
z/OS

DFSMS Object Access Method Application
Programmer’s Reference
Version 2 Release 1

SC23-6865-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 99.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

This edition replaces SC35-0425-09.

© Copyright IBM Corporation 1986, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

About this book ix
Major divisions of this book ix
Required product knowledge ix
z/OS information. x
How to read syntax diagrams x

How to send your comments to IBM xiii
If you have a technical problem xiii

Summary of changes xv
z/OS Version 2 Release 1 summary of changes . . xv

Chapter 1. Understanding the Object
Access Method 1
Understanding OAM components 2
Establishing a storage management policy 2
Understanding the OAM application programming
interface 4

Choosing data types that work well with OAM. . 5
Retrieving a partial object 5
Coordinating DB2, OAM, and your application . . 6
Coordinating your application with OAM’s object
identification 6
Overriding management policy defaults 6
Separating objects 7
Deleting objects 7

Chapter 2. Application program interface
for OAM. 9
Using the OSREQ macro 9

What you can do with OSREQ 9
Choosing the form 10
Getting the code right 11

Implementing the functions 11
ACCESS—Initializing the OSREQ interface . . . 12
CHANGE—Changing an object's management
characteristics 13
DELETE—Deleting an existing object 16
QUERY—Obtaining object characteristics . . . 17
RETRIEVE—Retrieving an existing object . . . 19
Adding objects to the object storage hierarchy . . 21
STORE function 22
STOREBEG—Beginning a Store Sequence
operation 25
STOREPRT—Storing an individual part in a Store
Sequence operation 27
STOREEND—Ending a Store Sequence operation 29

UNACCESS—Ending the OSREQ interface . . . 30
OSREQ keyword parameter descriptions 31
Usage considerations 40
Usage requirements 42
Restrictions and limitations 42
Programming notes. 43

Register use 44
Expiration date processing 44
Messages and codes 46

OAM return codes and reason codes 46
DB2 SQL error reason codes 46

CBRIBUFL macro 47
CBRIQEL macro 49

Appendix A. Sample program for object
storage 55
CBROSREQ 55
CBROSR2 64

Appendix B. Reason codes 75

Appendix C. Performance
considerations and object data
reblocking 83
Performance considerations 83

Object data reblocking 83
Object storage 83
Object retrieval 84

Appendix D. Using the CBRUXSAE
installation exit 85
Register contents on entry to CBRUXSAE 86
Programming the CBRUXSAE exit correctly . . . 87
Sample CBRUXSAE installation exit 88

Appendix E. Accessibility. 95
Using assistive technologies 95
Keyboard navigation of the user interface 95
Dotted decimal syntax diagrams 95

Notices 99
Policy for unsupported hardware. 100
Minimum supported hardware 101
Programming interface information 101
Trademarks 101

Glossary 103

Index 107

© Copyright IBM Corp. 1986, 2013 iii

iv z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

Figures

1. Example of devices that application may use 5
2. Conceptual view of a Store Sequence operation 26
3. Fields Described by CBRIBUFL 47

4. Data Buffer List Structure Diagram. 48
5. Fields Described by CBRIQEL 50
6. Query Buffer List Structure Diagram 52

© Copyright IBM Corp. 1986, 2013 v

vi z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

Tables

1. IADDRESS parameter effects in various
processing environments 13

2. Valid Retention Periods for Expiration Date
Processing 45

3. Return/Reason Codes 75
4. CBRUXSAE return codes 85

© Copyright IBM Corp. 1986, 2013 vii

viii z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

About this book

This book describes the programming interface provided by OAM. It is intended to
show application programmers how to use the application programming interface
to manipulate a special class of data called objects within the OAM system. Using
this interface, programmers can store and retrieve specific objects. They can also
request information concerning specific objects, change their attributes, and delete
them from storage.

Application programmers may also use the information in this book to write
custom interfaces that allow their installation's programs to work effectively with
OAM.

Major divisions of this book
This book contains the following major divisions:
v Chapter 1, “Understanding the Object Access Method,” on page 1 provides an

overview of concepts relating to objects and the Object Access Method.
v Chapter 2, “Application program interface for OAM,” on page 9 contains

detailed information about the OSREQ macro and how it is used by application
programs.

v Appendix A, “Sample program for object storage,” on page 55 provides
assembler source code for a sample object storage request interface.

v Appendix B, “Reason codes,” on page 75 provides error descriptions and
recommended responses for OAM return codes and reason codes.

v Appendix C, “Performance considerations and object data reblocking,” on page
83 presents information about the effect of storage requirements, buffering, and
other factors on application performance. This information is provided to help
you with tuning. Tuning information should not be used as a programming
interface.

v Appendix D, “Using the CBRUXSAE installation exit,” on page 85 details how
this exit is used to provide security checking for the OSREQ macro.

v “Glossary” on page 103 defines acronyms, abbreviations, and terms used in this
document.

Required product knowledge
To use this information effectively, you should be familiar with:
v DATABASE 2™ (DB2)
v Syntax diagrams
v z/OS
v Customer Information Control System (CICS)—optional, depending on your

installation
v File systems—optional, depending on your installation
v Information Management System (IMS)—optional, depending on your

installation
v Network File System (NFS)—optional, depending on your installation
v zFS—optional, depending on your installation
v z/OS UNIX—optional, depending on your installation

© Copyright IBM Corp. 1986, 2013 ix

z/OS information
This information explains how z/OS references information in other documents
and on the web.

When possible, this information uses cross-document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS®,
see z/OS Information Roadmap.

To find the complete z/OS library, including the z/OS Information Center, see
z/OS Internet Library (http://www.ibm.com/systems/z/os/zos/bkserv/).

How to read syntax diagrams
There is one basic rule for reading the syntax diagrams: Follow only one line at a
time from the beginning to the end and code everything you encounter on that
line.

The following rules apply to the conventions used in the syntax diagrams for all
the OAM commands:
v Read the syntax diagrams from left to right and from top to bottom.
v Each syntax diagram begins with a double arrowhead (��) and ends with

opposing arrows (��).
v An arrow (─�) at the end of a line indicates that the syntax continues on the next

line. A continuation line begins with an arrow (�─).
v Commands, keywords, and macro invocations are shown in uppercase letters.
v Where you can choose from two or more keywords, the choices are stacked one

above the other. If one choice within the stack lies on the main path, a keyword
is required, and you must choose one. In the following example you must
choose either L, M, or E.

�� L
(M,parameter_list)

,COMPLETE
(E,parameter_list)

,COMPLETE

��

v If a stack is placed below the main path, a keyword is optional, and you can
choose one or none. In the following example, TOKEN, COLLECTN, and
NAME are optional keywords. You can choose any one of the three.

��
COLLECTN
NAME
TOKEN

��

v Where you can choose from two or more keywords and one of the keywords
appears above the main path, that keyword is the default. You may choose one
or the other of the keywords, but if none is entered, the default keyword is
automatically selected. In the following example you may choose either
PRIMARY, BACKUP, or BACKUP2. If none is chosen, PRIMARY is
automatically selected.

x z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

http://www.ibm.com/systems/z/os/zos/bkserv/

��
PRIMARY
BACKUP
BACKUP2

��

v Words or names in italicized, lowercase letters represent information you supply.
The values of these variables may change depending on the items to which they
refer. For example, in the syntax diagram below, collection_name_area refers to the
name of a collection, while collection_name_area_pointer refers to the pointer for
the collection name.

��
COLLECTN= collection_name_area

(collection_name_area_pointer)

��

v You must provide all items enclosed in parentheses (). You must include the
parentheses. In the following example, you must supply the volume serial
number (message_area_pointer) and it must be enclosed in parentheses.

��
MSGAREA= message_area

(message_area_pointer)

��

v The repeat symbol shown below indicates that you can specify keywords and
variables more than once. The repeat symbol appears above the keywords and
variables that can be repeated. For example, when a comma appears in the
repeat symbol, you must separate repeated keywords or variables with a
comma.
In the following example, you may specify the library_name and one or more
system identification numbers (system_id) that are separated by commas. You
must enclose the name of the library and all of the system IDs in parentheses.

��

�

(library_name)
,

, system_id

��

You would code this as follows:
(library_name, system_id, system_id, system_id)

The variable library_name is the name of the library you are working with, and
system_id names three different instances of system identification numbers.

About this book xi

xii z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R1.0 DFSMS OAM Application Programmer's Reference
SC23-6865-00

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/

systems/z/support/).

© Copyright IBM Corp. 1986, 2013 xiii

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xiv z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

Summary of changes

z/OS Version 2 Release 1 summary of changes
See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Planning for Installation

v z/OS Introduction and Release Guide

v z/OS Summary of Message and Interface Changes

v z/OS Migration

© Copyright IBM Corp. 1986, 2013 xv

xvi z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

Chapter 1. Understanding the Object Access Method

The Object Access Method (OAM) is a component of DFSMSdfp, the base for the
z/OS product. OAM uses the concepts of system-managed storage, introduced by
z/OS, which provide functions for data and space management. z/OS offers the
following advantages to its users:
v Facilitates the management of storage growth
v Improves the use of storage space
v Reduces the effort of device conversion and coexistence
v Provides centralized control of external storage
v Exploits the capabilities of available hardware

OAM supports a class of data referred to as objects. An object is a named stream of
bytes. The content, format, and structure of that byte stream are unknown to
OAM. For example, an object can be a compressed scanned image or coded data.
Objects are different from data sets handled by existing access methods. The
characteristics that distinguish them from traditional data sets include:

Lack of record orientation
There is no concept of individual records within an object.

Broad range of size
An object can contain 1 byte or up to 2000 MB (2 097 152 000 bytes) of
data. The maximum object size for the disk and tape levels of the OAM
storage hierarchy is 2000 MB. The maximum object size for the optical
level of the OAM storage hierarchy is 256 MB (268 435 456 bytes).

Volume
Objects are usually much smaller than data sets; however, they are more
numerous and consume vast amounts of external storage.

Varying access-time requirements
Reference patterns for objects change over time or cyclically, allowing less
critical objects to be placed on lower-cost, slower devices or media.

z/OS includes the definition of a storage hierarchy for objects and the parameters
for managing those objects. OAM uses the z/OS-supplied hierarchy definition and
management parameters to place user-accessible objects anywhere in the storage
hierarchy.

The location of an object in the hierarchy is unknown to the user.
Device-dependent information is not required of the user; for example, there are no
JCL DD statements and no considerations for device geometry, such as track size.

OAM provides an application programming interface known as the object storage
request (OSREQ) macro to store, retrieve, delete, query, and change information
about an object. OAM includes the functions necessary to manage the objects after
storing them.

OAM stores objects in collections. A collection is a group of objects that typically
have similar performance characteristics:

CHARACTERISTIC
DESCRIPTION

© Copyright IBM Corp. 1986, 2013 1

Availability
The degree to which a resource is ready when needed.

Backup
A copy of the information that is kept in case the original is changed, lost
or destroyed.

Retention
The default lifetime of an object.

Class transition
An event that can cause the assignment of a new management class,
storage class, or both.

A collection is used to catalog a large number of objects, which, if cataloged
separately, require an extremely large catalog. Every object must be assigned to a
collection. Object names within a collection must be unique; however, the same
object name can be used in multiple collections. A collection can belong to only
one storage group; however, a storage group can have many collections associated
with it.

Understanding OAM components
The functions of OAM are carried out by its three components:
v The Object Storage and Retrieval Function (OSR) stores, retrieves, and deletes

objects. Applications operating in the CICS®, IMS™, TSO, and z/OS
environments use this application programming interface to store, retrieve, and
delete objects, and to modify information about objects. Object Storage and
Retrieval stores the objects in the storage hierarchy and maintains the
information about these objects in DB2® databases.

v The Library Control System (LCS) writes and reads objects on a file system,
tape volumes, or optical disk storage, and manipulates the volumes on which
the objects reside. The LCS controls the hardware resources attached to the
system.

v The OAM Storage Management Component (OSMC) determines where the
objects should be stored, manages object movement within the object storage
hierarchy, and manages expiration attributes based on the installation storage
management policy defined through z/OS.

Establishing a storage management policy
Each installation defines a storage management policy that allows effective object
storage management without requiring user intervention. Through the use of
Interactive Storage Management Facility (ISMF), the storage administrator and
system programmer define an installation storage management policy in an
Storage Management Subsystem (SMS) configuration. OAM then manages object
storage according to the currently active policy.

OAM defines the management policy parameters in the SMS constructs of
management class, storage class, storage group, and data class. The constructs
include the following specifications:
v Object retention rates
v Media on which OAM stores object collections
v Legal requirements for object retention
v Retrieval response time
v Location of object collections in the storage hierarchy
v How long OAM should hold the object collection at that level in the hierarchy

2 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

v Whether you need one or two backup copies of an object
v Media type to which OAM should direct backup copies of objects
v Affiliation of libraries with relevant storage groups

Refer to z/OS DFSMS Using the Interactive Storage Management Facility for general
information on using ISMF. Refer to z/OS DFSMS OAM Planning, Installation, and
Storage Administration Guide for Object Support and z/OS DFSMS OAM Planning,
Installation, and Storage Administration Guide for Tape Libraries for specifics of using
ISMF within tape and optical storage environments to set up the management
policy parameters.

Objects in OAM reside in a storage hierarchy that can include disk (DB2 or file
system), optical volumes, and tape volumes. Optical and tape volumes can be
library-resident or shelf-resident. The primary copies of objects can be stored to
disk (DB2 or file system), optical volumes, or tape volumes; while backup copies of
objects can only be stored to optical or tape volumes. OAM manages the storage
hierarchy at the system level by using SMS management class, storage class,
storage group, and data class constructs. The constructs specify the management
policy parameters that define the performance, retention, and backup requirements.
OAM associates these parameters with every object that it stores. The storage
administrator defines the associations through automatic class selection (ACS)
routines. The constructs are as follows:

Management Class
Defines backup, retention, and class transition characteristics for objects. A
management class contains parameters that define the need for making one
or two backup copies of the object. They also determine the default lifetime
of an object, and an event that can cause the assignment of a new
management class, storage class, or both. OAM uses these parameters to
create one or two backup copies of an object, to delete an object
automatically, and to invoke an automatic class selection (ACS) routine
when the specified transition event occurs. An ACS routine defines the
management policy for a collection based on a combination of these
constructs.

Storage Class
Defines the level of service for an object, which is independent of the
physical device or medium that contains the object. A storage class
contains parameters that define performance characteristics and availability
requirements for an object. OAM uses these parameters to determine
where to place objects in the storage hierarchy (disk sublevel 1 (DB2), disk
sublevel 2 (file system), optical, tape sublevel 1, or tape sublevel 2).

Storage Group
Allows the user to define a storage hierarchy and to manage that hierarchy
as if it were one large storage area. You may assign a first and a second
Object Backup storage group to a specific Object storage group, or to all
Object storage groups, by including SETOSMC statements in the
CBROAMxx parmlib member. For more information on multiple object
backup specification and the SETOSMC command, refer to z/OS DFSMS
OAM Planning, Installation, and Storage Administration Guide for Object
Support.

Data Class
Defines tape-related information for scratch tape volumes that are allocated
for OAM objects. The information defined by the data class includes the
retention period, tape expiration date, tape compaction, recording
technology, and media type.

Chapter 1. Understanding the Object Access Method 3

Note: You must update the data class's ACS routine to ensure that OAM
does not assign a DATACLASS parameter to the OAM object-to-tape data
sets. These data sets are named OAM.PRIMARY.DATA,
OAM.BACKUP.DATA, or OAM.BACKUP2.DATA. You may associate a
DATACLASS with a scratch tape volume through the SETOAM command
of the CBROAMxx parmlib member when the scratch tape volume is
allocated. Allowing the data class's ACS routine to override or change the
DATACLASS value provided by the SETOAM command can cause
unexpected results. This may interfere with the storage management
expectations for the installation. For more information on object-to-tape
support and the SETOAM command, refer to z/OS DFSMS OAM Planning,
Installation, and Storage Administration Guide for Object Support. You should
consider how your application affects the administration of the objects it
stores.

To control the management of an object, assign it to a collection whose
management policy is the same as that required by the new object. There is no
explicit way to tell OAM where to store a particular object.

For more information on z/OS constructs, refer to the z/OS DFSMSdfp Storage
Administration manual.

Understanding the OAM application programming interface
Typically, you want to do more with your files than store, retrieve, and delete
them. You might write application programs to do things like update databases,
pass data between workstations, communicate with peripheral devices, and other
similar functions. See Figure 1 on page 5 for an example of the devices that may be
used. OAM is designed to work with your application programs in the following
environments:
v CICS
v IMS
v MVS™ batch
v TSO

4 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

For your applications to work well with OAM, you must consider OAM data
types, partial object retrieval, DB2, OAM's object identification, management policy
defaults, separating objects, and deletion of objects.

Appendix A, “Sample program for object storage,” on page 55 contains a sample
program that uses the OSREQ macro for object storage and manipulation.

Choosing data types that work well with OAM
OAM is designed to work primarily with object data, although it is not restricted
to that type of data. If your data is of the nontraditional type, is composed of
many dissimilar records, is subject to infrequent updates, and is expected to be
stored for long periods of time, then OAM is a good choice. On the other hand, if
your data is of the traditional data set type, is composed of many similar records,
and is subject to frequent updates, perhaps a different access method, such as the
ICF catalog or another currently supported access method, is a better choice.

Retrieving a partial object
Although OAM does not support a record interface, if you need to store an object
as a single entity and that object contains more than one logical entity, use the
OAM partial object retrieve function to obtain those logical entities. For example, a
drawing is composed of many subassemblies. Storing the subassemblies separately
would take too much disk space for OAM directory information, so they are stored
as one object. The object is stored with control information (including subassembly
identifiers, byte offsets, and lengths) that indicates where a subassembly is located
within the object. Partial object retrieval allows you to read that control
information and to use it to formulate an OAM request to retrieve a specific
subassembly from within the object. Objects greater than 256 megabytes cannot be

Application

Object Storage
and Retrieval

Workstation

Tape Storage
Device

O
b
je

ct
S

to
ra

g
e

Shelf-Resident
Optical Disks/
Tape Cartridges

Optical Storage
Device

Disk (DB2 or file system)

R
9
A

1
O

L
0
2

Figure 1. Example of devices that application may use

Chapter 1. Understanding the Object Access Method 5

retrieved using a single OSREQ Retrieve. To retrieve an object greater than 256
megabytes, the object must be retrieved in pieces using multiple OSREQ Retrieves
specifying the offset and length (maximum length allowed for each piece is 256
megabytes).

Coordinating DB2, OAM, and your application
OAM uses DB2 databases to contain descriptive information about every object
that is stored. OAM does not commit the descriptive information written to that
DB2 database; the application using OAM must perform that function. This allows
the transaction to correlate and synchronize OAM’s activity with other activity in
the application (for example, synchronization of an application’s and OAM’s
permanent database changes, or alternatively, synchronization of backing out of
those changes).

Note: When objects are stored directly to the file system sublevel from an
application program the application must perform the DB2 “commit” within 24
hours of storing the object. Failure to do this will ultimately result in loss of object
data stored in the file system.

Another example is an application transaction to perform an object update,
something OAM does not support. That is, an object can be retrieved using OAM,
updated by the application, original version deleted by OAM, new version stored
by OAM with the original name, then committed as a permanent change by the
application when it is satisfied with the results. If the application is not satisfied
with the results, it has the option of preserving the original object by backing out
all of the changes made by OAM up to that point.

Coordinating your application with OAM’s object identification
OAM uses two-level naming: an object name and a collection name. Once you
define a collection, give it a name, and establish its management policy, you can
add objects to the collection by using the collection name as part of the object
name, thus assigning the management policy to the new object.

The names you choose for collections and objects are important because normally
objects associated with a particular collection are managed by the management
policies for that collection. If you choose to store an object into a collection that has
been previously established, the object will be managed according to the
collection's management policies unless you specifically override those policies for
the object. Likewise, if you choose an object name that assigns the new object to a
previously defined collection, the new object is managed according to the
previously defined collection’s management policy. Before coding an application,
you should consult your installation’s storage administrator for a naming
convention for your application.

Overriding management policy defaults
You will probably be storing several types of data that have different performance
objectives and different management criteria. Some of your stored objects may
need faster access time than others, and some may need backup copies, but others
may not. Place objects that have differing characteristics in different collections. If
the number of objects that differ is small, instead of creating a new collection,
consider overriding the defaults by using explicit class names on the interface to
OAM. Refer to “Processing a store to an existing collection” on page 25.

6 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

Separating objects
OAM records descriptive information about each object that is stored. If your
application stores a large number of objects, the amount of descriptive information
can become excessive, causing performance degradation. OAM does not separate
any descriptive information for objects in the same collection. It may separate
descriptive information for objects in different collections, making it possible to
improve performance by reducing the size of the accumulated descriptive
information.

If you decide to separate one set of objects from another set, place them in
different collections within the storage group. To ensure that collections remain
separate, assign them to separate storage groups. System variables, including ACS
routines, determine physical separation of objects. The number of objects your
application stores may lead to your decision to separate objects by collections.

Deleting objects
Your application design need not include explicit deletion of objects. The
management class associated with an object can specify that the object is to be
deleted after some time has elapsed. If your application keeps information about
objects (for example, their names) in a repository, you should consider
synchronizing the maintenance of that information with the automatic deletion of
objects. For more information on the Auto Delete installation exit for deleting
objects, refer to the z/OS DFSMS OAM Planning, Installation, and Storage
Administration Guide for Object Support.

Chapter 1. Understanding the Object Access Method 7

8 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

Chapter 2. Application program interface for OAM

The Object Access Method provides the object storage request macro (OSREQ) as
an application program interface for storing and retrieving objects. Object storage
requests can also return information (attributes) about specific objects, change
attributes of specific objects, and delete objects from storage.

Using the OSREQ macro
The OSREQ macro is the application program interface to OAM and is located in
the SYS1.MACLIB macro library. IBM High Level Assembler (HLASM) is required
to assemble this macro. For a list of books that contain more information about
HLSAM, see “About this book” on page ix.

See Appendix C, “Performance considerations and object data reblocking,” on page
83 for performance considerations to take into account when writing your
application program that interfaces with the OSREQ macro.

See Appendix D, “Using the CBRUXSAE installation exit,” on page 85 for
information on and a sample of the CBRUXSAE security authorization installation
exit that is used at the OSREQ macro level.

What you can do with OSREQ
The OSREQ macro permits the caller to request the following OAM functions:

Function
Description

Access
Establishes resources common to a set of OAM requests. Returns a token
that must be specified with all other requests associated with this set.

Change
Changes an object’s directory entry reference to management class, storage
class, and/or the expiration date, subject to the approval of the ACS
routines. It is also used to change an object's deletion-hold status and to
inform OAM of an external event trigger expiration criteria for an object in
event-based-retention mode.

Delete Removes an object’s directory information and frees all reusable resources
allocated to the object.

Query Interrogates the object directory and returns information describing objects
within the storage system. Specific and generic (wild card) queries are
permitted.

Retrieve
Locates the requested object and returns the entire object or the specified
portion of it in the virtual storage buffer provided by the caller.

Store Records an object’s management criteria, object storage location, and other
information in an object directory. Places the new object into the object
storage hierarchy at a specific hierarchy level based on the storage class.

© Copyright IBM Corp. 1986, 2013 9

Use Store for objects less than or equal to 256 megabytes. Use the Store
Sequence functions (Storebeg, Storeprt, and Storeend) for storing objects
greater than 256 megabytes.

Storebeg
Begins the Store Sequence processing of an object. Store Sequence
processing can be used for an object whose total size is greater than 50
megabytes that is to be written to disk or tape (but not to optical). Store
Sequence processing must be used for storing objects greater than 256
megabytes. See “Adding objects to the object storage hierarchy” on page 21
and “STOREBEG—Beginning a Store Sequence operation” on page 25 for
more information.

Storeprt
Stores the next sequential contiguous part of an object being stored with
Store Sequence processing. See “Adding objects to the object storage
hierarchy” on page 21 and “STOREPRT—Storing an individual part in a
Store Sequence operation” on page 27 for more information.

Storeend
Ends the Store Sequence processing of an object, either to complete the
storage of the object or to effectively cancel the storage of the object. See
“Adding objects to the object storage hierarchy” on page 21 and
“STOREEND—Ending a Store Sequence operation” on page 29 for more
information.

Unaccess
Frees the resources obtained with an OSREQ ACCESS request. The token
cannot be used after the UNACCESS invocation.

“Implementing the functions” on page 11 contains detailed descriptions of the
functions and their corresponding syntax diagrams.

Choosing the form
OSREQ is available in three forms, summarized in the following list:

MACRO FORM
DESCRIPTION

List (MF=L)
Generates a parameter list that can be used with the other forms of the
macro.

Modify (MF=M)
Updates the parameter list with new parameters (specified when the
modify form is invoked).

Execute (MF=E)
Initiates execution of the actual object request; also updates the parameter
list if new parameters are specified when the execute form is invoked.

Each form supports a variety of functions. These functions are described in “What
you can do with OSREQ” on page 9. Subsequent sections present detailed
information about coding and invoking the macro to perform these functions. Use
of the OSREQ macro must take into consideration both the programming language
techniques and the environment in which the program executes. These issues are
discussed in “Usage considerations” on page 40.

10 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

Getting the code right
The following list summarizes general guidelines for coding the OSREQ macro:
v The OSREQ macro uses only one positional parameter: function. This parameter

is always required.
v To invoke OAM functions, the OSREQ macro execute form is always necessary.

It must be coded in one of the following ways:
– MF=(E,parameter_list)
– MF=(E,parameter_list,COMPLETE)

where parameter_list identifies a parameter list area generated using the list form
of the OSREQ macro. That area may have been modified previously by the
modify form of the OSREQ macro (MF=(M,parameter_list)).

Note: Use either the actual generated list or a copy of it.
The execute form updates the parameter list area with any parameter values
supplied and calls OAM.
When you specify COMPLETE, the parameter list is zeroed, and nonzero
defaults are set before any supplied parameter values are applied.

v Some parameters must be supplied from one or more of the following sources:
List form
Modify form
Execute form

Parameters must be encoded at least once and must be provided for every
invocation of the macro; however, it may not be necessary to explicitly code each
parameter for each invocation within an application.

v The following keyword parameters are optional for all OSREQ macro functions,
but if specified, are used by all functions:

MSGAREA
RETCODE
REACODE

v The object name that is specified in the name keywords must be fully qualified.
Fully qualified names are described in the explanations of the COLLECTN and
NAME parameters. See “OSREQ keyword parameter descriptions” on page 31
for descriptions of these and all other OSREQ function parameters.

Note: The name parameter does not have to be fully qualified when it is used
with the QUERY function. Generic names in which the lowest level qualifier of
the object name may end in an asterisk are also acceptable.

v Keyword parameters that are not specified in the syntax diagram for a function
may be included with that function. The keyword value pointers are established
or updated, but the keyword values that are not related to the function are
ignored.

Implementing the functions
The following alphabetical listing includes the functions that you can perform with
the OSREQ macro and instructions for implementing them. A syntax diagram is
included with each function. For instructions on reading the syntax diagrams, see
“How to read syntax diagrams” on page x. For an explanation of the keyword
parameters used in the syntax diagrams, see “OSREQ keyword parameter
descriptions” on page 31.
v “ACCESS—Initializing the OSREQ interface” on page 12
v “CHANGE—Changing an object's management characteristics” on page 13

Chapter 2. Application program interface for OAM 11

v “DELETE—Deleting an existing object” on page 16
v “QUERY—Obtaining object characteristics” on page 17
v “RETRIEVE—Retrieving an existing object” on page 19
v “STORE function” on page 22
v “STOREBEG—Beginning a Store Sequence operation” on page 25
v “STOREPRT—Storing an individual part in a Store Sequence operation” on page

27
v “STOREEND—Ending a Store Sequence operation” on page 29
v “UNACCESS—Ending the OSREQ interface” on page 30

ACCESS—Initializing the OSREQ interface
The ACCESS function establishes a connection between the caller and OAM. The
caller supplies an eight-byte area identified by the TOKEN parameter. ACCESS
stores a token into this area. The token set by ACCESS must be specified on all
other OSREQ calls. A successful OSREQ ACCESS request must precede any other
type of OSREQ request. The syntax diagram for the OSREQ ACCESS function
follows.

Syntax for OSREQ ACCESS

�� OSREQ ACCESS MF= L
(M,parameter_list)

,COMPLETE
(E,parameter_list)

,COMPLETE

�

�
(1)

TOKEN = token_area
(token_area_pointer)

�

�
(2)

IADDRESS = SQL_interface_module_address
(SQL_interface_module_pointer)

�

�
MSGAREA= message_area

(message_area_pointer)

�

�
RETCODE= return_code

(return_code_pointer)

�

�
REACODE= reason_code

(reason_code_pointer)

�

�
TTOKEN= tracking_token

(tracking_token_pointer)

��

Notes:

1 This keyword must be specified on at least one of the forms if the MF=E does
not indicate COMPLETE.

12 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

2 This keyword indicates that a connection to DB2 already exists.

The OSREQ ACCESS function establishes the environmentally-dependent resources
needed for other OSREQ function processing in the address space. In environments
other than CICS or under the DSN command processor, the DB2 call attachment
facility (CAF) is used to establish a connection and open thread between the
application unit of work (task) and DB2. This allows for efficient database
processing and synchronization of database activities by the application. An
exception to this DB2 connection is when the IADDRESS parameter is specified,
which is further described below.

In the CICS and DSN command processor environments, the ACCESS function
assumes a connection and open thread to DB2 already exists, so CAF services are
not needed.

In environments where a connection and open thread to DB2 already exist, but the
ACCESS function cannot detect this condition (for example, IMS), the IADDRESS=
keyword must be used to specify the structured query language (SQL) interface
module entry point address. This address will be used for all SQL processing in
the other OSREQ functions. See Table 1 for the effects of the IADDRESS parameter
when used in various processing environments.

Table 1. IADDRESS parameter effects in various processing environments

PROCESSING
ENVIRONMENT

IADDRESS PARAMETER

SPECIFIED NOT SPECIFIED

IMS USED CAF ERROR

MVS BATCH USED* CAF SUCCESS

CICS IGNORED N/A

DSN Command Processor IGNORED N/A

TSO USED* CAF SUCCESS

Note: *If the DB2 CONNECT is not done by the application, a DB2 CONNECT and
COMMIT will be done for each SQL CALL.

Note: Environments or invocations other than those listed in Table 1 have not been
tested by IBM and the results may be unpredictable. An example of an untested,
unpredictable environment would be the DB2 Stored procedure environment.

To limit the scope of database activities synchronized by the application, each
application should issue its own ACCESS. The application must observe the DB2
restrictions regarding multiple threads from a single task as described in the IBM
Information Management Software for z/OS Solutions Information Center.

When the calling program no longer requires OSREQ services, it issues the OSREQ
UNACCESS request. This clears the token contents. The token cannot be used after
OSREQ UNACCESS is issued.

CHANGE—Changing an object's management characteristics
The CHANGE function is used to alter the storage class, management class, or
retention period for previously stored objects. A new storage class name, a new
management class name, or a new retention period can be specified. Any
combination is valid. The specified change is made to the object directory table
immediately. The syntax diagram for the OSREQ CHANGE function follows.

Chapter 2. Application program interface for OAM 13

http://publib.boulder.ibm.com/infocenter/imzic
http://publib.boulder.ibm.com/infocenter/imzic

Syntax for OSREQ CHANGE

�� OSREQ CHANGE
MF= L

(M,parameter_list)
,COMPLETE

(E,parameter_list)
,COMPLETE

�

�
(1)

TOKEN = token_area
(token_area_pointer)

�

�
(1)

COLLECTN = collection_name_area
(collection_name_area_pointer)

�

�
(1)

NAME = object_name_area
(object_name_area_pointer)

�

�
(2)

STORCLAS = storage_class_area
(storage_class_area_pointer)

�

�
(2)

MGMTCLAS = management_class_area
(management_class_area_pointer)

�

�
(2)

RETPD = retention_period
(retention_period_pointer)

(3)
EVENTEXP = number_of_days

(number_of_days_pointer)

�

�
(4)

DELHOLD = HOLD
(NOHOLD)

MSGAREA= message_area
(message_area_pointer)

�

�
RETCODE= return_code

(return_code_pointer)

�

�
REACODE= reason_code

(reason_code_pointer)

�

�
TTOKEN= tracking_token

(tracking_token_pointer)

��

14 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

Notes:

1 These keyword parameters must be specified on at least one of the forms if
the MF=E does not indicate COMPLETE.

2 These keyword parameters result in object's pending action date set to current
date.

3 The EVENTEXP keyword cannot be issued in the same statement as the
RETPD keyword. Also, EVENTEXP is valid only if the object is in
event-based-retention mode (for example: the expiration date is 0002-02-02 as
a result of RETPD=-2 (X'FFFFFFFE') being specified on a previous STORE or
CHANGE request). If EVENTEXP is specified on a CHANGE request when
the expiration date is anything other than 0002-02-02, the CHANGE request
fails.

4 The DELHOLD keyword issued without any type (2) keywords will not
result in ACS routines run or pending action date set.

As a result of an OSREQ CHANGE, the last referenced date and pending action
date of an object are updated to the current date. Because the pending action date
is updated, changed objects are scheduled for action during the next storage
management cycle. During that cycle, an object may be placed in a different level
of the object storage hierarchy to meet a new performance objective. Thus, a new
storage class assignment becomes effective during that storage management cycle.

If storage class is specified without management class, the ACS routines either
confirm or override the requested storage class assignment. The resulting storage
class assignment may be the previously assigned storage class, the requested
storage class, or another storage class as determined by the ACS routines. After
determining the storage class, the ACS routines determine whether a change in
management class is also needed.

If storage class and management class are both specified, first the ACS routines
either confirm or override the requested storage class assignment and then process
the management class. In a method similar to storage class processing, the ACS
routines either confirm or override the requested management class assignment.
The resulting management class assignment may be the previously assigned
management class, the requested management class, or another management class
determined by the ACS routines.

If management class is specified without storage class, the ACS routines either
confirm or override the requested management class assignment, resulting in
assignment of the previous management class, the requested management class, or
another management class. The storage class is not affected.

The new management class values obtained through ACS routine processing
become the basis for retention period processing.

If the RETPD parameter is specified, a new expiration date is calculated as follows:
v If the object's management class retention limit is zero, the expiration date is not

changed unless one of the following conditions is met:
– RETPD was set to -1 (X'FFFFFFFF'), in which case the expiration date is set to

the reserved value '0001–01–01' and the expiration date for the object is then
based solely on the object's management class expiration attributes.

– RETPD was set to -2 (X'FFFFFFFE'), in which case the expiration date is set to
the reserved value '0002–02–02' and the expiration date for the object is

Chapter 2. Application program interface for OAM 15

dependent on receipt of notification of an external event by an OSREQ
CHANGE that includes the EVENTEXP keyword.

v If RETPD is specified but it is greater than the object’s management class
retention limit, the expiration date is set to the creation date of the object plus
the object’s management class retention limit.

Note: Special rules apply for retention-protected objects. See “Expiration date
processing” on page 44 to see the rules in more detail.

v If a RETPD of X'7FFFFFFF' (2 147 483 647) is specified (requesting that the
object never expire) and the management class retention limit is NOLIMIT, the
expiration date is set to ‘9999-12-31’.

v If RETPD is specified, the RETPD value is in the range of 1 to 93 000, and none
of the preceding conditions apply, expiration date is set to the creation date of
the object plus the number of days specified in the RETPD.

v If RETPD is not specified or is specified as 0 on the OSREQ invocation, then the
expiration date is not changed (see Table 2 on page 45).

If the EVENTEXP parameter is specified, a new expiration date is calculated using
one of the following two formulas. The formula used is the one that produces the
earliest expiration date.
v Today + the number of days specified with the EVENTEXP keyword
v The object's creation date + the maximum retention limit for the object's

management class.

If the object is retention-protected and the retention date (contained in ODRETDT
in the object directory) is later than the expiration date determined by these
formulas, then the expiration date is set to the retention date.

See “Expiration date processing” on page 44 for more information.

DELETE—Deleting an existing object
The DELETE function removes an object as identified by the COLLECTN and
NAME parameters from the object storage hierarchy. The directory information for
the object is deleted and all storage used for the object data is released. Primary
object data stored on disk sublevel 1 (DB2), disk sublevel 2 (file system), optical,
tape sublevel 1, or tape sublevel 2, and backup copies of data stored on optical or
tape storage, can no longer be referenced. The syntax diagram for the OSREQ
DELETE function follows. For further information on the OSMC DASD space
management process, refer to z/OS DFSMS OAM Planning, Installation, and Storage
Administration Guide for Object Support.

Note: The object cannot be deleted and the OSREQ DELETE will fail if either of
the following are true:
1. The object is in deletion-hold mode
2. Retention-protection or deletion-protection are enabled and the object's

expiration date is the special value 0002–02–02 or the explicit or calculated
expiration date is later than the current date.

Syntax for OSREQ DELETE

�� OSREQ DELETE MF= L
(M,parameter_list)

,COMPLETE
(E,parameter_list)

,COMPLETE

�

16 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

�
(1)

TOKEN = token_area
(token_area_pointer)

�

�
(1)

COLLECTN = collection_name_area
(collection_name_area_pointer)

�

�
(1)

NAME = object_name_area
(object_name_area_pointer)

�

�
MSGAREA= message_area

(message_area_pointer)

�

�
RETCODE= return_code

(return_code_pointer)

�

�
REACODE= reason_code

(reason_code_pointer)

�

�
TTOKEN= tracking_token

(tracking_token_pointer)

��

Notes:

1 These keywords must be specified on at least one of the forms if the MF=E
does not indicate COMPLETE.

QUERY—Obtaining object characteristics
The QUERY function obtains descriptive information about an object within a
collection. The object information is presented in query element (QEL) format. The
QEL format is described in section “CBRIQEL macro” on page 49.

QUERY searches the directory containing the objects that belong to the collection
name specified in the COLLECTN keyword parameter for a match on the fully
qualified object name specified in the NAME keyword parameter, and returns a
single query element (QE). QUERY also supports a generic search that returns a
QE for each object whose name matches the partially qualified name specified in
the NAME keyword.

Request a generic search by one of the following methods:
1. Substituting an asterisk (*) for the rightmost part of the name (rightmost

qualification level). This indicates that the search request applies to all objects
whose names match the characters to the left of the asterisk. For instance,
MIKES.MAIL.IN is a fully qualified name and results in a single QE when a
match is found. The names MIKES.MAIL.* and MIKES.MAIL.PEL* are generic
forms and can return multiple QEs when multiple objects exist that match the
parts of the names specified. When multiple objects are returned, no ordering
can be assumed.

Chapter 2. Application program interface for OAM 17

2. Substituting one or more percent signs (%) and/or underscores (_) anywhere in
the object name. The percent sign character is interpreted as a wildcard to
replace zero or more characters in the object name. The underscore character
represents a single character. For instance, MIKES.MAIL.IN is a fully qualified
name and results in a single QE when a match is found. The names
MIKES.MAIL.% and MIKES.M%.P_L% are generic forms and can return
multiple QEs when multiple objects exist that match the parts of the names
specified. When multiple objects are returned, no ordering can be assumed.

Note: The two methods for setting up a generic search are mutually exclusive. You
cannot mix asterisk wildcards with either percent sign or underscore wildcards in a
single QUERY request. The generic search is only supported for OSREQ QUERY
requests.

The syntax diagram for the OSREQ QUERY function follows.

Syntax for OSREQ QUERY

�� OSREQ QUERY MF= L
(M,parameter_list)

,COMPLETE
(E,parameter_list)

,COMPLETE

�

�
(1)

TOKEN = token_area
(token_area_pointer)

�

�
(1)

COLLECTN = collection_name_area
(collection_name_area_pointer)

�

�
(1)

NAME = object_name_area
(object_name_area_pointer)

�

�
(2)

QEL = query_list
(query_list_pointer)

�

�
MSGAREA= message_area

(message_area_pointer)

�

�
RETCODE= return_code

(return_code_pointer)

�

�
REACODE= reason_code

(reason_code_pointer)

�

18 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

�
TTOKEN= tracking_token

(tracking_token_pointer)

��

Notes:

1 These keywords must be specified on at least one of the forms if the MF=E
does not indicate COMPLETE.

2 These keywords must be specified on at least one of the forms if the MF=E
does not indicate COMPLETE. For each buffer specified in query_list, the
length of the buffer must be specified. The variable query_list is described in
35.

The output of a QUERY request can be used as input to a RETRIEVE request (see
“RETRIEVE—Retrieving an existing object”).

RETRIEVE—Retrieving an existing object
The RETRIEVE function locates the primary or backup copy of an object as
specified by the COLLECTN, NAME, and VIEW keywords, and returns all or a
specified portion of the object to the caller. Objects greater than 256 megabytes
cannot be retrieved using a single OSREQ Retrieve. To retrieve an object greater
than 256 megabytes, an object must be retrieved in pieces using multiple OSREQ
Retrieves specifying the offset and length (maximum length allowed for each piece
is 256 megabytes). The syntax diagram for the OSREQ RETRIEVE function follows.

Syntax for OSREQ RETRIEVE

�� OSREQ RETRIEVE MF= L
(M,parameter_list)

,COMPLETE
(E,parameter_list)

,COMPLETE

�

�
(1)

TOKEN = token_area
(token_area_pointer)

�

�
(1)

COLLECTN = collection_name_area
(collection_name_area_pointer)

�

�
(1)

NAME = object_name_area
(object_name_area_pointer)

�

�
(2)

BUFLIST = buffer_list
(buffer_list_pointer)

PRIMARY
VIEW= BACKUP

BACKUP2

�

Chapter 2. Application program interface for OAM 19

�
OFFSET= offset_of_starting_byte

(offset_of_starting_byte_pointer)

�

�
LENGTH= number_bytes

(number_bytes_pointer)

�

�
MSGAREA= message_area

(message_area_pointer)

�

�
RETCODE= return_code

(return_code_pointer)

�

�
REACODE= reason_code

(reason_code_pointer)

�

�
RECALL= number_days

(number_days_pointer)

�

�
RETCODE2= return_code2

(return_code2_pointer)

�

�
TTOKEN= tracking_token

(tracking_token_pointer)

��

Notes:

1 These keywords must be specified on at least one of the forms if the MF=E
does not indicate COMPLETE.

2 These keywords must be specified on at least one of the forms if the MF=E
does not indicate COMPLETE. For each buffer specified in buffer_list, the
length of the buffer must be specified. The variable buffer_list is described in
Figure 3 on page 47.

If the VIEW=PRIMARY function is requested, the object is copied from its place in
the object storage hierarchy to the requester's virtual storage buffers that are
specified in the BUFLIST keyword. When VIEW=BACKUP is specified, OAM
attempts to retrieve the first backup copy of the object from backup optical or tape.
When VIEW=BACKUP2 is specified, OAM attempts to retrieve the second backup
copy of the object from backup optical or tape. If the specified VIEW function is
requested but no object exists, return and reason codes reflect the error (see
Appendix B, “Reason codes,” on page 75) and no data is retrieved into the user's
buffers.

You may retrieve a copy of the entire object (PRIMARY, BACKUP, or BACKUP2).
Alternatively, you may retrieve a specified portion of the object, as defined by the
OFFSET and LENGTH keywords. With adequate buffer space supplied by the
application, RETRIEVE returns the entire object (or requested portion). If any
errors occur during RETRIEVE processing, the buffer contents are invalid.

20 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

The RETRIEVE function can use the output from a successful OSREQ QUERY
request by using the collection name length field (QELQECNL) as the parameter
for the COLLECTN keyword, the object name length field (QELQEONL) as the
parameter for the NAME keyword, and by supplying an input buffer of the size
noted by object size (QELQEOS).

If you do not specify UPD=N on the CBRINIT statement in the IEFSSNxx parmlib
member that is used during IPL, the last referenced date and pending action date
of a retrieved object are updated to the current date. This schedules the retrieved
objects for action during the next storage management cycle. During that cycle,
objects may be placed in a different level in the storage hierarchy to meet new
performance objectives, or the objects may not need any processing other than
resetting their pending action dates.

If OAM cannot successfully retrieve the object and one or more backup copies
exist, the application can use OSREQ RETRIEVE with VIEW=BACKUP or
VIEW=BACKUP2 to retrieve the appropriate backup copy. The storage
administrator may activate the automatic access backup function to obtain a
backup copy of an object when the primary copy of the object is resident on
removable media that is unreadable due to disaster or damage. See the z/OS
DFSMS OAM Planning, Installation, and Storage Administration Guide for Object
Support for more information on automatic access backup.

The RECALL keyword can be used to explicitly recall a full copy of an object from
removable media to DB2 for the specified number of days at the time the object is
retrieved. This can result in improved performance for subsequent retrieves of this
object. Refer to z/OS DFSMS OAM Planning, Installation, and Storage Administration
Guide for Object Support for more information on explicit and implicit recalls.

Upon successful completion of object recovery, you can use OSREQ RETRIEVE to
retrieve the primary copy of the object.

Adding objects to the object storage hierarchy
OAM provides these functions for adding objects to the object storage hierarchy:

STORE function
STORE can be used for objects whose size is less than or equal to 256
megabytes that are to be written to the disk, tape, or optical levels of the
storage hierarchy. STORE processing requires that the entire object be kept
in storage. See “STORE function” on page 22 for more information.

Store Sequence functions
Store Sequence can be used for objects whose size is greater than 50
megabytes that are to be written to the disk or tape (but not optical) levels
of the storage hierarchy. Store Sequence processing handles objects in
smaller chunks, rather than having the entire object in storage (as required
by STORE processing), which can reduce the storage requirements for an
application. See “STOREBEG—Beginning a Store Sequence operation” on
page 25, “STOREPRT—Storing an individual part in a Store Sequence
operation” on page 27, and “STOREEND—Ending a Store Sequence
operation” on page 29 for more information.

The Store Sequence functions must be used when writing objects whose size is
greater than 256 megabytes to disk or tape.

Chapter 2. Application program interface for OAM 21

Objects whose size is greater than 50 megabytes and less than or equal to 256
megabytes can be written to disk or tape using either the STORE function or Store
Sequence functions, thus providing flexibility when storing such objects.

When storing objects to DB2, Store Sequence processing always writes the objects
to a LOB table. If LOB=N is specified on the OAM1 entry in the IEFSSNxx parmlib
member, or if a LOB storage structure does not exist for the target object storage
group, then an attempt to do a Store Sequence to DB2 will fail.

STORE function
The STORE function adds a complete and unique object to the object storage
hierarchy. The application may specify a storage class name, management class
name, and retention period, and must specify a collection name and object name.
The syntax diagram for the OSREQ STORE function follows. Use STORE for
objects less than or equal to 256 megabytes. See the store sequence functions
STOREBEG, STOREPRT, and STOREEND for storing objects greater than 256
megabytes.

Objects are stored on an object storage device based on storage class. For more
information concerning the selection of media for object storage, refer to z/OS
DFSMS OAM Planning, Installation, and Storage Administration Guide for Object
Support.

The number of bytes specified in the SIZE parameter are written to an object
storage device from the buffers specified in the BUFLIST parameter. Objects are
removed from the object storage hierarchy based on management class expiration
attributes or after their expiration date.

When an object is stored, OAM sets the following date-related fields in the
directory entry:
v Set the date last referenced in the object directory to ‘0001-01-01’, which is a

reserved value that means that the object has not been referenced yet.
v Set the expiration date:

– If RETPD is not specified on the OSREQ request, the expiration date is set to
the reserved value ‘0001-01-01’. The expiration date for the object is then
based solely on the object’s management class expiration attributes.

– If RETPD is set to -2 (X'FFFFFFFE'), the expiration date is set to special value
'0002–02–02'. The object is considered in event-based-retention mode and the
expiration date for the object will be derived when an OSREQ CHANGE
request with the EVENTEXP keyword is received for this object. See Table 2
on page 45.

– If the object's management class retention limit is zero or if the retention
period is 0 or -1, the expiration date is set to the reserved value ‘0001-01-01’
(see Table 2 on page 45 for more information).

– If RETPD is specified but it is greater than the object's management class
retention limit, the expiration date is set to the creation date of the object plus
the object's management class retention limit.

– If a RETPD of X'7FFFFFFF' (2 147 483 647) is specified (requesting that the
object never expire) and the management class retention limit is NOLIMIT,
the expiration date is set to ‘9999-12-31’.

– If RETPD is specified, the RETPD value is in the range of 1 to 93 000, and
none of these conditions apply, expiration date is set to the creation date of
the object plus the number of days specified in the RETPD.

22 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

See “Expiration date processing” on page 44 for more information.
v Set the creation timestamp to the current date/timestamp.
v Set the pending action date to the current date so that the object is selected for

processing during the next storage management cycle.
v Set the management class assignment date to the current date.
v Set the retention date:

– If retention-protection is not enabled for the object's storage group or RETPD
is -2 (X'FFFFFFFE'), the retention date is set to the reserved value '0001–01–01'.

– If retention-protection is enabled for the object's storage group and the
expiration date is set to special value '0001–01–01', the retention date is set to
a value determined by the expiration date rules of the object's management
class.

– If retention-protection is enabled for the object's storage group and expiration
date is set to any value other than '0001–01–01' or '0002–02–02', the retention
date is set to the same value as the expiration date.

Syntax for OSREQ STORE

�� OSREQ STORE MF= L
(M,parameter_list)

,COMPLETE
(E,parameter_list)

,COMPLETE

�

�
(1)

TOKEN = token_area
(token_area_pointer)

�

�
(1)

COLLECTN = collection_name_area
(collection_name_area_pointer)

�

�
(1)

NAME = object_name_area
(object_name_area_pointer)

�

�
(2)

BUFLIST = buffer_list
(buffer_list_pointer)

�

�
(1)

SIZE = object_byte
(object_byte_pointer)

NO
RELBUF= YES

�

�
STORCLAS= storage_class_area

(storage_class_area_pointer)

�

Chapter 2. Application program interface for OAM 23

�
MGMTCLAS= management_class_area

(management_class_area_pointer)

�

�
RETPD= retention_period

(retention_period_pointer)

�

�
MSGAREA= message_area

(message_area_pointer)

�

�
RETCODE= return_code

(return_code_pointer)

�

�
REACODE= reason_code

(reason_code_pointer)

�

�
TTOKEN= tracking_token

(tracking_token_pointer)

�

�
RETCODE2= return_code2

(return_code2_pointer)
(3)

DELHOLD = HOLD
(NOHOLD)

��

Notes:

1 These keywords must be specified on at least one of the forms if the MF=E
does not indicate COMPLETE.

2 These keywords must be specified on at least one of the forms if the MF=E
does not indicate COMPLETE. For each buffer specified in buffer_list, the
length of the buffer must be specified. The buffer_list variable is described in
Figure 3 on page 47.

3 If DELHOLD is not specified, the default value is DELHOLD=NOHOLD.

Processing a store to a new collection
The following section describes new collection processing for an OSREQ Store type
request which includes an OSREQ STORE request as previously described and the
OSREQ STOREBEG request as described later.

If the OSREQ Store request specifies a new collection name, an MVS catalog entry
is created for the collection. The MVS catalog entry contains the names of the
management class and storage class to be used as default assignments for objects
added to the collection. The management class and storage class names are
determined by the ACS routines as follows:
v If storage class and management class names are not specified in the OSREQ

Store request, the ACS routines determine the storage class and management
class names to be used as the default assignments for the collection.

v If storage class and management class are specified in the OSREQ Store request,
the names are provided to the ACS routines, which either confirms or overrides
the assignments as the default storage class and management class assignments
for the collection.

24 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

v If storage class is specified without management class, the storage class name is
provided to the ACS routines, which either confirms or overrides the
assignment, and then determines the default management class assignment for
the collection.

v If management class is specified without storage class, the ACS routines
determines the default storage class assignment. The management class name is
provided to the ACS routines, which either confirms or overrides the
management class assignment.

Processing a store to an existing collection
The following section describes existing collection processing for an OSREQ Store
type request that includes an OSREQ STORE request as previously described and
the OSREQ STOREBEG request as described later.

If the STORE function is requested for an existing collection name or is requested
after the new collection name MVS catalog entry has been defined, the actual
storing of the object is completed. The initial storage class and management class
assignments are stored in the directory entry created for the object. The initial class
assignments are determined as follows:
v If the management class and storage class are not specified on the OSREQ Store

request, the default assignments contained in the MVS catalog entry for the
collection are used as the assignments for the object.

v If management class and storage class are specified in the OSREQ Store request,
the names are provided to the ACS routines, which either confirm or override
the assignments as the initial storage class and management class assignments
for the object.

v If storage class is specified without management class, the storage class name is
provided to the ACS routines, which either confirms or overrides the
assignment, and then determines the initial management class assignment for
the object.

v If management class is specified without storage class, the ACS routines
determine the initial storage class assignment. The management class name is
provided to the ACS routines, which either confirms or overrides the
management class assignment.

STOREBEG—Beginning a Store Sequence operation
A Store Sequence operation begins with STOREBEG, which provides much of the
same information that is provided on a STORE. See the description of OSREQ
STORE for the description of keyword parameters. For STOREBEG, no buffers with
object data are provided and therefore no keyword parameters related to these
buffers are allowed. A store token (STOKEN) is provided as an output so an area
to return this new store token must be provided. This store token must be
provided on the subsequent STOREPRT and STOREEND functions. The size
specified on STOREBEG is the total object size, which is required for OAM to
acquire resources necessary to store the complete object. STOREBEG, STOREPRT
and STOREEND cannot be used for objects less than or equal to 50 megabytes, nor
can they be used for optical volumes.. Every STOREBEG request must have a
corresponding STOREEND request.

Also see “Processing a store to a new collection” on page 24 and “Processing a
store to an existing collection.” Note that during a store sequence, collection related
processing is only performed for the OSREQ STOREBEG request and there is no
additional interaction with the MVS catalog or ACS routines during OSREQ

Chapter 2. Application program interface for OAM 25

STOREPRT or OSREQ STOREEND requests.

Syntax for OSREQ STOREBEG

�� OSREQ STOREBEG MF= L
(M,parameter_list)

,COMPLETE
(E,parameter_list)

,COMPLETE

�

�
(1)

TOKEN = token_area
(token_area_pointer)

�

�
(1)

STOKEN = store_token
(store_token_pointer)

�

�
(1)

COLLECTN = collection_name_area
(collection_name_area_pointer)

�

STOREBEG

STOREPRT

Catalog

Collection

ACDS

ACS
Routines

Read existing collection (if it exists)

Possibly invoke ACS routines for collection and/or object

Possibly read ACS routine results for collection and/or object

Allocate resources for complete object

Temporarily store each individual part of the object

Free resources for complete object

Possibly create collection (if it does not exist)

File System

or

DB2

or

or

Write total object
to destination

Update object
directory

Object Directory

STOREEND

TapeDisk

2

3

1

3a

3a

3b

3c

Figure 2. Conceptual view of a Store Sequence operation

26 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

�
(1)

NAME = object_name_area
(object_name_area_pointer)

�

�
(1) (2)

SIZE = object_byte
(object_byte_pointer)

�

�
STORCLAS= storage_class_area

(storage_class_area_pointer)

�

�
MGMTCLAS= management_class_area

(management_class_area_pointer)

�

�
RETPD= retention_period

(retention_period_pointer)

�

�
MSGAREA= message_area

(message_area_pointer)

�

�
RETCODE= return_code

(return_code_pointer)

�

�
REACODE= reason_code

(reason_code_pointer)

�

�
TTOKEN= tracking_token

(tracking_token_pointer)

�

�
STIMEOUT= stimeout

(stimeout_pointer)
(3)

DELHOLD = HOLD
(NOHOLD)

��

Notes:

1 These keywords are required and therefore they must be specified on the
MF=E form if it indicates COMPLETE or they must be specified on at least
one of the forms if the MF=E does not indicate COMPLETE.

2 The size specified must be the exact total size of the object.

3 If DELHOLD is not specified, the default value is DELHOLD=NOHOLD.

STOREPRT—Storing an individual part in a Store Sequence
operation

Use one or more STOREPRT requests to store each individual part of the object
following the prerequisite STOREBEG. For each STOREPRT, you must provide the
store token that OAM uses to obtain information about this particular store request
initiated with STOREBEG. You must specify the OFFSET where this part of the
object is to be stored; for the first STOREPRT this offset must be 0 and for each

Chapter 2. Application program interface for OAM 27

subsequent STOREPRT, this offset must be the next byte following the previously
stored part. Each part of the object therefore must be stored contiguously, in order,
with no overlapping from beginning to end. The SIZE specified on STOREPRT
indicates the size of the part of the object that is being stored. Note that this part of
the object should be contained in either a single buffer or multiple contiguous
buffers. It is suggested that the object be stored in as few parts as possible, because
of the overhead involved in individually storing each part of the object. The
minimum size for each part is 1 megabyte (1,048,576), except for the last part of the
object. STOREBEG, STOREPRT and STOREEND cannot be used for objects with a
total size less than or equal to 50 megabytes.

Syntax for OSREQ STOREPRT

�� OSREQ STOREPRT MF= L
(M,parameter_list)

,COMPLETE
(E,parameter_list)

,COMPLETE

�

�
(1)

TOKEN = token_area
(token_area_pointer)

�

�
(1)

STOKEN = store_token
(store_token_pointer)

�

�
(1) (2)

SIZE = object_byte
(object_byte_pointer)

�

�
(1) (3)

OFFSET = offset_of_starting_byte
(offset_of_starting_byte_pointer)

�

�
(1) (4)

BUFLIST = buffer_list
(buffer_list_pointer)

RELBUF= YES
NO

�

�
MSGAREA= message_area

(message_area_pointer)

�

�
RETCODE= return_code

(return_code_pointer)

�

�
REACODE= reason_code

(reason_code_pointer)

�

28 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

�
TTOKEN= tracking_token

(tracking_token_pointer)

��

Notes:

1 These keywords are required and therefore they must be specified on the
MF=E form if it indicates COMPLETE or they must be specified on at least
one of the forms if the MF=E does not indicate COMPLETE.

2 The size specified must be the size of just this part of the object being stored.

3 The offset must be zero for the first part stored for the object, and for each
subsequent store you must identify the offset of the next byte immediately
following the previous part stored for the object (that is, the sum of the offset
and size for the previous part stored).

4 The buffers provided must be contiguous and it is recommended that the
amount of object data provided on each STOREPRT is maximized to
minimize the number of individual STOREPRT requests.

STOREEND—Ending a Store Sequence operation
The STOREEND request follows a prerequisite STOREBEG request and typically
one or more STOREPRT requests, and is required to complete the storage of the
object. Every STOREBEG request must have a corresponding STOREEND request.
For STOREEND, you must provide the store token that OAM uses to obtain
information about this particular store request that was initiated with STOREBEG.
The SIZE specified on STOREEND confirms the total size of the object to be stored,
and is compared with the total object size specified on STOREBEG and with the
object data that OAM has received with previous STOREPRT requests. The sum of
the sizes of all parts stored with STOREPRT must equal the total storage size
specified on STOREBEG. The SIZE keyword is ignored if CANCEL=YES is
supplied. STOREBEG, STOREPRT and STOREEND cannot be used for objects less
than or equal to 50 megabytes.

Syntax for OSREQ STOREEND

�� OSREQ STOREEND MF= L
(M,parameter_list)

,COMPLETE
(E,parameter_list)

,COMPLETE

�

�
(1)

TOKEN = token_area
(token_area_pointer)

�

�
(1)

STOKEN = store_token
(store_token_pointer)

�

�
(1) (2)

SIZE = object_byte
(object_byte_pointer)

CANCEL= YES
NO

�

Chapter 2. Application program interface for OAM 29

�
MSGAREA= message_area

(message_area_pointer)

�

�
RETCODE= return_code

(return_code_pointer)

�

�
(3)

RETCODE2 = return_code2
(return_code2_pointer)

�

�
REACODE= reason_code

(reason_code_pointer)

�

�
TTOKEN= tracking_token

(tracking_token_pointer)

��

Notes:

1 These keywords are required and therefore they must be specified on the
MF=E form if it indicates COMPLETE, or they must be specified on at least
one of the forms if the MF=E does not indicate COMPLETE.

2 The size specifies the total size of the object to be stored. Note that when
specifying the total size of the object, it must match the total size specified on
the STOREBEG and that exactly this amount of object data must have been
previously provided with one or more STOREPRT requests for the object to
be stored successfully.

3 If the immediate backup is configured with an optical target, the RETCODE2
keyword will return a value of 16 to indicate the immediate backup copy to
optical is not supported for STOREEND in this release.

UNACCESS—Ending the OSREQ interface
The UNACCESS function ends the connection between the application program
and OAM. When the calling program no longer requires OSREQ services, it must
issue OSREQ UNACCESS. When invoking UNACCESS, the caller supplies an
eight-byte token that has been set by a successful issuance of OSREQ ACCESS.
UNACCESS should not be requested unless the corresponding ACCESS was
successful. An initialized token is required by all OSREQ calls, except ACCESS.
The syntax diagram for the OSREQ UNACCESS function follows.

Syntax for OSREQ UNACCESS

�� OSREQ UNACCESS MF= L
(M,parameter_list)

,COMPLETE
(E,parameter_list)

,COMPLETE

�

30 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

�
(1)

TOKEN = token_area
(token_area_pointer)

�

�
MSGAREA= message_area

(message_area_pointer)

�

�
RETCODE= return_code

(return_code_pointer)

�

�
REACODE= reason_code

(reason_code_pointer)

�

�
TTOKEN= tracking_token

(tracking_token_pointer)

��

Notes:

1 This keyword must be specified on at least one of the forms if the MF=E does
not indicate COMPLETE.

OSREQ UNACCESS does not attempt to end any active requests that are using the
same token, but returns control to the UNACCESS caller with a warning return
code and reason code. When each of the outstanding requests completes, any
further OSREQ requests using that token receive return and reason codes
indicating that the token is no longer valid.

OSREQ keyword parameter descriptions
This section describes the OSREQ macro keyword parameters as they generally
pertain to all operations. The values in parentheses identify a register that contains
the address of the parameter (not applicable when using the OSREQ macro list
form). Restrictions and limitations may apply for some operations, and they are
explained separately under each operation. The keywords are listed alphabetically.

BUFLIST=buffer_list

BUFLIST=(buffer_list_pointer)

buffer_list specifies the name of a variable or expression defining an area that has
the format described by the CBRIBUFL macro. See “CBRIBUFL macro” on page 47.

CANCEL=YES

CANCEL=NO

The CANCEL keyword is used only on a STOREEND request to indicate if the
storage of the object in a store sequence (using functions STOREBEG and
STOREPRT) should be cancelled. CANCEL=NO indicates that this is a normal end
of a store sequence and that the object should be stored to OAM. CANCEL=YES

Chapter 2. Application program interface for OAM 31

indicates that the store sequence should be cancelled, in which case the object is
not stored to OAM and any resources held on behalf of the store sequence are then
freed. CANCEL=NO is the default.

Please note that the SIZE keyword is ignored on STOREEND requests where
CANCEL=YES.

COLLECTN=collection_name_area

COLLECTN=(collection_name_area_pointer)

collection_name_area specifies a variable-length field. This area contains a fully
qualified collection name. The first two bytes specify the number of characters that
follow; the maximum value is the maximum length of a standard MVS data set
name. A name consists of one to 21 parts. Each part is separated from the next part
by a period (X'4B'). Each part must start with an uppercase alphabetic, #, $, or @
character. Each part can contain one to eight uppercase alphanumeric, #, $, or @
characters. Each part of the name after the first period is often referred to as a
qualification level. Any disallowed character causes a parameter error return code
(except for blanks to the right of the name).

DELHOLD=NOHOLD

DELHOLD=HOLD

The DELHOLD parameter indicates whether or not a deletion-hold should be put
on this object. An object cannot be deleted (either by an OSREQ DELETE request
or by OSMC expiration processing) if it has a deletion-hold in effect. The
DELHOLD keyword is only valid on CHANGE, STORE and STOREBEG requests
and is ignored on all other requests. DELHOLD=NOHOLD is the default if
DELHOLD is not specified on a STORE or STOREEND request. However, there is
no default if DELHOLD is not specified on a CHANGE request.

DELHOLD=HOLD indicates that a deletion-hold is in effect for this object.

DELHOLD=NOHOLD indicates that there is not a deletion-hold in effect for this
object.

Note: A DELHOLD=HOLD request for an object that is already in deletion-hold
mode is ignored. Similarly, a DELHOLD=NOHOLD request for an object that is
not in deletion-hold mode is also ignored.

EVENTEXP=number_of_days

EVENTEXP=(number_of_days_pointer)

The EVENTEXP parameter provides a mechanism for the application to inform
OAM that an external event has occurred for an object currently in
event-based-retention mode. Receipt of the EVENTEXP parameter on the OSREQ
CHANGE request starts the clock for expiration processing for this object, and
takes the object out of event-based-retention mode. OAM sets the object's
expiration date as follows.

If specified, number_of_days must be a four byte area containing a value in the
range of 0 to 93 000.

32 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

The expiration date (ODEXPDT) is set to the earlier of the following two dates:
1. the creation date of the object plus the object's management class retention limit
2. today's date + the EVENTEXP value.

For retention-protected objects:
v ODRETDT is set to whichever is later; the newly calculated ODEXPDT or the

current ODRETDT.
v ODEXPDT is set to whichever is later; the ODRETDT or the ODEXPDT.

IADDRESS=SQL_interface_module_address

IADDRESS=(SQL_interface_module_address_pointer)

SQL_interface_module_address specifies the entry point of the address of the DB2 (or
equivalent) SQL interface module. The use of the IADDRESS keyword implies to
the OSREQ interface that the environment is not CICS nor DSN and that the DB2
connection and thread are controlled by the application or by the environment in
which the application is running.

LENGTH=number_bytes

LENGTH=(number_bytes_pointer)

number_bytes specifies a four byte area that indicates how many bytes of the object
are retrieved. It is used with the OFFSET keyword to retrieve part of an object. The
LENGTH keyword is an optional parameter, which is used only on a RETRIEVE
request. It is ignored on all other requests.

If a LENGTH value of zero is specified, or if the LENGTH parameter is omitted on
a RETRIEVE request, the length defaults to the remaining portion of the object
(that is, from the OFFSET to the end of the object). If the length specified is
negative, or greater than the remaining portion of the object, or greater than
268,435,456 bytes, a return code and a reason code indicating the error are
returned; the object is not retrieved.

MF

The MF (macro form) keyword parameter uses several operands to indicate which
form of the macro is to be invoked. The forms and their associated operands are as
follows:
v MF=L

The list macro form generates a parameter list suitable for use with the MF
keyword on the execute and modify forms of the macro. The label position of
the list form of the macro becomes the label of the generated parameter list. The
parameter list is a modifiable area of storage in the caller’s key, 120 bytes in
length.

v MF=(M,parameter_list[,COMPLETE])

The modify macro form updates parameter_list with the other parameters
specified on the macro statement.

v MF=(E,parameter_list[,COMPLETE])

The execute macro form updates parameter_list with the other parameters
specified on the macro statement and initiates execution of the request.

Chapter 2. Application program interface for OAM 33

When you specify COMPLETE, the parameter list is zeroed, and nonzero defaults
are set before any supplied parameter values are applied. In this case, required
parameters that are not specified for the requested function on the MF=E form of
the macro are flagged as errors during assembly of the macro.

Note: Applications that obtain storage explicitly for the OSREQ parameter list,
rather than using the list macro form (MF=L) of the OSREQ macro, must ensure
that they obtain a minimum of 120 bytes. Applications that use the list form
(MF=L) will automatically acquire the 120 byte parameter list in a modifiable area
of storage in the caller's key.

MGMTCLAS=management_class_area

MGMTCLAS=(management_class_area_pointer)

management_class_area specifies a variable-length field containing a two-byte length
field, followed by a variable-length name field containing a name identified to
z/OS as a management class name. The first two bytes specify the number of
characters that follow, not including the length field itself. The length-field value
can be from zero to the maximum length allowed for z/OS management class
names. The name must be left-justified in the name field and can be padded on the
right with blanks. If the length includes trailing blanks, only the name characters
up to the trailing blanks are used. Specifying a length value of zero or filling the
name field with blanks is equivalent to omitting this parameter.

MSGAREA=message_area

MSGAREA=(message_area_pointer)

message_area specifies an optional variable-length message area that contains a
length field followed by a message data area. This message data area is used for
message data that may accompany return codes from DB2. Message data is placed
in the message data area, and any message data that exceeds the available space is
truncated. Within the message area, information is grouped into 72–byte lines.
When displaying the information in the message area, breaking it into 72–byte
segments and displaying one segment per output line will provide the best
readability.

The first two bytes of the message area contain a length value equal to the length
of the message data area immediately following the first two bytes, but not
including the length field itself. The second two-byte field (first two bytes of the
message data area) contains the length of the message data returned, including the
two bytes for the second length field. A suggested initial message area length is
1024 bytes. The minimum value for the message area length is 244 bytes.

Note: Not all errors have corresponding message data.

NAME=object_name_area

NAME=(object_name_area_pointer)

object_name_area specifies a variable-length field. This area contains a fully qualified
object name (except when used in conjunction with the OSREQ QUERY function
which allows the use of generic names). The first two bytes specify the number of
characters that follow; the maximum value is the maximum length of a standard
MVS data set name. A name consists of 1 to 21 parts. Each part is separated from

34 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

the next part by a period (X'4B'). Each part must start with an uppercase
alphabetic, #, $, or @ character. Each part can contain one to eight uppercase
alphanumeric, #, $, or @ characters. Each part of the name after the first period is
often referred to as a qualification level. Any disallowed character causes a
parameter error return code (except for blanks to the right of the name). For an
OSREQ QUERY, one of the following wildcard methods can be used to request a
generic search:
1. Legacy asterisk wildcard

v One asterisk (X'5C') can be substituted for the rightmost characters of the
rightmost part of the name (rightmost qualification level) to indicate that the
search request applies to all objects whose names match the characters to the
left of the asterisk.

Note: Matching objects will be excluded if an additional qualifier to the right
of the asterisk exists. For example, for objects name A.B and A.B.C, a query
using A.* would return only A.B, not A.B.C.

2. New percent and underscore wildcards
v One or more percent signs (X'’6C') can be inserted anywhere in the object

name. The percent sign is interpreted as a wildcard to replace zero or more
characters in the object name.

v One or more underscores (X'6D') can be inserted anywhere in the object
name. The underscore is interpreted as a wildcard to replace a single
character in the object name. The percent/underscore style wildcard uses the
DB2 “LIKE” predicate as described in the DB2 SQL reference. Unlike the
asterisk style, no exclusion will be done for objects having qualifiers to the
right of the wildcard character. For example, for objects A.B and A.B.C, a
query using A.% will return both objects.

OFFSET=offset_of_starting_byte

OFFSET=(offset_of_starting_byte_pointer)

The OFFSET keyword is only used by a RETRIEVE request or a STOREPRT
request and is ignored on all other requests.

For a RETRIEVE request, offset_of_starting_byte is a four byte area that specifies the
offset of the first byte to be retrieved. The first byte of the object has an offset of
zero, the second byte has an offset of one, and so on. If the OFFSET parameter is
omitted on a RETRIEVE request, the offset defaults to the beginning of the object
(that is, OFFSET=0). If the offset specified is negative or past the end of object, a
return code and a reason code are returned, indicating the error; the object is not
retrieved.

For a STOREPRT request, offset_of_starting_byte is a four byte area that specifies the
offset of the first byte where the next part of the object is to be stored. For storing
the first part of the object, the offset must be zero; for subsequent parts of the
object, the offset is the next byte immediately following the previous part stored
for the object (that is, the sum of the offset and size for the previous part stored).

QEL=query_list

QEL=(query_list_pointer)

Chapter 2. Application program interface for OAM 35

query_list specifies the name of a variable or an expression defining an area that
has the format described by the CBRIQEL macro. See “CBRIQEL macro” on page
49.

REACODE=reason_code

REACODE=(reason_code_pointer)

reason_code specifies an optional four byte area into which the reason code value is
to be copied. The reason code value is always in register 0. In order to determine
the success or failure of an OSREQ request, the programmer should check the
reason code in register 0.

Note: There are conditions under which the reason_code is not set, such as the
reason_code area is invalid or a major error occurs before the reason_code area has
been validated. The reason code value is always returned to register 0.

RECALL=number_days

RECALL=(number_days_pointer)

The RECALL keyword specifies that a temporary copy of the object being retrieved
is to be written to disk sublevel 1 (DB2) or disk sublevel 2 (file system) and
retained there for the specified number of days. This keyword is an optional
parameter used only on a RETRIEVE request and ignored on all other requests.

number_days is a four byte area that specifies how many days a recalled object is to
remain on disk sublevel 1 or 2 before OSMC transitions it back to its original
location. The valid number of days that can be specified is 0 to 255. An invalid
value for number_days results in the RETRIEVE request failing.

Note:

1. Regardless of whether the RETRIEVE request is for a full object or for a partial
object, the RECALL keyword always results in a copy of the full object being
written to disk sublevel 1 or 2.

2. The RECALL keyword is required on the OSREQ RETRIEVE request to initiate
an explicit recall, however, implicit recalls can be activated by the SETOSMC
statement in the CBROAMxx parmlib member.

3. The MAXRECALLTASKS must be set to a non-zero value in a SETOSMC
statement in the CBROAMxx parmlib member to enable explicit or implicit
recalls.

4. See z/OS DFSMS OAM Planning, Installation, and Storage Administration Guide for
Object Support for more information on explicit and implicit recalls.

RELBUF=YES

RELBUF=NO

The RELBUF keyword indicates the disposition of the data in the buffers that are
specified for a STORE operation. RELBUF=NO indicates that the data in the
buffers will be retained by the system. After the data is stored on the requested
media, RELBUF=YES indicates that the pages containing the data in the buffers
may be discarded by the system and not restored when the respective pages are
later referenced. This use of RELBUF often improves performance by saving I/O
operations for paging data. RELBUF=NO is the default.

36 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

Attention: RELBUF=YES may release pages that contain data that has not been
committed to the database.

RETCODE=return_code

RETCODE=(return_code_pointer)

return_code is a four byte area into which the return code value is copied. The
return code value is always in register 15. In order to determine the success or
failure of an OSREQ request, the programmer should check the return code in
register 15.

Note: There are conditions under which the return_code is not set, such as the
return_code area is invalid or a major error occurs before the return_code area has
been validated. The return code value will always be returned to register 15.

RETCODE2=return_code2

RETCODE2=(return_code2_pointer)

RETCODE2 is an optional keyword that can be used to determine if OAM
scheduled additional processing for this OSREQ request. return_code2 is a four byte
area into which the return code value is copied. The information returned in
return_code2 depends on the OSREQ function (RETRIEVE, STORE, or STOREEND)
requested.

For an OSREQ RETRIEVE request, RETCODE2 specifies whether this RETRIEVE
request resulted in scheduling a RECALL of the object to disk sublevel 1 or 2.
RETCODE2 is valid only when the RETRIEVE is successful, in which case it
provides the following information:

RETCODE2 Meaning

0 Either
RECALL not specified with RETRIEVE;
no attempt to schedule RECALL
or

RECALL specified with RETRIEVE and
successfully scheduled

4 RECALL not specified with RETRIEVE, but
RECALL successfully scheduled owing to
CBROAMxx parmlib member specifications

8 An attempt to schedule a RECALL was not
successful because OSMC=NO was specified
on OAM started procedure

10 An attempt to schedule a RECALL was not
successful because MAXRECALLTASKS(0)
was specified in the CBROAMxx parmlib
member

12 An attempt to schedule a RECALL was not
successful because RECALLOFF(ON) was
specified in the CBROAMxx parmlib member

14 An attempt to schedule a RECALL was not
successful because of a scheduling error

Chapter 2. Application program interface for OAM 37

RETCODE2 Meaning

16 An attempt to schedule a RECALL was not
successful because the RETRIEVE was
performed on a downlevel OAMplex
member that does not support RECALL
processing

For an OSREQ STORE or STOREEND request, RETCODE2 specifies whether this
STORE or STOREEND request resulted in scheduling an immediate backup copy
to be written for this object.

return_code2 is valid only when the STORE or STOREEND is successful, in which
case it provides the following information:

RETCODE2 Meaning

0 Immediate backup copy request successfully
scheduled.

4 Immediate backup copy request not required.

8 An attempt to schedule an immediate backup
for this object was not successful because
OSMC is not up and running.

14 An attempt to schedule an immediate backup
for this object was not successful due to
unexpected scheduling error.

16 Immediate backup to optical not supported
for STOREEND.

RETPD=retention_period

RETPD=(retention_period_pointer)

retention_period specifies a four byte area or an expression that contains the
override retention period. See Table 2 on page 45 for valid retention periods.

SIZE=object_byte

SIZE=(object_byte_pointer)

The SIZE keyword is used on STORE, STOREBEG, STOREPRT, and STOREEND
requests.

For STORE and STOREBEG requests, object_byte specifies a four byte area that
contains the total object length in bytes.

The MOS=nnnn parameter in the IEFSSNxx parmlib member defines the maximum
object size that can be stored. The maximum size is 50 megabytes (52,428,800
bytes) unless a larger maximum object size up to 2000 megabytes (2,097,152,000
bytes), has been defined. Refer to MOS=nnnn parameter in the IEFSSNxx parmlib
member for more information on object sizes greater than 50 megabytes. Once this
maximum object size has been defined, the length of the object determines which
OSREQ function can be used to store the object.

38 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

For STORE requests, object_byte specifies a four byte area that contains the length
in bytes of the object to be stored. STORE requests can be used for objects with a
length up to 256 megabytes (268,435,456 bytes).

For STOREBEG requests, object_byte specifies a four byte area that contains the total
length in bytes of the object to be stored. STOREBEG requests can be used only for
objects with a total length greater than 50 megabytes (52,428,800 bytes).

For STOREPRT requests, object_byte specifies a four byte area that contains the
length in bytes of the part of the object to be stored. The minimum length allowed
on a STOREPRT is 1 megabyte (1,048,576 bytes). Only the last STOREPRT in the
store sequence may specify a length less than 1 megabyte.

For STOREEND requests, object_byte specifies a four byte area that contains the
total object length in bytes to complete storage of the object. The length specified
must match the total object length in bytes specified on the STOREBEG request
and that exactly this amount of object data must have been previously provided
with one or more STOREPRT requests for the object to be stored successfully.

Note: When CANCEL=YES is specified, the SIZE keyword is ignored.

STIMEOUT=stimeout

STIMEOUT=(stimeout_pointer)

The STIMEOUT keyword is only used by a STOREBEG request and is ignored on
all other requests.

The stimeout is a four byte area that specifies the maximum interval in seconds
between STOREBEG, STOREPRT, and STOREEND requests that OAM should wait
before OAM will assume that there will be no more activity for this store sequence
and will free resources held on behalf of this store sequence. OAM will normally
attempt to detect cases when there has been no activity from the application
during a store sequence in progress and free limited resources that are being held
on behalf of the application. This can occur if the application abnormally ends or
encounters an error or otherwise does not normally complete the individual
function calls in a store sequence. Specify a value if there will be an unusually long
delay between the requests in a store sequence to ensure that OAM does not free
resources used for the store sequence.

Note: This interval does not apply to the disk sublevel 1 of the OAM storage
hierarchy.

Valid values for the number of seconds that can be specified are 0–9999. If the
STIMEOUT keyword is not specified (or if the STIMEOUT value is specified as
zero), then the STIMEOUT value defaults to 300 seconds (5 minutes).

STORCLAS=storage_class_area

STORCLAS=(storage_class_area_pointer)

storage_class_area specifies a variable-length field containing a two-byte length field,
followed by a variable-length name field containing a name identified to z/OS as a
storage class name. The first two bytes specify the number of characters that
follow, not including the length field itself. The length-field value can be from zero
to the maximum length allowed for z/OS storage class names. The name must be

Chapter 2. Application program interface for OAM 39

left-justified in the name field and can be padded on the right with blanks. If the
length includes trailing blanks, only the name characters up to the trailing blanks
are used. Specifying a length value of zero or filling the name field with blanks is
equivalent to omitting this parameter.

TOKEN=token_area

TOKEN=(token_area_pointer)

token_area specifies an eight-byte area on a word boundary into which OSREQ
ACCESS stores a value. Token_area must be specified on all other issuances of
OSREQ. The token becomes invalid after OSREQ UNACCESS is issued.

STOKEN=stoken_area

STOKEN=(stoken_area_pointer)

stoken_area specifies a 16-byte area on a double word boundary into which OSREQ
STOREBEG stores a value. stoken_area must be specified on subsequent STOREPRT
and STOREEND requests. The token becomes invalid after OSREQ STOREEND is
issued.

TTOKEN=tracking_token

TTOKEN=(tracking_token_pointer)

tracking_token specifies a 16-byte area containing a tracking token. The contents of
the tracking token may be any user-supplied information. The tracking token
supplied on the OSREQ macro with the TTOKEN keyword will be placed in the
OAM System Management Facility (SMF) record, in the ST1TTOK field for record
subtypes 1 through 7. If no tracking token is supplied on the OSREQ macro, the
ST1TTOK field in record subtypes 1 through 7 will contain binary zeros. For
information concerning SMF recording, refer to z/OS DFSMS OAM Planning,
Installation, and Storage Administration Guide for Object Support.

VIEW=PRIMARY

VIEW=BACKUP

VIEW=BACKUP2

The VIEW parameter specifies which copy of an object is obtained during a
RETRIEVE. If VIEW=PRIMARY, OAM retrieves the primary copy of the object. If
VIEW=BACKUP, OAM retrieves the backup copy. If VIEW=BACKUP2, OAM
retrieves the second backup copy. If the specified copy of the object does not exist,
return and reason codes reflect this error (see Appendix B, “Reason codes,” on
page 75); no data is returned. The VIEW keyword is only applicable to RETRIEVE
requests and is ignored on all other requests. VIEW=PRIMARY is the default.

Usage considerations
Use of the OSREQ macro must take into consideration both the programming
language techniques and the environment in which the program executes. The
following list summarizes those considerations:
v Any or all parameters can be supplied on any form of the OSREQ macro (MF=L,

MF=M, or MF=E). When you specify a parameter, a pointer to that parameter is

40 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

placed in the parameter list. This does not mean that the parameter pointer or
the parameter value is validity-checked for all requested functions. Only
parameters required by the specific function are checked for validity.

v Because parameters not relevant to the current function are ignored, parameters
specified on the MF=L form of the OSREQ macro can remain set for all
following OSREQ macro functions that use the same parameter list, unless the
COMPLETE operand is specified. In this way, parameter values can be altered as
needed, but parameter pointers do not need to be updated by subsequent forms
of the OSREQ macro. This can reduce some of the inline code created by the
macro.

v When you use the COMPLETE operand on the MF=M or MF=E forms of the
OSREQ macro, the entire parameter list is cleared and initialized; then, specified
parameter pointers are placed in the parameter list. The only way for the
OSREQ macro to verify that all required parameters are supplied is to use the
MF=(E,parameter_list,COMPLETE) form; however, additional inline code is
generated by using the COMPLETE operand.

v The TOKEN parameter of the OSREQ macro must be supplied by the MF=E
form or one of the previous invocations of the MF=L or MF=M forms. If the
TOKEN parameter is not specified or if an invalid token-area address is
specified, the MF=E form of the OSREQ macro specifying any function other
than ACCESS produces unpredictable results (generally abnormal termination).
ACCESS identifies an invalid token area with appropriate return codes and
reason codes.

v The IADDRESS is an optional parameter that is valid only for an OSREQ
ACCESS function. The IADDRESS=keyword parameter is ignored for all other
OSREQ functions. If the application does not specify IADDRESS with an
ACCESS function, then OAM determines the execution environment. OAM uses
the appropriate DB2 language interface module consistent with the execution
environment when performing DB2 functions on behalf of the application.

v The OSREQ macro uses several literal values. It may be necessary to insert a
LTORG in the assembly code so that the created literals are addressable at the
point where the OSREQ macro is used.

v The user of the OSREQ macro must request the ACCESS function before any
other functions are requested. The user must request the UNACCESS function
when OAM processing is complete.

v When you are using the OSREQ macro in environments similar to CICS, where
all processing is done under one task control block (TCB), or when running
under CICS with z/OS V1R12 OAM or after (where running under multiple
CICS TCBs is supported), it is permissible for one subroutine (or transaction) to
request the ACCESS function and to pass a pointer to the token to other
subroutines (or transactions) that will need that token for other functions.
Passing a copy of the token itself from one subroutine (or transaction) to another
can produce unpredictable results.

Note:

1. All processing must be done under the same TCB that issued the ACCESS.
The token cannot be used by more than one task.

2. With z/OS V1R12 OAM and after, when running under CICS, this restriction
no longer applies. A CICS OAM application program may perform OSREQ
ACCESS and then other OSREQ calls under different CICS TCBs.

v When the OSREQ macro is used in multitasking environments, each task must
request its own OSREQ ACCESS, and all functions within that task must use the
same token, not separate copies of the token.

Chapter 2. Application program interface for OAM 41

Usage requirements
The following requirements must be met in order to use the OSREQ macro
successfully:
v The caller must be in task mode, 31-bit addressing mode, primary addressing

mode, problem or supervisor state, and any storage protect key. (Callers may not
be in cross-memory mode.)

v The calling program cannot hold any MVS locks.
v All input and output parameters must be contained within the home address

space and must be accessible in primary addressing mode.
v The DB2 subsystem must be running and, if CICS is used, it must be connected

to DB2. The installation is responsible for starting the DB2 subsystem and
establishing the connection.

v The call attachment facility is used by OAM in the MVS batch environment to
connect to DB2 during the ACCESS call to OAM. After the connection is made
to DB2, a thread is established (by OPEN) to plan CBRIDBS. The call to ACCESS
should be invoked prior to any application DB2 activities occurring to allow
synchronization with the OAM database activities. Synchronization is the
responsibility of the application and is in the form of CLOSE, then OPEN, as
described in the IBM Information Management Software for z/OS Solutions
Information Center.

v In the CICS, DSN Command Processor, and IMS environments, it is assumed
that the connection to DB2 has already been made. Synchronization in CICS is
accomplished through the use of the SYNCPOINT function (refer to the IBM
Information Management Software for z/OS Solutions Information Center). In
the TSO environment, synchronization is accomplished through the use of
COMMIT and ROLLBACK functions, as described in the IBM Information
Management Software for z/OS Solutions Information Center. In the IMS
environment, synchronization is accomplished through the use of COMMIT and
ROLLBACK functions (see the IBM Information Management Software for z/OS
Solutions Information Center), or by the use of SYNC and ROLL/B call to IMS.

v If you use JOBLIB or STEPLIB JCL statements in your application that include
DB2 load modules, then the entire JOBLIB or STEPLIB concatenation must be
assigned to authorized libraries. Because the OSREQ application programming
interface runs in an authorized state, it must load the DB2 modules at the time
the ACCESS function is invoked. MVS requires that all libraries in a
concatenation must be authorized when the loading program is authorized.

Note: If an application invokes the OSREQ API without passing an IADDRESS,
OAM assumes the application is running in one of the CAF supported
environments, Batch, IMS, CICS, TSO, or DSN. If an application invokes the
OSREQ API using the IADDRESS parameter, it will be assumed that the
application has done the connection to DB2 and has loaded the appropriate DB2
module. Environments or invocations other than those listed in Table 1 on page 13
in “ACCESS—Initializing the OSREQ interface” on page 12 have not been tested
by IBM and the results may be unpredictable. An example of an untested,
unpredictable environment would be the DB2 Stored procedure environment.

Restrictions and limitations
OAM supports a maximum object size of 50 megabytes (52 428 800 bytes) unless a
larger maximum object size, up to 2000 megabytes (2 097 152 000 bytes), has been
defined using the MOS=nnnn parameter in the IEFSSNxx parmlib member. Refer to
z/OS DFSMS OAM Planning, Installation, and Storage Administration Guide for Object

42 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

http://publib.boulder.ibm.com/infocenter/imzic
http://publib.boulder.ibm.com/infocenter/imzic
http://publib.boulder.ibm.com/infocenter/imzic
http://publib.boulder.ibm.com/infocenter/imzic
http://publib.boulder.ibm.com/infocenter/imzic
http://publib.boulder.ibm.com/infocenter/imzic
http://publib.boulder.ibm.com/infocenter/imzic
http://publib.boulder.ibm.com/infocenter/imzic

Support for more information on using the MOS=nnnn keyword to specify a
maximum object size greater than 50 megabytes.

Note:

1. When storing an object greater than 50 MB, if multiple data buffers are
supplied, however the data buffers are not in contiguous storage, the request
fails with OSREQ return/reason code: Return Code=08 , Reason
Code=2402080A or 2409080A

2. When retrieving an object greater than 50 MB, if the first data buffer supplied
is not large enough to contain the requested or partial object, the request fails
with OSREQ return/reason code: Return Code=08, Reason Code = 2403080B

These buffer restrictions ensure that extra GETMAINs are not made in the user's
(applications) address space. The minimum message area size is 244 bytes.

Programming notes
The programming notes that follow may be relevant as you code your application
interface:
v Optional input parameters on the OSREQ macro may be omitted. OAM

processing identifies omitted optional input parameters as follows:
– If the optional input parameter has not been specified on any of the OSREQ

macro forms (MF=L, MF=M, or MF=E), the parameter pointer is zero.
– If the optional input parameter is specified on one of the OSREQ macro forms

but the value identified by the parameter is null, then the parameter has the
appropriate null value. The concept of null is different for different
parameters. A null RETPD parameter value is zero. A null STORCLAS
parameter value is indicated by either a length value of zero or the entire
name containing blanks.

– If the optional input parameters MGMTCLAS and STORCLAS are omitted,
these parameter values are supplied by the ACS routines, as described in
“OSREQ keyword parameter descriptions” on page 31.

v If you do not specify a collection name on any function other than ACCESS or
UNACCESS, STOREPRT, or STOREEND a return code and a reason code are
generated, and the requested function is not performed. The collection name is
required if the function is to be completed. If a specified collection name does
not exist in the catalog for any function other than STORE, STOREBEG,
ACCESS, or UNACCESS, a return code and a reason code are generated.

v When an MVS catalog entry is created for a new collection on a STORE or
STOREBEG function or the specified storage class or management class is
overridden by the ACS routines, a warning return code of 4 and a reason code
with the fourth byte indicating the processing status are generated. The
conditions are possible in all combinations. The processing status in the fourth
byte of the reason code contains individual bits that indicate the presence or
absence of each of the conditions.

v The caller must establish synchronization points for DB2 inserts, updates, and
deletes for the OSREQ functions STORE, STOREEND, DELETE, CHANGE, and
RETRIEVE as soon as possible (to minimize DB2 timeouts or deadlocks),
depending on return code. The synchronization must occur within 24 hours for
objects stored in the file system (to avoid loss of data).

v In order to allow your application to establish synchronization points in DB2,
the DBRM from your application program must be bound in the CBRIDBS plan.
The SAMPLIB job CBRABIND (or CBRIBIND for DASD-only users) is used to

Chapter 2. Application program interface for OAM 43

create the CBRIDBS plan in DB2. For more information on the CBRABIND,
CBRIBIND jobs, and CBRIDBS plan, refer to the z/OS DFSMS OAM Planning,
Installation, and Storage Administration Guide for Object Support.
If your application uses the IADDRESS keyword, the application connection to
DB2 must be established and have an open thread. The plan identified for the
open thread can include any DBRMs or packages that are needed by the
application. However, it must also contain the DB2 packages created by the
CBRIBIND job for the CBRIDBS plan. For more information on the bind jobs or
on the DB2 plans, refer to z/OS DFSMS OAM Planning, Installation, and Storage
Administration Guide for Object Support.

v If the OSREQ macro is invoked and either the OSREQ parameter list or the
token area is in nonaddressable storage, a program check occurs within the
executable OSREQ macro code. For diagnostic purposes, the potential reason
code for the specific error is preloaded into register 0 before storage is accessed.
The register 0 contents in the abend summary should contain a reason code that
indicates the parameter or storage problem. This also applies if the token
contents have been corrupted before invoking the OSREQ macro.

v If the return code word or reason code word are not located in addressable
storage, the return and reason codes are only found in general registers 15 and
0, respectively, upon return from OSREQ.

Register use
When the OSREQ macro is invoked, register 13 must contain the address of a
standard 18-word save area.

Registers 0, 1, 14, and 15 are used by the OSREQ macro. At exit, the contents of the
registers are as follows:

0 Reason code

1 Unpredictable

2–13 Unchanged

14 Unpredictable, except for ACCESS and UNACCESS, when it remains
unchanged

15 Return code

Expiration date processing
The expiration date is the date on which OAM can delete objects automatically.
The expiration date is based on the retention period (RETPD) specified on OSREQ
STORE or CHANGE, the event expiration time period (EVENTEXP) specified on
OSREQ CHANGE, or on the object's management class expiration rules. The
expiration date in the object's directory entry is set to the reserved value of
‘0001-01-01’ when the object has no explicit expiration date. In this case, the
expiration of the object is based on the object's management class expiration
attributes. The expiration date in the object's directory entry is set to the reserved
value of '0002–02–02' when the object is in event-based-retention mode (as a result
of RETPD being set to -2 (X'FFFFFFFE') on an OSREQ STORE, STOREBEG, or
CHANGE). In this case, the object has an indefinite expiration date which will be
set at some point in the future when a particular event has occurred (which is
indicated by an OSREQ CHANGE with the EVENTEXP keyword). The object's
management class referred to in this section is the actual management class for the

44 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

object after review and possible override by the automatic class selection routine,
which could be different from the management class specified on the OSREQ
macro.

Table 2 shows the processing of the values that may be specified on the RETPD
parameter and the resulting expiration date. RETPD values in the range of 1 to
93 000 and the special value X'7FFFFFFF' (2 147 483 647) may be overridden. If the
RETPD parameter value exceeds the management class retention limit, the
management class retention limit is used to determine the expiration date. For the
special parameter value X'7FFFFFFF' (2 147 483 647) to be effective, the
management class retention limit must be set to NOLIMIT.

Table 2. Valid Retention Periods for Expiration Date Processing

Specified RETPD Parameter Value Requested Expiration Date STORE
Requested Expiration Date
CHANGE

0 or retention period parameter not
specified (Null)

Set expiration date to 0001-01-01 and
use management class attributes to
determine expiration date.

Use existing expiration information
for this object.

X'FFFFFFFF' (-1) Set expiration date to 0001-01-01 and
use management class attributes to
determine expiration date.

Reset expiration date to 0001-01-01
and use management class attributes
to determine expiration date.

X'FFFFFFFE' (-2) Set expiration date to 0002–02–02 and
set indicator in ODSTATF to show
this object is in event-based-retention
mode. The expiration date for the
object is then based on notification of
an external event as specified by the
OSREQ CHANGE
EVENTEXP=number_of_days.

Set expiration date to 0002–02–02 and
set indicator in ODSTATF to show
this object is in event-based-retention
mode. The expiration date for the
object is then based on notification of
an external event as specified by the
OSREQ CHANGE
EVENTEXP=number_of_days.

1 to 93 000 If the RETPD value specified is
greater than the object's management
class retention limit, the expiration
date (ODEXPDT) is set to the creation
date of the object plus the object's
management class retention limit.
Otherwise, the ODEXPDT is set to
sum of the object create date +
RETPD value.

For retention-protected objects:

v the ODRETDT is set to whichever
is later; the newly calculated
ODEXPDT or the current
ODRETDT.

v the ODEXPDT is set to whichever
is later; the ODRETDT or the
ODEXPDT.

If the RETPD value specified is
greater than the object's management
class retention limit, the expiration
date (ODEXPDT) is set to the creation
date of the object plus the object's
management class retention limit.
Otherwise, the ODEXPDT is set to
sum of the object create date +
RETPD value.

For retention-protected objects:

v the ODRETDT is set to whichever
is later; the newly calculated
ODEXPDT or the current
ODRETDT.

v the ODEXPDT is set to whichever
is later; the ODRETDT or the
ODEXPDT.

X'7FFFFFFF' (2 147 483 647) 9999-12-31 9999-12-31

Any other value These values are invalid. Return and
reason codes are returned to the
caller.

These values are invalid. Return and
reason codes are returned to the
caller.

Note: If the current expiration date is '0002–02–02' (which means the object is in event-based-retention-mode), the
expiration date cannot be changed with the RETPD keyword. Any attempt to do so results in the OSREQ CHANGE
failing. The only way to change the expiration date for an object in event-based-retention mode is by specifying the
EVENTEXP keyword on an OSREQ CHANGE.

Chapter 2. Application program interface for OAM 45

Messages and codes
OAM generates return codes and reason codes in response to errors detected
during the processing of OSREQ requests. While operating under control of the
calling transaction, OAM does not generate any messages to the operator, system
programmer, or storage administrator.

OAM return codes and reason codes
OAM issues return codes 0, 4, 8, C, and 10 (hexadecimal). These return codes are
accompanied by reason codes that define the error encountered. See Appendix B,
“Reason codes,” on page 75 for a table of return codes and their associated reason
codes.

The return codes are defined as follows:

0 The requested function was successfully completed. Recommended
program action: None required.

4 The requested function was completed with a warning condition.
Recommended program action: Correct program, if necessary.

8 The requested function was not completed due to an application
programming error. Recommended program action: Write an error message
to the operator (system console, CICS, or IMS master terminal) that
includes the return code and reason code.

C The requested function was not completed due to an environmental error.
Recommended program action: Write an error message to the operator
(system console, CICS, or IMS master terminal) that includes the return
code and reason code.

10 The requested function was not completed due to an OAM programming
error. Recommended program action: Write an error message to the
operator (system console, CICS, or IMS master terminal) that includes the
return code and reason code.

DB2 SQL error reason codes
When a DB2 error is encountered, OAM issues messages that display DB2 SQL
error reason codes. For a selected subset of these SQL codes, OAM also issues
additional messages to explain the SQL codes to save the operator and storage
administrator the trouble of having to look up the codes in the DB2 information.
The DB2 SQL codes and the OAM messages that explain them are:

DB2 SQL code
OAM message

-204 CBR7540I
-205, -206

CBR7541I
-501 CBR7542I
-805 CBR7543I
-818 CBR7544I
-904 CBR7545I

See z/OS MVS System Messages, Vol 4 (CBD-DMO) for a description of these
messages.

46 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

CBRIBUFL macro
The CBRIBUFL macro describes the area to which the BUFLIST keyword on the
OSREQ macro points. The area contains a header and a list of buffer descriptors.
Each buffer descriptor describes one data buffer, giving the address of the buffer,
the length of the buffer, and the amount of data in the buffer. The data buffer
contains the data for the object to be stored or provides the buffer space for the
object to be retrieved.

The CBRIBUFL macro is a mapping macro consisting of three DSECTs. The first
two DSECTs are used to describe the buffer list. The third DSECT maps the data
buffer pointed to by the buffer list. Figure 3 and Figure 4 on page 48 describe the
contents of the DSECTs.

Figure 3. Fields Described by CBRIBUFL

Figure 4 on page 48 is a structure diagram of the data buffer list (CBRIBUFL)
pointed to by the BUFLIST keyword on an OSREQ STORE or OSREQ RETRIEVE
macro.

OBL DSECT Data buffer list control block
DS 0F

+0 OBLID DS CL4 Control block identifier (’OBL ’)
+4 OBLLSTL DS F Length of buffer list cb in bytes

including buffer descriptors
+8 OBLVERSN DS XL1 Buffer list version (X’02’)
+9 DS XL3 Reserved, must be zero
+12 DS F Reserved, must be zero
+16 OBLNUMBF DS F Number of data buffer descriptors that

follow
+20 OBLBUFL DS 0F Beginning of data buffer descriptor list,

mapped by OBLBDESC

The following buffer descriptor is repeated for each data buffer:

OBLBDESC DSECT Data buffer descriptor
+0 OBLBUFP DS A Address of buffer
+4 OBLBBLTH DS F Length of buffer
+8 OBLBUSED DS F Length of data in buffer
+12 DS F Reserved, must be zero

Each data buffer is described as follows:

OBLB DSECT Data buffer
DS 0F

+0 OBLBDATA DS 0X Object data area

Figure 3. Fields Described by CBRIBUFL

Chapter 2. Application program interface for OAM 47

The caller uses the buffer descriptor for each buffer to provide buffer location,
buffer size, and data length to the system; it is then used by the system to return
data length information to the caller. The OBLBBLTH field indicates the buffer
length. The contents of this field must be set by the caller. The OBLBUSED field
will indicate the number of bytes used in the buffer. For a STORE request, the
value in this field is supplied by the caller; for a RETRIEVE request, this field is
zeroed by OAM and updated when information is loaded in the data area.

Part of an object may occupy space in an individual buffer; therefore, an object
may span several buffers. For a RETRIEVE request, the entire object (or requested
portion) is stored in the buffer space provided. If an error occurs during a
RETRIEVE request, the buffer data is invalid. Given adequate buffer space,
RETRIEVE will fill the first buffer with data, then the second, and so forth until
the total number of bytes filled in the buffers is equal to the size of the object (or
the requested portion of the object). For a STORE request, if the object data is in a
contiguous area of storage immediately following the last (or only) buffer
descriptor, the object data is stored directly from the data buffers; otherwise, object
data is reblocked from the data buffers into a temporary storage buffer and stored
from the temporary buffer.

+ 0 OBLBDATA Object Data Area

Data Buffer

Data
Buffer

Descriptor

Reserved

These Four
Fields are
Repeated
for Each
Data
Buffer

Version
Number

Control Block Identifier

Length of Data Buffer List

Reserved

Number of Data Buffer Descriptors

Address of Data Buffer

Length of Data Buffer

Length of Data in Buffer

Reserved

OBLID

OBLLSTL

OBLVERSN

OBLNUMBF

OBLBUFP

OBLBBLTH

OBLBUSED

+ 0

+ 4

+ 8

+ 1 2

+ 1 6

+ 0

+ 4

+ 8

+ 1 2

R
9A

1P
R

06
Figure 4. Data Buffer List Structure Diagram

48 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

CBRIQEL macro
The CBRIQEL macro describes the area to which the QEL keyword on the OSREQ
macro points. The area contains a header and a list of buffer descriptors. Each
buffer descriptor points to and describes one query buffer. A query buffer contains
query elements. A query element describes the information retrieved by the
OSREQ QUERY function for an object. Each query buffer must be large enough to
contain at least one query element.

A series of query buffers can be specified in the buffer list so that information
about a large number of objects can be returned without requiring a large
contiguous area in virtual storage.

The CBRIQEL macro is a mapping macro that consists of four DSECTs. The QEL
DSECT describes the entire buffer list. The QELBDESC DSECT is used in
conjunction with the QEL DSECT to map one query buffer descriptor in the buffer
list.

The QELB DSECT describes a query buffer. The QELQ DSECT is used in
conjunction with the QELB DSECT to map one query element in the query buffer.
Figure 5 on page 50 and Figure 6 on page 52 describe the contents of the DSECTs.

The OSREQ QUERY command returns three order retrieval keys. The primary
retrieval order key field (QELQPROK), the backup retrieval order key field
(QELQBROK), and the secondary backup retrieval order key field (QELQB2OK)
are 10-byte fields that allow OAM to retrieve a large number of objects within a
limited amount of time. It is important that OAM retrieve these objects in an order
that minimizes the mounting of the media. This utilizes process time efficiently
when the objects reside on removable media.

The OSREQ QUERY command returns, in addition to the primary retrieval order
key and the backup retrieval order key, a second backup retrieval order key. To
retrieve objects the most efficiently, you may use the QELQB2OK field on the
CBRIQEL mapping macro, which sorts objects prior to their retrieval. This retrieval
method uses less time to position and mount media and is therefore more efficient.

These order retrieval keys are important when you use the output that is created
by the OSREQ QUERY request to retrieve a large number of objects. Use the
primary retrieval order key, the backup retrieval order key, or the secondary
backup retrieval order key for each object to sort the list of objects that is indicated
on the OSREQ QUERY request output for retrieval. Using these keys minimizes the
number of mount requests for each piece of removable media that contains the
objects that are being retrieved.

If the primary copy of the object is on disk, then the primary retrieval order key
will contain binary zeros. Similarly, if a backup or secondary backup copy of the
object does not exist, then the corresponding backup or second backup retrieval
order key will contain binary zeros. Also, if the QB= keyword in the IEFSSNxx
parmlib member is set to QB=N, then the OAM address space will not be invoked
to obtain any existing backup retrieval order keys. This will result in the backup
and second backup retrieval order keys containing binary zeros.

Chapter 2. Application program interface for OAM 49

QEL DSECT Query buffer list control block
DS 0F

+0 QELID DS CL4 Control block identifier (’QEL ’)
+4 QELLSTL DS F Length of query buffer list in bytes

including buffer descriptors
+8 QELVERSN DS XL1 Query buffer list version
+9 QELRSVD1 DS XL3 Reserved, must be zero
+12 QELRSVD2 DS F Reserved, must be zero
+16 QELNUMBF DS F Number of query buffer descriptors
+20 QELBUFL DS 0F Beginning of query buffer descriptor

list, mapped by QELBDESC

The following query buffer descriptor is repeated for each query buffer:

QELBDESC DSECT Query buffer descriptor
+0 QELBUFP DS A Address of query buffer
+4 QELBBLTH DS F Length of query buffer
+8 QELBUSED DS F Number of bytes returned in query

buffer
+12 QELBRSV1 DS F Reserved, must be zero

Each query buffer is described as follows:

QELB DSECT
Query buffer

DS 0F
+0 QELBDATA DS 0X Object data area

Each query element is described by the following:

QELQ DSECT
Query element

+0 QELQELE DS H QE length including this field
+2 QELQECD DS CL10 Creation date (yyyy-mm-dd)
+12 QELQEDH DS CL1 Set to ’-’
+13 QELQECT DS CL15 Creation time (hh.mm.ss.nnnnnn)
+28 QELQELD DS CL10 Last referenced date (yyyy-mm-dd)
+38 QELQEED DS CL10 Expiration date (yyyy-mm-dd)
+48 QELQESC DS XL2,CL8 Storage class length and name
+48 QELQESCL EQU QELQESC,2 Storage class length
+50 QELQESCN EQU QELEQSCL+2,8 Storage class name
+58 DS CL22 Reserved
+80 QELQEMC DS XL2,CL8 Management class length and name
+80 QELQEMCL EQU QELQEMC,2 Management class length
+82 QELQEMCN EQU QELQEMCL+2,8 Management class name
+90 DS CL22 Reserved
+112 QELQEOS DS F Object size
+116 QELQECN DS XL2,CL44 Collection name length and name
+116 QELQECNL EQU QELQECN,2 Collection name length
+118 QELQECNN EQU QELQECNL+2,44 Collection name
+162 QELQEON DS XL2,CL44 Object name length and name
+162 QELQEONL EQU QELQEON,2 Object name length
+164 QELQEONN EQU QELQEON+2,44 Object name
+208 QELQERRT DS F Estimated retrieval response time (milliseconds)
+212 QELQPROK DS CL10 Primary retrieval order key
+222 QELQBROK DS CL10 Backup retrieval order key
+232 QELQB2OK DS CL10 Secondary backup retrieval order key
+242 QELQEPD DS CL10 Pending action date (yyyy-mm-dd)
+252 QELQERD DS CL10 Retention date (yyyy-mm-dd)
+262 QELQESF DS XL2 Status flags
+264 QELQELF DS CL1 Location flag
+265 QELQEDP DS CL1 Deletion protection indicator
+266 DS CL2 Reserved

Figure 5. Fields Described by CBRIQEL

50 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

The QELVERSN and QELQELE fields must be set by the user, as indicated below.
The QELQELE field should be adjusted to reflect the inclusion or exclusion of the
QELQPROK, QELQBROK, QELQB2OK, QELQEPD, QELQERD, QELQESF,
QELQELF, and QELQEDR fields in the total length of the QUERY element.
v If QELVERSN>=6, then the query buffer (QELQ) contains the QELQPROK,

QELQBROK, QELQB2OK, and QELLNARE fields. The backup retrieval order
key fields contain binary zeroes if none of the backup copies exist.

v If QELVERSN>=5, then the query buffer (QELQ) contains the QELQPROK,
QELQBROK, and QELQB2OK fields. These backup retrieval order key fields
contain binary zeroes if none of the backup copies exists.

v If QELVERSN=4, then the query buffer (QELQ) contains the QELQPROK and
QELQBROK fields. The backup retrieval order key fields contain binary zeroes if
none of the backup copies exists.

v If QELVERSN<4, then none of the fields (QELQPROK, QELQBROK,
QELQB2OK, QELQEPD, QELQERD, QELQESF, QELQELF, and QELQEDR) are
included in the query buffer (QELQ).

The estimated retrieval response time field (QELQERRT) does not take current
system workload into consideration. The following values are returned to indicate
object location, thereby determining an estimated retrieval response time.

-1 Object location cannot be determined currently.

300 Object resides on disk sublevel 1 (DB2).

9 000 Object resides on disk sublevel 2 (file system).

12 000 Object resides in an optical library.

60 000 Object resides on a tape volume inside an automated tape library.

120 000
Object resides on an optical volume on the shelf.

240 000
Object resides on a tape volume outside an automated tape library.

The estimated minimum retrieval response time field (QELQERRT) contains the
estimated time (in milliseconds) needed to retrieve the object. It is the total
estimated time, from the initiation of the RETRIEVE request until control is
returned to the caller with the object. This time is based on the physical device
characteristics of the hierarchy level on which the object is stored. It is an optimum
time and does not consider delays due to queue lengths, system load, or any other
dynamic situation. The time returned is a representative time to retrieve an object
from the device on which the object resides. The estimated time does not consider
the size or location of the specific object.

The actual file system sublevel retrieval response time can vary significantly and
depends on many factors, including the size of the object, whether the object
resides in zFS or NFS, the underlying disk used for a zFS file system, the hardware
device, configuration, and network implications for NFS, and the overall z/OS
UNIX workload. The estimated retrieval response time therefore is intended to
provide only a comparative response time relative to the other OAM storage
hierarchy targets for objects.

If the retrieval response time cannot be determined, QELQERRT is set to the
reserved value of -1 (X'FFFFFFFF').

Chapter 2. Application program interface for OAM 51

Figure 6 is a structure diagram of the query buffer list (CBRIQEL) pointed to by
the QEL keyword on an OSREQ QUERY macro:

The caller uses the buffer descriptor for each buffer to provide buffer location,
buffer size, and data length to the system; it is then used by the system to return
data length information to the caller. The QELBBLTH field indicates the length of
the query buffer. The content of this field must be set by the caller (the query
buffer must be at least long enough to hold one query element). The QELBUSED
field indicates the number of bytes used in the query buffer. This field is zeroed by
OAM and updated when information is stored in the query buffer.

Information about multiple objects (that is, multiple query elements) may occupy
space in one query buffer; however, no query element (QE) spans query buffers.
The first query buffer is filled until additional complete query elements no longer
fit, then the second buffer is filled, and so forth. The QELBUSED field indicates the
number of bytes used in each query buffer. Unused query buffers have the
QELBUSED field set to zero. The first zero QELBUSED field indicates the end of a
list of query elements. When the buffer space provided (QEL) is inadequate for the
number of query elements retrieved, a warning return code is provided to the
caller, and the number of query elements that fit in the available space is placed in
the query buffers.

The QE length field contains the size of the individual query element. The date
fields are in ISO format: yyyy-mm-dd. This format is different from the format of
the four-byte date stored in the object directory, which is a compressed form of this
information. An expiration date of “0001-01-01” indicates that no expiration date

+ 0 QELBDATA Query Element Data Area

Query Buffer

Query
Buffer

Descriptor

Reserved

These Four
Fields are
Repeated
for Each
Query
Buffer

Query Buffer
List Version

Control Block Identifier

Length of Query Buffer List

Reserved

Number of Query Buffer Descriptors

Address of Query Buffer

Length of Query Buffer

Number of Bytes Returned in Query Buffer

Reserved

+ 0

+ 4

QELID

QELLSTL

QELVERSN

QELNUMBF

QELBUFP

QELBBLTH

QELBUSED

+ 8

+ 1 2

+ 1 6

+ 0

+ 4

+ 8

+ 1 2

R
9A

1P
R

05

Figure 6. Query Buffer List Structure Diagram

52 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

has been specified, and therefore the management class is used to determine the
expiration date. An expiration date of “0002–02–02” indicates that this object is
currently in event-based-retention mode, and that it is waiting on receipt of an
EVENTEXP keyword on an OSREQ CHANGE request before calculating the
object's expiration date. If the object has not been retreived or changed, or if the
UPD=N parameter was specified on the CBRINIT statement of the IEFSSNxx
parmlib member that was used during IPL, the last date referenced is “0001-01-01”.
A last date referenced of “0001-01-01” indicates that the last referenced date and
pending action date are not to be updated when an object is retrieved.

The object name field contains the length of the name and the object name. When
the object name is less than 44 characters, it is left-justified in the field adjacent to
the length, which is the first byte of the field. The unused characters in this field
are blanks.

Chapter 2. Application program interface for OAM 53

54 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

Appendix A. Sample program for object storage

This appendix contains the source listing of two sample programs that use the
OSREQ macro for object manipulation. See “CBROSREQ” and “CBROSR2” on
page 64 for these sample programs. These programs are available as members
CBROSREQ or CBROSR2 in SAMPLIB.

There are two basic differences between the two samples:
v CBROSR2 supports the new store sequence OSREQ functions of STOREBEG,

STOREPRT, and STOREEND. CBROSREQ does not support these new functions.
v CBROSREQ includes DB2 related functions such as CAF OPEN and CAF CLOSE

as well the EXEC SQL statements COMMIT and ROLLBACK. CBROSR2 does
not contain any DB2 related functions or EXEC SQL statements.

You can use these samples in a number of ways depending on your application:
v You can generate the IADDRESS parameter in the OSREQ ACCESS function by

specifying IADD as the SYSPARM value in the PARM field of the EXEC JCL
statement. For example:
//ASSEMBLE EXEC PGM=ASMA90,PARM=’RENT,DECK,SYSPARM(IADD)’

v The CBROSREQ sample uses the DSNHLI entry point for the OSREQ
IADDRESS parameter. Whereas the CBROSR2 sample uses the IADDRESS_PTR
field located in the caller supplied DATAAREA for the OSREQ IADDRESS
parameter.

v You can link-edit members CBROSREQ or CBROSR2 as part of the application
load module. You do not need to issue LOAD request before using the OSREQ
calls.

v You can use members CBROSREQ or CBROSR2 without modification to support
application programs written in PL/1 or COBOL.

v You can modify members CBROSREQ or CBROSR2 as necessary to support
applications written in high-level languages other than PL/1 or COBOL.

v You must run the DB2 pre-compiler due to the EXEC SQL statement in the code
for the CBROSREQ sample. Please note that the CBROSR2 sample contains no
EXEC SQL statements, so the DB2 pre-compiler does not need to be run for it.

CBROSREQ
Sample program for an object storage request using the OSREQ macro:
**
*
* DESCRIPTIVE NAME: Object Storage Request Sample interface
*
* FUNCTION: Provides a generalized interface for the Object Storage
* Request (OSREQ) macro.
*
* This interface includes support to perform a DB2 CAF
* sync (commit) or DB2 CAF abort (rollback). @L1A
*
* This interface does not support the following OSREQ
* functions: STOREBEG, STOREPRT, and STOREEND.
* Please see sample job CBROSR2 for support of the
* STOREBEG, STOREPRT, and STOREEND functions. @L1A*
* OPERATION: This routine is called with a parameter area that
* defines the function and pointers necessary to invoke

© Copyright IBM Corp. 1986, 2013 55

* the OSREQ macro and/or synchronize the data bases that
* are connected to the current DB2 thread.
* If it is determined that an OSREQ function is requested,
* then the OSREQ parameter list is filled in with an
* MF=M form of the macro. The function is executed via an
* MF=E form.
* A call is made to an internal routine which will
* determine the need to synchronize the data bases.
* If sync has been requested and the value in the
* field pointed to by the RETURN_CODE_PTR
* field is 0 or 4 then DB2 will be notified
* to commit all changes made to the data bases
* since the last synchronization point.
* If sync has been requested and the value in the
* field pointed to by the RETURN_CODE_PTR
* field is greater than 4, DB2 will be
* notified to rollback all changes made to the data
* bases since the last synchronization point.
*
* DB2 SYNC and ROLLBACK Notes: @L1A
* This sample is setup to assume the MVS batch environment.
* Changes related to executing the DB2 SYNC and ROLLBACK
* functions will need to be made for other environments.
* For example in a CICS environment, EXEC CICS SYNCPOINT
* would need to be performed instead of calling DSNALI to do
* a CAF CLOSE. @L1A
*
* If this sample is NOT compiled with the IADD SYSPARM or a
* a DB2 connection is not already established, then
* a DB2 connection or thread will be established by OAM
* performing a CAF OPEN during the OSREQ ACCESS request. If
* SYNC in the DATAAREA equals "YES", then a CAF CLOSE is used to
* perform either a DB2 sync or rollback. At this point the
* applications DB2 thread will be closed. To reopen this
* thread, this sample will perform a CAF OPEN. The values of
* the return and reason code for the CAF open is stored in the
* fields pointed to by CAFOPEN_RC_PTR and CAFOPEN_RS_PTR. @L1A
*
* If this sample IS compiled with the IADD SYSPARM, then a DB2
* connection and open thread is assumed and this sample will do
* an SQL COMMIT and SQL ROLLBACK instead of a CAF CLOSE to perform
* a DB2 sync or rollback. The CAFOPEN_RC_PTR and CAFOPEN_RS_PTR
* fields will not be set. @L1A
** If a DB2 sync or rollback is performed because the SYNC field
* in the DATAAREA equals "YES", then the return and reason code
* values of the commit or rollback will be stored in the fields
* pointed to by CAFCLOSE_RC_PTR and CAFCLOSE_RS_PTR. This sample
* uses a CAF CLOSE with SYNCH or a CAF CLOSE with ABRT for the
* MVS batch environment when the SYSPARM IADD is NOT specified
* and an SQL COMMIT or SQL ROLLBACK when IADD is specified. @L1A
*
*
* Valid values for FUNCTION_REQUEST: @L1A
* "ACCESS " : OSREQ ACCESS
* "STORE " : OSREQ STORE
* "RETRIEVE" : OSREQ RETRIEVE
* "QUERY " : OSREQ QUERY
* "CHANGE " : OSREQ CHANGE
* "DELETE " : OSREQ DELETE
* "UNACCESS" : OSREQ UNACCESS*
*
*
* IADDRESS NOTE:
* NOTE: To generate the IADDRESS keyword in the OSREQ ACCESS
* function specify the SYSPARM value as IADD in the PARM
* field of the EXEC JCL statement. For example:
*

56 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

* //ASSEMBLE EXEC PGM=ASMA90,PARM=’RENT,DECK,SYSPARM(IADD)’ @L1C
*
* INPUT: Register 1 must point to a 4 byte field that contains
* an address of an area that is described by
* the dsect named DATAAREA in this program.
* The DATAAREA must be filled in to indicate
* the function requested and provide the proper
* data for execution of the OSREQ macro.
* Register 13 must point to a 72 byte area into which this
* routine will save the registers at entry and
* from which registers will be restore at exit.
* Register 14 must point to the instruction address to which
* this routine will return.
* Register 15 must point to the entry point address of this
* routine.
* OUTPUT: Register 15 will contain the return code received from
* the syncpoint processing.
* Fields pointed to by REASON_CODE_PTR and RETURN_CODE_PTR
* will contain the reason and return codes returned
* from OAM for OSREQ function requests. @L1C
* These fields will contain the reason and return
* codes for DB2 sync & rollback function requests. @L1A
* Fields pointed to by CAFOPEN_RC_PTR and CAFOPEN_RS_PTR
* will contain the reason and return codes returned
* from calling DSNALI to do a CAF OPEN. See ’DB2
* SYNC and ROLLBACK Notes’ above for more info. @L1A
* Fields pointed to by CAFCLOSE_RC_PTR and CAFCLOSE_RS_PTR
* will contain the reason and return codes returned
* from calling DSNHLI to do a SQL COMMIT or ROLLBACK.
* See ’DB2 SYNC and ROLLBACK Notes’ above for more
* information. @L1A
* Areas defined by the CBRIBUFL (for retrieve) and CBRIQEL
* (for query) will be filled in when the respective
* function is requested.
* CHANGE-ACTIVITY:
* $L0=JDP3227 320 881229 TPCTGT: OAM Release 1
* $O1=OY29609 320 900219 TPCTGT: Remove unknown macro call
* $P0=KBE0022 331 911216 TUCTNN: IADDRESS support
* $02=OY59202 110 921111 TUCHAD: Save R15, R0 after OSREQ
* $L1=OAM2GB R1A 070316 TUCGPW: OAM2GB Phase 1
* $P1=K1A2012 R1A 080109 TUCGPW: Fixed loading VIEW into register
* $L2=OAMR1B R1B 080409 TUCDVH: OAMARE Archive retention @L2A
**
OSRSAMPL CSECT ,
OSRSAMPL AMODE 31
OSRSAMPL RMODE ANY

USING *,R15 USING to allow branch to STRTOSR
*

SPACE 2
B STRTOSREQ BRANCH TO ACTIVE PART OF MODULE

LENGOSR DC X’18’ LENGTH OF HEADER INFORMATION
NAMEOSR DC CL8’CBROSREQ’ MODULE NAME FOR TRACING
DATEOSR DC CL8’&SYSDATE’ MODULE ASSEMBLY DATE
APAROSR DC CL8’HDZ1B10’ APAR LEVEL FOR THIS MODULE

DROP R15
SPACE 2

STRTOSREQ DS 0H START THE ACTIVE PART OF MODULE
STM R14,R12,12(R13)*

* Register 12 is the base for the code
*

LR R12,R15
USING OSRSAMPL,R12

*
* Register 11 is the base for the data area which is passed to this
* routine as a parameter.
*

L R11,0(R1)

Appendix A. Sample program for object storage 57

USING DATAAREA,R11
LA R15,SAVE_AREA
ST R15,8(R13)
ST R13,SAVE_AREA+4
LR R13,R15

*
* The static OSREQ parameter list is copied into the work area
*

MVC PARM_LIST,STATIC_PARM_LIST
*
* The parameter list is now modified to establish all of the basic
* parameters of all of the OSREQ functions.
* A pointer with a value of zero is equivalent to an omitted parameter.
*

L R0,MESSAGE_AREA_PTR
L R2,OBJECT_SIZE_PTR
L R3,STORAGE_CLASS_PTR
L R4,MANAGEMENT_CLASS_PTR
L R6,RETRIEVE_OFFSET_PTR
L R7,RETRIEVE_LENGTH_PTR
L R8,RETURN_CODE_PTR
L R9,REASON_CODE_PTR

OSREQ (STORE),MF=(M,PARM_LIST), X
MSGAREA=(R0), DB2 error messages returned here X
TOKEN=TOKEN_AREA, Contains logical OAM connection X
COLLECTN=COLLECTION_NAME, X
NAME=OBJECT_NAME, X
SIZE=(R2), X
STORCLAS=(R3), X
MGMTCLAS=(R4), X
RETPD=(R5), X
OFFSET=(R6), Starting byte for retrieve X
LENGTH=(R7), Length of retrieve X
RETCODE=(R8), Register 15 is stored here X
REACODE=(R9) Register 0 is stored here

*
L R0,TRACKING_TOKEN_PTR @L1A
L R2,RETURN_CODE2_PTR @L1A
L R3,RECALL_NUM_DAYS_PTR @L1A

OSREQ (STORE),MF=(M,PARM_LIST), @L1AX
VIEW=PRIMARY, Retrieve Primary Copy @L1AX
TTOKEN=(R0), User Tracking Token @L1AX
RETCODE2=(R2), Return Code 2 @L1AX
RECALL=(R3) Recall Number of Days @L1A

*
* if view=2, the set VIEW=BACKUP @L1A

SLR R6,R6 Zero Register @L1A
L R6,VIEW Load view into R6 @P1C
LA R10,2 Load value 2 into R10 @L1A
CR R6,R10 Does view = 2? @L1A
BNE TRYVIEW3 No, then see if view = 3 @L1A

OSREQ (STORE),MF=(M,PARM_LIST), @L1AX
VIEW=BACKUP Retrieve First Backup Copy @L1A
B TRYRELBUF Skip test ’if view=3’ @L1A

*
* else if view=3, then set VIEW=BACKUP2 @L1A
TRYVIEW3 DS 0H @L1A

LA R10,3 Load value 3 into R10 @L1A
CR R6,R10 Does view = 3? @L1A
BNE TRYRELBUF Nope, so leave VIEW=PRIMARY @L1A

OSREQ (STORE),MF=(M,PARM_LIST), @L1AX
VIEW=BACKUP2 Retrieve First Backup Copy @L1A

*
TRYRELBUF DS 0H @L1A

CLC RELEASE_BUFFER,=CL3’YES’
BNE NORELBUF

OSREQ (STORE),MF=(M,PARM_LIST), X

58 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

RELBUF=YES Will release pages after STORE
NORELBUF DS 0H
* @L2A
* Set RETPD or EVENTEXP or both, based on caller’s parm list. @L2A
* @L2A
* Note that a runtime error will occur if non-zero pointers are @L2A
* present for both RETPD and EVENTEXP. Supplying both RETPD and @L2A
* EVENTEXP is generally only useful for testing the error checking @L2A
* features of the OSREQ processing code. @L2A
* @L2A

L R5,RETENTION_PERIOD_PTR @L2A
OSREQ (STORE),MF=(M,PARM_LIST), @L2AX

RETPD=(R5) @L2A
* @L2A

L R5,EVENTEXP_PTR @L2A
OSREQ (CHANGE),MF=(M,PARM_LIST), EVENTEXP only on CHANGE @L2AX

EVENTEXP=(R5) @L2A
* @L2A
* Set the DELHOLD parm or leave it off. @L2A
* @L2A
DELHCHK DS 0H @L2A

CLC =C’HOLD’,DELHOLD @L2A
BE DELHYES @L2A

* @L2A
CLC =C’NOHOLD’,DELHOLD @L2A
BE DELHNO @L2A
B DELHDONE @L2A

* @L2A
DELHNO DS 0H @L2A

OSREQ (STORE),MF=(M,PARM_LIST), @L2AX
DELHOLD=NOHOLD @L2A

B DELHDONE @L2A
* @L2A
DELHYES DS 0H @L2A

OSREQ (STORE),MF=(M,PARM_LIST), @L2AX
DELHOLD=HOLD @L2A

DELHDONE DS 0H @L2A
CLC FUNCTION_REQUEST,=CL8’ACCESS’
BNE TRY_STORE

*
* The logical connection to OAM is made here.
* If this is MVS batch, the Call Attach Facility will be used
* to connect to DB2, and a thread will be OPENed to Plan(CBRIDBS)
* otherwise, the connection is done by the environment in which
* this program is executing.
* In all cases system control blocks will be created and/or modified
* to provide this access to OAM.
*
* To generate the IADDRESS keyword in the OSREQ ACCESS
* function, specify the SYSPARM value as IADD in the PARM
* field of the EXEC JCL statement. See NOTE in prolog.
*

AIF (’&SYSPARM’ EQ ’IADD’).IA2
OSREQ ACCESS,MF=(E,PARM_LIST)

AGO .SKIP1
.IA2 ANOP
* In this sample we use DSNHLI for SQL interface module to DB2

L R2,=V(DSNHLI)
OSREQ ACCESS,MF=(E,PARM_LIST), X

IADDRESS=(R2) GET THE ADDRESS OF THE INTERFACE
.SKIP1 ANOP
*
* In the MVS batch environment, syncpoint processing may be desirable
* after ACCESS because the DB2 plan name can be changed at this time.
*

B TRY_SYNC_POINT
TRY_STORE DS 0H

Appendix A. Sample program for object storage 59

CLC FUNCTION_REQUEST,=CL8’STORE’
BNE TRY_CHANGE

*
* This will store an object in the DB2 object tables or on
* an optical disk, depending on the storage class specified.
*

L R10,STORE_BUFFER_PTR
OSREQ STORE,MF=(E,PARM_LIST), X

BUFLIST=(R10)
B TRY_SYNC_POINT

TRY_CHANGE DS 0H
CLC FUNCTION_REQUEST,=CL8’CHANGE’
BNE TRY_QUERY

*
* This invocation of the OSREQ macro will change information in the
* directory that has been specified. A zero pointer in DATAAREA
* will result in no change for the respective information. All
* pointers zero result in no change.
*

OSREQ CHANGE,MF=(E,PARM_LIST)
B TRY_SYNC_POINT

TRY_QUERY DS 0H
CLC FUNCTION_REQUEST,=CL8’QUERY’
BNE TRY_RETRIEVE

*
* Query the data base for the directory information that was stored.
* The size of the object can be extracted from this information so
* that a GETMAIN can be done for the area necessary for the
* retrieve operation.
*

L R10,QUERY_BUFFER_PTR
OSREQ QUERY,MF=(E,PARM_LIST), X

QEL=(R10)
B TRY_SYNC_POINT

TRY_RETRIEVE DS 0H
CLC FUNCTION_REQUEST,=CL8’RETRIEVE’
BNE TRY_DELETE

*
* A partial retrieve can be done to obtain the first xxx bytes of
* the object. In some cases the application may have some control
* information in this area to allow retrieval of still another part
* of the object, (which could be an image).
*

L R10,RETRIEVE_BUFFER_PTR
OSREQ RETRIEVE,MF=(E,PARM_LIST), X

BUFLIST=(R10)
B TRY_SYNC_POINT

TRY_DELETE DS 0H
CLC FUNCTION_REQUEST,=CL8’DELETE’
BNE TRY_UNACCESS

*
* This invocation will delete the object named from the object table
* and the directory.
*

OSREQ DELETE,MF=(E,PARM_LIST)
B TRY_SYNC_POINT

TRY_UNACCESS DS 0H
CLC FUNCTION_REQUEST,=CL8’UNACCESS’
BNE TRY_SYNC_POINT @L1C

*
* The logical connection to OAM should be broken before the TASK
* terminates so that OAM can remove any system control blocks
* that it built during ACCESS
*

OSREQ UNACCESS,MF=(E,PARM_LIST)
*
TRY_SYNC_POINT DS 0H

60 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

*
* Save register 15 in the return code area and register 0 in the
* reason code area after return from OSREQ. This is recommended
* because, under certain error conditions, the return code and
* reason code areas may not be set by OSREQ.
*

ST R15,0(,R8) Save Return Code
ST R0,0(,R9) Save Reason Code

*
* Each function should be "committed" or "rolled back" depending
* on the return and reason codes from OAM.
* This routine should issue:
* SYNCPOINT with optional ROLLBACK in the CICS environment
* or SYNC or ROLL,ROLLB in the IMS environment
* or COMMIT or ROLLBACK in the TSO environment
* or CALL DSNALI to CLOSE and OPEN the thread to DB2 in the
* MVS batch environment (which is shown here).
*

SR R15,R15 Ensure return code 0 if
* no syncpoint processing.

CLC SYNC_POINT,=CL3’YES’
BNE EXIT

*
* A parameter list is constructed for the call to DSNALI
* to close the thread to commit or rollback changes.
*

LA R10,=CL12’CLOSE’
ST R10,WORK_AREA1 Set function to close.
LA R10,=CL8’SYNC’ Prime for sync.

AIF (’&SYSPARM’ EQ ’IADD’).IA1
L R15,RETURN_CODE_PTR Check OAM return code
LA R9,4 to see if rollback should
C R9,0(R15) be issued instead of sync.
BNL SET_SYNC
LA R10,=CL4’ABRT’

SET_SYNC ST R10,WORK_AREA2 Set the action parameter.
OI WORK_AREA2,X’80’ Set end of parameter list
BAL R10,LOAD_DSNALI This points R15 to DSNALI.
LA R1,WORK_AREA1 Point to parameter list.
CALL (15) Call DSNALI

* Save CAF return code
* Note: We already saved the rc for other functions (access,
* store, etc), so don’t want to overwrite that rc w/ the
* commit/rollback rc @L1A
SAVE_CAFRC L R8,CAFCLOSE_RC_PTR @L1A

L R9,CAFCLOSE_RS_PTR @L1A
ST R15,0(,R8) Save CAFCLOSE RETCODE @L1A
ST R0,0(,R9) Save CAFCLOSE REASCODE @L1A
LTR R15,R15 Check for good return
BNZ EXIT This routine has no

* recovery for bad returns
* from CLOSE. The caller
* should UNACCESS then ACCESS.
*

AGO .SKIP
.IA1 ANOP

LA R8,SQLSTUFF
USING SQLDSECT,R8
L R15,RETURN_CODE_PTR
LA R9,4
C R9,0(R15)
BNL SET_SYNC
EXEC SQL ROLLBACK
B SAVE_SQLCODES @L1C

SET_SYNC EXEC SQL COMMIT
* Save SQL return codes
* Note: We already saved the rc for other functions (access,

Appendix A. Sample program for object storage 61

* store, etc), so don’t want to overwrite that rc w/ the
* commit/rollback rc @L1A
SAVE_SQLCODES L R8,CAFCLOSE_RC_PTR @L1A

L R9,CAFCLOSE_RS_PTR @L1A
ST R15,0(,R8) Save SQL RETURN CODE @L1A
ST R0,0(,R9) Save SQL REASON CODE @L1A
AGO .SKIP2 @L1C

.SKIP ANOP
*
* A parameter list is constructed for the call to DSNALI
* to open the thread to DB2. A new plan name could be specified
* or the same name (CBRIDBS) could be specified.
*

LA R10,=CL12’OPEN’
ST R10,WORK_AREA1 Set function to open.
LA R10,DB2_SUBSYS_ID
ST R10,WORK_AREA2 Set the ssid parameter.
LA R10,PLAN_NAME
ST R10,WORK_AREA3 Set the thread parameter.
OI WORK_AREA3,X’80’ Set end of parameter list
BAL R10,LOAD_DSNALI This points R15 to DSNALI.
LA R1,WORK_AREA1 Point to parameter list.
CALL (15) Call DSNALI
L R8,CAFOPEN_RC_PTR @L1A
L R9,CAFOPEN_RS_PTR @L1A
ST R15,0(,R8) Save Return Code @L1A
ST R0,0(,R9) Save Reason Code @L1A

.SKIP2 ANOP
EXIT DS 0H
*
* Restore all registers except regs 15 and 0, then return to caller
*

L R13,SAVE_AREA+4
L R14,12(R13)
LM R1,R12,24(R13)
BR R14

*
* This subroutine will determine if DSNALI is loaded.
* If it is, register 15 will be return with the address of DSNALI.
* If it is not, the module will be loaded and the address returned
* in register 15.
* If DSNALI cannot be loaded an 806 abend will occur, so be sure
* that there is a JOBLIB or STEPLIB pointing to the library that
* contains the load module DSNALI.
*
LOAD_DSNALI DS 0H

L R15,WORK_AREA4 DSNALI address is saved here.
LTR R15,R15
BNZR R10 Return with address of DSNALI
LOAD EP=DSNALI DB2 CAF MVS batch LI services
ST R0,WORK_AREA4 Save for future calls.
LR R15,R0 Return address of DSNALI
BR R10 to caller

*
* Register definitions
*
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10

62 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
*
* All literals will be included at this point.
*

LTORG
*
* This static parameter list will be used as a template for
* OSREQ invocations in the executable code.
*
STATIC_PARM_LIST OSREQ (STORE),MF=(L)
STATIC_LIST_END EQU *
*
* This area is provided by the caller of this routine
*
DATAAREA DSECT

*
* This area must be obtained by the caller of OSRSAMPL and presented
* as a parameter to OSRSAMPL. It is expected that all subsequent calls
* will point to this same area. There is information in the area
* that will be used across calls.
*
**
SAVE_AREA DS 18F Savearea for this module.

* The following two named fields are set by the caller of OSRSAMPL.
* If the value in the field is not a valid value, the respective
* activity not be executed.

FUNCTION_REQUEST DS CL8 OSREQ function request value
* ACCESS, STORE, etc. or other
SYNC_POINT DS CL3 Syncpoint request, YES or other

DS CL1 Reserved

* The following five fields are set by OSRSAMPL and should not be
* altered by the caller. Subsequent calls to OSRSAMPL will rely
* on the information stored here.

WORK_AREA1 DS A Used
WORK_AREA2 DS A for
WORK_AREA3 DS A parameters.
WORK_AREA4 DS A Holds address of DSNALI
TOKEN_AREA DS 2F OSREQ token, do not change it.

* The following fields are set by the caller of OSRSAMPL
* The pointers are not altered by OSRSAMPL but the data that
* the pointers reference may be.

RETURN_CODE_PTR DS A Pointer to OSREQ return code
* The return code is referenced by
* the syncpoint processing.
REASON_CODE_PTR DS A Pointer to OSREQ reason code
MESSAGE_AREA_PTR DS A Pointer to message area
RETENTION_PERIOD_PTR DS A Pointer to retention period
OBJECT_SIZE_PTR DS A Pointer to object size value
MANAGEMENT_CLASS_PTR DS A Pointer to management class parameter
STORAGE_CLASS_PTR DS A Pointer to storage class parameter
RETRIEVE_OFFSET_PTR DS A Pointer to offset value
RETRIEVE_LENGTH_PTR DS A Pointer to retrieve length value
RETRIEVE_BUFFER_PTR DS A Pointer to retrieve buffer list
STORE_BUFFER_PTR DS A Pointer to store buffer list
QUERY_BUFFER_PTR DS A Pointer to query buffer list
RELEASE_BUFFER DS CL3 RELBUF value, YES or other

Appendix A. Sample program for object storage 63

DS CL1 Reserved
VIEW DS F Retrieve Object Copy @L1A
* 1 = PRIMARY @L1A
* 2 = First BACKUP Copy @L1A
* 3 = Second BACKUP Copy @L1A
TRACKING_TOKEN_PTR DS A User Tracking Token Pointer @L1A
RECALL_NUM_DAYS_PTR DS A Recall Number of Days Pointer @L1A
RETURN_CODE2_PTR DS A Return Code 2 Pointer @L1A
CAFOPEN_RC_PTR DS A Pointer to the OPEN CAF return code@L1A
CAFOPEN_RS_PTR DS A Pointer to the OPEN CAF reason code@L1A
CAFCLOSE_RC_PTR DS A Pointer to the CLOS CAF return code@L1A
CAFCLOSE_RS_PTR DS A Pointer to the CLOS CAF reason code@L1A
*
* Plan name and DB2 subsystem identification MUST be provided
* for MVS batch sync point processing.
*
PLAN_NAME DS CL8 DB2 plan name for OPEN thread
DB2_SUBSYS_ID DS CL4 Installation subsystem name for DB2.
*
* Collection name and object name MUST be provided with every
* request for STORE, RETRIEVE, QUERY, CHANGE, and DELETE.
*
COLLECTION_NAME DS H Length of collection name

DS CL44 Collection name character string
OBJECT_NAME DS H Length of object name

DS CL44 Object name character string
DELHOLD DS CL8 DELHOLD= HOLD | NOHOLD | blank @L2A
EVENTEXP_PTR DS A Pointer to EVENTEXP value @L2A

* The following area is completely overlaid each time OSRSAMPL
* is called

PARM_LIST DS CL(STATIC_LIST_END-STATIC_PARM_LIST) Dynamic parm list

DS CL2528 DO NOT USE THIS AREA, BELONG TO CALLER
EXEC SQL INCLUDE SQLCA

SQLSTUFF DS CL(SQLDLEN)
DATA_AREA_END EQU *
OSRSAMPL CSECT
* @O1D

END OSRSAMPL

CBROSR2
Sample Program for an Object Storage Request Using the OSREQ Macro
**
*
* DESCRIPTIVE NAME: Object Storage Request Sample interface #2
*
* FUNCTION: Provides a generalized interface for the Object Storage
* Request (OSREQ) macro.
*
* OPERATION: This routine is called with a parameter area that
* defines the function and pointers necessary to invoke
* the OSREQ macro.
*
* If it is determined that an OSREQ function is requested,
* then the OSREQ parameter list is filled in with an
* MF=M form of the macro. The function is executed via an
* MF=E form.
*
* 1. Validity check the DATAAREA Header. Exit if error.
* 2. Fill in the OSREQ PARM_LIST with all of the optional
* keywords using MF=M form of the macro.
* 3. If FUNCTION_REQUEST = "ACCESS " @P1C
* a. IF CBROSR2 was compiled with IADD option, then
* set IADDRESS OSREQ macro keyword to the address of

64 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

* the DB2 library entry point DSNHLI using the MF=M
* form of the macro. @P1C
* b. ELSE set IADDRESS OSREQ macro keyword to
* IADDRESS_PTR using the MF=M form of the macro. @P1A
* 4. SELECT FUNCTION_REQUEST
* WHEN(ACCESS, STORE, RETRIEVE, QUERY, CHANGE, DELETE,
* UNACCESS, STOREBEG, STOREPRT, STOREEND)
* a. Set any function specific keywords
* b. Execute specified function using the MF=E form
* of the macro.
* c. Set R15 to 0, to indicate successful OSREQ
* macro invocation
* OTHERWISE:
* a. Set R15 to Invalid Function Request
* 5. Return to caller
*
* Valid values for FUNCTION_REQUEST:
* "ACCESS " : OSREQ ACCESS
* "STORE " : OSREQ STORE
* "RETRIEVE" : OSREQ RETRIEVE
* "QUERY " : OSREQ QUERY
* "CHANGE " : OSREQ CHANGE
* "DELETE " : OSREQ DELETE
* "UNACCESS" : OSREQ UNACCESS
* "STOREBEG" : OSREQ STOREBEG
* "STOREPRT" : OSREQ STOREPRT
* "STOREEND" : OSREQ STOREEND
*
*
* IADDRESS NOTE:
* To specify the default DSNHLI entry point for the
* IADDRESS keyword in the OSREQ function, specify
* the SYSPARM value as IADD in the PARM field of
* the EXEC JCL statement. For example: @P1C
*
* //ASSEMBLE EXEC PGM=ASMA90,PARM=’RENT,DECK,SYSPARM(IADD)’
*
* REGISTER CONVENTIONS:
* R0 - WORK REGISTER
* R1 - STANDARD LINKAGE REGISTER
* - PARAMETER LIST ADDRESS
* R2 - WORK REGISTER
* R3 - WORK REGISTER
* R4 - WORK REGISTER
* R5 - WORK REGISTER
* R6 - WORK REGISTER
* R7 - WORK REGISTER
* R8 - WORK REGISTER
* R9 - WORK REGISTER
* R10 - WORK REGISTER
* R11 - DATAAREA BASE REGISTER
* R12 - OSR2SAMP BASE REGISTER
* R13 - STANDARD LINKAGE REGISTER
* - SAVE AREA ADDRESS
* R14 - STANDARD LINKAGE REGISTER
* - RETURN POINT ADDRESS
* R15 - STANDARD LINKAGE REGISTER
* - ENTRY POINT ADDRESS
* - RETURN CODE
*
* INPUT: Register 1 must point to a 4 byte field that contains
* an address of an area that is described by
* the dsect named DATAAREA in this program.
* The DATAAREA must be filled in to indicate
* the function requested and provide the proper
* data for execution of the OSREQ macro.
* Register 13 must point to a 72 byte area into which this

Appendix A. Sample program for object storage 65

* routine will save the registers at entry and
* from which registers will be restore at exit.
* Register 14 must point to the instruction address to which
* this routine will return.
* Register 15 must point to the entry point address of this
* routine.
* OUTPUT: Register 15 will contain the return code from DATAAREA
* validity checking.
* CODE MEANING
* 0 SUCCESS--OSREQ Function invoked
* 6 Invalid DATAAREA FUNCTION_REQUEST
* 8 Invalid DATAAREA hdr ID
* 10 Invalid DATAAREA hdr length
* 12 Invalid DATAAREA hdr version
* 14 Invalid DATAAREA hdr release
*
* Fields pointed to by REASON_CODE_PTR and RETURN_CODE_PTR
* will contain the reason and return codes returned
* from OAM for OSREQ function requests.
* Areas defined by the CBRIBUFL (for retrieve) and CBRIQEL
* (for query) will be filled in when the respective
* function is requested.
*
* CHANGE-ACTIVITY:
* $L0=OAM2GB R1A 070316 TUCGPW: OAM2GB Phase 1
* $P0=K1A2012 R1A 080109 TUCGPW: Fixed loading VIEW into register
* $P1=K1A2309 R1A 080228 TUCGPW: Clarify how and when we set
* the IADDRESS OSREQ function
* keyword.
* $01=OA25764 R1A 080725 TUCGPW: Add backward compatibility
* $L1=OAMR1B R1B 080716 TUCDVH: OAMARE Archive retention @L1A
* $P2=K1B0132 R1B 080721 TUCDVH: STIMEOUT support @P2A
*
**
OSR2SAMP CSECT ,
OSR2SAMP AMODE 31
OSR2SAMP RMODE ANY

USING *,R15 USING to allow branch to STRTOSR2
*

SPACE 2
B STRTOSR2 BRANCH TO ACTIVE PART OF MODULE

LENGOSR2 DC X’18’ LENGTH OF HEADER INFORMATION
NAMEOSR2 DC CL8’CBROSR2 ’ MODULE NAME FOR TRACING
DATEOSR2 DC CL8’&SYSDATE’ MODULE ASSEMBLY DATE
APAROSR2 DC CL8’HDZ1B10’ APAR LEVEL FOR THIS MODULE

DROP R15
SPACE 2

STRTOSR2 DS 0H START THE ACTIVE PART OF MODULE
*

STM R14,R12,12(R13)
*
* Register 12 is the base for the code
*

LR R12,R15
USING OSR2SAMP,R12

*
* Register 11 is the base for the data area which is passed to this
* routine as a parameter.
*

L R11,0(R1)
USING DATAAREA,R11
LA R15,SAVE_AREA
ST R15,8(R13)
ST R13,SAVE_AREA+4
LR R13,R15

*
* The static OSREQ parameter list is copied into the work area

66 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

*
MVC PARM_LIST,STATIC_PARM_LIST

*
* Do some DATAAREA Header Validity Checking
*

* Make sure the ID of the user’s dataarea = current ORSSS ID
LA R15,ERR_ID Load ERR_ID into R15
CLC DA_ID,=CL4’OSR2’ Does DA_ID == ID
BNE EXIT Exit if not equal

* Make sure the length of the user’s dataarea = current ORSSS length
LA R15,ERR_LEN Load ERR_LEN into R15
L R0,DA_LEN
CFI R0,DATAAREA_LEN Does DA_LEN = LENGTH
BNE EXIT Exit if not equal

* Make sure user’s dataArea version is <= current OSR2 version @01C
LA R15,ERR_VER Load ERR_VER into R15
SLR R2,R2 Zero Register
IC R2,DA_VER Load DA_VER into R2 @01C
LA R3,OSR2_VER Load VERSION into R3
CR R3,R2 Does DA_VER = VERSION? @P0C
BL EXIT Exit w/ err if VERSION

< DA_VER @01C

* Make sure user’s dataArea release is <= current OSR2 release @01C
LA R15,ERR_REL Load ERR_REL into R15
SLR R2,R2 Zero Register
IC R2,DA_REL Load DA_REL into R2 @01C
LA R3,OSR2_REL Load RELEASE into R3
CR R3,R2 Does DA_REL = RELEASE? @P0C
BL EXIT Exit w/ err if RELEASE

< DA_REL @01C

* Modify the parameter list to establish all the basic OSREQ function
* parameters.
*
* Note: A pointer with a value of zero is equivalent to an omitted parm
*
OSR_FUNC DS 0H

L R0,COLLECTION_NAME_PTR
L R2,MANAGEMENT_CLASS_PTR
L R3,MESSAGE_AREA_PTR
L R4,OBJECT_NAME_PTR
L R5,OBJECT_SIZE_PTR
L R6,OFFSET_PTR
L R7,REASON_CODE_PTR
L R8,RECALL_NUM_DAYS_PTR
L R10,RETRIEVE_LENGTH_PTR

*
* Removed RETPD parm from this initial OSREQ invocation @L1D
*

OSREQ (STORE),MF=(M,PARM_LIST), X
TOKEN=TOKEN_AREA, Contains logical OAM connection X
COLLECTN=(R0), X
MGMTCLAS=(R2), X
MSGAREA=(R3), DB2 error messages returned here X
NAME=(R4), X
SIZE=(R5), X
OFFSET=(R6), Starting byte for retrieve X
REACODE=(R7), Register 0 is stored here X
RECALL=(R8), Recall Number of Days X
LENGTH=(R10) Length of retrieve

* Ran out of registers above -- add remaining PTRs
L R0,RETURN_CODE_PTR

Appendix A. Sample program for object storage 67

L R2,RETURN_CODE2_PTR
L R3,STORAGE_CLASS_PTR
L R4,TRACKING_TOKEN_PTR

*
OSREQ (STORE),MF=(M,PARM_LIST), X

RETCODE=(R0), Register 15 is stored here X
RETCODE2=(R2), Return Code 2 X
STORCLAS=(R3), X
TTOKEN=(R4) User Tracking Token

*
* Set RELBUF=YES if DATAAREA RELEASE_BUFFER == "YES"
TRYRELBUF DS 0H

CLC RELEASE_BUFFER,=CL3’YES’
BNE BUFDONE RELBUF=NO is default @L1C

OSREQ (STORE),MF=(M,PARM_LIST), X
RELBUF=YES Will release pages after STORE

BUFDONE DS 0H @L1A
* @L1A
* Set RETPD or EVENTEXP or both, based on caller’s parm list. @L1A
* @L1A
* Note that a runtime error will occur if non-zero pointers are @L1A
* present for both RETPD and EVENTEXP. Supplying both RETPD and @L1A
* EVENTEXP is generally only useful for testing the error checking @L1A
* features of the OSREQ processing code. @L1A
* @L1A

L R9,RETENTION_PERIOD_PTR @L1A
OSREQ (STORE),MF=(M,PARM_LIST), @L1AX

RETPD=(R9) @L1A
* @L1A

L R9,EVENTEXP_PTR @L1A
OSREQ (CHANGE),MF=(M,PARM_LIST), EVENTEXP only on CHANGE @L1AX

EVENTEXP=(R9) @L1A
* @L1A
* Set the DELHOLD parm or leave it off. @L1A
* @L1A
DELHCHK DS 0H @L1A

CLC DELHOLD,=CL8’HOLD’ @L1A
BE DELHYES @L1A

* @L1A
CLC DELHOLD,=CL8’NOHOLD’ @L1A
BE DELHNO @L1A
B DELHDONE @L1A

* @L1A
DELHNO DS 0H @L1A

OSREQ (STORE),MF=(M,PARM_LIST), @L1AX
DELHOLD=NOHOLD @L1A

B DELHDONE @L1A
* @L1A
DELHYES DS 0H @L1A

OSREQ (STORE),MF=(M,PARM_LIST), @L1AX
DELHOLD=HOLD @L1A

DELHDONE DS 0H @L1A
*
* Keep testing FUNCTION_REQUEST until an OSREQ FUNCTION match is found
* or no more functions are found
* If a match is found, then go ahead and execute that function
*

* Execute ACCESS if FUNCTION_REQUEST == "ACCESS"
TRY_ACCESS DS 0H

CLC FUNCTION_REQUEST,=CL8’ACCESS’
BNE TRY_STORE

*
* The logical connection to OAM is made here.
* If this is MVS batch, the Call Attach Facility will be used
* to connect to DB2, and a thread will be OPENed to Plan(CBRIDBS)
* otherwise, the connection is done by the environment in which

68 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

* this program is executing.
* In all cases system control blocks will be created and/or modified
* to provide this access to OAM.
*
* To specify the default DSNHLI entry point for the
* IADDRESS keyword in the OSREQ function, specify
* the SYSPARM value as IADD in the PARM field of
* the EXEC JCL statement. See NOTE in prolog. @P1C
*

AIF (’&SYSPARM’ EQ ’IADD’).IA2

*
* IADD not specified, so set IADDRESS OSREQ macro keyword to
* IADDRESS_PTR using the MF=M form of the macro. @P1A
*

L R2,IADDRESS_PTR Load IADR from parmList
OSREQ ACCESS,MF=(E,PARM_LIST), X

IADDRESS=(R2)
AGO .SKIP1

.IA2 ANOP
* IADD was specified so set default entry point. @P1A
* In this sample we use DSNHLI for SQL interface module to DB2
*

L R2,=V(DSNHLI)
OSREQ ACCESS,MF=(E,PARM_LIST), X

IADDRESS=(R2) GET THE ADDRESS OF THE INTERFACE
.SKIP1 ANOP

B SAVE_RC

* Execute STORE if FUNCTION_REQUEST == "STORE"
TRY_STORE DS 0H

CLC FUNCTION_REQUEST,=CL8’STORE’
BNE TRY_RETRIEVE

*
* This will store an object in the DB2 object tables or on
* an optical disk, depending on the storage class specified.
*

L R10,STORE_BUFFER_PTR
OSREQ STORE,MF=(E,PARM_LIST), X

BUFLIST=(R10)
B SAVE_RC

* Execute RETRIEVE if FUNCTION_REQUEST == "RETRIEVE"
TRY_RETRIEVE DS 0H

CLC FUNCTION_REQUEST,=CL8’RETRIEVE’
BNE TRY_QUERY

*
* A partial retrieve can be done to obtain the first xxx bytes of
* the object. In some cases the application may have some control
* information in this area to allow retrieval of still another part
* of the object, (which could be an image).
*

L R10,RETRIEVE_BUFFER_PTR
OSREQ (RETRIEVE),MF=(M,PARM_LIST), X

VIEW=PRIMARY, Retrieve Primary Copy X
BUFLIST=(R10)

*
* if view=2, the set VIEW=BACKUP
TRYVIEW2 DS 0H

SLR R6,R6 Zero Register
L R6,VIEW Load view into R6 @P0C
LA R10,2 Load value 2 into R10
CR R6,R10 Does view = 2?
BNE TRYVIEW3 No, then see if view = 3

OSREQ (RETRIEVE),MF=(M,PARM_LIST), X
VIEW=BACKUP Retrieve First Backup Copy
B DO_RETRIEVE Skip test ’if view=3’

Appendix A. Sample program for object storage 69

*
* else if view=3, then set VIEW=BACKUP2
TRYVIEW3 DS 0H

LA R10,3 Load value 3 into R10
CR R6,R10 Does view = 3?
BNE DO_RETRIEVE Nope, so leave VIEW=PRIMARY

OSREQ (RETRIEVE),MF=(M,PARM_LIST), X
VIEW=BACKUP2 Retrieve First Backup Copy

* Execute the Retrieve
DO_RETRIEVE DS 0H

OSREQ RETRIEVE,MF=(E,PARM_LIST)
B SAVE_RC

* Execute QUERY if FUNCTION_REQUEST == "QUERY"
TRY_QUERY DS 0H

CLC FUNCTION_REQUEST,=CL8’QUERY’
BNE TRY_CHANGE

*
* Query the data base for the directory information that was stored.
* The size of the object can be extracted from this information so
* that a GETMAIN can be done for the area necessary for the
* retrieve operation.
*

L R10,QUERY_BUFFER_PTR
OSREQ QUERY,MF=(E,PARM_LIST), X

QEL=(R10)
B SAVE_RC

* Execute CHANGE if FUNCTION_REQUEST == "CHANGE"
TRY_CHANGE DS 0H

CLC FUNCTION_REQUEST,=CL8’CHANGE’
BNE TRY_DELETE

*
* This invocation of the OSREQ macro will change information in the
* directory that has been specified. A zero pointer in DATAAREA
* will result in no change for the respective information. All
* pointers zero result in no change.
*

OSREQ CHANGE,MF=(E,PARM_LIST)
B SAVE_RC

*
* Execute DELETE if FUNCTION_REQUEST == "DELETE"
TRY_DELETE DS 0H

CLC FUNCTION_REQUEST,=CL8’DELETE’
BNE TRY_UNACCESS

*
* This invocation will delete the object named from the object table
* and the directory.
*

OSREQ DELETE,MF=(E,PARM_LIST)
B SAVE_RC

*
* Execute UNACCESS if FUNCTION_REQUEST == "UNACCESS"
TRY_UNACCESS DS 0H

CLC FUNCTION_REQUEST,=CL8’UNACCESS’
BNE TRY_STOREBEG

*
* The logical connection to OAM should be broken before the TASK
* terminates so that OAM can remove any system control blocks
* that it built during ACCESS
*

OSREQ UNACCESS,MF=(E,PARM_LIST)
B SAVE_RC

*
* Execute STOREBEG if FUNCTION_REQUEST == "STOREBEG
TRY_STOREBEG DS 0H

70 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

CLC FUNCTION_REQUEST,=CL8’STOREBEG’
BNE TRY_STOREPRT

*
ICM R9,15,STIMEOUT_PTR Any STIMEOUT value? @P2A
BZ DO_STOREBEG No @P2A

* @P2A
OSREQ STOREBEG,MF=(M,PARM_LIST), @P2AX

STIMEOUT=(R9) @P2A
DO_STOREBEG DS 0H @P2A
* Begin the sequential storage of an object in parts.

OSREQ STOREBEG,MF=(E,PARM_LIST), X
STOKEN=STOKEN_AREA
B SAVE_RC

*
* Execute STOREPRT if FUNCTION_REQUEST == "STOREPRT"
TRY_STOREPRT DS 0H

CLC FUNCTION_REQUEST,=CL8’STOREPRT’
BNE TRY_CANCEL

* Store the next sequential contiguous part of an object
L R9,STORE_BUFFER_PTR

OSREQ STOREPRT,MF=(E,PARM_LIST), X
BUFLIST=(R9), X
STOKEN=STOKEN_AREA
B SAVE_RC

*

* Set CANCEL=YES if DATAAREA CANCEL == "YES"
TRY_CANCEL DS 0H

CLC CANCEL,=CL3’YES’
BNE TRY_STOREEND CANCEL=NO is default

OSREQ (STOREEND),MF=(M,PARM_LIST), X
CANCEL=YES Will CANCEL Store Sequence

* Execute STOREEND if FUNCTION_REQUEST == "STOREEND"
TRY_STOREEND DS 0H

CLC FUNCTION_REQUEST,=CL8’STOREEND’
BNE INVALID_FUNC

* End the sequential storage of an object in parts.
* L R10,CANCEL

OSREQ STOREEND,MF=(E,PARM_LIST), X
STOKEN=STOKEN_AREA
B SAVE_RC

*
* None of the OSREQ functions matched FUNCTION_REQUEST, so set error
INVALID_FUNC DS 0H

LA R15,ERR_FUNC Set invalid function request
B EXIT

*
* Save register 15 in the return code area and register 0 in the
* reason code area after return from OSREQ. This is recommended
* because, under certain error conditions, the return code and
* reason code areas may not be set by OSREQ.
*
SAVE_RC DS 0H

L R2,RETURN_CODE_PTR
L R3,REASON_CODE_PTR
ST R15,0(,R2) Save Return Code to RETURN_CODE_PTR
ST R0,0(,R3) Save Reason Code to REASON_CODE_PTR
LA R15,0 Reset R15 back to zero to indicate

* that the osreq function was
* invoked
*
* Restore all registers except regs 15 and 0, then return to caller
EXIT DS 0H

L R13,SAVE_AREA+4
L R14,12(R13)
LM R1,R12,24(R13)
BR R14

Appendix A. Sample program for object storage 71

*
* Register definitions
*
R0 EQU 0
R1 EQU 1
R2 EQU 2
R3 EQU 3
R4 EQU 4
R5 EQU 5
R6 EQU 6
R7 EQU 7
R8 EQU 8
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15
*
* Header Constants
*
*OSR2_ID EQU "OSR2"
OSR2_VER EQU 1
OSR2_VER EQU 2
*
* Header Validity Checking Error Codes
ERR_FUNC EQU 6 Invalid Function Request
ERR_ID EQU 8 Invalid Header ID
ERR_LEN EQU 10 Invalid Header Length
ERR_VER EQU 12 Invalid Header Version
ERR_REL EQU 14 Invalid Header Release

*
* All literals will be included at this point.
*

LTORG
*
* This static parameter list will be used as a template for
* OSREQ invocations in the executable code.
*
STATIC_PARM_LIST OSREQ (STORE),MF=(L)
STATIC_LIST_END EQU *
*
* This area is provided by the caller of this routine
*
DATAAREA DSECT

*
* Th DATAAREA must be obtained by the caller of OSR2 and presented
* as a parameter (R1) to OSR2. It is expected that all subsequent
* calls will point to this same area. There is information in the
* area that will be used across calls.
*
**
*
* DATAAREA Header
DA_ID DS CL4 x0 identifier
DA_LEN DS F x4 DATAAREA length--x280 (640) @01C
DA_VER DS X x8 DATAAREA version
DA_REL DS X x9 DATAAREA release

DS CL6 xA Reserved

* The following two named fields are set by the caller of OSR2.
* If the value in the field is not a valid value, the respective
* activity cannot be executed.

72 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

FUNCTION_REQUEST DS CL8 x10 OSREQ function request value
* ACCESS, STORE, etc. or other

DS CL8 x18 Reserved

* The following fields are set by OSR2 and should not be
* altered by the caller. Subsequent calls to OSR2 will rely
* on the information stored here.
*
* STOKEN NOTE: The STOKEN must be kept on a DOUBLE WORD boundary

TOKEN_AREA DS 2F x20 OSREQ token, do not change it.
STOKEN_AREA DS 4F x28 OSREQ stoken, do not change it.

DS 8F x38 Reserved

* The following fields are set by the caller of OSR2.
* The pointers are not altered by OSR2 but the data that
* the pointers reference may be.

*
CANCEL DS CL3 x58 CANCEL value, YES or other

DS CL1 x5B Reserved
COLLECTION_NAME_PTR DS A x5C Pointer to collection name
IADDRESS_PTR DS A x60 Reserved for IADDRESS_PTR
MANAGEMENT_CLASS_PTR DS A x64 Pointer to management class parm
MESSAGE_AREA_PTR DS A x68 Pointer to message area
OBJECT_NAME_PTR DS A x6C Pointer to object name
OBJECT_SIZE_PTR DS A x70 Pointer to object size value
OFFSET_PTR DS A x74 Pointer to offset value
QUERY_BUFFER_PTR DS A x78 Pointer to query buffer list
REASON_CODE_PTR DS A x7C Pointer to OSREQ reason code
RECALL_NUM_DAYS_PTR DS A x80 Recall Number of Days Pointer
RELEASE_BUFFER DS CL3 x84 RELBUF value, YES or other

DS CL1 x87 Reserved
RETENTION_PERIOD_PTR DS A x88 Pointer to retention period
RETRIEVE_LENGTH_PTR DS A x8C Pointer to retrieve length value
RETRIEVE_BUFFER_PTR DS A x90 Pointer to retrieve buffer list
RETURN_CODE_PTR DS A x94 Pointer to OSREQ return code
RETURN_CODE2_PTR DS A x98 Return Code 2 Pointer
STIMEOUT_PTR DS A x9C Store Timeout Pointer @P2C
STORE_BUFFER_PTR DS A xA0 Pointer to store buffer list
STORAGE_CLASS_PTR DS A xA4 Pointer to storage class parameter
TRACKING_TOKEN_PTR DS A xA8 User Tracking Token Pointer
VIEW DS F xAC Retrieve Object Copy
* 1 = PRIMARY
* 2 = First BACKUP Copy
* 3 = Second BACKUP Copy
DELHOLD DS CL8 xB0 DELHOLD= HOLD | NOHOLD | blank @L1A
EVENTEXP_PTR DS A xB8 Pointer to EVENTEXP @L1A

DS CL124 xBC Reserved for future keywords @01C
*
* Register Save Area
SAVE_AREA DS 18F x138 Savearea for this module. @01C
*

* The following area is completely overlaid each time OSR2
* is called

PARM_LIST DS CL(STATIC_LIST_END-STATIC_PARM_LIST) x180 Dynamic
* parm list @01C
*

DS CL136 x1F8 Reserved -- To keep the DATAAREA
* length constant, please subtract
* PARM_LIST growth from this
* reserved space. @01C
*

Appendix A. Sample program for object storage 73

DATAAREA_LEN EQU *-DATAAREA
OSR2SAMP CSECT
*

END OSR2SAMP

74 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

Appendix B. Reason codes

Table 3 contains only general-use return and reason codes. All other return and
reason codes are for diagnostic use only and are reserved for IBM internal use.
Refer to z/OS DFSMSdfp Diagnosis for information about diagnostic return and
reason codes. For more detailed information concerning the keywords referenced
in this section, refer to “OSREQ keyword parameter descriptions” on page 31.

Table 3. Return/Reason Codes

Return
code

Reason
code

(bytes) Error
description

Installation
action0 1 2 3

0 0 0 0 0 The request has successfully completed. No action is required.

4 t x y z The request has completed with a warning condition:
t UNIQUE OSREQ REASON CODE
x INTERNAL FUNCTION CODE
y ERROR INDICATION
z RESERVED

Correct program, if necessary.

4 4 x 1 z The QEL buffer segments are too short to accommodate all of the available
entries. As many entries as can fit in the segments are returned.

Execute the QUERY with a larger
QEL buffer.

4 4 x 2 z An unavailable resource condition was detected during a generic group
query which excludes one or more databases from the results. The QEL may
contain entries from the available databases.

Activate the databases, if
necessary.

4 4 x 3 z An UNACCESS has completed. The token has been cleared. There are one
or more requests outstanding. The outstanding requests are not terminated.

Correct the program, if necessary.

4 4 x 4 z A STORE or CHANGE request has completed but one or more of the
following conditions occurred, as indicated by bits set in byte 3 (z).

Z=BIT MAP:
1xxx xxxx Catalog entry was created for the collection
x1xx xxxx ODRETDT overrode RETPD, EVENTEXP, or Management Class

expiration date
xx1x xxxx Storage class specified for the collection was overridden
xxx1 xxxx Management class specified for the collection was overridden
xxxx 1xxx Retention period specified for the object by RETPD or

EVENTEXP was overridden
xxxx x1xx Reserved
xxxx xx1x Storage class specified for the object was overridden
xxxx xxx1 Management class specified for the object was overridden

Issue query to see new
parameters, if desired.

4 4 x 5 z DB2 SQL return code conversion, Module DSNTIAR, was not found in the
LINKLIST.

Ensure that module DSNTIAR is
available in the LINKLIST.

4 4 x 6 z First backup copy retrieved; primary copy of the object was not available
with Access Backup active.

4 4 x 7 z Second backup copy retrieved; primary copy of the object was not available
with Access Backup active.

8 t x y z Request unsuccessful.
t UNIQUE OSREQ REASON CODE
x INTERNAL FUNCTION CODE
y FIRST PARAMETER WITH AN ERROR
z TYPE OF ERROR

Correct calling program.

8 24 x y z The parameter is unusable, incorrect, invalid, or incomplete.

8 24 x 1 z PARAMETER LIST (MF=L)

8 24 x 1 1 The parameter list is in unusable storage. This means that OAM
encountered a virtual storage translation exception (for example, an OC4
ABEND) when it attempted to reference the area of storage containing the
parameter list name or the parameter list name length.

8 24 x 1 2 The parameter list is invalid or incomplete.

8 24 x 2 z SIZE

© Copyright IBM Corp. 1986, 2013 75

Table 3. Return/Reason Codes (continued)

Return
code

Reason
code

(bytes) Error
description

Installation
action0 1 2 3

8 24 x 2 1 The size (fullword) passed to OAM on the OSREQ macro is in unusable
storage. This means that OAM encountered a virtual storage translation
exception (for example, an OC4 ABEND) when it attempted to reference the
area of storage containing the size (fullword).

8 24 x 2 2 The size passed to OAM on the OSREQ macro contains an invalid value.

8 24 x 2 3 The size specified on an OSREQ STOREBEG is not greater than 50
megabytes.

8 24 x 2 4 The size specified on an OSREQ STOREPRT is not less than or equal to the
total object size specified on the OSREQ STOREBEG for this store sequence.

8 24 x 2 5 The size specified on an OSREQ STOREPRT when added to all of the
previous OSREQ STOREPRT requests exceeds the total object size specified
on the OSREQ STOREBEG for this store sequence.

8 24 x 2 6 The size specified on an OSREQ STOREEND is not equal to the size
specified on the OSREQ STOREBEG for this store sequence.

8 24 x 2 7 The size specified on an OSREQ STOREEND is not equal to the total of the
object sizes provided with previous OSREQ STOREPRT requests for this
store sequence.

Check the previous STOREPRT
requests to ensure that they
provided all of the parts of the
object data and that these
previous STOREPRT requests
were all successful.

8 24 x 2 8 The size specified on an OSREQ STOREPRT is less than the minimum part
size allowed. Only the last STOREPRT in the store sequence can be less
than the minimum.

8 24 x 3 z RETPD

8 24 x 3 1 The RETPD area (fullword) passed to OAM on the OSREQ macro is in
unusable storage. This means that OAM encountered a virtual storage
translation exception (for example, an OC4 ABEND) when it attempted to
reference the area of storage containing the RETPD (fullword).

8 24 x 3 2 RETPD invalid value, must be -2 thru 93000 or X'7FFFFFFF'.

8 24 x 4 z STORCLAS

8 24 x 4 1 The STORCLAS area passed to OAM on the OSREQ macro is in unusable
storage. This means that OAM encountered a virtual storage translation
exception (for example, an OC4 ABEND) when it attempted to reference the
area of storage containing the STORCLAS.

8 24 x 4 2 The STORCLAS passed to OAM on the OSREQ macro contains an invalid
character.

8 24 x 4 3 The STORCLAS passed to OAM on the OSREQ macro contains an invalid
length value.

8 24 x 5 z MGMTCLAS

8 24 x 5 1 The MGMTCLAS area passed to OAM on the OSREQ macro is in unusable
storage. This means that OAM encountered a virtual storage translation
exception (for example, an OC4 ABEND) when it attempted to reference the
area of storage containing the MGMTCLAS.

8 24 x 5 2 The MGMTCLAS passed to OAM on the OSREQ macro contains an invalid
character.

8 24 x 5 3 The MGMTCLAS passed to OAM on the OSREQ macro contains an invalid
length value.

8 24 x 6 z QEL

8 24 x 6 1 The QEL Buffer List passed to OAM in the OSREQ macro is in unusable
storage. This means that OAM encountered a virtual storage translation
exception (for example, an OC4 ABEND) when it attempted to reference the
area of storage containing the QEL Buffer List.

8 24 x 6 2 The QEL Buffer List passed to OAM in the OSREQ macro contains one of
the following conditions:
v Incorrect ID
v Incorrect length field
v Incorrect version field
v The user turned the RESERVED BIT “on” in the Query Buffer List

Control Block.

76 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

Table 3. Return/Reason Codes (continued)

Return
code

Reason
code

(bytes) Error
description

Installation
action0 1 2 3

8 24 x 6 4 The QEL Buffer passed to OAM in the OSREQ macro is in unusable storage.
This means that OAM encountered a virtual storage translation exception
(for example, an OC4 ABEND) when it attempted to reference the area of
storage containing the QEL Buffer.

8 24 x 7 z REASON/RETURN CODE STORAGE

8 24 x 7 1 The REASON code area passed to OAM from the OSREQ macro is in
unusable storage. This means that OAM encountered a virtual storage
translation exception (for example, an OC4 ABEND) when it attempted to
reference the area of storage containing the REASON code.

Check REGISTER 0 for REASON
code error conditions.

8 24 x 7 2 The RETURN code area passed to OAM from the OSREQ macro is in
unusable storage. This means that OAM encountered a virtual storage
translation exception (for example, an OC4 ABEND) when it attempted to
reference the area of storage containing the RETURN code.

Check REGISTER 15 for RETURN
code error conditions.

8 24 x 8 z BUFLIST

8 24 x 8 1 The BUFLIST passed to OAM from the OSREQ macro is in unusable
storage. This means that OAM encountered a virtual storage translation
exception (for example, an OC4 ABEND) when it attempted to reference the
area of storage containing the BUFLIST.

8 24 x 8 2 The BUFLIST passed to OAM in the OSREQ macro contains one of the
following conditions:
v Incorrect ID
v Incorrect length field
v Incorrect version field
v The user turned the RESERVED BIT “on” in the Data Buffer List Control

Block.

8 24 x 8 4 The BUFFER passed to OAM from the OSREQ macro is in unusable
storage.

8 24 x 8 5 The amount of buffer data provided on the STORE request is less than the
specified size of the object.

8 24 x 8 6 The amount of buffer data provided on the STORE request is greater than
the specified size of the object.

8 24 x 8 8 The amount of buffer data space provided on the RETRIEVE request is
insufficient for the object.

8 24 x 8 A When storing an object greater than 50 MB and less than or equal to 256
MB, multiple data buffers are supplied, which are not in contiguous storage.

8 24 x 9 z TOKEN

8 24 x 9 1 The TOKEN area passed to OAM from the OSREQ macro is in unusable
storage. This means that OAM encountered a virtual storage translation
exception (for example, an OC4 ABEND) when it attempted to reference the
area of storage containing the TOKEN.

8 24 x 9 2 The TOKEN set by the ACCESS macro is not being specified correctly on
subsequent OSREQ requests.

8 24 x A z OBJECT NAME

8 24 x A 1 The OBJECT NAME passed to OAM on the OSREQ macro is in unusable
storage. This means that OAM encountered a virtual storage translation
exception (for example, an OC4 ABEND) when it attempted to reference the
area of storage containing the OBJECT NAME or the OBJECT NAME
length.

8 24 x A 2 The OBJECT NAME passed to OAM on the OSREQ macro is not fully
qualified. The OBJECT NAME contains one or more wildcard characters
('*','%', '_') but the function is not QUERY.

8 24 x A 3 The OBJECT NAME passed to OAM on the OSREQ macro contains a
qualifier longer than 8 characters.

8 24 x A 4 The OBJECT NAME passed to OAM on the OSREQ macro contains an
invalid character. One of the characters in the OBJECT NAME is not an
uppercase alphabetic (A-Z), numeric (0–9), or national (@, #, $) character.

Appendix B. Reason codes 77

Table 3. Return/Reason Codes (continued)

Return
code

Reason
code

(bytes) Error
description

Installation
action0 1 2 3

8 24 x A 5 The OBJECT NAME passed to OAM on the OSREQ macro contains a null
qualifier, meaning ONE of the following is true:
v The first character of the OBJECT NAME is a period.
v The last character of the OBJECT NAME is a period.
v The OBJECT NAME contains two consecutive periods.

8 24 x A 6 The OBJECT NAME passed to OAM on the OSREQ macro contains more
than one asterisk (“*”) wildcard and/or an invalid mix of asterisks with
percent and/or underscore (“%” or “_”) characters.

8 24 x A 7 The OBJECT NAME passed to OAM on the OSREQ macro contains an
invalid qualifier. One of the qualifiers does not start with an uppercase
alphabetic character (A-Z) or national character ($, #, @).

8 24 x A 8 The OBJECT NAME passed to OAM on the OSREQ macro contains an
imbedded blank.

8 24 x A 9 The OBJECT NAME passed to OAM on the OSREQ macro has an invalid
length. The length is zero, negative, or longer than 44 characters.

8 24 x B z The OSREQ function.

8 24 x B 2 The function specified is unknown.

8 24 x C z OFFSET

8 24 x C 1 The OFFSET passed to OAM from the OSREQ macro is in unusable storage.
This means that OAM encountered a virtual storage translation exception
(for example, an OC4 ABEND) when it attempted to reference the area of
storage containing the OFFSET.

8 24 x C 2 The OFFSET value is larger than the length of the object.

8 24 x C 3 The OFFSET value is negative.

8 24 x C 4 The offset specified on an OSREQ STOREPRT is not immediately following
the last part of the object stored on the previous OSREQ STOREPRT for this
store sequence or is not zero for the first OSREQ STOREPRT for this store
sequence.

8 24 x D z LENGTH

8 24 x D 1 The LENGTH passed to OAM from the OSREQ macro is in unusable
storage. This means that OAM encountered a virtual storage translation
exception (for example, an OC4 ABEND) when it attempted to reference the
area of storage containing the LENGTH.

8 24 x D 2 The LENGTH value requested, plus the value specified on the OFFSET
keyword, is larger that the SIZE of the object.

8 24 x D 3 The LENGTH value is negative.

8 24 x D 4 The length specified on an OSREQ RETRIEVE is greater than 256
megabytes.

8 24 x E z MSGAREA

8 24 x E 1 The MSGAREA passed to OAM from the OSREQ macro is in unusable
storage. This means that OAM encountered a virtual storage translation
exception (for example, an OC4 ABEND) when it attempted to reference the
area of storage containing the MSGAREA.

8 24 x E 2 The MSGAREA length value is negative.

8 24 x F z COLLECTION NAME

8 24 x F 1 The COLLECTION NAME passed to OAM on the OSREQ macro is in
unusable storage. This means that OAM encountered a virtual storage
translation exception (for example, an OC4 ABEND) when it attempted to
reference the area of storage containing the COLLECTION NAME or the
COLLECTION NAME length.

8 24 x F 2 The COLLECTION NAME passed to OAM on the OSREQ MACRO is not
fully qualified. The COLLECTION NAME contains an asterisk (*) as the last
character in the name.

8 24 x F 3 The COLLECTION NAME passed to OAM on the OSREQ macro contains a
qualifier longer than 8 characters.

78 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

Table 3. Return/Reason Codes (continued)

Return
code

Reason
code

(bytes) Error
description

Installation
action0 1 2 3

8 24 x F 4 The COLLECTION NAME passed to OAM on the OSREQ macro contains
an invalid character. One of the characters in the COLLECTION NAME is
not an uppercase alphabetic (A-Z), numeric (0–9), or national (@, #, $)
character.

8 24 x F 5 The COLLECTION NAME passed to OAM on the OSREQ macro contains a
null qualifier, meaning ONE of the following is true.
v The first character of the COLLECTION NAME is a period.
v The last character of the COLLECTION NAME is a period.
v The COLLECTION NAME contains two consecutive periods.

8 24 x F 6 Reserved

8 24 x F 7 The COLLECTION NAME passed to OAM on the OSREQ macro contains
an invalid qualifier. One of the qualifiers does not start with an uppercase
alphabetic character (A-Z) or national character ($, #, @).

8 24 x F 8 The COLLECTION NAME passed to OAM on the OSREQ macro contains
an imbedded blank.

8 24 x F 9 The COLLECTION NAME passed to OAM on the OSREQ macro has an
invalid length. The length is zero, negative, or longer than 44 characters.

8 24 x 10 z IADDRESS ERROR

8 24 x 10 10 The IADDRESS passed to OAM from the OSREQ macro points to unusable
storage. This means that OAM encountered a virtual storage translation
exception (for example, an OC4 ABEND) when it attempted to reference the
area of storage containing the IADDRESS.

8 24 x 11 z TTOKEN

8 24 x 11 1 The TTOKEN passed to OAM is in unusable storage. This means that the
tracking token is contained in the virtual storage area for which the
application program does not have both fetch and store authorization. This
is an indication of a programming logic error in the application program
that is issuing the OSREQ macro invocation.

8 24 x 12 1 The RECALL parameter is in unusable storage for which the application
program does not have both fetch and store authorization. This is an
indication of a programming logic error in the application program that is
issuing the OSREQ macro invocation.

8 24 x 12 2 The RECALL parameter is larger than the maximum allowed.

8 24 x 12 3 The RECALL parameter is a negative number.

8 24 x 13 1 The RETCODE2 parameter is in unusable storage for which the application
program does not have both fetch and store authorization. This is an
indication of a programming logic error in the application program that is
issuing the OSREQ macro invocation.

8 24 x 14 z STOKEN

8 24 x 14 1 The STOKEN parameter is in unusable storage for which the application
program does not have both fetch and store authorization. This is an
indication of a programming logic error in the application program that is
issuing the OSREQ macro invocation.

8 24 x 14 2 The STOKEN value provided does not represent a store sequence currently
in progress.

8 24 x 15 z STIMEOUT

8 24 x 15 1 The STIMEOUT area (fullword) passed to OAM on the OSREQ macro is in
unusable storage. This means that OAM encountered a virtual storage
translation exception (for example, an OC4 ABEND) when it attempted to
reference the area of storage containing the STIMEOUT (fullword).

8 24 x 15 2 The value specified for STIMEOUT is invalid.

8 24 x 16 1 EVENTEXP area is unusable storage.

8 24 x 16 2 EVENTEXP invalid value, must be 0 to 93 000.

8 24 x 16 3 EVENTEXP and RETPD both supplied, only one allowed.

8 28 x y z An IADDRESS routine error was detected during execution of the DB2
language interface routine specified by IADDRESS
x, y, z SYSTEM/USER COMPLETION CODE

Appendix B. Reason codes 79

Table 3. Return/Reason Codes (continued)

Return
code

Reason
code

(bytes) Error
description

Installation
action0 1 2 3

8 2C x y z No valid object was found.
z RESERVED AND UNDEFINED

8 2C x 1 z The directory entry was not found.

8 2C x 2 z The object segment was not found.

8 2C x 3 z An OSREQ retrieval request with VIEW=BACKUP was received, but a
backup copy of the object does not exist.

8 2C x 4 z An OSREQ retrieval request with VIEW=BACKUP2 was received, but a
second backup copy of the object does not exist.

8 2C x 5 z The specified object's size is larger than the maximum object size supported
by the OSREQ function at the current system level. Retry the requested
OSREQ function on a system that supports objects of such size.

8 30 x y z The object already exists.
z RESERVED AND UNDEFINED

8 30 x 1 z The directory entry already exists.

8 30 x 2 z The object segment already exists.

8 34 x y z Request rejected for this task.
z RESERVED AND UNDEFINED

8 34 x 1 z A request was issued from a task control block (TCB) other than the initial
ACCESS request TCB.

8 34 x 2 z An ACCESS request is issued from the TCB while the prior ACCESS request
is still active.

8 38 x y z Store sequence with STOREBEG, STOREPRT, STOREEND error
z RESERVED AND UNDEFINED

8 38 x 1 z A store sequence function (STOREBEG, STOREPRT, STOREEND) was issued
while a STOREBEG is in progress

8 38 x 2 z A store sequence function (STOREBEG, STOREPRT, STOREEND) was issued
while a STOREPRT is in progress

8 38 x 3 z A store sequence function (STOREBEG, STOREPRT, STOREEND) was issued
while a STOREEND is in progress

8 38 x 4 z A store sequence could not be begun (STOREBEG) because the object
location of Optical is not supported for a store sequence

8 38 x 6 z On a STOREPRT or STOREEND request for an object to be stored to disk
sublevel 1, an attempt to access the DB2 buffer resulted in a -423 DB2 SQL
code. It was determined that the DB2 buffer can no longer be accessed.
Note: This could be the case that the DB2 locator is invalid because the
application did a COMMIT during the store sequence. A STOREBEG or
STOREPRT request has completed. This store sequence is not finished
because an UNACCESS has been issued.

Ensure that the application
program did not issue a
COMMIT or ROLLBACK during
a store sequence, which can be a
cause of the -423 DB2 SQL code.
Once a STOREBEG has been
issued, the application cannot
perform a COMMIT or
ROLLBACK until after the
corresponding STOREEND for the
store sequence. Also see the IBM
Information Management
Software for z/OS Solutions
Information Center for more
information on the -423 DB2 SQL
code.

8 38 x 7 z A STOREBEG or STOREPRT request has completed after an UNACCESS
has been issued. In this case, the UNACCESS will be deferred and will fail
because of the pending store sequence.

Ensure that the application
program does a STOREEND to
finish the store sequence or a
STOREEND with CANCEL=YES
to cancel the store sequence, then
issue UNACCESS again.

8 38 x 8 z The expected length of the object to be retrieved is greater than the
maximum retrieval buffer size of 256 megabytes. If LENGTH has a value of
0 or is not specified on an OSREQ RETRIEVE request, then by default the
length will be set to the length from either the offset (if OFFSET specified)
or beginning (if OFFSET not specified) to the end of the object.

80 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

http://publib.boulder.ibm.com/infocenter/imzic
http://publib.boulder.ibm.com/infocenter/imzic
http://publib.boulder.ibm.com/infocenter/imzic
http://publib.boulder.ibm.com/infocenter/imzic

Table 3. Return/Reason Codes (continued)

Return
code

Reason
code

(bytes) Error
description

Installation
action0 1 2 3

8 38 x 9 z UNACCESS request can not be processed because of a pending store
sequence.

Ensure that the application
program did a STOREEND to
finish the store sequence or a
STOREEND with CANCEL=YES
to cancel the store sequence
before issuing UNACCESS.

8 38 x 0A z On a STOREPRT or STOREEND request for an object to be stored to Tape, it
was determined that the buffer can no longer be accessed in the OAM
address space. A possible cause could be too low STIMEOUT value
specified on the OSREQ STOREBEG.

8 3C 5 1 1 OSREQ CHANGE: The EVENTEXP parameter is not allowed because the
object is not waiting for an event-based-retention event.

8 3C 5 2 2 OSREQ CHANGE: The RETPD parameter not allowed for an
event-based-retention object.

8 40 6 1 0 OSREQ DELETE: Deletion is not allowed because the object is in
DELHOLD=HOLD state.

8 40 6 2 1 OSREQ DELETE: Deletion is not allowed because the object is under
deletion-protection and is still in event-based-retention state.

8 40 6 2 2 OSREQ DELETE: Deletion is not allowed because the object is under
deletion-protection and the object's expiration date has not yet been
reached.

8 40 6 3 1 OSREQ DELETE: Deletion is not allowed because the object is under
retention-protection and is still in event-based-retention state.

8 40 6 3 3 OSREQ DELETE: Deletion is not allowed because the object is under
retention-protection and the object's retention date has not yet been reached.

Appendix B. Reason codes 81

82 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

Appendix C. Performance considerations and object data
reblocking

This appendix documents diagnosis, modification, or tuning information that is
provided to help you write an efficient application program that uses the OSREQ
macro.

Performance considerations
Allowing page release by specifying RELBUF=YES on a STORE request minimizes
unnecessary page-outs of buffer segment pages to auxiliary storage after they have
been written to object storage.

Attention: RELBUF=YES may release pages that contain data that has not been
committed to the database.

A generic QUERY request may use large amounts of instructions and virtual
storage for the output, plus slow other accesses to the directory.

Database synchronization should follow the OSREQ invocation as soon as possible
to minimize contention for resources.

When processing quantities of large objects, interactions among the following
factors can degrade performance: virtual and real storage requirements, paging and
auxiliary storage, data input/output, and movement (copying) of object data. All
of these considerations can be affected by how the object data is structured by the
application and what additional processing is required for OAM to complete the
request. Applications can optimize the object data storage to minimize the impact
of these considerations, as described in the next section.

Object data reblocking
OAM attempts to process the data in the caller's buffers with a minimum of data
movement. On OSREQ STORE function, if the object data is in one contiguous
block in a storage area immediately following the end of the buffer list, then the
data is not moved within the caller’s address space. On OSREQ RETRIEVE
function, if the first or only buffer is large enough for all of the object data and the
buffer immediately follows the buffer list, then the data is not moved within the
caller's address space.

If the conditions described are not met, OAM might obtain temporary storage to
reblock the data. The virtual storage needed, in addition to the calling program’s
requirements, might be as great as the lesser of 256 megabytes or the size of the
largest object.

Object storage
When using the OSREQ STORE function, if the object data is not in one contiguous
block in a storage area immediately following the end of the buffer list, the object
data might be reblocked into temporary storage within the caller’s address space.
The temporary storage requirements and uses are as follows:
v If the object is to be stored initially on disk sublevel 1 (DB2), temporary storage

is obtained based on the total length of the object data:

© Copyright IBM Corp. 1986, 2013 83

– If the total object data length is 3980 bytes or less, a temporary storage buffer
of 4KB is obtained.

– If the total object data length is greater than 3980 bytes and the destination is
a DB2 32K table, a temporary storage buffer of 32KB is obtained.

v If the object is to be stored initially on disk sublevel 2 (file system), optical
media, or tape media, temporary storage that is large enough to contain the
entire object is obtained.

In all cases where the object data requires reblocking, the object data segments are
moved from the caller’s buffers into the temporary storage buffer. The object data
is reblocked into one contiguous block starting at the beginning of the temporary
buffer.

For objects that are stored on disk sublevel 1 (DB2) and are 3980 bytes or less in
length, or for objects that are stored on disk sublevel 1 and are greater than 32640
bytes in length and the destination is a DB2 LOB table, or for objects that are
stored on disk sublevel 2 (file system), optical media, or tape media, only one
block is created and stored.

For objects that are stored on disk sublevel 1 and are greater than 3980 bytes in
length, the following steps are followed:
v Object data is moved into the temporary storage buffer until it is full.
v The object data in the temporary buffer is stored.
v The process of reblocking any remaining object data into the temporary buffer is

repeated until all object data has been stored.

When using the OSREQ store sequence functions (STOREBEG, STOREPRT, and
STOREEND) to store an object in multiple parts, there is no temporary storage
needed within the caller’s address space. It is recommended to avoid unnecessary
overhead by:
v Maximizing the size of each part of the object to be stored with STOREPRT and
v Minimizing the number of STOREPRT invocations.

Object retrieval
For objects that are retrieved from disk sublevel 1 , the object data is retrieved
directly into the caller’s buffer if the following conditions are met:
v The first or only buffer specified by the caller is contiguous to the buffer list.
v The first or only buffer is large enough to contain the entire object.
v The entire object is requested (not a part of the object).

For objects that are retrieved from disk sublevel 2 (file system), optical, or tape
storage, the object data is retrieved directly into the caller’s buffer if the following
conditions are met:
v The first or only buffer specified by the caller is contiguous to the buffer list.
v The first or only buffer is large enough to contain the entire object or the

requested part of the object.

If any of these conditions are not met, temporary storage is obtained for retrieving
the object data. The virtual storage needed in addition to the calling program’s
requirements might be as great as the lesser of 256 megabytes or the size of the
largest object.

If the object data length is greater than the first buffer, the first buffer is completely
filled, and the remainder of the object data is moved into the following buffers,
filling each buffer until the last of the object data is moved into the last buffer.

84 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

Appendix D. Using the CBRUXSAE installation exit

The CBRUXSAE installation exit provides security authorization checking against
users performing OSREQ transactions on object data. This exit is used at the
application programming interface (OSREQ macro) level.

The sample CBRUXSAE exit in SAMPLIB, defaults to returning a return code 16
indicating "Bypassed", meaning that the current and all future user IDs are
authorized to perform all OSREQ functions and that the exit need not be called
again. Installations must substitute this code with a validation routine to determine
authority for a specific user ID in order for authorization checking to be performed
at the application interface level.

This support provides more return codes to be processed by the CBRUXSAE
security authorization user exit. The additional return codes enable an installation
to code up their CBRUXSAE user exit to:
v Bypass the exit for any combination of functions. For example, the exit can be

bypassed for OSREQ QUERY and RETRIEVE requests but active for OSREQ
STORE, CHANGE and DELETE requests.

v Authorize users to store objects into an existing collection while preventing them
from creating new collections.

If the return code from CBRUXSAE is not 0, 16 or 255 (or 253 or 254 when storing
to an existing collection); return and reason codes are issued indicating that the
user ID is not authorized to perform the particular OSR function. For more
information concerning return and reason codes associated with this exit, refer to
z/OS DFSMSdfp Diagnosis.

Return codes from CBRUXSAE are interpreted as follows:

Table 4. CBRUXSAE return codes

Return Code Description

0
AUTHORIZEDUser is authorized to perform this function. The exit will
continue to be called for all normally called OSREQ functions: STORE,
RETRIEVE, QUERY, CHANGE, DELETE and STORE BEGIN.

16
BYPASSED

The current user and all future users are authorized. Exit will now be
BYPASSED (not called again for any function.)

224-252
RESERVED (Not Authorized)

Reserved for IBM. It is recommended that installations do not use return
code values in this range because their meaning could change in the future.
However, they are currently interpreted as: User is not authorized to
perform this function. No change is made to the BYPASS status of any
OSREQ function.

© Copyright IBM Corp. 1986, 2013 85

Table 4. CBRUXSAE return codes (continued)

Return Code Description

253
STORE RESTRICTED (No Bypass)

Store to existing collection only.

v For STORE (and STORE BEGIN) function: User is authorized to store
into an existing collection only. Attempts to store into a collection that
does not exist will fail

v All other OSREQ functions: NOT Authorized

This is valid for the current invocation only. No change is made to the
BYPASS status of any OSREQ function.

254
BYPASS CURRENT FUNCTION (IF STORE, RESTRICTED)

Current and future users are authorized to perform the current function.
The exit will be BYPASSED (not called again) for the current function. If the
current function is a STORE (or STORE BEGIN) then this exit will be
bypassed for subsequent STORE requests. This STORE request and
subsequent STORE requests will be allowed into existing collections only.
Attempts to store into a collection that does not exist will fail.
Note: If an administrator needs to create a new collection after this has
been set, he or she will have to first reset the exit with the LIBRARY
RESET,CBRUXSAE operator command.

For all other OSREQ functions, this exit will be bypassed (Authorized) for
that particular function. For example, if the current function is RETRIEVE,
then this RETRIEVE request and all subsequent RETRIEVE requests will be
allowed. The same applies for QUERY, CHANGE and DELETE.

255
BYPASS CURRENT FUNCTION (IF STORE, NOT RESTRICTED)

Current and future users are authorized to perform the current function.
The exit will be BYPASSED (not called again) for the current function. If the
current function is a STORE (or STORE BEGIN) then this exit will be
bypassed for subsequent STORE requests. This STORE request and
subsequent STORE requests will be allowed to store to both new and
existing collections.

For all other OSREQ FUNCTIONS, this exit will be bypassed (Authorized)
for that particular function. For example, if current function is RETRIEVE,
then this RETRIEVE request and all subsequent RETRIEVE requests will be
allowed. The same applies for QUERY, CHANGE and DELETE.
Note: Return codes 254 and 255 have the same meaning for all functions
except the store functions (STORE and STORE BEGIN).

Any other
non-zero

User is not authorized to perform this function.

Note: OSREQ STOREBEG is considered a STORE function from a CBRUXSAE exit
perspective.

Register contents on entry to CBRUXSAE
The following are the register contents on entry to the CBRUXSAE installation exit:

Register
Contents

86 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

0 Contents on entry are unpredictable.

1 Contains the address of a parameter list, which contains four pointers:
1. Pointer to an 8-character field, which contains the OSREQ function

being performed. Possible values are STORE, RETRIEVE, QUERY,
CHANGE, DELETE. Note that during a store sequence using the
STOREBEG, STOREPRT, and STOREEND functions, the CBRUXSAE
exit is only invoked once for the sequence, the invocation will occur
during the STOREBEG function, and will be identified to the exit with
the value STORE.

2. Pointer to a 44-character field, which contains the object name
associated with the requested function.

3. Pointer to a 44-character field, which contains the collection name
associated with the requested function.

4. Pointer to an 8-character field, which contains the user ID associated
with the requested function.

2–8 Contents on entry are unpredictable.

9 Contains the address of a 1024-byte storage area that can be used as
automatic storage for the exit. The storage provided adheres to
environment dependent restrictions. If more storage is needed, or there is a
preference to obtain your own storage, environment dependent functions
must adhere to GETMAIN restrictions. For example, a CICS environment
must use CICS GETMAIN service to obtain storage instead of using MVS
OBTAIN.

10–12 Contents on entry are unpredictable.

13 Contains the address of a 72 byte save area (standard linkage).

14 If the return code from CBRUXSAE is not 0, 16 or 255 (or 253 or 254 when
storing to an existing collection); return and reason codes are issued
indicating that the user ID is not authorized to perform the particular OSR
function. For more information concerning return and reason codes
associated with this exit, refer to z/OS DFSMSdfp Diagnosis.

Programming the CBRUXSAE exit correctly
CBRUXSAE is provided as a separate load module that must be link-edited into
LINKLIB and invoked from OSR by the MVS LINK macro.

CBRUXSAE is invoked in the following state:
v Task mode (not SRB)
v Non-cross-memory mode (PASN=SASN=HASN)
v No MVS locks held
v Enabled for I/O and external interrupts
v Problem or supervisor state (the state of the invoker of the OSREQ macro

interface)
v Key of the caller (invoker of the OSREQ macro interface)

CBRUXSAE must meet the following requirements:
v 31-bit addressing mode
v Reentrant
v Reusable
v Refreshable

Appendix D. Using the CBRUXSAE installation exit 87

Abends incurred by CBRUXSAE are sent to the caller’s recovery routine; no
additional ESTAE for this exit is provided. See “Sample CBRUXSAE installation
exit” for a sample of the CBRUXSAE installation exit.

Sample CBRUXSAE installation exit
Here is the sample transaction security authorization installation exit, CBRUXSAE:
UXSAE TITLE ’CBRUXSAE - SAMPLE OSREQ TX AUTH INSTALLATION EXIT’
CBRUXSAE START 0 SAMPLE OSREQ TX AUTH INST EXIT

SPACE 2
**** START OF SPECIFICATIONS ***
* *
* MODULE NAME: CBRUXSAE *
* *
* DESCRIPTIVE NAME: SAMPLE OSREQ TRANSACTION SECURITY *
* AUTHORIZATION INSTALLATION EXIT *
* *
* PROPRIETARY V3 STATEMENT *
* LICENSED MATERIALS - PROPERTY OF IBM *
* 5694-A01 *
* Copyright IBM Corp. 1996, 2009 *
* END PROPRIETARY V3 STATEMENT *
* *
* Function: *
* Module CBRUXSAE is invoked each time a request is made to *
* OAM via the OSREQ interface. CBRUXSAE may refuse to allow *
* the user to perform the requested transaction by returning *
* an appropriate return code in register 15 (described in *
* the OUTPUT section below). *
* *
* Starting with z/OS V1R11, more granular return codes have *
* been implemented to allow bypassing the exit for each of the *
* individual OSREQ functions in addition to the ability to *
* restrict STOREs to existing collections only. *
* The additional return codes enable an installation to bypass *
* the exit for any combination of functions. For example, the *
* exit can be bypassed for OSREQ QUERY and RETRIEVE requests *
* but active for OSREQ STORE, and DELETE requests. *
* *
************************** !!! WARNING !!! ****************************
* WARNING: Prior to z/OS V1R11, ANY non-zero return code (except *
* RC 16 for BYPASS) meant "authorization failed". Starting with *
* z/OS V1R11, return codes 253, 254, and 255 have new meaning *
* as described in the OUTPUT section below. If you used 253, *
* 254, or 255 in a pre-V1R11 version of CBRUXSAE, please review *
* the new meanings and modify your exit appropriately. *
************************** !!! WARNING !!! ****************************
* THE INSTALLATION CAN PERFORM AUTHORIZATION CHECKING BY ANY *
* MEANS IT DEEMS REASONABLE. FOR EXAMPLE: *
* 1. INVOKE RACF VIA THE SAF RACROUTE MACRO *
* 2. USE A TABLE-DRIVEN METHOD OF AUTHORIZATION CHECKING, *
* USING A DATASET OF USERIDS AND THE COLLECTIONS/OBJECTS *
* A USER IS AUTHORIZED TO PERFORM FUNCTIONS AGAINST. *
* THE AUTHORIZATION CHECKING MAY BE AT THE GRANULARITY THAT *
* THE INSTALLATION DECIDES IS NECESSARY, USING THE VALUES *
* PASSED IN TO THIS EXIT. *
* *
* NOTES: *
* THIS SAMPLE RETURNS WITH A RETURN CODE OF 0, TELLING OAM *
* TO CONTINUE PROCESSING. *
* *
* DEPENDENCIES: MVS/SP VERSION 4.3.0 *
* DFSMS/MVS 1.2.0 *
* *
* CHARACTER CODE: EBCDIC *

88 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

* *
* RESTRICTIONS: NONE *
* *
* REGISTER CONVENTIONS: *
* R0 - UNPREDICTABLE *
* R1 - STANDARD LINKAGE REGISTER *
* R2 - UNPREDICTABLE *
* R3 - UNPREDICTABLE *
* R4 - UNPREDICTABLE *
* R5 - UNPREDICTABLE *
* R6 - UNPREDICTABLE *
* R7 - UNPREDICTABLE *
* R8 - UNPREDICTABLE *
* R9 - ADDRESS OF AUTODATA AREA FOR EXIT *
* R10 - UNPREDICTABLE *
* R11 - INPUT BASE REGISTER *
* R12 - CBRUXSAE BASE REGISTER *
* R13 - STANDARD LINKAGE REGISTER *
* - SAVE AREA ADDRESS *
* R14 - STANDARD LINKAGE REGISTER *
* - RETURN POINT ADDRESS *
* R15 - STANDARD LINKAGE REGISTER *
* - ENTRY POINT ADDRESS *
* - RETURN CODE *
*
* MODULE TYPE: CONTROL SECTION *
* *
* PROCESSOR: ASSEMBLER H *
* *
* ATTRIBUTES: *
* *
* LOCATION: LINKLIB *
* STATE: PROBLEM OR SUPERVISOR (CALLER) *
* AMODE: 31 *
* RMODE: ANY *
* KEY: KEY OF CALLER *
* MODE: TASK *
* SERIALIZATION: UNLOCKED *
* TYPE: REENTRANT, REUSABLE, REFRESHABLE *
* AUTHORIZATION: NONE *
* *
* LINKAGE: STANDARD LINKAGE CONVENTIONS *
* *
* CALLING SEQUENCE: *
* CBRUXSAE IS INVOKED IN THE USER’S ADDRESS SPACE USING THE *
* MVS LINK MACRO *
* *
* *
* INPUT: *
* REGISTER 1 WILL CONTAIN THE ADDRESS OF A PARAMETER LIST *
* WHICH WILL CONTAIN 4 POINTERS: *
* 1. POINTER TO 8 CHARACTER FIELD WHICH CONTAINS THE *
* OSREQ FUNCTION BEING PERFORMED *
* POSSIBLE FUNCTIONS ARE: STORE *
* RETRIEVE *
* CHANGE *
* QUERY *
* DELETE *
* 2. POINTER TO 44 CHARACTER FIELD WHICH CONTAINS THE *
* OBJECT NAME ASSOCIATED WITH THE REQUESTED FUNCTION *
* 3. POINTER TO 44 CHARACTER FIELD WHICH CONTAINS THE *
* COLLECTION NAME ASSOCIATED WITH THE REQUESTED FUNCTION *
* 4. POINTER TO 8 CHARACTER FIELD WHICH CONTAINS THE *
* USERID ASSOCIATED WITH THE REQUESTED FUNCTION *
* REGISTER 9 WILL CONTAIN THE ADDRESS OF A 1024 BYTE AREA OF *
* STORAGE WHICH CAN BE USED AS THIS PROGRAM’S AUTOMATIC STORAGE*
* *

Appendix D. Using the CBRUXSAE installation exit 89

* OUTPUT: *
* A RETURN CODE IS PLACED IN REGISTER 15: *
* Return *
* Code Description *
* ------ --*
* 0 AUTHORIZED *
* User is authorized to perform this function. The exit will *
* continue to be called for all normally called OSREQ *
* functions: *
* STORE, RETRIEVE, QUERY, CHANGE, DELETE, and STORE BEGIN. *
* *
* 16 BYPASSED *
* The current user and all future users are authorized. Exit *
* will now be BYPASSED (not called again for any function). *
* *
* 224-252 RESERVED (Not Authorized) @L1A*
* Reserved for IBM. It is recommended that installations do *
* not use return code values in this range because their *
* meaning could change in the future. However, they are *
* currently interpreted as: *
* User is not authorized to perform this function. No change *
* is made to the BYPASS status of any OSREQ function. *
* *
* 253 STORE RESTRICTED (No Bypass) @L1A*
* Store to existing collection only. *
* - For STORE (and STORE BEGIN) function: User is authorized *
* to store into an existing collection only. Attempts to *
* store into a collection that does not exist will fail. *
* - All other OSREQ functions: NOT Authorized. *
* *
* This is valid for the current invocation only. No change *
* is made to the BYPASS status of any OSREQ function. *
* *
* 254 BYPASS CURRENT FUNCTION (IF STORE, RESTRICTED) @L1A*
* Current and future users are authorized to perform the *
* current function. The exit will be BYPASSED (not called *
* again) for the current function. If the current function *
* is a STORE (or STORE BEGIN) then this exit will be bypassed *
* for subsequent STORE requests. This STORE request and *
* subsequent STORE requests will be allowed into existing *
* collections only. Attempts to store into a collection that *
* does not exist will fail. *
* Note: If an administrator needs to create a new collection *
* after this has been set, he’ll have to first reset the exit *
* via the LIBRARY RESET,CBRUXSAE operator command. *
* *
* For all other OSREQ FUNCTIONS, this exit will be bypassed *
* (Authorized) for that particular function. For example, if *
* current function is RETRIEVE, then this RETRIEVE request *
* and all subsequent RETRIEVE requests will be allowed. The *
* same applies for QUERY, CHANGE, and DELETE. *
* *
* 255 BYPASS CURRENT FUNCTION (IF STORE, NOT RESTRICTED) @L1A*
* Current and future users are authorized to perform the *
* current function. The exit will be BYPASSED (not called *
* again) for the current function. If the current function *
* is a STORE (or STORE BEGIN) then this exit will be bypassed *
* for subsequent STORE requests. This STORE request and *
* subsequent STORE requests will be allowed to store to both *
* new and existing collections. *
* *
* For all other OSREQ FUNCTIONS, this exit will be bypassed *
* (Authorized) for that particular function. For example, if *
* current function is RETRIEVE, then this RETRIEVE request *
* and all subsequent RETRIEVE requests will be allowed. The *
* same applies for QUERY, CHANGE, and DELETE. *
* Note: Return codes 254 and 255 have the same meaning for *

90 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

* all functions except the store functions (STORE and STORE *
* BEGIN). *
* *
* Any *
* other *
* non- *
* zero User is not authorized to perform this function. @L1A*
* *
* EXIT NORMAL: *
* RETURN TO THE CALLER WITH RETURN CODE 0 OR NON-ZERO *
* RETURN CODE, INDICATING AUTHORIZATION FAILURE *
* *
* EXIT ERROR: NONE *
* *
* EXTERNAL REFERENCES: *
* *
* ROUTINES: NONE *
* *
* CONTROL BLOCKS: NONE *
* *
* EXECUTABLE MACROS: *
* RETURN *
* SAVE *
* *
* MESSAGES: NONE *
* *
* ABEND CODES: NONE *
* *
* CHANGE ACTIVITY: *
* *
* $L0=OW20657 1B0 950501 TUCLJT: Initial release *
* *
* $01=OW36250 1E0 990104 TUCLJT: Change default to return a @01A*
* RC=16 to indicate that the @01A*
* exit is not used, therefore @01A*
* should not be invoked again @01A*
* (Roll up of OW35784 1C0, 1D0)@01A*
* $L1=OAMR1B R11 080523 TUCTMD: OAMR1B CBRUXSAE Enhancement @L1A*
* Add new return codes for @L1A*
* STORE to existing Collection @L1A*
* only, and BYPASS individual @L1A*
* OSREQ Functions @L1A*
* *
**** END OF SPECIFICATIONS **

TITLE ’CBRUXSAE INPUT PARAMETERS’

* *
* MODULE INPUT PARAMETER DEFINITIONS *
* *

UXSAEINP DSECT ,
FUNC_PTR DS 1F ADDRESS OF FUNCTION
OBJN_PTR DS 1F ADDRESS OF OBJECT NAME
COLN_PTR DS 1F ADDRESS OF COLLECTION NAME
USER_PTR DS 1F ADDRESS OF USERID
SAVE DS CL72 SAVE AREA
DATDPTR DS 1F AUTO DATA AREA ADDRESS

SPACE 2
TITLE ’CBRUXSAE WORKING STORAGE’

* *
* MODULE AUTO DATA AREA DEFINITIONS *
* *

WORKAREA DSECT , CBRUXSAE AUTO DATA AREA
SAVEAREA DS 18F SAVE AREA

DS CL440 AVAILABLE STORAGE

Appendix D. Using the CBRUXSAE installation exit 91

WORKLEN EQU *-WORKAREA
SPACE 2
TITLE ’STANDARD REGISTER DEFINITIONS’

* *
* STANDARD REGISTER DEFINITIONS *
* *

R0 EQU 0 GENERAL REGISTER 0
R1 EQU 1 GENERAL REGISTER 1
R2 EQU 2 GENERAL REGISTER 2
R3 EQU 3 GENERAL REGISTER 3
R4 EQU 4 GENERAL REGISTER 4
R5 EQU 5 GENERAL REGISTER 5
R6 EQU 6 GENERAL REGISTER 6
R7 EQU 7 GENERAL REGISTER 7
R8 EQU 8 GENERAL REGISTER 8
R9 EQU 9 GENERAL REGISTER 9
R10 EQU 10 GENERAL REGISTER 10
R11 EQU 11 GENERAL REGISTER 11
R12 EQU 12 GENERAL REGISTER 12
R13 EQU 13 GENERAL REGISTER 13
R14 EQU 14 GENERAL REGISTER 14
R15 EQU 15 GENERAL REGISTER 15

* MISCELLANEOUS CONSTANT VALUES *

UXSAEDIS EQU 16 RC=16 TELLS OSR TO DISABLE @01A
* FURTHER CALLS TO THIS SECURITY @01A
* AUTHORIZATION EXIT AND HANDLE @01A
* SUBSEQUENT INVOCATIONS AS @01A
* AUTHORIZED USERS @01A

TITLE ’CBRUXSAE - SAMPLE OSREQ TX AUTH INSTALLATION EXIT’

* *
* CBRUXSAE ENTRY POINT *
* *

CBRUXSAE CSECT , SAMPLE OSREQ TX AUTH INST EXIT
CBRUXSAE AMODE 31
CBRUXSAE RMODE ANY

SAVE (14,12),, SAVE CALLER’S REGISTERS AND +
’CBRUXSAE&SYSDATE’ MARK ENTRY POINT

LR R12,R15 COPY ENTRY POINT ADDRESS
USING CBRUXSAE,R12 CBRUXSAE BASE REGISTER
USING WORKAREA,R9 ADDRESSABILITY TO DATA AREA
ST R13,SAVEAREA+4 BACKWARD CHAIN SAVE AREAS
LA R0,SAVEAREA CBRUXSAE SAVE AREA ADDRESS
ST R0,8(,R13) FORWARD CHAIN SAVE AREAS
LR R13,R0 SET CBRUXSAE SAVE AREA ADDRESS
LR R11,R1 STORE PARAMETERS IN DATA AREA
USING UXSAEINP,R11 ADDRESSABILITY TO PARAMETERS
SPACE 2

* *
* RETURN TO THE CALLER *
* *

EXIT DS 0H

L R13,SAVEAREA+4 RESTORE CALLER’S SAVE AREA
LA R10,UXSAEDIS SET DISABLE RETURN CODE @01A
LR R15,R10 SAVE RETURN CODE @01C

92 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

RETURN (14,12), RESTORE CALLER’S REGISTERS, THEN +
RC=(15) RETURN TO CALLER

SPACE 2
END CBRUXSAE

Appendix D. Using the CBRUXSAE installation exit 93

94 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

Appendix E. Accessibility

Publications for this product are offered in Adobe Portable Document Format
(PDF) and XHTML through the z/OS Information Center, at http://
publib.boulder.ibm.com/infocenter/zos/v2r1/index.jsp. If you experience difficulty
with the accessibility of any z/OS information, send an email to
mhvrcfs@us.ibm.com or write to:

IBM® Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
Information Center using a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always
present together (or always absent together), they can appear on the same line,
because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

© Copyright IBM Corp. 1986, 2013 95

at http://publib.boulder.ibm.com/infocenter/zos/v2r1/index.jsp

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!
(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next

96 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix E. Accessibility 97

98 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1986, 2013 99

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

100 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming interface information
This publication documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of DFSMS Object Access Method
(OAM).

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at http://www.ibm.com/legal/copytrade.shtml.

Notices 101

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml

102 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

Glossary

The terms in this glossary are defined as they
pertain to the Object Access Method.

This glossary may include terms and definitions
from:
v The American National Standard Dictionary for

Information Systems, ANSI X3.172-1990,
copyright (ANSI). Copies may be purchased
from the American National Standards
Institute, 11 West 42nd Street, New York 10036.

v The Information Technology Vocabulary,
developed by Subcommittee 1, Joint Technical
Committee 1, of the International
Electrotechnical Commission (ISO/IEC
JTC2/SC1).

v IBM Dictionary of Computing, New York:
McGraw-Hill, 1994.

access path
The path DB2 uses to get to data specified
in SQL statements. An access path can
involve an index, a sequential search, or a
combination of both.

ACS Automatic class selection.

application plan
The control structure produced during the
bind process and used by DB2 to process
SQL statements during application
execution.

attribute
A named property of an entity.

automatic class selection (ACS)
Routines that determine the storage class,
management class, and storage group for
a collection. The storage administrator is
responsible for establishing ACS routines
appropriate to an installation’s storage
requirements.

bind The process by which the output from the
DB2 precompiler is converted to a usable
control structure called an application
plan. This process is the one during
which access paths to the data are
selected and some authorization checking
is performed.

block See sector.

CAF Call attachment facility.

call attachment facility (CAF)
A DB2 attachment facility that allows
application programs to connect to and
use DB2.

cartridge
See optical cartridge.

Channel-to-channel (CTC)
A method of connecting two computing
devices.

CICS Customer Information Control System.

class transition
A change in an object’s management class
or storage class when an event occurs that
brings about a change in an object’s
service level or management criteria.
Class transition occurs during a storage
management cycle.

collection
A group of objects that have similar
performance, availability, backup,
retention, and class transition
characteristics. A collection is used to
catalog a large number of objects which, if
cataloged separately, could require an
extremely large catalog.

commit
In DB2, to cause all changes that have
been made to the database file since the
last commitment operation to become
permanent, and the records to be
unlocked so they are available to other
users.

CTC Channel-to-channel.

data class
A list of allocation attributes that the
system uses for the creation of data sets.

DASD
Direct Access Storage Device.

DATABASE 2
A relational database management
system.

DATABASE 2 interactive
An interactive relational database
management program.

DB2 IBM DATABASE 2.

© Copyright IBM Corp. 1986, 2013 103

DB2I DATABASE 2 interactive.

DFSMSdfp
Data Facility Storage Management
Subsystem data facility product.

DFSMS/MVS
Data Facility Storage Management
Subsystem/Multiple Virtual Storage.

disk See optical disk.

gigabyte
When referring to storage capacity, two to
the thirtieth power; 1 073 741 824 in
decimal notation.

grant A DB2 process that authorizes users to
access data.

GTF Generalized trace facility.

ICF Integrated catalog facility.

ID Identification.

image copy
An exact reproduction of all or part of a
table space. DB2 provides utilities to
make full image copies or incremental
image copies.

IMS Information Management System.

index A set of pointers that are logically ordered
by the values of a key. Indexes provide
quick access to data and can enforce
uniqueness on the rows in a DB2 storage
table.

installation-wide exit
The means specifically described in an
IBM software product’s documentation by
which an IBM software product may be
modified by a customer’s system
programmers to change or extend the
functions of the IBM software product.
Such modifications consist of exit routines
written to replace one or more existing
modules of an IBM software product, or
to add one or more modules or
subroutines to an IBM software product,
for the purpose of modifying (including
extending) the functions of the IBM
software product.

Interactive System Productivity Facility
An interactive base for ISMF.

IPL Initial program load.

ISMF Interactive Storage Management Facility.

ISO International Organization for
Standardization.

ISPF Interactive System Productivity Facility.

LCS Library Control System.

Library Control System
Component of OAM that writes and
reads objects on optical disk storage, and
manipulates the optical volumes on which
the objects reside.

management class
A named collection of management
attributes describing the retention,
backup, and storage class transition
characteristics for a group of objects in an
object storage hierarchy.

OAM Object Access Method.

OAM Storage Management Component
(OSMC)

Determines where object should be
stored, manages object movement within
the objects storage hierarchy, and
manages expiration attributes based on
the installation storage management
policy.

object A named byte stream having no specific
format or orientation.

Object Access Method (OAM)
A program that provides object storage,
object retrieval, and object storage
hierarchy management. OAM isolates
applications from storage devices, storage
management, and storage device
hierarchy management.

Object Storage and Retrieval (OSR)
Component of OAM that stores, retrieves,
and deletes objects. OSR stores objects in
the storage hierarchy and maintains the
information about these objects in DB2
databases.

Object Storage Request macro (OSREQ)
This macro serves as an application
program interface for storing, retrieving,
and deleting objects using OAM.

optical cartridge
A plastic case that protects and contains
the optical disk and permits insertion into
an optical drive.

optical disk
A disk that uses laser technology for data
storage and retrieval.

104 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

optical disk drive
The mechanism used to seek, read, and
write data on an optical disk. An optical
disk drive may reside in an optical library
or as a stand-alone unit.

optical library
A disk storage device that houses optical
disk drives and optical disks, and
contains a mechanism for moving optical
disks between a storage area and optical
disk drives.

optical volume
One side of a double-sided optical disk.

OSMC
OAM Storage Management Component.

OSR Object Storage and Retrieval.

OSREQ
Object Storage Request macro.

OVTOC
Optical volume table of contents.

pseudo optical library
A set of shelf-resident optical volumes
associated with either a stand-alone or an
operator-accessible optical disk drive; see
also real optical library.

real optical library
Physical storage device that houses
optical disk drives and optical cartridges,
and contains a mechanism for moving
optical disks between a cartridge storage
area and optical disk drives; see also
pseudo optical library.

row The horizontal component of a DB2 table.
A row consists of a sequence of values,
one for each column of a table.

SCDS Source control data set.

sector On disk storage, an addressable
subdivision of a track used to record one
block of a program or data.

shelf-resident optical volume
An optical volume that resides outside of
an optical library.

SMS Storage Management Subsystem.

SPUFI SQL processing using file input.

SQL Structured query language.

SQLCODE
Structured query language return code.

SQL Processing Using File Input
Used to perform groups of SQL
statements in batch or online mode.
SPUFI is option one under DB2I.

stand-alone optical drive
An optical drive housed outside of an
optical library.

storage class
A named list of storage attributes. The list
of attributes identifies a storage service
level provided for data associated with
the storage class. No physical storage is
directly implied or associated with a
given storage class name.

storage group
A named collection of physical devices to
be managed as a single object storage
area. It consists of an object directory
(DB2 table space) and object storage on
disk (DB2 table spaces or file system),
with optional library-resident and
shelf-resident optical volumes.

storage hierarchy
An arrangement in which data can be
stored in several types of storage devices
that have different characteristics, such as
capacity and speed of access.

storage management cycle
An invocation of the OAM Storage
Management Component (OSMC). The
purpose of the storage management cycle
is to ensure that every object scheduled
for processing is placed in the proper
level of the object storage hierarchy (as
specified by its storage class), is expired
or is backed up (as specified by its
management class or by an explicit
application request), and, if necessary, is
flagged for action during a subsequent
storage management cycle.

structured query language
A DB2 query tool.

table In DB2, a named data object consisting of
a specific number of columns and some
number of unordered rows.

table space
A page set used to store the records of
one or more DB2 tables.

TSO Time Sharing Option.

user exit
A programming service provided by an

Glossary 105

IBM software product that may be
requested by an application program for
the service of transferring control back to
the application program upon the later
occurrence of a user-specified event.

vary offline
To change the status of an optical library
or an optical drive from online to offline.
Varying a library offline does not affect
the online/offline status of the drives it
contains. When a library or drive is
offline, no data may be accessed on
optical disks through the offline drive or
the drives in the offline library.

vary online
To change the status of an optical library
or an optical drive from offline to online.
This makes the drive or drives in the
library being varied online available for
the optical disk access.

106 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

Index

A
ACCESS function

description 9
initializing the OSREQ interface 12
parameter keywords

IADDRESS 12, 13, 33, 40
MF 12, 33
MSGAREA 12, 34
REACODE 12, 36
RETCODE 12, 37
TOKEN 12, 40
TTOKEN 12, 40

syntax 12
accessibility 95

contact IBM 95
features 95

ACS (Automatic Class Selection)
data class 3
description 3
management class names 24
SMS construct definitions 3
storage class assignment 15
storage class name 24
storage group 3

application
coordinating OAM’s object

identification 6
coordinating with DB2 and OAM 6

assistive technologies 95

B
buffer 22, 27

CBRIBUFL macro 47
data buffer list structure diagram 48
descriptor 47, 49
keyword parameter 31
object data 47
object data reblocking 83
page release segments 36
performance considerations 83
query buffer list structure

diagram 52
RETRIEVE function 48
temporary storage 83

BUFLIST 19, 22
BUFLIST keyword parameter 19, 22

as pointer to CBRIBUFL macro
area 47

format 31
specifying virtual storage buffers 20,

22

C
CBRIBIND SAMPLIB job 44
CBRIBUFL macro

data buffer list structure diagram 48
description 47
DSECTs 47

CBRIBUFL macro (continued)
OBL 47
OBLB 47
OBLBDESC 47

used with a RETRIEVE request 48
used with a STORE request 48

CBRIQEL macro
description 49
DSECTs 49

QEL 49
QELB 49
QELBDESC 49
QELQ 49

order retrieval keys 49
query buffer list structure

diagram 52
CBROSREQ 55
CBROSREQ SAMPLIB job 55
CBRUXSAE installation exit

abend handling 87
description 85
programming notes 87
register contents on entry 86
sample installation exit 88

CHANGE 13
CHANGE function 13

changing an object's management
characteristics 13

date
processing expiration 44
updating last referenced 15
updating pending action 15

description 9
parameter keywords

COLLECTN 32
MF 33
MGMTCLAS 34
MSGAREA 34
NAME 34
REACODE 36
RETCODE 37
RETPD 38
STORCLAS 39
TOKEN 40
TTOKEN 40

choosing data types 5
CICS (Customer Information Control

System)
object storage 2
synchronization with

SYNCPOINT 42
usage requirements 42
using the OSREQ macro 40

class
assignments 25
data 3
defaults 4
explicit names 6
management 3
storage 3

collection
description 1, 4
error conditions 43
naming conventions 6
object defaults 4, 22
processing an object in a

collection 25
COLLECTN 13, 16, 17, 19, 22
COLLECTN keyword parameter 13, 16,

17, 19, 22
collection name length field 21
description 32
format 32
identifying an object for deletion 16
querying on an object in a

collection 17
retrieving an object in a collection 19

D
DASD (Direct Access Storage Device)

in OAM storage hierarchy 3
in object data storage, using 83

data class
ACS routine, updating 4
description 3

data types
choosing 5
that work well with OAM 5

databases
query element list 75
synchronizing activities 6, 13, 83

DB2
call attachment facility (CAF) 13, 42
coordinating with OAM and your

application 6
deadlocks 44
load modules, using JOBLIB and

STEPLIB statements in 42
message data area 34
OSR functions 2
timeouts 44

DB2 SQL
error reason codes 46

DELETE 13, 16
DELETE function 16

deleting an existing object 7, 16
description 9
parameter keywords

COLLECTN 32
MF 33
MSGAREA 34
NAME 34
REACODE 36
RETCODE 37
TOKEN 40
TTOKEN 40

deleting objects 7
DSECT

CBRIBUFL macro 47
CBRIQEL macro 49

© Copyright IBM Corp. 1986, 2013 107

E
error reason codes

DB2 SQL 46
OAM issuing messages 46

exit, installation
abend handling 87
description 85
programming notes 87
register contents on entry 86

expiration date processing
automatic deletion of objects 44
management class retention limit 44,

45
object retention period 44
reserved value 44
valid retention periods 45

F
file system

NFS 51
retrieval response time 51
zFS 51

functions 13, 16, 17, 19, 22, 30
OSREQ macro

ACCESS 12
functions used in 13, 16, 17, 19, 22, 30

G
glossary 103

I
IADDRESS keyword parameter

application connection to DB2 44
as direct identifier for entry point

address 33
as optional parameter 41
description 33
effects in processing

environments 13
format 33
in the ACCESS function 12, 40
parameter list 32
using with structured query language

(SQL) 13
implementing functions

with OSREQ macro 11
in the CHANGE function 13
in the DELETE function 16
in the QUERY function 17
in the RETRIEVE function 19
in the STORE function 22
in the UNACCESS function 30

J
JOBLIB statements 42

assigning concatenation to authorized
libraries 42

using with DB2 load modules 42

K
keyboard

navigation 95
PF keys 95
shortcut keys 95

keyword parameter descriptions 31

L
LENGTH 19
LENGTH keyword parameter

as optional parameter 33
description 33
format 33
in the RETRIEVE function 20
omitting the 33
specifying a portion of an object for

retrieval 21
value of zero 33

list 22, 27

M
macro

CBRIBUFL 47
CBRIQEL 49
OSREQ 9

management class
assigning to objects 24
changing 13, 15
defaults 6, 22
description 3
expiration date processing 44
format 34

management policy
overriding defaults 6

messages
DB2 data area 34
OSREQ return and reason codes 46

MF 13, 16, 17, 19, 22
MF keyword parameter 13, 16, 17, 19,

22, 30
as optional input parameter 43
description 33
format 11, 33
functions used in

ACCESS 12
OSREQ macro forms 10

specifying the TOKEN keyword
parameter 41

using the COMPLETE
operand 41

specifying parameters 41, 43
MGMTCLAS 13, 22
MGMTCLAS keyword parameter 13, 22

description 34
format 13, 34
omitting the 43

MSGAREA 13, 16, 17, 19, 22
MSGAREA keyword parameter 13, 16,

17, 19, 30
as an optional parameter 11
description 34
format 34
functions used in

ACCESS 12

MSGAREA keyword parameter
(continued)

functions used in (continued)
STORE 22

N
NAME 13, 16, 17, 19, 22
NAME keyword parameter 13, 16, 17,

19, 22
description 16, 17, 19, 34
format 34
object name length field as input for

the 21
navigation

keyboard 95
Notices 99

O
OAM

coordinating with application and
DB2 6

object 9
access time 6
administration 4
changing an object?s management

characteristics 13
characteristics 2
data reblocking 83
deleting an existing object 16
deleting directory information 9
descriptive information 6
establishing the storage management

policy 2
expiration date processing 44
name field 53
name, qualifying the 11
processing large objects 83
querying the directory 9
retrieval response time 53
retrieving objects 21
separating 7
size restrictions and limitations 42
storage device basis 25
storing directory information 9
temporary storage 83

Object Access Method (OAM)
application program interface 9
choosing data types 4
description 1
establishing the storage management

policy 2
naming conventions 4
reason codes 46
return codes 46
SMS construct definitions 3
understanding 1
understanding the components

Library Control System (LCS) 2
OAM Storage Management

Component (OSMC) 2
Object Storage and Retrieval

(OSR) 2
object retrieval 84

108 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

object storage hierarchy
adding objects to 21

objects
adding to object storage hierarchy 21
deleting 7
retrieval of 84
retrieving a partial object 5
storage of 83

OFFSET 19
OFFSET keyword parameter 19

description 35
format 35
in the RETRIEVE function 35
omitting the 35
retrieving an object 21, 33
retrieving part of an object 33

optical
object retrieval 83
volumes

reading and writing 2
OSREQ macro 13, 16, 17, 19, 22, 30

CBRIBUFL macro 31, 47
CBRIQEL macro 49
CBROSREQ SAMPLIB job 55
choosing form 10
coding guidelines 11
criteria for OSREQ macro use 4
description 1, 9
ending the OSREQ interface 30
functions of the macro 9
how to read syntax diagrams x
implementing functions with 11
initializing the macro 12
optional input parameter 43
OSREQ keyword parameter

descriptions 31
OSREQ return and reason codes 46
register values at invocation 44
sample program using 55
supported functions 11
under CICS 40
usage recommendations 40
usage requirements 42
using the OSREQ macro 9

P
parameter

input/output requirements 42
keywords 31

BUFLIST 12, 31
COLLECTN 12, 31, 32
IADDRESS 12, 32, 33
LENGTH 12, 33
MF 12, 33
MGMTCLAS 12, 34
MSGAREA 12, 34
NAME 12, 34
OFFSET 12, 35
QEL 12, 36
REACODE 12, 36
RELBUF 12, 36
RETCODE 12, 37
RETPD 12, 37, 38, 45
SIZE 12, 38
STORCLAS 12, 39
TOKEN 12, 40

parameter (continued)
keywords (continued)

TTOKEN 12, 40
VIEW 12, 40

OSREQ conventions 40
parameter keywords 13, 16, 17, 19, 22
product knowledge

required ix
programming interface information 101

Q
QEL 17
QEL (query element list) keyword

parameter 17
as pointer to CBRIQEL macro 49
as query buffer length field

(QELBBLTH) 52
as retrieval order key fields 49, 50,

51
backup retrieval order key

(QELQBROK) 49, 50, 51
primary retrieval order key

(QELQPROK) 49, 50, 51
secondary backup retrieval order

key (QELQB2OK) 49, 50, 51
as retrieval response time field

(QELQERRT) 51, 52
buffer space 48, 49, 52
description 17, 36, 49
DSECT description 49
format 36
in the CBRIQEL macro 49, 50, 52
in the QUERY function 17

QUERY 17
QUERY function 17

CBRIQEL macro 49
description 9
generic search 17
getting object characteristics 17
name conventions 34
parameter keywords

COLLECTN 32
MF 33
MSGAREA 34
NAME 34
QEL 36
REACODE 36
RETCODE 37
TOKEN 40
TTOKEN 40

QEL keyword parameter 49
query buffer

mapping 49
QELBUSED field parameter 52

retrieving an existing object 19

R
REACODE 13, 16, 17, 19, 22
REACODE keyword parameter 13, 16,

17, 19, 30
as an optional parameter 11, 36
description 36
format 36

REACODE keyword parameter
(continued)

functions used in
ACCESS 12
STORE 22

general use 75
reason codes 13, 16, 17, 19, 30, 46

general use 75
OSREQ macro 46
REACODE keyword parameter

in the ACCESS function 12
in the STORE function 22

RECALL keyword parameter 36
functions used in 36

recovery, object
successful 21
use of the RETRIEVE function in 21

RELBUF 22
RELBUF keyword parameter 22

default value 37
description 36, 83
format 36

required product knowledge ix
RETCODE 13, 16, 17, 19, 22
RETCODE keyword parameter 13, 16,

17, 19, 30
as an optional parameter 11
description 37
format 37
functions used in

ACCESS 12
STORE 22

general use 75
RETCODE2 keyword parameter 37

functions used in 37
retention period

changing for previously stored
objects 13

expiration attributes 22, 44
expiration date processing 16, 44
management class assignment 15
null parameter value 16, 43
overriding 37
specifying on a STORE function 22
specifying override retention

period 38, 45
RETPD 13, 22
RETPD keyword parameter 13

description 38
format 38
range for parameter values 16, 45

RETRIEVE 19
RETRIEVE function 19

backup retrieval 20, 21
buffer use 48
date

updating last referenced 21
updating pending action 21

description 9, 19
parameter keywords

BUFLIST 31
COLLECTN 21, 32
LENGTH 33
MF 33
MSGAREA 34
NAME 34
OFFSET 35

Index 109

RETRIEVE function (continued)
parameter keywords (continued)

REACODE 36
RETCODE 37
TOKEN 40
TTOKEN 40
VIEW 21, 40

QUERY output using the 21
QUERY request as input 19, 21
retrieval response time 53
single object recovery and the 21

return codes 46

S
sample installation exits

CBRUXSAE 88
sample program

CBROSREQ 55
for object storage request 55
using OSREQ macro 55

SAMPLIB job
CBRIBIND 44
CBROSR2 64
CBROSREQ 55

generating the IADDRESS
keyword parameter 55

link-editing 55
modifying for use with high-level

languages 55
use with COBOL 55
use with PL/1 55
ways to use 55

CBRUXSAE 85
security authorization checking 85
sending comments to IBM xiii
shortcut keys 95
size

keyword 38
processing large objects, limitations

on 83
restrictions and limitations, object 42

SIZE 22
SIZE keyword parameter 22

description 38
format 38
specifying number of bytes 22, 39

SSTOREEND 29
STEPLIB statements 42

assigning concatenation to authorized
libraries 42

using with DB2 load modules 42
storage

of objects 83
storage class

assigning to objects 24
changing for an object 13
defaults 6, 22
description 3

storage group
affiliating libraries with a 3
assigning backup storage groups

using SETOSMC statements 3
assigning collections to a 2, 7
description 3
OAM storage hierarchy 3

storage management
class, changing 15
constructs 3
establishing the storage management

policy 2
storage management policy

establishing 2
STORCLAS 13, 22
STORCLAS keyword parameter 13, 22

description 39
format 39
null parameter value 43
omitting the 40

STORE 22
STORE function 22

catalog entry 43
collection name 22
description 9, 22
expiration date processing 44
parameter keywords

BUFLIST 31
COLLECTN 32
MF 33
MGMTCLAS 34
NAME 34
REACODE 36
RELBUF 36
RETCODE 37
RETPD 38
SIZE 38
STORCLAS 39
TOKEN 40
TTOKEN 40

performance considerations 83
syntax 22

Store Sequence functions
cancelling 32
overview 21
RETCODE2 value 38
SIZE value 39
SSTOREEND 29
STOREBEG 25
STOREPRT 27
timeout interval 39

STOREBEG 25
STOREPRT 27
structured query language (SQL)

COMMIT and 13
CONNECT and 13
interface module entry point

address 13
using with the IADDRESS

function 13
Summary of changes xv
syntax 13, 16, 17, 19, 30
syntax diagrams 13, 16, 17, 19, 30

ACCESS 12
how to read x
STORE 22

T
TOKEN 13, 16, 17, 19, 22
TOKEN keyword parameter 12, 13, 16,

17, 19, 22, 30
causes abend, invalid 41
clearing TOKEN contents 13, 40

TOKEN keyword parameter (continued)
description 40
format 40
functions used in

ACCESS 12
passing to subroutines 40
setting the 12

trademarks 101
TTOKEN 13, 16, 17, 19, 22
TTOKEN keyword parameter 13, 16, 17,

19, 30
description 40
format 40
functions used in

ACCESS 12
STORE 22

U
UNACCESS 30
UNACCESS function 30

clearing TOKEN contents 13, 40
description 9
ending the OSREQ interface 30
parameter keywords

MF 33
MSGAREA 34
REACODE 36
RETCODE 37
TTOKEN 40

user interface
ISPF 95
TSO/E 95

V
VIEW 19
VIEW keyword parameter 19

default value 40
description 40
format 40
no second backup object exists when

issuing the 20
reason codes returned from use of 80
valid values 20

110 z/OS V2R1.0 DFSMS OAM Application Programmer’s Reference

����

Product Number: 5650-ZOS

Printed in USA

SC23-6865-00

	Contents
	Figures
	Tables
	About this book
	Major divisions of this book
	Required product knowledge
	z/OS information
	How to read syntax diagrams

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	z/OS Version 2 Release 1 summary of changes

	Chapter 1. Understanding the Object Access Method
	Understanding OAM components
	Establishing a storage management policy
	Understanding the OAM application programming interface
	Choosing data types that work well with OAM
	Retrieving a partial object
	Coordinating DB2, OAM, and your application
	Coordinating your application with OAM’s object identification
	Overriding management policy defaults
	Separating objects
	Deleting objects

	Chapter 2. Application program interface for OAM
	Using the OSREQ macro
	What you can do with OSREQ
	Choosing the form
	Getting the code right

	Implementing the functions
	ACCESS—Initializing the OSREQ interface
	CHANGE—Changing an object's management characteristics
	DELETE—Deleting an existing object
	QUERY—Obtaining object characteristics
	RETRIEVE—Retrieving an existing object
	Adding objects to the object storage hierarchy
	STORE function
	Processing a store to a new collection
	Processing a store to an existing collection

	STOREBEG—Beginning a Store Sequence operation
	STOREPRT—Storing an individual part in a Store Sequence operation
	STOREEND—Ending a Store Sequence operation
	UNACCESS—Ending the OSREQ interface

	OSREQ keyword parameter descriptions
	Usage considerations
	Usage requirements
	Restrictions and limitations
	Programming notes
	Register use

	Expiration date processing
	Messages and codes
	OAM return codes and reason codes
	DB2 SQL error reason codes

	CBRIBUFL macro
	CBRIQEL macro

	Appendix A. Sample program for object storage
	CBROSREQ
	CBROSR2

	Appendix B. Reason codes
	Appendix C. Performance considerations and object data reblocking
	Performance considerations
	Object data reblocking
	Object storage
	Object retrieval

	Appendix D. Using the CBRUXSAE installation exit
	Register contents on entry to CBRUXSAE
	Programming the CBRUXSAE exit correctly
	Sample CBRUXSAE installation exit

	Appendix E. Accessibility
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Trademarks

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V

