page eject
before the user's data set is printed.

l Print file leaving control characters does not insert pagination but does
truncate lines. All lines are single spaced.

This filter causes the specified data file to be printed without filtering out
control characters (except LF, which is sed to determine line endings when
converting to a JES record oriented spool file). Other ASCII control
characters are translated to EBCDIC and printed as text. They arenot
converted to equivalent machine carriage control. Use filter f to ontrol
codes like FF and HT to be honored.

Filter l can behave like filter lASf if you specify lASf instead of l. See lASf
below.

lASf

p - Print file with 'pr' format
Paginates data set, adding titles, the date, and page numbers as well as
providing line truncation.

This filter causes the data file to be printed with a heading, page numbers,
and pagination. Page breaks are determined by the PAGESIZE
configuration on the SERVICE statement, or by ASCII FF (form feed)
control characters in the data stream. PAGESIZE includes the title lines
printed.

JES writers start each job on a new page. Therefore, LPD suppresses any
FF (form feed) at the beginning of the data to avoid an extra page eject
before the user's data set is printed.

r - File to print with FORTRAN carriage control
Prints the data set, interpreting the first column of each line as a
FORTRAN carriage control. The FORTRAN controls are removed from the
data stream and translated into equivalent machine carriage control. LPD
honors " ", "1", "0", "+", and "-". Other values in column 1 cause single
spacing. LPD also truncates lines if they exceed LINESIZE. Page breaks are
determined by the PAGESIZE configuration as well as the Fortran controls
in column 1.

LINESIZE
Specifies the line length used by the filters when they truncate lines. This
statement only applies to services that are designated as either LOCAL or NJE
on PAGESIZE (for example, 100 000).

1302 z/OS V2R1.0 Communications Server: IP Configuration Reference

length
The number of characters in a line on a page. Lines longer than this
number are truncated. The default is 132.

PAGESIZE
Specifies the page length used by the filters when they paginate.

This statement only applies to services that are designated as either LOCAL or
NJE.

lines
The number of lines on a page. The default is 60.

RACF
Controls which users print data sets on this service.

SMTP
Specifies the SMTP server name, CLASS, and DEST options for sending failed
jobs notices. For additional information, see the description of the FAILEDJOB
MAIL parameter.

server_name
Specifies the name of the SMTP server. If this statement is omitted, the
default is SMTP.

CLASS=class
The SYSOUT class. The default is A for printers and B for punches.

DEST=node
The NJE node to which SMTP messages should be sent.

TRANSLATETABLE
Specifies the translation table in the name.TCPXLBIN data set to be used by the
client. XLATETABLE is a synonym for this parameter.

name
Specifies the SBCS translate table to be used when a client selects this
SERVICE. The name parameter is preceded by either the job name or the
hlq and followed by TCPXLBIN to form the data set name of the translate
table (jobname.name.TCPXLBIN or hlq.name.TCPXLBIN). If both data sets
exist, which one to use is determined by a search order hierarchy.

See z/OS Communications Server: IP Configuration Guide for more
information about search order hierarchy, loading, and customizing of
SBCS translation tables.

Tip: XLatetable is a synonym for this option.

XLATETABLE
Specifies the translation table in the name.TCPXLBIN data set to be used by the
client. TRANSLATETABLE is a synonym for this parameter.

name
Specifies the SBCS translate table to be used when a client selects this
SERVICE. The name parameter is preceded by either the job name or the
hlq and followed by TCPXLBIN to form the data set name of the translate
table (jobname.name.TCPXLBIN or hlq.name.TCPXLBIN). If both data sets
exist, which one to used is determined by a search order hierarchy.

See z/OS Communications Server: IP Configuration Guide for more
information about search order hierarchy, loading, and customizing of
SBCS translation tables.

Tip: TRANslatetable is a synonym for this option.

Chapter 25. Remote print server 1303

NLSTRANSLATE
Specifies the DBCS translation type to be used when a client selects the
named SERVICE.

BIG5
Select the translation type from Big-5 P-C DBCS codes to Traditional
Chinese host codes.

EUckanji
Select the translation type from Japanese EUC DBCS codes to Japanese
host codes.

HAngeul
Select the translation type from Korean PC DBCS codes to Korean host
codes.

Ibmkanji
This option causes no conversion to be performed; in other words, data
is sent to a printer without translation. Ibmkanji can be used for
sending data in EBCDIC. If you select this option, be sure other
printers on the same network are all configured with Ibmkanji.

JIS78kj
Select the translation type from JIS 1978 DBCS codes to Japanese host
codes. The Escape Sequence, ESC 2/4 4/0, is used to express JIS X0208
1978.

JIS83kj
Select the translation type from JIS 1983 DBCS codes to Japanese host
codes. The Escape Sequence, ESC 2/4 4/2, is used to express JIS X0208
1983.

Ksc5601
Select the translation type from IBM KS DBCS codes to Korean host
codes.

SChinese
Select the translation type from Simplified PC Chinese DBCS codes to
Simplified Chinese host codes.

SJiskanji
Select the translation type from Shift JIS DBCS codes to Japanese host
codes.

TChinese
Select the translation type from Traditional Chinese 5550 PC DBCS
codes to Traditional Chinese host codes.

SOSI
Shift-Out and Shift-In characters X'1E' and X'1F' are used in data to
delimit DBCS strings.

SOSI ASCII
Shift-Out and Shift-In characters X'1E' and X'1F' are used in data to
delimit DBCS strings.

SOSI EBCDIC
Shift-Out and Shift-In characters X'0E' and X'0F' are used in data to
delimit DBCS strings.

SOSI SPACE
Shift-Out and Shift-In characters X'20' and X'20' are used in data to
delimit DBCS strings.

1304 z/OS V2R1.0 Communications Server: IP Configuration Reference

ASCII (with JIS78KJ and JIS83KJ only)
The ASCII Escape Sequence, ESC 2/8 4/2, is used in data to express
SBCS strings.

JISROMAN (with JIS78KJ and JIS83KJ only)
The JISROMAN Escape Sequence, ESC 2/8 4/10, is used in data to
express SBCS strings.

Examples
v PRINTER and PUNCH definitions

The sample configuration data set SEZAINST(LPDDATA) provides examples of
SERVICE statements for LOCAL, REMOTE, and NJE printers and a LOCAL
punch.

v EXIT Parameter
To make the LPBANNER program print a page at the beginning of the printed
output, use the EXIT START parameter within a SERVICE statement, as shown
here:
SERVICE locprt1 PRINTER

LOCAL
FILTERS f l p r
LINESIZE 132
PAGESIZE 60
EXIT START LPBANNER

To make the LPBANNER program print a page at the end of the printed output,
use the EXIT END parameter within a SERVICE statement, as shown here:
SERVICE locprt1 PRINTER

LOCAL
FILTERS f l p r
LINESIZE 132
PAGESIZE 60
EXIT END LPBANNER

See RFC 1179, Section 7.5 Line Printer Daemon Protocol, for more information
about the LPD user exit.

Usage notes
v For remote printers, observe these guidelines:

Remote printers do not require specifications for EXIT, FAILEDJOB, FILTERS,
LINESIZE, PAGESIZE, RACF, SMTP, and translation tables. These are defined on
the remote system.
The LPR command must be specified with the printer name as it is specified on
the SERVICE statement. The HOST parameter can HOSTNAME or the IP
address of the host the LPD is running on, not the printer name and IP address
of the remote printer.
LPR fn (p pebprt h LPDSrvHostName

This is required if you want to send data to the remote printer using this LPD.
v With RACF, observe these guidelines:

In order to print data sets on a printer that has RACF specified, the user must
use the JOB option with a valid password on the LPR command.
If the RACF keyword is specified for the service and a valid password is not
supplied, the job sent to that service fails.

Chapter 25. Remote print server 1305

If a printer is defined as RACF for a local service on one system and as an NJE
service on other systems, then you must specify the RACF keyword on the
SERVICE statement on each of the systems where this service is defined.

v For SMTP, observe these guidelines:
– SMTP is used in conjunction with the FAILEDJOB statement. If the MAIL

keyword is used on the FAILEDJOB statement, then the SMTP server_name
should be set to the name of the SMTP server and an optional CLASS and
Destination NJE node.

– When an attempted print job fails and the MAIL keyword is used on the
FAILEDJOB statement, then the LPD server sends a notice of the failure to the
SMTP server. This notice is then forwarded to the user ID that submitted the
print request.

v For FAILEDJOB, observe these guidelines:
If the MAIL parameter is specified for any service, then the SMTP statement
must be included in the LPD configuration data set.

v For EXIT, observe these guidelines:
– If the job name is not specified on the corresponding LPR operation, JOB is

the data set name that was printed by LPD.
– If CLASS is omitted on the LPR operation, it contains the sending system's

host name.
– The following parameters are passed to the program but not defined in the

EXIT statement.

param1
A pointer to a full word return code.

param2
A Pascal string containing the DD name of the spool file, the data set
name of the control file, the printer name, and the total number of bytes
in the print job. The first two bytes of the Pascal string are the number of
bytes of character data starting at byte 3.

param3
A pointer to an open DCB for the JES spool file. The DCB is (DSORG=PS,
MACRF=PL, RECFM=UM) for SERVICE printer or SERVICE PUNCH
devices. THE DCB is (DSORG=PS, MACRF=PL, RECFM=U) for SERVICE
RECFMU devices.

STEPLIMIT statement

Use the STEPLIMIT statement to limit the number of data files and configuration
files allowed in a job received by LPD. Jobs that are too complex are rejected with
a NACK and are not printed.

Syntax

�� STEPLIMIT � limit ��

Parameters

limit
An integer specifying the maximum number of data files and configuration

1306 z/OS V2R1.0 Communications Server: IP Configuration Reference

files allowed in a single job received by LPD. When a wildcard is used in the
filename with LPR in some systems, the files are combined into one complex
job with many data files.

Usage notes
v Each data file and control file requires a temporary data set on MVS. Each

requires memory for control blocks and I/O buffers.
v STEPLIMIT defaults to the preferred value 80 when the keyword is not

specified. Increasing this value might cause memory allocation problems with
certain system configurations.

v If LPD runs out of memory, reduce the value of either JOBPACING or
STEPLIMIT.

UNIT statement

Use the UNIT statement to specify the specific type of DASD where LPD writes its
temporary data sets while the transfer of data from an LPR client occurs.

Syntax

�� UNIT � dasdname ��

Parameters

dasdname
The generic name of a group of DASD.

VOLUME statement

Use the VOLUME statement to specify the specific DASD volume where LPD
writes its temporary data sets while the transfer of data from an LPR client occurs.

Syntax

�� VOLUME dasdname ��

Parameters

dasdname
The volume serial number. The value specified for name is case sensitive.

Examples

To set the volume name for new data set to WRKLB4, code the following:
VOLUME WRKLB4

Chapter 25. Remote print server 1307

1308 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 26. PORTMAP and UNIX PORTMAP

This topic contains the following information:
v “PORTMAP cataloged procedure (PORTPROC)”
v “UNIX PORTMAP cataloged procedure (OPORTRPC)”

PORTMAP cataloged procedure (PORTPROC)
This following sample shows the PORTMAP cataloged procedure (PORTPROC).

UNIX PORTMAP cataloged procedure (OPORTRPC)
This following sample shows the UNIX PORTMAP cataloged procedure
(OPORTRPC).

//PORTMAP PROC MODULE=PORTMAP,PARMS=’’
//*
//* z/OS Communications Server
//* SMP/E Distribution Name: SEZAINST(PORTPROC)
//*
//* Copyright: Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* 5647-A01
//* (C) Copyright IBM Corp. 1989, 2001
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//*
//* Status: CSV1R2
//*
//PMAP EXEC PGM=&MODULE,
// PARM=’&PARMS’,REGION=4096K,TIME=1440
//*
//* The C runtime libraries should be in the system’s link list
//* or add them to the STEPLIB definition here. If you add
//* them to STEPLIB, they must be APF authorized.
//*
//STEPLIB DD DSN=TCPIP.SEZATCP,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//*
//* The SYSMDUMP DD statement will cause MVS to provide
//* an IPCS readable dump for ABENDs.
//*SYSMDUMP DD DISP=SHR,DSN=your.dump.data.set
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//SYSTCPD DD DSN=TCPIP.SEZAINST(TCPDATA),DISP=SHR

Figure 49. PORTMAP cataloged procedure (PORTPROC)

© Copyright IBM Corp. 2000, 2015 1309

//PORTMAP PROC
//*
//* TCP/IP for MVS
//* SMP/E distribution name: EZBOPORT
//*
//* 5694-A01 (C) Copyright IBM Corp. 1997, 2001.
//* Licensed Materials - Property of IBM
//* This product contains "Restricted Materials of IBM"
//* All rights reserved.
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//* See IBM Copyright Instructions.
//*
//* Function: Unix System Services MVS Portmapper Server main process
//*
//PORTMAP EXEC PGM=OPORTMAP,REGION=4096K,TIME=1440,
// PARM=’POSIX(ON),ALL31(ON)/’
//*
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
// PEND

Figure 50. UNIX PORTMAP cataloged procedure (OPORTRPC)

1310 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 27. RPCBIND

This topic includes the following information:
v “RPCBIND cataloged procedure”

RPCBIND cataloged procedure
The following sample shows the RPCBIND cataloged procedure.

You can specify the following options when starting rpcbind:
v For debug options, you can specify the following -d options to cause rpcbind to

send trace information to the daemon facility of syslogd:

-df Sends non-XDR flow information to syslogd.

-dl Sends log information of all RPC procedures called to syslogd.

-dx Sends XDR information to syslogd.
v The -i option enables you to specify the directory where the pid file should be

written:
Rule: The pid filename is always rpcbind.pid. If -i is not specified, the rpcbind
process ID is written to /etc/rpcbind.pid.

v The -n option enables you to direct rpcbind to run in a nonswappable
environment. A process might need to run non-swappable to ensure it is
available during periods of high CPU usage. However, a nonswappable process
might convert real storage in the system to preferred storage. Because preferred
storage cannot be configured offline, running rpcbind in a non-swappable state
can reduce your installation's ability to reconfigure storage in the future.

//RPCBIND PROC
//*
//* TCP/IP FOR MVS
//* SMP/E DISTRIBUTION NAME: EZARBBND
//*
//* 5694-A01 (C) COPYRIGHT IBM CORP. 2007
//* LICENSED MATERIALS - PROPERTY OF IBM
//* THIS PRODUCT CONTAINS "RESTRICTED MATERIALS OF IBM"
//* ALL RIGHTS RESERVED.
//* US GOVERNMENT USERS RESTRICTED RIGHTS -
//* USE, DUPLICATION OR DISCLOSURE RESTRICTED BY
//* GSA ADP SCHEDULE CONTRACT WITH IBM CORP.
//* SEE IBM COPYRIGHT INSTRUCTIONS.
//*
//* FUNCTION: UNIX SYSTEM SERVICES RPCBIND SERVER MAIN PROCESS
//*
//RPCBIND EXEC PGM=RPCBIND,REGION=4096K,TIME=1440,
// PARM=(’ENVAR("TZ=EST5EDT")/-dl’)
//*
//STDOUT DD SYSOUT=*
//STDERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
// PEND

Figure 51. Sample RPCBIND

© Copyright IBM Corp. 2000, 2015 1311

If you do specify the -n option, ensure that the user ID associated with rpcbind
has at least READ access to the resource BPX.STOR.SWAP in the FACILITY
class.
The default is to start rpcbind as swappable.

v The -s option specifies the number of statistics entries per binding protocol that
rpcbind maintains. The allowable range is 113 - 500. Statistics maintained by the
rpcbind server are used to reply to the RPCBPROC_GETSTAT request. See RFC
1833 for more information about statistics maintained by the rpcbind server.
Result: Rpcbind calculates the number of pages needed to store statistics for the
value specified and obtains that number of pages of shared memory for
statistics. Thus, rpcbind rounds up the number of statistics entries it tracks to
fully use the shared memory.
Tip: Rpcbind does not start unless it can obtain sufficient shared memory to
maintain statistics for the number of entries specified. Configure the number of
pages of shared memory available to z/OS with the IPCSHMMPAGES
parameter in the BPXPRMxx member of SYS1.PARMLIB.

v To display help information, specify the -? option.

1312 z/OS V2R1.0 Communications Server: IP Configuration Reference

|

Chapter 28. NCS Interface

This topic contains the following information:
v “NRGLBD cataloged procedure (NRGLBD)”
v “LLBD cataloged procedure (LLBD)” on page 1314

NRGLBD cataloged procedure (NRGLBD)
Update the NRGLBD cataloged procedure by copying the sample provided in
SEZAINST(NRGLBD) to your system or recognized PROCLIB and modifying it to
suit your local conditions.

Following is the sample NRGLBD cataloged procedure:

//NRGLBD PROC MODULE=NRGLBD,PARMS=’’
//*
//*
//* z/OS Communications Server
//* SMP/E Distribution Name: EZAEB02D
//*
//* Copyright: Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* 5647-A01
//* (C) Copyright IBM Corp. 1992, 2001
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//*
//* Status: CSV1R2
//*
//NRGLBD EXEC PGM=&MODULE,
// PARM=’&PARMS’,REGION=4096K,TIME=1440
//*
//* The C runtime libraries should be in the system’s link list
//* or add them to the STEPLIB definition here. If you add
//* them to STEPLIB, they must be APF authorized. Change
//* the name as appropriate for your installation.
//*
//STEPLIB DD DSN=TCPIP.SEZATCP,DISP=SHR
//SYSPRINT DD SYSOUT=*
//SYSOUT DD SYSOUT=*
//OUTPUT DD SYSOUT=*
//SYSIN DD DUMMY
//*
//* The SYSMDUMP DD statement will cause MVS to provide
//* an IPCS readable dump for ABENDs.
//*SYSMDUMP DD DISP=SHR,DSN=your.dump.data.set
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//SYSTCPD DD DSN=TCPIP.SEZAINST(TCPDATA),DISP=SHR

Figure 52. NRGLBD cataloged procedure

© Copyright IBM Corp. 2000, 2015 1313

LLBD cataloged procedure (LLBD)
Update the LLBD cataloged procedure by copying the sample provided in
SEZAINST(LLBD) to your system or recognized PROCLIB and modifying it to suit
your local conditions.

Following is the sample LLBD cataloged procedure:

//LLBD PROC MODULE=LLBD,PARMS=’’
//*
//* z/OS Communications Server
//* SMP/E Distribution Name: SEZAINST(LLBD)
//*
//* Copyright: Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* 5647-A01
//* (C) Copyright IBM Corp. 1992, 2001
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//*
//* Status: CSV1R2
//*
//LLBD EXEC PGM=&MODULE,
// PARM=’&PARMS’,REGION=4096K,TIME=1440
//*
//* The C runtime libraries should be in the system’s link list
//* or add them to the STEPLIB definition here. If you add
//* them to STEPLIB, they must be APF authorized. Change
//* the name as appropriate for your installation.
//*
//STEPLIB DD DSN=TCPIP.SEZATCP,DISP=SHR
//SYSOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//OUTPUT DD SYSOUT=*
//*
//* The SYSMDUMP DD statement will cause MVS to provide
//* an IPCS readable dump for ABENDs.
//*SYSMDUMP DD DISP=SHR,DSN=your.dump.data.set
//SYSIN DD DUMMY
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//SYSTCPD DD DISP=SHR,DSN=TCPIP.SEZAINST(TCPDATA)

Figure 53. LLBD cataloged procedure (LLBD)

1314 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 29. SMTP server

This topic contains the following information:
v “SMTP cataloged procedure (SMTPPROC)”
v “Summary of SMTP configuration statements” on page 1316
v “Steps for using the SMTP server exits” on page 1319
v “SMTP configuration data set statements” on page 1325

SMTP cataloged procedure (SMTPPROC)
Restriction: SMTP does not support z/OS UNIX files.

This procedure contains the data set name for the SMTP configuration data set.
//SMTP PROC MODULE=SMTP,DEBUG=,PARMS=’NOSPIE/’,SYSERR=SYSERR
//*
//* z/OS Communications Server
//* SMP/E Distribution Name: EZAEB017
//*
//* Copyright: Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* 5694-A01
//* Copyright IBM Corp. 1989, 2008
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//*
//* Status: CSV1R10
//*
//SMTP EXEC PGM=MVPMAIN,
// PARM=’&MODULE,PARM=&DEBUG,ERRFILE(&SYSERR),&PARMS’,
// REGION=6144K,TIME=1440
//STEPLIB DD DSN=TCPIP.SEZATCP,DISP=SHR
//*
//* The SYSMDUMP DD statement will cause MVS to provide
//* an IPCS readable dump for ABENDs.
//*SYSMDUMP DD DISP=SHR,DSN=your.dump.data.set
//*
//* SYSPRINT points to a data set used for the output from
//* internal calls to IDCAMS. It can be a temporary data set.
//*
//SYSPRINT DD SYSOUT=*
//*
//* SYSERR contains runtime diagnostics from Pascal. It can be
//* a data set or SYSOUT.
//*
//SYSERR DD SYSOUT=*
//*
//* SYSDEBUG receives output that is generated when the DEBUG
//* configuration statement is specified in SMTP. It can be
//* a data set or SYSOUT.
//*
//SYSDEBUG DD SYSOUT=*
//*
//* OUTPUT contains the startup and shutdown messages from SMTP.
//* It can be a data set or SYSOUT.
//*
//OUTPUT DD SYSOUT=*
//*
//* LOGFILE receives output that is generated when the LOG

© Copyright IBM Corp. 2000, 2015 1315

//* configuration statement is specified in SMTP. It can be
//* a data set or SYSOUT.
//*
//LOGFILE DD SYSOUT=*
//*
//* SMTPNJE is the output of the SMTPNJE command.
//* Before running SMTP you should use the SMTPNJE command
//* to create the data set and then you can remove the
//* "*" from the following line to activate SMTPNJE.
//*
//*SMTPNJE DD DSN=TCPIP.SMTPNJE.HOSTINFO,DISP=SHR
//*
//* CONFIG points to a sample configuration data set.
//* Before running SMTP you should modify this file to
//* include parameters suitable for your installation.
//*
//CONFIG DD DSN=TCPIP.SEZAINST(SMTPCONF),DISP=SHR
//*
//* SECTABLE points to your SMTP security table data set.
//* If you are running with the SECURE option, this data set
//* will contain a list of NJE users who are authorized to
//* use the gateway.
//* You must remove the "*" from the following line to allow
//* SMTP to find the data set.
//*
//*SECTABLE DD DSN=SMTP.SMTP.SECTABLE,DISP=SHR
//*
//* SMTPRULE points to the data set containing the rewrite rules
//* for the header addresses. You must specify REWRITE822HEADER
//* YES for this data set to be read.
//* You must remove the "*" from the following line to allow
//* SMTP to find the data set.
//*
//*SMTPRULE DD DSN=SMTP.SMTP.RULE,DISP=SHR
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//*
//SYSTCPD DD DSN=TCPIP.SEZAINST(TCPDATA),DISP=SHR

Summary of SMTP configuration statements
The SMTP configuration statements are summarized in Table 97.

Table 97. Summary of SMTP configuration statements

Statement Description See

ALTNJEDOMAIN Specifies an alternative domain name of the
NJE network, if SMTP is running as a mail
gateway.

“ALTNJEDOMAIN statement” on
page 1325

ALTTCPHOSTNAME Specifies an additional host name for the
local host. Mail received for this host name
is accepted and delivered locally.

“ALTTCPHOSTNAME statement”
on page 1326

Figure 54. SMTP cataloged procedure (SMTPPROC)

1316 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 97. Summary of SMTP configuration statements (continued)

Statement Description See

ATSIGN Specifies that you want SMTP to use this
character in the addressing strings
generated by SMTP.

“ATSIGN statement” on page 1326

BADSPOOLFILEID Specifies the user ID on the local system
where SMTP transfers unreadable spool
files and looping mail.

“BADSPOOLFILEID statement” on
page 1327

CHECKSPOOLSIZE Enables SMTP to check the size of the JES
spool file prior to writing the data to the
hlq.TEMP.NOTE file.

“CHECKSPOOLSIZE statement”
on page 1327

DBCS Specifies that DBCS code conversion be
performed on the mail.

“DBCS statement” on page 1328

DEBUG Records all SMTP commands and replies. “DEBUG statement” on page 1330

DELETEBADSPOOLFILE Permits SMTP to delete the spool file from
the JES spool that would cause an
ABENDS001 when accessed by SMTP.

“DELETEBADSPOOLFILE
statement” on page 1330

DISALLOWCMD Enables SMTP server to discontinue
support for certain SMTP commands
specified by the customer.

“DISALLOWCMD statement” on
page 1331

EXITDIRECTION Enables SMTP to call the SMTP exit
provided by the customer for data coming
from the JES spool.

“EXITDIRECTION statement” on
page 1332

FINISHOPEN Specifies the SMTP wait time for
connection.

“FINISHOPEN statement” on page
1333

GATEWAY Specifies operation of SMTP as a gateway. “GATEWAY statement” on page
1333

INACTIVE Specifies the SMTP wait time before closing
an inactive connection.

“INACTIVE statement” on page
1335

INBOUNDOPENLIMIT Specifies the maximum number of
simultaneous TCP connections over which
SMTP server receives mail.

“INBOUNDOPENLIMIT
statement” on page 1335

IPMAILERADDRESS Specifies the IP address of an SMTP server
that can resolve network addresses of
unknown hosts.

“IPMAILERADDRESS statement”
on page 1336

IPMAILERNAME Enables SMTP to forward non-local mail to
the specified IP mailer name.

“IPMAILERNAME statement” on
page 1337

LISTENONADDRESS Allows you to restrict which IP address is
used to receive and send mail on a
multihomed system.

“LISTENONADDRESS statement”
on page 1338

LOCALCLASS Specifies the spool data set class for local
mail delivery.

“LOCALCLASS statement” on
page 1339

LOCALFORMAT Specifies the spool data set format for local
host mail delivery.

“LOCALFORMAT statement” on
page 1339

LOG Directs SMTP to log all SMTP traffic. “LOG statement” on page 1340

MAILER Specifies the address of the batch SMTP
server that receives mail.

“MAILER statement” on page 1340

MAILFILEDSPREFIX Specifies the prefix to add to mail data sets. “MAILFILEDSPREFIX statement”
on page 1342

Chapter 29. SMTP server 1317

Table 97. Summary of SMTP configuration statements (continued)

Statement Description See

MAILFILESUNIT Specifies the unit where SMTP mail data
sets reside.

“MAILFILEUNIT statement” on
page 1343

MAILFILEVOLUME Specifies the volume where newly allocated
SMTP data sets reside.

“MAILFILEVOLUME statement”
on page 1343

MAXMAILBYTES Specifies the maximum size of mail that is
accepted over a TCP connection.

“MAXMAILBYTES statement” on
page 1344

MAXMSGSENT Controls the behavior of the SMTP client
code by limiting the number of messages
sent on a single TCP/IP connection

“MAXMSGSENT statement” on
page 1345

NJECLASS Specifies the spool data set class for mail
delivered on an NJE network.

“NJECLASS statement” on page
1346

NJEDOMAIN Specifies the domain name of the NJE
network if SMTP functions as a gateway.

“NJEDOMAIN statement” on page
1346

NJEFORMAT Specifies the spool data set format for mail
delivered on the NJE network.

“NJEFORMAT statement” on page
1347

NJENODENAME Specifies the node name of the local JES2 or
JES3 node for mail delivered on the NJE
network.

“NJENODENAME statement” on
page 1348

NOLOG Turns off the logging of mail transactions. “NOLOG statement” on page 1349

NOSOURCEROUTE Controls whether this SMTP generates and
passes a source routing string for the
originator address (MAILCMD) or for the
recipient address (RCPTCMD).

“NOSOURCEROUTE statement”
on page 1349

OUTBOUNDOPENLIMIT Specifies a limit on the maximum number
of simultaneous TCP connections over
which SMTP actively delivers mail.

“OUTBOUNDOPENLIMIT
statement” on page 1351

PORT Specifies an alternative port number for the
SMTP server during testing.

“PORT statement” on page 1351

POSTMASTER Specifies the address (or addresses) for mail
addressed to the postmaster at the local
host.

“POSTMASTER statement” on
page 1352

RCPTREPLY452 Enables SMTP to handle reply code 452
differently for the RCPT command.

“RCPTREPLY452 statement” on
page 1353

RCPTRESPONSEDELAY Specifies how long the SMTP server delays
responding to the RCPT commands.

“RCPTRESPONSEDELAY
statement” on page 1353

REMOTEPORT Specifies which remote port number the
SMTP client uses for sending outbound
mail.

“REMOTEPORT statement” on
page 1354

RESOLVERRETRYINT Specifies the number of minutes SMTP
waits between attempts to resolve domain
names.

“RESOLVERRETRYINT statement”
on page 1355

RESOLVERUSAGE Indicates whether SMTP should attempt to
resolve non-local domain names.

“RESOLVERUSAGE statement” on
page 1355

RESTRICT Specifies addresses of users who are not
allowed to use SMTP mail services.

“RESTRICT statement” on page
1356

RETRYAGE Specifies the number of days after which
mail is returned as undeliverable.

“RETRYAGE statement” on page
1357

1318 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 97. Summary of SMTP configuration statements (continued)

Statement Description See

RETRYINT Specifies the number of minutes between
attempts to send mail to an inactive TCP
host.

“RETRYINT statement” on page
1358

REWRITE822HEADER Prevents SMTP from rewriting RFC 822
headers with source routing.

“REWRITE822HEADER statement”
on page 1358

SECURE Specifies that SMTP operates as a secure
mail gateway between TCP network sites
and NJE network sites.

“SECURE statement” on page 1359

SMSGAUTHLIST Specifies the addresses of users authorized
to issue privileged SMTP SMSG commands.

“SMSGAUTHLIST statement” on
page 1360

SPOOLPOLLINTERVAL Specifies the interval for SMTP to check the
spool for incoming batch data sets.

“SPOOLPOLLINTERVAL
statement” on page 1361

STOPONRENF Controls the behavior of the SMTP server
so if a RENAME failure occurs on a data
set associated with the batch connection
(257), the SMTP server stops by normal
termination.

“STOPONRENF statement” on
page 1361

TEMPERRORRETRIES Specifies the number of times SMTP tries to
redeliver mail to a host with a temporary
problem.

“TEMPERRORRETRIES statement”
on page 1362

TIMEZONE Sets the printable name of the local time
zone.

“TIMEZONE statement” on page
1363

WARNINGAGE Specifies the number of days after which a
copy of the mail is returned to the sender,
indicating that the mail has so far been
undeliverable and that SMTP continues to
retry delivery for the number of days
specified in RETRYAGE.

“WARNINGAGE statement” on
page 1364

Steps for using the SMTP server exits
Use the SMTP server exit to check and subsequently accept or reject mail inbound
from a TCP/IP network or mail outbound from the JES spool. For example, you
can code an exit to check the MAIL FROM: string on outbound mail or to control
the influx of unwanted inbound mail (commonly referred to as spam).

Tip: The exits described in this topic are also used by the CSSMTP application for
checking outbound mail only. See Chapter 30, “Communications Server SMTP
application,” on page 1365 for more information.

The SMTP server dynamically determines if an SMTP exit program exists. This
determination is based upon the SMTP exit program association with the name
token EZBTCPIPSMTPEXIT using the MVS SETPROG command. So, the presence
of the SMTP exit program allows the SMTP server to call the exit program for
inbound TCP/IP connection data. If you determine that the exit program needs to
be called to interrogate data coming from the JES spool, follow these steps:
1. Add the EXITDIRECTION statement and the appropriate parameters to the

SMTP configuration. Also, stop and restart the SMTP server in order to
recognize the new configuration settings.

Chapter 29. SMTP server 1319

2. In order to work correctly with the JES connection, add code to the user exit
program.

Rules:

v The JES connection ID is always 257.
v The field (EZBPIPV4) representing the remote IP address is always zero for

the JES connection.
v For TCP/IP connections, the field (EZBPTOKP) representing the SAF token

information is always zero.
If SAF token information is requested, the field EZBPTOKP contains the
address of the token. However, this field can be zero if the SMTP server was
unable to retrieve the SAF token from JES. The exit program needs to be coded
to handle this situation. The SAF token length is 80 bytes and the SAF token
version is 1. The SAF token provides information about the submitting user ID
and the submitter node of the JES data. This data can be compared to the
sender information about the MAIL FROM: string. For more information about
what is provided in the SAF token, see the RUTKN information in z/OS
Security Server RACF Data Areas.

3. Recompile the user exit program with the version 2 copy of the EZBZSMTP
DSECT. This picks up the changes in the parameter list.

4. Ensure that the user ID specified on the POSTMASTER statement in the SMTP
configuration file is a valid user ID.

Requirement: This user ID and host must be able to receive mail.
When mail is rejected by the SMTP exit program for the JES connection ID, it is
always returned to the POSTMASTER. The POSTMASTER must determine
what happens to the rejected JES data. After the SMTP exit program rejects the
JES data, the entire spool file is rejected, which might include multiple notes.
Depending on how the JES data is spooled, this might be a large amount of
data.
The POSTMASTER can modify the data and resend it to SMTP, or it can
discard the data. The SMTP exit program policies determine whether or not the
POSTMASTER receives large quantities of mail that require review. When the
SMTP exit program rejects mail from a TCP/IP connection, the remote SMTP
client determines what happens to the rejected mail. In this case, the mail
becomes undeliverable and might be returned to the originator.

If you run the exit program in both directions, performance might be impacted.

Tip: If you want the exit program to interrogate only inbound TCP/IP
connections, do not make any configuration changes.

If the SMTP server receives mail from a TCP/IP network, and then sends it out on
a TCP/IP connection (relaying the mail), the SMTP server invokes the exit program
only one time on the inbound path.

The exit should be written in Assembler Language. Standard z/OS Assembler
entry and exit linkage must be used. See z/OS MVS Programming: Assembler
Services Guide for the linkage conventions.

1320 z/OS V2R1.0 Communications Server: IP Configuration Reference

The exit is invoked with the settings shown in Table 98.

Table 98. SMTP user exit settings

Authorization Problem state

Dispatchable Unit Mode Task

Cross memory mode PASN=HASN

Amode 31–bit

ASC mode Primary address space control (ASC) mode

Interrupt status Enabled for interrupts

Locks Unlocked

On entry to the exit, the register contents are:

Register 0
Used as a work register by the system

Register 1
Address of the exit's input parameter list (see Table 99)

Registers 2-12
Unassigned

Register 13
Address of an 18-word save area

Register 14
Return address

Register 15
Address of the exit routine

The exits input parameter list contains the information shown in Table 99. An
assembler macro is available to provide you with a DSECT describing this area.
The name of the macro is EZBZSMTP and the macro resides in SEZACMAC. It
enables an optional label but has no operands. It provides symbolic names for the
3 return codes and 18 action codes. The labels are as shown in Table 99.

Table 99. SMTP server exit input parameter list

Label name Width/Value Description

Parameter list variables

EZBZSMTP DSECT Name

EZBPVERS (See note 1) 1 Fullword Version number

EZBPACTN (See note 2) 1 Fullword Action code

EZBPUSER (See note 3) 1 Fullword Returned Reg15 of
initialization call

EZBPCNID (See note 4) 1 Fullword Connection ID

EZBPTOKP (See note 17) 1 Fullword Address of SAF (security)
token

2 Fullwords Reserved for future use

EZBPIPV4 (See note 6) 1 Fullword IP addr of remote SMTP

EZBPDLEN (See note 7) 1 Fullword Length of data in buffer

EZBPBUFF (See note 8) 1 Fullword Buffer address

Chapter 29. SMTP server 1321

Table 99. SMTP server exit input parameter list (continued)

Label name Width/Value Description

Parameter list variables

Constants

EZBRAGN 0 Return code to continue

EZBRACC 4 Return code to accept mail

EZBRREJ 8 Return code to reject mail

Action codes

EZBAINIT 1 Initialization call (See note 9)

EZBATERM 2 Termination call (See note 10)

EZBADATA 3 SMTP DATA command

EZBAEXPN 4 SMTP EXPN (expand)
command

EZBAHELO 5 SMTP HELO (hello)
command

EZBAHELP 6 SMTP HELP command

EZBAMAIL 7 SMTP MAIL command

EZBANOOP 8 SMTP NOOP command (See
note 11)

EZBAQUEU 9 IBM SMTP QUEU (queue)
command

EZBAQUIT 10 SMTP QUIT command (See
note 12)

EZBARCPT 11 SMTP RCPT (recipient)
command

EZBARSET 12 SMTP RSET (Reset)
command (See note 13)

EZBATICK 13 IBM SMTP TICK command

EZBAVERB 14 IBM SMTP VERB command

EZBAVRFY 15 SMTP VRFY (Verify)
command

EZBADBUF 16 Data buffer (See note 14)

EZBAEODB 17 End of data buffers (last
chance) (See note 15)

EZBACONN 18 End of connection (See note
16)

Notes:

1. A word containing a version number. The value is one when the exit program
is called for INBOUND mail only. The value is two when the exit program is
called for BOTH (inbound and outbound) mail.

2. A word-aligned word containing an action code describing the buffer contents
(if any).

3. A word containing the user supplied token from the initialization call.

1322 z/OS V2R1.0 Communications Server: IP Configuration Reference

4. A word containing a connection identifier number to distinguish between
concurrent connections. The connection ID representing the JES spool data is
always 257.

5. Two unused words (reserved space).
6. A word containing the IP address of the connecting remote SMTP. It contains

0 if the connection ID is 257 (JES connection ID).
7. A word containing the actual length of data in the buffer. If the buffer length

is meaningless for the action code, the length is set to 0.
8. A word containing a 31–bit address that points to the actual buffer. If the

buffer length is 0, this parameter should not be used.
9. Buffer is empty, expect return token in R15.

10. Buffer is empty, application shutting down, exit return code is ignored. This
call (and all others) might not occur during abnormal termination.

11. Exit return code is ignored whenever this command is detected.
12. Exit return code is ignored.
13. Exit return code is ignored.
14. Data buffer (there is no command associated with this) approximately 1 024

bytes of data or less. The data are in EBCDIC, but might be in an
multicultural support mode (non-English).

15. End of data marker (there is no command associated with this and the buffer
contents are meaningless). This is the last chance to reject this message.

16. TCP/IP connection terminated or end of file for JES spool data.
17. If SAF information is requested using the EXITDIRECTION statement in the

SMTP configuration, the SMTP server sets this field to a 31-bit address that
points to the SAF (security) token information. If the SMTP server was unable
to retrieve the SAF token or if the EXITDIRECTION statement is not
configured, this field contains 0. For TCP/IP connections, this field is always
0.

There are two control invocations of the SMTP user exit. One for initialization, and
the other for termination. On return from the initialization call, the contents of
register 15 is treated as a 4-byte user token that is returned on all other exit
invocations. See Table 99 on page 1321 for more information. The user token is not
used by SMTP, but only passed on subsequent calls to allow a reentrant exit to
have static data (using getmain or some other method). It is expected that certain
data sets might be read during the initialization call and that tables of known
spamming Internet addresses might be constructed at this time for later use. The
termination call allows report generation or any other clean-up activity that the
exit might do prior to the stopping of SMTPPROC under normal termination logic.

There are three supported return code values which the exit program might set.
For certain action codes such as initialization (EZBAINT), termination
(EZBATERM) and end of connection (EZBACONN) the return code value is
ignored. The returned value and expected meanings are as follows:

0 Call user-supplied exit program again.

4 Accept this message or command and do not call again for this message.

8 Reject message or command and do not call again for this message.
v During processing of SMTP commands, the reply code 550 service

denied due to user supplied exit is generated immediately.

Chapter 29. SMTP server 1323

v During note data processing (action code = 16), the reply code 550
service denied due to user supplied exit is generated when the end
of data marker (action code = 17) is received.

Return codes that are not valid are converted to a 0, and the exit is called again.

Tip: Certain commands should not be rejected, because they can cause
unpredictable results with the partner SMTP application.

Rule: Certain commands, such as NOOP, QUIT, and RSET should always be
accepted.

The connection identifier is a unique number during the life of the connection. You
can use it to distinguish between multiple concurrent connections that can be
present. Each has its own state information in SMTPPROC, and if the exit wants to
keep any state information, this field can be used to keep each message's state
separate. Connection identifiers normally become available for reuse after a QUIT
command or the end of connection (action code 18), or both, occur. They normally
first appear with a HELO command.

The buffer contents for action codes 3 through 15 contain the SMTP command.

The buffer contains data that has been translated using the EBCDIC encoding
tables configured for the SMTPPROC. Data buffers might not be in English and
might contain NLS characters.

Unknown commands are rejected by SMTPPROC and the exit is not called. The
buffer normally contains the SMTP command. See RFC 821 for exact spellings and
format.

Guideline: The SMTP command can appear in either upper, lower, or mixed case.

The initialization and termination calls do not have a connection number. The
return code from the initialization call is not checked, but placed in the ezbpuser
field. The return code from the termination call is moot. These calls are always
active if the exit is active.

Interaction between SMTP and user exit program

During an active connection, SMTP determines whether the user exit program is
called again based on the return code passed back to SMTP from the previous
invocation of the exit.

The user exit is not called again for the affected connection until the resetting
action codes are received, and only if the ezbracc or the ezbrrej return codes are
received from the exit from a connection-oriented call. The accept or reject state
might remain in effect for only the current call however.

In Table 100, the following codes are not sent to the exit if the current state is
accept or reject and do not change the state.

Table 100. Exit action codes and values (Part 1)

Action code Value

3 DATA

4 EXPN

1324 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 100. Exit action codes and values (Part 1) (continued)

Action code Value

6 HELP

8 NOOP

9 QUEU

11 RCPT

13 TICK

14 VERB

15 VRFY

16 data buffers

In Table 101, the following codes are not sent to the exit, but they ensure that the
next command (if any) goes to the exit as it resets the next state to ezbragn.

Table 101. Exit action codes and values (Part 2)

Action code Value

10 QUIT

12 RSET

17 End of data buffers (final chance)

In Table 102, the following is always sent to the exit if it is active, and the return
code received determines the new state.

Table 102. Exit action codes and values (Part 3)

Action code Value

5 HELO

7 MAIL

18 Connection closed (termination of individual connection).
Connection number available for reuse and state is reset to
ezbragn.

SMTP configuration data set statements
This topic contains the SMTP configuration data set statements.

ALTNJEDOMAIN statement

Use the ALTNJEDOMAIN statement to specify an alternative domain name of the
NJE network when SMTP is running as a mail gateway.

Syntax

�� ALTNJEDOMAIN domain ��

Chapter 29. SMTP server 1325

Parameters

domain
The alternative domain name of the NJE network. The alternative NJE domain
name is a 1 - 64 alphanumeric string of characters.

Examples

Using the ALTNJEDOMAIN statement is helpful when the NJE network is known
by multiple domain names, such as VNET and VNET.IBM.COM.
ALTNJEDOMAIN VNET

Usage notes

The ALTNJEDOMAIN statement can be specified only once.

ALTTCPHOSTNAME statement

Use the ALTTCPHOSTNAME statement to specify an alternative, fully-qualified
host name by which SMTP recognizes the local host. Mail sent to users at
host_name are treated as if they were local users. You can use the
ALTTCPHOSTNAME statement to specify up to 16 alternative host names.

Syntax

�� ALTTCPHOSTNAME host_name ��

Parameters

host_name
The name of the destination host.

Examples

In the following example, mail sent to users at PALACE are treated as if they were
local users:
ALTTCPHOSTNAME PALACE

ATSIGN statement

Use the ATSIGN statement to cause SMTP to use this character in the addressing
strings generated by SMTP.

Tip: This might affect operability between sites using different code pages.

Syntax

�� ATSIGN symbol ��

Parameters

symbol
The input symbol, which is a single-byte representation of the @ symbol in a
national language code page.

1326 z/OS V2R1.0 Communications Server: IP Configuration Reference

Usage notes
v If this statement is not specified, SMTP defaults to the @ symbol (defined as a

value '7C'). For details about EBCDIC character set definitions, see 3174 Character
Set Reference.

v The ATSIGN statement cannot be used in combination with the
REWRITE822HEADER statement. REWRITE822HEADER defaults to YES, and
you must set this to NO in your SMTP configuration file if you want to use
ATSIGN. The REWRITE822HEADER statement must be coded before the
ATSIGN statement.

v If the ATSIGN statement was used previously, and you are assigning a new
symbol for that statement, ensure that all the mail has been sent. If old mail
exists that is using the old symbol, then problems might occur.

BADSPOOLFILEID statement

Use the BADSPOOLFILEID statement to specify the user ID on the local system
where SMTP transfers unreadable spool files and looping mail.

Syntax

��
BADSPOOLFILEID TCPMAINT

BADSPOOLFILEID user_id
��

Parameters

user_id
The user ID on the local system where bad spool files and looping mail are
delivered. The user ID should be a maximum of eight characters. The default is
TCPMAINT. If RACF is active, then a RACF profile must be defined for this
user ID.

Examples

In this example, unreadable spool files and looping mail are transferred to the user
ID, DBARTON.
BADSPOOLFILEID DBARTON

Usage notes

The BADSPOOLFILEID statement can be specified only once.

CHECKSPOOLSIZE statement

Use the CHECKSPOOLSIZE statement to specify cause SMTP to check the size of
JES spool file. If the JES spool file is larger than the primary allocation for the
hlq.TEMP.NOTE data set, the resulting SMTP note is truncated. When the SMTP
note is truncated, an informational message EZA5340I or EZA5342I is generated in
the SMTP OUTPUT file.

The choice of which message is used depends on the format of the JES spool file
(NETDATA or batch) being read. The truncated SMTP note also has the
corresponding message appended to the bottom of the note. This enables the
system administrator to correlate the SMTP note with the SMTP mailer doing the

Chapter 29. SMTP server 1327

truncation and increase the MAXMAILBYTES if it is appropriate. The SMTP mailer
continues to process mail. The default for this parameter is disabled.

Syntax

�� CHECKSPOOLSIZE ��

Parameters

There are no parameters for this statement.

Usage notes

If this parameter is not specified, SMTP works as originally designed. Secondary
allocations are requested for continuing growth of the hlq.TEMP.NOTE data set.
Abend B37 can occur if 16 extents are exceeded and more storage is needed.

Related topics

“MAXMAILBYTES statement” on page 1344

DBCS statement

Use the DBCS statement to specify that SMTP should perform DBCS code
conversion on the mail. The parameters of the DBCS statement determine which
translation table should be used in the conversion.

Syntax

�� DBCS JIS78KJ ASCII
JIS83KJ JISROMAN

BIG5
EUCKANJI
IBMKANJI
HANGEUL
KSC5601
SCHINESE
SJISKANJI
TCHINESE

��

Parameters

JIS78KJ
Specify JIS78KJ if the conversion between IBM Kanji and JIS 1978 DBCS codes
is to be performed. The Escape Sequence for JIS X0208 1978 is ESC 2/4 4/0.
SMTP loads the JIS78KJ DBCS translation table from the TCPKJBIN binary
translate table data set.

Restriction: When JIS78KJ and JIS83KJ are used, either ASCII or JISROMAN
must be used or an error occurs and SMTP ends. SMTP configuration reads the
next parameter in the configuration file as the third DBCS statement entry.

JIS83KJ
Specify JIS83KJ if the conversion between IBM Kanji and JIS 1983 DBCS codes

1328 z/OS V2R1.0 Communications Server: IP Configuration Reference

is to be performed. The Escape Sequence for JIS X0208 1983 is ESC 2/4 4/2.
SMTP loads the JIS83KJ DBCS translation table from the TCPKJBIN binary
translate table data set.

Restriction: When JIS78KJ and JIS83KJ are used, either ASCII or JISROMAN
must be used or an error occurs and SMTP ends. SMTP configuration reads the
next parameter in the configuration file as the third DBCS statement entry.

ASCII
Specify ASCII for JIS78KJ or JIS83KJ if the mail is shifted in ASCII code from
JIS Kanji code. The Escape Sequence for ASCII is ESC 2/8 4/2.

JISROMAN
Specify JISROMAN for JIS78KJ or JIS83KJ if the mail is shifted in JISRoman
code from JIS Kanji code. The Escape Sequence for JISRoman is ESC 2/8 4/10.

BIG5
Specify BIG5 if the conversion between IBM Traditional Chinese host DBCS
codes and Big-5 PC DBCS codes is to be performed. SMTP loads the BIG5
DBCS translation table from the TCPCHBIN binary translate table data set.

EUCKANJI
Specify EUCKANJI if the conversion between IBM Kanji and Japanese EUC
DBCS codes is to be performed. SMTP loads the EUCKANJI DBCS translation
table from the TCPKJBIN binary translate table data set.

IBMKANJI
Specify IBMKANJI if IBM (EBCDIC) Kanji conversion is to be used. This
option causes no conversion to be performed on the body of the mail. This can
be used for the sending and receiving of mail in EBCDIC.

Guideline:If this option is selected, other SMTP servers on the same network
should all be configured with IBMKANJI. If IBMKANJI is specified, and
LOCALFORMAT or RSCSFORMAT is set to PUNCH, then mail received in
ASCII can be folded to inconsistent record lengths. In this case,
LOCALFORMAT and RSCSFORMAT should be set to NETDATA.

The IBMKANJI transfer type does not require any translate table to be loaded.

HANGEUL
Specify HANGEUL if the conversion between IBM Korean host DBCS codes
and Korean PC DBCS codes is to be performed. SMTP loads the HANGEUL
DBCS translation table from the TCPHGBIN binary translate table data set.

KSC5601
Specify KSC5601 if the conversion between IBM Korean host DBCS codes and
IBM KS DBCS codes is to be performed. SMTP loads the KSC5601 DBCS
translation table from the TCPHGBIN binary translate table data set.

SCHINESE
Specify SCHINESE if the conversion between IBM Simplified Chinese host
DBCS codes and Simplified Chinese PC DBCS codes is to be performed. SMTP
loads the SCHINESE DBCS translation table from the TCPSCBIN binary
translate table data set.

SJISKANJI
Specify SJISKANJI if the conversion between IBM Kanji and Shift JIS DBCS
codes is to be performed. SMTP loads the SJISKANJI DBCS translation table
from the TCPKJBIN binary translate table data set.

TCHINESE
Specify TCHINESE if the conversion between IBM Traditional Chinese host

Chapter 29. SMTP server 1329

DBCS codes and Traditional Chinese 5550 PC DBCS codes is to be performed.
SMTP loads the TCHINESE (5550) DBCS translation table from the TCPCHBIN
binary translate table data set.

Examples

In the following example, IBM Traditional-Chinese-to Traditional-Chinese 5550 PC
code conversion is used:
DBCS TCHINESE

Usage notes
v The transmission of DBCS mail by SMTP uses two different translation tables,

SBCS and DBCS. SBCS characters in the mail headers and in the mail body are
converted using either hlq.STANDARD.TCPKJBIN, TCPHGBIN, TCPSCBIN, or
TCPCHBIN.

v DBCS conversion is only performed on outgoing and incoming mail to and from
other hosts. Mail spooled to SMTP (for example, using SMTPNOTE) for the local
host is delivered directly, without DBCS code conversion.

Related topics

Appendix A, “Translation tables,” on page 1417

DEBUG statement

Use the DEBUG statement to record SMTP commands and replies in the SMTP
debug data set (which is pointed to by the SYSDEBUG DD statement).

Syntax

�� DEBUG ��

Parameters

There are no parameters for this statement.

Usage notes

The SMTP connection number is recorded along with each SMTP command or
reply. The connection numbers are used as follows:
v Connection numbers 0 through 255 are used for SMTP connections over a TCP

network.
v Connection number 257 is used for the batch SMTP connection.

DELETEBADSPOOLFILE statement

Use the DELETEBADSPOOLFILE statement to change the behavior of SMTP when
it detects a spool file on the JES spool that would cause an ABENDS001 on the JES
spool. If not coded, the default behavior is for SMTP to generate error message
EZA5469E and terminate. Then, the system administrator can examine the
offending spool file. The application generating the spool file should be changed.
While that is being done, the DELETEBADSPOOLFILE statement can be used so
SMTP continues to run and automatically deletes any offending spool file.

1330 z/OS V2R1.0 Communications Server: IP Configuration Reference

Tip: These spool files might contain customer data; therefore, it is the system
administrator's responsibility to give SMTP permission to do automatic deletion. If
a spool file is automatically deleted, SMTP generates message EZA5470E to alert
the user.

Syntax

�� DELETEBADSPOOLFILE ��

Parameters

There are no parameters for this statement.

Examples

Use the following code to cause SMTP to delete any spool file it detects on the JES
spool that causes an ABENDS001 when accessed:
DELETEBADSPOOLFILE

DISALLOWCMD statement

Use the DISALLOWCMD statement to control whether this SMTP server does not
support these SMTP commands. Each SMTP command has a decimal number,
specifying that number after the DISALLOWCMD statement causes that SMTP
command to no longer be supported. The SMTP server responds with the reply
code 502 Command <SMTP command> not implemented. The SMTP server responds
this way whether or not the SMTP command is being issued by way of the
TCP/IP connection or the JES spool.

Restriction: You can disallow only the following SMTP commands:
v VERB
v QUEU
v HELP
v VRFY
v EXPN

If the number parameter following the DISALLOWCMD statement is not valid for
any reason, then the SMTP server default behavior is to allow these SMTP
commands and respond appropriately.

Restriction: Code this statement only one time in the SMTP configuration file,
because the last instance of this statement is the only one that is used.

Syntax

�� DISALLOWCMD (number) ��

Parameters

number
Indicates what SMTP commands should not be allowed. Multiple SMTP
commands can be disallowed by adding the SMTP command number together.
The following decimal numbers are assigned to each command:

Chapter 29. SMTP server 1331

VERB= 1, QUEU= 2, HELP= 4, VRFY= 8 and EXPN= 16

A valid decimal number parameter ranges from 1 to 31.

Examples

Use the following code to specify that the SMTP commands, VERB and VRFY, are
no longer supported:
DISALLOWCMD 9

Use the following code to specify that the SMTP commands, HELP and VRFY, are
no longer supported:
DISALLOWCMD 12

EXITDIRECTION statement

Use the EXITDIRECTION statement to control whether this SMTP calls the SMTP
exit program provided by the customer to interrogate data being sent to SMTP
from the JES spool.

Requirement: You must install a SMTP exit program for this function to work
properly. For installation information for the SMTP exit program, see z/OS
Communications Server: IP Configuration Guide and see “Steps for using the
SMTP server exits” on page 1319.

Syntax

��
EXITDIRECTION INBOUND

EXITDIRECTION INBOUND
BOTH SAFYES

SAFNO

��

Parameters

INBOUND
Indicates that if an SMTP exit is installed by the customer, it is called only for
inbound data from a TCP/IP connection. This is the default.

Tip: You do not need to code the EXITDIRECTION statement to invoke this
behavior when an SMTP exit program is installed.

BOTH
Indicates that if an SMTP exit is installed by the customer, it is called for
inbound data from a TCP/IP connection and for outbound data from the JES
spool. The SMTP exit program uses the connection ID field (EZBPCNID) to
determine where the data is coming from. EZBPCNID is always 257 for data
coming from the JES spool.

Requirement: If BOTH is coded, you must code a second parameter
(SAFYES/SAFNO). If a second parameter is not coded or coded incorrectly,
INBOUND (the default) is used.

SAFYES
Indicates that for data coming only from the JES spool, SMTP requests SAF
information from the JES interface. For more information about what is

1332 z/OS V2R1.0 Communications Server: IP Configuration Reference

provided in the SAF token, see z/OS Security Server RACF Data Areas, topic
RUTKN Resource/User Security Token. The SAF token length is 80 bytes and
the SAF token version is 1.

Even though a SAF token is requested, the SMTP exit must still be prepared to
handle the possibility no SAF token being provided, in which case, the value
of the SAF token address field (EZBPTOKP) is 0.

SAFNO
No SAF information is requested, therefore the SAF token address field
(EZBPTOKP) is always 0.

Examples

In the following example, the SMTP exit program is called for data coming from
both inbound TCP/IP connections and outbound JES connections. For the JES
connection, SAF token information is requested.
EXITDIRECTION BOTH SAFYES

Usage notes

If the EXITDIRECTION statement is coded to support BOTH, recompile the SMTP
exit program to include version 2 of the EZBZSMTP macro. Also, the SMTP exit
program needs to handle the JES connection appropriately. For more information
about exit programming, see “Steps for using the SMTP server exits” on page 1319.

FINISHOPEN statement

Use the FINISHOPEN statement to specify the number of seconds that SMTP waits
while trying to establish a connection to a foreign site. After the specified number
of seconds, SMTP ends the connection.

Syntax

��
FINISHOPEN 120

FINISHOPEN seconds
��

Parameters

seconds
An integer in the range 1 - 86 400 indicating the number of seconds to wait for
a connection to open. The default FINISHOPEN timeout is 120 seconds.

Examples

Set the timeout period to 90 seconds:
FINISHOPEN 90

GATEWAY statement
Use the GATEWAY statement to have SMTP operate as a mail gateway between
TCP network sites and NJE network sites (if the host system is connected to both a
TCP network and an NJE network).

Results:

Chapter 29. SMTP server 1333

v If you include the GATEWAY statement in the SMTP configuration data set,
SMTP accepts mail addressed to users on NJE hosts defined in the data set
pointed to by the //SMTPNJE DD statement in the SMTP cataloged procedure.

v If you do not specify GATEWAY, SMTP rejects all mail that arrives from the NJE
network or host.

Syntax

�� GATEWAY ��

Parameters

There are no parameters for this statement.

Examples

You can configure the SMTP server with the GATEWAY statement to run as a mail
gateway between TCP network users and users located on an NJE network
attached to the local host. Figure 55 illustrates this configuration.

In Figure 55:
v Host A is the local MVS host, running both TCP/IP and NJE.
v Hosts B and C are attached to host A through an NJE network.
v Hosts D and E are attached to host A through a TCP network.

Users on hosts A, B, and C can send mail or data sets to users on TCP hosts D and
E using SMTPNOTE.

Usage notes

If you do not include the GATEWAY statement in the SMTP configuration data set,
SMTP rejects all mail that arrives from NJE.

Related topics
v “LOCALCLASS statement” on page 1339
v “LOCALFORMAT statement” on page 1339
v “NJECLASS statement” on page 1346
v “NJEDOMAIN statement” on page 1346
v “NJEFORMAT statement” on page 1347

TCP/IP NetworkA

B D

EC

NJE

NJE

Figure 55. Example of a TCP-to-NJE mail gateway

1334 z/OS V2R1.0 Communications Server: IP Configuration Reference

INACTIVE statement

Use the INACTIVE statement to specify the number of seconds of inactivity before
SMTP considers a connection to be inactive and closes the connection.

Syntax

��
INACTIVE 180

INACTIVE seconds
��

Parameters

seconds
An integer in the range 1 - 86 400 that specifies the number of seconds after
which SMTP considers the connection to be inactive. The default inactivity
timeout is 180 seconds.

Examples

Use the following code to set the seconds of allowable inactivity to 90:
INACTIVE 90

INBOUNDOPENLIMIT statement

Use the INBOUNDOPENLIMIT statement to specify the maximum number of
simultaneous TCP connections over which SMTP server receives mail. This number
can be in the range 2 - 256 connections. The default, if this statement is not valid,
is 256.

Guideline: This statement is optional. If it is not coded, the maximum number of
TCP connections used by SMTP is limited to 256 (because it uses the PASCAL
API).

Syntax

�� INBOUNDOPENLIMIT number ��

Parameters

number
A value in the range 2 - 256 can be coded to reflect the maximum number of
simultaneous TCP connections used by the SMTP server for inbound mail.

Restriction:A value of 0 can be used and is a special case. If 0 is coded, then
the SMTP server does not open a listening connection. Also, if 0 is coded, you
cannot use AUTOLOG to monitor and restart the SMTP started procedure,
because there is no listening connection to monitor. If this number is coded
incorrectly, the default value of 256 is used.

Examples

Use the following code to set the maximum number of simultaneous TCP
connections that are used by the SMTP server to 10:

Chapter 29. SMTP server 1335

INBOUNDOPENLIMIT 10

Usage notes

If 0 is coded, you cannot use AUTOLOG to monitor and restart SMTP.

Related topics

“OUTBOUNDOPENLIMIT statement” on page 1351

IPMAILERADDRESS statement

Use the IPMAILERADDRESS statement to reroute mail that was sent to an
unknown host and direct it to an SMTP server on an IP network rather than to a
user on a local or NJE network. The specified server should have network
connectivity and be able to perform name resolution.

Results: The way IPMAILERADDRESS works depends on whether the
RESOLVERUSAGE statement is coded.
v If RESOLVERUSAGE is Yes, then this statement only takes effect if the host

name cannot be resolved (unknown host) using a domain name server specified
in the hlq.TCPIP.DATA file or using search of the local hosts file.

v If RESOLVERUSAGE is No, all non-local mail destined for the IP network is
forwarded to this IP address. Non-local mail is mail that has to go through an
MTA (Mail Transfer Agent) to go to another host.

Syntax

�� IPMAILERADDRESS ip_address ��

Parameters

ip_address
The dotted decimal address of an SMTP server on an IP network.

Examples

In the following example, 7.89.250.72 is the address of the SMTP server on an IP
network:
IPMAILERADDRESS 7.89.250.72

Usage notes

IPMAILERADDRESS, IPMAILERNAME and MAILER... UNKNOWN provide
similar functions and cannot be used together.

Related topics
v “IPMAILERNAME statement” on page 1337
v See NSINTERADDR statement in the hlq.TCPIP.DATA file “MAILER statement”

on page 1340. Also see z/OS Communications Server: IP Configuration Guide
for information about sending messages to SMTP users and users on an IP
network.

v z/OS Communications Server: IP Configuration Guide

1336 z/OS V2R1.0 Communications Server: IP Configuration Reference

v “RESOLVERUSAGE statement” on page 1355

IPMAILERNAME statement

Use the IPMAILERNAME statement to control whether this SMTP should forward
non-local mail to an SMTP server on an IP network. The specified server should
have network connectivity and be able to perform name resolution.

The SMTP code resolves the specified mailer name by doing an A query to the
name servers (DNSs) configured in the TCPDATA data set (see “NSINTERADDR
statement” on page 381) used by the SMTP started procedure. If no DNSs are
configured, SMTP uses the local host tables to resolve the specified mailer name.
SMTP does its own name resolution, normally using a UDP connection. It sends
out the question (in this case an A query for the mailer's name) and interprets the
name server's response. If the specified mailer name cannot be resolved, the mail is
considered undeliverable.

Rule: For IPMAILERNAME, SMTP always uses a fully-qualified name for
communication with the name server or for host table look-ups. Message EZA5645I
in the SMTP output file, displays the fully-qualified name being used by SMTP.

For performance reasons, the location of the DNS is important to ensure timely
responses to SMTP queries. The SMTP started procedure performs name resolution
on every recipient even though it asks the same question to the name server. This
allows the name server to change its response, and SMTP acts accordingly.
However, after name resolution for the recipient is completed, SMTP uses the IP
addresses associated with the recipient to send the mail.

The IPMAILERNAME statement has no defaults.

Requirement:You must specify a host name or a fully-qualified name for the SMTP
mailer and an instruction indicating which mail to forward (ALL or UNKNOWN).

Syntax

�� IPMAILERNAME mailername ALL
UNKNOWN

��

Parameters

mailername
This represents the host name or the fully-qualified name (host.domain) of the
IP mailer to which SMTP forwards the mail. If the host name is used, then
SMTP appends the domain information collected from the TCPDATA data set
(see “DOMAINORIGIN statement” on page 374). If the fully-qualified name is
used, the name is not modified.

Tip: A period (.) at the end of the name is considered a configuration error.

SMTP does not check the validity of this name with regards to invalid
characters or misspellings. The specified mailername is limited to 80 characters;
this meets the SMTPCONFG data set limit.

ALL
Indicates that SMTP should forward all non-local mail destined for the IP
network to the specified IP mailer name.

Chapter 29. SMTP server 1337

UNKNOWN
Indicates that SMTP should forward only non-local mail destined for recipients
on an unknown host.

Examples

Use the following code to cause SMTP to forward non-local mail destined for the
IP network to your.mailer.name:
IPMAILERNAME your.mailer.name ALL

Long mailer names can be coded as follows:
IPMAILERNAME
this.is.a.very.long.mailer.name...
ALL

Usage notes
v IPMAILERADDRESS and MAILER... UNKNOWN provide similar functions and

cannot be used when IPMAILERNAME has been coded.
v If RESOLVERUSAGE statement is coded it must be coded as RESOLVERUSAGE

YES because this function requires the use of the DNS or local host tables.

Related topics
v “IPMAILERADDRESS statement” on page 1336
v “MAILER statement” on page 1340
v “RESOLVERUSAGE statement” on page 1355

LISTENONADDRESS statement

Use the LISTENONADDRESS statement to specify which IP address receives and
sends mail on a multihomed system.

Syntax

�� LISTENONADDRESS ip_address ��

Parameters

ip_address
The dotted decimal address of an SMTP server on an IP network.

Examples

In the following example, 7.89.250.72 is the address of the SMTP server on an IP
network that is the home address for mail:
LISTENONADDRESS 7.89.250.72

Related topics

“MAILER statement” on page 1340

1338 z/OS V2R1.0 Communications Server: IP Configuration Reference

LOCALCLASS statement

Use the LOCALCLASS statement to specify the spool class for local mail delivered
by SMTP.

Syntax

��
LOCALCLASS B

LOCALCLASS class
��

Parameters

class
The default is B (normally a punch class).

Examples

Use the following code to set the spool class for local mail delivered by SMTP:
LOCALCLASS B

Usage notes

The value used in this statement is site dependent. Before setting this class, check
with your system administrator for the site-dependent information.

Guideline: Use the punch class of your system.

Related topics
v “GATEWAY statement” on page 1333
v “LOCALFORMAT statement”
v “NJECLASS statement” on page 1346
v “NJEDOMAIN statement” on page 1346
v “NJEFORMAT statement” on page 1347

LOCALFORMAT statement

Use the LOCALFORMAT statement to specify the spool data set format for mail
delivered to users on the local host.

Syntax

��
LOCALFORMAT NETDATA

LOCALFORMAT PUNCH
��

Parameters

NETDATA
For NETDATA format, records can be longer than 80 characters and arrive as
message-type records. The data set name is the first eight characters of the
sender’s user ID.

NETDATA is the default format.

Chapter 29. SMTP server 1339

PUNCH
For PUNCH format, records are folded up to 80 characters in length or less.
The spool data set is in NATIVE PUNCH format. The data set name is the first
eight characters of the sender’s user ID.

Examples

Use the following code to set the spool format for local mail delivered by SMTP:
LOCALFORMAT NETDATA

Usage notes

Use the default value of NETDATA, because the TSO RECEIVE command indicates
that it has a file that is not valid with PUNCH format output.

Related topics
v “GATEWAY statement” on page 1333
v “LOCALCLASS statement” on page 1339
v “NJECLASS statement” on page 1346
v “NJEDOMAIN statement” on page 1346
v “NJEFORMAT statement” on page 1347

LOG statement

Use the LOG statement to log all SMTP traffic. The origin, sender, and recipients of
each piece of mail are written to a log.

Syntax

�� LOG ��

Parameters

There are no parameters for this statement.

Usage notes

The log information goes to the data set specified on the //LOGFILE DD
statement of the SMTP cataloged procedure. If no //LOGFILE DD statement is
included in the cataloged procedure, information is not logged.

If neither LOG or NOLOG is specified in the SMTP configuration data set, the
default is LOG.

Related topics

“NOLOG statement” on page 1349

MAILER statement

Use the MAILER statement to specify the address of a batch SMTP server to which
SMTP delivers mail destined for various classes of recipients.

1340 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

�� MAILER user_id
user_id@node_id

PUNCH
NETDATA

SOURCEROUTES
NOSOURCEROUTES

LOCAL
NOLOCAL

�

� NJE
NONJE

UNKNOWN
NOUNKNOWN

��

Parameters

user_id
Specifies the user ID of the local MAILER server.

user_id@node_id
Specifies the NJE address of the MAILER server.

PUNCH
Specifies that the MAILER server can only accept punch format spool data
sets. Batch SMTP header records longer than 80 characters are split and an
EBCDIC new-line character (hex 15) is placed in column 80 to indicate that the
record is continued. Records within the body of the mail that are longer than
80 characters are split across multiple punch records.

NETDATA
Specifies that the MAILER server accepts NETDATA format spool data sets.
The NETDATA protocol automatically handles records longer than 80
characters.

SOURCEROUTES
Specifies that the MAILER server accepts BSMTP header addresses with source
routes.

A source route contains routing information as well as the mailbox
information. The following code is an example of a source route address:
@host1,@host2:userid@host3.

The mailbox information in this example is userid@host3.

NOSOURCEROUTES
Specifies that the MAILER server does not accept source routes in the BSMTP
header addresses.

Specifying NOSOURCEROUTES indicates that the address strings must be
mailbox information only.

LOCAL
Specifies that mail for local recipients is spooled to the MAILER server.

NOLOCAL
Specifies that mail for local recipients is spooled directly to the recipients.

NJE
Specifies that mail for recipients on the NJE network is spooled to the MAILER
server.

NONJE
Specifies that mail for recipients on the NJE network is spooled directly to the
recipients.

Chapter 29. SMTP server 1341

UNKNOWN
Specifies that mail for recipients on an unknown host is spooled to the
MAILER server. This option is affected if the RESOLVERUSAGE statement is
coded as No.

NOUNKNOWN
Specifies that mail for recipients on unknown hosts is returned to the sender as
undeliverable.

Examples

Use the MAILER option if you run with the Columbia Mailer.
MAILER MUSER@MNODE PUNCH NOSOURCEROUTES LOCAL NJE UNKNOWN

Usage notes
v The MAILER server must either have a local address or be on the associated

NJE network. The MAILER statement has no defaults; you must specify the
parameters you want to use.

v IPMAILERADDRESS and MAILER... UNKNOWN provide the same function
and should not be used together.

v All MAILER statement parameters must be specified or an error occurs and
SMTP terminates; eliminating a parameter causes SMTP configuration to read
the next statement in SMTPCONF as part of the mailer statement.

Related topics
v “IPMAILERADDRESS statement” on page 1336
v “RESOLVERUSAGE statement” on page 1355

MAILFILEDSPREFIX statement

Use the MAILFILEDSPREFIX statement to specify the prefix that is added to the
SMTP mail data sets. If multiple MVS systems share the same volume for SMTP
mail data sets, specify a unique prefix qualifier for each SMTP server on
MAILFILEDSPREFIX.

Data sets created with this prefix contain mail that is in the process of being
received or delivered. Each piece of mail queued for delivery occupies a minimum
of 2 tracks.

Syntax

�� MAILFILEDSPREFIX prefix ��

Parameters

prefix
The prefix to add to the mail data sets. The prefix can be up to 20 characters in
length, and a trailing period does not specified. The default is the name of the
job running SMTP.

Examples

Set the prefix name for where incoming mail is stored while it is being queued for
delivery:

1342 z/OS V2R1.0 Communications Server: IP Configuration Reference

MAILFILEDSPREFIX SMTP

Usage notes

All data sets are cataloged.

Related topics
v “MAILFILEUNIT statement”
v “MAILFILEVOLUME statement”

MAILFILEUNIT statement

Use the MAILFILEUNIT statement to specify the unit where the newly created
SMTP mail data sets reside.

Syntax

��
MAILFILEUNIT SYSDA

MAILFILEUNIT unit_name
��

Parameters

unit_name
The unit name where the data sets reside. The default is SYSDA.

Examples

Use the following code to set the unit name for where incoming mail is stored
while it is being queued for delivery:
MAILFILEUNIT SYSDA

Related topics
v “MAILFILEDSPREFIX statement” on page 1342
v “MAILFILEVOLUME statement”

MAILFILEVOLUME statement

Use the MAILFILEVOLUME statement to specify the volume where newly
allocated SMTP mail data sets reside.

Syntax

�� MAILFILEVOLUME volume_name ��

Parameters

volume_name
The volume name where the data sets reside. There is no default.

Chapter 29. SMTP server 1343

Examples

Set the volume name for where incoming mail is stored while it is being queued
for delivery:
MAILFILEVOLUME volume6

Usage notes
v The SMTP volume selected must be able to accommodate the largest piece of

mail (see “MAXMAILBYTES statement”). In addition, the VTOC indices need to
be able to accommodate the number of mail pieces being processed.

v If the volume name is not specified, SMTP allocates a storage volume.
v If your system does not have storage volumes, you must specify a volume

name.

Related topics
v “MAILFILEDSPREFIX statement” on page 1342
v “MAILFILEUNIT statement” on page 1343
v “MAXMAILBYTES statement”

MAXMAILBYTES statement

Use the MAXMAILBYTES statement to specify the maximum size in bytes of mail
that is accepted over a TCP connection. Reply code of '552 Mail file too large' is
sent to the remote SMTP client if the number of mail bytes arriving exceeds this
value. This value is also used to determine the space allocation requirements for
the data sets which hold the mail during processing (see Usage notes in this topic).
These data sets names are &mailfiledsprefix.*..NOTE and occupy a minimum of 2
tracks per data set.

Syntax

��
MAXMAILBYTES 524288

MAXMAILBYTES bytes
��

Parameters

bytes
The maximum number of bytes for incoming or outgoing mail. Mail arriving
that is larger than this size, over a TCP connection, is rejected. The limits for
this statement are 1 - 2 147 483 647. The default size is 524 288 (512KB) bytes.

Examples

Set the maximum size for mail to 32KB:
MAXMAILBYTES 32768

Usage notes
v Note that the spool volume must be able to accommodate the number of bytes

set in MAXMAILBYTES.
v The value used for bytes in the MAXMAILBYTES statement determines the space

allocations for data sets allocated to hold the mail while it is being processed

1344 z/OS V2R1.0 Communications Server: IP Configuration Reference

and is waiting for delivery. Be careful not to use too large a value, or the data
sets allocated are too large. This can vary with configuration of DF/SMS on your
system. However, in general, the allocation used for the NOTE data sets is
equivalent to specifying SPACE=(6233,(aaaaa,bbbb)), where
aaaa=round((MAXMAILBYTES/4000)+1) and bbbb=round(aaaa/2).

Related topics
v “CHECKSPOOLSIZE statement” on page 1327
v “MAILFILEDSPREFIX statement” on page 1342
v “MAILFILEVOLUME statement” on page 1343

MAXMSGSENT statement

Use the MAXMSGSENT statement to control the number of messages to be sent
out on a single TCP/IP connection by the SMTP client. This statement is optional;
if it is not coded, it defaults to the value of 0, which indicates that no limit is set.

If the statement is coded, the SMTP client closes the current connection when the
maximum number of messages has been sent. If there is more mail to send, then
the mail is returned to the active queue where eventually a new connection is
opened. This statement effects performance; the fewer messages that can be sent,
the slower the mail processing.

Guideline: The limit that is set is used for all outbound TCP/IP connections. Also,
if the DEBUG statement is enabled, the SYSDEBUG log indicates when a
connection is closed due to the maximum number of messages sent.

This statement does not affect the number of messages processed on the batch
connection (257).

Syntax

��
MAXMSGSENT 0

MAXMSGSENT nn
��

Parameters

nn A decimal number in the range 0 - 2 147 483 647 (MAXINT). Coding the value
0 indicates that there is no limit on the number of messages to send.

A number greater than 2 147 483 647 fails with the error message EZA5649E
Invalid MaxMsgSent value: <nn>. This occurs because the value is too large to
be stored in a signed 32-bit integer.

The default MAXMSGSENT value is 0, which indicates no limit.

Examples

Set the maximum number of messages to send on a single TCP/IP connection to
1000:
MAXMSGSENT 1000

Chapter 29. SMTP server 1345

Usage notes

Certain vendor servers might limit the number of messages that they can receive.
Setting this parameter to match the vendor server can assist in avoiding
undeliverable mail.

NJECLASS statement

Use the NJECLASS statement to specify the spool class for mail delivered by SMTP
to the NJE network.

Syntax

��
NJECLASS B

NJECLASS class
��

Parameters

class
The spool class for mail delivered by SMTP. The default is B (which is
normally a punch class).

Examples

Set the spool class for mail delivered to B:
NJECLASS B

Usage notes

This statement is site-dependent. Before setting the class, check with your JES
system administrator for site-dependent information. The preferred setting is the
punch class of your system.

Related topics
v “GATEWAY statement” on page 1333
v “LOCALCLASS statement” on page 1339
v “LOCALFORMAT statement” on page 1339
v “NJEDOMAIN statement”
v “NJEFORMAT statement” on page 1347

NJEDOMAIN statement

Use the NJEDOMAIN statement to specify the domain name of the NJE network
when SMTP is running as a mail gateway for other NJE or RSCS hosts.

Guideline: This is an optional statement and is not needed in all gateway
situations.

The term NJEDOMAIN is a unique concept designed for z/OS SMTP that can act
as a mail gateway between the NJE and the TCP/IP networks. Basically, the
NJEDOMAIN is just a name so that mail addressing strings can have the form:
NJEhost.NJEdomain. When the domain portion of the mail addressing string

1346 z/OS V2R1.0 Communications Server: IP Configuration Reference

matches the NJEDOMAIN name, SMTP treats the associated host as an NJE host;
therefore, SMTP does not try to resolve the host's name to an IP address. SMTP
checks the NJE host against a list of NJE hosts contained in the data set associated
with the DD card SMTPNJE in SMTP started task JCL. If this host is not in the list
of NJE hosts, it is considered an unknown host.

Guideline: The NJEDOMAIN name can contain a dot.

The NJE domain name is also used in the default set of rewrite rules for the RFC
822 header fields of mail passing from NJE network senders to TCP/IP network or
NJE network recipients. For more information about the RFC 822 rewrite rules and
whether they are enabled, see z/OS Communications Server: IP Configuration
Guide and see “REWRITE822HEADER statement” on page 1358.

Syntax

��
NJEDOMAIN njedomain_name

��

Parameters

njedomain_name
The NJE domain name. The default is a null string.

Examples

Use the following code to set the NJE domain to BITNET:
NJEDOMAIN BITNET

Usage notes

SMTP considers the NJE domain name BITNET to be a synonym for the European
Academic Research Network (EARN and EARNET). This statement can affect the
local processing of mail regardless of whether the GATEWAY statement is coded or
not.

Related topics
v “GATEWAY statement” on page 1333
v “LOCALCLASS statement” on page 1339
v “LOCALFORMAT statement” on page 1339
v “NJECLASS statement” on page 1346
v “NJEFORMAT statement”
v “REWRITE822HEADER statement” on page 1358

NJEFORMAT statement

Use the NJEFORMAT statement to specify the spool data set format for mail
delivered to recipients on the NJE network.

Syntax

Chapter 29. SMTP server 1347

��
NJEFORMAT NETDATA

NJEFORMAT PUNCH
NETDATA

��

Parameters

PUNCH
Specifies that records are folded to 80 characters in length or fewer.

NETDATA
Specifies that records can be longer than 80 characters and that they arrive as
MESSAGE-type records. The default format is NETDATA.

Examples

Use the following code to set the format in which mail is sent to NJE recipients to
PUNCH:
NJEFORMAT PUNCH

Usage notes

This statement is valid only in GATEWAY mode.

Related topics
v “GATEWAY statement” on page 1333
v “LOCALCLASS statement” on page 1339
v “LOCALFORMAT statement” on page 1339
v “NJECLASS statement” on page 1346
v “NJEDOMAIN statement” on page 1346

NJENODENAME statement

Use the NJENODENAME statement to specify the NJE node name of the local JES2
or JES3 node for SMTP. This statement overrides the value in the IEFSSN member
and is an alternative to forcing the users to specify their real NJE node name in the
IEFSSN member. It also allows users to easily correct the name for SMTP's use, in
case it was spelled wrong. Previously, users were required re-IPL to change the
member because it was the only place from which SMTP would get the NJE node
name. This value is not used in the place of the IEFSSN value as a selector in
TCPIP.DATA.

Guideline: NJENODENAME is location sensitive.

Syntax

�� NJENODENAME njenode_name ��

Parameters

njenode_name
The NJE node name of the local JES2 or JES3 node. The default is a null string.

1348 z/OS V2R1.0 Communications Server: IP Configuration Reference

Examples

Use the following code to set the NJE node name to ALMADEN:
NJENODENAME ALMADEN

Usage notes

The NJENODENAME statement, if specified, must precede any of the following
statements in the SMTP Configuration Data Set:
v ALTNJEDOMAIN
v MAILER
v NJEDOMAIN
v SMSGAUTHLIST

Related topics
v “NJECLASS statement” on page 1346
v “NJEDOMAIN statement” on page 1346
v “NJEFORMAT statement” on page 1347

NOLOG statement

Use the NOLOG statement to turn off logging information that indicates that mail
has been received and delivered.

Syntax

�� NOLOG ��

Parameters

There are no parameters for this statement.

Usage notes

If neither LOG or NOLOG is specified in the SMTP configuration data set, the
default is LOG.

Related topics

“LOG statement” on page 1340

NOSOURCEROUTE statement

Use the NOSOURCEROUTE statement to control whether this SMTP generates and
passes a source routing string for the originator address (MAILCMD) or for the
recipient address (RCPTCMD). Setting the parameter to ENABLED causes no
source routing addresses to be generated for both the MAIL FROM: and RCPT TO:
SMTP commands. A source route is a path that contains a source routing list of
hosts and a destination mailbox. The list of hosts is the route information. It
describes how the mail is to arrive at its final destination. The mail is passed from
one host in the list to the next until it is delivered to the intended recipient.

Chapter 29. SMTP server 1349

Source routing addressing string has the following format:
@host1,@host2,@host3:myuserid@myhost

where myuserid@myhost is considered the mailbox information.

NOSOURCEROUTE DISABLED is the default and indicates that source route on
the MAIL FROM: and RCPT TO: commands are honored.

Syntax

�� NOSOURCEROUTE
DISABLED

MAILCMD
RCPTCMD
ENABLED

��

Parameters

DISABLED
Source routing address strings are generated for both the MAIL FROM: and
the RCPT TO: SMTP commands based on the source routing rules documented
in RFC 821. This is the default if nothing is specified, or if what is specified is
not a valid parameter.

MAILCMD
Source routing address strings are not generated for the MAIL FROM: SMTP
command. This means that the return path only contains the mailbox
information. However, the RCPT TO: SMTP command maintains source
routing addressing based on the source routing rules documented in RFC 821.

RCPTCMD
Source routing address strings are not generated for the RCPT TO: SMTP
command. This means that the send path only contains the mailbox
information. However, the MAIL FROM: SMTP command maintains source
routing addressing based on the source routing rules documented in RFC 821.

ENABLED
Source routing address strings are not generated for both the MAIL FROM: and
the RCPT TO: SMTP commands. Only the mailbox information is provided.

Examples

To stop SMTP from adding its host identifier in front of the mailbox information
about the return path passed on the MAIL FROM: SMTP command, code the
following statement:
NOSOURCEROUTE MAILCMD

Usage notes
v The removal of these source routes might make the return path unusable. This is

a potential problem when the originating host is not directly accessible to any
mail transfer agent that must generate error mail to the originating host.

v The removal of these source routes might make understanding of which route is
used to deliver the mail difficult for debugging situations. However, if the
delivered piece of mail can be viewed, then receive lines can be used instead.

1350 z/OS V2R1.0 Communications Server: IP Configuration Reference

v Only one NOSOURCEROUTE statement should be coded. If there is more than
one NOSOURCEROUTE statement in the SMTPCONF data set, then only the
last statement is used.

OUTBOUNDOPENLIMIT statement

Use the OUTBOUNDOPENLIMIT statement to specify a limit on the maximum
number of simultaneous TCP connections over which SMTP can actively deliver
mail. The OUTBOUNDOPENLIMIT statement should only be used if there are
limited TCP resources on the system and SMTP is using too many of these
resources.

SMTP is a PASCAL application and is limited to a total of 256 simultaneous
connections due to the PASCAL API.

Syntax

�� OUTBOUNDOPENLIMIT number_of_connections ��

Parameters

number_of_connections
The maximum number of simultaneous connections. This number must be in
the range 1 - 256.

Examples

Use the following code to set the maximum number of simultaneous TCP
connections to which mail is sent to 100:
OUTBOUNDOPENLIMIT 100

PORT statement

Use the PORT statement to control the local port used by the SMTP server for
receiving incoming mail. This statement is optional; if this statement is not coded,
it defaults to the value 25, which is the well known port for mail. The port number
25 is typically reserved (in hlq.PROFILE.TCPIP) for the SMTP server to accept
incoming mail request. If another port number is selected for the SMTP server,
then update the hlq.PROFILE.TCPIP file accordingly.

Tip: Avoid using a number in the well-known ports range (1 - 1023), which can be
reserved for other servers.

If the statement is coded, the SMTP server uses this port value to open a listening
port for incoming mail. On the z/OS platform, the corresponding configuration
statement that needs to be modified for the SMTP client is the REMOTEPORT
statement in the SMTP configuration file on the system from where the SMTP
client is sending the mail.

Syntax

��
PORT 25

PORT port_num
��

Chapter 29. SMTP server 1351

Parameters

port_num
An integer in the range 1 - 65 535 that specifies the port number to which
SMTP listens. This parameter is limited to ten characters.

Requirement: The port_num value must be in the range 1 - 65 534. If you
specify a value outside this range, SMTP is not started.

Examples

Use the following code to set the port for incoming mail to port 2 000:
PORT 2000

Usage notes
v You can specify a port number only if it has not already been reserved for some

other server in hlq.PROFILE.TCPIP.
v This statement is for system testing only.

Related topics
v “REMOTEPORT statement” on page 1354
v SHAREPORT parameter description in “PORT statement” on page 257

POSTMASTER statement

Use the POSTMASTER statement to specify the user ID to which SMTP delivers all
mail addressed to POSTMASTER.

Syntax

��
POSTMASTER TCPMAINT

POSTMASTER user_id
user_id@node_id

��

Parameters

user_id
The user ID on the local system to which mail addressed to POSTMASTER
should be delivered. The default ID is TCPMAINT.

user_id@node_id
The NJE or SMTP address to which mail addressed to POSTMASTER should
be delivered.

Examples

Use the following code to set the user ID to receive the POSTMASTER mail to
MAILGUY at POSTOFC:
POSTMASTER MAILGUY@POSTOFC
a.b.c@company.com
mail.guy@postofc.com

1352 z/OS V2R1.0 Communications Server: IP Configuration Reference

Usage notes
v To specify multiple recipients to receive mail addressed to POSTMASTER, code

a separate POSTMASTER statement for each recipient. There is no limit on the
number of POSTMASTER statements that you can code.

v In SECURE mode, you can only specify the POSTMASTER statement once for a
local user ID as the single recipient of mail addressed to POSTMASTER.

Related topics

“SECURE statement” on page 1359

RCPTREPLY452 statement

Use the RCPTREPLY452 statement to cause the SMTP client to interpret the 452
reply code being received on the RCPT command as 'too many recipients'. Note
that the SMTP client continues to handle the 552 reply code as 'too many
recipients' also.

If this statement is not present, the SMTP client interprets the 452 reply code as
'insufficient system storage', and the mail processing is halted.

Syntax

�� RCPTREPLY452 ��

Parameters

None

Examples

Use the following code to change the SMTP client's interpretation of the 452 reply
code received on a RCPT command:
RCPTREPLY452

RCPTRESPONSEDELAY statement

Use the RCPTRESPONSEDELAY statement to specify how long the SMTP server
delays responding to the RCPT commands from the sender SMTP, while it is
waiting for domain name resolution.

Syntax

��
RCPTRESPONSEDELAY 60

RCPTRESPONSEDELAY seconds
��

Parameters

seconds
A number in the range 0 - 86 400 specifying the number of seconds SMTP
waits before responding to the RCPT TO command. The default is 60 seconds.

Chapter 29. SMTP server 1353

Examples

Use the following code to set the RCPT TO: response time to 90 seconds:
RCPTRESPONSEDELAY 90

Usage notes

If resolution does not complete before the specified period, the SMTP server
assumes name resolution is successful and does the following tasks:
v Sends the following message to the sender SMTP: 250 ok.
v Queues the recipient address for asynchronous resolution.

If SMTP later determines that the recipient address cannot be resolved, the mail is
returned to the sender.

Related topics

“RESOLVERRETRYINT statement” on page 1355

REMOTEPORT statement

Use the REMOTEPORT statement to control which remote port number the SMTP
client uses for sending outbound mail. This statement is optional; if it is not coded,
it defaults to the value 25, which is the well known port for mail.

If you code this statement, then the SMTP client uses this port value to connect to
the remote SMTP server. If no SMTP server is listening on that port, then mail
cannot be delivered. On the z/OS system, ensure that the value configured for the
PORT statement in the configuration file for the SMTP server is the same as the
value configured on the REMOTEPORT statement in the configuration file for the
SMTP client.

You can use this statement for system testing of the SMTP function.

Syntax

��
REMOTEPORT 25

REMOTEPORT nn
��

Parameters

nn The nn value is a decimal number. This parameter must be within the range 1-
65 534 and is limited to ten characters.

Requirement: If the REMOTEPORT statement is coded, it must be within the
range 1- 65 534. No default taken if the statement is coded incorrectly, and
SMTP does not start.

Examples

Use the following code to set the remote port for outbound mail sent by the SMTP
client to port 2000:
REMOTEPORT 2000

1354 z/OS V2R1.0 Communications Server: IP Configuration Reference

Related topics

“PORT statement” on page 1351

RESOLVERRETRYINT statement

Use the RESOLVERRETRYINT statement to specify the number of minutes SMTP
waits between attempts to resolve domain names.

Syntax

��
RESOLVERRETRYINT 20

RESOLVERRETRYINT minutes
��

Parameters

minutes
A number in the range 1 - 1 439 specifying the number of minutes between
each attempt to resolve a domain name if the name server is causing delays.
The default is to try resolution again every 20 minutes.

Examples

Use the following code to set the waiting time between attempts to resolve domain
names to 30 minutes:
RESOLVERRETRYINT 30

RESOLVERUSAGE statement

Use the RESOLVERUSAGE statement to indicate whether SMTP should attempt to
resolve non-local domain names.

Syntax

��
RESOLVERUSAGE YES

RESOLVERUSAGE NO
��

Parameters

YES
Specifies that SMTP should attempt normal domain name resolution. This is
the default.

NO Specifies that SMTP should not attempt to resolve any non-local domain names
using the DNS or local host tables. Any mail received by SMTP that is
addressed to non-local domain names is considered unknown.

Examples

In the following example, the IPMAILERADDRESS statement is being used in
conjunction with the RESOLVERUSAGE statement to forward all non-local mail to
IP address 1.2.3.4, where another SMTP server resides:

Chapter 29. SMTP server 1355

IPMAILERADDRESS 1.2.3.4
RESOLVERUSAGE NO

Usage notes
v If IPMAILERNAME and RESOLVERUSAGE statements are coded,

RESOLVERUSAGE YES must be used.
v This statement should only be specified when you want to configure SMTP to

send all non-local mail to a specified mail server, or mail relay. You might need
to do this if you have installed a firewall. As a result, if you specify NO on this
statement, you should specify a target mail server using the
IPMAILERADDRESS or MAILER...UNKNOWN statement. Non-local mail is
mail that has to go through an MTA (Mail Transfer Agent) to go to another host.
Restriction: You can only specify one of these statements.

v If you specify RESOLVERUSAGE NO and do not specify an
IPMAILERADDRESS or MAILER ... UNKNOWN statement, a warning message
is issued during SMTP initialization, and all non-local mail is returned to the
sender as undeliverable.

Related topics
v “IPMAILERADDRESS statement” on page 1336
v “IPMAILERNAME statement” on page 1337
v “MAILER statement” on page 1340

RESTRICT statement

Use the RESTRICT statement to specify addresses of users who cannot use SMTP
services. This includes sending and receiving mail.

Syntax

�� �RESTRICT PURGE userid ENDRESTRICT
RETURN
TRANSFERTO

��

Parameters

PURGE
Specifies that the spool data set is to be purged.

RETURN
Specifies that the spool data set is to be returned to the originator.

TRANSFERTO
Specifies that the spool data set is to be forwarded to the specified userid.

userid
Specifies the address of the user.

Examples

In the following example, mail from restricted users is returned, no mail is
accepted from KNIGHT at 2 different nodes, and no mail is accepted from anyone
on the host CASTLE:

1356 z/OS V2R1.0 Communications Server: IP Configuration Reference

RESTRICT RETURN
KNIGHT@CAMPTENT
KNIGHT@TOURNMNT
*@CASTLE

ENDRESTRICT

Usage notes
v You can use a wildcard character (*) in the user identifier string, or the

host/domain identifier string, or both. These two strings are separated by the @
character (for example, userid@hostid). It can be used to replace the entire string.
For example, *@castle restricts all the users at castle. You can use it to replace a
portion of the string when it is appended to the end of the string. For example,
mary*@castle restricts all the user IDs beginning with the character string mary
at castle. However, the wildcard character cannot be used as a prefix to a string
or embedded within the string.

v Specifying *@* causes no mail to be sent or accepted, and results in
undeliverable mail messages to be issued.

v The ENDRESTRICT statement ends the RESTRICT statement.
v If SMTP receives a spool data set from a restricted user, the spool data set is as

follows:
– Purged, if PURGE is specified
– Returned to the originator, if RETURN is specified
– Forwarded to a specific user ID, if TRANSFERTO is specified
In addition, SMTP rejects any MAIL FROM or RCPT TO commands whose
destinations are restricted users.

v The TCPIP and NJE address must be included in the RESTRICT statement list in
order to restrict a user from sending and receiving mail. SMTP rejects only
addresses that are in the restrict list; it does not check for aliases. For example,
you can restrict user@host1. If host2 is an alias for host1, mail for user@host2 is
not rejected unless user@host2 is also in the restrict list.

v When the RESTRICT statement is used, incoming mail must be in NETDATA
format.

v The RESTRICT statement cannot be used if the SMTP server is running as a
secure gateway. Either remove or comment out the RESTRICT statements from
the SMTP configuration data set.

v The RESTRICT statement cannot be used in combination with the SECURE
statement.

Related topics
v “LOCALFORMAT statement” on page 1339
v “MAILER statement” on page 1340
v “NJEFORMAT statement” on page 1347
v “SECURE statement” on page 1359

RETRYAGE statement

Use the RETRYAGE statement to specify the number of days after which SMTP
returns mail as undeliverable. SMTP tries to deliver mail to an inactive site. After
the number of days specified on this statement, SMTP returns the mail to the
sender with a note listing any recipients to which the mail could not be delivered.

Chapter 29. SMTP server 1357

Syntax

��
RETRYAGE 3

RETRYAGE days
��

Parameters

days
A number in the range 1 - 365 specifying the number of days to try to deliver
the mail. The default is for SMTP to try to deliver a piece of mail for 3 days
before returning it.

Examples

Use the following code to continue trying to deliver mail for 2 days:
RETRYAGE 2

Related topics

“WARNINGAGE statement” on page 1364

RETRYINT statement

Use the RETRYINT statement to specify the number of minutes SMTP should wait
between attempts to deliver mail to an inactive host.

Syntax

��
RETRYINT 20

RETRYINT minutes
��

Parameters

minutes
A number in the range 1 - 1 439 specifying the number of minutes between
each attempt to deliver the mail. The default is to try to establish a connection
to these sites every 20 minutes.

Examples

Use the following code to continue to try to redeliver mail every 30 minutes:
RETRYINT 30

REWRITE822HEADER statement

Use the REWRITE822HEADER statement to specify whether SMTP should rewrite
or print the RFC 822 headers of mail arriving from the NJE side of the mail
gateway.

1358 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

��
REWRITE822HEADER YES NOPRINT

REWRITE822HEADER NO
NOPRINT

YES
PRINT

��

Parameters

NO Specifies that SMTP should not rewrite the RFC 822 mail headers.

Guideline: Do not use this unless all mail user agents sending mail to SMTP
create RFC 822 mail headers with fully qualified domain addresses that are
valid on the Internet.

NOPRINT
Specifies that SMTP should not print the RFC 822 header rewriting rules to the
console when SMTP starts.

PRINT
Specifies that SMTP should print the RFC 822 header rewriting rules to the
console when SMTP starts.

YES
Specifies that SMTP should rewrite the RFC 822 mail headers. The YES
parameter with NOPRINT is the default. SMTP uses a set of default header
rewriting rules.

Examples

Use the following code to rewrite the RFC 822 headers on all mail passing from
NJE to TCP through the mail gateway and print the rules to the SMTP output
when SMTP starts:
REWRITE822HEADER YES PRINT

Usage notes

The SMTP.RULES data set specifies how the server is to rewrite the headers.

Related topics
v “GATEWAY statement” on page 1333

SECURE statement

Use the SECURE statement to specify that SMTP operates as a secure mail gateway
between TCP network sites and NJE network sites.

Syntax

�� SECURE ��

Parameters

There are no parameters for this statement.

Chapter 29. SMTP server 1359

Usage notes
v Do not use the GLOBALTCPIPDATA file and SECURE, if you want to use a

different domain origin than what is specified in the GLOBALTCPIPDATA file.
The domain origin that is specified in the GLOBALTCPIPDATA file is used in
the MAIL FROM statement.

v The SECURE statement cannot be used in combination with the RESTRICT
statement.

v Mail is accepted through the secure gateway only if the NJE user IDs and node
IDs are included in the SMTP security table (SMTP security data set).

v When the SECURE statement is used, mail must be in NETDATA format.
v If you specify the SECURE statement, then source routing is disabled to prevent

the gateway from relaying mail to unauthorized users.

The data set pointed to by the //SECMEMO DD statement in the SECTABLE data
set is sent to NJE users that are not authorized to use the gateway.

Related topics
v “LOCALFORMAT statement” on page 1339
v “MAILER statement” on page 1340
v “NJEFORMAT statement” on page 1347
v “RESTRICT statement” on page 1356

SMSGAUTHLIST statement

Use the SMSGAUTHLIST statement to specify the local users authorized to issue
privileged SMTP SMSG commands.

Restriction: Any TSO user can issue the general usage SMTP SMSG commands,
but only those users specified in the SMSGAUTHLIST statement can issue the
privileged commands.

Privileged SMTP SMSG commands allow the shutting down of SMTP and the
enabling or disabling of various SMTP trace and debug options.

Syntax

�� �SMSGAUTHLIST user_id ENDSMSGAUTHLIST ��

Parameters

user_id
Specifies the address of a local user ID authorized to issue privileged SMTP
SMSG commands. The user_id parameter can be repeated.

Examples

Specify the local users authorized to issue privileged SMTP SMSG commands:
SMSGAUTHLIST

TCPMAINT
OPERATOR CHANCE

ENDSMSGAUTHLIST

1360 z/OS V2R1.0 Communications Server: IP Configuration Reference

Usage notes
v The ENDSMSGAUTHLIST statement ends the SMSGAUTHLIST statement.
v You must add users to this statement only if you are invoking privileged SMSG

commands from the TSO command line. A user issuing the MODIFY
smtpprocname, SMSG command from the system console is considered to be
authorized; that user's user ID does not need to be added to the
SMSGAUTHLIST statement.

Related topics

See z/OS Communications Server: IP User's Guide and Commands for more
information.

SPOOLPOLLINTERVAL statement

Use the SPOOLPOLLINTERVAL statement to specify the interval (in seconds) for
SMTP to check the spool for incoming batch data sets.

Syntax

�� SPOOLPOLLINTERVAL seconds ��

Parameters

seconds
The number of seconds between each check. The range is 5 - 3 600 seconds
(3 600 seconds equals one hour).

Examples

Set the time between spool polling to 30 seconds:
SPOOLPOLLINTERVAL 30

Usage notes

If the value for seconds is too low, system overhead is increased; if the value is too
high, incoming mail must wait to be processed.

STOPONRENF statement

Use the STOPONRENF statement to control the behavior of the SMTP server so if
a RENAME failure occurs on a data set associated with the batch connection (257),
then the SMTP server stops by normal termination.

Some RENAME problems are recoverable by SMTP; if the RENAME problem
occurs while processing a TCP connection, the remote SMTP is responsible for
resending the mail. However, if mail is being processed from the batch connection
257 (JES spool), a note might be lost.

Currently, SMTP generates error message EZA5544E to the system console to
indicate that a RENAME failure occurred. If the data set involved is
smtphlq.CONN257.NOTE, this is the batch connection. If the RENAME failure is
persistent, batch jobs might need to be rerun in order to recover the mail. The
system administrator should find out why RENAME is failing and correct the

Chapter 29. SMTP server 1361

situation as soon as possible. Check the system console log for messages prior to
the EZA5544E message that contain the failing data set name. Message EZA5391E
is generated to the system console if this statement is coded and a RENAME
failure on a data set associated with the batch connection occurs.

This option controls how SMTP behaves. By default, SMTP continues trying to
process other notes.

Syntax

�� STOPONRENF ��

Parameters

None

Examples

Use the following code to cause the SMTP server to stop when a RENAME failure
occurs on a data set associated with the batch connection:
STOPONRENF

TEMPERRORRETRIES statement

Use the TEMPERRORRETRIES statement to specify the number of times SMTP
tries to redeliver mail to a host with a temporary problem. Temporary problems
include network congestion, network connectivity, or a remote mail server
responding with a reply code of 4xx indicating a temporary error condition when a
5xx reply code is appropriate. In this case, a single piece of mail may be blocking
other mail in the queue from being processed due to the remote mail server reply
code. Note that when using this statement mail can be returned to the originator
sooner than expected because the number of retries have exceeded the value set by
this statement.

Syntax

��
TEMPERRORRETRIES 0

TEMPERRORRETRIES retries
��

Parameters

retries
The number of times mail delivery to a host with a temporary problem is tried
again. The default is 0.

Examples

Use the following code to attempt redelivery 5 times in cases where a temporary
problem with the host to which mail has been addressed:
TEMPERRORRETRIES 5

Usage notes
v If delivery is still unsuccessful, the mail is returned to the sender.

1362 z/OS V2R1.0 Communications Server: IP Configuration Reference

v Change the number of retries from the default of 0 only when remote mail
servers repeatedly terminate abnormally or hang SMTP mail transactions.

v If retries is 0 and there is a problem with the remote mail server, SMTP continues
trying again to deliver the same piece of mail until it times out. The other mail
sitting behind it in the queue waits for delivery until SMTP times out. This
timeout is controlled by a value associated with the RETRYAGE statement.

TIMEZONE statement

Use the TIMEZONE statement to specify the printable name of the local time zone.
If the printable name is SYSTZ, SMTPPROC gets the TIMEZONE value from the
MVS system using the local TIME/DATE offset in the CVT (communication vector
table) associated with SMTPPROC (SMTP started task). The local TIME/DATE
offset is controlled by the System Administrator who sets the MVS system
time/date and timezone parameters. See z/OS MVS Initialization and Tuning
Guide and z/OS MVS System Commands for more information about the
CLOCKxx parmlib member, the MVS SET CLOCK=hh.mm.ss command and the
MVS SET TIMEZONE={W|E}.hh.mm command.

Syntax

��
TIMEZONE EST

TIMEZONE time_zone
��

Parameters

time_zone
The name of the local time zone.

Requirement: This parameter must be a continuous character string in the
range 1-5 characters. See RFC 822 for the valid character formats for this
parameter. The default TIMEZONE value is EST.

The SMTP code does not check the validity of this parameter. If the parameter
is set to SYSTZ, each time SMTP generates a new RCF 822 date/time and
timezone header, it uses the value from the MVS system. The value is
converted to a string format of plus (+) or minus (-) and 4 digits for example,
-HHMM. This string is appended to the RFC 822 date/time header. See
Appendix C, “Related protocol specifications,” on page 1465 for information
about accessing RFCs.

Examples

To set the time zone to pacific standard time (PST), use the following code:
TIMEZONE PST

To set the time zone to local differential hours and minutes HHMM, use the
following code:
TIMEZONE +1200

To set the time zone to the value used by the MVS system for local time/date
offset, use the following code:
TIMEZONE SYSTZ

Chapter 29. SMTP server 1363

Usage notes

SMTPPROC does not alter any existing date/time stamp and timezone headers in
the mail.

WARNINGAGE statement

Use the WARNINGAGE statement to specify the number of days after which a
copy of the mail is returned to the sender with a warning. The warning is included
in the header in the copy of the mail. It includes the following information:
v SMTP has been unable to deliver the mail thus far
v How many days the mail has been undeliverable
v How many days that SMTP continues to try to deliver the mail (derived from

the RETRYAGE statement)

Syntax

��
WARNINGAGE 3

WARNINGAGE days
��

Parameters

days
A number from 0 - 365 specifying the number of days to attempt delivery of
the mail before sending a nondelivery warning to the sender. The default is 3
(same as the default for the RETRYAGE statement).

Examples

Use the following code to warn the sender that mail has been undeliverable for
one day, but that SMTP continues to attempt delivery for another two days, code
the following:
RETRYAGE 3
WARNINGAGE 1

Usage notes

SMTP only sends a warning if the number of days specified on the
WARNINGAGE statement is less than the number of days specified on the
RETRYAGE statement. When the number of days specified by the WARNINGAGE
statement is greater than or equal to the number of days specified on the
RETRYAGE statement, no warning is issued to the sender.

Related topics

“RETRYAGE statement” on page 1357

1364 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 30. Communications Server SMTP application

The Communications Server SMTP (CSSMTP) application sends mail messages
from a JES spool data set to an SMTP server.

For additional overview and configuration information about CSSMTP, see the
information about the Communications Server SMTP (CSSMTP) application in
z/OS Communications Server: IP Configuration Guide.

This topic contains the following information:
v “General syntax rules for CSSMTP”
v “Starting CSSMTP” on page 1367
v “CSSMTP sample started procedure” on page 1368
v “CSSMTP configuration statements” on page 1370
v “CSSMTP environment variables” on page 1392
v “CSSMTP user exit version 3” on page 1394

General syntax rules for CSSMTP
The following list shows the general syntax rules for CSSMTP:
v Specify CSSMTP configuration files using the code page set in the environment

variable CSSMTP_CODEPAGE_CONFIG or use default value IBM-1047 for
EBCDIC.

v Each statement must have a corresponding value and must be separated from its
value by one or more blank spaces.

v Only one attribute and its value can be specified per line.
v Text beyond the specified attribute and value is ignored.
v If the first non-blank character on a line begins with the number sign (#), then

the rest of the line is treated as a comment and is ignored.
v Characters that appear in statements must be printable characters, unless

otherwise noted. The character set is limited to the 26 alphabetic characters
(uppercase and lowercase), the 10 numeric digits, and the following 18 special
characters:

plus (+)
asterisk (*)
slash (/)
comma (,)
period (.)
ampersand (&)
left and right parentheses [()]
straight single quote (')
hyphen (-)
equal (=)
colon (:)
straight double quote (")
percent (%)

© Copyright IBM Corp. 2000, 2015 1365

less than (<)
greater than (>)
question mark (?)
semicolon (;)

The following situations are exceptions to these rules:
– The MailAdministrator statement does not restrict any special characters
– The ExtWrtName statement allows only the following special characters:

- dollar sign ($)
- number sign (#)
- at sign (@)

v Statements that are allowed only once must be specified only once. When a
single statement is repeated, a warning message is written to the log file, and
the last instance of the statement is used.

v Parameters that are allowed only once must be specified only once. If a single
parameter is repeated, then the last instance of the parameter value is used.

v Specify multiple type statements and attributes based on the maximum allowed.
When a statement or attribute is repeated more than the maximum number
allowed, a warning message is written to the log file. The first instances, up to
the maximum number of instances that are allowed, are used.

v Statements that contain braces ({ }) must specify the braces on separate lines. For
example:
TargetServer
{

TargetIp 9.66.103.222
}

v Any IP address reference can be either an IPv4 format or IPv6 format IP address
when the stack is running in IPv6-enabled mode.

v At least one valid IP address or target name is required for the configuration to
be valid. See “TargetServer statement” on page 1384 for details about
configuration.

v Any warning that is detected during parsing causes messages to be written to
the log and a single warning message to be written to the console. The new
configuration is installed.

v You can use static system symbols in CSSMTP configuration file statements.

Results:

v If a configuration error is detected during startup, then CSSMTP writes an error
message to the log and console, and exits.

v If a configuration error is detected during a dynamic refresh, then the entire
refresh is rejected, an error message is written to the log and console, and
CSSMTP continues running with the old configuration values.

v CSSMTP terminates in the following situations:
– Start option errors are detected during initialization
– Configuration file does not exist at initialization
– Configuration file errors are detected during initialization
– JES is not available during initialization
– JES becomes unavailable while CSSMTP is processing the mail messages
– The stop command is issued
– The mail directory for extended retry becomes unusable

1366 z/OS V2R1.0 Communications Server: IP Configuration Reference

Starting CSSMTP
Use the S CSSMTP command on an MVS console or System Display and Search
Facility (SDSF) to start CSSMTP.

Rules:

v You must start CSSMTP from a started procedure. A sample started procedure is
included in member CSSMTP in SEZAINST. A configuration file is required. A
sample CSSMTP configuration file is included in member CSSMTPCF in
SEZAINST.

v Multiple instances of CSSMTP with different job names can be started with or
without stack affinity. Each instance of CSSMTP that is running must be
configured with a different external writer name. See “ExtWrtName statement”
on page 1375 for more information.

The following options (in the started procedure) apply to CSSMTP:

-p | -P tcpipJobName
The tcpipJobName parameter is used in a common INET configuration to choose
a socket stack for CSSMTP. It is also used for resolver functions. The
environment variable _BPXK_SETIBMOPT_TRANSPORT can also specify the
tcpipJobName. The -p start option overrides the environment variable. If neither
form is used to set the tcpipJobName, then no affinity is used in a common
INET configuration.

Results: In a Common INET configuration, there might be more than one
TCP/IP stack. CSSMTP acts as a TCP/IP client. In this type of environment,
you might want to associate CSSMTP with a specific stack, especially when
there are multiple instances of CSSMTP to be started.
v The following list shows the priority for establishing TCPIP affinity for

socket functions:
1. Start option -p (CSSMTP sets affinity before any socket or resolver calls

are made)
2. Environment variable _BPXK_SETIBMOPT_TRANSPORT
3. No affinity

v The following list shows the priority for establishing TCP/IP affinity for
resolver functions:
1. Application affinity.
2. _BPXK_SETIBMOPT_TRANSPORT.

For resolver affinity information, see z/OS Communications Server: IP
Configuration Guide.

-f |-F
This start option indicates that CSSMTP performs a cold start and flushes any
checkpoint records from the previous execution of CSSMTP. To use
checkpointing, you must set the CHKPOINT DD statement in the started
procedure. The default is to use the checkpoint records to restart JES spool files
at their last known status.

Tip: Member CSSMTPVL in SEZAINST is a sample job that you can use to
allocate a VSAM linear data set that CSSMTP can use for checkpointing.

Result: If a valid CHKPOINT DD statement is not configured, checkpointing is
not performed.

Chapter 30. Communications Server SMTP application 1367

For resolver affinity, see z/OS Communications Server: IP Configuration Guide.

If CSSMTP cannot successfully parse the start options, log output is written to
stdout and the application exits.

If you want time values that are generated by CSSMTP to appear in local time, you
must set the TZ environment variable. If you do not set the TZ environment
variable, timestamps created by CSSMTP are in Universal Time Coordinated (UTC)
by default.

Set the TZ and configuration code page environment variables in one of the
following ways:
v Specify TZ using the ENVAR parameter on the PARM statement in the started

procedure. For example, use the following code:
// PARM=(’POSIX(ON) ALL31(ON)’,
// ’ENVAR("CSSMTP_CODEPAGE_CONFIG=IBM-1047"’,
// ’"TZ=EST5EDT")/’)

v Export the TZ and configuration code page environment variables in a file
specified with the STDENV DD statement. For example, use the following code:
//STDENV DD PATH=’/etc/cssmtp.env’,PATHOPTS=(ORDONLY)

In the /etc/cssmtp.env file, use the following code:
TZ=EST5EDT
CSSMTP_CODEPAGE_CONFIG=IBM-1047

See z/OS Language Environment Programming Guide for more information about
specifying runtime options and environment variables. See z/OS UNIX System
Services Command Reference for details about setting the TZ environment
variables.

CSSMTP sample started procedure
This topic contains a copy of the sample procedure.
//CSSMTP JOB JESLOG=(SPIN,’00:00’),MSGCLASS=A
//*
//* JESLOG=(SPIN,’00:00’)
//* Spin the jeslog files once a day at midnight.
//* This closes out the current JES joblog and creates a new one.
//*
//* Use ’opt’ to pass in parameters. Example: s cssmtp,opt=’-f’
//CSSMTP PROC OPT=’’
//*
//* IBM Communications Server for z/OS
//* SMP/E distribution name: EZAMLSAM
//*
//* Licensed Materials - Property of IBM
//* 5650-ZOS
//* Copyright IBM Corp. 2009, 2013
//* Status = CSV2R1
//*
//* Function: Sample procedure for running the
//* CSSMTP application
//*
//* This example shows no input parameter, but -p, -f or both
//* can be used here
//*
//CSSMTP EXEC PGM=CSSMTP,REGION=0K,TIME=NOLIMIT,
// PARM=(’ENVAR("_CEE_ENVFILE_S=DD:STDENV")/&OPT’)
//*
//* Environment variables:

1368 z/OS V2R1.0 Communications Server: IP Configuration Reference

|
|
|

|
|
|

//* - Provide environment variables to run with the desired
//* configuration. As an example, the data set or file specified by
//* STDENV could contain:
//*
//* TZ=EST5EDT
//* CSSMTP_CODEPAGE_CONFIG=IBM-1047
//*
//* If you want to include comments in the data set or
//* z/OS UNIX file, specify the _CEE_ENVFILE_COMMENT
//* environment variable as the first environment variable
//* in the data set or file. The value specified for
//* the _CEE_ENVFILE_COMMENT variable is the comment character.
//* For example, if you want to use the pound sign, #, as
//* the comment character, specify this as the first
//* statement:
//* _CEE_ENVFILE_COMMENT=#
//*
//STDENV DD PATH=’/etc/cssmtp.env’,PATHOPTS=(ORDONLY)
//*STDENV DD DSN=TCPIP.TCPPARMS(CSSMTPEV),DISP=SHR
//*
//*
//* - The CSSMTP requires a configuration file. If
//* DD statement not configured, then the default is
//* <jobname>.CSSMTP.CONF. The configuration file can be a
//* member of an MVS PDS(E), an MVS sequential file,
//* or a z/OS UNIX file.
//* See tcpip.SEZAINST(EZAMLCNF) for a sample configuration
//*
//CONFIG DD DSN=TCPIP.TCPPARMS(CSSMTP),DISP=SHR
//*CONFIG DD DSN=TCPIP.CONFIG.CSSMTP,DISP=SHR
//*CONFIG DD PATH=’/etc/cssmtp.conf’,PATHOPTS=(ORDONLY)
//*
//* - Output written to stdout and stderr goes to the data set or
//* file specified with or SYSOUT, respectively.
//* Normally, CSSMTP doesn’t write output to stdout or stderr, but
//* instead, output is written to the log file, which is specified
//* by LOGFILE DD statement, and defaults to syslog
//* daemon. Severe startup errors, such as incorrect options
//* specified, or being unable to open the log file, log output
//* is instead written to stdout.
//*
//* - The logfile file can be a MVS sequential file, a z/OS UNIX file,
//* SYSOUT or syslog daemon. The default is syslog daemon.
//*
//* - If multiple CSSMTP are logging to the same log file, the user
//* should use different log files or SYSLOGD. Using the same
//* log file from different applications can produce unpredictable
//* results.
//*
//LOGFILE DD PATH=’/tmp/cssmtp.log’,
// PATHOPTS=(OWRONLY,OCREAT,OAPPEND),
// PATHMODE=(SIRUSR,SIWUSR,SIRGRP,SIWGRP)
//*LOGFILE DD SYSOUT=*,
//* DCB=(RECFM=VB,LRECL=1028,BLKSIZE=3120)
//*LOGFILE DD DSN=USER140.CSSMTP.LOG2,DISP=(MOD,CATLG),
//* SPACE=(TRK,(10)),DCB=(RECFM=VB,LRECL=1028,BLKSIZE=3120)
//*
//* - Input/Output VSAM linear file that contains JES
//* checkpoint information. This is used if CSSMTP is not started
//* with -f.
//*
//* The Chkpoint file is a VSAM linear file. If not configured
//* then no checkpointing is done for JES spool files.
//* See the sample JCL in CSSMTPVL to allocate the checkpoint
//* data set.
//*
//*CHKPOINT DD DSN=TCPIP.CSSMTP.CHKPOINT,DISP=SHR

Chapter 30. Communications Server SMTP application 1369

|
|

|
|
|
|
|
|
|
|
|
|

//*
//* - Output written to stdout and stderr goes to the data set or
//* file specified with SYSOUT, respectively.
//SYSOUT DD SYSOUT=*
//*
//* - SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//*
//*SYSTCPD DD DSN=TCPIP.SEZAINST(TCPDATA),DISP=SHR
//* - SYSTCPT is used to receive a detailed trace on how Resolver
//* is resolving target servers.
//*SYSTCPT DD SYSOUT=*
// PEND
//CSSMTP EXEC CSSMTP

CSSMTP configuration statements
Table 103 lists CSSMTP configuration file statements.

Table 103. CSSMTP configuration statements

Configuration file
statement Default Required or optional

Update allowed by
modify refresh Purpose

BadSpoolDisp Hold Optional Yes Specifies the action to
be taken when errors
are encountered while
the JES spool file is
being processed.

ChkPointSizeLimit 64000 Optional No Specifies the number
of concurrent mail
messages for which
checkpoint
information is saved.

ExtendedRetry v Age 5

v Interval 30

v MailDirectory
/var/cssmtp/
extwrtname/mail/

Optional Yes (except
MailDirectory)

Specifies the limits
that CSSMTP uses
when it attempts to
resend mail messages
that are not
immediately
deliverable after
RetryLimit
processing.

ExtWrtName task job name Optional No Specifies the external
writer name that is
used by CSSMTP for
selection criteria
when interfacing with
the JES2 or JES3
subsystems.

Figure 56. CSSMTP application sample start procedure

1370 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 103. CSSMTP configuration statements (continued)

Configuration file
statement Default Required or optional

Update allowed by
modify refresh Purpose

Header v Date Yes

v UserInfo Yes

Optional Yes Specifies the action to
be taken when
creating RFC 2822
mail headers.

JESJobSize 0 (unlimited) Optional Yes Specifies the
maximum data set
size that is accepted
from the JES spool
file in thousands of
bytes.

JESMsgSize 0 (unlimited) Optional Yes Specifies the
maximum mail
message size that is
accepted from a JES
spool file, in
thousands of bytes.

JESSyntaxErrLimit 5 Optional Yes Specifies the
maximum number of
syntax errors that are
acceptable in a JES
spool file before the
rest of the JES spool
file processing is
stopped.

LogLevel 7 Optional Yes Specifies the level of
logging and tracing.

MailAdministrator No e-mail address is
configured to send a
report.

Optional Yes Specifies an e-mail
address to which
CSSMTP delivers
reports for certain
errors. This statement
can be specified up to
four times in a
configuration file to
deliver reports to
multiple
administrators.

Options NullTrnc No Optional Yes CSSMTP options

Report Sysout Optional Yes Specifies the action to
be taken when
problems are reported
with JES spool files.

RetryLimit Interval 1

Count 5

Optional Yes Specifies the limits
that CSSMTP uses
when attempting to
re-send mail
messages that are not
immediately
deliverable.

SMF119 No SMF recording Optional Yes Specifies the records
to be written to SMF.

Chapter 30. Communications Server SMTP application 1371

Table 103. CSSMTP configuration statements (continued)

Configuration file
statement Default Required or optional

Update allowed by
modify refresh Purpose

TargetServer v ConnectPort 25

v ConnectLimit 5

v MaxMsgSent 0

v MessageSize 524288

v Secure No

You must provide a
value for TargetIP,
TargetName, or
TargetMx.

Required Yes Specify one or
multiple TargetServer
statements to define
target servers
(resolved or
configured IP
addresses) and their
connection attributes
to which CSSMTP
connects for sending
mail.

Timeout v AnyCmd 300

v ConnectRetry 120

v DataBlock 180

v DATACmd 120

v DataTerm 600

v InitialMsg 300

v MAILCmd 300

v RCPTCmd 300

Optional Yes Specifies the timeout
values, in seconds, for
the interaction
between CSSMTP and
a target server.

Translate IBM-1047 Optional No Specifies the
translation code page
of the records read
from the JES spool
data set.

Undeliverable ReturnToMailFrom
Yes

DeadLetterAction
Store

DeadLetterDirectory
/var/cssmtp/
extwrtname/
deadletter/

Optional Yes Specifies the method
to use for handling
undeliverable mail.

UserExit None Optional Yes Controls whether this
CSSMTP calls
CSSMTP exit
program provided by
the customer to
examine data being
sent to CSSMTP from
the JES spool data set.

BadSpoolDisp statement

Use the BadSpoolDisp statement to indicate to CSSMTP what to do with JES spool
files when errors were encountered when processing the spool file. See the
information about common terms in z/OS Communications Server: IP
Configuration Guide for a description of bad spool file.

1372 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

��
BadSpoolDisp Hold

BadSpoolDisp Delete
Hold

��

Parameters

Delete
Specify that CSSMTP should delete the spool file.

Hold
Specify that CSSMTP should change the disposition of the spool file to HOLD
so that CSSMTP cannot process it.

ChkPointSizeLimit statement

Use the ChkPointSizeLimit statement to specify the number of concurrent mail
messages for which checkpoint information is saved. This saved information is
used for a warm start so that CSSMTP does not reprocess the entire spool file
during a restart. Checkpointing warm functions only when you are restarting
CSSMTP with the same job name and external writer name.

Syntax

��
ChkPointSizeLimit 64000

ChkPointSizeLimit limit
��

Parameters

limit
An integer value in the range 64 000 - 512 000 that represents the number of
concurrent mail messages that can have checkpoint information saved. The
default size is 64 000.

Tip: If the CHKPOINT data set is not allocated, this value is ignored.

Result: If an update to the ChkPointSizeLimit statement is detected during a
dynamic refresh, CSSMTP continues to run using the previous
ChkPointSizeLimit value and a warning message is written to the log and
console.

ExtendedRetry statement

Use the ExtendedRetry statement to extend the retry processing that
Communications Server SMTP (CSSMTP) uses when it attempts to resend mail
messages that are not immediately deliverable. For basic information about
extended retry, see the information about common terms in z/OS Communications
Server: IP Configuration Guide.

The RetryLimit statement defines the retry interval during which CSSMTP will try
sending the mail messages again while the JES spool file is still available. When
the long retry interval expires (the interval is the product of multiplying the
COUNT and INTERVAL values), the mail messages are copied to a z/OS UNIX

Chapter 30. Communications Server SMTP application 1373

directory for extended retry processing and the JES spool file is released. When the
extended retry interval expires, the mail messages become undeliverable.

After both the long retry interval and the extended retry interval retries have
expired, the following actions occur when information about the mail sender's
address is available:
1. CSSMTP uses the setting on the ReturnToMailFrom parameter in the

UNDELIVERABLE statement to determine its next action.
2. CSSMTP attempts to send the undeliverable mail notifications to the originator

of the mail message through the configured target servers. If CSSMTP cannot
send the notification on the first try, the mail message becomes a dead letter
(see “UNDELIVERABLE statement” on page 1389) and no retries will be made.

Guideline: If the ExtendedRetry statement is not defined in the configuration file,
extended retry processing is inactive.

Tip: You can set the Interval parameter on the ExtendedRetry statement to 0 to
bypass extended retry processing.

Syntax

�� ExtendedRetry Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
ExtendedRetry Parameters

}

ExtendedRetry Parameters:

Age 5

Age days

Interval 30

Interval minutes
�

�
MailDirectory /var/CSSMTP/extwrtname/mail/

MailDirectory mailDirectory

Parameters

Age days
Indicates the number of days that CSSMTP attempts to resend mail messages
after the extended term retry interval expires. The default value is 5 days. The
value 0 means that an unlimited number of retry attempts will be made. The
maximum value is 2147483647.

Interval minutes
Indicates the length of time, in minutes, that CSSMTP waits between
subsequent attempts to resend mail messages. The default value is 30 minutes.
The maximum value is 1440 minutes (one day).

If the Interval value is 0, no extended retry will be performed and a mail
message becomes undeliverable if CSSMTP cannot deliver it to the target
servers on the first try.

1374 z/OS V2R1.0 Communications Server: IP Configuration Reference

MailDirectory mailDirectory
The fully qualified directory name in the z/OS UNIX file system where
CSSMTP stores the mail message when the Interval parameter is set to a
nonzero value. Valid values are 1 - 512 characters in length and must begin
with a slash (/) to define the fully qualified directory. The default mail
directory is /var/cssmtp/extWrtName/mail/, where extWrtName is the name
specified in the ExtWrtName statement.

Results:

v A slash is added to the end of the mail directory name if it is not present.
v If the mail directory does not exist it is created.

Guidelines:

v The user ID that CSSMTP starts under must have read/write access to this
directory. If you are running multiple CSSMTP servers with extended retry
enabled, each server should have its own directory and should not have
access to the directories of other servers.

v Ensure that there is adequate space in the filesystem for extending retry
processing. For example, if each mail message is an average of 8000 bytes in
size and you expect to have 1000 mail messages to be tried again, then about
16 million bytes of file space is needed [2 (files per mail message) × 8K
(z/FS file allocation size) × 1000]. Factor in the 75% threshold for message
EZD1862I, then the file system should be about 22 million bytes in size (plus
a margin of error).

v The size of the MailDirectory is the sum of all of the size of all the mail
messages saved for extended retry at any one time.

Restrictions:

v If extended retry processing is activated, you must stop and restart CSSMTP
in order to change the name of the mail directory.

v If CSSMTP is active, you cannot change the name of the mail directory and
you cannot delete or change the files.

v The content of the files created by CSSMTP and stored in the mail directory
cannot be modified.

Tip: You can configure your mail directory to be on a different z/OS UNIX file
system than where you have configured your deadletter directory. By doing
this, you can manage the resource better. For more information, see
“UNDELIVERABLE statement” on page 1389.

ExtWrtName statement

Use the ExtWrtName statement to specify the external writer name used by
Communications Server SMTP (CSSMTP) as selection criteria when CSSMTP is
interfacing with the JES2 or JES3 subsystems.

Syntax

��
ExtWrtName wrtName

��

Parameters

wrtName
A string 1 - 8 characters in length that specifies the external writer name to be

Chapter 30. Communications Server SMTP application 1375

used by CSSMTP. This value can contain alphanumeric characters, as well as
the special characters $ # @. The default value is the CSSMTP job name. The
writer name is not case sensitive.

Results:

v If an ExtWrtName value is not configured, CSSMTP sets this parameter value to
CSSMTP job name.

v If an update to the ExtWrtName statement is detected during a dynamic refresh,
CSSMTP continues to run using the previous ExtWrtName value and a warning
message is written to the log and console.

Tip: The SMTPD job name should not be specified for CSSMTP external writer
name if the SMTPD gateway is running on the same LPAR. The results are
unpredictable.

Restrictions:

v Do not code INTRDR, STDWTR, or NJERDR because these names are reserved
for JES.

v If the JES2 DESTDEF statement specifies NODENAME=REQUIRED, then the
writer name specified in the ExtWrtName statement must be defined to JES2.
You can dynamically define it to JES using the following command:
$ADD DESTID(xxxxxxxx),DEST=xxxxxxxx

where xxxxxxxx is the wtrName specified in the ExtWrtName statement. See
z/OS JES2 Initialization and Tuning Reference for information about the
DESTDEF statement. To permanently add the destination use the JES
initialization DEStid statement:
DESTID(xxxxxxxx) DEST=xxxxxxxxx

See z/OS JES2 Initialization and Tuning Reference for information about the
DESTID JES2 statement. If JES2 DESTDEF specifies NODENAME=OPTIONAL
then the writer name specified on ExtWtrName does not need to be specified.

v You cannot start multiple CSSMTP applications that use the same external writer
name.

Header statement

Use the Header statement to change the behavior of CSSMTP when you create
RFC 2822 mail headers. The mail headers are created when the JES spool file is
processed. If the Header parameters are modified, mail headers that have been
created are not altered.

Syntax

�� Header Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
Header Parameters

}

1376 z/OS V2R1.0 Communications Server: IP Configuration Reference

Header Parameters:

Date YES UserInfo YES

Date YES UserInfo YES
NO NO

Parameters

Date
Specifies whether CSSMTP adds the Date: header if the header is missing.

NO The Date: header is not inserted into the mail message by CSSMTP.

YES The Date: header is inserted into the mail message by CSSMTP. This is
the default value.

UserInfo
Specifies whether user information is included in Mail headers that CSSMTP
creates.

NO User information is not inserted into the mail message by CSSMTP.
This setting applies to the following information:
v If CSSMTP creates the Message-ID: header, the job name of the mail

message of the JES spool file and the job identifier of the JES spool
file are not included in the Message-ID: header.

v The CSSMTP JobName is inserted in the for field of the Received:
header instead of the JES origin USER ID and the optional Notify
USER ID.

v The job name of the mail message of the JES spool file and the job
identifier of the JES spool file are not included in the Id field of the
Received: header.

YES User information is inserted into the mail message by CSSMTP. This is
the default value.

JESJobSize statement

Use the JESJobSize statement to specify the maximum data set size that is accepted
from the JES spool file, in thousands of bytes.

Tip: Set this value for the largest spool job expected and add enough room for
future growth.

Syntax

��
JESJobSize 0

JESJobSize size
��

Parameters

size
An integer value in the range 0 - 1 000 000 that represent the maximum data
set size that is accepted from the JES spool file, in thousands of bytes. The
default size is 0, which specifies an unlimited data set size.

Chapter 30. Communications Server SMTP application 1377

Restriction: The JESJobSize value must be greater or equal to the JESMsgSize
value.

JESMsgSize statement

Use the JESMsgSize statement to specify the maximum mail message size accepted
from a JES spool file, in thousands of bytes.

Tip: Set this value for the largest mail message expected and add enough room for
future growth.

Syntax

��
JESMsgSize 0

JESMsgSize size
��

Parameters

size
An integer value in the range 0 - 1 000 000 that represents the maximum mail
message size accepted from a JES spool file, in thousands of bytes. The default
size is 0, which specifies an unlimited data set size.

Restriction: The JESMsgSize value must be less than or equal to the JESJobSize
value.

JESSyntaxErrLimit statement

Use the JESSyntaxErrLimit statement to specify the maximum number of syntax
errors that are acceptable in a JES spool file.

Syntax

��
JESSyntaxErrLimit 5

JESSyntaxErrLimit count
��

Parameters

count
An integer in the range 0 - 999 that represents the maximum number of syntax
errors that are acceptable in a JES spool file. The default value is 5. The value 0
indicates that an unlimited number of syntax errors is acceptable. If you set a
high or unlimited value on this statement, then a waste of system resources
such as CPU use can occur when the JES spool file contains many errors.

Tip: Syntax errors in the RCPT commands are not counted against the
JESSyntaxErrLimit statement. Instead, a syntax error in a RCPT command is
treated as an undeliverable mail message, if the rest of the SMTP commands
are valid. Use the “UNDELIVERABLE statement” on page 1389 to control the
handling of undeliverable mail.

LogLevel statement

Use the LogLevel statement to specify the level of logging and tracing.

1378 z/OS V2R1.0 Communications Server: IP Configuration Reference

Syntax

��
LogLevel 7

LogLevel level
��

Parameters

level
Specifies the log level . The level value represents a particular log level or
combination of debug levels. Possible values are:

0 No messages are logged.

1 Error-level messages are logged.

2 Warning-level messages are logged.

4 Event-level messages are logged.

8 Information-level messages are logged.

16 JES-level messages are logged. This value traces Communications
Server SMTP (CSSMTP) commands and command syntax parser
replies between the JES spool file and CSSMTP.

32 Network-level messages are logged. This traces CSSMTP commands
and remote SMTP server replies between CSSMTP and the TCP/IP
network.

64 Debug-level messages are logged. These messages are internal debug
messages intended for development and IBM service use only.

128 Trace-level messages are logged. These messages are function entry
and exit traces that show the path through the code. This level is
intended for development and IBM service use only.

Guideline: To log a combination of log levels, add the log level numbers and
specify the resulting value. During the initialization phase of the application
the log level is set to 127 to capture any initialization problems. When
initialization is complete, then the log level value is set to what is coded on
this statement. The default log level is 7, which captures all error, warning, and
event messages after the initialization is complete.

MailAdministrator statement

Use the MailAdministrator statement to specify an e-mail addresses with the
format userid@host.domain (mailbox) to which Communications Server SMTP
(CSSMTP) delivers error reports. See the information about common terms in z/OS
Communications Server: IP Configuration Guide for a description of mail
administrator. Error reports are generated by CSSMTP when a problem is detected
while processing a spool file from the JES subsystem (see the “REPORT statement”
on page 1381).

Results:

v Only the first four MailAdministrator statements are used. If more than four
MailAdministrator statements are configured, CSSMTP issues a warning
message to the console and log.

Chapter 30. Communications Server SMTP application 1379

v When configured (see the “REPORT statement” on page 1381), a report is sent to
each mail administrator for each spool file that contains errors. This report is in
the form of one e-mail with multiple recipients.

v When a MODIFY REFRESH command is issued and the order of the
MailAdministrator statements or any of the mail addresses has changed, the
configuration is updated.

Syntax

�� �

MailAdministrator mailbox
��

Parameters

mailbox
The mail administrator's e-mail address to which the CSSMTP delivers error
reports. There is no default value

Restrictions:

v Duplicate mailbox names are not allowed.
v The mailbox value is case sensitive.
v The mailbox value must be defined as userid@host.domain for the mail

address. The userid value can be 1 - 64 characters in length. The host.domain
value can be 1 - 255 characters in length.

Options statement
Use the Options statement to change the processing behavior of CSSMTP.

Syntax

�� Options Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
Options Parameters

}

Options Parameters:

NullTrnc NO

NullTrnc YES

NO

1380 z/OS V2R1.0 Communications Server: IP Configuration Reference

Parameters

NullTrnc
Specifies whether the trailing null characters are stripped from mail command
records. The mail command records include EHLO, HELO, MAIL, RCPT,
DATA, and STARTTLS.

NO The trailing null characters are not stripped from the mail command
records by CSSMTP. This is the default value.

YSE
The trailing null characters are stripped from the mail command records
by CSSMTP.

REPORT statement

Use the REPORT statement to indicate the action you want to take for reporting
problems with JES spool files. These problems include the following ones:
v Errors accessing or reading the spool file
v SAF (RACF) violations
v User exit rejection of a mail message or the spool file
v Syntax errors in the spool file.
v Unsuccessful delivery. See“UNDELIVERABLE statement” on page 1389 for

details.

Tip: For a description of an error report, see the example of an error report to
MailAdministrator or the sysout file in z/OS Communications Server: IP Diagnosis
Guide.

Syntax

��
REPORT Sysout

REPORT Admin
None
Sysout

��

Parameters

Admin
Indicates that an error report should be sent to the configured mail
administrators.

Tip: To avoid losing the error report information in the event that it cannot be
delivered to one or more configured mail administrators, code
DeadLetterAction store in the “UNDELIVERABLE statement” on page 1389.

Requirement: At least one mail administrator must be defined.

None
Indicates that no error reports should be created.

Without a report, the log must be inspected for messages about any problems
found in the JES spool file.

Sysout
Indicates that CSSMTP should create a sysout file that contains the report.

Chapter 30. Communications Server SMTP application 1381

RetryLimit statement

Use the RetryLimit statement to set the limits that Communications Server SMTP
(CSSMTP) uses when attempting to resend mail messages that are not immediately
deliverable. See the information about common terms in z/OS Communications
Server: IP Configuration Guide for description.

After the retry limit specified on this statement is exhausted the following actions
occur:
v CSSMTP uses the setting on the Interval parameter of the ExtendedRetry

statement to determine whether the mail message is eligible for extended retry.
If the mail message is eligible, CSSMTP sends it for extended retry processing. If
the mail message is not eligible for extended retry, the message goes
immediately to the undeliverable process as specified by the “UNDELIVERABLE
statement” on page 1389.

v CSSMTP uses the setting in the ReturnToMailFrom parameter in the
UNDELIVERABLE statement to determine its next action when there is
information regarding the mail sender's address.

v CSSMTP attempts to send the undeliverable mail notifications to the originator
of the mail message, through the configured target servers. If the notification
cannot be sent on the first try, it becomes a dead letter (see “UNDELIVERABLE
statement” on page 1389). No retries are made.

See “ExtendedRetry statement” on page 1373 for a description of the actions that
you need to take when a mail message is eligible for extended retry processing.

Syntax

�� RetryLimit Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
RetryLimit Parameters

}

RetryLimit Parameters:

Count 5

Count number

Interval 1

Interval minutes

Parameters

Count number
Indicates the number of times CSSMTP attempts to resend mail. Valid values
are in the range 0 - 120. The default is 5.

Interval minutes
Indicates the amount of time, in minutes, that CSSMTP waits before attempting
to resend mail. Valid values are in the range 0 - 120. The default value is 1.

1382 z/OS V2R1.0 Communications Server: IP Configuration Reference

If the Count or Interval value is zero, then no long retry is performed, and
mail becomes undeliverable if it cannot be delivered to the target servers on
the first try.

Restriction: The total configured time cannot exceed 5 days (7200 minutes in
total). For example, 120 retries with 60 minutes per retry results in a maximum
time of 5 days.

Tip: During this time, the spool file remains in use. A high configured time
total can result in excess spool and storage usage. You can use the MODIFY
FLUSHRETRY,TKID= command to force mail messages off the retry queue
earlier than the configured time allowed in the RetryLimit statement. If you do,
the values in the RetryLimit statement are no longer used for these mail
messages. If the mail messages cannot be sent, then the mail messages become
undeliverable messages.

SMF119 statement

Use the SMF119 statement to indicate which SMF records are written by
Communications Server SMTP (CSSMTP).

Syntax

�� SMF119 Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
SMF119 Parameters

}

SMF119 Parameters:

Config NO

Config NO
YES

Connect NO

Connect NO
YES

Mail NO

Mail NO
YES

�

�
Spool NO

Spool NO
YES

Stats NO

Stats NO
YES

Parameters

Config
Specifies if the configuration SMF records are written

NO The configuration SMF records are not written. This is the default.

YES
The configuration SMF records are written. The configuration SMF records
are written at initialization and when the configuration is updated with the
MODIFY REFRESH command.

Connect
Specifies if the connection SMF records are written

Chapter 30. Communications Server SMTP application 1383

NO The connection SMF records are not written. This is the default.

YES
The connection SMF records are written. The connection SMF records are
written at the end of each client connection used for mail data transfer to a
target server.

Mail
Specifies if the mail message SMF records are written

NO The mail message SMF records are not written. This is the default.

YES
The mail message SMF records are written. The mail message SMF records
are written at the completion of each mail message from the spool data set.

Spool
Specifies if the spool SMF records are written

NO The spool SMF records are not written. This is the default.

YES
The spool SMF records are written. The spool SMF records are written
when all the mail messages for a JES spool file have been processed.

Stats
Specifies if the statistical SMF records are written. The statistical SMF records
are written at the MVS SMF intervals and at CSSMTP termination. For
information about SMF interval processing, see the section about INTVAL and
SYNCVAL - Performing interval accounting in z/OS MVS System Management
Facilities (SMF).

NO The statistical SMF records are not written. This is the default.

YES
The statistical SMF records are written.

TargetServer statement

Use the TargetServer statement to specify one or more target servers (resolved or
configured IP addresses) and their connection attributes. CSSMTP establishes
connections to the target servers in order to send mail.

Rules:

v If you are configuring the TargetIP parameter, the TargetName parameter, or
both, then you can configure multiple TargetServer statements.

v When you issue a MODIFY REFRESH command, if the order of the target
servers changes, the configuration is updated.

v Each TargetIP or TargetName must be unique.

Results:

v Only the first four unique TargetIP values, TargetName values, or both values
are used. If more than four values are configured, the application issues a
console message and logs a warning. The four target servers that are selected are
based on the configuration order in which the parameters were configured.
CSSMTP only uses the first four IP addresses.

v If duplicate target server IP addresses are resolved from the configured TargetIP
or from the TargetName IP addresses, CSSMTP issues a console message and
logs a warning.

1384 z/OS V2R1.0 Communications Server: IP Configuration Reference

v If the TCP/IP stack supports only IPv4, any configured IPv6 addresses are
ignored and the application issues a console message and logs a warning.

Restrictions:

v You must define at least one TargetServer statement, and it must contain at least
one TargetIP, TargetName, or TargetMx parameter.

v Only four TargetServer statements or the first four TargetIP and TargetName
parameters with TargetServer statements are used.

v If distinct target servers can be reached by way of a single IP address, the target
servers must have the same capabilities. For example, if a dynamic VIPA
(DVIPA) address is specified, the mail servers for that DVIPA address must have
the same capabilities. In this example, all the servers must be ESMTPs or SMTPs,
but not both, that have the same capabilities.

v You can configure only one TargetMx parameter.

Syntax

�� TargetServer Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
TargetServer Parameters

}

TargetServer Parameters:

�

TargetIP addr
TargetName name

TargetMx mxName

ConnectPort 25

ConnectPort port
�

�
ConnectLimit 5

ConnectLimit count

MaxMsgSent 0

MaxMsgSent count

MessageSize 524288

MessageSize size
�

�
Secure NO

Secure NO
YES

Parameters

ConnectPort
Defines the port that CSSMTP uses to connect to a target server.

Result: If an update to the port is detected during a dynamic refresh, then
CSSMTP must terminate all the active connections to the target servers that are
associated with this TargetServer statement in order to use the new port value.

Requirement: This port must match the listening port number used by the
target server.

Chapter 30. Communications Server SMTP application 1385

The valid range of port values is 1 - 65535. The default port is 25.

ConnectLimit
Limits the number of concurrent socket connections to the target server from
CSSMTP. This might be useful if your server has a concurrent connection limit.
One of the socket connections is used by CSSMTP to monitor the SMTP server.

The valid values are in the range 2 - 5. The default limit is 5 connections.

Result: If an update to the ConnectLimit value is detected during a dynamic
refresh, CSSMTP must terminate all the active connections to the target servers
that are associated with this TargetServer statement in order to use the new
limit.

MaxMsgSent
Specifies the maximum number of mail messages that can be sent on a single
connection. When the MaxMsgSent value is exceeded, CSSMTP closes the
connection to the target server and reestablishes a new connection to the same
target server. Mail messages continue to be sent over the new connection until
the MaxMsgSent value is reached again.

The valid range is 0 - 2147483647. The default is 0, which means that an
unlimited number of messages can be sent.

MessageSize
Specifies the maximum size of a mail message that can be sent to target servers
that do not support ESMTP size extensions.

Valid values are in the range 1000 - 2147483647. The default size is 524288
bytes (512 KB).

Secure
Indicates whether Transport Layer Security (TLS) is required between the client
and a target server. TLS provides private, authenticated communication over
the internet. See the steps for setting up security for CSSMTP in z/OS
Communications Server: IP Configuration Guide.

Result: If an update to the secure value is detected during a dynamic refresh,
CSSMTP must terminate all the active connections to the target servers that are
associated with this TargetServer statement in order to use the new secure
value.

NO TLS is not required between CSSMTP and a target server. However, if the
STARTTLS SMTP command is used in the spool file, a TLS connection is
attempted with this server.

YES
TLS is required between CSSMTP application and a target server. If a TLS
session cannot be established, then the server is not usable.

TargetIP
The IPv4 or IPv6 address of the target server to which CSSMTP connects.

Restrictions:

v IPv4-mapped IPv6 addresses and IPv6 addresses with the reserved prefix
::/96 are not valid.

v The IPv6 unspecified address (::0) and IPv4 unspecified address (0.0.0.0) are
not allowed.

v Duplicate IP addresses are not allowed.

TargetName
The host name or fully qualified host name used for a resolver A or AAAA

1386 z/OS V2R1.0 Communications Server: IP Configuration Reference

query. Valid values are 1 - 255 characters in length. If the host name is used,
the resolver appends the domain information, which is obtained from the
TCPIP.DATA data set.

The TargetName value is not case sensitive.

Result: CSSMTP only uses the first four configured or resolved IP addresses to
send the mail message. If more than four target servers are found, this
application issues a console message and logs a warning.

Restriction: Duplicate host names are not allowed.

TargetMx
The name or a fully-qualified domain name used for a resolver MX query. This
name might resolve into multiple MX records that include a preference value.
The lower the preference value is, the more likely that the record is used. Valid
values are 1 - 255 characters in length.

The lower the value, the higher the preference.

The TargetMx value is not case sensitive.

Results:

v Only the first configured TargetMx value is used. If more than one value is
configured, the application issues a console message and logs a warning.

v Only the first four target servers are saved for the configured TargetMx
value. If more than four target servers are returned, CSSMTP issues a
console message and logs a warning.

v The lower preference is honored by not sending mail messages to those IP
addresses unless the higher preference target servers are unavailable.

Restriction: The TargetMx parameter is mutually exclusive with the
TargetName parameter and the TargetIP parameter. If you want to use this
statement, MX records for this TargetMx value must exist in the DNS database.
If no MX records are found then this is handled as an error and console
message EZD1815E is generated.

TIMEOUT statement

Use the Timeout statement to define a set of timeout values, in seconds, for the
interaction between CSSMTP and the target server.

Syntax

�� Timeout Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
Timeout Parameters

}

Timeout Parameters:

AnyCmd 300

AnyCmd seconds

ConnectRetry 120

ConnectRetry seconds

DataBlock 180

DataBlock seconds
�

Chapter 30. Communications Server SMTP application 1387

�
DATACmd 120

DATACmd seconds

DataTerm 600

DataTerm seconds

InitialMsg 300

InitialMsg seconds
�

�
MAILCmd 300

MAILCmd seconds

RCPTCmd 300

RCPTCmd seconds

Parameters

AnyCmd
The length of time, in seconds, that CSSMTP waits for a response on any other
SMTP command (for example, EHLO, HELO, RSET, QUIT, and STARTTLS)
from the SMTP server.

Valid values are in the range 30 - 1 200. The default value is 300.

ConnectRetry
The length of time, in seconds, that CSSMTP waits before trying again to
connect to a target server after a failed attempt.

Valid values are in the range 30 - 1 200. The default value is 120.

DataBlock
The length of time, in seconds, that CSSMTP waits for the TCP send call to
complete while transferring a block of data to the TCP/IP stack .

Valid values are in the range 30 - 1 200. The default value is 180.

DATACmd
The length of time, in seconds, that CSSMTP waits for a response to the DATA
command from the SMTP server.

Valid values are in the range 30 - 1 200. The default value is 120.

DataTerm
The length of time, in seconds, that CSSMTP waits for a response to the final
period that terminates the mail message data from the SMTP server.

Valid values are in the range 30 - 1 200. The default value is 600.

InitialMsg
The length of time, in seconds, that CSSMTP waits for an initial response after
the connection is established with the SMTP server.

Valid values are in the range 30 - 1 200. The default value is 300.

MAILCmd
The length of time, in seconds, that CSSMTP waits for a response to the MAIL
command from the SMTP server.

Valid values are in the range 30 - 1 200. The default value is 300.

RCPTCmd
The length of time, in seconds, that CSSMTP waits for a response to the RCPT
command from the SMTP server.

Valid values are in the range 30 - 1 200. The default value is 300.

TRANSLATE statement

Use the TRANSLATE statement to define the supported code page to be used to
translate data received from the JES spool data set to ASCII for sending mail

1388 z/OS V2R1.0 Communications Server: IP Configuration Reference

messages. See the code set conversions supplied in z/OS Support for Unicode: Using
Unicode Services for details about the supported code pages.

Tip: The following POSIX variant characters are converted to ASCII using iconv
determined by the configured EBCDIC code page. The POSIX variant characters
are:

\ [] { } ^ ~ ! # | $ @ `

Syntax

��
Translate IBM-1047

Translate code_page_identifier
��

Parameters

Translate
Specifies the code page to be used for translating the spool file records. If you
do not specify this statement, the default code page is IBM-1047. See Table 104
on page 1392 for a list of supported code pages.

Results:

v If an update to the Translate statement is detected during a dynamic refresh,
CSSMTP continues to use the old translate value and a warning message is
written to the log and the console.

Restrictions: The code page must have the following characteristics:
v Defined to Unicode System Services
v An EBCDIC code page
v A single byte code page (not double byte nor multibyte)
v A translation to and from IBM-1047
v A translation to and from ISO-8859-1
v Translations must be reversible
v The environment variable _ICONV_TECHNIQUE should be left undefined

or have the value of its default LMREC.

See Table 104 on page 1392 for a list of code page identifiers.

UNDELIVERABLE statement

Use the UNDELIVERABLE statement to indicate to CSSMTP the method used for
handling undeliverable mail. See the information about common terms in z/OS
Communications Server: IP Configuration Guide more details.

Syntax

�� UNDELIVERABLE Put Braces and Parameters on Separate Lines ��

Put Braces and Parameters on Separate Lines:

{
UNDELIVERABLE Parameters

}

Chapter 30. Communications Server SMTP application 1389

UNDELIVERABLE Parameters:

DeadLetterAction Store

DeadLetterAction Store
Delete

ReturnToMailFrom Yes

ReturnToMailFrom Yes
No

�

�
DeadLetterDirectory /var/cssmtp/extwrtName/deadletter/

DeadLetterDirectory zOS_UNIX _directory_name

Parameters

DeadLetterAction
Indicates to CSSMTP the action to take when a dead letter is detected. A dead
letter is an undeliverable mail notification that cannot be returned to the
original sender or that an error report, if requested, could not be delivered to
the mail administrators. This can occur if the MAIL FROM: value is null in the
original spool file and it cannot be sent. See the information about common
terms in z/OS Communications Server: IP Configuration Guide for a
description of dead letter.

Delete
Indicates that CSSMTP should not save the dead letter to a z/OS UNIX file
system. If this option is chosen then it is recommended that you use the
report statement. See the Sysout parameter in “REPORT statement” on
page 1381 for information about recording original spool problems.

Store
Indicates that CSSMTP should store the mail message to the directory
defined in the DeadLetterDirectory parameter. Each dead letter is stored as
a separate file within the dead letter directory.

DeadLetterDirectory
The z/OS UNIX file system fully qualified directory name where CSSMTP
creates the dead letter mail message that is stored when the DeadLetterAction
parameter is set to Store. Valid values are 1 - 512 characters in length and must
begin with a slash (/) to define the fully qualified directory. The default dead
letter directory is /var/cssmtp/extWrtName/deadletter, where the extWrtName
is the name used for ExtWrtName. See the information about common terms in
z/OS Communications Server: IP Configuration Guide for a description of a
dead letter.

Result: An ending slash (/) is added to the directory name if not configured.

ReturnToMailFrom
Indicates whether CSSMTP should create an undeliverable mail notification to
be returned to the originator. The undeliverable mail notification contains the
original mail message as well as additional information indicating the reason
for the failure. This parameter does not apply to original mail messages that do
not have the originator specified on the MAIL FROM SMTP command (for
example, MAIL FROM:<>). In this case, if the original mail message cannot be
sent, it immediately becomes a dead letter.

YES
CSSMTP creates the undeliverable mail notification to be returned to the
originator with additional information regarding the reason for the failure.

1390 z/OS V2R1.0 Communications Server: IP Configuration Reference

Result: If the original spool file contains no errors other than undeliverable
errors, the spool file is deleted.

NO CSSMTP does not create the undeliverable mail notification to be returned
to the originator. If you specify this parameter, you should use the
REPORT statement with a value of sysout or admin.. See “REPORT
statement” on page 1381 for information about how to create a report that
the original mail message is undeliverable.

The action taken on the original spool file that contained undeliverable
errors is based on the value configured on the BadSpoolDisp statement.
See “BadSpoolDisp statement” on page 1372 for details.

For a description of the undeliverable status, see the information about mail
problems in z/OS Communications Server: IP Configuration Guide.

Results:

v If DeadLetterAction is set to Store:
– If the DeadLetterDirectory parameter, to set the dead letter directory, is set to

/userDirectory/deadLetterDirectory, then CSSMTP creates the userDirectory,
deadLetterDirectory, or both in the z/OS UNIX file system if they do not
already exist. The following name is the file name that would be used for the
dead letter that is stored on the configured directory. The file name,
TESTMAIL.SYS00006.Sep302008.160454.541437.1U, is constructed from the
message ID of the mail message in the original spool file with the letter U
appended and the fully-qualified host name removed. See the SMTP
command and data command information in z/OS Communications Server:
IP User's Guide and Commands for details about the Message-ID.
The following sample shows a dead letter directory (/userDirectory/
deadLetterDirectory) that contains two dead letters:

– If the configured dead letter directory already exists, then CSSMTP uses the
existing directory.

– If the directories cannot be created during parsing of the configuration file,
CSSMTP generates a configuration error.

USEREXIT statement

Use the USEREXIT statement to specify whether or not CSSMTP calls the CSSMTP
exit program to interrogate data that is sent to CSSMTP from the JES spool data
set.

Requirement: You must install a CSSMTP exit program for this function to work
correctly. For more information about the CSSMTP exit program, see “CSSMTP
user exit version 3” on page 1394.

The user exit value on MODIFY REFRESH or MODIFY USEREXIT command is not
changed until the next JES spool file is opened.

/userDirectory/deadLetterDirectory/TESTMAIL.SYS00006.Sep302008.160454.541437.1U
/userDirectory/deadLetterDirectory/TESTMAIL.SYS00006.Sep302008.160454.541999.1U

Figure 57. Code sample

Chapter 30. Communications Server SMTP application 1391

Syntax

��
USEREXIT NONE

USEREXIT NONE
VERSION2
VERSION3

��

Parameters

NONE
The CSSMTP user exit is not called. You can use the commands that are
documented in RFC 821 and RFC 2821. This is the default value.

VERSION2
The CSSMTP user exit that uses the exit facility token name
EZBTCPIPSMTPEXIT is called. Using VERSION2 allows only RFC 821 syntax
for the mail read from the JES spool data set. The RFC 2821 commands are not
accepted. The exit routine for the previous batch SMTP version continues to
function.

VERSION3
The CSSMTP user exit that uses the exit facility token name
EZATCPIPCSSMTPV3 is called. Use VERSION3 to read and to process both
RFC 821 and RFC 2821 commands from the JES spool data set.

CSSMTP environment variables
The CSSMTP_CODEPAGE_CONFIG environment variable is for Communication
Server SMTP (CSSMTP). The variable is used to set the supported EBCDIC
single-byte code page used by the configuration file to convert to EBCDIC
IBM-1047. The following code pages are supported:

Table 104. Code pages known to work with CSSMTP

Code page Description

IBM-037 USA, CANADA, BRAZIL, AND COMMON
EUROPE

IBM-273 AUSTRIA AND GERMANY

IBM-277 DENMARK NORWAY

IBM-278 FINLAND SWEDEN

IBM-280 ITALIAN

IBM-281 JAPAN

IBM-282 PORTUGAL

IBM-284 SPANISH

IBM-285 UNITED KINGDOM

IBM-297 FRENCH

IBM-500 INTERNATIONAL

IBM-871 ICELAND

IBM-1047 LATIN 1/ OPEN SYSTEM

IBM-1140 COMMON EUROPE ECECP

IBM-1141 AUSTRIA AND GERMANY ECECP

1392 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 104. Code pages known to work with CSSMTP (continued)

Code page Description

IBM-1142 DENMARK NORWAY ECECP

IBM-1143 FINLAND SWEDEN ECECP

IBM-1144 ITALIAN ECECP

IBM-1145 SPANISH ECECP

IBM-1146 UNITED KINGDOM ECECP

IBM-1147 FRENCH ECECP

IBM-1148 INTERNATIONAL ECECP

IBM-1149 ICELAND ECECP

4133 USA

4369 AUSTRIA AND GERMANY

4370 BELGIUM

4371 BRAZIL

4373 DENMARK NORWAY

4374 FINLAND SWEDEN

4376 ITALY

4378 PORTUGAL

4380 LATIN

4381 UNITED KINGDOM

4393 FRANCE

4596 LATIN AMERICA

4967 ICELAND

5143 LATIN OPEN SYS

8229 INTERNATIONAL

8692 AUSTRIA AND GERMANY

12788 ITALY

16421 CANADA

16884 FINLAND SWEDEN

20517 PORTUGAL

20980 DENMARK NORWAY

24613 INTERNATIONAL

25076 DENMARK NORWAY

29172 BRAZIL

32805 JAPAN LATIN

33268 UNITED KINGDOM / PORTUGAL

41460 SWISS

45556 SWISS

49652 BELGIUM

53748 INTERNATIONAL

61696 GLOBAL USE

61711 GLOBAL USE

Chapter 30. Communications Server SMTP application 1393

Table 104. Code pages known to work with CSSMTP (continued)

Code page Description

61712 GLOBAL USE

See the code set converters supplied in z/OS Support for Unicode: Using Unicode
Services.

Result: This code page is not used for JES spool files. See “TRANSLATE
statement” on page 1388 for JES code page information. The default is EBCDIC
IBM-1047.

CSSMTP user exit version 3
Use the Communication Server SMTP (CSSMTP) exit to check, and subsequently
accept or reject, outbound mail from the JES spool data set. For example, you can
code an exit to check the MAIL FROM: string on outbound mail.

CSSMTP uses the Dynamic Exit Facility (CSVDYNEX macro) provided by MVS.
See z/OS MVS Programming: Assembler Services Guide for more information.

The USEREXIT statement in the CSSMTP configuration, along with the MODIFY
CSSMTP,USEREXIT command, defines which user exit is called by CSSMTP. For
compatibility with the SMTP server, VERSION2 is provided. VERSION3 is
provided to take advantage of the additional features provided by CSSMTP.

A sample VERSION3 user exit is included in member CSSMTPV3 in SEZAINST.
The name of the macro is EZAYSMTP and the macro is located in SEZANMAC.

Table 105 provides a definition for the VERSION2 and VERSION3 user exits.

Table 105. USEREXIT comparisons

Feature SMTP server exit VERSION2 VERSION3

Dynamic Exit ExitName EZBTCPIPSMTPEXIT EZBTCPIPSMTPEXIT EZATCPIPCSSMTPV3

Macro EZBZSMTP.MACRO EZBZSMTP.MACRO EZAYSMTP.MACRO

RFC commands supported RFC 821 RFC 821 RFC 2821

Sample program SMTPEXIT.SAMPLE SMTPEXIT CSSMTPV3

Parameter list variables

Feature SMTP server exit VERSION2 VERSION3

EZBPACTN 1 - 18 1 -18 1 - 20

EABPBUFF Pointer to data buffer or 0 Pointer to data buffer or 0 Pointer to data buffer or 0

EZBPCNID 1 - 256, or 257 257 257

EZBPDLEN Length of data buffer or 0 Length of data buffer or 0 Length of data buffer or 0

EZBPIPV4 IP address or 0 Zero Zero

EZBPTOKN Zero or pointer to SAF
Token

Pointer to SAF token Pointer to SAF token

EZBPUSER User token from EZBAINIT
call

User token from EZBAINIT
call

User token from EZBAINIT
call

EZBPVERS 2 2 3

Return codes

1394 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 105. USEREXIT comparisons (continued)

Feature SMTP server exit VERSION2 VERSION3

Feature SMTP server exit VERSION2 VERSION3

EZBRAGN (call exit again) Return code 0 Return code 0 Return code 0

EZBRACC (do not call exit
again)

Return code 4 Return code 4 Return code 4

EZBRREJ (Reject the JES
spool file)

Return code 8 Return code 8 Return code 8

EZBRMAIL(Reject a mail
from spool file)

NA NA Return code 12

Action code (value) passed to exit routines in EZBPACTN

Feature SMTP server exit VERSION2 VERSION3

EZBAINIT (1) Yes Yes Yes

EZBATERM (2) Yes Yes Yes

EZBADATA (3) Yes Yes Yes

EZBAEXPN (4) Yes No (command is not
implemented)

No (command is not
implemented)

EZBAHELO (5) Yes Yes Yes

EZBAHELP (6) Yes No (command is not
implemented)

No (command is not
implemented)

EZBAMAIL (7) Yes Yes Yes

EZBANOOP (8) Yes No (command is not
implemented)

No (command is not
implemented)

EZBAQUEU (9) Yes No (command is not
implemented)

No (command is not
implemented)

EZBAQUIT (10) Yes Yes Yes

EZBARCPT (11) Yes Yes Yes

EZBARSET (12) Yes Yes Yes

EZBATICK (13) Yes No (command is not
implemented)

No (command is not
implemented)

EZBAVERB (14) Yes No (command is not
implemented)

No (command is not
implemented)

EZBAVRFY (15) Yes No (command is not
implemented)

No (command is not
implemented)

EZBADBUF (16) Yes Yes Yes

EZBAEODB (17) Yes Yes Yes

EZBACONN (18) Yes Yes Yes

EZBAEHLO (19) NA No Yes

EZBASTAR (20) NA No Yes

If the USEREXIT statement specifies VERSION2, then only RFC 821 syntax for the
mail read from JES spool files is allowed. If the USEREXIT statement specifies
VERSION3 or NONE, then RFC 821 and RFC 2821 syntax for the mail read from
JES spool file is allowed. See “USEREXIT statement” on page 1391 for more
information.

Chapter 30. Communications Server SMTP application 1395

Information about programming the SMTPEXIT using VERSION2 can be found in
“Steps for using the SMTP server exits” on page 1319.

CSSMTPV3 is provided as a programming guide to aid in the implementation of
the local policies. It can be found in SEZAINST. If using the CSSMTP exit, a name
token (EZATCPIPCSSMTPV3) must be established in SYS1.PARMLIB(PROGxx). See
z/OS MVS Initialization and Tuning Guide for more information.

You can use the SETPROG EXIT command to activate and deactivate
EZATCPIPCSSMTPV3 exit routines. Seez/OS MVS System Commands for more
information.

When you design the CSSMTP exit, consider some of the following design points.
Code the exit as efficiently as possible; take all efforts to avoid excessive processing
or waiting (for example. I/O operations and DNS resolver calls, while within the
exit). Efforts to reject mail might be more efficient if extensive scanning of the data
portion of the mail message can be avoided. The exit can allow processing to
continue or reject the entire mail message and does not have the ability to reject
individual segments of a mail message. The mail message contents cannot be
changed in any way by the exit. The exit can accept a mail message at any point
and disable further exit calls for that mail message. Only commands that are
currently implemented by the CSSMTP program and that are syntactically correct
are passed to the exit program.

Read and understand RFCs 2505 and RFC 2635 before undertaking this coding
effort. More information about CSSMTP commands and standards are documented
in RFCs 2821 and 2822.

The CSSMTP dynamically determines if a CSSMTP exit program exists. This
determination is based upon the CSSMTP exit program association with the name
token EZATCPIPCSSMTPV3 using the MVS SETPROG command. If you determine
that the exit program needs to be called to interrogate data coming from the JES
spool data set, follow these steps:

This topic describes how to call the exit program to interrogate data coming from
the JES spool data set.

Perform the following steps to call the exit program to interrogate data coming
from the JES spool data set:
1. Add code to the user exit program so that the program is compatible with the

JES connection.
Rules:

v The connection ID is always the value 257.
v The EZBPIPV4 field that represents the remote IP address is always 0 for the

JES connection.
For SAF token information, the EZBPTOKP field contains the address of the
token. The SAF token length is 80 bytes and the SAF token version is 1. The
SAF token provides information about the submitting user ID and the
submitter node of the JES data. This data can be compared to the sender
information about the MAIL FROM: string. For more information about what is
provided in the SAF token, see the ICHRUTKN information in z/OS Security
Server RACF Data Areas.

1396 z/OS V2R1.0 Communications Server: IP Configuration Reference

2. Compile the user exit with the version 3 copy of the EZAYSMTP DSECT. This
action recognizes the changes in the parameter list.

3. Write the exit in Assembler language. You must use standard z/OS Assembler
entry and exit linkage. See z/OS MVS Programming: Assembler Services Guide
for the linkage conventions.

A return code of 8 or 12 results in a reply message that is listed in the log and in
the error report. The JES spool file is then subject to the action of the BadSpoolDisp
statement. See “BADSPOOLFILEID statement” on page 1327 for details. See
“Registers at exit” on page 1400 for details about exit return codes.

The user exit is passed by the generated undeliverable mail notification and the
error report.

Restriction: This exit must be reentrant and amode 31 in an authorized library.

The exit is invoked with the settings shown in Table 106.

Table 106. CSSMTP user exit settings

Exit Description

Authorization Problem state

Dispatchable unit mode Task

Cross memory mode PASN=HASN

Amode 31-bit

ASC mode Primary address space control (ASC) mode

Interrupt status Enabled for interrupts

Locks Unlocked

Control parameters In the caller's primary address space

Registers at entry
On entry to the exit, the register contents are:

Register 0
Used as a work register by the system.

Register 1
Address of the exit's input parameter list. See Table 107 on page 1398.

Registers 2-12
Unassigned.

Register 13
Address of a 36-word save area.

Register 14
Return address.

Register 15
Entry point address of the exit routine.

The exit input parameter list contains the information shown in Table 107 on page
1398. An assembler macro is available that contains a DSECT describing this area.

Chapter 30. Communications Server SMTP application 1397

The name of the macro is EZAYSMTP and the macro is located in SEZANMAC.
The macro enables an optional label but has no operands. The macro provides
symbolic names for the four return codes and the twenty action codes. The labels
are as shown in Table 107.

Table 107. CSSMTP exit input parameter list

Label name Width or value Description Notes

Parameter list variables

EZAYSMTP DSECT Name

EZBPVERS One fullword Version number A word containing
the version number
three.

EZBPACTN One fullword Action code An action code
describing the buffer
contents (if any).

EZBPUSER One fullword Returned Reg15 of
initialization call

Contains the user
supplied token from
the EZBAINIT call.

EZBPCNID One fullword Connection ID JES spool data
always set to 257.

EZBPTOKP One fullword Address of SAF
(security) token

SAF information is
always returned.
CSSMTP sets this
field to a 31-bit
address that points to
the SAF (security)
token information.
See ICHRUTKN

Two fullwords Reserved Reserved

EZBPIPV4 One fullword Reserved Always 0.

EZBPDLEN One fullword Length of data in
buffer

A word containing
the actual length of
the data in the buffer.
If the buffer length is
meaningless for the
action code, the
length is set to 0.

EZBPBUFF One fullword Buffer address A word containing a
31-bit address that
points to the actual
buffer. If the buffer
length is zero, do not
use this parameter.

Return codes

Label name Width or value Description Notes

EZBRAGN 0 Return code to
continue

The exit routine is
called again.

EZBRACC 4 Return code to accept
mail

The exit routine is
not called again until
the start of the next
mail event.

1398 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 107. CSSMTP exit input parameter list (continued)

Label name Width or value Description Notes

EZBRREJ 8 Return code to reject
entire JES spool file

Mail already
accepted are
processed and sent.

EZBRMAIL 12 Return code to reject
the current mail

If a mail is in
progress, it is not
sent.

Action codes

Label name Width or value Description Notes

EZBAINIT 1 Initialization call Buffer is empty, a
return token is
expected in R15 and
saved in the
EZBPUSER field.

EZBATERM 2 Termination call The application
shutting is down and
exit return code is
ignored. This call
(and all others) might
not occur during
abnormal
termination.

EZBADATA 3 RFC 2821 DATA
command

EZBAEXPN 4 RFC 2821 EXPN
(expand) command

This action code is
never passed to the
CSSMTP exit

EZBAHELO 5 RFC 2821 HELO
(hello) command

EZBAHELP 6 RFC 2821 HELP
command

This action code is
never passed to the
CSSMTP exit.

EZBAMAIL 7 RFC 2821 MAIL
command

EZBANOOP 8 RFC 2821 NOOP
command

This action code is
never passed to the
CSSMTP exit.

EZBAQUEU 9 RFC 2821 QUEU
(queue) command

This action code is
never passed to the
CSSMTP exit.

EZBAQUIT 10 RFC 2821 QUIT
command

EZBARCPT 11 RFC 2821 RCPT
(recipient) command

EZBARSET 12 RFC 2821 RSET
(Reset) command

EZBATICK 13 IBM SMTP TICK
command

This action code is
never passed to the
CSSMTP exit.

Chapter 30. Communications Server SMTP application 1399

Table 107. CSSMTP exit input parameter list (continued)

Label name Width or value Description Notes

EZBAVERB 14 IBM SMTP VERB
command

This action code is
never passed to the
CSSMTP exit.

EZBAVRFY 15 RFC 821 VRFY
command

This action code is
never passed to the
CSSMTP exit.

EZBADBUF 16 Data buffer Data buffer of
approximately 1024
bytes of data or less.
The data buffers are
untranslated.

EZBAEODB 17 End of data buffers End of data marker
This is the last
chance to reject this
mail message.

EZBACONN 18 End of connection End of file for JES
spool data.

EZBAEHLO 19 RFC 2821 EHLO
command

EZBASTAR 20 RFC 2821 STARTTLS
command

There are two control invocations of the CSSMTP user exit. One for initialization
and the other for termination. On return from the initialization call, the content of
register 15 is treated as a 4-byte user token that is returned on all other exit
invocations. See Table 107 on page 1398 for more information. The user token is
not used by CSSMTP but is only passed on subsequent calls to allow a re-entrant
exit to have static data (using getmain or some other method). Certain data sets
might be read during the initialization call and tables of known spamming Internet
addresses might be constructed at this time for later use. The termination call
allows report generation or any other clean-up activity that the exit might do prior
to the stopping of CSSMTP.

Registers at exit
Upon return from Communication Server SMTP (CSSMTP) exit processing, the
register contents must be one of the types listed in Table 108.

Table 108. Register contents upon return from CSSMTP exit processing

Register Contents

0 - 14 Not applicable

1400 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 108. Register contents upon return from CSSMTP exit processing (continued)

Register Contents

15 One of the following return codes:

0 EZBRAGN - Continue to call the
exit

4 EZBRACC - Accept the current
command or data, but do not call
the exit again until the start of the
next mail message.

8 EZBRREJ - Reject the current JES
spool file. Any mail already
accepted is processed.

12 EZBRMAIL - Reject the current mail
message in progress.

Return codes that are not valid are converted to the value 0, and processing
continues as if the return code was EZBRAGN.

The buffer contents for action codes 3 through 15 or 19 through 20 contain the
CSSMTP command. See RFC 2821 for exact syntax and format.

Unknown commands are rejected by CSSMTP and the exit is not called.

Guideline: The CSSMTP command can be uppercase, lowercase, or mixed case.

Interaction between CSSMTP and user exit program
While processing a JES spool file, the HELO, EHLO, MAIL, RSET and QUIT
commands reset the last return code to EZBRAGN, which allows the DATA, RCPT,
data buffer lines, and the end of mail message line to be processed. After a
EZBRACC or EZBRMAIL code is returned from the user exit, the exit is not called
again until the next command that resets the last return code is processed. If the
EZBRREJ code is returned from the user exit, the spool file is not read again.

Table 109 shows the action code and return code results.

Table 109. Action code and return code results

Action
(value)

Last return
code

RC=
EZBRAGN

RC=
EZBRACC

RC=
EZBRREJ

RC=
EZBRMAIL

EZBAINIT (1) Ignored Ignored Ignored Ignored Ignored

EZBATERM
(2)

Ignored Ignored Ignored Ignored Ignored

EZBADATA
(3)

Call if
EZBRAGN

Continued Continued End spool file Reject mail

EZBAEXPN
(4)

This command is not implemented

EZBAHELO
(5)

Reset to
EZBRAGN

Continued Continued End spool file Ignored

EZBAHELP
(6)

This command is not implemented

Chapter 30. Communications Server SMTP application 1401

Table 109. Action code and return code results (continued)

Action
(value)

Last return
code

RC=
EZBRAGN

RC=
EZBRACC

RC=
EZBRREJ

RC=
EZBRMAIL

EZBAMAIL
(7)

Reset to
EZBRAGN

Continued Continued End spool file Reject mail

EZBANOOP
(8)

This command is not implemented

EZBAQUEU
(9)

This command is not implemented

EZBAQUIT
(10)

Reset to
EZBRAGN

Continued Continued End spool file Ignored

EZBARCPT
(11)

Call if
EZBRAGN

Continue Continue End spool file Reject mail

EZBARSET
(12)

Call if
EZBRAGN

Continue Continue End spool file Ignored

EZBATICK
(13)

This command is not implemented

EZBAVERB
(14)

This command is not implemented

EZBAVRFY
(15)

This command is not implemented

EZBADBUF
(16)

Call if
EZBRAGN

Continue Continue End spool file Reject mail

EZBAEODB
(17)

Call if
EZBRAGN

Continue Continue End spool file Reject mail

EZBACONN
(18)

Ignored Ignored Ignored Ignored Ignored

EZBAEHLO
(19)

Reset to
EZBRAGN

Continued Continue End spool file Ignored

EZBASTAR
(20)

The STARTTLS command is processed.

1402 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 31. TIMED daemon

The TIMED daemon is used to provide the time in response to UDP requests.
TIMED gives the time in seconds since midnight January 1, 1900. You can start
TIMED from the z/OS shell or as a started procedure.

This topic contains the following information:
v “Starting TIMED from z/OS”
v “Starting TIMED as a procedure”

Requirement: TCP/IP must be started prior to starting TIMED.

Guideline: TIMED is different from the TIME daemon available as an internal
daemon of INETD. INETD cannot be used to start and perform as a listener for
TIMED.

Starting TIMED from z/OS
TIMED is installed in the /usr/lpp/tcpip/sbin/ directory.

To start the TIMED server from the command line, type the timed command as
follows:

timed [-l] [-p port]

The following parameters used for the timed command:

-l Logs all the incoming requests and responses to the system log. Logged
information includes the IP address of the requester.

-p port
Uses the specified port. You can specify the port in which requests are to
be received.

Starting TIMED as a procedure
The following sample shows how to start TIMED as a procedure:

© Copyright IBM Corp. 2000, 2015 1403

//TIMED PROC
//*
//* 5694-A01 (C) Copyright IBM Corp. 1997, 2002
//* Licensed Materials - Property of IBM
//* This product contains "Restricted Materials of IBM"
//* All rights reserved.
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//* See IBM Copyright Instructions.
//*
//* Function: Time server start procedure
//* SMP/E distribution name: EZATTMDP
//*
//TIMED EXEC PGM=TIMED,REGION=0K,TIME=NOLIMIT,
// PARM=’POSIX(ON),ALL31(ON),TRAP(OFF)/’
//*STEPLIB DD DISP=SHR,DSN=TCP.SEZALOAD,
//* VOL=SER=,UNIT=
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//SYSIN DD DUMMY
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//CEEDUMP DD SYSOUT=*
//SYSABEND DD SYSOUT=*
// PEND

Figure 58. Starting TIMED as a procedure

1404 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 32. SNTP daemon

You can start the SNTP daemon (SNTPD) from the z/OS shell or as a started
procedure.

This topic contains the following information:
v “Starting SNTPD from z/OS”
v “Starting SNTPD as a procedure” on page 1406

Rule: TCP/IP must be started prior to starting SNTPD.

SNTPD uses 123 as the default UDP port. When the low number UDP ports are
restricted (RESTRICTLOWPORTS parameter was specified on the UDPCONFIG
profile statement for the TCP/IP stack), reserve the port used by SNTPD by
specifying a PORT profile statement with the port number and the SNTPD started
procedure name. To further restrict access to the SNTPD port, specify the SAF
parameter on the PORT profile statement. See “PORT statement” on page 257 for
more information.

Restriction: SNTPD cannot be started from INETD.

Starting SNTPD from z/OS
SNTPD is installed in the /usr/sbin/sntpd directory.

To start the SNTP server from the z/OS shell command line, type sntpd & on the
command line. This starts sntpd and sends it to the background.

The following optional parameters are used for the sntpd command:

-d Enables debugging. Debug messages go to syslogd daemon.

-df pathname
Enables debugging. Debug messages go to specified file location.

-pf pathname
Specifies z/OS UNIX path for process ID file.

-b nnnnn
Acts in broadcast mode. This parameter sends local broadcasts on all
interfaces every nnnnn seconds. The valid range for -b is 1 - 16284.

-m nnnnn
Acts in multicast mode. Sends multicast updates (TTL=1) on all interfaces
every nnnnn seconds. The valid range for -m is 1 - 16284.

-s n Use n as the stratum level in all replies sent by the server. The valid range
for n is 1 - 15. If -s is not specified or an invalid value is specified, the
default stratum level of 1 is used. The stratum level indicates the relative
accuracy of the local clock compared to the clocks of other SNTP servers in
the network. The value 1 is the most accurate and 15 is the least accurate.

Guideline: The SNTP server always responds to client requests (unicast mode),
regardless if -b or -m start options are specified.

© Copyright IBM Corp. 2000, 2015 1405

Starting SNTPD as a procedure
The following sample [shipped as SEZAINST(SNTPD)] shows how to start SNTPD
as a procedure:

//SNTPD PROC
//*
//* Sample procedure for the Simple Network Time Protocol (SNTP)
//*
//* z/OS Communications Server Version 1 Release 13
//* SMP/E Distribution Name: SEZAINST(EZASNPRO)
//*
//* Copyright: Licensed Materials - Property of IBM
//* 5694-A01
//* Copyright IBM Corp. 2002, 2011
//*
//* Status: CSV1R13
//*
//SNTPD EXEC PGM=SNTPD,REGION=4096K,TIME=NOLIMIT,
// PARM=’-d’
//SYSPRINT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//SYSIN DD DUMMY
//SYSERR DD SYSOUT=*
//SYSOUT DD SYSOUT=*,DCB=(RECFM=F,LRECL=132,BLKSIZE=132)
//CEEDUMP DD SYSOUT=*
//SYSABEND DD SYSOUT=*
//*

Figure 59. Starting SNTPD as a procedure

1406 z/OS V2R1.0 Communications Server: IP Configuration Reference

Chapter 33. Remote execution server

This topic discusses the TSO remote execution server and contains the following
information:
v “Remote execution server cataloged procedure (RXPROC)”
v “RXUEXIT user exit sample” on page 1411
v “z/OS remote execution server” on page 1413

The TSO remote execution server enables TSO commands to be submitted from a
remote host and executed on z/OS.

Remote execution server cataloged procedure (RXPROC)
The following shows the Remote execution cataloged procedure (RXPROC):
//RXSERVE PROC MODULE=’RSHD’,
// EXIT=,
// TSOPROC=IKJACCNT,
// MSGCLASS=H,
// TSCLASS=A,
// MAXCONN=512,
// PREFIX=,
// PURGE=Y,
// IPV6=Y,
// SECLABEL=Y,
// TRACE=
//*
//* z/OS Communications Server
//* SMP/E Distribution Name: EZAEB02V
//*
//* Copyright: Licensed Materials - Property of IBM
//* "Restricted Materials of IBM"
//* 5650-ZOS
//* Copyright IBM Corp. 1991, 2013
//* US Government Users Restricted Rights -
//* Use, duplication or disclosure restricted by
//* GSA ADP Schedule Contract with IBM Corp.
//* Status = CSV2R1
//*
//* Change Activity =
//* CFD List:
//* $01=PN64129 TCPV3R2 941207 JRC: Change defaults and descriptions
//* for MSGCLASS and TSCLASS.
//* $02=PN73459 TCPV3R2 950831 JB: Correct descriptions and defaults
//* for MSGCLASS and TSCLASS.
//*
//* Flag Reason Release Date Origin Description
//* ---- -------- -------- ------ -------- -----------------------
//* $J1= D310.37 CSV2R10 990818 IT97HEIN: REXEC enhancemants:
//* added the PREFIX and
//* PURGE option
//* $J2= MV20462 CSV2R10 991209 DINAKAR : Allow JOB parm
//* abbreviations
//* $N1= MO00080 CSV1R4 020211 CHAMBERS: Put JOB parm abbreviations
//* in EXEC statement
//* $Q1= MV27375 D316 021231 CHAMBERS: added the IPV6 and
//* SECLABEL options
//* $V1= D154901 REBASE 111207 VALLER: Correct PREFIX= comment
//* End CFD List:
//*
//* Supported PARMS (separated by commas - ’,’) are:

© Copyright IBM Corp. 2000, 2015 1407

|
|

|

|

//* EXIT=exitmod - Name of an exit routine to alter JOB and
//* EX=exitmod EXEC parameters for submission of TSO batch
//* jobs submitted for remote commands.
//* EXIT=NOEXIT can be specified when no exit
//* is required.
//* TSOPROC=proc - The name of the TSO batch procedure. The
//* TSO=proc default is IKJACCNT, and it can be modified
//* in the exit routine specified with the EXIT
//* parameter.
//* MSGCLASS=c - The MSGCLASS parameter for TSO batch jobs
//* MSG=c submitted to execute remote commands.
//* Specify a HELD class for this parameter.@02A
//* The default is H. The parameter is not @02C
//* to be altered by the exit routine. @01A
//* TSCLASS=c - The SYSOUT class for the SYSTSPRT DD for
//* TSC=c submitted jobs. Specify a different @02C
//* class than the MSGCLASS parameter. The
//* default is A. @01A
//* PURGE=c - The values for purge are Y or N. Y @J1A
//* PUR=c indicates the job output from the jobs @J1A
//* submitted by the server should be @J1A
//* purged immediately after the job @J1A
//* execution and N indicates that the job @J1A
//* outout will be held in the output queue.
//* IPV6=c - The values for ipv6 are Y or N. Y @Q1A
//* indicates the server should attempt @Q1A
//* communication over an IPv6 network. @Q1A
//* Specifying N prevents IPv6-only clients @Q1A
//* from communicating with this server. @Q1A
//* This is useful for installations that @Q1A
//* have not migrated user exits to @Q1A
//* accomodate IPv6 addresses. @Q1A
//* SECLABEL=c - The values for seclabel are Y or N. Y @Q1A
//* SL=c indicates the server should attempt @Q1A
//* to add a security label (if one exists) @Q1A
//* to the job card following the message @Q1A
//* class parameter. Specifying N prevents @Q1A
//* the server from adding a security label @Q1A
//* to the job card. @Q1A
//* TRACE=options - The following options are supported:
//* TR=options LOG | NOLOG: controls writing trace records
//* on SYSPRINT. NOLOG may be abbreviated as
//* NOL.
//* SEND | NOSEND: controls sending trace
//* records to the client. SEND may be
//* abbreviated as SEN and NOSEND as NOS.
//* CLIENT=client | ALLCLIENTS: selects a client
//* host for which trace records are produced,
//* or ALLCLIENTS to trace all clients. CLIENT
//* may be abbreviated as CLI and ALLCLIENTS as
//* ALLC.
//* RESET: sets the options to NOLOG,NOSEND,
//* ALLCLIENTS. RESET may be abbreviated as RE.
//* If more than one option is specified,
//* enclose the options in parentheses.
//* These parameters can also be changed with a MODIFY command.
//*
//* The following parameters may not be changed after START. @J1A
//* MAXCONN=n - The maximum number of open sockets at @J1A
//* MAX=n any one time. Usually each client @J1M
//* requires 2 sockets while @J1M
//* the command is being processed @J1M
//* and the output is being returned. The @J1M
//* default and minimum value is 512. If a @J1M
//* value of less than 512 is specified, @J1M
//* the default will be used. @J1M
//* PREFIX=xxxx - A four-character value to be used as @J1A

1408 z/OS V2R1.0 Communications Server: IP Configuration Reference

//* PRE=xxxx the first four characters in the @J1A
//* jobname of the jobs that are submitted @J1A
//* by the server. @J1A
//* The remaining characters of the jobname @J1A
//* will be a sequential number between 1 @J1A
//* and 9999. @V1C
//*
//RXSERVE EXEC PGM=&MODULE,PARM=(’EX=&EXIT,TSO=&TSOPROC’, @N1C
// ’MSG=&MSGCLASS,TSC=&TSCLASS’, @N1C
// ’MAX=&MAXCONN,PRE=&PREFIX,TR=&TRACE’, @J1C@N1C
// ’PUR=&PURGE,IPV6=&IPV6,SL=&SECLABEL’), @J1A@N1C@Q1C
// REGION=7500K,TIME=1440
//*
//* The C runtime libraries should be in the system’s link
//* list or add them to the STEPLIB definition here. If you
//* add them to STEPLIB, they must be APF authorized.
//*
//STEPLIB DD DSN=TCPIP.SEZATCP,DISP=SHR
//*
//* SYSPRINT contains runtime diagnostics from RSHD. It can be
//* a data set or SYSOUT.
//*
//SYSPRINT DD SYSOUT=*
//*
//* The SYSMDUMP DD statement will cause MVS to provide
//* an IPCS readable dump for ABENDs.
//*
//*SYSMDUMP DD DISP=SHR,DSN=your.dump.data.set
//*
//* SYSTCPD explicitly identifies which data set is to be
//* used to obtain the parameters defined by TCPIP.DATA
//* when no GLOBALTCPIPDATA statement is configured.
//* See the IP Configuration Guide for information on
//* the TCPIP.DATA search order.
//* The data set can be any sequential data set or a member of
//* a partitioned data set (PDS).
//*
//SYSTCPD DD DSN=TCPIP.SEZAINST(TCPDATA),DISP=SHR

Remote execution server parameters
The system parameters required by the Remote Execution server are passed by the
PARM operand of the EXEC statement in the Remote Execution cataloged
procedure. Update the following parameters as required by your installation:

EX= or EXIT=
Name of a user exit routine to inspect and alter JOB and EXEC parameters
prior to submission of TSO batch jobs initiated by remote commands.

IPV6=
Y or N, indicating whether the server should attempt communication over an
IPv6 network. If this option is not specified, the server attempts IPv6
communication. Specifying N for this option prevents IPv6-only clients from
communicating with this server.

Tip: This option is useful for installations that have not migrated user exits to
accommodate IPv6 addresses.

Figure 60. Remote execution cataloged procedure (RXPROC)

Chapter 33. Remote execution server 1409

|

PRE= or PREFIX=
A four-character value used as the first four characters in the job name of jobs
that are submitted. The remaining characters of the job name is a sequential
number in the range of 1 - 9999.

PUR= or PURGE=
Y or N, indicating whether a job submitted by the server should be purged
immediately after execution or held in the output queue.

TSO= or TSOPROC=
The name of the TSO batch procedure. The default is IKJACCNT. The name
IKJACCNT can be modified in the exit routine specified with the EXIT
parameter.

MSG= or MSGCLASS=
The MSGCLASS parameter for TSO batch jobs submitted to execute remote
commands. The default is H, which points to a HELD output class.

Restrictions:

v This parameter must not be altered by the exit routine.
v For JES3 users, the HELD output class needs to be defined as a HELD

output class for external writer.

TSC= or TSCLASS=
The SYSOUT class for the SYSTSPRT DD statement for submitted jobs. The
default is A.

Restriction: For JES3 users, the HELD output class needs to be defined as a
HELD output class for external writer.

MAX= or MAXCONN=
The maximum number of open sockets at any one time. Usually, each client
requires 2 sockets while the command is being processed and the output is
being returned. The minimum acceptable value is 512. This is also the default.

TR= or TRACE=
The trace options that are to be in effect for the Remote Execution server.

Rule: If more than one trace parameter is specified, enclose the parameters in
parentheses.

LOG
Specifies trace records written to SYSPRINT.

NOL= or NOLOG
Specifies no trace records written to SYSPRINT.

SEN= or SEND
Specifies trace records sent to the client.

NOS= or NOSEND
Specifies no trace records sent to the client.

CLI= or CLIENT=client
Specifies a specific client host for which trace records are to be produced.

ALLC= or ALLCLIENTS
Specifies that trace records are to be produced for all clients.

RE= or RESET
Sets the trace options to NOLOG, NOSEND, ALLCLIENTS.

SL= or SECLABEL=
Y or N, indicating whether the server should attempt to add a security label to

1410 z/OS V2R1.0 Communications Server: IP Configuration Reference

the job card. If this option is not specified, the server attempts to add a
security label to the job card. If Y is specified for this option, the server adds a
security label (if one exists) to the job card following the message class
parameter. For more information about the multilevel security environment
and configuring z/OS Communications Server in that environment, see the
multilevel security information in the z/OS Communications Server: IP
Configuration Guide.

Use the MODIFY command to dynamically change all but the following
parameters:
v MAXCONN
v PREFIX
v IPv6
v SECLABEL

Tip: All parameters can now be abbreviated. For example, EXIT can be abbreviated
to EX.

RXUEXIT user exit sample
The following user exit is shipped as a sample in the RXUEXIT member of the
SEZAINST data set:
**
*
* Communications Server IP
*
* Name: RXUEXIT
*
* SMP/E Distribution Name: EZAEBRXU
*
* Function: This exit will add a CLASS parameter to the JOB
* statement submitted by the REXECD server in CS/390.
*
*
* Copyright: Licensed Materials - Property of IBM
*
* "Restricted Materials of IBM"
*
* 5694-A01
*
* Copyright IBM Corp. 1977, 2008
*
* US Government Users Restricted Rights -
* Use, duplication or disclosure restricted by
* GSA ADP Schedule Contract with IBM Corp.
*
* Status: CSV1R10
*
*
* Interface: Parameter list (R1 points to it on entry):
*
* +0: A pointer to a mixed AF_INET or AF_INET6 address
* structure
* +0: (2 bytes) Address Family AF_INET, or AF_INET6.
* +2: (2 bytes) Server port.
* +4: (4 or 16 bytes) Client AF_INET or AF_INET6 IP
* address.
*
* +4: Pointer to JOB card parameters (up to 1024
* characters, terminated by a X’00’). This may be
* modified by the exit routine. It is set to

Chapter 33. Remote execution server 1411

* "userid USER=userid,[PASSWORD=passwd,
*]MSGCLASS=msgclass" at entry, where ’msgclass’
* is as specified in the deamon parameters, and
* and ’userid’ and ’passwd’ are as received from
* the client.
*
* +8: Pointer to EXEC card parameters (up to 256
* characters, terminated by a X’00’). This may be
* modified by the exit routine. It is set to the
* procedure specified on the PROC parameter, or the
* default IKJACCNT, at entry.
*
* +C: Pointer to JES control buffer (up to 256 characters,
* terminated by a X’00’). This may be modified by the
* exit routine. The contents are inserted into the
* JCL stream following the JOB card and before the
* EXEC card.
*
* The EXEC and JES buffer contents are written
* directly to the internal reader without being parsed.
* The buffer contents must provide line seperation by
* including a NL or CRLF as required.
*
* Logic: The typical contents of the JOB statement buffer
* are; userid,USER=userid,PASSWORD=password,
* MSGCLASS=H,SECLABEL=seclabel
*
* The JOB statement buffer is 1024 bytes in length.
* The contents of the buffer are null terminated.
* If the buffer contents are altered, the user must
* ensure they are null terminated (one byte x’00’)
* and that the total length including termination
* byte does not exceed the buffer length.
*
* The JES control statement buffer is 256 bytes in
* length and the contents are null terminated.
*
* Abends: - none -
*
* Returncode: RC = 0
*
**
PARMS DSECT
PTRINET DC F’0’ *-> AF-INET or AF-INET6 socket
* address
PTRJOBP DC F’0’ *-> Job statement parameters
PTREXECP DC F’0’ *-> EXEC statement parameters
PTRJES DC F’0’ *-> JES control buffer
*
BUFSIZE EQU 1024 *JOB statement buffer size
*
.* RXUEXIT INIT ’REXECD add class parameter to JOB statement’
.* *
RXUEXIT CSECT Establish the RXUEXIT csect
RXUEXIT AMODE 31
RXUEXIT RMODE ANY

USING RXUEXIT,12 Establish code addressability
STM 14,12,12(13) Save the caller’s registers
LR 12,15 Setup the local base register
LR 2,1 *Parm pointer
USING PARMS,2 *Parameter addressability
L 4,PTRJOBP *-> Job card parameters
LR 5,4 *-> Start of buffer
LA 6,1 *Scan 1 byte at a time
LA 7,BUFSIZE(5) *-> First byte after buffer
BCTR 7,0 *-> Last byte to scan

SCANLOOP EQU *

1412 z/OS V2R1.0 Communications Server: IP Configuration Reference

CLI 0(5),0 *Is this string termination ?
BE GOTEND *- Yes
BXLE 5,6,SCANLOOP *Continue scan for term

* --
* If string is not null terminated, return without altering
* --

B RETURN *Should not happen.
GOTEND EQU *

LR 6,5 *address of null byte
SR 5,4 *L’job parameter statements
LA 5,L’CLASS(5) *New parameter length
CH 5,=AL2(BUFSIZE) *Do we exceed buffer size?
BNH LENOK *- No, there is room enough

* --
* String length would exceed buf size so return without altering
* --

B RETURN *Return without modification
*
LENOK EQU *

MVC 0(L_CLASS,6),CLASS *Move class statement to buff
L 6,PTRJES *Get address of JES buffer
MVC 0(L_JES2,6),JES2CNTL *Move JES2 control to buffer

RETURN EQU *
LM 14,12,12(13) Restore the registers
LA 15,0(0,0) Load the return code
BR 14 Return

*
LTORG

*
CLASS DC C’,CLASS=A’ *Class statement

DC X’00’ *null termination byte
L_CLASS EQU *-CLASS
*
JES2CNTL DC C’/*JOBPARM SYSAFF=ANY’ *JES2 system affinity

DC X’00’ *null termination byte
L_JES2 EQU *-JES2CNTL
*
JES3CNTL DC C’//*MAIN SYSTEM=(MAIN1)’ *JES3 main assignment

DC X’00’ *null termination byte
L_JES3 EQU *-JES3CNTL
*

END

z/OS remote execution server
The z/OS UNIX System Services remote execution servers, orexecd and orshd,
allow UNIX commands to be submitted from a remote host and executed on z/OS.

z/OS UNIX System Services REXECD command (orexecd)
The following syntax is used in the /etc/inetd.conf file to define the arguments
used to invoke the orexecd command:

�� orexecd
-d -l -v -c -s

��

The following options are supported:

-d Print debug information to syslogd.

Figure 61. RXUEXIT user exit

Chapter 33. Remote execution server 1413

-l Write each successful login to syslogd with the remote user, remote system,
local user, and the command executed.

-v Write the title and ptf level to syslogd.

-c Write all messages in uppercase.

-s Invoke the remote shell as a login shell (that is, run /etc/profile and
$HOME/.profile).

z/OS UNIX System Services RSHD command (orshd)
The following command is used in the /etc/inetd.conf file to define the arguments
used to invoke orshd:

�� orshd
-a -d -l -v -c -r -s

�

�
-k mechanism -e -m -i -t

��

The following options are supported:

-a Look up host name and check that the address and host name correspond.

-d Print debug information to syslogd.

-l Write each successful login to syslogd with the remote user, remote system,
local user, and the command executed.

-v Write the title and ptf level to syslogd.

-c Write all messages in uppercase.

-r If a client passes a null password, invoke the /usr/sbin/ruserok user exit
to authenticate the user ID.

-s Invoke the remote shell as a login shell (that is, run /etc/profile and
$HOME/.profile).

-k mechanism
Specifies the authentication mechanism to be used to authenticate the
client. Valid values for mechanism are KRB5 and GSSAPI.

-e Requires the client to encrypt the connection.

-m Require Kerberos5 clients to present a cryptographic checksum of initial
connection information, such as the name of the user that the client is
trying to access in the initial authenticator. This checksum provides
additional security by preventing an attacker from changing the initial
connection information. If this option is specified, older Kerberos5 clients
that do not send a checksum in the authenticator is not able to authenticate
to this server. This option is mutually exclusive with the -i option and is
only valid if -k KRB5 is specified.

If neither the -m or -i options are specified, checksums are validated if
presented. Because it is difficult to remove a checksum from an
authenticator without making the authenticator invalid, this default mode
is almost as significant of a security improvement as -m if new clients are
used. It has the additional advantage of backwards compatibility with
some clients. Clients before Kerberos V5, Beta5, generate invalid
checksums; if these clients are used, the -i option must be used.

1414 z/OS V2R1.0 Communications Server: IP Configuration Reference

-i Ignore authenticator checksums if provided. This option ignores
authenticator checksum presented by current Kerberos clients to protect
initial connection information; it is the opposite of -m. This option is
provided because some older clients (particularly clients predating the
release of Kerberos V5 Beta5, May 1995) present invalid checksums that
prevent Kerberos authentication from succeeding in the default mode. This
option is mutually exclusive with the -m option and is only valid if -k
KRB5 is specified.

-t Use this option to set the KRB5_SERVER_KEYTAB environment variable. If
this environment variable is set, the Security Runtime uses a local instance
of the Kerberos security server to decrypt service tickets instead of
obtaining the key from a key table.

Requirement: The orshd application must have at least read access to the
IRR.RUSERMAP resource in the FACILITY class in order to use this
capability. For more information, see z/OS Integrated Security Services
Network Authentication Service Administration.

RSHD command (orshd) environment variables
Table 110 provides a list of environment variables used by RSHD command () that
can be tailored to a particular installation.

Table 110. RSHD command (orshd) environment variables

Environment variable Server, Client or
Command type
application

Description Specific coding rules (or
a link to syntax)

_EUV_SVC_DBG_FILENAME ORSHD Specifies the fully
qualified name of the
file that receives debug
messages. Debug
messages are written to
the file specified by the
_EUV_SVC_STDOUT
_FILENAME if this
environment variable is
not defined. If
_EUV_SVC_STDOUT
_FILENAME is not
specified, debug
messages are written to
stdout.

Specifying debug (-d or
-D option) and
authentication (-k or -K)
sets the variable to the
value /etc/skrb/krb.log.
If you want to allow the
user-specified variable to
be used, do not specify
debug (-d or -D option).

_EUV_SVC_DBG_MSG_LOGGING ORSHD Specifies whether
authentication trace
records are generated
when authentication is
requested (-k or -K
option). These trace
records are stored in an
internal wrap table. The
following values can be
specified:

v 0 means do not
generate trace records
(this is the default)

v 1 means generate
trace records

Specifying debug (-d or
-D option) and
authentication (-k or -K)
sets the variable value to
1. If you want to allow
the user-specified
variable to be used, do
not specify debug (-d or
-D option).

Chapter 33. Remote execution server 1415

Table 110. RSHD command (orshd) environment variables (continued)

Environment variable Server, Client or
Command type
application

Description Specific coding rules (or
a link to syntax)

_EUV_SVC_DBG_TRACE ORSHD Specifies whether
authentication trace
records are generated
when authentication is
requested (-k or -K
option). These trace
records are stored in an
internal wrap table. The
following values can be
specified:

v 0 means do not
generate trace records
(this is the default)

v 1 means generate
trace records

Specifying debug (-d or
-D option) and
authentication (-k or -K)
sets the variable value to
1. If you want to allow
the user-specified
variable to be used, do
not specify debug (-d or
-D option).

KRB5_SERVER_KEYTAB ORSHD Specifies whether the
Security Runtime uses a
local instance of the
Kerberos security server
to decrypt service
tickets instead of
obtaining the key from a
key table. The default is
to obtain the key from a
key table.

v 0 means obtain the
key from a key table

v 1 means use a local
instance

.

Specifying the -t or -T
option sets the variable
to 1.

1416 z/OS V2R1.0 Communications Server: IP Configuration Reference

Appendix A. Translation tables

This topic contains the following information:
v “SBCS translation table hierarchy” on page 1418
v “SBCS country or region translation tables” on page 1422
v “DBCS translation table hierarchy” on page 1424

TCP/IP Services uses translation tables to convert transmitted data from EBCDIC
to ASCII. Because these tables do not always include all the desired characters,
TCP/IP allows you to create and customize tables without having to recompile
source code. Translation tables are stored in binary form on disk. TCP/IP provides
standard tables that are used as the default if you do not customize your own.

TCP/IP Services used the following types of translation tables:
v Single-byte character set (SBCS) translation tables are used for single-byte

characters.
v Double-byte character sets (DBCS) translation tables are used for converting

double-byte characters. DBCS translation tables are required for character sets
such as Japanese Kanji, which contains too many characters to represent using
single-byte codes. SBCS translation tables provide mappings for a maximum of
256 characters. DBCS translation tables can provide up to a theoretical maximum
of 65 535 character mappings; however, DBCS character sets usually contain less
than this number.

The FTP program provides an FTP.DATA statement, DUMP 81, that is available for
tracing the translate tables. When set on, 256 bytes of each translate table can be
traced as follows:
v When the FTP STAT command is entered, the translate tables being used by the

server for the control and data connection is traced. When the FTP LOCSTAT
command is entered, the translate tables being used by the client is traced.

v When an FTP command is entered to change the translate table, the new table is
traced. If the change is entered as a locsite command then it is traced by the
client. If the change is entered as a site command, then it is traced by the server.
See z/OS Communications Server: IP User's Guide and Commands FTP DUMP
command information for instructions on entering the command or adding it to
FTP.DATA for the server and client. For all trace entries, if the trace is on the
server side, it is written to syslogd. Where the client trace entries are written
depends on how the client is run. If it is TSO interactive or run in OEM, the
trace appears on the console. If it is a batch job, it is in the job output, and if it is
being used by Rexx, it is in the Rexx output.

The FTP program also provides a multi-byte character set (MBCS) to support the
Chinese standard GB18030. This support is provided by iconv with code page
IBM-5488; it does not allow for customized tables. See Chapter 18, “File Transfer
Protocol,” on page 697 for a description of the ENCODING and MBDATACONN
statements that define this support for FTP. Also, see z/OS Communications
Server: IP User's Guide and Commands for information about how to use the
LOCSITE and SITE subcommands to specify ENCODING and MBDATACONN
values.

© Copyright IBM Corp. 2000, 2015 1417

The following topics describe how to create and customize both SBCS and DBCS
translation tables and explain how they are used by the programs in TCP/IP
Services.

SBCS translation table hierarchy
Different programs look for special translation tables to use. The program chooses
one of the customized tables, as described in Table 111. The program first searches
for a customized table that you have built. If the program fails to find one of the
customized tables, it uses the default table supplied in hlq.STANDARD.TCPXLBIN.
Table 111 provides the customized translation tables and default table names for
the programs.

Guideline: FTP server and FTP client optionally use iconv instead of the external
tables for single-byte conversion. The use of iconv is specified in FTP.DATA or by
SITE/LOCSITE commands.

Table 111. SBCS translation table hierarchy

Program Customized translation tables Default translation table

FTP client
control
connection
when no
TRANSLATE
parameter is
specified on the
ftp command

1. EXTENSIONS UTF8

2. Data set specified in the CTRLCONN
configuration statement in FTP.DATA

3. Data set specified in the CCTRANS
configuration statement in FTP.DATA

4. user_id.FTP.TCPXLBIN

5. hlq.FTP.TCPXLBIN

6. user_id.STANDARD.TCPXLBIN

7. hlq.STANDARD.TCPXLBIN

8. 7-bit ASCII - (ISO8859-1 for the network
code page and IBM-1047 for the file
system code page)

9. FTP internal 7-bit tables

The default should be number 8 for most all cases.

FTP client data
connection
when no
TRANSLATE
parameter is
specified on the
ftp command

1. Data set specified in the SBDATACONN
configuration statement in FTP.DATA

2. Data set specified in the SBTRANS
configuration statement in FTP.DATA

3. user_id.FTP.TCPXLBIN

4. hlq.FTP.TCPXLBIN

5. user_id.STANDARD.TCPXLBIN

6. hlq.STANDARD.TCPXLBIN

7. The same translation tables established for
the control connection

The default is number 7.

FTP client when
TRANSLATE
parameter is
specified on the
ftp command
for both control
connections and
data
connections1

1. If the client is started in the z/OS UNIX
System Services shell:
$HOME/data_set.tcpxlbin

2. user_id.data_set.TCPXLBIN

3. hlq.data_set.TCPXLBIN

There is no default.

1418 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 111. SBCS translation table hierarchy (continued)

Program Customized translation tables Default translation table

FTP server
control
connections

1. EXTENSIONS UTF8

2. Data set specified in the CTRLCONN
configuration statement in FTP.DATA

3. Data set specified in the CCXLATE
configuration statement in FTP.DATA

4. jobname.SRVRFTP.TCPXLBIN

5. hlq.SRVRFTP.TCPXLBIN

6. jobname.STANDARD.TCPXLBIN

7. hlq.STANDARD.TCPXLBIN

8. 7-bit ASCII - (ISO8859-1 for the network
code page and IBM-1047 for the file
system code page)

9. FTP internal 7-bit tables

The default should be number 8 for most all cases.

FTP server data
connections

1. Data set specified with DD: SYSFTSX in
the FTP start procedure

2. Data set specified in the SBDATACONN
configuration statement in FTP.DATA

3. Data set specified in the XLATE
configuration statement in FTP.DATA

4. jobname.SRVRFTP.TCPXLBIN

5. hlq.SRVRFTP.TCPXLBIN

6. jobname.STANDARD.TCPXLBI

7. hlq.STANDARD.TCPXLBIN

8. The same translation tables established for
the control connection

The default is number 8.

LPR Client 1. user_id.LPR.TCPXLBIN

2. hlq.LPR.TCPXLBIN

3. user_id.STANDARD.TCPXLBIN

hlq.STANDARD.TCPXLBIN

LPR Client
(TRANSLATE)

1. user_id.data_set.TCPXLBIN

2. hlq.data_set.TCPXLBIN

3. user_id.LPR.TCPXLBIN

4. hlq.LPR.TCPXLBIN

5. user_id.STANDARD.TCPXLBIN

hlq.STANDARD.TCPXLBIN

LPD Server jobname.data.STANDARD.TCPXLBIN hlq.STANDARD.TCPXLBIN

LPD Server
(TRANSLATE)

1. jobname.data_set.TCPXLBIN

2. hlq.data_set.TCPXLBIN

None. Printer services cannot be used.

PORTMAP 1. user_id.STANDARD.TCPXLBIN

2. jobname.STANDARD.TCPXLBIN

hlq.STANDARD.TCPXLBIN

REXEC user_id.STANDARD.TCPXLBIN hlq.STANDARD.TCPXLBIN

SMTP 1. jobname.SMTP.TCPXLBIN

2. hlq.SMTP.TCPXLBIN

3. jobname.STANDARD.TCPXLBIN

hlq.STANDARD.TCPXLBIN

Appendix A. Translation tables 1419

Table 111. SBCS translation table hierarchy (continued)

Program Customized translation tables Default translation table

Telnet Client 1. user_id.TELNET.TCPXLBIN

2. hlq.TELNET.TCPXLBIN

3. user_id.STANDARD.TCPXLBIN

hlq.TELNET.TCPXLBIN

Telnet Client
(TRANSLATE)

1. user_id.data_set.TCPXLBIN

2. hlq.data_set.TCPXLBIN

None. Program Halts.

Notes:

1. jobname is the name specified either on the PROC or JOB statement.

2. user_id is the ID of the user who issued the command.

3. data_set is the name entered on the TRANSLATE parameter for the program. See z/OS Communications Server:
IP User's Guide and Commands for information about specifying the TRANSLATE parameter for the required
program.

4. High Level Qualifier (hlq) specified in the TCPIP.DATA configuration statement, DATASETPREFIX.

The Telnet client requires translation tables that are different from the default table
hlq.STANDARD.TCPXLBIN. Customized translation tables for Telnet clients are
provided in the install libraries as hlq.TELNET.TCPXLBIN and
hlq.TELNETSE.TCPXLBIN. If these data sets are not found, the Telnet client uses
the default table.

Telnet (for Linemode) uses iconv services with the CODEPAGE statement in the
TELNETPARMS block to specify country and region translation tables. TCPXLBIN
translation tables are not used. If CODEPAGE is in error or not specified, see
“CODEPAGE statement” on page 596for default values used. If custom code pages
are required, see the information about globalization in the z/OS XL C/C++
Programming Guide for details about how to create your own conversions.

Customizing SBCS translation tables
All SBCS translation table members contain two tables. The first table is used to
translate from ASCII to EBCDIC. The second table is used to translate from
EBCDIC to ASCII.

To read the translation tables, find the row for the first hex digit (1) and the
column for the second hex digit (2). The point where the row and column intersect
is the translation value.

For example, to find the EBCDIC translation for the ASCII character A7, find row
A0 (3) and column 07 (4) in “ASCII-to-EBCDIC table” on page 1421. The point
where row A0 and column 07 intersect shows a value of X'7D', so the ASCII
character X'A7' is translated to X'7D' in EBCDIC.

To customize the translation table, alter the translate value where the row and
column intersect to the new value.

You can edit and modify translation table members in the SEZATCPX data set.

1. Do not use the TRANSLATE option for the FTP client if the SBCS table you need for data transfer does not support standard
encodings for the portable character set. Such a translation table can adversely affect the EBCDIC to ASCII conversion of
commands sent over the control connection.

1420 z/OS V2R1.0 Communications Server: IP Configuration Reference

ASCII-to-EBCDIC table
The samples shown in Figure 62 and Figure 63 are shipped as the
hlq.STANDARD.TCPXLBIN compiled translation table, and unless modified, is
used for EBCDIC-to-ASCII or ASCII-to-EBCDIC translation.
;
; ASCII-to-EBCDIC table
; 4 2
; 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
; 1

00 01 02 03 37 2D 2E 2F 16 05 25 0B 0C 0D 0E 0F ; 00 ;
10 11 12 13 3C 3D 32 26 18 19 3F 27 22 1D 35 1F ; 10 ;
40 5A 7F 7B 5B 6C 50 7D 4D 5D 5C 4E 6B 60 4B 61 ; 20 ;
F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 7A 5E 4C 7E 6E 6F ; 30 ;
7C C1 C2 C3 C4 C5 C6 C7 C8 C9 D1 D2 D3 D4 D5 D6 ; 40 ;
D7 D8 D9 E2 E3 E4 E5 E6 E7 E8 E9 AD E0 BD 5F 6D ; 50 ;
79 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96 ; 60 ;
97 98 99 A2 A3 A4 A5 A6 A7 A8 A9 C0 4F D0 A1 07 ; 70 ;
00 01 02 03 37 2D 2E 2F 16 05 25 0B 0C 0D 0E 0F ; 80 ;
10 11 12 13 3C 3D 32 26 18 19 3F 27 22 1D 35 1F ; 90 ;
40 5A 7F 7B 5B 6C 50 7D 4D 5D 5C 4E 6B 60 4B 61 ; A0 ; ←3
F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 7A 5E 4C 7E 6E 6F ; B0 ;
7C C1 C2 C3 C4 C5 C6 C7 C8 C9 D1 D2 D3 D4 D5 D6 ; C0 ;
D7 D8 D9 E2 E3 E4 E5 E6 E7 E8 E9 AD E0 BD 5F 6D ; D0 ;
79 81 82 83 84 85 86 87 88 89 91 92 93 94 95 96 ; E0 ;
97 98 99 A2 A3 A4 A5 A6 A7 A8 A9 C0 4F D0 A1 07 ; F0 ;

EBCDIC-to-ASCII table
;
; EBCDIC-to-ASCII table
; 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
;

00 01 02 03 1A 09 1A 7F 1A 1A 1A 0B 0C 0D 0E 0F ; 00 ;
10 11 12 13 1A 0A 08 1A 18 19 1A 1A 1C 1D 1E 1F ; 10 ;
1A 1A 1C 1A 1A 0A 17 1B 1A 1A 1A 1A 1A 05 06 07 ; 20 ;
1A 1A 16 1A 1A 1E 1A 04 1A 1A 1A 1A 14 15 1A 1A ; 30 ;
20 A6 E1 80 EB 90 9F E2 AB 8B 9B 2E 3C 28 2B 7C ; 40 ;
26 A9 AA 9C DB A5 99 E3 A8 9E 21 24 2A 29 3B 5E ; 50 ;
2D 2F DF DC 9A DD DE 98 9D AC BA 2C 25 5F 3E 3F ; 60 ;
D7 88 94 B0 B1 B2 FC D6 FB 60 3A 23 40 27 3D 22 ; 70 ;
F8 61 62 63 64 65 66 67 68 69 96 A4 F3 AF AE C5 ; 80 ;
8C 6A 6B 6C 6D 6E 6F 70 71 72 97 87 CE 93 F1 FE ; 90 ;
C8 7E 73 74 75 76 77 78 79 7A EF C0 DA 5B F2 F9 ; A0 ;
B5 B6 FD B7 B8 B9 E6 BB BC BD 8D D9 BF 5D D8 C4 ; B0 ;
7B 41 42 43 44 45 46 47 48 49 CB CA BE E8 EC ED ; C0 ;
7D 4A 4B 4C 4D 4E 4F 50 51 52 A1 AD F5 F4 A3 8F ; D0 ;
5C E7 53 54 55 56 57 58 59 5A A0 85 8E E9 E4 D1 ; E0 ;
30 31 32 33 34 35 36 37 38 39 B3 F7 F0 FA A7 FF ; F0 ;

Syntax rules for SBCS translation tables
The following syntax rules apply to SBCS translation tables:
v Blanks are used only as delimiters for readability purposes.
v Information to the right of a semicolon (;) is a comment.

Figure 62. ASCII-to-EBCDIC translation table

Figure 63. EBCDIC-to-ASCII translation table

Appendix A. Translation tables 1421

SBCS country or region translation tables
Rather than customize the table in SEZATCPX(STANDARD), you can use the
following translation table members, which are included with the code.

These translation table members are in the same format as that used in
SEZATCPX(STANDARD). To use these table members, you must convert them to
binary format using CONVXLAT and store the resulting binary tables in an
appropriate data set within the SBCS translation table hierarchy. (See “SBCS
translation table hierarchy” on page 1418.) For more information about using the
TSO CONVXLAT command, see “Using TSO CONVXLAT to convert translation
tables to binary” on page 1428.

The editable translation tables used by the Telnet client application are members of
the SEZATELX data set and are derived from the identified code pages. The
editable tables used by other applications, such as FTP, are members of the
SEZATCPX data set.

The following members can be used by both Telnet client and non-Telnet SBCS
applications such as FTP, SMTP, and so on. They are found in both SEZATELX and
SEZATCPX.

Restriction: Identically named members in the two data sets are not the same.

Table 112. Translation table members for Telnet client and non-Telnet SBCS applications

Member name Description Code page

AUSGER * Austrian-German code page 850<->273

BELGIAN * Belgian code page 850<->500

CANADIAN * Canadian code page 850<->037

CUSTOM * Code page 819<->1047

DANNOR * Danish-Norwegian code page 850<->277

DUTCH * Dutch code page 850<->037

EAUSGER Austrian-German with Euro support 858<->1141

EBELGIAN Belgian with Euro support 858<->1148

ECANADIAN Canadian with Euro support 858<->1140

EDANNOR Danish-Norwegian with Euro support 858<->1142

EDUTCH Dutch with Euro support 858<->1140

EFINSWED Finnish-Swedish with Euro support 858<->1143

EFRENCH French with Euro support 858<->1147

EITIALIAN Italian with Euro support 858<->1144

EPORTUGU Portuguese with Euro support 858<->1140

ESPANISH Spanish with Euro support 858<->1145

ESWISFRE Swiss-French with Euro support 858<->1148

ESWISGER Swiss-German with Euro support 858<->1148

EUK United Kingdom with Euro support 858<->1146

EUS United States with Euro support 858<->1140

FINSWED * Finnish-Swedish code page 850<->278

FRENCH * French code page 850<->297

1422 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 112. Translation table members for Telnet client and non-Telnet SBCS
applications (continued)

Member name Description Code page

ITALIAN * Italian code page 850<->280

JAPANESE * Japanese code page 850<->281

JPNALPHA Japanese Code code page 1041<->029

JPNKANA Japanese Code code page 1041<->102

KOR0891 Korean Code code page 0891<->083

KOR1088 Korean Code code page 1088<->083

PORTUGUE * Portuguese code page 850<->037

PRC1115 People's Republic of China code page 1115<->083

SPANISH * Spanish code page 850<->284

SWISFREN * Swiss-French code page 850<->500

SWISGERM * Swiss-German code page 850<->500

TAI0904 Taiwan code page 0904<->003

TAI1114 Taiwan code page 1114<->003

UK * United Kingdom code page 850<->285

US * United States code page 850<->037

Note: See “ISO-8 and IBM PC interpretations for ASCII and EBCDIC code points” on page
1424.

The following SBCS translation table members are only used by Telnet 3270 DBCS
Transform support.

Restriction: These are found only in SEZATELX.

Table 113. SBCS translation table members for Telnet 3270 DBCS transform support

Member name Description Code page

A8E Japanese 8-bit English 0819<->1027

A8K Japanese 8-bit Katakana 0819<->0290

J8E Japanese JIS 8-bit English Unassigned

J8K Japanese JIS 8-bit Katakana Unassigned

SJDCE Japanese DEC English Unassigned

SJDCK Japanese DEC Katakana Unassigned

SJECE Japanese Extended Unix English JIS X0201<->1027

SJECK Japanese Extended Unix Katakana JIS X0201<->0290

KOR0891 Korean code page 0891<->0833

KOR1088 Korean code page 1088<->0833

PRC1115 People's Republic of China code page 1115<->0836

TAI0904 Taiwan code page 0904<->0037

TAI1114 Taiwan code page 1114<->0037

Appendix A. Translation tables 1423

ISO-8 and IBM PC interpretations for ASCII and EBCDIC code points
The tables in the SEZATCPX data set use the ISO-8 interpretations for certain
ASCII code points. These code points are mapped to EBCDIC code points, as
shown in Table 114.

Table 114. ISO-8 interpretations for certain ASCII and EBCDIC code points

ASCII code point EBCDIC code point ISO-8 interpretation

X'1A' X'3F' SUB (substitution character)

X'1C' X'1C' IFS (interchange file
separator)

X'7F' X'07' DEL (delete character)

If you want to use IBM PC interpretations for these code points, you can modify
your table, as shown in Table 115:

Table 115. IBM PC interpretations for certain ASCII and EBCDIC code points

ASCII code point EBCDIC code point IBM PC interpretation

X'1A' X'1C' IFS (interchange file
separator)

X'1C' X'07' DEL (delete character)

X'7F' X'3F' SUB (substitution character)

DBCS translation table hierarchy
Table 116 describes the search order used by certain programs when they are
configured to load one or more DBCS translation tables.

If the customized DBCS translation tables are not found, then the default table data
sets provided with the install libraries are used. If the default tables cannot be
read, then error messages are issued, and the required DBCS conversion is
unavailable for the program.

Table 116. DBCS translation table hierarchy

Program Option Customized translation tables Default translation table

FTP client Hangeul 1. user_id.FTP.TCPHGBIN

2. hlq.FTP.TCPHGBIN

3. user_id.STANDARD.TCPHGBIN

hlq.STANDARD.TCPHGBIN

FTP client Kanji 1. user_id.FTP.TCPKJBIN

2. hlq.FTP.TCPKJBIN

3. user_id.STANDARD.TCPKJBIN

hlq.STANDARD.TCPKJBIN

FTP client SChinese 1. user_id.FTP.TCPSCBIN

2. hlq.FTP.TCPSCBIN

3. user_id.STANDARD.TCPSCBIN

hlq.STANDARD.TCPSCBIN

FTP client TChinese 1. user_id.FTP.TCPCHBIN

2. hlq.FTP.TCPCHBIN

3. user_id.STANDARD.TCPCHBIN

hlq.STANDARD.TCPCHBIN

1424 z/OS V2R1.0 Communications Server: IP Configuration Reference

Table 116. DBCS translation table hierarchy (continued)

Program Option Customized translation tables Default translation table

FTP client Hangeul and
TRANSLATE *

1. user_id.data_set.TCPHGBIN

2. hlq.data_set.TCPHGBIN

3. user_id.STANDARD.TCPHGBIN

hlq.STANDARD.TCPHGBIN

FTP client Kanji and
TRANSLATE *

1. user_id.data_set.TCPKJBIN

2. hlq.data_set.TCPKJBIN

3. user_id.STANDARD.TCPKJBIN

hlq.STANDARD.TCPKJBIN

FTP client SChinese and
TRANSLATE *

1. user_id.data_set.TCPSCBIN

2. hlq.data_set.TCPSCBIN

3. user_id.STANDARD.TCPSCBIN

hlq.STANDARD.TCPSCBIN

FTP client TChinese and
TRANSLATE *

1. user_id.data_set.TCPCHBIN

2. hlq.data_set.TCPCHBIN

3. user_id.STANDARD.TCPCHBIN

hlq.STANDARD.TCPCHBIN

FTP Server Hangeul 1. jobname.SRVRFTP.TCPHGBIN

2. hlq.SRVRFTP.TCPHGBIN

3. jobname.STANDARD.TCPHGBIN

hlq.STANDARD.TCPHGBIN

FTP Server Kanji 1. jobname.SRVRFTP.TCPKJBIN

2. hlq.SRVRFTP.TCPKJBIN

3. jobname.STANDARD.TCPKJBIN

hlq.STANDARD.TCPKJBIN

FTP Server SChinese 1. jobname.SRVRFTP.TCPSCBIN

2. hlq.SRVRFTP.TCPSCBIN

3. jobname.STANDARD.TCPSCBIN

hlq.STANDARD.TCPSCBIN

FTP Server TChinese 1. jobname.SRVRFTP.TCPCHBIN

2. hlq.SRVRFTP.TCPCHBIN

3. jobname.STANDARD.TCPCHBIN

hlq.STANDARD.TCPCHBIN

LPR Client Hangeul 1. user_id.LPR.TCPHGBIN

2. hlq.LPR.TCPHGBIN

3. user_id.STANDARD.TCPHGBIN

hlq.STANDARD.TCPHGBIN

LPR Client Kanji 1. user_id.LPR.TCPKJBIN

2. hlq.LPR.TCPKJBIN

3. user_id.STANDARD.TCPKJBIN

hlq.STANDARD.TCPKJBIN

LPR Client SChinese 1. user_id.LPR.TCPSCBIN

2. hlq.LPR.TCPSCBIN

3. user_id.STANDARD.TCPSCBIN

hlq.STANDARD.TCPSCBIN

LPR Client TChinese 1. user_id.LPR.TCPCHBIN

2. hlq.LPR.TCPCHBIN

3. user_id.STANDARD.TCPCHBIN

hlq.STANDARD.TCPCHBIN

LPD Server Hangeul 1. jobname.LPD.TCPHGBIN

2. hlq.LPD.TCPHGBIN

3. jobname.STANDARD.TCPHGBIN

hlq.STANDARD.TCPHGBIN

Appendix A. Translation tables 1425

Table 116. DBCS translation table hierarchy (continued)

Program Option Customized translation tables Default translation table

LPD Server Kanji 1. jobname.LPD.TCPKJBIN

2. hlq.LPD.TCPKJBIN

3. jobname.STANDARD.TCPKJBIN

hlq.STANDARD.TCPKJBIN

LPD Server SChinese 1. jobname.LPD.TCPSCBIN

2. hlq.LPD.TCPSCBIN

3. jobname.STANDARD.TCPSCBIN

hlq.STANDARD.TCPSCBIN

LPD Server TChinese 1. jobname.LPD.TCPCHBIN

2. hlq.LPD.TCPCHBIN

3. jobname.STANDARD.TCPCHBIN

hlq.STANDARD.TCPCHBIN

SMTP
Server

Hangeul 1. jobname.SMTP.TCPHGBIN

2. hlq.SMTP.TCPHGBIN

3. jobname.STANDARD.TCPHGBIN

hlq.STANDARD.TCPHGBIN

SMTP
Server

Kanji 1. jobname.SMTP.TCPKJBIN

2. hlq.SMTP.TCPKJBIN

3. jobname.STANDARD.TCPKJBIN

hlq.STANDARD.TCPKJBIN

SMTP
Server

SChinese 1. jobname.SMTP.TCPSCBIN

2. hlq.SMTP.TCPSCBIN

3. jobname.STANDARD.TCPSCBIN

hlq.STANDARD.TCPSCBIN

SMTP
Server

TChinese 1. jobname.SMTP.TCPCHBIN

2. hlq.SMTP.TCPCHBIN

3. jobname.STANDARD.TCPCHBIN

hlq.STANDARD.TCPCHBIN

*: See “Usage notes for the TRANSLATE option for the FTP client”

Notes:

1. jobname is the name specified either on the PROC or JOB statement.

2. user_id is the ID of the user who issued the command.

3. data_set is the name entered on the TRANSLATE parameter for the program. See the z/OS Communications
Server: IP User's Guide and Commands for information about specifying the TRANSLATE parameter for the
required program.

Usage notes for the TRANSLATE option for the FTP client
v To use the TRANSLATE option to load and use a customized DBCS translation

table for the FTP client, an SBCS table data set must also exist for the
data_set_name chosen with the TRANSLATE option.
If the SBCS table data set does not exist, the FTP request fails even if a valid
DBCS table data set using that name exists.

v ATTENTION: Do not use the TRANSLATE option for the FTP client if the SBCS
table you need for data transfer does not support standard encodings for the
portable character set. Such a translation table can adversely affect the EBCDIC
to ASCII conversion of commands sent over the control connection.
For information about using FTP.DATA to specify different SBCS tables for
control and data connections, see z/OS Communications Server: IP User's Guide
and Commands.

1426 z/OS V2R1.0 Communications Server: IP Configuration Reference

If you require a local DBCS translation table, you must name it in correlation
with the standard client search order. For example, if you had a custom Kanji
table you could name it user_id.FTP.TCPKJBIN.

Telnet 3270 DBCS transform mode codefiles
The binary translation table code files used by Telnet 3270 DBCS transform mode
do not use a search order hierarchy. If the DD statement is not specified, or the
codefiles are not present, 3270 DBCS transform mode is disabled.

Restriction: The codefile members must reside in a data set pointed to by the
TNDBCSXL DD statement in the TCPIPROC cataloged procedure.

Steps for customizing DBCS translation tables
You can find the DBCS translation tables in the installation libraries in both
editable source and binary form. The Kanji, Hanguel, Traditional Chinese and
Simplified Chinese DBCS editable source members reside in the SEZADBCX data
set. The standard binary members reside in the STANDARD.TCPKJBIN for Kanji,
the STANDARD.TCPHGBIN for Hangeul, the STANDARD.TCPCHBIN for
Traditional Chinese, and the STANDARD.TCPSCBIN for Simplified Chinese. These
data sets contain binary tables that are used by the FTP server, SMTP server, FTP
client, LPR client, and LPD server programs. The binary codefiles used by Telnet
3270 DBCS transform mode reside in the SEZAXLD2 data set. The binary tables
and codefiles can be created from the same editable source, using the CONVXLAT
program.

Procedure

Perform the following steps to customize a DBCS translation table:
1. Make a copy of the editable source data set.
2. Modify the editable source as required.
3. Run the CONVXLAT program with the modified editable source as input.
4. Install the resulting customized binary table or codefiles in the DBCS

translation table hierarchy for the required program.

Results

The editable source data sets contain two column pairs for each code page. The
first column pair specifies double-byte EBCDIC-to-ASCII code point mappings for
the indicated code page. The second column pair specifies double-byte
ASCII-to-EBCDIC code point mappings for the indicated code page.

Existing code-point mappings can be changed by overwriting the existing
hexadecimal code. Code points that are not defined in the target code page and are
within the valid range for the code page are mapped to the default substitution
character in the target code page. The default substitution characters are shown as
(sub: xxxx) in the source tables in this topic.

The editable source format specifies EBCDIC-to-ASCII and ASCII-to-EBCDIC
mappings separately. When adding or changing a code-point mapping, care should
be taken to modify both mappings for the code point. If, for example, a new
mapping is added for EBCDIC-to-ASCII only, the ASCII-to-EBCDIC mapping for
that code-point is the default substitution character.

Appendix A. Translation tables 1427

DBCS country or region translation tables
The translation table source members in Table 117are in the SEZADBCX data set.
They are used by all applications that support DBCS. See “Using TSO CONVXLAT
to convert translation tables to binary” for more information about using the TSO
CONVXLAT command.

Requirement: If you modify these table members, you must convert them to
binary format using CONVXLAT and store the modified binary data set in an
appropriate data set within the DBCS translation table hierarchy.

Table 117. Translation table members for DBCS applications

Member name Description Code page

EZACHLAT (Taiwan DBCS) TChinese Big5 0927<->0835 0947<->0835

EZAHGLAT (Korea DBCS) Hangeul KSC5601 0926<->0834 0951<->0834

EZAKJLAT (Japan DBCS) PC to host code page
SJISKANJI 0941 at 1978

PC<->0300

EZAKJ941 (Japan DBCS) PC to host code page
SJISKANJI at 0941 at 1995 level

PC<->0300

EZASCLAT (People's Republic of China DBCS) Schinese 1380<->0837

Syntax rules for DBCS translation tables
Observe the following rules for DBCS translation tables:
v Comments can be included in the editable data set, either on a separate line or

at the end of a line. Comments must start with a semicolon (;).
v Code-point mappings in the data set are position dependent. The first

non-comment line for the DBCS tables in the data set is used to establish the
column position of the code point mappings, and must contain a conversion pair
for each code page. Any conversion pairs on following lines must use the same
column positions.

v It is permissible to leave blanks for code-point mappings after the first line in
the DBCS area. For example, if a line contains only one conversion pair, the
column position is used to determine which code page it refers to.

v The first column of each code page column pair (that is, the code index), must
be in ascending numeric order. Any gaps in the ascending order is filled with
the default substitution character in the binary table created by CONVXLAT.

Using TSO CONVXLAT to convert translation tables to binary
The TSO CONVXLAT command converts a table from editable text to binary.
CONVXLAT can be used to convert both SBCS and DBCS table source data sets.

The syntax of the CONVXLAT command is:

�� CONVXLAT input_data_set output_data_set (
CODEFILE

KANJI
HANGEUL
SCHINESE
TCHINESE

CODEFILE (member)

��

The parameters of the CONVXLAT command are:

1428 z/OS V2R1.0 Communications Server: IP Configuration Reference

input_data_set
Specifies the source data set name to be converted. The data set name must
be enclosed in quotation marks if fully qualified; otherwise the TSO user
ID is appended as a prefix.

output_data_set
Specifies the destination data set name created by the conversion. The data
set name must be enclosed in quotation marks if fully qualified; otherwise
the TSO user ID is appended as a prefix.

Rule: If CODEFILE is also specified, then output_data_set must specify a
previously allocated partitioned data set. Multiple codefile members are
placed in the partitioned data set.

The data set should be allocated using the following parameters:
Organization: PO
Record format: VB
Record length: 5124
Block size: 8800
1st extent blocks: 156
Secondary blocks: 10

KANJI
Specifies that the tables being converted are the Japanese DBCS translation
tables.

HANGEUL
Specifies that the tables being converted are the Korean Standard DBCS
translation tables.

SCHINESE
Specifies that the table being converted is the Simplified Chinese DBCS
translation table.

TCHINESE
Specifies that the table being converted is the Traditional Chinese DBCS
translation table.

CODEFILE
Specifies that the selected table is converted to multiple codefiles for use in
Telnet 3270 DBCS transform mode. The selected table must be DBCS
translation table.

CODEFILE(member)
Specifies that the selected SBCS table is converted to two codefiles:
ASCII_To_EBCDIC and EBCDIC_To_ASCII. The member names in the
output PDS are memberATE and memberETA. The following names are
possible member names:

J8E JIS 8 Bit English

J8K JIS 8 Bit Katakana

A8E 8 Bit English

A8K 8 Bit Katakana

SJDCE
DEC English SBCS

SJDCK
DEC Katakana SBCS

SJECE Japanese EUC English SBCS

Appendix A. Translation tables 1429

SJECK
Japanese EUC Katakana SBCS

SKSH Korean KSC 5601 SBCS

SHAN
Hangeul SBCS

STCH Traditional Chinese SBCS

SBG5 Big-5 SBCS

SSCH Simplified Chinese SBCS

If no optional parameters are specified, the input data set is assumed to contain an
SBCS translation table.

CONVXLAT examples
This topic contains CONVXLAT examples.

Running CONVXLAT in BATCH
The following examples are of running CONVXLAT in batch.

Run the CONVXLAT program directly in a job.

Run the CONVXLAT program by using TSO batch.

SBCS binary table
The following example shows the creation of an SBCS binary table from
user-provided editable text.

French Telnet client SBC
The following example shows the creation of a French Telnet Client SBCS binary
table for user ID user30 from the product provided editable text:

//S00100 EXEC PGM=CONVXLAT,
// PARM=’’’TCP3AS.SEZATCPX(FRENCH)’’ ’’USER3.STANDARD.TCPXLBIN’’’
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY,BLKSIZE=80

//TSOCNVXL JOB ,CLASS=A,MSGCLASS=A,MSGLEVEL=(1,1),USER=USER200,
// PASSWORD=xxxxxx
//EXEC EXEC PGM=IKJEFT1B,TIME=(0,50),REGION=3096K
//*
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSTSIN DD *
convxlat ’TCP3AS.SEZATCPX(FRENCH)’ +

’user3.standard.tcpxlbin’
/*

convxlat sbcs.source standard.tcpxlbin
READY

1430 z/OS V2R1.0 Communications Server: IP Configuration Reference

Korean KSC5601 SBCS and DBCS
The following example shows the creation of a Korean KSC5601 SBCS and DBCS
binary table from the product-provided editable text. These tables can be used by
FTP, LPR, LPD and SMTP.

Big-5 and traditional Chinese
The following example shows the creation of Big-5 and Traditional Chinese SBCS
and DBCS codefiles for use by the Telnet 3270 DBCS Transform facility:

Japanese SBCS (CP 1041) and DBCS
The following example shows the creation of a Japanese SBCS (CP 1041) and DBCS
binary table from the product provided editable text. These tables can be used by
FTP, LPR, LPD and SMTP.

Japanese SBCS and DBCS codefiles
The following example shows the creation of Japanese SBCS and DBCS codefiles
for use by the Telnet 3270 DBCS Transform facility:

convxlat ’tcpip.v3r2.sezatelx(french)’ ’user30.telnet.tcpxlbin’
READY

convxlat ’tcpip.v3r2.sezatcpx(kor1088)’ ’tcpip.v3r2.standard.tcpxlbin’
READY
convxlat ’tcpip.v3r2.sezadbcx(ezahglat)’ ’tcpip.v3r2.standard.tcphgbin’(hangeul
READY

convxlat ’tcpip.v3r2.sezatelx(TAI1114)’ ’tcpip.v3r2.sezaxld2’ (codefile(sbg5)
READY
convxlat ’tcpip.v3r2.sezatelx(TAI0904)’ ’tcpip.v3r2.sezaxld2’ (codefile(stch)
READY
convxlat ’tcpip.v3r2.sezadbcx(ezachlat)’ ’tcpip.v3r2.sezaxld2’ (tchinese codefile
EZA0652I Current code set is "TCHETA"
EZA0652I Current code set is "TCHATE"
EZA0652I Current code set is "BG5ETA"
EZA0652I Current code set is "BG5ATE"
READY

convxlat ’tcpip.v3r2.sezatcpx(JPNKANA)’ ’tcpip.v3r2.standard.tcpxlbin’
READY
convxlat ’tcpip.v3r2.sezadbcx(ezakjlat)’ ’tcpip.v3r2.standard.tcpkjbin’(kanji
READY

Appendix A. Translation tables 1431

convxlat ’tcpip.v3r2.sezatelx(J8E)’ ’tcpip.v3r2.sezaxld2’ (codefile(j8e)
READY
convxlat ’tcpip.v3r2.sezatelx(J8K)’ ’tcpip.v3r2.sezaxld2’ (codefile(j8k)
READY
convxlat ’tcpip.v3r2.sezatelx(A8E)’ ’tcpip.v3r2.sezaxld2’ (codefile(a8e)
READY
convxlat ’tcpip.v3r2.sezatelx(A8K)’ ’tcpip.v3r2.sezaxld2’ (codefile(a8k)
READY
convxlat ’tcpip.v3r2.sezatelx(SJECE)’ ’tcpip.v3r2.sezaxld2’ (codefile(sjece)
READY
convxlat ’tcpip.v3r2.sezatelx(SJECK)’ ’tcpip.v3r2.sezaxld2’ (codefile(sjeck)
READY
convxlat ’tcpip.v3r2.sezatelx(SJDCE)’ ’tcpip.v3r2.sezaxld2’ (codefile(sjdce)
READY
convxlat ’tcpip.v3r2.sezatelx(SJDCK)’ ’tcpip.v3r2.sezaxld2’ (codefile(sjdck)
READY
convxlat ’tcpip.v3r2.sezadbcx(ezakjlat)’ ’tcpip.v3r2.sezaxld2’ (kanji codefile
EZA0652I Current code set is "JIS78ETA"
EZA0652I Current code set is "JIS78ATE"
EZA0652I Current code set is "JIS83ETA"
EZA0652I Current code set is "JIS83ATE"
EZA0652I Current code set is "JEUCETA"
EZA0652I Current code set is "JEUCATE"
EZA0652I Current code set is "JDECETA"
EZA0652I Current code set is "JDECATE"
READY

1432 z/OS V2R1.0 Communications Server: IP Configuration Reference

Appendix B. LDAP definition files

This topic contains the policy definition files that define the policy schema
characteristics to an LDAP server.

These files show, respectively, the definitions of the various attributes that can be
used to define policies, and the definitions of the object classes that contain these
attributes. See Chapter 21, “Policy Agent and policy applications,” on page 931 and
z/OS Communications Server: IP Configuration Guide for guidance about the
different types of policies and examples of their usage.

Restriction: Not all of the object classes and attributes shown in the definition files
are supported on z/OS. The LDAP schema is a superset of policy object classes
and attributes needed for several different platforms. Only those object classes and
attributes shown in Chapter 21, “Policy Agent and policy applications,” on page
931 are supported.

PAGENTAT sample
#
pagent_at.conf
#
This file contains a set of LDAP directory attributes for the
Quality of Service (QOS) and Intrusion Detection System (IDS)
policy objects defined with the LDAP server.
#

objectClass attribute is used to associate an object with a class (see
object class definition file for detail).
This is a multi-valued attribute.
attribute objectClass cis objectClass 128 normal

cn attribute specifies the common name of an object (e.g., a user friendly
name and is often included in the object distinguished name).
This is a single-valued attribute.
attribute cn cis cn 128 normal

ibm-policyKeywords attribute is used to provide a search filter for
policy object retrieval. This attribute applies to version 3
policies.
This is a multi-valued attribute.
attribute ibm-policyKeywords cis policyKeywords 128 normal

ibm-policyGroupName attribute specifies the user friendly name of a
policyGroup object.
This is a single-valued attribute.
attribute ibm-policyGroupName cis policyGroupName 32 normal

ibm-policyGroupKeywords attribute is used to provide a level of grouping
together different policyGroup objects such that they can be searched
and found together in one LDAP search (e.g., a way of scoping).
This is a multi-valued attribute.
attribute ibm-policyGroupKeywords cis policyGroupKeywd 128 normal

ibm-policyGroupsAuxContainedSet attribute provides an unordered set of
distinguished name pointers to one or more policyGroup objects that
are associated with the object to which this attribute has been
appended.
This is a multi-valued attribute. Its value is the distinguished
name of the referenced policyGroup object.
attribute ibm-policyGroupsAuxContainedSet dn policyGroupsSet 256 normal

© Copyright IBM Corp. 2000, 2015 1433

ibm-policyRulesAuxContainedSet attribute provides an unordered set of
distinguished name pointers to one or more policyRule objects that
are contained within the object to which this attribute has been
appended.
This is a multi-valued attribute. Its value is the distinguished
name of the referenced policyRule object.
attribute ibm-policyRulesAuxContainedSet dn policyRulesSet 256 normal

ibm-policyGroupForLoadDistribution attribute provides a means to mark
policy rules contained in a policy group as being intended for load
distribution. The S/390 implementation uses this attribute for
policies to be interpreted on the Sysplex Distributor (SD)
distributing stack. NOTE: The S/390 implementation discards the policy
group if a syntax error is detected on this attribute. However, if
any contained policy rules are retrieved outside the scope of the
policy group, the default value of this attribute will be applied to
them. This attribute applies to version 2 policies.
This is a single-valued attribute. Valid values are TRUE and FALSE.
The default is FALSE.
attribute ibm-policyGroupForLoadDistribution cis policyGrpForLoadD 16 normal

attribute description cis description 256 normal

ibm-policyRuleName attribute specifies the user friendly name of a
policyRule object.
This is a single-valued attribute.
attribute ibm-policyRuleName cis policyRuleName 32 normal

ibm-policyRuleEnabled attribute specifies an enumeration indicating
whether a policy rule is administratively enabled, disabled, or
enabled for debug mode. Note that the S/390 implementation treats
enabled for debug the same as enabled.
This is a single-valued attribute. The defined values for this
attribute are 1 for enabled, 2 for disabled, and 3 for enabled for
debug mode. Default is 1.
attribute ibm-policyRuleEnabled cis policyRuleEnable 1 normal

ibm-policyRuleConditionListType attribute specifies whether the list of policy
conditions associated with this policy rule is in Disjunctive Normal Form
(DNF - ORed groups/sets of ANDed conditions) or Conjunctive Normal Form
(CNF - ANDed groups/sets of ORed conditions).
This is a single-valued attribute. The defined values for this
attribute are 1 for DNF, and 2 for CNF. Default is 1. Note that
this attribute is only valid for complex rules.
attribute ibm-policyRuleConditionListType cis policyRuleCondLT 1 normal

ibm-policyRuleConditionList attribute specifies an unordered list of strings
of the form:
ibm-policyRuleConditionList:group-number:< +|- >:dn
indicating a set of policy conditions that determine when the policy rule
is applicable/fired. The group-number specifies the group or set of
the policy conditions, in which the referenced condition belongs.
The < +|- > specifies if the condition is to be negated. The dn is
the distinguished name of the referenced condition. This attribute
applies to version 2 policies.
This is a multi-valued attribute. Here is an example:
ibm-policyRuleConditionListType:1
ibm-policyRuleConditionList:1:+:C1
ibm-policyRuleConditionList:1:+:C2
ibm-policyRuleConditionList:2:+:C3
ibm-policyRuleConditionList:2:-:C4
This is equivalent to: (C1 AND C2) OR (C3 AND (NOT C4))
attribute ibm-policyRuleConditionList cis policyRuleCondLi 256 normal

ibm-policyRuleConditionListDN attribute specifies an unordered list of
DN pointers indicating a set of policy conditions that determine when
the policy rule is applicable/fired. This attribute contains the
distinguished name of the referenced condition. This attribute
applies to version 3 policies.

1434 z/OS V2R1.0 Communications Server: IP Configuration Reference

This is a multi-valued attribute.
attribute ibm-policyRuleConditionListDN dn policyRuleCListD 256 normal

ibm-policyRuleActionList attribute is an unordered list of strings of the form:
ibm-policyRuleActionList:n:dn
it specifies an ordered set of policy actions to be performed if the
overall associated policy conditions of the corresponding policy rule
evaluates to TRUE. The n value specifies the order of the actions
to be executed. A value of 0 means "don’t care". The dn is the
distingushed name of the referenced action. Note that the S/390
implementation executes only one action that is found to be most
appropriate (e.g., action with scope of DataTraffic or Both for
non-RSVP IP traffic). However, the actions are still ordered
according to this attribute. If there are more actions than can be
executed, the first one in the ordered list will be selected and the
remaining ones will be ignored. This attribute applies to version
2 policies.
This is a multi-valued attribute. Here is an example:
ibm-policyRuleActionList:1:DN-Action1
ibm-policyRuleActionList:2:DN-Action2
attribute ibm-policyRuleActionList cis policyRuleActL 256 normal

ibm-policyRuleActionListDN attribute is an unordered list of DN
pointers to an ordered set of policy actions to be performed if the
overall associated policy conditions of the corresponding policy rule
evaluates to TRUE. This attribute contains the distinguished name of
the referenced action. Note that the S/390 implementation executes
only one action that is found to be most appropriate (e.g., action with
scope of DataTraffic or Both for non-RSVP IP traffic). However, the
actions are still ordered according to the ibm-policyActionOrder
attribute. If there are more actions than can be executed, the first
one in the ordered list will be selected and the remaining ones will be
ignored. This attribute applies to version 3 policies.
This is a multi-valued attribute.
attribute ibm-policyRuleActionListDN dn policyRuleAListD 256 normal

ibm-policyRuleValidityPeriodList attribute specifies the distinguished names
of policyTimePeriodCondition objects that determine when the policy
rule is scheduled to be active (inactive).
This is a multi-valued attribute. Here is an example:
ibm-policyRuleValidityPeriodList:DN-timeperiod1
ibm-policyRuleValidityPeriodList:DN-timeperiod2
In this example, the policy rule will be active if the time is within
either the time specified in DN-timeperiod1 object or
DN-timeperiod2 object.
attribute ibm-policyRuleValidityPeriodList cis policyRulePerL 256 normal

ibm-policyRuleKeywords attribute is used to provide a level of grouping
together different policyRule objects such that they can be initially
searched and found together in one LDAP search (e.g., a way of scoping).
This is a multi-valued attribute.
attribute ibm-policyRuleKeywords cis policyRuleKeywd 128 normal

ibm-policyRuleUsage attribute is used to provide guidelines on how the
corresponding policy rule should be used. S/390 will interpret this
attribute but ignore its value.
This is a single-valued attribute.
attribute ibm-policyRuleUsage cis policyRuleUsage 128 normal

ibm-policyRulePriority attribute specifies a non-negative integer for
prioritizing a policy rule relative to other policy rules. A larger
value means higher priority. Given two rules that are overlapped (they
both cover some IP traffic), a rule with higher priority will be applied.
The maximum supported value is 255.
This is a single-valued attribute. Default value is zero.
attribute ibm-policyRulePriority cis policyRulePrio 32 normal

ibm-policyRuleMandatory attribute is used as a flag to indicate that
the evaluation of the policy conditions and execution of policy actions
(when overall condition is evaluated to TRUE) is required.

Appendix B. LDAP definition files 1435

This is a single-valued attribute. Its value is either TRUE or FALSE.
Default is TRUE. In S/390 implementation, it is always assumed to be
TRUE, therefore, this attribute is simply ignored.
attribute ibm-policyRuleMandatory cis policyRuleMand 16 normal

ibm-policyRuleSequencedActions attribute provides an integer enumeration to
indicate how to interpret the action ordering indicated via the
ibm-policyRuleActionList attribute (e.g., the n value), for version
2 policies, or the ibm-policyActionOrder attribute, for version 3
policies. The defined values for this attribute are: 1 (for
mandatory), 2 (for recommended), and 3 (for don’t care). The default
is 3.
This is a single-valued attribute.
attribute ibm-policyRuleSequencedActions cis policyRuleSeqA 1 normal

ibm-policyRoles attribute specifies a role or set of roles (known as a
role-combination) that this policy plays. Policy consumers (clients)
can search for policy rules that contain one or more roles or
role-combinations using this attribute. Role-combinations are
specified using the syntax:
role1&&role2...
This attribute applies to version 3 policies.
#
This is a multi-valued attribute.
attribute ibm-policyRoles cis policyRoles 128 normal

ibm-policyInstanceName attribute specifies the user friendly name of a
ibm-policyInstance object. This attribute applies to version 3
policies.
This is a single-valued attribute.
attribute ibm-policyInstanceName cis policyInstName 32 normal

ibm-policyConditionName attribute specifies the user friendly name of a
ibm-policyCondition object.
This is a single-valued attribute.
attribute ibm-policyConditionName cis policyCondName 32 normal

ibm-policyConditionGroupNumber attribute specifies the group or set of
the policy conditions to which a policy condition belongs. These
groups are used to form the DNF or CNF expression associated with a
policy rule. This attribute applies to version 3 policies.
This is a single-valued attribute.
attribute ibm-policyConditionGroupNumber cis policyCondGrpNum 32 normal

ibm-policyConditionNegated attribute specifies whether a policy
condition is negated in the DNF or CNF expression associated with a
policy rule. A value of TRUE (meaning negated) or FALSE may be
specified. This attribute applies to version 3 policies.
This is a single-valued attribute.
attribute ibm-policyConditionNegated cis policyCondNegate 32 normal

ibm-policyConditionDN attribute specifies the distinguished name (DN)
of a reusable policy condition. This attribute applies to version 3
policies.
This is a single-valued attribute.
attribute ibm-policyConditionDN dn policyCondDN 256 normal

ibm-policyActionName attribute specifies the user friendly name
of a ibm-policyAction object. Up to 32 characters are supported (longer
names are silently truncated).
This is a single-valued attribute.
attribute ibm-policyActionName cis policyActionName 32 normal

ibm-policyActionOrder attribute specifies the relative order of the
actions to be executed in the context of a policy rule. A value of 0
means "don’t care". Note that the S/390 implementation executes only
one action that is found to be most appropriate (e.g., action with
scope of DataTraffic or Both for non-RSVP IP traffic). However, the
actions are still ordered according to this attribute. This attribute
applies to version 3 policies.

1436 z/OS V2R1.0 Communications Server: IP Configuration Reference

This is a single-valued attribute.
attribute ibm-policyActionOrder cis policyActOrder 32 normal

ibm-policyActionDN attribute specifies the distinguished name (DN)
of a reusable policy action. This attribute applies to version 3
policies.
This is a single-valued attribute.
attribute ibm-policyActionDN dn policyActDN 256 normal

ibm-sourceIPAddressRange attribute specifies the source addresses in IP
packets to which the policy rule applies. From a S/390 server’s point
of view, for inbound traffic, the source address in the IP packets will
be the address of the client, whereas for outbound traffic, the source
address will be one that is defined on the S/390 server (e.g., local
subnet addresses including VIPA). Either IPv4 or IPv6 addresses can
be specified. Here is the format of this attribute.
ibm-sourceIPAddressRange:n<-parameter according to 1 | 2 | 3 | 4 | 5 option>
ibm-sourceIPAddressRange:1 policy is applied to locally generated
packets
ibm-sourceIPAddressRange:2-<IPv4Address>-<PrefixMaskLength>
IPv4Address is in dotted decimal format.
PrefixMaskLength is the number of unmasked
leading bits. An IP packet matches the condition
if its source address unmasked bits are identical
to the unmasked bits defined.
ibm-sourceIPAddressRange:3-<from-IPv4Address>[-<to-IPv4Address>]
specifies IPv4Address range.
to-IPv4Address has to be no less than from-IPv4Address.
An IP packet matches the condition if its source
address is within the range defined.
ibm-sourceIPAddressRange:4-<IPv6Address>-<PrefixMaskLength>
IPv6Address is in colon-hex format.
PrefixMaskLength is the number of unmasked
leading bits. An IP packet matches the condition
if its source address unmasked bits are identical
to the unmasked bits defined.
ibm-sourceIPAddressRange:5-<from-IPv6Address>[-<to-IPv6Address>]
specifies IPv6Address range.
to-IPv6Address has to be no less than from-IPv6Address.
An IP packet matches the condition if its source
address is within the range defined.
This is a single-valued attribute.
some examples:
ibm-sourceIPAddressRange:1
ibm-sourceIPAddressRange:2-9.87.65.43-24
ibm-sourceIPAddressRange:3-9.87.65.43-9.87.65.255
ibm-sourceIPAddressRange:5-1200::BA05
this last example contains only one address defined, no range.
attribute ibm-sourceIPAddressRange cis sourceIPARange 64 normal

ibm-destinationIPAddressRange attribute specifies the destination addresses in
IP packets to which the policy rule applies. From a S/390 server’s point
of view, for inbound traffic, the destination address in the IP packets will
be the local address defined on the server, whereas for outbound traffic, the
destination address will be the remote client’s address. Either IPv4 or
IPv6 addresses can be specified. Here is the format of this attribute:
ibm-destinationIPAddressRange:n<-parameter according to 1 | 2 | 3 | 4 | 5 option>
ibm-destinationIPAddressRange:1 policy is applied to locally destined
packets
ibm-destinationIPAddressRange:2-<IPv4Address>-<PrefixMaskLength>
PrefixMaskLength is the number of unmasked
leading bits. An IP packet matches the condition
if its destination address unmasked bits are
identical to the unmasked bits defined.
ibm-destinationIPAddressRange:3-<from-IPv4Address>[-<to-IPv4Address>]
specifies IPv4Address range.
to-IPv4Address has to be no less than from-IPv4Address.
An IP packet matches the condition if its
destination address is within the range defined.
ibm-destinationIPAddressRange:4-<IPv6Address>-<PrefixMaskLength>

Appendix B. LDAP definition files 1437

PrefixMaskLength is the number of unmasked
leading bits. An IP packet matches the condition
if its destination address unmasked bits are
identical to the unmasked bits defined.
ibm-destinationIPAddressRange:5-<from-IPv6Address>[-<to-IPv6Address>]
specifies IPv6Address range.
to-IPv6Address has to be no less than from-IPv6Address.
An IP packet matches the condition if its
destination address is within the range defined.
This is a single-valued attribute.
see ibm-sourceIPAddressRange for comments.
attribute ibm-destinationIPAddressRange cis destIPARange 64 normal

ibm-sourcePortRange attribute specifies the source application port number in the
IP packets to which the policy rule applies. From a S/390 server’s point
of view, for inbound traffic, the source port in an IP packet will
be the remote client port, whereas for outbound traffic, the
source port will be one of a local application in the server.
Here is the format of this attribute:
ibm-sourcePortRange:<from-port>[:<to-port>]
two integers that specify a port range.
to-port has to be no less than from-port.
An IP packet matches the condition if its
source port is within the range defined.
Note that port number can’t exceed 16-bit field value.
This is a single-valued attribute.
some examples:
ibm-sourcePortRange:20:21
ibm-sourcePortRange:80
this last example contains only one port defined, no range.
attribute ibm-sourcePortRange cis sourcePortRange 32 normal

ibm-destinationPortRange attribute specifies the destination application port number
in the IP packets to which the policy rule applies. From a S/390 server’s
point of view, for inbound traffic, the destination port in an IP packet will
be the local application port in the server, whereas for outbound traffic, the
destination port will be the remote client’s port.
Here is the format of this attribute:
ibm-destinationPortRange:<from-port>[:<to-port>]
This is a single-valued attribute.
see ibm-sourcePortRange for comments.
attribute ibm-destinationPortRange cis destPortRange 32 normal

ibm-protocolNumberRange attribute specifies the protocol ID numbers in IP
packets to which the policy rule applies. The format of this attribute
is as follows:
ibm-protocolNumberRange:<from-protocolID>[:<to-protocolID>]
Two integers that specify a protocol ID range.
to-protocolID has to be no less than from-protocolID.
An IP packet matches the condition if its protocol
ID value is within the range defined.
Note that protocol number can’t exceed 255 (8-bit field).
This is a single-valued attribute.
attribute ibm-protocolNumberRange cis protoNumRange 32 normal

ibm-applicationName attribute specifies the name of the application that
is executing in the S/390 (e.g., also referred to as job name). Application
name is used when a predefined port number is not known for the application
(e.g., applications that use dynamically assigned port numbers). Note
that in S/390, application names are converted to upper case for comparison
with job names. ’*’ can be used as a wildcard. The specified name is
limited to 8 characters (longer names are silently truncated).
The format of this attribute is as follows:
ibm-applicationName:<name of the application/job in the system>
This is a single-valued attribute.
some examples:
ibm-applicationName:HTTPD
ibm-applicationName:FTPD*
attribute ibm-applicationName cis applName 8 normal

1438 z/OS V2R1.0 Communications Server: IP Configuration Reference

ibm-applicationData attribute is used for content-based policy classification.
This means the policy allows policy condition to include application
data to be included in the evaluation process. It enables an application
to assign different types of QoS treatments for different transactions
(or streams of data) within a session. In S/390, only web URI (Universal
Resource Identifier) is supported as application data and only when the
web application server activates Fast Response Cache Accelerator (FRCA)
function. This attribute is limited to 128 characters (longer data are
silently truncated). The format of this attribute is as follows:
ibm-applicationData:<a character string>
This is a single-valued attribute.
an example:
ibm-applicationData:/cat/purchase/info
attribute ibm-applicationData ces applData 128 normal

ibm-applicationPriority attribute is used for content-based policy
classification. It allows an application to assign different
priorities for different transactions (or streams of data) within a
session. Valid values are as follows:
0 = Any application priority specified (default).
1 = EXPEDITED, 2 = HIGH, 3 = MEDIUM, 4 = LOW, 5 = BESTEFFORT.
The format of this attribute is as follows:
ibm-applicationPriority:<an integer value>
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-applicationPriority:3
attribute ibm-applicationPriority cis applPriority 1 normal

ibm-interface attribute is used for both ibm-policyRule and ibm-policyAction objects.
For ibm-policyRule objects, it is used to limit the policy scope to specific
inbound and outbound interfaces/subnets as IP packets traverse a network
element (e.g., router). If both inbound and outbound interface values
are specified in an ibm-interface attribute, it means the corresponding
policy is to be applied to transit traffic that arrives on one interface
and departs on another interface (e.g., traffic going through a router).
From S/390 server’s point of view, because our implementation of policy
is as a host, a packet is destined to the server after it arrives on an
inbound interface, whereas an outbound packet originates from the server
and is sent on an outbound interface. As a result, if both inbound and
outbound interface non-null values are specified together, the corresponding
rule won’t be mapped to any traffic since S/390 doesn’t support policy as a
routing node. Either an IPv4 address or an interface name can be
specified - the only way to specify IPv6 interfaces is by name.
For ibm-policyAction objects, this attribute specifies a set of
Sysplex Distributor routing interfaces (up to 32). These routing interfaces
are used by the SD routing component to choose among available servers
in the S/390 sysplex. An interface value of 0 can be specified to indicate
that the SD router can use any available target server if none of the
target servers identified with instances of this attribute are available.
Only IPv4 addresses can be specified.
The default is no policy control of Sysplex Distributor routing.
The format of this attribute is as follows:
ibm-interface:1-[<In-Interface-IPv4Address>][-<Out_Interface-IPv4Address>]
ibm-interface:3-[<In-Interface-Name>][-<Out_Interface-Name>]
Type 1 is used for IPv4 addresses for ibm-PolicyRule and
ibm-PolicyAction.
Type 3 is used for IPv4 or IPv6 names for ibm-PolicyRule.
If either one of the inbound/outbound interfaces is not specified,
all inbound/outbound interfaces are assumed. For ibm-PolicyAction
objects, only the outbound interface can be specified.
This is a multi-valued attribute. However, it is treated as
single-valued for ibm-policyRule objects by the S/390 implementation.
some examples:
ibm-interace:1-9.87.65.43-9.87.60.1
with this specification, the corresponding rule is
to be applied when traffic enters interface 9.87.65.43
and departs on interface 9.87.60.1. As mentioned above,
with S/390 implementation as a server, this
corresponding rule WILL NOT be mapped.

Appendix B. LDAP definition files 1439

ibm-interace:3-ETH1 no outbound specified
attribute ibm-interface cis interface 64 normal

ibm-serverDomainName attribute contains the name of the server
specified in an HTTP request URL.
The format of this attribute is as follows:
ibm-serverDomainName:<domain_name>
This attribute applies to version 3 policies.
This is a single-valued attribute.
attribute ibm-serverDomainName ces destHDID 128 normal

ibm-userNameId attribute specifies the identity of the user that
is requesting a service which is to be assigned a QoS level.
The format of this attribute is as follows:
ibm-userNameId:<user_name>
This attribute applies to version 3 policies.
This is a single-valued attribute.
attribute ibm-userNameId ces userName 64 normal

ibm-userQoSGroup attribute contains the QoS group that is used to
classify a user that is requesting a service.
The format of this attribute is as follows:
ibm-userQoSGroup:<group_name>
This attribute applies to version 3 policies.
This is a single-valued attribute.
attribute ibm-userQoSGroup ces groupName 64 normal

ibm-IncomingTOS IncomingTOS attribute contains the value of the TOS
(Type of Service) or DS (Differentiated Services) field to which incoming
traffic will be classified along with other attributes (address, port
numbers etc) for inbound traffic treatment.
The format of this attribute is as follows:
ibm-IncomingTOS:<TOS_value>-<TOS_mask>
TOS_value is an 8 bit binary value, for example 01100000
TOS_mask is the number of significant bits in the mask,
from 1 to 8.
This attribute applies to version 3 policies.
This is a single-valued attribute.
attribute ibm-IncomingTOS cis IncomingTOS 16 normal

ibm-idsConditionType attribute is used to specify the type of IDS
conditions associated with a policy rule. Valid values are ATTACK,
for rules that specify attack conditions, TR, for Traffic Regulation
rules, SCAN_GLOBAL, for the single rule that specifies global
attributes for scan detection, or SCAN_EVENT, for individual scan
detection rules.
The format of this attribute is as follows:
ibm-idsConditionType:ATTACK | TR | SCAN_GLOBAL | SCAN_EVENT
This attribute applies to version 3 policies.
This is a multi-valued attribute, although in most cases IDS rules
should specify only a single type.
an example:
ibm-idsConditionType:TR
attribute ibm-idsConditionType cis idsConditionType 32 normal

ibm-idsAttackType attribute specifies the known types of intrusion
attacks to be evaluated in conjunction with a policy rule. Attacks
are specified as follows:
MALFORMED_PACKET - specifies a rule for a number of specific
malformed packets that are detected on inbound traffic.
FLOOD - specifies a rule for flooding attacks.
OUTBOUND_RAW - specifies a rule to enforce restrictions on the use
of RAW sockets for outbound processing, to prevent this stack
from being used to attack other systems. A list of restricted
IP protocols may also be specified in the rule’s conditions.
ICMP_REDIRECT - specifies a rule for ICMP redirect detection.
PERPETUAL_ECHO - specifies a rule for preventing perpetual echos
over UDP ports. A list of local UDP ports that always respond
to an input packet is also specified in the rule’s conditions,
and a separate list of remote (network) UDP ports that always

1440 z/OS V2R1.0 Communications Server: IP Configuration Reference

respond is specified. Use of this attack type is restricted to
using the CNF condition type, with exactly 3 CNF levels. One
level provides the attack type of PERPETUAL_ECHO, one level
provides the local ports, and one level provides the remote
ports. No other conditions may be specified in the rule.
IP_FRAGMENT - specifies a rule for detecting suspicious fragmented
packets.
RESTRICTED_IP_OPTIONS - specifies a rule to detect inbound IP
packets with IP options that are not allowed. A list of
restricted IP options is also specified in the rule’s conditions.
RESTRICTED_IP_PROTOCOL - specifies a rule to detect inbound IP
packets with IP protocols that are not allowed. A list of
restricted IP protocols is also specified in the rule’s
conditions.
The format of this attribute is as follows:
ibm-idsAttackType:MALFORMED_PACKET | FLOOD | OUTBOUND_RAW |
ICMP_REDIRECT | PERPETUAL_ECHO | IP_FRAGMENT |
RESTRICTED_IP_OPTIONS | RESTRICTED_IP_PROTOCOL
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsAttackType:IP_FRAGMENT
attribute ibm-idsAttackType cis idsAttackType 32 normal

ibm-idsIPOptionRange attribute specifies a list of restricted IP
options for IDS attack rules. This attribute is only valid when
ibm-idsAttackType specifies RESTRICTED_IP_OPTIONS.
The format of this attribute is as follows:
ibm-idsIPOptionRange:<from-option>[:<to-option>]
two integers that specify an option range.
to-option has to be no less than from-option.
Note that option number can’t exceed 255.
This attribute applies to version 3 policies.
This is a single-valued attribute.
some examples:
ibm-idsIPOptionRange:10:12
ibm-idsIPOptionRange:20
this last example contains only one option, no range.
attribute ibm-idsIPOptionRange cis idsIPOptionRange 32 normal

ibm-idsLocalPortRange attribute specifies a list of local ports for
IDS rules.
The format of this attribute is as follows:
ibm-idsLocalPortRange:<from-port>[:<to-port>]
two integers that specify a port range.
to-port has to be no less than from-port.
Note that port number can’t exceed 65535.
This attribute applies to version 3 policies.
This is a single-valued attribute.
some examples:
ibm-idsLocalPortRange:8000:8009
ibm-idsLocalPortRange:12005
this last example contains only one port, no range.
attribute ibm-idsLocalPortRange cis idsLclPortRange 32 normal

ibm-idsRemotePortRange attribute specifies a list of remote ports for
IDS rules.
The format of this attribute is as follows:
ibm-idsRemotePortRange:<from-port>[:<to-port>]
two integers that specify a port range.
to-port has to be no less than from-port.
Note that port number can’t exceed 65535.
This attribute applies to version 3 policies.
This is a single-valued attribute.
some examples:
ibm-idsRemotePortRange:9000:9100
ibm-idsRemotePortRange:11100
this last example contains only one port, no range.
attribute ibm-idsRemotePortRange cis idsRmtPortRange 32 normal

Appendix B. LDAP definition files 1441

ibm-idsProtocolRange attribute specifies a list of protocols for
IDS rules.
The format of this attribute is as follows:
ibm-idsProtocolRange:<from-protocol>[:<to-protocol>]
two integers that specify a protocol range.
to-protocol has to be no less than from-protocol.
Note that protocol number can’t exceed 255.
This attribute applies to version 3 policies.
This is a single-valued attribute.
some examples:
ibm-idsProtocolRange:100:105
ibm-idsProtocolRange:17
this last example contains only one protocol, no range.
attribute ibm-idsProtocolRange cis idsProtocolRange 32 normal

ibm-idsLocalHostIPAddress attribute specifies a list of local IP
addresses for IDS rules.
The format of this attribute is as follows:
ibm-idsLocalHostIPAddress:n<-parameter according to 2 | 3 option>
ibm-idsLocalHostIPAddress:2-<IPv4Address>-<PrefixMaskLength>
PrefixMaskLength is the number of unmasked
leading bits. An IP packet matches the condition
if its local address unmasked bits are
identical to the unmasked bits defined.
ibm-idsLocalHostIPAddress:3-<from-IPv4Address>[-<to-IPv4Address>]
specifies an IPv4 address range.
to-IPv4Address has to be no less than from-IPv4Address.
An IP packet matches the condition if its
local address is within the range defined.
This attribute applies to version 3 policies.
This is a single-valued attribute.
some examples:
ibm-idsLocalHostIPAddress:2-9.87.65.43-24
ibm-idsLocalHostIPAddress:3-9.87.65.43-9.87.65.255
ibm-idsLocalHostIPAddress:3-9.87.65.43
this last example contains only one address defined, no range.
attribute ibm-idsLocalHostIPAddress cis idsLclIPAddress 64 normal

ibm-idsRemoteHostIPAddress attribute specifies a list of remote IP
addresses for IDS rules.
The format of this attribute is as follows:
ibm-idsRemoteHostIPAddress:n<-parameter according to 2 | 3 option>
ibm-idsRemoteHostIPAddress:2-<IPv4Address>-<PrefixMaskLength>
PrefixMaskLength is the number of unmasked
leading bits. An IP packet matches the condition
if its remote address unmasked bits are
identical to the unmasked bits defined.
ibm-idsRemoteHostIPAddress:3-<from-IPv4Address>[-<to-IPv4Address>]
specifies an IPv4 address range.
to-IPv4Address has to be no less than from-IPv4Address.
An IP packet matches the condition if its
remote address is within the range defined.
This attribute applies to version 3 policies.
This is a single-valued attribute.
some examples:
ibm-idsRemoteHostIPAddress:2-129.10.11.0-23
ibm-idsRemoteHostIPAddress:3-9.10.11.0-9.10.11.255
ibm-idsRemoteHostIPAddress:3-211.0.42.1
this last example contains only one address defined, no range.
attribute ibm-idsRemoteHostIPAddress cis idsRmtIPAddress 64 normal

ibm-ptpConditionTime attribute specifies the range of calendar dates on which
the corresponding policy rule is valid. The format of this attribute is as
follows:
ibm-ptpConditionTime:yyyymmddhhmmss:yyyymmddhhmmss
where yyyy is year, mm is month, dd is date, hh is hour, mm is minute and
ss is second. Seconds are rounded to the nearest minute. Default is
always. Out of bounds values are forced to be correct (for instance
month 13 becomes January of the following year). Dates before the
start of the Posix epoch (Jan/01/1970 00:00:00 UTC) are not valid. The

1442 z/OS V2R1.0 Communications Server: IP Configuration Reference

time is kept in the format of seconds since the epoch - this value
wraps early in the year 2038, so times after that are not valid.
This is a single-valued attribute.
an example:
ibm-ptpConditionTime:19990101080000:20021231170000
(translates to: from Jan/01/1999 8AM to Dec/31/2002 5PM)
attribute ibm-ptpConditionTime cis ptpConditionTime 64 normal

ibm-ptpConditionMonthOfYearMask attribute specifies a mask identifying the months
of the year in which the corresponding policy rule is valid. The format
of this attribute is as follows:
ibm-ptpConditionMonthOfYearMask:<a string of 12 ’0’s and ’1’s>
This is a single-valued attribute.
an example:
ibm-ptpConditionMonthOfYearMask:111000000000
(Jan, Feb, and March)
attribute ibm-ptpConditionMonthOfYearMask cis ptpCondMonMask 12 normal

ibm-ptpConditionDayOfMonthMask attribute specifies a mask identifying the days
of the month on which the corresponding policy rule is valid. The format
of this attribute is as follows:
ibm-ptpConditionDayOfMonthMask:<a string of 31 or 62 ’0’s and ’1’s>
The first 31 bits identify the days of the month in the forward
direction (from the first day to the last day). The last 31 bits,
which are optional, identify the days of the month in the reverse
direction (from the last day to the first day). For example,
the 32nd bit represents the 31st day in January, but represents
the 29th day in February in a leap year.
Default is all month long.
This is a single-valued attribute.
an example:
ibm-ptpConditionDayOfMonthMask:1111111111111110000000000000000
(first 15 days of the month)
attribute ibm-ptpConditionDayOfMonthMask cis ptpCondDayMonM 64 normal

ibm-ptpConditionDayOfWeekMask attribute specifies a mask identifying the days
of the week on which the corresponding policy rule is valid. The format
of this attribute is as follows:
ibm-ptpConditionDayOfWeekMask:<a string of 7 ’0’s and ’1’s beginning with Sunday>
Default is all week long.
This is a single-valued attribute.
an example:
ibm-ptpConditionDayOfWeekMask:0111110
(weekdays)
attribute ibm-ptpConditionDayOfWeekMask cis ptpCondDayWeekM 8 normal

ibm-ptpConditionTimeOfDayMask attribute specifies a range of times in a day
during which the corresponding policy rule is valid. The format
of this attribute is as follows:
ibm-ptpConditionTimeOfDayMask:hhmmss:hhmmss
The second time identifies later time than the first. When it is
smaller the time range spans midnight. Seconds are rounded to
the nearest minute. Default is 24 hours.
This is a single-valued attribute.
some examples:
ibm-ptpConditionTimeOfDayMask:080000:170000
(8AM to 5PM)
ibm-ptpConditionTimeOfDayMask:170000:080000
(5PM to 8AM the next day)
attribute ibm-ptpConditionTimeOfDayMask cis ptpCondTimeDayM 16 normal

ibm-ptpConditionTimeZone attribute specifies the time zone for which to
apply the time specified in the ibm-policyTimePeriodCondition. The format
of this attribute is as follows:
ibm-ptpConditionTimeZone:< either Z or <’+’ | ’-’><hh[mm]> >
Z indicates UTC
’+’ or ’-’ represents east or west of UTC.
+/-0 is the same as UTC.
hhmm is the hour and minutes from UTC (up to
+/-1359). Minutes are optional. Default is

Appendix B. LDAP definition files 1443

local time.
This is a single-valued attribute.
an example:
ibm-ptpConditionTimeZone:+0400
(4 hours east of UTC)
attribute ibm-ptpConditionTimeZone cis ptpCondTimeZone 8 normal

ibm-ptpConditionLocalOrUtcTime attribute specifies whether the time
zone to be applied to the time specified in the ibm-policyTimePeriodCondition
is in local time or UTC time. This attribute applies to version 3
policies.
This is a single-valued attribute. The defined values for this
attribute are 1 for local time and 2 for UTC time. The default is 1.
attribute ibm-ptpConditionLocalOrUtcTime cis ptpCondLocalOrUtc 8 normal

ibm-PolicyScope attribute identifies the type of QoS service that the
corresponding policy action specifies. It can either be DataTraffic
(aka DiffServ for Differentiated Services) or RSVP (for Resource reSerVation
Protocol) or Both. Based on the policy scope, a set of corresponding
parameters can be applied for the traffic that is mapped to the policy
action.
The format of this attribute is as follows:
ibm-PolicyScope:<DataTraffic | RSVP | Both>
Default is Both.
This is a single-valued attribute.
an example:
ibm-PolicyScope:DataTraffic
attribute ibm-PolicyScope cis PolicyScope 16 normal

ibm-Permission attribute specifies whether or not to accept or deny traffic
that is mapped to the corresponding policy action.
The format of this attribute is as follows:
ibm-Permission:<Blocked | Allowed>
Default is Allowed.
This is a single-valued attribute.
attribute ibm-Permission cis Permission 8 normal

ibm-MaxRate attribute specifies the maximum TCP throughput for a connection
that is mapped to the corresponding policy action. It is used to control
the upper limit of the TCP congestion window with respect to the roundtrip
time. The format of this attribute is as follows:
ibm-MaxRate:<an integer number in Kbps>
Default is no limit.
This is a single-valued attribute.
attribute ibm-MaxRate cis MaxRate 32 normal

ibm-MinRate attribute specifies the minimum TCP throughput for a connection
that is mapped to the corresponding policy action. It is used to control
the lower limit of the TCP congestion window with respect to the roundtrip
time. The format of this attribute is as follows:
ibm-MinRate:<an integer number in Kbps>
Default is no limit.
This is a single-valued attribute.
attribute ibm-MinRate cis MinRate 32 normal

ibm-MaxDelay attribute specifies the maximum TCP roundtrip delay for a connection
that is mapped to the corresponding policy action. It is used mainly for
policy performance monitor and/or profiling (see SLAPM MIB).
The format of this attribute is as follows:
ibm-MaxDelay:<an integer number in milliseconds>
Default is no limit.
This is a single-valued attribute.
attribute ibm-MaxDelay cis MaxDelay 32 normal

ibm-OutgoingTOS attribute specifies the IP TOS byte (Type Of Service, aka
Differentiated Services - DS byte) value to be set for outgoing IP packets
that are mapped to the corresponding policy action from S/390. This TOS/DS
byte also determines the priority queue in which to place packets for S/390
QDIO devices.
The format of this attribute is as follows:

1444 z/OS V2R1.0 Communications Server: IP Configuration Reference

ibm-OutgoingTOS:<a string of 8 ’0’ and ’1’>
Default is 0.
This is a single-valued attribute.
an example:
ibm-OutgoingTOS:11000000
attribute ibm-OutgoingTOS cis OutgoingTOS 8 normal

ibm-MaxConnections attribute specifies the maximum number of TCP connections
that are allowed within the policy action that contains this attribute.
When this number is reached, additional TCP connections whose traffic is
mapped to a policy rule which references the corresponding action are
denied.
The format of this attribute is as follows:
ibm-MaxConnections:<an integer number>
Default is no limit.
This is a single-valued attribute.
attribute ibm-MaxConnections cis MaxConnections 32 normal

ibm-DiffServInProfileRate attribute specifies the mean rate (token generating
rate) of a token bucket traffic conditioner that enforces the rate of
traffic that is mapped to the corresponding policy action by a policy rule.
If the traffic exceeds this rate, it will be considered as out-of-profile
and therefore will be treated with the action specified in
ibm-DiffServExcessTrafficTreatment attribute. If this value is non-zero,
but ibm-DiffServInProfileTokenBucket is zero, then no token bucket traffic
enforcement is performed.
The format of this attribute is as follows:
ibm-DiffServInProfileRate:<an integer number in Kbps>
Default is no token bucket enforcement of traffic.
This is a single-valued attribute.
attribute ibm-DiffServInProfileRate cis DSInProfRate 32 normal

ibm-DiffServInProfilePeakRate attribute specifies the peak rate of a token bucket
traffic conditioner that enforces the peak rate of traffic that is mapped to
the corresponding policy action by a policy rule. If the traffic exceeds
this rate, it will be considered as out-of-profile and therefore will
be treated with the ibm-DiffServExcessTrafficTreatment attribute. If this
value is non-zero, but ibm-DiffServInProfileMaxPacketSize or
ibm-DiffServInProfileRate is zero, then no token bucket peak rate enforcement
is performed. If this value is less than ibm-DiffServInProfileRate, then
no token bucket traffic or peak rate enforcement is performed.
The format of this attribute is as follows:
ibm-DiffServInProfilePeakRate:<an integer number in Kbps>
Default is no token bucket enforcement of peak rate.
This is a single-valued attribute.
attribute ibm-DiffServInProfilePeakRate cis DSInProfPeakRt 32 normal

ibm-DiffServInProfileTokenBucket attribute specifies the maximum burst size of
a token bucket traffic conditioner that enforces the burst of traffic
that is mapped to the corresponding policy action by a policy rule. It is
used together with the mean rate in generating tokens consumed by outgoing
traffic.
The format of this attribute is as follows:
ibm-DiffServInProfileTokenBucket:<an integer number in Kb>
Default is 100.
This is a single-valued attribute.
attribute ibm-DiffServInProfileTokenBucket cis DSInProfTB 32 normal

ibm-DiffServInProfileMaxPacketSize attribute specifies the maximum size of an
IP packet being enforced by a token bucket traffic conditioner.
Note that due to blocking in S/390, multiple packets tend to be sent
back to back and if maximum packet size is just big enough for one packet,
violation of the peak rate (peak rate enforcement is based on the size of
each individual packet) will result and violated packets will be sent with
different TOS value or dropped as a consequence. To accommodate this
blocking, the value of this attribute should be set in multiples of the
maximum packet size (e.g., equal to the token bucket size).
The format of this attribute is as follows:
ibm-DiffServInProfileMaxPacketSize:<an integer number in Kb>
Default is 100.

Appendix B. LDAP definition files 1445

This is a single-valued attribute.
attribute ibm-DiffServInProfileMaxPacketSize cis DSInProfMPS 32 normal

ibm-DiffServOutProfileTransmittedTOSByte attribute specifies the TOS value to
be used for out-of-profile traffic if the excess treatment specified is
to send them as best effort.
The format of this attribute is as follows:
ibm-DiffServOutProfileTransmittedTOSByte:<a string of 8 ’0’ and ’1’>
Default is 0.
This is a single-valued attribute.
attribute ibm-DiffServOutProfileTransmittedTOSByte cis DSOutProfTosB 8 normal

ibm-DiffServExcessTrafficTreatment attribute specifies how a token bucket
traffic conditioner should treat out-of-profile traffic. Two options
can be specified, either Drop or BestEffort. If treatment is to send
BestEffort, a different TOS value, if specified, will be used. If
treatment is to Drop, depending on whether the traffic is UDP or TCP
different mechanisms will be used to handle Drop treatment:
For UDP, traffic will actually be dropped.
For TCP, Drop treatment is simulated in that TCP congestion window is
cut (just as the case when a packet is dropped) immediately but the
violated packet will be sent. This is to avoid overhead associated
with retransmission processing and also to reduce the traffic
generated immediately without having to wait for a roundtrip time
(i.e., standard TCP lost detection delay). Also, TCP connections
that are mapped to the same policy (i.e., aggregation) will share
the throughput equally among them.
The format of this attribute is as follows:
ibm-DiffServExcessTrafficTreatment:<Drop | BestEffort>
Default is BestEffort.
This is a single-valued attribute.
attribute ibm-DiffServExcessTrafficTreatment cis DSExcessTreat 16 normal

ibm-FlowServiceType attribute specifies the reservation type
that can be requested by an RSVP flow, either ControlledLoad
or Guaranteed. Guaranteed service is considered to be greater than
ControlledLoad. Use this attribute to limit the service type requested
from RSVP applications.
ibm-FlowServiceType:<ControlledLoad | Guaranteed>
Default is ControlledLoad
This is a single-valued attribute.
attribute ibm-FlowServiceType cis FlowServiceType 32 normal

ibm-MaxRatePerFlow attribute specifies the maximum rate
that can be requested by an RSVP flow that is mapped to a policy rule
which references the corresponding policy action containing this attribute.
The format of this attribute is as follows:
ibm-MaxRatePerFlow:<an integer number in Kbps>
Default is no limit.
This is a single-valued attribute.
attribute ibm-MaxRatePerFlow cis MaxRatePerFlow 32 normal

ibm-MaxTokenBucketPerFlow attribute specifies the maximum token bucket size
that can be requested by an RSVP flow that is mapped to a policy rule
which references the corresponding policy action containing this attribute.
The format of this attribute is as follows:
ibm-MaxTokenBucketPerFlow:<an integer number in Kbits>
Default is no limit.
This is a single-valued attribute.
attribute ibm-MaxTokenBucketPerFlow cis MaxTBPerFlow 32 normal

ibm-MaxFlows attribute specifies the maximum number of RSVP flows that are
allowed within the policy action that contains this attribute. When
this number is reached, additional RSVP flow requests that are mapped
to a policy rule which references the corresponding action are denied.
The format of this attribute is as follows:
ibm-MaxFlows:<an integer number>
Default is no limit.
This is a single-valued attribute.
attribute ibm-MaxFlows cis MaxFlows 32 normal

1446 z/OS V2R1.0 Communications Server: IP Configuration Reference

ibm-signalClient attribute specifies additional QoS function to the
traditional sockets functions calls that will enable RSVP processing for
a TCP or UDP connection.
The format of this attribute is as follows:
ibm-signalClient:< 0 = No Signaling | 1 = Signaling >
Default is 1 (Signaling).
This is a single-valued attribute.
attribute ibm-SignalClient cis signalClient 32 normal

ibm-inboundScope attribute identifies the type of inbound QoS service
that the corresponding policy action specifies. It can be either
Application (for a named application) or Connection (for general TCP
connections). Based on the inbound scope, a set of corresponding
parameters can be applied for the traffic that is mapped to the policy
action. This attribute is extendable to other applications.
The format of this attribute is as follows:
ibm-inboundScope:< Application | Connection >
Default is Connection.
This is a single-valued attribute.
attribute ibm-inboundScope cis inboundScope 16 normal

ibm-averageConnectionRate attribute specifies the average number of new
requests (connections) admitted per second. If either the
ibm-averageConnectionRate or ibm-connectionBurstSize is not in profile
then the inbound connection will be <Drop>.
The format of this attribute is as follows:
ibm-averageConnectionRate:<an integer number>
Default is 100.
This is a single-valued attribute.
attribute ibm-averageConnectionRate cis averageConnRate 32 normal

ibm-PeakConnectionRate attribute specifies the peak rate of a token bucket
traffic conditioner that enforces the peak rate of traffic that is mapped
to the corresponding inbound policy action by a policy rule. If the number
of connections exceeds this rate, it will be considered as out-of-profile
and therefore will be treated is if the ibm-DiffServExcessTrafficTreatment
attribute was set to <Drop>.
The format of this attribute is as follows:
ibm-PeakConnectionRate:<an integer number>
Default is no limit.
This is a single-valued attribute.
attribute ibm-PeakConnectionRate cis PeakConnRate 32 normal

ibm-connectionBurstSize attribute specifies the maximum number of new
requests (connections) accepted concurrently. If either the
ibm-averageConnectionRate or ibm-connectionBurstSize is not in profile
then the inbound connection will be <Drop>.
The format of this attribute is as follows:
ibm-connectionBurstSize:<an integer number>
Default is 5.
This is a single-valued attribute.
attribute ibm-connectionBurstSize cis connBurstSize 32 normal

ibm-averageApplicationRequestRate attribute specifies the average number
of new application requests admitted per second. If either the
ibm-averageApplicationRequestRate or ibm-applicationRequestBurstSize is
not in profile then the inbound request will be <Drop>.
The format of this attribute is as follows:
ibm-averageApplicationRequestRate:<an integer number>
Default is 100.
This is a single-valued attribute.
attribute ibm-averageApplicationRequestRate cis averageApplReqRat 32 normal

ibm-applicationRequestPeakRate attribute specifies the peak rate of a
token bucket traffic conditioner that enforces the peak rate of traffic
that is mapped to the corresponding inbound policy action by a policy
rule. If the number of application requests exceeds this rate, it will be
considered out-of-profile and the inbound application request will be
<Drop>.

Appendix B. LDAP definition files 1447

The format of this attribute is as follows:
ibm-applicationRequestPeakRate:<an integer number>
Default is no limit.
This is a single-valued attribute.
attribute ibm-applicationRequestPeakRate cis applRequestPeakRa 32 normal

ibm-applicationRequestBurstSize attribute specifies the maximum number of
new application requests accepted concurrently. If either the
ibm-averageApplicationRequestRate or ibm-applicationRequestBurstSize is
not in profile then the inbound request will be <Drop>.
The format of this attribute is as follows:
ibm-applicationRequestBurstSize:<an integer number>
Default is 5.
This is a single-valued attribute.
attribute ibm-applicationRequestBurstSize cis applRequestBurstS 32 normal

ibm-prioritizedQueue attribute specifies the order the queue of the server
processes incoming connections. If the incoming packet is within the
profiles limits then each connection will be served by one of 3 priorties.
The format of this attribute is as follows:
ibm-prioritizedQueue:<an integer number 1 = High | 2 = Medium | 3 = Low>
Default is 2 - Medium.
This is a single-valued attribute.
attribute ibm-prioritizedQueue cis prioritizedQueue 32 normal

ibm-idsActionType attribute is used to specify the type of IDS
actions associated with a policy rule. Valid values are ATTACK,
for rules that specify attack actions, TR, for Traffic Regulation
actions, SCAN_GLOBAL, for the single action that specifies global
attributes for scan detection, or SCAN_EVENT, for individual scan
detection actions.
The format of this attribute is as follows:
ibm-idsActionType:ATTACK | TR | SCAN_GLOBAL | SCAN_EVENT
This attribute applies to version 3 policies.
This is a multi-valued attribute.
an example:
ibm-idsActionType:SCAN_EVENT
attribute ibm-idsActionType cis idsActionType 32 normal

ibm-idsNotification attribute specifies the types of notification to
be provided for the events mapped by the corresponding IDS rule.
Valid values are NONE, for no notification, SYSLOG, to log to the
syslog daemon (syslogd), SYSLOGDETAIL, to log more detailed information
to syslogd, or CONSOLE, to log to the system console.
The format of this attribute is as follows:
ibm-idsNotification:NONE | SYSLOG | SYSLOGDETAIL | CONSOLE
The default is NONE.
This attribute applies to version 3 policies.
This is a multi-valued attribute, but NONE can’t be specified with
any other values.
an example:
ibm-idsNotification:CONSOLE
attribute ibm-idsNotification cis idsNotification 32 normal

ibm-idsStatInterval attribute specifies the interval length in minutes
for collecting IDS statistics.
The format of this attribute is as follows:
ibm-idsStatInterval:<an integer number>
The default is 60.
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsStatInterval:600
attribute ibm-idsStatInterval cis idsStatInterval 32 normal

ibm-idsLoggingLevel attribute specifies the syslogd logging level for
logging IDS information. Valid values are 0 through 7.
The format of this attribute is as follows:
ibm-idsStatInterval:<an integer number>
The default is 0.

1448 z/OS V2R1.0 Communications Server: IP Configuration Reference

This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsLoggingLevel:1
attribute ibm-idsLoggingLevel cis idsLoggingLevel 32 normal

ibm-idsTypeActions attribute specifies the type of actions to be taken
for IDS events. Valid values are STATISTICS, for collecting statistics
information only, EXCEPTSTATS, for collecting exception statistics
only, LOG, to log IDS information according to the ibm-idsNotification
attribute, or LIMIT, to enforce IDS Traffic Regulation limits and to
cause detected attack packets to be dropped.
The format of this attribute is as follows:
ibm-idsTypeActions:STATISTICS | EXCEPTSTATS | LOG | LIMIT
This attribute applies to version 3 policies.
This is a multi-valued attribute.
an example:
ibm-idsTypeActions:LOG
attribute ibm-idsTypeActions cis idsTypeActions 32 normal

ibm-idsTraceData attribute specifies the amount of information written
to the IDS event trace. Valid values are NONE, for no tracing, HEADER
for tracing the IP and transport headers in packets, FULL, for tracing
entire packets, or RECORDSIZE, for tracing the amount of data specified
with the ibm-idsTraceRecordSize attribute (this amount of data
includes the IP and transport headers).
The format of this attribute is as follows:
ibm-idsTraceData:NONE | HEADER | FULL | RECORDSIZE
The default is HEADER.
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsTraceData:RECORDSIZE
attribute ibm-idsTraceData cis idsTraceData 32 normal

ibm-idsTraceRecordSize attribute specifies the amount of packet data
to trace, when ibm-idsTraceData:RECORDSIZE is specified.
The format of this attribute is as follows:
ibm-idsTraceRecordSize:<an integer number>
The default is 100.
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsTraceRecordSize:50
attribute ibm-idsTraceRecordSize cis idsTraceRecordSz 32 normal

ibm-idsMaxEventMessage attribute specifies the maximum number of event
messages to be displayed on the console during a 5 minute period for
an IDS attack type (e.g. MALFORMED_PACKET).
The format of this attribute is as follows:
ibm-idsMaxEventMessage:<an integer number>
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsMaxEventMessage:5
attribute ibm-idsMaxEventMessage cis idsMaxEventMsg 32 normal

ibm-idsIfcFloodPercentage attribute specifies the percentage of
discarded packets for an interface above which an interface flood
attack is recognized. The minimum value is 5%. The default is 10%.
The format of this attribute is as follows:
ibm-idsIfcFloodPercentage:<an integer number>
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsIfcFloodPercentage:20
attribute ibm-idsIfcFloodPercentage cis idsIfcFloodPrcnt 32 normal

ibm-idsIfcFloodMinDiscard attribute specifies the minimum number of
discarded packets for an interface that must occur within a 1 minute

Appendix B. LDAP definition files 1449

period in order to be recognized as an interface flood attack. The
minimum value is 100. The default is 1000.
The format of this attribute is as follows:
ibm-idsIfcFloodMinDiscard:<an integer number>
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsIfcFloodMinDiscard:500
attribute ibm-idsIfcFloodMinDiscard cis idsIfcFloodMinDs 32 normal

ibm-idsTRtcpTotalConnections attribute specifies the size of the total
connection pool for IDS TCP Traffic Regulation functions. The maximum
value is 65535.
The format of this attribute is as follows:
ibm-idsTRtcpTotalConnections:<an integer number>
The default is 65535.
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsTRtcpTotalConnections:1000
attribute ibm-idsTRtcpTotalConnections cis idsTRtcpTotConn 32 normal

ibm-idsTRtcpPercentage attribute specifies the percentage of the total
connections allowed with the ibm-idsTRtcpTotalConnections attribute
that can be used by a single host. The range is 0 - 100%.
The format of this attribute is as follows:
ibm-idsTRtcpPercentage:<an integer number>
The default is 100.
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsTRtcpPercentage:50
attribute ibm-idsTRtcpPercentage cis idsTRtcpPercent 32 normal

ibm-idsTRtcpLimitScope attribute specifies the scope of TCP traffic
regulation. Valid values are PORT, meaning that traffic regulation
parameters apply to the aggregate of all sockets bound to the target
port, or PORT_INSTANCE, meaning that traffic regulation parameters
apply to each socket bound to the target port individually.
The format of this attribute is as follows:
ibm-idsTRtcpLimitScope:PORT | PORT_INSTANCE
The default is PORT_INSTANCE.
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsTRtcpLimitScope:PORT
attribute ibm-idsTRtcpLimitScope cis idsTRtcpLmtScope 32 normal

ibm-idsTRudpQueueSize attribute specifies the size of the port backlog
queue. This attribute is used to select one of a number of abstract
queue sizes that map to internally defined limits. Valid values are
VERY_LONG, LONG, SHORT, VERY_SHORT.
The format of this attribute is as follows:
ibm-idsTRudpQueueSize:VERY_LONG | LONG | SHORT | VERY_SHORT
The default is VERY_LONG.
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsTRudpQueueSize:SHORT
attribute ibm-idsTRudpQueueSize cis idsTRudpQueueSize 32 normal

ibm-idsFSInterval attribute specifies the interval in minutes for
monitoring for fast scanning attacks. The maximum value is 1440.
Only one policy rule in the set of rules for a given stack can specify
this global scan value.
The format of this attribute is as follows:
ibm-idsFSInterval:<an integer number>
The default is 1.
This attribute applies to version 3 policies.
This is a single-valued attribute.

1450 z/OS V2R1.0 Communications Server: IP Configuration Reference

an example:
ibm-idsFSInterval:10
attribute ibm-idsFSInterval cis idsFSInterval 32 normal

ibm-idsFSThreshold attribute specifies the fast scanning threshold.
A fast scan attack is detected if more events from a single source
are detected than specified within the interval defined with the
ibm-idsFSInterval attribute. The maximum value is 64. Only one
policy rule in the set of rules for a given stack can specify this
global scan value.
The format of this attribute is as follows:
ibm-idsFSThreshold:<an integer number>
The default is 5.
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsFSThreshold:9
attribute ibm-idsFSThreshold cis idsFSThreshold 32 normal

ibm-idsSSInterval attribute specifies the interval in minutes for
monitoring for slow scanning attacks. The maximum value is 1440.
The value specified must be greater than the value specified for the
ibm-idsFSInterval attribute. However, a value of 0 can be specified
to indicate that no slow scan processing should be performed. Only
one policy rule in the set of rules for a given stack can specify
this global scan value.
The format of this attribute is as follows:
ibm-idsSSInterval:<an integer number>
The default is 120.
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsSSInterval:300
attribute ibm-idsSSInterval cis idsSSInterval 32 normal

ibm-idsSSThreshold attribute specifies the slow scanning threshold.
A slow scan attack is detected if more events from a single source
are detected than specified within the interval defined with the
ibm-idsSSInterval attribute. The maximum value is 64. The value
specified must be greater than the value specified for the
ibm-idsFSInterval attribute. However, a value of 0 can be specified
to indicate that no slow scan processing should be performed. Only
one policy rule in the set of rules for a given stack can specify
this global scan value.
The format of this attribute is as follows:
ibm-idsSSThreshold:<an integer number>
The default is 10.
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsSSThreshold:25
attribute ibm-idsSSThreshold cis idsSSThreshold 32 normal

ibm-idsSensitivity attribute specifies the sensitivity of events
monitored for fast and slow scan attack detection. Events that are
monitored can be classified as normal, possibly suspicious, or very
suspicious. This attribute selects which of these types of events
should be counted for scan attack detection. Valid values are
NONE, meaning no events are counted, HIGH, meaning all event types
are counted, MEDIUM, meaning possibly suspicious and very suspicious
events are counted, or LOW, meaning only very suspicious events are
counted.
The format of this attribute is as follows:
ibm-idsSensitivity:NONE | HIGH | MEDIUM | LOW
The default is NONE.
This attribute applies to version 3 policies.
This is a single-valued attribute.
an example:
ibm-idsSensitivity:MEDIUM
attribute ibm-idsSensitivity cis idsSensitivity 32 normal

Appendix B. LDAP definition files 1451

ibm-idsScanExclusion attribute specifies IP addresses and optionally
ports that are to be excluded when monitoring for scan attacks. For
example, responses from name servers may appear to be scan attacks,
unless the name servers are excluded using this attribute.
The format of this attribute is as follows:
ibm-idsScanExclusion:1-<RemoteIPv4Address>-<PrefixMaskLength>
[-<RemoteFromPort>][-<RemoteToPort>]
PrefixMaskLength is the number of unmasked
leading bits. An IP packet matches the action
if its remote address unmasked bits are
identical to the unmasked bits defined.
This attribute applies to version 3 policies.
This is a multi-valued attribute.
some examples:
ibm-idsScanExclusion:1-130.0.1.1
ibm-idsScanExclusion:1-130.0.2.1-100-110
ibm-idsScanExclusion:1-130.0.3.1-53
The first example shows only an IP address, the second shows
a port range, and the last shows only one port, no range.
attribute ibm-idsScanExclusion cis idsScanExclusion 32 normal

ibm-policyRepositoryName attribute specifies the user friendly name of
an ibm-policyRepository object. This attribute applies to version 3
policies.
This is a single-valued attribute.
attribute ibm-policyRepositoryName cis policyRepName 256 normal

ibm-policySubtreesAuxContainedSet attribute provides an unordered
set of distinguished name pointers to one or more directory subtrees
that anchor policy-related objects. This allows a more efficient
retrieval of policy objects from an LDAP server. This attribute
applies to version 3 policies.
This is a multi-valued attribute. Its value is the distinguished
name of the referenced directory subtree.
attribute ibm-policySubtreesAuxContainedSet dn policySubtreeSet 256 normal

SubnetAddr attribute specifies the interface for which the Type of
Service (TOS) byte mappings defined with the SetSubnetPrioTosMask
object are to be applied. The specified value must be a valid interface
for the stack for which this attribute applies. Either an IPv4 address
or an interface name can be specified - the only way to specify IPv6
interfaces is by name. The format of this attribute is as follows:
SubnetAddr:<IPv4Address | interface_name>
Default is all interfaces.
This is a single-valued attribute.
attribute SubnetAddr cis SubnetAddr 32 normal

SubnetTosMask attribute specifies the type of service (TOS) byte bits
that are to be considered for mapping to outbound interface priorities
using the SetSubnetPrioTosMask object. This attribute is required.
The format of this attribute is as follows:
SubnetTosMask:<a string of 8 ’0’ and ’1’>
This is a single-valued attribute.
attribute SubnetTosMask cis SubnetTosMask 8 normal

PriorityTosMapping attribute specifies type of service (TOS) byte to
outbound interface priority mappings for the SetSubnetPrioTosMask
object. For devices that support tagging of Virtual LAN (VLAN) frames,
the VLAN user priority can optionally be specified. This attribute
can be repeated for each such mapping to be defined.
The format of this attribute is as follows:
PriorityTosMapping:<integer number-string of 8 ’0’ and ’1’[-integer number]>
The following example shows the default values for the mapping:
PriorityTosMapping:1-11100000
PriorityTosMapping:1-11000000
PriorityTosMapping:1-10100000
PriorityTosMapping:1-10000000
PriorityTosMapping:2-01100000
PriorityTosMapping:3-01000000

1452 z/OS V2R1.0 Communications Server: IP Configuration Reference

PriorityTosMapping:4-00100000
PriorityTosMapping:4-00000000
The following example shows VLAN user priority specified:
PriorityTosMapping:1-11000000-3
This is a multi-valued attribute.
attribute PriorityTosMapping cis PriorityTosMap 32 normal

PAGENTOC sample
#
pagent_oc.conf
#
This file contains objectclass definitions to be defined in
an LDAP server for Quality of Service (QOS) and Intrusion Detection
Services (IDS) policies.
#

The ibm-policy object class is an abstract class which is used as the
root of all policy related structural classes. This class applies to
version 3 policies.
objectclass ibm-policy

requires
objectClass

allows
cn,
ibm-policyKeywords,
description

The ibm-policyGroup object class is a structural subclass of
ibm-policy that acts as a container for either a set of related
policy rules or a set of related policy groups (e.g., groups imbedded
within a group). An ibm-policyGroup object can use either the
ibm-policyRulesAuxContainedSet or ibm-policyGroupsAuxContainedSet
pointer to realize this containment.
objectclass ibm-policyGroup

requires
objectClass,
ibm-policyGroupName

allows
ibm-policyGroupsAuxContainedSet,
ibm-policyRulesAuxContainedSet,
ibm-policyGroupKeywords,
cn,
ibm-policyKeywords,
description

The ibm-policyRule object class is a structural subclass of
ibm-policy that represents the "If Condition then Action" semantic
associated with a policy. The set of conditions (e.g., source IP
address ranges, source port numbers etc.) are either included directly
into an ibm-policyRule object (i.e., a simple rule) or pointed to by
the ibm-policyRuleConditionList or ibm-policyRuleConditionListDN
attribute (i.e., a complex rule).
objectclass ibm-policyRule

requires
objectClass,
ibm-policyRuleName

allows
ibm-policyRuleEnabled,
ibm-policyRuleConditionListType,
ibm-policyRuleConditionList,
ibm-policyRuleConditionListDN,
ibm-policyRuleActionList,

Figure 64. PAGENTAT sample

Appendix B. LDAP definition files 1453

ibm-policyRuleActionListDN,
ibm-policyRuleValidityPeriodList,
ibm-policyRuleKeywords,
ibm-policyRuleUsage,
ibm-policyRulePriority,
ibm-policyRuleMandatory,
ibm-policyRuleSequencedActions,
ibm-policyRoles,
cn,
ibm-policyKeywords,
description

The ibm-policyRuleConditionAssociation object class is a structural
subclass of ibm-policy that represents policy condition objects. The
policy conditions themselves are represented by auxiliary subclasses
of the auxiliary class ibm-policyConditionAuxClass. These auxiliary
classes are attached directly to instances of the class
ibm-policyRuleConditionAssociation for rule-specific conditions. For
reusable conditions, the auxiliary classes are attached to instances
of the class ibm-policyInstance or ibm-policyConditionInstance. This
class applies to version 3 policies.
objectclass ibm-policyRuleConditionAssociation

requires
objectClass,
ibm-policyConditionName,
ibm-policyConditionGroupNumber,
ibm-policyConditionNegated

allows
ibm-policyConditionDN,
cn,
ibm-policyKeywords,
description

The ibm-policyRuleActionAssociation object class is a structural
subclass of ibm-policy that represents policy action objects. The
policy actions themselves are represented by auxiliary subclasses of
the auxiliary class ibm-policyActionAuxClass. These auxiliary classes
are attached directly to instances of the class
ibm-policyRuleActionAssociation for rule-specific actions. For
reusable actions, the auxiliary classes are attached to instances of
the class ibm-policyInstance or ibm-policyActionInstance. This class
applies to version 3 policies.
objectclass ibm-policyRuleActionAssociation

requires
objectClass,
ibm-policyActionName,
ibm-policyActionOrder

allows
ibm-policyActionDN,
cn,
ibm-policyKeywords,
description

The ibm-policyInstance object class is a structural subclass of
ibm-policy that represents either policy condition or policy action
objects. The policy conditions or actions themselves are represented
by auxiliary subclasses of the auxiliary class
ibm-policyConditionAuxClass or ibm-policyActionAuxClass. These
auxiliary classes are attached directly to instances of the class
ibm-policyRuleConditionAssociation or ibm-policyRuleActionAssociation
for rule-specific conditions or actions. For reusable conditions or
actions, the auxiliary classes are attached to instances of the class
ibm-policyInstance, ibm-policyConditionInstance or
ibm-policyActionInstance. This class applies to version 3 policies.
objectclass ibm-policyInstance

requires
objectClass

1454 z/OS V2R1.0 Communications Server: IP Configuration Reference

allows
ibm-policyInstanceName,
cn,
ibm-policyKeywords,
description

The ibm-policyConditionInstance object class is a structural subclass
of ibm-policyInstance that represents policy condition objects. The
policy conditions themselves are represented by auxiliary subclasses
of the auxiliary class ibm-policyConditionAuxClass. These auxiliary
classes are attached directly to instances of the class
ibm-policyRuleConditionAssociation for rule-specific conditions. For
reusable conditions, the auxiliary classes are attached to instances
of the class ibm-policyInstance or ibm-policyConditionInstance. This
class applies to version 3 policies.
objectclass ibm-policyConditionInstance

requires
objectClass

allows
ibm-policyInstanceName,
ibm-policyConditionName,
cn,
ibm-policyKeywords,
description

The ibm-policyActionInstance object class is a structural subclass
of ibm-policyInstance that represents policy action objects. The
policy actions themselves are represented by auxiliary subclasses
of the auxiliary class ibm-policyActionAuxClass. These auxiliary
classes are attached directly to instances of the class
ibm-policyRuleActionAssociation for rule-specific actions. For
reusable actions, the auxiliary classes are attached to instances of
the class ibm-policyInstance or ibm-policyActionInstance. This class
applies to version 3 policies.
objectclass ibm-policyActionInstance

requires
objectClass

allows
ibm-policyInstanceName,
ibm-policyActionName,
cn,
ibm-policyKeywords,
description

The ibm-policyCondition object class is a structural subclass of
ibm-policy that represents a condition to be evaluated in conjunction
with a policy rule object (i.e., "If Condition then Action" semantic).
The actual conditions are contained in subclasses of this class.
This class applies to version 2 policies.
objectclass ibm-policyCondition

requires
objectClass,
ibm-policyConditionName

allows
cn,
ibm-policyKeywords,
description

The ibm-policyTimePeriodCondition object class is a structural
subclass of ibm-policyCondition that represents the time periods
during which a policy rule is active, to be evaluated in conjunction
with a policy rule. The ibm-policyTimePeriodCondition object can only
be referenced within a policy rule object. This class applies to
version 2 policies.
objectclass ibm-policyTimePeriodCondition

requires
objectClass,

Appendix B. LDAP definition files 1455

ibm-policyConditionName
allows

ibm-ptpConditionTime,
ibm-ptpConditionMonthOfYearMask,
ibm-ptpConditionDayOfMonthMask,
ibm-ptpConditionDayOfWeekMask,
ibm-ptpConditionTimeOfDayMask,
ibm-ptpConditionTimeZone,
cn,
ibm-policyKeywords,
description

The ibm-networkingPolicyCondition object class is a structural subclass
of ibm-policyCondition that represents a set of networking related
conditions to be evaluated in conjunction with a policy rule object.
The networking conditions themselves are represented by the auxiliary
subclasses ibm-routeConditionAuxClass, ibm-hostConditionAuxClass, and
ibm-applicationConditionAuxClass, which are attached to this class.
This class applies to version 2 policies.
objectclass ibm-networkingPolicyCondition

requires
objectClass,
ibm-policyConditionName

allows
cn,
ibm-policyKeywords,
description

The ibm-policyAction object class is a structural subclass of
ibm-policy that represents an action to be performed as a result of
evaluation of a policy rule (e.g., the "If Condition then Action"
representation). The actions themselves are contained in the
ibm-serviceCategories subclass. This class applies to version 2
policies.
objectclass ibm-policyAction

requires
objectClass,
ibm-policyActionName

allows
cn,
ibm-policyKeywords,
description

The ibm-serviceCategories object class is a structural subclass of
ibm-policyAction that contains a set of Quality of Service (QoS)
attributes to apply to a flow of IP packets, identified by a policy
rule condition, as they traverse the network. This class applies to
version 2 policies.
objectclass ibm-serviceCategories

requires
objectClass,
ibm-policyActionName

allows
ibm-PolicyScope,
ibm-Permission,
ibm-MaxRate,
ibm-MinRate,
ibm-MaxDelay,
ibm-OutgoingTOS,
ibm-MaxConnections,
ibm-Interface,
ibm-DiffServInProfileRate,
ibm-DiffServInProfilePeakRate,
ibm-DiffServInProfileTokenBucket,
ibm-DiffServInProfileMaxPacketSize,
ibm-DiffServOutProfileTransmittedTOSByte,
ibm-DiffServExcessTrafficTreatment,

1456 z/OS V2R1.0 Communications Server: IP Configuration Reference

ibm-FlowServiceType,
ibm-MaxRatePerFlow,
ibm-MaxTokenBucketPerFlow,
ibm-MaxFlows,
cn,
ibm-policyKeywords,
description

The ibm-policyElementAuxClass object class is an auxiliary subclass of
ibm-policy that is used to "tag" an instance of a class defined outside
the realm of policy as being nevertheless relevant to a policy
specification. Every instance to which this class is attached becomes
an instance of the ibm-policy class. This class applies to version 3
policies.
objectclass ibm-policyElementAuxClass

requires
objectClass

allows
cn,
ibm-policyKeywords,
description

The ibm-policyConditionAuxClass object class is an auxiliary class that
represents a condition to be evaluated in conjunction with a policy
rule object (i.e., "If Condition then Action" semantic). It is
attached directly to an instance of ibm-policyRuleConditionAssociation
or ibm-policyRule for rule-specific conditions, or to an instance of
ibm-policyInstance or ibm-policyConditionInstance for reusable
conditions. The actual conditions are represented by auxiliary
subclasses of this class. This class applies to version 3 policies.
objectclass ibm-policyConditionAuxClass

requires
objectClass

The ibm-policyTimePeriodConditionAuxClass object class is an
auxiliary subclass of ibm-policyConditionAuxClass that represents the
time periods during which a policy rule is active, to be evaluated in
conjunction with a policy rule. This class applies to version 3
policies.
objectclass ibm-policyTimePeriodConditionAuxClass

requires
objectClass

allows
ibm-ptpConditionTime,
ibm-ptpConditionMonthOfYearMask,
ibm-ptpConditionDayOfMonthMask,
ibm-ptpConditionDayOfWeekMask,
ibm-ptpConditionTimeOfDayMask,
ibm-ptpConditionTimeZone,
ibm-ptpConditionLocalOrUtcTime

The ibm-networkingPolicyConditionAuxClass object class is an auxiliary
subclass of ibm-policyConditionAuxClass that represents a set of
networking related conditions to be evaluated in conjunction with a
policy rule object. The networking conditions themselves are
represented by the auxiliary subclasses ibm-routeConditionAuxClass,
ibm-hostConditionAuxClass, and ibm-applicationConditionAuxClass.
This class applies to version 3 policies.
objectclass ibm-networkingPolicyConditionAuxClass

requires
objectClass

The ibm-routeConditionAuxClass object class is an auxiliary subclass
of ibm-networkingPolicyConditionAuxClass that represents the routing
of an entity (e.g., a packet) to be evaluated in conjunction with a
policy rule.
objectclass ibm-routeConditionAuxClass

Appendix B. LDAP definition files 1457

requires
objectClass

allows
ibm-interface

The ibm-ToSConditionAuxClass object class is an auxiliary subclass
of ibm-routeConditionAuxClass that contains Type of Service (ToS) or
Differentiated Services (DS) field parameters to be evaluated as part
of a policy rule.
objectclass ibm-ToSConditionAuxClass

requires
objectClass

allows
ibm-IncomingTOS

The ibm-hostConditionAuxClass object class is an auxiliary subclass
of ibm-networkingPolicyConditionAuxClass that represents the
communicating end hosts (e.g., IP addresses) to be evaluated in
conjunction with a policy rule.
objectclass ibm-hostConditionAuxClass

requires
objectClass

allows
ibm-sourceIPAddressRange,
ibm-destinationIPAddressRange,
ibm-serverDomainName

The ibm-applicationConditionAuxClass object class is an auxiliary
subclass of ibm-networkingPolicyConditionAuxClass that represents the
nature of the application (e.g., port 21, FTPD) and the transport
entity (e.g., TCP) to be evaluated in conjunction with a policy rule.
objectclass ibm-applicationConditionAuxClass

requires
objectClass

allows
ibm-sourcePortRange,
ibm-destinationPortRange,
ibm-protocolNumberRange,
ibm-applicationName,
ibm-applicationData,
ibm-applicationPriority

The ibm-userconditionAuxClass object class is an auxiliary
subclass of ibm-networkingPolicyConditionAuxClass that represents the
characteristics of the user that requests the service.
objectclass ibm-userConditionAuxClass

requires
objectClass

allows
ibm-userNameId,
ibm-userQoSGroup

The ibm-idsConditionAuxClass object class is an auxiliary subclass of
ibm-policyConditionAuxClass. It represents conditions that must be
true for Intrusion Detection Services (IDS) policy rules. This class
applies to version 3 policies.
objectclass ibm-idsConditionAuxClass

requires
objectClass,
ibm-idsConditionType

allows
description

The ibm-idsAttackConditionAuxClass object class is an auxiliary
subclass of ibm-idsConditionAuxClass representing the known types of
intrusions to be evaluated in conjunction with an IDS policy rule.
This class applies to version 3 policies.

1458 z/OS V2R1.0 Communications Server: IP Configuration Reference

objectclass ibm-idsAttackConditionAuxClass
requires

objectClass
allows

ibm-idsAttackType,
description

The ibm-idsIPAttackConditionAuxClass object class is an auxiliary
subclass of ibm-idsAttackConditionAuxClass representing allowed IP
values for IDS IP attacks. This class applies to version 3 policies.
objectclass ibm-idsIPAttackConditionAuxClass

requires
objectClass

allows
ibm-idsIPOptionRange,
description

The ibm-idsTrafficRegulationConditionAuxClass object class is an
auxiliary subclass of ibm-idsConditionAuxClass representing traffic
regulation conditions. This auxiliary class has no significant
attributes but its inclusion in the policy condition object signifies
that traffic regulation parameters may be provided in the
ibm-idsTrafficRegulationActionAuxClass. This class applies to version
3 policies.
objectclass ibm-idsTrafficRegulationConditionAuxClass

requires
objectClass

allows
description

The ibm-idsScanConditionAuxClass object class is an auxiliary subclass
of ibm-idsConditionAuxClass representing global conditions for setting
scanning attack detection parameters. This auxiliary class has no
significant attributes but its inclusion in the policy condition
object signifies that the global scan parameters may be provided in
the ibm-idsScanActionAuxClass. This class applies to version 3
policies.
objectclass ibm-idsScanConditionAuxClass

requires
objectClass

allows
description

The ibm-idsScanEventConditionAuxClass object class is an auxiliary
subclass of ibm-idsConditionAuxClass specifying the scan event
conditions to be detected. This auxiliary class has no significant
attributes but its inclusion in the policy condition object signifies
that the scan event parameters may be provided in the
ibm-idsScanSensitivityActionAuxClass and/or
ibm-idsScanExclusionActionAuxClass. Multiple scan events to be
detected can be specified for a TCP/IP stack. This class applies to
version 3 policies.
objectclass ibm-idsScanEventConditionAuxClass

requires
objectClass

allows
description

The ibm-idsTransportConditionAuxClass object class is an auxiliary
subclass of ibm-idsConditionAuxClass representing local and remote port
ranges and protocol ranges to be applied to IDS conditions. This class
applies to version 3 policies.
objectclass ibm-idsTransportConditionAuxClass

requires
objectClass

allows

Appendix B. LDAP definition files 1459

ibm-idsLocalPortRange,
ibm-idsRemotePortRange,
ibm-idsProtocolRange,
description

The ibm-idsHostConditionAuxClass object class is an auxiliary subclass
of ibm-idsConditionAuxClass representing local and remote IP hosts
to be applied to IDS conditions. This class applies to version 3
policies.
objectclass ibm-idsHostConditionAuxClass

requires
objectClass

allows
ibm-idsLocalHostIPAddress,
ibm-idsRemoteHostIPAddress,
description

The ibm-policyActionAuxClass object class is an auxiliary class that
represents an action to be performed as a result of evaluation of a
policy rule (e.g., the "If Condition then Action" semantic). It is
attached directly to an instance of ibm-policyRuleActionAssociation
for rule-specific actions, or to an instance of ibm-policyInstance or
ibm-policyActionInstance for reusable actions. The actions
themselves are represented by auxiliary subclasses such as
ibm-serviceCategoriesAuxClass. This class applies to version 3
policies.
objectclass ibm-policyActionAuxClass

requires
objectClass

The ibm-serviceCategoriesAuxClass object class is an auxiliary subclass
of ibm-policyActionAuxClass that contains a set of Quality of Service
(QoS) attributes to apply to a flow of IP packets, identified by a
policy rule condition, as they traverse the network. This class
applies to version 3 policies.
objectclass ibm-serviceCategoriesAuxClass

requires
objectClass

allows
ibm-PolicyScope,
ibm-Permission,
ibm-MaxRate,
ibm-MinRate,
ibm-MaxDelay,
ibm-OutgoingTOS,
ibm-MaxConnections,
ibm-Interface,
ibm-DiffServInProfileRate,
ibm-DiffServInProfilePeakRate,
ibm-DiffServInProfileTokenBucket,
ibm-DiffServInProfileMaxPacketSize,
ibm-DiffServOutProfileTransmittedTOSByte,
ibm-DiffServExcessTrafficTreatment,
ibm-FlowServiceType,
ibm-MaxRatePerFlow,
ibm-MaxTokenBucketPerFlow,
ibm-MaxFlows,
ibm-SignalClient

The ibm-inboundConnectionAuxClass object class is an auxiliary subclass
of ibm-policyActionAuxClass that contains a set of Quality of Service
(QoS) attributes to apply to an inbound flow of IP packets, identified
by a policy rule condition, as they traverse the network. This class
applies to version 3 policies.
objectclass ibm-inboundConnectionAuxClass

requires
objectClass

1460 z/OS V2R1.0 Communications Server: IP Configuration Reference

allows
ibm-inboundScope,
ibm-averageConnectionRate,
ibm-peakConnectionRate,
ibm-connectionBurstSize,
ibm-averageApplicationRequestRate,
ibm-applicationRequestPeakRate,
ibm-applicationRequestBurstSize,
ibm-prioritizedQueue

The ibm-idsActionAuxClass object class is an auxiliary subclass of
ibm-policyActionAuxClass. It represents actions to be performed
for a corresponding Intrusion Detection Services (IDS) rule. This
class applies to version 3 policies.
objectclass ibm-idsActionAuxClass

requires
objectClass,
ibm-idsActionType

allows
description

The ibm-idsNotificationAuxClass object class is an auxiliary subclass
of ibm-idsActionAuxClass indicating IDS notification actions. This
class applies to version 3 policies.
objectclass ibm-idsNotificationAuxClass

requires
objectClass

allows
ibm-idsNotification,
ibm-idsStatInterval,
ibm-idsLoggingLevel,
ibm-idsTypeActions,
ibm-idsTraceData,
ibm-idsTraceRecordSize,
description

The ibm-idsAttackActionsAuxClass object class is an auxiliary subclass
of ibm-idsActionAuxClass indicating IDS attack type actions. This
class applies to version 3 policies.
objectclass ibm-idsAttackActionsAuxClass

requires
objectClass

allows
ibm-idsMaxEventMessage,
description

The ibm-idsFloodAttackActionsAuxClass object class is an auxiliary
subclass of ibm-idsAttackActionsAuxClass indicating IDS flood attack
type actions. This class applies to version 3 policies.
objectclass ibm-idsFloodAttackActionsAuxClass

requires
objectClass

allows
ibm-idsIfcFloodPercentage,
ibm-idsIfcFloodMinDiscard,
description

The ibm-idsTrafficRegulationActionAuxClass object class is an
auxiliary subclass of ibm-idsActionAuxClass representing actions for
handling Traffic Regulation. It has no significant attributes but
is used to anchor additional traffic regulation subclasses. This
class applies to version 3 policies.
objectclass ibm-idsTrafficRegulationActionAuxClass

requires
objectClass

allows
description

Appendix B. LDAP definition files 1461

The ibm-idsTRtcpActionAuxClass object class is an auxiliary subclass
of ibm-idsTrafficRegulationActionAuxClass representing actions for
handling traffic regulation for TCP on a per port basis. This class
applies to version 3 policies.
objectclass ibm-idsTRtcpActionAuxClass

requires
objectClass

allows
ibm-idsTRtcpTotalConnections,
ibm-idsTRtcpPercentage,
ibm-idsTRtcpLimitScope,
description

The idsTRudpActionAuxClass object class is an auxiliary subclass of
ibm-idsTrafficRegulationActionAuxClass representing actions for
handling traffic regulation for UDP. This class applies to version 3
policies.
objectclass ibm-idsTRudpActionAuxClass

requires
objectClass

allows
ibm-idsTRudpQueueSize,
description

The ibm-idsScanActionAuxClass object class is an auxiliary subclass
of ibm-idsActionAuxClass representing the global setting of scan
attack detection parameters. Note that only one set of these
parameters is allowed per TCP/IP stack. This class applies to version
3 policies.
objectclass ibm-idsScanActionAuxClass

requires
objectClass

allows
ibm-idsFSInterval,
ibm-idsFSThreshold,
ibm-idsSSInterval,
ibm-idsSSThreshold,
description

The ibm-idsScanSensitivityActionAuxClass object class is an
auxiliary subclass of ibm-idsActionAuxClass representing the
sensitivity of the scan events which are detected. This class
applies to version 3 policies.
objectclass ibm-idsScanSensitivityActionAuxClass

requires
objectClass

allows
ibm-idsSensitivity,
description

The ibm-idsScanExclusionActionAuxClass object class is an
auxiliary subclass of ibm-idsActionAuxClass representing exclusions
in conjunction with scanning attacks. It is valid to be attached to
an IDS action when the corresponding condition is for detecting scan
events. This class applies to version 3 policies.
objectclass ibm-idsScanExclusionActionAuxClass

requires
objectClass

allows
ibm-idsScanExclusion,
description

The ibm-policyRepository object class is a structural class which is
used as the root of reusable policy information, such as policy
conditions and policy actions. This class applies to version 3
policies.

1462 z/OS V2R1.0 Communications Server: IP Configuration Reference

objectclass ibm-policyRepository
requires

objectClass,
ibm-policyRepositoryName

allows
cn,
description

The ibm-policySubtreesPtrAuxClass object class is an auxiliary class
that allows a set of pointers to be defined which point to sets of
objects that are at the root of subtrees containing policy-related
information. By attaching this pointer attribute to instances of
various other classes, a policy administrator has a flexible way of
providing an entry point into the directory that allows a client to
locate and retrieve the policy information relevant to it in an
efficient manner. This class applies to version 3 policies.
objectclass ibm-policySubtreesPtrAuxClass

requires
objectClass

allows
ibm-policySubtreesAuxContainedSet

The ibm-policyGroupContainmentAuxClass object class is an auxiliary
class used to bind policy group objects to an appropriate container
object (e.g., another policy group object) via its attribute pointer
ibm-policyGroupsAuxContainedSet. It is attached to instances of
ibm-policyGroup.
objectclass ibm-policyGroupContainmentAuxClass

requires
objectClass

allows
ibm-policyGroupsAuxContainedSet

The ibm-policyRuleContainmentAuxClass object class is an auxiliary
class used to bind policy rule objects to an appropriate container
object (e.g., a # policy group object) via its attribute pointer
ibm-policyRulesAuxContainedSet. It is attached to instances of
ibm-policyGroup.
objectclass ibm-policyRuleContainmentAuxClass

requires
objectClass

allows
ibm-policyRulesAuxContainedSet

The ibm-policyGroupLoadDistributionAuxClass object class is an
auxiliary class used to specify load distribution attributes for
policy rules contained in the policy group. It is attached to
instances of ibm-policyGroup. This class applies to version 2
policies.
objectclass ibm-policyGroupLoadDistributionAuxClass

requires
objectClass

allows
ibm-policyGroupForLoadDistribution

The SetSubnetPrioTosMask object class is a structural class that
defines a mapping of IP type of service (TOS) byte to outbound
interface priority values. It is not directly related to the other
object classes defined for policy groups, rules, conditions, or
actions.
objectclass SetSubnetPrioTosMask

requires
objectClass,
SubnetTosMask

allows

Appendix B. LDAP definition files 1463

cn,
SubnetAddr,
PriorityTosMapping,
description

1464 z/OS V2R1.0 Communications Server: IP Configuration Reference

Appendix C. Related protocol specifications

This appendix lists the related protocol specifications (RFCs) for TCP/IP. The
Internet Protocol suite is still evolving through requests for comments (RFC). New
protocols are being designed and implemented by researchers and are brought to
the attention of the Internet community in the form of RFCs. Some of these
protocols are so useful that they become recommended protocols. That is, all future
implementations for TCP/IP are recommended to implement these particular
functions or protocols. These become the de facto standards, on which the TCP/IP
protocol suite is built.

You can request RFCs through electronic mail, from the automated Network
Information Center (NIC) mail server, by sending a message to
service@nic.ddn.mil with a subject line of RFC nnnn for text versions or a subject
line of RFC nnnn.PS for PostScript versions. To request a copy of the RFC index,
send a message with a subject line of RFC INDEX.

For more information, contact nic@nic.ddn.mil or at:

Government Systems, Inc.
Attn: Network Information Center
14200 Park Meadow Drive
Suite 200
Chantilly, VA 22021

Hard copies of all RFCs are available from the NIC, either individually or by
subscription. Online copies are available at the following Web address:
http://www.rfc-editor.org/rfc.html.

Draft RFCs that have been implemented in this and previous Communications
Server releases are listed at the end of this topic.

Many features of TCP/IP Services are based on the following RFCs:

RFC Title and Author

RFC 652
Telnet output carriage-return disposition option D. Crocker

RFC 653
Telnet output horizontal tabstops option D. Crocker

RFC 654
Telnet output horizontal tab disposition option D. Crocker

RFC 655
Telnet output formfeed disposition option D. Crocker

RFC 657
Telnet output vertical tab disposition option D. Crocker

RFC 658
Telnet output linefeed disposition D. Crocker

RFC 698
Telnet extended ASCII option T. Mock

© Copyright IBM Corp. 2000, 2015 1465

http://www.rfc-editor.org/rfc.html

RFC 726
Remote Controlled Transmission and Echoing Telnet option J. Postel, D. Crocker

RFC 727
Telnet logout option M.R. Crispin

RFC 732
Telnet Data Entry Terminal option J.D. Day

RFC 733
Standard for the format of ARPA network text messages D. Crocker, J. Vittal,
K.T. Pogran, D.A. Henderson

RFC 734
SUPDUP Protocol M.R. Crispin

RFC 735
Revised Telnet byte macro option D. Crocker, R.H. Gumpertz

RFC 736
Telnet SUPDUP option M.R. Crispin

RFC 749
Telnet SUPDUP—Output option B. Greenberg

RFC 765
File Transfer Protocol specification J. Postel

RFC 768
User Datagram Protocol J. Postel

RFC 779
Telnet send-location option E. Killian

RFC 783
TFTP Protocol (revision 2) K.R. Sollins

RFC 791
Internet Protocol J. Postel

RFC 792
Internet Control Message Protocol J. Postel

RFC 793
Transmission Control Protocol J. Postel

RFC 820
Assigned numbers J. Postel

RFC 821
Simple Mail Transfer Protocol J. Postel

RFC 822
Standard for the format of ARPA Internet text messages D. Crocker

RFC 823
DARPA Internet gateway R. Hinden, A. Sheltzer

RFC 826
Ethernet Address Resolution Protocol: Or converting network protocol addresses
to 48.bit Ethernet address for transmission on Ethernet hardware D. Plummer

RFC 854
Telnet Protocol Specification J. Postel, J. Reynolds

1466 z/OS V2R1.0 Communications Server: IP Configuration Reference

RFC 855
Telnet Option Specification J. Postel, J. Reynolds

RFC 856
Telnet Binary Transmission J. Postel, J. Reynolds

RFC 857
Telnet Echo Option J. Postel, J. Reynolds

RFC 858
Telnet Suppress Go Ahead Option J. Postel, J. Reynolds

RFC 859
Telnet Status Option J. Postel, J. Reynolds

RFC 860
Telnet Timing Mark Option J. Postel, J. Reynolds

RFC 861
Telnet Extended Options: List Option J. Postel, J. Reynolds

RFC 862
Echo Protocol J. Postel

RFC 863
Discard Protocol J. Postel

RFC 864
Character Generator Protocol J. Postel

RFC 865
Quote of the Day Protocol J. Postel

RFC 868
Time Protocol J. Postel, K. Harrenstien

RFC 877
Standard for the transmission of IP datagrams over public data networks J.T.
Korb

RFC 883
Domain names: Implementation specification P.V. Mockapetris

RFC 884
Telnet terminal type option M. Solomon, E. Wimmers

RFC 885
Telnet end of record option J. Postel

RFC 894
Standard for the transmission of IP datagrams over Ethernet networks C. Hornig

RFC 896
Congestion control in IP/TCP internetworks J. Nagle

RFC 903
Reverse Address Resolution Protocol R. Finlayson, T. Mann, J. Mogul, M.
Theimer

RFC 904
Exterior Gateway Protocol formal specification D. Mills

RFC 919
Broadcasting Internet Datagrams J. Mogul

Appendix C. Related protocol specifications 1467

RFC 922
Broadcasting Internet datagrams in the presence of subnets J. Mogul

RFC 927
TACACS user identification Telnet option B.A. Anderson

RFC 933
Output marking Telnet option S. Silverman

RFC 946
Telnet terminal location number option R. Nedved

RFC 950
Internet Standard Subnetting Procedure J. Mogul, J. Postel

RFC 952
DoD Internet host table specification K. Harrenstien, M. Stahl, E. Feinler

RFC 959
File Transfer Protocol J. Postel, J.K. Reynolds

RFC 961
Official ARPA-Internet protocols J.K. Reynolds, J. Postel

RFC 974
Mail routing and the domain system C. Partridge

RFC 1001
Protocol standard for a NetBIOS service on a TCP/UDP transport: Concepts and
methods NetBios Working Group in the Defense Advanced Research
Projects Agency, Internet Activities Board, End-to-End Services Task Force

RFC 1002
Protocol Standard for a NetBIOS service on a TCP/UDP transport: Detailed
specifications NetBios Working Group in the Defense Advanced Research
Projects Agency, Internet Activities Board, End-to-End Services Task Force

RFC 1006
ISO transport services on top of the TCP: Version 3 M.T. Rose, D.E. Cass

RFC 1009
Requirements for Internet gateways R. Braden, J. Postel

RFC 1011
Official Internet protocols J. Reynolds, J. Postel

RFC 1013
X Window System Protocol, version 11: Alpha update April 1987 R. Scheifler

RFC 1014
XDR: External Data Representation standard Sun Microsystems

RFC 1027
Using ARP to implement transparent subnet gateways S. Carl-Mitchell, J.
Quarterman

RFC 1032
Domain administrators guide M. Stahl

RFC 1033
Domain administrators operations guide M. Lottor

RFC 1034
Domain names—concepts and facilities P.V. Mockapetris

1468 z/OS V2R1.0 Communications Server: IP Configuration Reference

RFC 1035
Domain names—implementation and specification P.V. Mockapetris

RFC 1038
Draft revised IP security option M. St. Johns

RFC 1041
Telnet 3270 regime option Y. Rekhter

RFC 1042
Standard for the transmission of IP datagrams over IEEE 802 networks J. Postel,
J. Reynolds

RFC 1043
Telnet Data Entry Terminal option: DODIIS implementation A. Yasuda, T.
Thompson

RFC 1044
Internet Protocol on Network System's HYPERchannel: Protocol specification K.
Hardwick, J. Lekashman

RFC 1053
Telnet X.3 PAD option S. Levy, T. Jacobson

RFC 1055
Nonstandard for transmission of IP datagrams over serial lines: SLIP J. Romkey

RFC 1057
RPC: Remote Procedure Call Protocol Specification: Version 2 Sun Microsystems

RFC 1058
Routing Information Protocol C. Hedrick

RFC 1060
Assigned numbers J. Reynolds, J. Postel

RFC 1067
Simple Network Management Protocol J.D. Case, M. Fedor, M.L. Schoffstall, J.
Davin

RFC 1071
Computing the Internet checksum R.T. Braden, D.A. Borman, C. Partridge

RFC 1072
TCP extensions for long-delay paths V. Jacobson, R.T. Braden

RFC 1073
Telnet window size option D. Waitzman

RFC 1079
Telnet terminal speed option C. Hedrick

RFC 1085
ISO presentation services on top of TCP/IP based internets M.T. Rose

RFC 1091
Telnet terminal-type option J. VanBokkelen

RFC 1094
NFS: Network File System Protocol specification Sun Microsystems

RFC 1096
Telnet X display location option G. Marcy

RFC 1101
DNS encoding of network names and other types P. Mockapetris

Appendix C. Related protocol specifications 1469

RFC 1112
Host extensions for IP multicasting S.E. Deering

RFC 1113
Privacy enhancement for Internet electronic mail: Part I — message encipherment
and authentication procedures J. Linn

RFC 1118
Hitchhikers Guide to the Internet E. Krol

RFC 1122
Requirements for Internet Hosts—Communication Layers R. Braden, Ed.

RFC 1123
Requirements for Internet Hosts—Application and Support R. Braden, Ed.

RFC 1146
TCP alternate checksum options J. Zweig, C. Partridge

RFC 1155
Structure and identification of management information for TCP/IP-based
internets M. Rose, K. McCloghrie

RFC 1156
Management Information Base for network management of TCP/IP-based internets
K. McCloghrie, M. Rose

RFC 1157
Simple Network Management Protocol (SNMP) J. Case, M. Fedor, M.
Schoffstall, J. Davin

RFC 1158
Management Information Base for network management of TCP/IP-based
internets: MIB-II M. Rose

RFC 1166
Internet numbers S. Kirkpatrick, M.K. Stahl, M. Recker

RFC 1179
Line printer daemon protocol L. McLaughlin

RFC 1180
TCP/IP tutorial T. Socolofsky, C. Kale

RFC 1183
New DNS RR Definitions C.F. Everhart, L.A. Mamakos, R. Ullmann, P.V.
Mockapetris

RFC 1184
Telnet Linemode Option D. Borman

RFC 1186
MD4 Message Digest Algorithm R.L. Rivest

RFC 1187
Bulk Table Retrieval with the SNMP M. Rose, K. McCloghrie, J. Davin

RFC 1188
Proposed Standard for the Transmission of IP Datagrams over FDDI Networks D.
Katz

RFC 1190
Experimental Internet Stream Protocol: Version 2 (ST-II) C. Topolcic

1470 z/OS V2R1.0 Communications Server: IP Configuration Reference

RFC 1191
Path MTU discovery J. Mogul, S. Deering

RFC 1198
FYI on the X window system R. Scheifler

RFC 1207
FYI on Questions and Answers: Answers to commonly asked “experienced
Internet user” questions G. Malkin, A. Marine, J. Reynolds

RFC 1208
Glossary of networking terms O. Jacobsen, D. Lynch

RFC 1213
Management Information Base for Network Management of TCP/IP-based
internets: MIB-II K. McCloghrie, M.T. Rose

RFC 1215
Convention for defining traps for use with the SNMP M. Rose

RFC 1227
SNMP MUX protocol and MIB M.T. Rose

RFC 1228
SNMP-DPI: Simple Network Management Protocol Distributed Program Interface
G. Carpenter, B. Wijnen

RFC 1229
Extensions to the generic-interface MIB K. McCloghrie

RFC 1230
IEEE 802.4 Token Bus MIB K. McCloghrie, R. Fox

RFC 1231
IEEE 802.5 Token Ring MIB K. McCloghrie, R. Fox, E. Decker

RFC 1236
IP to X.121 address mapping for DDN L. Morales, P. Hasse

RFC 1256
ICMP Router Discovery Messages S. Deering, Ed.

RFC 1267
Border Gateway Protocol 3 (BGP-3) K. Lougheed, Y. Rekhter

RFC 1268
Application of the Border Gateway Protocol in the Internet Y. Rekhter, P. Gross

RFC 1269
Definitions of Managed Objects for the Border Gateway Protocol: Version 3 S.
Willis, J. Burruss

RFC 1270
SNMP Communications Services F. Kastenholz, ed.

RFC 1285
FDDI Management Information Base J. Case

RFC 1315
Management Information Base for Frame Relay DTEs C. Brown, F. Baker, C.
Carvalho

RFC 1321
The MD5 Message-Digest Algorithm R. Rivest

Appendix C. Related protocol specifications 1471

RFC 1323
TCP Extensions for High Performance V. Jacobson, R. Braden, D. Borman

RFC 1325
FYI on Questions and Answers: Answers to Commonly Asked "New Internet
User" Questions G. Malkin, A. Marine

RFC 1327
Mapping between X.400 (1988)/ISO 10021 and RFC 822 S. Hardcastle-Kille

RFC 1340
Assigned Numbers J. Reynolds, J. Postel

RFC 1344
Implications of MIME for Internet Mail Gateways N. Bornstein

RFC 1349
Type of Service in the Internet Protocol Suite P. Almquist

RFC 1350
The TFTP Protocol (Revision 2) K.R. Sollins

RFC 1351
SNMP Administrative Model J. Davin, J. Galvin, K. McCloghrie

RFC 1352
SNMP Security Protocols J. Galvin, K. McCloghrie, J. Davin

RFC 1353
Definitions of Managed Objects for Administration of SNMP Parties K.
McCloghrie, J. Davin, J. Galvin

RFC 1354
IP Forwarding Table MIB F. Baker

RFC 1356
Multiprotocol Interconnect on X.25 and ISDN in the Packet Mode A. Malis, D.
Robinson, R. Ullmann

RFC 1358
Charter of the Internet Architecture Board (IAB) L. Chapin

RFC 1363
A Proposed Flow Specification C. Partridge

RFC 1368
Definition of Managed Objects for IEEE 802.3 Repeater Devices D. McMaster, K.
McCloghrie

RFC 1372
Telnet Remote Flow Control Option C. L. Hedrick, D. Borman

RFC 1374
IP and ARP on HIPPI J. Renwick, A. Nicholson

RFC 1381
SNMP MIB Extension for X.25 LAPB D. Throop, F. Baker

RFC 1382
SNMP MIB Extension for the X.25 Packet Layer D. Throop

RFC 1387
RIP Version 2 Protocol Analysis G. Malkin

RFC 1388
RIP Version 2 Carrying Additional Information G. Malkin

1472 z/OS V2R1.0 Communications Server: IP Configuration Reference

RFC 1389
RIP Version 2 MIB Extensions G. Malkin, F. Baker

RFC 1390
Transmission of IP and ARP over FDDI Networks D. Katz

RFC 1393
Traceroute Using an IP Option G. Malkin

RFC 1398
Definitions of Managed Objects for the Ethernet-Like Interface Types F.
Kastenholz

RFC 1408
Telnet Environment Option D. Borman, Ed.

RFC 1413
Identification Protocol M. St. Johns

RFC 1416
Telnet Authentication Option D. Borman, ed.

RFC 1420
SNMP over IPX S. Bostock

RFC 1428
Transition of Internet Mail from Just-Send-8 to 8bit-SMTP/MIME G. Vaudreuil

RFC 1442
Structure of Management Information for version 2 of the Simple Network
Management Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

RFC 1443
Textual Conventions for version 2 of the Simple Network Management Protocol
(SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1445
Administrative Model for version 2 of the Simple Network Management Protocol
(SNMPv2) J. Galvin, K. McCloghrie

RFC 1447
Party MIB for version 2 of the Simple Network Management Protocol (SNMPv2)
K. McCloghrie, J. Galvin

RFC 1448
Protocol Operations for version 2 of the Simple Network Management Protocol
(SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1464
Using the Domain Name System to Store Arbitrary String Attributes R.
Rosenbaum

RFC 1469
IP Multicast over Token-Ring Local Area Networks T. Pusateri

RFC 1483
Multiprotocol Encapsulation over ATM Adaptation Layer 5 Juha Heinanen

RFC 1514
Host Resources MIB P. Grillo, S. Waldbusser

RFC 1516
Definitions of Managed Objects for IEEE 802.3 Repeater Devices D. McMaster,
K. McCloghrie

Appendix C. Related protocol specifications 1473

RFC 1521
MIME (Multipurpose Internet Mail Extensions) Part One: Mechanisms for
Specifying and Describing the Format of Internet Message Bodies N. Borenstein,
N. Freed

RFC 1535
A Security Problem and Proposed Correction With Widely Deployed DNS
Software E. Gavron

RFC 1536
Common DNS Implementation Errors and Suggested Fixes A. Kumar, J. Postel,
C. Neuman, P. Danzig, S. Miller

RFC 1537
Common DNS Data File Configuration Errors P. Beertema

RFC 1540
Internet Official Protocol Standards J. Postel

RFC 1571
Telnet Environment Option Interoperability Issues D. Borman

RFC 1572
Telnet Environment Option S. Alexander

RFC 1573
Evolution of the Interfaces Group of MIB-II K. McCloghrie, F. Kastenholz

RFC 1577
Classical IP and ARP over ATM M. Laubach

RFC 1583
OSPF Version 2 J. Moy

RFC 1591
Domain Name System Structure and Delegation J. Postel

RFC 1592
Simple Network Management Protocol Distributed Protocol Interface Version 2.0
B. Wijnen, G. Carpenter, K. Curran, A. Sehgal, G. Waters

RFC 1594
FYI on Questions and Answers— Answers to Commonly Asked "New Internet
User" Questions A. Marine, J. Reynolds, G. Malkin

RFC 1644
T/TCP — TCP Extensions for Transactions Functional Specification R. Braden

RFC 1646
TN3270 Extensions for LUname and Printer Selection C. Graves, T. Butts, M.
Angel

RFC 1647
TN3270 Enhancements B. Kelly

RFC 1652
SMTP Service Extension for 8bit-MIMEtransport J. Klensin, N. Freed, M.
Rose, E. Stefferud, D. Crocker

RFC 1664
Using the Internet DNS to Distribute RFC1327 Mail Address Mapping Tables C.
Allochio, A. Bonito, B. Cole, S. Giordano, R. Hagens

RFC 1693
An Extension to TCP: Partial Order Service T. Connolly, P. Amer, P. Conrad

1474 z/OS V2R1.0 Communications Server: IP Configuration Reference

RFC 1695
Definitions of Managed Objects for ATM Management Version 8.0 using SMIv2
M. Ahmed, K. Tesink

RFC 1701
Generic Routing Encapsulation (GRE) S. Hanks, T. Li, D. Farinacci, P. Traina

RFC 1702
Generic Routing Encapsulation over IPv4 networks S. Hanks, T. Li, D.
Farinacci, P. Traina

RFC 1706
DNS NSAP Resource Records B. Manning, R. Colella

RFC 1712
DNS Encoding of Geographical Location C. Farrell, M. Schulze, S. Pleitner D.
Baldoni

RFC 1713
Tools for DNS debugging A. Romao

RFC 1723
RIP Version 2—Carrying Additional Information G. Malkin

RFC 1752
The Recommendation for the IP Next Generation Protocol S. Bradner, A. Mankin

RFC 1766
Tags for the Identification of Languages H. Alvestrand

RFC 1771
A Border Gateway Protocol 4 (BGP-4) Y. Rekhter, T. Li

RFC 1794
DNS Support for Load Balancing T. Brisco

RFC 1819
Internet Stream Protocol Version 2 (ST2) Protocol Specification—Version ST2+ L.
Delgrossi, L. Berger Eds.

RFC 1826
IP Authentication Header R. Atkinson

RFC 1828
IP Authentication using Keyed MD5 P. Metzger, W. Simpson

RFC 1829
The ESP DES-CBC Transform P. Karn, P. Metzger, W. Simpson

RFC 1830
SMTP Service Extensions for Transmission of Large and Binary MIME Messages
G. Vaudreuil

RFC 1831
RPC: Remote Procedure Call Protocol Specification Version 2 R. Srinivasan

RFC 1832
XDR: External Data Representation Standard R. Srinivasan

RFC 1833
Binding Protocols for ONC RPC Version 2 R. Srinivasan

RFC 1850
OSPF Version 2 Management Information Base F. Baker, R. Coltun

Appendix C. Related protocol specifications 1475

RFC 1854
SMTP Service Extension for Command Pipelining N. Freed

RFC 1869
SMTP Service Extensions J. Klensin, N. Freed, M. Rose, E. Stefferud, D.
Crocker

RFC 1870
SMTP Service Extension for Message Size Declaration J. Klensin, N. Freed, K.
Moore

RFC 1876
A Means for Expressing Location Information in the Domain Name System C.
Davis, P. Vixie, T. Goodwin, I. Dickinson

RFC 1883
Internet Protocol, Version 6 (IPv6) Specification S. Deering, R. Hinden

RFC 1884
IP Version 6 Addressing Architecture R. Hinden, S. Deering, Eds.

RFC 1886
DNS Extensions to support IP version 6 S. Thomson, C. Huitema

RFC 1888
OSI NSAPs and IPv6 J. Bound, B. Carpenter, D. Harrington, J.
Houldsworth, A. Lloyd

RFC 1891
SMTP Service Extension for Delivery Status Notifications K. Moore

RFC 1892
The Multipart/Report Content Type for the Reporting of Mail System
Administrative Messages G. Vaudreuil

RFC 1894
An Extensible Message Format for Delivery Status NotificationsK. Moore, G.
Vaudreuil

RFC 1901
Introduction to Community-based SNMPv2 J. Case, K. McCloghrie, M. Rose,
S. Waldbusser

RFC 1902
Structure of Management Information for Version 2 of the Simple Network
Management Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

RFC 1903
Textual Conventions for Version 2 of the Simple Network Management Protocol
(SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1904
Conformance Statements for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1905
Protocol Operations for Version 2 of the Simple Network Management Protocol
(SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1906
Transport Mappings for Version 2 of the Simple Network Management Protocol
(SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

1476 z/OS V2R1.0 Communications Server: IP Configuration Reference

RFC 1907
Management Information Base for Version 2 of the Simple Network Management
Protocol (SNMPv2) J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1908
Coexistence between Version 1 and Version 2 of the Internet-standard Network
Management Framework J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 1912
Common DNS Operational and Configuration Errors D. Barr

RFC 1918
Address Allocation for Private Internets Y. Rekhter, B. Moskowitz, D.
Karrenberg, G.J. de Groot, E. Lear

RFC 1928
SOCKS Protocol Version 5 M. Leech, M. Ganis, Y. Lee, R. Kuris, D. Koblas,
L. Jones

RFC 1930
Guidelines for creation, selection, and registration of an Autonomous System (AS)
J. Hawkinson, T. Bates

RFC 1939
Post Office Protocol-Version 3 J. Myers, M. Rose

RFC 1981
Path MTU Discovery for IP version 6 J. McCann, S. Deering, J. Mogul

RFC 1982
Serial Number Arithmetic R. Elz, R. Bush

RFC 1985
SMTP Service Extension for Remote Message Queue Starting J. De Winter

RFC 1995
Incremental Zone Transfer in DNS M. Ohta

RFC 1996
A Mechanism for Prompt Notification of Zone Changes (DNS NOTIFY) P. Vixie

RFC 2010
Operational Criteria for Root Name Servers B. Manning, P. Vixie

RFC 2011
SNMPv2 Management Information Base for the Internet Protocol using SMIv2
K. McCloghrie, Ed.

RFC 2012
SNMPv2 Management Information Base for the Transmission Control Protocol
using SMIv2 K. McCloghrie, Ed.

RFC 2013
SNMPv2 Management Information Base for the User Datagram Protocol using
SMIv2 K. McCloghrie, Ed.

RFC 2018
TCP Selective Acknowledgement Options M. Mathis, J. Mahdavi, S. Floyd, A.
Romanow

RFC 2026
The Internet Standards Process — Revision 3 S. Bradner

Appendix C. Related protocol specifications 1477

RFC 2030
Simple Network Time Protocol (SNTP) Version 4 for IPv4, IPv6 and OSI D.
Mills

RFC 2033
Local Mail Transfer Protocol J. Myers

RFC 2034
SMTP Service Extension for Returning Enhanced Error CodesN. Freed

RFC 2040
The RC5, RC5–CBC, RC-5–CBC-Pad, and RC5–CTS AlgorithmsR. Baldwin, R.
Rivest

RFC 2045
Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies N. Freed, N. Borenstein

RFC 2052
A DNS RR for specifying the location of services (DNS SRV) A. Gulbrandsen,
P. Vixie

RFC 2065
Domain Name System Security Extensions D. Eastlake 3rd, C. Kaufman

RFC 2066
TELNET CHARSET Option R. Gellens

RFC 2080
RIPng for IPv6 G. Malkin, R. Minnear

RFC 2096
IP Forwarding Table MIB F. Baker

RFC 2104
HMAC: Keyed-Hashing for Message Authentication H. Krawczyk, M. Bellare,
R. Canetti

RFC 2119
Keywords for use in RFCs to Indicate Requirement Levels S. Bradner

RFC 2133
Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J. Bound,
W. Stevens

RFC 2136
Dynamic Updates in the Domain Name System (DNS UPDATE) P. Vixie, Ed.,
S. Thomson, Y. Rekhter, J. Bound

RFC 2137
Secure Domain Name System Dynamic Update D. Eastlake 3rd

RFC 2163
Using the Internet DNS to Distribute MIXER Conformant Global Address
Mapping (MCGAM) C. Allocchio

RFC 2168
Resolution of Uniform Resource Identifiers using the Domain Name System R.
Daniel, M. Mealling

RFC 2178
OSPF Version 2 J. Moy

RFC 2181
Clarifications to the DNS Specification R. Elz, R. Bush

1478 z/OS V2R1.0 Communications Server: IP Configuration Reference

RFC 2205
Resource ReSerVation Protocol (RSVP)—Version 1 Functional Specification R.
Braden, Ed., L. Zhang, S. Berson, S. Herzog, S. Jamin

RFC 2210
The Use of RSVP with IETF Integrated Services J. Wroclawski

RFC 2211
Specification of the Controlled-Load Network Element Service J. Wroclawski

RFC 2212
Specification of Guaranteed Quality of Service S. Shenker, C. Partridge, R.
Guerin

RFC 2215
General Characterization Parameters for Integrated Service Network Elements S.
Shenker, J. Wroclawski

RFC 2217
Telnet Com Port Control Option G. Clarke

RFC 2219
Use of DNS Aliases for Network Services M. Hamilton, R. Wright

RFC 2228
FTP Security Extensions M. Horowitz, S. Lunt

RFC 2230
Key Exchange Delegation Record for the DNS R. Atkinson

RFC 2233
The Interfaces Group MIB using SMIv2 K. McCloghrie, F. Kastenholz

RFC 2240
A Legal Basis for Domain Name Allocation O. Vaughn

RFC 2246
The TLS Protocol Version 1.0 T. Dierks, C. Allen

RFC 2251
Lightweight Directory Access Protocol (v3) M. Wahl, T. Howes, S. Kille

RFC 2253
Lightweight Directory Access Protocol (v3): UTF-8 String Representation of
Distinguished Names M. Wahl, S. Kille, T. Howes

RFC 2254
The String Representation of LDAP Search Filters T. Howes

RFC 2261
An Architecture for Describing SNMP Management Frameworks D. Harrington,
R. Presuhn, B. Wijnen

RFC 2262
Message Processing and Dispatching for the Simple Network Management
Protocol (SNMP) J. Case, D. Harrington, R. Presuhn, B. Wijnen

RFC 2271
An Architecture for Describing SNMP Management Frameworks D. Harrington,
R. Presuhn, B. Wijnen

RFC 2273
SNMPv3 Applications D. Levi, P. Meyer, B. Stewartz

Appendix C. Related protocol specifications 1479

RFC 2274
User-based Security Model (USM) for version 3 of the Simple Network
Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

RFC 2275
View-based Access Control Model (VACM) for the Simple Network Management
Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

RFC 2279
UTF-8, a transformation format of ISO 10646 F. Yergeau

RFC 2292
Advanced Sockets API for IPv6 W. Stevens, M. Thomas

RFC 2308
Negative Caching of DNS Queries (DNS NCACHE) M. Andrews

RFC 2317
Classless IN-ADDR.ARPA delegation H. Eidnes, G. de Groot, P. Vixie

RFC 2320
Definitions of Managed Objects for Classical IP and ARP Over ATM Using
SMIv2 (IPOA-MIB) M. Greene, J. Luciani, K. White, T. Kuo

RFC 2328
OSPF Version 2 J. Moy

RFC 2345
Domain Names and Company Name Retrieval J. Klensin, T. Wolf, G. Oglesby

RFC 2352
A Convention for Using Legal Names as Domain Names O. Vaughn

RFC 2355
TN3270 Enhancements B. Kelly

RFC 2358
Definitions of Managed Objects for the Ethernet-like Interface Types J. Flick, J.
Johnson

RFC 2373
IP Version 6 Addressing Architecture R. Hinden, S. Deering

RFC 2374
An IPv6 Aggregatable Global Unicast Address Format R. Hinden, M. O'Dell, S.
Deering

RFC 2375
IPv6 Multicast Address Assignments R. Hinden, S. Deering

RFC 2385
Protection of BGP Sessions via the TCP MD5 Signature Option A. Hefferman

RFC 2389
Feature negotiation mechanism for the File Transfer Protocol P. Hethmon, R. Elz

RFC 2401
Security Architecture for Internet Protocol S. Kent, R. Atkinson

RFC 2402
IP Authentication Header S. Kent, R. Atkinson

RFC 2403
The Use of HMAC-MD5–96 within ESP and AH C. Madson, R. Glenn

1480 z/OS V2R1.0 Communications Server: IP Configuration Reference

RFC 2404
The Use of HMAC-SHA–1–96 within ESP and AH C. Madson, R. Glenn

RFC 2405
The ESP DES-CBC Cipher Algorithm With Explicit IV C. Madson, N.
Doraswamy

RFC 2406
IP Encapsulating Security Payload (ESP) S. Kent, R. Atkinson

RFC 2407
The Internet IP Security Domain of Interpretation for ISAKMPD. Piper

RFC 2408
Internet Security Association and Key Management Protocol (ISAKMP) D.
Maughan, M. Schertler, M. Schneider, J. Turner

RFC 2409
The Internet Key Exchange (IKE) D. Harkins, D. Carrel

RFC 2410
The NULL Encryption Algorithm and Its Use With IPsec R. Glenn, S. Kent,

RFC 2428
FTP Extensions for IPv6 and NATs M. Allman, S. Ostermann, C. Metz

RFC 2445
Internet Calendaring and Scheduling Core Object Specification (iCalendar) F.
Dawson, D. Stenerson

RFC 2459
Internet X.509 Public Key Infrastructure Certificate and CRL Profile R. Housley,
W. Ford, W. Polk, D. Solo

RFC 2460
Internet Protocol, Version 6 (IPv6) Specification S. Deering, R. Hinden

RFC 2461
Neighbor Discovery for IP Version 6 (IPv6) T. Narten, E. Nordmark, W.
Simpson

RFC 2462
IPv6 Stateless Address Autoconfiguration S. Thomson, T. Narten

RFC 2463
Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6
(IPv6) Specification A. Conta, S. Deering

RFC 2464
Transmission of IPv6 Packets over Ethernet Networks M. Crawford

RFC 2466
Management Information Base for IP Version 6: ICMPv6 Group D. Haskin, S.
Onishi

RFC 2476
Message Submission R. Gellens, J. Klensin

RFC 2487
SMTP Service Extension for Secure SMTP over TLS P. Hoffman

RFC 2505
Anti-Spam Recommendations for SMTP MTAs G. Lindberg

Appendix C. Related protocol specifications 1481

RFC 2523
Photuris: Extended Schemes and Attributes P. Karn, W. Simpson

RFC 2535
Domain Name System Security Extensions D. Eastlake 3rd

RFC 2538
Storing Certificates in the Domain Name System (DNS) D. Eastlake 3rd, O.
Gudmundsson

RFC 2539
Storage of Diffie-Hellman Keys in the Domain Name System (DNS) D. Eastlake
3rd

RFC 2540
Detached Domain Name System (DNS) Information D. Eastlake 3rd

RFC 2554
SMTP Service Extension for Authentication J. Myers

RFC 2570
Introduction to Version 3 of the Internet-standard Network Management
Framework J. Case, R. Mundy, D. Partain, B. Stewart

RFC 2571
An Architecture for Describing SNMP Management Frameworks B. Wijnen, D.
Harrington, R. Presuhn

RFC 2572
Message Processing and Dispatching for the Simple Network Management
Protocol (SNMP) J. Case, D. Harrington, R. Presuhn, B. Wijnen

RFC 2573
SNMP Applications D. Levi, P. Meyer, B. Stewart

RFC 2574
User-based Security Model (USM) for version 3 of the Simple Network
Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

RFC 2575
View-based Access Control Model (VACM) for the Simple Network Management
Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

RFC 2576
Co-Existence between Version 1, Version 2, and Version 3 of the Internet-standard
Network Management Framework R. Frye, D. Levi, S. Routhier, B. Wijnen

RFC 2578
Structure of Management Information Version 2 (SMIv2) K. McCloghrie, D.
Perkins, J. Schoenwaelder

RFC 2579
Textual Conventions for SMIv2 K. McCloghrie, D. Perkins, J. Schoenwaelder

RFC 2580
Conformance Statements for SMIv2 K. McCloghrie, D. Perkins, J.
Schoenwaelder

RFC 2581
TCP Congestion Control M. Allman, V. Paxson, W. Stevens

RFC 2583
Guidelines for Next Hop Client (NHC) Developers R. Carlson, L. Winkler

1482 z/OS V2R1.0 Communications Server: IP Configuration Reference

RFC 2591
Definitions of Managed Objects for Scheduling Management Operations D. Levi,
J. Schoenwaelder

RFC 2625
IP and ARP over Fibre Channel M. Rajagopal, R. Bhagwat, W. Rickard

RFC 2635
Don't SPEW A Set of Guidelines for Mass Unsolicited Mailings and Postings
(spam*) S. Hambridge, A. Lunde

RFC 2637
Point-to-Point Tunneling Protocol K. Hamzeh, G. Pall, W. Verthein, J. Taarud,
W. Little, G. Zorn

RFC 2640
Internationalization of the File Transfer Protocol B. Curtin

RFC 2665
Definitions of Managed Objects for the Ethernet-like Interface Types J. Flick, J.
Johnson

RFC 2671
Extension Mechanisms for DNS (EDNS0) P. Vixie

RFC 2672
Non-Terminal DNS Name Redirection M. Crawford

RFC 2675
IPv6 Jumbograms D. Borman, S. Deering, R. Hinden

RFC 2710
Multicast Listener Discovery (MLD) for IPv6 S. Deering, W. Fenner, B.
Haberman

RFC 2711
IPv6 Router Alert Option C. Partridge, A. Jackson

RFC 2740
OSPF for IPv6 R. Coltun, D. Ferguson, J. Moy

RFC 2753
A Framework for Policy-based Admission Control R. Yavatkar, D. Pendarakis,
R. Guerin

RFC 2782
A DNS RR for specifying the location of services (DNS SRV) A. Gubrandsen, P.
Vixix, L. Esibov

RFC 2821
Simple Mail Transfer Protocol J. Klensin, Ed.

RFC 2822
Internet Message Format P. Resnick, Ed.

RFC 2840
TELNET KERMIT OPTION J. Altman, F. da Cruz

RFC 2845
Secret Key Transaction Authentication for DNS (TSIG) P. Vixie, O.
Gudmundsson, D. Eastlake 3rd, B. Wellington

RFC 2851
Textual Conventions for Internet Network Addresses M. Daniele, B. Haberman,
S. Routhier, J. Schoenwaelder

Appendix C. Related protocol specifications 1483

RFC 2852
Deliver By SMTP Service Extension D. Newman

RFC 2874
DNS Extensions to Support IPv6 Address Aggregation and Renumbering M.
Crawford, C. Huitema

RFC 2915
The Naming Authority Pointer (NAPTR) DNS Resource Record M. Mealling, R.
Daniel

RFC 2920
SMTP Service Extension for Command Pipelining N. Freed

RFC 2930
Secret Key Establishment for DNS (TKEY RR) D. Eastlake, 3rd

RFC 2941
Telnet Authentication Option T. Ts'o, ed., J. Altman

RFC 2942
Telnet Authentication: Kerberos Version 5 T. Ts'o

RFC 2946
Telnet Data Encryption Option T. Ts'o

RFC 2952
Telnet Encryption: DES 64 bit Cipher Feedback T. Ts'o

RFC 2953
Telnet Encryption: DES 64 bit Output Feedback T. Ts'o

RFC 2992
Analysis of an Equal-Cost Multi-Path Algorithm C. Hopps

RFC 3019
IP Version 6 Management Information Base for The Multicast Listener Discovery
Protocol B. Haberman, R. Worzella

RFC 3060
Policy Core Information Model—Version 1 Specification B. Moore, E. Ellesson, J.
Strassner, A. Westerinen

RFC 3152
Delegation of IP6.ARPA R. Bush

RFC 3164
The BSD Syslog Protocol C. Lonvick

RFC 3207
SMTP Service Extension for Secure SMTP over Transport Layer Security P.
Hoffman

RFC 3226
DNSSEC and IPv6 A6 aware server/resolver message size requirements O.
Gudmundsson

RFC 3291
Textual Conventions for Internet Network Addresses M. Daniele, B. Haberman,
S. Routhier, J. Schoenwaelder

RFC 3363
Representing Internet Protocol version 6 (IPv6) Addresses in the Domain Name
System R. Bush, A. Durand, B. Fink, O. Gudmundsson, T. Hain

1484 z/OS V2R1.0 Communications Server: IP Configuration Reference

RFC 3376
Internet Group Management Protocol, Version 3 B. Cain, S. Deering, I.
Kouvelas, B. Fenner, A. Thyagarajan

RFC 3390
Increasing TCP's Initial Window M. Allman, S. Floyd, C. Partridge

RFC 3410
Introduction and Applicability Statements for Internet-Standard Management
Framework J. Case, R. Mundy, D. Partain, B. Stewart

RFC 3411
An Architecture for Describing Simple Network Management Protocol (SNMP)
Management Frameworks D. Harrington, R. Presuhn, B. Wijnen

RFC 3412
Message Processing and Dispatching for the Simple Network Management
Protocol (SNMP) J. Case, D. Harrington, R. Presuhn, B. Wijnen

RFC 3413
Simple Network Management Protocol (SNMP) Applications D. Levi, P. Meyer,
B. Stewart

RFC 3414
User-based Security Model (USM) for version 3 of the Simple Network
Management Protocol (SNMPv3) U. Blumenthal, B. Wijnen

RFC 3415
View-based Access Control Model (VACM) for the Simple Network Management
Protocol (SNMP) B. Wijnen, R. Presuhn, K. McCloghrie

RFC 3416
Version 2 of the Protocol Operations for the Simple Network Management
Protocol (SNMP) R. Presuhn, J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

RFC 3417
Transport Mappings for the Simple Network Management Protocol (SNMP) R.
Presuhn, J. Case, K. McCloghrie, M. Rose, S. Waldbusser

RFC 3418
Management Information Base (MIB) for the Simple Network Management
Protocol (SNMP) R. Presuhn, J. Case, K. McCloghrie, M. Rose, S.
Waldbusser

RFC 3419
Textual Conventions for Transport Addresses M. Daniele, J. Schoenwaelder

RFC 3484
Default Address Selection for Internet Protocol version 6 (IPv6) R. Draves

RFC 3493
Basic Socket Interface Extensions for IPv6 R. Gilligan, S. Thomson, J. Bound, J.
McCann, W. Stevens

RFC 3513
Internet Protocol Version 6 (IPv6) Addressing Architecture R. Hinden, S.
Deering

RFC 3526
More Modular Exponential (MODP) Diffie-Hellman groups for Internet Key
Exchange (IKE) T. Kivinen, M. Kojo

Appendix C. Related protocol specifications 1485

RFC 3542
Advanced Sockets Application Programming Interface (API) for IPv6 W. Richard
Stevens, M. Thomas, E. Nordmark, T. Jinmei

RFC 3566
The AES-XCBC-MAC-96 Algorithm and Its Use With IPsec S. Frankel, H.
Herbert

RFC 3569
An Overview of Source-Specific Multicast (SSM) S. Bhattacharyya, Ed.

RFC 3584
Coexistence between Version 1, Version 2, and Version 3 of the Internet-standard
Network Management Framework R. Frye, D. Levi, S. Routhier, B. Wijnen

RFC 3602
The AES-CBC Cipher Algorithm and Its Use with IPsec S. Frankel, R. Glenn, S.
Kelly

RFC 3629
UTF-8, a transformation format of ISO 10646 R. Kermode, C. Vicisano

RFC 3658
Delegation Signer (DS) Resource Record (RR) O. Gudmundsson

RFC 3678
Socket Interface Extensions for Multicast Source Filters D. Thaler, B. Fenner, B.
Quinn

RFC 3715
IPsec-Network Address Translation (NAT) Compatibility Requirements B. Aboba,
W. Dixon

RFC 3810
Multicast Listener Discovery Version 2 (MLDv2) for IPv6 R. Vida, Ed., L.
Costa, Ed.

RFC 3826
The Advanced Encryption Standard (AES) Cipher Algorithm in the SNMP
User-based Security Model U. Blumenthal, F. Maino, K McCloghrie.

RFC 3947
Negotiation of NAT-Traversal in the IKE T. Kivinen, B. Swander, A. Huttunen,
V. Volpe

RFC 3948
UDP Encapsulation of IPsec ESP Packets A. Huttunen, B. Swander, V. Volpe,
L. DiBurro, M. Stenberg

RFC 4001
Textual Conventions for Internet Network Addresses M. Daniele, B. Haberman,
S. Routhier, J. Schoenwaelder

RFC 4007
IPv6 Scoped Address Architecture S. Deering, B. Haberman, T. Jinmei, E.
Nordmark, B. Zill

RFC 4022
Management Information Base for the Transmission Control Protocol (TCP) R.
Raghunarayan

RFC 4106
The Use of Galois/Counter Mode (GCM) in IPsec Encapsulating Security Payload
(ESP) J. Viega, D. McGrew

1486 z/OS V2R1.0 Communications Server: IP Configuration Reference

|
|
|

RFC 4109
Algorithms for Internet Key Exchange version 1 (IKEv1) P. Hoffman

RFC 4113
Management Information Base for the User Datagram Protocol (UDP) B. Fenner,
J. Flick

RFC 4191
Default Router Preferences and More-Specific Routes R. Draves, D. Thaler

RFC 4217
Securing FTP with TLS P. Ford-Hutchinson

RFC 4292
IP Forwarding Table MIB B. Haberman

RFC 4293
Management Information Base for the Internet Protocol (IP) S. Routhier

RFC 4301
Security Architecture for the Internet Protocol S. Kent, K. Seo

RFC 4302
IP Authentication Header S. Kent

RFC 4303
IP Encapsulating Security Payload (ESP) S. Kent

RFC 4304
Extended Sequence Number (ESN) Addendum to IPsec Domain of Interpretation
(DOI) for Internet Security Association and Key Management Protocol
(ISAKMP) S. Kent

RFC 4307
Cryptographic Algorithms for Use in the Internet Key Exchange Version 2
(IKEv2) J. Schiller

RFC 4308
Cryptographic Suites for IPsec P. Hoffman

RFC 4434
The AES-XCBC-PRF-128 Algorithm for the Internet Key Exchange Protocol P.
Hoffman

RFC 4443
Internet Control Message Protocol (ICMPv6) for the Internet Protocol Version 6
(IPv6) Specification A. Conta, S. Deering

RFC 4552
Authentication/Confidentiality for OSPFv3 M. Gupta, N. Melam

RFC 4678
Server/Application State Protocol v1 A. Bivens

RFC 4753
ECP Groups for IKE and IKEv2 D. Fu, J. Solinas

RFC 4754
IKE and IKEv2 Authentication Using the Elliptic Curve Digital Signature
Algorithm (ECDSA) D. Fu, J. Solinas

RFC 4809
Requirements for an IPsec Certificate Management Profile C. Bonatti, Ed., S.
Turner, Ed., G. Lebovitz, Ed.

Appendix C. Related protocol specifications 1487

RFC 4835
Cryptographic Algorithm Implementation Requirements for Encapsulating
Security Payload (ESP) and Authentication Header (AH) V. Manral

RFC 4862
IPv6 Stateless Address Autoconfiguration S. Thomson, T. Narten, T. Jinmei

RFC 4868
Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with IPsec S.
Kelly, S. Frankel

RFC 4869
Suite B Cryptographic Suites for IPsec L. Law, J. Solinas

RFC 4941
Privacy Extensions for Stateless Address Autoconfiguration in IPv6 T. Narten, R.
Draves, S. Krishnan

RFC 4945
The Internet IP Security PKI Profile of IKEv1/ISAKMP, IKEv2, and PKIX B.
Korver

RFC 5014
IPv6 Socket API for Source Address Selection E. Nordmark, S. Chakrabarti, J.
Laganier

RFC 5095
Deprecation of Type 0 Routing Headers in IPv6 J. Abley, P. Savola, G.
Neville-Neil

RFC 5175
IPv6 Router Advertisement Flags Option B. Haberman, Ed., R. Hinden

RFC 5282
Using Authenticated Encryption Algorithms with the Encrypted Payload of the
Internet Key Exchange version 2 (IKEv2) Protocol D. Black, D. McGrew

RFC 5996
Internet Key Exchange Protocol Version 2 (IKEv2) C. Kaufman, P. Hoffman, Y.
Nir, P. Eronen

Internet drafts

Internet drafts are working documents of the Internet Engineering Task Force
(IETF), its areas, and its working groups. Other groups can also distribute working
documents as Internet drafts. You can see Internet drafts at http://www.ietf.org/
ID.html.

1488 z/OS V2R1.0 Communications Server: IP Configuration Reference

http://www.ietf.org/ID.html
http://www.ietf.org/ID.html

Appendix D. Accessibility

Publications for this product are offered in Adobe Portable Document Format
(PDF) and should be compliant with accessibility standards. If you experience
difficulties when using PDF files, you can view the information through the z/OS
Internet Library website or IBM Knowledge Center. If you continue to experience
problems, send an email to mhvrcfs@us.ibm.com or write to:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size

Using assistive technologies

Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface

Users can access z/OS user interfaces using TSO/E or ISPF. See z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for
information about accessing TSO/E and ISPF interfaces. These guides describe
how to use TSO/E and ISPF, including the use of keyboard shortcuts or function
keys (PF keys). Each guide includes the default settings for the PF keys and
explains how to modify their functions.

z/OS information

z/OS information is accessible using screen readers with the BookServer or Library
Server versions of z/OS books in the Internet library at www.ibm.com/systems/z/
os/zos/bkserv/.

One exception is command syntax that is published in railroad track format, which
is accessible using screen readers with IBM Knowledge Center, as described in
“Dotted decimal syntax diagrams.”

Dotted decimal syntax diagrams

Syntax diagrams are provided in dotted decimal format for users accessing IBM
Knowledge Center using a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always

© Copyright IBM Corp. 2000, 2015 1489

|

|

|
|

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

present together (or always absent together), they can appear on the same line,
because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should see separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v A question mark (?) means an optional syntax element. A dotted decimal

number followed by the ? symbol indicates that all the syntax elements with a
corresponding dotted decimal number, and any subordinate syntax elements, are
optional. If there is only one syntax element with a dotted decimal number, the ?
symbol is displayed on the same line as the syntax element, (for example 5?
NOTIFY). If there is more than one syntax element with a dotted decimal
number, the ? symbol is displayed on a line by itself, followed by the syntax
elements that are optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and
5 UPDATE, you know that syntax elements NOTIFY and UPDATE are optional;
that is, you can choose one or none of them. The ? symbol is equivalent to a
bypass line in a railroad diagram.

v An exclamation mark (!) means a default syntax element. A dotted decimal
number followed by the ! symbol and a syntax element indicate that the syntax
element is the default option for all syntax elements that share the same dotted

1490 z/OS V2R1.0 Communications Server: IP Configuration Reference

decimal number. Only one of the syntax elements that share the same dotted
decimal number can specify a ! symbol. For example, if you hear the lines 2?
FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the default option
for the FILE keyword. In this example, if you include the FILE keyword but do
not specify an option, default option KEEP will be applied. A default option also
applies to the next higher dotted decimal number. In this example, if the FILE
keyword is omitted, default FILE(KEEP) is used. However, if you hear the lines
2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1 (DELETE), the default option KEEP applies
only to the next higher dotted decimal number, 2.1 (which does not have an
associated keyword), and does not apply to 2? FILE. Nothing is used if the
keyword FILE is omitted.

v An asterisk (*) means a syntax element that can be repeated 0 or more times. A
dotted decimal number followed by the * symbol indicates that this syntax
element can be used zero or more times; that is, it is optional and can be
repeated. For example, if you hear the line 5.1* data area, you know that you
can include one data area, more than one data area, or no data area. If you hear
the lines 3*, 3 HOST, and 3 STATE, you know that you can include HOST,
STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix D. Accessibility 1491

1492 z/OS V2R1.0 Communications Server: IP Configuration Reference

Notices

This information was developed for products and services offered in the USA.

IBM may not offer all of the products, services, or features discussed in this
document in other countries. Consult your local IBM representative for information
on the products and services currently available in your area. Any reference to an
IBM product, program, or service is not intended to state or imply that only that
IBM product, program, or service may be used. Any functionally equivalent
product, program, or service that does not infringe any IBM intellectual property
right may be used instead. However, it is the user's responsibility to evaluate and
verify the operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

© Copyright IBM Corp. 2000, 2015 1493

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who want to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
P.O. Box 12195
3039 Cornwallis Road
Research Triangle Park, North Carolina 27709-2195
U.S.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

If you are viewing this information softcopy, the photographs and color
illustrations might not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrates programming techniques on various operating platforms. You
may copy, modify, and distribute these sample programs in any form without
payment to IBM, for the purposes of developing, using, marketing or distributing

1494 z/OS V2R1.0 Communications Server: IP Configuration Reference

application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_.

IBM is required to include the following statements in order to distribute portions
of this document and the software described herein to which contributions have
been made by The University of California. Portions herein © Copyright 1979,
1980, 1983, 1986, Regents of the University of California. Reproduced by
permission. Portions herein were developed at the Electrical Engineering and
Computer Sciences Department at the Berkeley campus of the University of
California under the auspices of the Regents of the University of California.

Portions of this publication relating to RPC are Copyright © Sun Microsystems,
Inc., 1988, 1989.

Some portions of this publication relating to X Window System** are Copyright ©
1987, 1988 by Digital Equipment Corporation, Maynard, Massachusetts, and the
Massachusetts Institute Of Technology, Cambridge, Massachusetts.

Some portions of this publication relating to X Window System are Copyright ©
1986, 1987, 1988 by Hewlett-Packard Corporation.

Permission to use, copy, modify, and distribute the M.I.T., Digital Equipment
Corporation, and Hewlett-Packard Corporation portions of this software and its
documentation for any purpose without fee is hereby granted, provided that the
above copyright notice appears in all copies and that both that copyright notice
and this permission notice appear in supporting documentation, and that the
names of M.I.T., Digital, and Hewlett-Packard not be used in advertising or
publicity pertaining to distribution of the software without specific, written prior
permission. M.I.T., Digital, and Hewlett-Packard make no representation about the
suitability of this software for any purpose. It is provided "as is" without express
or implied warranty.

Copyright © 1983, 1995-1997 Eric P. Allman

Copyright © 1988, 1993 The Regents of the University of California.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list

of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must
display the following acknowledgment:

Notices 1495

This product includes software developed by the University of
California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

This software program contains code, and/or derivatives or modifications of code
originating from the software program "Popper." Popper is Copyright ©1989-1991
The Regents of the University of California. Popper was created by Austin Shelton,
Information Systems and Technology, University of California, Berkeley.

Permission from the Regents of the University of California to use, copy, modify,
and distribute the "Popper" software contained herein for any purpose, without
fee, and without a written agreement is hereby granted, provided that the above
copyright notice and this paragraph and the following two paragraphs appear in
all copies. HOWEVER, ADDITIONAL PERMISSIONS MAY BE NECESSARY
FROM OTHER PERSONS OR ENTITIES, TO USE DERIVATIVES OR
MODIFICATIONS OF POPPER.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY
PARTY FOR DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL
DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THE
POPPER SOFTWARE, OR ITS DERIVATIVES OR MODIFICATIONS, AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE POPPER SOFTWARE PROVIDED HEREUNDER IS ON AN "AS
IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO
PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR
MODIFICATIONS.

Copyright © 1983 The Regents of the University of California.

Redistribution and use in source and binary forms are permitted provided that the
above copyright notice and this paragraph are duplicated in all such forms and
that any documentation, advertising materials, and other materials related to such
distribution and use acknowledge that the software was developed by the
University of California, Berkeley. The name of the University may not be used to
endorse or promote products derived from this software without specific prior

1496 z/OS V2R1.0 Communications Server: IP Configuration Reference

written permission. THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, WITHOUT
LIMITATION, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE.

Copyright © 1991, 1993 The Regents of the University of California.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the above copyright notice, this list

of conditions and the following disclaimer.
2. Redistributions in binary form must reproduce the above copyright notice, this

list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must
display the following acknowledgment:
This product includes software developed by the University of
California, Berkeley and its contributors.

4. Neither the name of the University nor the names of its contributors may be
used to endorse or promote products derived from this software without
specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS
IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT,
INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

Copyright © 1990 by the Massachusetts Institute of Technology

Export of this software from the United States of America may require a specific
license from the United States Government. It is the responsibility of any person or
organization contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this
software and its documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation,
and that the name of M.I.T. not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior permission. Furthermore
if you modify this software you must label your software as modified software and
not distribute it in such a fashion that it might be confused with the original M.I.T.
software. M.I.T. makes no representations about the suitability of this software for
any purpose. It is provided "as is" without express or implied warranty.

Copyright © 1998 by the FundsXpress, INC.

Notices 1497

Export of this software from the United States of America may require a specific
license from the United States Government. It is the responsibility of any person or
organization contemplating export to obtain such a license before exporting.

WITHIN THAT CONSTRAINT, permission to use, copy, modify, and distribute this
software and its documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and that both that
copyright notice and this permission notice appear in supporting documentation,
and that the name of FundsXpress not be used in advertising or publicity
pertaining to distribution of the software without specific, written prior
permission. FundsXpress makes no representations about the suitability of this
software for any purpose. It is provided "as is" without express or implied
warranty.

THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR
IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE.

Copyright © 1999, 2000 Internet Software Consortium.

Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE
CONSORTIUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE CONSORTIUM
BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright © 1995-1998 Eric Young (eay@cryptsoft.com)

This package is an SSL implementation written by Eric Young (eay@cryptsoft.com).
The implementation was written so as to conform with Netscape's SSL.

This library is free for commercial and non-commercial use as long as the
following conditions are adhered to. The following conditions apply to all code
found in this distribution, be it the RC4, RSA, lhash, DES, etc., code; not just the
SSL code. The SSL documentation included with this distribution is covered by the
same copyright terms except that the holder is Tim Hudson (tjh@cryptsoft.com).

Copyright remains Eric Young's, and as such any Copyright notices in the code are
not to be removed. If this package is used in a product, Eric Young should be
given attribution as the author of the parts of the library used. This can be in the
form of a textual message at program startup or in documentation (online or
textual) provided with the package.

Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
1. Redistributions of source code must retain the copyright notice, this list of

conditions and the following disclaimer.

1498 z/OS V2R1.0 Communications Server: IP Configuration Reference

2. Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this software must
display the following acknowledgment: "This product includes cryptographic
software written by Eric Young (eay@cryptsoft.com)". The word 'cryptographic'
can be left out if the routines from the library being used are not cryptographic
related.

4. If you include any Windows specific code (or a derivative thereof) from the
apps directory (application code) you must include acknowledgment:
"This product includes software written by Tim Hudson (tjh@cryptsoft.com)"

THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND ANY EXPRESS
OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
AUTHOR OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
DAMAGE.

The license and distribution terms for any publicly available version or derivative
of this code cannot be changed. i.e. this code cannot simply be copied and put
under another distribution license [including the GNU Public License.]

This product includes cryptographic software written by Eric Young.

Copyright © 1999, 2000 Internet Software Consortium.

Permission to use, copy, modify, and distribute this software for any purpose with
or without fee is hereby granted, provided that the above copyright notice and this
permission notice appear in all copies.

THE SOFTWARE IS PROVIDED "AS IS" AND INTERNET SOFTWARE
CONSORTIUM DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL INTERNET SOFTWARE CONSORTIUM
BE LIABLE FOR ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL
DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Copyright © 2004 IBM Corporation and its licensors, including Sendmail, Inc., and
the Regents of the University of California.

Copyright © 1999,2000,2001 Compaq Computer Corporation

Copyright © 1999,2000,2001 Hewlett-Packard Company

Notices 1499

Copyright © 1999,2000,2001 IBM Corporation

Copyright © 1999,2000,2001 Hummingbird Communications Ltd.

Copyright © 1999,2000,2001 Silicon Graphics, Inc.

Copyright © 1999,2000,2001 Sun Microsystems, Inc.

Copyright © 1999,2000,2001 The Open Group

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, provided that the
above copyright notice(s) and this permission notice appear in all copies of the
Software and that both the above copyright notice(s) and this permission notice
appear in supporting documentation.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE BE LIABLE
FOR ANY CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF
USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Except as contained in this notice, the name of a copyright holder shall not be used
in advertising or otherwise to promote the sale, use or other dealings in this
Software without prior written authorization of the copyright holder.

X Window System is a trademark of The Open Group.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

You can obtain softcopy from the z/OS Collection (SK3T-4269), which contains
BookManager and PDF formats.

Minimum supported hardware

The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: http://www-01.ibm.com/

software/support/systemsz/lifecycle/
v For information about currently-supported IBM hardware, contact your IBM

representative.

1500 z/OS V2R1.0 Communications Server: IP Configuration Reference

http://www-01.ibm.com/software/support/systemsz/lifecycle/
http://www-01.ibm.com/software/support/systemsz/lifecycle/

Policy for unsupported hardware

Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted
for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at Copyright and
trademark information at www.ibm.com/legal/copytrade.shtml.

Intel is a registered trademark of Intel Corporation or its subsidiaries in the United
States and other countries.

Java™ and all Java-based trademarks are trademarks or registered trademarks of
Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in
the United States, other countries, or both.

Adobe and PostScript are either registered trademarks or trademarks of Adobe
Systems Incorporated in the United States, and/or other countries.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other product and service names might be trademarks of IBM or other companies.

Notices 1501

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

1502 z/OS V2R1.0 Communications Server: IP Configuration Reference

Bibliography

This bibliography contains descriptions of the documents in the z/OS
Communications Server library.

z/OS Communications Server documentation is available in the following forms:
v Online at the z/OS Internet Library web page at www.ibm.com/systems/z/os/

zos/bkserv/
v In softcopy on CD-ROM collections. See “Softcopy information” on page xxxi.

z/OS Communications Server library updates

An index to z/OS Communications Server book updates is at http://
www.ibm.com/support/docview.wss?uid=swg21178966. Updates to documents are
also available on RETAIN® and in information APARs (info APARs). Go to
http://www.ibm.com/software/network/commserver/zos/support to view
information APARs.

z/OS Communications Server information

z/OS Communications Server product information is grouped by task in the
following tables.

Planning

Title Number Description

z/OS Communications Server:
New Function Summary

GC27-3664 This document is intended to help you plan for new IP or
SNA function, whether you are migrating from a previous
version or installing z/OS for the first time. It summarizes
what is new in the release and identifies the suggested and
required modifications needed to use the enhanced functions.

z/OS Communications Server:
IPv6 Network and Application
Design Guide

SC27-3663 This document is a high-level introduction to IPv6. It
describes concepts of z/OS Communications Server's support
of IPv6, coexistence with IPv4, and migration issues.

Resource definition, configuration, and tuning

Title Number Description

z/OS Communications Server:
IP Configuration Guide

SC27-3650 This document describes the major concepts involved in
understanding and configuring an IP network. Familiarity
with the z/OS operating system, IP protocols, z/OS UNIX
System Services, and IBM Time Sharing Option (TSO) is
recommended. Use this document with the z/OS
Communications Server: IP Configuration Reference.

© Copyright IBM Corp. 2000, 2015 1503

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/support/docview.wss?uid=swg21178966
http://www.ibm.com/support/docview.wss?uid=swg21178966
http://www.ibm.com/software/network/commserver/zos/support

Title Number Description

z/OS Communications Server:
IP Configuration Reference

SC27-3651 This document presents information for people who want to
administer and maintain IP. Use this document with the z/OS
Communications Server: IP Configuration Guide. The
information in this document includes:

v TCP/IP configuration data sets

v Configuration statements

v Translation tables

v Protocol number and port assignments

z/OS Communications Server:
SNA Network Implementation
Guide

SC27-3672 This document presents the major concepts involved in
implementing an SNA network. Use this document with the
z/OS Communications Server: SNA Resource Definition
Reference.

z/OS Communications Server:
SNA Resource Definition
Reference

SC27-3675 This document describes each SNA definition statement, start
option, and macroinstruction for user tables. It also describes
NCP definition statements that affect SNA. Use this document
with the z/OS Communications Server: SNA Network
Implementation Guide.

z/OS Communications Server:
SNA Resource Definition
Samples

SC27-3676 This document contains sample definitions to help you
implement SNA functions in your networks, and includes
sample major node definitions.

z/OS Communications Server:
IP Network Print Facility

SC27-3658 This document is for systems programmers and network
administrators who need to prepare their network to route
SNA, JES2, or JES3 printer output to remote printers using
TCP/IP Services.

Operation

Title Number Description

z/OS Communications Server:
IP User's Guide and Commands

SC27-3662 This document describes how to use TCP/IP applications. It
contains requests with which a user can log on to a remote
host using Telnet, transfer data sets using FTP, send and
receive electronic mail, print on remote printers, and
authenticate network users.

z/OS Communications Server:
IP System Administrator's
Commands

SC27-3661 This document describes the functions and commands helpful
in configuring or monitoring your system. It contains system
administrator's commands, such as TSO NETSTAT, PING,
TRACERTE and their UNIX counterparts. It also includes TSO
and MVS commands commonly used during the IP
configuration process.

z/OS Communications Server:
SNA Operation

SC27-3673 This document serves as a reference for programmers and
operators requiring detailed information about specific
operator commands.

z/OS Communications Server:
Quick Reference

SC27-3665 This document contains essential information about SNA and
IP commands.

1504 z/OS V2R1.0 Communications Server: IP Configuration Reference

Customization

Title Number Description

z/OS Communications Server:
SNA Customization

SC27-3666 This document enables you to customize SNA, and includes
the following information:

v Communication network management (CNM) routing table

v Logon-interpret routine requirements

v Logon manager installation-wide exit routine for the CLU
search exit

v TSO/SNA installation-wide exit routines

v SNA installation-wide exit routines

Writing application programs

Title Number Description

z/OS Communications Server:
IP Sockets Application
Programming Interface Guide
and Reference

SC27-3660 This document describes the syntax and semantics of program
source code necessary to write your own application
programming interface (API) into TCP/IP. You can use this
interface as the communication base for writing your own
client or server application. You can also use this document to
adapt your existing applications to communicate with each
other using sockets over TCP/IP.

z/OS Communications Server:
IP CICS Sockets Guide

SC27-3649 This document is for programmers who want to set up, write
application programs for, and diagnose problems with the
socket interface for CICS using z/OS TCP/IP.

z/OS Communications Server:
IP IMS Sockets Guide

SC27-3653 This document is for programmers who want application
programs that use the IMS™ TCP/IP application development
services provided by the TCP/IP Services of IBM.

z/OS Communications Server:
IP Programmer's Guide and
Reference

SC27-3659 This document describes the syntax and semantics of a set of
high-level application functions that you can use to program
your own applications in a TCP/IP environment. These
functions provide support for application facilities, such as
user authentication, distributed databases, distributed
processing, network management, and device sharing.
Familiarity with the z/OS operating system, TCP/IP protocols,
and IBM Time Sharing Option (TSO) is recommended.

z/OS Communications Server:
SNA Programming

SC27-3674 This document describes how to use SNA macroinstructions to
send data to and receive data from (1) a terminal in either the
same or a different domain, or (2) another application program
in either the same or a different domain.

z/OS Communications Server:
SNA Programmer's LU 6.2
Guide

SC27-3669 This document describes how to use the SNA LU 6.2
application programming interface for host application
programs. This document applies to programs that use only
LU 6.2 sessions or that use LU 6.2 sessions along with other
session types. (Only LU 6.2 sessions are covered in this
document.)

z/OS Communications Server:
SNA Programmer's LU 6.2
Reference

SC27-3670 This document provides reference material for the SNA LU 6.2
programming interface for host application programs.

z/OS Communications Server:
CSM Guide

SC27-3647 This document describes how applications use the
communications storage manager.

Bibliography 1505

Title Number Description

z/OS Communications Server:
CMIP Services and Topology
Agent Guide

SC27-3646 This document describes the Common Management
Information Protocol (CMIP) programming interface for
application programmers to use in coding CMIP application
programs. The document provides guide and reference
information about CMIP services and the SNA topology agent.

Diagnosis

Title Number Description

z/OS Communications Server:
IP Diagnosis Guide

GC27-3652 This document explains how to diagnose TCP/IP problems
and how to determine whether a specific problem is in the
TCP/IP product code. It explains how to gather information
for and describe problems to the IBM Software Support
Center.

z/OS Communications Server:
ACF/TAP Trace Analysis
Handbook

GC27-3645 This document explains how to gather the trace data that is
collected and stored in the host processor. It also explains how
to use the Advanced Communications Function/Trace
Analysis Program (ACF/TAP) service aid to produce reports
for analyzing the trace data information.

z/OS Communications Server:
SNA Diagnosis Vol 1,
Techniques and Procedures and
z/OS Communications Server:
SNA Diagnosis Vol 2, FFST
Dumps and the VIT

GC27-3667

GC27-3668

These documents help you identify an SNA problem, classify
it, and collect information about it before you call the IBM
Support Center. The information collected includes traces,
dumps, and other problem documentation.

z/OS Communications Server:
SNA Data Areas Volume 1 and
z/OS Communications Server:
SNA Data Areas Volume 2

GC31-6852

GC31-6853

These documents describe SNA data areas and can be used to
read an SNA dump. They are intended for IBM programming
service representatives and customer personnel who are
diagnosing problems with SNA.

Messages and codes

Title Number Description

z/OS Communications Server:
SNA Messages

SC27-3671 This document describes the ELM, IKT, IST, IUT, IVT, and USS
messages. Other information in this document includes:

v Command and RU types in SNA messages

v Node and ID types in SNA messages

v Supplemental message-related information

z/OS Communications Server:
IP Messages Volume 1 (EZA)

SC27-3654 This volume contains TCP/IP messages beginning with EZA.

z/OS Communications Server:
IP Messages Volume 2 (EZB,
EZD)

SC27-3655 This volume contains TCP/IP messages beginning with EZB or
EZD.

z/OS Communications Server:
IP Messages Volume 3 (EZY)

SC27-3656 This volume contains TCP/IP messages beginning with EZY.

z/OS Communications Server:
IP Messages Volume 4 (EZZ,
SNM)

SC27-3657 This volume contains TCP/IP messages beginning with EZZ
and SNM.

z/OS Communications Server:
IP and SNA Codes

SC27-3648 This document describes codes and other information that
appear in z/OS Communications Server messages.

1506 z/OS V2R1.0 Communications Server: IP Configuration Reference

http://publibz.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/F1A1D580/CCONTENTS?SHELF=ez2zo111&DN=GC31-6852-03&DT=20080606133328
http://publibz.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/F1A1D580/CCONTENTS?SHELF=ez2zo111&DN=GC31-6852-03&DT=20080606133328
http://publibz.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/F1A1D680/CCONTENTS?SHELF=ez2zo111&DN=GC31-6853-03&DT=20080606142122
http://publibz.boulder.ibm.com/cgi-bin/bookmgr/BOOKS/F1A1D680/CCONTENTS?SHELF=ez2zo111&DN=GC31-6853-03&DT=20080606142122

Index

Special characters
; statement

resolver setup 368
TCPIP.DATA configuration 398

/etc/ftp/socks.conf 872
/etc/ftp.banner 756
/etc/ftp.login 813
/etc/inetd.conf 1413, 1414
/etc/osnmp.conf 1281
/etc/osnmpd.data 6, 1247
/etc/protocol, protocol number assignments 347
/etc/pw.src 7, 1249
/etc/services z/OS UNIX file 350
/etc/services, port assignments 350
/etc/snmptrap.dest 8, 1250
/etc/syslog.conf 909, 925
/etc/syslog.pid 909
statement

resolver setup 368
TCPIP.DATA configuration 398

Numerics
3172 Interconnect Controller 68
3745/46 Channel DLC devices 105
8232 LAN Channel Station 66

A
A220 devices, HYPERchannel 63
ACCEPT_RIP_ROUTE statement 506
ACCESSERRORMSGS statement 737
accessibility 1489
address resolution packets (ARP) 68, 69
address space

configuration statements summary, TCP/IP 11
DEVICE and LINK statement 95
resolver 355
specifying parameters 343
TCP/IP 345

ADMINEMAILADDRESS statement 738
ADNR

configuration file 424
starting the automated domain name registration 422

advisor
overview 403

advisor_id statement 417
agent

overview 403
agent_connection_port statement 406
agent_id_list statement 406
agent, RSVP 1219
ALLOWAPPL statement 640
ALTLINK statement 566
ALTNJEDOMAIN statement 1325
ALTTCPHOSTNAME statement 1326
ALWAYSWTO statement 373
anonymous considerations

ANONYMOUSFILEACCESS statement 741
ANONYMOUSFILETYPEJES statement 742

anonymous considerations (continued)
ANONYMOUSFILETYPESEQ statement 743
ANONYMOUSFILETYPESQL statement 743
ANONYMOUSHFSDIRMODE statement 745
ANONYMOUSHFSFILEMODE statement 746
ANONYMOUSHFSINFO statement 747
ANONYMOUSLEVEL statement 748
ANONYMOUSLOGINMSG statement 750
ANONYMOUSMVSINFO statement 751
EMAILADDRCHECK statement 789
FILETYPE statement 796
STARTDIRECTORY statement 876

anonymous logon, FTP 699
ANONYMOUS statement 738
ANONYMOUSFILEACCESS statement 741
ANONYMOUSFILETYPEJES statement 742
ANONYMOUSFILETYPESEQ statement 743
ANONYMOUSFILETYPTESQL statement 743
ANONYMOUSFTPLOGGING statement 744
ANONYMOUSHFSDIRMODE statement 745
ANONYMOUSHFSFILEMODE statement 746
ANONYMOUSHFSINFO statement 747
ANONYMOUSLEVEL statement 748
ANONYMOUSLOGINMSG statement 750
ANONYMOUSMVSINFO statement 751
APPLNAME statement 752
ArchiveCheckInterval statement 916
ArchiveThreshold statement 916
ArchiveTimeOfDay statement 917
AREA statement 488
arm_element_suffix statement 426
ARP

packets 68, 69
table 16, 302

ARPAGE statement 16
AS_BOUNDARY_ROUTING statement 489
ASATRANS statement 753
ASCII-to-EBCDIC

table 1421
translation 1417

ASCII, DBCS statement 1329
AT-TLS policy statements 1003
ATM

devices 52
devices, coding order 17

ATM considerations 303
ATMARP server 17
ATMARPSV statement 17
ATMLIS statement 19
ATMPVC statement 22
ATSIGN statement 1326
AUTOLOG statement 23
automated domain name

registration 421
automated domain name registration

ADNR 422
arm_element_suffix 426
debug_level 426
dns 428
general syntax rules 421
gwm 430

© Copyright IBM Corp. 2000, 2015 1507

automated domain name registration (continued)
host_group 431
ipaddrlist 433
key 434
server_group 434
starting 422
uuid 436

AutoMonitorApps statement 950
AutoMonitorParms statement 954
AUTOMOUNT statement 753
AUTORECALL statement 754
AUTOTAPEMOUNT statement 755

B
backbone routes 504, 528
BadSpoolDisp statement 1372
BADSPOOLFILEID statement 1327
banner considerations

ACCESSERRORMSGS statement 737
ADMINEMAILADDRESS statement 738
ANONYMOUSLOGINMSG statement 750
ANONYMOUSMVSINFO statement 751
BANNER statement 756
HFSINFO statement 799
LOGINMSG statement 813
MVSINFO statement 820

BANNER statement 756
BeginArchiveParms statement 917
BEGINROUTES statement 28
BEGINVTAM block 587
BEGINVTAM statement

ALLOWAPPL 640
client identifier specification 639
client identifier types and definitions 638
DEFAULTAPPL 641
DEFAULTLUS or SDEFAULTLUS 642
DEFAULTLUSSPEC or SDEFAULTLUSSPEC 643
DEFAULTPRT or SDEFAULTPRT 644
DEFAULTPRTSPEC or SDEFAULTPRTSPEC 645
DESTIPGROUP 645
HNGROUP 646
host name specification 639
INTERPTCP 647
IPGROUP 648
LINEMODEAPPL 649
LINKGROUP 650
LU name specification rules 637
LUGROUP or SLUGROUP 651
LUMAP 652
MONITORGROUP 654
MONITORMAP 655
PARMSGROUP 656
PARMSMAP 656
PORT 657
PRTDEFAULTAPPL 657
PRTGROUP or SPRTGROUP 658
PRTMAP 660
RESTRICTAPPL 661
rules 636
TNSACONFIG 631
USERGROUP 663
USSTCP 664

Big-5 and Traditional Chinese 1431
BIG5

conversion 1329
LOADDBCSTABLES 377

BINARYLINEMODE statements 594
bind control index 261
BLKSIZE statement 756
bridge, token-ring 70
BSDROUTINGPARMS

modification methods 39
statement 36

BUFFERS statement
SNALINK LU6.2 558
X.25 NPSI 567

BUFNO statement 758

C
CACHE/NOCACHE statement 358
CACHESIZE statement 359
cataloged procedure

syslog 909
cataloged procedures

DMD 471
EZAFTSERV (EZAFTSRV) 697
FTP (FTPD) 697
IKE 439
LLBD 1314
NCPROUTE (NCPROUT) 582
NRGLBD 1313
NSS server 459
OMPROUTE 483
OPORTRPC 1309
OSNMPD 1241
Remote Execution server (RXPROC) 1407
RXPROC 1407
SMTPPROC 1315
SNALINK LU6.2 (LU62PROC) 555
TCP/IP (TCPIPROC) 343
X.25 NPSI (X25PROC) 563

CCONNTIME statement 758
CCXLATE statement 759
channel DLC devices, 3745/46 105
channel-to-channel (CTC) devices 60
channel-to-channel DEVICE and LINK 60
CHECKCLIENTCONN statements 594
CHECKSPOOLSIZE statement 1327
CHKCONFIDENCE statement 760
ChkPointSizeLimit statement 1373
CHKPTFLUSH statement 761
CHKPTINT statement 762
CHKPTPREFIX statement 764
CIPHERSUITE statement 765
CLAW devices 55
client identifier specification, rules 639
client identifier statements, Telnet

DESTIPGROUP statement 645
HNGROUP statement 646
IPGROUP statement 648
LINKGROUP statement 650

client identifier types and definitions 638
client statements, FTP

ASATRANS 753
AUTOMOUNT 753
AUTORECALL 754
AUTOTAPEMOUNT 755
BLKSIZE 756
BUFNO 758
CCONNTIME 758
CCTRANS 758
CHKPTFLUSH 761

1508 z/OS V2R1.0 Communications Server: IP Configuration Reference

client statements, FTP (continued)
CHKPTINT 762
CHKPTPREFIX 764
CIPHERSUITE 765
CLIENTERRCODES 767
CLIENTEXIT 767
CONDDISP 768
CTRLCONN 769
DATACLASS 770
DATACTTIME 772
DATAKEEPALIVE 773
DB2 774
DB2PLAN 775, 776
DCBDSN 776
DEBUG 778
DIRECTORY 781
DIRECTORYMODE 782
DSNTYPE 783
DSWAITTIME 784
DUMP 786
EATTR 788
ENCODING 790
EPSV4 791
EXTENSIONS 792
FIFOIOTIME 794
FIFOOPENTIME 795
FILETYPE 796
FTPKEEPALIVE 797
FWFRIENDLY 799
INACTTIME 801
ISPFSTATS 802
KEYRING 808
LISTSUBDIR 810
LOGCLIENTERR 812
LRECL 813
MBDATACONN 815
MBREQUIRELASTEOL 816
MBSENDEOL 817
MGMTCLASS 818
MIGRATEVOL 819
MYOPENTIME 821
NETRCLEVEL 821
PDSTYPE 826
PRIMARY 830
PROGRESS 831
QUOTESOVERRIDE 831
RDW 832
RECFM 833
REMOVEINBEOF 835
RESTGET 837
RESTPUT 838
RETPD 838
SBDATACONN 840
SBSENDEOL 841
SBSUB 843
SBSUBCHAR 844
SBTRANS 844
SECONDARY 845
SECURE_CTRLCONN 846
SECURE_DATACONN 847
SECURE_FTP 849, 851
SECURE_HOSTNAME 851
SECURE_MCEHANISM 854
SECURE_PBSZ 858
SEQNUMSUPPORT 859
SOCKSCONFIGFILE 872
SPACETYPE 873

client statements, FTP (continued)
SPREAD 874
SQLCOL 874
SSLV3 875
STORCLASS 877
SUPPRESSIGNOREWARNINGS 877
TLSPORT 879, 880
TLSRFCLEVEL 880
TLSTIMEOUT 882
TRAILINGBLANKS 883
TRUNCATE 884
UCOUNT 885
UCSHOSTCS 886
UCSSUB 886
UCSTRUNC 887
UMASK 887
UNICODEFILESYSTEMBOM 888, 891
UNITNAME 890
VCOUNT 892
VERIFYUSER 893
VOLUME 895
WRAPRECORD 896
WRTAPEFASTIO 896

CLIENTAUTH keyword 688
CLIENTAUTH statement 595
ClientConnection statement 955
CLIENTERRCODES statement 767
CLIENTEXIT statement 767
CLIST, using 929
CODEFILE, CONVXLAT 1428
Codepage statement 956
CODEPAGE statement 596
common configuration statements for RIP and OSPF 538
Common Link Access to Workstation (CLAW) device 55
CommonIDSConfig statement 957
CommonIPSecConfig statement 958
CommonRoutingConfig statement 959
COMMONSEARCH statement 360
CommonTTLSConfig statement 960
Communications Server for z/OS, online information xxxii
COMMUNITY entry 1267
COMPARISON statement 491
CONDDISP statement 768
configuration data sets

CSSMTP 1370
ETC.SERVICES 350
FTP.DATA 721
FTP.DATA statements 737
LU62CFG 556
MIBS.DATA 1285
OSNMP.CONF 1281
OSNMPD.DATA 1247
PAGENT.CONF 1206
PROFILE.TCPIP 11
PW.SRC 1248
RSVPD.CONF 1222
SMTPCONF 1316
SNMPD.BOOTS 1275
SNMPD.CONF 1250
SNMPTRAP.DEST 1249
TCPDATA 398
TRAPFWD.CONF 1288
X25CONF 563

configuration data sets and files
search orders, summary 1
summary list 1

Index 1509

configuration file
DMD 462, 474

configuration files
DCAS 688
OMPROUTE 487
PassTicket 687
policy 931
RSVP 1219

configuration statements
CSSMTP 1370
FTP.DATA 721
INCLUDE 487
IPv6 OSPF 518
IPv6 RIP OSPF 529
LPD 1295
OSPF 488
resolver setup 355
RIP 506
SMTP 1316
SNALINK LU6.2 557
SOCKS 898
statement syntax 15
syslogd 915
TCP/IP address space summary 11
TCPIP.DATA 355
X.25 NPSI server 565

configuration statements, TCPIP.DATA 355, 369
connection resolution 622
CONNTYPE statement 597
converting translation tables to binary 1428
CONVXLAT

command 1422
examples 1430
HANGEUL 1428
KANJI 1428
syntax 1428
TCHINESE 1428

CRLLDAPSERVER statement 598
CSSMTP 1365

application environment variables 1392
application sample started procedure 1368
BadSpoolDisp statement 1372
calling the exit program to interrogate data coming from

the JES spool data set 1396
ChkPointSizeLimit statement 1373
configuration statements, summary 1370
exit 1394
ExtendedRetry statement 1373
ExtWrtName statement 1375
general syntax rules 1365
Header statement 1376
JESJobSize statement 1377
JESMsgSize statement 1378
JESSyntaxErrLimit statement 1378
LogLevel statement 1378
MailAdministrator statement 1379
Options statement 1380
REPORT statement 1381
RetryLimit statement 1382
SMF119 statement 1383
starting the application 1367
TargetServer statement 1384
TIMEOUT statement 1387
TRANSLATE statement 1388
UNDELIVERABLE statement 1389
USEREXIT statement 1391

CTC devices 60

CTRLCONN statement 769

D
DASD considerations

AUTOMOUNT statement 753
AUTORECALL statement 754
BUFNO statement 758
CCONNTIME statement 758
CCTRANS statement 758
CHKPTFLUSH statement 761
CHKPTINT statement 762
CHKPTPREFIX statement 764
CIPHERSUITE statement 765
CLIENTERRCODES statement 767
CONDDISP statement 768
DATACLASS statement 770
DATAKEEPALIVE statement 773
DATATCTIME statement 772
DCBDSN statement 776
DEST statement 780
DIRECTORY statement 781
DIRECTORYMODE statement 782
DSNTYPE statement 783
DSWAITTIME statement 784
EATTR statement 788
FIFOIOTIME statement 794
FIFOOPENTIME statement 795
FILETYPE statement 796
LOGCLIENTERR statement 812
LRECL statement 813
MIGRATEVOL statement 819
PRIMARY statement 830
RECFM statement 833
REMOVEINBEOF statement 835
RETPD statement 838
SECONDARY statement 845
SPACETYPE statement 873
TRAILINGBLANKS statement 883
UCOUNT statement 885
UNITNAME statement 890
VCOUNT statement 892
VERIFYUSER statement 893
VOLUME statement 895
WRAPRECORD statement 896
WRTAPEFASTIO statement 896

DATA client configuration statements, TCPIP.DATA client
configuration

; 368, 398
368, 398
ALWAYSWTO 373
CACHE NOCACHE 358
CACHESIZE 359
COMMONSEARCH 360
DATASETPREFIX 374
DEFAULTIPNODES 360
DEFAULTTCPIPDATA 361
DOMAIN 374
DOMAINORIGIN 374
GLOBALIPNODES 362
GLOBALTCPIPDATA 363
HOSTNAME 376
LOADDBCSTABLE 377
LOOKUP 378
MAXTTL 365
MESSAGECASE 379
NAMESERVER 380

1510 z/OS V2R1.0 Communications Server: IP Configuration Reference

DATA client configuration statements, TCPIP.DATA client
configuration (continued)

NSINTERADDR 381
NSPORTADDR 384
OPTIONS 385
RESOLVERTIMEOUT 387
RESOLVERUDPRETRIES 389
RESOLVEVIA 390
SEARCH 391
SOCKDEBUG 392
SOCKNOTESTSTOR 393
SOCKTESTSTOR 393
SORTLIST 394
TCPIPJOBNAME 395
TCPIPUSERID 396
TRACE RESOLVER 396
TRACE SOCKET 397
UNRESPONSIVETHRESHOLD 366

DATACLASS statement 770
DATACTTIME statement 772
DATAKEEPALIVE statement 773
DATASETPREFIX statement 374
DATATIMEOUT statement 774
DB2 considerations

DB2 statement 774
DB2PLAN statement 775
SPREAD statement 874
SQLCOL statement 874

DB2 statement 774
DB2PLAN statement 775
DBCS

converting translation tables to binary 1428
CONVXLAT command 1422
CONVXLAT examples 1430
country or region translation tables 1428
customizing 1427
Korean KSC5601 1431
Telnet 3270 DBCS transform mode codefiles 1427
TRANSLATE option for the FTP client 1426
translation table hierarchy 1424
translation table members 1428
translation table, syntax rules 1428

DBCS statement 1328
DBCSTRACE statements 599
DBCSTRANSFORM statement 599
DBSUB statement 776
DCAS

CLIENTAUTH 688
configuration file keywords and parameters 688
IPADDR 689
KEYRING 689
LDAPPORT 690
LDAPSERVER 690
PORT 690
SAFKEYRING 691
SERVERTYPE 691
starting 685
STASHFILE 693
TCPIP 693
TLSMECHANISM 694
TLSV1ONLY 694
V3CIPHER 694

DCAS environment variables 687
DCAS, setting up RACF for 695
DCB and multiple volumes 895
DCBDSN statement 776
DCONNTIME statement 777

DEBUG statement 600, 778, 1295, 1330
debug_level statement 407, 417, 426
DEBUGONSITE statement 780
DEFADDRTABLE

statement 41
DEFAULT_ROUTE statement 539
DEFAULT_SECURITY entry 1270
DEFAULTAPPL statement 641
DEFAULTIPNODES statement 360
DEFAULTLUS or SDEFAULTLUS statement 642
DEFAULTLUSSPEC or SDEFAULTLUSSPEC statement 643
DEFAULTPRT and SDEFAULTPRT statement 644
DEFAULTPRTSPEC or SDEFAULTPRTSPEC statement 645
DEFAULTTCPIPDATA statement 361
Defense Manager daemon

configuration file sample 479
Defense Manager daemon (DMD) 471
definition files, LDAPv2 schema 1433
DELETE statement 43
DELETEBADSPOOLFILE statement 1330
DEMAND_CIRCUIT statement 491
DEST statement

FTP 780
SNALINK LU6.2 559
X.25 NPSI 568

destinations, syslogd 922
DESTIPGROUP statement 645
DEVICE and LINK statements

3745/46 Channel DLC devices 105
ATM devices 52
channel-to-channel 60
CLAW devices 55
CTC devices 60
Enterprise Extender connection, defining 92
Ethernet link support 66
FDDI 66
High Performance Data Transfer (HPDT) connection,

defining 92
HYPERchannel A220 devices 63
LAN Channel Station and OSA devices 66
MIH factors 49
missing interrupt handler (MIH) factors 49
modifying 50
MPCIPA devices 74
MPCIPA HiperSockets devices 85
MPCOSA devices 89
MPCPTP devices 92
MTU values 48
OSA devices 66
overview 47
recovery from device failures 48
requirements 47
SNA LU 6.2 links 98
SNA LU0 links 95
SNALINK LU 6.2 interface 98
SNALINK program 95
summary 48
token ring support 66
Virtual devices 101
VTAM configuration relationship 50
X.25 NPSI connections 103

device failure recovery 48
DEVICE statements, see DEVICE and LINK statements 47
device type and logmode table 625
DIRECT 899
DIRECTORY statement 781
DIRECTORYMODE statement 782

Index 1511

disability 1489
DISABLESGA statements 602
DISALLOWCMD statement 1331
DMConfig statement 474
DMD

cataloged procedure 471
configuration file 474
configuration file sample 479
environment variables 473
starting using z/OS UNIX 471

DMD (Defense Manager daemon) 471
DmStackConfig statement 476
DNS considerations 639, 647
dns statement 428
DNS, online information xxxiv
Domain Name Resolver 1353
domain name, automated 421
DOMAIN statement 374
DOMAINORIGIN statement 374
DROPASSOCPRINTER statement 602
DSNTYPE statement 783
DSWAITTIME statement 784
DSWAITTIMEREPLY statement 785
DUMP statement 786
DUMPONSITE statement 787
dynamic VIPA 306
dynamically changing TCPIP.DATA statements 370
DynamicConfigPolicyLoad statement 961
DYNAMICXCF 194

E
EATTR statement 788
EBCDIC-to-ASCII

table 1421
translation 1417

EE 200
EMAILADDRCHECK statement 789
ENCODING statement 790
ENCRYPTION statement 602
ENDINTAB macroinstruction 679
Enterprise Extender 92, 200
environment variables

CSSMTP 1392
DCAS 687
DMD 473
FTP server 898
IKE 441
MIBDESC 1280
Network SLAPM2 subagent 1216
NSS server 461
OMPROUTE 485
OSNMP 1281
OSNMPD 1246
Policy Agent 1212
RSHD command (orshd) 1415
Syslogd 914
TRAPFWD 1288

EPSV4 statement 791
ETC.SERVICES port assignments 350
Ethernet hosts 301
Ethernet Network LCS LINK statement 68
EUCKANJI, DBCS 1329
EUCKANJI, LOADDBCSTABLES 377
EXITDIRECTION statement 1332
Express Logon

CLIENTAUTH 688

Express Logon (continued)
DCAS configuration file keywords and parameters 688
DCAS, starting 685
EZADCASP 686
IPADDR 689
KEYRING 689
LDAPPORT 690
LDAPSERVER 690
PassTicket Server configuration file processing 687
PORT 690
SAFKEYRING 691
sample procedure 686
SERVERTYPE 691
STASHFILE 693
TCPIP 693
TLSMECHANISM 694
TLSV1ONLY 694
V3CIPHER 694

EXPRESSLOGON statement 603
ExtendedRetry statement 1373
EXTENSIONS statement 792
ExtWrtName statement 1375
EZADCASP 686
EZAFCCMD 712

F
facility names, syslogd 919
FAST statement 569
fault tolerance 139
FDDI LCS 71
Fiber Distributed Data Interface (FDDI) 71
FIFOIOTIME statement 794
FIFOOPENTIME statement 795
File Transfer Protocol, also see FTP 697
FILETYPE statement 796
FILTER statement 507
FINISHOPEN statement 1333
FORMAT statement 604
FTCHKCMD 702
FTCHKIP 706
FTCHKJES 708
FTCHKPWD 707
FTP

ACCESSERRORMSGS statement 737
accounting 860, 862, 863, 864, 865, 866, 867, 868, 869, 870,

871, 872
ADMINEMAILADDRESS statement 738
anonymous considerations 741, 743, 745, 746, 747, 748,

750, 751, 789, 790, 796, 876
anonymous logon 699
ANONYMOUS statement 738
ANONYMOUSFILEACCESS statement 741
ANONYMOUSFILETYPEJES statement 742
ANONYMOUSFILETYPESEQ statement 743
ANONYMOUSFILETYPESQL statement 743
ANONYMOUSFTPLOGGING statement 744
ANONYMOUSHFSDIRMODE statement 745
ANONYMOUSHFSFILEMODE statement 746
ANONYMOUSHFSINFO statement 747
ANONYMOUSLEVEL statement 748
ANONYMOUSLOGINMSG statement 750
ANONYMOUSMVSINFO statement 751
APPLNAME statement 752
ASATRANS statement 753
AUTOMOUNT statement 753
AUTORECALL statement 754

1512 z/OS V2R1.0 Communications Server: IP Configuration Reference

FTP (continued)
AUTOTAPEMOUNT statement 755
banner considerations 737, 738, 750, 751, 756, 799, 813, 820
BANNER statement 756
BLKSIZE statement 756
BUFNO statement 758
cataloged procedure 697
CCONNTIME statement 758
CCTRANS statement 758
CCXLATE statement 759
CHKCONFIDENCE statement 760
CHKPTFLUSH statement 761
CHKPTINT statement 762
CHKPTPREFIX statement 764
CIPHERSUITE statement 765
CLIENTERRCODES statement 767
CLIENTEXIT statement 767
CONDDISP statement 768, 795
configuration statements in FTP.DATA 721
CTRLCONN statement 769
DASD considerations 753, 754, 758, 761, 762, 764, 765, 767,

768, 770, 772, 773, 776, 780, 781, 782, 783, 784, 788, 796,
812, 813, 819, 830, 833, 835, 838, 845, 873, 883, 885, 890,
892, 893, 895, 896

DATACLASS statement 770
DATACTTIME statement 772
DATAKEEPALIVE statement 773
DATATIMEOUT statement 774
DB2 considerations 774, 775, 796, 870, 874
DB2 statement 774
DB2PLAN statement 775
DBSUB statement 776
DCBDSN statement 776
DCONNTIME statement 777
DEBUG statement 778
DEBUGONSITE statement 780
DEST statement 780
DIRECT statement 899
DIRECTORY statement 781
DIRECTORYMODE statement 782
DSNTYPE statement 783
DSWAITTIME statement 784
DSWAITTIMEREPLY statement 785
DUMP statement 786
DUMPONSITE statement 787
EATTR statement 788
EMAILADDRCHECK statement 789
ENCODING statement 790
EPSV4 statement 791
extensions beyond RFC 959 792
EXTENSIONS statement 792
EZAFCCMD 712
FIFOIOTIME considerations 794
FIFOIOTIME statement 794
FIFOOPENTIME considerations 795
FILETYPE statement 796
FTCHKCMD 702
FTCHKIP 706
FTCHKJES 708
FTCHKPWD 707
FTP.DATA 721
FTPD parameters 699
FTPKEEPALIVE statement 797
FTPLOGGING statement 797
FTPOSTPR 703
FWFRIENDLY statement 799
HFSINFO statement 799

FTP (continued)
INACTIVE statement 800
INACTTIME statement 801
ISPFSTATS statement 802
Japanese SBCS (CP 1041) and DBCS 1431
JES considerations 796, 802, 803, 804, 806, 807, 808
JESENTRYLIMIT statement 802
JESGETBYDSN statement 803
JESINTERFACELEVEL statement 804
JESLRECL statement 806
JESPUTGETTO statement 807
JESRECFM statement 808
KEYRING statement 808
Korean KSC5601 SBCS and DBCS 1431
LISTLEVEL statement 809
LISTSUBDIR statement 810
LOGCLIENTERR statement 812
LOGINMSG statement 813
LRECLstatement 813
MBDATACONN statement 815
MBREQUIRELASTEOL statement 816
MBSENDEOL statement 817
MGMTCLASS statement 818
MIGRATEVOL statement 819
MVSINFO statement 820
MVSURLKEY statement 820
MYOPENTIME statement 821
NETRCLEVEL statement 821
NONSWAPD statement 822
PASSIVEDATACONN statement 823
PASSIVEDATAPORTS statement 824
PASSIVEIGNOREADDR statement 824
PASSPHRASE statement 825
PDSTYPE statement 826
performance considerations 722
PORTCOMMAND statement 827
PORTCOMMANDIPADDR statement 828
PORTCOMMANDPORT statement 828
PORTOFENTRY4T statement 829
PRIMARY statement 830
PROGRESS statement 831
QUOTESOVERRIDE statement 831
RDW statement 832
RECFM statement 833
REMOVEINBEOF statement 835
REPLY226 statement 835
REPLYSECURITYLEVEL statement 836
RESTGET statement 837
RESTPUT statement 838
RETPD statement 838
SBCS 1418
SBDATACONN statement 840
SBSENDEOL statement 841
SBSUB statement 843
SBSUBCHAR statement 844
SBTRANS statement 844
SECONDARY statement 845
SECURE_CTRLCONN statement 846
SECURE_DATACONN statement 847
SECURE_FTP statement 849
SECURE_HOSTNAME statement 851
SECURE_LOGIN statement 852
SECURE_MCEHANISM statement 854
SECURE_PASSWORD statement 855
SECURE_PASSWORD_KERBEROS statement 856
SECURE_PBSZ statement 858
SECUREIMPLICITZOS statement 851

Index 1513

FTP (continued)
SEQNUMSUPPORT statement 859
SMF statement 860
SMF User Exit 710
SMFAPPE statement 862
SMFDCFG statement 863
SMFDEL statement 864
SMFEXIT statement 865
SMFJES statement 866
SMFLOGN statement 867
SMFREN statement 868
SMFRETR statement 869
SMFSQL statement 870
SMFSTOR statement 871
SMS considerations 756, 770, 776, 781, 813, 818, 830, 833,

835, 838, 845, 873, 877, 890, 892, 893, 895
SOCKD statement 900
SOCKS configuration statements 898
SOCKS.CNF 898
SOCKSCONFIGFILE 898
SOCKSCONFIGFILE statement 872
SPACETYPE statement 873
specifying EZAFTSRV parameters 699
SPREAD statement 874
STARTDIRECTORY statement 876
STORCLASS statement 877
summary of configuration statements 722
SUPPRESSIGNOREWARNINGS statement 877
tape considerations 755
TAPEREADSTREAM statement 878
TLSMECHANISM statement 879
TLSPORT statement 880
TLSRFCLEVEL statement 880
TLSTIMEOUT statement 882
TRACE statement 882, 883
TRAILINGBLANKS statement 883
TRANSLATE option for the FTP client, DBCS 1426
translation considerations 753, 759, 760, 769, 840, 886, 887,

897, 1418
translation tables 1418
TRUNCATE statement 884
UCOUNT statement 885
UCSHOSTCS statement 886
UCSSUB statement 886
UCSTRUNC statement 887
UMASK statement 887
UNICODEFILESYSTEMBOM statement 888
UNITNAME statement 890
UNIXFILETYPE statement 891
updating the FTP cataloged procedure 697
user exits 700, 710
VCOUNT statement 892
VERIFYUSER statement 893
VOLUME statement 895
WRAPRECORD statement 896
WRTAPEFASTIO statement 896
XLATE statement 897
z/OS UNIX considerations 887

FTP client statements
ASATRANS 753
AUTOMOUNT 753
AUTORECALL 754
AUTOTAPEMOUNT 755
BLKSIZE 756
BUFNO 758
CCONNTIME 758
CCTRANS 758

FTP client statements (continued)
CHKPTFLUSH 761
CHKPTINT 762
CHKPTPREFIX 764
CIPHERSUITE 765
CLIENTERRCODES 767
CLIENTEXIT 767
CONDDISP 768
CTRLCONN 769
DATACLASS 770
DATACTTIME 772
DATAKEEPALIVE 773
DB2 774
DB2PLAN 775, 776
DCBDSN 776
DEBUG 778
DIRECTORY 781
DIRECTORYMODE 782
DSNTYPE 783
DSWAITTIME 784
DUMP 786
EATTR 788
ENCODING 790
EPSV4 791
EXTENSIONS 792
FIFOIOTIME 794
FIFOOPENTIME 795
FILETYPE 796
FTPKEEPALIVE 797
FWFRIENDLY 799
INACTTIME 801
ISPFSTATS 802
KEYRING 808
LISTSUBDIR 810
LOGCLIENTERR 812
LRECL 813
MBDATACONN 815
MBREQUIRELASTEOL 816
MBSENDEOL 817
MGMTCLASS 818
MIGRATEVOL 819
MYOPENTIME 821
NETRCLEVEL 821
PDSTYPE 826
PRIMARY 830
PROGRESS 831
QUOTESOVERRIDE 831
RDW 832
RECFM 833
REMOVEINBEOF 835
RESTGET 837
RESTPUT 838
RETPD 838
SBDATACONN 840
SBSENDEOL 841
SBSUB 843
SBSUBCHAR 844
SBTRANS 844
SECONDARY 845
SECURE_CTRLCONN 846
SECURE_DATACONN 847
SECURE_FTP 849, 851
SECURE_HOSTNAME 851
SECURE_MCEHANISM 854
SECURE_PBSZ 858
SEQNUMSUPPORT 859
SOCKSCONFIGFILE 872

1514 z/OS V2R1.0 Communications Server: IP Configuration Reference

FTP client statements (continued)
SPACETYPE 873
SPREAD 874
SQLCOL 874
SSLV3 875
STORCLASS 877
SUPPRESSIGNOREWARNINGS 877
TLSMECHANISM 879
TLSPORT 880
TLSRFCLEVEL 880
TLSTIMEOUT 882
TRAILINGBLANKS 883
TRUNCATE 884
UCOUNT 885
UCSHOSTCS 886
UCSSUB 886
UCSTRUNC 887
UMASK 887
UNICODEFILESYSTEMBOM 888
UNITNAME 890
UNIXFILETYPE 891
VCOUNT 892
VERIFYUSER 893
VOLUME 895
WRAPRECORD 896
WRTAPEFASTIO 896

FTP server environment variables 898
FTP server statements

ACCESSERRORMSGS 737
ADMINEMAILADDRESS 738
ANONYMOUS 738
ANONYMOUSFILEACCESS 741
ANONYMOUSFILETYPEJES 742
ANONYMOUSFILETYPESEQ 743
ANONYMOUSFILETYPESQL 743
ANONYMOUSFTPLOGGING 744
ANONYMOUSHFSDIRMODE 745
ANONYMOUSHFSFILEMODE 746
ANONYMOUSHFSINFO 747
ANONYMOUSLEVEL 748
ANONYMOUSLOGINMSG 750
ANONYMOUSMVSINFO 751
APPLNAME 752
ASATRANS 753
AUTOMOUNT 753
AUTORECALL 754
AUTOTAPEMOUNT 755
BANNER 756
BLKSIZE 756
BUFNO 758
CCXLATE 759
CHKCONFIDENCE 760
CHKPTINT 762
CIPHERSUITE 765
CONDDISP 768
CTRLCONN 769
DATACLASS 770
DATATIMEOUT 774
DB2 774
DB2PLAN 775, 776
DCBDSN 776
DEBUG 778
DEBUGONSITE 780
DEST 780
DIRECTORY 781
DIRECTORYMODE 782
DSWAITTIMEREPLY 785

FTP server statements (continued)
DUMP 786
DUMPONSITE 787
EMAILADDRCHECK 789
ENCODING 790
EXTENSIONS 792
FIFOIOTIME 794
FIFOOPENTIME 795
FILETYPE 796
FTPKEEPALIVE 797
FTPLOGGING 797
HFSINFO 799
INACTIVE 800
ISPFSTATS 802
JESENTRYLIMIT 802
JESGETBYDSN 803
JESINTERFACELEVEL 804
JESLRECL 806
JESPUTGETTO 807
JESRECFM 808
KEYRING 808
LISTLEVEL 809
LISTSUBDIR 810
LOGINMSG 813
LRECL 813
MBDATACONN 815
MBREQUIRELASTEOL 816
MBSENDEOL 817
MGMTCLASS 818
MIGRATEVOL 819
MVSINFO 820
MVSURLKEY 820
NONSWAPD 822
PASSIVEDATACONN 823
PASSIVEDATAPORTS 824
PASSIVEIGNOREADDR 824
PASSPHRASE 825
PDSTYPE 826
PORTCOMMAND 827
PORTCOMMANDIPADDR 828
PORTCOMMANDPORT 828
PORTOFENTRY4 829
PRIMARY 830
QUOTESOVERRIDE 831
RDW 832
RECFM 833
REMOVEINBEOF 835
REPLY226 835
REPLYSECURITYLEVEL 836
RETPD 838
SBDATACONN 840
SBSENDEOL 841
SBSUB 843
SBSUBCHAR 844
SECONDARY 845
SECURE_CTRLCONN 846
SECURE_DATACONN 847
SECURE_FTP 849, 851
SECURE_HOSTNAME 851
SECURE_LOGIN 852
SECURE_PASSWORD 855
SECURE_PASSWORD_KERBEROS 856
SECURE_PBSZ 858
SMF 860
SMFAPPE 862
SMFDCFG 863
SMFDEL 864

Index 1515

FTP server statements (continued)
SMFEXIT 865
SMFJES 866
SMFLOGN 867
SMFREN 868
SMFRETR 869
SMFSQL 870
SMFSTOR 871
SOCKSCONFIGFILE 872
SPACETYPE 873
SPREAD 874
SQLCOL 874
SSLV3 875
STARTDIRECTORY 876
STORCLASS 877
SUPPRESSIGNOREWARNINGS 877
TAPEREADSTREAM 878
TLSMECHANISM 879
TLSPORT 880
TLSRFCLEVEL 880
TLSTIMEOUT 882
TRACE 882
TRACECAPI 883
TRAILINGBLANKS 883
TRUNCATE 884
UCOUNT 885
UCSHOSTCS 886
UCSSUB 886
UCSTRUNC 887
UMASK 887
UNICODEFILESYSTEMBOM 888
UNITNAME 890
UNIXFILETYPE 891
VCOUNT 892
VERIFYUSER 893
VOLUME 895
WRAPRECORD 896
WRTAPEFASTIO 896
XLATE 897

FTP.DATA
ACCESSERRORMSGS statement 737
ADMINEMAILADDRESS statement 738
anonymous considerations 742
ANONYMOUS statement 738
ANONYMOUSFILEACCESS 876
ANONYMOUSFILEACCESS statement 741
ANONYMOUSFILETYPEJES statement 742
ANONYMOUSFILETYPESEQ statement 743
ANONYMOUSFILETYPESQL statement 743
ANONYMOUSFTPLOGGING statement 744
ANONYMOUSHFSDIRMODE statement 745
ANONYMOUSHFSFILEMODE statement 746
ANONYMOUSHFSINFO statement 747
ANONYMOUSLEVEL statement 748
ANONYMOUSLOGINMSG statement 750
ANONYMOUSMVSINFO statement 751, 752
ASATRANS statement 753
AUTOMOUNT statement 753
AUTORECALL statement 754
AUTOTAPEMOUNT statement 755
BANNER statement 756
BLKSIZE statement 756
BUFNO statement 758
CCONNTIME statement 758
CCTRANS statement 758
CCXLATE 898
CCXLATE statement 759

FTP.DATA (continued)
CHKCONFIDENCE statement 760
CHKPTFLUSH statement 761
CHKPTINT statement 762
CHKPTPREFIX statement 764
CIPHERSUITE statement 765
CLIENTERRCODES statement 767
CLIENTEXIT statement 767
CONDDISP statement 768
configuration statements 721
CTRLCONN 760, 898
CTRLCONN statement 769
data directory 771
data set statements 737
DATACLASS 757, 814, 834, 839, 873
DATACLASS PRIMARY 830
DATACLASS SECONDARY 830
DATACLASS statement 770
DATACTTIME statement 772
DATAKEEPALIVE statement 773
DATATIMEOUT statement 774
DB2 statement 774
DB2PLAN statement 775
DBSUB statement 776
DCBDSN 834, 839
DCBDSN statement 776
DCONNTIME statement 777
DEBUG statement 778
DEBUGONSITE statement 780
DEST statement 780
DIRECTORY statement 781
DIRECTORYMODE statement 782
DSNTYPE statement 783
DSWAITTIME statement 784
DSWAITTIMEREPLY statement 785
DUMP statement 786
DUMPONSITE statement 787
EATTR statement 788
EMAILADDRCHECK statement 789
ENCODING statement 790
EPSV4 statement 791
EXTENSIONS statement 792
FIFOIOTIME statement 794
FIFOOPENTIME statement 795
FILETYPE statement 796
FTCHKPWD 740
FTPKEEPALIVE statement 797
FTPLOGGING statement 797
FWFRIENDLY statement 799
HFSINFO statement 799
INACTIVE statement 800
INACTTIME statement 801
ISPFSTATS statement 802
JESENTRYLIMIT statement 802
JESGETBYDSN statement 803
JESINTERFACELEVEL statement 804
JESLRECL statement 806
JESPUTGETTO statement 807
JESRECFM statement 808
KEYRING statement 808
LISTLEVEL statement 809
LISTSUBDIR statement 810
LOGCLIENTERR statement 812
LOGINMSG statement 813
LRECL 771, 806
LRECL statement 813
MBDATACONN statement 815

1516 z/OS V2R1.0 Communications Server: IP Configuration Reference

FTP.DATA (continued)
MBREQUIRELASTEOL statement 816
MBSENDEOL statement 817
MGMTCLASS statement 818
MIGRATEVOL statement 819
MVSINFO 752
MVSINFO statement 820
MVSURLKEY statement 820
MYOPENTIME statement 821
NETRCLEVEL statement 821
NONSWAPD statement 822
PASSIVEDATACONN statement 823
PASSIVEDATAPORTS statement 824
PASSIVEIGNOREADDR statement 824
PASSPHRASE statement 825
PDSTYPE statement 826
PORTCOMMAND statement 827
PORTCOMMANDIPADDR statement 828
PORTCOMMANDPORT statement 828
PORTOFENTRY4 statement 829
PRIMARY 771, 873
PRIMARY statement 830
PROGRESS statement 831
QUOTESOVERRIDE statement 831
RDW statement 832
RECFM 771
RECFM statement 833
REMOVEINBEOF statement 835
REPLY226 statement 835
REPLYSECURITYLEVEL statement 836
RESTGET statement 837
RESTPUT statement 838
RETPD 771
RETPD statement 838
SBDATACONN statement 840
SBSENDEOL statement 841
SBSUB statement 843
SBSUBCHAR statement 844
SBTRANS statement 844
search order 721
SECONDARY 771, 873
SECONDARY statement 845
SECURE_CTRLCONN statement 846
SECURE_DATACONN statement 847
SECURE_FTP statement 849
SECURE_HOSTNAME statement 851
SECURE_LOGIN statement 852
SECURE_MCEHANISM statement 854
SECURE_PASSWORD statement 855
SECURE_PASSWORD_KERBEROS statement 856
SECURE_PBSZ statement 858
SECUREIMPLICITZOS statement 851
SEQNUMSUPPORT statement 859
SMF 863, 864, 867, 868, 869, 871
SMF statement 860
SMFAPPE 861
SMFAPPE statement 862
SMFDCFG statement 863
SMFDEL 861
SMFDEL statement 864
SMFEXIT statement 865
SMFJES 861
SMFJES statement 866
SMFLOGN statement 867
SMFREN 861
SMFREN statement 868
SMFRETR 861

FTP.DATA (continued)
SMFRETR statement 869
SMFSQL 861
SMFSQL statement 870
SMFSTOR 861
SMFSTOR statement 871
SOCKSCONFIGFILE statement 872
SPACETYPE statement 873
SPREAD statement 874
SQLCOL statement 874
SSLV3 statement 875
STARTDIRECTORY statement 876
STORCLASS statement 877
SUPPRESSIGNOREWARNINGS statement 877
TAPEREADSTREAM statement 878
TLSMECHANISM statement 879
TLSPORT statement 880
TLSRFCLEVEL statement 880
TLSTIMEOUT statement 882
TRACE statement 882
TRACECAPI statement 883
TRAILINGBLANKS statement 883
TRUNCATE statement 884
UCOUNT statement 885
UCSHOSTCS statement 886
UCSSUB statement 886
UCSTRUNC statement 887
UMASK statement 887
UNICODEFILESYSTEMBOM statement 888
UNITNAME statement 890
UNIXFILETYPE statement 891
VCOUNT statement 892
VERIFYUSER statement 893
VOLUME statement 895
WRAPRECORD statement 896
WRTAPEFASTIO statement 896
XLATE 760
XLATE statement 897

FTPD
parameters 699
rules 699

FTPKEEPALIVE statement 797
FTPLOGGING statement 797
FTPOSTPR 703
FULLDATATRACE statement 605
FWFRIENDLY statement 799

G
GATEWAY statement 576

IP routing table 109
NCPROUTE 576
routing table 109
SMTP 1333
TCPIP address space 109

gateways statements, NCPROUTE 575
global configuration statements, syslogd 916
GLOBAL_OPTIONS statement 544
GLOBALCONFIG statement 117
GLOBALIPNODES statement 362
GLOBALTCPIPDATA statement 363
gwm statement 430

Index 1517

H
HANGEUL 1329
HANGEUL, CONVXLAT 1428
HANGEUL, LOADDBCSTABLES 377
Header statement 1376
HFSINFO statement 799
High Performance Data Transfer (HPDT) connection 92
HiperSockets devices, see also iQDIO 85
HiperSockets manager 194, 196
HNGROUP statement 646
HOME statement 136
host name specification, rules 639
host_connection statement 418
host_group statement 431
HOSTNAME statement 376
HPDT connection, defining 92
HYPERchannel A220 devices 63

I
IBM 3172 Interconnect Controller 68
IBM 8232 LAN Channel Station 66
IBM RISC System Parallel Channel Attachment 55
IBM Software Support Center, contacting xxvi
IBMKANJI 1329
ICMP

fragmentation needed packets 109
redirect packets 109

IDS
action attributes 1228
attack policies 1233, 1234, 1235, 1236, 1237, 1238
condition attributes 1227
configuration files 1225
defaults 1175, 1181
FLOOD 1233
LDAP object classes 1225
policy 1225
PolicyAction, mapping to LDAP 1175
PolicyRule, mapping to LDAP 1181
scan event policies (ICMP) 1231
scan event policies (TCP and UDP) 1232
scan global policies 1230
traffic regulation policies 1239

IDS policy statements 1043
IDSAction statement 1043
IDSAttackCondition statement 1046
IDSConfig statement 967
IDSExclusion statement 1055
IDSReportSet statement 1057
IDSRule statement 1060
IDSScanEventCondition statement 1063
IDSScanExclusion statement 1065
IDSScanGlobalCondition statement 1067
IDSTRCondition statement 1068
IGNORE_RIP_NEIGHBOR statement 507
IKE

cataloged procedure 439
configuration file 442
environment variables 441
starting IKED using z/OS UNIX 439

IKE daemon 439
IkeConfig statement 443
IKED

starting 439
using z/OS UNIX 439

INACTIVE statement 605, 800, 1335

INACTTIME statement 801
INBOUNDOPENLIMIT statement 1335
INCLUDE

configuration statements 487
INCLUDE statement 141, 588, 606
Information APARs xxx
INTAB macroinstruction 674
Interface statement 1220
INTERFACE statement 541
INTERFACE statements 141

IPAQENET interfaces 145
IPAQENET6 interfaces 161
IPAQIDIO interfaces 157
IPAQIDIO6 interfaces 177
LOOPBACK6 interfaces 182
modifying 143
MPCPTP6 interfaces 183
Virtual interface 160, 188

Internet, finding z/OS information online xxxii
INTERPRET macroinstructions rules 674
INTERPRET table setup, Telnet 674
INTERPTCP statement 647
intrusion detection services (IDS), see also IDS 1225
invoking orexecd 1413
IOCTL SIOCSVIPA DEFINE 307
IP forwarding 192
IP routing table 109
IPADDR keyword 689
IpAddr statement 1191
IpAddrGroup statement 1192
ipaddrlist statement 433
IpAddrSet statement 1193
IPAQENET interfaces 145
IPAQENET6 interfaces 161
IPAQIDIO interfaces 157
IPAQIDIO6 interfaces 177
IPCONFIG statement 190
IPCONFIG6 statement 206
IpDataOffer statement 1072
IpDynVpnAction statement 1077
IpFilterGroup statement 1083
IpFilterPolicy statement 1084
IpFilterRule statement 1087
IpGenericFilterAction statement 1091
IPGROUP statement 648
IpLocalStartAction statement 1093
IPMAILERADDRESS statement 1336
IPMAILERNAME statement 1337
IpManVpnAction statement 1098
IpOptionGroup statement 1195
IpOptionRange statement 1195
IpProtocolGroup statement 1196
IpProtocolRange statement 1197
IPSec policy statements 1071
IPSEC statement 218
IPSecConfig statement 969
IPSecDisciplineConfig statement 464
IpService statement 1106
IpServiceGroup statement 1111
IpTimeCondition statement 1198
IPv6

forwarding 208
IPv6_ACCEPT_RIP_ROUTE statement 529
IPv6_AREA statement 518
IPv6_AS_BOUNDARY_ROUTING statement 519
IPv6_IGNORE_RIP_NEIGHBOR statement 530
IPv6_ORIGINATE_RIP_DEFAULT statement 531

1518 z/OS V2R1.0 Communications Server: IP Configuration Reference

IPv6 (continued)
IPv6_OSPF statement 521
IPv6_OSPF_INTERFACE statement 522
IPv6_RANGE statement 527
IPv6_RIP_FILTER statement 530
IPv6_RIP_INTERFACE statement 532
IPv6_RIP_SEND_ONLY statement 538
IPv6_VIRTUAL_LINK statement 528
network interfaces supported by TCP/IP 142
OSPF configuration statements 518
RIP configuration statements 529

IPv6 OSPF
retransmit parameters 526

IPv6_DEFAULT_ROUTE statement 545
IPv6_INTERFACE statement 546
Ipv6NextHdrGroup statement 1200
Ipv6NextHdrRange statement 1200
iQDIO 85, 194
ISO-8 interpretations 1424
ISPFSTATS statement 802
ITRACE statement 227

J
Japanese SBCS (CP 1041) and DBCS 1431
Japanese SBCS and DBCS Codefile 1431
JESENTRYLIMIT statement 802
JESGETBYDSN statement 803
JESINTERFACELEVEL statement 804
JESJobSize statement 1377
JESLRECL statement 806
JESMsgSize statement 1378
JESPUTGETTO statement 807
JESRECFM statement 808
JESSyntaxErrLimit statement 1378
JIS78KJ 1328
JIS78KJ, LOADDBCSTABLES 377
JIS83KJ 1328
JIS83KJ, LOADDBCSTABLES 377
JISROMAN 1329
JOBPACING statement 1296

K
KANJI, CONVXLAT 1428
KEEPINACTIVE statement 606
KEEPLU statement 607
key statement 434
keyboard 1489
KeyExchangeAction statement 1111
KeyExchangeGroup statement 1119
KeyExchangeOffer statement 1120
KeyExchangePolicy statement 1126
KeyExchangeRule statement 1131
KEYRING keyword 689
KEYRING statement 607, 808
Korean KSC5601 1431
KSC5601 1329
KSC5601, LOADDBCSTABLES 377

L
LAN Channel Station and OSA devices

LINK statement for Ethernet Network LCS 68
LINK statement for FDDI LCS 66

LAN Channel Station and OSA devices (continued)
LINK statement for Token-Ring Network or PC Network

LCS 69
LAN Channel Station DEVICE statement 66
lb_connection_v4 statement 408
lb_connection_v6 statement 408
lb_id_list statement 409
LDAPPORT keyword 690
LDAPSERVER keyword 690
LDAPv2 schema

definition files 1433
PAGENTAT 1433
PAGENTOC 1453

LDAPv2 schema 2
IDS 1225
IDS policies 1225

license, patent, and copyright information 1493
LINEMODEAPPL statement 649
LINK statement

Ethernet Network LCS 68
LINK statement for FDDI LCS 66
OSA-Express QDIO Ethernet 77
SNALINK LU6.2 560
token-ring network or PC network LCS 69
X.25 NPSI 569

LINK statements, see DEVICE and LINK statements 47
LINKGROUP statement 650
LISTENONADDRESS statement 1338
LISTLEVEL statement 809
LISTSUBDIR statement 810
LLBD 1314
Load balancing

advisor overview 403
agent overview 403

Load balancing agent
configuration file statements 416

LOADDBCSTABLES statement 377
LOCALCLASS statement 1339
LocalDynVpnGroup statement 1133
LocalDynVpnPolicy statement 1134
LocalDynVpnRule statement 1135
LOCALFORMAT statement 1339
LocalSecurityEndpoint statement 1138
LOG statement 1340
LOGCHAR macroinstructions 675
LOGCLIENTERR statement 812
LOGINMSG statement 813
LogLevel statement 970, 1219, 1378
logon interpret routine

parameter list 678
requirements 677

LOOKUP statement 378
LOOPBACK address 36, 116
LOOPBACK6 interfaces 182
LPD

Japanese SBCS (CP 1041) and DBCS 1431
Korean KSC5601 SBCS and DBCS 1431
LPDDATA 1294
LPDPRFX 1294
tracing 1294

LPD, remote print server
DEBUG statement 1295
JOBPACING statement 1296
OBEY statement 1296
SERVICE statement 1297
STEPLIMIT statement 1306
summary of configuration statements 1295

Index 1519

LPD, remote print server (continued)
syntax rules 1295
UNIT statement 1307
VOLUME statement 1307

LPR
Japanese SBCS (CP 1041) and DBCS 1431
Korean KSC5601 SBCS and DBCS 1431

LRECL statement 813
LU exit

operation 680
setup 679

LU name specification, rules 637
LU62CFG 556
LU62PROC 555
LUGROUP or SLUGROUP statement 651
LUMAP statement 652
LUSESSIONPEND statement 609

M
MAC addresses 69
macroinstructions

default table variable substitution 669
ENDINTAB 679
INTAB 674
INTERPRET rules 674
LOGCHAR 675
Telnet USS rules 665
USSCMD 665
USSEND 673
USSMSG 667
USSMSG, variables substituted 668
USSPARM 670
USSTAB 672

MailAdministrator statement 1379
MAILER statement 1340
MAILFILEDSPREFIX statement 1342
MAILFILEUNIT statement 1343
MAILFILEVOLUME statement 1343
mainframe

education xxx
mapping statements, Telnet

ALLOWAPPL statement 640
BEGINVTAM block 587, 635
client identifier specification 639
client identifier types and definitions 638
DEFAULTAPPL statement 641
DEFAULTLUS or SDEFAULTLUS statement 642
DEFAULTLUSSPEC or SDEFAULTLUSSPEC

statement 643
DEFAULTPRT or SDEFAULTPRT statement 644
DEFAULTPRTSPEC or SDEFAULTPRTSPEC

statement 645
general rules 636
HNGROUP 641
host name specification, rules 639
INTERPTCP statement 647
IPGROUP 641
LINEMODEAPPL statement 649
LU name specification, rules 637
LUMAP statement 652
LUSESSIONPEND 640
MONITORGROUP statement 654
MONITORMAPstatement 655
PARMSGROUP 598
PARMSMAP 598
PARMSMAP statement 656

mapping statements, Telnet (continued)
PRTDEFAULTAPPL statement 657
PRTMAP statement 660
RESTRICTAPPL statement 661
TCP/IP profile 635
TNSACONFIG statement 631
USSTCP 641
USSTCP statement 664

mapping to LDAP
PolicyAction 1175
PolicyRule 1181

maximum transmission unit (MTU) 38
MAXMAILBYTES statement 1344
MAXMSGSENT statement 1345
MAXRECEIVE statement 609
MAXREQSESS statement 610
MAXRUCHAIN statement 610
MAXTCPSENDQ statement 611
MAXTTL statement 365
MAXVTAMSENDQ statement 611
MBDATACONN statement 815
MBREQUIRELASTEOL statement 816
MBSENDEOL statement 817
MD5 489
Medium Access Control (MAC) addresses 69
MESSAGECASE statement 379
MGMTCLASS statement 818
MIBDESC environment variables 1280
MIBDESC.DATA

search order 1280
statement syntax 1280

MIBS.DATA
search order 1286
statement syntax 1285

MIGRATEVOL statement 819
MIH considerations 49
missing interrupt handler (MIH) factors 49
MONITORGROUP statement 654
monitoring network interfaces 144
monitoring network links 52
MONITORMAP statement 655
MPC 50
MPCIPA devices

OSA-Express QDIO Ethernet, LINK statement 77
QDIO Ethernet, LINK statement 77

MPCIPA HiperSockets devices 85
MPCOSA devices 89
MPCPTP devices 92
MPCPTP6 interfaces 183
MSG07 statement 612
MTU

support 47
values 48

MultiPath Channel (MPC) 50
multiple protocols 50
MVSINFO statement 820
MVSURLKEY statement 820, 826
MYOPENTIME statement 821

N
NACUSERID statement 612
NAMESERVER statement 380
NCP client, trace level 580
NCPROUT 582
NCPROUTE

building the NCPROUTE profile 584

1520 z/OS V2R1.0 Communications Server: IP Configuration Reference

NCPROUTE (continued)
cataloged procedure 582
GATEWAY_PDS 585
gateways statements 575
NCPRPROF 584
options 576
OPTIONS statement 577
parameters 583
profile data set 584
related topics 575
RIP RECEIVE CONTROL 585
RIP_AUTHENTICATION_KEY 585
RIP_SUPPLY_CONTROL 584
SNMP_AGENT 585
SNMP_COMMUNITY 585
syntax rules, gateways statements 575

NCS interface
cataloged procedure (NRGLBD) 1313
LLBD 1314
NRGLBD 1313

NETACCESS statement 229
NETMONITOR statement 234
NETRCLEVEL statement 821
network concentrator function 194
network interfaces, monitoring 144
network links, monitoring 52
Network security services (NSS) server 459
Network SLAPM2 subagent environment variables 1216
NJECLASS statement 1346
NJEDOMAIN statement 1346
NJEFORMAT statement 1347
NJENODENAME statement 1348
NOCACHE statement 381
NOLOG

LOG statement 1340
SECUR 1353

NOLOG statement 1349
NONSWAPD statement 822
NOSOURCEROUTE statement 1349
NOTIFY 1251
NOTIFY entry 1262
NOTIFY_FILTER 1251
NOTIFY_FILTER entry 1263
NOTIFY_FILTER_PROFILE 1251
NOTIFY_FILTER_PROFILE entry 1263
NOTKO statement 627, 628
NRGLBD 1313
NSINTERADDR statement 381
NSPORTADDR statement 384
NSS server 459

cataloged procedure, updating 459
configuration file 462
environment variables 461
starting using z/OS UNIX 459

NSSConfig statement 467
NssStackConfig statement 454

O
OBEY statement 1296
object statements, Telnet

DEFAULTLUS or SDEFAULTLUS statement 642
DEFAULTLUSSPEC or SDEFAULTLUSSPEC

statement 643
DEFAULTPRT or SDEFAULTPRT statement 644
DEFAULTPRTSPEC or SDEFAULTPRTSPEC

statement 645

object statements, Telnet (continued)
LUGROUP or SLUGROUP statement 651
PARMSGROUP statement 656
PRTGROUP or SPRTGROUP statement 658
USERGROUP statement 663

OLDSOLICITOR statements 613
OMPROUTE

ACCEPT_RIP_ROUTE statement 506
AREA statement 488
Areas 496, 524
AS_BOUNDARY_ROUTING statement 489
authentication 505, 515
Authentication_Type 489
backbone routes 504
cataloged procedure 483
common configuration statements for RIP and OSPF 538
COMPARISON statement 491
configuration file 487
DEFAULT_ROUTE statement 539
DEMAND_CIRCUIT statement 491
designed router 500
environment variables 485
FILTER statement 507
GLOBAL_OPTIONS statement 544
IGNORE_RIP_NEIGHBOR statement 507
importing routes to OSPF 489, 519
INCLUDE configuration statements 487
INTERFACEE statement 541
interfaces 492, 493, 521, 522
interfaces supported by 548
IPv6 OSPF configuration 518
IPv6 RIP configuration 529
IPv6_ACCEPT_RIP_ROUTE statement 529
IPV6_AREA statement 518
IPv6_AS_BOUNDARY_ROUTING statement 519
IPv6_DEFAULT_ROUTE statement 545
IPv6_FILTER statement 530
IPv6_IGNORE_RIP_NEIGHBOR statement 530
IPv6_INTERFACE statement 546
IPv6_ORIGINATE_RIP_DEFAULT statement 531
IPv6_OSPF areas 527
IPv6_OSPF statement 521
IPv6_OSPF_INTERFACE statement 522
IPv6_RANGE statement 527
IPv6_RIP_INTERFACE statement 532
IPv6_RIP_SEND_ONLY statement 538
IPv6_VIRTUAL_LINK statement 528
Link State Advertisements (LSAs) 499, 525
metrics 491
ORIGINATE_RIP_DEFAULT statement 508
OSPF areas 502
OSPF configuration statements 488
OSPF statement 492
OSPF_INTERFACE statement 493
parameters 484
RANGE statement 502
RIP configuration 506
RIP_INTERFACE statement 509
RouterID statement 503
ROUTESA_CONFIG statement 539
security 489, 505, 515
SEND_ONLY statement 517
SNMP subagent 539, 544
starting OMPROUTE using UNIX System Services 483
stub area 489, 518
syntax rules 487
types of interfaces supported by 548

Index 1521

OMPROUTE (continued)
VIRTUAL_LINK statement 504

OPORTRPC 1309
Options statement 1380
OPTIONS statement

NCPROUTE 577
OPTIONS 385
X.25 NPSI 570

orexecd command 1413
ORIGINATE_RIP_DEFAULT statement 508
orshd command 1414
OSA devices 66
OSA-Express QDIO Ethernet, LINK statement 77
OSAENTA statement 241
OSNMP environment variables 1281
OSNMP.CONF

search order 1281
statement syntax 1281

OSNMPD
COMMUNITY entry 1267
DEFAULT_SECURITY entry 1270
NOTIFY entry 1262
NOTIFY_FILTER entry 1263
NOTIFY_FILTER_PROFILE entry 1263
parameters 1243
PW.SRC search order 1249
PW.SRC statement syntax 1248
search order 1247
SNMP_COMMUNITY entry 1268
SNMPD.BOOTS search order 1276
SNMPD.BOOTS statement syntax 1275
SNMPD.CONF entries 1255
SNMPD.CONF sample 1272
SNMPD.CONF search order 1250
SNMPD.CONF syntax 1250
SNMPTRAP.DEST search order 1250
SNMPTRAP.DEST statement syntax 1249
starting from MVS 1241
starting from the z/OS UNIX System Services shell 1243
TARGET_ADDRESS entry 1264
TARGET_PARAMETERS entry 1266
USM_USER entry 1256
VACM_ACCESS entry 1260
VACM_GROUP entry 1258
VACM_VIEW entry 1259

OSNMPD environment variables 1246
OSNMPD.CONF, search order for 5
OSNMPD.DATA

example 1248
search order 1247
statement syntax 1247

OSNMPD.DATA, search order for 6
OSPF

common configuration statements 538
configuration statements 488
DEFAULT_ROUTE statement 539
GLOBAL_OPTIONS statement 544
hierarchy 491
INTERFACE statement 541
IPv6_DEFAULT_ROUTE statement 545
IPv6_INTERFACE statement 546
IPv6_OSPF statement 521
IPv6_OSPF_INTERFACE suatement 522
OSPF statement 492
OSPF_INTERFACE statement 493
ROUTESA_CONFIG statement 539

OSPF statement 492

OSPF_INTERFACE statement 493
OUTBOUNDOPENLIMIT statement 1351
output data sets 345

P
packet tracing 250
PAGENTAT 1433
PAGENTOC 1453
PARMSGROUP object statements 587
PARMSGROUP statement 656
PARMSMAP statement 656
PASSIVEDATACONN statement 823
PASSIVEDATAPORTS statement 824
PASSIVEIGNOREADDR statement 824
PASSPHRASE statement 825
PassTicket server configuration file, processing 687
PASSWORDPHRASE statements 613
PC Network LCS LINK statement 69
PEPInstance statement 999
PKTTRACE statement 250
Policy Agent

as a started task 1209
AT-TLS policy statements 1003
AutoMonitorApps statement 950
AutoMonitorParms statement 954
ClientConnection statement 955
Codepage statement 956
CommonIDSConfig statement 957
CommonIPSecConfig statement 958
CommonRoutingConfig statement 959
CommonTTLSConfig statement 960
configuration file statements summary 945
configuration general file statements summary 943
DynamicConfigPolicyLoad statement 961
IDS policy statements 1043
IDSAction statement 1043
IDSAttackCondition statement 1046
IDSConfig statement 967
IDSExclusion statement 1055
IDSReportSet statement 1057
IDSRule statement 1060
IDSScanEventCondition statement 1063
IDSScanExclusion statement 1065
IDSScanGlobalCondition statement 1067
IDSTRCondition statement 1068
IpAddr statement 1191
IpAddrGroup statement 1192
IpAddrSet statement 1193
IpDataOffer statement 1072
IpDynVpnAction statement 1077
IpFilterGroup statement 1083
IpFilterPolicy statement 1084
IpFilterRule statement 1087
IpGenericFilterAction statement 1091
IpLocalStartAction statement 1093
IpManVpnAction statement 1098
IpOptionGroup statement 1195
IpOptionRange statement 1195
IpProtocolGroup statement 1196
IpProtocolRange statement 1197
IPSec policy statements 1071
IPSecConfig statement 969
IpService statement 1106
IpServiceGroup statement 1111
IpTimeCondition statement 1198
Ipv6NextHdrGroup statement 1200

1522 z/OS V2R1.0 Communications Server: IP Configuration Reference

Policy Agent (continued)
Ipv6NextHdrRange statement 1200
KeyExchangeAction statement 1111
KeyExchangeGroup statement 1119
KeyExchangeOffer statement 1120
KeyExchangePolicy statement 1126
KeyExchangeRule statement 1131
LocalDynVpnGroup statement 1133
LocalDynVpnPolicy statement 1134
LocalDynVpnRule statement 1135
LocalSecurityEndpoint statement 1138
LogLevel statement 970
PAGENT.CONF 1206
Policy Agent (policy configuration file) 931
Policy-based routing (Routing) statements 1151
PolicyAction statement 1168
PolicyAction, mapping to LDAP 1175
PolicyPerfMonitorForSDR statement 971
PolicyPerformanceCollection statement 974
PolicyRule statement 1176
PolicyServer statement 977
PortGroup statement 1201
PortRange statement 1202
QOSConfig statement 981
ReadFromDirectory statement 981
RemoteIdentity statement 1144
RemoteSecurityEndpoint statement 1146
Reusable policy statements 1191
RouteTable statement 1152
RoutingAction statement 1163
RoutingConfig statement 987
RoutingRule statement 1164
search order 1206
ServerConnection statement 988
ServiceCategories statement 1183
ServicePolicyRules statement 1187
ServicesConnection statement 993
SetSubnetPrioTosMask statement 996
starting from the z/OS shell 1206
TcpImage and PEPInstance statements 999
TrafficDescriptor statement 1203
TrafficDescriptorGroup statement 1205
TTLSCipherParms statement 1004
TTLSConfig statement 1001
TTLSConnectionAction statement 1009
TTLSConnectionAdvancedParms statement 1012
TTLSEnvironmentAction statement 1017
TTLSEnvironmentAdvancedParms statement 1020
TTLSGroupAction statement 1028
TTLSGroupAdvancedParms statement 1030
TTLSGskAdvancedParms statement 1032
TTLSGskLdapParms statement 1033
TTLSKeyringParms statement 1035
TTLSRule statement 1036
TTLSSignatureParms statement 1041

Policy Agent environment variables 1212
policy configuration file 931
Policy statements 1151, 1191
PolicyAction statement 1168, 1175
PolicyAction, mapping to LDAP 1175
PolicyPerfMonitorForSDR statement 971
PolicyPerformanceCollection statement 974
PolicyRule statement 1176
PolicyRule, mapping to LDAP 1181
PolicyServer statement 977
PORT and SECUREPORT statement 614

port assignments
/etc/services z/OS UNIX file 350
overview 348
PROFILE.TCPIP data set 348

PORT keyword 690
PORT statement 657

SMTP 1351
TCPIP address space 257

port_list statement 410
PORTCOMMAND statement 827
PORTCOMMANDIPADDR statement 828
PORTCOMMANDPORT statement 828
PortGroup statement 1201
PORTMAP

cataloged procedure (OPORTRPC) 1309
PORTOFENTRY4 statement 829
PortRange statement 1202
PORTRANGE statement 266
POSTMASTER statement 1352
prerequisite information xxx
PRIMARY statement 830
PRIMARYINTERFACE statement 270
print server, remote 1291
printing, remote (LPD) 1291
priority codes, syslogd 921
procedures, TCP/IP 905

CSSMTP 1368
DMD 471
FTP (FTPD) 697
IKE 439
LLBD 1314
LU62PROC 555
NCPROUTE (NCPROUT) 582
NRGLBD 1313
NSS server 459
OMPROUTE 483
OPORTRPC 1309
OSNMPD 1241
RXPROC 1407
SMTPPROC 1315
SNALINK LU6.2 555
TCP/IP (TCPIPROC) 343
X.25 NPSI (X25PROC) 563

profile statements, Telnet 587
PROFILE.TCPIP

search order 14
statement syntax 15

PROFILE.TCPIP port assignments 348
PROFILEINACTIVE statement 615
PROGRESW statement 831
protocol

assignments 347
names 347
numbers 347

PRTDEFAULTAPPL statement 657
PRTGROUP or SPRTGROUP statement 658
PRTINACTIVE statement 616
PRTMAP statement 660
pSeries DEVICE and LINK statements 55
purging the ARP cache 302
PW.SRC

search order 1249
statement syntax 1248

Index 1523

Q
QDIO Ethernet, LINK statement 77
QOSConfig statement 981
QUOTESOVERRIDE statement 831

R
RACF setup for DCAS, RACF 695
RANGE statement 502
RCPT 1353
RCPTREPLY452 statement 1353
RCPTRESPONSEDELAY statement 1353
RDW statement 832
ReadFromDirectory statement 981
RECFM statement 833
Record Descriptor Words (RDWs) 832
recovery from device failures 48
REFRESHMSG10 statement 616
registration, automated domain name 421
Remote Execution server

cataloged procedure 1407
parameters 1409
RXUEXIT user exit sample 1411
z/OS 1413

remote printing (LPD) 1291
RemoteIdentity statement 1144
REMOTEPORT statement 1354
RemoteSecurityEndpoint statement 1146
REMOVEINBEOF statement 835
REPLY226 statement 835
REPLYSECURITYLEVEL statement 836
REPORT statement 1381
requirements for logon-interpret routines 677
resolver

; and # statements 368
CACHE NOCACHE statement 358
CACHESIZE statement 359
COMMONSEARCH statement 360
DEFAULTIPNODES statement 360
DEFAULTTCPIPDATA statement 361
GLOBALIPNODES statement 362
GLOBALTCPIPDATA statement 363
MAXTTL statement 365
setup statement information 356
setup statements 355
syntax conventions 356
UNRESPONSIVETHRESHOLD statement 366

RESOLVERRETRYINT statement 1355
RESOLVERTIMEOUT statement 387
RESOLVERUDPRETRIES statement 389
RESOLVERUSAGE statement 1355
RESOLVEVIA statement 390, 391
RESTGET statement 837
RESTPUT statement 838
RESTRICT statement 1356
RESTRICTAPPL statement 661
RETPD statement 838
retransmit parameters 32, 113, 501, 516, 543, 547, 1161
retransmit parameters, IPv6 536
RETRYAGE statement 1357
RETRYINT statement 1358
RetryLimit statement 1382
REWRITE822HEADER statement 1358
REXECD, z/OS UNIX System Services 1413
RFC (request for comments) 1465

accessing online xxxii

RIP
ACCEPT_RIP_ROUTE statement 506
AS boundary routing capability 489
BSDROUTINGPARMS statement 36
common configuration statements for RIP and OSPF 538
configuration statements 506
DEFAULT_ROUTE statement 539
FILTER statement 507
GLOBAL_OPTIONS statement 544
IGNORE_RIP_NEIGHBOR statement 507
INTERFACE statement 541
IPv6_ACCEPT_RIP_ROUTE statement 529
IPv6_DEFAULT_ROUTE statement 545
IPv6_FILTER statement 530
IPv6_IGNORE_RIP_NEIGHBOR statement 530
IPv6_INTERFACE statement statement 546
IPv6_ORIGINATE_RIP_DEFAULT statement 531
IPv6_RIP_INTERFACE statement 532
IPv6_RIP_SEND_ONLY statement 538
ORIGINATE_RIP_DEFAULT statement 508
RIP_INTERFACE statement 509
ROUTESA_CONFIG statement 539
SEND_ONLY statement 517

RIP RECEIVE CONTROL statement 585
RIP_INTERFACE statement 509
RIP_SUPPLY_CONTROL statement 584
RIP2_AUTHENTICATION_KEY statement 585
RouterID statement 503
ROUTESA_CONFIG statement 539
RouteTable statement 1152
Routing Information Protocol statements, also see RIP 506
routing table 109
RoutingAction statement 1163
RoutingConfig statement 987
RoutingRule statement 1164
RSHD command (orshd) environment variables 1415
RSHD, z/OS UNIX System Services 1414
RSVP

agent 1219
configuration file 1219
Interface statement 1220
LogLevel statement 1219
RSVP statement 1221
RSVPD.CONF search order 1222
starting as a started task 1223
starting from the z/OS shell 1223
TcpImage statement 1220

RSVP statement 1221
RSVPD.CONF, search order 1222
rules for client identifier specification 639
rules for host name specification 639
runtime tracing 227
RXPROC 1407
RXUEXIT user exit sample 1411

S
SACONFIG statement 271
SAFKEYRING keyword 691
SBCS

ASCII and EBCDIC code points 1424
ASCII-to-EBCDIC table 1421
binary table 1430
country or region tables 1422
customizing translation tables 1420
EBCDIC-to-ASCII table 1421
French Telnet client 1430

1524 z/OS V2R1.0 Communications Server: IP Configuration Reference

SBCS (continued)
IBM PC Interpretations 1424
ISO-8 1424
Korean KSC5601 1431
syntax rules for translation tables 1421
translation table hierarchy 1418
translation table members for Telnet 3270 DBCS transform

support 1423
translation table members for Telnet client 1422
translation tables 1418

SBDATACONN statement 840, 845
SBSENDEOL statement 841
SBSUB statement 843
SBSUBCHAR statement 844
SBTRANS statement 844
SCANINTERVAL and TIMEMARK statement 617
schema definition files for LDAPv2 1433
SCHINESE 1329
SCHINESE, LOADDBCSTABLES 378
search order

ETC.PROTO 3
ETC.SERVICES 3
FTP.DATA 4, 721
MIBDESC.DATA 1280
MIBS.DATA 1286
OSNMP.CONF 1281
OSNMPD.CONF 5
OSNMPD.DATA 6, 1247
PAGENT.CONF 6, 1206
PROFILE.TCPIP 6, 14
PW.SRC 7, 1249
RSVP agent 1219
RSVPD.CONF 7, 1222
SNMPD.BOOTS 8, 1276
SNMPD.CONF 8, 1250
SNMPTRAP.DEST 8, 1250
TRAPFWD.CONF 9, 1289

SECURE statement 1359
SECURE_CTRLCONN statement 846
SECURE_DATACONN statement 847
SECURE_FTP statement 849, 851
SECURE_LOGIN statement 852
SECURE_MCEHANISM statement 854
SECURE_PASSWORD statement 855
SECURE_PASSWORD_KERBEROS statement 856
SECURE_PBSZ statement 858, 859
SECUREIMPLICITZOS statement 851
Security Access Facility (SAF) 229
security parameters, Telnet 593
security statements, Telnet 661
SEND_ONLY statement 517
SEQUENTIALLU statement 617
SERVAUTH 229, 596
server bind control 348
server exits, SMTP 1319
server statements, FTP

ACCESSERRORMSGS 737
ADMINEMAILADDRESS 738
ANONYMOUS 738
ANONYMOUSFILEACCESS 741
ANONYMOUSFILETYPEJES 742
ANONYMOUSFILETYPESEQ 743
ANONYMOUSFILETYPESQL 743
ANONYMOUSFTPLOGGING 744
ANONYMOUSHFSDIRMODE 745
ANONYMOUSHFSFILEMODE 746
ANONYMOUSHFSINFO 747

server statements, FTP (continued)
ANONYMOUSLEVEL 748
ANONYMOUSLOGINMSG 750
ANONYMOUSMVSINFO 751
APPLNAME 752
ASATRANS 753
AUTOMOUNT 753
AUTORECALL 754
AUTOTAPEMOUNT 755
BANNER 756
BLKSIZE 756
BUFNO 758
CCXLATE 759
CHKCONFIDENCE 760
CHKPTINT 762
CIPHERSUITE 765
CONDDISP 768
CTRLCONN 769
DATACLASS 770
DATATIMEOUT 774
DB2 774
DB2PLAN 775, 776
DCBDSN 776
DEBUG 778
DEBUGONSITE 780
DEST 780
DIRECTORY 781
DIRECTORYMODE 782
DSWAITTIMEREPLY 785
DUMP 786
DUMPONSITE 787
EMAILADDRCHECK 789
ENCODING 790
EXTENSIONS 792
FIFOIOTIME 794
FIFOOPENTIME 795
FILETYPE 796
FTPKEEPALIVE 797
FTPLOGGING 797
HFSINFO 799
INACTIVE 800
ISPFSTATS 802
JESENTRYLIMIT 802
JESGETBYDSN 803
JESINTERFACELEVEL 804
JESLRECL 806
JESPUTGETTO 807
JESRECFM 808
KEYRING 808
LISTLEVEL 809
LISTSUBDIR 810
LOGINMSG 813
LRECL 813
MBDATACONN 815
MBREQUIRELASTEOL 816
MBSENDEOL 817
MGMTCLASS 818
MIGRATEVOL 819
MVSINFO 820
MVSURLKEY 820
NONSWAPD 822
PASSIVEDATACONN 823
PASSIVEDATAPORTS 824
PASSIVEIGNOREADDR 824
PASSPHRASE 825
PDSTYPE 826
PORTCOMMAND 827

Index 1525

server statements, FTP (continued)
PORTCOMMANDIPADDR 828
PORTCOMMANDPORT 828
PORTOFENTRY4 829
PRIMARY 830
QUOTESOVERRIDE 831
RDW 832
RECFM 833
REMOVEINBEOF 835
REPLY226 835
REPLYSECURITYLEVEL 836
RETPD 838
SBDATACONN 840
SBSENDEOL 841
SBSUB 843
SBSUBCHAR 844
SECONDARY 845
SECURE_CTRLCONN 846
SECURE_DATACONN 847
SECURE_FTP 849, 851
SECURE_HOSTNAME 851
SECURE_LOGIN 852
SECURE_PASSWORD 855
SECURE_PASSWORD_KERBEROS 856
SECURE_PBSZ 858
SMF 860
SMFAPPE 862
SMFDCFG 863
SMFDEL 864
SMFEXIT 865
SMFJES 866
SMFLOGN 867
SMFREN 868
SMFRETR 869
SMFSQL 870
SMFSTOR 871
SOCKSCONFIGFILE 872
SPACETYPE 873
SPREAD 874
SQLCOL 874
SSLV3 875
STARTDIRECTORY 876
STORCLASS 877
SUPPRESSIGNOREWARNINGS 877
TAPEREADSTREAM 878
TLSMECHANISM 879
TLSPORT 880
TLSRFCLEVEL 880
TLSTIMEOUT 882
TRACE 882
TRACECAPI 883
TRAILINGBLANKS 883
TRUNCATE 884
UCOUNT 885
UCSHOSTCS 886
UCSSUB 886
UCSTRUNC 887
UMASK 887
UNICODEFILESYSTEMBOM 888
UNITNAME 890
UNIXFILETYPE 891
VCOUNT 892
VERIFYUSER 893
VOLUME 895
WRAPRECORD 896
WRTAPEFASTIO 896
XLATE 897

server_group statement 434
ServerConnection statement 988
SERVERTYPE keyword 691
SERVICE statement 1297
ServiceCategories statement 1183
ServicePolicyRules statement 1187
ServicesConnection statement 993
SetSubnetPrioTosMask statement 996
SGA statements 618
SHAREACB statements 618
shortcut keys 1489
SIMCLIENTLU statement 619
SINGLEATTN statements 619
site table 383
SJISKANJI 1329
SJISKANJI, LOADDBCSTABLES 378
SLAPM2 subagent

as a started task 1214
starting from z/OS shell 1212

SMF logging 274
SMF statement 860
SMF User Exit, FTP 710
SMF119 statement 1383
SMFAPPE statement 862
SMFCONFIG statement 274
SMFDCFG statement 863
SMFDEL statement 864
SMFEXIT statement 865
SMFINIT statement 620
SMFJES statement 866
SMFLOGN statement 867
SMFPARMS statement 281
SMFPROFILE statements 621
SMFREN statement 868
SMFRETR statement 869
SMFSQL statement 870
SMFSTOR statement 871
SMFTERM statement 620
SMS considerations

BLKSIZE statement 756
DATACLASS statement 770
DCBDSN statement 776
DIRECTORY statement 781
LRECLstatement 813
MGMTCLASS statement 818
PRIMARY statement 830
RECFM statement 833
REMOVEINBEOF statement 835
RETPD statement 838
SECONDARY statement 845
SPACETYPE statement 873
STORCLASS statement 877
UNITNAME statement 890
VCOUNT statement 892
VERIFYUSER statement 893
VOLUME statement 895

SMSGAUTHLIST statement 1360
SMTP

ALTNJEDOMAIN statement 1325
ALTTCPHOSTNAME statement 1326
ATSIGN statement 1326
BADSPOOLFILEID statement 1327
cataloged procedure 1315
CHECKSPOOLSIZE statement 1327
configuration statements, summary 1316
CSSMTP 1365
CSSMTP sample started procedure 1368

1526 z/OS V2R1.0 Communications Server: IP Configuration Reference

SMTP (continued)
DBCS statement 1328
DEBUG statement 1330
DELETEBADSPOOLFILE statement 1330
DISALLOWCMDE statement 1331
exit action codes and values 1324
EXITDIRECTION statement 1332
FINISHOPEN statement 1333
GATEWAY statement 1333
general syntax rules for CSSMTP 1365
INACTIVE statement 1335
INBOUNDOPENLIMIT statement 1335
IPMAILERADDRESS statement 1336
IPMAILERNAME statement 1337
Japanese SBCS (CP 1041) and DBCS 1431
Korean KSC5601 SBCS and DBCS 1431
LISTENONADDRESS statement 1338
LOCALCLASS statement 1339
LOCALFORMAT statement 1339
LOG statement 1340
MAILER statement 1340
MAILFILEDSPREFIX statement 1342
MAILFILEUNIT statement 1343
MAILFILEVOLUME statement 1343
MAXMAILBYTES statement 1344
MAXMSGSENT statement 1345
NJECLASS statement 1346
NJEDOMAIN statement 1346
NJEFORMAT statement 1347
NJENODENAME statement 1348
NOLOG statement 1349
NOSOURCEROUTE statement 1349
OUTBOUNDOPENLIMIT statement 1351
PORT statement 1351
POSTMASTER statement 1352
RCPTREPLY452 statement 1353
RCPTRESPONSEDELAY statement 1353
REMOTEPORT statement 1354
RESOLVERRETRYINT statement 1355
RESOLVERUSAGE statement 1355
RESTRICT statement 1356
RETRYAGE statement 1357
RETRYINT statement 1358
REWRITE822HEADER statement 1358
SECURE statement 1359
server exit input parameter list 1321
server exits 1319
SMSGAUTHLIST statement 1360
SPOOLPOLLINTERVAL statement 1361
starting CSSMTP 1367
statements 1325
STOPONRENF statement 1361
TEMPERRORRETRIES statement 1362
TIMEZONE statement 1363
translation considerations 1418
user exits settings 1321
WARNINGAGE statement 1364

SMTPPROC 1315
SNA LU 6.2

DEVICE and LINK statements 98
links 98

SNAEXT statement 622
SNALINK

parameters 553
SNALINK LU6.2

BUFFERS statement 558
cataloged procedure 555

SNALINK LU6.2 (continued)
configuration data set (LU62CFG) 556
configuration statements 557
configuration statements, summary 557
DD statements 555
DEST statement 559
LINK statement 560
statement ordering 558
statement syntax 557
syntax rules 557
TRACE statement 561
VTAM statement 561

SNMP
agent (OSNMPD) 1241
command 1281
COMMUNITY entry 1267
DEFAULT_SECURITY entry 1270
management 265, 271
MIBDESC.DATA 1280
multiple SNMPv3 agents in same MVS image 1276
NOTIFY entry 1262
NOTIFY_FILTER entry 1263
NOTIFY_FILTER_PROFILE entry 1263
osnmp 1281
OSNMP.CONF search order 1281
OSNMP.CONF statement syntax 1281
OSNMPD 1241
OSNMPD parameters 1243
OSNMPD procedure 1241
OSNMPD, starting from the z/OS shell 1243
OSNMPD.DATA example 1248
OSNMPD.DATA search order 1247
OSNMPD.DATA statement syntax 1247
parameter data set (SNMPARMS) 1278, 1279
PW.SRC search order 1249
PW.SRC statement syntax 1248
sample 1241
see also OSNMPD 1241
SNMP_COMMUNITY entry 1268
SNMPARMS sample 1278
SNMPD.BOOTS search order 1276
SNMPD.BOOTS statement syntax 1275
SNMPD.CONF entries 1255
SNMPD.CONF sample 1272
SNMPD.CONF search order 1250
SNMPD.CONF syntax 1250
SNMPQE parameters 1277
SNMPTRAP.DEST search order 1250
SNMPTRAP.DEST statement syntax 1249
starting OSNMPD from MVS 1241
subagent 229
TARGET_ADDRESS entry 1264
TARGET_PARAMETERS entry 1266
TRAPFWD daemon 1286
USM_USER entry 1256
VACM_ACCESS entry 1260
VACM_GROUP entry 1258
VACM_VIEW entry 1259

SNMP (Simple Network Management Protocol)
multiple SNMPv3 agents in same MVS image 8
OSNMPD.DATA 6
PW.SRC 7
SNMPTRAP.DEST 8

SNMP_COMMUNITY 1251
SNMP_COMMUNITY entry 1268
SNMPARMS

parameter data sey 1278

Index 1527

SNMPARMS (continued)
parameters 1279

SNMPD.BOOTS
search order 1276
statement syntax 1275

SNMPD.CONF
COMMUNITY entry 1267
DEFAULT_SECURITY entry 1270
entries, coding 1255
NOTIFY entry 1262
NOTIFY_FILTER entry 1263
NOTIFY_FILTER_PROFILE entry 1263
sample 1272
search order 1250
SNMP_COMMUNITY entry 1268
statement syntax 1250
TARGET_ADDRESS entry 1264
TARGET_PARAMETERS entry 1266
USM_USER entry 1256
VACM_ACCESS entry 1260
VACM_GROUP entry 1258
VACM_VIEW entry 1259

SNMPQE
MIBDESC.DATA 1280
parameters 1277
SNMPARMS parameters 1279
SNMPARMS sample 1278

SNMPTRAP.DEST
search order 1250
statement syntax 1249

SNTPD daemon
starting as a procedure 1406
starting from z/OS 1405

SOCKD statement 900
SOCKDEBUG statement 392
SOCKET.H 282
SOCKNOTESTSTOR statement 393
SOCKS configuration statements

DIRECT statement 899
SOCKD statement 900
SOCKSCONFIGFILE 898

SOCKS.CNF
DIRECT statement 899
SOCKD statement 900
SOCKS configuration statements 898

SOCKSCONFIGFILE
DIRECT statement 899
SOCKD statement 900
statements 898

SOCKSCONFIGFILE statement 872
SOCKTESTSTOR statement 393
softcopy information xxx
SOMAXCONN statement 282
SORTLIST statement 394
SP2 DEVICE and LINK statements 55
SPACETYPE statement 873
SPOOLPOLLINTERVAL statement 1361
SPREAD statement 874
SQLCOL statement 874
SRCIP statement 282
SSL, Telnet 622, 623
SSLTIMEOUT statement 622
SSLV2 statement 623
SSLV3 statement 623, 875
START statement 292
STARTDIRECTORY statement 876
STASHFILE keyword 693

statements
; 398
398
ACCEPT_RIP_ROUTE 506
ACCESSERRORMSGS 737
ADMINEMAILADDRESS 738
advisor_id 417
agent_connection_port 406
agent_id_list 406
ALLOWAPPL 640
ALTLINK 566
ALTNJEDOMAIN 1325
ALTTCPHOSTNAME 1326
ALWAYSWTO 373
ANONYMOUS 738
ANONYMOUSFILEACCESS 741
ANONYMOUSFILETYPEJES 742
ANONYMOUSFILETYPESEQ 743
ANONYMOUSFILETYPESQL 743
ANONYMOUSFTPLOGGING 744
ANONYMOUSHFSDIRMODE 745
ANONYMOUSHFSFILEMODE 746
ANONYMOUSHFSINFO 747
ANONYMOUSLEVEL 748
ANONYMOUSLOGINMSG 750
ANONYMOUSMVSINFO 751
APPLNAME 752
ArchiveCheckInterval 916
ArchiveThreshold 916
ArchiveTimeOfDay 917
AREA statement 488
arm_element_suffix 426
ARPAGE 16
AS_BOUNDARY_ROUTING statement 489
ASATRANS 753
AT-TLS policy statements 1003
ATMARPSV 17
ATMLIS 19
ATMPVC 22
ATSIGN 1326
AUTOLOG 23
AutoMonitorApps statement 950
AutoMonitorParms statement 954
AUTOMOUNT 753
AUTORECALL 754
AUTOTAPEMOUNT 755
BadSpoolDisp 1372
BADSPOOLFILEID 1327
BANNER 756
BeginArchiveParms 917
BEGINROUTES 28
BEGINVTAM, general rules 636
BINARYLINEMODE statements 594
BLKSIZE 756
BSDROUTINGPARMS 36
BUFFERS 558, 567
BUFNO 758
CACHE NOCACHE statement 358
CACHESIZE statement 359
CCONNTIME 758
CCTRANS 758
CCXLATE 759
CHECKCLIENTCONN statements 594
CHECKSPOOLSIZE 1327
CHKCONFIDENCE 760
ChkPointSizeLimit 1373
CHKPTFLUSH 761

1528 z/OS V2R1.0 Communications Server: IP Configuration Reference

statements (continued)
CHKPTINT 762
CHKPTPREFIX 764
CIPHERSUITE 765
CLIENTAUTH statement 595
ClientConnection statement 955
CLIENTERRCODES 767
CLIENTEXIT 767
Codepage statement 956
CODEPAGE statement 596
common configuration statements for RIP and OSPF 538
CommonIDSConfig statement 957
CommonIPSecConfig statement 958
CommonRoutingConfig statement 959
COMMONSEARCH statement 360
CommonTTLSConfig statement 960
COMPARISON statement 491
CONDDISP 768
CONNTYPE statement 597
CRLLDAPSERVER statement 598
CTRLCONN 769
DATACLASS 770
DATACTTIME 772
DATAKEEPALIVE 773
DATASETPREFIX 374
DATATIMEOUT 774
DB2 774
DB2PLAN 775
DBCS 1328
DBCSTRACE statements 599
DBCSTRANSFORM statement 599
DBSUB 776
DCBDSN 776
DCONNTIME 777
DEBUG 778, 1295, 1330
DEBUG statement 600
debug_level 407, 426
DEBUGONSITE 780
DEFADDRTABLE 41
DEFAULT_ROUTE 539
DEFAULTAPPL 641
DEFAULTIPNODES statement 360
DEFAULTLUS or SDEFAULTLUS 642
DEFAULTLUSSPEC or SDEFAULTLUSSPEC 643
DEFAULTPRT or SDEFAULTPRT 644
DEFAULTPRTSPEC or SDEFAULTPRTSPEC 645
DEFAULTTCPIPDATA statement 361
DELETE 43
DELETEBADSPOOLFILE 1330
DEMAND_CIRCUIT statement 491
DEST 559, 568, 780
DESTIPGROUP 645
DEVICE and LINK 47
DEVICE and LINK, 3745/46 Channel DLC 105
DEVICE and LINK, ATM devices 52
DEVICE and LINK, CLAW devices 55
DEVICE and LINK, CTC devices 60
DEVICE and LINK, HYPERchannel A220 devices 63
DEVICE and LINK, LAN Channel Station and OSA 66
DEVICE and LINK, MPCIPA devices 74
DEVICE and LINK, MPCIPA HiperSockets devices 85
DEVICE and LINK, MPCOSA devices 89
DEVICE and LINK, MPCPTP devices 92
DEVICE and LINK, overview 47
DEVICE and LINK, SNA LU 6.2 links 98
DEVICE and LINK, SNA LU0 links 95
DEVICE and LINK, Virtual devices 101

statements (continued)
DEVICE and LINK, X.25 NPSI connections 103
DIRECT 899
DIRECTORY 781
DIRECTORYMODE 782
DISABLESGA statements 602
DISALLOWCMD 1331
DMConfig statement 474
DmStackConfig statement 476
dns 428
DOMAIN 374
DOMAINORIGIN 374
DROPASSOCPRINTER statement 602
DSNTYPE 783
DSWAITTIME 784
DSWAITTIMEREPLY 785
DUMP 786
DUMPONSITE 787
DynamicConfigPolicyLoad statement 961
EATTR 788
EMAILADDRCHECK 789
ENCODING 790
ENCRYPTION statement 602
EPSV4 791
EXITDIRECTION 1332
EXPRESSLOGON statement 603
ExtendedRetry 1373
EXTENSIONS 792
ExtWrtName 1375
FAST 569
FIFOIOTIME 794
FIFOOPENTIME 795
FILETYPE 796
FILTER 507
FINISHOPEN 1333
FORMAT statement 604
FTPKEEPALIVE 797
FTPLOGGING 797
FULLDATATRACE statement 605
FWFRIENDLY 799
GATEWAY 109, 576, 1333
GATEWAY_PDS 585
GLOBAL_OPTIONS 544
GLOBALCONFIG 117
GLOBALIPNODES statement 362
GLOBALTCPIPDATA statement 363
gwm 430
Header 1376
HFSINFO 799
HNGROUP 646
HOME 136
host_connection 418
host_group 431
HOSTNAME 376
IDS policy statements 1043
IDSAction statement 1043
IDSAttackCondition statement 1046
IDSConfig statement 967
IDSExclusion statement 1055
IDSReportSet statement 1057
IDSRule statement 1060
IDSScanEventCondition statement 1063
IDSScanExclusion statement 1065
IDSScanGlobalCondition statement 1067
IDSTRCondition statement 1068
IGNORE_RIP_NEIGHBOR 507
IkeConfig statement 443

Index 1529

statements (continued)
INACTIVE 800, 1335
INACTIVE statement 605
INACTTIME 801
INBOUNDOPENLIMIT 1335
INCLUDE 141, 588, 606
Interface 1220
INTERFACE 141, 541
INTERFACE, Virtual interface 160, 188
INTERPTCP 647
IpAddr statement 1191
IpAddrGroup statement 1192
ipaddrlist 433
IpAddrSet statement 1193
IPAQENET interfaces 145
IPAQENET6 interfaces 161
IPAQIDIO interfaces 157
IPAQIDIO6 interfaces 177
IPCONFIG 190
IPCONFIG6 206
IpDataOffer statement 1072
IpDynVpnAction statement 1077
IpFilterGroup statement 1083
IpFilterPolicy statement 1084
IpFilterRule statement 1087
IpGenericFilterAction statement 1091
IPGROUP 648
IpLocalStartAction statement 1093
IPMAILERADDRESS 1336
IPMAILERNAME 1337
IpManVpnAction statement 1098
IpOptionGroup statement 1195
IpOptionRange statement 1195
IpProtocolGroup statement 1196
IpProtocolRange statement 1197
IPSEC 218
IPSec policy statements 1071
IPSecConfig statement 969
IPSecDisciplineConfig statement 464
IpService statement 1106
IpServiceGroup statement 1111
IpTimeCondition statement 1198
IPv6 OSPF configuration 518
IPv6 RIP configuration 529
IPv6_ACCEPT_RIP_ROUTE 529
IPV6_AREA statement 518
IPv6_AS_BOUNDARY_ROUTING statement 519
IPv6_DEFAULT_ROUTE 545
IPv6_FILTER 530
IPv6_IGNORE_RIP_NEIGHBOR 530
IPv6_INTERFACE statement 546
IPv6_ORIGINATE_RIP_DEFAULT 531
IPv6_OSPF statement 521
IPv6_OSPF_INTERFACE statement 522
IPv6_RANGE statement 527
IPv6_RIP_INTERFACE 532
IPv6_RIP_SEND_ONLY 538
IPv6_VIRTUAL_LINK statement 528
Ipv6NextHdrGrouip statement 1200
Ipv6NextHdrRange statement 1200
ISPFSTATS 802
ITRACE 227
JESENTRYLIMIT 802
JESGETBYDSN 803
JESINTERFACELEVEL 804
JESJobSize 1377
JESLRECL 806

statements (continued)
JESMsgSize 1378
JESPUTGETTO 807
JESRECFM 808
JESSyntaxErrLimit 1378
JOBPACING 1296
KEEPINACTIVE statement 606
KEEPLU statement 607
key 434
KeyExchangeAction statement 1111
KeyExchangeGroup statement 1119
KeyExchangeOffer statement 1120
KeyExchangePolicy statement 1126
KeyExchangeRule statement 1131
KEYRING 808
KEYRING statement 607
lb_connection_v4 408
lb_connection_v6 408
lb_id_list 409
LINEMODEAPPL 649
LINK 560, 569
LINK statement for Ethernet Network LCS 68
LINK statement for FDDI LCS 66
LINK statement for Token-Ring Network or PC Network

LCS 69
LINKGROUP 650
LISTENONADDRESS 1338
LISTLEVEL 809
LISTSUBDIR 810
LOADDBCSTABLES 377
LOCALCLASS 1339
LocalDynVpnGroup statement 1133
LocalDynVpnPolicy statement 1134
LocalDynVpnRule statement 1135
LOCALFORMAT 1339
LocalSecurityEndpoint statement 1138
LOG 1340
LOGCLIENTERR 812
LOGINMSG 813
LogLevel 1378
LogLevel statement 970, 1219
LOOKUP 378
LOOPBACK6 interfaces 182
LRECL 813
LUGROUP or SLUGROUP 651
LUMAP 652
LUSESSIONPEND statement 609
MailAdministrator 1379
MAILER 1340
MAILFILEDSPREFIX 1342
MAILFILEUNIT 1343
MAILFILEVOLUME 1343
MAXMAILBYTES 1344
MAXMSGSENT 1345
MAXRECEIVE statement 609
MAXREQSESS statement 610
MAXRUCHAIN statement 610
MAXTCPSENDQ statement 611
MAXTTL statement 365
MAXVTAMSENDQ statement 611
MBDATACONN 815
MBREQUIRELASTEOL 816
MBSENDEOL 817
MESSAGECASE 379
MGMTCLASS 818
MIGRATEVOL 819
MONITORGROUP 654

1530 z/OS V2R1.0 Communications Server: IP Configuration Reference

statements (continued)
MONITORMAP 655
MPCPTP6 interfaces 183
MSG07 statement 612
MVSINFO 820
MVSURLKEY 820
MYOPENTIME 821
NACUSERID statement 612
NAMESERVER 380
NCPROUTE gateways 575
NETACCESS 229
NETMONITOR 234
NETRCLEVEL 821
NJECLASS 1346
NJEDOMAIN 1346
NJEFORMAT 1347
NJENODENAME 1348
NOCACHE 381
NOLOG 1349
NONSWAPD 822
NOSOURCEROUTE 1349
NOTKO statements 627, 628
NSINTERADDR 381
NSPORTADDR 384
NSS Config statement 467
NssStackConfig statement 454
OBEY 1296
OLDSOLICITOR statements 613
Options 1380
OPTIONS 385, 570
order restrictions 15
ORIGINATE_RIP_DEFAULT 508
OSAENTA 241
OSPF statement 492
OSPF_INTERFACE statement 493
OUTBOUNDOPENLIMIT 1351
PARMSGROUP 656
PARMSMAP 656
PASSIVEDATACONN 823
PASSIVEDATAPORTS 824
PASSIVEIGNOREADDR 824
PASSPHRASE 825
PASSWORDPHRASE statements 613
PDSTYPE 826
PKTTRACE 250
Policy-based routing (Routing) statements 1151
PolicyAction statement 1168
PolicyPerfMonitorForSDR statement 971
PolicyPerformanceCollection statement 974
PolicyRule statement 1176
PolicyServer statement 977
PORT 257, 657, 1351
PORT and SECUREPORT statement 614
port_list 410
PORTCOMMAND 827
PORTCOMMANDIPADDR 828
PORTCOMMANDPORT 828
PortGroup statement 1201
PORTOFENTRY4 829
PORTRANGE 266
PortRange statement 1202
POSTMASTER 1352
PRIMARY 830
PRIMARYINTERFACE 270
PROFILEINACTIVE statement 615
PROGRESS 831
PRTDEFAULTAPPL 657

statements (continued)
PRTGROUP or SPRTGROUP 658
PRTINACTIVE statement 616
PRTMAP 660
QOSConfig statement 981
QUOTESOVERRIDE 831
RANGE statement 502
RCPTREPLY452 1353
RCPTRESPONSEDELAY 1353
RDW 832
ReadFromDirectory statement 981
RECFM 833
REFRESHMSG10 statement 616
RemoteIdentity statement 1144
REMOTEPORT 1354
RemoteSecurityEndpoint statement 1146
REMOVEINBEOF 835
REPLY226 835
REPLYSECURITYLEVEL 836
REPORT 1381
resolver setup 355
RESOLVERRETRYINT 1355
RESOLVERTIMEOUT 387
RESOLVERUDPRETRIES 389
RESOLVERUSAGE 1355
RESOLVEVIA 390
RESTGET 837
RESTPUT 838
RESTRICT 1356
RESTRICTAPPL 661
RETPD 838
RETRYAGE 1357
RETRYINT 1358
RetryLimit 1382
Reusable policy statements 1191
REWRITE822HEADER 1358
RIP configuration 506
RIP RECEIVE CONTROL 585
RIP_INTERFACE 509
RIP_SUPPLY_CONTROL 584
RIP2_AUTHENTICATION_KEY 585
RouterID statement 503
ROUTESA_CONFIG 539
RouteTable statement 1152
RoutingAction statement 1163
RoutingConfig statement 987
RoutingRule statement 1164
RSVP 1221
rules 15
SACONFIG 271
SBDATACONN 840
SBSENDEOL 841
SBSUB 843
SBSUBCHAR 844
SBTRANS 844
SCANINTERVAL and TIMEMARK statement 617
SEARCH 391
SECONDARY 845
SECURE 1359
SECURE_CTRLCONN 846
SECURE_DATACONN 847
SECURE_FTP 849
SECURE_HOSTNAME 851
SECURE_LOGIN 852
SECURE_MCEHANISM 854
SECURE_PASSWORD 855
SECURE_PASSWORD_KERBEROS 856

Index 1531

statements (continued)
SECURE_PBSZ 858
SECUREIMPLICITZOS 851
SEND_ONLY 517
SEQNUMSUPPORT 859
SEQUENTIALLU statement 617
server_group 434
ServerConnection statement 988
SERVICE 1297
ServiceCategories statement 1183
ServicePolicyRules statement 1187
ServicesConnection statement 993
SetSubnetPrioTosMask statement 996
SGA statements 618
SHAREACB statements 618
SIMCLIENTLU statement 619
SINGLEATTN statements 619
SMF 860
SMF119 1383
SMFAPPE 862
SMFCONFIG 274
SMFDCFG 863
SMFDEL 864
SMFEXIT 865
SMFINIT statement 620
SMFJES 866
SMFLOGN 867
SMFPARMS 281
SMFPROFILE statements 621
SMFREN 868
SMFRETR 869
SMFSQL 870
SMFSTOR 871
SMFTERM statement 620
SMSGAUTHLIST 1360
SNAEXT statement 622
SNALINK LU6.2 configuration, summary 557
SNMP_AGENT 585
SNMP_COMMUNITY 585
SOCKD 900
SOCKDEBUG 392
SOCKNOTESTSTOR 393
SOCKSCONFIGFILE 872
SOCKTESTSTOR 393
SOMAXCONN 282
SORTLIST 394
SPACETYPE 873
SPOOLPOLLINTERVAL 1361
SPREAD 874
SQLCOL 874
SRCIP 282
SSLTIMEOUT statement 622
SSLV2 statement 623
SSLV3 875
SSLV3 statement 623
START 292
STARTDIRECTORY 876
STEPLIMIT 1306
STOP 293
STOPONRENF 1361
STORCLASS 877
SUPPRESSIGNOREWARNINGS 877
sysplex_group_name 413, 419
TAPEREADSTREAM 878
TargetServer 1384
TCPCONFIG 294
TcpImage 1220

statements (continued)
TcpImage and PEPInstance statements 999
TCPIP.DATA configuration 369
TCPIPJOBNAME 395
TCPIPJOBNAME statement 624
TCPIPUSERID 396
Telnet mapping statements 635
TELNETDEVICE 624
TEMPERRORRETRIES 1362
TESTMODE statement 626
TIMEMARK statement 626
TIMEOUT 1387
TIMERS 572
TIMEZONE 1363
TKOGENLU statements 627
TKOGENLURECON statements 627
TKOSPECLU statements 628
TKOSPECLURECON statements 628
TLSMECHANISM 879
TLSPORT 880
TLSRFCLEVEL 880
TLSTIMEOUT 882
TN3270E statement 630
TNSACONFIG 631
TRACE 561, 572, 882
TRACE RESOLVER 396
TRACE SOCKET 397
TRACECAPI 883
TrafficDescriptor statement 1203
TrafficDescriptorGroup statement 1205
TRAILINGBLANKS 883
TRANSLATE 301, 1388
TRUNCATE 884
TTLSCipherParms statement 1004
TTLSConfig statement 1001
TTLSConnectionAction statement 1009
TTLSConnectionAdvancedParms statement 1012
TTLSEnvironmentAction statement 1017
TTLSEnvironmentAdvancedParms statement 1020
TTLSGroupAction statement 1028
TTLSGroupAdvancedParms statement 1030
TTLSGskAdvancedParms statement 1032
TTLSGskLdapParms statement 1033
TTLSKeyringParms statement 1035
TTLSRule statement 1036
TTLSSignatureParms statement 1041
UCOUNT 885
UCSHOSTCS 886
UCSSUB 886
UCSTRUNC 887
UDPCONFIG 304
UMASK 887
UNDELIVERABLE 1389
UNICODEFILESYSTEMBOM 888
UNIT 1307
UNITNAME 890
UNIXFILETYPE 891
UNLOCKKEYBOARD statement 632
update_interval 413
USEREXIT 1391
USERGROUP 663
USSTCP 664
uuid 436
VCOUNT 892
VERIFYUSER 893
VIPABACKUP 312
VIPADEFINE 308

1532 z/OS V2R1.0 Communications Server: IP Configuration Reference

statements (continued)
VIPADELETE 315
VIPADISTRIBUTE 316
VIPADYNAMIC 306
VIPARANGE 335
VIPAROUTE 338
VIPASMPARMS 341
VIRTUAL_LINK statement 504
VOLUME 895, 1307
VTAM 561, 574
WARNINGAGE 1364
wlm 414
WRAPRECORD 896
WRTAPEFASTIO 896
X.25 NPSI 565
XCFGROUP statement 633
XLATE 897

statements, modifying
ARPAGE statement 16
ATMARPSV statement 18
ATMLIS statement 21
ATMPVC statement 23
AUTOLOG statement 26
BEGINROUTES statement 34
BSDROUTINGPARMS statement 39
DEFADDRTABLE statement 42
DEVICE and LINK statements 50, 55
DOMAINORIGIN statement 375
GATEWAY statements 115
GLOBALCONFIG statements 133
HOME statements 137
INTERFACE statements 143
IPCONFIG statement 204
IPCONFIG6 statement 217
IPSEC statement 226
ITRACE statement 229
NETACCESS statement 232
NETMONITOR statement 240
NOCACHE statement 381
NSINTERADDR statement 382
NSPORTADDR statement 384
OPTIONS statement 386
OSAENTA statement 248
PKTTRACE statement 255
PORT statement 263
PORTRANGE statement 269
PRIMARYINTERFACE statement 270
RESOLVERTIMEOUT statement 387
RESOLVERUDPRETRIES statement 389
RESOLVEVIA statement 390
SACONFIG statement 274
SEARCH statement 391
SMFCONFIG statement 280
SMFPARMS statement 281
SOMAXCONN statement 282
SORTLIST statement 395
SRCIP statement 291
TCPCONFIG statement 301
TCPIP.DATA 370
TRACE RESOLVER statement 397
TRANSLATE statement 303
UDPCONFIG statement 306
VIPABACKUP statement 315
VIPADEFINE statement 311
VIPADISTRIBUTE statement 333
VIPARANGE statement 338
VIPAROUTE statement 340

statements, modifying (continued)
VIPASMPARMS statement 342

static routes 28
STEPLIMIT statement 1306
STOP statement 293
STOPONRENF statement 1361
STORCLASS statement 877
subnet masks 111, 112
summary of changes xxxv
summary of DEVICE and LINK statements 48
summary of statements in TCPIP.DATA 369
SUPPRESSIGNOREWARNINGS statement 877
syntax

NCPROUTE gateways statements 575
PROFILE.TCPIP 15
resolver syntax conventions 356
TCPIP.DATA conventions 372

syntax diagram, how to read xxvii
syslog

cataloged procedure 909
syslog daemon files 909
syslogd

adding the syslogd browser to the ISPF primary option
menu 929

browser tool 928
configuration statements 915
destinations 922
facilities 920
facility names 919
files used by 909
global configuration statements 916
priority codes 921
providing library access 928
starting from the UNIX shell 911
syntax 911
TSO logon procedure 929
using a CLIST 929

Syslogd
environment variables 914

sysplex distributor 306, 316
sysplex_group_name statement 413, 419
system parameters for clients 355
system_name considerations 370

T
table setup

INTERPRET 674
Telnet USS 665

tape considerations, FTP 755
TAPEREADSTREAM statement 878
TARGET_ADDRESS 1251
TARGET_ADDRESS entry 1264
TARGET_PARAMETERS 1251
TARGET_PARAMETERS entry 1266
TargetServer statement 1384
tasks

(ATMARPSV statement, modifying)
steps 18

(ATMLIS statement, modifying)
steps 21

(ATMPVC statement, modifying)
steps 23

(AUTOLOG statement, modifying)
steps 26

(BEGINROUTES statement, modifying)
steps 34

Index 1533

tasks (continued)
(BSDROUTINGPARMS statement, modifying)

steps 39
(DELETE statement, modifying)

steps 45
(DOMAINORIGIN, modifying)

steps 375
(GATEWAY statement, modifying)

steps 115
(GLOBALCONFIG statement, modifying)

steps 133
(HOME statement, modifying)

steps 137
(INCLUDE statement, modifying)

steps 141
(INTERFACE statement, modifying)

steps 144
(INTERFACE, modifying)

steps 144
(IPCONFIG, modifying)

steps 204
(IPCONFIG6, modifying)

steps 217
(IPSEC, modifying)

steps 226
(ITRACE, modifying)

steps 229
(LINK statements, modifying)

steps 51
(NETACCESS, modifying)

steps 232
(NETMONITOR, modifying)

steps 240
(NOCACHE, modifying)

steps 381
(NSINTERADDR, modifying)

steps 382
(NSPORTADDR, modifying)

steps 384
(OPTIONS, modifying)

steps 386
(OSAENTA, modifying)

steps 248
(PKTTRACE, modifying)

steps 255
(PORT, modifying)

steps 263
(PORTRANGE, modifying)

steps 269
(PRIMARYINTERFACE, modifying)

steps 270
(RACF, setting up for DCAS)

steps 695
(RESOLVERTIMEOUT, modifying)

steps 387
(RESOLVERUDPRETRIES, modifying)

steps 389
(RESOLVEVIA, modifying)

strps 390
(SACONFIG, modifying)

steps 274
(SEARCH, modifying)

steps 391
(SMFCONFIG, modifying)

steps 280
(SMFPARMS, modifying)

steps 281

tasks (continued)
(SOMAXCONN, modifying)

steps 282
(SORTLIST, modifying)

steps 395
(SRCIP, modifying)

steps 291
(START, modifying)

steps 293
(STOP, modifying)

steps 294
(TCPCONFIG, modifying)

steps 301
(TRACE RESOLVER, modifying)

steps 397
(TRANSLATE, modifying)

steps 303
(UDPCONFIG, modifying)

steps 306
calling the exit program

steps for 1319
calling the exit program to interrogate data coming from

the JES spool data set
steps 1396

configuring community-based security
steps 1252

creating a new GLOBALTCPIPDATA data set or file
steps 372

customizing a DBCS translation table
steps for 1427

dynamically changing TCPIP.DATA statements
steps 371

dynamically changing TCPIP.DATA statements using
GLOBALTCPIPDATA

step 372
migrating PW.SRC

steps 1274
migrating SNMP agent for SNMPv3

steps 1254
starting the TFTP server

step for 907
terminating the TFTP server

step for 907
VIPABACKUP statement, modifying

steps 315
VIPADEFINE statement, modifying

steps 311
VIPADISTRIBUTE statement, modifying

steps 333
VIPARANGE statement, modifying

steps 338
VIPAROUTE statement, modifying

steps 340
VIPASMPARMS statement, modifying

steps 342
TCHINESE 1329
TCHINESE, CONVXLAT 1428
TCHINESE, LOADDBCSTABLES 378
TCP/IP

address space configuration statements, summary 11
cataloged procedure 343
cataloged procedure example 344
configuration data sets 1
example of cataloged procedure 344
INTERVAL 801
online information xxxii
protocol specifications 1465

1534 z/OS V2R1.0 Communications Server: IP Configuration Reference

TCP/IP (continued)
TCPIPROC 343

TCP/IP address space
configuration statements summary 11
specifying parameters 343
using output data sets 345

TCP/IP cataloged procedure, example 344
TCP/IP configuration data sets 1
TCP/IP profile

PROFILE.TCPIP 11
Telnet parameter statements 590

TCPCONFIG statement 294
TCPDATA.DATA

sample TCPIP.DATA data set 398
TCPDATA 398

TcpImage statement 999, 1220
TCPIP

; 368
368
CACHE NOCACHE 358
CACHESIZE 359
COMMONSEARCH 360
DEFAULTIPNODES 360
DEFAULTTCPIPDATA 361
GLOBALIPNODES 362
GLOBALTCPIPDATA 363
MAXTTL 365
UNRESPONSIVETHRESHOLD 366

TCPIP keyword 693
TCPIP.DATA

; 398
398
ALWAYSWTO 373
BIG5 377
configuration statements 369
DATASETPREFIX 374
DNS 379
DOMAIN 374
DOMAINORIGIN 374
dynamically changing statements 370
EUCKANJI 377
HANGEUL 377
HOSTNAME 376
JIS78KJ 377
JIS83KJ 377
KSC5601 377
LOADDBCSTABLES 377
LOCAL 379
LOOKUP 378
MESSAGECASE 379
modifying statements 370
NAMESERVER 380
NOCACHE 381
NSINTERADDR 381
NSPORTADDR 384
OPTIONS 385
refreshable statements 371
RESOLVERTIMEOUT 387
RESOLVERUDPRETRIES 389
RESOLVEVIA 390
SCHINESE 378
SEARCH 391
SJISKANJI 378
SOCKDEBUG 392
SOCKNOTESTSTOR 393
SOCKTESTSTOR 393
SORTLIST 394

TCPIP.DATA (continued)
syntax conventions 372
system_name considerations 370
TCHINESE 378
TCPIPJOBNAME 395
TCPIPUSERID 396
TRACE RESOLVER 396
TRACE SOCKET 397

TCPIPJOBNAME statement 395, 624
TCPIPROC

address space parameters, specifying 343
output data sets 345
TCP/IP cataloged procedure 343

TCPIPUSERID statement 396
TCPIPX25 (X25PROC) 563
Technotes xxx
Telnet

3270 DBCS transform mode codefiles 1427
3270 DBCS transform support 1423
ALLOWAPPL statement 640
BEGINVTAM block 587, 635
BEGINVTAM rules 636
Big-5 and Traditional Chinese 1431
BINARYLINEMODE statements 594
CHECKCLIENTCONN statements 594
client identifier specification 639
client identifier types and definitions 638
CLIENTAUTH statement 595
CODEPAGE statement 596
CONNTYPE statement 597
CRLLDAPSERVER statement 598
DBCSTRACE statements 599
DBCSTRANSFORM statement 599
DEBUG statement 600
default table variable substitution 669
DEFAULTAPPL statement 641
DEFAULTLUS or SDEFAULTLUS statement 642
DEFAULTLUSSPEC or SDEFAULTLUSSPEC

statement 643
DEFAULTPRT or SDEFAULTPRT statement 644
DEFAULTPRTSPEC or SDEFAULTPRTSPEC

statement 645
DESTIPGROUP statement 645
device type and logmode table 625
DISABLESGA statements 602
DROPASSOCPRINTER statement 602
ENCRYPTION statement 602
ENDINTAB macroinstruction 679
EXPRESSLOGON statement 603
FORMAT statement 604
FULLDATATRACE statement 605
HNGROUP statement 646
host name specification 639
INACTIVE statement 605
INTAB macroinstruction 674
INTERPRET macroinstruction, rules 674
INTERPRET table setup 674
INTERPTCP statement 647
IPGROUP statement 648
Japanese SBCS and DBCS Codefile 1431
KEEPINACTIVE statement 606
KEEPLU statement 607
KEYRING statement 607
LINEMODEAPPL statement 649
LINKGROUP statement 650
LOGCHAR macroinstruction 675
logon interpret routine parameter list 678

Index 1535

Telnet (continued)
logon-interpret routines, requirements 677
LU exit routines, operation 680
LU exit setup 679
LU name specification, rules 637
LUGROUP or SLUGROUP statement 651
LUMAP statement 652
LUSESSIONPEND statement 609
mapping statements 635
MAXRECEIVE statement 609
MAXREQSESS statement 610
MAXRUCHAIN statement 610
MAXTCPSENDQ statement 611
MAXVTAMSENDQ statement 611
MONITORGROUP statement 654
MONITORMAP statement 655
MSG07 statement 612
NACUSERID statement 612
OLDSOLICITOR statements 613
overview 587
parameter statements, rules 593
parameter statements, TCP/IP profile 590
PARMSGROUP object statements 587
PARMSGROUP statement 656
PARMSMAP statement 656
PASSWORDPHRASE statements 613
PORT and SECUREPORT statement 614
PORT statement 657
profile statements, overview 587
PROFILEINACTIVE statement 615
PRTDEFAULTAPPL statement 657
PRTGROUP or SPRTGROUP statement 658
PRTINACTIVE statement 616
PRTMAP statement 660
REFRESHMSG10 statement 616
RESTRICTAPPL statement 661
rules for parameter statements 593
rules for security statements 593
rules for USS macroinstructions 665
SBCS, French Telnet client 1430
SCANINTERVAL and TIMEMARK statement 617
security parameters, rules 593
SEQUENTIALLU statement 617
SGA statements 618
SHAREACB statements 618
SIMCLIENTLU statement 619
SINGLEATTN statements 619
SMFINIT statement 620
SMFPROFILE statements 621
SMFTERM statement 620
SNAEXT statement 622
SSL 622, 623
SSLTIMEOUT statement 622
SSLV2 statement 623
SSLV3 statement 623
table setup 665
TCPIPJOBNAME statement 624
TELNETDEVICE statement 624
TELNETGLOBALS statements (block) 587
TELNETPARMS statements (block) 587
TESTMODE statement 626
TIMEMARK statement 626
TKOGENLU, TKOGENLURECON, and NOTKO

statements 627
TKOSPECLU, TKOSPECLURECON, and NOTKO

statements 628
TN3270E statement 630

Telnet (continued)
TNSACONFIG statement 631
translation considerations 1418
translation table members 1422
UNLOCKKEYBOARD statement 632
USERGROUP statement 663
USS message layout in storage 667
USSCMD macroinstruction 665
USSEND macroinstruction 673
USSMSG macroinstruction 667
USSPARM macroinstruction 670
USSTAB macroinstruction 672
USSTCP statement 664
variables substituted for USSMSG 668
XCFGROUP statement 633

Telnet SSL 596, 603
TELNETDEVICE statement 624
TELNETGLOBALS statements (block) 587
TELNETPARMS statement

TELNETDEVICE 624
TELNETPARMS statements (block) 587
TEMPERRORRETRIES statement 1362
test configuration port assignments 347
TESTMODE statement 626
TFTP 903
TFTPD 905
TIMED daemon

starting as a procedure 1403
starting from z/OS 1403

TIMEMARK statement 626
TIMEOUT statement 1387
TIMERS statement 572
TIMEZONE statement 1363
TKOGENLU statement 627
TKOSPECLU statement 628
TLSMECHANISM keyword 694
TLSMECHANISM statement 879
TLSPORT statement 880
TLSRFCLEVEL statement 880
TLSTIMEOUT statement 882
TLSV1ONLY keyword 694
TN3270E statement 630
TNSACONFIG statement 631
token-ring

bridge 70
hosts 301
LCS LINK statement 69

TRACE RESOLVER statement 396
TRACE SOCKET statement 397
TRACE statement

FTP 882, 883
SNA LU6.2 561
X.25 NPSI 572

trademark information 1501
Traditional Chinese, and Big-5 1431
Traffic regulation manager daemon (TRMD), see also

TRMD 1216
TrafficDescriptor statement 1203
TrafficDescriptorGroup statement 1205
TRAILINGBLANKS statement 883
TRANSLATE statement 301, 1388
translation considerations

ASATRANS statement 753
CCXLATE statement 759
CHKCONFIDENCE statement 760
CTRLCONN statement 769
SBDATACONN statement 840

1536 z/OS V2R1.0 Communications Server: IP Configuration Reference

translation considerations (continued)
UCSHOSTCS statement 886
UCSSUB statement 886
UCSTRUNC statement 887
XLATE statement 897

translation tables
ASCII and EBCDIC code points 1424
Big-5 and Traditional Chinese 1431
converting to binary 1428
CONVXLAT examples 1430
country or region tables 1422
customizing DBCS 1427
customizing SBCS 1420
DBCS country or region 1428
DBCS syntax rules 1428
DBCS table hierarchy 1424, 1426
DBCS, converting to binary 1428
French Telnet client, SBCS 1430
IBM PC Interpretations 1424
ISO-8 1424
Japanese SBCS (CP 1041) and DBCS 1431
Japanese SBCS and DBCS Codefile 1431
Korean KSC5601 SBCS and DBCS 1431
loading 377
members for DBCS applications 1428
members for Telnet 3270 DBCS transform support 1423
members for Telnet Client and Non-Telnet SBCS

applications 1422
SBCS 1418
SBCS binary table 1430
SBCS, French Telnet client 1430
syntax rules 1421
Telnet 3270 DBCS transform mode codefiles 1427
using 1417

TRAPFWD daemon
examples 1289
parameters 1287
starting from an MVS console 1286
starting from the UNIX shell 1288
TRAPFWD.CONF syntax 1288

TRAPFWD environment variables 1288
TRAPFWD.CONF

examples 1289
search order 1289
syntax 1288

trivial file transfer protocol 903
TRMD

command 1216
starting as a started task 1217
starting from the z/OS shell 1216

TRUNCATE statement 884
TSO logon procedure 929
TTLSCipherParms statement 1004
TTLSConfig statement 1001
TTLSConnectionAction statement 1009
TTLSConnectionAdvancedParms statement 1012
TTLSEnvironmentAction statement 1017
TTLSEnvironmentAdvancedParms statement 1020
TTLSGroupAction statement 1028
TTLSGroupAdvancedParms statement 1030
TTLSGskAdvancedParms statement 1032
TTLSGskLdapParms statement 1033
TTLSKeyringParms statement 1035
TTLSRule statement 1036
TTLSSignatureParms statement 1041

U
UCOUNT statement 885
UCSHOSTCS statement 886
UCSSUB statement 886
UCSTRUNC statement 887
UDPCONFIG statement 304
UNDELIVERABLE statement

SMTP 1389
UNICODEFILESYSTEMBOM statement 888
UNIT statement 1307
UNITNAME statement 890
UNIX PORTMAP 1309
UNIX system services Policy Agent (Policy Agent)

see Policy Agent 931
UNIXFILETYPE statement 891
UNLOCKKEYBOARD statement 632
UNRESPONSIVETHRESHOLD statement 366
update_interval statement 413
user exits settings, SMTP 1321
user exits, FTP

EZAFCCMD 712
FTCHKCMD 702
FTCHKIP 706
FTCHKJES 708
FTCHKPWD 707
FTPOSTPR 703
overview 700, 710
SMF 710

USEREXIT statement 1391
USERGROUP statement 663
USM_GROUP 1250
USM_USER entry 1256
USS macroinstructions, Telnet

default table variable substitution 669
rules 665
USSCMD 665
USSEND 673
USSMSG 667
USSMSG, variables substituted 668
USSPARM 670
USSTAB 672

USS message layout in storage 667
USSCMD macroinstruction 665
USSEND macroinstruction 673
USSMSG macroinstruction 667
USSPARM macroinstruction 670
USSTAB macroinstruction 672
USSTCP statement 664
uuid statement 436

V
V3CIPHER keyword 694
VACM_ACCESS 1251
VACM_ACCESS entry 1260
VACM_GROUP 1251
VACM_GROUP entry 1258
VACM_VIEW 1251
VACM_VIEW entry 1259
VCOUNT statement 892
VERIFYUSER statement 893
VIPABACKUP statement 312
VIPADEFINE statement 308
VIPADELETE statement 315
VIPADISTRIBUTE statement 316
VIPADYNAMIC statement 306

Index 1537

VIPARANGE statement 335
VIPAROUTE statement 338
VIPASMPARMS statement 341
virtual devices

DEVICE and LINK statement 101
example of BSDROUTINGPARMS definitions 40

virtual interfaces 160, 188
virtual IP address support (VIPA)

configuration example 140
on HOME statement 138

VIRTUAL_LINK statement 504, 506
VOLUME statement

FTP 895
LPD 1307

VTAM configuration relationship, DEVICE and LINK
statements 50

VTAM ISTLSXCF major node 92
VTAM statement

SNALINK LU6.2 561
X.25 NPSI 574

VTAM, online information xxxii

W
WARNINGAGE statement 1364
wlm statement 414
WRAPRECORD statement 896
WRTAPEFASTIO statement 896

X
X.25 NPSI

ALTLINK statement 566
BUFFERS statement 567
cataloged procedure (X25PROC) 563
configuration statements, summary 565
configuration statements, syntax 565
DEST statement 568
FAST statement 569
LINK statement 569
OPTIONS statement 570
sample configuration data set 563
statement syntax 565
TCPIPX25 (X25PROC) 563
TIMERS statement 572
TRACE statement 572
VTAM statement 574
X25PROC 563

X.25 NPSI connections 103
X25CONF 563
X25PROC 563
XCFGROUP statement 633
XLATE statement 897

Z
z/OS Basic Skills Information Center xxx
z/OS Load balancing

advisor overview 403
agent overview 403

z/OS Load balancing advisor
configuration file statements 405
general syntax rules 403
starting 404

z/OS Remote Execution server
orexecd 1413

z/OS Remote Execution server (continued)
orshd 1414
UNIX System Services REXECD Command 1413
UNIX System Services RSHD Command 1414

z/OS UNIX considerations, UMASK statement 887
z/OS, documentation library listing 1503

1538 z/OS V2R1.0 Communications Server: IP Configuration Reference

Communicating your comments to IBM

If you especially like or dislike anything about this document, you can send us
comments electronically by using one of the following methods:

Internet email:
comsvrcf@us.ibm.com

World Wide Web:
http://www.ibm.com/systems/z/os/zos/webqs.html

If you would like a reply, be sure to include your name, address, and telephone
number. Make sure to include the following information in your comment or note:
v Title and order number of this document
v Page number or topic related to your comment

Feel free to comment on specific errors or omissions, accuracy, organization, subject
matter, or completeness of this document. However, the comments you send
should pertain to only the information in this manual and the way in which the
information is presented. To request additional publications, or to ask questions or
make comments about the functions of IBM products or systems, you should talk
to your IBM representative or to your IBM authorized remarketer.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute your comments in any way it believes appropriate without incurring any
obligation to you.

© Copyright IBM Corp. 2000, 2015 1539

http://www.ibm.com/systems/z/os/zos/webqs.html

1540 z/OS V2R1.0 Communications Server: IP Configuration Reference

����

Product Number: 5650-ZOS

Printed in USA

SC27-3651-03

	Contents
	Figures
	Tables
	About this document
	Who should read this document
	How this document is organized
	How to use this document
	Determining whether a publication is current
	How to contact IBM service

	Conventions and terminology that are used in this document
	How to read a syntax diagram
	Prerequisite and related information

	Summary of changes
	Changes made in z/OS Version 2 Release 1, as updated February 2015
	Changes made in z/OS Version 2 Release 1, as updated September 2014
	Changes made in z/OS Version 2 Release 1, as updated December 2013
	Summary of changes for z/OS Version 2 Release 1

	Chapter 1. Configuration data sets and files
	TCP/IP configuration data sets

	Chapter 2. TCP/IP profile (PROFILE.TCPIP) and configuration statements
	Summary of TCP/IP address space configuration statements
	PROFILE.TCPIP search order
	Statement syntax for configuration statements
	ARPAGE statement
	ATMARPSV statement
	ATMLIS statement
	ATMPVC statement
	AUTOLOG statement
	BEGINROUTES statement
	BSDROUTINGPARMS statement
	DEFADDRTABLE statement
	DELETE statement
	Summary of DEVICE and LINK statements
	Overview of DEVICE and LINK statements
	Recovering from device failures
	Missing interrupt handler factors
	DEVICE and LINK statements relationship to VTAM configuration
	Modifying DEVICE and LINK statements
	Steps for modifying LINK statements

	Monitoring network links (DEVICE and LINK statements)

	DEVICE and LINK — ATM devices statement
	DEVICE and LINK — CLAW devices statement
	DEVICE and LINK — CTC devices statement
	DEVICE and LINK — HYPERchannel A220 devices statement
	DEVICE and LINK — LAN Channel Station and OSA devices statement
	DEVICE and LINK — MPCIPA OSA-Express QDIO devices statement
	DEVICE and LINK — MPCIPA HiperSockets devices statement
	DEVICE and LINK — MPCOSA devices statement
	DEVICE and LINK — MPCPTP devices statement
	DEVICE and LINK — SNA LU0 links statement
	DEVICE and LINK — SNA LU 6.2 links statement
	DEVICE and LINK — VIRTUAL devices statement
	DEVICE and LINK - X.25 NPSI connections statement
	DEVICE and LINK — 3745/46 channel DLC devices statement
	GATEWAY statement
	GLOBALCONFIG statement
	HOME statement
	INCLUDE statement
	Summary of INTERFACE statements
	Restrictions on IPv6 addresses configured in the TCP/IP profile
	Steps for modifying INTERFACE statements
	Monitoring network interfaces (INTERFACE statements)

	INTERFACE - IPAQENET OSA-Express QDIO interfaces statement
	INTERFACE — IPAQIDIO HiperSockets interfaces statement
	INTERFACE — VIRTUAL interfaces statement
	INTERFACE - IPAQENET6 OSA-Express QDIO interfaces statement
	INTERFACE — IPAQIDIO6 HiperSockets interfaces statement
	INTERFACE — LOOPBACK6 interface statement
	INTERFACE — MPCPTP6 interfaces statement
	INTERFACE — VIRTUAL6 interfaces statement
	IPCONFIG statement
	IPCONFIG6 statement
	IPSEC statement
	ITRACE statement
	NETACCESS statement
	NETMONITOR statement
	OSAENTA statement
	PKTTRACE statement
	PORT statement
	PORTRANGE statement
	PRIMARYINTERFACE statement
	SACONFIG statement
	SMFCONFIG statement
	SMFPARMS statement
	SOMAXCONN statement
	SRCIP statement
	START statement
	STOP statement
	TCPCONFIG statement
	TRANSLATE statement
	UDPCONFIG statement
	VIPADYNAMIC statement summary
	VIPADYNAMIC - VIPADEFINE statement
	VIPADYNAMIC - VIPABACKUP statement
	VIPADYNAMIC - VIPADELETE statement
	VIPADYNAMIC - VIPADISTRIBUTE statement
	VIPADYNAMIC - VIPARANGE statement
	VIPADYNAMIC - VIPAROUTE statement
	VIPADYNAMIC - VIPASMPARMS statement

	Chapter 3. TCP/IP cataloged procedure (TCPIPROC)
	Specifying TCP/IP address space parameters
	Example of a TCP/IP cataloged procedure
	Using output data sets

	Chapter 4. Protocol number and port assignments
	Port assignments
	PROFILE.TCPIP port assignments
	/etc/services and ETC.SERVICES port assignments

	Chapter 5. Resolver setup and TCPIP.DATA configuration statements
	Resolver setup statements
	Resolver setup statement information and syntax conventions
	CACHE NOCACHE statements
	CACHESIZE statement
	COMMONSEARCH/NOCOMMONSEARCH statement
	DEFAULTIPNODES statement
	DEFAULTTCPIPDATA statement
	GLOBALIPNODES statement
	GLOBALTCPIPDATA statement
	MAXTTL statement
	UNRESPONSIVETHRESHOLD statement
	; and # statements

	Configuration statements in TCPIP.DATA
	system_name considerations
	Dynamically changing TCPIP.DATA statements
	Steps for dynamically changing TCPIP.DATA statements without using GLOBALTCPIPDATA:
	Step for dynamically changing TCPIP.DATA statements using GLOBALTCPIPDATA:
	Steps for creating a new GLOBALTCPIPDATA data set or file

	Determining which TCPIP.DATA statements are being used
	Syntax conventions for TCPIP.DATA configuration statements
	ALWAYSWTO statement
	DATASETPREFIX statement
	DOMAIN statement
	DOMAINORIGIN statement
	HOSTNAME statement
	LOADDBCSTABLES statement
	LOOKUP statement
	MESSAGECASE statement
	NAMESERVER statement
	NOCACHE statement
	NSINTERADDR statement
	NSPORTADDR statement
	OPTIONS statement
	RESOLVERTIMEOUT statement
	RESOLVERUDPRETRIES statement
	RESOLVEVIA statement
	SEARCH statement
	SOCKDEBUG statement
	SOCKNOTESTSTOR statement
	SOCKTESTSTOR statement
	SORTLIST statement
	TCPIPJOBNAME statement
	TCPIPUSERID statement
	TRACE RESOLVER statement
	TRACE SOCKET statement
	; and # statements

	Sample TCPIP.DATA data set (TCPDATA)

	Chapter 6. z/OS Load Balancing Advisor and Load Balancing Agent
	General syntax rules for z/OS Load Balancing Advisor
	Starting the z/OS Load Balancing Advisor
	Load Balancing Advisor sample start procedure
	Load Balancing Advisor configuration file statements
	agent_connection_port statement
	agent_id_list statement
	debug_level statement
	lb_connection_v4 statement
	lb_connection_v6 statement
	lb_id_list statement
	port_list statement
	sysplex_group_name statement
	update_interval statement
	wlm statement

	Starting the z/OS Load Balancing Agent
	z/OS Load Balancing Agent sample start procedure
	z/OS Load Balancing Agent configuration file statements
	advisor_id statement
	debug_level statement
	host_connection statement
	sysplex_group_name statement

	Chapter 7. Automated domain name registration
	General configuration rules for automated domain name registration
	Starting the automated domain name registration application
	EZBADNRS sample start procedure for automated domain name registration application
	Automated domain name registration application configuration file
	arm_element_suffix statement
	debug_level statement
	dns statement
	gwm statement
	host_group statement
	ipaddrlist statement
	key statement
	server_group statement
	uuid statement

	Chapter 8. IKE daemon
	Starting the IKED using z/OS UNIX
	IKE cataloged procedure
	IKE environment variables
	IKE daemon configuration file statements
	IkeConfig statement
	NssStackConfig statement
	IKE daemon configuration file sample

	Chapter 9. Network security services server
	Starting Network security services server using z/OS UNIX
	Network security services server cataloged procedure
	Network security services server environment variables
	Network security services server configuration file statements
	NSS server configuration file sample
	IPSecDisciplineConfig statement
	NssConfig statement

	Chapter 10. Defense Manager daemon
	Starting the DMD using z/OS UNIX (optional)
	The Defense Manager daemon cataloged procedure (optional)
	DMD environment variables
	DMD configuration file statements
	DmConfig statement
	DmStackConfig statement
	DMD configuration file sample

	Chapter 11. OMPROUTE
	Starting OMPROUTE using z/OS UNIX (optional)
	OMPROUTE cataloged procedure (optional)
	OMPROUTE parameters
	OMPROUTE environment variables
	OMPROUTE configuration file statements
	INCLUDE statement
	OSPF configuration statements
	AREA statement
	AS_BOUNDARY_ROUTING statement
	COMPARISON statement
	DEMAND_CIRCUIT statement
	OSPF statement
	OSPF_INTERFACE statement
	RANGE statement
	RouterID statement
	VIRTUAL_LINK statement

	RIP configuration statements
	ACCEPT_RIP_ROUTE statement
	FILTER statement
	IGNORE_RIP_NEIGHBOR statement
	ORIGINATE_RIP_DEFAULT statement
	RIP_INTERFACE statement
	SEND_ONLY statement

	IPv6 OSPF configuration statements
	IPv6_AREA statement
	IPv6_AS_BOUNDARY_ROUTING statement
	IPv6_OSPF statement
	IPv6_OSPF_INTERFACE statement
	IPv6_RANGE statement
	IPv6_VIRTUAL_LINK statement

	IPv6 RIP configuration statements
	IPv6_ACCEPT_RIP_ROUTE statement
	IPv6_RIP_FILTER statement
	IPv6_IGNORE_RIP_NEIGHBOR statement
	IPv6_ORIGINATE_RIP_DEFAULT statement
	IPv6_RIP_INTERFACE statement
	IPv6_RIP_SEND_ONLY statement

	Common configuration statements for RIP and OSPF
	DEFAULT_ROUTE statement
	ROUTESA_CONFIG statement
	INTERFACE statement
	GLOBAL_OPTIONS statement
	IPv6_DEFAULT_ROUTE statement
	IPv6_INTERFACE statement

	Interfaces supported by OMPROUTE

	Chapter 12. SNALINK
	SNALINK cataloged procedure (SNALPROC)
	SNALINK parameters

	Chapter 13. SNALINK LU6.2
	SNALINK LU6.2 cataloged procedure (LU62PROC)
	Sample SNALINK LU6.2 configuration data set (LU62CFG)
	Summary of SNALINK LU6.2 configuration statements
	SNALINK LU6.2 configuration statements
	Statement syntax
	Statement ordering
	BUFFERS
	DEST
	LINK
	TRACE
	VTAM

	Chapter 14. X.25 NPSI
	X.25 NPSI cataloged procedure (X25PROC)
	Sample X.25 NPSI server configuration data set (X25CONF)
	Summary of X.25 NPSI server configuration statements
	X.25 NPSI server configuration statements
	Statement syntax
	ALTLINK statement
	BUFFERS statement
	DEST statement
	FAST statement
	LINK statement
	OPTIONS statement
	TIMERS statement
	TRACE statement
	VTAM statement

	Chapter 15. NCPROUTE server
	Related topics
	NCPROUTE gateways statements and syntax rules
	GATEWAY statement
	OPTIONS statement

	NCPROUTE cataloged procedure (NCPROUT)
	Specifying the NCPROUTE parameters
	NCPROUTE profile data set

	Chapter 16. TN3270E Telnet server
	Telnet profile statements overview
	TELNETGLOBALS statements
	TELNETPARMS statements
	PARMSGROUP statements
	BEGINVTAM block
	INCLUDE statement
	Telnet statement syntax

	Telnet parameter statements in the Telnet profile
	Rules for Telnet parameter statements and security parameters
	BINARYLINEMODE statement
	CHECKCLIENTCONN statement
	CLIENTAUTH statement
	CODEPAGE statement
	CONNTYPE statement
	CRLLDAPSERVER statement
	DBCSTRACE statement
	DBCSTRANSFORM statement
	DEBUG statement
	DISABLESGA statement
	DROPASSOCPRINTER statement
	ENCRYPTION statement
	EXPRESSLOGON statement
	FORMAT statement
	FULLDATATRACE statement
	INACTIVE statement
	INCLUDE statement
	KEEPINACTIVE statement
	KEEPLU statement
	KEYRING statement
	LUSESSIONPEND statement
	MAXRECEIVE statement
	MAXREQSESS statement
	MAXRUCHAIN statement
	MAXTCPSENDQ statement
	MAXVTAMSENDQ statement
	MSG07 statement
	NACUSERID statement
	OLDSOLICITOR statement
	PASSWORDPHRASE statement
	PORT, SECUREPORT, and TTLSPORT statements
	PROFILEINACTIVE statement
	PRTINACTIVE statement
	REFRESHMSG10 statement
	SCANINTERVAL and TIMEMARK statements
	SEQUENTIALLU statement
	SGA statement
	SHAREACB statement
	SIMCLIENTLU statement
	SINGLEATTN statement
	SMFINIT and SMFTERM statements
	SMFPROFILE statement
	SNAEXT statement
	SSLTIMEOUT statement
	SSLV2 and NOSSLV2 statements
	SSLV3 and NOSSLV3 statements
	TCPIPJOBNAME statement
	TELNETDEVICE statement
	TESTMODE statement
	TIMEMARK statement
	TKOGENLU, TKOGENLURECON, and NOTKO statements
	TKOSPECLU, TKOSPECLURECON, and NOTKO statements
	TN3270E statement
	TNSACONFIG statement
	UNLOCKKEYBOARD statement
	XCFGROUP statement

	Telnet mapping statements in the Telnet profile
	Rules for LU name specification
	Client identifier types and definitions
	Rules for client identifier specification
	Rules for host name specification
	ALLOWAPPL statement
	DEFAULTAPPL statement
	DEFAULTLUS or SDEFAULTLUS statement
	DEFAULTLUSSPEC or SDEFAULTLUSSPEC statement
	DEFAULTPRT or SDEFAULTPRT statement
	DEFAULTPRTSPEC or SDEFAULTPRTSPEC statement
	DESTIPGROUP statement
	HNGROUP statement
	INTERPTCP statement
	IPGROUP statement
	LINEMODEAPPL statement
	LINKGROUP statement
	LUGROUP or SLUGROUP statement
	LUMAP statement
	MONITORGROUP statement
	MONITORMAP statement
	PARMSGROUP statement
	PARMSMAP statement
	PORT statement
	PRTDEFAULTAPPL statement
	PRTGROUP or SPRTGROUP statement
	PRTMAP statement
	RESTRICTAPPL statement
	USERGROUP statement
	USSTCP statement

	Telnet USS table setup
	General usage rules for Telnet USS macroinstructions
	USSCMD macroinstruction
	USSMSG macroinstruction
	USSPARM macroinstruction
	USSTAB macroinstruction
	USSEND macroinstruction

	Telnet INTERPRET table setup
	General usage rules for Telnet INTERPRET macroinstructions
	INTAB macroinstruction
	LOGCHAR macroinstruction
	Requirements for logon-interpret routines

	ENDINTAB macroinstruction

	Telnet LU exit setup
	Telnet LU exit setup operation
	Requirements for LU exit routines
	Contents of registers at entry
	Contents of registers at exit

	LU exit routine parameter list

	Chapter 17. EXPRESS LOGON using DCAS
	Starting Digital Certificate Access Server
	Digital Certificate Access Server (DCAS) sample procedure (EZADCASP)
	Digital Certificate Access Server (DCAS) environment variables
	PassTicket server configuration file processing when using IBM System SSL
	Digital Certificate Access Server (DCAS) configuration file keywords and parameters
	CLIENTAUTH
	IPADDR
	KEYRING
	LDAPPORT
	LDAPSERVER
	PORT
	SAFKEYRING
	SERVERTYPE
	STASHFILE
	TCPIP
	TLSMECHANISM
	TLSV1ONLY
	V3CIPHER
	Steps for setting up RACF for Digital Certificate Access Server (DCAS)

	Chapter 18. File Transfer Protocol
	FTP server cataloged procedure (FTPD)
	FTP server cataloged procedure (FTPD) parameters
	FTP server user exits
	Sample server user exits
	The FTCHKCMD user exit
	The FTPOSTPR user exit
	The FTCHKIP user exit
	The FTCHKPWD user exit
	The FTCHKJES user exit
	The FTP server SMF user exit

	FTP client user exits
	Sample client user exits
	The EZAFCCMD user exit
	The EZAFCREP user exit
	Using both EZAFCCMD and EZAFCREP user exits

	FTP configuration statements in FTP.DATA
	Summary of FTP client and server configuration statements

	FTP.DATA data set statements
	ACCESSERRORMSGS (FTP server) statement
	ADMINEMAILADDRESS (FTP server) statement
	ANONYMOUS (FTP server) statement
	ANONYMOUSFILEACCESS (FTP server) statement
	ANONYMOUSFILETYPEJES (FTP server) statement
	ANONYMOUSFILETYPESEQ (FTP server) statement
	ANONYMOUSFILETYPESQL (FTP server) statement
	ANONYMOUSFTPLOGGING (FTP server) statement
	ANONYMOUSHFSDIRMODE (FTP server) statement
	ANONYMOUSHFSFILEMODE (FTP server) statement
	ANONYMOUSHFSINFO (FTP server) statement
	ANONYMOUSLEVEL (FTP server) statement
	ANONYMOUSLOGINMSG (FTP server) statement
	ANONYMOUSMVSINFO (FTP server) statement
	APPLNAME (FTP server) statement
	ASATRANS (FTP client and server) statement
	AUTOMOUNT (FTP client and server) statement
	AUTORECALL (FTP client and server) statement
	AUTOTAPEMOUNT (FTP client and server) statement
	BANNER (FTP server) statement
	BLKSIZE (FTP client and server) statement
	BUFNO (FTP client and server) statement
	CCONNTIME (FTP client) statement
	CCTRANS (FTP client) statement
	CCXLATE (FTP server) statement
	CHKCONFIDENCE statement (FTP client and server) statement
	CHKPTFLUSH (FTP client) statement
	CHKPTINT (FTP client and server) statement
	CHKPTPREFIX (FTP client) statement
	CIPHERSUITE (FTP client and server) statement
	CLIENTERRCODES (FTP client) statement
	CLIENTEXIT (FTP client) statement
	CONDDISP (FTP client and server) statement
	CTRLCONN (FTP client and server) statement
	DATACLASS (FTP client and server) statement
	DATACTTIME (FTP client) statement
	DATAKEEPALIVE (FTP client and server) statement
	DATATIMEOUT (FTP server) statement
	DB2 (FTP client and server) statement
	DB2PLAN (FTP cilent and server) statement
	DBSUB (FTP client and server) statement
	DCBDSN (FTP client and server) statement
	DCONNTIME (FTP client and server) statement
	DEBUG (FTP client and server) statement
	DEBUGONSITE (FTP server) statement
	DEST (FTP server) statement
	DIRECTORY (FTP client and server) statement
	DIRECTORYMODE (FTP client and server) statement
	DSNTYPE (FTP client and server) statement
	DSWAITTIME (FTP client and server) statement
	DSWAITTIMEREPLY (FTP server) statement
	DUMP (FTP client and server) statement
	DUMPONSITE (FTP server) statement
	EATTR (FTP client and server) statement
	EMAILADDRCHECK (FTP server) statement
	ENCODING (FTP client and server) statement
	EPSV4 (FTP client) statement
	EXTENSIONS (FTP client and server) statement
	FIFOIOTIME (FTP client and server) statement
	FIFOOPENTIME (FTP client and server) statement
	FILETYPE (FTP client and server) statement
	FTPKEEPALIVE (FTP client and server) statement
	FTPLOGGING (FTP server) statement
	FWFRIENDLY (FTP client) statement
	HFSINFO (FTP server) statement
	INACTIVE (FTP Server) statement
	INACTTIME (FTP client) statement
	ISPFSTATS (FTP client and server) statement
	JESENTRYLIMIT (FTP server) statement
	JESGETBYDSN (FTP server) statement
	JESINTERFACELEVEL (FTP server) statement
	JESLRECL (FTP server) statement
	JESPUTGETTO (FTP server) statement
	JESRECFM (FTP server) statement
	KEYRING (FTP client and server) statement
	LISTLEVEL (FTP server) statement
	LISTSUBDIR (FTP client and server) statement
	LOGCLIENTERR (FTP client) statement
	LOGINMSG (FTP server) statement
	LRECL (FTP client and server) statement
	MBDATACONN (FTP client and server) statement
	MBREQUIRELASTEOL (FTP client and server) statement
	MBSENDEOL statement (FTP client and server) statement
	MGMTCLASS (FTP client and server) statement
	MIGRATEVOL (FTP client and server) statement
	MVSINFO (FTP server) statement
	MVSURLKEY (FTP server) statement
	MYOPENTIME (FTP client) statement
	NETRCLEVEL (FTP client) statement
	NONSWAPD (FTP server) statement
	PASSIVEDATACONN (FTP server) statement
	PASSIVEDATAPORTS (FTP server) statement
	PASSIVEIGNOREADDR (FTP client) statement
	PASSPHRASE (FTP server) statement
	PDSTYPE (FTP client and server) statement
	PORTCOMMAND (FTP server) statement
	PORTCOMMANDIPADDR (FTP server) statement
	PORTCOMMANDPORT (FTP server) statement
	PORTOFENTRY4 (FTP server) statement
	PRIMARY (FTP client and server) statement
	PROGRESS (FTP client) statement
	QUOTESOVERRIDE (FTP client and server) statement
	RDW (FTP client and server) statement
	RECFM (FTP client and server) statement
	REMOVEINBEOF (FTP client and server) statement
	REPLY226 (FTP server) statement
	REPLYSECURITYLEVEL (FTP server) statement
	RESTGET (FTP client) statement
	RESTPUT (FTP server) statement
	RETPD (FTP client and server) statement
	SBDATACONN (FTP client and server) statement
	SBSENDEOL statement (FTP client and server) statement
	SBSUB (FTP client and server) statement
	SBSUBCHAR (FTP client and server) statement
	SBTRANS (FTP client) statement
	SECONDARY (FTP client and server) statement
	SECURE_CTRLCONN (FTP client and server) statement
	SECURE_DATACONN (FTP client and server) statement
	SECURE_FTP (FTP client and server) statement
	SECURE_HOSTNAME (FTP client) statement
	SECUREIMPLICITZOS (FTP client and server) statement
	SECURE_LOGIN (FTP server) statement
	SECURE_MECHANISM (FTP client) statement
	SECURE_PASSWORD (FTP server) statement
	SECURE_PASSWORD_KERBEROS (FTP server) statement
	SECURE_PBSZ (FTP client and server) statement
	SEQNUMSUPPORT (FTP client) statement
	SMF (FTP server) statement
	SMFAPPE (FTP server) statement
	SMFDCFG (FTP server) statement
	SMFDEL (FTP server) statement
	SMFEXIT (FTP server) statement
	SMFJES (FTP server) statement
	SMFLOGN (FTP server) statement
	SMFREN (FTP server) statement
	SMFRETR (FTP server) statement
	SMFSQL (FTP server) statement
	SMFSTOR (FTP server) statement
	SOCKSCONFIGFILE (FTP client) statement
	SPACETYPE (FTP client and server) statement
	SPREAD (FTP client and server) statement
	SQLCOL (FTP client and server) statement
	SSLV3 (FTP client and server connection) statement
	STARTDIRECTORY (FTP server) statement
	STORCLASS (FTP client and server) statement
	SUPPRESSIGNOREWARNINGS (FTP client and server) statement
	TAPEREADSTREAM (FTP server) statement
	TLSMECHANISM (FTP client and server) statement
	TLSPORT (FTP client and server) statement
	TLSRFCLEVEL (FTP client and server) statement
	TLSTIMEOUT (FTP client and server) statement
	TRACE (FTP client and server) statement
	TRACECAPI (FTP client) statement
	TRAILINGBLANKS (FTP client and server) statement
	TRUNCATE (FTP client and server) statement
	UCOUNT (FTP client and server) statement
	UCSHOSTCS (FTP client and server) statement
	UCSSUB (FTP client and server) statement
	UCSTRUNC (FTP client and server) statement
	UMASK (FTP client and server) statement
	UNICODEFILESYSTEMBOM (FTP client and server) statement
	UNITNAME (FTP client and server) statement
	UNIXFILETYPE (FTP client and server) statement
	VCOUNT (FTP client and server) statement
	VERIFYUSER (FTP server) statement
	VOLUME (FTP client and server) statement
	WRAPRECORD (FTP client and server) statement
	WRTAPEFASTIO (FTP client and server) statement
	XLATE (FTP server) statement
	FTP server environment variables
	SOCKS configuration statements in SOCKSCONFIGFILE
	DIRECT statement
	SOCKD statement

	Chapter 19. Trivial file transfer protocol
	Starting TFTPD as a procedure
	Step for starting the TFTP server
	Step for stopping the TFTP server

	Chapter 20. Syslog daemon
	Syslog daemon files
	Starting syslogd with a cataloged procedure
	Starting syslogd from the UNIX shell
	Syslogd environment variables
	Syslogd configuration statements
	Global syslogd configuration statements
	ArchiveCheckInterval statement
	ArchiveThreshold statement
	ArchiveTimeOfDay statement
	BeginArchiveParms statement

	Syslogd rule configuration statement
	Supported facility names for syslogd
	Facilities used by z/OS Communications Server
	Priority codes
	Supported destinations for syslogd

	Usage notes for syslogd
	Syntax
	Parameters

	Syslogd browser tool
	Providing library access
	Using the TSO logon procedure
	Using a CLIST

	Adding the syslogd browser to the ISPF primary option menu

	Chapter 21. Policy Agent and policy applications
	Policy configuration files
	Policy Agent configuration files overview
	Policy Agent configuration statements overview
	General syntax rules for Policy Agent

	Policy Agent general configuration file statements
	AutoMonitorApps statement
	AutoMonitorParms statement
	ClientConnection statement
	Codepage statement
	CommonIDSConfig statement
	CommonIPSecConfig statement
	CommonRoutingConfig statement
	CommonTTLSConfig statement
	DynamicConfigPolicyLoad statement
	IDSConfig statement
	IPSecConfig statement
	LogLevel statement
	PolicyPerfMonitorForSDR statement
	PolicyPerformanceCollection statement
	PolicyServer statement
	QOSConfig statement
	ReadFromDirectory statement
	RoutingConfig statement
	ServerConnection statement
	ServicesConnection statement
	SetSubnetPrioTosMask statement
	TcpImage and PEPInstance statement
	TTLSConfig statement

	AT-TLS policy statements
	TTLSCipherParms statement
	TTLSConnectionAction statement
	TTLSConnectionAdvancedParms statement
	TTLSEnvironmentAction statement
	TTLSEnvironmentAdvancedParms statement
	TTLSGroupAction statement
	TTLSGroupAdvancedParms statement
	TTLSGskAdvancedParms statement
	TTLSGskLdapParms statement
	TTLSKeyringParms statement
	TTLSRule statement
	TTLSSignatureParms statement

	IDS policy statements
	IDSAction statement
	IDSAttackCondition statement
	IDSExclusion statement
	IDSReportSet statement
	IDSRule statement
	IDSScanEventCondition statement
	IDSScanExclusion statement
	IDSScanGlobalCondition statement
	IDSTRCondition statement

	IPSec policy statements
	IpDataOffer statement
	IpDynVpnAction statement
	IpFilterGroup statement
	IpFilterPolicy statement
	IpFilterRule statement
	IpGenericFilterAction statement
	IpLocalStartAction statement
	IpManVpnAction statement
	IpService statement
	IpServiceGroup statement
	KeyExchangeAction statement
	KeyExchangeGroup statement
	KeyExchangeOffer statement
	KeyExchangePolicy statement
	KeyExchangeRule statement
	LocalDynVpnGroup statement
	LocalDynVpnPolicy statement
	LocalDynVpnRule statement
	LocalSecurityEndpoint statement
	RemoteIdentity statement
	RemoteSecurityEndpoint statement

	Policy-based routing policy statements
	RouteTable statement
	RoutingAction statement
	RoutingRule statement

	QoS policy statements
	PolicyAction statement
	PolicyRule statement
	ServiceCategories statement
	ServicePolicyRules statement

	Reusable policy statements
	IpAddr statement
	IpAddrGroup statement
	IpAddrSet statement
	IpOptionGroup statement
	IpOptionRange statement
	IpProtocolGroup statement
	IpProtocolRange statement
	IpTimeCondition statement
	Ipv6NextHdrGroup statement
	Ipv6NextHdrRange statement
	PortGroup statement
	PortRange statement
	TrafficDescriptor statement
	TrafficDescriptorGroup statement

	Policy Agent search order
	Starting Policy Agent from the z/OS shell
	Starting Policy Agent as a started task
	Policy Agent environment variables
	Starting the network SLAPM2 subagent from the z/OS shell
	Starting the network SLAPM2 subagent as a started task
	Network SLAPM2 subagent environment variables
	Starting the traffic regulation manager daemon (TRMD) from the z/OS shell
	Starting the traffic regulation manager daemon (TRMD) as a started task

	Chapter 22. RSVP Agent
	RSVP Agent configuration file
	LogLevel statement
	TcpImage statement
	Interface statement
	RSVP statement

	RSVPD.CONF search order
	Starting RSVP from the z/OS shell
	Starting RSVP as a started task

	Chapter 23. Intrusion detection services policy
	IDS policies defined in IDS configuration files
	IDS Policies defined in LDAP

	Chapter 24. Simple Network Management Protocol
	SNMP agent (OSNMPD)
	Starting OSNMPD from MVS
	Sample SNMP agent cataloged procedure
	Starting OSNMPD from the z/OS UNIX System Services shell
	OSNMPD parameters
	OSNMPD environment variables
	OSNMPD.DATA statement syntax
	OSNMPD.DATA search order
	OSNMPD.DATA example
	PW.SRC statement syntax
	PW.SRC search order
	SNMPTRAP.DEST statement syntax
	SNMPTRAP.DEST search order
	SNMPD.CONF search order
	SNMPD.CONF statements
	Steps for configuring the SNMP agent for community-based security and SNMPv3 user-based security
	Steps for configuring community-based security
	Steps for configuring SNMPv3 user-based security

	Coding the SNMPD.CONF entries
	USM_USER entry
	VACM_GROUP entry
	VACM_VIEW entry
	VACM_ACCESS entry
	NOTIFY entry
	NOTIFY_FILTER_PROFILE entry
	NOTIFY_FILTER entry
	TARGET_ADDRESS entry
	TARGET_PARAMETERS entry
	COMMUNITY entry
	SNMP_COMMUNITY entry
	DEFAULT_SECURITY entry
	Usage notes

	SNMPD.CONF sample
	Migrating the PW.SRC file and SNMPTRAP.DEST file to the SNMPD.CONF file
	Steps for migrating the PW.SRC and SNMPTRAP.DEST files

	SNMPD.BOOTS statement syntax
	SNMPD.BOOTS search order

	SNMP query engine (SNMPQE)
	SNMP query engine cataloged procedure (SNMPPROC)
	Specifying the SNMPQE parameters
	SNMP parameter data set (SNMPARMS) sample
	Specifying the SNMPARMS parameters
	MIBDESC.DATA statement
	MIBDESC.DATA search order
	MIBDESC environment variables

	z/OS UNIX snmp command
	Environment variables
	OSNMP.CONF search order
	OSNMP.CONF statement syntax
	OSNMP.CONF sample
	MIBS.DATA statement syntax
	MIBS.DATA search order

	TRAPFWD daemon
	Starting TRAPFWD from an MVS console
	Specifying TRAPFWD parameters
	TRAPFWD environment variables
	Starting TRAPFWD from the UNIX shell
	TRAPFWD.CONF statement syntax
	TRAPFWD.CONF search order
	TRAPFWD examples

	Chapter 25. Remote print server
	LPD server cataloged procedure (LPSPROC)
	Sample LPD server configuration data set (LPDDATA)
	Specifying LPD server parameters
	Summary of LPD server configuration statements
	LPD server configuration data set statements
	Syntax rules
	DEBUG statement
	JOBPACING statement
	OBEY statement
	SERVICE statement
	STEPLIMIT statement
	UNIT statement
	VOLUME statement

	Chapter 26. PORTMAP and UNIX PORTMAP
	PORTMAP cataloged procedure (PORTPROC)
	UNIX PORTMAP cataloged procedure (OPORTRPC)

	Chapter 27. RPCBIND
	RPCBIND cataloged procedure

	Chapter 28. NCS Interface
	NRGLBD cataloged procedure (NRGLBD)
	LLBD cataloged procedure (LLBD)

	Chapter 29. SMTP server
	SMTP cataloged procedure (SMTPPROC)
	Summary of SMTP configuration statements
	Steps for using the SMTP server exits
	SMTP configuration data set statements
	ALTNJEDOMAIN statement
	ALTTCPHOSTNAME statement
	ATSIGN statement
	BADSPOOLFILEID statement
	CHECKSPOOLSIZE statement
	DBCS statement
	DEBUG statement
	DELETEBADSPOOLFILE statement
	DISALLOWCMD statement
	EXITDIRECTION statement
	FINISHOPEN statement
	GATEWAY statement
	INACTIVE statement
	INBOUNDOPENLIMIT statement
	IPMAILERADDRESS statement
	IPMAILERNAME statement
	LISTENONADDRESS statement
	LOCALCLASS statement
	LOCALFORMAT statement
	LOG statement
	MAILER statement
	MAILFILEDSPREFIX statement
	MAILFILEUNIT statement
	MAILFILEVOLUME statement
	MAXMAILBYTES statement
	MAXMSGSENT statement
	NJECLASS statement
	NJEDOMAIN statement
	NJEFORMAT statement
	NJENODENAME statement
	NOLOG statement
	NOSOURCEROUTE statement
	OUTBOUNDOPENLIMIT statement
	PORT statement
	POSTMASTER statement
	RCPTREPLY452 statement
	RCPTRESPONSEDELAY statement
	REMOTEPORT statement
	RESOLVERRETRYINT statement
	RESOLVERUSAGE statement
	RESTRICT statement
	RETRYAGE statement
	RETRYINT statement
	REWRITE822HEADER statement
	SECURE statement
	SMSGAUTHLIST statement
	SPOOLPOLLINTERVAL statement
	STOPONRENF statement
	TEMPERRORRETRIES statement
	TIMEZONE statement
	WARNINGAGE statement

	Chapter 30. Communications Server SMTP application
	General syntax rules for CSSMTP
	Starting CSSMTP
	CSSMTP sample started procedure
	CSSMTP configuration statements
	BadSpoolDisp statement
	ChkPointSizeLimit statement
	ExtendedRetry statement
	ExtWrtName statement
	Header statement
	JESJobSize statement
	JESMsgSize statement
	JESSyntaxErrLimit statement
	LogLevel statement
	MailAdministrator statement
	Options statement
	REPORT statement
	RetryLimit statement
	SMF119 statement
	TargetServer statement
	TIMEOUT statement
	TRANSLATE statement
	UNDELIVERABLE statement
	USEREXIT statement

	CSSMTP environment variables
	CSSMTP user exit version 3
	Registers at entry
	Registers at exit
	Interaction between CSSMTP and user exit program

	Chapter 31. TIMED daemon
	Starting TIMED from z/OS
	Starting TIMED as a procedure

	Chapter 32. SNTP daemon
	Starting SNTPD from z/OS
	Starting SNTPD as a procedure

	Chapter 33. Remote execution server
	Remote execution server cataloged procedure (RXPROC)
	Remote execution server parameters
	RXUEXIT user exit sample
	z/OS remote execution server
	z/OS UNIX System Services REXECD command (orexecd)
	z/OS UNIX System Services RSHD command (orshd)
	RSHD command (orshd) environment variables

	Appendix A. Translation tables
	SBCS translation table hierarchy
	Customizing SBCS translation tables
	ASCII-to-EBCDIC table
	EBCDIC-to-ASCII table

	Syntax rules for SBCS translation tables

	SBCS country or region translation tables
	ISO-8 and IBM PC interpretations for ASCII and EBCDIC code points
	DBCS translation table hierarchy
	Usage notes for the TRANSLATE option for the FTP client
	Telnet 3270 DBCS transform mode codefiles
	Steps for customizing DBCS translation tables
	DBCS country or region translation tables
	Syntax rules for DBCS translation tables
	Using TSO CONVXLAT to convert translation tables to binary
	CONVXLAT examples
	Running CONVXLAT in BATCH
	SBCS binary table
	French Telnet client SBC
	Korean KSC5601 SBCS and DBCS
	Big-5 and traditional Chinese
	Japanese SBCS (CP 1041) and DBCS
	Japanese SBCS and DBCS codefiles

	Appendix B. LDAP definition files
	PAGENTAT sample
	PAGENTOC sample

	Appendix C. Related protocol specifications
	Appendix D. Accessibility
	Notices
	Policy for unsupported hardware
	Trademarks

	Bibliography
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

	Communicating your comments to IBM

