
z/OS

Language Environment
Vendor Interfaces
Version 2 Release 1

SA38-0688-02

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 891.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1991, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures xi

Tables xv

About this document xvii
Using your documentation xviii
How to read syntax diagrams xix
z/OS information xxi

How to send your comments to IBM xxiii
If you have a technical problem xxiii

Summary of changes xxv
Summary of changes for z/OS Version 2 Release 1
(V2R1) as updated February, 2015 xxv
Summary of changes for z/OS Version 2 Release 1
(V2R1) as updated December, 2013 xxv
Summary of changes for z/OS Version 2 Release 1
(V2R1) xxv

Part 1. Language Environment
vendor interfaces for AMODE 31 /
AMODE 24 applications 1

Chapter 1. Common interfaces and
conventions 3
Common runtime environment 3

Library not all linkable 3
Reentrancy 3
Recursion 3
AMODE/RMODE 4
Member code AMODE restrictions 4
External names 4
General register usage at entry to callable services 4
General register usage at exit from callable
services 5
Floating-point register conventions 5
Access register conventions 5
Program mask conventions 5
Routine layout. 6
Prolog information blocks 10
Epilog code 33
Base locator table 33
CEEYEPAF — locates an XPLINK or
non-XPLINK entry point PPA1 and PPA2 from a
passed DSA 35
__ep_find () — returns the address of the entry
point of the function owning the dsa_p DSA . . 36
CEEYPPAF — locates a field in the PPA1
optional area based on a passed pointer to the
PPA1 38

Language Environment dynamic storage area –
non-XPLINK 39

Language Environment dynamic storage area –
XPLINK 41
Language Environment common anchor area . . . 42
Language Environment enclave data block 63
Language Environment process control block . . . 71
Language Environment region control block . . . 76
Example of a condition information block 80
Example of a machine state block 83
Language Environment member list and event
handler 86
Language Environment callable services calling
conventions 88

Callable services syntax declarations 88
Optional parameter support 89
Data type definitions 89
ENTRY variable 90
LABEL variable 91
Callable service example 91
Invoking a callable service from C/C++ 91

Chapter 2. CALL linkage conventions 93
Terminology 93
Standard CALL linkage conventions 94

Register usage 94
Stack format 94
CEEVGTUN — next available byte locator
service. 100
CEEVSSEG — return the stack segment bounds 101
Standard save area 102
Argument list format 103

FASTLINK CALL linkage conventions 104
Register usage 104
Stack frame mapping 105
Argument list format 109
Leaf routines 112
Code sequences 112

Extra Performance Linkage (XPLINK) CALL
linkage conventions 116

Register usage 117
Stack frame mapping 117

Chapter 3. Program initialization and
termination 141
Initialization overview 141
Termination overview 142

Enclave termination 142
Process termination 143

Putting initialization/termination together. . . . 143
Member interfaces for initialization 143

CEESTART 144
CEEFMAIN 149
CEEMAIN 149
CEESTART operation 150
CEESIOP — set interrupt option service . . . 150
Signature CSECT 151

© Copyright IBM Corp. 1991, 2015 iii

||

CEEBETBL — Language Environment externals
table 152
Event handler routines 153
CEEBLLST — language list 153
CEEINT interface 157
CEEBCRLM — cancel/release load module . . 159
CEEBSENM — set the enclave name 160
CEEBSRCM — set the enclave return code
modifier 161
CEEPGFD — get function pointer 163
CEEPRFD — release function pointer 164
CEE3ADDM — add new members to the
enclave 165
CEE3CRE — create enclave. 167
CEE3CSYS — creating nested enclave 171
CEE3MBR — member bootstrap routine . . . 172
CEE3SRSA — set return save area 174
CEE3DDBC — set dummy DSA back chain . . 175
CEE3PLST — PLIST manipulation 175
CEEGIN — obtain the program's invocation
name 176
CEERELU — RCB lookup 177

Member interfaces for termination 178
CEETREC — explicit termination through HLL
constructs 178
CEETREN — terminate without raising T_I_S 179
CEEATTRM — register event handler 180
Termination sequence 180
Termination failures 180
T_I_S condition. 180

Member event codes for initialization and
termination 181
Language Environment abend summary 183

CEECOPP — runtime option compiler service 183
Options processing event 186

User exits 186
CEEBSHL — exit from/re-entry to Language
Environment shell 186

Language Environment interface validation exit 187
Structure of the Language Environment
interface validation exit 188
CEEXVSEL — high-level selection criteria . . . 188
Language-specific interface validation exit . . . 191

Interface for preinitialization 197
CEEPIPI — invocation for subroutine by
address 197
Preinitialization environment and system
request block mode 200

Chapter 4. Storage management . . . 205
Dynamic storage (heap) services 205

Storage model 205
CWI to the heap services 206
Process-level heap storage management . . . 207
Region-level heap storage management. . . . 208
CEEVGTSB — unconditional get heap below 210
CEEV#GTS — get heap storage 211
CEEV#FRS — free heap storage 212
CEEVHRPT — obtain dynamic heap storage
report 213

User-created heap services 214

CEEVUHCR — create a heap using
user-provided storage 214
CEEVUHGT — allocate storage from a
user-created heap 215
CEEVUHFR — return storage to a user-created
heap 216
CEEVUHRP — produce a storage report for a
user-created heap 216

Vendor heap manager interface 217
Requirements from the vendor 217
What the vendor should know 217
Activating the vendor heap manager 219
__vhm_event() API 220

XPLINK DSA extension services 220
CEEVXPAL — XPLINK DSA extension 221
__alcaxp() — XPLINK DSA extension (alloca) 221

XPLINK compatibility stack swapping services . . 222
CEEVROND — run on downward-growing
stack 222
CEEVRONU — run on upward-growing stack 223
CEEVH2OS — XPLINK to OS linkage on
upward-growing stack 224

__stack_info() - stack segment ranges 225
Saving the stack pointer 227

Chapter 5. Condition representation 229
Condition representation model 229
Data objects 230

Condition token data type (CEECTOK) 230
Feedback code 234

CEEGETFB — Construct a condition token given a
facility ID and a message number 234

Chapter 6. National language support
and message handler 237
National language support 237
Introduction to Language Environment message
services 238
MSGFILE — related CWIs 239

CEECLOS — close ddname. 239
CEEODMF — open an input ddname 239
CEEOPMF — open the MSGFILE ddname . . 240
CEEQDMF — query an input ddname 241
CEEQUMF — query the MSGFILE ddname . . 242
CEECHMF — change the MSGFILE ddname 243
Relationship between date/time and COUNTRY
settings 243

Message handling services 244
CEECMIB — create a message insert area entry 244
CEEMFNDM — return the MIB address . . . 245
CEE3SMO — suppress printing of messages . . 247

C/C++-specific vendor interfaces 248
__cttbl() — returns address of _LC_ctype_t
structure 248
ASCII/EBCDIC mixed mode support for
enhanced ASCII C-RTL 248
__ae_thread_setmode() — set character mode:
ASCII or EBCDIC 250
__ae_thread_swapmode() — swap character
mode to ASCII or EBCDIC 251

iv z/OS V2R1.0 Language Environment Vendor Interfaces

__isASCII() — determine character mode: ASCII
or EBCDIC 252
__ae_autoconvert_state() — returns automatic
conversion state of thread 253

Chapter 7. Condition management 255
Compiler-writer interfaces (CWIs) 255

CEE3ERP — support for user-provided error
recovery 255
CEE3RSUM — resume an interrupted program 256
CEESGLN — signal invalid resume request . . 259
CEESGLT — signal a condition and terminate 260
CEE3SMS — set machine state 261
CEE3SMS2 — set machine state 2 263
CEEGOTO — restart execution at specified label 265
CEEHDHDL — register an event handler for
stack frame zero processing 269
CEEMRCM — move the resume cursor . . . 270
CEEYDSAF — find the previous DSA 272
__dsa_prev() — chain back to previous DSA 273
__far_jump() — perform far jump (C/C++ and
XPLINK only) 276
__set_stack_softlimit() — set stack soft limit
(C/C++ and XPLINK only). 279

Other Language Environment routines and
handlers 280

Interface to the language-specific handlers. . . 280
DSA exit routines 280
Shunt routine 281
Attention handling 284
Error processing 284

Other Language Environment condition manager
topics 288

Language Environment condition information
block 288
Errors during condition handling. 288

HLL conventions and information 289
HLL condition handling conventions 289
HLL condition handling information 291

Language Environment-issued abends 291

Chapter 8. Program management . . . 293
Loading and deleting programs in different
environments 293
CWI to program management process services . . 294

CEEZLOD — process load service 294
CEEZDEL — process delete service 294

CWI to program management region services . . 295
CEEZLODR — region load service 295
CEEZDELR — region delete service 296

CWI to program management enclave services . . 296
CEEPLOD — enclave level load service . . . 297
CEEPLOD2 — enclave/thread level load service 298
CEEPDEL — enclave level delete service . . . 300
CEEPDEL2 — enclave level delete service . . . 301
CEEPQLD — return information about loaded
module 302
CEEPCB_DELETE — system dependent delete
service. 303

CEEPCB_LOAD — system dependent load
service. 304
CEEPLODT — thread level load service . . . 305
CEEPDELT – thread level delete service . . . 307

Library subroutine access 307
LIBVECs 308
LIBPACKs 309
LIBVEC descriptor (LVD) 310
LIBVEC initialization 312
CWI to LIBVEC low-level services 313
CEEPLVI — LIBVEC initialization 313
CEEPLVE — verify load/delete 314
CEEPLVT — LIBVEC termination 315

CEEPPOS — program object services 316
CWIs for explicit DLL reference 320

CEEPLDE — load DLL 320
CEEPFDE — DLL free 322
CEEPQDF — query DLL function 323
CEEPQDV — query DLL variable 324

CWIs for implicit DLL reference 326
CEETLOC — stub for trigger load on call . . . 327
CEETHLOC — stub for trigger load on XPLINK
call by name. 328
FDCB — function descriptor control block. . . 329
__bldxfd() — build an XPLINK compatibility
descriptor 331
CEETLOR — stub for trigger load on reference 332
VDCB — variable descriptor control block. . . 333
CEETGTFN — stub for function invocation of
old code 334

CWIs to find the writable static area (WSA) . . . 335
CEEPFWSA — find writable static area (WSA) 335
__fnwsa() —- CWI to find a writable static area 336
__static_reinit() — CWI to reinitialize writable
static area 338

CEEDLLF — DLL failure control block 339

Chapter 9. Debugging and
performance analysis 343
Language Environment-provided CWIs for the
debug tool 343

__setHookEvents() — specify execute hook
events for target process. 343
CEE3CBTS — pass component broker connector
parameters 346
CEEBFBC — build feedback code routine . . . 348
CEEKRGPM — register pattern match routine 349
CEEQFBC — query feedback code routine. . . 351
CEEQLOD — query modules loaded with
enclave level load service 352
CEETGCAA — get next CAA pointer 354
CEETSFB — translate standard feedback token 354
CEETSFC — translate standard feedback code 355

Debug tool-provided event handlers. 356
Debug tool event handler 356

Language Environment actions for the interactive
debug tool 363
Language Environment interactive debug data
areas 364

Execute hook support 364
Performance analysis support 365

Contents v

Profile tool event handler 365
Language Environment actions for profiler . . 368

Chapter 10. DFSORT interface 369
DFSORT interface description 369
CEE3SRT — call DFSORT 369
ILC within SORT exits 371
Error handling within SORT exits 371

Messages and conditions 371

Chapter 11. Math library 373
Calling math services from an application 373
Math service condition handling requirements . . 373

Member-specific condition handling 374
Data types and their abbreviations 374
CWI conventions for scalar math services 374

Register interface 375
Conventional interface 375

Condition token values for math services 376
Math services 376

Scalar math services 377
Degree input/output trigonometry functions 384
Entry point names for scalar bit manipulation
routines 385

Message ID — message text for math library . . . 387
Language Environment math services — value
of inserts 388

Language Environment conversion services . . . 390
Terminology. 390
CEEYCVHE — E-format output conversion
routine 391
CEEYCVHF — F-format output conversion
routine 393
CEEYCVHI — decimal to float input conversion
routine 398

Chapter 12. Dump and tracing
services. 403
Dump services 403

CEE3DMP — runtime environment dump
service. 405
CEESDMP — symbolic dump of a routine. . . 405
CEETRCB — traceback utility 405
CEETBCK — traceback utility (replaces
CEETRCB) 408
Member language dump exit 418
CEELDMP — single line message dump service 418
CEEVDMP — variable dump service 419
CEEHDMP — hexadecimal storage dump
service. 422
CEEBDMP — control block dump service . . . 423

Other dump-related CWIs 426
CEE3CDO — check dump options 426
CEEKSNP — produce a SNAP dump 427
CEEURTB — produce a user routine traceback 428

Tracing services 430
Global and member-specific tracing 431
CEEKCTRC — add a trace table entry 432

Chapter 13. Subsystem
considerations 435
CICS and POSIX 435
Background information. 435

Terminology. 435
Running a program under CICS 437
Language Environment-CICS and Language
Environment-batch program models 438

Language Environment-CICS interface 440
Languages supported. 440
Extended runtime language interface 441
Flowchart of activities 444
Language Environment-CICS interface routines'
DSA 445
Partition initialization (Language Environment
enablement) 445
Partition termination (Language Environment
disablement). 448
Establish ownership type call 449
Thread initialization 453
Thread termination 455
Run unit (program) initialization 455
Run unit (program) termination 460
Run unit (program) begin invocation 461
Run unit (program) end invocation 463
Error recovery 471
Determine working storage and static storage 472
Perform GOTO call 473

CEECTCB — set TCB+X'144' routine 475
CEECCICS — partition initialization changes . . . 476
IMS considerations 476

IMS to Language Environment 476
Language Environment to IMS — CEETDLI . . 477
Implementation 478

Chapter 14. Anchor support 479
Anchor service 479

Fetch the anchor routine. 479
Set the anchor routine 480

CEEARLU — anchor lookup 481
Anchor considerations 481
Bypassing anchor lookup, set, or reset 482

Chapter 15. Member language
information 483
OS services — restricted use 483
Structure of executable programs 484
Central control blocks 484
Event handler 485
Event handler calls 485

Event code 1 — handle condition represented
by the CIB event 486
Event code 2 — perform enablement for this
stack frame event 487
Event code 3 — handle condition according to
language defaults event 489
Event code 4 — runtime options event 490
Event code 5 — main-opts event 491
Event code 6 — event handler utilities event 491
Event code 7 — dump event handler event . . 496

vi z/OS V2R1.0 Language Environment Vendor Interfaces

Event code 8 — new load module event . . . 499
Event code 9 — new condition event 500
Event code 10 — resume from a condition
handler event 501
Event code 11 — DSA exit routines event . . . 502
Event code 12 — national language change
event 503
Event code 13 — country code change event 503
Event code 14 — main routine invocation event 504
Event code 15 — atterm event 505
Event code 16 — Debug Tool event 506
Event code 17 — process initialization event . . 506
Event code 18 — enclave initialization event 507
Event code 19 — enclave termination event . . 510
Event code 20 — query/build feedback code
event 511
Event code 21 — process termination event . . 512
Event code 22 — DLL initialization event . . . 513
Event code 23 — stack frame zero processing
event 514
Event code 24 — POSIX events event 515
Event code 25 — static object constructor event 518
Event code 26 — region initialization event . . 520
Event code 27 — region termination event . . 521
Event code 28 — identify module entry point
event 521
Event code 29 — determine enclave work area
lengths event 522
Event code 31 — determine working storage
(CICS only) event 523
Event code 32 — perform GOTO validation
(CICS only) event 524
Event code 33 — member needs options
processing event 524
Event code 34 — command line equivalent
event 525
Event code 35 — default options event 526
Event code 36 — static destructor event . . . 526
Event code 37 — preallocated storage event . . 527
Event code 38 — normal resume in DSA event 528
Event code 39 — interrupt received event . . . 529
Event code 40 — get/release function pointer
event 531
Event code 41 — cancel/release load module
event 532
Event code 42 — automatic destructor event 533
Event code 44 — member program mask event 534

Chapter 16. z/OS UNIX System
Services support 537
Thread management functions. 537

CEEOPAI. 537
CEEOPAD 538
CEEOPAGD 539
CEEOPAGS 539
CEEOPAGW 540
CEEOPASD 541
CEEOPASS 542
CEEOPASW 543
CEEOPC 544
CEEOPE 545

CEEOPEQ 546
CEEOPJ 547
CEEOPO 548
CEEOPS 549

Signal handling CWIs 550
CEEOKILL 550

Thread keyed data CWIs 552
CEEOPGS 552
CEEOPKC 553
CEEOPKD 554
CEEOPSS. 555

Thread cancellation CWIs 556
CEEOPCPO 556
CEEOPCPU 557

Thread synchronization — mutex and read-write
locks 559

CEEOPMD 559
CEEOPMI 561
CEEOPML 563
CEEOPML2 565
CEEOPMT 566
CEEOPMU 567
CEEOPMU2 568
CEEOPRL 569
CEEOPRL2 571
CEEOPRT 571
CEEOPRU 573
CEEOPRU2 574
CEEOPWL 575
CEEOPWL2 577
CEEOPWT 577
CEEOPXD 579
CEEOPXG 580
CEEOPXI. 582
CEEOPXS 584

Thread synchronization — condition variables . . 586
CEEOPCB 586
CEEOPCD 588
CEEOPCI. 589
CEEOPCS 590
CEEOPCT 591
CEEOPCW 594
CEEOPDD 596
CEEOPDG 597
CEEOPDI 598
CEEOPDS 599

Process control functions support. 601
CEEOEXEC 601
CEEOFORK 603
CEEOSPWN. 605

Miscellaneous utilities 608
CEEOEXIT 608
CEEOXEXE 608

Support for POSIX functions getenv(), setenv(), and
clearenv(). 609

Errors 609
CEEBENV 609

Contents vii

Chapter 17. COBOL-specific vendor
interfaces 613
ILBOLLDX — OS/VS COBOL library load/delete
exit 613
IGZCXCC — COBOL call/cancel routine 615
IGZXAPI — COBOL file and runtime information
query routine 617
IGZCXSF — COBOL extract side file routine . . . 623

Chapter 18. PL/I-specific vendor
interfaces 627
IBMPXSF — PL/I extract side file routine 627

Chapter 19. C/C++ special purpose
interfaces for IEEE floating-point . . . 631
IEEE binary floating-point introduction. 631
IEEE decimal floating-point introduction 632
Selection of fdlibm or fdlibm replacement functions 632
IEEE floating-point functions 633

__chkbfp() — check IEEE facilities usage . . . 633
__fp_btoh() — convert from IEEE floating-point
to hexadecimal floating-point 634
__fp_cast() — cast between floating-point data
types 635
__fp_htob() — convert from hexadecimal
floating-point to IEEE floating-point 636
__fp_level() — determine type of IEEE facilities
available 637
__fp_read_rnd() — determine rounding mode 637
__fp_setmode() — set IEEE or hexadecimal
mode 638
__fp_swapmode() — set IEEE or hexadecimal
mode 639
__fp_swap_rnd() — swap rounding mode . . . 640
__fpc_rd() — read floating-point control register 641
__fpc_rs() — read floating-point control register
and change rounding mode field 642
__fpc_rw() — read and write the floating-point
control register 643
__fpc_sm() — set floating-point control register
rounding mode field 644
__fpc_wr() — write the floating-point control
register 645
__isBFP() — determine application
floating-point mode 645
__to_xx() – C/C++ compiler casting support 646

Part 2. Language Environment
vendor interfaces for AMODE 64
applications 651

Chapter 20. Common interfaces and
conventions for AMODE 64
applications 653
Common runtime environment 653

Library not all linkable 653
Reentrancy 653
Recursion 653

AMODE/RMODE 653
Member code AMODE restrictions 653
External names 653
Routine layout 654
Prolog information blocks 656

Language Environment dynamic storage area . . 668
Language Environment control block mappings 669

Language Environment library anchor area . . 669
Language Environment library control area . . 671
Language Environment common anchor area 673
Language Environment debugger interfaces area 675
Language Environment enclave data block . . 678
Language Environment process control block 679
Language Environment region control block . . 680

Chapter 21. Compiler-writer interfaces
(CWIs) supported for AMODE 64
applications 683

Chapter 22. CALL linkage convention
for AMODE 64 applications 685
Terminology. 685
XPLINK CALL linkage conventions for AMODE 64
applications 686

Register usage and linkage 686
Stack format. 687

Chapter 23. Program initialization and
termination for AMODE 64
applications 705
Initialization overview 705
Termination overview 706

Enclave termination 706
Process termination 706

Putting initialization and termination together . . 706
Member interfaces for initialization 707

CELQSTRT 707
CELQMAIN 709
CELQFMAN 710
CELQBST operation 710
CELQETBL — Language Environment externals
table 711
CELQLLST — Language Environment language
list 712
Signature CSECT 713
Initialization parameter list 713

Member interfaces for termination 715
CEECOPP — Runtime Option Compiler Service 716

Chapter 24. Storage management for
AMODE 64 applications 719
Vendor heap manager interface for AMODE 64
applications 720

Requirements from the vendor 720
Support provided for the vendor heap manager
interface 720
Activating the vendor heap manager 721
__vhm_event() 721

__alcaxp() — AMODE 64 DSA extension (alloca) 722

viii z/OS V2R1.0 Language Environment Vendor Interfaces

|
||

Memory object dump priority 723
Memory object user tokens 723
Saving the stack pointer 723

Chapter 25. Condition representation
for AMODE 64 applications 725
Condition representation model 725
Data objects 726

Condition token data type 726
Feedback code 729

Chapter 26. National language support
and message services for AMODE 64
applications 731
National language support 731
Language Environment message services 731
C/C++-specific vendor interfaces 732

Chapter 27. Condition management
for AMODE 64 applications 733
Application programming interfaces (APIs) . . . 733

__dsa_prev() — Chain back to previous DSA 733
__ep_find() — returns the address of the entry
point of the function owning the dsa_p DSA . . 736
__far_jump() — Perform far jump 738

Language Environment shunt routine for AMODE
64 applications 740

Establishing a program interrupt shunt service 740
Other Language Environment condition manager
topics 741

Language Environment condition information
block 741
Errors during condition handling. 741

Language Environment-issued abends 742

Chapter 28. Debugging and
performance analysis for AMODE 64
applications 745
Language Environment-provided functions for the
debug tool 745

__le_debug_set_resume_mch() — set resume
machine state 745
__setHookEvents() — specify execute hook
events for target process. 746

Debug tool-provided event handlers. 749
Debug tool event handler 749

Language Environment actions for the interactive
debug tool 755
Language Environment interactive debug data
areas 755

Execute hook support 755
Performance analysis support 756

Profile tool event handler 756
Language Environment actions for profiler . . 759

Chapter 29. Anchor support for
AMODE 64 applications 761

Chapter 30. Preinitialized
Environments for Authorized
Programs for AMODE 64 applications . 763
Creating Preinitialized Environments for
Authorized Programs. 763

Creating a user-managed environment 764
Creating a system-managed environment . . . 764
Preinitialized Environments for Authorized
Programs tasks 765

Executing a routine in Preinitialized Environments
for Authorized Programs 765

Calling a main routine 766
Calling a subroutine 766
Using runtime options 766
Selecting an environment 767
Providing recovery 767

Terminating Preinitialized Environments for
Authorized Programs. 767
Examples of using Preinitialized Environments for
Authorized Programs. 767

Using Preinitialized Environments for
Authorized Programs in service request block
(SRB) mode 768
Using Preinitialized Environments for
Authorized Programs in cross-memory mode. . 768

CELAAUTH macro 769
CELAAUTH environments 769
Syntax for REQUEST=USERINIT 771
Syntax for REQUEST=USERCALL 775
Syntax for REQUEST=USERTERM 780
Syntax for REQUEST=MNGDINIT 782
Syntax for REQUEST=MNGDCALL 788
Syntax for REQUEST=MNGDUPDT 793
Syntax for REQUEST=MNGDTERM 796
CELAAUTH general notes 799
ABEND codes 799
Return and reason codes 799

Part 3. Appendixes 819

Appendix A. Options control block
and supplementary options control
block 821
Options control block. 821
Supplementary options control block 868

Appendix B. CALL linkage argument
examples 873
FASTLINK CALL linkage argument examples . . 873
XPLINK CALL linkage argument examples . . . 879

Appendix C. Accessibility 887
Accessibility features 887
Consult assistive technologies 887
Keyboard navigation of the user interface 887

Contents ix

|
||

Dotted decimal syntax diagrams 887

Notices 891
Policy for unsupported hardware. 892
Minimum supported hardware 893

Permission Notice 893
Programming interface information 893
Trademarks 894

Index 895

x z/OS V2R1.0 Language Environment Vendor Interfaces

Figures

1. Layout entry of Language Environment-
conforming routines – standard 7

2. Layout entry of Language Environment-
conforming routines – FASTLINK 7

3. Layout entry of C/370-conforming routines 8
4. Layout entry of Language Environment-

conforming routines – XPLINK 8
5. XPLINK stack extension marker 9
6. XPLINK end of data marker 10
7. XPLINK stub entry marker 10
8. Prolog constants format – level 1 (standard) 12
9. Prolog constants format – level 2 (FASTLINK) 13

10. Prolog constants format – level 3 (IEEE
floating-point). 14

11. Compilation flag bits 15
12. Language Environment PPA1 offset X'02' 15
13. Language Environment PPA1 flag 2 offset X'18' 16
14. Language Environment PPA1 flag 3 offset

X'1C' 18
15. Language Environment PPA1 Extended Flag 1 20
16. Language Environment-enabled language

member identifiers 20
17. Prolog constants format – level 4 (XPLINK),

PPA1: entry point block (Version 3) 21
18. PPA1: XPLINK entry point block fixed area

(Version 3) details 22
19. Language Environment PPA1 flag 1 offset X'08' 23
20. Language Environment PPA1 flag 2 offset X'09' 24
21. Language Environment PPA1 flag 3 offset

X'0A' 24
22. Language Environment PPA1 flag 4 offset

X'0B' 25
23. Language Environment PPA1 flag word as

defined by C++ 27
24. Prolog constants format – level 4 (64-bit

XPLINK), PPA2: compile unit block 30
25. Level 4 (64-bit XPLINK), PPA2: compile unit

block bits 30
26. Timestamp and version information 31
27. Language Environment Dynamic storage area

– non-XPLINK format 40
28. Language Environment Dynamic storage area

– XPLINK format 41
29. Member list format 87
30. Format of an entry variable 90
31. Example: calling CEETBCK from C 92
32. CALL terminology refresher 93
33. Language Environment Non-XPLINK stack

storage model 94
34. DSA allocation, user stack. 96
35. DSA extension, user stack 96
36. Free a DSA extension using saved NAB value 97
37. DSA allocation in user stack when R13 does

not address a Language Environment DSA . . 98
38. DSA allocation, library stack 99
39. DSA return, library stack. 100

40. Get next available byte in user stack 101
41. S/370 Argument/parameter list format 103
42. Typical FASTLINK stack frame storage map 105
43. Argument list passed on a procedure call 107
44. Stack segment showing FASTLINK frames 109
45. FASTLINK to FASTLINK linkage code

sequence, non-Sleaf routine 113
46. FASTLINK to FASTLINK linkage code

sequence, Sleaf routine 115
47. Language Environment XPLINK stack storage

model 117
48. Language Environment XPLINK stack frame

layout in a non-64-bit environment 118
49. XPLINK function layout 131
50. Format of CEEFMAIN 149
51. Format of CEEMAIN 149
52. Signature CSECT format 152
53. CEEBETBL CSECT format 152
54. CEEBLLST format 154
55. Format of the initialization parameter list 155
56. Updated format of the initialization

parameter list 156
57. Runtime options error table 186
58. Language-specific interface validation exit 196
59. Preinitialization environment initialization

exceprtn flow (task mode) 202
60. Preinitialization environment exception flow

(SRB mode) 203
61. Language Environment Condition token

(CEECTOK) 231
62. Condition token. 232
63. Message numbers assigned to the days of the

week and months 244
64. Access to message insert information 247
65. Format of a non-XPLINK label variable 266
66. XPLINK extended format label variable 266
67. XPLINK extended format label variable –

resume area 267
68. Library subroutine access table (LIBVEC) 308
69. Partial LIBPACK CSECT definition 310
70. LIBVEC descriptor 311
71. CEETLOC stub for trigger load on call 327
72. CEETLOC stub for trigger load on XPLINK

call by name 328
73. Function descriptor control block (FDCB)

format 330
74. CEETLOR stub 333
75. Variable descriptor control block (VDCB)

format 334
76. CEETGTFN stub 335
77. Example of using __static_reinit 339
78. Load list layout 353
79. DFSORT's extended parameter list 370
80. HLL CWI parameter list format 376
81. Condition token values for math services 376
82. Examples of E-format output conversions 393

© Copyright IBM Corp. 1991, 2015 xi

||
||
|
||

|
||
||

|
||

|
||

|
||

|
||

83. Examples of F-format output conversions 398
84. Examples of input conversions 399
85. Examples of input conversions with feedback

indicated 401
86. Transferring control between application

program, member language library, and
Language Environment 404

87. CEEVDMP output format 421
88. CEEHDMP output format 423
89. CEEBDMP output format 425
90. Example: calling the CEEKCTRC CWI from

the C RTL. 433
91. Language Environment-CICS and Language

Environment-batch program model 439
92. CICS call argument list 443
93. Language Environment-CICS run unit

initialization, invocation, and termination . . 444
94. Language Environment-CICS run unit

termination 445
95. Structure of interface flags field 447
96. Structure of information supplied to CICS by

Language Environment for PGMINFO1 . . . 451
97. Structure of information supplied to CICS by

Language Environment for STATUSFLAGS . 454
98. Structure of information supplied to

Language Environment by CICS 457
99. Structure of standard I/O information

provided to Language Environment by CICS . 459
100. Run information supplied to Language

Environment by CICS. 459
101. Termination information supplied from CICS

to Language Environment 460
102. Structure of information supplied to

Language Environment by CICS 462
103. Program termination block (PTB) declaration 466
104. Lang bit definition for CEECICS (60) 473
105. Lang bit definition for CEECICS (70) 474
106. Lang bit definition for GOTOFLGS 475
107. IMS parameter list format 477
108. Structure of the Language Environment

anchor vector 479
109. Example of code to set and obtain the

Language Environment anchor. 482
110. Syntax by function_code 498
111. Syntax by function_code 511
112. Condition qualifying data returned by

CEEOKILL CWI 551
113. Link edit information to enable ILBOLLDX in

ILBONTR 614
114. Link edit information to enable ILBOLLDX in

ILBOSRV 614
115. Link edit information to enable ILBOLLDX in

ILBOSTT 614
116. Structure for CALL with name 616
117. Structure for CANCEL with name 616
118. Structure for the block statement 630
119. Layout entry of Language

Environment-conforming routines – XPLINK . 654
120. XPLINK stack extension marker 655
121. XPLINK end of data marker 655
122. XPLINK stub entry marker 656

123. Prolog constants format – level 4 (XPLINK),
PPA1: entry point block (Version 3) 657

124. PPA1: XPLINK entry point block fixed area
(Version 3) details 658

125. Language Environment PPA1 flag 1 offset
X'08' 659

126. Language Environment PPA1 flag 2 offset
X'09' 660

127. Language Environment PPA1 flag 3 offset
X'0A' 660

128. Language Environment PPA1 flag 4 offset
X'0B' 661

129. Language Environment PPA1 flag word as
defined by C/C++ 664

130. Prolog constants format – level 4 (64-bit
XPLINK), PPA2: compile unit block 666

131. Level 4 (XPLINK), PPA2: compile unit block
bits 666

132. Timestamp and version information 667
133. Language Environment dynamic storage area

– XPLINK format for AMODE 64 applications 668
134. Library anchor area (LAA) field descriptions 671
135. Library control area (LCA) field descriptions 672
136. Library control area (LCA) field descriptions

(cross reference). 673
137. Common anchor area (CAA) field

descriptions (cross references) AMODE 64 . . 675
138. Enclave data block (EDB) field descriptions

(AMODE 64). 679
139. Enclave data block (EDB) field descriptions

(cross reference). 679
140. Process control block (PCB) field descriptions

(AMODE 64). 680
141. Process control block (PCB) field descriptions

(cross reference). 680
142. Region control block (RCB) field descriptions 681
143. Region control block (RCB) field descriptions

(cross reference). 681
144. CALL terminology refresher 685
145. Language EnvironmentAMODE 64 XPLINK

stack storage model 687
146. Language Environment XPLINK stack frame

layout for AMODE 64 applications 688
147. CELQETBL CSECT format 711
148. Signature CSECT format 713
149. Format of the initialization parameter list for

AMODE 64 applications 715
150. Runtime options error table (64-bit) 719
151. Language EnvironmentCondition token for

AMODE 64 applications 726
152. Condition token for AMODE 64 applications 727
153. Using Preinitialized Environments for

Authorized Programs in SRB mode 768
154. Using Preinitialized Environments for

Authorized Programs in cross-memory mode . 769
155. Options control block (OCB) field

descriptions (Part 1) 822
156. Options control block (OCB) field

descriptions (Part 2) 823
157. Options control block (OCB) field

descriptions (Part 3) 824

xii z/OS V2R1.0 Language Environment Vendor Interfaces

|
||

|
||

158. Options control block (OCB) field
descriptions (Part 4) 825

159. Options control block (OCB) field
descriptions (Part 5) 826

160. Options control block (OCB) field
descriptions (Part 6) 827

161. Options control block (OCB) field
descriptions (Part 7) 828

162. Options control block (OCB) field
descriptions (Part 8) 829

163. Options control block (OCB) field
descriptions (Part 9) 830

164. Options control block (OCB) field
descriptions (Part 10) 831

165. Options control block (OCB) field
descriptions (Part 11) 832

166. Options control block (OCB) field
descriptions (Part 12) 833

167. Options control block (OCB) field
descriptions (Part 13) 834

168. Options control block (OCB) field
descriptions (Part 14) 835

169. Options control block (OCB) field
descriptions (Part 15) 836

170. Options control block (OCB) field
descriptions (Part 16) 837

171. Options control block (OCB) field
descriptions (Part 17) 838

172. Options control block (OCB) field
descriptions (Part 18) 839

173. Options control block (OCB) field
descriptions (Part 19) 840

174. Options control block (OCB) field
descriptions (Part 20) 841

175. Options control block (OCB) field
descriptions (Part 21) 842

176. Options control block (OCB) field
descriptions (Part 22) 843

177. Options control block (OCB) field
descriptions (Part 23) 844

178. Options control block (OCB) field
descriptions (Part 24) 845

179. Options control block (OCB) field
descriptions (Part 25) 846

180. Options control block (OCB) field
descriptions (Part 26) 847

181. Options control block (OCB) field
descriptions (Part 27) 848

182. Options control block (OCB) field
descriptions (Part 28) 849

183. Options control block (OCB) field
descriptions (Part 29) 850

184. Options control block (OCB) field
descriptions (cross references 1) 851

185. Options control block (OCB) field
descriptions (cross references 2) 852

186. Options control block (OCB) field
descriptions (cross references 3) 853

187. Options control block (OCB) field
descriptions (cross references 4) 854

188. Options control block (OCB) field
descriptions (cross references 5) 855

189. Options control block (OCB) field
descriptions (cross references 6) 856

190. Options control block (OCB) field
descriptions (cross references 7) 857

191. Options control block (OCB) field
descriptions (cross references 8) 858

192. Options control block (OCB) field
descriptions (cross references 9) 859

193. Options control block (OCB) field
descriptions (cross references 10) 860

194. Options control block (OCB) field
descriptions (cross references 11) 861

195. Options control block (OCB) field
descriptions (cross references 12) 862

196. Options control block (OCB) field
descriptions (cross references 13) 863

197. Options control block (OCB) field
descriptions (cross references 14) 864

198. Options control block (OCB) field
descriptions (cross references 15) 865

199. Options control block (OCB) field
descriptions (cross references 16) 866

Figures xiii

|
||

xiv z/OS V2R1.0 Language Environment Vendor Interfaces

Tables

1. How to use z/OS Language Environment
publications. xviii

2. Syntax examples xx
3. Entry point types and the contents of the PPA2

field 11
4. Language Environment PPA1 Extended Flag

Field and Optional Area fields 19
5. COBOL V5 32-bit PPA3 layout 31
6. C/C++ DWARF 32-bit PPA4 layout 31
7. COBOL V5 32-bit PPA4 layout 32
8. Header layout for the base locator table 34
9. Entry layout for the base locator cells array 34

10. Common anchor area (CAA) field descriptions 42
11. Common anchor area (CAA) constants 48
12. Common anchor area (CAA) cross reference 48
13. Enclave data block (EDB) field descriptions 63
14. Enclave data block (EDB) constants 66
15. Enclave data block (EDB) cross reference 66
16. EDB field descriptions 68
17. Process control block (PCB) field descriptions 71
18. Process control block (PCB) constants 72
19. Process control block (PCB) cross reference 73
20. PCB field descriptions 74
21. Region control block (RCB) field descriptions 76
22. Region control block (RCB) constants 77
23. Region control block (RCB) cross reference 78
24. RCB field descriptions 78
25. Member list field descriptions 87
26. Data type definitions for callable services 89
27. Format of save area 105
28. Format of linkage area 107
29. Content of XPLINK stack frame for

non-AMODE 64 applications 119
30. Prolog/epilog example: small size stack

frame, no backchain, no alloca 120
31. Prolog/epilog example: small size stack

frame, varag, backchain 120
32. Prolog/epilog example: intermediate size

stack frame, no backchain, no alloca, no
varargs 121

33. Prolog/epilog example: large size stack frame
(4096 ≤ dsasize ≤ 32768), AMODE 31 121

34. Prolog/epilog example: huge size stack frame
(32768 < dsasize), AMODE 31 122

35. Prolog/epilog example: XPLINK, no alloca,
no storeargs, saves regs 5-9, DSA size=3712
(AMODE 31). 123

36. Entry point marker (type 1) 128
37. Stack extension marker (type 2) 129
38. Data marker (type 3) 129
39. Stub marker (type 4) 129
40. Contents of non-XPLINK CEESTART 145
41. Contents of XPLINK CEESTART 147
42. Bootstrap behavior 150
43. CEEBETBL field descriptions 152
44. Unhandled condition behavior summary 169

45. Event codes called for initialization and
termination 181

46. Interface validation exit reference entry fields 193
47. Heap IDs recognized by Language

Environment heap manager. 206
48. Routines using a parameter list interface 206
49. Vector Register save area. 268
50. CAA fields that contain information about

abends 283
51. CEECIB State Variable, Constant values, and

associated actions 288
52. Format of the 31-Bit Language Environment

CEEDLLF 339
53. Format of the 64-Bit Language Environment

CEEDLLF 340
54. List of CEEDLLF fields 341
55. Debugger Language Environment event

handler interface 357
56. Debugger Language Environment event

handler bit mask descriptions 360
57. CWI CEE3CBTS event handler interface

parameters 361
58. Profile tool — Language Environment event

handler interface 366
59. Data types and their abbreviations 374
60. CWI register interface format 375
61. Result registers for scalar routines (CWI

register interface) 375
62. Language Environment Scalar math services 377
63. Degree input/output trigonometry functions 385
64. Language Environment Scalar bit

manipulation routines. 385
65. Math message_IDs 387
66. Language Environment Math services - value

of inserts 388
67. Output-structure format 623
68. Output-structure format 627
69. Arguments for __to_xx() 648
70. AMODE 64 entry points 654
71. C/C++ DWARF 64-bit PPA4 layout 667
72. CWIs for AMODE 64 applications 683
73. Content of XPLINK stack frame for AMODE

64 applications 689
74. Prolog/epilog example: small size (AMODE

64) stack frame 690
75. Prolog/epilog example: intermediate size

(AMODE 64) stack frame 690
76. Prolog/epilog example: large size (AMODE

64) stack frame 690
77. Prolog/epilog example: XPLINK, no alloca,

no storeargs, saves regs 5-9, DSA size=360256
(AMODE 64). 691

78. Prolog/epilog example: changes needed to
maintain addressability 693

79. Entry point marker (type 1) AMODE64 696
80. Stack extension marker (type 2) AMODE64 697

© Copyright IBM Corp. 1991, 2015 xv

|
||
||
||
||
||
||

||

||

81. Data marker (type 3) AMODE64 697
82. Stub marker (type 4) AMODE64 697
83. Contents of the CELQSTRT CSECT 708
84. Bootstrap behavior 710
85. CEECIB state variable, constant values, and

associated actions for AMODE 64 applications 741
86. Debugger Language Environment event

handler interface for AMODE 64 applications . 750
87. Debugger Language Environment event

handler bit mask descriptions for AMODE 64
applications 752

88. Profile tool — Language Environment event
handler interface for AMODE 64 applications . 757

89. Return and reason codes for the CELAAUTH
macro 800

90. Options control block (OCB) and
supplementary options control block (SOCB)
type field definitions 821

91. Options control block (OCB) constants 866
92. Supplementary options control block (SOCB)

field descriptions 868
93. Supplementary options control block (SOCB)

constants 869
94. Supplementary options control block (SOCB)

cross reference 870

xvi z/OS V2R1.0 Language Environment Vendor Interfaces

About this document

This document supports z/OS (5650-ZOS).

IBM® z/OS Language Environment (also called Language Environment) provides
common services and language-specific routines in a single run-time environment
for C, C++, COBOL, Fortran (z/OS only; no support for z/OS UNIX System
Services or CICS®), PL/I, and assembler applications. It offers consistent and
predictable results for language applications, independent of the language in which
they are written.

Language Environment is the prerequisite runtime environment for applications
generated with the following IBM compiler products:
v z/OS XL C/C++ (feature of z/OS)
v z/OS C/C++
v OS/390 C/C++
v C/C++ for MVS/ESA
v C/C++ for z/VM
v XL C/C++ for z/VM
v AD/Cycle C/370™

v VisualAge for Java, Enterprise Edition for OS/390
v Enterprise COBOL for z/OS
v Enterprise COBOL for z/OS and OS/390
v COBOL for OS/390 & VM
v COBOL for MVS & VM (formerly COBOL/370)
v Enterprise PL/I for z/OS
v Enterprise PL/I for z/OS and OS/390
v VisualAge PL/I
v PL/I for MVS & VM (formerly PL/I MVS™ & VM)
v VS FORTRAN and FORTRAN IV (in compatibility mode)

Although not all compilers listed are currently supported, Language Environment
supports the compiled objects that they created.

Language Environment supports, but is not required for, an interactive debug tool
for debugging applications in your native z/OS environment.

Debug Tool is also available as a standalone product. Debug Tool Utilities and
Advanced Functions is also available. For more information, see
http://www.ibm.com/software/awdtools/debugtool/..

Language Environment supports, but is not required for, VS FORTRAN Version 2
compiled code (z/OS only).

Language Environment consists of the common execution library (CEL) and the
run-time libraries for C/C++, COBOL, Fortran, and PL/I.

For more information on VisualAge for Java, Enterprise Edition for OS/390,
program number 5655-JAV, see the product documentation.

© Copyright IBM Corp. 1991, 2015 xvii

|

http://www.ibm.com/software/awdtools/debugtool/

This book documents the set of low-level interfaces, or Compiler-Writer Interfaces
(CWIs), that can be used between the common runtime component and C, C++,
COBOL, Fortran, PL/I, and other member runtime components of Language
Environment.

Note: Throughout this book there are descriptions of Language Environment
messages. The text of these messages might not exactly match that produced by
Language Environment. You can find the exact text of messages in z/OS Language
Environment Debugging Guide.

Using your documentation
The publications provided with Language Environment are designed to help you:
v Manage the runtime environment for applications generated with a Language

Environment-conforming compiler.
v Write applications that use the Language Environment callable services.
v Develop interlanguage communication applications.
v Customize Language Environment.
v Debug problems in applications that run with Language Environment.
v Migrate your high-level language applications to Language Environment.

Language programming information is provided in the supported high-level
language programming manuals, which provide language definition, library
function syntax and semantics, and programming guidance information.

Each publication helps you perform different tasks, some of which are listed in
Table 1.

Table 1. How to use z/OS Language Environment publications

To ... Use ...

Evaluate Language Environment z/OS Language Environment Concepts Guide

Plan for Language Environment
z/OS Language Environment Concepts Guide

z/OS Language Environment Runtime Application
Migration Guide

Install Language Environment z/OS V2R1 Program Directory

Customize Language Environment z/OS Language Environment Customization

Understand Language Environment
program models and concepts z/OS Language Environment Concepts Guide

z/OS Language Environment Programming Guide

z/OS Language Environment Programming Guide for
64-bit Virtual Addressing Mode

Find syntax for Language Environment
runtime options and callable services

z/OS Language Environment Programming Reference

Develop applications that run with
Language Environment

z/OS Language Environment Programming Guide
and your language programming guide

Debug applications that run with
Language Environment, diagnose
problems with Language Environment

z/OS Language Environment Debugging Guide

Get details on runtime messages z/OS Language Environment Runtime Messages

xviii z/OS V2R1.0 Language Environment Vendor Interfaces

Table 1. How to use z/OS Language Environment publications (continued)

To ... Use ...

Develop interlanguage communication
(ILC) applications

z/OS Language Environment Writing Interlanguage
Communication Applications and your language
programming guide

Migrate applications to Language
Environment

z/OS Language Environment Runtime Application
Migration Guide and the migration guide for each
Language Environment-enabled language

How to read syntax diagrams
This section describes how to read syntax diagrams. It defines syntax diagram
symbols, items that may be contained within the diagrams (keywords, variables,
delimiters, operators, fragment references, operands) and provides syntax examples
that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments)
that comprise a command statement. They are read from left to right and from top
to bottom, following the main path of the horizontal line.

For users accessing the IBM Knowledge Center using a screen reader, syntax
diagrams are provided in dotted decimal format.

Symbols
The following symbols may be displayed in syntax diagrams:

Symbol
Definition

��─── Indicates the beginning of the syntax diagram.

───� Indicates that the syntax diagram is continued to the next line.

�─── Indicates that the syntax is continued from the previous line.

───�� Indicates the end of the syntax diagram.

Syntax items
Syntax diagrams contain many different items. Syntax items include:
v Keywords - a command name or any other literal information.
v Variables - variables are italicized, appear in lowercase, and represent the name

of values you can supply.
v Delimiters - delimiters indicate the start or end of keywords, variables, or

operators. For example, a left parenthesis is a delimiter.
v Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal

(=), and other mathematical operations that may need to be performed.
v Fragment references - a part of a syntax diagram, separated from the diagram to

show greater detail.
v Separators - a separator separates keywords, variables or operators. For example,

a comma (,) is a separator.

Note: If a syntax diagram shows a character that is not alphanumeric (for
example, parentheses, periods, commas, equal signs, a blank space), enter the
character as part of the syntax.

About this document xix

Keywords, variables, and operators may be displayed as required, optional, or
default. Fragments, separators, and delimiters may be displayed as required or
optional.

Item type
Definition

Required
Required items are displayed on the main path of the horizontal line.

Optional
Optional items are displayed below the main path of the horizontal line.

Default
Default items are displayed above the main path of the horizontal line.

Syntax examples
The following table provides syntax examples.

Table 2. Syntax examples

Item Syntax example

Required item.

Required items appear on the main path of the
horizontal line. You must specify these items.

�� KEYWORD required_item ��

Required choice.

A required choice (two or more items) appears
in a vertical stack on the main path of the
horizontal line. You must choose one of the
items in the stack.

�� KEYWORD required_choice1
required_choice2

��

Optional item.

Optional items appear below the main path of
the horizontal line.

�� KEYWORD
optional_item

��

Optional choice.

An optional choice (two or more items)
appears in a vertical stack below the main path
of the horizontal line. You may choose one of
the items in the stack.

�� KEYWORD
optional_choice1
optional_choice2

��

Default.

Default items appear above the main path of
the horizontal line. The remaining items
(required or optional) appear on (required) or
below (optional) the main path of the
horizontal line. The following example displays
a default with optional items.

��
default_choice1

KEYWORD
optional_choice2
optional_choice3

��

Variable.

Variables appear in lowercase italics. They
represent names or values.

�� KEYWORD variable ��

xx z/OS V2R1.0 Language Environment Vendor Interfaces

Table 2. Syntax examples (continued)

Item Syntax example

Repeatable item.

An arrow returning to the left above the main
path of the horizontal line indicates an item
that can be repeated.

A character within the arrow means you must
separate repeated items with that character.

An arrow returning to the left above a group
of repeatable items indicates that one of the
items can be selected,or a single item can be
repeated.

�� �KEYWORD repeatable_item ��

�� �

,

KEYWORD repeatable_item ��

Fragment.

The fragment symbol indicates that a labelled
group is described below the main syntax
diagram. Syntax is occasionally broken into
fragments if the inclusion of the fragment
would overly complicate the main syntax
diagram.

�� KEYWORD fragment ��

fragment:

,required_choice1
,default_choice

,required_choice2
,optional_choice

z/OS information
This information explains how z/OS references information in other documents
and on the web.

When possible, this information uses cross document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see z/OS Information Roadmap.

To find the complete z/OS® library, go to the IBM Knowledge Center
(http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

About this document xxi

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome

xxii z/OS V2R1.0 Language Environment Vendor Interfaces

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the Contact z/OS.
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R1.0 Language Environment Vendor Interfaces
SA38-0688-02

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at IBM support portal.

© Copyright IBM Corp. 1991, 2015 xxiii

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/

xxiv z/OS V2R1.0 Language Environment Vendor Interfaces

Summary of changes

This information includes terminology, maintenance, and editorial changes.
Technical changes or additions to the text and illustrations for the current edition
are indicated by a vertical line to the left of the change.

Summary of changes for z/OS Version 2 Release 1 (V2R1) as updated
February, 2015

The following changes are made for z/OS Version 2 Release 1 (V2R1) as updated
February, 2015.

New
v Support was added for vectors. The following chapters contain new information

for this support:
– Chapter 1, “Common interfaces and conventions,” on page 3
– Chapter 2, “CALL linkage conventions,” on page 93
– Chapter 7, “Condition management,” on page 255
– Chapter 19, “C/C++ special purpose interfaces for IEEE floating-point,” on

page 631
– Chapter 21, “Compiler-writer interfaces (CWIs) supported for AMODE 64

applications,” on page 683
– Chapter 26, “National language support and message services for AMODE 64

applications,” on page 731
– Chapter 29, “Anchor support for AMODE 64 applications,” on page 761

Changed
v The CEEPPOS CWI was updated to accommodate Enterprise COBOL V5.1

programs by allocating WSA out of user heap, with the requested RMODE. See
“CEEPPOS — program object services” on page 316 for more information.

Summary of changes for z/OS Version 2 Release 1 (V2R1) as updated
December, 2013

The following changes are made for z/OS Version 2 Release 1 (V2R1) as updated
December, 2013.

Changed

The following chapter contains updated content for Enterprise COBOL V5.1:
Chapter 17, “COBOL-specific vendor interfaces,” on page 613.

Summary of changes for z/OS Version 2 Release 1 (V2R1)
The following chapters contain new or updated content for Enterprise COBOL
V5.1:
v Chapter 1, “Common interfaces and conventions,” on page 3
v Chapter 3, “Program initialization and termination,” on page 141

© Copyright IBM Corp. 1991, 2015 xxv

v Chapter 20, “Common interfaces and conventions for AMODE 64 applications,”
on page 653

Changes have been made to the __ae_autoconvert_state() interface; see
“__ae_autoconvert_state() — returns automatic conversion state of thread” on page
253 for more information.

Updates have been made to the options control block for AMODE 64 large page
and heap check zone support; see “Options control block” on page 821 for more
information.

xxvi z/OS V2R1.0 Language Environment Vendor Interfaces

Part 1. Language Environment vendor interfaces for AMODE
31 / AMODE 24 applications

This part of the book does not apply to AMODE 64. For AMODE 64 information,
see Part 2, “Language Environment vendor interfaces for AMODE 64 applications,”
on page 651.

© Copyright IBM Corp. 1991, 2015 1

2 z/OS V2R1.0 Language Environment Vendor Interfaces

Chapter 1. Common interfaces and conventions

This section describes the common runtime library components of Language
Environment. The description indicates when a convention is mandatory. These
conventions form the basis for a well-behaved application and enhance the ability
to do interlanguage communication (ILC). Language Environment external names
begin with the reserved prefix “CEE”.

Common runtime environment
A thread is represented by a Common Anchor Area (CAA). All thread- and
enclave-related resources can be located either directly within the CAA or through
the CAA.

An enclave is one or more executable programs that contain one or more
separately-compiled bound procedures (also known as compilation units). The
executable program that contains the main routine is known as the root load
module. An enclave can consist of multiple executable programs when a dynamic
call is run within the enclave. Fetch mechanisms, such as the C fetch() function,
introduce a new executable program into the application. However, it typically
behaves differently than dynamic calls in today's implementation, in so far as the
scope of static external data is concerned. An executable program can exist in a
variety of forms. It can be a mixture of an HLL or assembler procedure with
Language Environment routines. It can also be a strictly Language Environment
library module that does not contain any user-written code.

Situations exist where member subprograms are called from operating
environment functions such as SORT, QMF™ or assembler language routines
without Language Environment register conventions. Member languages must
either disallow this form of specification, or be able to detect this form of access
and perform whatever is necessary to re-establish the Language Environment
environment.

Library not all linkable
Most Language Environment routines cannot be statically linked. In general, it is
not possible to make a complete, self-contained module.

Reentrancy
All Language Environment library code is reentrant. All read/write areas are
dynamically acquired from STACK or HEAP. Language Environment provides a
reentrant environment for compiled code.

Recursion
All Language Environment-supplied library code can be called recursively. For
example, if an interrupt occurs in a Language Environment routine and the
exception is signaled to some other code (user, Language Environment, or
language-specific), that code could, in turn, during its exception processing, use the
function that originally caused the exception. This does not mean that the
application itself is recursive.

© Copyright IBM Corp. 1991, 2015 3

Special handling of certain situations, such as short-on-storage conditions, cause
recursive entry to be detected and handled appropriately.

AMODE/RMODE
Most Language Environment library routines are AMODE(31) RMODE(ANY).
Library routines residing below the 16 MB line are AMODE(ANY) and
RMODE(24). These switch to AMODE(24) if necessary and return to the entry
AMODE before returning to the caller. HLLs participating in Language
Environment and supporting dynamic loading of application programs are
responsible for switching and restoring the AMODE between load module calls.

Member code AMODE restrictions
Language Environment can allocate any of its control blocks above the line. Any
member code that accesses a Language Environment control block must run in
AMODE(31) to have addressability to the control blocks.

External names
Language Environment supports external names such as files, programs, and data
structures in the same manner as the host system. External names are limited to
eight SBCS characters. No supported host system permits DBCS names.

Some languages permit longer names to be used when referring to externally
named objects. In order to conform to the host system requirements, each language
can use an algorithm to convert a long internal name to a shorter name that is
acceptable to the host system.

Language Environment does not define a common naming convention or name
conversion algorithm. Users are responsible for ensuring that names are not
ambiguous when long names are converted. External and internal forms of names
must match after conversion to a shorter form of the name.

General register usage at entry to callable services
The following registers must have the prescribed contents when control reaches the
entry point of a Language Environment callable service. Calls that remain within
the same language do not need to adhere to the register conventions described
below. ILC calls might or might not adhere to these conventions depending upon
the languages involved. A library routine that accommodates the differences in the
linkage conventions can be used in some ILC cases.

R0 Reserved

R1 Must point to the parameter list or be zero if no parameter list exists

R2–R11
Not referenced by Language Environment; caller's values are passed
through transparently

R12 Must point to the CAA upon entry to an external routine; R12 does not
have to point to the CAA within a routine

R13 Must point to the caller's DSA

R14 The return address

R15 The address of the called entry point

Language Environment Conventions

4 z/OS V2R1.0 Language Environment Vendor Interfaces

General register usage at exit from callable services
Registers have the following contents when control returns to the caller of the
callable service.
R0 Not defined by Language Environment
R1 Not defined by Language Environment
R2–R11

Preserved
R12 Points to the CAA
R13 Points to the caller's DSA
R14 Not preserved
R15 Not preserved

Note:

1. The called procedure must ensure that R2 through R13 have the same values
on exit as they had on entry.

2. The called procedure cannot rely upon the values contained in R0, R1, R14, and
R15 unless explicitly stated by the interface.

Floating-point register conventions
No conventions have been defined for floating-point registers. The contents are
neither saved nor restored by Language Environment, except by the exception
handler when exceptions are raised. Intrinsic functions use these registers to return
results. For more details, see “CWI conventions for scalar math services” on page
374.

Access register conventions
No conventions have been defined for access registers. Language Environment
neither saves nor restores the contents of the access registers. Language
Environment does not restrict exploitation of access registers in the future.

Program mask conventions
The maskable program exceptions are enabled for all member languages
represented in the root or main load module during Language Environment
initialization. Each member language informs Language Environment of its
program mask requirements, and Language Environment ORs all of the
requirements together and sets the program mask during initialization. During
termination, the program mask is reset by Language Environment to its value
upon entry to Language Environment initialization.

A language is represented in the load module by providing a load module
signature CSECT for each compilation.

The CEE3SPM callable service is provided to query, save, restore, and modify the
program mask setting. Users are responsible for managing program mask setting if
they alter the program mask while the application is running. Altering the
program mask might change some HLL semantics. Use caution when altering the
program mask.

Language Environment neither saves nor restores the program mask setting across
calls to Language Environment services or calls within the Language Environment
environment.

Language Environment Conventions

Chapter 1. Common interfaces and conventions 5

The runtime option XUFLOW indicates the initial setting of the mask for exponent
underflow. You can alter this setting by using the callable service CEE3SPM. (Note,
however, that the use of CEE3SPM might alter some HLL semantics.) In summary,
the program mask's initial setting is determined by the requirements of the
members within the main load module and by the setting of the XUFLOW runtime
option.

While the enclave is running, the program mask is influenced by the callable
service, CEE3SPM, and by members' requirements that are newly-added as a result
of a dynamic call or fetch; this is handled by the CWI service CEE3ADDM.

Routine layout
The following table shows the five types of entry points that Language
Environment recognizes as Language Environment-conforming routines. The fifth
type is an example of a nonconforming entry point that would be recognized by
the member language.

Entry point type is... If...

Language
Environment-conforming

The entry point plus 4 is X'00C3C5C5'. For details, see Figure 1
on page 7.

Language
Environment-conforming
FASTLINK

The entry point plus 4 is X'01C3C5C5'. FASTLINK linkage
conventions are used. For details, see Figure 2 on page 7.

Language
Environment-conforming
XPLINK

The entry point minus 16 is X'00C300C500C500F1'. XPLINK
linkage conventions are used. For details, see Figure 4 on page
8.

C/370 The entry point plus 5 is X'CE'.

CEESTART CSECT The entry point plus 28 is CL8’CEESTART’.

Nonconforming The entry point is none of the above. Nonconforming entry
points are for routines that follow the linking convention in
which the name is at the beginning of the routine. X'47F0Fxxx'
is the instruction to branch around the routine name.

FASTLINK supports an optimized linkage convention that reduces the total
number of instructions for prolog and epilog sequences. XPLINK provides optimal
performance for a certain class of applications. The layout entry for standard
routines is shown in Figure 1 on page 7 and the layout entry for FASTLINK
routines is shown in Figure 2 on page 7. The layout entry for standard and
FASTLINK routines is defined by the field at offset X'04'; X'00' represents standard
layouts and X'01' represents FASTLINK layouts.

Language Environment Conventions

6 z/OS V2R1.0 Language Environment Vendor Interfaces

|

Figure 3 on page 8 shows the entry point layout and Program Prolog Area-1
(PPA1) for C/370 routines; see “Prolog information blocks” on page 10 for more
information about the PPA1 format.

X'00' CL3'CEE' CEE eye catcher

Stack frame size for this routine

Offset to the PPA1 (signed) from routine start

B 01(0, R15) Disable the +16 entry point

Code to acquire a DSA

00

04

08

0C

10

14

B 20(,R15) Branch around constant areas

Language Environment-Conforming Standard Routine Layout Entry

Figure 1. Layout entry of Language Environment-conforming routines – standard

X'01' CL3'CEE' CEE eye catcher

Stack frame size for this routine

Offset to the PPA1 (signed) from routine start

FASTLINK prolog code

Code body

00

04

08

0C

10

B nn(,R15) Branch around constant areas

Language Environment-Conforming FASTLINK Routine Layout Entry

Old prolog code

<== Entry from
old code
routine

<== Entry from
old code
routine

<== Entry from
FASTLINK
routine

Figure 2. Layout entry of Language Environment-conforming routines – FASTLINK

Language Environment Conventions

Chapter 1. Common interfaces and conventions 7

XPLINK data layouts
The layout entry for XPLINK routines is shown in Figure 4. The layout entry for
XPLINK routines is defined by the Version field at offset X'00' in the PPA1; see
Figure 17 on page 21.

Field Contents

Eyecatcher Seven byte field containing the XPLINK eyecatcher,
XL7'00C300C500C500'.

Mark Type Field marking the type of code. Entry code is C'1'.

Offset to PPA1 A signed fullword representing the offset from the start of the
entry marker to the start of the PPA1.

DSA Size/32 A 27-bit field representing the size of the routine's DSA in 32-byte
increments.

•
•
•

B xxx(0,15) Branch around prolog data

X'14' Offset to
the name

X'CE'
(Language Environment

signature)

Language Environment
Flags

Member Flags

A(PPA2)

Stack frame size

A (PPA3) Zero if PPA3 is not available

Length of name Untruncated entry/label name

00

04

08

10

yy

0C

C Routine Layout Entry and PPA1

Figure 3. Layout entry of C/370-conforming routines

Figure 4. Layout entry of Language Environment-conforming routines – XPLINK

Language Environment Conventions

8 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|

Field Contents

Entry Flags A 5-bit field containing flag bits to identify the type of routine. If
bit 1 is on, the routine is an XPLEAF routine; these routines save
caller's registers in their own stack frame, but do not update the
stack pointer. Bit 2 indicates if the routine uses the alloca() service.

The compiler emits an XPLINK stack extension marker in front of the call to
Language Environment for the overflow prolog sequence for the +4K DSA
scenario. Figure 5 depicts this marker.

Field Contents

Eyecatcher Seven byte field containing the XPLINK eyecatcher,
XL7'00C300C500C500'.

Mark type Field marking the type of code. Entry code is C'2'.

Offset to entry marker
from XPLINK stack
extension marker/8

The signed offset from the start of the XPLINK stack extension
marker to the start of the entry point marker in doublewords.

The XPLINK end of data marker is placed after, or at the end of a section of code,
where the compiler may have placed constants. The asynchronous signal deliverer
for Language Environment uses this in its scan backwards to identify that a signal
did not arrive inside a function's prolog. Figure 6 on page 10 depicts this marker.

Figure 5. XPLINK stack extension marker

Language Environment Conventions

Chapter 1. Common interfaces and conventions 9

Field Contents

Eyecatcher Seven byte field containing the XPLINK eyecatcher,
XL7'00C300C500C500'.

Mark type Field marking the type of code. Entry code is C'3'.

Offset to entry marker
from XPLINK stack
extension marker/8

The signed offset from the start of XPLINK end of data marker to
the start of the entry point marker in doublewords.

Language Environment implements an 8-byte XPLINK stub entry marker for
Language Environment and C runtime stubs. Figure 7 depicts this marker.

Field Contents

Eyecatcher Seven byte field containing theXPLINK eyecatcher,
XL7'00C300C500C500'.

Mark type Field marking the type of code. Entry code is C'4'.

Offset to entry marker
from XPLINK stack
extension marker/8

The signed offset from the start of XPLINK end of data marker to
the start of the entry point marker in doublewords.

Prolog information blocks
The prolog information exists for every block or internal procedure. A block or
internal procedure is found by R15 pointing to an area saved in the DSA. Code to
allocate stack space is not required in the Language Environment prolog; see
Figure 34 on page 96. Several prolog information blocks have been defined:
v the standard layout is defined in Figure 8 on page 12
v the FASTLINK layout is defined in Figure 9 on page 13

Figure 6. XPLINK end of data marker

Figure 7. XPLINK stub entry marker

Language Environment Conventions

10 z/OS V2R1.0 Language Environment Vendor Interfaces

v the IEEE floating-point layout is defined in Figure 10 on page 14
v the XPLINK layout is defined in Figure 17 on page 21, Figure 18 on page 22, and

Figure 24 on page 30

Program Prolog Area-1 (PPA1) appears for every Language Environment entry
point. There is a one-to-one correlation between a PPA1 and a DSA. The length of
the name offset field (PPA1 offset 00) ranges from 32 to 255 bytes. Note that for the
FASTLINK version, the value in this field is the offset to the name length field,
divided by 2; therefore, the value of the field may range from X'10' to X'FF'. An
offset zero indicates that an entry name does not exist. A PL/I BEGIN block that
does not contain a name is an example of offset zero in the PPA1 length field. The
content of the entry/label name field is defined by member languages. The name
can be SBCS characters or DBCS characters bracketed by shift-codes.
Member-defined information can be placed starting at offset X'20'. Fields described
as fullword offsets are treated as signed offsets.

Program Prolog Area-2 (PPA2) appears once for each compile unit and can
immediately follow the primary PPA1. The control level field indicates the change
level of the prolog. The timestamp and version information normally appears at
the end of PPA2 and is optional. The version and release data fields identify the
level of the compiler that produced the object code. You can use the PPA2 field at
offset X'10' to determine the primary entry point for the compilation unit. It is zero
if the compilation unit primary entry point does not exist. Member-defined
information can be placed at the end of PPA2.

To establish the member language of a compile unit, use the PPA2 field at offset
X'04' in the PPA1 to locate the PPA2. The meaning of the PPA2 field depends on
the format of the PPA1. When the PPA1 format is not known, you can use the
entry point layout to determine the program model (see “Routine layout” on page
6) and to interpret the content of the PPA1.

Table 3. Entry point types and the contents of the PPA2 field

Entry Point Layout Type Contents of the PPA2 Field

Standard Actual address of the PPA2

FASTLINK (includes IEEE floating point) Signed offset to the PPA2 from the entry point

XPLINK Signed offset to the PPA2 from the PPA1

When you have located the PPA2, you can find the one byte member language
identifier at offset X'00' of the PPA2 (for example, '05' for COBOL, '10' for PL/I, '11'
for Enterprise PL/I). For a complete list of identifiers, see Figure 16 on page 20.
The PPA2 member identifier may be useful in determining the format of the
corresponding PPA1.

Program Prolog Area-3 (PPA3), if available, appears once for every Language
Environment entry point. It provides additional information about an entry point,
and typically contains information relevant for problem determination tools. There
is a one-to-one correlation between a PPA1 and a PPA3. The PPA3 layout may
differ among different member languages.

Program Prolog Area-4 (PPA4), if available, appears once for each compilation unit.
It provides additional information about a compilation unit, and typically contains
information relevant for problem determination tools. There is a one-to-one
correlation between a PPA2 and a PPA4. The PPA4 layout may differ among
different member languages.

Language Environment Conventions

Chapter 1. Common interfaces and conventions 11

|
|
|
|
|

|
|
|
|
|

In the timestamp block, as shown in Figure 26 on page 31, the two characters that
indicate the version are to be used at the discretion of the high level language that
produces the block; they are not interrogated by Language Environment. In
addition, the dump service uses the service level field to add the module service
level information to the traceback.

Figure 8 shows the Language Environment-conforming prolog for standard
routines.

Figure 9 on page 13 shows the Language Environment-supported prolog for
FASTLINK routines.

Offset to the
length of name

Address of PPA2

X'CE'
(Lang Env Signature) Lan Env Flags

Member
flags

Signed offset to PPA3 from the entry point. Zero if PPA3 is not available.

Reserved

Reserved

Reserved

Reserved

Language Environment flags (16 bits) - (not present for COBOL)

Length of name Untruncated entry/label name

X'00'

X'04'

X'08'

X'0C'

X'10'

X'14'

X'18'

X'1C'

PPA1: Entry Point Block

•
•
•

•
•
•

V(CEESTART) for load module

Member
Subid

Member
Defined

Control Level
(= 1)

Signed offset from PPA2 to PPA4. Zero if PPA4 is not available.

Signed offset from PPA2 to timestamp/version information. Zero if not available.

A(PEP) - address of the compilation unit's Primary Entry Point

X'00'

X'04'

X'08'

X'0C'

X'10'

Member
identifier

PPA2: Compile Unit Block

Figure 8. Prolog constants format – level 1 (standard)

Language Environment Conventions

12 z/OS V2R1.0 Language Environment Vendor Interfaces

|

|

|
|
|

Figure 10 on page 14 shows the Language Environment-supported prolog for IEEE
floating-point routines. The Member Subid (PPA2 offset X'01') is defined by the
member language.

•
•
•

Offset/2 to
length of name

Signed offset to PPA2 from the entry point

X'CE'
(Lang Env Signature)

Lan Env
flags

Member
flags

Signed offset to PPA3 from the entry point. Zero if PPA3 is not available.

Reserved

GPR save bit mask

Member PPA1 word

CEL flag 2

Reserved - must be zero

Max space used by nonleaf rtn in caller's DSA/8

Language Environment flags (16 bits)

Length of name Untruncated entry/label name

X'00'

X'04'

X'08'

X'0C'

X'10'

X'14'

X'18'

X'1C'

PPA1: Entry Point Block

•
•
•

Signed offset from PPA2 to CEESTART for load module

Member
Subid

Member
Defined

Control Level
(= 2)

Signed offset from PPA2 to PPA4. Zero if PPA4 is not available.

Signed offset from PPA2 to timestamp/version information. Zero if not available.

Signed offset from PPA2 to compilation unit Primary Entry Point

X'00'

X'04'

X'08'

X'0C'

X'10'

Member
identifier

PPA2: Compile Unit Block

Figure 9. Prolog constants format – level 2 (FASTLINK)

Language Environment Conventions

Chapter 1. Common interfaces and conventions 13

|

|

|
|
|

Compilation flag bits
Figure 11 on page 15 shows the compilation flag bits.

•
•
•

Offset/2 to
length of name

Signed offset to PPA2 from the entry point

X'CE'
(Lang Env Signature)

Lan Env
flags

Member
flags

Signed offset to PPA3 from the entry point. Zero if PPA3 is not available.

Pointer to entry point data descriptors

FPR save bit
maskGPR save bit mask

Member PPA1 word

CEL flag 2

CEL flag 3

Unsigned offset/16
of FPR8-15 save
area within DSA

Max space used by nonleaf rtn in caller's DSA/8

Unsigned offset/2 from PPA1 to code
descriptor list

Length of name Untruncated entry/label name

X'00'

X'04'

X'08'

X'0C'

X'10'

X'14'

X'18'

X'1C'

PPA1: Entry Point Block

PPA2: Compile Unit Block

Member Identifier Member Subid Member Defined Control Level (= 3)

Signed offset from PPA2 to CEESTART for load module

Signed offset from PPA2 to PPA4. Zero if PPA4 is not available.

Signed offset from PPA2 to timestamp/version information. Zero if it is not available.

Signed offset from PPA2 to the compilation unit’s Primary Entry Point

+00

+04

+08

+0C

+10

+14

......

Compilation flags

Figure 10. Prolog constants format – level 3 (IEEE floating-point)

Language Environment Conventions

14 z/OS V2R1.0 Language Environment Vendor Interfaces

|

|

|
|
|

Program flags — PPA1 offset X'02'
Language Environment program flags (PPA1 offset X'02') are shown in Figure 12
and are described following the figure.

Program
flag

Description

Bit 0 Internal/external procedure
0 Indicates this routine is an internal procedure with a nesting level

greater than 0.
1 Indicates this routine is an external procedure with a nesting level of

0.

Bit 1 Primary/secondary entry point
0 Indicates this entry point is a primary entry point.
1 Indicates this entry point is a secondary entry point.

Bit 2 Code with or without a DSA

0 Indicates that this block of code did not allocate its own DSA.

1 Indicates that this block of code did allocate its own DSA.

’0.......’B Indicates that program was compiled for hexadecimal floating-point
’1.......’B Indicates that program was compiled for binary floating-point
’.0......’B Indicates that the code is compiler generated user code
’.1......’B Indicates that the code is associated with library code
’..0.....’B Program does not contain service information
’..1.....’B Program contains service information
’...000..’B Reserved
’......0.’B No additional compiler information after service information
’......1.’B Additional compiler information after service information
’.......0 0.......’B Reserved
’........ .0......’B MD5 signature is not located at 16 bytes before the timestamp
’........ .1......’B MD5 signature is located at 16 bytes before the timestamp
’........ ..0.....’B Not compiled with FLOAT(AFP(VOLATILE))
’........ ..1.....’B Compiled with FLOAT(AFP(VOLATILE))
’........ ...00000 00000000 00000000’B Reserved

Figure 11. Compilation flag bits

’0.......’B Internal procedure
’1.......’B External procedure
’.0......’B Primary entry point
’.1......’B Secondary entry point
’..0.....’B This procedure/block does not have a DSA
’..1.....’B This procedure/block has a DSA
’...0....’B Compiled object
’...1....’B Library object
’....0...’B Program sampling interrupts are to be attributed

to *LIBRARY
’....1...’B Program sampling interrupts are to be attributed

to this program
’.....0..’B Not an exit DSA - no cleanup needed
’.....1..’B Exit DSA - cleanup processing at exit is needed
’......0.’B Use own language exception model
’......1.’B Use caller’s exception model (enablement, et.al.)
’.......x’B Reserved

Figure 12. Language Environment PPA1 offset X'02'

Language Environment Conventions

Chapter 1. Common interfaces and conventions 15

Program
flag

Description

Bit 3 Library or compiler-generated user code
0 Indicates that the code is compiler-generated user code.
1 Indicates that the code is associated with the library code.

Bit 4 Sampling flag

0 Sampling interrupts that occur in this block of code are attributed to
library support code.

1 Sampling interrupts that occur in this block of code are attributed to
compiler-generated user code.

Bit 5 Exit DSA marking
0 Indicates that no action is required to be taken on behalf of this

routine when abnormally collapsing the associated DSA (nonreturn
style).

1 Indicates that this routine requires action to be taken when abnormally
collapsing the associated DSA (nonreturn style). The associated DSA is
known as an exit DSA. For more information, see “DSA exit routines”
on page 280.

Bit 6 Condition management actions
0 Indicates that the HLL of the generated code participates in condition

management activities.
1 Indicates that the HLL of the generated code chooses not to participate

in condition management activities. All phases of condition
management skip the associated DSA. This includes enablement,
driving member condition handlers, and user handlers. It is not valid
to establish a user handler at this stack frame. Also, stack frames with
this flag set are not counted in calls to CEEMRCR.

Bit 7 Reserved and must be zero.

Program flags — PPA1 offset X'18'
Language Environment program flags (PPA1 offset X'18') for FASTLINK are shown
in Figure 13 and are described following the figure.

Program
flag

Description

Bit 0 Stack Frame Layout (see note)
0 Indicates the routine uses the Version 1 Release 1 stack frame layout.
1 Indicates the routine uses the Version 1 Release 2 FASTLINK frame

layout.

’0.......’B CEL Version 1 Release 1 stack frame layout
’1.......’B FASTLINK stack frame layout
’.000....’B CEL version 1 Release 1 calling conventions (Version 2)
’.001....’B Old C C private conventions (+16 Entry Point disabled)
’.101....’B FASTLINK Special conventions (Version 2)
’.110....’B FASTLINK V1R2 conventions (Version 2)
’.111....’B FASTLINK Public conventions (Version 2)
’....00..’B Non Sleaf
’....01..’B Sleaf return/entry address not in save area but in R14 & R15
’....10..’B Sleaf return/entry address in save area
’......00’B Old code (+0) entry disabled
’......01’B Old code (+0) entry enabled by member simulation routine
’......10’B Old code (+0) entry enabled by line code

Figure 13. Language Environment PPA1 flag 2 offset X'18'

Language Environment Conventions

16 z/OS V2R1.0 Language Environment Vendor Interfaces

Program
flag

Description

Bit 1-3 Calling conventions (see note)
0 Entry point uses R1 non-FASTLINK conventions (Version 2).
1 Entry point uses old C conventions.
6 Entry point uses V1 R2 FASTLINK conventions and is potentially

bilingual.
7 Entry point supports FASTLINK conventions and is potentially

bilingual.

Bit 4-5 SLEAF only valid for FASTLINK; otherwise, it must be zero.
0 Indicates this entry point is not a SLEAF routine; it allocates its own

DSA.
1 Indicates this entry point is a SLEAF routine that keeps its return

address in R14 and the entry address in R15 — not in the DSA.
2 Indicates this entry point is a SLEAF routine that keeps its return and

entry address in a normal save area location.

Bit 6-7 Old entry enablement only valid for FASTLINK; otherwise, it must be zero.
0 Indicates +0 entry point is disabled.
1 Indicates +0 entry point is enabled but does not obtain its own stack

frame; it uses the same stack frame as the primary entry.
2 Indicates +0 entry point is enabled and obtains its own stack frame.

Two stack frames are obtained by this routine when it is called from
old code: one for old code entry and the other normal one created by
the primary entry point.

Note: For Version 1 Release 2, if Bit 0 is 0 (indicates Version 1 Release 1 DSA layout), Bit 1-3
may only have a value of 1, which indicates old C conventions. If Bit 0 is 1 (indicates
FASTLINK DSA layou), Bit 1-3 may only have a value of 6, which indicates FASTLINK
conventions.

Program flags — PPA1 offset X'1C'
Language Environment program flags (PPA1 offset X'1C') are shown in Figure 14
on page 18 and are described following the figure.

Language Environment Conventions

Chapter 1. Common interfaces and conventions 17

Bit 0 - 9 are reserved in Prolog Constants Format – Level 1 (Standard). The
definition below is for Prolog Constants Format – Level 2 (FASTLINK) and Level 3
(IEEE Floating-Point).

Program flag Description

Bit 0 - 1
(Entry Point
Partial Save

Flag)

Only valid for FASTLINK bilingual routines which have Bit 5, return address
location, set to one. In other cases this field must be zero.
0 Indicates that the +0 entry point performs full save (GPR14-15 and

GPR2 through GPR12).
1 Indicates that the +0 entry point performs partial save, the same as

the primary entry point.
2 Indicates that the +0 entry point performs partial save, the same as

the primary entry point plus R12 is also saved.

Bit 2 Deferred Asynch Exceptions
0 Indicates allow asynchronous exceptions to take effect.
1 Indicates defer asynchronous exceptions.

Bit 3 Save area Language Word (Offset 0 in Save area).
0 Indicates that the language word is initialized (required for DSAs

that are flagged in the save area).
1 Indicates that the language word is uninitialized.

Bit 4 Glue code
0 Indicates that the code is not glue.
1 Indicates that the code is external binder glue or runtime simulated

prologue. (Language Environment currently has no operational
dependency on this flag.)

’00..............’B Old code entry performs full save (14,15,2-12)
’01..............’B Old code performs partial save (Version 2)
’10..............’B Old code performs partial save + R12 (Version 2)
’..0.............’B Asynchronous condition processing not deferred
’..1.............’B Asynchronous condition processing deferred (Version 2)
’...0............’B Word 0 of save area not initialized
’...1............’B Word 0 of save area initialized
’....0...........’B Code is non-external glue
’....1...........’B Code is external glue
’.....0..........’B Real return address saved in save area at offset 0x0C
’.....1..........’B Real return address saved in linkage area (Version 2)
’......0.........’B Storage argument area start indeterminate
’......1.........’B Storage argument area start valid
’.......0........’B R12 must contain CAA address upon old code entry
’.......1........’B R12 not defined upon old code entry (Version 2)
’........0.......’B Not vararg routine
’........1.......’B Vararg routine
’.........0......’B Asynchronous interrupts are not supported
’.........1......’B Asynchronous interrupts are supported
’..........0.....’B No module service level
’..........1.....’B Module service level applied
’...........x....’B Reserved
’............x...’B Reserved
’.............x..’B Reserved
’..............0.’B Extended Flag field not present
’..............1.’B Extended Flag field present
’...............x’B Reserved

Figure 14. Language Environment PPA1 flag 3 offset X'1C'

Language Environment Conventions

18 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

Program flag Description

Bit 5 Return Address Location
0 Indicates that the return address is in the caller provided save area

in the normal R14 slot at offset 12 unless “stolen” by Language
Environment to enable CEL to gain control upon return from the
routine (for example, by CEEHDLR to provide for automatic
de-registration of a user condition handler routine).

1 Indicates that the return address maybe in the linkage area of the
callee's DSA.

Bit 6 Argument List Valid (FASTLINK only)
0 Indicates that the portion of the argument list corresponding to the

parameters passed in registers may not be initialized.
1 Indicates that the portion of the argument list corresponding to the

parameters passed in registers is valid. This bit is potentially used
by debug or by readers of a dump. In Version 2, all compilers must
have an optimization level that produces a prologue in which all
parameters passed in registers are stored into the argument list.

Bit 7 CAA Address valid at FASTLINK + 0 entry point
0 Indicates that R12 must contain a valid CAA pointer at entry

(preserved).
1 Indicates that R12 contents are undefined at entry and must be

preserved.

Bit 8 C vararg routine
0 Indicates that the routine is not a C or C++ varargs.
1 Indicates that the routine is a C or C++ varargs.

Bit 9 Async Interrupt Support
0 Indicates that the routine does not support async interrupts.
1 Indicates that the routine supports async interrupts.

Bit 10 Module Service Level Info
0 Indicates that the function has no service applied.
1 Indicates that the function has service applied.

Bit 11-13 Reserved and must be zero

Bit 14 Extended Flag
0 Indicates that Extended Flag field is not present.
1 Indicates that Extended Flag field is present.

Bit 15 Reserved and must be zero

Extended Flag field and Optional Area fields
The Extended Flag is only present if Bit 14 in PPA1 offset X '1C' program flags is
ON. The size of the Extended Flag is 4 bytes. If it exists, it will be located before
the Length of Name field. It contains 32 bits that indicate which optional areas are
present. These optional areas will be located before Extended Flag field in a fixed
order. The format and order of the Extended Flag field and optional areas:

Table 4. Language Environment PPA1 Extended Flag Field and Optional Area fields

VR save area locator VR save bit mask
(Extended Flag 1 bit
0)

reserved

Extended Flag 1 Extended Flag 2 Extended Flag 3 Extended Flag 4

PPA1 Extended Flag 1: program flags are shown in Table 4 and are described in the
following figure:

Language Environment Conventions

Chapter 1. Common interfaces and conventions 19

||

||
||
||

||

|
|
|
|
|
|

||

||
|
|

|

||||
|
|
|
|

Bit 0 Vector registers flag:

0 Indicates that the vector registers are not saved in the DSA.

1 Indicates that the vector registers are saved in the DSA and that
the VRs area is present in the optional PPA1 area.

Bit 1 - 7 Reserved for future optional fields

PPA1 extended flags 2-4 are reserved and must all be zero.

VRs area
A 4-byte area used to provide vector register related infomation including
VR mask and vector register save area locator. This field is optional; its
presence is indicated by PPA1 Extended Flag 1, Bit 0.

VR save area locator
A one byte long field containing unsigned offset/16 of VRs 16-23 save area
within DSA.

VR save bit mask
An 8-bit mask indicating which of VRs are saved and restored by this
routine. Bits 0-7 indicate VRs 16-23. Space is reserved in the routine's local
storage for those VRs actually saved by the routine.

The reserved bits must all be zero.

Member identifiers — PPA2 offsets X'00' and X'01'
The Member Identifier (PPA2 offset X'00') identifies the product origin of the
running code by compiler. Language Environment-enabled language member
identifiers show the codes for the various compiler products. The product codes
are assigned by IBM and the assignment codes are in decimal. The member list
table's implementation size is bound to a maximum of 17 (0 through 16) for
Language Environment.

’0.......’B Vector Registers Area is not in the optional area
’1.......’B Vector Registers Area is in the optional area
’.0000000’B Reserved, must all be zero

Figure 15. Language Environment PPA1 Extended Flag 1

00 Reserved
01 Language Environment (CEL)
02 Reserved
03 OS/390 C/C++, C VM/ESA, XL C/C++
04 COBOL V5
05 COBOL for OS/390 & VM, COBOL for MVS & VM
06 Debug Tool
07 VS FORTRAN
08 Reserved
09 Available
10 PL/I for MVS & VM
11 VisualAge PL/I for OS/390
12 Berkeley Sockets
13 Available
14 Reserved
15 ASSEMBLER
16 Reserved

Figure 16. Language Environment-enabled language member identifiers

Language Environment Conventions

20 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|
|
|
|
|

|

|||

||

||
|

||
|
|

|
|
|
|

|
|
|

|
|
|
|

|

PPA1 in support of XPLINK
To optimize the space used for control purposes, the structure and contents of the
PPA1 for XPLINK have been redefined. The control block is made up of a fixed
part followed by a contiguous optional part, with the presence of optional fields
indicated by flag bits. Optional fields, if present, are stored immediately following
the fixed part of the PPA1 aligned on fullword boundaries in the order specified,
as shown in Figure 17.

The PPA1 is located through an offset field preceding the entry point which
provides flexibility to group all PPA1s either by compilation unit or by module.
The new PPA1 content is extensible in that a version field identifies the particular
table structure.

Program prolog areas are mandatory for languages participating in XPLINK. Each
entry point must have a corresponding PPA1 associated with it.

Version LE Signature X‘CE’ Saved GPR Mask
(Lan Env Signature)

Signed Offset to PPA2 from start of PPA1

PPA1 Flags 1 PPA1 Flags 2 PPA1 Flags 3 PPA1 Flags 4

Length/4 of Parms Length/2 of Prolog Alloca Reg Offs/2 R4
Chg

Length of Code

+00

+04

+08

+0C

+10

PPA1: XPLINK Entry Point Block Fixed Area (Version 3)

Figure 17. Prolog constants format – level 4 (XPLINK), PPA1: entry point block (Version 3)

Language Environment Conventions

Chapter 1. Common interfaces and conventions 21

PPA1 fixed area fields:

Version
An 8-bit field that is set to X'02' to identify this PPA1 as having the Level
4, XPLINK (Version 3) layout.

Note: No Version 1 or Version 2 layouts of the XPLINK PPA1 exist.

Language Environment Signature
An 8-bit field that must be set to X'CE'.

Saved GPR Mask
A 16 bit mask, indicating which registers are saved and restored by the
associated routine. Bit 0 indicates register 0, followed by bits for registers 1
to 15 in order.

Signed offset to PPA2 from the start of PPA1
The offset of the PPA2 block belonging to the compilation unit containing
the function described by this PPA1.

PPA1 Flag 1: Program flags (PPA1 offset X'08') are shown in Figure 18 and are
described in Figure 19 on page 23.

Version
CEL Signature X’CE’
(Lang Env Signature)

Saved GPR Mask

Signed offset to PPA2 from start of PPA1

PPA1 Flag 1 PPA1 Flag 2 PPA1 Flag 3 PPA1 Flag 4
DSA Format
0: 32 bit
1: 64 bit
0: Short form PPA1
1: Reserved
Exception Model
0: Own
1: Caller’s
PPA3 type flags
0: tiny PPA3
1: full PPA3
Invoke member for
DSA exit event
XPLink Exit DSA
Special Linkage
Vararg function

Procedure
0: Internal
1: External
Reserved, 0
Reserved, 0
Reserved, 0
Reserved, 0
Reserved, 0
Reserved, 0
Reserved, 0

State Variable
Locator
Argument Area
Length
FPR Mask
AR Mask
Member PPA1 Word
Block Debug Info
Interface Mapping
Flags
Java Method
Locator Table

Reserved, 0
Reserved, 0
VR Mask , 0
Reserved, 0
Reserved, 0
Reserved, 0
Reserved, 0
Name Length
and Name

Indicating fields in
optional area

Indicating fields in
optional area

0

1

2

3

4

5
6
7

0

1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0

1

2
3
4
5
6

7

Length/4 of Parms Length/2 of Prolog Alloca Reg

Offset/2 to
StackPointer

Update

Length of Code

+0

+4

+8

+12
0x0c

+16
0x10

Figure 18. PPA1: XPLINK entry point block fixed area (Version 3) details

Language Environment Conventions

22 z/OS V2R1.0 Language Environment Vendor Interfaces

|

|
|
|

Program
flag

Description

Bit 0 Format of General Purpose Registers (GPR) save area
0 Indicates that GPRs are saved as 32-bit quantities.
1 Indicates that GPRs are saved as 64-bit quantities.

Bit 1 Format of PPA1
0 Indicates that this is a short form of the PPA1.
1 Reserved.

Bit 2 Exception Model Flag
0 Indicates that this routine uses it's own exception model.
1 Indicates that this routine inherited the exception model from its

caller.

Bit 3 PPA3 Type Flag
0 Indicates a tiny PPA3.
1 Indicates a full PPA3.

Bit 4 Call Member for DSA Exit flag
0 Indicates that the owning member of the DSA should not be called for

Exit DSA processing.
1 Indicates that the owning member of the DSA should be called for

Exit DSA processing.

Bit 5 XPLINK Exit DSA Flag
0 Indicates that the associated stack frame is not an XPLINK Exit DSA.
1 Indicates that the associated stack frame is an XPLINK Exit DSA and

its R7 (return addr) should be given control during stack collapse.

Bit 6 Special linkage Flag
0 Indicates that this is not a special linkage routine.
1 Indicates that this is a special linkage routine used to handle calls

between XPLINK and non-XPLINK routines or to handle calls that
cause a stack segment extension.

Bit 7 Vararg Flag
0 Indicates that this is not a variable argument (Vararg) routine.
1 Indicates that this is a Vararg routine.

PPA1 Flag 2: Program flags (PPA1 offset X'09') are shown in Figure 18 on page 22
and are described in Figure 20 on page 24.

’0.......’B GPR Save area is 32 bit.
’1.......’B GPR Save area is 64 bit.
’.0......’B Reserved.
’..0.....’B Own exception model.
’..1.....’B Inherited exception model.
’...0....’B tiny PPA3.
’...1....’B full PPA3.
’....0...’B Do Not call member for Exit DSA event.
’....1...’B Call member for Exit DSA event.
’.....0..’B Do Not treat as PL/I style exit DSA.
’.....1..’B Treat as PL/I style exit DSA.
’......0.’B This is not a Special linkage routine.
’......1.’B This is a Special linkage routine.
’.......0’B Not a Vararg routine.
’.......1’B Vararg routine.

Figure 19. Language Environment PPA1 flag 1 offset X'08'

Language Environment Conventions

Chapter 1. Common interfaces and conventions 23

|
|

|

Program
flag

Description

Bit 0 Internal/External procedure
0 Indicates that this procedure is an internal procedure with a nesting

level greater than zero.
1 Indicates that this procedure is an external procedure with a nesting

level of zero.

Bit 1 - 7 Reserved for future use.

PPA1 Flag 3: Program flags (PPA1 offset X'0A') are shown in Figure 18 on page 22
and are described in Figure 21.

Program
flag

Description

Bit 0 State Variable Locator Flag
0 Indicates that this field is not present in the optional part of the PPA1.
1 Indicates that this field is present in the optional part of the PPA1.

Bit 1 Argument Area Length

0 Indicates that this field is not present in the optional part of the PPA1.

1 Indicates that this field is present in the optional part of the PPA1.

Bit 2 Floating-Point Registers Flag
0 Indicates that the Floating-Point registers are not saved in the DSA.
1 Indicates that the Floating-Point registers are saved in the DSA and

that the FPR mask and Offset to FPR savearea is present in the
optional PPA1 area. If this field is present, the entire word containing
FPR Mask and AR Mask is present in the optional area.

’0.......’B Internal procedure
’1.......’B External procedure
’.0000000’B Reserved for future use (must all be zero).

Figure 20. Language Environment PPA1 flag 2 offset X'09'

’0.......’B State Variable locator field is not in optional area.
’1.......’B State Variable locator field is in the optional area.
’.0......’B Argument Area Length is not in the optional area.
’.1......’B Argument Area Length is in the optional area.
’..0.....’B FP Register Mask is not in the optional area.
’..1.....’B FP Register Mask is in the optional area.
’...0....’B No ARs are saved. AR mask not in optional area.
’...1....’B ARs are saved. AR mask in optional area.
’....0...’B Member PPA1 word is not present in optional area.
’....1...’B Member PPA1 word is present in the optional area.
’.....0..’B Offset to PPA3 is not present in optional area.
’.....1..’B Offset to PPA3 is present in the optional area.
’......0.’B Interface mapping flags not in the optional area.
’......1.’B Interface mapping flags in the optional area.
’.......0’B Java Method Locator Table not in the optional area.
’.......1’B Java Method Locator Table in the optional area.

Figure 21. Language Environment PPA1 flag 3 offset X'0A'

Language Environment Conventions

24 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|
|

|
|

Program
flag

Description

Bit 3 Access Registers Flag
0 Indicates that the Access Registers are not saved in the DSA.
1 Indicates that the Access Registers (as indicated by the Saved AR Bit

Mask field) are saved in the DSA and the AR mask in the optional
area. If this field is present, the entire word containing FPR Mask,
Alloca Reg, and AR Mask is present in the optional area.

Bit 4 Member PPA1 Word Flag
0 Indicates that this field is not present in the optional part of the PPA1.
1 Indicates that this field is present in the optional part of the PPA1.

Bit 5 Offset to PPA3 Flag
0 Indicates that this field is not present in the optional part of the PPA1.
1 Indicates that this field is present in the optional part of the PPA1.

Bit 6 Interface Mapping Flag
0 Indicates that this field is not present in the optional part of the PPA1.
1 Indicates that this field is present in the optional part of the PPA1.

Bit 7 Java™ Method Locator Table
0 Indicates that this field is not present in the optional part of the PPA1.
1 Indicates that this field is present in the optional part of the PPA1.

PPA1 Flag 4: Program flags (PPA1 offset X'0B') are shown in Figure 18 on page 22
and are described in Figure 22.

Program flag Description

Bit 0 Offset To Entry Point Marker
0 Indicates that the offset to the entry pointer marker is not present

in the optional part of the PPA1.
1 Indicates that the offset to the entry pointer marker is present in the

optional part of the PPA1.

Bit 1 Upper GPR mask and save area locator
0 Indicates that the upper GPR mask and save area locator are not

present in the optional part of the PPA1.
1 Indicates that the upper GPR mask and save area locator are

present in the optional part of the PPA1.

Bit 2 Vector Registers flag
0 Indicates that the Vector registers are not saved in the DSA.
1 Indicates that the Vector registers are saved in the DSA and that the

VRs area is present in the optional PPA1 area.

Bit 3-6 Reserved for future optional fields

’0.......’B Offset to Entry Point Marker not in the optional area.
’1.......’B Offset to Entry Point Marker in the optional area.
’.0......’B Upper GPR mask and save area locator not in the optional area.
’.1......’B Upper GPR mask and save area locator in the optional area.

’..0.....’B VR register mask is not in the optional area.
’..1.....’B VR register mask is in the optional area.
’...0000.’B Reserved for future optional fields (must all be zero).
’.......0’B Name length and name are not in the optional area.
’.......1’B Name length and name is in the optional area.

Figure 22. Language Environment PPA1 flag 4 offset X'0B'

Language Environment Conventions

Chapter 1. Common interfaces and conventions 25

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|||

||
||
|
||
|

||
||
|
||
|

||
||
||
|

||

Program flag Description

Bit 7 Procedure/Label Name Flag
0 Indicates that the length of name field and the entry/label name

field are not present in the optional part of the PPA1.
1 Indicates that the length of name field and the entry/label name

field are present in the optional part of the PPA1.

Length/4 of Parms: Length of expected parameter area for this function in
fullwords (for vararg functions, the length of the fixed portion of the parameter
list). This is used for copying parameters on stack extension. For vararg functions
the entire caller's argument area must be copied on stack extension.

Length/2 of Prolog: Length of prolog instruction sequence in halfwords starting
from the entry point. The prolog is complete when all conditions described in this
architecture are satisfied. This includes: saving the non-volatile registers used by
the function, including FPRs, ARs and VRs; updating the stack pointer; and
loading the alloca() register. Other instructions from the function body, including
setting up various base registers, may be moved into the prolog, so no component
can assume anything about the state of registers within the prolog without
scanning the prolog code.

alloca() Register: The register used to point to automatic storage (and other parts of
the originally-allocated stack frame) in functions that use alloca(). This must be
zero if alloca() is not used.

Offset/2 to Stack Pointer Update: The offset in halfwords from the Entry Point to the
beginning of the instruction that updates the stack pointer (register 4). For XPLeaf
routines, this field will be set to zero.

Length of Code: The length of the code for this function, starting from the entry
point marker associated with this PPA1 to the last instruction in the function, in
bytes. This does not necessarily include instructions which are the target of
"execute," which may be in other parts of the code section, the stack frame, or
writable static.

State Variable Locator: Defines the location of the state variable. Bits 0-3 contain the
number of a GPR whose contents are added to the unsigned offset in bits 4-31 to
calculate the address of the state variable. The register used to address the State
Variable, typically the stack register or the alloca() register, must be set in the
prolog and retain its value throughout the function. This field is optional; its
presence is indicated by PPA1 Flag 3, Bit 0.

Argument Area Length: Length of argument area allocated by this function on the
stack. If present, this field contains the size of the largest argument list used by this
function. This field is optional; its presence is indicated by PPA1 Flag 3, Bit 1.
However, this field is required for every function that contains a call with an
argument list longer than 128 bytes.

FPR Mask: A 16-bit mask indicating which of FPRs are saved and restored by this
routine. Bit 0 indicates FPR0, followed by bits for FPR1 to FPR 15. Space is
reserved in the function's local storage for those FPRs actually saved by the
function. This field is optional; its presence is indicated by PPA1 Flags3, bit 2. The
word containing this field, if present, has either PPA1 Flags3 bits 2 or 3 on.

Access Register Mask: Reserved for future use.

Language Environment Conventions

26 z/OS V2R1.0 Language Environment Vendor Interfaces

||

||
||
|
||
|
|

|
|
|
|
|
|
|
|

Floating Point Register Save Area Locator: Defines the location of the Floating Point
Register Save Area. Bits 0-3 contain the number of a GPR whose contents are
added to the unsigned offset in Bits 4-31 to calculate the address of this save area.
The register used to address this save area, typically the stack register or the
alloca() register, must be set in the prolog and retain its value throughout the
function. This field is optional; its presence is indicated by PPA1 Flag 3, Bit 2.

Access Register Save Area Locator: Defines the location of the Access Register Save
Area. Bits 0-3 contain the number of a GPR whose contents are added to the
unsigned offset in bits 4-31 to calculate the address of this save area. The register
used to address this save area, typically the stack register or the alloca() register,
must be set in the prolog and retain its value throughout the function. This field is
optional; its presence is indicated by PPA1 Flag 3, Bit 3.

Member PPA1 word: This word contains the information shown Figure 23 for C
and C++ (previously part of the Member Flags) when present.

For C++, this word is used for flags as shown in the preceding figure and are
described as follows:

Program flag Description

Bit 0 - 23 Reserved (must be zero)

Bit 24 Noargparse
0 Indicates argparse.
1 Indicates no argparse.

Bit 25 Noredirection

0 Indicates redirection.

1 Indicates no redirection.

Bit 26 Noexecops
0 Indicates execops.
1 Indicates no execops.

Bit 27 - 31 Reserved (must be zero)

Offset to PPA3: Signed offset to PPA3 from the start of PPA1. This field is optional;
its presence is indicated by PPA1 Flag 3, Bit 5.

Interface mapping flags: This field is provided to allow interface mapping by a glue
routine when an XPLINK routine is called from non-XPLINK. It describes the
linkage type, the floating-point parameters expected by this routine, and the format
of the function return value. This field is optional; its presence is indicated by
PPA1 Flag 3, Bit 6.

’000000000000000000000000........’B Reserved (must be zero)
’........................0.......’B Argparse
’........................1.......’B No argparse
’.........................0......’B Redirection
’.........................1......’B No redirection
’..........................0.....’B Execops
’..........................1.....’B No execops
’...........................00000’B Reserved (must be zero)

Figure 23. Language Environment PPA1 flag word as defined by C++

Language Environment Conventions

Chapter 1. Common interfaces and conventions 27

|
|

Java Method Locator Table: Used to locate meta-information for Java classes. This
field is optional; its presence is indicated by PPA1 Flag 3, Bit 7.

Offset to entry point marker: Signed offset to entry point marker from the start of
PPA1. This field is optional; its presence is indicated by PPA1 Flag 4, Bit 0.

Upper GPR mask and save area locator: Identifies the 64-bit general purpose registers
for which the upper halves (bits 0-31) are saved and restored by this routine, and
defines the location of the save area. Bits 0-15 are a mask indicating the GPRs for
which the upper halves are saved and restored by this routine. Bit 0 indicates
GPR0, followed by bits for GPR1 to GPR15. Space is reserved in the function's local
storage for those GPRs actually saved by the routine. Bits 16-31 are reserved and
must be zero. Bits 32-35 contain the number of a GPR whose contents are added to
the unsigned offset in bits 36-63 to calculate the address of this save area. The
register used to address this save area, typically the stack register or the alloca()
register, must be set in the prolog and retain its value throughout the function.
This field is optional; its presence is indicated by PPA1 Flag 4, Bit 1.

VRs area: An 8-byte area used to provide vector register related infomation
include VR mask and vector register save area locator. This field is optional; its
presence is indicated by PPA1 Flag 4, Bit 2. VR mask is a 8-bit mask indicating
which of VRs are saved and restored by this routine. Bit 0 indicates VR16, followed
by bits for VR17 to VR23. Space is reserved in the routine's local storage for those
VRs actually saved by the routine. Vector register save area locator defines the
location of the vector register save area. Bits 0-3 contain the number of a GPR
whose contents are added to the unsigned offset in Bits 4-31 to calculate the
address of this save area. The register used to address this save area, typically the
stack register or the alloca() register, must be set in the prolog and retain its value
throughout the routine.

The reserved bits must all be zero.

PPA1 Optional Area Fields: There are several optional PPA1 Fields; each one's
presence indicated by a flag bit in PPA1 Flags 3 or PPA1 Flags 4. Where an
optional field is less than 4 bytes in length, the entire word is present if any of the
fields in that word are present. Unused parts of the word are filled with zeroes.
The optional fields are fullword aligned and appear in the order listed here. The
field name and length are given:

Field description
Field

length

State Variable Locator (PPA1 Flag 3, Bit 0) 4

Field description
Field

length

Argument Area Length (PPA1 Flag 3, Bit 1) 4

Field description
Field

length

FPR mask (PPA1 Flag 3, Bit 2) AR mask (PPA1 Flag 3, Bit 3) 4

Note: If either Bit 2 or Bit 3 of Flag 3 is on, the fullword variable representing FPR
mask and AR mask is present.

Language Environment Conventions

28 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|

|

|

Field description
Field

length

Floating Point Register Save Area Locator (PPA1 Flag 3, Bit 2) 4

Field description
Field

length

Access Register Save Area Locator (PPA1 Flag 3, Bit 3) 4

Field description
Field

length

PPA1 Member Word (PPA1 Flag 3, Bit 4) 4

Field description
Field

length

Offset to PPA3 (PPA1 Flag 3, Bit 5) 4

Field description
Field

length

Interface Mapping Flags (PPA1 Flag 3, Bit 6) 4

Field description
Field

length

Java Method Locator Table (MLT) (PPA1 Flag 3, Bit 7) 8

Field description
Field

length

VR mask (PPA1 Flag 4, Bit 2) Reserved 8

Vector Register save area locator

Field description
Field

length

Length of Name (PPA1 Flag 4, Bit 7) Name of Function variable
lengthName of Function (continued)

Note: Zero to three bytes of zeroes may be needed after the name to ensure that
the next optional field starts on a word boundary.

Field description
Field

length

Offset To Entry Point Marker (PPA1 Flag 4, Bit 0) 4

Field description
Field

length

Upper GPR mask and save area locator (PPA1 Flag 4, Bit 1) 8

Language Environment Conventions

Chapter 1. Common interfaces and conventions 29

|

|

|
|
|

|||

|
|

|
|

|
|
|
|

||
|

|

|
|
|

||
|

PPA2 in support of XPLINK
The following sections describe the structure of the PPA2 format that supports
XPLINK. Figure 24 shows the format of the prolog constants.

The level 4 (XPLINK), PPA2: compile unit block bits are described in Figure 25.
The XPLINK(STOREARGS) and XPLINK flags were added in PPA2 Level 4.

Timestamp and Version: Figure 26 on page 31 shows the format of the
information in the timestamp and version.

PPA2: Compile Unit Block

Member Identifier Member Subid Member Defined Control Level (= 4)

Signed offset from PPA2 to CELQSTRT for load module

Signed offset from PPA2 to PPA4. Zero if PPA4 is not available.

Signed offset from PPA2 to timestamp/version information or zero

Signed offset from PPA2 to the compilation unit’s Primary Entry Point

+00

+04

+08

+0C

+10

+14 Compilation flags

........

Figure 24. Prolog constants format – level 4 (64-bit XPLINK), PPA2: compile unit block

’0.......’B Indicates that program was compiled for hexadecimal floating-point
’1.......’B Indicates that program was compiled for binary floating-point
’.0......’B Indicates that the code is compiler generated user code
’.1......’B Indicates that the code is associated with library code
’..0.....’B Program does not contain service information
’..1.....’B Program contains service information
’...0....’B Not compiled with XPLINK(STOREARGS)
’...1....’B Compiled with XPLINK(STOREARGS)
’....0...’B Reserved
’.....0..’B Compiled unit is EBCDIC
’.....1..’B Compiled unit is ASCII
’......0.’B No additional compiler information after service information
’......1.’B Additional compiler information after service information
’.......0’B Not compiled with XPLINK
’.......1’B Compiled with XPLINK
’........ 0.......’B Reserved
’........ .0......’B MD5 signature is not located at 16 bytes before the timestamp
’........ .1......’B MD5 signature is located at 16 bytes before the timestamp
’........ ..0.....’B Not compiled with FLOAT(AFP(VOLATILE))
’........ ..1.....’B Compiled with FLOAT(AFP(VOLATILE))
’........ ...00000 00000000 00000000’B Reserved

Figure 25. Level 4 (64-bit XPLINK), PPA2: compile unit block bits

Language Environment Conventions

30 z/OS V2R1.0 Language Environment Vendor Interfaces

|

|
|
|

COBOL V5 32-bit PPA3 layout
PPA3 conforms to this layout under these conditions:
v Member identifier (PPA2 offset X'00') is 4
v PPA4 version in PPA4 program flags is 1
v PPA4 program flags indicates 31-bit compile

Table 5. COBOL V5 32-bit PPA3 layout

Offset Length Description

X'00' 4 Reserved

X'04' 4 Signed offset from PPA3 to
base locator table. Zero if not
available.

C/C++ DWARF 32-bit PPA4 layout
PPA4 conforms to this layout under these conditions:
v Member identifier (PPA2 offset X'00') is 3
v PPA4 version in PPA4 program flags is 2
v PPA4 program flags indicates 31-bit compile

Table 6. C/C++ DWARF 32-bit PPA4 layout

Offset Length Description

X'00' 4 PPA4 debug flags for PPA4
version 2

X'04' 4 PPA4 program flags

X'08' 4 Signed offset from
CEESTART address to
NORENT static

X'0C' 4 Signed offset from WSA to
RENT static

X'10' 4 Signed offset from PPA4 to
symbol offset table

X'14' 4 Signed offset from PPA4 to
code csect

CL4'yyyy' Year of compilation

CL4'mmdd' Date of compilation

CL4'hhmm' Time of compilation

CL4'rrmm' Release/Modification

CL2'ss' Time of compilation CL2 'vv' Version

00

04

08

0C

10

14 Untruncated service level stringService level string length

Figure 26. Timestamp and version information

Language Environment Conventions

Chapter 1. Common interfaces and conventions 31

|
|

|

|

|

||

|||

|||

|||
|
|
|

|
|

|

|

|

||

|||

|||
|

|||

|||
|
|

|||
|

|||
|

|||
|

Table 6. C/C++ DWARF 32-bit PPA4 layout (continued)

Offset Length Description

X'18' 4 Length of code csect (in
bytes)

X'1C' 4 Signed offset from PPA4 to
DWARF line number table
embedded in C_CDA class
[optional field, check PPA4
debug flags]

COBOL V5 32-bit PPA4 layout
PPA4 conforms to this layout under these conditions:
v Member identifier (PPA2 offset X'00') is 4
v PPA4 version in PPA4 program flags is 1
v PPA4 program flags indicates 31-bit compile

Table 7. COBOL V5 32-bit PPA4 layout

Offset Length Description

X'00' 4 PPA4 debug flags for PPA4
version 1

X'04' 4 PPA4 program flags

X'08' 4 Address of NORENT static

X'0C' 4 Signed offset from WSA to
32-bit RENT static

X'10' 4 Signed offset from 32-bit
RENT static to 24-bit RENT
static address cell.
Note: You need to
dereference the address cell
to get the address of 24-bit
RENT static.

X'14' 4 Signed offset from PPA4 to
code csect

X'18' 4 Length of code csect (in
bytes)

X'1C' 4 Length of NORENT static (in
bytes)

X'20' 4 Length of 32-bit RENT static
(in bytes)

X'24' 4 Length of 24-bit RENT static
(in bytes)

X'28' 2 Signed offset from PPA4 to
code csect name (prefixed
with 2 bytes string length).
Zero if code csect name is
not available.

PPA4 debug flags
PPA4 debug flags for PPA4 version 1 - PPA4 offset X'00' are shown in the
following code sample:

Language Environment Conventions

32 z/OS V2R1.0 Language Environment Vendor Interfaces

|

|||

|||
|

|||
|
|
|
|
|

|
|

|

|

|

||

|||

|||
|

|||

|||

|||
|

|||
|
|
|
|
|
|

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|
|
|
|
|

|
|
|

’00......’B Reserved
’..0.....’B DWARF is not embedded in NOLOAD D_* class
’..1.....’B DWARF is embedded in NOLOAD D_* class
’...0....’B DWARF is not embedded in LOAD D_* class
’...1....’B DWARF is embedded in LOAD D_* class
’....0...’B Compilation unit is compiled with TEST
’....1...’B Compilation unit is not compiled with TEST
’.....000 00000000 00000000 00000000’B Reserved

PPA4 debug flags for PPA4 version 2 - PPA4 offset X'00' are shown in the
following code sample:

’0.......’B DWARF line number table is not in C_CDA class.
’1.......’B DWARF line number table is in C_CDA class.
’.0......’B Primary source file name is not available.
’.1......’B Primary source file name follows DWARF sidefile name.

(prefixed with 2 bytes string length)
’..0.....’B DWARF is not embedded in NOLOAD D_* class
’..1.....’B DWARF is embedded in NOLOAD D_* class
’...0....’B DWARF is not embedded in LOAD D_* class
’...1....’B DWARF is embedded in LOAD D_* class
’....0...’B Compilation unit is compiled with DEBUG
’....1...’B Compilation unit is not compiled with DEBUG
’.....000 00000000 00000000 00000000’B Reserved

PPA4 program flags
PPA4 program flags - PPA4 offset X'04' are shown in the following code example:

’00000000 00000...’B Reserved
’........0..’B 31-bit compile
’........1..’B 64-bit compile
’........00’B Reserved
’........ xxxxxxxx’B PPA4 version

0: DWARF information not present
1: COBOL V5 PPA4
2: C/C++ DEBUG(FORMAT(DWARF)) PPA4

’........ xxxxxxxx’B Offset to file name (zero if not applicable)
file name is prefixed with 4 bytes string length
PPA4 version is 0: unsigned offset from PPA4 to source file name
PPA4 version is 2: unsigned offset from PPA4 to DWARF sidefile name

Epilog code
Explicit code to free stack space is not required in the Language Environment
epilog.

Base locator table
In COBOL V5, there is one BL<n> cell location table for each program or
subprogram in a compile unit (that is, entry points). Given an entry point, you can
follow a relative offset chain that leads to the base locator table, as follows:
entry point -> PPA1 -> PPA3 -> base locator table

The COBOL base locator table consists of the following:
v COBOL base locator table header
v 0 or more base locator cells array entry
v 2 NULL bytes to signal end of list

Each base locator cells array entry is variable length and contains information to
locate the base locator cells array. There can be more than one cells array entry in a
table for a particular cell type. Header layout for the base locator table:

Language Environment Conventions

Chapter 1. Common interfaces and conventions 33

|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|

|

|

|

|

|

|
|
|

Table 8. Header layout for the base locator table

Offset bytes (bits) Length bytes (bits) Field name

0 1 base locator table version
(currently 1)

1 1 reserved

2 2 header length (the number of
bytes from the beginning of
the header to the first byte of
the base locator cells array
entry)

4 4 length of base locator cells
arrays (size of all base
locator cells array entries
plus the 2 end-of-list NULL
bytes)

Entry layout for the base locator cells array:

Table 9. Entry layout for the base locator cells array

Offset bytes (bits) Length bytes (bits) Field name

0 0 (5) base locator cells type

0: end of list

1: BLF cells

2: BLL cells

3: BLX cells

4: BLO cells

5: BLT cells

6: BLV cells

0 (5) 0 (3) Access method

0: Stack

1: NORENT static

2: 32-bit RENT static

3: 24-bit RENT static

1 0 (2) [*] byte size of base locator
cells array count

specified value + 1 (that is, 0
means BL cells array size is 1
byte)

1 (2) 0 (3) [**] unsigned byte offset to
next entry from the 'future
expansion' field address

1 (5) 0 (3) reserved

2 4 unsigned offset to base
locator cells array

Language Environment Conventions

34 z/OS V2R1.0 Language Environment Vendor Interfaces

||

|||

|||
|

|||

|||
|
|
|
|

|||
|
|
|
|
|
|

||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||

|||
|

|||
|
|

|||
|
|

|||

|||
|

Table 9. Entry layout for the base locator cells array (continued)

Offset bytes (bits) Length bytes (bits) Field name

This field is used to calculate
the starting address of the
base locator cells array, each
array entry occupies 4 bytes,
and contains the address of a
base locator cell. The
unsigned offset is from:

Access method==0: top of
stack address

Access method==1: address
of NORENT static

Access method==2: address
of 32-bit RENT static

Access method==3: address
of 24-bit RENT static

6 see [*] array count for base locator
cells

6 + [*] see [**] future expansion

CEEYEPAF — locates an XPLINK or non-XPLINK entry point
PPA1 and PPA2 from a passed DSA

CEEYEPAF locates an XPLINK or non-XPLINK entry point, PPA1, and PPA2 from
a passed DSA.

Syntax

void CEEYEPAF (dsa_ptr, dsa_fmt, epa_ptr, (ppa1_ptr, ppa2_ptr),(fc))
POINTER *dsa_ptr;
INT4 *dsa_fmt;
POINTER *epa_ptr;
POINTER *ppa1_ptr;
POINTER *ppa2_ptr;
FEED_BACK *fc;

CEEYEPAF
From a non-XPLINK routine, call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) Address of CAA in R12
L R15,4(,R15)
BALR R14,R15

dsa_ptr (input)
Pointer to the DSA to be examined.

dsa_fmt (input/optionally output)
Format of the stackframe.
0 Upward-growing stack
1 Downward-growing stack
-1 CWI determines and returns

epa_ptr (output)
Address of Entry Point. If unable to identify entry, returns zero.

Language Environment Conventions

Chapter 1. Common interfaces and conventions 35

|

|||

|||
|
|
|
|
|
|

|||
|

|||
|

|||
|

|||
|

|||
|

|||
|

|

ppa1_ptr (output/optional)
Optional PPA1 address to be returned. If unable to identify PPA1 address,
returns zero.

ppa2_ptr (output/optional)
Optional PPA2 address to be returned. If unable to identify PPA2 address,
returns zero.

fc (output/optional)
Optional feedback code. If omitted and the CWI will end in other than a
CEE000, the CWI raises the feedback code as an error condition. The following
conditions may result from this CWI:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE3EM Severity 3

Msg_No 3542

Message Unable to find a valid entry point or PPA1 or PPA2 for
this DSA.

Note: It is recommended, for performance reasons, that whenever possible, this
service is passed the DSA format instead of determining it dynamically. When
used in conjunction with CWI CEEYDSAF, to find the previous DSA, the DSA
format derived from CEEYDSAF can be passed directly into CEEYEPAF to identify
the owner of an XPLINK or non-XPLINK DSA.

__ep_find () — returns the address of the entry point of the
function owning the dsa_p DSA

The __ep_find() function returns the address of the entry point of the function
owning the dsa_p DSA. __ep_find() can be used when the passed-in DSA is not in
the current address space. To access storage outside the current address space, the
user must provide the callback_p parameter, which is a pointer to a user-written
function that fetches all data required by __ep_find(). Generally, the (*callback_p)()
function would obtain the data using some application-dependent method (like
BPX1PTR) and move it into the current address space, where __ep_find() can
access it directly. If the passed-in DSA is in the same address space and is directly
accessible to __ep_find(), callback_p can be NULL.

Syntax

#include <edcwccwi.h>

void *_ep_find (const void * dsa_p, int dsa_fmt, void * (*callback_p)(void * data_p,
size_t data_l))

const void * dsa_p
Pointer to the DSA. dsa_p may point to a DSA in another address space or in
some other place not directly accessible by __ep_find(). If this address is not
directly accessible, the callback_p parameter must be non-NULL. The callback
function will be used to access dsa_p indirectly.

int dsa_fmt
The format of the DSA pointed to by dsa_p. The allowed values for dsa_fmt are:

CEEYEPAF

36 z/OS V2R1.0 Language Environment Vendor Interfaces

|

|

__EDCWCCWI_UP
This value indicates that dsa_p points to a non-XPLINK DSA.

__EDCWCCWI_DOWN
This value indicates that dsa_p points to an XPLINK DSA.

void * (*callback_p)()
Pointer to a user-provided function that fetches data not normally accessible by
__ep_find(). If callback_p is NULL, __ep_find() accesses dsa_p and any other
required Language Environment data areas directly in the current address
space. All required data must be directly accessible to __ep_find() in this case.
The user-provided (*callback_p)() function is passed the address and length of
data to access. It must fetch the data in some application-dependent manner,
and make the data available in the current address space in a place accessible
to __ep_find(). (*callback_p)() must return a pointer to the copied data. This
data must remain available to __ep_find() until the next call to (*callback_p)(),
or until __ep_find() returns to its caller, whichever happens first. On
subsequent calls, (*callback_p)() is allowed to reuse the same data passback area.
There is no provision for (*callback_p)() to pass back an error return code,
indicating that the requested data could not be obtained. If (*callback_p)()
cannot return the requested data, it must not return to __ep_find(). When an
error occurs, (*callback_p)() may:
v longjmp() back to some error return point in the user code that called

__ep_find()
v abend or otherwise terminate abnormally
v exit(), pthread_exit()
v Raise a caught signal where the catcher does longjmp() so as not to return to

__ep_find()
v Use Language Environment condition management to bypass __ep_find()

after the error and resume in user code
v Recover in some other way that does not involve returning to __ep_find().

__ep_find() calls (*callback_p)() with two parameters:

void * data_p
Pointer to the start of the required data. This address might not be in the
current address space.

size_t data_l
The number of bytes of data required. data_l will never exceed 16 bytes. If
(*callback_p)() cannot pass back the complete data requested, it must not
return to __ep_find().

__ep_find() can return the following values:
v If successful, __ep_find() returns the entry point address of the function owning

the dsa_p DSA.
v If unsuccessful, __ep_find() returns a NULL pointer, and sets errno. to one of the

following values:

ESRCH
This error indicates that the entry point could not be located for the
passed-in DSA. This error also occurs if dsa_p is NULL when __ep_find() is
called.

EINVAL
This error occurs if dsa_fmt is not __EDCWCCWI_UP or
__EDCWCCWI_DOWN.

__ep_find ()

Chapter 1. Common interfaces and conventions 37

Usage Notes:

1. __ep_find() may cause program checks if it accesses invalid addresses. This is
especially likely to happen if callback_p is NULL and the DSA being looked at is
not valid. For this reason, the caller should consider having a signal catcher set
up to handle SIGSEGV with appropriate error recovery.

2. The Vendor Interfaces header file, <edcwccwi.h>, is located in member
EDCWCCWI of the SCEESAMP data set. To include <edcwccwi.h> in an
application, the header file must be copied into a PDS or into a directory in the
UNIX file system where the z/OS XL C/C++ compiler will find it.

CEEYPPAF — locates a field in the PPA1 optional area based
on a passed pointer to the PPA1

CEEYPPAF locates a field in the PPA1 optional area based on a passed pointer to
the PPA1 and an indicator for which field is requested.

Syntax

void CEEYPPAF (ppa1_ptr, opt_nam, opt_ptr, opt_ptr2, fc)
POINTER *ppa1_ptr;
INT4 *opt_nam;
POINTER *opt_ptr;
POINTER *opt_ptr2;
FEED_BACK *fc;

CEEYPPAF
From a non-XPLINK routine, call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) Address of CAA in R12
L R15,8(,R15)
BALR R14,R15

ppa1_ptr (input)
Pointer to the PPA1.

opt_nam (input)
An integer indicating the requested PPA1 optional field.
1 = State variable locator
2 = Argument area length
3 = Floating point register mask and Offset to FPR savearea
4 = Access register mask and Offset to AR savearea
5 = Member PPA1 word
6 = Block debug info offset
7 = Interface mapping flags
8 = Java method locator table
9 = Name length/name
10 = Vector register mask and Offset to VR savearea

opt_ptr (output)
Address of the requested optional field in passed PPA1. If unable to identify
field, returns zero.

opt_ptr2 (output/optional)
Optional address of the offset to the FPR or AR savearea if FPR (3) or AR (4)
requested. If unable to identify or not applicable, returns zero.

fc (output/optional)
Optional feedback code. If omitted and the CWI will end in other than a
CEE000, the CWI raises the feedback code as an error condition. The following
conditions may result from this CWI:

__ep_find ()

38 z/OS V2R1.0 Language Environment Vendor Interfaces

|

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE3EN Severity 2

Msg_No 3543

Message Requested optional field not found in the passed PPA1.

CEE3EO Severity 2

Msg_No 3544

Message Optional field requested is not valid (1-9).

CEE3EP Severity 2

Msg_No 3545

Message Unable to verify the passed PPA1 as valid for XPLINK.

Language Environment dynamic storage area – non-XPLINK
A DSA (dynamic storage area) is an extension to the save area described in the OS
Type I linkage convention. The DSA is described in Figure 27 on page 40. Note that
DSAs are sometimes referred to as stack frames. This DSA is used by exception
handling and Debug Tool services. A macro is provided for assembler language
programs.

CEEYPPAF

Chapter 1. Common interfaces and conventions 39

|

|

|

|

R13 addresses the currently active DSA or standard system save area. The DSA is
required for all callers of Language Environment services. A DSA is allocated every
time a block is entered and might be extended for member use. For the code
sequences to allocate or extend a DSA, see “Allocate/extend/return storage in user
stack” on page 95 and “Allocate/return storage in library stack” on page 98.

All DSAs and save areas are backward-chained. A stopping DSA, known as the
dummy DSA, the zeroth stack frame, or the zeroth DSA, indicates the first DSA on the
stack. The DSA layout includes all fields used/accessed by Language Environment
and language-specific components.

Notes on DSA Format:

1. IBM language products use these two bytes. All other products must set these
two bytes to X'0000'.

2. This field must be initialized.
3. This field is not used by Language Environment but is reserved for

compatibility. If it is used, it is the standard forward chain of save areas.

'0000'X Member-definedNote 1

Note 2

Note 3

Note 4

Note 8

Note 6

Note 2

Note 7

Note 5

CEEDSABACK - standard save area back chain

CEEDSAFWD - standard save area forward chain

CEEDSANAB - Current Next Available Byte (NAB) in stack

CEEDSAMODE - Return address of the module that
caused the last mode switch.

CEEDSAPNAB - End of Prolog NAB

Member-defined

Member-defined

Member-defined

Member-defined

Member-defined

Member-defined

Member-defined

CEEDSASAVE - GPRs 14, 15, 0-12

CEEDSALWS - PL/I LWS

Reserved

Reserved for future exception handling

Reserved for future use

4C

6C

64

48

68

60

00

50

70

04

54

74

08

58

78

0C

5C

7C

Figure 27. Language Environment Dynamic storage area – non-XPLINK format

CEEYPPAF

40 z/OS V2R1.0 Language Environment Vendor Interfaces

4. This area should only be used to save the caller's general registers. General
registers R14 through R12 are saved during prolog and restored during epilog.
Bit 0 of R14 indicates the AMODE of the caller.

5. The member-defined fields are established by the caller.
6. This field is reserved for Debug Tool use. It is currently used by the compiled

code EXecute hook mechanism.
7. This field is used by the Language Environment library routines.
8. If any vendor package calls a PL/I application, the caller's DSA must have the

address of the PL/I LWS. Before calling PL/I user or library routines, the
application must pick up the address of the LWS from the CAA (CEECAALWS)
and store it into the DSA at CEEDSALWS.

The following is the minimum set of DSA requirements:
v CEEDSANAB must contain a valid NAB (Next Available Byte).
v CEEDSAMODE does not need to be initialized.
v CEEDSABACK must be properly set.
v R14 and R15, used as the linkage registers, must be saved in the appropriate

offsets within the DSA.

Non-Language Environment DSAs can be in the save area chain. Routines that
scan the stack should be aware that the length of the save area and the saved
register contents might not conform to Language Environment conventions.

Language Environment dynamic storage area – XPLINK
An XPLINK DSA (Dynamic Storage Area) differs significantly from the
non-XPLINK DSA based on the OS Type I linkage convention that is described in
Figure 28.

Note:

1. This is the size of the bias between the actual value in the XPLINK stack
register (R4) and the start of the DSA. This area is not usable by the current
function. It will contain the DSAs of any called XPLINK functions.

2. A called XPLINK function will only save the registers that might be altered
during its execution.

3. Used by Debug Tool.
4. Used by stack switching glue code for compatibility with non-XPLINK

functions.

CEEDSAHP_BIAS - Stack Bias, DO NOT USE

Note 2

Note 3

Note 4

Note 5

CEEDSAHP4TO15 - Save area for GPRs 4-15

Reserved for use by run-time

CEEDSAHP_ARGLIST - Start of variable length argument list

CEEDSAHPTRAN - Debug Area

CEEDSAHP_ARG_PRE - Argument prefix area

840

83C

000

800

830

838

Note 1

Figure 28. Language Environment Dynamic storage area – XPLINK format

CEEYPPAF

Chapter 1. Common interfaces and conventions 41

5. Area where argument list for called functions will be built. Only parameters
that are not passed in registers will be stored into the argument area.

In an XPLINK function, the currently active DSA is located by R4. However, R4 is
"biased" by x'800' (2048) bytes. This bias needs to be added to the contents of R4 to
get the actual start of the XPLINK register save area.

XPLINK DSAs can be back-chained using the value of GPR4 in the register save
area. However, GRP4 is only optionally saved. The correct way to find the caller's
DSA is to add the size of the current DSA to its location.

Language Environment common anchor area
Each thread is represented by a Common Anchor Area (CAA). It is the central
communication area for the environment. All thread- and enclave-related resources
are anchored, provided for, or can be obtained through the CAA. The CAA is
generated during thread initialization and deleted during thread termination. The
CAA points to the encompassing Enclave Data Block (EDB).

The CAA is addressed by R12 when calling Language Environment-participating
external routines. This requirement is relaxed when calling internal routines within
a given HLL.

Fields in the CAA should be used as described in other sections of this document.
In particular, fields should not be modified and routine addresses should not be
used as entry points, except as specified. Fields marked reserved exist for
migration of specific languages, or internal use by Language Environment. Their
location in the CAA is defined by Language Environment, but their use is not.
They should be neither used nor referenced except as specified by the language
that defines them.

The following tables show the format of the CAA:
v Table 10 shows the CAA field descriptions.
v Table 11 on page 48 shows the CAA constants.
v Table 12 on page 48 shows the CAA cross reference information.

Table 10. Common anchor area (CAA) field descriptions
Offsets Type Len Name (Dim) (* = Reserved) Description

Dec Hex

0 (0) STRUCTURE 976 CEECAA CAA mapping

0 (0) CHARACTER 976 CEECAA_EXTERNAL External portion

0 (0) BITSTRING 1 CEECAAFLAG0 CAA Flags

1111 11.. * Reserved

.... ..1. CEECAAXHDL Bypass exception handling

.... ...1 * Reserved

1 (1) BITSTRING 1 * Reserved

11.. * Reserved

..1. CEECAADBGINIT Debugger is init'd

...1 1111 * Reserved

2 (2) BITSTRING 1 CEECAALANGP PL/I Compatibility flags

1111 * Reserved

.... 1... CEECAATHFN If set, NO PL/I FINISH on-unit is active

CEEYPPAF

42 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 10. Common anchor area (CAA) field descriptions (continued)
Offsets Type Len Name (Dim) (* = Reserved) Description

Dec Hex

.... .111 * Reserved

3 (3) CHARACTER 5 * Reserved

8 (8) ADDRESS 4 CEECAABOS Start of current storage seg

12 (C) ADDRESS 4 CEECAAEOS End of current storage seg

16 (10) CHARACTER 52 * Reserved

68 (44) SIGNED 4 CEECAATORC Thread level ret code

68 (44) SIGNED 2 *

70 (46) SIGNED 2 CEECAATURC

72 (48) CHARACTER 44 * Reserved

116 (74) ADDRESS 4 CEECAATOVF Stack overflow rtn

120 (78) CHARACTER 168 * Reserved

288 (120) ADDRESS 4 CEECAAATTN Addr of CEL attention handler

292 (124) CHARACTER 56 * Reserved

348 (15C) ADDRESS 4 CEECAAHLLEXIT Set by CEEBINT

Debugger controls

352 (160) CHARACTER 56 * Reserved

408 (198) BITSTRING 12 CEECAAHOOK Code to pass control to the debugger

420 (1A4) ADDRESS 4 CEECAADIMA A(debugger entry)

Each of the following hook switches will contain: DS X’0700’,S(CEECAAUDHOOK) When the hook switch is activated, the X'0700' is changed to X'45C0',
so it becomes: BAL 12,CEECAAUDHOOK

424 (1A8) CHARACTER 72 CEECAAHOOKS Hook control words for debug

424 (1A8) CHARACTER 4 CEECAAALLOC ALLOCATE descr. built

428 (1AC) CHARACTER 4 CEECAASTATE New statement begins

432 (1B0) CHARACTER 4 CEECAAENTRY Block entry

436 (1B4) CHARACTER 4 CEECAAEXIT Block exit

440 (1B8) CHARACTER 4 CEECAAMEXIT Multiple block exit

444 (1BC) CHARACTER 32 CEECAAPATHS PATH hooks

444 (1BC) CHARACTER 4 CEECAALABEL At a label constant

448 (1C0) CHARACTER 4 CEECAABCALL Before CALL

452 (1C4) CHARACTER 4 CEECAAACALL After CALL

456 (1C8) CHARACTER 4 CEECAADO DO block starting

460 (1CC) CHARACTER 4 CEECAAIFTRUE True part of IF

464 (1D0) CHARACTER 4 CEECAAIFFALSE False part of IF

468 (1D4) CHARACTER 4 CEECAAWHEN WHEN group starting

472 (1D8) CHARACTER 4 CEECAAOTHER OTHERWISE group

476 (1DC) CHARACTER 4 CEECAACGOTO GOTO hook for C

480 (1E0) CHARACTER 4 CEECAARSVDH1 Reserved hook

484 (1E4) CHARACTER 4 CEECAARSVDH2 Reserved hook

488 (1E8) CHARACTER 4 CEECAAMULTEVT Multiple event hook

492 (1EC) CHARACTER 4 CEECAAMEVMASK Multiple event hook mask

496 (1F0) CHARACTER 80 CEECAAMEMBER_AREA

496 (1F0) CHARACTER 4 CEECAACGENE C/370 CGENE

500 (1F4) ADDRESS 4 CEECAACRENT C or C++ writable static

504 (1F8) CHARACTER 8 CEECAACFLTINIT Convert fixed to float cfltinit is used by
compiled code

512 (200) ADDRESS 4 CEECAACPRMS Parameters passed to IBMBLIIA cprms is
reference by user's code offset: 4*128

516 (204) SIGNED 4 CEECAAC_RTL Combination of 24 unique C/370 trc types &
8 common trc types

520 (208) ADDRESS 4 CEECAACTHD C/370 CTHD

Common Anchor Area (CAA)

Chapter 1. Common interfaces and conventions 43

Table 10. Common anchor area (CAA) field descriptions (continued)
Offsets Type Len Name (Dim) (* = Reserved) Description

Dec Hex

524 (208) ADDRESS 4 CEECAACURRFECB

528 (210) ADDRESS 4 CEECAAEDCV C/C++ runtime library vector table

532 (214) ADDRESS 4 CEECAACPCB Reserved

536 (218) ADDRESS 4 CEECAACEDB C/370 CEDB

540 (21C) CHARACTER 3 * Reserved

543 (21F) CHARACTER 1 CEECAASPCFLAG3 Used for SPC

544 (220) ADDRESS 4 CEECAACIO Address of cio

548 (224) CHARACTER 4 CEECAAFDSETFD Used by FD_* macros

552 (228) CHARACTER 2 CEECAAFCBMUTEXOK

554 (22A) CHARACTER 2 * Reserved

556 (22C) CHARACTER 4 CEECAATC16

560 (230) SIGNED 4 CEECAATC17

564 (234) ADDRESS 4 CEECAAEDCOV C/370 Open Libvec

568 (238) SIGNED 4 CEECAACTOFSV

572 (23C) ADDRESS 4 CEECAATRTSPACE C/370 Open Libvec

576 (240) CHARACTER 24 * Reserved

600 (258) CHARACTER 36 CEECAA_TCASRV TCA Service Rtn Vctr

600 (258) ADDRESS 4 CEECAA_TCASRV_USERWORD

604 (25C) ADDRESS 4 CEECAA_TCASRV_WORKAREA

608 (260) ADDRESS 4 CEECAA_TCASRV_GETMAIN

612 (264) ADDRESS 4 CEECAA_TCASRV_FREEMAIN

616 (268) ADDRESS 4 CEECAA_TCASRV_LOAD

620 (26C) ADDRESS 4 CEECAA_TCASRV_DELETE

624 (270) ADDRESS 4 CEECAA_TCASRV_EXCEPTION

628 (274) ADDRESS 4 CEECAA_TCASRV_ATTENTION

632 (278) ADDRESS 4 CEECAA_TCASRV_MESSAGE

636 (27C) CHARACTER 4 * Reserved

640 (280) ADDRESS 4 CEECAALWS Addr of PL/I LWS

644 (284) ADDRESS 4 CEECAASAVR Register save

648 (288) CHARACTER 36 * Reserved

684 (2AC) BITSTRING 1 CEECAASYSTM Underlying Op Sys

685 (2AD) BITSTRING 1 CEECAAHRDWR Underlying Hardware

686 (2AE) BITSTRING 1 CEECAASBSYS Underlying Subsystem

687 (2AF) BITSTRING 1 CEECAAFLAG2

1... CEECAABIMODAL Bimodal addressing

.1.. CEECAA_VECTOR Vector hardware avail

..1. CEECAATIP Thread terminating

...1 CEECAA_THREAD_INITIAL Initial thread

.... 1... CEECAA_TRACE_ACTIVE Library trace is active (the TRACE runtime
option was set)

.... .1.. CEECAA_ALTSTK_ACTIVE Alternate stack active

.... ..1. CEECAA_ENQ_WAIT_ INTERRUPTABLE

.... ...1 CEECAA_USRSTK_ACTIVE C-RTL context switching user stack active

688 (2B0) UNSIGNED 1 CEECAALEVEL CEL level identifier

689 (2B1) BITSTRING 1 CEECAA_PM Image of current program mask

690 (2B2) BIT (16) 2 CEECAA_INVAR Field that is at the same fixed offset in 31-bit
and 64-bit CAAs

691 (2B3) BIT * Reserved.

Common Anchor Area (CAA)

44 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 10. Common anchor area (CAA) field descriptions (continued)
Offsets Type Len Name (Dim) (* = Reserved) Description

Dec Hex

692 (2B4) ADDRESS 4 CEECAAGETLS Addr of CEL library stack mgr

696 (2B8) ADDRESS 4 CEECAACELV Addr of CEL LIBVEC

700 (2BC) ADDRESS 4 CEECAAGETS Addr of CEL get stack stg rtn

704 (2C0) ADDRESS 4 CEECAALBOS Start of library stack stg seg

708 (2C4) ADDRESS 4 CEECAALEOS End of library stack stg seg

712 (2C8) ADDRESS 4 CEECAALNAB Next available byte of lib stg

716 (2CC) ADDRESS 4 CEECAADMC Addr ESPIE Devil-May-Care rtn

720 (2D0) SIGNED 4 CEECAACD Most recent ABEND completion code

720 (2D0) SIGNED 4 CEECAAABCODE

724 (2D4) SIGNED 4 CEECAARS Most recent ABEND reason code

724 (2D4) SIGNED 4 CEECAARSNCODE

728 (2D8) ADDRESS 4 CEECAAERR Addr of the current CIB

732 (2DC) ADDRESS 4 CEECAAGETSX Addr of CEL stack stg extender

736 (2E0) ADDRESS 4 CEECAADDSA Addr of the dummy DSA

740 (2E4) SIGNED 4 CEECAASECTSIZ Vector Section Size

744 (2E8) SIGNED 4 CEECAAPARTSUM Vector Partial Sum Number

748 (2EC) SIGNED 4 CEECAASSEXPNT Log of Vector Section Size

752 (2F0) ADDRESS 4 CEECAAEDB A(EDB)

756 (2F4) ADDRESS 4 CEECAAPCB A(PCB)

The following two fields are used for validation of the CAA.

760 (2F8) ADDRESS 4 CEECAAEYEPTR Addr of CAA eyecatcher

764 (2FC) ADDRESS 4 CEECAAPTR Addr of this CAA

768 (300) ADDRESS 4 CEECAAGETS1 DSA alloc - R13 not DSA addr

772 (304) ADDRESS 4 CEECAASHAB ABEND shunt routine address

776 (308) ADDRESS 4 CEECAAPRGCK Pgm interrupt code for CAADMC

780 (30C) BITSTRING 1 CEECAAFLAG1 CAA Flags 1

1... CEECAASORT Call to DF/SORT is active

.1.. CEECAA_USE_OLD_STK Use old stack

..1. CEECAACICS_EXT_REG ERTLI CICS extended register interface in
effect

...1 CEECAASHAB_RECOVER_IN_ESTAE_MODE When ON, Language Environment® will set
up for retry to the abend shunt routine only if
the PSW key that was in effect at the time the
Language Environment ESTAE or
user-provided error recovery routine was
established matches the IPK result stored in
CEECAASHAB_KEY.

.... 1... * Reserved

.... .1.. CEECAA_FETCH_RELES_IN_PROGRESS CEEFETCH or CEERELES in progress on this
thread.

.... ..11 * Reserved

781 (30D) CHARACTER 1 CEECAASHAB_KEY IPK result when CEECAASHAB is set.

782 (30E) CHARACTER 2 * Reserved

784 (310) SIGNED 4 CEECAAURC Thread level return code

The following four fields are for FASTLINK capability.

788 (314) ADDRESS 4 CEECAAESS End of current user stack

792 (318) ADDRESS 4 CEECAALESS End of current library stack

796 (31C) ADDRESS 4 CEECAAOGETS Overflow user seg from FASTLINK

800 (320) ADDRESS 4 CEECAAOGETLS Overflow lib seg from FASTLINK

The following field contains the Pre-Init Compatibility Control Block address.

804 (324) ADDRESS 4 CEECAAPICICB Addr of pre-init compat cb

Common Anchor Area (CAA)

Chapter 1. Common interfaces and conventions 45

Table 10. Common anchor area (CAA) field descriptions (continued)
Offsets Type Len Name (Dim) (* = Reserved) Description

Dec Hex

The following field is for FASTLINK capability.

808 (328) ADDRESS 4 CEECAAOGETSX User DSA ext from FASTLINK

812 (32C) SIGNED 4 * Fields used by GOTO and CEEHTRAV

812 (32C) SIGNED 2 CEECAAGOSMR When set will be used to indicate additional
frames to skip

814 (32E) SIGNED 2 * Indicate additional frames to skip.

816 (330) ADDRESS 4 CEECAALEOV Addr of Lang Env/z/OS UNIX LIBVEC

820 (334) SIGNED 4 CEECAA_SIGSCTR SIGSAFE counter

824 (338) BITSTRING 4 CEECAA_SIGSFLG SIGSAFE flags

1... CEECAA_SIGPUTBACK Signal putback

.1.. CEECAA_SA_RESTART SA_RESTART loopback is required this time

..1. * Reserved

...1 CEECAA_SIGSAFE It is safe to unconditionally accept delivery of
a synchronous signal

.... 1... CEECAA_CANCELSAFE It is safe to unconditionally accept delivery of
a synchronous cancel

.... .1.. CEECAA_SIGRESYNCH One or more synchronous signals may have
been recently put back the last time a signal
was resolicited while returning from library to
user code

.... ..1. CEECAA_FRZ_UNSAFE It is unsafe to freeze the thread

.... ...1 CEECAA_NOAPPREGS User application registers may be saved in a
nonstandard place

825 (339) 1... CEECAA_EINTR_RSOL Secondary signal resolicit in progress after
EINTR from inner function

.1.. CEECAA_EINTR_PUTB Secondary re-solicited signal has been put
back

..1. CEECAA_EINTR_REST User catcher returned after catching
secondary re-solicited signal with
SA_RESTART in effect

...1 CEECAA_EINTR_SIGG "Stray" signal interrupted CEEOSIGG while
secondary signal re-solicitation was in
progress

.... 1111 Reserved.

826 (33A) BIT (16) 2 * Reserved.

828 (33C) CHARACTER 8 CEECAATHDID Thread ID

836 (344) ADDRESS 4 CEECAA_DCRENT Read/write static external anchor

840 (348) ADDRESS 4 CEECAA_DANCHOR Per-thread anchor

844 (34C) ADDRESS 4 CEECAA_CTOC TOC anchor for CRENT

848 (350) ADDRESS 4 CEECAARCB A(RCB)

852 (354) SIGNED 4 CEECAACICSRSN CICS reason code from member language

856 (358) ADDRESS 4 CEECAAMEMBR Address of thread-level

860 (35C) ADDRESS 4 CEECAA_SIGNAL_STATUS Signal status of the terminating thread
member list

864 (360) ADDRESS 4 CEECAA_HCOM_REG7 HCOM saved R7

864 (360) ADDRESS 4 CEECAA_HCOM_REG14 HCOM saved R14

868 (364) ADDRESS 4 CEECAA_STACKFLOOR Lowest usable addr in XP stack

872 (368) ADDRESS 4 CEECAAHPGETS XP stack extension rtn

876 (36C) ADDRESS 4 CEECAAEDCHPXV C/C++ XPLINK libvec

880 (370) ADDRESS 4 CEECAAFOR1 Reserved for FORTRAN

884 (374) ADDRESS 4 CEECAAFOR2 Reserved for FORTRAN

888 (378) ADDRESS 4 CEECAATHREADHEAPID Thread heapid

892 (37C) CHARACTER 4 CEECAA_SYS_RTNCODE System (kernel) return code

Common Anchor Area (CAA)

46 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 10. Common anchor area (CAA) field descriptions (continued)
Offsets Type Len Name (Dim) (* = Reserved) Description

Dec Hex

896 (380) CHARACTER 4 CEECAA_SYS_RSNCODE System (kernel) reason code

900 (384) ADDRESS 4 CEECAAGETFN Address of the WSA swap routine

904 (388) CHARACTER 8 CEECAA_LER4 Reserved

912 (390) ADDRESS 4 CEECAASIGNGPTR Pointer to 'signam' external variable in a C
application

916 (394) SIGNED 4 CEECAASIGNG Value of sign of lgamma() -1 - negative sign 0
- zero +1 - positive sign

920 (398) ADDRESS 4 CEECAA_FORDBG Ptr to AFHDBHIM - FORTRAN hook
interface

924 (39C) BITSTRING 1 CEECAAAB_STATUS Validity flags

1... CEECAAAB_GR0_VALID CEECAAAB_GR0 is valid

.1.. CEECAAAB_ICD1_VALID CEECAAAB_ICD1 is valid

..1. CEECAAAB_ABCC_VALID CEECAAAB_ABCC is valid

...1 CEECAAAB_CRC_VALID CEECAAAB_CRC is valid

.... 1... CEECAAAB_GR15_VALID CEECAAAB_GR15 is valid

.... .111 * Reserved

925 (39D) UNSIGNED 1 CEECAA_STACKDIRECTION Stack direction

926 (39E) BITSTRING 2 * Reserved

928 (3A0) SIGNED 4 CEECAAAB_GR0 Reg 0 at the time of abend

932 (3A4) SIGNED 4 CEECAAAB_ICD1 SDWAICD1

936 (3A8) SIGNED 4 CEECAAAB_ABCC SDWAABCC

940 (3AC) SIGNED 4 CEECAAAB_CRC SDWACRC

944 (3B0) ADDRESS 4 CEECAAAGTS Entry point of CEEVAGTS routine

948 (3B4) ADDRESS 4 CEECAA_LER5N1 Reserved

952 (3B8) ADDRESS 4 CEECAAHERP Address of CEEHERP routine

956 (3BC) ADDRESS 4 CEECAAUSTKBOS Start of user stack segment

960 (3C0) ADDRESS 4 CEECAAUSTKEOS End of user stack segment

964 (3C4) ADDRESS 4 CEECAAUSERRTN@ Address of thread start routine. Undefined on
IPT or prior to thread init event.

968 (3C8) CHARACTER 8 CEECAAUDHOOK Hook swapping XPLINK

976 (3D0) ADDRESS 4 CEECAACEL_HPXV_B Address of XPLINK compat vector for Base
library

980 (3D4) ADDRESS 4 CEECAACEL_HPXV_M Address of XPLINK compat vector for Math
library

984 (3D8) ADDRESS 4 CEECAACEL_HPXV_L Address of XPLINK compat vector for Locale
library

988 (3DC) ADDRESS 4 CEECAACEL_HPXV_O Address of XPLINK compat vector for Open
library

992 (3E0) ADDRESS 4 CEECAACEL4VEC3 Address of 3rd C-RTL library vector

996 (3E4) ADDRESS 4 CEECAA_CEEDLLF Address of the newest CEEDLLF control
block

1000 (3E8) ADDRESS 4 CEECAA_SAVSTACK Saved Stack Pointer when OS_NOSTACK
linkage routine is called.

1004 (3EC) CHARACTER 8 * Reserved

1008 (3F0) CHARACTER 4 CEECAA_USER_WORD 4-byte user field available for application use

1012 (3F4) ADDRESS 4 CEECAA_SAVSTACK_ASYNC When the value is not zero,
CEECAA_SAVSTACK_ASYNC contains the
address of a 4-byte field provided by the
application that holds the Saved Stack Pointer
when the register for the stack pointer is
being used for other purposes. When the
value is zero, CEECAA_SAVSTACK_ASYNC
does not contain that address.

Common Anchor Area (CAA)

Chapter 1. Common interfaces and conventions 47

Table 11. Common anchor area (CAA) constants

Len Type Value Name Description

Declare constants for operating system, hardware, and subsystem CEECAASYSTM, CEECAAHRDWR, CEECAASBSYS

1 DECIMAL 0 CEECAASYUND Undefined

1 DECIMAL 1 CEECAASYUNS Unsupported

1 DECIMAL 2 CEECAASYVM VM

1 DECIMAL 3 CEECAASYMVS z/OS Underlying Hardware

1 DECIMAL 0 CEECAAHWUND Undefined

1 DECIMAL 1 CEECAAHWUNS Unsupported

1 DECIMAL 2 CEECAAHW370 System/370 non-XA

1 DECIMAL 3 CEECAAHWXA System/370 XA

1 DECIMAL 4 CEECAAHWESA System/370 ESA Underlying Subsystem

1 DECIMAL 0 CEECAASSUND Undefined

1 DECIMAL 1 CEECAASSUNS Unsupported

1 DECIMAL 2 CEECAASSNON No subsystem

1 DECIMAL 3 CEECAASSTSO TSO

1 DECIMAL 5 CEECAASSCIC CICS

Declare constants for stack direction CEECAA_STACKDIRECTION

1 DECIMAL 0 CEECAASTACK_UP UP

1 DECIMAL 1 CEECAASTACK_DOWN DOWN

Table 12. Common anchor area (CAA) cross reference

Name Hex Offset Hex Value Level

CEECAA 0 1

CEECAA_CANCELSAFE 338 08 4

CEECAA_CTOC 34C 3

CEECAA_DANCHOR 348 3

CEECAA_DCRENT 344 3

CEECAA_ENQ_WAIT_INTERRUPTABLE 2AF 02 4

CEECAA_EXTERNAL 0 2

CEECAA_FORDBG 398 3

CEECAA_FRZ_UNSAFE 338 02 4

CEECAA_HCOM_REG14 360 3

CEECAA_HCOM_REG7 360 4

CEECAA_INVAR 2B2 3

CEECAA_LER4 388 3

CEECAA_LER5 3BC 3

CEECAA_LER5N1 3B4 3

CEECAA_NOAPPREGS 338 01 4

CEECAA_PM 2B1 3

CEECAA_SA_RESTART 338 40 4

CEECAA_SAVSTACK 3E8 4

CEECAA_SAVSTACK_ASYNC 3F4 4

CEECAA_SIGNAL_STATUS 35C 3

CEECAA_SIGPUTBACK 338 80 4

CEECAA_SIGRESYNCH 338 04 4

CEECAA_SIGSAFE 338 10 4

Common Anchor Area (CAA)

48 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 12. Common anchor area (CAA) cross reference (continued)

Name Hex Offset Hex Value Level

CEECAA_SIGSCTR 334 3

CEECAA_SIGSFLG 338 3

CEECAA_STACKDIRECTION 39D 3

CEECAA_STACKFLOOR 364 3

CEECAA_TCASRV 258 3

CEECAA_TCASRV_ATTENTION 274 4

CEECAA_TCASRV_DELETE 26C 4

CEECAA_TCASRV_EXCEPTION 270 4

CEECAA_TCASRV_FREEMAIN 264 4

CEECAA_TCASRV_GETMAIN 260 4

CEECAA_TCASRV_LOAD 268 4

CEECAA_TCASRV_MESSAGE 278 4

CEECAA_TCASRV_USERWORD 258 4

CEECAA_TCASRV_WORKAREA 25C 4

CEECAA_THREAD_INITIAL 2AF 10 4

CEECAA_TRACE_ACTIVE 2AF 08 4

CEECAA_USE_OLD_STK

CEECAA_USER_WORD 3F0 3

CEECAA_VECTOR 2AF 40 4

CEECAAAB_ABCC 3A8 3

CEECAAAB_ABCC_VALID 39C 20 4

CEECAAAB_CRC 3AC 3

CEECAAAB_CRC_VALID 39C 10 4

CEECAAAB_GR0 3A0 3

CEECAAAB_GR0_VALID 39C 80 4

CEECAAAB_GR15_VALID 39C 08 4

CEECAAAB_ICD1 3A4 3

CEECAAAB_ICD1_VALID 39C 40 4

CEECAAAB_STATUS 39C 3

CEECAAABCODE 2D0 4

CEECAAACALL 1C4 5

CEECAAAGTS 3B0 3

CEECAAALLOC 1A8 4

CEECAAATTN 120 3

CEECAABCALL 1C0 5

CEECAABIMODAL 2AF 80 4

CEECAABOS 8 3

CEECAACD 2D0 3

CEECAACEDB 218 4

CEECAA_CEEDLLF 3E4 3

CEECAACEL4VEC3 3E0 3

CEECAACEL_HPXV_B 3D0 3

CEECAACEL_HPXV_M 3D4 3

CEECAACEL_HPXV_L 3D8 3

CEECAACEL_HPXV_O 3DC 3

Common Anchor Area (CAA)

Chapter 1. Common interfaces and conventions 49

Table 12. Common anchor area (CAA) cross reference (continued)

Name Hex Offset Hex Value Level

CEECAACELV 2B8 3

CEECAACFLTINIT 1F8 4

CEECAACGENE 1F0 4

CEECAACGOTO 1DC 4

CEECAACICSRSN 354 3

CEECAACIO 220 4

CEECAACPCB 214 4

CEECAACPRMS 200 4

CEECAACRENT 1F4 4

CEECAACTHD 208 4

CEECAACURRFECB 20C 4

CEECAADBGINIT 1 20 4

CEECAADDSA 2E0 3

CEECAADIMA 1A4 3

CEECAADMC 2CC 3

CEECAADO 1C8 5

CEECAAEDB 2F0 3

CEECAAEDCHPXV 36C 3

CEECAAEDCOV 234 4

CEECAAEDCV 210 4

CEECAAENTRY 1B0 4

CEECAAEOS C 3

CEECAAERR 2D8 3

CEECAAESS 314 3

CEECAAEXIT 1B4 4

CEECAAEYEPTR 2F8 3

CEECAAFCBMUTEXOK 228 4

CEECAAFDSETFD 224 4

CEECAAFLAG0 0 3

CEECAAFLAG1 30C 3

CEECAAFLAG2 2AF 3

CEECAAFOR1 370 3

CEECAAFOR2 374 3

CEECAAGETFN 384 3

CEECAAGETLS 2B4 3

CEECAAGETS 2BC 3

CEECAAGETSX 2DC 3

CEECAAGETS1 300 3

CEECAAGOSMR 32C 4

CEECAAHERP 3B8 3

CEECAAHLLEXIT 15C 3

CEECAAHOOK 198 3

CEECAAHOOKS 1A8 3

CEECAAHPGETS 368 3

CEECAAHRDWR 2AD 3

Common Anchor Area (CAA)

50 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 12. Common anchor area (CAA) cross reference (continued)

Name Hex Offset Hex Value Level

CEECAAIFFALSE 1D0 5

CEECAAIFTRUE 1CC 5

CEECAALABEL 1BC 5

CEECAALANGP 2 3

CEECAALBOS 2C0 3

CEECAALEOS 2C4 3

CEECAALEOV 330 3

CEECAALESS 318 3

CEECAALEVEL 2B0 3

CEECAALNAB 2C8 3

CEECAALWS 280 3

CEECAAMEMBER_AREA 1F0 3

CEECAAMEMBR 358 3

CEECAAMEXIT 1B8 4

CEECAAOGETLS 320 3

CEECAAOGETS 31C 3

CEECAAOGETSX 328 3

CEECAAOTHER 1D8 5

CEECAAPARTSUM 2E8 3

CEECAAPATHS 1BC 4

CEECAAPCB 2F4 3

CEECAAPICICB 324 3

CEECAAPRGCK 308 3

CEECAAPTR 2FC 3

CEECAARCB 350 3

CEECAARS 2D4 3

CEECAARSNCODE 2D4 4

CEECAARSVDH1 1E0 4

CEECAARSVDH2 1E4 4

CEECAARSVDH3 1E8 4

CEECAARSVDH4 1EC 4

CEECAASAVR 284 3

CEECAASBSYS 2AE 3

CEECAASECTSIZ 2E4 3

CEECAASHAB 304 3

CEECAASHAB_KEY 3D0 2

CEECAASIGNG 394 3

CEECAASIGNGPTR 390 3

CEECAASORT 30C 80 4

CEECAASPCFLAG3 21F 4

CEECAASSEXPNT 2EC 3

CEECAASTATE 1AC 4

CEECAASYSTM 2AC 3

CEECAATC16 22C 4

CEECAATC17 230 4

Common Anchor Area (CAA)

Chapter 1. Common interfaces and conventions 51

Table 12. Common anchor area (CAA) cross reference (continued)

Name Hex Offset Hex Value Level

CEECAATHDID 33C 3

CEECAATHFN 2 08 4

CEECAATHREADHEAPID 378 3

CEECAATIP 2AF 20 4

CEECAATORC 44 3

CEECAATOVF 74 3

CEECAATURC 46 4

CEECAAUDHOOK 3C8 3

CEECAATRTSPACE 23C 4

CEECAAURC 310 3

CEECAAUSTKBOS 3BC 3

CEECAAUSTKEOS 3C0 3

CEECAAWHEN 1D4 5

CEECAAXHDL 0 02 4

The fields are defined as follows:

CEECAAFLAG0
CAA flag bits; the bits are defined as follows:

0-5 Reserved

6 CEECAAXHDL: a flag used by the exception handler. If the flag is
set to 1, the application requires immediate return/percolation to
the system on any interrupt or exception handler event.

7 Reserved

CEECAALANGP
PL/I language compatibility flags external to Language Environment; the
bits are defined as follows:

0-3 Reserved

4 CEECAATHFN : A flag set by PL/I to indicate a PL/I FINISH ON
UNIT is active. If flag is set to 1, then NO PL/I FINISH ON UNIT
is active.

5-7 Reserved

CEECAABOS
Start of the current storage segment. This field is initially set during thread
initialization. It indicates the start of the current stack storage segment. It is
altered when the current stack storage segment is changed.

CEECAAEOS
This field is used to determine if a stack overflow routine must be called
when allocating storage from the user stack. Normally, the value of this
field will represent the end of the current user stack segment. However, its
value can also be zero to force the call of a stack overflow routine for every
allocation of storage from the user stack. This field is used by function
prologs that do not use FASTLINK linkage conventions.

CEECAATORC
Thread level return code. The thread level return code set by CEESRC
callable service.

Common Anchor Area (CAA)

52 z/OS V2R1.0 Language Environment Vendor Interfaces

CEECAATOVF
Address of stack overflow routine. This routine is called when there is no
space available in the current stack extension to allocate a new stack frame.
The routine allocates a new stack extension, updates the CEECAABOS and
CEECAAEOS fields in the CAA, and returns the DSA address in the stack
extension.

CEECAAATTN
Address of the Language Environment attention handling routine, which
supports the polling code convention of Language Environment for
attention processing.

CEECAAHLLEXIT
Exit list control block address. Exit list control block address as passed
back from the HLL user exit in the A_exit parameter. For more information,
see z/OS Language Environment Programming Guide.

CEECAAHOOK
Hook code sequence. CEECAAHOOK contains the following code
sequence:
ST 12,CEEDSARENT Put return addr into DSA
BALR 12,0 Get addressability
L 12,CEECAADIMA-*(,12) Get A(CEECAADIMADDR)
BALR 12,12 Go with 12 the base reg.

CEECAADIMA
DIM address. Address of the Debugger Interface Module (DIM)

CEECAAHOOKS
Hook area. This is the start of 18 fullword execute hooks. Language
Environment initializes each fullword to X'0700',S(CEECAAUDHOOK). The
hooks can be altered to support various debugger hook mechanisms such
as the EXecute hooks that Debug Tool provides.

CEECAAALLOC
ALLOCATE description built hook.

CEECAASTATE
New statement begins hook.

CEECAAENTRY
Block entry hook.

CEECAAEXIT
Block exit hook.

CEECAAMEXIT
Multiple block exit hook.

CEECAAPATHS
PATH hook.

CEECAALABEL
At a label constant hook.

CEECAABCALL
Before CALL hook.

CEECAACALL
After CALL hook.

CEECAADO
DO block starting hook.

Common Anchor Area (CAA)

Chapter 1. Common interfaces and conventions 53

CEECAAIFTRUE
True part of IF hook.

CEECAAIFFALSE
False part of IF hook.

CEECAAWHEN
WHEN group starting hook.

CEECAAOTHER
OTHERWISE group hook.

CEECAAGOTO
GOTO hook for C hook.

CEECAARSVDH1
Reserved hook.

CEECAARSVDH2
Reserved hook.

CEECAAMULTEVT
Multiple event hook

CEECAAMEVMASK
Multiple event hook mask

CEECAACGENE
C/370 CGENE

CEECAACRENT
C or C++ writable static.

CEECAACFLTINIT
Convert fixed to float cfltinit is used by compiled code

CEECAACPRMS
Parameters passed to IBMBLIIA cprms is reference by user's code offset:
4*128

CEECAAC_RTL
Combination of 24 unique C/370 trc types & 8 common trc types

CEECAACTHD
C/370 CTHD

CEECAACURRFECB

CEECAAEDCV
Pointer to the C/370 vector table.

CEECAACPCB
Reserved

CEECAACEDB
C/370 CEDB

CEECAASPCFLAG3
Used for SPC

CEECAACIO
Address of cio

CEECAAFDSETFD
Used by FD_* macros

CEECAAFCBMUTEXOK

Common Anchor Area (CAA)

54 z/OS V2R1.0 Language Environment Vendor Interfaces

CEECAATC16

CEECAATC17

CEECAAEDCOV
C/370 Open Libvec

CEECAACTOFSV

CEECAATRTSPACE
C/370 Open Libvec

CEECAA_TCASRV
TCA service routine vector, which contains the following fullword address
pointers:
v CEECAA_TCASRV_USERWORD
v CEECAA_TCASRV_WORKAREA
v CEECAA_TCASRV_GETMAIN
v CEECAA_TCASRV_FREEMAIN
v CEECAA_TCASRV_LOAD
v CEECAA_TCASRV_DELETE
v CEECAA_TCASRV_EXCEPTION
v CEECAA_TCASRV_ATTENTION
v CEECAA_TCASRV_MESSAGE

CEECAALWS
Address of PL/I Language Working Space.

CEECAASAVR
Register save area.

CEECAASYSTM
Underlying operating system. The value indicates the operating system
supporting the active program. The values are defined as follows:
0 Undefined—this value should never occur after initializing

Language Environment
1 Unsupported
2 VM/ESA
3 z/OS

CEECAAHRDWR
Underlying hardware. The value indicates the type of hardware on which
the program is executing; the values are defined as follows:
0 Undefined—this value should never occur after initializing

Language Environment
1 Unsupported
2 System/370, non-XA
3 System/370, XA
4 System/370, ESA

CEECAASBSYS
Underlying subsystem. The value indicates the subsystem, if any, on which
the program is executing; the values are defined as follows:
0 Undefined—this value should never occur after initializing

Language Environment
1 Unsupported
2 None—the program is not executing under a subsystem according

to Language Environment
3 TSO
4 IMS™

5 CICS

Common Anchor Area (CAA)

Chapter 1. Common interfaces and conventions 55

CEECAAFLAG2
CAA Flag 2. The bits are defined as follows:
0 Set if bimodal addressing
1 Set if vector hardware
2 Thread terminating
3 Initial thread
4 Library trace is active; the TRACE runtime option was set
5 Reserved
6 Thread is in an enqueue wait
7 Reserved

CEECAALEVEL
Language Environment level identifier. This contains a unique value that
identifies each release of Language Environment. This number is
incremented for each new release of Language Environment. Beginning
with 10, the version and release numbers are the same as OS/390® version
and release numbers. The values are defined as follows:
1 IBM SAA AD/Cycle LE/370 V1 R1
2 IBM SAA AD/Cycle LE/370 V1 R2
3 IBM SAA AD/Cycle LE/370 V1 R3
4 IBM Language Environment for MVS & VM V1 R4
5 OS/390 Language Environment V1 R5
6 OS/390 Language Environment V1 R6
7 OS/390 Language Environment V1 R7
8 OS/390 Language Environment V1 R8
9 OS/390 Language Environment V1 R9
10 OS/390 Language Environment V2 R7
11 OS/390 Language Environment V2 R8
12 OS/390 Language Environment V2 R9
13 OS/390 Language Environment V2 R10
14 z/OS Language Environment V1 R2
15 z/OS Language Environment V1 R3
16 z/OS Language Environment V1 R4
17 z/OS Language Environment V1 R5
18 z/OS Language Environment V1 R6
19 z/OS Language Environment V1 R7
20 z/OS Language Environment V1 R8
21 z/OS Language Environment V1 R9
22 z/OS Language Environment V1 R10
23 z/OS Language Environment V1 R11
24 z/OS Language Environment V1 R12
25 z/OS Language Environment V1 R13
26 z/OS Language Environment V2 R1

CEECAA_PM
Program mask.

CEECAA_INVAR
Field that is at the same fixed offset in 31-bit and 64-bit CAAs

CEECAAGETLS
Address of stack overflow for library routines.

CEECAACELV
Address of the Language Environment library vector. This field is used to
locate dynamically loaded Language Environment routines.

Common Anchor Area (CAA)

56 z/OS V2R1.0 Language Environment Vendor Interfaces

||

CEECAAGETS
Address of the Language Environment prolog stack overflow routine. The
address of the Language Environment get stack storage routine is included
for fast reference in prolog code.

CEECAALBOS
Start of the library stack storage segment. This field is initially set during
thread initialization. It indicates the start of the library stack storage
segment. It is altered when the library stack storage segment is changed.

CEECAALEOS
This field is used to determine if a stack overflow routine must be called
when allocating storage from the library stack. Normally, the value of this
field will represent the end of the current library stack segment. However,
its value can also be zero to force the call of a stack overflow routine for
every allocation of storage from the library stack. This field is used by
function prologs that do not use FASTLINK linkage conventions.

CEECAALNAB
Next available library stack storage byte. This contains the address of the
next available byte of storage on the library stack. It is modified when
library stack storage is obtained or released.

CEECAADMC
Language Environment shunt routine address. Its value is initially set to
zero during thread initialization. If it is nonzero, this is the address of a
routine used in specialized exception processing. For more information, see
z/OS Language Environment Programming Guide.

CEECAAACD
Most recent CAASHAB abend code.

CEECAAABCODE
Most recent abend completion CDE.

CEECAAARS
Most recent CAASHAB reason code.

CEECAAARSNCODE
Most recent abend reason code.

CEECAAERR
Address of the current CEECIB. After completion of initialization, this
always points to a CEECIB. During exception processing, the current
CEECIB contains information about the current exception being processed.
Otherwise, it indicates no exception being processed.

CEECAAGETSX
Address of the user stack extender routine. This routine is called to extend
the current DSA in the user stack. Its address is in the CEECAA for
performance reasons.

CEECAADDSA
Address of the Language Environment dummy DSA. This address
determines if a DSA is the dummy DSA, also known as the zeroth DSA.

CEECAASECTSIZ
Vector section size.

CEECAAPARTSUM
Vector partial sum number.

Common Anchor Area (CAA)

Chapter 1. Common interfaces and conventions 57

CEECAASSEXPNT
Log of the vector section size.

CEECAAEDB
Address of the Language Environment enclave data block. This field points
to the encompassing EDB.

CEECAAPCB
Address of the Language Environment Process Control Block. This field
points to the encompassing PCB.

CEECAAEYEPTR
Address of the CAA eye catcher. This field can be used for validation of
the CAA.

CEECAAPTR
Address of the CAA. This field points to the CAA itself and can be used in
validation of the CAA.

CEECAAGETS1
Non-DSA Stack overflow. This field is the address of a stack overflow
routine which cannot guarantee that the current R13 is pointing at a DSA.
R13 must point, at a minimum, point to a save area. For additional details,
see “Obtain a DSA in user stack with R13 pointing to save area” on page
97.

CEECAASHAB
ABEND shunt routine. Its value is initially set to zero during thread
initialization. If it is nonzero, this is the address of a routine used in
specialized exception processing for ABENDs that are intercepted in the
ESTAE exit. For more information, see z/OS Language Environment
Programming Guide.

CEECAAPRGCK
Program interrupt code for CEECAADMC. If CEECAADMC is nonzero,
and a program interrupt occurs, this field is set to the program interrupt
code and control is passed to the address in CEECAAMDC. For more
information, see z/OS Language Environment Programming Guide.

CEECAAFLAG1
CAA flag bits; the bits are defined as follows:
0 CEECAASORT: a call to DFSORT is active.
1 CEECAA_USE_OLD_STK: Use old stack
2 CEECAACICS_EXT_REG: ERTLI CICS extended register interface

is in effect.
3 CEECAASHAB_RECOVER_IN_ESTAE_MODE: instructs Language

Environment to set up for retry to the abend shunt routine, only if
the PSW key that was in effect at the time the Language
Environment ESTAE or user-provided error recovery routine was
established matches the IPK result stored in CEECAASHAB_KEY.

4 Reserved.
5 CEECAA_FETCH_RELES_IN_PROGRESS: CEEFETCH or

CEERELES is in progress on this thread.
6-7 Reserved.

CEECAASHAB_KEY
IPK result when CEECAASHAB is set.

CEECAAURC
Thread level return code. This is the common place for members to set the
return codes for sub-to-sub return code processing.

Common Anchor Area (CAA)

58 z/OS V2R1.0 Language Environment Vendor Interfaces

CEECAAESS
This field is used to determine if a stack overflow routine must be called
when allocating storage from the user stack. Normally, the value of this
field will represent the end of the current user stack segment. However, its
value can also be zero to force the call of a stack overflow routine for every
allocation of storage from the user stack. This field is used by function
prologs that use FASTLINK linkage conventions.

CEECAALESS
This field is used to determine if a stack overflow routine must be called
when allocating storage from the library stack. Normally, the value of this
field will represent the end of the current library stack segment. However,
its value can also be zero to force the call of a stack overflow routine for
every allocation of storage from the library stack. This field is used by
function prologs that use FASTLINK linkage conventions.

CEECAAOGETS
Pointer to overflow user segment from FASTLINK.

CEECAAOGETLS
Pointer to overflow library segment from FASTLINK.

CEECAAPICICB
Address of preinit compatibility control block. This is provided in support
of the PL/I preinitialization compatibility support.

CEECAAOGETSX
Pointer to user DSA exit from FASTLINK.

CEECAAGOSMR
Go Some More—Used CEEHTRAV multiple.

CEECAALEOV
Address of the Language Environment—z/OS UNIX System Services
(z/OS UNIX) LIBVEC.

CEECAA_SIGSCTR
Signal Safe counter. When 0, an interrupt is allowed; when greater than 0,
interrupts are temporarily inactive. Four types of interrupts can be blocked
or allowed: signal interrupts, cancel interrupts, quiesce-terminate
interrupts, and quiesce-freeze interrupts.

CEECAA_SIGSFLG
Signal Safe flags.

0 CEECAA_SIGPUTBACK — A signal was put back.

1 CEECAA_SA_RESTART — indicates that a signal registered with
the SA_RESTART flag interrupted the last kernel call and the signal
catcher returned (that is, loopback is required to re-issue the kernel
call).

2 Reserved.

3 CEECAA_SIGSAFE: Indicates that synchronous signals are safe to
be delivered, regardless of where the interrupt occurred.

4 CEECAA_CANCELSAFE: Indicates that it is safe to
unconditionally accept delivery of a synchronous cancel.

5 CEECAA_SIGRESYNC: Indicates that one or more synchronous
signals may have been recently put back the last time a signal was
resolicited while returning from library to user code.

Common Anchor Area (CAA)

Chapter 1. Common interfaces and conventions 59

6 CEECAA_FRZ_UNSAFE: Indicates that the thread is unsafe to be
frozen.

7 CEECAA_NOAPPREGS: Indicates that user application registers
may be saved in a nonstandard place.

8 CEECAA_EINTR_RSOL: Secondary Signal re-solicitation is in
progress, after EINTR errno from inner function.

9 CEECAA_EINTR_PUTB: Secondary re-solicited signal has been put
back.

10 CEECAA_EINTR_REST: User signal catcher returned after catching
secondary re-solicited signal with SA_RESTART in effect.

11 CEECAA_EINTR_SIGG: Stray signal interrupted CEEOSIGG while
secondary signal resolicitation was in progress.

CEECAATHDID
This CAA's POSIX thread identifier (8 bytes).

CEECAA_DCRENT
Read/write static external anchor.

CEECAA_DANCHOR
Per-thread anchor.

CEECAA_CTOC
TOC anchor for CRENT.

CEECAARCB
Address of RCB.

CEECAACICSRSN
CICS reason code for member language.

CEECAAMEMBR
Address of thread-level member list. An entry is reserved for each member
known to Language Environment. There is one member list per thread. For
details, see “Language Environment member list and event handler” on
page 86.

CEECAA_SIGNAL_STATUS
Signal status for terminating thread.

CEECAA_HCOM_REG7
The original register 7 value overlaid by a pointer to CEEOSIGX when the
latest signal was put back.

CEECAA_HCOM_REG14
The original register 14 value overlaid by a pointer to CEEOSIGR when the
latest signal was put back.

CEECAA_STACKFLOOR
Lowest usable address in the XPLINK stack.

CEECAAHPGETS
XPLINK stack extension routine.

CEECAAEDCHPXV
C++ XPLINK libvec.

CEECAAFOR1
Reserved for Fortran.

Common Anchor Area (CAA)

60 z/OS V2R1.0 Language Environment Vendor Interfaces

CEECAAFOR2
Reserved for Fortran.

CEECAATHREADHEAPID
Pointer to thread heap ID.

CEECAA_SYS_RTNCODE
System (kernel) return code.

CEECAA_SYS_RSNCODE
System (kernel) reason code.

CEECAAGETFN
Address of the WSA swap routine.

CEECAASIGNGPTR
Pointer to the “signam” external variable.

CEECAASIGNG
Value of the sign of lgamma() function.
-1 Negative sign
0 Zero
+1 Positive sign

CEECAA_FORDBG
Pointer to AFHDBHIM — FORTRAN hook interface.

CEECAAAB_STATUS
Contains the following validity flags:

CEECAAAB_GR0_VALID
Indicates if the CEECAAAB_GR0 field contains valid data about
the last abend.

CEECAAAB_ICD1_VALID
Indicates if the CEECAAAB_ICD1 field contains valid data about
the last abend.

CEECAAAB_ABCC_VALID
Indicates if the CEECAAAB_ABCC field contains valid data about
the last abend.

CEECAAAB_CRC_VALID
Indicates if the CEECAAAB_CRC field contains valid data about
the last abend.

CEECAAAB_GR15_VALID
Indicates if the CEECAAAB_GR15 field contains valid data about
the last abend.

CEECAA_STACKDIRECTION
Stack direction.

CEECAAAB_GR0
Register 0 contents at the time of the ABEND. This is only valid if the
CEECAAAB_GR0_VALID bit is on.

CEECAAAB_ICD1
The eight bit interrupt code from SDWAICD1 field of the SDWA for the
abend. This is only valid if the CEECAAAB_ICD1_VALID bit is on.

Common Anchor Area (CAA)

Chapter 1. Common interfaces and conventions 61

CEECAAB_ABCC
The abend completion code, taken from SDWAABCC field of the SDWA
for the shunted abend. This is only valid if the CEECAAAB_ABCC_VALID
bit is on.

CEECAAAB_CRC
Component reason code, or return code associated with the abend, taken
from the SDWACRC field of the SDWA for the shunted abend. This is only
valid if the CEECAAAB_CRC_VALID bit is on.

CEECAAAGTS
A 4-byte pointer that contains the address of the entry point of the
CEEVAGTS routine. CEEVAGTS supports the code that the C compiler
generates in module prologs for DSA allocation.

CEECAA_LER5N1
Reserved.

CEECAAAHERP
Address of the CEEHERP routine.

CEECAAAUSTKBOS
Start of user stack segment.

CEECAAAUSTKEOS
End of user stack segment.

CEECAAUSERRTN@
Address of thread start routine.

CEECAAUDHOOK
Hook swapping XPLINK.

CEECAACEL_HPXV_B
Address of XPLINK vector for Base library.

CEECAACEL_HPXV_M
Address of XPLINK vector for Math library.

CEECAACEL_HPXV_L
Address of XPLINK vector for Locale library.

CEECAACEL_HPXV_O
Address of XPLINK vector for Open library.

CEECAACEL4VEC3
Address of 3rd C-RTL library vector.

CEECAA_CEEDLLF
Address of the newest CEEDLLF control block.

CEECAA_SAVSTACK
Saved Stack Pointer when the OS_NOSTACK linkage routine is called.
After the call returns, the CEECAA_SAVSTACK field must be set back to
zero. When the value in CEECAA_SAVSTACK is not zero, condition
management and signal processing use this value as the current stack
pointer. The format of the stack is determined by the value in the
CEECAA_STACKDIRECTION field. Asynchronous signals are put back if
the interrupt occurs outside the bounds of the routine that owns the stack
frame.

CEECAA_SAVSTACK_ASYNC
When the value is not zero, CEECAA_SAVSTACK_ASYNC contains the
address of a 4-byte field provided by the application that holds the Saved

Common Anchor Area (CAA)

62 z/OS V2R1.0 Language Environment Vendor Interfaces

Stack Pointer when the register for the stack pointer is being used for other
purposes. When the value is zero, CEECAA_SAVSTACK_ASYNC does not
contain that address. When the field exists and is not zero, condition
management and signal processing use this value as the current stack
pointer. The format of the stack is determined by the value in the
CEECAA_STACKDIRECTION field. Asynchronous signals are processed
even if the interrupt occurs outside the bounds of the routine that owns
the stack frame.

Language Environment enclave data block
Each enclave is represented by an enclave data block (EDB), which supports the
program model. All enclave-related resources are provided in the EDB; it is
generated during enclave initialization and deleted during enclave termination.
Fields in the EDB should be used as described in other sections of this document.
In particular, fields should not be modified and routine addresses should not be
used as entry points, except as specified.

The following tables show the format of the EDB.
v Table 13 shows the EDB fields and Table 16 on page 68 describes their contents.
v Table 14 on page 66 shows the EDB constants.
v Table 15 on page 66 shows the EDB cross reference information.

Table 13. Enclave data block (EDB) field descriptions

Offsets Type Len Name (Dim) (* = Reserved) Description

Dec Hex

0 (0) STRUCTURE 164 CEEEDB EDB mapping

0 (0) CHARACTER 164 CEEEDB_EXTERNAL External portion

0 (0) CHARACTER 8 CEEEDBEYE Eyecatcher 'CEEEDB '

8 (8) BITSTRING 4 CEEEDBFLAGS Enclave information

8 (8) BITSTRING 1 CEEEDBFLAG1 EDB Flags

1... CEEEDBMAINI Main program initialized

.1.. CEEEDB_INITIAL_AMODE

..1. CEEEDBACTIV Environment is now active

...1 CEEEDBTIP Termination In Progress

.... 1... CEEEDBPICI Pre-Init Compat. is active

.... .1.. CEEEDB_POSIX z/OS UNIX is active and runtime
option POSIX(ON) is active

.... ..1. CEEEDBMULTITHREAD Multithreading environment

.... ...1 CEEEDB_OMVS_DUBBED z/OS UNIX is dubbed

9 (9) BITSTRING 1 CEEEDBIPM Initial Program Mask

10 (A) BITSTRING 1 CEEEDBPM Current® Program Mask

11 (B) UNSIGNED 1 CEEEDB_CREATOR_ID Enclave creator ID

12 (C) ADDRESS 4 CEEEDBMEMBR A(member list body)

16 (10) ADDRESS 4 CEEEDBOPTCB A(options control block)

20 (14) SIGNED 4 CEEEDBURC User Return Code

24 (18) SIGNED 4 CEEEDBRSNCD CEL Reason Code

28 (1C) ADDRESS 4 CEEEDBDBGEH Addr of debugger event handler

32 (20) SIGNED 4 CEEEDBANHP CEL Anywhere Heap ID

Common Anchor Area (CAA)

Chapter 1. Common interfaces and conventions 63

Table 13. Enclave data block (EDB) field descriptions (continued)

Offsets Type Len Name (Dim) (* = Reserved) Description

Dec Hex

36 (24) SIGNED 4 CEEEDBBEHP CEL Below Heap ID

40 (28) ADDRESS 4 CEEEDBCELV Addr of CEL LIBVEC

44 (2C) ADDRESS 4 CEEEDBPCB A(PCB)

48 (30) ADDRESS 4 CEEEDBELIST Exit list from HLL user exit

52 (34) ADDRESS 4 CEEEDB_PL_ASTRPTR A(appl parm str)

56 (38) ADDRESS 4 CEEEDBDEFPLPTR A(main parm list)

60 (3C) SIGNED 4 CEEEDBCXIT_PAGE Cxit_page value for user exit

64 (40) CHARACTER 4 CEEEDB_DEBUG_TERMID Debugger terminal ID

68 (44) ADDRESS 4 CEEEDBPARENT Addr of the parent enclave CAA

When the enclave is created, its creator (or parent) needs to provide:

1. Enclave termination routine (CEEEDB_TERM).

2. Information where to return to when the enclave terminates along with the environment that is to be restored.

CEEEDB_R13_PARENT is a convenient way to provide the return information. It is a pointer to the DSA that contains all the
registers of the enclave's parent.

72 (48) ADDRESS 4 CEEEDB_R13_PARENT A(DSA of enclave creator)

76 (4C) CHARACTER 64 CEEEDB_LER3 Lang Env V1R3M0 externals

76 (4C) CHARACTER 8 * Reserved from Lang Env V1R2M0

84 (54) ADDRESS 4 CEEEDBLEOV Addr of z/OS UNIX LIBVEC

88 (58) ADDRESS 4 CEEEDBENVAR Address of environment variable
array. This is the case only when a
POSIX-C prog is not part of the
application. WARNING: this field
should not be updated by other
than CEL or C initialization.

92 (5C) ADDRESS 4 CEEEDBENVIRON Address of environment variable
anchor. In POSIX-C, it is the
environ variable, otherwise it
points to the CEEEDBENVAR.

96 (60) ADDRESS 4 CEEEDB_CEEOSIGR@ CEEOSIGR address

100 (64) ADDRESS 4 CEEEDBOTRB Pointer to trace table

The following five fields are used by the CEEXGPES (get permanent enclave storage) macro. This macro allows member languages
to quickly allocate storage that is freed by CEL only after member enclave termination.

104 (68) ADDRESS 4 CEEEDBPSA31 Address and length of ...

108 (6C) SIGNED 4 CEEEDBPSL31 ... preallocated 31 storage

112 (70) ADDRESS 4 CEEEDBPSA24 Address and length of ...

116 (74) SIGNED 4 CEEEDBPSL24 ... preallocated 24 storage

120 (78) ADDRESS 4 CEEEDBPSRA Addr of overflow routine

124 (7C) ADDRESS 4 CEEEDB_CAACHAIN@ Pointer to IPT's CAA

128 (80) BITSTRING 4 CEEEDBFLAGS1 Additional external

128 (80) BITSTRING 1 CEEEDBFLAG1A Flags

1... CEEEDB_SIGENABLED Signals enabled

.1.. CEEEDB_MVS_BATCH Running z/OS batch

..1. CEEEDB_TERM_DNFR Do not free heap or delete
programs during termination of
the enclave.

...1 CEEEDB_TERM_NOEDSA No scan for exit DSAs at enclave
termination.

Enclave Data Block (EDB)

64 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 13. Enclave data block (EDB) field descriptions (continued)

Offsets Type Len Name (Dim) (* = Reserved) Description

Dec Hex

.... 1... CEEEDB_CICS_OPEN_PROGRAM 1 Program runs only on an
OTE TCB and can use
Open C functions

0 Program may run on
OTE or QR TCB

.... .1.. CEEEDB_MAIN_HP Main uses XP linkage

.... ..1. CEEEDB_HPLINK XPLINK is being used

.... ...1 CEEEDB_EVNTDEST Running destructors

129 (81) BITSTRING 1 CEEEDBFLAG1B Flags

1... CEEEDB_2_ENV_TABLES 1 Lang Env maintains two
identical tables of
environment variables:
one in EBCDIC and one
in ASCII

0 Only an EBCDIC table is
maintained

.1.. CEEEDB_CICS_REUSE_ENCLAVE 1 Program is part of a
reusable enclave

0 Program is not part of a
reusable enclave

..1. CEEEDB_CICS_RE_DIRTY 1 Reusable enclave has
been corrupted and is no
longer reusable by Lang
Env. CICS requested to
terminate enclave

0 Enclave is clean and still
reusable

...1 CEEEDB_EXEC_EXIT 1 User exit routine for
exec() processing is
running

0 User exit routine is not
running

.... 1111 * Reserved

130 (82) CHARACTER 2 * Reserved

132 (84) ADDRESS 4 CEEEDB_CEEOSGR1@ CEEOSIGR end address

136 (88) ADDRESS 4 CEEEDB_XPL_NODLL_FDS Pointer to chain of XPLINK
compat descriptors representing
NODLL func pointers

140 (8C) CHARACTER 8 CEEEDB_LER4

140 (8C) BITSTRING 4 CEEEDBMEMBERCOMPAT

Member compatibility flags

140 (8C) BITSTRING 1 CEEEDBMEMBERCOMPAT1

1... CEEEDBPLITASKING PL/I tasking

.111 1111 * Reserved

141 (8D) BITSTRING 1 CEEEDBMEMBERCOMPAT2 Reserved

142 (8E) BITSTRING 1 CEEEDBMEMBERCOMPAT3 Reserved

143 (8F) BITSTRING 1 CEEEDBMEMBERCOMPAT4 Reserved

144 (90) SIGNED 4 CEEEDBTHREADSACTIVE Threads active

148 (94) CHARACTER 8 CEEEDB_LER5

148 (94) SIGNED 4 CEEEDBCURMSGFILEDCBPTR DCB ptr

Enclave Data Block (EDB)

Chapter 1. Common interfaces and conventions 65

Table 13. Enclave data block (EDB) field descriptions (continued)

Offsets Type Len Name (Dim) (* = Reserved) Description

Dec Hex

152 (98) ADDRESS 4 CEEEDB_CEEINT_INPUT_R1

When the request block boundary is crossed, a new enclave is created and request block info must be maintained. This is to
maintain compatibility with the VS COBOL II definition of a run unit. The following two fields allow support for implicit enclave
create.

156 (9C) ADDRESS 4 CEEEDB_LAST_RBADDR A(Last request block)

160 (A0) SIGNED 4 CEEEDB_LAST_RBCNT Index of last request blk

164 (A4) SIGNED 4 CEEEDB_ENVLENGTH Length of envar array of pointers

168 (A8) ADDRESS 4 CEEEDBENVAR_A Address of alternate environment
variable array

172 (AC) ADDRESS 4 CEEEDBENVIRON_A Address of alternate environment
variable anchor

Table 14. Enclave data block (EDB) constants

Len Type Value Name Description

Declare constants to identify creator of an enclave

1 DECIMAL 1 CEEEDB_CREATOR_BINIT batch (BINIT)

1 DECIMAL 2 CEEEDB_CREATOR_RINI CICS (RINI)

1 DECIMAL 3 CEEEDB_CREATOR_BCREN cr_enc(BCREN)

1 DECIMAL 4 CEEEDB_CREATOR_PIPI_MAIN preinit main

1 DECIMAL 5 CEEEDB_CREATOR_PIPI_SUBR preinit subr

1 DECIMAL 6 CEEEDB_CREATOR_IMPLICIT LINK SVC

1 DECIMAL 7 CEEEDB_CREATOR_EXEC POSIX exec()

1 DECIMAL 0 CEEEDBTRMRSN_NORMAL_RETURN

1 DECIMAL 1 CEEEDBTRMRSN_CEETREN_EXIT

1 DECIMAL 2 CEEEDBTRMRSN_CEETREC_EXIT

1 DECIMAL 3 CEEEDBTRMRSN_CEEEXIT_EXIT _exit()

1 DECIMAL 4 CEEEDBTRMRSN_UNHANDLED_ COND

1 DECIMAL 5 CEEEDBTRMRSN_PTHREAD_EXIT

1 DECIMAL 6 CEEEDBTRMRSN_QUIESCE

1 DECIMAL 7 CEEEDBTRMRSN_CEEEXIT_EXEC exec

1 DECIMAL 1 CEEEDB_PIN_UNSET

1 DECIMAL 2 CEEEDB_PIN_UNAVAIL

1 DECIMAL 3 CEEEDB_PIN_SET

Maximum member ID and maximum member number both relate to the number of CEL members currently supported. The range
of member ID values is from 0 to max_member_id.

4 DECIMAL 17 CEEEDB_MAXMEMID max member ID

4 DECIMAL 18 CEEEDB_MAXMEMNUM max member number

Table 15. Enclave data block (EDB) cross reference

Name Hex Offset Hex Value Level

CEEEDB 0 1

CEEEDB_CAACHAIN@ 7C 4

CEEEDB_CEEINT_INPUT_R1 98 4

CEEEDB_CEEOSIGR@ 60 4

CEEEDB_CEEOSGR1@ 84 4

Enclave Data Block (EDB)

66 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 15. Enclave data block (EDB) cross reference (continued)

Name Hex Offset Hex Value Level

CEEEDB_CICS_OPEN_PROGRAM 80 6

CEEEDB_CREATOR_ID B 4

CEEEDB_DEBUG_TERMID 40 3

CEEEDB_ENVLENGTH A4 3

CEEEDB_EVNTDEST 80 01 6

CEEEDB_EXTERNAL 0 2

CEEEDB_HPLINK 80 6

CEEEDB_INITIAL_AMODE 8 40 5

CEEEDB_LAST_RBADDR 9C 3

CEEEDB_LAST_RBCNT A0 3

CEEEDB_LER3 4C 3

CEEEDB_LER4 8C 3

CEEEDB_LER5 94 3

CEEEDB_MAIN_HP 80 6

CEEEDB_MVS_BATCH 80 40 6

CEEEDB_OMVS_DUBBED 8 01 5

CEEEDB_PL_ASTRPTR 34 3

CEEEDB_POSIX 8 04 5

CEEEDB_R13_PARENT 48 3

CEEEDB_SIGENABLED 80 80 6

CEEEDB_TERM_DNFR 80 20 6

CEEEDB_XPL_NODLL_FDS 88 4

CEEEDBACTIV 8 20 5

CEEEDBANHP 20 3

CEEEDBBEHP 24 3

CEEEDBCELV 28 3

CEEEDBCURMSGFILEDCBPTR 94 4

CEEEDBCXIT_PAGE 3C 3

CEEEDBDBGEH 1C 3

CEEEDBDEFPLPTR 38 3

CEEEDBELIST 30 3

CEEEDBENVAR 58 4

CEEEDBENVAR_A 168 3

CEEEDBENVIRON 5C 4

CEEEDBENVIRON_A 172 3

CEEEDBEYE 0 3

CEEEDBFLAGS 8 3

CEEEDBFLAGS1 80 4

CEEEDBFLAG1 8 4

CEEEDBFLAG1A 80 5

CEEEDBIPM 9 4

CEEEDBLEOV 54 4

CEEEDBMAINI 8 80 5

CEEEDBMEMBERCOMPAT 8C 4

CEEEDBMEMBERCOMPAT1 8C 5

Enclave Data Block (EDB)

Chapter 1. Common interfaces and conventions 67

Table 15. Enclave data block (EDB) cross reference (continued)

Name Hex Offset Hex Value Level

CEEEDBMEMBERCOMPAT2 8D 5

CEEEDBMEMBERCOMPAT3 8E 5

CEEEDBMEMBERCOMPAT4 8F 5

CEEEDBMEMBR C 3

CEEEDBMULTITHREAD 8 02 5

CEEEDBOPTCB 10 3

CEEEDBOTRB 64 4

CEEEDBPARENT 44 3

CEEEDBPCB 2C 3

CEEEDBPICI 8 08 5

CEEEDBPLITASKING 8C 80 6

CEEEDBPM A 4

CEEEDBPSA24 70 4

CEEEDBPSA31 68 4

CEEEDBPSL24 74 4

CEEEDBPSL31 6C 4

CEEEDBPSRA 78 4

CEEEDBRSNCD 18 3

CEEEDBTHREADSACTIVE 90 4

CEEEDBTIP 8 10 5

CEEEDBURC 14 3

Table 16 describes the EDB fields in more detail.

Table 16. EDB field descriptions

Field Contents

CEEEDBFLAG1 CEEEDB flags. The bits in this flag byte are defined as follows:

0 CEEEDBMAINI: Indicates that a main program has been initialized
within the current enclave. Each member language must ensure that a
main program written in that language sets this bit when it is
initialized.

1 CEEEDB_INITIAL_AMODE: Indicates the amode upon entry into the
Language Environment initialization routine. ON indicates a 31-bit
entry; OFF indicates a 24-bit entry.

2 CEEEDBACTIV: Indicates the environment is currently active. A
preinitialized environment has this bit initially set to zero.

3 CEEEDBTIP: Indicates termination is in progress.

4 CEEEDBPICI: Preinitialization compatibility is active.

5 CEEEDB_POSIX: POSIX(ON) was specified and z/OS UNIX is
available.

6 CEEEDBMULTITHREAD: Multithread environment is active.

7 CEEEDB_OMVS_DUBBED: z/OS UNIX is dubbed.

CEEEDBIPM The initial program mask. This is the result of ORing all of the member
language's program mask requirements. Language Environment sets the
program mask to this value during initialization.

Enclave Data Block (EDB)

68 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 16. EDB field descriptions (continued)

Field Contents

CEEEDBPM The current program mask setting.

CEEEDB_CREATOR_ID ID of enclave creator. The values defined in this byte are as follows:

1 CEEEDB_CREATOR_BINIT: Indicates this is the first enclave in the
process created under batch.

2 CEEEDB_CREATOR_RINI: Indicates the enclave was created under
CICS.

3 CEEEDB_CREATOR_BCREN: Indicates the enclave was created with
the callable service to create enclaves.

4 CEEEDB_CREATOR_PIPI_MAIN: Indicates the enclave was created
with preinitialization services for the main routine.

5 CEEEDB_CREATOR_PIPI_SUBR: Indicates the enclave was created
with preinitialization services for subroutines.

6 CEEEDB_CREATOR_IMPLICIT: Indicates the enclave was created
implicitly with host system services, such as the LINK SVC.

7 CEEEDB_CREATOR_EXEC: Indicates the enclave was created and
invoked from the kernel as a result of an exec().

CEEEDBMEMBR Address of a list of member entries. An entry is reserved for each member
known to Language Environment. There is one member list per enclave. For
details, see “Language Environment member list and event handler” on page
86.

CEEEDBOPTCB Address of the options control block. Enclave initialization processes the
runtime options and generates the options control block, CEEOCB. There is one
CEEOCB per enclave. This pointer makes the runtime options easily available
to all members.

CEEEDBURC User return code. This field contains the return code generated and stored here
by the user program. It is augmented by the Language Environment reason
code and returned at enclave termination.

CEEEDBRSNCD Language Environment reason code. The value indicates the reason for
Language Environment termination. It augments the return code, and is
returned separately at enclave termination.

CEEEDBDBGEH Debugger event handler. This field holds the address of the debugger event
handler, which is loaded by Language Environment. For more information, see
Chapter 9, “Debugging and performance analysis,” on page 343.

CEEEDBANHP Language Environment Anywhere heap ID. This field holds the identification
for Language Environment's defined heap storage that is typically allocated
above the 16M line. For more information, see “Dynamic storage (heap)
services” on page 205 for more information.

CEEEDBBEHP Language Environment below heap ID. This field holds the identification for
Language Environment's defined heap storage that is always allocated below
the 16M line; see “Dynamic storage (heap) services” on page 205 for more
information.

CEEEDBCELV Address of Language Environment LIBVEC. This field holds the address of
Language Environment's library vector table (LIBVEC). Access to Language
Environment routines is through this vector table.

CEEEDBPCB Address of the process control block. This field holds the address of Language
Environment's process control block (PCB). This allows access to process-level
resources and information.

Enclave Data Block (EDB)

Chapter 1. Common interfaces and conventions 69

Table 16. EDB field descriptions (continued)

Field Contents

CEEEDBELIST Address of exit list from the HLL user exit. The address of a list of user exits
provided by the user with the HLL user exit. Language Environment copies the
value to the EDB.

CEEEDB_PL_ASTRPTR Address of the user parameter list varying string pointer.

CEEEDBDEFPLPTR The default pointer that is the inbound parameter list.

CEEEDBCEXIT_PAGE Cxit_page value for user exit parameter list.

CEEEDB_DEBUG_TERMID Debugger terminal ID under CICS.

CEEEDBPARENT Address of parent enclave CAA. When the enclave is created, its creator (or
parent) needs to provide:

1. Enclave termination routine (CEEEDB_TERM).

2. Information where to return to when the enclave terminates along with the
environment which is to be restored.

CEEEDB_R13_PARENT Address of DSA enclave creator. CEEEDB_R13_PARENT is a convenient way to
provide return information. It is a pointer to the DSA which contains all the
registers of the enclave's parent.

CEEEDB_LER3 External section.

CEEEDBLEOV Address of the LIBVEC for z/OS UNIX support.

CEEEDBENVAR Address of the environment variable array.

CEEEDBENVAR_A Address of the alternate environment variable array.

CEEEDBENVIRON Address of the environment variable anchor.

CEEEDBENVIRON_A Address of the alternate environment variable anchor.

CEEEDB_CEEOSIGR@ Address of the CEEOSIGR routine.

CEEEDBOTRB Address of the in-core wrapping trace table

CEEEDBPSA31 Address and preallocated 31 storage.

CEEEDBPSL31 Length of preallocated 31 storage.

CEEEDBPSA24 Address of preallocated 24 storage.

CEEEDBPSL24 Length of preallocated 24 storage.

CEEEDBPSRA Address of overflow routine.

CEEEDBFLAG1A Additional EDB flags, as follows:

0 CEEEDB_SIGENABLED: Signal processing enabled.

1 CEEEDB_MVS_BATCH: Running z/OS batch first enclave.

2 CEEEDB_TERM_DNFR: Do not free heap or delete programs at
enclave termination.

3 CEEEDB_ENVTDEST: Running destructors.

4-7 Reserved

CEEEDB_CICS_OPEN_PROGRAM 0 Program may run on OTE or QR TCB.
1 Program runs only on an OTE TCB and can use Open C functions.

CEEEDB_MAIN_HP Main uses XPLINK linkage.

CEEEDB_HPLINK XPLINK is being used.

CEEEDB_CEEOSGR1@ CEEOSIGR and address

CEEEDB_XPL_NODLL_FDS Pointer to a chain of XPLINK compatibility descriptors representing NODLL
function pointers.

Enclave Data Block (EDB)

70 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 16. EDB field descriptions (continued)

Field Contents

CEEEDB_ENVLENGTH Length to envar array of pointers.

Language Environment process control block
Each process is represented by a Process Control Block (PCB). All process resources
are anchored, provided for, or can be obtained through the PCB. The PCB is
generated during process initialization and deleted during process termination.
Fields in the PCB should be used as described in other sections of this document

The following tables show the format of the PCB.
v Table 17 shows the PCB fields and Table 20 on page 74 describes their contents.
v Table 18 on page 72 shows the PCB constants.
v Table 19 on page 73 shows the PCB cross reference information.

Table 17. Process control block (PCB) field descriptions

Offsets Type Len Name (* = Reserved) Description

Dec Hex

0 (0) STRUCTURE 76 CEEPCB PCB mapping

0 (0) CHARACTER 76 CEEPCB_EXTERNAL External portion

0 (0) CHARACTER 8 CEEPCBEYE Eyecatcher 'CEEPCB '

8 (8) BITSTRING 1 CEEPCBSYSTM Underlying Operating System

9 (9) BITSTRING 1 CEEPCBHRDWR Underlying Hardware

10 (A) BITSTRING 1 CEEPCBSBSYS Underlying Subsystem

11 (B) BITSTRING 1 CEEPCBFLAG2

1... CEEPCBBIMODAL Bimodal addressing is avail.

.1.. CEEPCB_LVFORM LIBVEC format 1=stat./0=dynam

..1. CEEPCB_VECTOR Vector hardware available

...1 CEEPCB_CL24 CEL Libvec AMODE24 is built

.... 1... CEEPCB_OMVS z/OS UNIX is up and available

.... .1.. * RESERVED

.... ..1. CEEPCB_PICI PICI environment

.... ...1 CEEPCB_REUSE This CCIS process contains a reusable
enclave environment

12 (C) ADDRESS 4 CEEPCBDBGEH A(debug event handler)

16 (10) CHARACTER 8 CEEPCBDBGRSVD Reserved for debugger

24 (18) ADDRESS 4 CEEPCBDMEMBR A(process member list)

28 (1C) ADDRESS 4 CEEPCB_ZLOD A(process load routine)

32 (20) ADDRESS 4 CEEPCB_ZDEL A(process delete routine)

36 (24) ADDRESS 4 CEEPCB_ZGETST A(process get storage rtn)

40 (28) ADDRESS 4 CEEPCB_ZFREEST A(process free storage rtn)

44 (2C) ADDRESS 4 CEEPCB_LVTL Address of a Lang Env library table
that contains info about Lang Env
libvecs, to determine which transfer
vector should be used to access a
library routine and be signal safed.

48 (30) ADDRESS 4 CEEPCBRCB Address of the RCB

Enclave Data Block (EDB)

Chapter 1. Common interfaces and conventions 71

Table 17. Process control block (PCB) field descriptions (continued)

Offsets Type Len Name (* = Reserved) Description

Dec Hex

52 (34) ADDRESS 4 CEEPCB_SYSEIB A(CICS System EIB)

The following three fields are used by the CEEXGPPS (get permanent process storage) macro. This macro allows the member
languages to quickly allocate storage at the process level that is freed only by CEL after member process termination.

56 (38) SIGNED 4 CEEPCBPSL Length of perm process stg

60 (3C) ADDRESS 4 CEEPCBPSA Addr of perm process stg

64 (40) ADDRESS 4 CEEPCBPSRA Perm process stg overflow routine
address

68 (44) BITSTRING 4 CEEPCB_OMVS_LEVEL z/OS UNIX release level (Multiple
bits may be set)

1... * Reserved

.1.. CEEPCB_OMVS_1120 HOM1120 functions are present.

..1. CEEPCB_OMVS_1130 HOM1130 functions are present.

68 (44) BITSTRING 3 * Reserved

72 (48) ADDRESS 4 CEEPCB_CHAIN Pointer to next PCB on PICI
environment chain

76 (4C) ADDRESS 4 CEEPCB_VSSFE Address of the stack segment free
routine

80 (50) ADDRESS 4 CEEPCBPRFEH Address of profile event handler

84 (54) BITSTRING 1 CEEPCBFLAG6 Additional PCB flags

1... 4 CEEPCB_ESAME ESAME supported

.111 * Reserved

.... 1... CEEPCB_SIMD SIMD supported

.... .111 * Reserved

85 (55) CHARACTER 3 CEEPCB_RSRVED Reserved

88 (58) ADDRESS 4 * Reserved

92 (5C) ADDRESS 4 CEEPCB_DBGINFO Address of debugger Info block

Table 18. Process control block (PCB) constants

Len Type Value Name Description

Constants

4 DECIMAL 16384 CEEPCB_IS_SIZE Init dummy stk size

4 DECIMAL 2048 CEEPCB_LIS_SIZE Init dummy lib size

CAUTION: CEEPCB_IS_SIZE and CEEPCB_LIS_SIZE must be multiple of doubleword size.

4 DECIMAL 8 CEEPCB_MAXLVTNUM Maximum library transfer vector
tables in Lang Env

Declare constants for operating system, hardware, and subsystem CEEPCBSYSTM, CEEPCBHRDWR, CEEPCBSYS

1 DECIMAL 0 CEEPCBSYUND Undefined

1 DECIMAL 1 CEEPCBSYUNS Unsupported

1 DECIMAL 2 CEEPCBSYVM VM

1 DECIMAL 3 CEEPCBSYMVS z/OS Underlying Hardware

1 DECIMAL 0 CEEPCBHWUND Undefined

1 DECIMAL 1 CEEPCBHWUNS Unsupported

1 DECIMAL 2 CEEPCBHW370 System/370 non-X

1 DECIMAL 3 CEEPCBHWXA System/370 XA

Process Control Block (PCB)

72 z/OS V2R1.0 Language Environment Vendor Interfaces

||||||

||||||

||||||

Table 18. Process control block (PCB) constants (continued)

Len Type Value Name Description

1 DECIMAL 4 CEEPCBHWESA System/370 ESA Underlying
Subsystem

1 DECIMAL 0 CEEPCBSSUND Undefined

1 DECIMAL 1 CEEPCBSSUNS Unsupported

1 DECIMAL 2 CEEPCBSSNON No subsystem

1 DECIMAL 3 CEEPCBSSTSO TSO

1 DECIMAL 5 CEEPCBSSCIC CICS

Declare constants describing state of process

1 DECIMAL 0 CEEPCBSTATE_INIT Process init

1 DECIMAL 1 CEEPCBSTATE_TERM Process term

1 DECIMAL 2 CEEPCBSTATE_ACTIVE Process active

Table 19. Process control block (PCB) cross reference

Name Hex Offset Hex Value Level

CEEPCB 0 1

CEEPCB_CHAIN 48 3

CEEPCB_CL24 B 10 4

CEEPCB_DBGINFO 5C 3

CEEPCB_ESAME 54 80 4

CEEPCB_EXTERNAL 0 2

CEEPCB_LVFORM B 40 4

CEEPCB_LVTL 2C 3

CEEPCB_OMVS B 08 4

CEEPCB_OMVS_LEVEL 44 3

CEEPCB_OMVS_1120 44 40 4

CEEPCB_OMVS_1130 44 20 4

CEEPCB_PICI B 02 4

CEEPCB_REUSE B 01 4

CEEPCB_SYSEIB 34 3

CEEPCB_SIMD 54 08 4

CEEPCB_VECTOR B 20 4

CEEPCB_VSSFE 4C 3

CEEPCB_ZDEL 20 3

CEEPCB_ZFREEST 28 3

CEEPCB_ZGETST 24 3

CEEPCB_ZLOD 1C 3

CEEPCBBIMODAL B 80 4

CEEPCBDBGEH C 3

CEEPCBDBGRSVD 10 3

CEEPCBDMEMBR 18 3

CEEPCBEYE 0 3

CEEPCBFLAG2 B 3

CEEPCBFLAG6 54 3

CEEPCBHRDWR 9 3

CEEPCBPRFEH 50 3

Process Control Block (PCB)

Chapter 1. Common interfaces and conventions 73

||||

Table 19. Process control block (PCB) cross reference (continued)

Name Hex Offset Hex Value Level

CEEPCBPSA 3C 3

CEEPCBPSL 38 3

CEEPCBPSRA 40 3

CEEPCBRCB 30 3

CEEPCBSBSYS A 3

CEEPCBSYSTM 8 3

RESERVED B 04 4

Table 20 describes the PCB fields in more detail.

Table 20. PCB field descriptions

Field Contents

CEEPCBEYE 8-character eyecatcher 'CEEPCB'.

CEEPCBSYSTM Underlying operating system. The value indicates the operating system supporting the
active program. The values are defined as follows:
0 Undefined — this value should never occur after initializing Language

Environment
1 Unsupported
2 VM/ESA
3 z/OS

CEEPCBHRDWR Underlying hardware The value indicates the type of hardware on which the program
is executing; the values are defined as follows:
0 Undefined — this value should never occur after initializing Language

Environment
1 Unsupported
2 System/370, non-XA
3 System/370, XA
4 System/370, ESA

CEEPCBSBSYS Underlying subsystem The value indicates the subsystem, if any, on which the
program is executing; the values are defined as follows:
0 Undefined — this value should never occur after initializing Language

Environment
1 Unsupported
2 None — the program is not executing under a subsystem according to

Language Environment
3 TSO
4 Reserved
5 CICS
6 - 7 Reserved

CEEPCBFLAG2 PCB flag bits; the bits are defined as follows:
0 CEEPCBBIMODAL – When 1, this indicates the hardware is capable of

bimodal addressing
1 CEEPCB_LVFORM – Reserved
2 CEEPCB_VECTOR – When 1, the vector facility is available on the hardware
3 CEEPCB_CL24 – LIBVEC for AMODE24 is available
4 CEEPCB_OMVS – z/OS UNIX is up and available
5 Reserved
6 CEEPCB_PICI – PICI environment is in effect
7 CEEPCB_REUSE – When 1, the CICS process contains a reusable enclave

environment. This flag is required to indicate how Language Environment
will getmain, freemain, load, or delete resources upon requests in a reusable
enclave environment. These resources must be freed explicitly during
transaction termination.

Process Control Block (PCB)

74 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 20. PCB field descriptions (continued)

Field Contents

CEEPCBDBGEH Address of the debug tool event handler. This field holds the address of the debug
tool event handler. When this field is zero, a debug tool has not been initialized.

CEEPCBDBGRSVD Reserved for the debug tool's use. A doubleword that is reserved for the debug tool's
use. It is zeroed by Language Environment process initialization.

CEEPCBMEMBR Address of the process level member list. An entry is reserved for each member
known to Language Environment. There is one member list per process. The process
level member list has the same format as the enclave level member list. For details,
see “Language Environment member list and event handler” on page 86.

CEEPCB_ZLOD Process level LOAD service. This is the address of a LOAD service. Routines loaded
using this service persist across enclaves within this process. For details, see “Loading
and deleting programs in different environments” on page 293.

CEEPCB_ZDEL Process level DELETE service. This is the address of a DELETE service. Routines
loaded using CEEPCB_ZLOD must be deleted using this service. For details, see
“Loading and deleting programs in different environments” on page 293.

CEEPCB_ZGETST Process level GETMAIN service. This is the address of a GETMAIN service. Storage
obtained using this service persist across enclaves within this process.

CEEPCB_ZFREEST Process level FREEMAIN service. This is the address of a FREEMAIN service. Storage
obtained using CEEPCB_ZGETST must be freed using this service.

CEEPCB_LVTL Address of a Language Environment library vector.

CEEPCBRCB Address of the RCB.

CEEPCB_SYSEIB Address of CICS system EIB.

CEEPCBPSL Length of permanent process storage. This field is used by the CEEXGPPS (get
permanent process storage) macro. This macro allows the member languages to
quickly allocate storage at the process level that is freed only by Language
Environment after member process termination.

CEEPCBPSA Address of permanent process storage. This field is used by the CEEXGPPS (get
permanent process storage) macro. This macro allows the member languages to
quickly allocate storage at the process level that is freed only by Language
Environment after member process termination.

CEEPCBPSRA Permanent process storage overflow routine address table which contains information
for all Language Environment LIBVECs that allow signal safing of Language
Environment library for asynchronous signals. This field is used by the CEEXGPPS
(get permanent process storage) macro. This macro allows the member languages to
quickly allocate storage at the process level that is freed only by Language
Environment after member process termination.

CEEPCB_OMVS_LEVEL z/OS UNIX release level. The flags are as follows:
0 Reserved
1 HOM1120 functions are present
2 HOM1130 functions are present

CEEPCB_CHAIN Used to run the PICI environment chain; it will be NULL when there is no next
environment in the chain.

CEEPCB_VSSFE Address of the stack segment free routine.

CEEPCBPRFEH Address of the profile event handler

CEEPCBFLAG6 Additional PCB flag bits. The bits are defined as follows:
0 CEEPCB_ESAME
1 Level 1 tracing on
2 Level 2 tracing on
3 Debugger was HFS loaded
4 SIMD supported
5- 7 Reserved

Process Control Block (PCB)

Chapter 1. Common interfaces and conventions 75

||
||

Table 20. PCB field descriptions (continued)

Field Contents

CEEPCB_DBGINFO Address of the debugger info block.

Language Environment region control block
Regions are defined to effectively manage the resources for multiple processes,
allowing, for instance, for the reuse of resources. Regions are:
v Internally defined
v Initialized once for each environment
v Not part of the program model
v Not visible to the HLL programmer

For example, under CICS, each CICS thread corresponds to a CEE process.
Resources that are common to multiple CICS threads (or CEE processes) are
managed at the region level. The region control block (RCB) provides access to
region-level resources.

Although CICS is the only environment that has multiple processes in a single
region, regions exist for all environments and region initialization/termination
events are called in all environments, not just for CICS. For this reason, you should
write all event handlers so that resources created during region initialization can be
shared across multiple processes. Region and process initialization/termination
events should be designed for the possibility of having multiple processes sharing
a single Language Environment region in environments other than CICS.

There is one RCB per instance of a Language Environment environment and there
is no link between RCB in separate Language Environment environments. The
following tables show the format of the RCB.
v Table 21 shows the RCB fields and Table 24 on page 78 describes their contents.
v Table 22 on page 77 shows the RCB constants.
v Table 23 on page 78 shows the RCB cross reference information.

Table 21. Region control block (RCB) field descriptions

Offsets Type Len Name (Dim) (* = Reserved) Description

Dec Hex

0 (0) STRUCTURE 48 CEERCB RCB mapping

0 (0) CHARACTER 48 CEERCB_EXTERNAL External portion

0 (0) CHARACTER 8 CEERCBEYE Eyecatcher 'CEERCB '

8 (8) BITSTRING 1 CEERCBSYSTM Underlying Operating System

9 (9) BITSTRING 1 CEERCBHRDWR Underlying Hardware

10 (A) BITSTRING 1 CEERCBSBSYS Underlying Subsystem

11 (B) BITSTRING 1 CEERCBFLAGS

1... CEERCBBIMODAL Bimodal addressing is avail.

.1.. CEERCBLRR ON= Lib Routine Retention is in effect

..1. CEERCBLRRTR ON= Lib Routine Retention is being
terminated

...1 1111 * Reserved

12 (C) ADDRESS 4 CEERCB_PMUSER Address of pattern-match work area

16 (10) SIGNED 4 * Reserved

Process Control Block (PCB)

76 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 21. Region control block (RCB) field descriptions (continued)

Offsets Type Len Name (Dim) (* = Reserved) Description

Dec Hex

20 (14) ADDRESS 4 CEERCBDMEMBR A(region member list)

24 (18) ADDRESS 4 CEERCB_ZLOD A(region load routine)

28 (1C) ADDRESS 4 CEERCB_ZDEL A(region delete routine)

32 (20) ADDRESS 4 CEERCB_ZGETST A(region get storage rtn)

36 (24) ADDRESS 4 CEERCB_ZFREEST A(region free storage rtn)

40 (28) SIGNED 4 CEERCB_VERSION_ID Ver., Rel., and Mod. of Language
Environment

44 (2C) ADDRESS 4 CEERCB_PCBCHAIN Head of the PICI environment chain

48 (30) SIGNED 4 CEERCB_REUSE_STATE Runtime reuse state

52 (34) BITSTRING 4 CEERCB_CICS_FLAGS CICS flags from Partition Initialization
Call

1... CEERCB_CICS_POK_OK CICS indicated Program Objects are
supported

.1.. * Reserved

..1. CEERCB_CICS_OTE CICS OTE is supported

...1 CEERCB_CICS_RRWA_OK CICS indicated Reusable Rununit Work
Areas are available

.... 1... CEERCB_CICS_OTE2_OK CICS OTE II is supported

.... .11. * Reserved

.... ...1 CEERCB_CICS_TRANS_OK CICS dump data set is supported

56 (38) ADDRESS 4 CEERCB_CICS_QR_TCB CICS QR TCB address

60 (3C) ADDRESS 4 CEERCB_PMADDR Address of a pattern-match function

Table 22. Region control block (RCB) constants

Len Type Value Name Description

Declare constants for operating system, hardware, and subsystem CEERCBSYSTM, CEERCBHRDWR, CEERCBSBSYS

1 DECIMAL 0 CEERCBSYUND Undefined

1 DECIMAL 1 CEERCBSYUNS Unsupported

1 DECIMAL 2 CEERCBSYVM VM

1 DECIMAL 3 CEERCBSYMVS z/OS Underlying Hardware

1 DECIMAL 0 CEERCBHWUND Undefined

1 DECIMAL 1 CEERCBHWUNS Unsupported

1 DECIMAL 2 CEERCBHW370 System/370, non-XA

1 DECIMAL 3 CEERCBHWXA System/370 XA

1 DECIMAL 4 CEERCBHWESA System/370 ESA Underlying
Subsystem

1 DECIMAL 0 CEERCBSSUND Undefined

1 DECIMAL 1 CEERCBSSUNS Unsupported

1 DECIMAL 2 CEERCBSSNON No subsystem

1 DECIMAL 3 CEERCBSSTSO TSO

1 DECIMAL 5 CEERCBSSCIC CICS

1 DECIMAL 0 CEERCB_REUSE_NONE Not a reuse environment

1 DECIMAL 1 CEERCB_REUSE_FULL Reuse, full init is needed

1 DECIMAL 2 CEERCB_REUSE_PART Reuse, partial init is needed

Region Control Block (RCB)

Chapter 1. Common interfaces and conventions 77

Table 22. Region control block (RCB) constants (continued)

Len Type Value Name Description

1 DECIMAL 3 CEERCB_REUSE_TERM Terminate the reuse environment

Table 23. Region control block (RCB) cross reference

Name Hex Offset Hex Value Level

CEERCB 0 1

CEERCB_CICS_QR_TCB 38 3

CEERCB_EXTERNAL 0 2

CEERCB_PCBCHAIN 2C 3

CEERCB_PMADDR 3C 3

CEERCB_PMUSER C 2

CEERCB_REUSE_STATE 30 3

CEERCB_VERSION_ID 28 3

CEERCB_ZDEL 1C 3

CEERCB_ZFREEST 24 3

CEERCB_ZGETST 20 3

CEERCB_ZLOD 18 3

CEERCBBIMODAL B 80 4

CEERCBDMEMBR 14 3

CEERCBEYE 0 3

CEERCBFLAGS B 3

CEERCBHRDWR 9 3

CEERCBLRR B 40 4

CEERCBLRRTR B 20 4

CEERCBSBSYS A 3

CEERCBSYSTM 8 3

Table 24 describes the RCB fields in more detail.

Table 24. RCB field descriptions

Field Contents

CEERCBSYSTM Underlying operating system. The value indicates the operating system supporting the
active program and are defined as follows:
0 Undefined; this value should never occur after initializing Language

Environment
1 Unsupported
2 VM/ESA
3 z/OS

CEERCBHRDWR Underlying hardware. The value indicates the type of hardware on which the
program is executing and are defined as follows:
0 Undefined; this value should never occur after initializing Language

Environment
1 Unsupported
2 System/370, non-XA
3 System/370, XA
4 System/370, ESA

Region Control Block (RCB)

78 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 24. RCB field descriptions (continued)

Field Contents

CEERCBSBSYS Underlying subsystem. The value indicates the subsystem, if any, on which the
program is executing; they are defined as follows:
0 Undefined — this value should never occur after initializing Language

Environment
1 Unsupported
2 None — the program is not executing under a subsystem according to

Language Environment
3 TSO
4 Undefined
5 CICS

CEERCBFLAGS A byte containing various flags. The flags are defined in the bits of the byte, from
high order to low order, as follows:
0 CEERCBBIMODAL; bimodal addressing is available
1 CEERCBLRR; ON= Lib Routine Retention is in effect
2 CEERCBLRRTR; ON= Lib Routine Retention is is being terminated
3–7 Reserved

CEERCBDMEMBR Address of the region member list.

CEERCB_PMUSER Address of work area to be given to pattern match routine when called.

CEERCB_ZLOD Address of region-level load routine. The parameters to this routine are the same as
for the process-level load routine. The modules loaded by this routine remain loaded
until explicitly deleted by the region-level delete routine.

CEERCB_ZDEL Address of the region-level delete routine. The parameters to this routine are the same
as for the process-level delete routine.

CEERCB_ZGETST Address of the region-level GETMAIN routine. The parameters to this routine are the
same as for the process-level GETMAIN routine. Storage obtained by this routine
remains allocated until explicitly freed by the region-level FREEMAIN routine. The
user_word parameter should not be filled in.

CEERCB_ZFREEST Address of the region-level FREEMAIN routine. The parameters to this routine are the
same as for the process-level FREEMAIN routine. The user_word parameter should not
be filled in.

CEERCB_VERSION_ID A fullword integer that contains the Language Environment Product Number, Version,
Release, and Modification levels; the levels are presented as hexadecimal values. This
field is useful when debugging a problem using a static dump. The field's structure
and an example are shown below:
byte 0 Product number in hex
byte 1 Version in hex
byte 2 Release in hex
byte 3 Modification level in hex

04 02 01 00 z/OS LE Version 2, Release 1, Modification level 0.

CEERCB_PCBCHAIN Points to the first PCB on the chain. The PCB may belong to either a batch
environment or PICI environment. The field may be NULL, which would be the case
under CICS and for PIPI processes.

CEERCB_REUSE_STATE Indicates the runtime reuse state; the following values are defined:
0 This is not a reuse environment
1 Reuse environment, full initialization is needed
2 Reuse environment, partial initialization is needed
3 Terminate the reuse environment

Region Control Block (RCB)

Chapter 1. Common interfaces and conventions 79

|

Table 24. RCB field descriptions (continued)

Field Contents

CEERCB_CICS_FLAGS A byte containing various flags. The flags are defined in the bits of the byte, from
high order to low order, as follows:
0 CEERCB_CICS_POK_OK; CICS indicated Program Objects are supported
2 CEERCB_CICS_OTE; CICS OTE is supported
3 CEERCB_CICS_RRWA_OK; CICS indicated Reusable Rununit Work Areas are

available
4 CEERCB_CICS_OTE2_OK; CICS OTE II is supported
7 CEERCB_CICS_TRANS_OK; CICS Dump data set is supported
1, 5, 6 Reserved

CEERCB_CICS_QR_TCB Address of CICS QR TCB.

CEERCB_PMADDR Address of a 31-bit pattern-match routine.

Note:

1. CICS SPF: The RCB can be in key 8 storage under CICS. Member languages
should assume the storage is write-protected when running in key 9. Also,
storage allocate by the region-level GETMAIN service is always in key 8 under
CICS. It is write protected when running in key 9.

2. Storage allocated at the region level should be released at the region level and
storage allocated at the process level should be released at the process level.

Example of a condition information block
The code example (below) shows a sample condition information block for
AMODE 31 applications.
OFFSETS
DEC HEX TYPE LEN NAME (DIM) DESCRIPTION
0 (0) STRUCTURE 268 CEECIB

--
Condition Information Block - Prefix area. Area 0

--
0 (0) CHARACTER 4 CIB_EYE Eye catcher.
4 (4) ADDRESS 4 CIB_BACK Previous CIB.
8 (8) ADDRESS 4 CIB_FWRD Next CIB.
12 (C) SIGNED 2 CIB_SIZ Size of ceexeb
14 (E) SIGNED 2 CIB_VER Version code of ceexeb
16 (10) SIGNED 4 CIB_PLAT_ID Action Code.
20 (14) SIGNED 4 * Reserved. Do not use.

--
CIB Area provides for CSC Information. Area 1

--
24 (18) CHARACTER 120 CIB_AREA1
24 (18) BITSTRING 12 CIB_COND Current Lang Env Condition
24 (18) BITSTRING 8 CIB_COND_64 Condition Ident.
32 (20) ADDRESS 4 CIB_MIB Pointer to the msg insert area.
36 (24) ADDRESS 4 CIB_MACHINE Address of associated machine the

Exception. I_Pgm_loc
40 (28) BITSTRING 12 CIB_OLD_COND Initial Lang Env Condition
40 (28) BITSTRING 8 CIB_OLD_COND_64 Condition Ident.
48 (30) ADDRESS 4 CIB_OLD_MIB Pointer to the msg insert area.
52 (34) BITSTRING 4 CIB_CSC_FLG
52 (34) BITSTRING 1 CIB_FLG_1
53 (35) BITSTRING 1 CIB_FLG_2
54 (36) BITSTRING 1 CIB_FLG_3
55 (37) BITSTRING 1 CIB_FLG_4

1... * Reserved.
.1.. * Reserved.
..1. * Reserved.
...1 * Reserved.
.... 1... CIB_RSM_MVE Resume cursor moved explicit
.... .1.. CIB_MSG_OUT Message service processed

condition.
.... ..1. CIB_RSM_MVR Resume cursor moved relative.
.... ...1 * Reserved.

Region Control Block (RCB)

80 z/OS V2R1.0 Language Environment Vendor Interfaces

the exception
56 (38) CHARACTER 12 CIB_HDL The HandleCursor.
56 (38) ADDRESS 4 CIB_HDL_SF Pointer to Stack Frame.
60 (3C) CHARACTER 8 CIB_HDL_ENTRY Pointer to Current Handler
60 (3C) ADDRESS 4 CIB_HDL_EPT Pointer to entry
64 (40) ADDRESS 4 CIB_HDL_RST Pointer to Language Specific data
68 (44) CHARACTER 12 CIB_RSM The Resume Cursor.
68 (44) ADDRESS 4 CIB_RSM_SF Save area part.
72 (48) ADDRESS 4 CIB_RSM_POINT Instruction address part
76 (4C) ADDRESS 4 CIB_RSM_MACHINE Address of associated machine State.
80 (50) SIGNED 4 CIB_COND_DEFAULT Default condition handler.
84 (54) ADDRESS 4 CIB_PH_CALLEE_SF Physical callee DSA ptr
88 (58) CHARACTER 1 CIB_HDL_SF_FMT Stack format for CIB_HDL_SF

(0 = up, 1 = down)
89 (59) CHARACTER 1 CIB_PH_CALLEE_SF_FMT Stack format for CIB_PH_CALLEE_SF

(0 = up, 1 = down)
90 (5A) CHARACTER 54 * Reserved.

--
Vector hardware and math routines support Area 3

--
144 (90) CHARACTER 32 CIB_VMA Vector and math support
144 (90) CHARACTER 8 CIB_VSR Vector status register save area
152 (98) ADDRESS 4 CIB_VSTOR A(of vector envir. save areas)
156 (9C) ADDRESS 4 CIB_VRPSA A(1st vector reg pair save area)
160 (A0) ADDRESS 4 CIB_MCB A(MCB at time of interrupt)
164 (A4) CHARACTER 8 CIB_MRN Math routine name

172 (AC) BITSTRING 1 CIB_MFLAG Math flag
1... CIB_MDSF1B0 ON for callable service and

CWI, else OFF
.1.. CIB_MDSF1B1 ON for callable service,

else OFF
..11 1111 * Method of math invocation

173 (AD) CHARACTER 3 * Reserved
--

Language Environment Exception Manager Flags. Area 4
--

176 (B0) BITSTRING 4 CIB_BIT Status Flags.
176 (B0) BITSTRING 1 CIB_FLG_5 Language Environment Event

1... CIB_ABF ABEND Caused.
.1.. CIB_PCF Program Check Caused.
..1. CIB_KILL Signal via CEEOKILL
...1 * Empty
.... 1... CIB_TIU Condition management raised TIU
.... .1.. CIB_PROMO New condition result from a

promote.
.... ..1. CIB_SGL Signaled condition.
.... ...1 CIB_EXT Attention Interrupt Caused.

177 (B1) BITSTRING 1 CIB_FLG_6 Language Environment Actions
1... CIB_ARCV Abend reason code valid.
.1.. CIB_MRC Math routine condition.
..1. CIB_ALW_RSM Allow resume operation.
...1 CIB_MRC_TYP MRC type 1.
.... 1... CIB_ENABLE_ONLY Enable only pass (no cond. pass)
.... .1.. CIB_OWNING_SF Hcursor pointing to owning SF
.... ..1. CIB_SF0 Doing post SF0 scan.
.... ...1 CIB_TC_DONE Members informed of condition.

178 (B2) BITSTRING 1 CIB_FLG_7 Named Conditions.
1... CIB_STG Storage Condition.
.1.. CIB_SDWA_SET Indicates an SDWA is associated

with the condition
..1. * Empty.
...1 * Empty.
.... 1... * Empty.
.... .1.. * Empty.
.... ..1. * Empty.
.... ...1 CIB_NOREC Do not allow recursion cond

179 (B3) BITSTRING 1 CIB_FLG_8 Flags used to ask for dump.
--

Language Environment Extras. Area 5
--

180 (B4) CHARACTER 88 CIB_AREA5
--

ABEND Codes copied from the SDWA
--

180 (B4) SIGNED 4 CIB_ABCD Abend code word.
184 (B8) SIGNED 4 CIB_ABRC Abend Reason Word.
188 (BC) CHARACTER 8 CIB_ABNAME Abend. load module name in sdwa

--
Information relating to the most significant Save area.

CEECIB

Chapter 1. Common interfaces and conventions 81

--
196 (C4) ADDRESS 4 CIB_PL Pointer to the prolog

see cib_ppav for version of
PAA we are pointing at

200 (C8) ADDRESS 4 CIB_SV2 Save area of first significant
Language Environment Program

204 (CC) ADDRESS 4 CIB_SV1 Address of save area at time of the
exception.

208 (D0) ADDRESS 4 CIB_INT Address of instruction causing

--
Miscellaneous information.

--
212 (D4) BITSTRING 4 CIB_Q_DATA_TOKEN Token passed by CICS Routine.
216 (D8) ADDRESS 4 CIB_FDBK Address of feedback token for

signaled conditions.
220 (DC) SIGNED 4 CIB_FUN Member list function code
224 (E0) CHARACTER 4 CIB_TOKE Token from CEEHDL routines or Ptr to

SF that cased the poll to invoke Mbr
Ex Handler

228 (E4) CHARACTER 4 CIB_MID ID Code at time of interrupt.
232 (E8) SIGNED 4 CIB_STATE Codes used to identify activity

associated with this event.
236 (EC) SIGNED 4 CIB_RTCC Action Code.
240 (F0) SIGNED 4 CIB_PPAV Version of PPA in Cib_pl

-1 = C/370 Version 1
1 = Language Environment 1.1.0

244 (F4) CHARACTER 8 CIB_AB_TERM_EXIT Name of the abnorm term exit in
control.

252 (FC) ADDRESS 4 CIB_SDWA_PTR Address of SDWA associated with
the condition.

256 (100) UNSIGNED 4 CIB_SIGNO Signal number (This
field will be zero if the
associated condition has
not been mapped to
a signal)

260 (104) ADDRESS 4 CIB_PPSD Pointer to Lang Env’s copy
of the PPSD
(For a description of the PPSD,
see BPXYPPSD (z/OS UNIX)
or CEEOSID (Language Environment)

264 (108) CHARACTER 4 * Reserved.

The following code example shows the cross reference summary of the condition
information block for AMODE 31 applications.

HEX HEX
NAME OFFSET VALUE LEVEL

CEECIB 0 1
CIB_AB_TERM_EXIT F4 3
CIB_ABCD B4 3
CIB_ABF B0 80 4
CIB_ABNAME BC 3
CIB_ABRC B8 3
CIB_ALW_RSM B1 20 4
CIB_ARCV B1 80 4
CIB_AREA1 18 2
CIB_AREA5 B4 2
CIB_BACK 4 2
CIB_BIT B0 2
CIB_COND 18 3
CIB_COND_DEFAULT 50 3
CIB_COND_64 18 4
CIB_CSC_FLG 34 3
CIB_ENABLE_ONLY B1 08 4
CIB_EXT B0 01 4
CIB_EYE 0 2
CIB_FDBK D8 3
CIB_FLG_1 34 4
CIB_FLG_2 35 4
CIB_FLG_3 36 4
CIB_FLG_4 37 4
CIB_FLG_5 B0 3

CIB_FLG_6 B1 3
CIB_FLG_7 B2 3
CIB_FLG_8 B3 3

CEECIB

82 z/OS V2R1.0 Language Environment Vendor Interfaces

CIB_FUN DC 3
CIB_FWRD 8 2
CIB_HDL 38 3
CIB_HDL_ENTRY 3C 4
CIB_HDL_EPT 3C 5
CIB_HDL_RST 40 5
CIB_HDL_SF 38 4
CIB_HDL_SF_FMT 58 3
CIB_INT D0 3
CIB_KILL B0 20 4
CIB_MACHINE 24 3
CIB_MCB A0 3
CIB_MDSF1B0 AC 80 4
CIB_MDSF1B1 AC 40 4
CIB_MFLAG AC 3
CIB_MIB 20 4
CIB_MID E4 3
CIB_MRC B1 40 4
CIB_MRC_TYP B1 10 4
CIB_MRN A4 3
CIB_MSG_OUT 37 04 5
CIB_NOREC B2 01 4
CIB_OLD_COND 28 3
CIB_OLD_COND_64 28 4
CIB_OLD_MIB 30 4
CIB_OWNING_SF B1 04 4
CIB_PCF B0 40 4
CIB_PH_CALLEE_SF 54 3
CIB_PH_CALLEE_SF_FMT 59 3
CIB_PL C4 3
CIB_PLAT_ID 10 2
CIB_PPAV F0 3
CIB_PPSD 104 3
CIB_PROMO B0 04 4
CIB_Q_DATA_TOKEN D4 3
CIB_RSM 44 3
CIB_RSM_MACHINE 4C 4
CIB_RSM_MVE 37 08 5
CIB_RSM_MVR 37 02 5
CIB_RSM_POINT 48 4
CIB_RSM_SF 44 4
CIB_RTCC EC 3
CIB_SDWA_PTR FC 3
CIB_SDWA_SET B2 40 4
CIB_SF0 B1 02 4
CIB_SGL B0 02 4
CIB_SIGNO 100 3
CIB_SIZ C 2
CIB_STATE E8 3
CIB_STG B2 80 4
CIB_SV1 CC 3
CIB_SV2 C8 3
CIB_TC_DONE B1 01 4
CIB_TIU B0 08 4
CIB_TOKE E0 3
CIB_VER E 2
CIB_VMA 90 2
CIB_VRPSA 9C 3
CIB_VSR 90 3
CIB_VSTOR 98 3

Example of a machine state block
The example below shows a sample of the machine state block.

Note:

1. After program checks, if the TRAP(ON,NOSPIE) and ALL31(OFF) runtime
options are in effect, the HR_VALID flag bit in the Machine State FLAGS field will
be off; this indicates that the saved high registers are not valid. After ABENDs,
if the ALL31(OFF) runtime option is in effect, the HR_VALID flag bit in the
Machine State FLAGS field will be off; this indicates that the saved high registers
are not valid.

CEECIB

Chapter 1. Common interfaces and conventions 83

2. If a nested enclave ends because of an unhandled condition and a 4094-40
ABEND is declared, the high registers may not be valid in the Machine State
that contains information about the 4094-40 ABEND.

3. If an ABEND occurs or a program check occurs with the TRAP(ON,NOPSPIE)
runtime option in effect, and the SDWA registers at the time of interrupt (in the
SDWAGRSV field) are not appropriate or recognizable, and Language
Environment instead saves the registers from the SDWASRSV field in the
Machine State, the high registers may not be valid in the Machine State.
OFFSETS

DEC HEX TYPE LEN NAME (DIM) DESCRIPTION

0 (0) STRUCTURE 512 MCH Lang Env Machine State
0 (0) CHARACTER 4 MCH_EYE Eye Catcher
4 (4) SIGNED 2 MCH_SIZE Size of area
6 (6) SIGNED 2 MCH_LEVEL Level of generation
8 (8) CHARACTER 64 REG GPR at interrupt
8 (8) SIGNED 4 GPR (0:15) Individual regs
72 (48) CHARACTER 8 PSW Basic or extended PSW at

time of interrupt
80 (50) SIGNED 4 INTI EPIE Fields - ILC & code
80 (50) SIGNED 2 ILC Extended PSW ILC
82 (52) SIGNED 2 IC Extended PSW interrupt
82 (52) UNSIGNED 1 IC1 1st byte of Ext

PSW Int code
83 (53) UNSIGNED 1 IC2 2nd byte of Ext

PSW Int code
84 (54) ADDRESS 4 PFT Page fault location
88 (58) CHARACTER 32 FLT Float regs
88 (58) CHARACTER 8 FLT_0 Floating point reg 0
96 (60) CHARACTER 8 FLT_2 Floating point reg 2
104 (68) CHARACTER 8 FLT_4 Floating point reg 4
112 (70) CHARACTER 8 FLT_6 Floating point reg 6
120 (78) BITSTRING 44 * (reserved)
164 (A4) ADDRESS 4 INT_SF Interrupt stack frame
168 (A8) BITSTRING 11 * (reserved)
179 (B3) BITSTRING 1 FLAGS MCH flags

.1.. HR_VALID HI regs saved in MCH

..1. INT_SF_VALID "X’20’" Interrupt stackframe
valid in INT_SF field

...1 SAVSTACK "X’10’" CEECAA_SAVSTACK field
was set to the value in INT_SF
field at interrupt time

.... 1... SAVSTACK_ASYNC
"X’08’" CEECAA_SAVSTACK_ASYNC
field pointed to a field that
was set to the value in INT_SF
field at interrupt time

.... .1.. AR_VALID Access registers saved in MCH

.... ..1. VR_VALID Vector registers saved in MCH
1... ...1 * Internal flags

180 (B4) BITSTRING 4 * (reserved)
184 (B8) ADDRESS 4 MCH_EXT Ptr to language MCH extension
188 (BC) BITSTRING 4 MCH_BEA Copy of SDWA_BEA
192 (C0) ADDRESS 4 SAVSTACK_ASYNC_PTR

Value in CEECAA_SAVSTACK_ASYNC
field at time of interrupt
(for debugging purposes only)

196 (C4) BITSTRING 12 * (reserved)
208 (D0) CHARACTER 104 AFP Additional FP regs
208 (D0) CHARACTER 8 FLT_1 Floating point reg 1
216 (D8) CHARACTER 8 FLT_3 Floating point reg 3
224 (E0) CHARACTER 8 FLT_5 Floating point reg 5
232 (E8) CHARACTER 8 FLT_7 Floating point reg 7
240 (F0) CHARACTER 8 FLT_8 Floating point reg 8
248 (F8) CHARACTER 8 FLT_9 Floating point reg 9
256 (100) CHARACTER 8 FLT_10 Floating point reg 10
264 (108) CHARACTER 8 FLT_11 Floating point reg 11

272 (110) CHARACTER 8 FLT_12 Floating point reg 12
280 (118) CHARACTER 8 FLT_13 Floating point reg 13
288 (120) CHARACTER 8 FLT_14 Floating point reg 14
296 (128) CHARACTER 8 FLT_15 Floating point reg 15
304 (130) CHARACTER 4 FPC FP control register

1... FPC_IMI IEEE Invalid operation mask
.1.. FPC_IMZ IEEE Divide by zero mask

CEEMCH

84 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|

..1. FPC_IMO IEEE Overflow mask

...1 FPC_IMU IEEE Underflow mask

.... 1... FPC_IMX IEEE Inexact mask

.... .111 FPC_RS0 Byte 0 reserved bits
305 (131) 1... FPC_SFI IEEE Invalid

operation flag
.1.. FPC_SFZ IEEE Divide by zero flag
..1. FPC_SFO IEEE Overflow flag
...1 FPC_SFU IEEE Underflow flag
.... 1... FPC_SFX IEEE Inexact flag
.... .111 FPC_RS1 Byte 1 reserved bits

306 (132) BITSTRING 1 FPC_DXC Data Exception Code
307 (133) 1111 11.. FPC_RS3 Byte 3 reserved bits

.... ..11 FPC_RM Rounding Mode
308 (134) BITSTRING 1 _AFP_FLAGS AFP flag byte

1... AFP_SAVED FPRs 1,3,5,7,8-15 were
saved in MCH

309 (135) CHARACTER 11 RSV2 reserved
320 (140) CHARACTER 64 REG_H GPR-hi at interrupt
320 (140) SIGNED 4 GPR_H (0:15) Individual regs
384 (180) CHARACTER 64 AREG Access registers
384 (180) SIGNED 4 AR(0:15) Individual access registers
448 (1C0) CHARACTER 64 RSV3 reserved
512 (200) CHARACTER 512 VREG Vector registers
512 (200) CHARACTER 16 VR (0:31) Individual vector registers

The code example (below) shows the cross reference summary of the machine state
block.

HEX HEX
NAME OFFSET VALUE LEVEL

MCH 0 1
_AFP_FLAGS 134 2
AFP_SAVED 134 80 3
APF D0 2
AR_VALID B3 04 3
AR(0:15) 180 3
AREG 180 2
FLAGS B3 00 2
FLT 58 2
FLT_0 58 3
FLT_1 D0 3
FLT_10 100 3
FLT_11 108 3
FLT_12 110 3
FLT_13 118 3
FLT_14 120 3
FLT_15 128 3
FLT_2 60 3
FLT_3 D8 3
FLT_4 68 3
FLT_5 E0 3
FLT_6 70 3
FLT_7 E8 3
FLT_8 F0 3
FLT_9 F8 3
FPC 130 3
FPC_DXC 132 4
FPC_IMI 130 80 4

FPC_IMO 130 20 4
FPC_IMU 130 10 4
FPC_IMX 130 08 4
FPC_IMZ 130 40 4
FPC_RM 133 0X 4
FPC_RS0 130 0X 4
FPC_RS1 131 0X 4
FPC_RS3 133 XX 4
FPC_SFI 131 80 4
FPC_SFO 131 20 4
FPC_SFU 131 10 4
FPC_SFX 131 08 4
FPC_SFZ 131 40 4
GPR(0:15) 8 3
GPR_H(0:15) 140 3
HR_VALID B3 40 3
IC 52 3
IC1 52 4
IC2 53 4

CEEMCH

Chapter 1. Common interfaces and conventions 85

|
|

ILC 50 3
INTI 50 2
INT_SF A4 2
INT_SF_VALID B3 20 3
MCH_BEA BC 00000000 2
MCH_EXT B8 2
MCH_EYE 0 2
MCH_LEVEL 6 2
MCH_SIZE 4 2
PFT 54 4
PSW 48 2
REG 8 2
REG_H 140 2
RSV2 135 2
RSV3 1C0 2
SAVSTACK B3 10 3
SAVSTACK_ASYNC B3 8 3
SAVSTACK_ASYNC_PTR C0 2
VR_VALID B3 02 3
VR(0:31) 200 3
VREG 200 2

Language Environment member list and event handler
A Language Environment member list is created during region, process, enclave,
and thread initialization. Each is a table of member-specific data. The length of the
member list is determined by the highest assigned member number, which is 18
for Language Environment. Thus, indices range from 0 to 17 inclusive. An entry is
reserved for each member that is known to Language Environment. The offset into
the list is determined by using the member code defined in the program prolog
(PPA2) as an index. The contents of the member list are shown in Figure 29 on
page 87.

Note:

1. A member language should write only into its CEEMEMLDEF field in the
member list.

2. CICS SPF: The RCB can be in key 8 storage under CICS. Member languages
should assume the storage is write protected when running in key 9. Member
languages should insure that they are running in key 8 before writing into the
member list.

CEEMCH

86 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|
|

Table 25 describes the member list fields in more detail.

Table 25. Member list field descriptions

Field Contents

CEEMEMLEYE Eyecatcher for the member list.

CEEMEMLVER Version number for the control block; set to 1.

CEEMEMLLEN Total length of the control block in bytes.

CEEMEMLSIZE Number of entries in the control block; set to 18.

CEEMEMLDEF Eight bytes, member-defined; initially set to zero.

CEEMEMLEXIT Address of the member language event handler. If the member
event handler does not exist, this field is set to point to a dummy
event handler, which always returns -4 in R15. This field is set
during region, process, or enclave initialization. For thread-level
processing, this field is reserved.

When certain events occur, Language Environment calls a member-provided event
handler, and passes it a parameter list consisting of an event code and other
event-specific information. This allows the member to process its own resources
within the context of the event.

Language Environment can allocate any of its control blocks above the line. Any
member code that accesses a Language Environment control block must run in
AMODE(31) to have addressability to the control blocks.

Language Environment gets a member's event handler address from the member
list entry. Each language running in a Language Environment environment that
provides a signature CSECT or that appears in the dependent member list of a

CEEMEMLEYE CL8'CEEMEML'

CEEMEMLSIZE - Number of entries in member list

CEEMEMLDEF - Member 0 defined (8 bytes)

CEEMEMLEXIT(0) - Address of member 0 event handler for
region, process, or enclave. Reserved for thread level

CEEMEMLVER - Version CEEMEMLLEN - length

Reserved

-0018

-0010

-000C

-0008

-0004

000000

000008

00000C

16*n+0

16*n+8

16*n+C

Reserved

Reserved

CEEMEMLDEF(n) - Member n defined (8 bytes)

CEEMEMLEXIT(n) - Address of member n event handler for region,
process, or enclave. Reserved for thread level

Reserved

/
/

/
/

Figure 29. Member list format

Member list

Chapter 1. Common interfaces and conventions 87

signature CSECT is required to have an event handler routine. For a description of
signature CSECTs, see “Signature CSECT” on page 151. The load name of the event
handler routine must be CEEEVnnn, where nnn is a decimal member number. The
values for nnn are in Figure 16 on page 20.

During enclave initialization, CEEEVnnn is dynamically loaded. Its address is
saved in the member list as the event handler entry point. All other entries in the
member list are initialized to the address of a Language Environment-provided
default event handler. Event handlers are required to set a return code in R15. If an
event handler does not process the event being called, the return code should be
set to -4. For more information about events, see Chapter 15, “Member language
information,” on page 483.

Language Environment callable services calling conventions
Language Environment callable services supports the following argument passing
styles; language semantics usually determine when data are passed by value and
when they are passed by reference:
v Indirect/by value
v Indirect/by reference

Calls that occur within the same HLL, or between the compiled code and its
associated HLL library support routine are free to choose the manner in which
arguments are passed.

In Language Environment, the following calling conventions are followed.
v All Language Environment languages must support the indirect access mode for

passing arguments for external calls.
v The last argument pointer in the argument list body has the high-order bit ON.

Thus, the length of the argument list can be determined through the argument
list itself.

v When no argument is provided, R1 must be zero.
v All addresses are considered to be 31-bit addresses. Explicit ESA support is not

provided.
v All stack frames on the call path must be back-chained, even if they are not

explicitly on the Language Environment-managed stack.
v When a stack frame is present on the Language Environment-managed stack, it

must be in the format of a DSA containing a valid NAB. Except for those
exceptions noted in “Language Environment dynamic storage area –
non-XPLINK” on page 39, the first word of the DSA must contain zero.

v Language Environment callable services, at times, impose their own restrictions.

Callable services syntax declarations
Throughout this document, the callable service syntax is shown as a C function
prototype; a function declaration for the routine which is called. Data structures are
described by C struct definitions.

By using the C function prototype, the argument list as well as the data type of
each argument can be shown accurately and in one place. In addition, the
prototype makes clear if a parameter is passed by value or by reference. The caller
then matches parameters to the argument descriptions.

Member list

88 z/OS V2R1.0 Language Environment Vendor Interfaces

The application writer's interface is described from the callee's point of view.
Usually, when the call is described from the caller's point of view, the data type of
each parameter is not clear unless it is explained later in the document. It is also
often not clear which parameters are required for calling by reference rather than
by value.

Some basic properties of the callable services are:
v C function declarations have a return type of void since they are procedures. No

value is returned by the function.
v All parameters are passed by reference.
v Each argument is a pointer.
v Brackets '[]' surround parameters that are optional.

Optional parameter support
Optional parameters are represented by a zero address in the parameter address
list. Not all HLL compilers are capable of generating this form of optional
parameter. Thus, the syntax examples are misleading for some HLLs.

Language Environment tolerates the high-order bit on in the parameter address list
for an optional parameter. The high-order bit is used to indicate the “end-of-list”.

Data type definitions
To insure a consistent interpretation of the arguments, the data type definitions
listed in Table 26 are used in the callable service descriptions. When declaring fixed
length strings in C or C++ of size n, specify a length of n+1 so the NULL can be
placed in the n+1 position. Language Environment neither sets nor interrogates the
n+1st position. A stack frame in the next section is equivalent to a DSA.

Table 26. Data type definitions for callable services

Data type Definition

CEE_COND A condition variable, as defined by the type pthread_cond_t

CEE_CONDATTR A condition variable attributes object, as defined by the type
pthread_condattr_t

CEE_ENTRY Entry point address of a Language Environment-conforming
function to be run on a new thread

CEE_LOCKATTR A mutex attributes object, as defined by the type
pthread_mutexattr_t, or a read-write lock attributes object, as
defined by the type pthread_rwlockattr_t

CEE_MUTEX A mutex object, as defined by the type pthread_mutex_t

CEE_PTAT A thread attributes object, as defined by the type pthread_attr_t

CEE_RWLOCK A read/write lock, as defined by the type pthread_rwlock_t

CEE_THDID An identifier representing a pthread-crafted thread, as defined by
the type pthread_t

CEE_THDKEY A key identifier, as defined by the type pthread_key_t, that is used
to associate thread-specific data with a given thread

CEE_TOKEN A miscellaneous identifier, used in specific instances where more
general data types do not apply

CHARn A string (character array) of length n

CONST INT A fullword constant numeric value

ENTRY Language-dependent entry constant and/or entry variable

Callable Services Syntax Declarations

Chapter 1. Common interfaces and conventions 89

Table 26. Data type definitions for callable services (continued)

Data type Definition

FEED_BACK A mapping of the feedback (condition) code; see Chapter 5,
“Condition representation,” on page 229.

FLOAT4 A 4-byte single-precision floating-point number

FLOAT8 A 8-byte double-precision floating-point number

INT2 A 2-byte signed integer

INT4 A 4-byte signed integer

LABEL Language-dependent label variable

LABEL370 370 extensions to CSC label variable; see “LABEL variable” on page
91

POINTER A fullword address pointer

VSTRING A Language Environment string of arbitrary length, which is used
for polymorphic string parameter declarations. The string may be
any one of a fixed-length string, a null-terminated varying string
(known as an ASCIIZ string), or a length-prefixed string. Language
Environment assumes the following defaults for VSTRING:

v For input parameters, assume a halfword length-prefixed
character string.

v For output parameters, assume a fixed-length 80-character string
padded right with blanks.

Strong alignment is assumed in all data structures. Each item is aligned on the
proper boundary for its type with padding, if necessary.

ENTRY variable
Language Environment defines an entry variable as a doubleword, and is shown in
Figure 30.

The Language Environment support of entry variables has the following
characteristics:
v An entry variable can be either an external routine (nesting level zero), or an

internal routine (nesting level greater than zero). The nesting level can be
determined statically at compile time.

v The Language Environment use of an entry variable is restricted to an external
variable, for example, a nesting level zero.

v An entry variable consists of a doubleword. The first word contains the entry
point address of the routine, and for external routines the second word contains
a zero.

v An HLL can use the second word of the entry variable for internal routines to
enforce block scoping rules.

Code_address+0

+4 0 (external) / HLL specific

Figure 30. Format of an entry variable

Data Type Definitions

90 z/OS V2R1.0 Language Environment Vendor Interfaces

v An entry variable for an internal (nested) routine can only be created and used
by the same HLL. It is the responsibility of the called routine to establish its
proper block scope as presented by the entry variable.

LABEL variable
Language Environment defines a label variable to have a fixed portion and a
language-dependent portion that is pointed to by an extension field. The label
variable is used in the service CEEGOTO. For more information, see “CEEGOTO
— restart execution at specified label” on page 265.

Callable service example
An example of a callable service declaration is shown below for the fictitious
service CEESERV. A list explaining each argument follows the syntax description.
The information given for each argument is:
v Whether it is an input only, input/output, or output only argument
v Any values that have special meaning
v A description of invalid parameters when necessary

Usage notes generally follow each description. They contain information about
error conditions and any clarifications needed to completely specify the behavior of
the service.

Syntax

void CEESERV(heap_id, size, address, [fc])
INT4 *heap_id;
INT4 *size;
POINTER *address;
FEED_BACK *fc;

In C, a variable that has an asterisk preceding it is a pointer. To be more precise,
*heap_id is a pointer to the variable heap_id in the statement x = *heap_id. It has
the value of the pointer heap_id.

Invoking a callable service from C/C++
Many of the Compiler-Writer Interfaces (CWIs) do not exist as a STUB and there is
no C interface. However, there are two methods for invoking this service from C or
C++; in either case, a C prototype for the callable service must be defined. Note
that most of the Callable Services use OS linkage.
1. Build a STUB in assembler and link-edit that stub with the application.
2. Construct C mappings of the Common Anchor Area (CAA) and the library

vector where the address of the Callable Service is stored, and use C
declarations to access the routine. This is identical to how the C Run Time
Library accesses Vendor Interface functions.

Figure 31 on page 92 shows an example of calling the CEETBCK callable service
from C. In the example, the function caa() is a macro that addresses the CAA
using the _gtca builtin. The typedefs for some parameters (used with Language
Environment interfaces) are declared in <leawi.h>. The CAA contains the offsets
where the Language Environment library vectors (CEECAACELV and
CEECAALEOV) are located. It also documents the offset from the start of the
specific library vector (in this case CEECAALEOV) to the address of the CEETBCK
callable service. For information about the CAA, see “Language Environment
common anchor area” on page 42. For information about CEETBCK, see z/OS

ENTRY variable

Chapter 1. Common interfaces and conventions 91

Language Environment Programming Reference.

If you want to call a Language Environment callable service from DLL-compiled C
code (or from C++ code), you need to compile with the CALLBACKANY
suboption of the DLL compiler option. This is because the library vector is an array
of addresses, and DLL-compiled code needs to make calls through function
descriptors. Additionally, you must turn off the high-order bit of the address in the
library vector. If the high-order bit is on, then the code that makes the
CALLBACKANY call acts as though there are no passed parameters. To do this,
the call looks like:

#ifndef __gtca
#define __gtca() _gtca()
#ifdef __cplusplus
extern "builtin"
#else
#pragma linkage(_gtca,builtin)
#endif
const void* _gtca(void);
#endif

#ifndef caa
#define caa() ((struct caa *)__gtca())
#endif
struct caa
{
char foo[816];
void *ceecaaleov;
};

struct ceeleov
{
char foo[304];
void *CEELEOVTBCK;
};

typedef struct ceeleov CEELEOV;
typedef void ceetbck_cwi_func
(void **, int *, void **, int *, char *, int *,
int *, int *, char *, int *, int *, int *,
void **, int *, int *, char *, int *, void **,
int *, _FEEDBACK *);

#define CEETBCK_CWI
((ceetbck_cwi_func *)(((CEELEOV *)
(caa()->ceecaaleov))->CEELEOVTBCK))

ceektbck_cwi_func *tbkfn_ptr =
(ceektbck_cwi_func *)CEETBCK_CWI;

(*tbkfn_ptr)(arg1, arg2, arg3, ...); /* call CEETBCK */

Figure 31. Example: calling CEETBCK from C

ceektbck_cwi_func *tbkfn_ptr =
(ceektbck_cwi_func *)((long)CEETBCK_CWI & 0x7FFFFFFF);

(*tbkfn_ptr)(arg1, arg2, arg3, ...); /* call CEETBCK */

Callable Service Example

92 z/OS V2R1.0 Language Environment Vendor Interfaces

Chapter 2. CALL linkage conventions

This chapter describes the program call linkage conventions supported by
Language Environment:
v The standard Language Environment linkage, used by all Language

Environment-conforming languages
v FASTLINK linkage, used by default with z/OS C++ and High Performance

Compiled Java (HPCJ)
v Extra Performance Linkage (XPLINK) produced by the z/OS XL C and C++

compilers to provide optimal performance for a certain class of applications

Terminology
The terminology around the call or function invocation is not exactly the same in
all HLLs. Figure 32 summarizes the terminology in this section.

The formats of a Language Environment “argument list” and “parameter list” are
identical. Rather than refer to both formats in this section, the term “argument list”
only is used. However, everything that applies to an argument list format also
applies to a parameter list format.

There are two access modes for arguments:

Direct The value of the argument is placed directly in the argument list body.

Indirect
The body of the argument list contains a pointer to the argument value.

Programming languages have two basic argument passing semantics:

By value
The value of the object is passed. No change made by the callee to the
argument value is reflected in the calling routine.

TERMINOLOGY REFRESHER

Routine that calls
(a caller)

Routine being
called (callee)

argument list parameter
list

Caller passes
Callee
receives

Callee
returns

a value
(optionally)

call

Figure 32. CALL terminology refresher

© Copyright IBM Corp. 1991, 2015 93

By reference
Changes made by the callee to the argument value are reflected in the
calling routine.

Standard CALL linkage conventions
The prime purpose of a call or a function invocation is to transfer control to a
target routine and optionally pass/receive data to/from the called routine. The
transfer of control and communication must be as efficient as possible. Language
Environment assumes that:
1. Caller's arguments match the callee's parameters.
2. The only supported way to pass arguments on the ILC call is indirectly, either

by reference or by value.
3. Pointers longer than 31 bits are NOT supported.
4. Pointers are assumed to be 31-bit capable.

This section describes the standard Language Environment protocols for passing
arguments to external routines. These protocols do not apply to internal routines or
to compiled code calling its own library routine. Each HLL is free to decide the
method for transferring control as well as passing arguments between internal
routines.

Register usage
The following list shows the register usage and linkage.

GPR1 => a list of argument addresses, terminated with an address
containing a 1 in its high order bit

GPR2-12 => Preserved
GPR13 => an 18-word save area
GPR14 => the return point in the caller’s routine
GPR15 => the entry point in the called routine
FPRs => not preserved, value undefined
VR24-31 => arguments (depending upon type)

Stack format
Figure 33 shows the standard Language Environment stack storage model.

UPWARD-GROWING STACK
HIGH

LOW

init_size incr_size incr_size
DSA 4

DSA 3

DSA 2 DSA 6

DSA 7

INITIAL SEGMENT INCREMENT 1 . . . INCREMENT n

DSA 1

DSA 8

DSA n
DSA 5

Figure 33. Language Environment Non-XPLINK stack storage model

CALL linkage conventions

94 z/OS V2R1.0 Language Environment Vendor Interfaces

|

Allocate/extend/return storage in user stack
DSA allocation code sequences must be used whenever a DSA is required and/or
needs to be extended. The generated code and the Language Environment and
member libraries use code sequences such as the following examples. Rules which
must be followed are:
v A DSA allocated in the Language Environment user stack must be in the

Language Environment format. Storage management expects the CEEDSANAB
field to be located at offset X'4C' from the start of the DSA. Figure 27 on page 40
shows the format of a Language Environment DSA.

v Stack storage must be requested in doubleword increments, and is obtained from
the stack in doubleword increments. This ensures that a DSA begins on a
doubleword.

Figure 34 on page 96 shows an example of the code sequence to allocate a DSA in
the user stack when the calling routine is known to pass the Language
Environment Anchor Area address in R12. R13 points to a valid DSA containing
the current next available byte address, CEEDSANAB. Note that R13 is set to point
to the new DSA only after the new DSA has been completely constructed.

Figure 35 on page 96 shows an example of a code sequence that gets additional
storage appended to the DSA in the user stack. Note that the DSA extension is not
guaranteed to be contiguous with the DSA.

Figure 36 on page 97 shows an example of a code sequence freeing a DSA
extension. The code sequence depends upon the proper initialization of
CEEDSAPNAB (prolog NAB) before the DSA is extended. Member languages can
save the prolog NAB in CEEDSAPNAB or elsewhere. The NAB value is the DSA
address as it has been acquired by prolog code and before it is extended. There is
no Language Environment requirement to use the CEEDSAPNAB field for this
purpose when allocating user stack extensions. However, there is a Language
Environment requirement to use CEEDSAPNAB when allocating from the Library
stack.

Note: If the STACK(,,,FREE) runtime option is in effect, empty user stack segments
are returned to the operating system at the next stack overflow request, or at
termination.

The DSA stack storage in the current user stack segment is automatically freed
when R13 is updated by the L 13,4(,13) instruction at procedure or block
termination. Freeing stack storage occurs because the current NAB is always
accessed from the DSA pointed to by R13 when a routine is entered.

The registers do not need to be those shown in the examples as long as the
interface to the stack overflow routine, whose address is contained in
CEECAAGETS, adheres to the following conditions:
v The stack overflow routine is called with a BALR instruction. R15 contains the

entry point address of the stack overflow routine and R14 the address of the
next sequential instruction in the caller routine.

v R0 contains the newly generated NAB address from the BALR instruction. That
is, it would have been the NAB address if the segment were long enough. This
value and the information in the DSA allows the stack overflow routine to
determine the minimum amount of storage to obtain for the next stack segment.

v R13 contains the address of the last DSA in the stack and this DSA contains a
valid NAB value.

Standard CALL linkage

Chapter 2. CALL linkage conventions 95

Examples of Managing the User Stack: The examples in this section illustrate
some user stack management techniques. Figure 34 shows how to manage a DSA
allocation.

Figure 35 shows how to manage a DSA extension.

ENTRYPT B *+20 SKIP OVER CONSTANT AREA
DC AL4(X’00C3C5C5’) EYECATCHER ’.CEE’
DC AL4(length) DSA LENGTH
DC AL4(CEEPPA1-ENTRYPT) OFFSET TO PPA1
B 1(,15) WRONG ENTRY POINT, CAUSE EXCEPTION

CL..0 STM 14,12,12(13) SAVE CALLER’S REGISTERS
L Ra,CEEDSANAB-CEEDSA(,13) LOAD NEW DSA ADDRESS
L 0,length LOAD DSA LENGTH
ALR 0,Ra GENERATE NEW NAB ADDRESS
CL 0,CEECAAEOS-CEECAA(,12) EXCEED CURRENT STORAGE SEGMENT?
BNH CL..1 NO - WE GOT IT
L 15,CEECAAGETS-CEECAA(,R12) ADDRESS OF STACK SEGMENT MGR

*-- Input to stack overflow routine
*-- 1) R0 calculated required next available byte
*-- 2) R12 address of CEECAA
*-- 3) R13 caller’s save area address
*-- 4) R14 return address
*-- 5) R15 stack overflow routine entry point address

BALR 14,15 GET ANOTHER STACK SEGMENT
*-- Upon return from the stack segment manager:
*-- 1) R15 has the new DSA address
*-- 2) R0 has the new NAB address

LR Ra,15 PUT DSA ADDRESS INTO WORK REGISTER
CL..1 ST 13,4(,Ra) BACK CHAIN NEW DSA TO CALLER

ST 0,CEEDSANAB-CEEDSA(,Ra) STORE NEW NAB ADDRESS
*-- The following instruction is required to set the

Language Environment architecture.
*-- first word of the DSA to zero (some exceptions noted).

XC 0(2,Ra),0(Ra) ZERO FIRST HALF WORD
*-- The following instruction is optional. It is used to store the
*-- prolog NAB address for later use. For example, to free a DSA
*-- extension, we just copy CEEDSAPNAB back to CEEDSANAB.

ST 0,CEEDSAPNAB-CEEDSA(,Ra) STORE END OF PROLOG NAB ADDRESS
LR 13,Ra SET DSA POINTER REGISTER

Figure 34. DSA allocation, user stack

L Ra,CEEDSANAB-CEEDSA(,13) LOAD DSA EXTENSION POINTER
L 0,length LOAD EXTENSION LENGTH
ALR 0,Ra GET STACK NAB ADDRESS
CL 0,CEECAAEOS-CEECAA(,12) EXCEED CURRENT STORAGE SEGMENT?
BNH CL..1 NO - WE GOT IT
L 15,CEECAAGETSX-CEECAA(,R12) ADDR OF STACK EXTENSION RTN

*-- Input to DSA extension overflow routine
*-- 1) R0 calculated required next available byte
*-- 2) R12 address of CEECAA
*-- 3) R13 caller’s Language Environment-managed DSA
*-- 4) R14 return address
*-- 5) R15 DSA extension overflow routine entry point address

BALR 14,15 GET ANOTHER STACK SEGMENT
*-- Upon return from the stack segment manager:
*-- 1) R15 has the new DSA extension address
*-- 2) R0 has the new NAB address

LR Ra,15 SET DSA EXTENSION POINTER REGISTER
CL..1 ST 0,CEEDSANAB-CEEDSA(,13) STORE NEW NAB ADDRESS

Figure 35. DSA extension, user stack

Standard CALL linkage

96 z/OS V2R1.0 Language Environment Vendor Interfaces

In Figure 36, the NAB value was previously saved in field CEEDSAPNAB.
Languages that save the prolog NAB at a different location should replace
CEEDSAPNAB-CEEDSA(13) with the appropriate storage location. Do not use this
code sequence unless CEEDSAPNAB was initialized as shown at the bottom of
Figure 34 on page 96.

Obtain a DSA in user stack with R13 pointing to save area
Figure 37 on page 98 shows an example of the code sequence to allocate a DSA in
the user stack when the calling routine is known to be passing the Language
Environment Anchor Area address in R12 and R13 points to a O/S save area that
might or might not be a DSA. The DSA stack storage in the current user stack
segment is automatically freed when R13 is updated by the L 13,4(,13) instruction
at procedure or block termination.

When a DSA cannot be contained within the current stack, a stack overflow
routine that does not depend upon R13 pointing to a DSA is called. The address of
this overflow routine is held in the CAA at CEECAAGETS1. Typically, this
overflow routine is called after a call to CEEVGTUN, described in “CEEVGTUN —
next available byte locator service” on page 100. The interface is as follows.
v The stack overflow routine is called as shown below using a BALR instruction.

R15 is the entry point address of overflow routine and R14 the return address.
v R1 contains the current NAB.
v R0 contains the result of the BALR instruction. That is, it is what would have

been NAB value if the segment were long enough. This value and the
information in R1 allows the stack overflow routine to determine the minimum
amount of storage to obtain for the next stack segment. The requested amount of
storage for a DSA must be in doubleword increments.

v R13 contains the address of a standard OS save area, which can be a DSA. Note
that the NAB value is not obtained from the save area, and the contents of the
save area are not changed by either the CEEVGTUN routine or the overflow
routine whose address is in CEECAAGETS1.

MVC CEEDSANAB-CEEDSA(4,13),CEEDSAPNAB-CEEDSA(13) FREE EXTENSION USING
SAVED NAB VALUE

Figure 36. Free a DSA extension using saved NAB value

Standard CALL linkage

Chapter 2. CALL linkage conventions 97

Allocate/return storage in library stack
DSA allocation code sequences can be used whenever a DSA is required from the
Language Environment library stack. It is always below the 16M line. Obtaining
storage from the library stack is illustrated in the following examples. Several
coding rules must be followed:
v A DSA allocated in the Language Environment library stack must be in the

Language Environment format. Figure 27 on page 40 shows the format of a
Language Environment DSA. For example, storage management expects the
CEEDSANAB field to be located at offset X'4C' from the start of the DSA.

v Stack storage must be requested in doubleword increments, and is obtained from
the stack in doubleword increments. This ensures that a DSA begins on a
doubleword.

v User stack NAB must be carried forward in the CEEDSANAB field.
v Library stack NAB (CEECAALNAB) is saved in CEEDSAPNAB before being

updated by the current routine.
v Due to this special use of CEEDSAPNAB, library stack extensions cannot be

extended like user stack frames.

Figure 38 on page 99 shows a coding example that allocates a DSA in the library
stack. The maintenance of the user stack CEEDSANAB value is required to allow a

ENTRYPT B *+20 Skip over constant area
DC AL4(X’00C3C5C5’) Eyecatcher ’CEE’
DC AL4(length) DSA Length rounded to a dword
DC AL4(CEEPPA1-ENTRYPT) Offset to PPA1
B 1(,15) Disable this entry point

CL..0 STM 14,12,12(13) Save caller’s regs
L 15,CEECAACELV-CEECAA(,12) Get libvec
L 15,CEECELVVGTUN-CEECELV(,15) Get A(Get User NAB)
BALR 14,15 Find the user NAB
LR 1,15 Save NAB into R1
L 15,16(,13) Reset 15 to ENTRYPT
L 0,length Get new DSA len rounded to a dword
ALR 0,1 Calc a new NAB
CL 0,CEECAAEOS-CEECAA(,12) Exceed current stack segment?
BNH CL..1 No
L 15,CEECAAGETS1-CEECAA(,12) A(overflow routine)

*-- Input to stack overflow routine
*-- 1) R0 calculated required next available byte
*-- 2) R1 current NAB
*-- 2) R12 address of CEECAA
*-- 3) R13 caller’s save area address
*-- 4) R14 return address
*-- 5) R15 stack overflow routine entry point address
*--

BALR 14,15 GET ANOTHER STACK SEGMENT
*-- Upon return from the stack segment manager:
*-- 1) R15 has the new DSA address
*-- 2) R0 has the new NAB address
*--

LR R1,15 Put DSA addr into work reg
CL..1 ST 13,4(,R1) Back chain the DSA

ST 0,CEEDSANAB-CEEDSA(,Ra) Save the new NAB address
*-- The following instruction is required to set the

Language Environment architecture.
*-- first word of the DSA to zero (exceptions noted).

XC 0(2,Ra),0(Ra) Zero the first half word
LR 13,R1 Make the new DSA official

Figure 37. DSA allocation in user stack when R13 does not address a Language
Environment DSA

Standard CALL linkage

98 z/OS V2R1.0 Language Environment Vendor Interfaces

routine using the library stack to call a routine expecting to use the user stack. This
example passes the caller's CEEDSANAB address through unchanged. The library
stack NAB address is maintained in the CAA field CEECAALNAB. The library
beginning of stack and end of stack addresses are also maintained in the CAA
fields, CEECAALBOS and CEECAALEOS, respectively. Each routine using a library
stack must save the CEECAALNAB address in the CEEDSAPNAB field at the time
of entry. Special processing by the go to out of block function interrupts the
normal flow of control to restore the CEECAALNAB value from the
CEEDSAPNAB field in all DSAs in the library stack.

Figure 39 on page 100 shows a coding example to return from a routine which has
allocated a DSA in the library stack.

Note: Empty library-stack segments are returned to the operating system at the
next invocation of CEECAAGETLS, or at termination.

Examples to Manage Library Stack: This section contains examples of how to
manage the library stack. Figure 38 shows how to manage a DSA allocation.

Figure 39 on page 100 shows how to manage a DSA return.

ENTRYPT B *+20 SKIP OVER CONSTANT AREA
DC AL4(X’00C3C5C5’) EYECATCHER ’.CEE’
DC AL4(length) DSA LENGTH
DC AL4(CEEPPA1-ENTRYPT) OFFSET TO PPA1
B 1(,15) WRONG ENTRY POINT, CAUSE EXCEPTION

CL..0 STM 14,12,12(13) SAVE CALLER’S REGISTERS
L Ra,CEECAALNAB-CEECAA(,12) LOCATE LIBRARY STACK NAB
L 0,length LOAD DSA LENGTH
ALR 0,Ra GENERATE NEW NAB ADDRESS
CL 0,CEECAALEOS-CEECAA(,12) EXCEED CURRENT STORAGE SEGMENT?
BNH CL..1 NO - WE GOT IT
L 15,CEECAAGETLS-CEECAA(,R12) A(LIBRARY STACK SEG MGR)

*-- Input to library stack overflow
*-- 1) R0 calculated required next available byte
*-- 2) R12 address of CEECAA
*-- 3) R13 caller’s save area address
*-- 4) R14 return address
*-- 5) R15 library stack routine entry point address

BALR 14,15 GET ANOTHER STACK SEGMENT
*-- Upon return from the stack segment manager:
*-- 1) R0 has the new NAB address
*-- 2) R15 has the new DSA address
*--

LR Ra,15 PUT DSA ADDRESS INTO WORK REGISTER
CL..1 ST 13,4(,Ra) BACK CHAIN NEW DSA TO CALLER

MVC CEEDSANAB-CEEDSA(4,Ra),CEEDSANAB-CEEDSA(13) SAVE USER
NAB ADDR

MVC CEEDSAPNAB-CEEDSA(4,Ra),CEECAALNAB-CEECAA(12) SAVE LIB
NAB ADDR

ST 0,CEECAALNAB-CEECAA(,12) STORE NEW LIBRARY NAB ADDRESS
XC 0(2,Ra),0(Ra) ZERO FIRST HALFWORD
LR 13,Ra SET DSA POINTER REGISTER

Figure 38. DSA allocation, library stack

Standard CALL linkage

Chapter 2. CALL linkage conventions 99

CEEVGTUN — next available byte locator service
The Language Environment storage manager provides a service that returns the
next available byte address for the user stack to the caller. CEEVGTUN is a
S/370-specific CWI (compiler writer interface) that performs this service.
CEEVGTUN isolates the user from Language Environment internals. This prevents
the problem of having generated code use any of the Language Environment
storage management internal control blocks and structures. Only a low-level
interface is provided with the following conventions.

Register type
Register
number Register description

Input Registers R0–R11 Not used.

R12 Address of CAA.

R13 Save area address of the CEEVGTUN caller's caller.
Note that this save area is not modified by
CEEVGTUN.

R14 Return address to the caller.

R15 Address of CEEVGTUN.

Output Registers R0–R14 Unchanged.

R15 Next available byte in the user stack.

CEEVGTUN
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12)
L R15,148(,R15)
BALR R14,R15

If CEEVGTUN encounters any errors, it abends with code 4088. The reason code
associated with abend 4088 indicates the cause of the failure:

99 An exception occurred while trying to locate the NAB, or a zero back chain
pointer was found before finding the Language Environment dummy DSA.

Use the code sequence shown in Figure 40 on page 101 only in a library routine,
not in compiler-generated code.

MVC CEECAALNAB-CEECAA(4,12),CEEDSAPNAB-CEEDSA(13) RESET LIB
NAB ADDR

L 13,4(,13) LOAD CALLER’S DSA ADDRESS
LM 14,12,12(13) LOAD CALLER’S REGISTERS
BR 14 RETURN TO CALLER

Figure 39. DSA return, library stack

CEEVGTUN

100 z/OS V2R1.0 Language Environment Vendor Interfaces

CEEVSSEG — return the stack segment bounds
The Stack Segment Bounds CWI returns the beginning point and the ending point
of a Language Environment stack segment given an address within the bounds of
that segment.

Syntax

void (*CEECELVVSSEG) (ss_ptr, ss_type, ss_start, ss_end, ss_chain, [fc])
POINTER *ss_ptr;
INT4 *ss_type;
POINTER *ss_start;
INT4 *ss_end;
POINTER *ss_chain;
FEED_BACK *fc;

CEECELVVSSEG
A field in Language Environment LIBVEC that points to the CEEVSSEG CWI.
Call this CWI interface as follows:
L R12,A(CAA) Get the address of CAA in R12
L R15,CEECAACELV-CEECAA(,R12)
L R15,3372(,R15)
BALR R14,R15

ss_ptr (input)
An address within the bounds of a user or library stack segment.

ss_type (output)
A fullword binary integer representing the type of Language Environment
stack segment containing ss_ptr. If fc is CEE3MO, the ss_type value is
undefined. The possible values for ss_ptr are:
1 User stack
2 Library stack
3 Downward-growing stack

ss_start (output)
A pointer to the beginning of the stack segment, containing ss_ptr. If fc is
CEE3MO, the ss_start value is undefined.

ss_end (output)
A pointer to the end of usable stack segment, containing ss_ptr. If fc is
CEE3MO, the ss_end value is undefined.

ss_chain (output)
A pointer to the next stack segment. If ss_ptr points to the last stack segment,
ss_chain is set to 0. If fc is CEE3MO, the ss_chain value is undefined.

CL..0 STM 14,12,12(13) SAVE CALLER’S REGISTERS
L 15,CEECAACELV GET ADDRESS OF LIBVEC
L 15,CEECELVVGTUN-CEECELV(15) LOAD ADDR OF GET USER NAB

SERVICE
BALR 14,15 CALL THE SERVICE
LR Ra,15 LOAD NEW DSA ADDRESS
L 15,16(,13) RESTORE ADDRESSABILITY
L 0,length LOAD DSA LENGTH
ALR 0,Ra GENERATE NEW NAB ADDRESS
...

Figure 40. Get next available byte in user stack

CEEVSSEG

Chapter 2. CALL linkage conventions 101

fc (output/optional)
The resulting feedback code. The following conditions can result from this
service:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE3MO Severity 3

Msg_No 3800

Message The address passed to the stack segment service is
not within any Language Environment stack
segment.

Explanation The address passed to the stack segment bounds
service is not within any currently allocated
Language Environment stack segment.

Programmer
Response

This is an internal problem. Contact your service
representative.

System Action The bounds, segment type, and chain are undefined.

Usage Notes:

1. This service is intended for members to use to access stack extensions when the
NAB field in a DSA indicates a stack frame has been extended beyond the
current stack segment boundary.

2. The ss_ptr value is usually a DSA or NAB address. CEEVSSEG searches both
the library and user stack for the segment containing this address.

3. The sequence of stack segments that follow the segment that contains ss_ptr can
be located by repeatedly passing the value of ss_chain returned by the previous
call to CEEVSSEG into another call to CEEVSSEG and obtaining new values
of ss_type, ss_start, ss_end, and ss_chain.

Standard save area
The save area is 128 bytes (X'80') in length. The first 72 bytes of the save area
matches the format of a traditional OS save area and is provided to called routines
for the purpose of saving general registers. Certain fields are critical to this
description and are included here as well as documenting existing HPCJ usage of
some reserved fields. This existing usage occurs in OS/390 V1R1 and older code.

Field
location Field description

X'00' STKLANG - Language word

X'04' CEEDSABACK - Back chain pointer to previous save area

X'08' CEEDSAFWD - Forward chain pointer to next save area

X'0C' CEEDSASAVE - GPR save area (registers 14 through 12)

X'4C' CEEDSANAB - Next Available Byte

X'78' Used by C to save the parm list address (r1)

X'7C' Reserved

CEEVSSEG

102 z/OS V2R1.0 Language Environment Vendor Interfaces

Argument list format
An argument list is located by an argument list pointer. In S/370, the argument list
pointer is held in general purpose R1. An argument list has an architected way to
access individual arguments and their data descriptors. It is sometimes known as a
Type-I parameter list. The format of this argument list is seen in Figure 41.

Argument passing - C linkage
When a C linkage routine is called from another C linkage routine, GPR1 contains
the address of the caller's argument list. The argument list may contain addresses
of arguments passed indirectly (by reference) or values of arguments passed
directly by value. The end of the parameter list is not marked by the high order bit
being turned on. Since the end of the argument list is not identified the
programmer is responsible to ensure that the callee only accesses as many
parameters as the caller had arguments.

In C linkage, the caller of a function whose return value is not passed in registers
must provide storage where this value may be placed. The address of such storage
is passed as a hidden first argument at the beginning of the argument list.

C linkage use a logical argument list. At a +0 Entry Point the argument list is
located by means of GPR1 and may be placed anywhere in storage at the
discretion of the calling routine. C linkage supports both direct and indirect
arguments for calls between cooperating routines and thus the argument list may
contain a mixture of values and addresses.

When using C conventions, floating point parameters and structure return values
are placed in storage whose address is passed as the first parameter, vector data
type value is returned in VR24, other types are returned in GPR15. The +0 Entry
Point prolog must relocate the return value into register 15 or in some cases into
storage provided by the caller. The physical argument list in storage has space for
the arguments which are passed in registers. The logical argument list consists of
the physical argument list plus the contents of those registers used to pass
arguments. Vector arguments are loaded into VRs. Up to eight vector type value
arguments are passed in VR24-31.

All addresses in the argument list are of a consistent width of 4 bytes. Each
parameter takes up a multiple of 4 bytes.

Pointers to indirect arguments in the list are aligned on fullword boundaries.
Direct by value scalar arguments are right-aligned within one or more 4 byte slots
in the argument list. With this alignment, they may be simply loaded into an
appropriate register. In particular:

Argument
list
pointer
(R1)

Argument list body

A (Arg 1) +0 = (1-1)*4

+4 = (2-1)*4

(n-1)*4

A (Arg 2)

'1' A (Arg n)

. . .

Figure 41. S/370 Argument/parameter list format

Argument List Format

Chapter 2. CALL linkage conventions 103

|
|
|
|
|
|
|
|
|

v fullword integers and addresses are aligned on a fullword boundary.
v halfword integers are placed in the 2 low order bytes of a fullword-aligned field.
v single byte integers are placed in the low order byte of a fullword aligned field.

Note: The high order bytes are sign extended in the case of a signed argument
or are zero for an unsigned argument.

v a Boolean scalar is placed in the low order bit of a fullword-aligned field, whose
high order 31 bits are zero.

v real or complex floating point numbers are fullword-aligned and may occupy
one or more 4-byte slots in the argument list.

v a vector argument is full-word-aligned and occupy four 4-byte slots in the
argument list.

v structures begin in the high order byte of a fullword and occupy an integral
number of fullwords. Any padding bytes on the right end of the last full word
are unused and their value is undefined.

FASTLINK CALL linkage conventions
FASTLINK is essentially an extension of the OS linkage convention, which has
been in use since the inception of System/360. FASTLINK linkage is used today as
the default linkage for the C++ and High Performance Compiled Java (HPCJ)
compilers.

Register usage
The following list shows register usage and linkage.

GPR0 => writable Static Area (WSA)
GPR1-3 => arguments (depending upon type)
GPR4-12 => preserved
GPR12 => CAA, the key Language Environment control block
GPR13 => the caller’s stack frame in the Language Environment stack.

Each such stack frame begins with a 36-word save area.
GPR14 => the return point in the caller’s routine
GPR15 => the entry point in the called routine
FPRs => arguments (depending upon type)
VR24-31 => arguments (depending upon type)

Some of the caller's arguments are placed in registers and the remainder in a
portion of what will be the callee's stack frame. With FASTLINK the caller enters
the called routine at an offset of 16 bytes from the called routine's entry point.

Note:

1. The module is assumed to be readonly and never changed during execution, in
particular the eyecatcher, frame size or offset to PPA1 do not change during
execution.

2. The frame size field in the prolog above is owned by the compiled module and
the value it contains is whatever is required by the prolog of the routine. It
does not necessarily contain the precise value of the dsa size. For example, in
C++ vararg routines, it contains the size of the fixed portions of the stack
frame. Since the frame size may change from one call to the next and the size
of the argument area is passed from the caller to the callee, a runtime
calculation of the actual dsa size is required.

3. The eyecatcher is changed slightly to signify that this procedure uses the
FASTLINK dsa layout and is thus prepared for future support of extended
addresses.

Argument Passing

104 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|

|

FASTLINK is designed to operate in conjunction with the Language
Environment-provided execution stack. The current stack pointer is maintained in
GPR13. The prolog of a Language Environment-enabled routine may allocate space
(referred to as a "frame", "stack frame" or "dsa") in this stack for its own purposes
and to support subsequent calls to other routines. The stack frame is an architected
area that contains the following subsections:
v A save area to be used by any routines called by the executing routine for saving

registers and other values as architected. This save area, which is the first
sub-section in a Language Environment stack frame, is pointed to by GPR13,
and begins with a 36-word OS save area.

v A link area reserved for Language Environment defined use. This area contains a
number of architected fields used by languages and glue code.

v The argument area where the caller of this routine places arguments when more
arguments exist than can be passed in registers.

v The near auto area used to guarantee a register spill area within 4K of the stack
pointer.

v The work area where scratch and or automatic variables are located.

Stack frame mapping
Figure 42 shows the storage map of a typical FASTLINK stack frame. The stack
frame is double-word-aligned, in terms of where the stack frame pointer (R13)
points.

The Save Area in FASTLINK is 128 bytes (X'80') in length. In detail, the save area
appears as shown in Table 27.

Table 27. Format of save area

Field
location Field description

X'00' STKLANG - Language word Note 1

X'04' CEEDSABACK - Back chain pointer to previous save area (see note 2 on page 106)

High |==================================|
| |
Work area (Automatic)
Args Area
...
*** arglist prefix ***

CEEDSAARG->------------------------------------ X’B8’
| |
| Near_Auto (32 bytes) |

CEEDSANRA->------------------------------------ X’98’
| |
| Linkage Area |

CEEDSALNK->------------------------------------ X’80’
| |
| Save Area |
| |

CEEDSA---->|==================================|

= R13
Low

* Corresponding parm in register

Figure 42. Typical FASTLINK stack frame storage map

FASTLINK CALL linkage

Chapter 2. CALL linkage conventions 105

Table 27. Format of save area (continued)

Field
location Field description

X'08' CEEDSAFWD - Forward chain pointer to next save area (see note 3)

X'0C' CEER14DSASAVE - GPR Link save area (register 14) (see note 4)

X'10' CEER15DSASAVE - GPR Link save area (register 15) A (see note 4)

X'14' CEEDSAGSAVE - GPR save area register 0 through 12

X'48' (future AR save area register 1 through 12) (see note 5)

Notes:

1. The PPA1 indicates validity of fields in the language word.
2. The back chain pointer to the previous save area must be set by any routine

that allocates a stack frame.
3. The forward chain pointer is not required to be valid and is reserved.
4. The return address must be saved at offset X'0C' and the entry point address at

X'10'.
5. Shown only for illustration purposes. The Language Environment routines use

some locations between X'0C' and X'7C'. In particular, Language Environment
continues to use Save Area words (X'4C' and X'6C') for the same purposes as in
R1. This does not cause a problem in R1 FASTLINK because
a. Language Environment does not support greater than 32 bit addressing in

FASTLINK-compiled code or in library code, thus there is no requirement to
save or restore ARs from this area.

b. FASTLINK generated code does not read or write from the this area except
1) in the code prolog, and then only to retrieve the NAB from the caller's

stack frame.
2) possibly to set the NAB at X'4C' in the current stack frame, for example

just prior to a call to a Language Environment facility.
6. The only part of the caller's DSA that a callee may update is the portion of the

caller's Save Area into which registers are saved (X'0C' through X'47'). In
particular, the STKLANG, CEEDSABACK, and CEEDSAFWD fields may not be
changed by a callee. Words X'48' through X'7C' of the save area in the caller's
DSA are never changed by any FASTLINK callee.

7. FASTLINK programs containing calls must be compiled assuming that the
current Save Area addressed by R13 offsets X'0C' through X'7C' are overwritten
across calls.

8. For stack unwinding and exception processing purposes, the PPA1 specifies
which GPR registers must be restored from their slots in the save area.

The linkage area, described in Table 28 on page 107, is used to store the Next
Available Byte (NAB) in CEEODSANAB. CEEODSARET contains information used
in support of the +0 Entry Point entry point. It contains a logical flag rather than
the real return address in some instances. Neither CEEODSARET nor the following
words are initialized if they are not in use. Use of the Link Area is only as
described in this document; it must not be used for any other purposes than
shown.

FASTLINK CALL linkage

106 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 28. Format of linkage area

Field
location Field description

X'00' CEEODSANAB - Next Available Byte (see note 1)

X'04' CEEODSARET - Real Return or epilog flag (see note 2)

X'08' Amode switching (reserved)

X'0C' reserved contents unspecified

X'10' reserved contents unspecified

X'14' reserved contents unspecified

Note:

1. The NAB field points to the first free byte on the stack (double word aligned) following
this stack frame. Programs can always assume that the NAB field is double word
aligned when they receive control.

2. This word is available for use by the members to control execution of the +0 Entry
Point as contrasted to the +16 Entry Point code epilog.

With a large argument area, it is possible that none of the Work area is addressable
within a 4K displacement of R13. The Near_Auto area is provided to guarantee the
compiler some work space in the first 4K block of the DSA. Logically Near_Auto is
part of the Work area.

The Argument Area is at fixed DSA offset X'B8'; it contains the argument list
passed from caller to callee on a procedure call. Figure 43 shows the format of the
argument list. C and FASTLINK use argument lists of almost identical format. The
FASTLINK argument list is always prefixed with space for a pointer to the
descriptors.

Upon return the callee's argument area may have been modified regardless of
format. FASTLINK programs must assume that callees may update their
parameters and rebuild the argument area prior to each call.

The Work area is the space (work_size) owned by the executing procedure (which
allocated the stack frame) and may be used at its discretion for local variables and
temporaries. The executing routine has total control of the work area.

The Total stack frame size is best described as the difference between the NAB
and stack pointer, R13, assuming that both are in the same stack segment. The
frame_size is rounded up to a double word boundary. Most frequently it will be:

frame_size = save_size + arg_area_size + work_size + link_area + near_auto

| address of descriptor hdr * | <- * value is undefined if call is not described.

Argument 1
Argument 2
--------------------------------...

Argument N

Figure 43. Argument list passed on a procedure call

FASTLINK CALL linkage

Chapter 2. CALL linkage conventions 107

The Stack Segment Pad for FASTLINK is a 256 byte pad that is added at the high
end of the stack segment and is used to allow calling programs to build their
argument lists in the callee's stack frame with minimal code. Thus if the caller's
argument list is smaller than 256 - save_size - near_auto - link_size (72 bytes), the
parameter list can be constructed without checking for stack segment overflow or
including logic to support stack frame segment overflow. FASTLINK uses a new
CAA field (CEECAAESS) for its stack segment limit. The stack segment is actually
256 bytes larger than indicated in CEECAAESS. CEECAAESS =
MAX(CEECAAEOS - 256,0). The STACK runtime option is reflected in the stack
size value in CEECAAEOS, thus the FASTLINK stack appears to be 256 bytes
smaller.

Few procedures create argument lists larger than this size and thus code to handle
large argument lists will not be common. Callers which create argument lists
greater than allowed above will have to ensure that the current stack segment has
sufficient space (check against CEECAAESS) or, if not, obtain a free segment from
CEL. The beginning address of this additional segment must be placed in the NAB
field of the current frame and arguments must be stored at the appropriate offset
in the stack segment just obtained.

When stack segment overflow is detected in the prolog, the run time is called to
obtain a new segment. As well as allocating a new segment, this code also copies
the argument area from the old stack segment to the new stack segment. No
language allows addresses of parameters to be passed as a parameter and thus
such a copy preserves address values in the argument list. The stack segment
overflow logic is the same as for non-FASTLINK except that CEECAAEOS must
also be set to mimic the setting of CEECAAESS. While the overflow stack segment
is being used CEECAAESS, like CEECAAEOS, has a value of zero.

The Stack Segment, as shown in Figure 44 on page 109, contains multiple stack
frames. The stack pointer register (R13) grows from numerically lower storage
addresses to numerically higher ones.

FASTLINK CALL linkage

108 z/OS V2R1.0 Language Environment Vendor Interfaces

Argument list format
FASTLINK utilizes a logical argument list. Upon entry to the FASTLINK entry
point at +16, the argument list is located in the argument area which is at a fixed
location in what will be the callee's stack frame. At the +16 Entry Point, some of
the argument values are passed in registers and some in storage. The physical
argument list in storage has space for the arguments which are passed in registers.
The logical argument list contains all of the arguments. The logical argument list
consists of the physical argument list plus the contents of those registers used to
pass arguments. Depending upon the type of the parameters, some arguments are
loaded into the GPRs or the FPRs , or the VRs.

FASTLINK linkage supports both direct and indirect arguments for calls between
cooperating routines and thus the argument list may contain a mixture of values
and addresses. Because the argument list may contain values, it has no explicit
termination bit and the length of the FASTLINK argument list is specified
elsewhere.

High ----------------------------------- <-----CEECAAEOS
| Stack Pad (256 bytes) |
----------------------------------- <-----CEECAAESS
// Unused Stack Space //
// //
|=================================| <----
| | N |
| Work area | A |
| | B |
----------------------------------- |

Callee | | |
| Args Area | |
| | |
----------------------------------- |
| | |
| Near Auto | |
| | |
----------------------------------- |
| | |
| Link area | ----
Save Area

=================================
Work area

Caller | | K A | B |
----------------------------------- I | |
	N	
Args Area		

Near Auto		

Link Area		---

Save Area		

Low |=================================|

Figure 44. Stack segment showing FASTLINK frames

FASTLINK CALL linkage

Chapter 2. CALL linkage conventions 109

|

Note: The width of argument list elements is 4 bytes or a multiple thereof when
direct values are passed.

Argument passing
The logical argument list used with FASTLINK linkage is of the same format as the
C linkage argument list, however, GPR1 does not point to the argument list.
Instead, the arguments are placed into the argument area of the callee's stack frame
or certain general purpose or floating point registers , or vector registers.

In FASTLINK, the first three words of the virtual argument list are loaded into
GPR1-3 if they represent indirect arguments or direct value arguments of data
types other than floating point (real or complex) or vector. If a direct value floating
point argument (real or complex) begins in the first 3 argument words, it is loaded
into an appropriate number of floating point registers FPR0 through FPR6. Only
one such floating point value is loaded into a floating point register. If a second
floating point value begins in the first three virtual argument words, it is located in
storage. Up to eight vector arguments are passed directly in VR24-31 and VR24 is
used for returns as well. When a floating point or vector argument is loaded in
FPRs or VRs, the contents of the GPRs corresponding to those argument words are
unpredictable and are not preserved over the call.

Arguments that are not loaded into a GPR, FPR or VR are located in the physical
argument list in storage. The argument slots in the physical argument list
corresponding to the arguments loaded into registers are reserved and their
contents at the time of call are undefined; these slots in the argument area may be
used by the callee.

The unused, reserved slots in the argument list may be used to store the
arguments passed in registers. This is useful if the callee takes the address of an
argument that is passed in a register or in a code produced by a compiler which
has fixed register usage assignments which overlap with registers 1 through 3.

C allows arithmetic to be performed on pointers and the address of a parameter
may be taken. Although it is not ANSI C conforming, some programmers use
address arithmetic to locate and reference any of the parameters. Since some
arguments are located in registers this practice may access uninitialized storage.
Hence if the address of a parameter is taken then the callee's prolog code must
store all of the parameters passed in registers into the physical argument list
(potentially any of the arguments may be referenced without the compiler being
able to detect such references).

The argument list can be modified by the called routine. However, such updates
are not reflected to the calling programs HLL variables, for example, when
compiling code for the caller the compiler assumes that the argument list is
destroyed across a call.

Considerations for FASTLINK routines with variable number of
parameters
When a C++ caller has a prototype visible which ends with an ellipsis, then no
values are loaded into the floating point or vector registers, and the first three
words of the argument list are loaded in GPRs 1-3, regardless of their type. From
the rules given earlier we observe that for FASTLINK callers without prototypes,
GPRs 1-3 are always loaded with the first three words of the virtual argument list.
Thus when a procedure who's prototype contains ellipses is invoked at the +16
entry point the location of the first words of the argument list is always in the
GPRs. The +16 Entry Point prolog stores GPRs1-3 into the physical argument list.

FASTLINK CALL linkage

110 z/OS V2R1.0 Language Environment Vendor Interfaces

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

The +0 Entry Point prolog does not copy the argument list into the argument area.
Prologs for both the +0 Entry Point and the +16 Entry Point must pass GPR1
containing the address of the physical argument list to the body of the code and
therefore a varargs code body always addresses its parameters based upon GPR1.
GPRs 2-3 must be preserved by a vararg routine when entered at the +16 Entry
Point.

Register conventions
The FASTLINK register linkage conventions at the +16 Entry Point follow. The
caller is responsible to ensure that registers are set up as indicated. The callee is
responsible to preserve or restore certain registers as noted. The stack pointer (R13)
must be kept valid at all times during execution.

Register Description

GPR0 Undefined, Not preserved.

GPR1-3

First argument words, or undefined:
1. If no arguments exist
2. If the corresponding arguments are floating point scalars or floating point

scalar complex values.
3. If the corresponding arguments are vector values.

GPR1-3 When are GPR Registers 1-3 preserved?

GPR1-3
Logical Argument
Word 1

Logical Argument
Word 2

Logical Argument
Word 3

Registers
Preserved

GPR1-3 empty empty empty GPR1-3

GPR1-3 argument empty empty GPR2-3

GPR1-3 argument argument empty GPR3

GPR1-3 argument argument argument none

Note: When specified, empty means that there is no corresponding parameter value. Thus,
a call with no parameters preserves the GPRs 1-3. A call with one floating point extended
parameter, or vector parameter uses the FPRs or VRs to contain the floating/vector value
and, except for a very special case, GPRs 1-3 have an undefined value and are not
preserved over the call.

Register Description

GPR4-11 Undefined, preserved.

GPR12
CAA address. Must be valid on entry to any Language Environment
routine. Need not be valid during execution of a routine. Preserved.

GPR13 Stack frame address. Must be valid at all times.

GPR14 Return address. Preserved.

GPR15

The +0 Entry Point entry point address. Must be valid on entry. Value
contains return code on return.
Note: The return code referred to here is not to be confused with the
return value for functions. Some languages use a return code to
facilitate multiple return points, and others pass a status code between
the caller and the callee using this return code.

FPR0-6

Value of first floating point value if one of the first three argument
words represents a direct floating point argument, otherwise undefined.
For functions with floating point result, contains result on exit,
otherwise not preserved.

Condition register Undefined. Not preserved.

Program mask As documented in this book.

FASTLINK CALL linkage

Chapter 2. CALL linkage conventions 111

|

|

|

|
|
|
|

Register Description

VR0-7 Undefined. Not preserved.

VR8-15
Undefined. Bytes 0-7 are preserved due to overlap with FPR8-15, bytes
8-15 are not preserved.

VR16-23 Undefined. Preserved

VR24-31
Vector type parameters or undefined. VR24 is used for returns as well.
They are not preserved.

ARs Undefined Preserved.

Leaf routines
Leaf routines are routines that do not call any other routines (with the possible
exception of routines that are inlined). Leaf routines that have the following
characteristics do not need to allocate a stack frame. Such routines are called Sleaf
routines and they may use truncated prologs and epilogs:
v whose work area requirements may be obtained from the stack segment pad
v which are not vararg
v which do not perform stack frame extension
v which are not bilingual

Note: When entered at the +16 Entry Point, the value of the NAB in the caller's
DSA provides 256 bytes of pad area that can be used by the current routine to
store data into.

Code sequences
This section contains annotated code sequences for FASTLINK linkages (calls,
prologs and epilog). These code sequences will, in general, be used by FASTLINK
C++ and HPCJ but they are not necessarily exhaustive. Thus the compiler may
have to supplement it to meet compiler-specific requirements like dealing with
long argument lists. C-to-FASTLINK is shown as an illustrative example — there
currently is no support in either C++ or HPCJ for old-to-new linkage.

FASTLINK, non-Sleaf routine
Figure 45 on page 113 shows an example of FASTLINK to FASTLINK linkage code
sequence with a non-Sleaf routine.

FASTLINK CALL linkage

112 z/OS V2R1.0 Language Environment Vendor Interfaces

||

|||

||

|||

Notes:

1. Instructions at offsets X'00' and X'04' in the caller.
2. Offset X'04' in caller: FASTLINK callers enter the called routine at +16. C

linkage callers enter at +0, but for FASTLINK routines this entry point is
invalid and will cause an abend.

3. Offset X'08' in caller: The instruction used to pass control from a
FASTLINK-enabled routine must be followed by a NOP instruction, which
contains the length of the argument list. The index field is reserved and must
be zero. The base and displacement fields (indicated by "N") are treated as a
half word signed binary quantity. The value is positive and represents the
number of bytes in the argument list. Negative values are reserved.

4. Offset X'00' in callee: This entry point is not valid.

FASTLINK to FASTLINK, Non-Sleaf Routine

R0 Undefined, not preserved
R1-R3 Args
R4-R11 Undefined, must be preserved
R12 => CAA
R13 => Language Environment stack frame (DSA)
R14,R15 Linkage registers

Caller:
00- 58F0 **** L 15,=V(routine)
04- 4DE0 F010 BAS 14,16(15) Call to FASTLINK entry pt
08- 4700 **** NOP N

Callee:
00 routine DS 0D C-style entry point...
00- 47F0 F001 B 1(,r15) ...is invalid for FASTLINK

DC X’01’ Language Environment
eyecatcher

04- 01C3C5C5 DC CL3’CEE’
08- ******** DC A(SIZE) DSA size
0C- ******** DC A(PPA1-routine) Offset to PPA1

DS 0D FASTLINK entry point
10- 90Ex D00C STM r14,rXX,12(r13) Save caller’s regs
14- 58E0 D04C L r14,76(,r13) Get NAB
18- 4100 Exxx LA r0,Size(,r14) Move NAB forward by Size
1C- 5500 C314 CL r0,CEECAAESS-CAA(,r12)

Check for stack end
20- 4140 F04C LA r4,76(,r15) Set up basereg
24- 47D0 F03A BNH 58(,r15) Branch if no stack overflow
28- 58F0 C31C L r15,CEECAAOGETS-CAA(,r12)

FASTLINK overflow routine
2C- 184E LR r4,r14 Copy requested NAB into r4
2E- 05EF BALR r14,r15 Branch to overflow rtn
30- 00000000 =F’0’
34- 0540 BALR r4,r0 Establish addressability...
36- 4140 4016 LA r4,22(,r4) ...and set up basereg
3A- 5000 E04C ST r0,76(,r14) Save new NAB in DSA
3E- 9210 E000 MVI 0(r14),16 Initialize member word
42- 50D0 E004 ST r13,4(,r14) Backchain to caller’s DSA
46- 5800 D014 L r0,20(,r13) Reload reg 0 (WSA address)
4A- 18DE LR r13,r14 Set new DSA addr in stack reg

End of Prolog
4C- CODE DS 0H

...
Start of Epilog

60- 58D0 D004 L r13,4(,r13) Get caller’s DSA addr
64- 58E0 D00C L r14,12(,r13) Restore return reg
68- 98yz Doff LM rYY,rZZ,OFF(r13) Restore other regs
6C- 47F0 E004 B 4(,r14) FASTLINK return

Figure 45. FASTLINK to FASTLINK linkage code sequence, non-Sleaf routine

FASTLINK CALL linkage

Chapter 2. CALL linkage conventions 113

5. Offset X'04' in callee: Bit 7 in the first byte of the eyecatcher indicates that this
routine uses the new FASTLINK dsa layout and that the PPA2 is located by a
relative offset. This bit must only be non zero if the new dsa layout and
relative offsets are used, use a mask to test this bit and not the whole byte for
an exact match to X'01' since some other bits may be assigned for special
purposes in the future.

6. Offset X'08' in callee: In cases where the stack frame size is not known at
compile time such as variable length argument lists (for example, C++
varargs) then DSASIZ represents only the fixed portion of the stack frame.
The actual stack frame size is calculated from DSASIZ plus the size of the
argument list contained in the NOP.

7. Instructions at offsets X'10' and X'68' in callee: Line is only required to
save/restore the registers actually required by this routine thus the instruction
could be a ST/L or even entirely missing. Note that two registers are used in
the stack extension logic and thus RXX must be set correspondingly. In
routines with few parameters, it is possible that no registers beyond 14 and 15
would need to be saved and restored. The offset into the save area is based
upon the first GPR saved.

8. Offset X'18' in callee: Line may be replaced by the following lines when the
stack frame size is larger than 4K.
L DS0,DSASZE-OLD(,15) Get DSA size
ALR 0,14 Move Nab forward by size

9. Offset X'3E' in callee: Stack frame is marked as FASTLINK for ILC calls with
PL/I, COBOL,FORTRAN, or an OS linkage routine, or if this routine needs an
exit DSA.

10. Offset X'60' in callee: For details of the handling of function return values, see
Function Results.

11. Special considerations, required to handle variable length parameter lists, are
documented in Routines with a Variable Number of Parameters.

Considerations for large argument lists
When one routine calls another routine with an argument list greater than 72 bytes,
the calling routine must ensure that the current stack segment is large enough to
contain the large argument list. The calling routine may elect to accomplish this in
two ways:
1. As part of the code to actually generate the call the current stack segment size

may be checked and a new segment obtained if necessary. If a new stack
segment is required then the current NAB must be updated appropriately prior
to the call and just following the return.

2. The calling routines prolog may ensure that sufficient space exists both for the
calling routines own DSA requirements plus space for the largest argument list
that the calling routine builds.

FASTLINK, Sleaf routine
Figure 46 on page 115 shows an example of FASTLINK to FASTLINK linkage code
sequence with a Sleaf routine. Instructions at offsets 10 and 34 in callee are only
required to save/restore the registers actually required by this routine. The
STM/LM may be replaced by a ST/L if only one register needs to be saved, or
may be deleted if no registers need be saved/restored.

FASTLINK CALL linkage

114 z/OS V2R1.0 Language Environment Vendor Interfaces

CEECAAOGETS get new stack segment routine
CEECAAOGETS is similar in function to CEECAAGETS except that the linkage is
different and it is intended for use by FASTLINK enabled procedures. When called,
the registers should contain the following data:

Register Contents

R0 calculated required next available byte

R4 caller's next available byte

R12 address of CAA

R13
caller's save area address which must contain a valid NAB field. The save
area addressable by R13 is not useable by CEECAAOGETS.

R14
address of a fullword containing the length of the argument list. Return to the
code is made to R14+4.

R15 address of CEECAAOGETS routine

Upon return, the registers have the following contents.

Register Contents

R14 contains the new DSA address

R0 contains the new NAB

R15 undefined

FASTLINK to FASTLINK, Sleaf Routine

R0 Undefined, not preserved
R1-R3 Args
R4-R11 Undefined, must be preserved
R12 => CAA
R13 => CEL stack frame (DSA)
R14,R15 Linkage registers

Caller:

00- 58F0 **** L r15,=V(leafrtn)
04- 4DE0 F010 BAS r14,16(,r15) Call to FASTLINK entry pt
08- 4700 **** NOP N

Callee:
00- leafrtn DS 0D C-style entry point...
00- 47F0 F001 B 1(,r15) ...is invalid for FASTLINK

DC X’01’ Language Environment
eyecatcher

04- 01C3C5C5 DC CL3’CEE’
08- ******** DC A(SIZE) DSA size
0C- ******** DC A(PPA1-leafrtn) Offset to PPA1

DS 0D FASTLINK entry point
10- 9016 D018 STM r1,r6,24(r13)
14- 58x0 D04C L rX,76(,r13)

End of Prolog
18- CODE DS 0H

...
Start of Epilog

34- 9816 D018 LM r1,r6,24(r13) Restore regs
38- 47F0 E004 B 4(,r14) FASTLINK return

Figure 46. FASTLINK to FASTLINK linkage code sequence, Sleaf routine

FASTLINK CALL linkage

Chapter 2. CALL linkage conventions 115

Register Contents

R1-R13 preserved

If the supplied length of the argument list is non zero then the arguments are
copied from the old stack segment to the new one. If the Storage option
dsa_alloc_value indicates that the stack frame is to be initialized then this routine
also initializes the dsa work area as required. The Link area is copied
unconditionally from the old stack segment to the new one.

Note: Functions which are var_arg/sleaf do not have their dsa frames initialized
by this option.

The condition manager and this code must cooperate for the short on stack storage
condition. After stack segment overflow has occurred then this routine must ensure
that the stack address returned in R0 allows for the 256 byte stack segment pad,
for example, the request size behaves as if it were 256 bytes larger that the input
R0 would indicate.

Extra Performance Linkage (XPLINK) CALL linkage conventions
This section describes the Language Environment XPLINK protocols for passing
arguments to external routines. XPLINK is a linkage convention which differs
substantially from the standard Language Environment linkage and FASTLINK
linkage protocols. The Language Environment XPLINK protocols are compatible
with the 64–bit environment.

The primary goal of XPLINK is to make subroutine calls as fast and efficient as
possible by removing all nonessential instructions from the main path. This is
achieved by introducing the following:
v growing the stack from higher to lower addresses ("negative-" or

"downward-growing")
– to eliminate overhead in stack frame allocation
– to eliminate need for inline stack overflow check
– to allow for an improved epilog
– to allow addressability to information (such as parameters) in the caller's

stack frame
v biasing the stack pointer (by 2048 bytes), so that small functions can save

registers in their own stack frame before updating the stack pointer, avoiding
address generation interlocks

v reassignment of registers (see "Register Conventions" on page 17) to support
more efficient saving and restoring of registers in function prologs and epilogs

v parameter passing in registers, accepting return values in registers
v elimination of Inter-language Call (ILC) overhead (marking of stack frame) for

non-ILC calls
v faster call sequences for inter-module calls
v passing the address of the data area associated with a function, its

"environment", to the function on entry
v no branching around CEL words
v use of relative branching for function calls where possible

FASTLINK CALL linkage

116 z/OS V2R1.0 Language Environment Vendor Interfaces

v unification of the various (RENT and NORENT, DLL and NODLL) function
pointer implementations, reducing the costs of all operations involving function
pointers

An important additional goal is the reduction in size of the function in memory.
This is accomplished by eliminating unused information in function control blocks.

XPLINK applications are supported under IMS and LRR (Language Routine
Retention).

Register usage
The following list shows register usage and linkage.

GPR1-3 => arguments (depending upon type)
GPR4 => the caller’s stack frame in the downward-growing stack.

This is biased and actually points to 2048
bytes before the real start of the stack frame.

GPR5 => the called routine’s environment pointer
GPR6 => the entry point in the called routine if

the call was made by a BASR instruction
GPR7 => the return point in the caller’s routine. The return point

also contains information to determine if the call
was made via BASR or branch relative.

GPR8-15 => preserved
GPR12 => CAA, the key Language Environment control block

(non-64-bit environment)
FPRs => arguments (depending upon type)
VR24-31 => arguments (depending upon type)

Stack frame mapping
Figure 47 shows the Language Environment XPLINK stack storage model. The
prolog of a function usually allocates space (referred to as a "frame", "Stack Frame",
or "DSA" - dynamic storage area) in the Language Environment-provided stack
segment for its own purposes and to support calls to other routines.

Stack layout
Figure 48 on page 118 shows the stack frame layout (Figure 146 on page 688
shows the stack frame layout for AMODE64). The stack register points to a
location 2048 bytes before the stack frame for the currently active routine. It grows
from numerically higher storage addresses to numerically lower ones, that is the

DOWNWARD-GROWING STACK

HIGH

LOW

init_size incr_size incr_size

DSA 2

DSA 3

DSA 4 DSA 7

GUARD
PAGE

GUARD
PAGE

GUARD
PAGE

DSA 6

INITIAL SEGMENT INCREMENT 1 . . . INCREMENT n

DSA 1
DSA 5 DSA n

Figure 47. Language Environment XPLINK stack storage model

XPLINK CALL linkage

Chapter 2. CALL linkage conventions 117

|

stack frame for a called function is normally at a lower address than the calling
function. The stack frame is quadword-aligned.

Table 29 on page 119 describes the contents of each area within the stack frame
shown in Figure 48.

Guard Page (4 KB)

Stack Frames for called functions

Backchain

Environment
Entry Point

Return Address
R8
R9

R10
R11
R12
R13
R14
R15

Reserved (8 bytes)

Debug Area (4 bytes)

Arg Area Prefix (4 Bytes)

Argument Area:
Parm 1
Parm 2

Local (automatic) Storage

Savearea
(48 bytes)

Saved FPRs Saved ARs

High
Addresses

Low
Addresses

Stack
Pointer (R4)

+2048

+2096

+2104

+2108

+2112

Saved VRs

Figure 48. Language Environment XPLINK stack frame layout in a non-64-bit environment

Stack Frame Mapping

118 z/OS V2R1.0 Language Environment Vendor Interfaces

|

|
|
|

Table 29. Content of XPLINK stack frame for non-AMODE 64 applications

Stack frame area Content

Save area This area is always present when a stack frame is required. It holds up to 12 registers.
The first two words hold, optionally, GPRs 4 and 5, the registers containing the address of
the previous stack frame and the environment address passed into the function. This is
followed by the two words containing GPR6, which may or may not hold the actual entry
point address depending on the type of call, and GPR7, the return address. As many of
the 8 non-volatile registers as are used by the called function are saved in the following
32 bytes.

Except when registers are saved in the prolog, this area may not be altered by compiled
code. The PPA1 GPR Save Mask indicates which GPRs are saved in this area by the
prolog.

Stack overflow is detected by the STM or STMY instruction used to save registers in this
save area.

Storage of the Backchain field in the save area is triggered by the optional
XPLINK(BACKCHAIN) compiler option (or at the convenience of the compiler). The
Environment Address is stored when the TEST compiler option or the optional
XPLINK(STOREARGS) compiler option is specified, or at the convenience of the compiler.

The third slot in the save area contains the value in GPR6 on entry to the routine. If the
routine was called with a BASR instruction, the address is that of the function entry point.
The fourth slot contains the return address. The return point can be examined to
determine how the function was called:

v If the function was called with a BASR instruction, the entry point address can be
found in the third slot of the save area

v If the function was called with a relative branch, the entry point can be computed from
the return address and the branch offset contained in the relative branch instruction

Reserved This area is always present and is for the exclusive use of the runtime. It is uninitialized
by compiled code.

Debugger area This area is always present and is for the exclusive use of the debugger. It is uninitialized
by compiled code.

Argument area prefix This area is used for parameter mapping (hidden parameter) to accommodate calls
between new and old code. It is uninitialized by compiled code.

Argument area This area is at the fixed DSA offset of 64 bytes into the caller's stack frame. It contains the
argument lists passed on function calls made by the function associated with this stack
frame. The called function finds its parameters in the caller's stack frame. A minimum of
4 words (16 bytes) must be always be allocated.

Local storage This is the space owned by the executing procedure and may be used for its local
variables and temporaries.

Stack overflow
To maximize function call performance, XPLINK replaces the explicit inline check
for overflow with a storage protect mechanism that detects stores past the end of
the stack segment.

The stack floor is the lowest usable address of the current stack segment. In the
lower storage addresses, it is preceded by a store-protected guard page used to
detect stack overflows.

Availability of space for a stack frame is ensured in the function prolog usually by
storing into the start of the called function's frame. In case of overflow, this triggers
an exception which in turn causes a discontiguous extension of the stack by
Language Environment. Functions with a DSA larger than the guard page use the

Stack Frame Mapping

Chapter 2. CALL linkage conventions 119

stack floor address in the CAA to verify space availability. Allocation and
deallocation of extensions is transparent to the application.

To make the stack appear contiguous to the application, a small stack frame
containing all fields up to and including the Argument area will be allocated in the
new stack segment for use by the called function and the contents of the caller's
stack up to the end of the argument area should be copied into the new stack
segment. The length of the argument list expected is available in the called
function's PPA1 except for vararg functions, where the entire argument area in the
calling function must be copied.

Stores into the guard page done outside the prolog and done outside "alloca"
built-in processing should be treated as invalid and cause the application to be
terminated.

Prolog/epilog examples
This section contains typical prolog and epilog code sequences for XPLINK. These
are examples, not definitive code sequences that must be generated by conforming
compilers.

Table 30 is an example of a small size stack frame (the dsasize is less than or equal
to 2048 bytes); there is no backchain or alloca.

Table 30. Prolog/epilog example: small size stack frame, no backchain, no alloca

DC 0D’0’,XL8’00C300C500C500F1’.C.E.E.1
DC A(*-8-PPA1),AL.27(dsasize/32),AL.5(flags)

EP STM 6,lastused,2048-dsasize+8(4)
STM 1,Rx,2112(4) if XPLINK(STOREARGS) or TEST, or

varargs
AHI 4,-dsasize update stack pointer
...
function body
...
LM 7,lastused,2048+12(4) restore registers
LA 4,dsasize(,4) restore stack pointer
B 4(,7) return to caller

Table 31 is an example of a small size stack frame (dsasize is less than or equal to
2048 bytes) with a backchain and varag.

Table 31. Prolog/epilog example: small size stack frame, varag, backchain

DC 0D’0’,XL8’00C300C500C500F1’.C.E.E.1
DC A(*-8-PPA1),AL.27(dsasize/32),AL.5(flags)

EP STM 4,lastused,2048-dsasize(4)
STM 2,3,2112+4(4) save varargs if any in first 3
AHI 4,-dsasize update stack pointer
...
function body
...
LM 7,lastused,2048+12(4) restore registers
LA 4,dsasize(,4) restore stack pointer

Stack Frame Mapping

120 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 31. Prolog/epilog example: small size stack frame, varag, backchain (continued)

B 4(,7) return to caller

Table 32 is an example of an intermediate size stack frame (2048 < dsasize < 4096);
there is no backchain, alloca, or varag.

Table 32. Prolog/epilog example: intermediate size stack frame, no backchain, no alloca, no
varargs

DC 0D’0’,XL8’00C300C500C500F1’.C.E.E.1
DC A(*-8-PPA1),AL.27(dsasize/32),AL.5(flags)

EP AHI 4,-dsasize update stack pointer
STM 6,lastused,2048+8(4)
...
function body
...
LM 7,lastused,2048+12(4) restore registers
LA 4,dsasize(,4) restore stack pointer
B 4(,7) return to caller

Table 33 is an example of a large size stack frame (4096 ≤ dsasize ≤ 32768) in
AMODE 31.

Table 33. Prolog/epilog example: large size stack frame (4096 ≤ dsasize ≤ 32768), AMODE 31

DC 0D’0’,XL8’00C300C500C500F1’.C.E.E.1
DC A(*-8-PPA1),AL.27(dsasize/32),AL.5(flags)

EP DS 0D
* Combine any of the following 3 instructions into STM

ST 1,2112+0(,4) if XPLINK(STOREARGS)
ST 2,2112+4(,4) if XPLINK(STOREARGS) or 2nd parameter is

vararg
ST 3,2112+8(,4) if XPLINK(STOREARGS) or more than 2

parameters
AHI 4,-dsasize update stack pointer
C 4,CEECAA_STACKFLOOR-

CEECAA(,12)
check bottom of stack

JM EXT
STK DS 0H

STM 6,lastused,2048+8(4)
...
function body
...
LM 6,lastused,2048(4) restore registers
AHI 4,dsasize
B 4(,7) return to caller
DC 0D’0’,XL8’00C300C500C500F2’.C.E.E.2
DC A(this marker - entry point marker)/8

EXT DS 0D

Prolog/Epilog examples

Chapter 2. CALL linkage conventions 121

Table 33. Prolog/epilog example: large size stack frame (4096 ≤ dsasize ≤ 32768), AMODE 31 (continued)

LR 0,3
L 3,CEECAAHPGETS-CEECAA(,12)
BASR 3,3 call Language Environment stack extender
NOP
LR 3,0
J STK

Table 34 is an example of a huge size stack frame, where the dsasize is greater than
32768; this is also an AMODE 31 example.

Table 34. Prolog/epilog example: huge size stack frame (32768 < dsasize), AMODE 31

DC 0D’0’,XL8’00C300C500C500F1’.C.E.E.1
DC A(*-8-PPA1),AL.27(dsasize/32),AL.5(flags)

EP DS 0D
ST 3,2120(,4) save in XPLINK(STOREARGS) slot
LR 0,4

* There will be one or more AHI instructions of size -32768 until the
* remainder of the dsasize is less than 32768

AHI 4,H’-32768’
AHI 4,H’-(dsasize%32768)’
C 4,CEECAA_STACKFLOOR-

CEECAA(,12)
check bottom of stack

JM EXT
STK DS 0H

STM 6,9,2048+8(4)
ST 0,2048(,4) save backchain, possibly updated by the

runtime if there was a stack extension
...
function body
...
LM 4,lastused,2048(4) restore registers
B 4(,7) return to caller
...
DC 0D’0’,XL8’00C300C500C500F2’.C.E.E.2
DC A(this marker - entry point marker)/8

EXT DS 0D
L 3,CEECAAHPGETS-CEECAA(,12)
BASR 3,3 call Language Environment stack extender
NOP
LR 3,0
L 3,2120(,3)
J STK

Finally, Table 35 on page 123 shows an XPLINK example in AMODE 31.

Prolog/Epilog examples

122 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 35. Prolog/epilog example: XPLINK, no alloca, no storeargs, saves regs 5-9, DSA
size=3712 (AMODE 31)

@1L0 DS 0D
=F’12779717’
=F’12910833’
=F’152’
=F’3712’

main DS 0D
STMY r5,r9,-1660(r4) save caller’s regs
AHI r4,H’-3712’ R4 = new DSA address
function body
L r7,2060(,r4) restore return address
LM r8,r9,2064(r4) restore caller’s registers
LA r4,3712(,r4) point to caller’s DSA
SR r3,r3 R/C = 0
B 4(,r7) return to caller

Stack extension
When the stack frame size is greater than the guard page size, the new stack
pointer value must be compared to the CEECAA_STACKFLOOR field. When the
stack pointer is less, then a stack expansion routine must be called explicitly to
create the new stack increment.

DSA Extension -- alloca(): Sometimes a program's automatic (stack) storage
requirements are not known until runtime, DSA extension allows a program to
dynamically allocate additional automatic (stack) storage. (The z/OS XL C/C++
compiler built-in function alloca() is the C/C++ implementation of DSA extension.)
For XPLINK, allocating additional stack storage will also require moving the
register save area at the beginning of the stack frame (for example, the Register 4
value will change). This storage is automatically freed when the function in which
it was acquired returns.

When DSA extension causes a stack extension, the processing performed will be
very different from normal stack extension in terms of what gets copied to the new
stack increment and the mechanism to free the stack increment.

The following discussion explains the rules to be observed in handling alloca() in
XPLINK:
v The stack pointer (R4) must always point to a location 2048 bytes before the

current function's stack frame. This may or may not be within the Guard page.
v Functions that use "alloca" must use a different register (called the "alloca()

register") to address their automatic storage and their parameters. This register
must be set to point to automatic storage (computed from GPR4) in the prolog;
it must keep this value throughout the function (until register contents are
restored in the epilog).

v A function that uses "alloca" must acquire a stack frame and its prolog must
store GPRs 4, 6 and 7 in its stack frame. Such a function cannot be considered a
XPLeaf routine and may not be marked as such in the PPA.

v The argument area used to construct argument lists for called function must be
addressed using the top of the stack pointer (R4).

Prolog/Epilog examples

Chapter 2. CALL linkage conventions 123

v All live values from the beginning of the stack frame up to and including the
entire argument area must be copied to the new start of the stack frame. This
includes all saved registers, but not slots for registers that were not saved. It
does not include the Debug Area or the Reserved field. It does not include the
Arg Area Prefix field. If an argument list is under construction when alloca() is
called then it includes those arguments already constructed, otherwise not.
When an external call is made to the runtime for alloca() the generated code
must ensure that any live values in the argument area are copied; the runtime is
responsible for copying the entire 48-byte savearea.

v alloca must round all requested storage amounts to a multiple of 16 bytes (a
quadword) to maintain stack frame alignment

v it is intended that alloca may, in future, be inlined. An inline alloca will trigger a
guard page exception if stack extension is required. The design for this is not
part of this document.

Functions that use "alloca" require changes to their prologs and epilogs to maintain
addressability to their automatic variables and parameter list. Also, fields in the
entry mask and PPA1 must correctly indicate that the routine uses a DSA
extension. For more information, see “XPLINK DSA extension services” on page
220.

DC 0D’0’,XL8’00C300C500C500F1’ .C.E.E.1
DC A(*-8-PPA1),AL.27 (dsasize/32),AL.5(flags)

EP STM 4,lastused,2048-dsasize(4)
STM 1,Rx,2112(4) if XPLINK(STOREARGS), TEST, or

varargs
AHI 4,-dsasize update stack pointer
LA Ry,64+argsize(,4) set alloca register
...

function body (addresses auto storage using the alloca() register)
...

L 7,2048+12(,4) restore return address
LM 8,lastused,2048+16(4) restore remaining registers
L 4,2048(,4) restore stack pointer
BR 7 return to caller

Obtain an XPLINK Downward-Growing Stack Extension: This CWI is invoked
when there is not enough room in the current XPLINK downward-growing stack
segment to hold the caller's stack frame. It will be used by z/OS XL C/C++
compiler-generated code when the stack frame size is greater than the size of the
guard page (4K).

DSA Extension

124 z/OS V2R1.0 Language Environment Vendor Interfaces

Input/Output Register Used for

Input Registers R0 Previous stack pointer value (if PPA1 indicates that
routine stores the backchain)

R1 - R2 Not used

R3 Return Address

R4 Calculate stack pointer

R5 Not used

R6 Value to be saved at offset 2056 of new DSA

R7 Return value to be saved at offset 2060 of new DSA

R8 - R11 Not used

R12 CAA address

R13- R15 Not used

Output Registers R0 Modified previous stack pointer (or unchanged)

R1 - R3 Unchanged

R4 New stack pointer

R5 Unchanged

R6 Modified entry point

R7 Modified return address

R8 - R15 Unchanged

The following is an example of an invocation of this CWI:
L 3,CEECAAHPGETS-CEECAA(,12)
BASR 3,3
DC X’4707’
DC Y(call offset)

Where call offset is a signed offset in doublewords from the doubleword at or
preceding the return point of the BASR instruction.
v If the value is negative, it is the signed offset to the entry point marker.
v If the value is positive, it is the offset to the call descriptor for this call.

A call descriptor is required when the signed offset to the entry marker is not
negative or cannot be represented by a 2–byte signed field. See Call Descriptor for
the format of the call descriptor.

This CWI returns control to its invoker at the return address:
BR 3

Exceptions
The following sections describes some rules and exceptions that should be
considered. In these rules, “pointing to stack frame” means “pointing to 2048 bytes
before the stack frame”.

Rules Applicable to Prologs:

v The prolog must be contiguous (except for the out-of-line call to the stack
extender) and less than or equal to 128 bytes in length.

v When a procedure requires a stack frame, it must check the stack segment for
space availability in the prolog and it must save GPRs 6 and 7 in the Save Area.
GPR6 must be saved by the instruction that checks for stack space availability.

Obtain an XPLINK Downward-Growing Stack Extension

Chapter 2. CALL linkage conventions 125

v Saved GPRs must always be saved in their canonical location which is as if a
STM 4,15,2048(4) had been executed.

v When a routine does not require a stack frame, it must maintain the contents of
GPR7 (return address) and GPR6 received at entry at all times (not just during
prolog execution) for exception handling purposes.

v GPRs 6 and 7 may not be changed in the prolog.
v Any instruction that is part of the window ranging from the entry point up to

and including the instruction updating GPR4, may not introduce any potential
exceptions other than as might be caused by an invalid GPR4.

v Except for a NOP, a prolog may not start with a Branch on Condition instruction
(opcode 0x47). (Many non-XPLINK functions start with a branch instruction; this
rule minimises the possibility of tools that examine prologs mistaking an
XPLINK prolog for an older-style prolog.)

v If the stack pointer (GPR4) is updated before the registers are saved, GPR0 must
be set to the value in GPR4 at function entry before GPR4 is updated. GPR0 is
updated by Language Environment during stack extension; the updated value
should be stored in the backchain field of the stack frame.

v R4 points to the caller's stack frame, the new stack frame, or the proposed new
stack frame location (possibly in the guard page) throughout the prolog. No
other value is allowed.

v Registers 5-15 may not be modified in the prolog until after GPR4 is updated to
point to the new stack frame.

v If an explicit check for stack overflow is not done in the prolog using the "End
of Stack" field in the CAA, the first instruction that touches the new stack frame
must be STM 4,x,nnn(4), STM 5,x,nnn(4), STM 6,x,nnn(4), STMY 4,x,nnn(4),
STMY 5,x,nnn(4), or STMY 6,x,nnn(4).

Rules Applicable to Epilogs:

v The epilog must be contiguous and less than or equal to 128 bytes in length.
v Except for XPLeaf routines, epilog code must extract the return address from the

savearea, and it must do this before updating GPR4 to point to the caller's stack
frame. In XPLeaf routines, the return address must be taken from GPR7, which
remains unaltered by compiled code throughout the life of the function. This
allows the runtime to steal the return address for its own purposes.

v GPR4 must point to the current function's stack frame on entry to the epilog;
when it's updated it must point to the caller's stack frame; no other value is
allowed.

v The epilog contains no call, including alloca().
v Compiled code may not refer to its own stack frame after updating GPR4 .

XPLeaf Routines: XPLeaf routines are functions that make no function calls
(including alloca()). They do not contain try, catch, or throw statements nor do they
acquire their own stack frame. GPRs 4, 6 and 7 must not be altered by the routine.

Stack Overflow Exception: In XPLINK, stack frame allocation is designed to
trigger a protection exception when insufficient storage remains in the current
stack segment. This exception requires proper handling in the Language
Environment interrupt exit. A valid request for stack extension can be recognized
by Language Environment as follows:
v The exception is caused by STM 4,x,nnnn(4), STM 5,x,nnnn(4), STM 6,x,nnnn(4),

STMY 4,x,nnnn(4), STMY 5,x,nnnn(4), or STMY 6,x,nnnn(4).

Exceptions

126 z/OS V2R1.0 Language Environment Vendor Interfaces

v The target address in nnn(4) is within the guard page of the current stack
segment.

v The exception address is within the prolog defined by the PPA1 of the function
experiencing the exception.

Exception processing may need to distinguish between a request made in the
function prolog and through "alloca". For example, set up and initialization of an
extension may be different in the two cases (e.g., copying of parameters). The
prolog length field in the PPA1 is provided for this purpose.

For requests in the prolog, the required stack frame size is available in the entry
point marker while for requests in alloca it must be taken from R0.

When a stack overflow occurs, the caller's arguments must be made available in
the newly created stack segment.

It is expected that Language Environment will update the stack floor field in the
CAA when the application traverses a stack segment and will handle stack
segment deallocation. For calls, this could be done by inserting a stack frame for a
special library function in the new stack segment such that the function becomes
part of the return flow of the application. When a stack segment extension is
caused by alloca, the special linkage routine needs to be inserted in the return path
of the function issuing alloca. It should be noted that one function could cause
multiple segments to be allocated. The active stack segment could be pointed to by
a fullword in the CAA.

Stack Unwinding: Because XPLINK does not always provide a back chain, a new
method for unwinding the stack must be followed:
v Determine if the current instruction address is in a function prolog (see below):
v If the current point of execution is in a prolog, determine if GPR4 has been

updated (the offset of the beginning of the instruction updating GPR4 is in the
PPA1). If GPR4 has been updated, reverse this by adding the DSA size (found in
the entry point marker for the function) to GPR4. This is the address of the
previous stack frame.

v At this point, GPR4 points to a 2048 bytes before a valid stack frame (the caller's
in the case on an incomplete prolog).

v Using the current GPR4 value, locate the entry point of the function associated
with the stack frame:
Locate the return address of the function in the 4th slot of the current stack
frame at 2060(4). At the return address find the call type, to determine the
instruction making the call. If it's a relative branch, compute the target offset
from the branch instruction contents and its address to determine the entry
point. If it is a BASR instruction, the entry point to the function is the value
passed into the function in GPR6 and stored in the 3rd slot of the current stack
frame at 2056(4).

v The current entry point can be used to locate the PPA1 for this function, but this
is not required for stack unwinding:
– Subtract 16 from the entry point address to get the address of the entry point

marker.
– Add the word at 8 bytes past this address (the PPA1 offset) to this value.

v "Special linkage" stack frames contain identifying markers. Language
Environment architecture specifies how to use information in this stack frame to
get to the previous (possibly non-XPLINK) stack frame.

Exceptions

Chapter 2. CALL linkage conventions 127

v The entry point marker contains a flag to indicate if alloca() is used in the
function. If it is not, the entry point marker contains the dsasize of the function
associated with the current stack frame; add this value to the current stack frame
address to get the address of the previous stack frame.

v If alloca() is used in the function, the previous value of GPR4 (2048 bytes before
the previous stack frame) is stored at 2048(4).

v Continue, as required.

Determining if an Execution Point is in a Prolog: From a point of execution:
v Scan backwards for up to 16 doublewords looking for a doubleword-aligned

marker as described in Code Markers" below.
v If not found the current point of execution is not in a prolog.
v If found and the marker is not an entry point marker, the current point of

execution is not in a prolog.
v In the entry point marker, the word at offset +8 contains the offset, from the

marker, of the associated PPA1.
v The PPA1 contains the length of the prolog. If the current point of execution is

not within this range (from the entry point, the doubleword following the entry
point marker), the current point of execution is not in a prolog.

Finding the Entry Point of the Current Function:

v Determine if the current point of execution is in a prolog. If it is, the entry point
is at the beginning of the prolog.

v Locate the return address of the function in the 4th word of the current stack
frame at 2060(4). At the return address find the call type, to determine the
instruction making the call. If it's a relative branch, compute the target offset
from the branch instruction contents and its address to determine the entry
point. If it's a BASR instruction, the entry point to the function is the value
passed into the function in GPR6 and stored in the 3rd word of the current stack
frame at 2056(4).

Code markers
The following sequences identify points in code that are significant to Language
Environment. Each of these is doubleword-aligned and has the same initial 7-byte
sequence. Markers that could be found in the body of compiled code (types 2 and
3) contain the offset of the associated entry point marker at offset +8.
v Entry point marker (type 1)
v Stack extension marker (type 2)
v Data marker (type 3)
v Stub marker (type 4)

Table 36 shows the format of entry point marker type 1.

Table 36. Entry point marker (type 1)

+0 0x00 ’C’ 0x00 ’E’ 0x00 ’E’ 0x00 ’1’

+8 offset of PPA1 from entry point marker dsasize/32 EP flags

Exceptions

128 z/OS V2R1.0 Language Environment Vendor Interfaces

In an entry point marker, the word at offset +8 is at offset from the beginning of
the Entry Point marker to the PPA1 associated with the entry point. EP flags has
the following format.

1 ... Function is an XPLeaf routine, saving registers in its own stack frame but not
updating the stack pointer

. 1 .. Function uses alloca()

0 0 0 Must be zero

The stack extension marker (type 2), shown in Table 37, identifies stack extension
code that is logically part of the function's prolog but not within the range of
instructions defined to be part of the prolog by the PPA1 "(length of prolog)/2"
field.

Table 37. Stack extension marker (type 2)

+0 0x00 ’C’ 0x00 ’E’ 0x00 ’E’ 0x00 ’2’

+8 offset to entry point marker from this Marker/8 Reserved

The data marker (type 3), shown in Table 38, follows any data in the code section
that might be confused for a "real" marker because it contains the values in the
first seven bytes of any marker style:

Table 38. Data marker (type 3)

+0 0x00 ’C’ 0x00 ’E’ 0x00 ’E’ 0x00 ’3’

+8 offset to entry point marker from this Marker/8 Reserved

The stub marker (type 4), shown in Table 39, marks the beginning of runtime stubs.

Table 39. Stub marker (type 4)

+0 0x00 ’C’ 0x00 ’E’ 0x00 ’E’ 0x00 ’4’

Argument list format
The following sections describe the format of the argument list in detail.

Function Calls: In XPLINK, each function has a data area associated with it, its
environment, whose address is passed by a caller in general purpose register 5. For
C and C++ programs, this environment will in most cases be the compiler defined
area @STATIC. @STATIC is a structure existing once for each compilation unit and
residing in the WSA. Callers therefore need two pieces of information for each
function they call:
v the address of the called function's environment area

Exceptions

Chapter 2. CALL linkage conventions 129

v the address of the called entry point

This information, organized in two consecutive long integers (fullwords) on a
doubleword boundary, is referred to as a Function Descriptor.

Resolution of function linkage is done at the stage in the compile/link/execute
process where enough information is available to make the proper choice with
respect to performance and flexibility. In some cases, calls can be resolved at
compile time. For calls outside a compilation unit the resolution is postponed to
the binder for best results, and when DLLs are used, to the runtime environment.

Excluding parameter handling, the Calling Scheme is made up of a sequence of
instructions (CALL) that load the called function's Environment area address, load
the called function's entry point address, and invoke the called function. Details of
the generated sequences for different types of calls are described in separate
sections below. Calls to routines in Dynamic Link Libraries (DLLs) are supported
naturally without special compiler options. At every call site, Register 12 must
contain the address of the CAA.

With XPLINK, the function entry point address is not always passed to the called
function. To allow Language Environment and other tools to find the entry point
of the currently executing routine, every call site, located by the "return address"
field of the current stack frame, contains information necessary to locate the entry
points of both the calling and called functions and, if required, information about
floating-point parameters passed and return value adjustment required to allow
interface mapping when mixing XPLINK and non-XPLINK code. This is done by
encoding information in a NOP instruction at the return point.

CALL
* * NOP 0(call type) Shown as NOP type,<offset>

in subsequent sequences
ORG *-2 Back up to last two bytes of NOP
DC AL2(call offset) A signed offset in doublewords

from the doubleword at or
preceding the return point
(NOP). If negative, offset to
entry point marker; if positive,
offset to the Call descriptor for
this signature

"Call type" is a 4-bit field describing the type of call. The call is not required to
pass the function entry point address; the NOP following the call, which can be
found via the return address (in GPR7), provides the information required to
compute the entry point address in cases where it is not passed in register.

Call Type

0000 BASR

0001 BRAS

0010-0110 Reserved

0111 Special linkage (for example, 3,3 for explicit stackextension)

1000-1111 Reserved

Argument list format

130 z/OS V2R1.0 Language Environment Vendor Interfaces

Call offset is a 16-bit field containing the offset in doublewords from the call site
to, if negative the entry point marker for the function or, if positive, a call
descriptor, described below, which contains both the offset to the entry point
marker and information about parameter and return types. This definition requires
both entry point markers and call descriptors to be on doubleword boundaries, but
imposes no alignment requirement on the call itself. The entry point marker is
located by taking the address of the call information field, setting the last 3 bits to
zero, and adding 8 * (the call offset). Figure 49 shows the resulting XPLINK
function layout.

A Call Descriptor is created if one of the following occurs:
v The call site is so far removed from the entry point marker of the function that

its offset cannot be contained in the 16 bits available in the call information field
(the NOP) following the call site.

v The call contains a return value or parameters that are passed in registers or in
ways incompatible with non-XPLINK code, that is when the second word of the
call descriptor would have a non-zero value

A call descriptor is doubleword aligned with the following format:

Location Content

+0 Signed offset, in bytes, to entry point marker

+4 Linkage Return Value
Adjust

Parameter Adjust

The meaning and content of the second word of the Call Descriptor are described
in “Argument Passing” on page 135, in “Function Return Values” on page 137, and
in “Call descriptor - linkage type” on page 139.

Function Layout
entry point marker

Call Description

Call Description

call

call

call

call

Beginning of
function body

Code section

Constant area

Figure 49. XPLINK function layout

Argument list format

Chapter 2. CALL linkage conventions 131

Calls by Name: The following sections describe how calls are made by name.

Calling Name: The following code sequence is used to call a function by name
when that function exists outside the compilation unit, (that is, the function
reference is resolved at link-edit time, either statically or dynamically). Calls
relative branch:

LM 5,6,... load environment and function
addresses

...

BASR 7,6 call the function
NOP type,<offset>

Function Descriptor (space reserved by compiler):

DC A(environment) address of function’s
environment

DC A(func) address of function

Intra-module calls: When functions are bound within the same program object as
the caller, the address constants to the function's environment and entry point are
resolved directly by the binder and loader.

Calling Imported Functions: For calls to imported functions, the compiler will
generate the same instruction sequence as for intra-module calls. The function
descriptors for all calls to imported functions should be initialized by the binder as
required for delayed DLL loading.

Function descriptor, unresolved:

DC A(function ID) function ID
DC A(CEETHLOC) address of CEETHLOC

Function Descriptor, resolved:

DC A(environment) address of function’s
environment

DC A(func) address of function

Function Pointers: A function pointer is a data type whose values range over
procedure names. Variables of this type are usually used in procedure call contexts
where the particular procedure to be called cannot be determined at compile time.
They can also be passed as arguments of a call or used in comparison expressions.

Argument list format

132 z/OS V2R1.0 Language Environment Vendor Interfaces

Function pointers are a fullword quantity that is the address of a function
descriptor. With some exceptions, there is only one "call-by-pointer" function
descriptor per entry point for calls via function pointer. The exceptions are:
v pointers to internal (nested) functions
v pointers to fetched functions and function pointers created by fetched function,

because the same function can be fetched more than once.

Note: If an imported function is also called by name, additional function
descriptors, as specified in “Calls by Name” on page 132 will also exist.

This is different from NOXPLINK DLL linkage where more than one function
descriptor - and hence different function pointer values - may exist for one
function, each created in the WSA of the routine that takes the address of (or calls)
the function. With a unique function pointer value, int to pointer casting works as
expected when used with DLLs, providing the same result as with S/390®

non-DLL and on most other platforms. Also, function pointer comparisons will be
significantly faster.

Language Environment will create function descriptors for functions whose
address is taken in a separate dynamically acquired storage area (not loaded as
part of a module's WSA image) based on information added to a module by the
binder. The compiler will flag taking the address of a function differently if it is for
a function pointer than if it is for a call by name.

Calling Sequence:

L Rx,fp load address of descriptor
from function pointer

...

LM 5,6,16(Rx) load environment and function
addresses

1

...

BASR 7,6 call the function
NOP type,<offset>

Function Descriptor:

DC A(environment) address of function’s
environment

DC A(func) address of function

Reentrancy: Reentrant programs are structured to allow more than one user to
share a single copy of a program object. Users create reentrant programs by
writing code that does not modify data in the executable. This is referred to as a
naturally-reentrant program. In many languages, users can also request that the
compiler create reentrant programs on their behalf by allocating external data in

Argument list format

Chapter 2. CALL linkage conventions 133

the writable static area; this is referred to as constructed reentrancy. If a function
refers to data in the writable static, its environment must also reside in writable
static.

When a program is naturally reentrant it may be desirable to bypass constructed
reentrancy to avoid allocation and initialization of a writable static area.

Argument Passing Register Conventions: The following tables describe the
XPLINK register conventions used for passing arguments.

Register
Conventions on function entry

Volatility
exit

GPR 0 undefined not preserved

GPR 1
1st word of argument list or undefined

n/a
part of return value or undefined

GPR 2
2nd word of argument list or undefined

n/a
part of return value or undefined

GPR 3
3rd word of argument list or undefined

n/a
part of return value or undefined

GPR 4 Pointer to caller's stack frame - 2048 preserved

GPR 5 Address of environment not preserved

GPR 6 undefined not preserved

GPR 7 Return address not preserved

GPR 8-11 Undefined preserved

GPR 12 The CAA address preserved

GPR 13-15 Undefined preserved

Register
Conventions on function entry

Volatility
exit

FPR 0
FP parameter 1 or undefined

not preserved
part of return value or undefined

FPR 2
FP parameter 2 or part of FP parameter 1 in register
pair 0,2 (for long double) or undefined not preserved
part of return value or undefined

FPR 4
FP parameter or undefined

not preserved
part of return value or undefined

FPR 6
FP parameter or part of an FP parameter in register
pair 4,6 (for long double) or undefined not preserved
part of return value or undefined

FPR 1, 3, 5 and 7 undefined not preserved

FPR 8-15 undefined preserved

Register
Conventions on function entry

Volatility
exit

VR 0-7 undefined not preserved

Argument list format

134 z/OS V2R1.0 Language Environment Vendor Interfaces

Register
Conventions on function entry

Volatility
exit

VR 8-15 undefined

Bytes 0-7 are
preserved due to
overlap with
FPR8-15, bytes
8-15 are not
preserved.

VR 16-23 undefined preserved

VR 24-31
Vector type parameters or undefined.

not preserved
VR 24 is used for returns.

Argument Passing: XPLINK uses a logical argument list consisting of contiguous
32-bit words where some arguments are passed in registers and some in storage.
This is similar to FASTLINK (see References and Related Documents on page 7)
but with some important differences outlined below.

The argument list is located in the caller's stack frame at a fixed offset (+2112) from
the stack register (GPR4). It provides space for all arguments, including those
passed in registers. It also includes an extra unused word (4 bytes), which may be
required in compatibility situations, at the end of the argument area. Its size is
sufficient to contain all the arguments, plus the extra unused word, passed on any
call statement from a procedure associated with the stack frame.

Since support of stack extensions may require copying of argument lists to
different storage locations, the argument list must not include arguments that are
pointers to locations in the argument list. The rules for argument passing in
registers are as follows:
v The first 3 (4-byte) words of the argument area, regardless of their composition

or source, are passed in GPRs 1, 2, and 3, and not in the argument area
(although space for these words is reserved in the argument area), except for
vector values and floating point values, including the real or imaginary
constituents of complex types.
Not every language supports complex types. For the purposes of argument
passing and function return values, in every language, every aggregate that is
(a) not a union, and (b) contains exactly two floating-point types of the same
size (4,8, or 16 bytes) is treated as a complex type.

v Except for arguments in the variable part of a vararg parameter list, up to four
floating-point value arguments (the first four) are loaded into floating-point
register(s) FPR0, FPR2, FPR4, FPR6 and not passed in the argument area,
although space is set aside for these arguments in the argument area. In this
fashion, up to four floating-point arguments can be passed depending on their
precision (single, double, extended), provided each of these:
– can be fully (considering the constituent parts of complex arguments

separately) contained in the remaining available FPRs, and
– can be represented in the parameter descriptor flags (that is, they are within

15 words of the previous floating point argument in the argument list).

Register Conventions

Chapter 2. CALL linkage conventions 135

|
|
|
|
|
|

|

An extended precision floating point parameter (long double) is always passed
in FPR0/2 or FPR4/6. If, for example, the first floating point parameter is
double (passed in FPR0) and the second floating point parameter is long double
FPR2 will be unused in the parameter list.
If a floating point argument occupies one of the first three words in the
argument area, a prototype for the function is visible, and the argument is not
part of the vararg portion of a parameter list, the corresponding GPR's value is
undefined on entry to the called function.

v Except for arguments in the variable part of a vararg parameter list, up to eight
vector arguments are passed in VR24-31, and not passed in the argument area,
although space is set aside for these arguments in the argument area. If a vector
argument occupies one of the first three words in the argument area, a prototype
for the function is visible, and the argument is not part of the vararg portion of
a parameter list, the corresponding GPR's value is undefined on entry to the
called function.

v Normally, arguments passed in registers are not stored in the argument list
although a slot in the argument list is reserved for them.
There is an exception to this rule: if it is required that part of a floating point or
vector value be stored in the argument area, then the entire floating or vector
value is stored in the argument area. This situation arises in calls to
unprototyped functions or in the vararg portion of a parameter list when part of
the floating point or vector parameter is in the first three words of the argument
area. For more information, see examples f13, f18, and f20 in Appendix B,
“CALL linkage argument examples,” on page 873.

For calls to unprototyped functions, where the caller cannot know if the called
function contains a variable (vararg) portion, the argument list must be constructed
to allow a call to either a vararg or non-vararg function. In this situation:
floating-point and vector arguments in the first 3 words of the parameter list are
passed in GPRs, FPRs and VRs; other floating point or vector arguments passed in
FPRs or VRs are also passed in the argument list.

To support varargs functions, calls to unprototyped functions, and compatibility
with older linkages, the minimum argument area length must be 16 bytes. This
allows the compiler to map the first three arguments in storage as well as registers
and provides for compatibility with linkages that have a hidden last parameter.

Call Descriptor - Parameter Descriptions: If any floating point argument is passed in
a register, the call requires a Call Descriptor, which is pointed to from the call site
as described in “Calling Sequence” on page 133. Functions which receive a floating
point parameter in a register require Interface Mapping Flags in their PPA1 control
blocks as described in “PPA1 in support of XPLINK” on page 21; this takes the
same format as the second half of the call descriptor used for calls to the same
function. There is a 6-bit field in the call descriptor for each parameter passed in a
floating point register.

Location Content

+0 Signed offset, in bytes, to entry point marker

+4 Linkage
Return
Value
Adjust

FPR0 FPR2 FPR4 FPR6

Each of these parameter descriptor fields (FPRx) takes the following form:

Argument Passing

136 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

Value Meaning

001000 For the FPR0 field only, this indicates an unprototyped call. Floating point
arguments are passed both in registers and in the argument area.

000000 floating point register is not part of the argument list

01.... This floating point register occupies 4 bytes in the argument list. It may be a
single short floating point parameter or, if followed by 110000, the first half of
a short floating point complex argument.

10.... This floating point register occupies 8 bytes in the argument list. It may be a
single long floating point argument or, if followed by 110000 or 110001, the
first 8 bytes of a longer floating point (including complex) type.

..nnnn For the bit patterns above, the number of words (0 - 15) between the slot for
this argument in the argument list and the slot for the previous (used) floating
point register or, for FPR0, the beginning of the argument list.

110000 This floating point register occupies the same number of bytes as the previous
register, immediately follows the slot associated with the previous register,
and is the next part of a complex type.

110001 This floating point register occupies the same number of bytes (8) as the
previous register, immediately follows the slot associated with the previous
register, and is the second half of an extended precision floating point
argument.

It is the compiler's responsibility to pass the maximum number of parameters that
fit this encoding scheme so that the parameters in registers will match between
caller and called function. When calling a vararg routine, no argument in the
variable portion of the argument is passed in a Floating Point Register or Vector
Register. When calling unprototyped functions floating point or vector parameters
are passed in FPRs or VRs matching this encoding scheme and are also shadowed,
by the caller, in GPRs or memory. Call descriptors are not required for calls to
unprototyped functions whose return value is not examined by the caller.

Function Return Values: Functions return their values according to type:
1. Integral and pointer data types that are less than or equal to 32 (≤ 32) bits in

length are widened to 32 bits and returned in GPR3.
2. Integral data types greater than 32 bits and less than or equal to 64 (≤ 64) bits

in length are widened to 64 bits and returned in GPR2 (the leftmost 32 bits)
and GPR3 (the rightmost).

3. Floating point types, including complex types, are returned FPR0, FPR2, FPR4
and FPR6, using as many registers as required.
Some languages do not support complex types. For the purposes of argument
passing and function return values, in every language every aggregate that is
(a) not a union, and (b) contains exactly two floating-point types of the same
size (4, 8, or 16 bytes) is treated as a complex type.

4. Vector data types are returned in VR 24.
5. Aggregates or packed decimal types 1-4 bytes in length are returned left

adjusted in GPR1.
6. Aggregates or packed decimal types 5-8 bytes in length are returned left

adjusted in GPRs 1 and 2.
7. Aggregates or packed decimal types 9-12 bytes in length are returned left

adjusted in GPRs 1, 2, and 3.

Call Descriptor

Chapter 2. CALL linkage conventions 137

|
|
|
|
|
|
|
|

|

8. Any other type is always completely returned in a buffer allocated by the caller.
The address of this buffer is passed as a hidden first argument. For example
struct {double,long double} is returned entirely in a buffer, with no part of the
aggregate returned in registers.

9. Functions returning a return value and a reason code will pass the return value
in GPR3 and the reason code in GPR2. In this case, both the return value and
the reason code must be integral types that are less than or equal to 32 (≤ 32)
bits in length; or, aggregates consisting of a single integral type that are less
than or equal to 32 (≤ 32) in length.

Call Descriptor - Return Values: Calls to functions which return aggregates mapped
to registers require a Call Descriptor, which is pointed to from the call site as
described in “Calling Sequence” on page 133. Functions which return such
aggregates require Interface Mapping Flags in their PPA1 control blocks as
described in “PPA1 in support of XPLINK” on page 21; this takes the same format
as the second half of the call descriptor used for calls to the same function. The call
descriptor takes the following form:

Location Content

+0 Signed offset, in bytes, to entry point marker

+4 Linkage
Return
Value
Adjust

FPR0 FPR2 FPR4 FPR6

The Return Value Adjust field takes the following form:

Value Meaning

00000 Default return adjust. Function returns:

1. nothing, or

2. (Call Descriptor only) an integral or floating point type that is
not examined by the caller. There is no need for compatibility
code to copy the return value.

00 ... An integral type

001 An Integral type ≤32 bits, returned in GPR3

010 An integral type >32 bits, returned in GPR2/GPR3

010 .. A floating point type

00 A single precision floating point type (4 bytes) returned in FPR0

01 A double precision floating point type (8 bytes) returned in FPR0

10 An extended precision floating point type (16 bytes) returned in
FPR0/2

011 .. A complex floating point type, including any aggregate containing
exactly two floating point values of the same size that is not a
union

00 A single precision complex type (8 bytes) returned in FPR0/2

01 A double precision complex type (16 bytes) returned in FPR0/2

10 An extended precision complex type (32 bytes) returned in
FPR0/2/4/6

1 An aggregate

0000 An aggregate returned in an area provide by the caller

Function Return Values

138 z/OS V2R1.0 Language Environment Vendor Interfaces

Value Meaning

nnnn An aggregate of length nnnn (1-12) bytes, left adjusted in GPRs
1/2/3 as required

Call descriptor - linkage type: Calls using non-XPLINK parameter lists are indicated
by the linkage field in a call descriptor. Possible values are:

0 XPLINK linkage

1 reserved

2 PL/I: arguments are passed by reference, the last (indicated by its
high-order bit) being the address of a return buffer allocated by the caller.

3 Fortran

4 reserved

5 OS: arguments are passed by reference, the last having its high-order bit
on. This value is used for COBOL calls if the return type is char, short, or
int.

6 reserved

7 COBOL: arguments are passed by reference, the first being the address of a
return buffer allocated by the caller and the last having its high-order bit
on. This value is not used if the return type is char, short, or int.

Call Descriptor - Return Values

Chapter 2. CALL linkage conventions 139

Call descriptor - linkage type

140 z/OS V2R1.0 Language Environment Vendor Interfaces

Chapter 3. Program initialization and termination

Initialization and termination establishes the state of the components of the
Language Environment program model supporting multi-language applications.
Specifically, this section discusses the initialization and termination of a process, an
enclave, and a thread.

Initialization overview
The program model describes three major constructs of a program structure. The
constructs are:

Process
A collection of resources (code and data)

Enclave
A collection of program units consisting of at least one main and zero or
more subroutines

Thread
The basic unit of execution and owner of a condition handler, a stack, and
the machine state

Initialization provides services which support the construction of the entities
described in this model. Brief descriptions of process, enclave, and thread
initialization follow.

Process Initialization
Process initialization sets up the framework to manage enclaves and
initializes those resources that can be shared among enclaves. It is during
process initialization that the anchor vector is obtained and initialized. For
more information, see Chapter 14, “Anchor support,” on page 479.

Enclave Initialization
Enclave initialization creates the framework to manage enclave-related
resources and the threads that run within the enclave. For more
information about enclaves, see z/OS Language Environment Programming
Guide.

Thread Initialization
Thread initialization consists of the acquisition of a stack and the
enablement of the condition manager for the thread.

Language Environment provides an interface under batch that establishes the three
levels of the Language Environment program model. This interface is CEEINT. For
the complete interface description of CEEINT, see “CEEINT interface” on page 157.

The first user routine to gain control within the enclave is designated as the main
routine. If user parameters are passed from the host system/subsystem, the user
parameters are made available to the main routine. By the time the main routine
receives control, the following resources are available:
v Stack storage
v Heap storage
v Condition handling
v Message services
v Math library

© Copyright IBM Corp. 1991, 2015 141

Termination overview
The following section covers enclave and process termination.

Enclave termination
An enclave terminates when one of the following events occurs:
v The last thread in the enclave terminates.
v The main routine in the enclave returns to its caller. That is, an implicit STOP or

return is done.
v An HLL construct issues a request for the termination of an enclave. For

example:
– The abort(), raise(SIGTERM), or exit() functions of C.
– The STOP RUN statement of COBOL.
– The GOBACK statement in a main program of COBOL.
– The STOP statement of Fortran.
– The END or RETURN statements in a main program of Fortran.
– The CALL SYSRCX, CALL EXIT, CALL DUMP, or CALL CDUMP statement

of Fortran.
– PL/I's STOP function
– PL/I's EXIT function

When a severity 2 or greater condition remains unhandled at stack frame zero, the
thread terminates. Because Language Environment supports only a single thread
within an enclave, when the thread terminates due to an unhandled condition, the
enclave also terminates.

To support the HLL constructs that terminate the enclave, such as STOP RUN, as
well as an implicit STOP, two CWIs, CEETREC, and CEETREN:
v Save the Language Environment termination modifier, and the user's return code
v Raise the Termination Imminent due to Stop (T_I_S) condition (CEETREC only)
v Set the enclave condition token to zero
v Terminate all enclave level member exits and user exits
v Terminate the enclave

Details on how HLLs and Language Environment use the termination facilities
appear later. When an enclave terminates, Language Environment releases
resources allocated on behalf of the enclave and performs various other activities
such as the following:
v Member-specific termination routines for those members that were active during

the execution of the program are called.
v Language Environment exception handlers are canceled.
v All modules loaded by Language Environment are deleted.
v All storage obtained by way of Language Environment services is freed.
v The assembler user exit is called for enclave termination.
v All Language Environment control blocks for the enclave are freed.
v Return code and reason code are set in R15 and R0, respectively.
v The program mask and registers are restored to their values at the call to

enclave initialization.
v Control is returned to the enclave creator.

In addition to the CWIs CEETREC and CEETREN, Language Environment
provides a callable service that issues an abend. This service is a Language

Init/Term

142 z/OS V2R1.0 Language Environment Vendor Interfaces

Environment-specific callable service known as CEE3ABD. For more information,
see z/OS Language Environment Programming Guide.

Process termination
Process termination occurs when the last enclave in the process terminates. Process
termination dissolves the structure that kept track of the enclaves within the
process and returns to the creator of the process. The PCB and associated resources
are released. Language Environment explicitly relinquishes all resources that were
obtained by Language Environment. Routines that obtain resources directly from
the host system (such as opening a DCB) need to explicitly relinquish the resource
because Language Environment does not have any knowledge of its acquisition.

Putting initialization/termination together
Presented here is an overview of running an application. Many details are omitted,
but it demonstrates how all of the pieces fit together. For simplicity, compatibility
is not described here. Also, the CICS initialization does not follow the steps
provided below; for information on CICS, see Chapter 13, “Subsystem
considerations,” on page 435.
v The operating system passes control to the application providing a save area,

which we term the O/S Save Area.
v Regardless of which code receives control (compiler-generated code or runtime

library), an STM into the O/S Save Area is performed preserving the operating
system's registers.

v The application (probably an HLL library routine) calls CEEINT with R13
pointing to the O/S Save Area (and some other parameters as well).

v While running CEEINT, Language Environment determines the HLLs that are
included in the application. For those HLLs present, a language-specific routine
(known as an EVENT handler) is loaded and called once for process
initialization, and once for enclave initialization. This allows for
language-specific initialization activities to occur.

v Upon return from CEEINT, R13 points to the Dummy (or zeroth) DSA, R12
contains the address of the CAA, and R1 contains a pointer to any parameters or
a pointer to a list of addresses that point to any parameters that are to be passed
to the main routine.

v The HLL library routine allocates a DSA of its own and call the main routine.
v If the user code completes through a HLL construct such as STOP RUN, or if the

main routine returns to its caller, the HLL library routine calls the Language
Environment service CEETREC or CEETREN which terminate the enclave.

v The return code and reason code are set into R15 and R0 and returned.
v Control is returned through the save area that was passed to CEEINT during

Language Environment initialization. That is, the registers are restored from the
O/S Save Area, including R14. Then control is returned using R14. In this
example, control is returned to the operating system.

Member interfaces for initialization
The following section covers enclave initialization. CEEINT is the Language
Environment initialization routine that establishes a Language Environment
environment (the process and the first enclave within the process) in which an
application can run. The interface to CEEINT is described in “CEEINT interface”
on page 157. CEEINT relies on a number of components to be link-edited with the

Init/Term

Chapter 3. Program initialization and termination 143

application. Language Environment uses these components to describe the contents
of the application, and to locate other elements contained in the application. A
description of these components follows.

CEESTART
The CEESTART CSECT is a required part of each application; it identifies an
application. The CEESTART CSECT must be accessible by Language Environment
throughout the duration of the Language Environment environment. It cannot be
link-edited with a module that is deleted during program execution. Language
Environment produces a default version of CEESTART, but it can also be generated
by the member languages. All member languages must have an external reference
for CEESTART; this requirement is satisfied if a PPA2 is generated.

Language Environment provides a common CEESTART. Essentially, CEESTART can
be nominated as the entry point for any other language that provides a CEEMAIN
main or fetchable subroutines (and any other language that provides a
CEEFMAIN). Entry into CEESTART causes the Language Environment
environment to be initialized and execution to be passed to the main routine as
specified in CEEMAIN. Entry into CEESTART causes control to be passed to a
routine specified in CEEFMAIN given the Language Environment environment is
already initialized, and CEEMAIN is not resolved.

CEESTART physical layout
CEESTART is logically divided into five sections. It is intended that the section
structure and fields currently defined in CEESTART remain constant over time. It
is also intended that necessary changes to CEESTART will be made in an upwardly
compatible manner, so as to preserve the structure and fields as currently defined.

Two new formats of CEESTART are provided. One format supports non-XPLINK
linkage protocols. The code sample below shows the format of the non-XPLINK
CEESTART; its fields are described in Table 40 on page 145. The other format
supports XPLINK linkage protocols; the XPLINK CEESTART format is shown here.
SECTION 1

CEESTART CSECT
CEESTART AMODE ANY
CEESTART RMODE ANY

EXTRN CEEBETBL
EXTRN CEEROOTA

or
WXTRN CEEROOTA
WXTRN CEEMAIN
WXTRN CEEFMAIN Library copy

SECTION 2

000000 NOP 0
000004 NOP 2
000008 STM 14,12,12(13)
00000C BALR 3,0

USING *,3
00000E B AROUND

SIGNATUR EQU *
000012 SIG_LEN DC XL2(14)
000014 SIG_CEE DC X’CE’
000015 SIG_ID DC X’mm’
000016 SIG_VER DC X’vv’
000017 SIG_REL DC X’rr’
000018 SIG_PL DC A(PLIST)
00001C SIGN_EYE DC CL8’CEESTART’
000024 DC H’0’

AROUND EQU *

Initialization

144 z/OS V2R1.0 Language Environment Vendor Interfaces

SECTION 3

L R15,AROOT_A
BALR R0,R15

SECTION 4

PLIST DS 0F
x+00 ACEEMAIN DC A(CEEMAIN) or 0
x+04 DC A(0) Reserved
x+08 DC A(0) Reserved
x+0C DC A(0) Reserved
x+10 CXD
x+14 VMARKER DC H’-1’
x+16 PLISTLEN DC AL2(PLIST_LEN)
x+18 DC A(0) Reserved
x+1C DC A(0) Reserved
x+20 DC A(0) Reserved
x+24 DC A(0) Reserved
x+28 DC A(0) Reserved
x+2C DC A(0) Reserved
x+30 DC A(0) Reserved
x+34 SIG_ADDR DC A(SIGNATUR) Reserved
x+38 DC A(0) or 0
x+3C FMAIN DC A(CEEFMAIN) Reserved
x+40 DC A(0) Reserved
x+44 DC A(0) Length of
x+48 BETBL EQU A(CEEBETBL) parameter list

PLIST_LEN *-PLIST

SECTION 5

AROOT_A DC A(CEEROOTA)
END CEESTART

Table 40. Contents of non-XPLINK CEESTART

Section Content

Section 1 Declarations for the entry points and external routines.

Section 2 Additional entry points and signature. The signature is used for identification
and provides access to the parameter list found in Section 4.

mm Member identifier of the creator. The HLL compilers should set this
value to their corresponding member identifier.

vv Member-defined version level; Language Environment has no
dependencies on it.

rr Member-defined release level; Language Environment has no
dependencies on it.

Section 3 Executable code that invokes the bootstrap routine CEEROOTA. Control is not
returned to CEESTART once the bootstrap routine is invoked. It is intended
that minimal logic is contained within CEESTART and that the structure and
content of CEESTART remains constant over time.

Initialization

Chapter 3. Program initialization and termination 145

|

Table 40. Contents of non-XPLINK CEESTART (continued)

Section Content

Section 4 Parameter list that is passed to the bootstrap routine. This parameter list is
also intended to remain unchanged in future releases.

ACEEMAIN
Points to the CEEMAIN CSECT that contains the address of the main
routine. This spot was used for the address of PLIMAIN in
PLISTART.

PRV_LEN
Length of the pseudo register vector. This field is retained for
compatibility. Language Environment does not allocate the PRV
during initialization.

VMARKER
This is an identifying characteristic for the CEESTART PLIST.

PLISTLEN
Indicates the number of bytes contained within this PLIST.

SIG_ADDR
Points to the CEESTART signature contained in Section 2.

FMAIN
Points to the CEEFMAIN CSECT that is used during fetch or dynamic
load.

BETBL Points to the Language Environment owned externals table. It is
through the externals table that Language Environment passes load
module information into initialization.

Language Environment does not interrogate unidentified fields; they are
considered to be language-specific.

Section 5 Bootstrap routine addresses. This provides the routine address to the
initialization bootstrap routine.

AROOT_A
Address of the bootstrap routine which corresponds to a CEESTART
entry. The Language Environment library copy of CEESTART has a
WXTRN to CEEROOTA and requires that CEEROOTA be INCLUDEd
during link-editing of the application. CEEROOTA can be excluded
from applications where CEESTART is not the entry point.

The code example below shows the format of the XPLINK CEESTART. Table 41 on
page 147 describes the contents of each section.
SECTION 1

CEESTART CSECT
CEESTART AMODE ANY
CEESTART RMODE ANY

EXTRN CEEBETBL Compiler
EXTRN CEEROOTD Compiler

or
WXTRN CEEROOTA Non-library copy
WXTRN CEEROOTD Non-library copy
WXTRN CEEMAIN Non-library copy
WXTRN CEEFMAIN Non-library copy

SECTION 2

000000 NOP 0

000004 NOP 2

Initialization

146 z/OS V2R1.0 Language Environment Vendor Interfaces

000008 STM 14,12,12(13)
00000C BALR 3,0

USING *,3
00000E B AROUND

SIGNATUR EQU *
000012 SIG_LEN DC XL2(14)
000014 SIG_CEE DC X’CE’
000015 SIG_ID DC X’mm’
000016 SIG_VER DC X’vv’
000017 SIG_REL DC X’rr’
000018 SIG_PL DC A(PLIST)
00001C SIGN_EYE DC CL8’CEESTART’
000024 DC H’0’

AROUND EQU *

SECTION 3

L R15,AROOT_D Compiler
BALR R0,R15 Compiler

or
L 15,AROOTA Library Copy
LTR 15,15 Library Copy
BNZ BALR Library Copy
ABEND 4093,REASON=112 Library Copy
BALR BALR 0,15 Library Copy

SECTION 4

PLIST DS 0F
x+00 ACEEMAIN DC A(CEEMAIN) or 0
x+04 DC A(0) Reserved
x+08 DC A(0) Reserved
x+0C DC A(0) Reserved
x+10 CXD
x+14 VMARKER DC H’-2’
x+16 PLISTLEN DC AL2(PLIST_LEN)
x+18 DC A(0) Reserved
x+1C DC A(0) Reserved
x+20 DC A(0) Reserved
x+24 DC A(0) Reserved
x+28 DC A(0) Reserved
x+2C DC A(0) Reserved
x+30 DC A(0) Reserved
x+34 SIG_ADDR DC A(SIGNATUR)
x+38 DC A(0) Reserved
x+3C FMAIN DC A(CEEFMAIN) or 0
x+40 DC A(0) Reserved
x+44 DC A(0) Reserved
x+48 BETBL DC A(CEEBETBL) Length of

PLIST_LEN EQU *-PLIST parameter list

SECTION 5

AROOT_A DC A(CEEROOTA) Complier
or

AROOT_D DC A(CEEROOTD) Library Copy
END CEESTART

Table 41. Contents of XPLINK CEESTART

Section Contents

Section 1 Declarations for the entry points and external routines.

Initialization

Chapter 3. Program initialization and termination 147

Table 41. Contents of XPLINK CEESTART (continued)

Section Contents

Section 2 Additional entry points and signature. The signature is used for identification
and provides access to the parameter list found in Section 4.

mm Member identifier of the creator. The HLL compilers should set this
value to their corresponding member identifier.

vv Member-defined version level; Language Environment has no
dependencies on it. This contains a version level corresponding to the
CEESTART defined by Language Environment or the compiler.

rr Member-defined release level; Language Environment has no
dependencies on it. This contains a release level corresponding to the
CEESTART defined by Language Environment or the compiler.

Section 3 Executable code that invokes the bootstrap routine CEEROOTA. Control is not
returned to CEESTART once the bootstrap routine is invoked. Minimal logic is
contained within this section of CEESTART.

Section 4 Parameter list that is passed to the bootstrap routine. This parameter list is
also intended to remain unchanged in future releases.

ACEEMAIN
This parameter list will typically not change. It is intended that any
necessary changes will be made in an upwardly compatible manner,
preserving the position and meaning of the current fields. This spot
was used for the address of PLIMAIN in PLISTART.

PRV_LEN
Length of the pseudo register vector. This field is retained for
compatibility. Language Environment does not allocate the PRV
during initialization.

VMARKER
This is an identifying characteristic for the CEESTART PLIST.

PLISTLEN
Indicates the number of bytes contained within this PLIST.

SIG_ADDR
Points to the CEESTART signature contained in Section 2.

FMAIN
Points to the CEEFMAIN CSECT which is used during fetch or
dynamic load.

BETBL Points to the Language Environment owned externals table. It is
through the externals table that Language Environment passes load
module information into initialization.

Language Environment does not interrogate unidentified fields; they are
considered to be language-specific.

Section 5 Bootstrap routine addresses. This provides the routine address to the
initialization bootstrap routine.

AROOT_A
Address of the bootstrap routine which corresponds to a CEESTART
entry. The Language Environment library copy of CEESTART has a
WXTRN to CEEROOTA and requires that CEEROOTA be INCLUDEd
during link-editing of the application. CEEROOTA can be excluded
from applications where CEESTART is not the entry point.

Initialization

148 z/OS V2R1.0 Language Environment Vendor Interfaces

CEEFMAIN
CEEFMAIN, as shown in Figure 50, contains the address of fetchable routines that
gain control from CEESTART if the Language Environment environment is already
initialized and CEEMAIN is not resolved.

+0 0x02 0x00 0x00 0x01

+4 A(fetchable entry point)

+8 Q(environment), or -1 if no environment

+0 0x03 0x00 0x00 0x01

+4 A(fetchable entry point)

+8 A(environment)

CEEMAIN
CEEMAIN has been extended; see Figure 51 for the format of the old CEEMAIN
and the extensions. Bits 30 and 31 are used to differentiate between the two. The
'ctl' field will be one for the extended CEEMAIN.

+0 0x02 0x00 0x00 0x01

+4 A(main entry point)

+8 A(EDCINPL)

+12
0x0c

Q(environment), or -1 if no environment

+0 0x03 0x00 0x00 0x01

+4 A(main entry point)

+8 A(EDCINPL)

+12
0x0c

A(environment)

Address (fetchable procedure entry point)

0

Figure 50. Format of CEEFMAIN

ctl 0 0

0

01 00

01 01
33 33

A (main)

EXTENDED CEEMAIN OLD CEEMAIN

A (main)

A (INPL)

11

3

2 2

Figure 51. Format of CEEMAIN

Initialization

Chapter 3. Program initialization and termination 149

CEESTART operation
The Language Environment bootstrap routine takes the actions as described in
Table 42.

Table 42. Bootstrap behavior

Enclave
Initialized?

MAIN? FMAIN? Comments

No Yes No Initialize the enclave and execute MAIN

No Yes Yes Initialize the enclave and execute MAIN

No No Yes Abend 4093-112

No No No Abend 4093-112

Yes Yes No Raise the condition CEE393

Yes Yes Yes Raise the condition CEE396

Yes No Yes Call the FMAIN subprogram

Yes No No Raise the condition CEE392

Notes:

1. The enclave can either be the initial enclave or a nested enclave. Enclave Initialized is
no if CEEINT has not yet been called for that enclave.

2. MAIN refers to the address of the main routine contained in the PLIMAIN or
CEEMAIN CSECTs.

3. FMAIN refers to the address of the fetchable entry contained in the CEEFMAIN
CSECT.

When CEESTART is invoked from within a Language Environment environment,
and CEEMAIN or PLIMAIN is resolved, an error is raised. The bootstrap behavior
should also be reflected in FETCH limitations.

Note: The address of the main routine can potentially be found in two places:
CEEMAIN and within the Initialization Parameter List (INPL). Language
Environment honors the address found in the INPL.

Main routine invocation event
When the environment is initialized by CEESTART, a new event allows the
CEESTART owning member to invoke the main routine. The new event is
provided for compatibility support. The interface to the Main Routine Invocation
Event is shown in “Event code 14 — main routine invocation event” on page 504.

Language Environment allocates a DSA in order to call the main routine. The
handler for event 14 must handle any AMODE switching required to invoke the
MAIN routine.

After control returns from the main program and optional FINISH processing has
completed, event 14 invokes CEETREN to terminate the enclave.

CEESIOP — set interrupt option service
The CEESIOP CWI is invoked to set the PL/I options INTERRUPT or
NOINTERRUPT during enclave initialization.

Initialization

150 z/OS V2R1.0 Language Environment Vendor Interfaces

Syntax

void (*CEECELVBSIOP) (on, [fc])
INT4 *on
FEED_BACK *fc;

CEECELVBSIOP
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12)
L R15,3384(,R15)
BALR R14,R15

on (input)
Is not equal to 0 to set the INTERRUPT option.

fc (output/optional)
A feedback code to indicate the result of this call; possible values are:

Condition

CEE000 Message Success.

CEE3HV Message The region default for the runtime option option could not be
overridden.

CEE3LO Message The system default for the runtime option option could not be
overridden.

Usage Notes:

1. Unless the INTERRUPT option is marked nonoverrideable, this service can
override the IBM-supplied, system-level or region-level default setting and it
can be overridden by any other source of options.

2. The source of this option is marked programmer default in the Language
Environment options report.

3. This routine only has affect in a single-language application. If this routine is
called in a multiple-language application, it has no effect and CEE000 is
returned.

Signature CSECT
Each language called by Language Environment for member-specific initialization
and termination must generate a CEESGnnn signature CSECT. The signature
CSECT denotes the presence of a member in the application. In addition, the
signature CSECT provides a mechanism for the member to convey user load
module information to the dynamically loaded member event handler. The nnn
value is the decimal member number for each language.

In addition, the signature CSECT can contain a list of member identifiers upon
which this current member is dependent. Language Environment orders these
dependencies and calls the member-specific initializations in the dependent order.
Termination is performed in the reverse order. Language Environment assumes
that circular dependencies do not occur.

The format of the signature CSECT is shown in Figure 52 on page 152. The fields
SG_MBR1 and SG_MBR2 are optional and provide a vehicle for the member to
pass member-specific load module related information to the member-specific
handler during initialization (or any other time). During enclave initialization, the
signature CSECT can be accessed indirectly through the initialization parameter
list. Language Environment does not interrogate, alter, or check for the presence of

CEESIOP

Chapter 3. Program initialization and termination 151

|||

|||

|||
|

|||
|
|

|
|
|

|
|
|

SG_MBR1 or SG_MBR2. It is the member's responsibility to allocate SG_MBR1 and
SG_MBR2, and to access these fields based upon their presence.

CEEBETBL — Language Environment externals table
The CEEBETBL CSECT, shown in Figure 53, is linked with any Language
Environment-enabled application program. The CSECT is defined by the
CEEBETBL module. The externals table contains various external references to
entities in the executable program, which allows Language Environment to locate
entities if they exist in the executable program. For compatibility with old load
modules, a HLL can construct its own CEEBETBL.

Table 43 describes the contents of each field in the CEEBETBL.

Table 43. CEEBETBL field descriptions

Field Contents

ETBL_A_ENTRIES Fullword number containing the number of fullwords in
CEEBETBL, including this word

ETBL_A_CEEBXITA Address of the assembler user exit (CEEBXITA) or zero. If zero,
the installation-wide assembler user exit, which is linked with the
Language Environment dynamically loaded routines, is called.

ETBL_A_CEEBINT Address of the HLL User Exit (CEEBINT) or zero. If zero, the
HLL user exit is not called.

CEESGnnn CSECT
CEESGnnn AMODE ANY
CEESGnnn RMODE ANY

DC CL4’Snnn’ Eye catcher
DC H’20’ Length of CSECT
DC H’1’ Version id
DC H’0’ Number of dependent member IDs
DC H’0’ Offset from the start of the CSECT...

* ...to the one-byte member IDs
SG_MBR1 DC A Reserved for member’s use
SG_MBR2 DC A Reserved for member’s use

Figure 52. Signature CSECT format

CEEBETBL CSECT ,
CEEBETBL AMODE ANY
CEEBETBL RMODE ANY

WXTRN CEEUOPT
WXTRN CEEBXITA
WXTRN IEWBLIT

ETBL_A_ENTRIES DC F’10’ Number of fullwords in this table
ETBL_A_CEEBXITA DC V(CEEBXITA) Assembler User Exit
ETBL_A_CEEBINT DC V(CEEBINT) HLL User Exit
ETBL_A_CEEBLLST DC V(CEEBLLST) Language List
ETBL_A_CEEUOPT DC V(CEEUOPT) User declared runtime option table
ETBL_A_CEEBTRM DC V(CEEBTRM) Termination stub routine address
ETBL_A_IBMXXITA DC A(0) Holds address of PL/I or C user exit
ETBL_A_CEEBPUBT DC V(CEEBPUBT) Unique binding table
ETBL_A_IEWBLIT DC V(IEWBLIT) Loader information table (or 0)

DC A(0) Reserved
END

Figure 53. CEEBETBL CSECT format

Signature CSECT

152 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 43. CEEBETBL field descriptions (continued)

Field Contents

ETBL_A_CEEBLLST Address of the language list (CEEBLLST). This is a vector of weak
external references for the signature CSECTs. When an entry in
the vector is nonzero, the corresponding HLL is present in the
executable program and its language-specific initialization is
performed. (This is provided by Language Environment.)

ETBL_A_CEEUOPT Address of the user declared option table or zero. If zero ,
user-defined runtime options are not available (for example,
link-edited with the application).

ETBL_A_CEEBTRM Address of the termination stub that releases the resources
obtained in CEEINT. Essentially, the termination stub deletes the
routine loaded by CEEINT and returns using R14 found in the
save area provided on entry to CEEINT.

ETBL_A_IBMXXITA Address of PL/I or C user exit.

ETBL_A_CEEBPUBT Address of the product unique binding table, which contains the
name for the first dynamically-loaded runtime library module.

ETBL_A_IEWBLIT Address of the loader information table (IEWBLIT), which is
created by the Binder for modules that were built without using
the prelinker. For example, these modules would include
reentrant C programs and all C++ programs. If the Binder does
not need to create this table, this field will contain a zero (0).

Event handler routines
Each member in an enclave that provides a signature CSECT or appears in the
dependent member list of a signature CSECT is also required to have an event
handler routine. The load name of this routine must be CEEEVnnn, where nnn is
the decimal member number. As an example, the event handler routine name for
COBOL is CEEEV005. This routine must be available to the Language Environment
load service. All calls of the event handlers use an OS-style parameter list. R1
points to an address list which points to the specific parameters. The event
handlers are always called in AMODE 31. The interface to the event handler
routines for member-specific initialization and termination is described in “Member
event codes for initialization and termination” on page 181. For each of the event
handlers, see “Event handler calls” on page 485.

CEEBLLST — language list
The member list is a vector of WXTRNs of the signature CSECTs and is generated
by Language Environment. Language Environment checks for the presence of a
member in the application in the language list. If the member represented by a
specific offset in this list is not present or requires no special initialization, its
WXTRN is unresolved. If the WXTRN is resolved or the member appears in the
dependent member list of any signature CSECT in the language list, then
Language Environment dynamically loads the event handler routine for that
member, and stores the address in the member list. Language Environment then
calls the event handler, passing an event code to the event handler routine.

The language list has zero through seventeen entries statically allocated in
Language Environment. Language Environment uses the number of entries in the
language list as a loop counter when it is necessary to loop through the language
list entries. Refer to the LLISTENT as the number of valid entries within the
language list. The format of the language list is shown in Figure 54 on page 154.

CEEBETBL

Chapter 3. Program initialization and termination 153

Initialization parameter list
As Figure 55 on page 155 shows, the initialization parameter list is presented in
two parts. The first part contains two items:
v The address of a fullword which contains the address of the entry point. For

HLLs that do not have multiple entry points, the entry point is the address of
the main routine.

v An offset from offset 0 of the first part of the initialization parameter list to the
second part of the initialization parameter list. The offset is treated as a signed
offset.

The second part of the initialization parameter list consists of the following
information:

CEEBLLST CSECT , LANGUAGE ENVIRONMENT LANGUAGE LIST HEADER
CEEBLLST RMODE ANY
CEEBLLST AMODE ANY

DC CL4’LLHD’
DC AL2(CEELLIST-CEEBLLST) Length of list header
DC AL2(1) Lang Env list version number
DC A((LLISTEND-CEELLIST)/4) Number of list entries
DC A(CEELLIST) Pointer to the language list

CEELLIST DS 0D Lang Env language list
WXTRN CEESG000
DC A(CEESG000) 00 RSVD
WXTRN CEESG001
DC A(CEESG001) 01 Language Environment
WXTRN CEESG002
DC A(CEESG002) 02 RSVD
WXTRN CEESG003
DC A(CEESG003) 03 C/C++
WXTRN CEESG004
DC A(CEESG004) 04 RSVD
WXTRN CEESG005
DC A(CEESG005) 05 COBOL
WXTRN CEESG006
DC A(CEESG006) 06 Debug Tool
WXTRN CEESG007
DC A(CEESG007) 07 Fortran
WXTRN CEESG008
DC A(CEESG008) 08 RSVD
WXTRN CEESG009
DC A(CEESG009) 09 RSVD
WXTRN CEESG010
DC A(CEESG010) 10 PL/I
WXTRN CEESG011
DC A(CEESG011) 11 Enterprise PL/I for z/OS
WXTRN CEESG012
DC A(CEESG012) 12 Berkeley Sockets
WXTRN CEESG013
DC A(CEESG013) 13 RSVD
WXTRN CEESG014
DC A(CEESG014) 14 RSVD
WXTRN CEESG015
DC A(CEESG015) 15 assembler
WXTRN CEESG016
DC A(CEESG016) 16 RSVD
DC A(0) Dummy entry must contain X’00’
DS 0D This boundary requirement is mandatory.

* It is needed to save processing time when
* CEE is being initialized.
LLISTEND DC A(0) Mark the end of list

END

Figure 54. CEEBLLST format

Language List

154 z/OS V2R1.0 Language Environment Vendor Interfaces

v Number of entries in this part, including this counter; this number is 6 or 7.
v Address of a fullword containing the address of the main entry point of the

application. In COBOL, the fullword contains the primary entry point of the
compile unit. This is provided in the user exit.

v Address of CEESTART, or zero.
v Address of the CEEBETBL CSECT.
v A fullword of the member identifier that created this instance of the initialization

parameter list.
v A fullword that is used by the member identified by the above member ID.
v The main-opts word indicates attributes of the main program which is being

initialized. The main-opts word is optional. If omitted, the number of entries is
then 6. Also, if omitted, the information for the main-opts word is obtained by
calling the event handler whose member identifier is in the INPL.

Updated INPL
Figure 56 on page 156 shows the updated format of the initialization parameter list
(INPL).

1 0 0 flags

A (Main_addr)

A (CEESTART)

A (CEEBETBL)

Member ID

Member-specific

Main-opts word

Main_addr

Entry_addr

A (Entry_addr/Main_addr)

Offset to common info

A(main_entry_point)

A(Entry_point)

+0

+0

+0

+4

Figure 55. Format of the initialization parameter list

Language List

Chapter 3. Program initialization and termination 155

The Language Environment initialization parameter list is defined, as follows:
v The first word of the INPL is as follows:

1. Byte 0 of the INPL contains a control level set to 0 or 1.
2. Byte 3 of the INPL is dependent on the value of the control level.

– For control level 0, byte 3 is the total number of words in the INPL; this
value is either 6 or 7 (the seventh word of the INPL is optional for control
level 0). An INPL that is marked control level 0 is identical in format to,
and is compatible with, the Version 1 Release 1.1 level INPL.

– For control level 1, byte 3 contains flags. The seventh word of the INPL is
always present for control level 1. The flags are defined as follows:
reserved B’xxxxxx..’ must be zero
mult_environ B’......x.’ 0 - not enabled for multiple environments

1 - enabled for multiple environments
mainops_valid B’.......x’ 0 - not valid, call main-opts event

1 - valid, use word 7

The mainopts_valid flag must contain a 0, which indicates that the
main-opts event must be invoked, or a 1, which indicates the main-opts
event must not be invoked. INPLs marked control level 1 are fixed length
and contain the main-opts word field.
The mult_environ flag must contain a value of 0 if there must be only one
Language Environment-enabled application in the Task Control Block
(TCB). If it is set to 1, a complete new environment, including region,
process, enclave, and thread, will be unconditionally created. The
following applies:
a. The TRAP and INTERRUPT runtime options are ignored. The

application will always run as if TRAP(OFF) and INTERRUPT(OFF).
The restriction is necessary because the ESTAE/ESTAX that gets
control for errors is always the last one issued, but with multiple
environments (which can be preempted and scheduled
asynchronously) it is not possible to have the last error exit always
match the currently executing environment.

b. Anchor lookup must not be performed, either through explicit calls to
CEEARLU or the documented assembler anchor lookup code
sequence. For Language Environment that means it will not be able to
create nested enclaves. These translate into the following application
restrictions:

111 1

2 2

3 3

4 4

5 5

6 6

7 7

00 00 6 or 7flags

A (Main_addr)A (Main_addr)

Updated INPL Old INPL

A (CEESTART)A (CEESTART)

A (CEEBETBL)A (CEEBETBL)

Member IDMember ID

Member-specificMember-specific

Main-opts word (optional)Main-opts word

Figure 56. Updated format of the initialization parameter list

Language List

156 z/OS V2R1.0 Language Environment Vendor Interfaces

1) No COBOL programs can run in multiple environments.
2) POSIX functions cannot be used in multiple environments.
3) Debugger cannot be used in multiple environments.
4) Nested enclaves cannot be created in multiple environments. The

following are not legal:
- SVC LINK from assembler
- PL/I Fetchable main
- C system() function

5) Applications that rely on error handling semantics associated with
TRAP(ON) will not be able to run in multiple environments.

6) An application that is not enabled for multiple environments
cannot be initialized while one or more applications enabled for
multiple environments exist on the TCB.

c. Library routine retention (LRR) cannot be used.
d. Preinitialization (PreInit) cannot be used.
e. The application cannot run under CICS or IMS.

v The second through sixth words of the INPL are unchanged from the INPL
format in Language Environment Version 1 Release 1.1.

v The seventh word of the INPL (the main-opts word) is always present in the
INPL if the control level is 1 and is optionally present if the INPL control level is
0.
– Byte 0 (Execops) of the seventh word is as follows:

prealloc B’x.......’ 0 Does not require preallocated storage event
1 Requires preallocated storage event

thdappl B’.x......’ 0 Does not require threading features to run
1 Requires threading features to run

defoptreq B’..x.....’ 0 Does not require default options event
1 Requires default options event

execops_off B’...x....’ 0 Execops
1 Noexecops

reqcmdequ B’....x...’ 0 Does not require command line equivalent process
1 Require command line equivalent process

invmaindir B’.....x..’ 0 Invoke main through event handler
1 Invoke main directly

inheritop B’......x.’ 0 Merge runtime options
1 Inherit Run ops

propcond B’.......x’ 0 Ignore unhandled conditions
1 Propagate conditions

– Byte 1 of Word 7 is the PLIST (parameter list) style with the following values:
CEEINPL_PLIST_CMS Fixed(8) Constant(1)
CEEINPL_PLIST_HOST Fixed(8) Constant(2)
CEEINPL_PLIST_MVS Fixed(8) Constant(3)
CEEINPL_PLIST_TSO Fixed(8) Constant(4)
CEEINPL_PLIST_CICS Fixed(8) Constant(5)
CEEINPL_PLIST_IMS Fixed(8) Constant(6)
CEEINPL_PLIST_OS Fixed(8) Constant(7)

– Byte 2 and 3 of Word 7 are reserved

CEEINT interface
CEEINT is link-edited with the user's load module. For fully Language
Environment-enabled main programs without old object code no system service
requests (such as GETMAINs and LOAD) can occur prior to calling the Language
Environment enclave initialization routine.

CEEINT
Call this CWI interface as follows:

Language List

Chapter 3. Program initialization and termination 157

L R15,=V(CEEVINT)
BALR R14,R15

Members should follow standard calling conventions by saving the registers in the
application's caller's save area and then use the following register interface to call
CEEINT:

R0 Contents should be the same as when the application was called.

R1 Contains the address of the application's parameter list. The parameter list
can be a standard (for example, runtime options and user parameters)
OS-style PLIST (on z/OS), a TSO CPPL, or a standard OS-style call
interface.

R2 Contains the address of the initialization parameter list. The initialization
parameter list is designed so that it can be statically built by the compiler.
(For example, COBOL could add the initialization parameter list in the
constant area following the BRANCH at the start of the compilation unit.)
Language Environment does not alter the contents of the initialization
parameter list. If, for example, Language Environment needs to fold the
runtime options to uppercase, this is performed in a Language
Environment-obtained work area.

When the member event handler is called for enclave initialization, the
initialization parameter list is passed to the event handler as an argument.

For compatibility support, the initialization parameter list can be
dynamically constructed. To do so, storage must be obtained prior to
Language Environment services being available. The initialization
parameter list is shown in Figure 55 on page 155 and discussed in
“Initialization parameter list” on page 154.

R13 Contains the address of the main program's caller's save area, usually the
operating system's save area. Note that during termination, this save area
is used as the source of register contents and the return address when
Language Environment has completed its termination processing.

R14 Return address register.

R15 Entry address register.

The registers upon return are:

R0 Unknown.

R1 Contains the address of the application's parameter list without the
runtime options or the slash. This can contain the original R1 upon entry.
In some cases, Language Environment constructs the application's
parameter list.

R2–R7 Language Environment work registers. These registers' contents are not
preserved across the interface.

R8–R11
These registers' contents are preserved.

R12 Contains the address of the CAA.

R13 Contains the address of the dummy DSA for return codes of 0 or 8. The
register remains unchanged for return code 4.

R15 Contains the return code from CEEINT, which is:

00 Successful initialization.

CEEINT Interface

158 z/OS V2R1.0 Language Environment Vendor Interfaces

04 Environment already established, no implicit enclave created. R13
remains unchanged. All other registers are as shown above.

08 Environment already established, implicit enclave created. R13
points to the dummy DSA within the new enclave. All other
registers are as shown above.

Initialization failures
If CEEINT cannot successfully initialize the environment, it abends with
completion code 4093. The reason code associated with the abend 4093 indicates
the cause of the failure. The reason codes are described in z/OS Language
Environment Runtime Messages.

Usage Notes:

1. R13 points to the dummy DSA in the user stack for return codes 00 and 08. The
Next Available Byte (NAB) of this DSA points to the beginning of the stack. For
return codes 00 and 08 from CEEINT, a DSA can be allocated using the code
sequence shown in Figure 34 on page 96. The application should not store
register values into the dummy DSA. The user can store a forward chain into
the dummy DSA, and can allocate another DSA using the stack allocation code
found in Figure 34 on page 96.

2. The back chain of the dummy DSA points to the save area that was passed by
the caller of initialization.

CEEBCRLM — cancel/release load module
This CWI is to be used by member languages before canceling or releasing a load
module that had been previously added to an enclave.

Syntax

void CEEBCRLM (token, lang_list, [fc])
POINTER *token;
POINTER *lang_list;
FEED_BACK *fc;

CEEBCRLM
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12)
L R15,3984(,R15)
BALR R14,R15

token (input)
The token returned by the CEEPLOD2 service when the module was loaded.

lang_list (input)
The pointer to the language list; it could be one of following:
1. The language list found in the load module and returned by the

CEEBADDM CWI.
2. The language list found by a member and input to the CEEBMBR CWI.
3. Zero if the load module was not recognized by CEEBADDM or the

language list was not saved from 1 or 2.

fc (output/optional)
The parameter into which the callable service feedback code is placed. The
following conditions might result from this service.

CEEINT Interface

Chapter 3. Program initialization and termination 159

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE39K Severity 1

Msg_No 3380

Message The load module was not recognized Language Environment.

CEE38N Severity 4

Msg_No 3351

Message An event handler was unable to initialize properly.

Usage Notes:

1. Language Environment recognizes the following entry point styles:
v C/C++ for MVS/ESA-style PPA
v C/370-style PPA
v Language Environment routine entry layout (see “Routine layout” on page 6)
v Language Environment-format CEESTART
v Language Environment AWI stubs

2. If lang_list is zero and the entry style is not recognized, all members that are
currently active within the enclave will be called with the cancel/release load
module event.

3. If lang_list is zero and the entry style is recognized, or lang_list is provided, all
members that are present in the load module will be called with the
cancel/release load module event.

4. CEEBCRLM should be called by the members before using the CEEPDEL2
service to delete the module. For more information about this service, see
“CEEPDEL2 — enclave level delete service” on page 301.

CEEBSENM — set the enclave name
This CWI sets the name for the current enclave. The name is used in reports such
as the options report and the dump output.

Syntax

void (*CEELIBVBSENM) (enclave_name, [fc])
VSTRING *enclave_name;
FEED_BACK *fc;

CEELIBVBSENM
A field in the Language Environment LIBVEC that points to the Set Enclave
Name Routine (CEEBSENM). Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12)
L R15,3360(,R15)
BALR R14,R15

enclave_name (input)
The name by which the enclave is to be known.

fc (output/optional)
The parameter in to which the callable service feedback code is placed. The
following conditions might result from this service.

CEEBCRLM

160 z/OS V2R1.0 Language Environment Vendor Interfaces

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE394 Severity 1

Msg_No 3364

Message The enclave name was truncated by the enclave naming service
during initialization.

Explanation The enclave naming service is used by the language in which
the main program is written during enclave initialization. It was
passed a name longer than 32 characters. This is an internal
problem.

Programmer
Response

Contact your service representative.

System
Action

The truncated name is used as the enclave name.

CEE395 Severity 3

Msg_No 3365

Message The enclave naming service was called, but not during enclave
initialization, or not by a member corresponding to the main
program.

Explanation The enclave naming service is used by the language in which
the main program is written during enclave initialization. It was
used in an illegal manner. This is an internal problem.

Programmer
Response

Contact your service representative.

System
Action

The requested service is not performed and the enclave name
might not be correct.

Usage Notes:

1. This service can only be called during event handler processing of the Enclave
Create event.

2. This service can only be called by the member corresponding to the language
of the main routine, as specified in the initialization parameter list. A member
can determine if it corresponds to the language of the main routine by checking
the field in the initialization parameter list, which contains the member
identifier of the creator of the initialization parameter list.

3. If the name is longer than 32 characters it is truncated to 32 characters and
CEE394 is returned or signaled.

4. If this service is not used the name is taken from the main routine, if possible,
or the members are polled for the name.

CEEBSRCM — set the enclave return code modifier
This routine is intended to provide a mechanism to update the return code
modifier when errors are encountered during enclave termination. For example, in
at least two cases, it is necessary to increase the enclave return code modifier to a
specified value if the existing value is less than that value. One case, for example,
is during termination when the Fortran library closes files that have not yet been
closed. During this process, an error might occur but the remaining files still need

CEEBSENM

Chapter 3. Program initialization and termination 161

to be closed. On each occurrence of one of these errors,the return code modifier
needs to be made at least as high as the severity of the condition.

This CWI will set the return code modifier for the enclave during enclave
termination. The return code modifier will first be established by the enclave
termination services (CEETREN or CEETREC) or set by condition handling when
an unhandled condition causes termination of the enclave. Once established, the
return code modifier can only be increased.

Syntax

void (*CEELIBVBSRCM) (rc_modifier, [fc])
INT4 *rc_modifier;
FEED_BACK *fc;

CEELIBVBSRCM
A field in the Language Environment LIBVEC that points to the Set Enclave
Return Code Modifier Routine (CEEBSRCM). Call this CWI interface as
follows:
L R15,CEECAACELV-CEECAA(,R12)
L R15,3012(,R15)
BALR R14,R15

rc_modifier (input)
The enclave return code modifier must in the range of 1 to 4 inclusive.

fc (output/optional)
Is an optional parameter in which the callable service feedback code will be
placed. The following conditions may result from this service.

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE38S Severity 2

Msg_No 3356

Message The rc_modifier must be in the range of 1 through 4. The return
code modifier was not changed.

Explanation The rc_modifier was not in the range of 1 through 4. The return
code modifier that was first established by the enclave
termination services or by the condition handling was kept.

Programmer
Response

Provide a valid return code modifier.

System
Action

No system action is taken.

CEEBSRCM

162 z/OS V2R1.0 Language Environment Vendor Interfaces

Condition

CEE38T Severity 2

Msg_No 3357

Message The service was invoked outside of the member enclave
termination; no action was taken.

Explanation CEEBSRCM is to be called during the member enclave
termination; it was invoked outside of the member enclave
termination.

Programmer
Response

Ensure that the routine is called during the enclave termination.

System
Action

No system action is taken.

CEEPGFD — get function pointer
The CEEPGFD CWI returns a function pointer to a function that resides in a
separate load module. Functions that are called by function pointers that are
created by CEEPGFD will have access to the writable static area, if it exists.

Syntax

void CEEPGFD (*load_addr, *func_pointer, [fc])
POINTER *load_addr;
POINTER *func_pointer;
FEED_BACK *fc;

CEEPGFD
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12)
L R15,3976(,R15)
BALR R14,R15

load_addr (input/mandatory)
is the address of an executable module.

func_pointer (output)
is a function pointer that can be used to call the function.

fc (output/optional)
specifies the optional feedback token where the CWI feedback code will be
placed. If this argument is omitted and the CWI will return a feedback code
other than CEE000, the CWI will “raise” this feedback code as an error
condition. The following feedback tokens and associated severities may be
returned by the service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE39K Severity 1

Msg_No 3380

Message The load module was not recognized by Language
Environment.

CEEBSRCM

Chapter 3. Program initialization and termination 163

Condition

CEE3NA Severity 3

Msg_No 3818

Message The event handler encountered an error.

Usage Notes:

1. After loading an executable module, CEE3ADDM (add members to the enclave)
must be called prior to calling CEEPGFD to obtain a function pointer for the
newly-loaded module. CEE3ADDM will augment the set of currently active
members and notify members that a new load module has been introduced into
the enclave.

2. When Language Environment returns the function pointer, the high order bit
indicates the AMODE of the routine. You must provide the AMODE switching
code when passing control to the function pointer.

3. Before deleting the load module containing the associated function, the
CEEPRFD function must be called to release each function pointer obtained.

4. If the load module contains any ILC or the loading and loaded modules are
written in different languages, the load module should not be deleted. The
CEEFETCH and CEERELES assembler macros can be used to load and delete
any ILC modules.

5. An AMODE 31 routine that is called using a pointer returned by CEEPGFD
will have access to the writable static area, if it exists.

6. To use CEEPGFD to obtain a function pointer for a C function, the C function
must either:
v Be compiled with the pragma linkage(...,fetchable) directive, or
v Have the function name specified as the entry point when the module is

linked.
In addition, a C++ routine must be compiled as extern “C”.

7. CEEPGFD cannot be used to obtain a function pointer for a C main() routine.
8. If you use CEEPGFD to obtain a pointer for a C or C++ routine, calling the

function pointer will give control to a glue routine. This routine will perform
AMODE switching, if necessary, before calling the C/C++ routine.

9. If you use CEEPGFD to obtain a pointer for a C++ routine that is compiled as a
DLL, the routine cannot export any variables or functions.

CEEPRFD — release function pointer
The CEEPRFD CWI will release a function pointer that was obtained by calling
CEEPGFD. All function pointers must be released before deleting the load module
which contains the associated function.

Syntax

void CEEPRFD (*load_addr, *func_pointer, [fc])
POINTER *load_addr;
POINTER *func_pointer;
FEED_BACK *fc;

CEEPRFD
Call this CWI interface as follows:

CEEPGFD

164 z/OS V2R1.0 Language Environment Vendor Interfaces

L R15,CEECAACELV-CEECAA(,R12)
L R15,3980(,R15)
BALR R14,R15

load_addr (input)
is the load module address for which the function pointer was obtained.

func_pointer (input)
is a function pointer obtained by a call to CEEPGFD.

fc (output/optional)
specifies the optional feedback token where the CWI feedback code will be
placed. If this argument is omitted and the CWI will return a feedback code
other than CEE000, the CWI will “raise” this feedback code as an error
condition. The following feedback tokens and associated severities may be
returned by the service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE39K Severity 1

Msg_No 3380

Message The load module was not recognized by Language
Environment.

CEE39A Severity 3

Msg_No 3818

Message An event handler encountered an error.

CEE3ADDM — add new members to the enclave
This CWI interface dynamically augments the set of currently active members to
an established environment. In addition, Language Environment notifies the
members that a new load module was introduced into the enclave. This function is
intended to be used when a new HLL is introduced into the currently executing
mix of HLLs after a FETCH or dynamic call is performed.

Syntax

void CEE3ADDM (entry_point, lang_list, [fc])
POINTER *entry_point;
POINTER *lang_list;
FEED_BACK *fc;

CEE3ADDM
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12)
L R15,2888(,R15)
BALR R14,R15

entry_point (input)
The entry point returned by a Language Environment load service.

lang_list (output)
The pointer to the language list found in the load module if the load module is
recognized by Language Environment. If the load module is not recognized by
Language Environment, a zero is returned.

CEEPRFD

Chapter 3. Program initialization and termination 165

fc (output/optional)
The parameter in to which the callable service feedback code is placed. The
following conditions might result from this service.

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE38M Severity 4

Msg_No 3350

Message A member event handler was not found.

CEE38N Severity 4

Msg_No 3351

Message An event handler was unable to initialize properly.

CEE38V Severity 2

Msg_No 3359

Message The module or language list is not supported in this
environment.

CEE39K Severity 1

Msg_No 3380

Message The load module was not recognized Language Environment.

Usage Notes:

1. Language Environment recognizes the following entry_point styles; Language
Environment does not recognize any other entry styles:
v C/C++ for MVS/ESA-style PPA
v C/370-style PPA
v A Language Environment routine entry layout (see “Routine layout” on

page 6)
v Language Environment-format CEESTART
v Language Environment callable service stubs

2. For Language Environment-recognized load modules, the following series of
event handlers is called:
a. For those members that are contained within the newly-loaded load

module and that have not yet been called for process initialization,
Language Environment loads the member event handler and calls it for
process initialization.

b. For those members that are contained within the newly-loaded load
module and that have not yet been called for enclave initialization,
Language Environment calls the member event handler for enclave
initialization.

c. For those members that are contained within the newly-loaded load
module, Language Environment calls the member event handler with the
new load module event (see “Event code 8 — new load module event” on
page 499).

d. For an application running with the POSIX(ON) runtime option or a PL/I
tasking application, those members that are contained within the
newly-loaded load module and that have not yet been called for POSIX

CEE3ADDM

166 z/OS V2R1.0 Language Environment Vendor Interfaces

thread initialization, Language Environment calls the member event
handler for POSIX thread initialization.

3. For load modules Language Environment does not recognize, the following
member event handler is called:
v For all members that are currently active within the enclave, Language

Environment calls the member event handler with the new load module
event passing a zero for the CEESTART parameter; see “Event code 8 —
new load module event” on page 499.

4. When a member event handler is driven for the enclave initialization event
due to the introduction of a new load module, Language Environment
constructs the Initialization Parameter List (INPL) that is passed to the event
handler. The INPL contains the following items:
a. The entry point and the main entry point contain the entry_point that was

passed into CEE3ADDM.
b. The number of entries in the second half of the INPL is 7.
c. The address of CEESTART is the CEESTART found in the newly

introduced load module.
d. The address of CEEBETBL points to a Language Environment constructed

externals table.
e. The member identifier is that of Language Environment.
f. The main-opts word is zero.

5. The lang_list returned can be used to determine if the load module is a
candidate for deletion using release() or a COBOL CANCEL statement. The
lang_list is a read-only entity.

6. CEE3ADDM should be called by the member that issued the dynamic load.
7. Option processing does not occur.
8. No user exits are driven at this time.
9. The program mask is adjusted to accommodate the presence of new members

within the environment. However, the program mask is not adjusted if the
member appears only in the dependent member list of a signature CSECT in
the language list.

10. No user code is called by Language Environment as a result of this call.
11. The dependency list is honored; see “Signature CSECT” on page 151 for

details on the dependency list.

CEE3CRE — create enclave
The CEE3CRE CWI creates a new explicit enclave and initiates its execution.
CEE3CRE can be called only from an already executing environment. The
execution of the caller of CEE3CRE is suspended until the newly created enclave
completes its execution and returns.

Syntax

void CEE3CRE (name, run_opts, inherit, user_arg, prop_cond, rtn_cd,rsn_cd, encl_fc, [fc]
)
VSTRING *name;
VSTRING *run_opts;
INT4 *inherit;
void *user_arg;
INT4 *prop_cond;

CEE3ADDM

Chapter 3. Program initialization and termination 167

INT4 *rtn_cd;
INT4 *rsn_cd;
FEED_BACK *encl_fc;
FEED_BACK *fc;

CEE3CRE
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12)
L R15,3356(,R15)
BALR R14,R15

name (input)
is a halfword prefixed character string containing the name of the Language
Environment-enabled load module that is to start the enclave being created.
The character string must be the platform-specific name identifying the load
module. The name will be used as specified with no mapping by CEE3CRE.

run_opt (input)
is a halfword prefixed character string containing the CEE runtime options
and/or the user parm string applicable to the execution of the enclave. The
format and interpretation of this string follows the same rules as the invocation
parameter string. The CBLOPTS, EXECOPS, and PLIST options for the created
enclave affect the interpretation of this parm string.

inherit (input)
is a fullword integer which will determine if the explicitly created enclave
inherits all the runtime options from its creating enclave.

0 the explicitly created enclave does not inherit its creating enclave's
runtime options. Runtime options are established through the normal
merge but with the run_opts argument taking the place of invocation
options in the precedence order.

otherwise
the explicitly created enclave inherits its creating enclave's runtime
options. When the value is specified, the input string in run_opts is
ignored.

user_arg (input)
the argument that will be passed to the first routine of the enclave.
v If this argument is non-zero it is the R1 value which is passed to the main

routine. Any user parm string present in the run_opts argument will be
ignored.

v If this argument is zero, the user argument will be taken from the user parm
string, if present in the run_opts argument.

prop_cond (input)
is a fullword integer which will determine if unhandled conditions or ABENDs
that occur in the created enclave are propagated in or ignored by the creating
enclave.
0 ignore the condition or ABEND in the creating enclave
otherwise

propagate conditions in the creating enclave

rtn_cd (output)
is a full word integer with the return code from the created enclave. This is
valid only when fc is CEE000.

rsn_cd (output)
is a full word integer with the reason code from the created enclave. This is
valid only when fc is CEE000.

CEE3CRE

168 z/OS V2R1.0 Language Environment Vendor Interfaces

encl_fc (output)
the feedback code produced by the execution of the enclave created by this
call. This is valid only when fc is CEE000. When encl_fc is nonzero, it will be
signaled in the CEE3CRE caller's enclave or be passed back based upon the
value of prop_cond. The following feedback codes are possible:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE391 Severity 1

Msg_No 3361

Message The created enclave, name, completed with an unhandled
condition of severity two or greater.

fc (output/optional)
The feedback code from the service indicates how the service performed, and
not the created enclave. The following feedback codes are possible:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE3DC Severity 3

Msg_No 3500

Message Not enough storage available to load name.

CEE3DD Severity 3

Msg_No 3501

Message The name module not found.

CEE3DE Severity 3

Msg_No 3502

Message name module name too long.

CEE3EF Severity 3

Msg_No 3503

Message Load service request for module name was unsuccessful.

Table 44 lists the condition behavior for the different combinations of
TRAP(ON/OFF) in the creating and created enclaves.

Table 44. Unhandled condition behavior summary

Behavior / Enclave Type Creating TRAP(ON)
Created TRAP(ON)

Creating TRAP(ON)
Created TRAP(OFF)

Creating TRAP(OFF)
Created TRAP(ON)

Creating TRAP(OFF)
Created TRAP(OFF)

Propagate (prop_cond is not 0)

Abend/Prog. check Signal CEE391 Percolate original Percolate U4094-40 Percolate original

Signal sev >= 2 Signal CEE391 Signal CEE391 Percolate U4094-40 Percolate U4094-40

Ignore (prop_cond is 0)

Abend/Prog. check Resume Percolate original Resume Percolate original

CEE3CRE

Chapter 3. Program initialization and termination 169

Table 44. Unhandled condition behavior summary (continued)

Behavior / Enclave Type Creating TRAP(ON)
Created TRAP(ON)

Creating TRAP(ON)
Created TRAP(OFF)

Creating TRAP(OFF)
Created TRAP(ON)

Creating TRAP(OFF)
Created TRAP(OFF)

Signal sev >= 2 Resume Resume Resume Resume

Usage Notes:

1. The current thread waits for the created enclave to complete and for control to
return to it.

2. There are two feedback codes in this service. One, fc, indicates how CEE3CRE
behaved; the other, encl_fc, indicates how the created enclave executed. If the
fc is zero, the result of the created enclave can be determined by the encl_fc.

3. The message file, specified by the runtime option MSGFILE, is shared across
created enclaves if the MSGFILE name is the same.

4. When inherit parameter has value of zero, the CEEUOPT that is linked with
the created enclave's load module is used during the option merge process.

5. The assembler user exit that is invoked for the created enclave is found in the
created enclave load module (or the system default if not found in the created
enclave load module).

6. If present, the HLL user exit that is invoked for initialization is found in the
created enclave load module.

7. User parms will be available through the CEE3PRM, as follows:
v If user_arg is zero, then the user parm string, if present in the run_opts

argument, will be available.
v If user_arg is non-zero, then no user parms will be available.

8. Debug Tool operation in a created enclave is documented by Debug Tool.
Language Environment will not honor the TEST initial command string in a
created enclave in which the debugger is already active.

9. This service is not supported in a CICS environment.
10. The PLIST option in the created enclave load module will be used to

determine how the main routine anticipates the argument list. CEE3CRE
normally makes register one contain either the address of run_opts or the
value specified in user_arg and passes register one to the created enclave load
module. After the explicit enclave is created and the main program gets
control, register one may contain one of the following forms as the parameter
list to the main program:
v Value specified in user_arg.
v Address of run_opts when NOEXECOPS is in effect.
v Address of run_opts with runtime options removed when EXECOPS is in

effect.
One exception is for the case of PLIST(TSO). One level of indirection to the
parameter list is added. The rationale is that PLIST specified in the seventh
word of the INPL does not effect the inbound character string for the created
enclave in its process of runtime options and user arguments since the format
has been defined in CEE3CRE. However, PLIST affects the format of the
parameter list passed to the main program and one level of indirection should
be added in for the case of PLIST(TSO).

11. The name field must contain a name that refers to a Language
Environment-enabled target load module that starts with a main program.
Target load modules that are not Language Environment-enabled are not
supported. Unpredictable results will occur if a non-Language
Environment-enabled module is the target of CEE3CRE.

CEE3CRE

170 z/OS V2R1.0 Language Environment Vendor Interfaces

CEE3CSYS — creating nested enclave
This CWI passes control to a target program. Control is passed in such a way that,
if the target is a Language Environment-enabled application, the first call (if any)
to CEEINT from the target program or its descendents results in the creation of a
new nested enclave. CEE3CSYS can be called only from an already executing
Language Environment environment. The execution of the caller of CEE3CSYS is
suspended until the newly created enclave or non-Language Environment service,
command, or EXEC completes its execution and returns.

Syntax

void (*CEECELVBCSYS) (name, user_arg, rsvd_word, rsvd_word, rtn_cd,[fc])
VSTRING *name;
void *user_arg;
void *rsvd_word;
void *rsvd_word;
INT4 *rtn_cd;
FEED_BACK *fc;

CEECELVBCSYS
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12)
L R15,2988(,R15)
BALR R14,R15

name (input)
a halfword-prefixed character string containing the name of the entry point in
the target load module that is to receive control. The character string must be
the platform-specific name identifying the entry point. The name is used as
specified with no mapping by CEE3CSYS. The search order for the load
module is consistent with that used for SVC LINK.

user_arg (input)
the equivalent of an R1 value. This can pass a single argument in the form of a
halfword-prefixed character string that can contain user parameters and
optionally runtime options.

rsvd_word (input)
A fullword reserved for future use.

rsvd_word (input)
A fullword reserved for future use.

rtn_cd (output)
A full word integer with the return code from the target enclave. This is valid
only when fc is CEE000.

fc (output/optional)
The feedback code from the service indicates how the service performed, and
not the target enclave. The following feedback codes are possible:

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE3DC Severity 3

Msg_No 3500

Message Not enough storage available to load name.

CEE3CSYS

Chapter 3. Program initialization and termination 171

Condition

CEE3DD Severity 3

Msg_No 3501

Message name module not found.

CEE3DE Severity 3

Msg_No 3502

Message name module name too long.

CEE3DF Severity 3

Msg_No 3503

Message Load service request for module name was unsuccessful.

Usage Notes:

1. The current thread waits for the new enclave or non-Language Environment
service, command, or EXEC to complete and for control to return to it.

2. The unhandled condition behavior in the target enclave is always ignored.
3. The message file, specified by the runtime option MSGFILE, is shared across

nested enclaves if the MSGFILE name is the same.
4. Runtime options are always obtained by normal merge in the target enclave.

The user_arg string is used as command line equivalent. The availability of
runtime options is subject to the EXECOPS setting of the target main program).
The CEEUOPT that is linked with the nested enclave's load module is used
during this option merge process.

5. If the assembler user exit that is invoked for the nested enclave creation is
found in the target load module (user-supplied) it is used. Otherwise the
system default user exit is used.

6. The HLL user exit that is invoked for nested enclave initialization is found in
the target load module.

CEE3MBR — member bootstrap routine
This CWI interface dynamically augments the set of currently active members in
an established environment. In addition, Language Environment notifies the
members that a new load module was introduced into the enclave. This function is
intended to be used on the callee side of a newly introduced load module.
Specifically, it should be used when a HLL discovers the Language Environment
environment established (using the anchor lookup) but the HLL-specific portion
has not yet been initialized.

Syntax

void CEE3MBR (lang_list, entry_point, inpl, [fc])
POINTER *lang_list;
POINTER *entry_point;
POINTER *inpl;
FEED_BACK *fc;

CEE3MBR
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12)
L R15,2872(,R15)
BALR R14,R15

CEE3CSYS

172 z/OS V2R1.0 Language Environment Vendor Interfaces

lang_list (input)
The language list found in the load module. If this needs to manufactured by
the caller, it should contain the entire header section. If the load module is
already Language Environment-enabled, the language list can be obtained from
the Language Environment externals table.

entry_point (input)
The entry point or entry point address for which CEE3MBR is called.

inpl or zero (input)
If the load module contains an INPL, it should be passed on this call. If the
load module does not contain an INPL, pass a zero.

fc (output/optional)
The parameter in to which the callable service feedback code is placed. The
following conditions might result from this service.

Condtion

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE38M Severity 4

Msg_No 3350

Message A member event handler was not found.

CEE38N Severity 4

Msg_No 3351

Message An event handler was unable to initialize properly.

CEE38V Severity 2

Msg_No 3359

Message The module or language list is not supported in this
environment.

CEE39K Severity 1

Msg_No 3380

Message The load module was not recognized Language Environment.

Usage Notes:

1. For the members that are contained within the member list that is passed to
CEE3MBR the following events are called:
v For those members that are contained within the newly-loaded load module

and that have not yet been called for process initialization, Language
Environment loads the member event handler and calls it for process
initialization.

v For those members that are contained within the newly-loaded load module
and that have not yet been called for enclave initialization, Language
Environment calls the member event handler for enclave initialization.

v For an application running with the POSIX(ON) runtime option or a PL/I
Tasking application, those members that are contained within the
newly-loaded load module and that have not yet been called for POSIX
thread initialization, Language Environment calls the member event handler
for POSIX thread initialization.

CEE3MBR

Chapter 3. Program initialization and termination 173

v For those members that are contained within the newly-loaded load module,
Language Environment calls the member event handler with the new load
module event; see “Event code 8 — new load module event” on page 499.

2. Under CICS, a call to CEE3ADDM calls the new load module event and does
not perform any ERTLI calls. The new load module event allows members to
retain their current logic for both CICS and non-CICS paths. All other fields of
PGMINFO1 and PGMINFO2 are zero.

3. If nonzero, Language Environment uses inpl that is passed into CEE3MBR. If
inpl is zero, Language Environment constructs an INPL for the event handlers
using the lang_list passed. The INPL can be omitted only in the compatibility
case.
When Language Environment constructs the INPL that is passed to the event
handlers, the INPL contains the following items:
v The entry point and the main entry point contains the entry point that was

passed into CEE3MBR.
v The number of entries in the second half of the INPL is 7.
v The address of CEESTART is the CEESTART found in the newly-introduced

load module, if not found, zero.
v The address of CEEBETBL points to Language Environment constructed

externals table containing:
– Fullword of 6
– Zero (BAL user exit)
– Zero (HLL user exit)
– Address of the lang_list that was passed
– Zero (CEEUOPT)
– Zero (termination stub)

v The member identifier is that of Language Environment
v The main-opts word is zero

4. If Language Environment recognizes the entry point as a program that object
with deferred classes, the constructed externals table will have the following
format:
v Fullword of 9
v Zero (BAL user exit)
v Zero (HLL user exit)
v Address of the lang_list that was passed.
v Zero (CEEUOPT)
v Zero (termination stub)
v Zero (PL/I or C user exit)
v Zero (unique binding table)
v Address of loader information table from the executable program identified

by the entry_point value.

CEE3SRSA — set return save area
This CWI interface dynamically sets the save area through which Language
Environment returns on termination of the current enclave.

Syntax

void CEE3SRSA (rsa_address)
*void *rsa_address;

CEE3SRSA
Call this CWI interface as follows:

CEE3MBR

174 z/OS V2R1.0 Language Environment Vendor Interfaces

L R15,CEECAACELV-CEECAA(,R12)
L R15,2904(,R15)
BALR R14,R15

rsa_address
The register save area address that is used for return after Language
Environment termination. Registers are restored from rsa_address and control
transferred using R14 which is contained within the rsa_address.

Usage Notes:

1. This service is provided explicitly for compatibility support and is not intended
for general use.

2. This service allows members to identify the register save area that Language
Environment uses as the target save area for its termination.

3. No verification is performed on the parameter.
4. This routine is has no effect when running under CICS and in a preinitialized

environment.

CEE3DDBC — set dummy DSA back chain
This CWI interface dynamically sets the back chain of the dummy DSA.

Syntax

void CEE3DDBC (rsa_address)
*void *rsa_address;

CEE3DDBC
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12)
L R15,2900(,R15)
BALR R14,R15

rsa_address
The register save area address that is stored in the back chain slot of the
Dummy DSA.

Usage Notes:

1. This service is provided explicitly for compatibility support and is not intended
for general use.

2. No verification is performed on the parameter.
3. This routine is has no effect when running under CICS and in a preinitialized

environment.

CEE3PLST — PLIST manipulation
This CWI allows the member that requested initialization to specify the parameter
list that is passed to the user application code.

Syntax

void CEE3PLST (R1_value, [fc])
POINTER *R1_value;
FEED_BACK *fc;

CEE3PLST
Call this CWI interface as follows:

CEE3SRSA

Chapter 3. Program initialization and termination 175

L R15,CEECAACELV-CEECAA(,R12)
L R15,2920(,R15)
BALR R14,R15

R1_value (input)
A fullword containing the value to be returned by CEEINT in R1 to the user's
main routine.

fc (output/optional)
The feedback code passed by reference. The following conditions might result
from this service:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE38P Severity 3

Msg_No 3353

Message The service was not called during event handler processing of
the enclave create service or it was called by other than the
member corresponding to the language of the main routine.

CEE38Q Severity 3

Msg_No 3354

Message The service was called in a CICS environment. The parameter
list pointer is not modified.

Usage Notes:

1. This service can only be called during event handler processing of the enclave
create event.

2. This service can only be called by the member corresponding to the language
of the main routine, as specified in the initialization parameter list. A language
can determine this by checking the field in the initialization parameter list
containing the member identifier of the creator of initialization parameter list.
This service does not modify the main parameter list pointer in a CICS
environment.

3. This service does not modify the default parameter list pointer
CEEEDBDEFPLPTR.

4. Use of this service allows members to repackage the parameter list during
initialization.

CEEGIN — obtain the program's invocation name
This CWI returns the program name used to initiate this enclave.

Syntax

void CEEGIN (pname,[fc])
CHAR8 *pname;
FEED_BACK *fc;

CEEGIN
Call this CWI interface as follows:

CEE3PLST

176 z/OS V2R1.0 Language Environment Vendor Interfaces

L R15,CEECAACELV-CEECAA(,R12)
L R15,0120(,R15)
BALR R14,R15

pname (output)
An 8-character fixed length string, left-justified and right-padded, containing
the name of the routine that called the enclave.

fc (output/optional)
The feedback code passed by reference. The following conditions might result
from this service:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE39A Severity 1

Msg_No 3370

Message The program invocation name is unknown and the returned
name is blank.

Usage Notes:

1. If the application is running under TSO and a CPPL is passed, the invocation
name is obtained from the TSO command buffer, which is pointed to by the
first word of the CPPL. (The CPPL is mapped by the IKJCPPL DSECT.)

2. If the application is running under CICS, the 4-character transaction name is
obtained from the EIB.

3. If the application is running under TSO without a CPPL, or under z/OS, the
invocation name is obtained from the Contents Directory Entry (CDE) that has
the same address as the application in question.

CEERELU — RCB lookup
This routine sets R12 to the address of the RCB when the following conditions are
met:
1. A Language Environment environment is not currently initialized.
2. Library routine retention has been successfully initialized and a Language

Environment environment has been initialized and terminated at least one time
with library routine retention in effect.

Syntax

Call CEERELU

Usage Notes:

1. Upon return, R12 contains the address of the RCB if the above conditions are
met; otherwise, R12 contains a zero.

2. R14 and R15 are used as linkage registers. R0 is destroyed across the call. R13
is not used.

3. The routine must be entered in AMODE(31).
4. It must be link edited with its caller. It is not meant to be called from a HLL

program.

CEEGIN

Chapter 3. Program initialization and termination 177

Member interfaces for termination
The following section covers enclave termination and includes information on the
CEETREC CWI, the CEETREN CWI, and the CEEATTRM CWI.

CEETREC — explicit termination through HLL constructs
CEETREC is a CWI that is intended for graceful enclave termination, supporting
explicit termination through a HLL language construct such as a STOP statement
or exit() function. The T_I_S condition notifies the stack frames on the current
thread's stack of the intent to terminate the thread. The T_I_S condition is signaled
using CEETREC.

Syntax

void CEETREC ([encl_modifier], [user_rtn_code])
INT4 *encl_modifier;
INT4 *user_rtn_code;

CEETREC
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12)
L R15,2880(,R15)
BALR R14,R15

encl_modifier (input/optional)
The encl_modifier can be 0, 1, 2, or 3; if you do not specify one of these values
or if you omit this parameter, a zero is assumed. Calculate the enclave reason
code, sometimes called a return code modifier, by multiplying the encl_modifier
by 1000. For more information, refer to z/OS Language Environment Programming
Guide.

user_rtn_code (input/optional)
The user's specified return code for the enclave. If this is omitted, the return
code is assumed to be zero.

Usage Notes:

1. Control does not return to the invoker of this service.
2. The actions taken by this service are:

a. Call CEESGL (T_I_S, <omitted>, fbcode). Note that the CIB contains the
enclave termination return code.

b. Quiesce all threads within the enclave.
c. Calculate the enclave composite return code from the parameters.
d. Set the termination condition token to zero.
e. All enclave level members and user exits are executed.
f. Return to the caller of the enclave with the appropriate return/reason code.

Control is not returned to the caller of CEETREC.
3. If the user_rtn_code is omitted the enclave level user return code (CEEEDBURC)

is used in the calculation of the enclave composite return code.
4. CEETREC cannot terminate the enclave if the resume cursor has been moved

during the T_I_S processing.
5. Calculate the enclave return code by adding the user_rtn_code to the enclave

reason code. For more information, see z/OS Language Environment Programming
Guide.

CEERELU

178 z/OS V2R1.0 Language Environment Vendor Interfaces

6. The intended use of this service is to raise T_I_S and to provide graceful
termination.

7. Control is given to the R14 value that is saved in the save area presented at
enclave initialization.

CEETREN — terminate without raising T_I_S
CEETREN is a CWI that is intended for graceful enclave termination, supporting
voluntary termination such as a return from main without raising T_I_S. The T_I_S
condition notifies the stack frames on the current thread's stack of the intent to
terminate the thread.

Syntax

void CEETREN ([encl_modifier], [user_rtn_code])
INT4 *encl_modifier;
INT4 *user_rtn_code;

CEETREN
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12)
L R15,2876(,R15)
BALR R14,R15

encl_modifier (input/optional)
The encl_modifier can be 0, 1, 2, or 3; if you do not specify one of these values
or if you omit this parameter, a zero is assumed. Calculate the enclave reason
code, sometimes called a return code modifier, by multiplying the encl_modifier
by 1000. For more information, see z/OS Language Environment Programming
Guide.

user_rtn_code (input/optional)
The user's specified return code for the enclave.

Usage Notes:

1. Control does not return to the caller of this service.
2. The actions taken by this service are:

a. Calculate the enclave composite return code from the parameters.
b. Set the termination condition token to zero.
c. All enclave level members and user exits are run.
d. Return to the caller of the enclave with the appropriate return/reason code.

Control is not returned to the caller of CEETREN.
3. If the user_rtn_code is omitted, then the enclave-level user return code

(CEEEDBURC) is used in the calculation of the enclave composite return code.
4. A GOBACK from a main COBOL program calls CEETREN.

Note the difference between the COBOL main program issuing a STOP RUN
versus a GOBACK. The STOP RUN raises T_I, thus allowing the application to
resume. A GOBACK from the main program terminates the enclave without the
possibility of resumption.

5. The intended use of this service is to provide graceful termination without
raising T_I_S.

6. Calculate the enclave return code by adding the user_rtn_code to the enclave
reason code. For more information, see z/OS Language Environment Programming
Guide.

7. Control is given to the R14 value that is saved in the save area presented at
enclave initialization.

CEETREC

Chapter 3. Program initialization and termination 179

CEEATTRM — register event handler
CEEATTRM is a CWI that is used to register a member to gain control, through the
member event handler, during termination. The member event handler gains
control before any language termination activity is started.

Syntax

void CEEATTRM (member_id)
INT4 *member_id;

CEEATTRM
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) Address of CAA in R12
L R15,2912(,R15)
BALR R14,R15

member_id (input)
A fullword Language Environment member identifier number whose event
handler is called with function code 15.

Termination sequence
For normal termination, the following steps occur:
1. CALL CEETREN or CEETREC to request termination.
2. Normal handling of the condition occurs without regard to the condition itself.
3. Those members that have been registered using the CEEATTRM service are

called. The order of invocation of the members for the atterm event is
unpredictable. When the atterm exit is driven, member termination has not yet
started.

4. The debug tool is called for enclave termination, if the debug tool were already
initialized.

5. Call the HLL specific enclave termination routines in the order defined using
the signature CSECTs.

6. Call the assembler user exit.

Termination failures
If Language Environment cannot successfully terminate the enclave, it abends with
completion code 4094. For example, this can occur when the program has
overwritten Language Environment storage, causing Language Environment
control blocks to become invalid. The reason code associated with the ABEND 4094
indicates the cause of the failure. The reason codes are described in z/OS Language
Environment Debugging Guide.

Note: The reason and return codes are passed to the assembler user exit during
termination processing. The exit can examine these values and change them. The
return code and reason code returned by the user exit are used by Language
Environment as the values returned in R15 and R0.

T_I_S condition
The T_I_S condition is defined as follows:

Condition

CEE067 Severity 1

Msg_No 0199

CEEATTRM

180 z/OS V2R1.0 Language Environment Vendor Interfaces

Signaling the T_I_S condition notifies the stack frames on the current thread's stack
of the intent to terminate the thread. Notice that if the T_I_S condition is not
handled, control returns to the next sequential instruction following the point
where the Termination_Imminent condition was raised.

Member event codes for initialization and termination
Language Environment calls the event codes listed in Table 45 for preinitialization
and for batch initialization. Language Environment calls member-specific
initialization (MSI) routines for process initialization and again for enclave
initialization. The resources and capabilities differ between the two events. For a
description of the calling method, see “Language Environment member list and
event handler” on page 86. (CICS initialization is discussed in Chapter 13,
“Subsystem considerations,” on page 435.)

Table 45. Event codes called for initialization and termination

Event Overview

Process
Initialization Event

The process initialization event code is 17. This event is used to bring
up HLL portions at the process level. The order in which the member
event handlers are called is undefined. In particular, the dependency
list is not honored. For a description of the parameters, see “Event
code 17 — process initialization event” on page 506.

Process
Termination Event

The process termination event code is 21. This event is used to
terminate HLL portions at the process level. The order in which the
member event handlers are called is undefined. In particular, the
dependency list is not honored. For a description of the parameters,
see “Event code 21 — process termination event” on page 512.

Enclave
Initialization Event

The enclave initialization event code is 18. This event is used to
initialize HLL portions at the enclave level. The order in which the
member event handlers are driven is first based on the ascending order
of the member identifier. However, if the member identifier is
identified by a numerically lower ID in the dependencies part of the
signature CSECT it could be called prior to a lower ID. For more
information about the signature CSECTs, see “Signature CSECT” on
page 151. For a description of the parameters, see “Event code 18 —
enclave initialization event” on page 507.

Enclave
Termination Event

The enclave termination event code is 19. This event is used to
terminate HLL portions at the enclave level. The order in which the
member event handlers are called is in the reverse order of
initialization. The dependencies are determined from the signature
CSECTs. For more information about the signature CSECTs, see
“Signature CSECT” on page 151. For a description of the parameters,
see “Event code 19 — enclave termination event” on page 510.

Runtime Options
Event

The runtime options event code is number 4. This event has limited
capabilities. There is no stack available, nor any Language
Environment callable services. The purpose is to allow the members to
handle runtime options in a compatible fashion. For a description of
the parameters, see “Event code 4 — runtime options event” on page
490.

Init/Term

Chapter 3. Program initialization and termination 181

Table 45. Event codes called for initialization and termination (continued)

Event Overview

Atterm Event The atterm event code is number 15. The atterm event is called during
termination of an enclave. It is called after all user stack frames have
been removed from the stack and prior to calling the members for the
enclave termination event. Only the members that have been explicitly
registered using the CWI CEEATTRM is called. For a description of the
parameters, see “Event code 15 — atterm event” on page 505.
Note: For information on Language Environment return codes, reason
codes, existing language semantics, processing, and conventions, refer
to z/OS Language Environment Programming Guide.

Language Environment expects its registers to be restored to their original value
upon return, conforming to normal calling conventions. The event handler must
set the return code in R15 to one of the valid return codes (in decimal), as follows:

-4 No action was taken for this event.

0 The termination event was successfully processed.

16 The event was not successfully processed and/or the program must be
immediately terminated.

Language Environment abends the program if the event handler returns a value of
16 or a value not in the preceding list.

During initialization, Language Environment determines the members present in
the application by interrogating the language list identifying those members
present in the application and that require member-specific initialization. Each
member found in the list has its event handler routine (CEEEVnnn) loaded and
called by Language Environment initialization in AMODE 31. The address of each
event handler routine is stored into the Language Environment member list at the
enclave level.

Language Environment expects a return in AMODE 31, and its registers to be
restored to their original values using normal calling conventions. If an exception
occurs during the execution of an MSI routine, the Language Environment
exception manager issues an ABEND 4093 and the Language Environment
environment terminates.

If there are multiple occurrences of a member within an enclave, its MSI routine is
called only once per enclave. In addition, the order in which the MSI routines are
called is determined from the list of member identifiers contained within the
signature CSECTs.

If the MSIs need to be called in a specific order, it is indicated in the signature
CSECT. For the format of the signature CSECT, see Figure 52 on page 152.
Language Environment calls the MSI routines in the order dictated by the
signature CSECTs. Termination is performed in the reverse order. If the signature
CSECTs do not indicate any dependencies, the order of MSI invocation is
undefined.

Member Event Codes

182 z/OS V2R1.0 Language Environment Vendor Interfaces

Language Environment abend summary
The normal paradigm for Language Environment (with TRAP ON) is to transform
abends into signaled conditions, which if unhandled result in nonzero return and
feedback codes.

In the rare case that Language Environment finds that its operation is severely
compromised then it terminates the process with a 4xxx abend. The range of
abends treated this way is 4000 to 4095. Termination is immediate (using SVC 13 or
EXEC CICS ABEND, when in the CICS environment). Enclosing enclaves, if any,
percolate the abend such that the whole process is taken down and no member or
user termination exits at any level are driven.

When an implicit enclave created using system assisted linkage (such as LINK or
CICS LINK) terminates with an unhandled condition, the system/subsystem abend
function is called by Language Environment after normal cleanup.

The user (assembler) termination exit can transform the return, results and
feedback codes in accordance with application needs. It can also request that an
abend with a user code be issued by Language Environment on behalf of this
enclave. This abend occurs as the last action in the enclave at the point where
return would normally be passed back to the creator of the enclave. Because the
current enclave has already canceled its STAE and SPIE exit, it does not get
control, however the calling (if there is one) enclave's STAE does and thus its
condition handler processes the exception in the normal way.

CEECOPP — runtime option compiler service
A callable service allows for compilers to convert runtime options strings specified
in a source program to an options control block (OCB). This interface also supports
the runtime options that are not part of the OCB, specifically ENV, PLIST, REDIR,
EXECOPS, and ARGPARSE. These options are returned in the Supplementary
Options Control Block (SOCB). The compiler would then create the OCB in the
same format as the CEEUOPT CSECT file. This service is loadable and requires
multiple calls, one to obtain the size of the working storage block (which includes
the size of the OCB), and subsequent calls for the HLL to pass the runtime options
string and the working storage and receive the parsed output.

CEECOPP is called by loading the executable named CEECOPP (using the LOAD
SVC service) which resides in the SCEERUN data set. Then call the entry point
returned from the load using:

Syntax

void CEECOPP (function_code, storage_size, storage_addr, options, ocb_addr, socb_addr,
roet_addr, ocb_status, socb_status, rc)
INT4 *function_code;
INT4 *storage_size;
POINTER *storage_addr;
PREFIXSTR *options;
POINTER *ocb_addr;
POINTER *socb_addr;
POINTER *roet_addr;
POINTER *ocb_status;
POINTER *socb_status;
INT4 *rc;

Abends

Chapter 3. Program initialization and termination 183

function_code (input)
Indicates the type of request. The valid function codes and meanings are:

1 Obtain the size of working storage. The first call is required to
communicate to the caller how much storage is required by Language
Environment to parse the options, the size of the resulting OCB, and
the size of the error table. It is the caller's responsibility to acquire the
storage and return the address to Language Environment in the second
call.

2 Initialize OCB and parse the supplied options. The second call is used
to initialize the OCB and to parse the options and save them in the
OCB.

3 Parse the supplied options. Subsequent calls are used to parse the
options save them in the OCB created by function code 2.

storage_size (output)
The amount of storage required by Language Environment to do the parse.
This size includes the amount of working storage needed to parse the string,
the resulting OCB, and an error table. This is used in conjunction with
function_code equal to 1.

storage_addr (input)
The address of storage of the length returned by Language Environment in the
first call. This is used with function_code 2 and 3.

options (input)
A character string containing the runtime options. This is a halfword-prefixed
length string. The string is not altered and can reside in read-only storage. This
is used in conjunction with function_code 2 and 3.

ocb_addr (output)
The address of the options control block that was created with the parsed
options. The compiler should convert this block into a CEEUOPT CSECT. The
storage used for the OCB is obtained from the storage provided by the caller.
The length of the OCB is found directly within the OCB itself. The OCB is
constructed so that there are no relocatable address constants and is essentially
a stream of hex information. This is used with function_code 2 and 3. For an
example of an options control block, see Appendix A, “Options control block
and supplementary options control block,” on page 821.

socb_addr (output)
The address of a supplementary options control block (SOCB) that was created
with the parsed options. The compiler should convert this block into a format
that is suited to the caller. Language Environment does not retain this
information. The storage used for the SOCB is obtained from the storage
provided by the caller. The length of the SOCB is found directly within the
SOCB itself. The SOCB is constructed so that there are no relocatable address
constants and is essentially a stream of hex information. This is used in
conjunction with function_code 2 and 3. For an example of a supplementary
options control block, see Appendix A, “Options control block and
supplementary options control block,” on page 821.

roet_addr (output)
The address of the runtime options error table created. The caller could convert
this error table into error messages as part of the compiler output in its normal
way of outputting errors. This is used in conjunction with function_code 2 and
3. The format of the runtime options error table is shown in Figure 57 on page
186.

CEECOPP

184 z/OS V2R1.0 Language Environment Vendor Interfaces

ocb_status (output)
A fullword integer that contains the status of output OCB. If zero, no OCB
entries were made. If nonzero, OCB entries have been made.

socb_status (output)
A fullword integer that contains the status of output SOCB. If zero, no SOCB
entries were made. If nonzero, SOCB entries have been made.

rc (output)
A fullword integer that contains the return code. This is used in conjunction
with both function_code 2s. The possible values are:

0 Options parsed with no errors, OCB entries made.

4 Invalid function code detected. No action performed.

8 Invalid function code sequence. Function code 3 (parse only) was
received before function code 2 (initialize and parse).

Usage Notes:

1. In the OCB there are no address constants; therefore, no RLDs need to be
created.

2. Options string length limitation is 64K bytes.
3. CEECOPP is reentrant and is marked AMODE(31)/RMODE(ANY). It is the

caller's responsibility to insure the proper AMODE upon entry. CEECOPP does
not switch AMODEs.

4. Invocation of CEECOPP is through BALR 14,15.
5. If the OCB_status parameter is zero, the compiler should not generate the

CEEUOPT CSECT.
6. If the roet_error_count field in the ROET is not zero, errors occurred in the parse

of the options string. The errors are contained in the table.
7. The roet_error_code field is in the format of a Language Environment condition

token which is described in Figure 61 on page 231. The message numbers
associated with the feedback codes that could be found in the runtime options
error table are between CEE3601I and CEE3629I. For a description of these
messages, see z/OS Language Environment Debugging Guide.

8. Figure 57 on page 186 shows the format of the runtime options error table.

CEECOPP

Chapter 3. Program initialization and termination 185

Options processing event
Event 4, which is used for compatibility options processing, has an update in its
parameter list; an INPL is passed instead of the address of the main entry point.
For a description of the parameters, see “Event code 4 — runtime options event”
on page 490.

User exits
The assembler user exit for initialization is called when the enclave is initialized.
This occurs during the CEEPIPI(init_sub) call and during the CEEPIPI(call_main)
call.

The assembler user exit for termination is called when the enclave is terminated.
This occurs at the end of a CEEPIPI(call_main) call, and at a CEEPIPI(term) for an
environment for subroutines.

Similarly, the HLL user exit is called during the CEEPIPI(init_sub) invocation, and
during the CEEPIPI(call_main) invocation.

CEEBSHL — exit from/re-entry to Language Environment shell
CEEBSHL is a CWI routine, which is called just before exit from, and just after
re-entry to, Language Environment. This allows the Language Environment to be
appropriately altered to accommodate the switch in states from a dormant
environment to an active environment and vice versa.

0

0 0

1

1

2

2

401

Reserved

Error code Insert string length

Run-Time Options ErrorTable

Run-Time Options ErrorTable Insert Array Entry

Error count

Reserved Insert string

Error array entries

Error inserts counts

Insert arrays

.

.

.

.

.

.

.

.

.

Figure 57. Runtime options error table

Init/Term

186 z/OS V2R1.0 Language Environment Vendor Interfaces

Syntax

CEEBSHL (function_code)

CEEBSHL
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12)
L R15,3968(,R15)
BALR R14,R15

function_code (input)
Fullword integer set to one of the following values:

1 Application is exiting Language Environment and wants to put the
Language Environment in a dormant state.

2 Application is re-entering a dormant Language Environment and
wants to put the Language Environment in an active state.

Usage Notes:

1. The Language Environment ESTAE will percolate all abends when the
environment is dormant.

2. The Language Environment ESTAE is enabled to handle abends and program
interrupts when the environment is activated.

3. Calls to CEEINT while the environment is dormant will cause the environment
to be activated.

Language Environment interface validation exit
The binder that is part of DFSMS/MVS Version 1 Release 3 allows a user-specified
exit, called the interface validation exit, to examine and possibly modify names given
as external references. This exit is given control immediately before the external
references are bound to specific entry point names. It can invoke any of the
language-specific interface validation exit routines it contains (see
“Language-specific interface validation exit” on page 191). If the exit requests that
an external reference be changed, the binder attempts to bind the reference to an
entry point with the new name, using the binder's autocall facilities if necessary.

The language-specific interface validation exit routines (see “Language-specific
interface validation exit” on page 191) that are invoked from the language-specific
interface validation exit must conform to the conventions described in
“Language-specific interface validation exit” on page 191 and must not use any
additional features that the binder provides in general to an arbitrary interface
validation exit. Here are two such features whose use is prohibited:
v The character string that the binder passes to any interface validation exit.
v The setting of the exit signature.

The name of an interface validation exit to be used is indicated to the binder by
giving the name of the exit routine on an execution parameter to the binder.

Invocation of the exit is requested of the binder on a binder execution-time option
as follows:

Invoking the Language Environment Interface Validation Exit

PARM='[...,] EXITS(INTFVAL(CEEPINTV))[,...]'

CEEBSHL

Chapter 3. Program initialization and termination 187

When an exit is specified in this manner, the named exit is invoked during binder
execution. The exit is invoked once for each control section containing external
references that have not been bound to entry names and validated. As the exit may
be invoked quite often, it is important that the code in the exit be as efficient as
possible so as not to degrade binder performance. Because of this performance
consideration and the fact that contributions to the exit may be supplied by
multiple languages, the exit is shipped as part of the Language Environment
component of Language Environment. This exit is called the Language Environment
interface validation exit.

Structure of the Language Environment interface validation
exit

The Language Environment interface validation exit is a load module in
SCEELKED with the name CEEPINTV. (This load module is shipped in
SCEELKED rather than in SCEERUN because it's actions apply to names that are
in a specific level of SCEELKED rather than to anything in a specific level of
SCEERUN. The renaming actions do not apply to execution of the application or to
any changes that occur in SCEERUN from release to release of Language
Environment.) It invokes one or more language-specific interface validation
routines (see “Language-specific interface validation exit” on page 191).

The load module CEEPINTV contains these separately assembled routines:

CEEPINTV
This routine receives control from the binder, screens for possible renaming
actions based on IDR information, and passes control to one of several
language-specific interface validation exit routines for further analysis. In
addition to some fixed code, CEEPINTV contains a series of CEEXVSEL
macro instructions indicating that, when certain selection criteria are
satisfied, a specific language-specific interface validation exit should be
invoked to determine which external names, if any, should be renamed.
The macro CEEXVSEL is described in “CEEXVSEL — high-level selection
criteria.”

CEEfffXn
These language-specific interface validation exit routines receive control from
CEEPINTV based on the selection criteria indicated in a CEEXVSEL macro
instruction. They determine whether an external reference should be
renamed, and, if so, specify the new name. In the naming convention, fff is
the component's three-character module prefix (for example, AFH for
Fortran or IGZ for COBOL), and n is any digit. The conventions for coding
a language-specific interface validation exit, along with the arguments
passed to it, are described in “Language-specific interface validation exit”
on page 191.

CEEfffXM
These language-specific interface validation message modules provide the
text of messages, if any, that are to be printed by the binder in exceptional
cases. For more information about message handling, see “Message
handling” on page 195.

CEEXVSEL — high-level selection criteria
Each CEEXVSEL macro instruction in the routine CEEPINTV provides selection
criteria that control whether a certain language-specific interface validation exit is
to be invoked. The selection criteria include:

Interface validation exit

188 z/OS V2R1.0 Language Environment Vendor Interfaces

v IDR information of the control section whose external references are being
examined,

v IDR information of the target control sections; that is, the control sections that
contain the entry points that are about to be bound with the external references,

v Prefix of the names of the target control sections, and
v Any unresolved external references.

When the Language Environment interface validation exit finds that a set of
selection criteria is satisfied, it passes control to a designated language-specific
interface validation exit. This exit then determines if any of the external references
must be renamed.

Syntax

�� CEEXVSEL LANG_IV_EXIT= lang_exit
,STACK= stack_size

�

�
,STATIC= static_size ,CALLING_IDR= 'calling_idr'

�

�
,TARGET_IDR= 'target_idr'

�

�

�

,

,TARGET_SECTION_PREFIX= ('target_sect_pref'
)

�

�
,RESOLVED= NO

��

lang_exit
the name of the language-specific interface validation exit routine that is to be
invoked if the criteria specified by the CALLING_IDR, TARGET_IDR, and
TARGET_SECTION_PREFIX are satisfied. The conventions for coding this exit,
along with the arguments passed to it, are described in “Language-specific
interface validation exit” on page 191.

stack_size
the maximum total amount of stack storage needed for the DSA or DSAs of
lang_exit and any routines that it calls. If the STACK parameter is omitted, the
maximum length provided is 400 bytes. No stack extensions are possible.

static_size
the length of the storage area required for communication among successive
invocations of lang_exit. A storage area of this length is provided on the first
invocation and the same area passed on each successful invocation, as an
argument on each call to lang_exit. On the first call, the first eight bytes of the
area are cleared to 0 so that lang_exit can determine if it has previously stored
any of its data in the area.

If the STATIC parameter is omitted or is coded with a value of 0, then no such
storage area is made available to lang_exit.

Interface validation exit

Chapter 3. Program initialization and termination 189

calling_idr
Is a string of characters that is compared with the IDR information associated
with the control section whose external references are to be examined by the
interface validation exit. The selection criterion associated with the
CALLING_IDR parameter is satisfied if calling_idr matches the control section's
IDR information.

The value of calling_idr is compared only with the leading characters of the
IDR information associated with the control section. This allows, for example, a
selection based on the first few characters of the IDR information which
contain the program number of a compiler without regard to any additional
characters that indicate the version and release of the compiler.

If the calling_idr is omitted, the IDR information for the control section
containing the external references is not used to eliminate the control section
for further analysis of its external references. In this case, at least one of the
other selection parameters is required.

target_idr
Is a string of characters that is compared with the IDR information associated
with the control sections that contain the entry points in the reference list.
(These are the control sections that contain the entry points that the binder is
about to bind with the external references that are to be validated.) The
selection criterion associated with the TARGET_IDR parameter is satisfied if
there is at least one entry point whose control section has IDR information that
matches target_idr.

The value of target_idr is compared only with the leading characters of the IDR
information associated with the control section. This allows, for example, a
selection based on the first few characters of the IDR information which
contain the program number of a compiler without regard to any additional
characters that indicate the version and release of the compiler. The
target_sect_pref values are compared only with the leading characters of the
section names in the reference list.

If the target_idr is omitted, the IDR information for control sections containing
entry points in the reference list is not used to suppress further analysis of
external references. In this case, at least one of the other selection parameters is
required.

If the target_idr parameter is used, then the RESOLVED=NO parameter must
not be used in the same macro invocation.

target_sect_pref
Is a string of characters that is compared with the names of the control sections
that contain the entry points in the reference list. (These are the control sections
that contain the entry points that the binder is about to bind with the external
references that are to be validated.) The selection criterion associated with the
TARGET_SECTION_PREFIX parameter is satisfied if the reference list has at
least one entry point in a control section whose name begins with one of the
target_sect_pref values.

If the TARGET_SECTION_PREFIX parameter is omitted, then the names of
control sections containing the entry points in the reference list are not used to
suppress further analysis of external references. In this case, at least one of the
other selection parameters is required.

If the TARGET_SECTION_PREFIX parameter is used, then the RESOLVED=NO
parameter must not be used in the same macro invocation.

Interface validation exit

190 z/OS V2R1.0 Language Environment Vendor Interfaces

RESOLVED=NO
This selection criterion is satisfied if there is at least one unresolved reference.
If you use the RESOLVED=NO parameter, you cannot specify the
TARGET_IDR or the TARGET_SECTION_PREFIX parameters in the same
macro invocation.

Selection criterion parameters
The following parameters are called selection criterion parameters; at least one is
required on each CEEXVSEL macro instruction to control if the language-specific
interface validation exit, lang_exit, is to be entered.
v CALLING_IDR
v TARGET_IDR
v TARGET_SECTION_PREFIX
v RESOLVED=NO

If more than one of the selection criterion parameters is given on a single
CEEXVSEL macro instruction, all of the specified criteria must be satisfied for the
exit to be invoked.

The order of the CEEXVSEL macro instructions in the routine CEEPINTV controls
the order in which the selection criteria are evaluated. Once the selection criteria
on any CEEXVSEL macro instruction are satisfied, the corresponding
language-specific interface validation exit is invoked, and the selection criteria on
subsequent CEEXVSEL macro instructions, if any, are not evaluated.

Language-specific interface validation exit
A language-specific interface validation exit is a routine that is entered if the
selection criteria specified by a CEEXVSEL macro invocation are satisfied. Its name
should follow the naming conventions for exits described in “CEEfffXn” on page
188. It should be written as a Language Environment-enabled non-XPLINK
assembler language program, which conforms to the restrictions that follow.

Restrictions on the use of Language Environment services
Only a limited Language Environment-style environment is established for use by
the language-specific interface validation exit(s). This means that there are no
initialization services, no condition handling services, no message services, no
program management services, and no heap services. The mini-environment that is
made available is what is provided through the system programming C facility. (It
is a “Persistent C Environment”, as described in z/OS XL C/C++ Programming
Guide.) There is enough of an environment to provide a stack for use by a
language-specific interface validation exit so long as no library services are used.

If the language-specific interface validation exit is written in assembler, it must be
reentrant. Should any persistent data need to be kept between successive
invocations of the same exit, the communication area must be used; the length of
this area is specified in the STATIC parameter of the CEEXVSEL macro instruction,
and its address is available through the anchor word argument that is passed to
the exit (see “Arguments passed to language-specific interface validation exits”).

Arguments passed to language-specific interface validation exits
The following nine arguments are passed to each language-specific interface
validation exit. These arguments are similar to, but not identical to, those passed
by the binder to an interface validation exit (see “Language Environment interface
validation exit” on page 187). Standard linkage conventions are followed, that is,
register 1 contains the address of a list of addresses of these arguments:

Interface validation exit

Chapter 3. Program initialization and termination 191

1. Function Code. A 1-byte function code with value of 'V' indicating the Validate
function. This differs from what the binder provides because the
language-specific interface validation exit is entered only for the Validate
function and not for the Start and End functions.

2. Anchor Word. A 4-byte pointer to a structure consisting of the following two
fields:
a. A 4-byte pointer to a communication area of the length given by the

STATIC parameter of the CEEXVSEL macro instruction. The same area is
provided for each call to the same language-specific interface validation
exit. On the first call, the first eight bytes of the area are cleared to 0 so that
language-specific interface validation exit can determine whether it has
previously stored any of its data in the area.

b. A 4-byte pointer to the first applicable reference list entry (see “Structure of
the Language Environment interface validation exit” on page 188 for
information about the reference list).
If there is neither a TARGET_IDR nor a TARGET_SECTION_PREFIX
parameter on the CEEXVSEL macro instruction, this is a pointer to the first
list entry for the section being validated and has the same value as the
“Reference List” parameter.
If there is one or both of the TARGET_IDR and a
TARGET_SECTION_PREFIX parameters, this is a pointer to the first list
entry that satisfies these selection criteria. Note, however, that subsequent
list entries may not satisfy these selection criteria.

3. This parameter has no meaning in this context.
4. Section name. A varying string containing the name of the section being

validated.
5. Section vaddr. A 4-byte pointer to the beginning of the first text element in the

section being validated. This may not be useful in a multi-class module, since
there is no designated "primary" class. This field is reserved for future use.

6. Section IDRL. A 4-byte pointer to the IDR entry for the section in process. The
IDR data entry consists of a halfword length field containing the length of the
data followed by the data.

7. Reference List. A 4-byte pointer to a list of unchecked references. For a
discussion of the reference list, see “Reference list” on page 193.

8. Return code. A fullword return code in which the overall status of the exit is to
be returned. It will be initialized to zero on invocation of the exit. The
following values may be set by the language-specific interface validation exit:

0 OK, no further processing required of this section. The action code for
all references is zero.

4 Further processing required by the binder, as indicated in the returned
action codes.

12 Severe error. Make no more calls to the exit and do not save the
module (unless the binder option LET=12).

16 Terminate binder processing immediately.
9. Returned message. A 4-byte pointer in which may be returned the address of a

halfword length field and a string allocated by the language-specific interface
validation exit, and containing a message to be printed by the binder. The
returned message must not be longer than 1000 bytes. The binder will prefix
the returned message with its own message number. The returned message will
be initialized to the null string so that the exit routine need not take any action

Interface validation exit

192 z/OS V2R1.0 Language Environment Vendor Interfaces

unless a message is to be issued. For more information about message
handling, see “Message handling” on page 195.

Reference list
The seventh argument passed to the language-specific interface validation exit is
the reference list. The reference list is a linked list containing one entry for each
unchecked ER in the section. References marked NOCALL or NEVERCALL will
not be included in the list. The last entry in the list contains zero in the link field.
A reference entry is 64 bytes in length. The reference entry fields are shown in
Table 46.

Table 46. Interface validation exit reference entry fields

Offset Type Len Name Description

(0) Address 4 REFL_NEXT Address of next list entry 3

(4) Address 4 REFL_T_SYMBOL Address of referenced symbol 2

(8) Address 4 REFL_T_SECTION Address of target section name
2, 8

(C) Address 4 REFL_T_ELEMENT Address of target element 1, 8

(10) Address 4 REFL_T_DESCR Address of target descriptors 1, 8

(14) Address 4 REFL_T_IDR Address of target IDR 1, 5, 8

(18) Bit 4 REFL_T_ENVIR Target environment 1, 6, 8

(1C) Character 8 REFL_T_SIGN Target signature 8

(24) Address 4 REFL_T_ADCONS Adcon list anchor 1

(28) Address 4 REFL_C_DESCR Address of caller descriptors 1

(2C) Bit 4 REFL_C_ENVIR Caller's environment 1, 6

(30) Character 8 REFL_X_SIGN Exit signature 4, 9

(38) Address 4 REFL_X_SYMBOL New symbol (Char(*) varying)
4, 7, 9

(3C) Unsigned 2 REFL_X_ACTION Action code 4, 9, 10

(3E) Unsigned 2 Reserved 1

Notes® for Interface Validation Exit Reference Entry Fields
1. Field must be zero.
2. Address points to varying character string, which must begin with a halfword

length field containing current length, excluding length field.
3. Last entry in list set to zero.
4. Output field; set by exit routine.
5. IDR data is returned in the following format; this 21-byte structure is

preceded by a halfword length. The length may contain zero or any multiple
of 21, allowing for multiple IDRs.

0 CHAR 10 Processor Identification
10 CHAR 2 Processor Version
12 CHAR 2 Processor Modification Level
14 CHAR 7 Date Compiled or Assembled (yyyyddd)

6. Environmental bit settings are not yet defined.
7. The exit routine must allocate and initialize a varying length character string,

consisting of a halfword length field, containing the length of the symbol,
immediately followed by the symbol itself. The address of this varying string
must be stored in the REFL_X_SYMBOL field in the reference list.

Interface validation exit

Chapter 3. Program initialization and termination 193

8. Target fields will contain binary zeros for unresolved references.
9. Output fields will be initialized to binary zeros on invocation of the exit

routine.
10. One of the following action codes should be returned for each reference entry:

0 No special processing, such as changing the bind status flags,
renaming the reference, or storing signatures required for this
reference.

1 Validation successful. Store the exit signature in both LD and ER
records.

2 Validation successful. Store glue code address in all referring adcons
and store the exit signature in both LD and ER records.

3 Accept unresolved reference. Do not store the exit signature in the ER
record. Reference will be treated as a weak reference and will not
affect the return code from the binder.

4 Retry. New symbol has been provided for reference. Do not store
signatures at this time. Reprocess autocall, if necessary, and
re-validate.

5 Validation failed. Mark reference unresolved and do not store
signatures at this time. The return code from the binder will reflect
that there was at least one unresolved reference.

Changing an external reference
The language-specific interface validation exit must decide whether a given
external reference is to be changed, and if it is, to provide the new name. The
routine should assume that the selection criterion specified by the CALLING_IDR
parameter, if any, on the applicable CEEXVSEL macro instruction is already
satisfied and does not need to be examined again. However, if one or both of the
TARGET_IDR and TARGET_SECTION_PREFIX parameters are given, the
applicable selection criteria are satisfied for the identified reference list entry but
may not be for subsequent entries.

The language-specific interface validation exit can decide whether to rename an
external reference based on one or more of the following pieces of information.
Note that the first two are constant for each binder entry to the Language
Environment interface validation exit and each of its calls to the language-specific
interface validation exits. The others apply to the individual external references as
reflected in the reference list entries. For more information about the reference list,
see “Reference list” on page 193.
1. The name of the control section containing the external references.
2. The IDR information associated with the section that contains the external

references. (This indicates the compiler, including its release, that produced the
compiled code.)

3. The name of an external reference.
4. The name of a target control section, that is, the control section that contains

the entry point with which the external reference is about to be bound. (In the
event that the external reference is as yet unresolved, the address of the section
name (REFL_T_SECTION) has a value of 0.)

5. The IDR information associated with a section that contains the entry point
with which the external reference is about to be bound.

The language-specific interface validation exit can rename an external reference by:

Interface validation exit

194 z/OS V2R1.0 Language Environment Vendor Interfaces

1. Placing the address of the new name to be used as the external reference in the
REFL_X_SYMBOL field in the reference list entry

2. Setting a value of 4 as the action code (REFL_X_ACTION field) in the reference
list entry

3. Setting a value of 4 in the return code parameter that was provided to the exit.

When an external reference is renamed in this manner, the binder then uses
autocall, if necessary, to locate the new name.

The language-specific interface validation exit can cause an external reference to
become unresolved by:
1. Setting a value of 3 or 5 as the action code (REFL_X_ACTION field) in the

reference list entry;
2. Setting a value of 4 in the return code parameter that was provided to the exit.

Message handling
If the language-specific interface validation exit detects an error, it can request that
the binder print a message which is contained in a CEEfffXM module, which
contains messages text (see “CEEfffXM” on page 188.) The exit requests that a
message be printed by placing the address of the appropriate message text in the
pointer which is the last argument to the language-specific interface validation exit.

Communication between the language-specific interface validation exit and the
CEEfffXM module is a private interface between these two modules. A reasonable
scheme would be for there to be a vector of address constants at the beginning of
CEEfffXM. Each would point to a halfword-prefixed message text string so that in
response to a request that a specific message be printed the language-specific
interface validation exit would move one of those address constants into the
pointer given as the argument for the returned message.

There is no provision for message inserts. Only one message can be requested per
invocation of the Language Environment interface validation exit by the binder. No
message should be requested except in the event of error.

Example of a language-specific interface validation exit
Figure 58 on page 196 shows an example of the interaction of the main Language
Environment interface validation exit (module CEEPINTV) with a language-specific
interface validation exit. First, assume that the module CEEPINTV contains the
following two CEEXVSEL macro instructions. These two CEEXVSEL macro
instructions will select sections meeting either of the two sets of selection criteria:
1. The section being validated has IDR information that begins with the seven

characters '5655121', which represents the AD/Cycle C/370 compiler, and there
is at least one external reference that is unresolved.

2. The section being validated has IDR information that begins with the eight
characters 5668-806, which represents the VS FORTRAN Version 2 compiler,
and there is at least one external reference that is resolved in to a section whose
name begins with the three characters EDC.

Interface validation exit

Chapter 3. Program initialization and termination 195

Remember that the Language Environment interface validation exit is entered with
a Validate function code once for each section that contains external references.

The main Language Environment interface validation exit (CEEPINTV) examines
the section being validated and its external references. If the first set of criteria is
satisfied, control is passed to the C-specific interface validation exit whose name is
CEEEDCX0. Upon return from CEEEDCX0, control returns to the binder without
examination of the second set of selection criteria. However, if the first set of
criteria is not satisfied but the second set is, control is passed to the
Fortran-specific interface validation exit whose name is CEEAFHX0.

For this example, assume that only the second set of selection criteria is satisfied so
that the Fortran-specific language validation exit named CEEAFHX0 would be
entered. In this case, this means that the section being validated was produced by
the VS FORTRAN Version 2 compiler and that at least one of its external references
is being resolved into a section whose name begins with the characters EDC, which
likely indicates a C library routine. Also, assume that the purpose of CEEAFHX0 is
to change the external reference SQRT to AFHFSSQS if the binder was about to
bind SQRT to an entry point in the C library routine EDC1@0C4. The code
example (below) shows how CEEAFHX0 could do this.
CEEAFHX0 CEEENTRY PPA=PPAX0,MAIN=NO,BASE=11
*
* INITIALIZE POINTERS
*

L 2,4(,1) PTR TO PTR TO ANCHOR BLOCK
L 2,0(,2) PTR TO ANCHOR BLOCK USING ANCHOR_BLOCK,2
L 2,AB_REFL FIRST REFERENCE LIST ENTRY
USING REFL,2

*
* CHECK FOR SQRT AS EXTERNAL REFERENCE IN REFERENCE LIST ENTRY*
*
LOOP_NXT L 3,REFL_T_SYMBOL EXTERNAL REFERENCE

LA 0,L’SQRT_SY SQRT NAME LENGTH
CH 0,0(,3) IS REF LIST ER NAME SAME LENGTH?
BNE LOOP_CTL NO, CAN’T BE THE ER WE’RE SEEKING
CLC SQRT_SY,2(3) IS REF LIST ER NAME WHAT WE WANT?
BE GOT_SQRT YES, GO ANALYZE IT FURTHER

*
* NOT SQRT SO GO CHECK NEXT REFERENCE LIST ENTRY IF ANY
*
LOOP_CTL L 2,REFL_NEXT NEXT REFERENCE LIST ENTRY

LTR 2,2 IS THERE ANOTHER ENTRY?
BNE LOOP_NXT YES, GO CHECK IT

*
* RETURN *
*

DONE CEETERM , RETURN TO CALLER
*
* EXTERNAL REFERENCE IS SQRT; CHECK IF IN C LIBRARY TARGET SECTION
*
GOT_SQRT L 3,REFL_T_SECTION TARGET SECTION NAME

LA 0,L’CSQRT_SY C SQRT TARGET SECTION NAME LENGTH

CEEXVSEL LANG_IV_EXIT=CEEEDCX0, X
CALLING_IDR=’5655121’, X
RESOLVED=NO

*
CEEXVSEL LANG_IV_EXIT=CEEAFHX0, X

CALLING_IDR=’5668-806’, X
TARGET_SECTION_PREFIX=’EDC’

Figure 58. Language-specific interface validation exit

Interface validation exit

196 z/OS V2R1.0 Language Environment Vendor Interfaces

CH 0,0(,3) IS REF LIST TARGET SECTION NAME
* THIS SAME LENGTH?

BNE DONE NO, CAN’T BE SECT WE’RE SEEKING
CLC CSQRT_SY,2(3) IS TARGET SECTION THE NAME OF

* C LIBRARY ROUTINE WE WANT?
BNE DONE NO, EXIT (CAN’T BE ANOTHER SQRT)

*
* CHANGE EXTERNAL REFERENCE FROM SQRT TO AFHFSSQS*
*

LA 0,FSSQS_LN NEW SYMBOL TO USE AS ER
ST 0,REFL_X_SYMBOL SAVE IN REFERENCE LIST ENTRY
LA 1,4 ACTION CODE FOR NEW ER NAME
STH 1,REFL_X_ACTION SAVE IN REFERENCE LIST ENTRY
B DONE DONE. (CAN’T BE ANOTHER SQRT)

*
* EXTERNAL REFERENCE BEING VALIDATED AND REPLACEMENT SYMBOL
*
SQRT_SY DC C’SQRT’
*
FSSQS_LN DC Y(L’FSSQS_SY)
FSSQS_SY DC C’AFHFSSQS’
*
* SECTION NAME OF C LIBRARY ROUTINE THAT CONTAINS THE C SQRT LD
*
CSQRT_SY DC C’EDC1@0C4’
*
* PPA1 AND PPA2
*
PPAX0 CEEPPA
*
* ANCHOR BLOCK (POINTED TO THROUGH SECOND ARGUMENT)
*
ANCHOR_BLOCK DSECTAB_STATIC DS A ADDRESS OF STATIC AREA
AB_REFL DS A ADDRESS OF FIRST APPLICABLE
* REFERENCE LIST ENTRY
*
* REFERENCE LIST ENTRY*
REFL DSECT
*
REFL_NEXT DS A ADDRESS OF NEXT LIST ENTRY
REFL_T_SYMBOL DS A ADDRESS OF REFERENCED SYMBOL
REFL_T_SECTION DS A ADDRESS OF TARGET SECTION NAME
REFL_T_ELEMENT DS A ADDRESS OF TARGET ELEMENT
REFL_T_DESCR DS A ADDRESS OF TARGET DESCRIPTORS
REFL_T_IDR DS A ADDRESS OF TARGET IDR
REFL_T_ENVIR DS XL4 TARGET ENVIRONMENT
REFL_T_SIGN DS CL8 TARGET SIGNATURE
REFL_T_ADCONS DS A ADCON LIST ANCHOR
REFL_C_DESCR DS A ADDRESS OF CALLER DESCRIPTORS
REFL_C_ENVIR DS XL4 CALLER’S ENVIRONMENT
REFL_X_SIGN DS CL8 EXIT SIGNATURE
REFL_X_SYMBOL DS A NEW SYMBOL (CHAR(*) VARYING)
REFL_X_ACTION DS H ACTION CODE

DS H RESERVED
*

CEEDSA ,
CEECAA ,
END

Interface for preinitialization
This section describes the preintialization functions that are intended for use as
CWIs. For information about other valid invocations, see z/OS Language
Environment Programming Guide.

CEEPIPI — invocation for subroutine by address
Each invocation of CEEPIPI (call_sub_addr_nochk) or CEEPIPI
(call_sub_addr_nochk2) invokes a specified routine by address, which is similar to

Interface validation exit

Chapter 3. Program initialization and termination 197

CEEPIPI(call_sub_addr), but does not perform Language Environment anchor
look-up, set, or reset. Both of these CWI interfaces to CEEPIPI are intended to be
used when the Language Environment environment is initialized and terminated
in one task control block (TCB) or address space but is used from a different TCB
or from an SRB, in the same or a different address space.

Both CWIs are supported only in the CEEPIPI(init_sub_dp) environment, which
must be initialized with TRAP(ON,NOSPIE), INTERRUPT(OFF), and NOTEST. If
the CEEPIPI(init_sub_dp) interface is used to establish multiple Language
Environment environments under the same address space, the routine must not
use z/OS UNIX functions. For additional information, see z/OS XL C/C++ Runtime
Library Reference.

The Language Environment environment identified by the token is activated before
the called routine is invoked. After the called routine returns, the environment is
dormant.

Syntax

call CEEPIPI (call_sub_addr_nochk, routine_addr, token, parm_ptr, sub_ret_code,
sub_reason_code, sub_feedback_code)
INT4 *call_sub_addr_nochk;
POINTER *routine_addr;
INT4 *token;
POINTER *parm_ptr;
INT4 *sub_ret_code;
INT4 *sub_reason_code;
INT4 *sub_feedback_code;

Syntax

call CEEPIPI (call_sub_addr_nochk2, routine_addr, token, parm_ptr, sub_ret_code,
sub_reason_code, sub_feedback_code)
INT4 *call_sub_addr_nochk2;
POINTER *routine_addr;
INT4 *token;
POINTER *parm_ptr;
INT4 *sub_ret_code;
INT4 *sub_reason_code;
INT4 *sub_feedback_code;

call_sub_addr_nochk (input)
a fullword function code (integer value of 12) that specifies the CEEPIPI
request for calling a C main routine and obtaining writable static. The
routine_addr specified must be CEESTART. The entry point called will then be
the main entry point specified in the CEEMAIN referenced by that CEESTART.
For more information on CEESTART and CEEMAIN, see “CEESTART” on page
144 and “CEEMAIN” on page 149 and z/OS XL C/C++ User's Guide.

call_sub_addr_nochk2 (input)
a fullword function code (integer value of 14) that specifies the CEEPIPI
request for calling a C, C++, PL/I, or Language Environment-conforming
assembler subroutine.

routine_addr (input)
a doubleword containing the address of the routine that should be invoked.
The first fullword contains the entry point address; the second fullword must
be zero.

Preinitialization Interface

198 z/OS V2R1.0 Language Environment Vendor Interfaces

token (input)
a fullword with the value of the token returned by CEEPIPI(init_sub_dp) when
the Language Environment environment is initialized. The token must identify
a previously pre-initialized environment that is not active at the time of call.
You must not alter the value of the token.

parm_ptr (input)
a parameter list pointer or 0 (zero) that is placed in register 1 when the routine
is executed. Runtime options are not obtained from this parameter.

sub_ret_code (output)
the subroutine return code.

sub_reason_code (output)
the subroutine reason code; this is 0 for normal subroutine returns.

sub_feedback_code (output)
the feedback code for enclave termination; this is the CEE000 feedback code for
normal subroutine returns. A return code is provided in register 15 and can
contain the following values:

0 The environment was activated and the routine called.

4 The function_code is not valid.

8 CEEPIPI was called from a Language Environment-conforming HLL.

12 The indicated environment was not initialized to allow multiple
Language Environment environments for subroutines.

16 The token is invalid.

28 A PL/I STOP, C exit(), or unhandled condition with severity 2 or
greater occurred.

36 The language of the subroutine is not present in the environment
identified by token.

Usage Notes:

1. This CWI is supported in the init_sub_dp environment only.
2. The init_sub_dp environment must be initialized with TRAP(NOSPIE),

INTERRUPT(OFF), and NOTEST.
3. The routine must be written in PL/I, C, C++, and must be reentrant or written

in Language Environment-conforming assembler.
4. The routine must not contain PL/I STOP or C exit() calls. PL/I STOP and C

exit() will cause a Language Environment enclave termination. Such
termination will cause an unpredictable result because the TCB for the CALL
time is different from the TCB for the INIT/TERM time.

5. If the PL/I or C routine calls an Assembler routine, the Assembler routine
must not contain an SVC LINK; LINK will cause a Language Environment
enclave initialization. Such initialization will cause unpredictable results
because the TCB for the CALL time is different from the TCB for the
INIT/TERM time.

6. The caller of this CWI is responsible to establish its own error recovery for
hardware- and software-detected errors; otherwise, the Language Environment
condition manager will be in control. The Language Environment condition
manager will terminate the current Language Environment enclave and/or
process for any unhandled condition with severity 2 or greater. Such
termination will cause unpredictable results because the TCB for the CALL
time is different from the TCB for the INIT/TERM time.

Preinitialization Interface

Chapter 3. Program initialization and termination 199

7. If the CEEPIPI(init_sub_dp,...) interface is used to establish multiple Language
Environment environments under the same address space, the routine must
not use z/OS UNIX functions.

8. The Language Environment Math services can be called when using the
call_sub_addr_nochk function.

9. Nested enclaves are not supported when call_sub_addr_nochk is used while in
System Request Block (SRB) mode.

10. The language of the routine must already be present in Language
Environment, identified by token. This is done by including a routine coded in
the same language in the PreInit table used during initialization of the
environment.

Preinitialization environment and system request block mode
The following topics describe the preinitialization environment and system request
block (SRB) mode.

Initializing the preinitialization environment
Language Environment requires that a preinitialization environment be initialized
while running in task mode. For a preinitialization environment to be able to run
in SRB mode, initialize the preinitialization environment by using the CEEPIPI
init_sub_dp function (function code 9).

Calling the preinitialization environment in SRB mode
To call the preinitialization environment while running in SRB mode, the call must
be made using the CEEPIPI call_sub_addr_nochk function (function code 12 if
calling a C main routine and obtaining writable static, function code 14 if calling a
C subroutine). "nochk" indicates that Language Environment will not perform any
processing that depends on a TCB address, such as anchor look-up, set, or reset.

Preinitialization service routines
Restrictions exist when running a routine in SRB mode. For instance, an SRB
routine cannot issue any SVCs (except for ABEND). This restriction causes
difficulties when attempting to use Language Environment in SRB mode; since the
default operating system services that Language Environment uses make calls to
SVCs.

The preinitialization services offer a solution. By specifying a Service Routine
Vector while initializing the preinitialization environment, an application can
replace the basic operating system service routines that Language Environment
provides, supplying alternative services or mechanisms to accomplish the same
function. The following service routines can be replaced through the use of the
Service Routine Vector:
v Load Module
v Delete Module
v Get Storage
v Free Storage
v Handle Exception
v Process Message

To run in SRB mode, each of the listed service routines must be replaced. The
following sections explain ways to perform the function for each service routine
while in SRB mode. For details on the interfaces to these services, see z/OS
Language Environment Programming Guide.

Preinitialization Interface

200 z/OS V2R1.0 Language Environment Vendor Interfaces

Module Load/Delete Routines: One way to provide module loads while in SRB
mode requires:
1. Forcing all modules to be loaded during initialization of the preinitialization

environment. During CEEPIPI init_sub_dp processing, Language Environment
does not necessarily load all of the modules required by the application. One
way to force Language Environment to load these modules is to provide a
dummy C function in the PreInit table passed to Language Environment during
initialization of the preinitialization environment. Language Environment will
detect that the C language is present, load the C event handler, and call C for
initialization, which will cause C to load additional modules.
The math functions provided by Language Environment reside in a separate
load module that is not normally loaded. To get the math module loaded while
still in task mode, include a call to a math function in the dummy C function.
Once Language Environment has completed initialization of the
preinitialization environment, the application's initialization routine can then
call the dummy function by using the CEEPIPI call_sub function (function code
4). The dummy function's call to the math function forces Language
Environment to load the math module.

2. Keeping track of the name and entry point of each module that is loaded
during initialization. One way is for the application to provide its own load
and delete service routines. During initialization of the preinitialization
environment, when Language Environment calls the application's load service
routine for each module, it performs a normal load, saving the module name
and entry point address in a table. When the load service routine is called in
SRB mode, it simply looks up the module name in the table and returns its
entry point address to the caller. Unless cleanup of the modules is required at
some point, the delete service can simply return to its caller, leaving the
module in storage for the next caller.

Another method for providing module loads while in SRB mode is to have the
application set up "worker" tasks in its address space during initialization. The
application's load service routine can create a work request, queue it to a work
queue, and then SUSPEND the SRB. Once the worker task has processed the load,
it can return the module entry point to the SRB, and RESUME it. Once loaded, the
module can be left in storage, and the load service routine can track its location.

Storage Get/Free Routines: The Storage Get and Free routines can be replaced
with routines that use the z/OS STORAGE OBTAIN and STORAGE RELEASE
services, respectively. These macros do not issue SVCs; instead, they issue a
Program Call (PC) instruction, which is allowable in SRB mode.

Exception Routine: To use a preinitialization environment in SRB mode, Language
Environment requires that the environment be initialized with the TRAP(OFF),
INTERRUPT(OFF), and NOTEST runtime options. These options prevent Language
Environment from establishing exception handlers under the current task, which
does no good when the preinitialization environment is called from an SRB
routine.

If the application requires exception handling, it can establish its own by providing
an exception routine in the service vector routine. Language Environment calls the
exception routine during init_sub_dp processing to inform the application of the
address of the Language Environment condition handling routine to call when an
exception occurs, as well as providing a list of exceptions in which the condition
handler is interested. Figure 59 on page 202 shows when the exception routine is

Preinitialization Interface

Chapter 3. Program initialization and termination 201

called during initialization.

When the application's SRB routine gets control, it must establish its own exception
handler before calling the preinitialization environment. It can do so by invoking
the SETFRR service to establish an FRR.

If an exception occurs during a call to the preinitialization environment, the
application's exception handler receives control. By examining the SDWA and the
information provided by Language Environment during the initial call to the
exception routine, the exception handler can determine whether Language
Environment is interested in the exception. If so, then the exception handler calls
the Language Environment condition handler. Language Environment then drives
whatever HLL exception handling routines the application has established.

Under certain conditions, Language Environment calls the application's exception
routine to register another level of exception handling. This call will not occur
while the application's exception handler is in control. Figure 60 on page 203 shows
the control flow during exception handling for an SRB mode application.

Application’s
Preinitialization

Routine
┌─────────────────────────┐ Language Environment
│ │ ┌─────────────────────────┐
│ Call CEEPIPI requesting │ │ │
│ init_sub_dp function ├────>│ Initialize environment │
│ │ │ │ Application’s
│ │<─┐ │ Call caller’s exceprtn │ exception routine
│ │ │ │ to register │ ┌─────────────────────────┐
│ │ │ │ Language Environment │ │ │
│ │ │ │ condition handler with │ │ │
│ │ │ │ application ├────>│ Save Language │
│ │ │ │ │ │ Environment condition │
│ │ │ │ │ │ handler address, │
│ │ !──┤ Return to caller │<─┐ │ environment token, │
│ │ │ │ │ │ user word, abend flags, │
│ │ │ │ │ │ check flags, for later │
│ │ │ │ │ │ use by the application’s│
│ │ │ │ │ │ exception router │
│ │ │ │ │ │ │
!─────────────────────────┘ │ │ !──┤ Return to caller │

!─────────────────────────┘ │ │
!─────────────────────────┘

Figure 59. Preinitialization environment initialization exceprtn flow (task mode)

Preinitialization Interface

202 z/OS V2R1.0 Language Environment Vendor Interfaces

Message Routine: One method for providing message handling while in SRB
mode is to have the application set up "worker" tasks in its address space during
initialization. The application's message service can create a work request from the
message, queue it to a work queue, and post the worker task to process it
asynchronously. In cases where the application is not interested in the messages,
the message routine can ignore the message by simply returning to its caller.

CEEXPIT macro keyword
Language Environment supports the following keyword for the CEEXPIT macro:

CICS=YES
indicates that the preinitialization environment being created allows EXEC
CICS commands to be executed.

CICS=NO
indicates that the preinitialization environment being created will not be used
to execute EXEC CICS commands; this is the default.

Application’s System Request
Block (SRB) Routine

┌─────────────────────────┐
│ │
│ Call SETFRR to establish│ Application’s
│ exception router │ Language Environment Language Environment-
│ │ ┌─────────────────────────┐ enabled Routine
│ Call CEEPIPI requesting │ │ │ ┌─────────────────────────┐
│ call_sub_addr_nochk ├────>│ Call the routine │ │ │
│ function │ │ requested by the caller ├────>│ Perform application │
│ │ │ │ │ processing │
│ │ │ │ │ │
!─────────────────────────┘ │ │ │ Exception causes │

│ │ │ application’s exception │
Application’s │ If required, call │ │ router (FRR) to get │
exceprtn │ caller’s exceprtn to │ ┌──┤ control │

┌─────────────────────────┐ │ register an additional │ │ │ │
│ │ │ condition handler with │ │ !─────────────────────────┘
│ Call SETFRR to establish│<────┤ application │ │
│ additional level of │ │ │ │ Application’s
│ exception handling │ ┌──>│ │ │ exception router
│ │ │ │ When completed, call │ │ ┌─────────────────────────┐
│ Save input information │ │ │ caller’s exceprtn to │ │ │ │
│ for later use by │ │┌──┤ deregister condition │ !─>│ Examine SDWA, Language │
│ new level of exception │ ││ │ handler │ │ Environment abend flags,│
│ handling │ ││┌>│ │ │ and check flags, call │
│ │ │││ ├─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─┤ │ Language Environment │
│ │ │││ │ Language Environment │<────┤ condition handler │
│ Return to caller ├─┘││ │ Condition Handler │ │ if there is a match │
├─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─ ─┤ ││ │ │ │ │
│ │ ││ │ Determine how to │ ┌─>│ Examine return/reason │
│ Call SETFRR to remove │<─┘│ │ handle the exception │ │ │ codes to determine │
│ additional level of │ │ │ ├──┘ │ how the Language │
│ exception handling │ │ │ │ │ Environment condition │
│ │ │ │ Return to caller │ │ handler wants to proceed│
│ │ │ │ │ │ │
│ Return to caller ├───┘ !─────────────────────────┘ !─────────────────────────┘
│ │
!─────────────────────────┘

Figure 60. Preinitialization environment exception flow (SRB mode)

Preinitialization Interface

Chapter 3. Program initialization and termination 203

Preinitialization Interface

204 z/OS V2R1.0 Language Environment Vendor Interfaces

Chapter 4. Storage management

The Language Environment storage manager provides services that control the
stack and heap storage used at run time. These services extend to Language
Environment member languages and assembler language routines which adopt this
storage protocol. Storage Management consists of:
v Storage allocation
v Storage clean-up
v Service call routines

The initial allocation of STACK storage is done by Language Environment
initialization routines. The initial allocation of HEAP storage is done upon the first
request for HEAP storage. The storage manager:
v Manages STACK and HEAP storage above and below the 16 MB line
v Manages any subsequent allocations of STACK or HEAP
v Interfaces with host operating system to allocate/free storage
v Detects the short-on-storage condition and signal the exception handler
v Releases (or keeps track) of free storage segments
v Cleans-up resources at termination

Stack storage is managed in two stack queues. The primary stack queue is the user
stack. The user stack is directed above or below the 16 MB line by the STACK
runtime option. The secondary stack queue is the library stack which is always
directed below 16 MB for use by routines needing a DSA (dynamic storage area)
below the 16 MB line. Library DSAs can be obtained from the user stack, but user
DSAs can not be obtained from the library stack. All stack storage is managed at
each individual thread level; stacks are not shared across threads.

Heap storage can either be directed anywhere or below the 16 MB line.

In addition to storage manager, Language Environment provides an interface to a
vendor heap manager for use with C/C++ applications.

Dynamic storage (heap) services
This section describes the various types of heap storage and covers the services
provided to acquire, release, and manage the heap storage.

Storage model
The Language Environment storage model is based on a model of multiple heaps
that can be dynamically created and discarded. Each heap has a unique heap-ID.
The Language Environment storage model includes a single heap sub-model for
languages whose intrinsic storage model does not comprehend multiple heaps. A
single heap model does not have all the function of the multiple heap model.
Missing from the model are group de-allocation capabilities. The initial heap
cannot be discarded. Table 47 on page 206 lists all Language Environment heaps
and their purpose.

© Copyright IBM Corp. 1991, 2015 205

Table 47. Heap IDs recognized by Language Environment heap manager

Heap Name Heap-ID Intended Purpose Created by Disposed of by

Initial Heap 0 Application program
data.

Language Environment
initialization; size and
location are determined
from HEAP runtime option.

Language
Environment
termination

Extended Initial Heap (returned by
CEECRHP)

Application program
data.

Call CEECRHP. Size and
location determined from
HEAP runtime option.

Call CEEDSHP, or
Language
Environment
termination

Language
Environment/
language anywhere
heap

CEEEDBANHP Runtime library data
that can reside above 16
MB (Language
Environment and
member language
control blocks).

Language Environment
initialization. Storage can
reside either above or below
16 MB; size determined
from ANYHEAP runtime
option.

Language
Environment
termination

Language
Environment/
language below heap

CEEEDBBEHP Runtime library data
required to reside below
16 MB (Language
Environment and
member language
DCBs).

Language Environment
initialization. Storage always
resides below 16 MB; size
determined from the
BELOWHEAP runtime
option.

Language
Environment
termination

Additional Heaps (returned by
CEECRHP)

Collections of
application program
data that can be quickly
disposed with a single
CEEDSHP call.

Call CEECRHP. Arguments
define heap size and
location.

Call CEEDSHP, or
Language
Environment
termination

CWI to the heap services
Language Environment provides the following sets of CWIs for heap services:
v Routines for process-level heap storage (acquisition and release)
v Routines for region-level heap storage interface.
v Routines using a parameter list (PLIST) interface. Call these CWI interfaces as

follows (xxxx has the appropriate offset value listed in Table 48):
L R12,A(CAA) Get the address of CAA in R12
L R15,CEECAACELV-CEECAA(,R12)
L R15,xxxx(,R15)
BALR R14,R15

Table 48 lists the interfaces and their corresponding callable services, which are
described in more detail in the z/OS Language Environment Programming Guide. In
each case, the parameter list for the callable service also applies to the CWI.

Table 48. Routines using a parameter list interface

CWI Name Description Callable Service Decimal Offset

CEEVGTST Allocate storage CEEGTST 144

CEEVFRST Free storage CEEFRST 132

CEEVCRHP Create a new heap CEECRHP 164

CEEVDSHP Discard heap CEEDSHP 168

CEEVCZST Reallocate storage CEECZST 2820

CEEVGTSB Allocate storage unconditionally
below 16 MB

None 2936

Storage Management

206 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|
|
|
|
|

Member-language intrinsic functions such as malloc must generate a call to a
member-language stub routine. The stub routine, in turn, must call the
corresponding Language Environment service (for example, CEEVGTST with
heap-ID 0) to allocate the heap storage.

Member-language control blocks should be allocated in the private Language
Environment/language below heap only if they must reside below the 16 MB line.
Most other internal control blocks should be allocated in the private Language
Environment/language anywhere heap. The heap-IDs of both the Language
Environment/language below heap and Language Environment/language
anywhere heap are stored in the enclave data block (EDB) for easy access, but
these heap-IDs are not exposed to application code.

Process-level heap storage management
Language Environment provides the following process-level storage management
services. The addresses of the process-level storage routines are found in the
Process Control Block (PCB) at labels CEEPCB_ZGETST and CEEPCB_ZFREEST.
AMODE switching is not performed for the process-level GETMAIN and
FREEMAIN.

CEEPCB_ZGETST
This routine allocates storage on behalf of the storage manager. This routine can
rely upon the caller to provide a save area, which can be the @Workarea.

Syntax

void CEEPCB_ZGETST (amount, subpool_no, user word, flags, stg_address, obtained,
return code, reason code)
INT4 *amount;
INT4 *subpool_no;
POINTER *user word;
INT4 *flags;
POINTER *stg_address;
INT4 *obtained;
INT4 *return code;
INT4 *reason code;

CEEPCB_ZGETST
Call this CWI interface as follows:
L R15,CEECAAPCB-CEECAA(,R12)
L R15,36(,R15)
BALR R14,R15

amount (input)
Fixed-binary(31) amount of storage requested.

subpool_no (input)
Fixed-binary(31) subpool number 0-127.

user word (input)
Pointer to a fullword user field.

flags (input)
Fullword flag area. Bit zero in the flags is ON if the storage is required below
the 16 MB line. The remaining bits are reserved for future use and must be
zero. Bit zero in the flags is OFF if the storage required can be allocated
anywhere.

stg_address (output)
Fullword address of the storage obtained or zero.

Storage Management

Chapter 4. Storage management 207

obtained (output)
Fixed-binary(31) number of bytes obtained.

return code (output)
Return code from CEEPCB_ZGETST service.

reason code (output)
Reason code from the CEEPCB_ZGETST service.

Return Code Reason Code Description
0 0 Successful

16 0 Unsuccessful — uncorrectable error occurred

CEEPCB_ZFREEST
The CEEPCB_ZFREEST routine frees storage on behalf of the storage manager.

Syntax

void CEEPCB_ZFREEST (amount, subpool_no, user word, stg_address, return code,
reason code)
INT4 *amount;
INT4 *subpool_no;
POINTER *user word;
POINTER *stg_address;
INT4 *return code;
INT4 *reason code;

CEEPCB_ZFREEST
Call this CWI interface as follows:
L R15,CEECAAPCB-CEECAA(,R12)
L R15,40(,R15)
BALR R14,R15

amount (input)
Fixed-binary(31) amount of storage to free.

subpool_no (input)
Fixed-binary(31) subpool number 0-127.

user word (input)
Pointer to a fullword user field.

stg_address (output)
Fullword address of the storage to free.

return code (output)
Return code from the CEEPCB_ZFREEST service.

reason code (output)
Reason code from the CEEPCB_ZFREEST service.

Return Code Reason Code Description
0 0 Successful

16 0 Unsuccessful — uncorrectable error occurred

Region-level heap storage management
This section describes the region-level storage management services that are
provided by Language Environment. The addresses of the process-level storage

Storage Management

208 z/OS V2R1.0 Language Environment Vendor Interfaces

routines are found in the Region Control Block (RCB) at labels CEERCB_ZGETST
and CEERCB_ZFREEST. AMODE switching is not performed for the region-level
GETMAIN and FREEMAIN.

CEERCB_ZGETST
This routine allocates storage on behalf of the storage manager. This routine can
rely upon the caller to provide a save area, which can be the @Workarea. The
parameter list that is passed contains the following:

Syntax

void CEERCB_ZGETST (amount, subpool_no, user word, flags, stg_address, obtained,
return code, reason code)
INT4 *amount;
INT4 *subpool_no;
POINTER *user word;
INT4 *flags;
POINTER *stg_address;
INT4 *obtained;
INT4 *return code;
INT4 *reason code;

CEERCB_ZGETST
Call this CWI interface as follows:
L R15,CEECAARCB-CEECAA(,R12)
L R15,32(,R15)
BALR R14,R15

amount (input)
Fixed-binary(31) amount of storage requested.

subpool_no (input)
Fixed-binary(31) subpool number 0-127.

user word (input)
Pointer to a fullword user field.

flags (input)
Fullword flag area. Bit zero in the flags is ON if the storage is required below
the 16 MB line. The remaining bits are reserved for future use and must be
zero. Bit zero in the flags is OFF if the storage required can be allocated
anywhere.

stg_address (output)
Fullword address of the storage obtained or zero.

obtained (output)
Fixed-binary(31) number of bytes obtained.

return code (output)
Return code from CEERCB_ZGETSTR service.

reason code (output)
Reason code from the CEERCB_ZGETST service.

Return Code Reason Code Description
0 0 Successful

16 0 Unsuccessful — uncorrectable error occurred

Storage Management

Chapter 4. Storage management 209

CEERCB_ZFREEST
This routine frees storage on behalf of the storage manager. The parameter list
passed contains the following:

Syntax

void CEERCB_ZFREEST (amount, subpool_no, user word, stg_address, return code,
reason code)
INT4 *amount;
INT4 *subpool_no;
POINTER *user word;
POINTER *stg_address;
INT4 *return code;
INT4 *reason code;

CEERCB_ZFREEST
Call this CWI interface as follows:
L R15,CEECAARCB-CEECAA(,R12)
L R15,36(,R15)
BALR R14,R15

amount (input)
Fixed-binary(31) amount of storage to free.

subpool_no (input)
Fixed-binary(31) subpool number 0-127.

user word (input)
Pointer to a fullword user field.

stg_address (output)
Fullword address of the storage to free.

return code (output)
Return code from the CEERCB_ZFREEST service.

reason code (output)
Reason code from the CEERCB_ZFREEST service.

Return Code Reason Code Description
0 0 Successful

16 0 Unsuccessful — uncorrectable error occurred

CEEVGTSB — unconditional get heap below
The CEEVGTSB CWI service obtains enclave heap storage below the 16 MB line
and, if unsuccessful, CEEVGTSB signals a condition when the feedback code is
omitted.

Syntax

void CEEVGTSB (heap_id, size, address, [fc])
INT *heap_id;
INT *size;
POINTER *address;
FEEDBACK *fc;

CEEVGTSB
Call this CWI interface as follows:

Storage Management

210 z/OS V2R1.0 Language Environment Vendor Interfaces

L R12,A(CAA) Get the address of CAA in R12
L R15,CEECAACELV-CEECAA(,R12)
L R15,2936(,R15)
BALR R14,R15

heap_id (input)
A token denoting the heap in which the storage is allocated. If heap_id is not
valid, the address is undefined and CEEVGTSB signals a condition.

size (input)
A number representing the amount of storage to be allocated. The amount of
storage obtained is rounded to the next higher multiple of 8 bytes. Storage is
always allocated below the line on a doubleword boundary. If the specified
amount cannot be obtained, a condition is signaled.

address (output)
The machine address of the first byte of allocated storage.

fc (output)
The resulting feedback code. The following conditions can result from this
service:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE0P2 Severity 4

Msg_No 0802

Message Storage headers are damaged.

CEE0P3 Severity 3

Msg_No 0803

Message The heap identifier heap_id did not match any
existing heap.

CEE0P8 Severity 3

Msg_No 0808

Message The size was not a positive number.

CEE0PD Severity 3

Msg_No 0813

Message The request was larger than the storage available.

CEE3JN Severity 0

Msg_No 3704

Message Expected data at address address: data

CEE3JO Severity 0

Msg_No 3705

Message Pointer at address should point to a valid controlblock

CEEV#GTS — get heap storage
The CEEV#GTS CWI allocates heap storage from a user-specified heap.

Storage Management

Chapter 4. Storage management 211

Syntax

void (ceev#gts)

CEEV#GTS
Call this CWI interface as follows:
L R12,A(CAA)
L R15,CEECAACELV-CEECAA(,R12)
L R15,124(,R15)
BALR R14,R15

Parameters are passed to CEEV#GTS in registers:
R1 (Input) Heapid (0 for user heap)
R1 (Output) Address of storage obtained
R2 (Input) Number of bytes of storage to obtain

Usage Notes:

1. Storage below the 16 MB line is always returned under the following
conditions:
v The caller is in AMODE 24
v HEAP(,,BELOW) is in effect
v The ensm_below16m_flag is set
Storage above the 16 MB line will only be returned if the caller is in AMODE
31 and HEAP(,,ANY) is in effect.
The caller's AMODE is determined by the high order bit of R14.
0 AMODE 24
1 AMODE 31

2. The caller must test for errors. When an error occurs, R15 will be nonzero. The
caller must either handle the error or build a 96-bit feedback token and signal
it.

3. The conditions that can result from this service are the same as the conditions
from the CEEGTST AWI.

4. The heapid (R1 on input) must be 0 (for the user heap) or a value returned
from the CEECRHP AWI callable service.

CEEV#FRS — free heap storage
The CEEV#FRS CWI frees heap storage from a user-specified heap.

Syntax

void (ceev#frs)

CEEV#FRS
Call this CWI interface as follows:
L R12,A(CAA)
L R15,CEECAACELV-CEECAA(,R12)
L R15,3452(,R15)
BALR R14,R15

Parameter is passed to CEEV#FRS in register 1:
R1 (Input) Address of storage to free

Usage Notes:

Storage Management

212 z/OS V2R1.0 Language Environment Vendor Interfaces

1. The caller must test for errors. When an error occurs, R15 will be nonzero. The
caller must either handle the error or build a 96-bit feedback token and signal
it.

2. The conditions that can result from this service are the same as the conditions
from the CEEFRST AWI.

CEEVHRPT — obtain dynamic heap storage report
CEEVHRPT returns information about an application's user heap storage
(specifically, enclave-level heap ID 0). CEEVHRPT returns information that is
similar to the information in the user heap storage section of the report that is
generated when you specify the RPTSTG(ON) runtime option.

Using CEEVHRPT, an application that is running can obtain information about
heap storage. However, CEEVHRPT will not report any information that relates to
the heap pool manager; rather, storage information about heap pools will be
included in the number of allocated user heap bytes that is returned by the service.

Syntax

CEEVHRPT (uheap_size, uheap_bytes_alloc, uheap_bytes_free, [fc])

CEEVHRPT
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12)
L R15,4032(,R15)
BALR R14,R15

uheap_size (input)
The total amount of user heap storage that is currently allocated by the
application.

uheap_bytes_alloc (input)
The amount of user heap storage that is currently in use by the application.

uheap_bytes_free (input)
The amount of user heap storage that is currently available to the application.
Note that the available storage may not be contiguous.

fc (output/optional)
A 12-byte feedback code that indicates the results of this service.

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE0P2 Severity 4

Msg_No 802

Message Heap storage control information was damaged.

CEE3JN Severity 0

Msg_No 3704

Message Expected data at address address: data

CEE3JO Severity 0

Msg_No 3705

Message Pointer at address should point to a valid controlblock

Storage Management

Chapter 4. Storage management 213

Condition

CEE4VG Severity 3

Msg_No 5104

Message The z/OS UNIX System Services callable service
BPX1PTQ failed.

User-created heap services
This section describes the various types of services provided to acquire, release,
and manage heap storage resulting from user-provided storage.

CEEVUHCR — create a heap using user-provided storage
The CEEVUHCR CWI creates a heap out of storage that is provided by the caller.
The heap is divided into cell pools based on the information provided in the
cellpool_attrib_table. Up to 6 cell pools can be created within the heap. Note that
this is a fixed-size heap; when storage within a given cell pool is exhausted, no
additional storage will be allocated. CEEVUHCR returns a heap token that is used
to identify the heap on subsequent user-created heap CWI calls, such as
CEEVUHGT, CEEVUHFR, and CEEVUHRP.

Syntax

void CEEVUHCR (block, size, cellpool_attrib_table, heap_token, rsvd1, rsvd2, rsvd3,
rsvd4, [fc])
POINTER *block;
INT4 *size;
POINTER *cellpool_attrib_table;
POINTER *heap_token;
POINTER *rsvd1;
POINTER *rsvd2;
POINTER *rsvd3;
POINTER *rsvd4;,
FEED_BACK *fc;

CEEVUHCR
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12)
L R15,4060(,R15)
BALR R14,R15

block (input)
A pointer to the storage which is to be used for the heap.

size (input)
The size of the block of storage. Note that Language Environment reserves
approximately 328 bytes of this storage for use in allocating heap management
control blocks. Additional storage is reserved if storage report usage statistics
are being collected for the heap. The amount of this storage is related to the
largest cell size and the granularity of the statistics, and is calculated as:
storage amount = ((largestcellsize+granularity-1)/granularity)*4.

cellpool_attrib_table (input)
A pointer to a structure describing the attributes of the cell pools to be created
by CEEVUHCR.

The first field of the structure, number_of_pools, indicates the number of cell
pools to be created. Up to 6 cell pools can be created in the heap.

Storage Management

214 z/OS V2R1.0 Language Environment Vendor Interfaces

The second field of the structure, granularity, indicates the granularity to which
storage usage statistics are to be collected. This value must be zero, or a power
of 2 greater than or equal to 8. If the value is zero, then statistics are not
collected.

Following these words are pairs of words describing the attributes of each cell
pool in the heap. The first field in the pair, size, is the size of the cell in the cell
pool. The cell size must be a multiple of 8 and greater than or equal to 8. Note
that Language Environment adds an additional 8 bytes to the size of the cell
for use in managing the cells. The second field in the pair, percentage, is the
percentage of the total block size to be allocated for the cell pool.

heap_token (output)
A token representing the heap that was created.

rsvd1-rsvd4
Reserved for future use.

fc (output/optional)
The parameter into which the callable service feedback code is placed. The
following conditions can result from this service:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE0P7 Severity 3

Msg_No 0807

Message An input parameter to the CEEVUHCR CWI was not
valid.

CEEVUHGT — allocate storage from a user-created heap
The CEEVUHGT CWI allocates storage from the heap identified by the heapid.
CEEVUHGT will search for an available cell within the cell pool that contains cells
at least as large and closest in size to the requested size. CEEVUHGT uses the
C-style parameter interface. If successful, CEEVUHGT returns the address of the
reserved cell in register 15. The returned value is NULL if a cell of the required
size is not available, if size was larger than the largest available cell size, or if size
was specified as 0. If CEEVUHGT returns a NULL because there is not enough
storage or if the requested size was too large, it will also return an error value in
errno. The following are the possible values of errno:

ENOMEM
Insufficient memory is available

E2BIG Requested amount of storage is larger than the largest available cell size

Syntax

void CEEVUHGT (heap_token, size)
POINTER heap_token;
INT4 size

CEEVUHGT
Call this CWI interface as follows:

CEEVUHCR

Chapter 4. Storage management 215

L R15,CEECAACELV-CEECAA(,R12)
L R15,4064(,R15)
BALR R14,R15

heap_token (input)
The identifier of the user-created heap from which the storage is to be
allocated.

size (input)
The amount of storage to be allocated.

CEEVUHFR — return storage to a user-created heap
The CEEVUHFR CWI returns storage to the heap identified by the heapid. If the
returned storage does not belong to the given heap, the result is unpredictable.
CEEVUHFR uses the C-style parameter interface.

Syntax

void CEEVUHFR (heap_token, ptr)
POINTER heap_token;
POINTER ptr

CEEVUHFR
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12)
L R15,4068(,R15)
BALR R14,R15

heap_token (input)
The identifier of the user-created heap to which the storage is to be returned.

ptr (input)
A pointer to the storage to be returned to the heap.

CEEVUHRP — produce a storage report for a user-created
heap

The CEEVUHRP CWI generates a report of the storage used within the
user-created heap identified by heapid. The report is directed to the ddname
specified in the MSGFILE runtime option. The report format is similar to the heap
pools portion of the storage report generated for the RPTSTG runtime option.

Statistics for the user-created heap will only be collected if the granularity field of
the cellpool_attrib_table passed to CEEVUHCR is non-zero and a valid value.

Syntax

void CEEVUHRP (heap_token)
POINTER *heap_token

CEEVUHRP
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12)
L R15,4072(,R15)
BALR R14,R15

heap_token (input)
The identifier of the user-created heap for which a report is to be produced.

CEEVUHGT

216 z/OS V2R1.0 Language Environment Vendor Interfaces

Vendor heap manager interface
The vendor heap manager interface allows an external heap manager product to
support C/C++ applications by an event driven interface. The following routines
are supported for non-XPLINK and XPLINK:
v malloc() (C++ default operator new and default operator new[] are included)
v calloc()
v realloc()
v free() (C++ default operator delete and default operator delete[] are included)

Note: The vendor heap manager does not manage the following.
v ANYHEAP
v BELOWHEAP
v CEECZST
v CEEFRST
v CEEGTST
v CEEVCZST
v CEEVFRST
v CEEVGTSB
v CEEVGTST
v additional heaps (CEECRHP)
v user created heaps (__ucreate, __umalloc, __ufree)

Requirements from the vendor
A vendor, wishing to provide a replacement for functions that obtain or release
storage from the user heap, needs to provide a DLL that:
v Resides in either the z/OS UNIX file system or a PDSE
v Must be a program object so the writable static area acquired for each load of

the vendor heap manager does not come from the user heap storage
v Must not be XPLINK, since it must work for both XPLINK and non-XPLINK

applications
v Must contain the following exported function:

void __cee_heap_manager(int, void *);

The purpose of this routine is to be the communication vehicle between
Language Environment and the vendor heap manager (VHM). The
communication will be in the form of event codes and data areas. The prototype
for the function is in the header file,
<edcwccwi.h>.

The replacement should provide a "memory manager" that is:
v fast, when not running in debug mode and thread-safe
v storage efficient

What the vendor should know
The communication between Language Environment and the vendor heap
manager (VHM) is through events and data structures. The C header,
<edcwccwi.h>, contains the interfaces required to create a vendor heap manager.
This includes the C structures required as input to the VHM event calls.

Vendor heap manager interface

Chapter 4. Storage management 217

Support provided for the vendor heap manager interface
The following events, which are described below, are supported and defined in the
Vendor Interfaces header file <edcwccwi.h>. This file is located in member
EDCWCCWI of the SCEESAMP data set. To include <edcwccwi.h> in an
application, the header file must be copied into a PDS or into a directory in the
z/OS UNIX file system where the z/OS XL C/C++ compiler will find it.
v _VHM_INIT - Initialization event
v _VHM_TERM - Termination event

Each of these events is described below:
v Initialization event (_VHM_INIT)

This event is driven during initialization of the Language Environment enclave
before any user code is given control. The purpose of this event is for the VHM
to give Language Environment the addresses of the replacement services.
Language Environment will use these routines, instead of its own, to manage the
user heap. The VHM can, at this time, use getenv() to query any environment
variables it has defined that will customize its operation. The VHM should
initialize its environment at this time, possibly allocating its own control blocks
and the initial user heap segment. The data area passed is defined as follows:

The elements are as follows:

__ev1_free (output)
This field is set by the VHM to be the address of the free() replacement
routine.

__ev1_malloc (output)
This field is set by the VHM to be the address of the malloc()
replacement routine.

__ev1_realloc (output)
This field is set by the VHM to be the address of the realloc()
replacement routine.

__ev1_calloc (output)
This field is set by the VHM to be the address of the calloc() replacement
routine.

__ev1_xp_free (output)
This field is set by the VHM to be the address of the free() replacement
routine for XPLINK support.

__ev1_xp_malloc (output)
This field is set by the VHM to be the address of the malloc()
replacement routine for XPLINK support.

struct __event1_s {
void * __ev1_free;
void * __ev1_malloc;
void * __ev1_realloc;
void * __ev1_calloc;
void * __ev1_xp_free;
void * __ev1_xp_malloc;
void * __ev1_xp_realloc;
void * __ev1_xp_calloc;
unsigned int __ev1_le_xplink : 1,

__ev1_le_reserved : 31;
unsigned int __ev1_vhm_xplink : 1,

__ev1_vhm_reserved : 31;
};

Vendor heap manager interface

218 z/OS V2R1.0 Language Environment Vendor Interfaces

__ev1_xp_realloc (output)
This field is set by the VHM to be the address of the realloc()
replacement routine for XPLINK support.

__ev1_xp_calloc (output)
This field is set by the VHM to be the address of the calloc() replacement
routine for XPLINK support.

__ev1_le_xplink (input)
This bit is set when the application is running under XPLINK. It is
expected that the VHM load the XPLINK version of its replacement
routines, set their addresses in the above fields, and turn on the
__ev1_vhm_xplink bit indicating support. If the __ev1_vhm_xplink bit is
not turned on, then Language Environment will not use the VHM.

__ev1_vhm_xplink (output)
This bit is set by the VHM when it sees that the __ev1_le_xplink bit is set
and it successfully loads the XPLINK versions of the replacement
routines and sets their addresses into the above fields. If the
__ev1_le_xplink bit is not set, then the VHM does not need to consider
the XPLINK replacement routines.

v Termination event (_VHM_TERM)
This event is driven during termination of the Language Environment enclave,
after all application code has completed, but before the C library resources are
terminated. There is no data area passed with this event. The purpose of this
event is for the VHM to write, to stderr, any reports, as necessary, and then
cleanup the user heap storage its has managed for the enclave.

XPLINK considerations
If the VHM intends to support XPLINK applications, then it must provide a
second DLL containing the XPLINK versions of the replacement routines. During
the initialization event, the VHM must load the XPLINK DLL when the
__ev1_le_xplink bit is set. The addresses of the XPLINK replacement routines must
be obtained from the XPLINK DLL and placed into the __event1_s structure.

Serialization
The VHM must be thread-safe. One way to detect a multi-threaded environment is
to test the ceeedbmultithread bit; see page Table 16 on page 68.

Nested enclaves
The VHM must be aware that it can be driven for initialization while already being
active. This is possible in a nested enclave environment where the parent and child
enclaves both specify that the VHM is to be used. Language Environment will
drive the DLL load for each enclave, producing a unique writable static area.

Usage notes
The VHM should not use malloc(), free(), calloc(), or realloc() from within
the replacement services, to avoid potential recursive calls.

Activating the vendor heap manager
Users choose the option to use the vendor heap manager at run time by setting the
_CEE_HEAP_MANAGER environment variable. This environment variable is set
by the end-user or the application to indicate that the vendor heap manager
(VHM) DLL will be used to manage the user heap. This environment variable must
be set using one of the following mechanisms:
v ENVAR runtime option

Vendor heap manager interface

Chapter 4. Storage management 219

v inside the file specified by the _CEE_ENVFILE environment variable
v export _CEE_HEAP_MANAGER

Each of these locations is before any user code gets control, meaning prior to the
HLL user exit, static constructors, and/or main() getting control. Setting of this
environment variable, once the user code has begun execution, will not activate the
VHM, but the value of the environment variable will be updated.

__vhm_event() API
This API drives an event into any vendor heap manager. It drives the
_VHM_REPORT event argument with _VHM_REPORT_CLEAR as the optional
argument in MEMCHECK VHM.

Restrictions:

1. The API supports C/C++ and Enterprise PL/I applications. COBOL and
FORTRAN are not supported

2. The vendor heap manager _CEE_HEAP_MANAGER environment variable
must be active.

Syntax

#include <edcwccwi.h>

int__vhm_event (int event,...)

event
The VHM event to execute. The API calls the __cee_heap_manager() function
with the event as argument. The _VHM_REPORT event generates the 'Heap
Leak Report' and writes it in the Language EnvironmentOutputFileName . The
edcwccwi header contains the prototype of __vhm_event() API: Int
__vhm_event(Int, char *).

...
An optional argument that can be used to set special options in the event to be
driven.

For more information on the Heap Leak Report and the heap manager, see z/OS
Language Environment Debugging Guide.

XPLINK DSA extension services
This section describes the services provided to extend an XPLINK
downward-growing stack frame.

Vendor heap manager interface

220 z/OS V2R1.0 Language Environment Vendor Interfaces

CEEVXPAL — XPLINK DSA extension
This CWI is invoked to extend an XPLINK downward-growing stack frame.

Input/Output Register Used for

Input Registers R0 Not used

R1 Storage size

R2 - R3 Not used

R4 Stack pointer

R5 Not used

R6 Entry point

R7 Return address

R8 - R11 Not used

R12 CAA address

R13- R15 Not used

Output Registers R0 Not preserved

R1 - R2 Not preserved

R3 Address of allocated storage

R4 New stack pointer (saved R4, R6, R7 modified)

R5 - R6 Not preserved

R7 - R15 Unchanged

CEEVXPAL
Call this CWI interface as follows:
L 6,CEECAALEOV-CEECAA(,12)
L 6,260(,6)
BASR 7,6
DC X’4700’
DC Y(signed offset/8 to entry marker)

This CWI will return control to its invoker at the return address:
BR 7

This CWI will always;
v update R4 to point to new beginning of stack frame (maintaining quadword

alignment),
v copy the register save area,
v adjust the backchain.

If allocating this storage causes a stack expansion, this CWI will also modify the
saved R7 value (return address) in the stack frame so that when the routine that
did the DSA extension returns it will give control to a glue routine which will fix
the upward-growing stack fields in the CAA and SMCB.

Note: The argument area is never copied. The caller must never assume that
something placed in the argument area is still there across a call to this CWI.

__alcaxp() — XPLINK DSA extension (alloca)
This CWI is invoked by z/OS XL C/C++ compiler generated code to extend an
XPLINK downward-growing stack frame. The linkage will be normal XPLINK

CEEVXPAL

Chapter 4. Storage management 221

conventions for call-by-name. It will appear like a function that takes an integer for
input and returns void. It is used by the compiler to implement the compiler
built-in function alloca().

Syntax

#include <edcwccwi.h>

void __alcaxp (int storage_size)

storage_size
the amount of additional stack storage being requested in bytes. This value
will be rounded up to a multiple of 16 to ensure that the stack frame remains
on a quadword boundary.

Usage Notes:

1. This CWI changes the value of the stack pointer (R4) and moves the register
save area.

2. The argument area is never copied. The compiler must never assume that
something placed in the argument area is still there across a call to this CWI.

3. The address of this CWI will be resolved like other C-RTL functions for
XPLINK (using a side deck). There will not be a stub for non-XPLINK.

4. If there is not sufficient room in the current stack segment, this routine will
pass control to the CEL CWI CEEVXPAL which will handle stack expansion.

5. It is the responsibility of the caller to calculate the address of the allocated
storage. The allocated storage is located immediately following the argument
area. The reason for this is that the compiler, which will know the size of the
argument area, can generate more efficient code to perform the calculation.

6. The Vendor Interfaces header file, <edcwccwi.h>, is located in member
EDCWCCWI of the SCEESAMP data set. To include <edcwccwi.h> in an
application, the header file must be copied into a PDS or into a directory in the
z/OS UNIX file system where the z/OS XL C/C++ compiler will find it.

XPLINK compatibility stack swapping services
This section describes the services provided to allow non-XPLINK and XPLINK
routines to run on the correct upward- or downward-growing stack.

CEEVROND — run on downward-growing stack
This CWI is invoked from a non-XPLINK routine running on the upward-growing
stack. It is used to invoke an XPLINK routine that runs on the downward-growing
stack. It performs stack swapping, moves the parameter list, and loads appropriate
parameters into registers before invoking the routine. After the routine returns, it
will adjust the return value and swap the stacks back.

This CWI has two entry points: +0 for standard linkage and +16 for FASTLINK
linkage.

__alcaxp()

222 z/OS V2R1.0 Language Environment Vendor Interfaces

Linkage Input/Output Register Used for

Standard Input Registers R0 Function descriptor

R1 Parameter List

R2 - R11 Not used

R12 CAA address

R13 Caller's DSA

R14 Return address

R15 Entry point (CEEVROND)

Output
Registers

R0 Extended return value

R1 - R14 Unchanged

R15 Return value

FASTLINK Input Registers R0 Function descriptor

R1 - R3 Parameters

R4 - R11 Not used

R12 CAA address

R13 Caller's DSA

R14 Return address

R15 Entry point (CEEVROND)

NAB + BC Parameter list

Output
Registers

R0 Not preserved

R1 - R3 Return value

R4 - R14 Unchanged

R15 Not preserved

CEEVROND
Call this CWI interface as follows:
L 15,CEECAACELV-CEECAA(,12) Address of CAA in R12
L 15,3408(,15)
BALR 14,15

This CWI will return control to its invoker at the return address:
BR 14

Function descriptor
A 24 byte function descriptor that contains the environment and entry point
for the XPLINK routine to be invoked at offset +16 ('10'x).

Parameter List
The parameter list for the routine to be invoked.

Note: CEEVROND has a stub called @@ROND.

CEEVRONU — run on upward-growing stack
This CWI is invoked from an XPLINK routine running on the downward-growing
stack. It is used to invoke a non-XPLINK routine that runs on the upward-growing
stack. It performs stack swapping, moves the parameter list, and stores appropriate
parameters from registers before invoking the routine. After the routine returns, it
will adjust the return value and swap the stacks back.

CEEVROND

Chapter 4. Storage management 223

Input/Output Register Used for

Input Registers R0 Not used

R1 - R3 Parameters

R4 Caller's stack pointer

R4 + 2112 Parameter list

R5 Function descriptor

R6 Entry point (CEEVRONU)

R7 Return address

R8 - R11 Not used

R12 CAA address

R13- R15 Not used

Output Registers R0 Not preserved

R1 - R3 Return value

R4 Unchanged

R5 - R6 Not preserved

R7 - R15 Unchanged

CEEVRONU
Call this CWI interface as follows:
L 6,CEECAALEOV-CEECAA(,12)
L 6,272(,6)
BASR 7,6
DC X’4700’
DC Y(signed offset/8 to entry marker or call descriptor)

This CWI will return control to its invoker at the return address:
BR 7

Function descriptor
A function descriptor that contains the entry point and writable static area
address for the non-XPLINK routine to be invoked, or the actual function entry
point.

Parameter List
The parameter list for the routine to be invoked.

Note: CEEVRONU has a stub called @@RONU.

CEEVH2OS — XPLINK to OS linkage on upward-growing stack
This CWI is invoked from an XPLINK routine running on the downward-growing
stack. It is used to invoke an OS linkage routine that runs on the upward-growing
stack. It performs stack swapping, moves the parameter list, and stores appropriate
parameters from registers before invoking the routine. After the routine returns, it
will adjust the return value and swap the stacks back.

This CWI can not be used to invoke a routine that requires a call descriptor with
non-zero return adjust field or parameter descriptor fields. Use the CWI
CEEVRONU instead, see “CEEVRONU — run on upward-growing stack” on page
223.

CEEVRONU

224 z/OS V2R1.0 Language Environment Vendor Interfaces

Input/Output Register Used for

Input Registers R0 Not used

R1 - R2 Must be zero

R3 Entry point of OS linkage routine

R4 Caller's stack pointer

R4 + 2124 OS style parameter list

R5 Not used

R6 Entry point (CEEVH2OS)

R7 Return address

R8 - R11 Not used

R12 CAA address

R13- R15 Not used

Output Registers R0 Not preserved

R1 - R2 Not preserved

R3 Return value

R4 Unchanged

R5 - R6 Not preserved

R7 - R15 Unchanged

CEEVH2OS
Call this CWI interface as follows:
L 6,CEECAACELV-CEECAA(,12)
L 6,3444(,6)
BASR 7,6
DC X’4700’
DC Y(signed offset/8 to entry marker)

This CWI will return control to its invoker at the return address:
BR 7

OS Style Parameter List
The parameter list for the routine to be invoked.

Note: CEEVH2OS has two stubs -- @@D2U@OS and @@D2U@C

__stack_info() - stack segment ranges
The __stack_info() CWI returns the stack segment information for a specific thread
owned by the caller. The stack information returned is the beginning and ending
address of each stack segment. The beginning and ending address of each stack
segment will be adjusted to include only the stack frames on the active stack. If
__stacktop, which is the address of the top of the stack, is not null, the last stack
segment returned will be the one containing the stack frame pointed to by the
__stacktop. Only information about the user stack is returned.

The caller must provide the storage that Language Environment will use to return
a structure that contains the information about the stack segments that comprise
the user stack. If the storage provided is insufficient to contain all of the stack
segment addresses, the CWI will fail and return information about the minimum

CEEVH2OS

Chapter 4. Storage management 225

number of bytes required to store the segment information. Also, the caller must
also supply a null pointer as the second parameter to the CWI.

Syntax
#define_OPEN_THREADS
#include <edcwccwi.h>

int __stack_info (struct StackInfo *StackSegmentInfo, struct__thdq *thdq)

struct StackInfo *StackSegmentInfo
The storage for this StackInfo structure is provided by the caller of the CWI.
The caller must supply the values of __structsize and __stacktop in the StackInfo
structure. The StackInfo structure parameters are defined as follows:

__structsize
The total number of bytes of storage provided by the user for the StackInfo
structure.

__numsegs
The total number of stack segments belonging to this thread that have been
returned in this invocation of this CWI.

__stacktop
Zero or the address of the stack frame at which to end the search. If the
__stacktop is zero, the stack is scanned from the top to the bottom of the
stack. If it is non-zero, the stack is scanned from the specified stack frame
until the bottom is reached.

__startaddr
This address is the beginning, the numerically-lowest bound address, of
the stack segment. For an upward-growing stack, this is the address of the
beginning of the segment. For a downward-growing stack, this will be the
last byte used within the segment.

__endaddr
This address is the end, the numerically-highest bound address, of the
stack segment. For an upward-growing stack, this is the last byte used
within the segment. For a downward-growing stack, this will be the
address of the end of the stack segment.

__segtype
This indicates if the stack is upward-growing or downward-growing. The
allowed values are:
v __EDCWCCWI_UP for a upward-growing stack
v __EDCWCCWI_DOWN for a downward-growing stack

If Language Environment cannot determine the top of the stack, the __endaddr
field will contain the end address of the last segment. When a thread has more
than one stack, the stack segment information will be returned for both the
downward-growing stack and the upward-growing stack. It will begin with the
initial stack segment, which contains the first, that is, the oldest, stack frame
allocated, and end with the stack segment containing the most recent stack
frame (or the segment containing the stack frame pointed to by __stacktop).

struct__thdq *thdq
A null pointer, which indicates that the caller is requesting information about
its own thread.

Returned Values:

__stack_info()

226 z/OS V2R1.0 Language Environment Vendor Interfaces

v If successful, __stack_info() returns zero.
v If unsuccessful, __stack_info() returns:

– - 1, when errno is set to EINVAL or EMVSERR
– a number greater than zero, when errno is set to ENOMEM

EINVAL
This error indicates that an invalid thread ID or __stacktop has been
supplied by the user.

EMVSERR
This error indicates that an MVS internal error has occurred.

ENOMEM
This error indicates that the storage provided by the user to store the stack
segment information is not large enough to hold the information. In this
case, __stack_info() returns the minimum number of bytes required to hold
all the information.

Usage Note: The Vendor Interfaces header file, <edcwccwi.h>, is located in member
EDCWCCWI of the SCEESAMP data set. To include <edcwccwi.h> in an
application, the header file must be copied into a PDS or into a directory in the
z/OS UNIX file system where the z/OS XL C/C++ compiler will find it.

Saving the stack pointer
Language Environment provides two fields, CEECAA_SAVSTACK and
CEECAA_SAVSTACK_ASYNC, where the stack pointer can be saved.

For either field, when the stack pointer does not point to the stack, the user code
must not use Language Environment interfaces, nor invoke a routine that uses
Language Environment interfaces. This includes implicitly referencing a DLL.

CEECAA_SAVSTACK
This field can be used by an application or a compiler to save the stack
pointer before calling a routine by using OS_NOSTACK linkage. After the
call returns, the CEECAA_SAVSTACK field must be set back to zero.

The value in CEECAA_SAVSTACK is used as the current stack frame in
the following conditions:
1. The Language Environment ESPIE exit routine, ESTAE exit routine, or

signal interface routine (SIR) gets control.
2. The value in CEECAA_SAVSTACK is not zero.

For asynchronous signal processing, typically the interrupt PSW is outside
the routine that owns the stack frame and the signal is put back.

The c macro __LE_SAVSTACK_ADDR, which is defined in the sample
header file, <edcwccwi.h>, is the address of the CEECAA_SAVSTACK field.

CEECAA_SAVSTACK_ASYNC
This field can be used by applications that have large sections of code that
does not require access to the Language Environment stack but can benefit
from having an additional register available. The
CEECAA_SAVSTACK_ASYNC field is a pointer to the field where the
stack pointer will be saved. Language Environment initializes
CEECAA_SAVSTACK_ASYNC to zero. The application needs to set up the
field where the stack pointer will be saved and store the address of that
field in CEECAA_SAVSTACK_ASYNC. The storage for the field must be in
the application key and persist for the life of the thread.

__stack_info()

Chapter 4. Storage management 227

|
|

When the application sets CEECAA_SAVSTACK_ASYNC, appropriate
action needs to be taken if CEECAA_SAVSTACK_ASYNC is not zero.
Because it is possible to directly access the field where the stack pointer
will be stored, consider the consequences if some part of the application is
doing so.

Whenever the Language Environment stack is being used, either
CEECAA_SAVSTACK_ASYNC must be zero or the field pointed to by
CEECAA_SAVSTACK_ASYNC must be zero.

The value in the field pointed to by CEECAA_SAVSTACK_ASYNC is used
as the current stack frame in the following conditions:
1. The Language Environment ESPIE exit routine, ESTAE exit routine, or

signal interface routine (SIR) gets control.
2. CEECAA_SAVSTACK_ASYNC is not zero.
3. The value in the field pointed to by CEECAA_SAVSTACK_ASYNC is

not zero.

For asynchronous signal processing, the signal is always handled as if the
interrupt PSW was inside the routine that owns the stack frame.

The c macro __LE_SAVSTACK_ASYNC_ADDR defined in sample header
file <edcwccwi.h> is the address of the CEECAA_SAVSTACK_ASYNC field.

__stack_info()

228 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|

Chapter 5. Condition representation

This chapter describes the format and use of condition representation within
Language Environment. Conditions can be defined in many ways. Some examples
are hardware- or software-detected events (which might or might not be critical for
the application to run properly), asynchronous events, or the completion of a unit
of work (successfully or unsuccessfully).

Systems communicate information about conditions in a variety of ways. Return
and condition codes are examples of condition information. Also, common usage is
almost nonexistent in representing or communicating these conditions across IBM
products or platforms. Therefore, Language Environment is required to define a
consistent data type to represent conditions and communicate information about
them to enable ILC and cross-system source code portability of applications The
methodology presented here is required for the representation and communication
of condition-related information:
v As a feedback code (return information) from all Language Environment callable

services
v As input to the Language Environment condition manager
v As input to the Language Environment message services

.

Condition representation model
A condition in Language Environment is communicated with a 12-byte (96-bit)
condition token data type. The return information (feedback code) from a
Language Environment callable service is an instance of this data type. The
advantages of the condition token data type include:
v A condition handler can be established to process return information from called

services, thus freeing the programmer from coding invoke then check calls.
Instead, a centralized location handles return information.

v The shared data type ties together the Language Environment callable services,
condition management, and message services components of Language
Environment.

v A message that can be displayed or logged in a file is associated with each
instance of a condition.

v As a feedback code, the data type can be stored or logged for later processing (if
the message associated with the feedback code has inserts, the message must be
obtained before it is saved).

v Symbolic names can be equated to defined feedback codes and hardware
conditions for those languages which support symbolic names.

The format of the condition token data type allows four different cases, or types, of
conditions to be represented. Two of the four types are cross-system consistent.
The other two are reserved for future expansion or describe platform-specific
conditions.

All Language Environment callable services use this condition token data type to
return information as a feedback code.

© Copyright IBM Corp. 1991, 2015 229

The condition token data is input to Language Environment condition
management to reduce the amount of overhead and the lack of completeness
associated with the traditional call method of invoke then check. The input
method has the following characteristics:
v The caller has the option of passing an address parameter for a feedback code

on the call statement to the service.
v A feedback code is returned to the caller if the address parameter is supplied

and the result of the service is not critical.
v Critical conditions (severity = 4) are always signaled to the Language

Environment condition manager.
v The called service signals the condition manager passing the condition token if

the parameter is not supplied and the result of the called service is not totally
successful.

v The service returns if the parameter is not supplied and the result of the called
service is completely successful.

Note: Language Environment-enabled languages must allow optional parameters
on their call statements to use the optional parameter method. In the case where a
language does not allow optional parameters, the feedback code parameter is
always coded by the caller. Optional parameters are supported by passing a zero
by value in the parameter address list. When the optional parameter is the last
parameter in the parameter address list, Language Environment tolerates the high
order bit being on.

Data objects
Language Environment condition representation data objects are defined in this
section.

Condition token data type (CEECTOK)
The CEECTOK communicates with message services, condition management,
Language Environment callable services, and user applications; Figure 61 on page
231 shows the layout.

Condition Representation

230 z/OS V2R1.0 Language Environment Vendor Interfaces

An instance of a CEECTOK can be built dynamically by the callable service
CEENCOD or, more typically, constructed statically. An instance of a condition
token is 12 bytes (96 bits) long, as shown in Figure 62 on page 232.

Condition_ID

Case 1

Case 2

0

0

0

5

1
33
23

5

1

3

1

1

3 3 33 4

1

6

4 6 79 0

6

1

6 6 9
53 4

1

3

3

Severity

Class_Code

MSG_No

Cause_Code

Cases of Condition_ID are:

A = Case
B = Severity
C = Control

A B C Facility_ID I_S_Info

Figure 61. Language Environment Condition token (CEECTOK)

Condition Representation

Chapter 5. Condition representation 231

CONDITION_ID
A 4-byte identifier that describes the condition with the FACILITY_ID. The
case field determines the type of identifier. Two identifiers are defined to
be CSC:
1. Case 1 - Service Condition, which is used by all Language

Environment callable services and most application programs.
struct Condition_ID {

INT2 Severity;
INT2 Msg_No;

};

Severity
A 2-byte binary integer with the following possible values:

0 Information only (or, if the entire token is zero, no
information).

1 Warning — service completed, probably correctly.

2 Error detected — correction attempted; service
completed, perhaps incorrectly.

3 Severe error — service not completed.

CEECTOK DSECT
CONDITION_ID DS 0F
*
* Case 1 definitions for CONDITION_ID
*
SEVERITY DS H Condition severity (0-4)
MSG_NUMBER DS H Related message number
*
* Case 2 definitions for CONDITION_ID
*

ORG CONDITION_ID
CLASS_CODE DS H Message associated with the class
CAUSE_CODE DS H Message associated with the cause
*
* Common part of the feedback code
*
FLAGS DS X Bits for Case/Severity/Control
*
* Case definitions
* B’xx......’
CASE1 EQU B’01000000’
CASE2 EQU B’10000000’
*
* Severity definitions
* B’..xxx...’
SEV0 EQU B’00000000’ Severity 0 condition
SEV1 EQU B’00001000’ Severity 1 condition
SEV2 EQU B’00010000’ Severity 2 condition
SEV3 EQU B’00011000’ Severity 3 condition
SEV4 EQU B’00100000’ Severity 4 condition
*
* Control definitions
* B’.....xxx’
IBM_ASSIGN EQU B’00000001’ IBM assigned the facility id
CTL_RSVD1 EQU B’00000010’ Reserved - must be 0
CTL_RSVD2 EQU B’00000100’ Reserved - must be 0
*
* Facility ID
*
FACILITY_ID DS CL3 3 char string that ids the product
*
* Instance Specific Information Token
*
I_S_Info DS F Token to the ISI

Figure 62. Condition token

Condition Representation

232 z/OS V2R1.0 Language Environment Vendor Interfaces

4 Critical error — service not completed; condition
signaled.

Although the field is capable of containing other values, these
are not architected. If a critical error (severity = 4) occurs
during a Language Environment callable service, it is always
signaled to the condition manager, rather than returned
synchronously to the caller.

Msg_No
A 2-byte binary number that identifies the message associated
with the condition. The combination of Facility_ID and Msg_No
uniquely identifies a condition.

2. Case 2 - Class/Cause Code Condition, which is used by some
operating systems and compiler runtime libraries.

struct Condition_ID {
INT2 Class_Code;
INT2 Cause_Code;

};

Class_Code
A 2-byte, binary number that identifies the message subid
associated with the class of the condition.

Cause_Code
A 2-byte, binary number that identifies the message ID
associated with the cause of the condition.

Note: The message subid and the message identifier are tags found in
the message source file.

Facility_ID
A 3-character, alphanumeric string that identifies a product or component
within a product. Note that special characters, including space, cannot be
used. The Facility_ID is associated with the repository (for example, a file)
of the runtime messages. The conventions for naming the message
repository, however, are platform-specific. The Facility_ID need not be
unique within the system and can be determined by the application writer.
If a unique ID is required (for IBM and non-IBM products), an ID can be
obtained by contacting an IBM project office.

A Facility_ID assigned by IBM to an IBM product must begin with one of
the letters A through I, inclusive. A Facility_ID assigned by IBM to a
product other than an IBM's must not begin with a letter A through I. For
information on how to indicate if the Facility_ID has been assigned by
IBM, see Control below. There are no constraints (other than the
alphanumeric requirement) on a Facility_ID not assigned by IBM.

Language Environment constructs a load name consisting of the form T ||
Facility_ID || MSGT:

T The character 'I' if the Facility_ID was assigned by IBM, or the
character 'U' if the Facility_ID was not assigned by IBM.

Facility_ID
The three character facility ID as described above.

MSGT
The four characters MSGT.

For example, given an IBM assigned facility ID of CEE, the constructed
load name would be ICEEMSGT.

Condition Representation

Chapter 5. Condition representation 233

Note: The Msg_No/Facility_ID identifies a condition for a Language
Environment-enabled product. This identification is required to be
persistent beyond the scope of a single session. This allows the meaning of
the condition and its associated message to be determined after the session
that produced the condition has ended. The message inserts and the
I_S_Info need to be explicitly saved to allow persistence after the session
has concluded.

Case A 2-bit field that defines the format of the Condition_ID portion of the
token. The value 1 identifies a case 1 condition, the value 2 identifies a
case 2 condition. The values 0 and 3 are reserved.

Severity
A 3-bit field indicating a condition's severity. Severity values are the same
as defined under a case 1 Condition_ID. When evaluating the severity, the
same rules apply for signaling case 2 conditions as for case 1 conditions.
For a case 1 condition, this field contains the same value as the Severity
field in the Condition_ID.

Note: This field is valid for both case 1 and 2 conditions. It can be used
with either condition token to evaluate the condition's severity.

Control
A 3-bit field containing flags describing or controlling various aspects of
condition handling, as follows:

..1 Indicates Facility_ID has been assigned by IBM.

.1. Reserved.

1.. Reserved.

ISI A fullword field containing a token that identifies the Instance Specific
Information (ISI) associated with the given condition. If an ISI is not
associated with a given condition token, the ISI field contains binary zero.
The ISI token provides access to various instance specific information such
as message inserts and qualifying data.

Feedback code
A feedback code is an instance of a condition token (CEECTOK). A feedback code
is returned from a Language Environment service call if the caller has passed a
reference to an area to hold it. To test a feedback code for equivalence, the first 8
bytes should be compared because they are static. The last four bytes can change
from instance to instance.

CEEGETFB — Construct a condition token given a facility ID and a
message number

Purpose

CEEGETFB is an S/370-specific CWI that constructs a case 1 condition token given
a facility identifier and a message number. The severity is retrieved from the
appropriate message file containing the message number.

Condition Representation

234 z/OS V2R1.0 Language Environment Vendor Interfaces

Syntax

CEEGETFB
Call this CWI interface as follows:
L R12,A(CAA) Get the address of CAA in R12
L R15,CEECAACELV-CEECAA(,R12)
L R15,2816(,R15)
BALR R14,R15

facility_id (input)
The 3-character facility identifier that is placed into the resulting condition
token. It is used to determine the file containing the message definition and
message text.

message_no (input)
A 4-byte binary integer representing the message number for the resulting
condition token.

cond_token (output)
A case 1 style 12-byte condition token (CEECTOK) that is constructed from
facility_id, message_no, and the severity, which is obtained from the appropriate
file containing the message definition. The I_S_Info field is set to binary zero.

fc (output/optional)
A 12-byte feedback code passed by reference. If specified as an argument,
feedback information (condition token) is returned to the calling routine. If not
specified as an argument and the requested operation was not successfully
completed, the condition is signaled to the condition manager. The following
symbolic conditions can result from this service.

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE0CJ Severity 3

Msg_No 0403

Message Invalid severity code found.

CEE0EA Severity 3

Msg_No 0458

Message The message repository cannot be located.

CEE3CT Severity 3

Msg_No 3485

Message message_no was not found within the library
specified.

void CEEGETFB (facility_id, message_no, cond_token, [fc])

CHAR3 *facility_id;
INT4 *message_no;
CEECTOK *cond_token;
FEED_BACK *fc;

CEEGETFB

Chapter 5. Condition representation 235

CEEGETFB

236 z/OS V2R1.0 Language Environment Vendor Interfaces

Chapter 6. National language support and message handler

This chapter describes Language Environment National Language Support (NLS)
and message handling services.

National language support
The Language Environment message handler provides services to support many
NLS machine readable information (MRI) requirements, such as: message
formatting, message delivery, casing, folding, and normalization. The message
facility formats messages for any national language known to Language
Environment. Language Environment provides runtime messages for the following
national languages:
v ENU (Mixed-case English USA)

– Message text is made up of SBCS characters and consists of both uppercase
and lowercase letters.

– Message inserts can contain DBCS characters.
– Long messages are split at an SBCS blank if possible or split by the output

line length if a blank separator does not exist.
v UEN (Uppercase American English)

This is identical to the mixed-case American English language except the
message text consists of uppercase letters. Message inserts can be in lowercase or
might use lowercase codepoints to make use of SBCS Katakana capabilities.

v JPN (Japanese)
This language supports devices that have both DBCS and SBCS capabilities; its
characteristics are:
– Message text can be made interchangeably of SBCS and DBCS characters.
– If a long message extends beyond the print line and the text is SBCS, it is

split at a blank when possible. If a blank separator does not exist, text is split
by the output line length. If the text is DBCS, the message is split at a DBCS
blank if possible. If a blank separator does not exist, it is split at the last
DBCS character that allows a shift-in to be inserted. The next line begins with
a shift-out character.

The national language can be set using the NATLANG runtime option or the
CEE3LNG callable service. One current language is maintained at the enclave level
and remains in effect until it is changed. For example, if JPN is specified in the
NATLANG runtime option but ENU is later specified by the CEE3LNG callable
service, ENU is considered the current national language. If the message text is not
available for the current national language setting, the system-level or region-level
default is used instead.

The current value of the COUNTRY runtime option controls the following values:
v Date format
v Time format
v Currency symbol
v Decimal separator character
v Thousands separator

© Copyright IBM Corp. 1991, 2015 237

|
|

The value can be set by the COUNTRY runtime option or by the CEE3CTY callable
service. The IBM-supplied default COUNTRY(US) indicates the default country is
USA.

Introduction to Language Environment message services
Language Environment provides message handling services to format and deliver
runtime messages. The following items are described in this section:
v The format of the message source files
v How to create a loadable message library
v How to establish inserts for messages
v How to format a message
v How to deliver the message to a given destination

The Language Environment message services can be divided into two categories:
v Cross System Consistent (CSC) interfaces
v Compatibility interfaces

The CSC interfaces are callable services. The CSC-callable services supported in
Language Environment are:

CEEMOUT
Dispatches a message string to the platform's defined output device.

CEEMSG
Given a condition token, this service gets, formats, and dispatches a
message string to the defined output device.

CEEMGET
Gets, formats, and stores a formatted message in a buffer.

The CSC-CWI interface supported in Language Environment is:

CEECMIB
Populates a feedback token with an ISI.

The compatibility interfaces provided are listed below. The services are provided to
manipulate the insert area and to dispatch a message.

CEEXMGET
Obtain an insert block.

CEEXMDFL
Populate all inserts with a default.

CEEXMFRE
Release an insert area.

CEEXMINS
Place an insert into the insert area.

CEEXMFMT
Format a message into a user specified buffer.

CEEXMOUT
Dispatch a message to a specified destination.

CEEMFNDM
Given a feedback token, return the pointer to the ISI.

Messages

238 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|
|

MSGFILE — related CWIs
Language Environment provides some message services that aid the HLLs in
mapping their message files to MSGFILE.

CEECLOS — close ddname
Purpose

The CEECLOS CWI closes the specified ddname.

Syntax

void CEECLOS (ddname, [fc])
CHAR8 *ddname;
FEED_BACK *fc;

CEECLOS
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) Address of CAA in R12
L R15,2924(,R15)
BALR R14,R15

ddname (input)
An 8-character fixed-length string, left-justified and right-padded, containing
the ddname that should be closed. If Language Environment owns the related
DCB, Language Environment closes the file. If the ddname is blank, then the
current MSGFILE ddname is used.

fc (output/optional)
The feedback code passed by reference. The following conditions can result
from this service:

Condtion

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE3C5 Severity 1

Msg_No 3484

Message The file was not currently open.

CEE3D5 Severity 3

Msg_No 3493

Message Language Environment did not own the specified
ddname's DCB.

CEE3D6 Severity 3

Msg_No 3494

Message Uncorrectable I/O error encountered while closing
the file.

CEEODMF — open an input ddname
Purpose

The CEEODMF CWI opens an input ddname.

Messages

Chapter 6. National language support and message handler 239

Syntax

void CEEODMF (ddname,[fc])
CHAR8 *ddname;
FEED_BACK *fc;

CEEODMF
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) Address of CAA in R12
L R15,3988(,R15)
BALR R14,R15

ddname (input)
An 8-character fixed-length string, left-justified and right-padded, containing
the ddname to be opened.

fc (output/optional)
The feedback code passed by reference. The following conditions can result
from this service:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE3DA Severity 1

Msg_No 3498

Message The MSGFILE was already open.

CEE3DB Severity 3

Msg_No 3499

Message The MSGFILE could not be opened.

CEEOPMF — open the MSGFILE ddname
Purpose

The CEEOPMF CWI opens the current MSGFILE ddname.

Syntax

void CEEOPMF ([fc])
FEED_BACK *fc;

CEEOPMF
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) Address of CAA in R12
L R15,2984(,R15)
BALR R14,R15

fc (output/optional)
The feedback code passed by reference. The following conditions can result
from this service:

CEEODMF

240 z/OS V2R1.0 Language Environment Vendor Interfaces

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE3DA Severity 1

Msg_No 3498

Message The MSGFILE was already open.

CEE3DB Severity 3

Msg_No 3499

Message The MSGFILE was unable to be opened.

CEEQDMF — query an input ddname
Purpose

CEEQDMF returns the status of the file, the effective LRECL if the file is open, and
the file descriptor, if the file is in the POSIX file system, for an input ddname.

Syntax

void CEEQDMF (ddname, status, elrecl, fdesc, [fc])
CHAR8 *ddname;
INT4 *status;
INT4 *elrecl;
INT4 *fdesc;
FEED_BACK *fc;

CEEQDMF
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) Address of CAA in R12
L R15,3984(,R15)
BALR R14,R15

ddname (input)
An 8-character fixed-length string, left-justified and right-padded, containing
the ddname to be queried.

status (output)
A fixed-binary(31) integer that contains one of the following values:
1 The message file was already open.
0 The message file was not open.

elrecl (output)
A fixed-binary(31) integer that contains the effective length of the record, thus
providing the number of bytes available for character data. If the file is not
open, the elrecl is set to zero.

fdesc (output)
A fixed-binary(31) integer that contains the file descriptor of the Language
Environment message file if it is in the POSIX file system; otherwise this field
contains a value of -1.

fc (output/optional)
The feedback code passed by reference. The following condition can result
from this service:

CEEOPMF

Chapter 6. National language support and message handler 241

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEEQUMF — query the MSGFILE ddname
Purpose

This CWI returns the current MSGFILE ddname, status of the file, the effective
LRECL if the file is open, and the file descriptor if the file is in the POSIX file
system.

Syntax

void CEEQUMF (ddname, status, elrecl, fdesc, [fc])
CHAR8 *ddname;
INT4 *status;
INT4 *elrecl;
INT4 *fdesc;
FEED_BACK *fc;

CEEQUMF
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) Address of CAA in R12
L R15,2928(,R15)
BALR R14,R15

ddname (output)
An 8-character fixed-length string, left-justified and right-padded, containing
the current MSGFILE ddname.

status (output)
A fixed-binary(31) integer that contains one of the following values:
1 The message file was already open.
0 The message file was not open.

elrecl (output)
A fixed-binary(31) integer that contains the effective length of the record. Thus
providing the number of bytes available for character data. If the file is not
open, the elrecl is set to zero.

fdesc (output)
A fixed-binary(31) integer that contains the file descriptor of the Language
Environment message file if it is in the POSIX file system, otherwise this field
contains a value of -1.

fc (output/optional)
The feedback code passed by reference. The following condition can result
from this service:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEEQDMF

242 z/OS V2R1.0 Language Environment Vendor Interfaces

CEECHMF — change the MSGFILE ddname
Purpose

The CEECHMF CWI allows the specified ddname to become the new MSGFILE
ddname.

Syntax

void CEECHMF (ddname, [fc])
CHAR8 *ddname;
FEED_BACK *fc;

CEECHMF
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) Address of CAA in R12
L R15,2932(,R15)
BALR R14,R15

ddname (input)
An 8-character fixed-length string, left-justified and right-padded, containing
the ddname that becomes the new MSGFILE ddname.

fc (output/optional)
The feedback code passed by reference. The following conditions can result
from this service:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

Usage notes

Note:

1. The OCB is not updated by this service.
2. The ddname is not validated by this service.
3. The ddname is not opened at this time. It is opened at the first request to write

to the ddname.
4. When the Message File ddname is changed using this service, it does not

inherit the ENQ/NOENQ characteristic of the ddname specified on the
MSGFILE runtime option.

Relationship between date/time and COUNTRY settings
Some date/time callable services allow the specification of a blank or null picture
string. This directs Language Environment to use the current country value to
obtain the default picture string for the date or time. The names of the months and
days of the week are obtained based upon the current national language value. It
is obtained from the national language message's file, as selected by the
NATLANG runtime option. The message numbers assigned to the days of the
week and the months are in Figure 63 on page 244.

CEECHMF

Chapter 6. National language support and message handler 243

Message handling services
This section describes the message handling CWIs CEECMIB and CEEMFNDM.

CEECMIB — create a message insert area entry
Purpose

The CEECMIB CWI provides a mechanism by which an MIB can be populated; an
MIB is managed by Language Environment. The number of ISIs per thread is
determined by the MSGQ(x) runtime option. MIBs are released when CEEMSG
issues the message, or when the MSGQ(n) runtime option is exceeded. The least
recently used MIB is overwritten.

Syntax

void CEECMIB (cond_rep, Insert_Seq_Num, Insert_Data, [fc])
FEED_BACK *cond_rep;
INT4 *Insert_Seq_Num;
VSTRING *Insert_Data;
FEED_BACK *fc;

CEECMIB
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) Address of CAA in R12
L R15,2748(,R15)
BALR R14,R15

cond_rep (input)
A condition token defining the condition for which the Q_Data_Token is to be
retrieved.

Insert_Seq_Num (input)
A 4-byte integer containing the insert sequence number (for example, insert 1,
insert 2). It corresponds to that specified with the ins tag in the message source
file.

CEE0001 - JANUARY CEE0021 - january
CEE0002 - FEBRUARY CEE0022 - february
CEE0003 - MARCH CEE0023 - march
CEE0004 - APRIL CEE0024 - april
CEE0005 - MAY CEE0025 - may
CEE0006 - JUNE CEE0026 - june
CEE0007 - JULY CEE0027 - july
CEE0008 - AUGUST CEE0028 - august
CEE0009 - SEPTEMBER CEE0029 - september
CEE0010 - OCTOBER CEE0030 - october
CEE0011 - NOVEMBER CEE0031 - november
CEE0012 - DECEMBER CEE0032 - december

CEE0013 - SUNDAY CEE0033 - sunday
CEE0014 - MONDAY CEE0034 - monday
CEE0015 - TUESDAY CEE0035 - tuesday
CEE0016 - WEDNESDAY CEE0036 - wednesday
CEE0017 - THURSDAY CEE0037 - thursday
CEE0018 - FRIDAY CEE0038 - friday
CEE0019 - SATURDAY CEE0039 - saturday

Figure 63. Message numbers assigned to the days of the week and months

Messages

244 z/OS V2R1.0 Language Environment Vendor Interfaces

Insert_Data (input)
The insert data. The data type is a halfword-prefixed fixed-length string. The
entire length that is described in the halfword prefix is used without
truncation. DBCS needs to be enclosed within SO/SI.

fc (output/optional)
A condition token which can return the following conditions:

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE0EB Severity 3

Msg_No 0459

Message An invalid MIB Sequence number was found.

CEE0H9 Severity 3

Msg_No 0553

Message An invalid insert_seq_num was found.

CEEMFNDM — return the MIB address
Purpose

The CEEMFNDM CWI returns the MIB address given a feedback token.

Syntax

void CEEMFNDM (FB_token, MIB_Addr, [fc])
FEEB_BACK *FB_token;
POINTER *MIB_Addr;
FEED_BACK *fc;

CEEMFNDM
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) Address of CAA in R12
L R15,2868(,R15)
BALR R14,R15

FB_token (input)
The 12-byte feedback token returned from a callable service.

MIB_Addr (output)
The address of the MIB for this condition.

fc (output/optional)
A 12-byte feedback code passed by reference. Feedback information (condition
token) is returned to the calling routine. The following conditions can result
from this service:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEECMIB

Chapter 6. National language support and message handler 245

Condition

CEE3D8 Severity 1

Msg_No 3496

Message The MIB was not found.

Usage notes

Once the MIB is obtained, message inserts can also be located. The procedure for
finding the message insert information is described below. Figure 64 on page 247
represents the access to message insert information.
1. Offset X'0' into the MIB is an EBCDIC eyecatcher "CMIB".
2. Offset X'24' into the MIB points to an array of 9 pointers of message insert data.

If the pointer is 0, this insert is not used. If a pointer is non-zero, this points to
the message insert data in EBCDIC.

3. Offset X'20' into the MIB points to an array of 9 quadwords of message insert
information. The fourth word (the last word) contains the length of the message
insert data.

CEEMFNDM

246 z/OS V2R1.0 Language Environment Vendor Interfaces

CEE3SMO — suppress printing of messages
Purpose

CEE3SMO is a callable service that suppresses the printing of any message,
traceback, and dump (as indicated by the TERMTHDACT option) for any
condition that has been signaled and allowed to percolate. This service must be
called by a user condition handler.

Syntax

void CEE3SMO ([fc]);
FEED_BACK *fc;

fc (output/optional)
A 12-byte feedback code passed by reference. Feedback information (condition
token) is returned to the calling routine. The following conditions can result
from this service:

MIB

0

20

24

“CMIB”

. . .

Block_ptr

Data_ptr

. . .

MIB

0

20

24

“CMIB”

. . .

Block_ptr

Data_ptr

. . .

addr data1

addr data2

addr data1

addr data2

len1

len2

0

10

0

4

8

C

10

14

20

18

1C

20

30

40

50

70

80

90

addr data3

addr data4

addr data3

addr data4

len3

len4

addr data5

addr data6

addr data5

addr data6

len5

len6

addr data7

addr data8

addr data7

addr data8

len7

len8

addr data9

addr data9 len9

Figure 64. Access to message insert information

CEE3SMO

Chapter 6. National language support and message handler 247

Condtion

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE3B0 Severity 3

Msg_No 3424

Message CEE3SMO called from outside a condition handler.
This condition is signaled when there is only one
CIBH in the CIBH chain and it is not in use.

C/C++-specific vendor interfaces
This section describes the C/C++-specific vendor interfaces.

__cttbl() — returns address of _LC_ctype_t structure
Header

The _LC_info.h header file contains definitions for the __cttbl() function.

Standards

Standards/Extensions C or C++ Dependencies

Language Environment both None

Syntax

General description

This function provides the location of the CTYPE class, which defines character
membership in a character class.

Return values

__cttbl() returns a pointer of type _LC_ctype_t which is defined in <localdef.h>.

ASCII/EBCDIC mixed mode support for enhanced ASCII C-RTL
ASCII/EBCDIC bimodal support for enhanced ASCII facilitates the development of
bimodal C++ libraries and DLLs. Bimodal class libraries and DLLs eliminate the
need for the development, maintenance and distribution of separate ASCII and
EBCDIC class libraries.

The end user application is not bimodal. Users of C++ class libraries or DLLs need
to use either the ASCII/EBCDIC bimodal version of the library or the ASCII or
EBCDIC version of the library which matches the mode of their application.

#include <localdef.h>
#include <_LC_info.h>

_LC_ctype_t * __cttbl(void);

CEE3SMO

248 z/OS V2R1.0 Language Environment Vendor Interfaces

It is the responsibility of the user to ensure that the character mode of data passed
as arguments to, or values returned from, function calls are in the correct character
mode for the functions being used. The C-RTL does not convert arguments or
return values.

Header information
Enhanced ASCII support requires that all headers required by all Enhanced ASCII
functions used in an application be included. Enhanced ASCII support uses
headers to dynamically map generic function calls such as printf() to either an
ASCII version of printf() or an EBCDIC version of printf() based on how the
application was compiled. Additionally, the headers dynamically map explicit
ASCII or EBCDIC function calls such as __printf_a() or __printf_e() to ASCII or
EBCDIC versions of printf() respectively. For example, the snippet of code in
stdio.h regarding the printf() function is as follows:

The __AE_BIMODAL_F feature test is for ASCII/EBCDIC Bimodal support. The
__AE_BIMODAL_F feature is defined in features.h if the application was compiled
using the z/OS V1R2 C/C++ Compiler, the user compiled their code using the
XPLINK compile option and _AE_BIMODAL was defined. If the
__AE_BIMODAL_F feature test is satisfied, the explicit printf() function calls,
__printf_a() and __printf_e() get pragma mapped to the ASCII and EBCDIC
versions of printf() respectively. In addition, the prototypes for __printf_a() and
__printf_e() are exposed. Similar header logic is also used for ASCII/EBCDIC
Mixed Mode versions of macros and structures.

Usage example
The design point for ASCII/EBCDIC Mixed Mode support for Enhanced ASCII
was to make it possible for C++ class library and DLL developers to develop a
common mixed mode version of their library instead of producing separate ASCII
and EBCDIC versions. The class library or DLL developer can accomplish this by
calling explicit ASCII and EBCDIC versions of C-RTL functions based on the
results of a call to __isASCII(). __isASCII() is used to determine the character mode
of the user application. It is assumed that the end user application is not bimodal.
A simple ASCII/EBCDIC bimodal "Hello World!" program shows how a bimodal
class library or DLL can be produced. For this example, it is assumed that the user
application (the code containing main()) is compiled ASCII while the bimodal code,
which is contained in a separate compile unit, is compiled EBCDIC.

#ifdef __AE_BIMODAL_F
#pragma map (__printf_a, "\174\174A00118")
#pragma map (__printf_e, "PRINTF")
__new4102(int,__printf_a,(const char *, ...));
__new4102(int,__printf_e,(const char *, ...));

#endif /* __AE_BIMODAL_F */

#ifdef __NATIVE_ASCII_F
#pragma map (printf, "\174\174A00118")

#endif /* __NATIVE_ASCII_F */

#ifdef _NO_PROTO
int printf ();

#else
int printf (const char *, ...);

#endif /* _NO_PROTO */

__cttbl

Chapter 6. National language support and message handler 249

Assuming the preceding code was compiled using the ASCII compile option, the
C/C++ Compiler will generate values for the characters in the format string and
the "Hello World!\n" string in the ISO8859-1 code page. A separate compile unit
contains the bimodal printItOut() function, as shown below:

In the example, the format and string arguments passed on the call to printItOut
will be in the ISO8859-1 code page. __isASCII() returns the character mode of the
current thread. In this example, the character mode of the initial processing thread
is ASCII. This was set during C-RTL initialization since the compile unit containing
main() was compiled ASCII.

Since __isASCII() returns the value one, __printf_a() is called, passing along the
format and string arguments. The format and string arguments are encoded using
ISO8859-1. Since the code in our ASCII/EBCDIC Bimodal part was compiled
XPLINK and _AE_BIMODAL is defined, the __printf_a() function call is pragma
mapped by stdio.h to be \174\174A00118, which is the Enhanced ASCII version of
the printf() function. Hello World! in ISO8859-1 will be sent to stdout. By default,
stdout is assumed EBCDIC and the Hello World! string will show up on stdout as
unreadable characters. The Hello World! string will show up legibly on stdout if
the application is being run with auto conversion on or the output of the "Hello
World!" program is piped into iconv as follows:
hellow 2 >&1 | iconv -f ISO8859-1 -t IBM-1047

__ae_thread_setmode() — set character mode: ASCII or
EBCDIC

Standards

Standards/Extensions C or C++ Dependencies

Language Environment both z/OS V1R2 or later

Syntax

#include <stdio.h>
void printItOut(const char *, const char *);

void main(void) {
printItOut("%s\n", "Hello World!");

}

#define _AE_BIMODAL 1
#include <stdio.h>
#include <_Nascii.h>

void printItOut(const char *format, const char *string {
if (__isASCII())

__printf_a(format, string);
else

__printf_e(format, string);
}

#include <ctype.h>

void __ae_thread_setmode(int aemode);

__cttbl

250 z/OS V2R1.0 Language Environment Vendor Interfaces

General description

The __ae_thread_setmode() function sets the current thread's character mode to
ASCII or EBCDIC based on the value of the argument aemode:
v __AE_ASCII_MODE - set thread character mode to ASCII
v __AE_EBCDIC_MODE - set thread character mode to EBCDIC

If the value for aemode is other than the values shown above, the thread's
ASCII/EBCDIC mode will remain unchanged.

The TCP/IP resolver is reinitialized, if already initialized, in the new character
mode. This function or __ae_thread_swapmode() must be used before and after
calls between EBCDIC and ASCII portions of an application.

Return values

If successful, __ae_thread_setmode() changes the character mode.

If unsuccessful, __ae_thread_setmode() will terminate with either message
EDC6254 or EDC6255.

There are no documented errnos for this function.

Related information
v “__ae_autoconvert_state() — returns automatic conversion state of thread” on

page 253
v “__ae_thread_swapmode() — swap character mode to ASCII or EBCDIC”
v “__isASCII() — determine character mode: ASCII or EBCDIC” on page 252

__ae_thread_swapmode() — swap character mode to ASCII or
EBCDIC

Standards

Standards/Extensions C or C++ Dependencies

Language Environment both z/OS V1R2 or later

Syntax

General description

The __ae_thread_swapmode() function sets the current thread's character mode to
ASCII or EBCDIC, based on the value of the argument aemode. If any other value is
specified for aemode, the thread's ASCII/EBCDIC mode will remain unchanged.
v __AE_ASCII_MODE - set thread character mode to ASCII
v __AE_EBCDIC_MODE - set thread character mode to EBCDIC

The TCP/IP resolver is reinitialized, if already initialized, in the new character
mode. This function or __ae_thread_setmode() must be used before and after calls

#include <ctype.h>

int __ae_thread_swapmode(int aemode);

__ae_thread_setmode()

Chapter 6. National language support and message handler 251

between EBCDIC and ASCII portions of an application.

Return values

If successful, __ae_thread_swapmode() changes the character mode and returns the
mode value corresponding to the thread's previous mode.

If unsuccessful, __ae_thread_setmode() will terminate with either message
EDC6254 or EDC6255.

There are no documented errnos for this function.

Related information

“__ae_autoconvert_state() — returns automatic conversion state of thread” on page
253

“__ae_thread_setmode() — set character mode: ASCII or EBCDIC” on page 250

“__isASCII() — determine character mode: ASCII or EBCDIC”

__isASCII() — determine character mode: ASCII or EBCDIC
Standards

Standards/Extensions C or C++ Dependencies

Language Environment both z/OS V1R2

Syntax

General description

The __isASCII() function determines the current thread's character mode of ASCII
or EBCDIC. If the character mode is ASCII, it returns 1. If the character mode is
EBDCIC, it returns 0.

Return values

For ASCII character mode, __isASCII() returns 1.

For EBCDIC character mode, __isASCII() returns 0.

There are no documented errnos for this function.

Related information

“__ae_autoconvert_state() — returns automatic conversion state of thread” on page
253

“__ae_thread_setmode() — set character mode: ASCII or EBCDIC” on page 250

#include <ctype.h>

int __isASCII(void);

__ae_thread_swapmode()

252 z/OS V2R1.0 Language Environment Vendor Interfaces

“__ae_thread_swapmode() — swap character mode to ASCII or EBCDIC” on page
251

__ae_autoconvert_state() — returns automatic conversion
state of thread

Standards

Standards/Extensions C or C++ Dependencies

Language Environment both z/OS V1R2

Syntax

_CVTSTATE_OFF
Automatic conversion for the current thread is set to OFF.

_CVTSTATE_ON
Automatic conversion for the current thread is set to ON.

_CVTSTATE_ALL
Automatic conversion for the current thread is set to ALL.

_CVTSTATE_SWAP
Automatic conversion is swapped to the state opposite that of the current
thread state. When the current state is ON or ALL, the state will be set to
OFF. When the current state is OFF, then the state will be set to the latest
enabled state for automatic conversion (ON or ALL) or if automatic
conversion was never enabled on this thread, the state will be set to ON.

_CVTSTATE_QUERY
Current thread's automatic conversion state remains unchanged (only
return value is significant).

Return values

Regardless of the action argument, the returned integer value for
__ae_autoconvert_state is the current thread's automatic conversion state before
any changes were made based upon the action requested. This returned value will
be _CVTSTATE_OFF, CVTSTATE_ON or _CVTSTATE_ALL.

If the C runtime library is unable to access or set the automatic conversion state, or
an invalid action argument is supplied, __ae_autoconvert_state will fail by
returning -1.

Related information
v “__ae_thread_setmode() — set character mode: ASCII or EBCDIC” on page 250
v “__ae_thread_swapmode() — swap character mode to ASCII or EBCDIC” on

page 251
v “__isASCII() — determine character mode: ASCII or EBCDIC” on page 252

#define _CVTSTATE_OFF 0
#define _CVTSTATE_ON 1
#define _CVTSTATE_ALL 4
#define _CVTSTATE_SWAP 2
#define _CVTSTATE_QUERY 3

int __ae_autoconvert_state(int action);

__isASCII

Chapter 6. National language support and message handler 253

|

|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

__ae_autoconvert_state

254 z/OS V2R1.0 Language Environment Vendor Interfaces

Chapter 7. Condition management

This section describes what constitutes a condition in Language Environment, how
Language Environment supplements existing HLL condition handling methods,
and how the Language Environment condition handling model works. It describes
in detail the steps involved in condition handling under Language Environment,
HLL-specific condition handling considerations, Language Environment — POSIX
signal handling interactions, and how you can communicate events that happen in
a routine to another routine.

For a discussion of Language Environment condition handling models in the
POSIX(ON) and POSIX(OFF) environments, see z/OS Language Environment
Programming Guide.

Compiler-writer interfaces (CWIs)
Language Environment provides the following CWIs for condition management.
The CWIs beginning with the “CEE” prefix are available for a non-64-bit
environment only. The others are for use in both non-64-bit and 64–bit
environments.
v CEE3ERP
v CEE3RSUM
v CEESGLN
v CEESGLT
v CEE3SMS
v CEE3SMS2
v CEEGOTO
v CEEHDHDL
v CEEMRCM
v CEEYDSAF
v __dsa_prev()
v __far_jump()
v __set_stack_softlimit()

CEE3ERP — support for user-provided error recovery
The CEE3ERP callable service enables user-written applications that have
established their own ESTAE/ESPIE exit routines to notify Language Environment
when an abend or program check occurs. With this support, Language
Environment can analyze and process an error that was captured by the
application's ESPIE or ESTAE exit before the error is passed to the user application.

Syntax

void CEE3ERP;

CEE3ERP
Call this CWI interface as follows:
L R15,CEECAAHERP-CEECAA(,R12)
BALR R14,R15

© Copyright IBM Corp. 1991, 2015 255

R0 (output)
If ESTAE processing is in effect and register 15 contains 4, register 0 contains
the retry address that the user's ESTAE exit must use for resumption;
otherwise, this register can be ignored.

R1 (input)
Contains the address of the EPIE, which was passed to the ESPIE exit, or the
SDWA, which is passed to the ESTAE exit.

R15 (output)
Register 15 contains a value that indicates the actions that Language
Environment wants the user application's ESPIE/ESTAE exit routine to take as
a result of Language Environment processing the error condition. The
following values are returned in register 15:

-4 Language Environment is not active in this environment; the
application continues with its own error recovery processing.

0 Language Environment is not interested in the error; the application
continues with its own error recovery processing.

4 Language Environment can handle the error. If SPIE processing is in
effect, Language Environment sets up the EPIE; the user application's
EPIE exit must return to the system to resume processing. If STAE
processing is in effect, Language Environment sets up the SDWA for
retry; the user application's ESTAE exit must retry at the address
specified in register zero.

16 Language Environment CAA has been overlayed

20 Language Environment condition manager is disabled; retry the
operation.

Usage Notes:

1. This service should always be used with a user's ESPIE or ESTAE exit routine,
regardless of the setting of the TRAP runtime option. It must also be invoked
immediately by the user's ESPIE or ESTAE exit routine, before any of it's own
error recovery processing.

2. This service supports AMODE 31 only.
3. This service is primarily looking for a “shunt routine”. When the CEECAADMC

field contains a non-zero value, a “shunt routine” is active. Language
Environment will set up the EPIE or SDWA to resume or retry at the “shunt
routine” address that was in the CEECAADMC field.
When Language Environment indicates for STAE processing that it is interested
in the error, Language Environment would have already issue the SETRP macro
to set up the SDWA for the retry. Language Environment also returns the retry
address in register 0.

4. Program checks can also occur when the Language Environment XPLINK stack
needs to be expanded. In this case, Language Environment sets up the EPIE or
SDWA to resume or retry at an appropriate point, and sets the return code to 4.

5. This service can be used in the z/OS and pre-initialization environments. The
CICS and POSIX environments are not supported.

CEE3RSUM — resume an interrupted program
CEE3RSUM is used to resume execution of an interrupted Language Environment
program with a specified PSW, registers, and access registers. The resume point
would normally be the point of interruption. This service does not return, so there

CEE3ERP

256 z/OS V2R1.0 Language Environment Vendor Interfaces

is no feedback token. If the program cannot be resumed with the requested PSW
and registers, CEE3RSUM will cause an ABEND.

Syntax

void CEE3RSUM (CSRL16J_parms, flags, resume_info)
void *CSRL16J_parms
INT4 *flags
void *resume_info

CEE3RSUM
From a non-XPLINK routine, call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) Address of CAA in R12
L R15,120(,R15)
BALR R14,R15

CSRL16J_parms (input)
This is a pointer to a data area that can be passed to the CSRL16J callable
service.

flags (input)
This parameter is not used, and should point to a fullword of zero bits.

resume_info (input)
This parameter points to an optional area that contains resume information; the
code sample below shows the layout. If resume_info pointer is NULL, the result
is the same as pointing to a resume information area with all validity flags off.

+---+
+00 | Version = 1 |

+---+
+04 | Validity flags: |

| X’80000000’ - valid_int_DSA field is present |
| On : Indicates that the DSA to be |
| resumed is in the Valid interrupt |
| DSA field (below). |
| Off : Get resume DSA address from |
| reg 4 or reg 13 in the CSRL16J |
| registers (1st parm to CEE3RSUM) |
| X’40000000’ - sigset field is present |
| On : Indicates that the signal mask |
| is to be restored to the value in |
| the sigset field (below) before |
| the resume is done. |
| Off : Indicates that the signal mask |
| is not to be restored before the |
| resume is done. |
| X’20000000’ - oldest_up_DSA field is present |
| On : Indicates that the oldest up DSA |
| field is present (see below). |
| Off : Indicates that the active DSA |
| chain needs to be scanned to find |
| the oldest Upstack DSA. |
| X’10000000’ - hr field is present |
| On : Indicates that the hr field |
| contains the high registers to |
| be restored before resuming. |
| Off : Indicates that the high registers |
| are not available in the resume |
| information. |
| X’08000000’ - CEECAA_SAVSTACK needs to be restored |
| On : Indicates that the CEECAA_SAVSTACK|
| field needs to be restored from |
| CEERSMI_VALID_INT_DSA field |
| before resuming. |
| Off : Indicates that no restore of |
| CEECAA_SAVSTACK is needed. |
| X’04000000’ - CEECAA_SAVSTACK_ASYNC needs to be |
| restored |

CEE3RSUM

Chapter 7. Condition management 257

| On : Indicates that the |
| CEECAA_SAVSTACK_ASYNC field |
| needs to be restored from |
| CEERSMI_VALID_INT_DSA field |
| before resuming. |
| Off : Indicates that no restore of |
| CEECAA_SAVSTACK_ASYNC is needed. |
| |
| X’03FFFFFF’ (reserved -- should be 0) |
+---+

+08 | Valid interrupt DSA (filled in if the X’80000000’ flag |
| is set on) |
+---+

+0C | (reserved - should be 0) |
+---+

+---+
+08 | Valid interrupt DSA (filled in if the X’80000000’ flag |

| is set on) |
+---+

+0C | (reserved - should be 0) |
+---+

+10 | Sigset -- signal mask to be restored before the resume |
+14 | is to be done. (filled in if the X’40000000’ flag is |

| set on) |
+--------------+--+

+18 | Resume DSA | (reserved - should be 0) |
| format(up=0, down=1) |
+--------------+--+

+1C | (reserved -- should be 0) |
+--------------+--+

+20 | Oldest up DSA -- this is the oldest Upstack DSA |
| that is not older than the DSA to be resumed. (If the |
| DSA to be resumed is Upstack, this must be the same as |
| the DSA being resumed.) |
+--------------+--+

+24 | (reserved - should be 0) |
+---+

+28 | (reserved - should be 0) |
. | |
+3F +---+
+40 | (reserved - should be 0) |
+7F +---+
+80 | (reserved - should be 0) |
. | |
+FC | |
+100+---+

Usage Notes:

1. When CEE3RSUM is called, the CAA stack direction must be valid and the
caller must have a proper DSA chained into the Language Environment stack.

2. All fields in the CSRL16J parm area must be filled in properly. If the
L16JSUBPOOL, L16JLENGTHTOFREE, and L16JAREATOFREE fields are set
up, the CSRL16J area will be freed before the program is resumed (this area
may not be freed up if an ABEND is declared). If the CSRL16J area is to be
freed, the CEE3RSUM service uses CSRL16J rather than the RP instruction (so
that the free can be done by directly by z/OS).

3. If the area to free includes any part of the CSRL16J parameter area, this parm
area must not lie in any DSA on the Language Environment stack. (It must be
in GETMAINed storage.) If there is no area to free, or the area to free does not
include any part of the CSRL16J parm area, this area may lie in a DSA on the
Language Environment stack (including a DSA that will be freed up when the
resume occurs).

4. If the valid_interrupt_dsa field in the resume information area is not filled in,
register 4 or 13 in the CSRL16J parms must point to a valid XPLINK or
non-XPLINK Language Environment DSA on the stack. Register 4 or 13 may
point to a transitional or overflow stack frame, but the PSW and registers

CEE3RSUM

258 z/OS V2R1.0 Language Environment Vendor Interfaces

must not point back to a place where the stack direction in the CAA is not
valid. If these registers are not valid, ABEND 4091-42 may occur.
If the valid_interrupt_dsa field in the resume information area is filled in, reg 4
or 13 in the resume registers does not need to point to a valid DSA. However,
if the valid_interrupt_dsa is not correct, the same ABEND 4091-42 may occur.

5. The Resume PSW in the CSRL16J area must be complete, with all AMODE,
ilc, cc etc. fields properly set. If the PSW is incorrect, ABEND 4091-43 or
4091-45 can occur.

6. The caller must have restored the floating point registers (and control
registers, if required) before calling CEE3RSUM. CEE3RSUM does not alter
any floating point or control registers before resuming the program.

7. CEE3RSUM does not notify the debugger or member languages of the resume.
If required, the caller must do this before calling CEE3RSUM.

8. CEE3RSUM cannot be used to jump over:
v user-code stack frames
v any stack frames that require PL/I exit GOTO processing.
v any stack frames that require event 11 calls (PL/I DSA exit event stack

frames)
v any stack frames that have run CEE3SMS or CEE3SRT

9. CEE3RSUM can be used to jump over XPLINK transitional routines that are
invoked as Exit DSAs.

10. CEE3RSUM must not be used to resume back into a function that has done
any alloca() requests since the time of interruption. If this restriction is
violated, ABEND 4091-42 or other problems may occur.

11. CEE3RSUM must run in 31-bit addressing mode.
12. The CEE3RSUM service uses either the RP instruction, CSRL16J, or some other

method to resume. In all cases, the main input to CEE3RSUM is a CSRL16J
parm area.

CEESGLN — signal invalid resume request
The CEESGLN callable service signals a condition to the Language Environment
condition manager; optionally, this service can also provide qualifying data and
create an ISI for a condition for which resumption is not supported.

Syntax

void (*CEELIBVxSGLN) (cond_rep, [q_data_token])
FEEDBACK *cond_rep;
INT4 *q_data_token;

CEELIBVxSGLN
A field in the Language Environment LIBVEC that points to the signal invalid
resume request routine. Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) CAA address is in R12
L R15,3008(,R15)
BALR R14,R15

cond_rep (input)
A condition token that defines the condition to be raised; it is passed by
reference.

q_data_token (input/optional)
A 32-bit data token that is passed to the condition manager when a condition
is signal; this value may be a pointer or any other information that may be

CEE3RSUM

Chapter 7. Condition management 259

required. This information is placed in the ISI for use in accessing the
qualifying data associated with the given instance of the condition.

Usage Note: CEESGLN cannot signal a severity 0 or 1 condition. If this is
attempted, the following condition is passed to CEEHDSP.

Condition

CEE3B1 Severity 3

Msg_No 3425

Message Severity 0 or 1 condition signaled with CEESGLN.

CEESGLT — signal a condition and terminate
The CEESGLT callable service signals a condition for which resumption, without
moving the resume cursor, is not supported.

Syntax

void (*CEELIBVxSGLT) (cond_rep, [q_data_token], [fc])
FEED_BACK *cond_rep;
INT4 *q_data_token;
FEED_BACK *fc;

CEELIBVxSGLT
A field in the Language Environment LIBVEC that points to the signal and
terminate routine (CEESERC). Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) CAA address is in R12
L R15,2764(,R15)
BALR R14,R15

cond_rep (input)
A condition representation that is passed by reference.

q_data_token (input/optional)
A 32-bit data object to be placed in the ISI for use in accessing the qualifying
data associated with the given instance of the condition.

fc (output/optional)
The parameter in which the callable service feedback code is placed. The
following conditions can result from this service.

Condition

CEE000 Severity 0

Msg_No None

Message Text The service completed successfully.

CEE069 Severity 0

Msg_No 0201

Message Text An unhandled condition was returned in a feedback code.

CEE0CE Severity 1

Msg_No 0398

Message Text Resume with new input.

CEESGLN

260 z/OS V2R1.0 Language Environment Vendor Interfaces

Condition

CEE0CF Severity 1

Msg_No 0399

Message Text Resume with new output.

CEE0EB Severity 3

Msg_No 0459

Message Text Not enough storage was available to create a new
instance-specific information block

CEE0EE Severity 3

Msg_No 0462

Message Text Instance-specific information for the condition token with
message number message number and facility ID facility ID
could not be found.

Usage Notes:

1. Control is never returned to the next sequential instruction following the call to
this routine.

2. The intent of CEESGLT is to provide a way for members to raise a condition
and not allow resumption unless the resume cursor has been moved explicitly
to a new position.

3. Requesting resumption when the resume cursor has not been moved causes
CEE088 to be signaled. If resumption is once again requested without moving
the resume cursor, the environment is terminated with abend 4091-12. CEE088
is defined as follows:

Condition

CEE088 Severity 3

Msg_No 0264

Message An invalid request to resume from a condition was
detected.

Explanation A condition handler attempted to resume for a
condition for which resumption is not allowed
without moving the resume cursor. This condition
can not be handled and resumed without moving the
resume cursor. If resumption is requested without
moving the resume cursor, the environment is
terminated with abend 4091-12.

Programmer
Response

Move the resume cursor as part of handling the
condition.

System Action The resume request that triggered this condition is
ignored.

CEE3SMS — set machine state
This CWI interface dynamically builds a machine state block that contains the
necessary machine state information for use with CEEMRCM.

CEESGLT

Chapter 7. Condition management 261

Syntax

void (*CEECELVBSMS) (gprs, float0, float2, float4, float6, stackframe, psw, [ars],
machine_state, [fc])
INT *gprs[16];
FLOAT *float0;
FLOAT *float2;
FLOAT *float4;
FLOAT *float6;
POINTER *stackframe;
CHAR *psw[8];
INT *ars[16];
TOKEN *machine_state;
FEED_BACK *fc;

CEECELVBSMS
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) CAA address is in R12
L R15,3464(,R15)
BALR R14,R15

CEECELVBSMS
A field in the Language Environment LIBVEC that points to the set machine
state routine (CEE3SMS).

gprs (input)
An array of the 16 general purpose registers arranged in the order of gpr 0
through gpr 15.

float0 (input)
The value of the floating-point register 0 associated with the machine state.

float2 (input)
The value of the floating-point register 2 associated with the machine state.

float4 (input)
The value of the floating-point register 4 associated with the machine state.

float6 (input)
The value of the floating-point register 6 associated with the machine state.

stackframe (input)
The stack frame for this label_var. It must be a stack frame that is active on the
call chain.

psw (input)
The program status word that contains information for the code point that
gains control. In particular, it contains the code address that is to gain control
and the program mask that is to be restored. The PSW must be complete and
correct for execution at the indicated address. The instruction address must
contain the correct high-order bit indicating the addressing mode.

ars (input/optional)
An array of the 16 access registers arranged in the order of AR 0 through AR
15. When omitted, the access registers are assumed inconsequential for this
state block.

machine_state (output)
A token that represents the machine state block. The machine state block is
allocated by Language Environment from heap storage. The machine state
block is automatically freed by Language Environment when the code
associated with the stackframe returns to its caller.

CEE3SMS CWI

262 z/OS V2R1.0 Language Environment Vendor Interfaces

fc (output/optional)
The parameter in which the callable service feedback code is placed. The
following conditions can result from this service.

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE390 Severity 3

Msg_No 3360

Message The stack frame was not found on the call chain.

Usage Notes:

1. This is intended for building a machine state for use by the CEEMRCM routine.
The token returned by this routine can be used as input to CEEMRCM.

2. Language Environment automatically frees the heap storage for the machine
state block when the routine that is associated with the stackframe returns to its
caller. Attempts to use the machine state block after it is freed result in
unpredictable behavior.

3. If the saved machine state points into an XPLINK routine that does alloca(), the
value of register 4 in the gprs parameter must point to the DSA currently on the
Language Environment stack for that routine. In other words, the routine
owning the DSA cannot have done any alloca() requests since the value of
register 4 was captured.

CEE3SMS2 — set machine state 2
This CWI interface dynamically builds a machine state block that contains the
necessary machine state information for use with CEEMRCM. It builds the
machine state block at a storage location provided by the caller.

Syntax

void (*CEECELVBSMS2) (gprs, float0, float2, float4, float6, stackframe, psw, [ars],
machine_state, [fc])
INT *gprs[16];
FLOAT *float0;
FLOAT *float2;
FLOAT *float4;
FLOAT *float6;
POINTER *stackframe;
CHAR *psw[8];
INT *ars[16];
POINTER *machine_state;
FEED_BACK *fc;

CEECELVBSMS2
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) CAA address is in R12
L R15,4076(,R15)
BALR R14,R15

CEECELVBSMS2
A field in the Language Environment LIBVEC that points to the set machine
state routine 2 (CEE3SMS2).

CEE3SMS CWI

Chapter 7. Condition management 263

gprs (input)
An array of the 16 general purpose registers arranged in the order of gpr 0
through gpr 15.

float0 (input)
The value of the floating-point register 0 associated with the machine state.

float2 (input)
The value of the floating-point register 2 associated with the machine state.

float4 (input)
The value of the floating-point register 4 associated with the machine state.

float6 (input)
The value of the floating-point register 6 associated with the machine state.

stackframe (input)
The stack frame for which this machine state block is built. It must be a stack
frame that is active on the call chain.

psw (input)
The program status word that contains information for the code point that
gains control. In particular, it contains the code address that is to gain control
and the program mask that is to be restored. The PSW must be complete and
correct for execution at the indicated address. The instruction address must
contain the correct high-order bit indicating the addressing mode.

ars (input/optional)
An array of the 16 access registers arranged in the order of AR 0 through AR
15. This parameter is optional and is ignored by this service. The access
registers are not affected..

machine_state (output)
A pointer containing the address of storage into which the machine state block
is built. Storage for the machine state block is allocated by the caller of
CEE3SMS2. It must be large enough to contain a machine state block and
mapped by CEEMCH.

fc (output/optional)
The parameter in which the callable service feedback code is placed. The
following conditions can result from this service.

Condition

CEE000 Severity 0

Msg_No N/A

Message The service was successful.

CEE390 Severity 3

Msg_No 3360

Message The stack frame was not found on the call chain.

Usage Notes:

1. This is intended for building a machine state for use by the CEEMRCM routine.
The machine state block returned by this routine can be used as input to
CEEMRCM.

2. It is the responsibility of the calling application to ensure that the storage for
the machine state block is not freed prematurely but it is freed when it is no
longer required. This helps to prevent memory leaks.

CEE3SMS2 CWI

264 z/OS V2R1.0 Language Environment Vendor Interfaces

3. If the saved machine state points into an XPLINK routine that does alloca(), the
value of register 4 in the gprs parameter must point to the DSA currently on the
Language Environment stack for that routine. The routine owning the DSA
cannot have done any alloca() requests since the value of register 4 was
captured.

CEEGOTO — restart execution at specified label
CEEGOTO is used to restart execution at a specified label within a stack frame. It
is supported to work only from one language to that same language.

CEEGOTO operates within a single thread (and thus, on one stack) and can only
target earlier stack frames on that stack. If the Language Environment condition
manager is on the stack and the range of CEEGOTO is from a stack frame more
recent than the Language Environment condition manager to a stack frame less
recent than the Language Environment condition manager, the Language
Environment condition manager pops off the stack and the corresponding
condition handler is terminated at that point. For more deeply nested conditions,
several can be canceled at once.

A return to the caller occurs only when the feedback token is provided and a
condition is detected.

Syntax

void CEEGOTO (target_id, [fc])
LABEL *target_id;
FEED_BACK *fc;

CEEGOTO
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12)
L R15,20(,R15)
BALR R14,R15

target_id (input)
A label variable passed by reference. The first word of the label points to an
active DSA. The DSA does not necessarily need to exist within the Language
Environment-managed stack. However, it does need to be on the back chain of
save areas. The second word of the label variable points to the instruction that
receives control when CEEGOTO is run. If this address is zero, then the
address is obtained from the saved R14 in the DSA specified in the first word.
AMODE information is obtained from the high-order bit of the address.

The target_DSA_address field in the first 4 bytes of a non-XPLINK label
variable is always non-zero. The base_register_instruction contains an instruction
that, when run using an assembler EX instruction, restores the base register(s)
needed by the target_instruction. A non-XPLINK label variable cannot be used
to GOTO or resume an XPLINK routine. Figure 65 on page 266 shows the
format of the non-XPLINK label variable.

CEE3SMS2 CWI

Chapter 7. Condition management 265

The first 4 bytes of an extended label variable are zero. An extended label
variable can be used to GOTO or resume either an XPLINK or non-XPLINK
routine. When resuming an XPLINK routine, the resume registers are
contained in the extended label variable itself, not the DSA to be resumed.
Figure 66 shows the XPLINK extended format label variable.

Note: The storage for the label variable is expected to be allocated within the
storage of the lexical scope of the label variable so that the storage is released
when the lexical scope is collapsed.

Address of target_save_area -- must be non-zero

base_register_instruction -- may be zero

+00

+04

+08

target_instruction -- may be zero

Figure 65. Format of a non-XPLINK label variable

Zero -- indicates Extended format label variable

1 = 32-bit XPLINK format
(Other values reserved)

XPLINK label variable and resume area format (fullword)

Target_instruction -- must be non-zero

(reserved)

label_extension -- address of base_register_instruction -- can be zero

(reserved)

Address of XPLINK resume area -- must be non-zero

(reserved)

+00

+04

+0C

+08

+10

+14

+18

+1C

Start of HLL-specific area -- length not specified -- can be 0-length+30

+00

+00

(Can be in HLL-specific area, above)

base_register_instruction -- up to 6 bytes

+0x HLL specific -- length not specified -- can be 0-length

Extended format label variable - resume area

Figure 66. XPLINK extended format label variable

CEEGOTO

266 z/OS V2R1.0 Language Environment Vendor Interfaces

Figure 67 shows the XPLINK extended format label variable – resume area.

Flags - x’80000000’ -- FP regs 0,2,4,6 valid
x’40000000’ -- FP regs 0-15 valid (overrides x’80000000’ bit)
x’20000000’ -- FP control Register valid

x’01000000’ -- Restarting XPLINK alloca() routine

x’10000000’ -- Call chain DSA fixup complete

x’00200000’ -- Vector regs save area valid

x'08000000' -- High Registers Valid

(Reserved)

(Reserved)

(Reserved)

target_dsa_address -- address of DSA to be resumed. This address may be stale
(point to the place where the DSA used to start before alloca() was called.
alloca() changes the starting address of the DSA.)

(Reserved - 20 bytes)

reference_dsa -- If the target routine does not issue alloca(), this field must be zero. The
target_dsa_address field is still valid.

If the target routine is an XPLINK routine that issues alloca(), this field
must point to the address of the DSA of the logical caller of the routine
being branched to. The target_dsa_address field may be stale in this
case (see above).

(reserved)

DSA reg 7 for alloca() backout -- needed only if reference_dsa is non-zero. This saved
Register 7 value is stored back into the moved alloca() DSA, before CEEGOTO branches
back to target_instruction

(reserved)

Registers 0-15, 4-bytes each. Selected values are loaded into regs before CEEGOTO
branches to target_instruction. When going back to a non-XPLINK routine, these values
may also be copied into the target_DSA.

(reserved)

Floating-point registers 0-15 (8 bytes each)

Note: Slots 0,2,4,6 or slots 0,1,2,..15 are valid, depending on setting of X’80000000’
and X’40000000’ bits in flags

Floating-point Control Register (Valid, if X’20000000’ flag bit is on)

+00

+04
+08
+0C

+28
+2C

+10

+30

+34

+38

+3C

+40
+44
.

+78
+7C
+80

+BC
+C0

+FC

+100

+17C

+180

+184
+188

+1FC

+200

(reserved)

Start of HLL-specific area -- length not specified -- can be 0-length

High Registers 0-15, 4-bytes each. These are valid only if the x'08000000' bit in the Flags
is set. These values are loaded into the high registers before CEEGOTO branches
to the target, if the X'08000000' bit is set in the Flags field.

+14

Address of Vector Registers save area (Valid, if x’00200000’ flag bit is on)
(Reserved - 4 bytes)

Figure 67. XPLINK extended format label variable – resume area

CEEGOTO

Chapter 7. Condition management 267

|

|
|
|

Table 49. Vector Register save area

+00 Vector Register save area version

+02 (reserved)

. . .

+10 Vector Registers 0-31 (16-bytes each)

. . .

+210 Start of HLL-specific area - length not specified - can be 0 - length

fc (output/optional)
One of the following condition tokens, which are passed by reference. A return
to the caller occurs only when a condition is detected.

Condition

CEE07Q Severity 2

Msg_No 0250

Message The target_id was not found on the stack.

CEE07R Severity 2

Msg_No 0251

Message An invalid target_id was provided.

Usage Notes:

1. As routines are popped off the stack, the DSA exit routines are invoked for
those DSAs marked as an exit DSA.

2. The base_register_instruction in the label variable is run using the assembler
instruction EX and is intended to restore the base register needed by the target
instruction. This instruction is executed immediately prior to the branch to the
target_instruction. The values of the registers are as follows:

R0-R12
Restored from the target_dsa

R13 The target_dsa

R14 The address of the target_instruction

R15 The address of the base_register_instruction

When resuming with an extended-format LABEL variable that resides in an
XPLINK DSA or alloca() area, that area may have been freed before the
base_register_instructon is executed.
When resuming into an XPLINK function, the register values when the EX
instruction is executed are:

R0-R3
Restored from extended format resume area in the LABEL variable

R4 Address of the target_dsa

R5 Restored from Extended format resume area in the LABEL variable

R6 The address of the base_register_instruction. This instruction is not
copied to a safe place before it is executed, so it must not reside in an
XPLINK DSA or XPLINK alloca() area that will get freed when
CEEGOTO runs.

CEEGOTO

268 z/OS V2R1.0 Language Environment Vendor Interfaces

||

||

||

||

||

||

||
|

R7 The address of the target_instruction

R8-R15
Restored from extended format resume area in the LABEL variable

3. If the base_register_instruction is zero, the EXecute is not performed.
4. CEEGOTO requests from a POSIX application (using longjmp() or

siglongjmp()) are intercepted so that proper cleanup routine and destructor
function invocation can take place. While executing a cleanup routine (for
example, a routine established using CEECPSH), a CEEGOTO results in
execution of all of the pushed, but not popped cleanup routines for more recent
stack frame's than the target stack frame. This rule applies for both normal
processing and for the execution of cleanup routines during thread
termination. If the jump buffer was established in the cleanup routine (for
example, the target of the CEEGOTO is in the same cleanup routine) control
continues at that point.
CEEGOTO invocation while processing a destructor function (during thread
termination) is allowed, but the target of the jump must be established by the
destructor function. (This is required since all of the user code has been
removed from the stack.)

5. When resuming an XPLINK routine that issues an alloca(), any alloca()
requests that were done after the LABEL variable was set up will be undone.
When resuming into a non-XPLINK routine, alloca() requests already made by
that routine are not undone.

6. A non-extended format LABEL variable passed to CEEGOTO must not reside
in an XPLINK DSA or alloca() area that will get freed when the program is
restarted.

7. An extended format LABEL variable passed to CEEGOTO can reside in an
XPLINK or non-XPLINK DSA that will be freed when execution is restarted. It
can also reside in storage obtained using XPLINK alloca() that will be freed
when execution is restarted. The LABEL variable can also reside elsewhere, in
which case CEEGOTO will not free it.

8. When an XPLINK program is restarted, register 7 always points to the
target_instruction. When a non-XPLINK program is restarted, register 14
always points to the target_instruction. This may limit the use of CEEGOTO to
restarting progams at a return point after a call.

9. The base_register_instruction will not be copied into a safe place before
CEEGOTO is executed with the EX instruction. The base_register_instruction
and any operands it uses must not reside in an XPLINK DSA or XPLINK
alloca() area that is freed during the processing in CEEGOTO.

10. Because FPRs 0-15 share the same storage with bytes 0-7 of VRs 0-15, the
content of FPRs save area overrides the content of Vector Registers save area
when they are both provided in extended format resume area, in the LABEL
variable.

CEEHDHDL — register an event handler for stack frame zero
processing

CEEHDHDL is used to register a member event handler for stack frame zero. This
register condition handler is called following the normal stack frame zero condition
handler.

Syntax

void CEEHDHDL (memberid, [fc])

CEEGOTO

Chapter 7. Condition management 269

|
|
|
|

LABEL *memberid;
FEED_BACK *fc;

CEEHDHDL
Call this CWI interface as follows:
L CEECAACELV-CEECAA(,R12) CAA address is in R12
L R15,3376(,R15)
BALR R14,R15

memberid (input)
The member ID of the member event handler that is to gain control at stack
frame zero conditions that remain unhandled. This condition handler is to gain
control at the termination of the condition manager as opposed to gaining
control at the termination of stack frame zero.

fc (output/optional)
A condition token passed by reference. The following conditions are returned
in fc:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE36S Severity 2

Msg_No 3292

Message Member already registered.

CEEMRCM — move the resume cursor
The callable service CEEMRCM allows the resume cursor to be moved to a specific
predefined location within the active call chain. A recommended approach for
using this service is to start with the current resume cursor machine state. This can
be obtained from the CIB's resume cursor. Changes then can be made to the
registers, PSW, or other components in your local copy of the machine state. Later,
if a resume function code is returned to condition management, then the
information from the updated machine state is used to resume the application
program.

Initially, the resume cursor is placed after the machine instruction that caused the
condition. Whenever the resume cursor is moved, as each stack frame is passed,
any associated exit is invoked. This moving also cancels any associated user
handlers. The direction of movement is always toward older stack frames and
never toward newer stack frames. The action occurs only after the condition
handler has returned to the condition manager. Multiple calls to CEEMRCM yield
the NET results of the calls; that is, if two calls move the resume cursor to different
places for the same stack frame, the most recent call is used for that stack frame.

Syntax

void CEEMRCM (position, [fc])
POINTER *position;
FEED_BACK *fc;

CEEMRCM
Call this CWI interface as follows:

CEEHDHDL

270 z/OS V2R1.0 Language Environment Vendor Interfaces

L CEECAACELV-CEECAA(,R12) CAA address is in R12
L R15,2856(,R15)
BALR R14,R15

position (input)
A pointer to a valid machine state block to which the resume cursor is be
moved.

fc (output/optional)
A condition token passed by reference; conditions returned in fc include:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE07V Severity 2

Msg_No 0255

Message position parameter is not a machine state block.

Usage Notes:

1. No stub is shipped for the CWI CEEMRCM.
2. Exit DSA routines are invoked as the resume cursor is moved across stack

frames.
3. The machine state provided to the CWI CEEMRCM has the format as found in

the resume cursor.
4. When a resume is requested, the state of the machine indicated in the machine

state block is established prior to the resume point being entered.
5. If the resume point is in an XPLINK routine, all storage obtained by any

alloca() requests done after the machine state was saved (perhaps by an earlier
call to CEE3SMS) will be freed up before the XPLINK routine is resumed. In
other words any alloca() requests issued after the machine state was saved and
before this CEEMRCM call will be undone. If the resume point is in a
non-XPLINK routine that issues alloca(), alloca() requests issued after the
machine state was saved and before the CEEMRCM call are not undone. When
resuming either an XPLINK or non-XPLINK routine, any alloca() requests
issued before the machine state was saved are not undone.

6. When an interrupt has occurred in a routine that has saved the stack pointer in
the CEECAA_SAVSTACK field or in the field pointed to by the
CEECAA_SAVSTACK_ASYNC field, the resume cursor is initially set up so that
the stack pointer is restored to that field if the application is resumed.
However, if the resume cursor is moved, the stack pointer is not restored to
that field unless certain fields in the machine state are set. To restore the stack
pointer to the CEECAA_SAVSTACK_ASYNC field, the flags INT_SF_VALID
and SAVSTACK must be set to 1 and the field INT_SF must contain the stack
pointer. To restore the stack pointer to the field pointed to by the
CEECAA_SAVSTACK field, the flags INT_SF_VALID and SAVSTACK_ASYNC
must be set to 1 and the field INT_SF must contain the stack pointer.

Note: Only the stack pointer that was saved at the time of the interrupt can be
restored and only be restored to the field where it was saved.

CEEMRCM

Chapter 7. Condition management 271

|
|
|
|
|
|
|
|
|
|
|

|
|

CEEYDSAF — find the previous DSA
CEEYDSAF is used to identify the DSA prior to the passed DSA. It requires that
the DSA used as input be a valid OS stackframe or an XPLINK stack frame. It also
requires that the stack format be passed so it uses the proper unwind technique.

Recommendation: For performance reasons, whenever possible, the DSA format
should be passed to this service instead of determining it dynamically.

Syntax

void CEEYDSAF (dsa_in, dsa_prev, dsa_format,(physical), (ph_callee),
(ph_callee_dsa_format), (fc))
POINTER *dsa_in;
POINTER *dsa_prev;
INT4 *dsa_format;
INT4 *physical;
POINTER *ph_callee;
INT4 *ph_callee_dsa_format;
FEED_BACK *fc;

CEEYDSAF
From a non-XPLINK routine, call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) Address of CAA in R12
L R15,0(,R15)
BALR R14,R15

dsa_in (input)
Address of an OS or XPLINK format DSA.

dsa_prev (output)
Address of the OS or XPLINK format DSA behind dsa_in.

dsa_format (input/output)
Format of DSA:
0 OS
1 XPLINK
-1 The CWI determines the dsa_format . On input, it pertains to the format of

the DSA of the dsa_in parameter. On output, it pertains to the format of the
returned DSA in the dsa_prev parameter. The -1 indicates the CWI will
attempt to determine the format of the passed DSA first. In all cases, the
DSA format returned will be for the DSA returned by the service in
dsa_prev.

physical (input/optional)
When physical = 1, physical unwinding requested. This means library-injected
and XPLINK transitional stack frames are to be skipped over.

ph_callee (output/optional)
This parameter is designed to be used with logical unwinding. It provides a
pointer to the stack frame physically located “in front” of the DSA returned as
the previous logical. If no transitionals or library-injected DSAs are present,
this is simply the DSA passed as input. If a transitional or an injected DSA is
present, this is a pointer to it.

ph_callee_dsa_format (output)
Format of DSA of Physical Callee : 0 = OS 1 = XPLINK Used with the ph_callee
parameter, this is the DSA format of the returned callee.

CEEYDSAF

272 z/OS V2R1.0 Language Environment Vendor Interfaces

fc (output/optional)
The parameter in which the callable service feedback code is placed. The
following conditions can result from this service.

Condition

CEE000 Severity 0

Msg_No n/a

Message The service completed successfully

CEE3EQ Severity 2

Msg_No 3546

Message An error occurred while attempting to find the
previous DSA.

CEE3ER Severity 2

Msg_No 3547

Message The physical callee DSA was requested and the
physical callee format was not.

CEE3ES Severity 2

Msg_No 3548

Message The callable service was passed a DSA format of -1
and was unable to determine the format of the
passed DSA.

__dsa_prev() — chain back to previous DSA
The __dsa_prev() function returns the address of the DSA prior to dsa_p on the
Language Environment stack. Two types of backchaining request are supported:
logical and physical. The req_type parameter is used to select either logical or
physical backchaining. For physical backchaining, the address of the DSA
immediately prior to dsa_p is always returned. That DSA can be a transition or
overflow DSA, or the DSA of a normal routine. For logical backchaining,
__dsa_prev() keeps looking backward on the Language Environment stack until a
normal DSA is found, skipping over any transition or overflow DSAs.

If the dummy Language Environment DSA is reached while backchaining, a NULL
pointer is returned, and errno is set to ESRCH.

__dsa_prev() can be used when the Language Environment stack of interest is not
in the current address space. To access storage outside the current address space,
the user must provide the callback_p parameter. callback_p is a pointer to a
user-written function that fetches all required data for __dsa_prev(). Generally, the
(*callback_p)() function would obtain the data using some application-dependent
method (like BPX1PTR) and move it into the current address space, where
__dsa_prev() can access it directly. If the Language Environment stack of interest is
in the same address space and is directly accessible to __dsa_prev(), callback_p can
be NULL.

Syntax

#include <edcwccwi.h>

void __dsa_prev (const void * (dsa_p, int req_type, int dsa_fmt, void *
(*callback_p)(void *data_p, size_t data_l), const void *caa_p, int *prev_fmt, void

CEEYDSAF

Chapter 7. Condition management 273

**ph_callee_dsa_p, int *ph_callee_dsa_fmt; fc));

const void *dsa_p
Pointer to the current DSA. __dsa_prev() returns a pointer to the DSA logically
or physically previous to dsa_p, depending on the value of the req_type
parameter. dsa_p may point to a DSA in another address space or in some
other place not directly accessible by __dsa_prev(). If this address is not
directly accessible, the callback_p parameter must be non-NULL. The callback
function will be used to access dsa_p indirectly.

int req_type
Controls if transition and overflow DSAs are returned. The allowed values for
req_type are:

__EDCWCCWI_PHYSICAL
Physical backchaining causes __dsa_prev() to return the address of the
DSA immediately prior to dsa_p. The returned DSA may be either a
transition, overflow, or normal DSA.

__EDCWCCWI_LOGICAL
Logical backchaining causes __dsa_prev() to skip over any transition or
overflow DSAs that it finds while backchaining, and not pass them
back. The address of the most recent normal DSA previous to dsa_p is
returned. Doing logical backchaining is the same as doing physical
backchaining one or more times, stopping when a normal DSA is
found.

int dsa_fmt
The format of the DSA pointed to by dsa_p. The allowed values for dsa_fmt are:

__EDCWCCWI_UP
Indicates that dsa_p points to a non-XPLINK DSA.

__EDCWCCWI_DOWN
Indicates that dsa_p points to an XPLINK DSA.

void * (*callback_p)()
Pointer to a user-provided function that fetches data not normally accessible by
__dsa_prev(). If callback_p is NULL, __dsa_prev() accesses dsa_p and any other
required Language Environment data areas directly in the current address
space. The Language Environment stack and all other data needed for
backchaining must be directly accessible to __dsa_prev() in this case.

The user-provided (*callback_p)() function is passed the address and length of
data to access. It must fetch the data in some application-dependent manner,
and make the data available in the current address space in a place accessible
to __dsa_prev(). (*callback_p)() must return a pointer to the copied data. This
data must remain available to __dsa_prev() until the next call to (*callback_p)(),
or until __dsa_prev() returns to its caller, whichever happens first. On
subsequent calls, (*callback_p)() is allowed to reuse the same data passback area.

There is no provision for (*callback_p)() to pass back an error return code,
indicating that the requested data could not be obtained. If (* callback_p)()
cannot return the requested data, it must not return to __dsa_prev(). When an
error occurs, (*callback_p)() may:
v longjmp() back to some error return point in the user code that called

__dsa_prev()
v ABEND or otherwise terminate abnormally
v exit(), pthread_exit(), etc.

__dsa_prev()

274 z/OS V2R1.0 Language Environment Vendor Interfaces

v Raise a caught signal where the catcher does longjmp() so as not to return to
__dsa_prev()

v Use Language Environment condition management to bypass __dsa_prev()
after the error and resume in user code.

v Recover in some other way that does not involve returning to __dsa_prev().

__dsa_prev() calls (*callback_p)() with two parameters:

void *data_p
Pointer to the start of the required data. This address might not be in the
current address space.

size_t data_l
The number of bytes of data required. data_l will never exceed 16 bytes. If
(*callback_p)() cannot pass back the complete data requested, it must not
return to __dsa_prev().

const void *caa_p
Pointer to the Language Environment CAA for the thread owning the dsa_p
DSA. This parameter must be non-NULL whenever callback_p is non-NULL,
and it may point to a CAA in some other address space. If callback_p is NULL,
caa_p may also be NULL. If caa_p is NULL, the current CAA (of the thread
where __dsa_prev() is running) is used. In this case, it is assumed that dsa_p
points to a DSA on the Language Environment stack for the caller's thread.

int *prev_fmt
Pointer to an optional passback area, where __dsa_prev() will return the DSA
format of the prior DSA. The possible values passed back in this field are the
same as the values for dsa_fmt. If prev_fmt is NULL, the DSA format for the
previous DSA is not passed back. If __dsa_prev() cannot find the previous DSA
and returns a NULL value, the field pointed to by prev_fmt is not altered.

void **ph_callee_dsa_p
Pointer to an optional passback area where __dsa_prev() will return the
address of the DSA of the physical callee. The physical callee is the function
called by the function owning the returned DSA. The physical callee can be a
Language Environment overflow or stack expansion routine, or it can be a
normal user or Language Environment function. If physical backchaining is
requested, *ph_callee_dsa_p will be the same as dsa_p after __dsa_fmt() returns.

If ph_callee_dsa_p is NULL, the address of the physical callee DSA is not passed
back. If __dsa_prev() cannot find the previous DSA and returns a NULL value,
the field pointed to by ph_callee_dsa_p is not altered.

int *ph_callee_dsa_fmt
ph_callee_dsa_fmt is a pointer to an optional passback area where __dsa_prev()
will return the DSA format of the physical callee's DSA. The possible values
passed back in this field are the same as the values for dsa_fmt. If
ph_callee_dsa_fmt is NULL, the format of the physical callee DSA is not passed
back. If __dsa_prev() cannot find the previous DSA and returns a NULL value,
the field pointed to by ph_callee_dsa_fmt is not altered.

If successful, __dsa_prev() returns the address of the previous DSA. In addition, if
errno is zero when __dsa_prev() is called, one of the following errno values may
be set to pass back additional information:

EACCES
Indicates that the returned DSA pointer is for the Language Environment
dummy DSA (pointed to by the CAA ceecaaddsa field). This is not an
error, and all returned or passed-back information is valid.

__dsa_prev()

Chapter 7. Condition management 275

EALREADY
Indicates that the input DSA pointer (dsa_p) is for the Language
Environment dummy DSA (pointed to by the CAA ceecaaddsa field). This
is not an error, and all returned or passed-back information is valid.

If unsuccessful, __dsa_prev() returns a NULL pointer, and sets errno to one of the
following values:

ESRCH
This error indicates that there was no DSA previous to dsa_p that could
satisfy the physical or logical backchaining request. This error also occurs if
dsa_p is NULL when __dsa_prev() is called.

EINVAL
This error can occur if:
v caa_p was NULL and callback_p was not NULL.
v req_type was not __EDCWCCWI_PHYSICAL or

__EDCWCCWI_LOGICAL.
v dsa_fmt was not __EDCWCCWI_UP or __EDCWCCWI_DOWN.

Usage Notes:

1. If the return code from __dsa_prev() is NULL, the listed errno values are set
even if errno was non-zero when __dsa_pr() was called. When the return code
from __dsa_pr() is not NULL, errno is not changed if it was not zero when
__dsa_prev() was called.

2. __dsa_prev() may cause program checks if it accesses invalid addresses. This is
especially likely to happen if callback_p is NULL and the Language
Environment stack being looked at is corrupted. For this reason, the caller
should consider having a signal catcher set up to handle SIGSEGV with
appropriate error recovery.

3. The Vendor Interfaces header file, <edcwccwi.h>, is located in member
EDCWCCWI of the SCEESAMP data set. In order to include <edcwccwi.h> in
an application, the header file must be copied into a PDS or into a directory in
the z/OS UNIX file system where the C/C++ compiler will find it.

__far_jump() — perform far jump (C/C++ and XPLINK only)
The __far_jump() interface performs a function similar to longjmp(). However, it
does not require a setjmp() to be performed previously. The information required
to perform this "nonlocal goto" is provided by the user in the __jumpinfo structure.
This information is normally provided in a jmp_buf and saved by the library when
a setjmp() is invoked, When used in conjunction with __set_stack_softlimit(),
described in “__set_stack_softlimit() — set stack soft limit (C/C++ and XPLINK
only)” on page 279, the information needed to jump to the point of retry can be
obtained from data passed to a signal handler set up to field a softlimit stack
overflow signal. This information includes registers, psw, and signal mask.

Syntax

#include <edcwccwi.h>

void __far_jump (struct __jumpinfo * JumpInfo);

__dsa_prev()

276 z/OS V2R1.0 Language Environment Vendor Interfaces

struct __jumpinfo * JumpInfo
The __jumpinfo structure must be cleared before it is filled in to ensure that all
reserved areas are zero. The __jumpinfo structure appears in the following
format:
struct __jumpinfo
{

char __ji_u1[68];
char __ji_mask_saved;
char __ji_u2[3];
sigset_t __ji_sigmask;
char __ji_u3[11];
unsigned __ji_fl_fp4 :1;
unsigned __ji_fl_fp16 :1;
unsigned __ji_fl_fpc :1;
unsigned __ji_fl_res1a :1;
unsigned __ji_fl_hr :1;
unsigned __ji_fl_res2 :1;
unsigned __ji_fl_exp :1;
unsigned __ji_fl_res2a :1;

char __ji_u4[12];
struct __jumpinfo_vr_ext *__ji_vr_ext;

#ifndef _LP64
char __ji_u7[4]; //only available in AMode 31

#endif
char __ji_u8[16];
long __ji_gr[16];
long __ji_hr[16];
int __ji_u5[16];
double __ji_fpr[16];
int __ji_fpc;

__ji_gr
Contains the following:
v The values of the 16 general purpose registers that are restored
v The value in Register 7 will be used as the target address of the jump
v The value of Register 4 will be used as the target DSA address

__ji_hr
Contains the values of the high halves of the 16 general purpose registers
(0-15) that are restored. This is valid only on 64 bit hardware when
running in 31 bit mode.

__ji_fpr
Contains the values of either 4 or 16 floating-point registers. If all 16
floating-point registers are present, registers 0-15 are saved in __ji_fpr[0]
through __ji_fpr[15]. If only 4 floating-point registers are present, they are
registers 0, 2, 4, and 6; these are saved in __ji_fpr[0], __ji_fpr[2], __ji_fpr[4],
and __ji_fpr[6].

__ji_mask_saved
Indicator field that is set to non-zero value when the signal mask field
(__ji_sigmask) is valid.

__ji_sigmask
Contains the signal mask value.

__ji_fpc
Contains the floating point control register value.

__ji_fl_fp4
Set to one when values for the 4 floating-point registers 0, 2, 4, and 6 are

__far_jump()

Chapter 7. Condition management 277

|
|

|
|
|
|
|
|

provided in __ji_fpr. This bit should also be set to one whenever all
floating-point registers 0-15 are present (when __ji_fl_fp16 is also set to
one.)

__ji_fl_fp16
Set to one when values for all 16 floating-point registers 0-15 are provided
in __ji_fpr. In this case, __ji_fl_fp4 should also be set to one.

__ji_fl_fpc
Set to one when the value of the floating-point control register is provided
in __ji_fpc.

__ji_fl_exp
Set to one when explicit backchaining is complete to the target stack.

__ji_fl_hr
Set to one when values for the high halves of general registers 0-15 are
provided in __ji_hr. This flag is set only in 31-bit addressing mode. In
64-bit addressing mode, __ji_gr contains 64-bit values for the general
registers, and __ji_fl_hr is not set.

__ji_vr_ext
When the Vector Registers are available on the target machine, the
__ji_vr_ext field can be set to a pointer to vector register save area or set to
NULL if vector registers are not to be restored.
typedef char __jumpinfo_vector_t[16];
struct __jumpinfo_vr_ext
{

short __ji_ve_version;
char __ji_ve_u[14];
__jumpinfo_vector_t__ji_ve_savearea[32];

}

__ji_ve_version
Always set to zero.

__ji_ve_u
Reserved bytes and should always set to all zero.

__ji_ve_savearea
Contains the values of 32 Vector Registers (16 bytes each).

The __far_jump() function has no returned value. When __far_jump() completes,
program execution continues at the target address.

Usage Notes:

1. The library does not attempt to verify the contents of the __jumpinfo structure.
Incorrect data can lead to unpredictable results.

2. The caller of __far_jump() can optionally supply a signal mask suitable to the
target of the jump. It is usually required in the soft overflow scenario because
the signal handler, which is the __far_jump invoker, is driven with SIGSEGV
disabled. However, SIGSEGV must be enabled at resumption in the target.

3. The caller of __far_jump() provides the GPR and FPR sets needed for the
target of the __far_jump(). The GPR set is always complete. For example, it has
all 16 registers, including the target DSA address in R4 and target code address
in R7. The FPR set is 4 or 16 registers long, indicated by the accompanying
switches.

4. The contents of all registers at the point of resumption after a __far_jump() are
the values specified in the __jumpinfo buffer. The target address of the jump is

__far_jump()

278 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|
|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

not supplied separately. It is supplied as two of the register values in the GPR
set in the __jumpinfo buffer, R4 for the target DSA address and R7 for the target
code address.

5. The Vendor Interfaces header file, <edcwccwi.h>, is located in member
EDCWCCWI of the SCEESAMP data set. In order to include <edcwccwi.h> in
an application, the header file must be copied into a PDS or into a directory in
the z/OS UNIX file system where the C/C++ compiler will find it.

__set_stack_softlimit() — set stack soft limit (C/C++ and
XPLINK only)

When Language Environment attempts to expand the stack and the additional
stack segment could cause the total stack size to exceed the MaximumStackSize, a
SIGSEGV with an si_code of _SEGV_SOFTLIMIT is generated. As a result of the
SIGSEGV, a signal handler is driven and is passed information that represents the
environment at the point of stack overflow. This includes register contents, psw
contents, and signal mask contents. The signal handler has the option of releasing
stack storage and using the passed data to perform a __far_jump() to the original
point of overflow in Language Environment , trying the stack segment request
again. If a signal handler was registered but the SA_SIGINFO flag was not set, the
SIGSEGV signal is delivered but no extra information is passed to the signal
handler.

The initial stack softlimit value that existed before issuing any
__set_stack_softlimit() requests is the ULONG_MAX value. This disables the
softlimit from being reached. Because this function returns the current softlimit
value, the first time it is invoked, it returns the ULONG_MAX value. The function
always sets the soft limit to the passed MaximumStackSize value and returns the
previous soft limit value.

Syntax

#include <edcwccwi.h>

unsigned long __set_stack_softlimit (unsigned long MaximumStackSize);

unsigned long MaximumStackSize
MaximumStackSize is the stack size, in bytes. This is a thread-specific value. It is
also a soft limit, which means that the actual stack size can grow beyond this
limit. You can specify MaximumStackSize back to the ULONG_MAX value,
which disables the softlimit.

The __set_stack_softlimit() returns the previous value of the soft limit. This
function does not fail and no errors are defined.

Usage Notes:

1. The SIGSEGV is generated for the thread whose stack has grown beyond the
maximum size.

2. The SIGSEGV is generated regardless of whether a signal handler function for
SIGSEGVs has been registered.

3. No attempt is made to guarantee that there is sufficient available stack space to
deliver the signal, or that there is a minimum amount of available stack space.

__far_jump()

Chapter 7. Condition management 279

|

4. If a signal handler function for SIGSEGV was registered with the SA_SIGINFO
flag and using the sa_sigaction field to identify the handler function, an si_code
of, _SEGV_SOFTLIMIT(defined in signal.h), will be reported to the signal
handler.

5. The soft limit overflow is not detected until a stack extension is requested.
Therefore if a stack initial size has been selected that is greater than the soft
limit the stack size will grow past the soft limit, and will not be detected until
the initial stack size is exceeded.

6. The Vendor Interfaces header file, <edcwccwi.h>, is located in member
EDCWCCWI of the SCEESAMP data set. In order to include <edcwccwi.h> in
an application, the header file must be copied into a PDS or into a directory in
the z/OS UNIX file system where the C/C++ compiler will find it.

Other Language Environment routines and handlers
Along with compiler-writer interfaces, Language Environment provides the
following routines and handlers for condition management:
v Language-specific handler interface
v DSA exit routines
v Shunt routines
v Attention handling
v Error processing

Interface to the language-specific handlers
For information on the condition handlers, see the following sections:
v For handling conditions represented by the CEECIB (not for stack frame zero),

see “Event code 1 — handle condition represented by the CIB event” on page
486.

v For performing enablement for this stack frame, see “Event code 2 — perform
enablement for this stack frame event” on page 487.

v For handling conditions in accordance with the language defaults (stack frame
zero), see “Event code 3 — handle condition according to language defaults
event” on page 489.

v For information about a resumption from a condition handler within a
target_dsa, see “Event code 10 — resume from a condition handler event” on
page 501.

DSA exit routines
A DSA exit routine is used to perform activities on behalf of a stack frame when
the stack is being collapsed as the result of a return from a main, an immediate
STOP request, a GOTO out of block, or a move resume cursor request.

Exit routines allow for activities such as the closing of files and releasing of system
resources that are held.

Members not requiring exit DSAs may, for performance reasons, request that this
processing be disabled. This applies to normal, or non-abend, enclave terminations
initiated by a call to the CEETREN or CEETREC services. This is implemented
with a parameter used on the Enclave Initialization Event, Event Code 18. Refer to
this event for more information on enabling this feature. When this feature is on,
the traverse of the stack for exit DSA routines is not executed and the DSA exit
event call is skipped. If multiple language members are present in an enclave, all
must indicate that the DSA exit scan may be skipped. Stack traverse and DSA Exit

__set_stack_softlimit()

280 z/OS V2R1.0 Language Environment Vendor Interfaces

processing continues to occur for terminations with an abend pending or a GOTO
out of block or move resume cursor request whether the feature is enabled or not.
If the exit DSA scan is to be skipped, a flag in the EDB, 'CeeEdb_Term_Noedsa' is
activated.

An exit routine is established by one of two mechanisms, as described below.
1. The PPA1 has the exit DSA flag on.
2. The stack frame (DSA) is marked as requiring DSA exit processing by flags set

within the DSA.

The exit routine has two different interfaces, depending upon the mechanism used
to establish the exit.

PPA-marked exit routines
For the event handler when a stack frame is abnormally collapsed, see “Event code
11 — DSA exit routines event” on page 502. You can use this for both non-64-bit
and 64–bit environemnts.

DSA-marked exit routines
An exit can be marked in the first word of the DSA. The first byte of the DSA
must be marked with bit 4 on. The second byte of the DSA must have the X'08'
flag on indicating this DSA is an exit DSA.

When the exit routine is to be driven, the X'08' in the second byte is turned off and
a return using R14 is made to the routine. In addition, the Language Environment
condition manager takes the return address of one level back. Turning the flag off
allows the routine to interrogate whether the return was due to a normal return or
as an exit routine. When the return is due to an abnormal collapse of the stack
frame, there are no parameters passed back to the routine.

To establish the DSA exit, the FORTRAN I/O library routines must place the
following value into the first word of the calling application's DSA (in binary) (x
means any setting of the bit is valid in bytes 3 and 4.) The FORTRAN event
handler will be driven for the exit DSA event (Event Code 11)

00000000 01000000 xxxxxxxx xxxxxxx1

To remove the exit, the FORTRAN library can place any other pattern into the first
word of the DSA that will not match the pattern above and will not conflict with
other conventions of word zero established in previous releases of Language
Environment.

An exit can also be marked in two words of the DSA. Byte 0 of the DSA is
nonzero. In byte 1 of the DSA, either bit 6 is non-zero, or bit 0 is nonzero and in
byte 77 (hex), bit 0 is nonzero.

Upon completion of the exit routine, the exit routine returns to its caller, which is
the Language Environment condition manager.

Shunt routine
A shunt is a low-level error handling routine intended for use by language library
routines and debug tools. A shunt is typically used when a segment of code needs
to protect itself from a likely error. An incorrect address while following a control
block chain is an example of an error that activates a shunt routine.

Condition Management

Chapter 7. Condition management 281

A shunt is usually established for short periods of time while the library routines
or debug tools are providing services to the application. Language Environment
establishes an ESPIE error recovery routine for program interrupts and an ESTAE
recovery routine for abends. These recovery routines check for and setup for retry
to a shunt, as appropriate. Shunt routines do not return to the Language
Environment condition manager. There is no return code from the shunt routine.

Establishing a program interrupt shunt service
A program interrupt shunt routine is established by setting its address in the CAA
(CEECAADMC). When the shunt address gains control, the AMODE is the
AMODE at the time of the program interrupt. Setting an address in the
CEECAADMC effectively cancels the previously established shunt routine, if any.
Only one shunt routine can be in effect at a time. Language Environment does not
provide any facility for stacking the shunt addresses. A save is not needed prior to
establishing your own shunt routine.

The shunt routine is removed by removing its address from the CEECAADMC. A
value of zero should be assigned to CEECAADMC as soon as possible. A shunt
routine should be removed as soon as it is not needed. Information about the error
is provided to the shunt routine through the CEECAAPRGCK field in the CAA,
which is set to the value of the program interrupt code.

Usage Notes:

1. R15 is set to the address of the shunt routine upon entry to the shunt routine
for a resume into non-XPLINK code. For shunts activated in XPLINK routines,
there is no specific register set to the shunt address when the shunt routine
receives control.

2. R0 through R14 have the same value when the shunt routine gains control as
they did when the program check occurred. For shunts active in XPLINK
routines, R15 is also set to its contents at the time of the interrupt for the
resume.

3. The shunt routine cannot assume that the range of the base registers used at
the time that the program check occurred extends to the shunt routine. The
shunt routine might need to re-establish addressability upon entry.

4. The CEECAADMC field should be cleared as soon as it is no longer needed.
5. A shunt routine should never span a call statement. A shunt routine that gains

control with another program's registers will usually fail on the first branch
attempt. The routine that is called does not have to save the address of your
shunt routine.

6. The Language Environment condition manager clears the CEECAADMC field
when the program interrupt shunt routine is called.

Abend shunt routine
An abend shunt routine is established by setting its address in the CAA
(CEECAASHAB). Setting an address in the CEECAASHAB effectively cancels the
previously established abend shunt routine, if any. Only one abend shunt routine
can be in effect at a time. Language Environment does not provide any facility for
stacking the abend shunt addresses. A save is not needed prior to establishing your
own abend shunt routine.

The abend shunt routine is removed by removing its address from the
CEECAASHAB. A value of zero should be assigned to CEECAASHAB as soon as
possible. An abend shunt routine should be removed as soon as it is not needed.

Condition Management

282 z/OS V2R1.0 Language Environment Vendor Interfaces

After an abend occurs that is shunted, the abend shunt routine gains control in the
addressing mode in effect when the error recovery routine was established.
Table 50 lists the external fields of the CAA that will contain information about the
abend. This information is taken from fields of the SDWA associated with the
shunted abend. The SDWA does not exist after the abend shunt routine is given
control.

Table 50. CAA fields that contain information about abends

Field Description

CEECAAAB_GR0_VALID A bit indicating, if on, that the CEECAAAB_GR0 field
contains valid data about the last abend.

CEECAAAB_GR0 Register 0 contents at the time of the abend. This is only
valid if the CEECAAAB_GR0_VALID bit is on.

CEECAAAB_ICD1_VALID A bit indicating, if on, that the CEECAAAB_ICD1 field
contains valid data about the last abend.

CEECAAAB_ICD1 The eight bit interrupt code from SDWAICD1 field of the
SDWA for the abend. This is only valid if the
CEECAAAB_ICD1_VALID bit is on.

CEECAAAB_ABCC_VALID A bit indicating, if on that the CEECAAAB_ABCC field
contains valid data about the last abend.

CEECAAAB_ABCC The abend completion code, taken from SDWAABCC field
of the SDWA for the shunted abend. This is only valid if
the CEECAAAB_ABCC_VALID bit is on.

CEECAAAB_CRC_VALID If on, this bit indicates that the CEECAAAB_CRC field
contains valid data about the last abend.

CEECAAAB_CRC Component reason code, or return code associated with
the abend, taken from the SDWACRC field of the SDWA
for the shunted abend. This is only valid if the
CEECAAAB_CRC_VALID bit is on.

CEECAAAB_GR15_VALID A bit indicating, if on, that the CEECAAAB_GR15 field
contains valid data about the last abend.

CEECAAAB_GR15 Register 15 contents at the time of the abend. This field is
only valid if the CEECAAAB_GR15_VALID bit is on.

Usage Notes:

1. The abend shunt routine is intended to be used when the PSW key that is in
effect at the time the shunt is established matches the PSW key in effect at the
time the Language Environment ESTAE or user-provided error recovery routine
was established. Since Language Environment does not support retry in a
specified key, two fields in the CAA are provided to help effect the behavior of
the retry being done in the correct key. The CEECAASHAB_KEY field is to be
set to the IPK result just before setting CEECAASHAB to the address of the
abend shunt routine. This establishes the PSW key in effect at the time the
shunt is established. The CEECAASHAB_RECOVER_IN_ESTAE_MODE field (a
flag bit) is to be set on. This flag, when on, instructs Language Environment to
set up for retry to the abend shunt routine in the PSW key that was in effect
when the recovery routine was established. Since recovery routines are given
control by the system in the same PSW key as when they were established, the
flag simply tells the recovery routine to honor the abend shunt only when the
current IPK result matches the CEECAASHAB_KEY field. When the flag is off,
the recovery routine does not compare the IPK result and will setup for retry
using old methodology, which might include a retry in the wrong key. When

Condition Management

Chapter 7. Condition management 283

the flag is on, but the CEECAASHAB_KEY field is not set properly, the
recovery routine might ignore the abend shunt.

2. The abend shunt routine will receive control in the addressing mode that was
in effect when the recovery routine was established. This could be different
than the addressing mode in effect when the abend shunt routine was
established. Therefore, the abend shunt routine might need to change
addressing mode to execute properly.

3. The abend shunt routine cannot assume the contents of any of the general
purpose registers when it receives control. Generally, the registers will contain
the values at the time of the abend. The abend shunt routine might need to
re-load the general purpose registers that were saved prior to setting the abend
shunt routine address.

4. The CEECAASHAB field should be set to zero, the CEECAASHAB_KEY field
set to X'8F', and the CEECAASHAB_RECOVER_IN_ESTAE_MODE flag set to
off, as soon as the abend shunt routine is no longer needed

5. The Language Environment ESTAE, CEE3ERP, and the exception handler
routine used with Language Environment preinitialization, will reset these
fields when setting up for retry to the abend shunt routine.

Attention handling
When the runtime option INTERRUPT(ON) is specified, the Language
Environment condition manager issues a STAX macro, which requests attention
interrupts to be directed to a STAX exit.

In the CAA at offset X'120', label CEECAAATTN, is initially set to the address of a
routine that runs a BR 14.

If an attention interrupt occurs and the STAX exit is entered, the STAX exit changes
the address of the routine at CEECAAATTN to a routine that issues a CALL
CEESGL raising the ATTENTION condition.

Polling code is contained in both library- and compiler-generated code and is the
following code sequence; there is no parameter for this routine and R1 is not used:
L 15,CEECAAATTN
BALR 14,15

When polling code calls the routine that calls CEESGL, the attention condition is
raised. Condition handling proceeds with the defined sequence of condition
handling events, as if a synchronous condition were raised.

Error processing
Language Environment allows you to write exit routines that can be added to
CEE_ABEND_EXIT. All exit routines that were added to CEE_ABEND_EXIT are
invoked during condition management error processing using the CSVDYNEX
macro. Note the following restrictions:
v The TRAP runtime option must specify TRAP(ON,NOSPIE).
v The address space must be APF-authorized.

Return codes
The return codes (in decimal) for CEE_ABEND_EXIT are:

0 The exit routine did not take any action. Continue with Language
Environment default dump processing.

Condition Management

284 z/OS V2R1.0 Language Environment Vendor Interfaces

4 The exit routine took a dump. Language Environment does not take a
SYSDUMP but might produce a CEEDUMP based on the TERMTHDACT
option.

8 The exit routine took a dump and gathered all appropriate diagnostic
information. Language Environment does not take a SYSDUMP or a
CEEDUMP.

Usage notes
1. Upon entry, GPR 1 contains the address of the SDWA.
2. Upon entry, GPR 13 contains the address a 336-byte work area.
3. For more information about CSVDYNEX macro, see z/OS MVS Programming:

Authorized Assembler Services Reference SET-WTO.
4. For more information about the TRAP runtime option, see z/OS Language

Environment Programming Reference.

Examples of condition management routines
This section contains code examples that demonstrate condition management
routines. The following code (sample) shows an example that adds two exit
routines called MYEXIT and MYEXIT2.

TITLE ’ADD EXIT ROUTINE’
PRINT GEN

DYNEXADD CEEENTRY PPA=MAINPPA,MAIN=YES,BASE=11,AUTO=WORKSIZE
* ==

USING WORKAREA,13
CSVDYNEX REQUEST=ADD,EXITNAME=LEEXIT,MODNAME=MYEXIT, X

DSNAME=MYPDS,RETCODE=LRETCODE,RSNCODE=LRSNCODE, X
MF=(E,DYNEXL)

L 15,LRETCODE
LTR 15,15 TEST RETURN CODE
BZ DYNGOOD

DYNFAIL NOPR 0
WTO ’CSVDYNEXIT FAILED’,ROUTCDE=12
B DONE

DYNGOOD NOPR 0
WTO ’CSVDYNEXIT WAS SUCCESSFUL’

DONE CEETERM RC=0,MODIFIER=0
* ==
* CONSTANTS
* ==
LEEXIT DC CL16’CEE_ABEND_EXIT’
MYEXIT DC CL8’MYEXIT’
MYPDS DC CL44’POSIX.MYEXIT.LOADLIB’
* ==
MAINPPA CEEPPA , CONSTANTS DESCRIBING THE CODE BLOCK
* ==
* THE WORKAREA AND DSA
* ==
WORKAREA DSECT

ORG *+CEEDSASZ LEAVE SPACE FOR THE DSA FIXED PART
LRETCODE DS F
LRSNCODE DS F

CSVDYNEX MF=(L,DYNEXL)
*

DS 0D
WORKSIZE EQU *-WORKAREA

CEEDSA , MAPPING OF THE DYNAMIC SAVE AREA
CEECAA , MAPPING OF THE COMMON ANCHOR AREA

*
*

END DYNEXADD

TITLE ’ADD EXIT ROUTINE’
PRINT GEN

DYNEXAD2 CEEENTRY PPA=MAINPPA,MAIN=YES,BASE=11,AUTO=WORKSIZE
* ==

Condition Management

Chapter 7. Condition management 285

USING WORKAREA,13
CSVDYNEX REQUEST=ADD,EXITNAME=LEEXIT,MODNAME=MYEXIT2, X

DSNAME=MYPDS,RETCODE=LRETCODE,RSNCODE=LRSNCODE, X
MF=(E,DYNEXL)

L 15,LRETCODE
LTR 15,15 TEST RETURN CODE
BZ DYNGOOD

DYNFAIL NOPR 0
WTO ’CSVDYNEXIT FAILED’,ROUTCDE=12
B DONE

DYNGOOD NOPR 0
WTO ’CSVDYNEXIT WAS SUCCESSFUL’

DONE CEETERM RC=0,MODIFIER=0
* ==
* CONSTANTS
* ==
LEEXIT DC CL16’CEE_ABEND_EXIT’
MYEXIT2 DC CL8’MYEXIT2’
MYPDS DC CL44’POSIX.MYEXIT.LOADLIB’
* ==
MAINPPA CEEPPA , CONSTANTS DESCRIBING THE CODE BLOCK
* ==
* THE WORKAREA AND DSA
* ==
WORKAREA DSECT

ORG *+CEEDSASZ LEAVE SPACE FOR THE DSA FIXED PART
LRETCODE DS F
LRSNCODE DS F

CSVDYNEX MF=(L,DYNEXL)
*

DS 0D
WORKSIZE EQU *-WORKAREA

CEEDSA , MAPPING OF THE DYNAMIC SAVE AREA
CEECAA , MAPPING OF THE COMMON ANCHOR AREA

*
*

END DYNEXAD2

The following code sample shows a code example that describes the exit routines
MYEXIT and MYEXIT2.
* ===
* Standard entry code.
* ===
MYEXIT CSECT
MYEXIT AMODE 31
MYEXIT RMODE ANY

STM R14,R12,12(R13) Save caller’s registers
LR R11,R15 Estabish base address
USING MYEXIT,R11 Identify base register
STORAGE OBTAIN,LENGTH=WORKALEN,LOC=ANY
LTR R15,R15 Test return code
BNZ STOFAIL Storage not available
ST R13,8(R1) Back-chain the save area
LR R13,R1
WTO ’GET STORAGE SUCCESSFUL’
WTO ’INSIDE MYEXIT’

* ===
* Process condition.
* ===

LA R15,4
B DONE

STOFAIL NOPR R0
WTO ’GET STORAGE FAILED’,ROUTCDE=11

* ===
* Standard exit code.
* ===
DONE NOPR R0

L R13,8(,R13)
L R14,12(R13) Reload caller’s register 14
LM R0,R12,20(R13) Reload caller’s registers 0-12

Condition Management

286 z/OS V2R1.0 Language Environment Vendor Interfaces

BR R14
*
* ===
* CONSTANTS and SAVE AREA.
* ===
WORKAREA DSECT
SAVE DC 18F’0’
WORKALEN EQU *-WORKAREA
*

LTORG
R0 EQU 0
R1 EQU 1 entry: points to parameter list
R2 EQU 2 work register
R3 EQU 3 copy of R1 at entry (preserves value)
R4 EQU 4 A(amount of storage to free)
R5 EQU 5 A(A(storage to be freed)
R6 EQU 6 A(return code)
R7 EQU 7 A(reason code)
R8 EQU 8 Amount of storage to free
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12 code base address
R13 EQU 13 savearea address
R14 EQU 14 entry: return point address
R15 EQU 15 entry: entry point address
* exit : return code

END

* ===
* Standard entry code.
* ===
MYEXIT2 CSECT
MYEXIT2 AMODE 31
MYEXIT2 RMODE ANY

STM R14,R12,12(R13) Save caller’s registers
LR R11,R15 Estabish base address
USING MYEXIT2,R11 Identify base register
STORAGE OBTAIN,LENGTH=WORKALEN,LOC=ANY
LTR R15,R15 Test return code
BNZ STOFAIL Storage not available
ST R13,8(R1) Back-chain the save area
LR R13,R1
WTO ’GET STORAGE SUCCESSFUL’
WTO ’INSIDE MYEXIT2’

* ===
* Process condition.
* ===

LA R15,0
B DONE

STOFAIL NOPR R0
WTO ’GET STORAGE FAILED’,ROUTCDE=11

* ===
* Standard exit code.
* ===
DONE NOPR R0

L R13,8(,R13)
L R14,12(R13) Reload caller’s register 14
LM R0,R12,20(R13) Reload caller’s registers 0-12
BR R14

*
* ===
* CONSTANTS and SAVE AREA.
* ===
WORKAREA DSECT
SAVE DC 18F’0’
WORKALEN EQU *-WORKAREA
*

LTORG
R0 EQU 0
R1 EQU 1 entry: points to parameter list
R2 EQU 2 work register

Condition Management

Chapter 7. Condition management 287

R3 EQU 3 copy of R1 at entry (preserves value)
R4 EQU 4 A(amount of storage to free)
R5 EQU 5 A(A(storage to be freed)
R6 EQU 6 A(return code)
R7 EQU 7 A(reason code)
R8 EQU 8 Amount of storage to free
R9 EQU 9
R10 EQU 10
R11 EQU 11
R12 EQU 12 code base address
R13 EQU 13 savearea address
R14 EQU 14 entry: return point address
R15 EQU 15 entry: entry point address
* exit : return code

END

Other Language Environment condition manager topics
For information about Language Environment default condition handling, see z/OS
Language Environment Programming Guide. For information about Language
Environment runtime options, see z/OS Language Environment Programming
Reference.

Language Environment condition information block
Each condition is represented by a condition information block (CIB). The CIB is
built by the condition manager and is used as an information repository for data
required by the condition handling facilities. The CIB is not presented to user
condition handlers and is available only to member condition handlers. The CIB is
not intended to be viewed or altered by the user. The complete CIB is listed in
z/OS Language Environment Debugging Guide.

Errors during condition handling
Every effort should be made to ensure that further exceptions do not occur during
the condition handler process. However, errors may still occur. To identify the state
(or point in time) of the Language Environment condition manager, a state setting
is contained in the CIB. The valid states, constant values, and actions taken by the
Language Environment condition manager are listed in Table 51.

When a language-specific exception handler determines that it is safe to incur a
nested condition, it should alter the CEECIB state variable to indicate nested
conditions are tolerated (cib_state_recursion).

Table 51. CEECIB State Variable, Constant values, and associated actions

State Value Value Variable Meaning Condition Manager Actions
with Nested Condition

cib_state_enable 1 The language-specific enablement handler is in
control. This is set by the Language
Environment condition manager.

Terminate the enclave with
abend 4087-1.

cib_state_hdl 2 A user condition handler, registered from
CEEHDLR, is in control. This is set by the
Language Environment condition manager.

Terminate the enclave with
abend 4087-2.

cib_state_memb 3 A language-specific exception handler is in
control. This is set by the Language
Environment condition manager.

Terminate the enclave with
abend 4087-3.

cib_state_SF0 4 A language-specific exception handler is in
control for stack frame zero. This is set by the
Language Environment condition manager.

Terminate the enclave with
abend 4087-4.

Condition Management

288 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 51. CEECIB State Variable, Constant values, and associated actions (continued)

State Value Value Variable Meaning Condition Manager Actions
with Nested Condition

cib_state_evnt 5 A language-specific exception handler is in
control for incidental service. This is set by the
Language Environment condition manager.

Terminate the enclave with
abend 4087-5.

cib_state_ipat 6 The debug tool is in control. This is set by the
Language Environment condition manager.

Call the debug tool event
handler indicating this event,
then terminate the enclave
with abend 4087-6.

cib_state_msg 7 Language Environment message services are
being called by the Language Environment
condition manager; this is set by the Language
Environment condition manager.

Terminate the enclave with
abend 4087-7.

cib_state_dump 8 Used when traceback or dump services are
being called.

Terminate the enclave with
abend 4087-8.

cib_state_Memb
_AR_MODE

9 Used for member processing when recursion is
allowed.

While in this state, the
Language Environment
condition manager tolerates
the occurrence of a nested
condition.

cib_state_ab_term_exit 10 Used when an abnormal termination exit is
called; the cib_state_ab_term_exit variable
contains the name of the exit.

End the enclave with abend
4087-A.

cib_state_recursion 100 A language-specific user handler is in control,
such as a PL/I On Unit. This value is set by
the language-specific exception handler. While
in this state, the Language Environment
condition manager tolerates the occurrence of a
nested condition. This is set by subordinate
condition handlers and debug tools when
calling user code.

Tolerate nested conditions.

HLL conventions and information
To work together with each other, the HLL condition handlers must adhere to a set
of conventions. Also, some extensions to the current HLL error handling schemes
are required so that the condition handling model is complete. By doing so, a
consistent, cooperative view of the condition handling model is produced. This
section lists these conventions and requirements on the HLLs, as well as some
additional information provided to aid the HLL writer.

HLL condition handling conventions
The HLL condition handling models basically fall into two categories: the stack
frame-based model (PL/I), and the Global Error Table (GET) model (FORTRAN).
To ensure a consistent view of condition handling in a multi-language thread that
can involve both models, cooperation is required among the HLL condition
handlers. The conventions for the HLL condition handling are:
v A stack frame is defined as a register save area that is back chained in the

logical invocation stack.
v All HLL condition handlers must percolate all unknown conditions. An

unknown condition is one for which the HLL has no defined action.

Condition Management

Chapter 7. Condition management 289

v When an HLL condition handler is called for enablement, unknown conditions
must be enabled.

v All (enabled) conditions of severity 0 or 1 must permit a resume at the next
sequential instruction without requiring any fix-up. If needed, any critical fix-up
can be performed at enablement by the member deciding that the condition was
enabled.

v When the action for a given condition is “ignore”, the condition is considered to
be disabled and the HLL condition handler must return not enabled when it is
called for enablement.

v Some hardware conditions can be detected through software prior to raising the
hardware condition. For example, the software can check for the ZeroDivide
condition by checking for a zero divisor. If a condition is defined to be enabled
by the HLL, and software detects a potential hardware condition, then the
equivalent Language Environment condition must be signaled using CEESGL.

v Despite the above, statement-oriented language constructs are most
appropriately handled directly in the HLL. Any corresponding condition is
defined to be disabled. For example, the ON SIZE clause of a COBOL DIVIDE
verb (which includes the logical equivalent of the ZeroDivide condition) can be
handled by COBOL without ever raising a condition.

v For HLLs that employ the GET model, some conventions must be followed so
that in a multi-language application that contains both the GET model HLL and
the stack frame based model HLL the two models can work in concert. These
conventions are:
– For enabled conditions, the actions defined in the GET model are divided into

two groups:
1. Fix-up and resume
2. Other than fix-up and resume
If the default action is fix-up and resume, then that action must be taken at
the owning stack frame.

– If a user explicitly alters the action that needs to be taken for a particular
condition within the GET (for example, registering his own handler to field
the condition instead of taking the default action), the user-specified action
must be honored.
If the user changes the number of messages that are displayed for a particular
condition, then the system action is still enforced at the zeroth stack frame.

– If the condition is presented to a stack frame other than the owning stack
frame (implying that the condition occurred in a non-GET language) or if the
default action is something other than fix-up and resume, then the HLL
condition handler must percolate the condition. Specifically, any existing GET
actions that specify termination must be changed to percolation. These rules
allow current semantics to be followed, but also permit inter-language
cooperation.

– If the HLL condition handler for the GET model is called for the zeroth stack
frame, the “true” system action must be enforced at this time.

v If a HLL condition handling routine needs to permit nested conditions, and thus
would be recursively entered, they must set the state variable in the CIB to
cib_state_recursion.

v Those HLLs that employ a GET must provide a mechanism to allow a condition
to be percolated. Users must be able to specify the percolation action.

Condition Management

290 z/OS V2R1.0 Language Environment Vendor Interfaces

HLL condition handling information
The following list provides some information and suggestions intended to be
helpful to implementers of HLLs:
v Language Environment math library routines that are called as an intrinsic in a

given HLL must behave as if the logic within the math service had been
generated in-line by the compiler. That is, the characteristics of the HLL are
inherited by the Language Environment math service.

v Some conditions are considered to be HLL-specific. For example, I/O related
conditions are currently HLL-specific. Other HLL-specific conditions include the
AREA, CONDITION, and SIZE conditions in PL/I (PL/I examples are included
in this section for illustrative purposes).

v Enablement is performed for all conditions regardless of the origin, hardware or
software (CEESGL, for instance).

v Enablement allows the HLL to enforce constructs such as PL/I's prefix
conditions and COBOL's ON SIZE clause. (COBOL can generate in-line code to
check for this and honor the ON SIZE without ever signaling a condition.)

v The HLLs should use the severity that is contained within the condition
representation to advantage. For example, PL/I could signal the PL/I ENDPAGE
condition at severity 1. If no handler acted on the condition, Language
Environment would take the default action for unhandled severity 1 conditions
(in the absence of a feedback token), which is to resume at the next sequential
instruction following the signal.

Language Environment-issued abends
Language Environment issues abends for some fatal errors. For these errors, the
Language Environment exception manager terminates the process without the
subordinate exception handlers being called. Note that all enclaves within the
process are terminated.

While executing under CICS, the abend code is the 4-character EBCDIC
representation of the abend codes; the reason code is not provided. Reason codes
are only included in the CEE100 messages that are issued to the console. In this
case, the abend code and the reason code are provided in hexadecimal notation.
Reason codes are zero unless stated otherwise.

Language Environment issues user abends with codes of 4000 and above. When
Language Environment issues an abend, the normal condition processing does not
occur. Language Environment percolates the abend if the abend drives the ESTAE
exit of Language Environment. User abends of 4000 and above that are not issued
by Language Environment are not percolated.

The products running under Language Environment should be aware that abend
codes that are 4000 through 4095 are reserved for Language Environment use.
These abend codes are used by Language Environment and possibly the members
to signify that the environment is no longer usable.

In general, other abend codes are intercepted by the Language Environment
exception manager. These produce messages and possibly dumps. The philosophy
of the Language Environment exception manager is to provide diagnostic messages
and not abend.

Condition Management

Chapter 7. Condition management 291

292 z/OS V2R1.0 Language Environment Vendor Interfaces

Chapter 8. Program management

This section describes the functions supported by the Language Environment
program manager and how to invoke them. The Language Environment program
manager utilizes current underlying system support for load and delete services.
The Language Environment program manager is responsible for:
v Loading and deleting of routines
v Managing quick access to library subroutines through library vector tables

(LIBVECs)

It should be noted that fetches and dynamic calls remain the responsibility of
individual high level languages (HLLs). The HLLs can use the load and delete
services of Language Environment to physically load and delete subroutines, but
the actual management of routines is up to the HLLs.

Loading and deleting programs in different environments
This section describes load module name support, the search order for the loading
and deleting of library subroutines, and the interface to load and delete services.
This process can vary, depending on the environment (MVS, CICS or z/OS UNIX
System Services).

Under MVS, the search order can be specified on the interface to the CEEPLOD2
service. This service allows the CWI writer to specify the search order in the
following:
v Search data sets only
v Search the UNIX file system only
v First search data sets, if not found then search the UNIX file system
v First search the UNIX file system, if not found then search data sets

The name specified on a load request can affect the search order. The following
rules apply to the name and search order:
v If the single slash ('/') character is anywhere in the name and is not covered by

the rules below, then search the UNIX file system only.
v If the characters ('./') are the first 2 characters in the name, then search the UNIX

file system only.
v If the characters ('//') are the first 2 characters, then search data sets only. The

first 2 characters are then deleted from the name that is passed to the operating
system.

When searching data sets, the name is always folded to uppercase. When going to
the UNIX file system, the name is passed “as is”.

When an MVS module search is performed, the load macro is issued and the usual
program search order prevails. When searching for the executable module in the
UNIX file system, then the BPX1LOD service is used.

In a CICS environment, Language Environment uses the EXEC CICS load services.

© Copyright IBM Corp. 1991, 2015 293

Finally, in a z/OS UNIX System Services environment, under CICS, loading from
the hierarchical file system is not supported.

CWI to program management process services
This section describes the interface to the process level load and delete services
provided by program management for other Language Environment library
routines and the HLLs library routines. AMODE switching is not performed for the
process level load and delete services.

CEEZLOD — process load service
This service is used to load routines that are maintained in storage across enclaves.
The address of CEEZLOD is held in CEEPCB_ZLOD. It is the user's responsibility
to delete routines loaded by this service.

Syntax

void CEEZLOD (name, name_len, rsvd, epoint, rc)
POINTER *name;
INT4 *name_len;
INT4 *rsvd;
POINTER *epoint;
INT4 *rc;

CEEZLOD
Call the process load service CWI interface as follows:
L R15,CEECAAPCB-CEECAA(,R12) Get address of PCB
L R15,CEEPCB_ZLOD-CEECPCB(,R15) Get address of CEL subroutine
BALR R14,R15 Invoke process load

name (input)
The address of the name to load.

name_len (input)
The length of the name, in bytes, to load.

rsvd (input)
A reserved field that must be zero.

epoint (output)
The address of the entry point returned as a result of the load.

rc (output)
A return code indicating the success of the service. This was chosen over
feedback codes because message services are not yet available during process
level initialization. The return codes (in decimal) are defined as follows:
00 Successful load
08 Module not found
12 Not enough storage to load
16 Unsuccessful load

CEEZDEL — process delete service
This service is used to delete routines that were loaded by CEEZLOD. It is the
user's responsibility to delete routines loaded by CEEZLOD. The address of
CEEZDEL is held in CEEPCB_ZDEL.

Syntax

void CEEZDEL (name, name_len, rsvd, rc)

Program Management

294 z/OS V2R1.0 Language Environment Vendor Interfaces

POINTER *name;
INT4 *name_len;
INT4 *rsvd;
INT4 *rc;

CEEZDEL
Call the process delete service CWI interface as follows:
L R15,CEECAAPCB-CEECAA(,R12) Get address of PCB
L R15,CEEPCB_ZDEL-CEECPCB(,R15) Get address of CEL subroutine
BALR R14,R15 Invoke process delete

name (input)
The address of the name to delete.

name_len (input)
The length of the name, in bytes, to delete.

rsvd (input)
A reserved field that must be zero.

rc (output)
A return code indicating the success of the service. This was chosen over
feedback codes because message services are not yet available during process
level initialization. The return codes (in decimal) are defined as follows:
00 Successful delete
04 Unsuccessful delete

CWI to program management region services
This section describes the interface to the region level load and delete services
provided by program management for other Language Environment library
routines and the HLLs library routines. AMODE switching is not performed for the
region level load and delete services.

CEEZLODR — region load service
This service is used to load routines that are maintained in storage across
processes. The address of CEEZLODR is held in CEERCB_ZLOD. It is the user's
responsibility to delete routines loaded by this service.

Syntax

void CEEZLODR (name, name_len, rsvd, epoint, rc)
POINTER *name;
INT4 *name_len;
INT4 *rsvd;
POINTER *epoint;
INT4 *rc;

CEEZLODR
Call the region load service CWI interface as follows:
L R15,CEECAARCB-CEECAA(,R12) Get address of RCB
L R15,CEERCB_ZLOD-CEECRCB(,R15) Get address of CEL subroutine
BALR R14,R15 Invoke region load

name (input)
The address of the name to load.

name_len (input)
The length of the name, in bytes, to load.

CEEZDEL

Chapter 8. Program management 295

rsvd (input)
A reserved field that must be zero.

epoint (output)
The address of the entry point returned as a result of the load.

rc (output)
A return code indicating the success of the service. This was chosen over
feedback codes because message services are not yet available during process
level initialization. The return codes (in decimal) are defined as follows:
00 Successful load
08 Module not found
12 Not enough storage to load
16 Unsuccessful load

Usage Note:

1. On CICS, when a region level load is requested, the HOLD option is specified
when the CICS LOAD command is performed.

CEEZDELR — region delete service
This service is used to delete routines that were loaded by CEEZLODR. It is the
user's responsibility to delete routines loaded by CEEZLODR. The address of
CEEZDELR is held in CEERCB_ZDEL.

Syntax

void CEEZDELR (name, name_len, rsvd, rc)
POINTER *name;
INT4 *name_len;
INT4 *rsvd;
INT4 *rc;

CEEZDELR
Call the region delete service CWI interface as follows:
L R15,CEECAARCB-CEECAA(,R12) Get address of RCB
L R15,CEERCB_ZDEL-CEECRCB(,R15) Get address of CEL subroutine
BALR R14,R15 Invoke region delete

name (input)
The address of the name to delete.

name_len (input)
The length of the name, in bytes, to delete.

rsvd (input)
A reserved field that must be zero.

rc (output)
A return code indicating the success of the service; message services are not yet
available during process level initialization. The return codes (in decimal) are
defined as follows:
00 Successful delete
08 Unsuccessful delete

CWI to program management enclave services
This section describes the interface to the enclave load and delete services provided
by program management for other Language Environment library routines and the
HLLs library routines. The load/delete services are accessed through LIBVEC.

CEEZLODR

296 z/OS V2R1.0 Language Environment Vendor Interfaces

CEEPLOD — enclave level load service
The CEEPLOD CWI callable service loads the named routine into storage. It uses
system services depending on the environment; MVS, z/OS UNIX, or CICS. For a
discussion of the search orders for the various host systems, see “Loading and
deleting programs in different environments” on page 293.

Syntax

void (*CEECELVPLOD) (name_len, name, address, mod_size, [fc])
INT4 *name_len;
CHAR8 *name;
POINTER *address;
INT4 *mod_size;
FEEDBACK *fc;

CEECELVPLOD
A field in the Language Environment LIBVEC that points to the Program Load
CWI. Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) CAA address is in R12
L R15,0096(,R15)
BALR R14,R15

name_len (input)
The number of bytes of the routine name to be loaded.

name (input)
The name of the routine to load into storage.

address (output)
The address of the entry point returned as a result of the load.

mod_size (output)
The number of bytes occupied by the newly-loaded load module. If the size
cannot be determined, a zero is returned.

fc (output/optional)
A parameter which contains the condition token. The possible conditions are:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE3DC Severity 3

Msg_No 3500

Message Not enough storage available to load [module_name]

CEE3DD Severity 3

Msg_No 3501

Message [module_name] module not found.

CEE3DE Severity 3

Msg_No 3502

Message [module_name] module name too long.

CEEPLOD

Chapter 8. Program management 297

Condition

CEE3DF Severity 3

Msg_No 3503

Message Load service request for module [module_name] was
unsuccessful.

CEE3EJ Severity 3

Msg_No 3539

Message The load request for program object [module_name] was
unsuccessful for the current level of CICS.

CEE3EK Severity 3

Msg_No 3540

Message The load request for program object [module_name] was
unsuccessful.

Usage Notes:

1. Language Environment maintains a list of all modules loaded by the low-level
load service. This list is maintained so that Language Environment can delete
all the modules it loaded with the low-level load service during the life of the
enclave.

2. The user must issue a corresponding low-level delete service for each load
service request.

3. The search order for the module is system dependent. For details, see “Loading
and deleting programs in different environments” on page 293.

4. The CEEPLOD service does not support loading program objects with deferred
load classes; for example, CEEPLOD does not support a reentrant C program
that was built with using the Pre-linker utility. The CEEPLOD2 CWI should be
used instead.

CEEPLOD2 — enclave/thread level load service
The CEEPLOD2 CWI callable service loads the named routine into storage. The
underlying environment (MVS, z/OS UNIX, CICS) system services are used. For a
discussion of the search orders for the various host systems, see “Loading and
deleting programs in different environments” on page 293. This service can be
used to request loads at the thread or enclave level.

Syntax

void CEEPLOD2 (name_length, name, flag, token, entry_point_address, [fc])
INT4 *name_length;
CHAR *name;
INT4 *flag;
INT4 *token;
POINTER *entry_point_address;
FEED_BACK *fc;

CEEPLOD2
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) CAA address is in R12
L R15,3948(,R15)
BALR R14,R15

CEEPLOD

298 z/OS V2R1.0 Language Environment Vendor Interfaces

name_length (input)
Specifies the name of a fullword containing the length of the name of file
(program) to be loaded. The length can be up to 1023 bytes.

name (input)
Specifies the name of a field of length name_length containing the name of the
file (program) to be loaded. The file name can be up to 1023 characters long,
and does not require a terminating null character.

flag (input)
A fullword binary value indicating the load search order and the service level
(enclave/thread) request. The following bits are defined:

0-17 reserved

18-23 flag_search. The value indicates the search order for the load request.
The values are defined as follows:
0 Data sets only
1 UNIX file system only
2 Data sets then UNIX file system
3 UNIX file system then data sets

24-31 flag_level. The value indicates if this load request is to be done at the
enclave or thread level. The values are defined as follows:
0 thread
1 enclave

token (output)
A 32-bit field of information that is returned. This token must be passed to the
query/delete service.

entry_point_address (output)
The address of the entry point returned as a result of the load.

fc (output/optional)
Specifies the optional feedback token where the CWI feedback code will be
placed. If this argument is omitted and the CWI will return a feedback code
other than CEE000, the CWI will 'raise' this feedback code as an error
condition. The following conditions can result from this CWI service.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE3D0 Severity 3

Msg_No 3512

Message A UNIX file system load of module module name failed. The
system return code was [return_code]; the reason code was
[reason_code].

CEE3DC Severity 3

Msg_No 3500

Message Not enough storage available to load [name].

CEE3DD Severity 3

Msg_No 3501

Message [name] module not found.

CEEPLOD2

Chapter 8. Program management 299

Condition

CEE3DE Severity 3

Msg_No 3502

Message [name] module name to long.

CEE3DF Severity 3

Msg_No 3503

Message Load service request for module [name] was unsuccessful.

CEE3EJ Severity 3

Msg_No 3539

Message The load request for program object [module_name] was
unsuccessful for the current level of CICS.

Usage Notes:

1. Language Environment maintains a list of all modules loaded by this load
service. This list is maintained so that Language Environment can delete all the
modules it loaded using this load service during the life of the enclave or
thread.

2. If more than one load is issued for a reentrant module, multiple loads are not
performed. For the first load request, the module is brought into storage. If any
subsequent load requests are made for that module, its address is returned and
a use count is maintained for it.

3. The user must issue a corresponding delete service for each load service
request.

4. The search order for the module is system dependent. For details, see “Loading
and deleting programs in different environments” on page 293.

5. If the file name does not follow the name rules, see “Loading and deleting
programs in different environments” on page 293, and the search order requests
load from the UNIX file system, then a getenv() is done for the 'LIBPATH'
environment variable. If the variable exists, it is passed to the BPX1LOD service
as the path name and BPX1LOD would proceed to search for the requested file
name in each of the directories specified in the LIBPATH. If LIBPATH does not
exist, then it is assumed the path is the current working directory, unless the
path name to load already contains a slash, then the LIBPATH is ignored.

CEEPDEL — enclave level delete service
The CEEPDEL CWI callable service deletes the specified routine. The underlying
host services are used to delete the routine.

Syntax

void (*CEECELVPDEL) (name_len, name, [fc])
INT4 *name_len;
CHAR8 *name;
FEEDBACK *fc;

CEECELVPDEL
A field in the Language Environment LIBVEC that points to the program
delete CWI. Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) CAA address is in R12
L R15,0084(,R15)
BALR R14,R15

CEEPLOD2

300 z/OS V2R1.0 Language Environment Vendor Interfaces

name_len (input)
The number of bytes of the following load module name.

name (input)
The name of the routine to be deleted.

fc (output)
A parameter which contains the condition token. The possible conditions are:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE3DG Severity 3

Msg_No 3504

Message Delete service request for module [module_name] was
unsuccessful.

Usage Notes:

1. Language Environment maintains a list of all modules loaded by the low-level
load service. This list is maintained so that Language Environment can delete
all modules it loaded with the low-level load service during the life of the
environment.

2. If more than one load is issued for a module, multiple loads are not performed.
For the first load request, the module is brought into storage. If any subsequent
load requests are made for that module, its address is returned and a use count
is maintained for it.

3. If a delete request is made, the use count decrements and, when it reaches zero,
the module is deleted from virtual storage.

4. It should be noted that calling a deleted entry point is an error and causes
unpredictable results.

CEEPDEL2 — enclave level delete service
The CEEPDEL2 CWI will delete a module that was requested by the CEEPLOD2
load service. The use count is decremented and, when it reaches zero, the module
is deleted from virtual storage. It should be noted that calling a deleted entry point
is an error and causes unpredictable results.

Syntax

void CEEPDEL2 (token, [fc])
INT4 *token;
FEED_BACK *fc;

CEEPDEL2
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) CAA address is in R12
L R15,3952(,R15)
BALR R14,R15

token (input)
A 32-bit field of information that is returned from the load request.

fc (output/optional)
Specifies the optional feedback token where the CWI feedback code will be

CEEPDEL

Chapter 8. Program management 301

placed. If this argument is omitted and the CWI will return a feedback code
other than CEE000, the CWI will “raise” this feedback code as an error
condition. The following message identifiers and associated severities may be
returned by the service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE516 Severity 3

Msg_No 5158

Message The z/OS UNIX callable service, BPX1DEL was unsuccessful.
The system return code was [return_code], the reason code was
[reason_code].

When the message identifier is CEE516, the following qualifier data is also
displayed

No. Name Input/
Output

Type Value

1 parm_count Input INT4 3

2 return_code Input INT4 return code from kernel, BPX1DEL function

nn codes defined by z/OS UNIX

3 reason_code Input INT4 reason code from kernel, BPX1LOD function

nn codes defined by z/OS UNIX

CEEPQLD — return information about loaded module
The CEEPQLD CWI returns information about the executable module that was
loaded by the CEEPLOD2 load service. The following information is returned:
v name length
v name
v load point address
v entry point address
v executable module size in bytes

Syntax

void CEEPQLD (token, name_len, name, load_point_address, entry_point_address,
module_size, [fc])
INT4 *token;
INT4 *name_length;
CHAR *name;
POINTER *load_point_address;
POINTER *entry_point_address;
INT4 *module_size;
FEED_BACK *fc;

CEEPQLD
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) CAA address is in R12
L R15,3596(,R15)
BALR R14,R15

CEEPDEL2

302 z/OS V2R1.0 Language Environment Vendor Interfaces

token (input)
A 32-bit field of information that was returned on the load request.

name_length (output)
Specifies the name of a fullword containing the length of the name of file
(program) to be queried. The length can be up to 1023 bytes long.

name (output)
Specifies the name of a field of length name_length containing the name of the
file (program) to be queried. The file name can be up to 1023 characters long,
and does not require a terminating null character.

load_point_address (output)
The address of the load point returned as a result of the load.

entry_point_address (output)
The address of the entry point returned as a result of the load.

module_size (output)
The module size in bytes of the executable module.

fc (output/optional)
Specifies the optional feedback token where the CWI feedback code will be
placed. If this argument is omitted and the CWI will return a feedback code
other than CEE000, the CWI will “raise” this feedback code as an error
condition. The following message identifiers and associated severities may be
returned by the service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE3DR Severity 0

Msg_No 3515

Message No modules were loaded.

CEEPCB_DELETE — system dependent delete service
The system dependent delete service is either a delete service for MVS, CICS or a
delete service provided by the user service routines in a pre-initialized
environment.

Syntax

void CEEPCB_DELETE (name_addr, name_length, user_word, load_point, return_code,
reason_code)
POINTER *name_addr;
INT4 *name_length;
INT4 *user_word;
INT4 *rsvd_word;
INT4 *return_code;
INT4 *reason_code;

CEEPCB_DELETE
Call this CWI interface as follows:
L R15,CEECAAPCB-CEECAA(,R12)
L R15,CEEPCB_DELETE-CEEPCB(,R15) System dependent delete
BALR R14,R15

CEEPQLD

Chapter 8. Program management 303

name_addr (input)
Fullword Address of the name of module to delete.

name_length (input)
Fixed Binary(31) length of module name.

user_word (input)
A fullword user field.

rsvd_word (input)
A fullword address reserved for future use (input parameter); must be zero.

return code (output)
Fullword return code from load.

reason code (output)
Fullword reason code from load. The return and reason codes have the
following values:

Return Code Reason Code Meaning

0 0 Successful

8 4 Unsuccessful; delete failed

16 4 Unsuccessful — uncorrectable error occurred

CEEPCB_LOAD — system dependent load service
The system dependent load service is either a load service for MVS, CICS or a load
service provided by the user service routines in a pre-initialized environment.

Syntax

void CEEPCB_LOAD (name_addr, name_length, user_word, load_point, entry_point,
module_size, return_code, reason_code)
POINTER *name_addr;
INT4 *name_length;
INT4 *user_word;
POINTER *load_point;
POINTER *entry_point;
INT4 *module_size;
INT4 *return_code;
INT4 *reason_code;

CEEPCB_LOAD
Call this CWI interface as follows:
L R15,CEECAAPCB-CEECAA(,R12)
L R15,296(,R15) System dependent load
BALR R14,R15

name_addr (input)
Fullword Address of the name of module to load.

name_length (input)
Fixed Binary(31) length of module name.

user_word (input)
A fullword user field.

load_point (input/output)
Fullword address to load point address of the loaded routine. If zero on
output, then load point address was not available.

CEEPCB_DELETE

304 z/OS V2R1.0 Language Environment Vendor Interfaces

entry_point (output)
Fullword entry point address of the loaded routine.

module_size (output)
Fixed Binary(31) size of module that was loaded.

return code (output)
Fullword return code from load.

reason code (output)
Fullword reason code from load. The return and reason codes have the
following values:

Return Code Reason Code Meaning

0 0 Successful

0 12 Successful; loaded via SVC 8

4 4 Unsuccessful; module loaded above the 16 megabyte line
when in AMODE(24)

8 4 Unsuccessful; load failed

16 4 Unsuccessful; uncorrectable error occurred

CEEPLODT — thread level load service
The CEEPLODT CWI callable service loads the named routine into storage.
Underlying host system services are used. For a discussion of the search orders for
the various host systems, see “Loading and deleting programs in different
environments” on page 293.

Syntax

void (*CEECELVPLODT) (name_len, name, address, mod_size, [fc])
INT4 *name_len;
CHAR8 *name;
POINTER *address;
INT4 *mod_size;
FEEDBACK *fc;

CEECELVPLODT
A field in the Language Environment LIBVEC that points to the thread-level
Program Load CWI. Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) CAA address is in R12
L R15,3492(,R15)
BALR R14,R15

name_len (input)
The number of bytes of the routine name to be loaded.

name (input)
The name of the routine to load into storage.

address (output)
The address of the entry point to the loaded module.

mod_size (output)
The number of bytes occupied by the newly-loaded load module. If the size
cannot be determined, a zero is returned.

fc (output/optional)
A parameter which contains the condition token; possible conditions are:

CEEPCB_LOAD

Chapter 8. Program management 305

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE3DC Severity 3

Msg_No 3500

Message Not enough storage available to load [module_name].

CEE3DD Severity 3

Msg_No 3501

Message [module_name] module not found.

CEE3DE Severity 3

Msg_No 3502

Message [module_name] module name too long.

CEE3DF Severity 3

Msg_No 3503

Message Load service request for module [module_name] was unsuccessful.

CEE3EJ Severity 3

Msg_No 3539

Message The load request for program object [module_name] was
unsuccessful for the current level of CICS.

CEE3EK Severity 3

Msg_No 3540

Message The load request for program object [module_name] was
unsuccessful.

Usage Notes:

1. Language Environment maintains a list of all modules loaded by the
thread-level load service but as yet not deleted. This list is maintained so that
Language Environment can delete all as not yet deleted modules it loaded with
the thread-level load service during the life of the thread when the thread
terminates.

2. The user can issue a corresponding thread-level delete service request for each
thread load service request.

3. This service can be used in all environments, MVS, CICS, pre-initialization,
multi-threaded and non-multi-threaded.

4. Each call to the service will result in a load system request. The operating
system determines whether to load another copy or just return a pointer to
another copy already in storage.

5. The search order for the module is system dependent; see “Loading and
deleting programs in different environments” on page 293 for details.

6. The CEEPLODT service does not support the loading of program objects with
deferred load classes. For example, CEEPLODT will not support a reentrant C
program that was built without using the Pre-linker utility. The CEEPLOD2
CWI should be used instead.

CEEPLODT

306 z/OS V2R1.0 Language Environment Vendor Interfaces

CEEPDELT – thread level delete service
The CEEPDELT CWI callable service deletes the specified routine. Underlying host
services are used to delete the routine.

Syntax

void (*CEECELVPDELT) (name_len, name, [fc])
INT4 *name_len;
CHAR8 *name;
FEEDBACK *fc;

CEECELVPDELT
A field in the Language Environment LIBVEC that points to the thread-level
program delete CWI. Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) CAA address is in R12
L R15,3496(,R15)
BALR R14,R15

name_len (input)
The number of bytes of the following load module name.

name (input)
The name of the routine to be deleted.

fc (output/optional)
A parameter which contains the condition token. The possible conditions are:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE3DG Severity 3

Msg_No 3504

Message Delete service request for module [module_name] was
unsuccessful.

Usage Notes:

1. Language Environment maintains a list of all modules loaded by the
thread-level load service but as yet not deleted. This list is maintained so that
Language Environment can delete all as not yet deleted modules it loaded with
the thread-level load service during the life of the thread when the thread
terminates.

2. If the load module name is not in the list of modules, the request completes
with a feedback code of CEE000 and no delete is done.

3. A thread may issue a thread-level delete only for modules for which it issued
the thread-level load.

Library subroutine access
Library subroutines can be accessed from compiler-generated code, user-written
assembly language code, and other subroutines. The following items support these
methods of access:
v A specially designed vector table called a LIBVEC
v A LIBVEC descriptor (a CSECT stored within the owner's library)

CEEPDELT

Chapter 8. Program management 307

v Routines to build a LIBVEC and to load and delete library routines

These methods of access include: dynamic load, LIBPACKs, and AMODE
switching that is transparent to both the caller and called subroutine.

The sections that follow describe the following items:
v LIBVECs
v LIBPACKS
v LIBVEC descriptors
v LIBVEC initialization
v CWI to LIBVEC low-level services
v Other LIBVEC functions

LIBVECs
A LIBVEC is provided for the Language Environment library routines. A pointer to
it is kept in the CAA and in the EDB. Additional LIBVECs are provided for
members to use for their own libraries. Members define their own LIBVEC pointer
fields.

As Figure 68 shows, a LIBVEC has three contiguous parts. The first part is made
up of fields that contain parameters relating to the table itself. The subroutine
loader uses this information. The second part is pointed to by the LIBVEC pointer
and contains a 4 byte entry (SLOTn) at a fixed offset for each subroutine. If the
subroutine has been loaded and AMODE switching is not being performed, each
SLOTn contains the entry point address of its subroutine. Otherwise SLOTn points
to its corresponding GLUE AREAn within the third part of the table. The third part
is the GLUEAREAn. The size of each GLUE AREAn is 20 bytes. If the subroutine
has been loaded and AMODE switching is being performed, the corresponding
GLUE AREAn contains AMODE switching code.

Access to library routines through LIBVEC can be direct (though a known fixed
LIBVEC offset) or indirectly (through an externally-defined address constant and a
library owner supplied stub). Library owners can choose to provide a macro for
direct access to their library routines and a stub for indirect access.

Note: Language Environment library routines can be accessed only through a stub
in compiled code; Language Environment provides stubs for this purpose. Library
to library calls can access the Language Environment LIBVEC vector table directly.

GLUE
AREAn

LIBVEC

LIBVEC

table parms

4-byte entities

20-byte entities

SLOTn

Figure 68. Library subroutine access table (LIBVEC)

LIBVECS

308 z/OS V2R1.0 Language Environment Vendor Interfaces

The following instructions are used to access library routines through LIBVEC
directly using fixed offset:

When the access is indirect, through a stub,
1. The calling program performs the following instruction sequence:

2. A stub routine is provided for each library routine entry point. It is link-edited
with the user program.
There is one type of stub routine that generates the LIBVEC calling sequence.
When the stub is entered from the above code, it performs the following calling
sequence:

3. If the subroutine has not yet been loaded, then the direct or stub branch goes to
GLUE AREAn, which contains code to invoke the subroutine loader.

4. If the subroutine has been loaded and AMODE switching is being done, the
direct or stub branch goes to GLUE AREAn, which contains switching code.
AMODE switching is done whenever the ALL31(OFF) runtime option is in
effect.

5. If the subroutine has been loaded and AMODE switching is not being done, the
direct or stub branch goes directly to the subroutine's entry address.

LIBPACKs
A LIBPACK is a packaging mechanism for library packaged subroutines. Language
Environment supports two types of LIBPACKs:
v An INIT LIBPACK is a LIBPACK loaded during LIBVEC initialization, provided

it is not already link-edited with the LIBVEC descriptor (LVD) in the load
module. For more information on LVDs, see “LIBPACK relationship to the LVD”
on page 310. INIT LIBPACKs not link-edited with LVDs are explicitly loaded
during LIBVEC initialization, as a part of the LIBVEC build process.

v A dynamic LIBPACK is a LIBPACK loaded upon first reference of a containing
entry point.

The use of LIBPACKs improves performance by loading many library routines in
one load. It eliminates directory searches for individual library routines.

HLLs using LIBVECs for their own libraries can organize LIBPACKs by RMODE,
components, function, or frequency of library subroutine access.

L R15,libvec_pointer Get address of LIBVEC
L R15,xxx(,15) Get address of Subroutine or GLUE AREAn

from LIBVEC slot
BALR R14,R15

AL 15,=V(LIBSUBx)
BALR 14,15

L 15,libvec_pointer Get address of LIBVEC
L 15,xxx(,15) Get address of Subroutine or GLUE AREAn

from LIBVEC slot
BR 15

LIBVECS

Chapter 8. Program management 309

LIBPACK relationship to the LVD
The LVD contains a LIBPACK information section that describes the name of the
LIBPACK and if it was link-edited with the LVD. It also contains LIBPACK
attributes such as the type of LIBPACK (INIT or dynamic), whether to invoke an
address resolver routine, and the first related entry number on a forward chain of
entries contained in that particular LIBPACK.

The entries contained in a LIBPACK are forward chained in the LIBPACK and
LIBVEC information section of the LVD. For a detailed description of LVDs, see
“LIBVEC descriptor (LVD).”

LIBPACK structure
Language Environment LIBPACKs are structured as a CSECT containing a table of
WXTRNs and address constants. The dimension of the table must equal the
dimension of its related LIBVEC (an entry for a particular routine must be in the
same position within the table as its SLOTn is within LIBVEC). For an example
LIBPACK CSECT definition, see Figure 69.

The X'80000000' value is added to the address constants in the preceding figure to
provide an indication to the AMODE switching code that these are AMODE(31)
routines. The linkage editor does not provide this for A-type address constants.

LIBPACK creation
A link-edit operation is required to create the Language Environment-supported
LIBPACK. An INCLUDE combines the LIBPACK CSECT with library routine
CSECTs to produce a load module. HLL library routines that must exist and be
preloaded during member initialization, should be packaged an INIT LIBPACK.
HLLs should not allow users to tailor this LIBPACK.

Note: Language Environment does not allow tailoring of any of its LIBPACKs.

If LIBVEC owners structure the LIBPACK differently from the Language
Environment-supported LIBPACK structure, they should flag the LIBPACK
attribute resolve and provide an address resolver routine. For additional
information, see note 5 on page 312.

LIBVEC descriptor (LVD)
The LVD provides the entry point names and attributes of routines accessed
through the LIBVEC. It also provides information about LIBPACKs associated with
the LIBVEC. The LVD is provided by the LIBVEC owner. An LVD consists of 3
sections; its format Figure 70 on page 311 shows the format:

CEEPLPKA CSECT
CEEPLPKA AMODE ANY
CEEPLPKA RMODE ANY

WXTRN CEEPxxx
DC A(CEEPxxx+X’80000000’) Routine xxxx
WXTRN CEEPyyy
DC A(CEEPyyy+X’80000000’) Routine yyyy
DC A(0) This slot unused in this LIBPACK
WXTRN CEEPzzz
DC A(CEEPzzz+X’80000000’) Routine zzzz
.
.
END CEEPLPKA

Figure 69. Partial LIBPACK CSECT definition

LIBPACKs

310 z/OS V2R1.0 Language Environment Vendor Interfaces

v Header information
v LIBPACK information
v LIBVEC information

Note:

1. One or more LIBPACKs (and their library routines) can be directly link-edited
with the LVD. In the LIBPACK information section, the address constant of a
LIBPACK can also be defined as an A-type address constant of zero or a V-type
address constant. A V-type indicates the address of the LIBPACK is always
link-edited with the LVD. An A-type address constant of zero indicates the
LIBPACK should always be loaded.

CEEPLVD CSECT LIBVEC descriptor
CEEPLVD AMODE ANY
CEEPLVD RMODE ANY Can reside anywhere in storage
**
* Header Information Section *
**

DC CL4’LVD ’ Eyecatcher
DC HL2’n’ Number of LIBPACKs
DC HL2’m’ Number of LIBVEC slots
DC CL3’ppp’ Name prefix
DC XL1’nn’ Version Number
DC AL4(aaaaaaaa) Addr of Address Resolver or 0

**
* LIBPACK Information Section - Contains an entry for each LIBPACK*
**

DC CL8’ssssssss’ LIBPACK name
WXTRN kkkkkkkk
DC AL4(kkkkkkkk) Address of LIBPACK. See notes

* following figure.
DC BL8’flags’ LIBPACK attributes

BIT0 EQU X’80’ "Dynamic" LIBPACK
BIT1 EQU X’40’ "Resolve" invoke the Address
* Resolver Routine
BIT27 EQU X’37’ **** Reserved *******

DC AL1(0) **** Reserved *******
DC AL2(k) Entry number of first related

* entry on chain.
* . . .
* (Additional LIBPACK entries are repeat of above 16 bytes)
* . . .

* LIBVEC Information Section - Contains an entry for each LIBVEC *
* slot in LIBVEC slot order. *

DC CL5’eeeee’ Library routine name suffix
DC BL8’flags’ Library routine attributes

BIT0 EQU X’80’ This routine is part of a LIBPACK
BIT1 EQU X’40’ Invoke address resolver
BIT2 EQU X’20’ Do Not Perform AMODE switching
* code for this module.
BITS37 EQU X’3F’ *** Reserved ***

DC AL1(j) LIBPACK number; index into LIBPACK
* Information Section)

DC AL2(k) Entry number of next related
* entry on chain or 0 to indicate
* end of chain (if this routine is
* part of a LIBPACK).
* . . .
* (Additional LIBVEC entries are repeat of above 9 bytes)
* . . .

END CEEPLVD

Figure 70. LIBVEC descriptor

LVD

Chapter 8. Program management 311

2. The LVD must remain in memory for the life of the LIBVEC it represents. It is
used by the subroutine loader as the source of the names of the modules to be
dynamically loaded. However, it is designed to reside above the 16 megabyte
line.

3. The LVD is reentrant and can exist in the (E)LPA.
4. Within the LIBVEC information section, the entries for the routines of a

LIBPACK are forward chained together. When the subroutine loader determines
that the routine to be loaded is part of a dynamic LIBPACK, it loads that
LIBPACK. The chain is then followed to insure that the LIBVEC slots for all
routines within the LIBPACK are updated.

5. The LIBVEC owner can provide an address resolver routine (as part of the LVD
contained load module). If present and the LIBPACK attribute resolve is
flagged, this routine is invoked by LIBVEC initialization or the subroutine
loader. It is passed the address of the LVD LIBVEC information section, the
entry number of the first related entry on the chain, the address of the load
module's external entry point. It returns a temporary LIBVEC table with
addresses resolved to their respective LIBVEC slots.
If the LIBPACK attribute resolve is flagged and no address resolver routine is
present then a default address resolver internal to Language Environment
program management is used. It assumes a table of address constants equal to
the dimension of its related LIBVEC are located at the load module's external
entry point. An entry for a particular routine must be in the same position
within the table as its SLOTn is within LIBVEC. When the address resolver
routine is invoked, R1 it points at the following parameter list.

The address resolver routine must be written as REENTRANT AMODE 31
RMODE ANY. It is entered using BALR 14,15 in AMODE 31 and, therefore, can
return using BR 14.

LIBVEC initialization
The Language Environment LIBVEC is initialized as part of Language
Environment initialization. Prior to first use, the LIBVECs of other library owners
should be initialized as part of the owning member's initialization. A member's
LIBVEC is initialized by calling the LIBVEC initialization routine CEEPLVI. It is
passed the name or address of an LVD. If the name of the LVD is passed, it must
exist as a load module in the LIBVEC owner's library.

During LIBVEC initialization, each INIT LIBPACK structured with the address
constant table equal to the LIBVEC entries is ORed directly into the LIBVEC's
SLOT section. This eliminates the individual handling of each LIBVEC SLOT and
its associated overhead. The LIBVEC initialization routine (CEEPLVI) performs the
following functions.
v Load the LVD if the address of the LVD module name was passed.
v Load any INIT LIBPACKs that are not a part of the LVD contained load module.
v Get heap storage for the LIBVEC.

ARXPARMS DS 0F
DS F *** Reserved ***

ARXLVD1 DC A(first-LVD-entry) IN, Addr of first LVD info entry.
ARXLVDM DC AL4(first-entry-number) IN, entry number of first related

entry on the chain
ARXMODAD DC A(Module-Entry) IN, Addr of LIBPACK load module
ARXEPNAD DC A(vector-table) OUT, Addr of a temporary LIBVEC table

with routine addresses in
their respective slots.

LVD

312 z/OS V2R1.0 Language Environment Vendor Interfaces

v Insure that all LIBVEC entries are initialized properly.
v Return the address of the LIBVEC.

CWI to LIBVEC low-level services
This section describes the interfaces provided by the library subroutine access
sub-component for use by other Language Environment library routines and
high-level language library routines. These functions can be accessed as follows.

The sections below define the following items for each function:
v The LIBVEC slot offset
v The parameter list format
v The feedback codes returned in GPRs 15 and 0

CEEPLVI — LIBVEC initialization
The CEEPLVI callable service performs the following functions:
v Load any INIT LIBPACKs that are not a part of the LVD contained load module.
v Get heap storage for the LIBVEC.
v Insure that all LIBVEC slots are initialized properly.
v Return the address of the LIBVEC.

During LIBVEC initialization, each INIT LIBPACK structured with the address
constant table equal to the LIBVEC entries is ORed directly into the LIBVEC's slot
section. This eliminates the individual handling of each LIBVEC slot and its
associated overhead.

Syntax

void CEEPLVI (libvec_descriptor, libvec_table, [fc])
POINTER *libvec_descriptor;
POINTER *libvec_table;
FEED_BACK *fc;

CEEPLVI
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) Address of CAA in R12
L R15,0112(,R15)
BALR R14,R15

libvec_descriptor (input)
The address of the LIBVEC descriptor module that describes how to build the
LIBVEC.

libvec_table (output)
The address of the LIBVEC table.

fc (output/optional)
The parameter in which the callable service feedback code is placed. The
following conditions can result from this service:

L R1,parmptr R1 points to a parameter list
L R15,CEECAACELV-CEECAA(,R12) Get address of CEL LIBVEC
L R15,CEECELVPxxx-CEECAACELV(,R15) Get address of CEL library routine

GLUE AREAn from CEL LIBVEC slot
BALR R14,R15 Invoke the library routine

Program Management

Chapter 8. Program management 313

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE3E1 Severity 3

Msg_No 3505

Message Load of [module_name] LIBVEC descriptor module was
unsuccessful.

CEE3E2 Severity 3

Msg_No 3506

Message Load of [libpack_name] LIBPACK was unsuccessful.

CEE3E3 Severity 3

Msg_No 3507

Message Not enough storage available for LIBVEC table.

CEE3E4 Severity 3

Msg_No 3508

Message Number of LIBPACKs specified in the LIBVEC descriptor
module exceeded maximum of 256 supported. No LIBPACKs
were loaded.

CEE3E5 Severity 3

Msg_No 3509

Message Number of LIBVEC slots specified in the LIBVEC descriptor
module either exceeds maximum (1024) or less than minimum
(1) allowed for a LIBVEC table.

CEEPLVE — verify load/delete
The subroutine verify load/delete CWI is provided for use by functions that
require the subroutine to be preloaded. CEEPLVE is explicitly called when needed.
When the function is load, it loads the indicated subroutine and updates its
LIBVEC fields (unless this has already been done). It always returns the
subroutine's address as an output parameter. When the function is delete, it deletes
the indicated subroutine and updates its LIBVEC fields as if the subroutine was
never loaded (unless this has already been done).

Syntax

void CEEPLVE (function_code, libvec_slot, libvec_table, libvec_entry, [fc])
INT *function_code;
INT *libvec_slot;
POINTER *libvec_table;
POINTER *libvec_entry;
FEED_BACK *fc;

CEEPLVE
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) Address of CAA in R12
L R15,0108(,R15)
BALR R14,R15

CEEPLVI

314 z/OS V2R1.0 Language Environment Vendor Interfaces

function_code (input)
One of the following values:
1 LOAD LIBVEC module
2 DELETE LIBVEC module

libvec_slot (input)
The LIBVEC slot offset into the LIBVEC table of which module verify
load/delete.

libvec_table (input)
The address of the LIBVEC table built by the LIBVEC initialization
routine(CEEPLVI).

libvec_entry (output)
The entry address of the LIBVEC module. This parameter is undefined for
function code DELETE.

fc (output/optional)
The parameter in which the callable service feedback code is placed. The
following conditions can result from this service. Feedback codes are:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE3E6 Severity 3

Msg_No 3510

Message [module_name] module is a member of the “init” LIBPACK
[libpack_name] and was not deleted.

CEE3E7 Severity 3

Msg_No 3511

Message Invalid function code.

CEE3E8 Severity 3

Msg_No 3512

Message Verify Load/Delete service request for module [module_name]
was unsuccessful.

Note: If the function is DELETE LIBVEC and its entry point is part of an INIT
LIBPACK, the LIBPACK is not deleted.

CEEPLVT — LIBVEC termination
The CEEPLVT callable service deletes LIBVEC subroutines and frees up storage
obtained for the LIBVEC table during termination of the last enclave of a process.
Each LIBVEC owner should invoke the LIBVEC termination CWI for deletion of its
LIBVEC subroutines and to free-up the storage obtained for its LIBVEC table.

Syntax

void CEEPLVT (libvec_table, [fc])
POINTER *libvec_table;
FEED_BACK *fc;

CEEPLVE

Chapter 8. Program management 315

CEEPLVT
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) Address of CAA in R12
L R15,0116(,R15)
BALR R14,R15

libvec_table (input)
The address of the LIBVEC table built by the LIBVEC initialization routine
(CEEPLVI).

fc (output/optional)
The parameter in which the callable service feedback code is placed. The
following conditions can result from this service.

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE3E9 Severity 3

Msg_No 3513

Message LIBVEC termination was unsuccessful.

CEEPPOS — program object services
The CEEPPOS CWI provides several functions for requesting information and data
for programs that are Language Environment-conforming and contain classes with
names prefixed by C_ (particularly C_WSA[64]), and limited support for all other
programs.

Syntax

void CEEPPOS (function, class_name, entry_point, class_address, class_size, [fc])
INT4 *function;
CHAR16 *class_name;
POINTER *entry_point;
POINTER *class_address;
INT4 *class_size;
FEED_BACK *fc;

CEEPPOS
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12)
L R15,4036(,R15)
BALR R14,R15

function (input)
one of the following values, which indicates the requested function:

CEEPLVT

316 z/OS V2R1.0 Language Environment Vendor Interfaces

function
Value

Function
Name

Meaning

1 OBTAIN Request Language Environment to obtain and initialize storage for
the writable static area of a program object. This function can only
be specified with a class_name of C_WSA or CEE_ALL.

The C_WSA storage will be obtained by the Loader, except when
Language Environment obtains the storage from user HEAP for
CICS, preinitialization environment with user storage routines, or
COBOL program compiled with Enterprise COBOL for z/OS V5
or higher. When HEAP runtime option is set to BELOW or
compiler option DATA(24) of Enterprise COBOL compiler V5 or
higher is specified, RMODE of the C_WSA storage is below the
16M line. Otherwise, the RMODE is anywhere below the 2G bar.
Storage is initialized to zeros unless it is explicitly set to a value
due to compiler-generated “recipe cards”.

When the CEE_ALL class is specified, the address and size of
C_WSA, C_@@DLLI, and C_@@STINIT are returned in a
caller-provided 6 word area. The address for the caller-provided
area is input in class_address and the size of the area (24 bytes) is
input in class_size.

2 RELEASE Request Language Environment to release writable static area of a
program object. This function can only be specified with the
class_name C_WSA.

3 REFRESH Request Language Environment to refresh writable static area of a
program object. This function can only be specified with the
class_name C_WSA. This function re-initializes the current WSA to
its initial value, which was established by the OBTAIN function.

4 LOCATE Request Language Environment to locate a specific class within
the program object. This function can not be specified with the
class_name C_WSA.

5 QUERY Request Language Environment to return information and
characteristics of a program object or load module. When this
function is used with the CEE_ALL class, information about the
program object or load module specified by entry_point is
returned in a caller-provided one word area. The address for the
caller-provided area is input in class_address and the size of the
area (four bytes) is input in class_size. The following bits are
defined in the fullword returned to the caller.

0 If this bit is on, then the program object or load module
is a DLL (it exports at least one variable and/or
function). If this bit is off, then it is not a DLL (but may
import variables or functions from a DLL).

1 If Query bit (1) is on, then the program object consists of
XPLINK compiled functions. If this bit is off, then the
program object is entirely non-XPLINK, or it is a load
module.

2 If this bit is on, then the program object or load module
is reentrant and has an associated writable static area
(WSA). If this bit is off, then it is not reentrant or does
not have a WSA.

3–31 Reserved.

CEEPPOS

Chapter 8. Program management 317

|
|
|
|
|
|
|
|
|
|

class_name (input)
specifies the name of a 16-byte field, which is padded on the right with blanks,
that contains one of the following class names:

C_WSA
Writable static area; the OBTAIN, RELEASE, and REFRESH functions
are valid for this class.

C_@@DLLI
DLL static initialization routines; the LOCATE function is valid for this
class.

C_@@STINIT
C++ Constructor and Destructor routines; the LOCATE function is
valid for this class.

C_@@PPA2
Address of PPA2s; the LOCATE function is valid for this class.

CEE_ALL
Provides the address and size of the C_WSA, C_@@DLLI, and
C_@@STINIT classes, if the OBTAIN function has been specified.
Provides information about the program object or load module, if the
QUERY function has been specified.

entry_point (input)
The entry point returned by a Language Environment load service. It is used to
identify this program object (or load module).

class_address (input/output)
The address of the class (input or output) or address of a caller-provided area
(input).

For the OBTAIN function with the class_name specified as C_WSA, the field is
an output value and will contain the address of the obtained and initialized
writable static area (WSA). For the OBTAIN function with class_name
CEE_ALL, the field is a required input value and must contain the address of a
caller-provided 6-word area.

For the RELEASE and REFRESH functions, this field is a required input value.
It should contain the address returned on a previous OBTAIN request.

For the LOCATE function, the field is an output value; it will contain the
address of the class requested by class_name.

For the QUERY function with class_name CEE_ALL, the field is a required
input value and must contain the address of a caller-provided one word area.

class_size (input/output)
The size of the class (output) or the size of the caller-provided area (input).

For the OBTAIN function and class_name specified as C_WSA, the field is an
output value, which will contain the size of the obtained and initialized WSA.
For the OBTAIN function with the class_name specified as CEE_ALL, this field
is an input value and you must specify a size of 24 bytes.

For the LOCATE function, the field is an output value and will contain the size
of the class requested by class_name.

For the QUERY function with class_name CEE_ALL, the field is an input value
and must specify a size of four bytes.

For the RELEASE and REFRESH functions, this value is ignored.

CEEPPOS

318 z/OS V2R1.0 Language Environment Vendor Interfaces

fc (output/optional)
A 12-byte feedback code that indicates the results of this service. The following
symbolic conditions may result from this service:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE3EA Severity 3

Msg_No 3530

Message The service was invoked for a load module.

CEE3EB Severity 3

Msg_No 3531

Message The entry point was not recognized by Language Environment.

CEE3EC Severity 3

Msg_No 3532

Message The requested class does not exist in the program object.

CEE3ED Severity 3

Msg_No 3533

Message The service invoked a system function that was unsuccessful.
The system return code was return_code and the system reason
code was reason_code.

CEE3EE Severity 3

Msg_No 3534

Message The requested function is not supported.

CEE3EF Severity 3

Msg_No 3535

Message The requested class_name is not supported.

CEE3EG Severity 3

Msg_No 3536

Message Not enough storage was available for the WSA.

CEE3EH Severity 3

Msg_No 3537

Message The request to release the WSA was unsuccessful.

CEE3EI Severity 3

Msg_No 3538

Message The request to refresh the WSA was unsuccessful.

CEE3ET Severity 3

Msg_No 3549

Message The service was invoked for a program object that contains both
XPLINK and NOXPLINK-compiled parts.

Usage Notes:

CEEPPOS

Chapter 8. Program management 319

1. Members should invoke this service to obtain the WSA when they are invoked
for event code 8 or event code 18 . Members should also invoke this service to
release the WSA when they are invoked for event code 41.

2. The CEE_ALL class is provided as a performance improvement; it enables
members to obtain the WSA and the address and size of three of the classes
(C_WSA, C_@@DLLI, and C_@@STINIT) in one call to CEEPPOS.

3. When the WSA is obtained for a DLL, Language Environment saves the
address and provides the necessary cleanup of the WSA when the
implicitly-loaded DLLs are freed at enclave termination. When an
explicitly-loaded DLL is explicitly freed, Language Environment will issue the
Delete Module Event to allow the member to release the WSA. Otherwise, the
member should release the WSA before deleting the program object. An
example of a non-DLL program object is a re-entrant C program.

4. The RELEASE and REFRESH functions are not supported for DLL program
objects. The member itself must use the RELEASE and REFRESH services with
the appropriate serialization.

5. The QUERY function is the only CEEPPOS function that is valid for program
objects or load modules; otherwise a feedback code of CEE3EA is returned.

CWIs for explicit DLL reference
Language Environment provides the following CWI services to support the explicit
reference of dynamic load libraries (DLLs).

CEEPLDE — load DLL
The CEEPLDE routine invokes the Language Environment multi-level load routine
CEEPLOD2, which supports loading a routine from a data set or the UNIX file
system. This support causes the writable static area (WSA) for the DLL to be
obtained and initialized; it also returns a dll_token to represent the DLL on future
requests. Note that the user of the dll_token should not make any assumptions
about the content of the token.

Note:

1. Usage by System Programmer C (SPC) is not supported.
2. Error diagnostics are available through the Language Environment DLL Failure

(CEEDLLF) control block chain.

Syntax

void CEEPLDE (dll_name, dll_name_length, dll_token, [fc])
CHARn *dll_name;
INIT4 *dll_name_length;
TOKEN *dll_token;
FEED_BACK *fc;

CEEPLDE
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12)
L R15,4016(,R15)
BALR R14,R15

dll_name (input)
name of the DLL to be loaded.

CEEPPOS

320 z/OS V2R1.0 Language Environment Vendor Interfaces

dll_name_length (input)
length of the name of the DLL to be loaded; this length excludes any null
terminator at the end of the name.

dll_token (output)
a 32-bit field that represents the DLL that was loaded. The dll_token must be
passed to other explicit requests for this DLL, such as: query function
(CEEPQDF), query variable (CEEPQDV), and free (CEEPFDE).

fc (output/optional)
An optional 12-byte feedback code that indicates the results of this service. The
following symbolic conditions may result from this service:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE38V Severity 2

Msg_No 3359

Message The module or language list is not supported in this
environment.

CEE3EU Severity 3

Msg_No 3550

Message DLL dll_name does not contain a CEESTART CSECT.

CEE3EV Severity 3

Msg_No 3551

Message DLL dll_name does not contain any C functions.

CEE3F0 Severity 3

Msg_No 3552

Message DLL dll_name does not export any variables or functions.

CEE3F1 Severity 3

Msg_No 3553

Message DLL dll_name is part of a circular list.

CEE3F2 Severity 3

Msg_No 3554

Message There is not enough storage to load the DLL.

CEE3FB Severity 3

Msg_No 3563

Message Attempted to load DLL dll_name while running C++ destructors.

CEE3FC Severity 3

Msg_No 3564

Message DLL constructors or destructors did not complete, so DLL
dll_name cannot be used.

CEE3FI Severity 3

Msg_No 3570

Message The DLL name was not valid.

CEEPLDE

Chapter 8. Program management 321

Condition

CEE3FJ Severity 3

Msg_No 3571

Message Storage for writable static was not available for DLL dll_name.

CEEPFDE — DLL free
The CEEPFDE service uses the dll_token to identify the DLL to be freed and to
invoke the Language Environment multi-level delete routine CEEPDEL2, which
supports deleting DLLs from a data set or from the UNIX file system, and to
release the WSA of the DLL. After the DLL is deleted, any attempts to use the
specified dll_token will produce the “invalid dll_token” condition.

Note:

1. Usage by System Programmer C (SPC) is not supported.
2. Error diagnostics are available through the Language Environment DLL Failure

(CEEDLLF) control block chain.

Syntax

void CEEPFDE (dll_token, [fc])
TOKEN *dll_token;
FEED_BACK *fc;

CEEPFDE
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12)
L R15,4020(,R15)
BALR R14,R15

dll_token (input)
a 32-bit field that represents the DLL that is to be freed. This is the dll_token
that is returned by the CEEPLDE service when the DLL was loaded.

fc (output/optional)
an optional 12-byte feedback code that indicates the results of this CWI. The
following symbolic conditions may result from this service:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE3FC Severity 3

Msg_No 3564

Message DLL constructors or destructors did not complete, so DLL
dll_name cannot be used.

CEE3FD Severity 0

Msg_No 3565

Message The input dll_token was NULL.

CEEPLDE

322 z/OS V2R1.0 Language Environment Vendor Interfaces

Condition

CEE3FE Severity 0

Msg_No 3566

Message There are no DLLs to be freed.

CEE3FF Severity 0

Msg_No 3567

Message A logical delete was performed for DLL dll_name, but the DLL
was not physically deleted.

CEE3FG Severity 0

Msg_No 3568

Message No DLL could be found that matched the input dll_token.

CEE3FH Severity 2

Msg_No 3569

Message The DLL function was not allowed because destructors are
running for the DLL.

CEE3FR Severity 3

Msg_No 3579

Message Attempted to free DLL dll_name while running C++ destructors.

CEEPQDF — query DLL function
The CEEPQDF routine provides a pointer to an exported function in a specified
DLL. Because the value returned is a pointer to a function descriptor, the address
of the function's C_WSA is not returned; this information can be found within the
descriptor itself.

Note:

1. Usage by System Programmer C (SPC) is not supported.
2. Error diagnostics are available through the Language Environment DLL Failure

(CEEDLLF) control block chain.

Syntax

void CEEPQDF (dll_token, func_name, func_name_length, func_pointer, [fc])
TOKEN *dll_token;
CHARn *func_name;
INT4 *func_name_length;
POINTER *func_pointer;
FEED_BACK *fc;

CEEPQDF
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12)
L R15,4024(,R15)
BALR R14,R15

dll_token (input)
a 32-bit field that represents the DLL that is to be queried for the named
function (func_name). This is the dll_token returned by CEEPLDE when the DLL
was loaded.

CEEPDFE

Chapter 8. Program management 323

func_name (input)
name of the requested function exported from the DLL represented by the
dll_token.

func_name_length (input)
length of the name of the requested function.

func_pointer (output)
pointer to the requested function, or 0.

fc (output/optional)
an optional 12-byte feedback code that indicates the results of this CWI. The
following symbolic conditions may result from this service:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE3FA Severity 3

Msg_No 3562

Message There is not enough storage to obtain a function pointer for
external function func_name in DLL dll_name.

CEE3FC Severity 3

Msg_No 3564

Message DLL constructors or destructors did not complete, so DLL
dll_name cannot be used.

CEE3FH Severity 2

Msg_No 3569

Message The DLL function was not allowed because destructors are
running for the DLL.

CEE3FK Severity 0

Msg_No 3572

Message The input dll_token was not available for use.

CEE3FL Severity 0

Msg_No 3573

Message DLL dll_name does not export any functions.

CEE3FM Severity 0

Msg_No 3574

Message External function func_name was not found in DLL dll_name.

CEE3FP Severity 0

Msg_No 3577

Message The external function was not found in DLL dll_name.

CEEPQDV — query DLL variable
The CEEPQDV routine provides the virtual address of a particular exported
variable of a specified DLL, which may then be used to reference the DLL's
variable.

Note:

CEEPQDF

324 z/OS V2R1.0 Language Environment Vendor Interfaces

1. Usage by System Programmer C (SPC) is not supported.
2. Error diagnostics are available through the Language Environment DLL Failure

(CEEDLLF) control block chain.

Syntax

void CEEPQDV (dll_token, var_name, var_name_length, var_pointer, [fc])
TOKEN *dll_token;
CHARn *var_name;
INT4 *var_name_length;
POINTER *var_pointer;
FEED_BACK *fc;

CEEPQDV
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12)
L R15,4028(,R15)
BALR R14,R15

dll_token (input)
a 32-bit field that represents the DLL that is being queried for the named
variable (var_name). This is the dll_token returned by CEEPLDE when the DLL
was loaded.

var_name (input)
name of the requested variable exported from the DLL represented by the
dll_token.

var_name_length (input)
length of the name of the requested variable.

var_pointer (output)
pointer to the requested variable, or 0.

fc (output/optional)
an optional 12-byte feedback code that indicates the results of the CWI. The
following symbolic conditions may result from this service:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE3FC Severity 3

Msg_No 3564

Message DLL constructors or destructors did not complete, so DLL
dll_name cannot be used.

CEE3FH Severity 2

Msg_No 3569

Message The DLL function was not allowed because destructors are
running for the DLL.

CEE3FK Severity 0

Msg_No 3572

Message The input dll_token was not available for use.

CEEPQDV

Chapter 8. Program management 325

Condition

CEE3FN Severity 0

Msg_No 3575

Message DLL dll_name does not export any variables.

CEE3FO Severity 0

Msg_No 3576

Message External variable var_name was not found in DLL dll_name.

CEE3FQ Severity 0

Msg_No 3578

Message The external variable was not found in DLL dll_name.

CWIs for implicit DLL reference
Language Environment provides CWI support for the implicit loading of a DLL,
which resolves the DLL's exported symbols with the referencing DLL application's
matching imported symbols. CWIs are provided to perform the following
functions:
v Trigger Load on Reference for imported variables
v Trigger Load on Call for imported functions
v Get Function support to provide linkage to a function that has been invoked

through direct branching to a function pointer (as if it pointed to a function
instead of a function descriptor).

In addition, when the enclave terminates, Language Environment provides the
support to delete all implicitly-loaded DLLs and any explicitly-loaded DLLs that
have not yet been deleted.

Note: The calling routine must ensure that AMODE switching is not necessary
between the application and the DLL. The AMODE of the DLL entry is reflected in
the high-order bit of the DLL's entry point address. Language Environment does
not attempt to detect a mismatch in the AMODE of the DLL and DLL application
and does not enforce this restriction.

The following messages are unique to implicit DLL reference. The CWIs will signal
these messages as error conditions.

Condition

CEE3F6 Severity 3

Msg_No 3558

Message DLL dll_name does not export any variables.

CEE3F7 Severity 3

Msg_No 3559

Message External variable var_name was not found in DLL dll_name.

CEE3F8 Severity 0

Msg_No 3560

Message DLL dll_name does not export any functions.

CEEPQDV

326 z/OS V2R1.0 Language Environment Vendor Interfaces

Condition

CEE3F9 Severity 0

Msg_No 3561

Message External variable var_name was not found in DLL dll_name.

CEE3FO Severity 0

Msg_No 3576

Message External function func_name was not found in DLL dll_name.

CEETLOC — stub for trigger load on call
The CEETLOC stub (Figure 71) provides an interface to the CEEPLTC routine on
behalf of an unresolved function reference; it then invokes the routine. The
function descriptor block (FDCB) (see “FDCB — function descriptor control block”
on page 329) contains the address of the CEETLOC before the first reference to the
function. This stub is directly referenced from the compilation unit's generated
code; it is also link-edited in the same program object as the compilation unit. The
code that is generated from the compiler will locate the function descriptor, load
registers 15 and 0 from 8 bytes past the start of the function descriptor, and branch
to the address in register 15. Register 15 will then contain the address of CEETLOC
and register 0 will contain the address of the function descriptor.

CEETLOC
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12)
L R15,4004(,R15)
BALR R14,R15

v Register Usage:

R15 Entry point address of CEETLOC; for the FASTLINK format, this is
CEETLOC + X'10'.

R14 Return address; for FASTLINK, R14 points to the parm list size and the
return address is 4 bytes past R14.

*/**/
/ CEETLOC - Language Environment "trigger load on call" stub */
/ */
/ This stub contains dual entry points */
/ + 0 for standard linkage */
/ +16 for FASTLINK */
*/**/
CEETLOC CSECT
CEETLOC RMODE ANY
CEETLOC AMODE ANY

USING CEETLOC,15
L 15,CEECAACELV-CEECAA(,12)
L 15,CEECELVPTLC-CEECELV(,15)
BR 15
CNOP 0,8 force alignment on +16

* FASTLINK entry point
L 15,CEECAACELV-CEECAA(,12)
L 15,CEECELVPTLC-CEECELV(,15)
B 16(15)
CEEXCELV
CEEXCAA
END CEETLOC

Figure 71. CEETLOC stub for trigger load on call

Implicit DLL reference

Chapter 8. Program management 327

R13 DSA address

R12 CAA address

R0 Function descriptor that represents the function that is in the target DLL.
v Sample of compiler-generated code:

L R15,=Q(<dllfunc>)
AR R15,R2
LM R15,R0,8(R15)
ST R0,500(,R12)
BALR R14,R15

Note: The compiler-generated code must save the current value of the
CEECAACRENT field, set CEECAACRENT from the function descriptor field
(CEEFDCB_DLL_CWSA) at offset X'0C', and restore CEECAACRENT from the
saved value. When Language Environment is called from CEETLOC to invoke the
function, it will set CEECAACRENT with the WSA address for the newly-loaded
DLL from the value saved in CEEFDCB_DLL_CWSA. On entry to the DLL
function, register 0 will contain the WSA address from CEEFDCB_DLL_CWSA.

CEETHLOC — stub for trigger load on XPLINK call by name
The function of the CEETHLOC stub (Figure 72) is to interface to the CEEPHTLC
(XPLINK Trigger Load on Call) routine on behalf of an unresolved “by-name”
function call, which will load the DLL and then invoke the function. This stub is
directly referenced from the compilation unit's generated code, and is link-edited
in the same program object as the compilation unit. The compiler-generated code
will locate the function descriptor, load registers 5 and 6 from the start of the
function descriptor, and branch to the stub address in register 6. Once inside the
stub, register 7 contains the return address and register 5 contains the 'function_id'
identifying this imported function (from the first word of the descriptor). Register
6 is used as a work register to load and branch to the entry point of the
CEEPHTLC function.

*/**/
/ */
/ CEETHLOC - Language Environment */
/ "trigger load on XPLINK; call by name" stub */
/ */
/ This stub contains one entry point */
/ + 0 for XPLINK linkage */
/ */
*/**/
CEETLOCE CSECT
CEETLOCE RMODE ANY
CEETLOCE AMODE ANY
*

DS 0D Doubleword aligned...
DC XL7’00C300C500C500’ eyecatcher text ".C.E.E."
DC XL1’F4’ eyecatcher marker "4"

*
ENTRY CEETHLOC

CEETHLOC XATTR LINKAGE(XPLINK)
CEETHLOC DS 0D Real entry pt of stub

L 6,CEECAACELV-CEECAA(,12)
L 6,CEECELVPHTLC-CEECELV(,6)
BR 6

*
CEEXCELV
CEEXCAA
END CEETLOCE

Figure 72. CEETLOC stub for trigger load on XPLINK call by name

Implicit DLL reference

328 z/OS V2R1.0 Language Environment Vendor Interfaces

v Register Usage:

R4 DSA address

R5 Identifier that represents the XPLINK function that is in the target DLL

R6 Entry point address of CEETHLOC

R7 Return address to caller

R12 CAA address
v Compiler-generated code sample:

FDCB — function descriptor control block
The function descriptor control block (FDCB) contains the information that is
needed to call a function from an application. For example, a DLL application
“implicitly” references imported functions using compiler-generated code that
picks up the 3rd and 4th word of the FDCB. The code then branches to the address
in the 3rd word and passes the contents of the 4th word in register 0. An FDCB
will be created for every imported function known to the program object. Those
functions that are referenced “implicitly” are built initially by the Binder in the
WSA of the importing program object; they are then modified dynamically at run
time by Language Environment. They are accessible through offsets that are carried
in the importing program object's import/export table (IET). An IET is an internal
structure that identifies the functions and variables that are imported or exported
by an application.

FDCBs will usually reside in the C_WSA because they are placed there by the
Binder. However, Language Environment will dynamically construct an FDCB at
execution time for any function that is explicitly referenced by a Query DLL
function request.

Figure 73 on page 330 shows the format of the FDCB. It is identical to the old
C/C++ function descriptors, with respect to the fields that can be referenced by the
compiler-generated code.

LM r5,r6,dd+0(envreg) load environment & function addresses
* ... from function descriptor

BASR r7,r6 call the function
DC X’4700’
DC Y(signed offset/8 to entry point marker)

CEETHLOC

Chapter 8. Program management 329

The fields in the FDCB are defined as follows:

CEEFDCB_GLUE
Code (8 bytes) for “old” modules that branch directly to a function pointer.
This field is set by the Binder to a constant that represents a series of
executable instructions that are identical to the glue code in the C/C++
Pre-linker based support. The glue code has the following structure:

HEX Value Assembler Instruction Comment

180F LR R0,R15 Save address of descriptor

58FF0010 L R15,16(R15) Get address of CEETGFTN

07FF BR R15 Branch to routine

CEEFDCB_FUNCADDR
Address of the function.This is part of the descriptor that is picked up and
branched to by the compiler-generated code. Initially, this field is set by the
Binder to the address of CEETLOC, which is the Language Environment
“load on call” stub routine that causes the address of the actual function to
be resolved and placed here before invoking the function itself.

CEEFDCB_DLL_CSWA
Pointer to the C_WSA of the exporting DLL.This is required to establish
correct addressability to the DLL's C_WSA before invoking the DLL's
function. Initially, this field is set by the Binder to the address of the
function descriptor containing it. This enables the CEETLOC code to find
the descriptor and thus find the name of the exporting DLL in the program
object's Import/Export table. During execution, Language Environment
then updates this field to point to the WSA of the exporting DLL.

CEEFDCB_MOREGLUE
Address of the routine that fixes calls from old modules.This field is set by
the Binder to the address of CEETGTFN, a CSECT in the application
module, which is the Language Environment stub routine for fixing calls
from old modules. The glue code at displacement +0 (mentioned above)
picks up this address and branches to it.

000000

000010

000014

00001C

000018

000008

00000C

ceeFDCB_Glue - Glue code for direct branches fo function pointer

ceeFDCB_MoreGlue - Address used by a glue code (above)

ceeFDCB_DLLE - Address of DLL entry in import/export table

ceeFDCB_CEESTARTPtr - Pointer to CEESTART

ceeFDCB_CWSA - Pointer to this program object's C_WSA

ceeFDCB_FuncAddr - Pointer to function
(initial value = CEETLOC address)

ceeFDCB_DLL_CWSA - Pointer to exporting DLL's C_WSA
(initial value = address of this function descriptor)

Function Descriptor Control Block (FDCB)

Figure 73. Function descriptor control block (FDCB) format

Function Descriptor Control Block (FDCB)

330 z/OS V2R1.0 Language Environment Vendor Interfaces

CEEFDCB_DLLE
Address in the referencing program object's Import/Export table entry,
from which the name of the exporting DLL can be found. The Binder sets
this field.

CEEFDCB_CEESTARTPTR
Address of referencing program objects CEESTART CSECT. The Binder sets
this field to the address of CEESTART, which is a CSECT in every
Language Environment-enabled application module that provides a path to
other information in the executable program.

CEEFDCB_CWSA
Address of the program object's C_WSA, which is the base address of the
area in which its descriptors for imported symbols are defined. It must be
restored as the current C_WSA upon return from the function. The Loader
sets this field to the address of the WSA in which this FDCB is defined.

__bldxfd() — build an XPLINK compatibility descriptor
The __bldxfd() function is passed a function pointer of unknown linkage as input
and returns the address of an XPLINK compatibility descriptor that can be used in
all situations in an XPLINK-compiled program. It can also be passed to a
NOXPLINK-compiled program.

An XPLINK compatibility descriptor can be used like a C function pointer. It is
built in such a way that it can be passed among functions compiled using different
linkage conventions. For example, NODLL, DLL, XPLINK can use the descriptor. It
can be called to pass control to the function that it represents. The linkage of the
caller does not matter. The format of the compatibility descriptor is defined based
on the linkage of the function that it represents.
v Calls from a non-XPLINK function through a compatibility descriptor to a n

XPLINK function will first result in the RunOnDownStack CWI getting control
to swap to the downward-growing stack.

v Calls from an XPLINK function through a compatibility descriptor to a
non-XPLINK function will first result in the RunOnUpStack CWI getting control
to swap to the upward growing stack.

Syntax

#include <edcwccwi.h>

char * __bldxfd (void *entry_point);

void *entry_point
A pointer to the entry point of the function for which an XPLINK compatibility
descriptor is to be built. Depending on the linkage of the function that
originally took the address of the function, the input could be either:
v a fullword function pointer containing the address of the function (NODLL).
v a 32 byte function descriptor (DLL).
v a 24 byte compatibility descriptor (XPLINK).

__bldxfd() returns the following values:
v If successful, __bldxfd() returns a pointer to storage containing an XPLINK

compatibility descriptor.

Function Descriptor Control Block (FDCB)

Chapter 8. Program management 331

v If unsuccessful, __bldxfd() does not return. It terminates with a message
indicating the cause of failure. It is possible that an invalid entry_point was
passed as input, or possibly that storage could not be obtained.

Usage Notes:

1. __bldxfd() returns one of the following storage addresses :
v The address passed in entry_point if it already represents an XPLINK

compatibility descriptor.
v The address passed in entry_point if it represented a DLL-compiled function

descriptor. In this case, the descriptor was rewritten in storage as an XPLINK
compatibility descriptor.

v The address of a newly obtained piece of storage if entry_point represented a
NODLL-compiled function pointer (for example, the real address of a
function). An XPLINK compatibility descriptor will be created in the obtain
storage.

v The address passed in entry_point if the entry point is not valid.
2. If _bldxfd() is passed a DLL function descriptor representing a function in a

DLL that has not yet been loaded, that DLL will be loaded be _bldxfd() so that
the DLL function address and WSA can be inserted into the constructed
XPLINK compatibility descriptor. Note that the XPLINK compatibility
descriptors always represent functions in loaded DLLs. Taking the address of a
function in an XPLINK DLL forces that DLL to be preloaded during the
initialization of the application.

3. _bldxfd() may cause program checks if it attempts to access an invalid address.
The caller might wish to consider having a signal catcher set up to handle
SIGSEGV with an appropriate error recovery routine.

4. Mixing XPLINK and non-XPLINK in the same program object is not supported.
A NODLL function pointer passed as input must contain the address of a
non-XPLINK function. NODLL-compiled functions cannot take the address of
imported functions. This is the only way an XPLINK function can currently be
directly accessed from non-XPLINK. In this case, _bldxfd() will construct an
XPLINK compatibility descriptor representing a non-XPLINK function, so no
XPLINK environment is necessary.

5. The Vendor Interfaces header file, <edcwccwi.h>, is located in member
EDCWCCWI of the SCEESAMP data set. In order to include <edcwccwi.h> in
an application, the header file must be copied into a partitioned data set or a
UNIX file system directory in which the z/OS XL C/C++ compiler will find it.

CEETLOR — stub for trigger load on reference
The CEETLOR stub (Figure 74 on page 333) provides an interface to the CEEPTLR
routine on behalf of an unresolved variable reference and then returns to the
calling routine. The variable descriptor (see “VDCB — variable descriptor control
block” on page 333) contains a zero for the address of the variable before the first
reference of the variable by the compiled code. This stub is directly referenced
from the compilation unit's generated code; it is also link-edited in the same
program object as the compilation unit. The compiler will generate code to locate
the variable descriptor, examine the first word of the variable descriptor and, if it
is zero, invoke CEETLOR. Register 15 will contain the address of CEETLOR and
register 0 will contain the address of the variable descriptor.

__bldxfd()

332 z/OS V2R1.0 Language Environment Vendor Interfaces

v Register usage:
R15 Entry point address
R14 Return address
R13 DSA address
R12 CAA address
R0 Variable descriptor that represents the variable that is in the target DLL.

v Sample of compiler-generated code:

After the variable descriptor has been updated, the compiler-generated code can
obtain the address of the variable within the DLL. To do so, add the value of the
CEEVDCB_VARPQCON to the address of the WSA of the compiler-generated
code.

VDCB — variable descriptor control block
The variable descriptor control block (VDCB) defines a structure that provides
information that is need to reference a variable from an application. For example, a
DLL application can use compiler-generated code to “implicitly” refer to imported
variables. The compiler-generated code tests the first word for zero and, if it is
zero, calls the CEETLOR stub routine to resolve the address of the variable. All
VDCBs reside in the C_WSA because they are placed there by the Binder. Figure 75
on page 334

*/**/
/ */
/ CEETLOR - Language Environment "trigger load on reference" stub */
/ */
*/**/
CEETLOR CSECT
CEETLOR RMODE ANY
CEETLOR AMODE ANY

USING CEETLOR,15
L 15,CEECAACELV-CEECAA(,12)
L 15,CEECELVPTLR-CEECELV(,15)
BR 15
NOPR 0
NOP 0
B 1(15)
CEEXCELV
CEEXCAA
END CEETLOR

Figure 74. CEETLOR stub

ICM R15,B’1111’,=Q(<dllvar>)
BM @4L5
L R7,0(,R7)
: OTHER CODE
:

@4L5 DS 0F
MVC 132(4,R13),296(R3)
B 300(,R3)

=F’1198534796’
AL R15,128(,R13)
ST R15,140(,R13)
ICM R15,B’1111’,0(R15)
EX R0,132(,R13)
L R15,=V(CEETLOR)
ST R14,136(,R13)
ST R0,144(,R13)
L R0,140(,R13)
BALR R14,R15

=F’0’
LM R14,R0,136(R13)
B 308(,R3)

CEETLOR

Chapter 8. Program management 333

on page 334 shows the format of the VDCB.

The fields in the VDCB are defined as follows:

CEEVDCB_VARPQCON
“pseudo-Qcon” for the variable. A “pseudo-Qcon”, which is a concept
introduced in C/C++, is a displacement that gives the address of the
referenced DLL's variables when it is added to the base address of the area
(C_WSA) in which the referencing program object's descriptors are defined.
That is, this displacement is an offset from the base address of one area to
a storage location in a different area.

CEEVDCB_DLLE
Address in the referencing program object's Import/Export Table (IET),
from which the name of the exporting DLL can be found. The Binder sets
this field.

CEEVDCB_CEESTARTPTR
The Binder sets this field to the address of CEESTART, which is a CSECT
in every Language Environment-enabled application module that provides
a path to other information in the executable program.

CEEVDCB_CWSA
Address of this program object's C_WSA, which is the base address of the
area in which its descriptors for imported symbols are defined. The Loader
sets this field to the address of the WSA in which the VDCB is define. This
is used to decode each “pseudo-Qcon” of a DLL's variable, which provides
the location of the imported variable on terms of the start of the
referencing program object's C_WSA. It is also used, when working with
the referencing program object's Import/Export table, to decode its Qcons
for the descriptors of its imports.

CEETGTFN — stub for function invocation of old code
The CEETGTFN stub (Figure 76 on page 335) supports levels of C code that branch
directly to function pointers. With this support, all function descriptors are headed
by “glue code” that consists of a constant. This constant is a series of instructions
to save the contents of register 15 into register 0, load register 15 with a later slot
in the same descriptor that contains the address of CEETGTFN, and branch to the
CEETGTFN routine.

000000

000004

000008

00000C

ceeVDCB_VarPQcon - "Pseudo-Qcon" of the variable

Variable Descriptor Control Block (VDCB)

ceeVDCB_DLLE - Address of DLL entry in import/export table

ceeVDCB_CEESTARTPtr - Pointer to CEESTART

ceeVDCB_CWSA - Pointer to C_WSA

Figure 75. Variable descriptor control block (VDCB) format

Variable Descriptor Control Block (VDCB)

334 z/OS V2R1.0 Language Environment Vendor Interfaces

CEETGTFN
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12)
L R15,4012(,R15)
BALR R14,R15

CWIs to find the writable static area (WSA)

CEEPFWSA — find writable static area (WSA)
The CEEPFWSA provides the ability to locate the writable static area (WSA)
associated with a load module or a program object containing a specified entry
point within the current enclave.

Syntax

void CEEPFWSA (entry_point, wsa_address, [fc])
POINTER *entry_point;
POINTER *wsa_address;
FEED_BACK *fc;

CEEPFWSA
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12)
L R15,2832(,R15)
BALR R14,R15

entry_point (input)
The entry point of a function whose WSA address is to be located. The entry
point can be the address of the function or the CEESTART of the load module
if the load module contains a main or a fetchable subroutine.

wsa_address (output)
The address of the caller provided area in which the WSA address will be
returned if the call is successful.

fc (output/optional)
An optional 12-byte feedback code that indicates the results of this service. The
following symbolic conditions may result from this service:

*/**/
/ */
/ CEETGTFN - Language Environment "get function" stub */
/ */
*/**/
CEETGTFN CSECT
CEETGTFN RMODE ANY
CEETGTFN AMODE ANY

USING CEETGTFN,15
L 15,CEECAACELV-CEECAA(,12)
L 15,CEECELVPGTFN-CEECELV(,15)
BR 15
NOPR 0
NOP 0
B 1(15)
CEEXCELV
CEEXCAA
END CEETGTFN

Figure 76. CEETGTFN stub

CEETGTFN

Chapter 8. Program management 335

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE3EL Severity 3

Msg_No 3541

Message A writable static area (WSA) associated with the entry point was
not found.

Usage Notes:

1. The CEEPFWSA service will verify that the entry point is a valid C/370 or
Language Environment style entry point. It will then examine all loaded
modules to find one that contains that entry point. Modules can be the main
load module or any load modules loaded by fetch(), COBOL dynamic call, PIPI,
CEEFETCH, or DLL load. When the load module is found and the load module
has a WSA, the wsa_address associated with the module will be returned.

2. If the load module is not recognized as a Language Environment-conforming
load module, then the feedback code will be CEE3EL and the wsa_address is
undefined.

3. If the load module is recognized as a Language Environment-conforming load
module, and the load module does not have a WSA, then the feedback code
will be CEE000 and the wsa_address will be zero.

4. If the load module containing the entry point has been fetched more than once,
the service will return the WSA of the last fetch.

5. If the load module containing the entry point has been fetched at least once
and has been loaded as a DLL, this service will return the WSA associated with
the DLL invocation.

__fnwsa() —- CWI to find a writable static area
The __fnwsa() function returns the address of the writable static area (WSA)
associated with the function represented by entry_point. __fnwsa() can be used
when the passed-in entry_point is not in the current address space. To access
storage outside the current address space, the user must provide the callback_p
parameter. callback_p is a pointer to a user-written function that fetches all data
required by __fnwsa(). Generally, the (*callback_p)() function would obtain the data
using some application-dependent method (like BPX1PTR) and move it into the
current address space, where __fnwsa() can access it directly. If the passed-in
entry_point is in the same address space and is directly accessible to __fnwsa(),
callback_p can be NULL.

Syntax

#include <edcwccwi.h>

void * __fnwsa (const void * entry_point, void * (*callback_p)(void *data_p, size_t
data_l), const void * caa_p);

const void * entry_point
a pointer to the entry point of the function or CEESTART of a main or
CEESTART of a fetchable subroutine whose WSA address is to be located.
entry_point can point to a function or CEESTART in another address space or in
a place not directly accessible by __fnwsa(). If this address is not directly

CEEPFWSA

336 z/OS V2R1.0 Language Environment Vendor Interfaces

accessible, both the callback_p and caa_p parameters must not be NULL. The
callback function is used to access entry_point indirectly.

void * (*callback_p)()
a pointer to a user-provided function that fetches data not normally accessible
by __fnwsa(). If callback_p is NULL, __fnwsa() accesses entry_point and any
other required Language Environment data areas directly in the current
address space. All required data must be directly accessible to __fnwsa() in this
case.

The user-provided (*callback_p)() function is passed the address and length of
data to access. It must fetch the data in some application-dependent manner,
and make the data available in the current address space in a place accessible
to __fnwsa(). (*callback_p)() must return a pointer to the copied data. This data
must remain available to __fnwsa() until the next call to (*callback_p)(), or until
__fnwsa() returns to its caller, whichever happens first. On subsequent calls,
callback_p)() is allowed to reuse the same data passback area.

There is no provision for (*callback_p)() to pass back an error return code,
indicating that the requested data could not be obtained. If (*callback_p)()
cannot return the requested data, it must not return to __fnwsa(). When an
error occurs, (*callback_p)() may:
v longjmp() back to some error return point in the user code that called

__fnwsa()
v ABEND or otherwise terminate abnormally
v exit(), pthread_exit()
v raise a caught signal where the catcher does longjmp() so as not to return to

__fnwsa()
v use Language Environment condition management to bypass __fnwsa() after

the error and resume in user code
v recover in some other way that does not involve returning to __fnwsa()

__fnwsa() calls (*callback_p)() with two parameters:

void *data_p
data_p is a pointer to the start of the required data. This address might
not be in the current address space.

size_t data_l
data_l is the number of bytes of data required. data_l will never exceed
16 bytes. If (*callback_p)() cannot pass back the complete data
requested, it must not return to __fnwsa().

const void * caa_p
Address of the Language Environment CAA control block, required only if the
second parameter of __fnwsa() (that is, callback_p) is non-NULL. This is the
address of the CAA in the address space containing entry_point.

__fnwsa() returns the following values:
v If successful, the WSA address of the function specified by entry_point is

returned. If the function does not have a WSA, then __fnwsa() returns NULL.
v If unsuccessful, __fnwsa() returns -1 and sets errno to one of the following

values:

ESRCH
Indicates that a matching load module could not be found that contains
the passed-in entry_point.

__fnwsa()

Chapter 8. Program management 337

EINVAL
Occurs if entry_point is not a valid C/370 or Language Environment
style entry point. This error also occurs if entry_point is NULL when
__fnwsa() is called.

EMVSPARM
A callback function was supplied as the second parameter, but the CAA
address supplied as the third parameter is NULL.

Usage Notes:

1. __fnwsa() may cause program checks if it accesses invalid addresses. This is
especially likely to happen if callback_p is NULL and the entry_point being
looked at is not valid. For this reason, the caller should consider having a
signal catcher set up to handle SIGSEGV with appropriate error recovery.

2. The __fnwsa() service will verify that the entry point is a valid C/370 or
Language Environment style entry point. It will then examine all loaded
modules to find one that contains the specified entry_point. Modules can be the
main load module or any load modules loaded by fetch(), COBOL dynamic
call, PIPI, CEEFETCH, or DLL load. When the load module is found and the
load module has a WSA, the WSA address associated with the module will be
returned.

3. If the load module containing the entry point does not have a WSA, then
__fnwsa() will return NULL.

4. If the load module containing the entry point has been fetched more than once,
the service will return the WSA of the last fetch().

5. The Vendor Interfaces header file, <edcwccwi.h>, is located in member
EDCWCCWI of the SCEESAMP data set. In order to include <edcwccwi.h> in
an application, the header file must be copied into a partitioned data set or a
UNIX file system directory in which the z/OS XL C/C++ compiler will find it.

__static_reinit() — CWI to reinitialize writable static area
The __static_reinit() function reinitializes the writable static area (WSA) of a
dynamic link library (DLL). When a DLL is loaded, Language Environment
performs static initialization of the WSA. Additionally, C++ static constructors are
run during initialization. When a DLL is deleted, C++ static destructors are run
and atexit routines are unregistered from the atexit list during termination.

Syntax

#include <edcwccwi.h>

int __static_reinit (int func_code, void *fcn);

int func_code
func_code performs termination/initialization and should be
__STATIC_REINIT_FULL.

void *fcn
fcn is a DLL handle pointer returned from a previous successful call to the
dlload() or dlopen() function..

__static_reinit() returns the following values:
v If successful, returns 0.
v If unsuccessful, __static_reinit() returns -1 and sets errno to one of the following

values:

__fnwsa()

338 z/OS V2R1.0 Language Environment Vendor Interfaces

EFAULT
Occurs if the fcn address is not valid.

EINVAL
Occurs if fcn is not a valid DLL handle pointer or if func_code is not
valid.

Usage Notes:

1. __static_reinit() cannot be used with a DLL that is already in use.
2. __static_reinit() can only be used with a DLL that has been explicitly loaded

once.
3. If a DLL (A) is loaded and Language Environment loads another DLL (B), B

still exists if A is reinitialized.
4. The __static_reinit() service should not be used while any other DLL is being

initialized.
5. The Vendor Interfaces header file, <edcwccwi.h>, is located in member

EDCWCCWI of the SCEESAMP data set. To include <edcwccwi.h> in an
application, the header file must be copied into a partitioned data set or a
UNIX file system directory in which the z/OS XL C/C++ compiler will find it.

6. Figure 77 shows an example of how to use this CWI.

CEEDLLF — DLL failure control block
The CEEDLLF control block contains error diagnostics corresponding to an implicit
or explicit DLL failure. Diagnostics describing up to 10 of the most recent DLL
failures are available in a circular list of CEEDLLF control blocks. When viewing a
dump, the in-use CEEDLLF control blocks are displayed from newest to oldest.
Table 52 shows the format of the 31-Bit Language Environment CEEDLLF.

Table 52. Format of the 31-Bit Language Environment CEEDLLF

Location Content

000000 CEEDLLF Eye Catcher

000008 CEEDLLF version number

000009 CEEDLLF flags

00000A CEEDLLF size

00000C DLL service requested

00000D DLL reference type

00000E DLL explicit load type

00000F Reserved

...
/* Open a dynamic library and then reinitilizes its WSA*/

#include <edcwccwi.h>
#include <dlfcn.h>

void *handle;
int eret;

handle = dlopen("mylib.so", RTLD_LOCAL | RTLD_LAZY);
....
eret = __static_reinit(__STATIC_REINIT_FULL, handle);

Figure 77. Example of using __static_reinit

__static_reinit()

Chapter 8. Program management 339

Table 52. Format of the 31-Bit Language Environment CEEDLLF (continued)

Location Content

000010 Padding

000014 Pointer to previous CEEDLLF control block

000018 Padding

00001C Pointer to next CEEDLLF control block

000020 Message feedback token

00002C Padding

000030 Padding

000034 Pointer to DLL name

000038 Padding

00003C Pointer to symbol name

000040 Length of DLL name

000044 Length of symbol name

000048 DLL service return code or UNIX file system explicit load return code

00004C DLL service reason code or UNIX file system explicit load reason code

000050 MVS explicit load return code

000054 MVS explicit load reason code

000058 Reserved

00005C Reserved

Table 53 shows the format of the 64-Bit Language Environment CEEDLLF.

Table 53. Format of the 64-Bit Language Environment CEEDLLF

Location Content

000000 CEEDLLF Eye Catcher

000008 CEEDLLF version number

000009 CEEDLLF flags

00000A CEEDLLF size

00000C DLL service requested

00000D DLL reference type

00000E DLL explicit load type

00000F Reserved

000010 Pointer to previous CEEDLLF control block

000018 Pointer to next CEEDLLF control block

000020 Message feedback token

000030 Pointer to DLL name

000038 Pointer to symbol name

000040 Length of DLL name

000044 Length of symbol name

000048 DLL service return code or UNIX file system explicit load return code

00004C DLL service reason code or UNIX file system explicit load reason code

DLL Failure Control Block

340 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 53. Format of the 64-Bit Language Environment CEEDLLF (continued)

Location Content

000050 MVS explicit load return code

000054 MVS explicit load reason code

000058 Reserved

00005C Reserved

Table 54 describes the fields in CEEDLLF.

Table 54. List of CEEDLLF fields

Field Explanation

CEEDLLF_EYE The CEEDLLF eye catcher. If eye catcher is in lower case, the CEEDLLF is
currently unused. If eye catcher is in upper case, the CEEDLLF has been
populated with DLL diagnostics.

CEEDLLF_VERSION The CEEDLLF version number.

1 This is the first version of the CEEDLLF.

CEEDLLF_FLAGS CEEDLLF flag bits, defined as follows:

0 CEEDLLF_FIRST. Set to 1 if this is the first CEEDLLF control block in
the contiguous CEEDLLF chain storage.

1 CEEDLLF_FRST_FAILED. Set to 1 if there was an error when
attempting to free the storage allocated to CEEDLLF_DLL_NAME or
CEEDLLF_SYMBOL_NAME.

2 CEEDLLF_GTST_FAILED. Set to 1 if there was an error when
attempting to allocate storage for CEEDLLF_DLL_NAME or
CEEDLLF_SYMBOL_NAME.

3 CEEDLLF_DLLNAME_FAILED. Set to 1 if there was an error when
attempting to copy into CEEDLLF_DLL_NAME.

4 CEEDLLF_SYMNAME_FAILED. Set to 1 if there was an error when
attempting to copy into CEEDLLF_SYMBOL_NAME.

5-7 Reserved

CEEDLLF_SIZE Size of the CEEDLLF control block.

CEEDLLF_SERVICE The DLL service that failed.
0 The DLL service was unknown.
1 The failure occurred during an implicit DLL Load.
2 Failing DLL service was a DLL Load.
3 Failing DLL service was a DLL Open.
4 Failing DLL service was a DLL Query Function.
5 Failing DLL service was a DLL Query Variable.
6 Failing DLL service was a DLL Explicit Symbol Lookup.
7 Failing DLL service was a DLL Close.
8 Failing DLL service was a DLL Free.

CEEDLLF_REFERENCE_TYPE The DLL reference type.
0 The DLL reference type was unknown.
1 The DLL reference was implicit.
2 The DLL reference was explicit.

CEEDLLF_LOAD_TYPE The type of load that was attempted by the failing DLL service.
0 A load was not attempted.
1 MVS load was attempted.
2 UNIX file system load was attempted.
3 MVS and UNIX file system loads were attempted.

DLL Failure Control Block

Chapter 8. Program management 341

Table 54. List of CEEDLLF fields (continued)

Field Explanation

CEEDLLF_PREV Pointer to the previous CEEDLLF in the circular chain.

CEEDLLF_NEXT Pointer to the next CEEDLLF in the circular chain.

CEEDLLF_FBTOK Message feedback token associated with this failure.

CEEDLLF_DLL_NAME Pointer to the DLL name. This value is null if there is no DLL name available
at the time of failure.

CEEDLLF_SYMBOL_NAME Pointer to the function or variable name. This value is null if there is no
function or variable name available at the time of failure.

CEEDLLF_DLL_NAME_LEN Length of CEEDLLF_DLL_NAME (the maximum length for a DLL name is
1024 bytes).

CEEDLLF_SYMBOL_NAME_LEN Length of CEEDLLF_SYMBOL_NAME (the maximum length for a DLL
function or variable name is 1024 bytes).

CEEDLLF_RETCODE1 Return code from the DLL service requested or the return code from an explicit
UNIX file system load.

CEEDLLF_RSNCODE1 Reason code from a DLL service requested or the reason code from an explicit
UNIX file system load.

CEEDLLF_RETCODE2 Return code from an explicit MVS load.

CEEDLLF_RSNCODE2 Reason code from an explicit MVS load.

DLL Failure Control Block

342 z/OS V2R1.0 Language Environment Vendor Interfaces

Chapter 9. Debugging and performance analysis

Language Environment provides interfaces upon which a debug tool, such as
Debug Tool, can be built. The interfaces defined by Language Environment to a
debug tool fall into the following classes: callable service, event handlers, and data
areas. These interfaces, and the actions Language Environment takes on the behalf
of a debug tool, are described in the following sections .

Language Environment also provides interfaces upon which a performance
analysis tool, which is often called a profiler, can be built. This support is described
in “Performance analysis support” on page 365. Much of this support is similar to
the support Language Environment provides for debugging tools. Therefore, a
debugging tool and a profiler cannot be used at the same time.

Language Environment-provided CWIs for the debug tool
The following sections describe the CWIs that Language Environment provides for
use with the debug tool.

__setHookEvents() — specify execute hook events for target
process

The __setHookEvents() CWI sets the execute hook events state for all threads
owned by the target enclave and referenced using asfTargetThreadRef as specified
by the eventsMask parameter. Callback functions let you provide address space
free access to storage in the target process.

Restriction: Because C and C++ linkage conventions are incompatible,
__setHookEvents() cannot receive a C++ function pointer as one of the callback
routine function pointers. If you attempt to pass a C++ function pointer to
__SetHookEvents(), the compiler will flag it as an error. You can pass a C or C++
function to __SetHookEvents() by declaring it as extern "C".

Syntax

int __setHookEvents (int eventsMask,

*asfCallbacks,
const asfTargetRef *asfTargetThreadRef,
const threadSpec

*reservedForFutureUse);

eventsMask
Used as a bit mask to specify which types of instruction hook events to enable
and which events to disable. For each bit in eventsMask that is set to 1, the
corresponding instruction hook event is enabled. For each bit that is set to 0,
the corresponding instruction hook event is disabled. Bits that do not
correspond to instruction hook events are reserved and must be set to 0. The
following macros define the bit values corresponding to the instruction
events:xm
THOOK_LABEL
THOOK_STATEMENT
THOOK_ACALL
THOOK_DO
THOOK_IFTRUE

© Copyright IBM Corp. 1991, 2015 343

THOOK_IFFALSE
THOOK_WHEN
THOOK_OTHER
THOOK_POST
THOOK_BCALL
THOOK_GOTO
THOOK_EXIT
THOOK_MEXIT
THOOK_MULTIEVT
THOOK_ALLOC
THOOK_ENTRY

const asfCalbackFunctions *asfCallbacks
Specifies the callback functions for copying data between the controlling
process and the target process. If the controlling and target processes are the
same or if they are running in the same address space, asfCallbacks can be a
null pointer. The addresses of the callback functions are specified by the
following structure type:

v asfGetStoreCallback is a pointer to a function that copies the amount of data
specified by *dataLength bytes from the target process memory specified by
targetSrce to localDest. localDest must point to a buffer with a capacity of at
least *dataLength bytes. On return, *dataLength is set to the number of bytes
actually copied intolocalDest. If any of the requested target process data
cannot be copied, all bytes starting from the target process address specified
bytargetSrce up to the first non-copyable byte are copied to localDest.
*dataLength is set to the number of bytes copied, and (*asfGetStoreCallback)()
returns the appropriate error value. If all the requests are copied
successfully, *dataLength is unchanged and (*asfGetStoreCallback)() returns
asfResultOK .

v asfSetStoreCallback is a pointer to a function that copies *dataLength bytes of
data from localSrce to the target process memory specified by targetDest. On
return, *dataLength is set to the number of bytes that could have been copied
into targetDest. If any of the requested target process data cannot be
updated, none of the target process' memory is changed, *dataLength is set to
the difference between the target process address specified by targetDest and
the next lowest non-updatable target process address, and
(*asfSetStoreCallback)() returns the appropriate error value. If all of the target

typedef struct {
/**/
/* callback function copies data to controlling */
/* process buffer from target process memory */
/**/
asfCallbackResult (*asfGetStoreCallback)(

void *localDest,
const asfTargetRef *targetSrce,
size_t *dataLength);

/***/
/* callback function copies data to target process */

/* memory from controlling process buffer */
/***/
asfCallbackResult (*asfSetStoreCallback)(

const asfTargetRef *targetDest,
const void *localSrce,
size_t *dataLength);

} asfCallbackFunctions;

__setHookEvents()

344 z/OS V2R1.0 Language Environment Vendor Interfaces

process memory was updated successfully, *dataLength is unchanged and
(*asfSetStoreCallback)() returns asfResultOK.

The two callback functions must return an appropriate value to the caller. They
must not exit(), longjmp(), execute a PL/I ON clause or C++ throw statement,
or transfer control to any routine that bypasses returning to the caller. The type
of a target process memory reference is defined as follows:

v asid contains the identifier of the address space that contains the referenced
target process memory.

v addr is the virtual address of the target process memory within the specified
address space.

The return type of the address space free callback functions is defined as
follows:

v asfResultOK specifies that the callback function returned successfully.
Memory in the controlling process or target process is updated as requested.

The remaining values indicate an error in locating or accessing the target
process memory. If one of the following values is returned, no memory in the
target process is updated. If data is being copied from the target process to the
controlling process, the largest contiguous length of memory is copied, starting
from the specified target process address:
v asfResultAddressSpaceNotAvailable: the asid member of the target process

memory reference is not valid, or the address space to which it refers is not
available to the controlling process.

v asfResultPageNotMapped: the target process address space is available to the
controlling process, but the specified virtual address is not mapped within
that address space.

v asfResultPageNotAvailable: the target process address space is available and
the virtual address is mapped, but the data contained in that page is not
available to the controlling process. For example, the target process memory
is paged out and the target process is suspended, or the target process
memory is contained in a dump that does not include the requested memory
location.

v asfResultPageNotAccessable: the target process address space is available, the
virtual address is mapped and available, but the controlling process does not
have access to the storage because of key, page or segment protection.

typedef struct {
int asid; /* target address space identifier */
void *addr; /* memory address within target address

* space */
} asfTargetRef;

typedef enum {
asfResultOK,
asfResultAddressSpaceNotAvailable,
asfResultPageNotMapped,
asfResultPageNotAvailable,
asfResultPageNotAccessable

} asfCallbackResult;

__setHookEvents()

Chapter 9. Debugging and performance analysis 345

const asfTargetRef *asfTargetThreadRef
Specifies the address space identifier and virtual address of the target
Language Environment environment anchor associated with a particular target
thread in the target enclave. For AMODE 31 programs, this is the address of
the CAA, which is loaded into register R12 while the thread is running. If the
calling thread is also the target thread, asfTargetThreadRef can be a null pointer.
If asfCallbacks is a null pointer, the asid member of *asfTargetThreadRef is
ignored. If asfCallbacks is not a null pointer, asfTargetThreadRef and
asfTargetThreadRef->addr must also not be a null pointers.

const threadSpec *reservedForFutureUse
Specifies a null pointer. It is included to simplify future specifications of
particular threads, rather than all threads in the target enclave.

Note:

1. Restriction: Because C and C++ linkage conventions are incompatible,
__setHookEvents() cannot receive a C++ function pointer as one of the callback
routine function pointers. If you attempt to pass a C++ function pointer to
__setHookEvents(), the compiler flags it as an error. You can pass a C or C++
function to __setHookEvents() by declaring it as extern 'C'.

2. The bit value macros can be bit-wise ORed to calculate the eventsMask value.
3. If successful, __setHookEvents() returns 0.
4. If an error occurs, the execute hook event state of the target process is

unchanged and a negative value is returned:
v If any parameter is not valid, -1 is returned.
v If the target process runtime environment does not support instruction hook

events, -2 is returned.

CEE3CBTS — pass component broker connector parameters
Language Environment provides the following CWI service to a debugging tool,
such as Debug Tool, to pass Component Broker Connector (CBC) debug context
parameters.

By using the Attach Debug_Thread function code, the debugger can distinguish
between being invoked for debugging all the threads in an environment or for a
single specific thread.

Syntax

void CEE3CBTS (function_code, trace_dbg_context_ptr, fc)
INT4 *function_code;
POINTER *trace_dbg_context_ptr;
FEED_BACK *fc;

CEE3CBTS
This CWI is callable only from C or C++. The reference to CEE3CBTS is
resolved at link-edit time using the SCEELKED data set. Call this CWI
interface as follows:
#pragma map(CEE3CBTS,"CEE3CBTS")
#pragma linkage(CEE3CBTS, OS)

#define attach_dbg 1
#define start_dbg 2
#define suspend_dbg 3
#define resume_dbg 4
#define stop_dbg 5

__setHookEvents()

346 z/OS V2R1.0 Language Environment Vendor Interfaces

#define attach_dbg_thread 6

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include <leawi.h>
#include <ceeedcct.h>

struct sess_info {
int tcpaddress;
int portid;
int client_pid;
int client_tid;
int client_tcpaddr;
int debugflow;

} sess_cb;

_FEEDBACK fc;

void CEE3CBTS(int, struct sess_info *, struct _FEEDBACK *);

main()
{

CEE3CBTS(resume_dbg, &(sess_cb), &(fc));
if (_FBCHECK (fc , CEE000) != 0) {

printf("CEE3CBTS failed with message number %d\n",
fc.tok_msgno);

}
}

function_code (input)
A fullword binary integer with one of the following values:
1 Attach Debug
2 Start Debug
3 Suspend Debug
4 Resume Debug
5 Stop Debug
6 Attach Debug_Thread

trace_dbg_context_ptr (input/output)
This pointer contains the address of the CBC trace/debug context structure.
This structure should have the attribute of inout. The six elements of this
structure are defined as follows:

TCP/IP address (int)
A fullword binary integer containing the TCP/IP address of the
workstation debugger GUI.

Debugger Port ID
A fullword binary integer containing the Port ID of the debugger
workstation daemon.

Client Process ID
A fullword binary integer containing the Process ID of the client.

Client Thread ID
A fullword binary integer containing the Thread ID of the client.

Client IP address
A fullword binary integer containing the TCP/IP address of the works
client.

Debug Flow
A fullword binary integer describing debugger flow within CBC debug
scenarios.

CEE3CBTS

Chapter 9. Debugging and performance analysis 347

fc (output/optional)
The feedback code indicates the result of this service. The following symbolic
conditions can result from this service:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE2F2 Severity 3

Msg_No 2530

Message A debug tool was not available.

CEE2F7 Severity 3

Msg_No 2535

Message Profiler loaded, debug tool was not available.

Note:

1. For Attach Debug, Attach Debug_Thread, or Start Debug, if a debug tool is not
loaded, Language Environment loads and calls the debugger and passes the
parameters in the call. If the debugger is already loaded, Language
Environment calls it and passes parameters in the call. If a debug tool is not
available, Symbolic Feedback Code CEE2F2 is returned.

2. For Suspend Debug, Resume Debug, or Stop Debug, if a debug tool is already
loaded, Language Environment calls the debugger, passing the parameters in
the call. If a debug tool is not available, Symbolic Feedback Code CEE2F2 is
returned.

CEEBFBC — build feedback code routine
The CEEBFBC CWI constructs a Language Environment symbolic condition name
given a Language Environment 12-byte Language Environment feedback condition
name.

Syntax

void CEEBFBC (cond_token, cond_name, [fc])
FEED_BACK *cond_token;
VSTRING *cond_name;
FEED_BACK *fc;

CEEBFBC
Call this CWI interface as follows:
L R12,A(CAA) Get the address of CAA in R12
L R15,CEECAACELV-CEECAA(,R12)
L R15,2972(,R15)
BALR R14,R15

cond_token (input)
A 12-byte condition token that is constructed from the Language Environment
symbolic name. The I_S_Info field is ignored.

cond_name (output)
An 80-byte character string symbolic condition name. The condition name is
left-justified and padded right with blanks. If the condition name is unknown,
this field is undefined.

CEE3CBTS

348 z/OS V2R1.0 Language Environment Vendor Interfaces

fc (output/optional)
The parameter in which the callable service feedback code is placed. The
following conditions can result from this service.

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE3A9 Severity 1

Msg_No 3401

Message The condition token was not recognized and the
value of the cond_name is undefined.

CEE3AA Severity 1

Msg_No 3402

Message The condition token passed is invalid and the value
of the cond_name is undefined.

Note:

1. The following checks are used to determine the validity of the inbound token:
a. Validating the case, the case must be 1 or 2.
b. Validating the severity which must be 0 through 4, inclusive.
c. For case 1 tokens, the severity occurs twice, and they must be consistent.

2. If the facility identifier is Language Environment while the IBM-assigned flag is
not set, the condition CEEabc is returned or raised and the value of the
cond_name is undefined.

3. If the facility identifier is not Language Environment, the condition CEEabc is
returned or raised and the value of the cond_name is undefined.

4. Language Environment recognizes cond_tokens that have Language
Environment as the facility identifier with the IBM-assigned flag on, and have a
corresponding message within the Language Environment message set. If
cond_token has a facility ID that is not CEE, Language Environment polls the
members.

CEEKRGPM — register pattern match routine
Language Environment provides the following CWI service to a debugging tool,
such as Debug Tool, to register a pattern match routine to enable deferred
debugging.

Syntax

CEEKRGPM (pm_addr, reserved, pm_user, [fc])
POINTER *pm_addr;
INT4 *reserved;
POINTER *pm_user;
FEED_BACK *fc;

CEEKRGPM
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12)
L R15,68(,R15)
BALR R14,R15

CEEBFBC

Chapter 9. Debugging and performance analysis 349

pm_addr (input)
The address of a pattern match routine that is to be registered or, zero, when
no pattern match routine should be registered (de-registration). Registering a
pattern match routine indicates that deferred debugging is requested.

When deferred debugging has been requested, the pattern match routine is
used to compare the name of the routine that is about to be entered to the
name of the routine that the user requested to be debugged. If the pattern
match routine determines the routine that is about to be entered should be
debugged, the pattern match routine can activate the debugger.

The pattern match routine must be a non-XPLink, AMODE 31 routine, with no
writable static. The pattern match routine linkage is MVS-style (R1 is a pointer
to pointers to the arguments).

The parameters to the pattern match routine are:

Parameter 1
Fullword function code; this value should be 177.

Parameter 2
Pointer to the program name.

Parameter 3
Fullword containing the length of program name field.

Parameter 4
Entry point address of the program that is about to be entered.

Parameter 5
Pointer to the work area provided when the pattern match routine was
registered.

reserved (input)
A fullword reserved for future use; this must be set to zero.

pm_user (input)
The address of a work area that is to be passed to the pattern match routine
each time it is called

fc (output/optional)
A feedback code that indicates the result of this call; possible values are:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE377 Severity 2

Msg_No 3303

Message The callable service was passed reserved
arguments that were not set to zero.

Note: Language Environment supports registration of a pattern match routine in
CEEPIPI subroutine environments, with the following considerations:
1. Language Environment will drive the pattern match routine during the

CEEPIPI call_sub function. The program name passed will be that of the
routine, as stored in the CEEPIPI table. The length of the name will be a value
between 1 and 8 and will not include any trailing blanks. The entry point
passed will be that of the routine entry point, as stored in the CEEPIPI table.

CEEBFBC

350 z/OS V2R1.0 Language Environment Vendor Interfaces

Language Environment will not pass the function pointer address that may
have been created to support routines with writable static.

2. Language Environment will not drive the pattern match routine for the
CEEPIPI call_sub_addr, call_sub_addr_nochk, or call_sub_addr_nochk2
functions or when there is no routine name in the CEEPIPI table

3. This service is intended to be used in the assembler user exit (CEEBXITA) as
part of enclave initialization. It is also intended for use from within a
subroutine that is run in the environment at which time it would register the
pattern match routine. Invocation of the pattern match routine begins on the
next call into the environment.

4. The user of this service is responsible for loading the pattern match routine and
ensuring it remains loaded across CEEPIPI subroutine calls. You should use one
of the Language Environment process level load services, such as CEEZLOD, so
that the pattern match routine also remains loaded across any enclave
termination that may have been triggered by a subroutine. The
CEERCB_PMADDR field (see Table 21 on page 76) can be checked for a
non-zero value before loading and registering the pattern match routine. This
can prevent an additional load and registration call after an enclave termination
and subsequent enclave re-initialization in the subroutine environment.

CEEQFBC — query feedback code routine
The CEEQFBC CWI constructs a condition token given a Language Environment
symbolic condition name.

Syntax

void CEEQFBC (cond_name, cond_token, [fc])
VSTRING *cond_name;
FEED_BACK *cond_token;
FEED_BACK *fc;

CEEQFBC
Call this CWI interface as follows:
L R12,A(CAA) Get the address of CAA in R12
L R15,CEECAACELV-CEECAA(,R12)
L R15,2976(,R15)
BALR R14,R15

cond_name (input)
A halfword-prefixed character string symbolic condition name.

cond_token (output)
A 12-byte condition token that is constructed from the Language Environment
symbolic name. The I_S_Info field is set to binary zero.

fc (output/optional)
The parameter in which the callable service feedback code is placed. The
following conditions can result from this service.

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEEBFBC

Chapter 9. Debugging and performance analysis 351

Condition

CEE3A8 Severity 1

Msg_No 3400

Message The condition name was not recognized and the
value of the cond_token is undefined.

Note:

1. If the condition token is unrecognized, the value of cond_token is undefined.
2. Language Environment recognizes cond_name values that start with CEE and

have a corresponding message within the Language Environment message set.
If the cond_name does not start with CEE, Language Environment polls the
members.

CEEQLOD — query modules loaded with enclave level load
service

Language Environment provides the following CWI service to a debugging tool,
such as Debug Tool, to query known modules currently loaded with the Language
Environment enclave level load service.

Syntax

void CEEQLOD (function_code, load_list_pointer, [fc])
INT4 *function_code;
POINTER *load_list_pointer;
FEED_BACK *fc;

CEEQLOD
Call this CWI interface as follows:
L R12,A(CAA) Get the address of CAA in R12
L R15,CEECAACELV-CEECAA(,R12)
L R15,2836(,R15)
BALR R14,R15

function_code (input)
A fullword binary integer with one of the following values:
1 Get load list
2 Free load list

load_list_pointer (input/output)
The address of a load list of module information of known modules currently
loaded with the Language Environment enclave level load service. For a
description of load list, see Figure 78 on page 353. For function code 1 (get load
list), Language Environment sets this parameter to the address of a load list.
For function code 2 (free load list), Language Environment receives this as an
inbound parameter and frees the load list addressed by this pointer.

fc (output/optional)
A 12-byte feedback code passed by reference. If specified as an argument,
feedback information (a condition token) is returned to the calling routine. If
not specified, and the requested operation was not successfully completed, the
condition is signaled to the condition manager. The following symbolic
conditions can result from this service:

CEEQFBC

352 z/OS V2R1.0 Language Environment Vendor Interfaces

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE3DN Severity 2

Msg_No 3511

Message Invalid function code.

CEE3DR Severity 0

Msg_No 3515

Message No known modules currently loaded via Language
Environment load service.

Note:

1. The get load list function obtains storage for the load list and returns module
information of all known modules currently loaded with the Language
Environment load service. If no module has been loaded, the load_list_pointer
returned is a -1.

2. The free load list function should be called prior to Language Environment
termination.

3. The free load list function does not need to be called when the feedback code is
CEE3DR. However, it is not invalid to do so.

Language Environment provides a CWI that informs a debug tool of the routines
that have already been loaded prior to the debug tool's initialization.

1 qll Based , /* QUERY LOAD LIST */
3 qll_header, /* QLL header */
5 qll_eye Char(4), /* Eye catcher ’’QLL’’ */
5 qll_version Bin(15), /* qll version number*/
5 qll_size Bin(15), /* qll length */
5 qll_num_lod Fixed, /* qll number loads */
5 qll_span Fixed, /* qll element size */

3 qll_elem(0:*), /* load list element */
5 qll_elem_flags Bit(8), /* ld list elem flags*/
7 * Bit(1), /* reserved */
7 qll_elem_np Bit(1), /* 1=pointer to name */

/* 0=name upto 8 char*/
7 * Bit(6), /* reserved */

5 * Fixed(8), /* reserved */
5 qll_elem_lodtype Fixed(15), /* load type */

/* 0 - reserved */
/* 1 - reserved */
/* 2 - reserved */
/* 3 - reserved */
/* 4 - UNIX file system load*/

5 qll_elem_lpa Ptr, /* load point addr */
5 qll_elem_epa Ptr, /* entry point addr */
5 qll_elem_modsz Fixed, /* module size */
5 qll_elem_name Char(8) /* load mod name */
7 * Ptr, /* reserved */

9 qll_elem_namel Fixed, /* name length */
7 qll_elem_namep Ptr, /* name pointer */

5 * Ptr; /* reserved */

Figure 78. Load list layout

CEEQLOD

Chapter 9. Debugging and performance analysis 353

CEETGCAA — get next CAA pointer
The CEETGCAA CWI, given a pointer to a CAA, returns a pointer to CAA of the
next thread in the enclave.

Syntax

void CEECELVTGCAA (caaptr, [fc])
POINTER *caaptr;
FEED_BACK *fc;

CEETGCAA
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12)
L R15,236(,R15)
BALR R14,R15

caaptr (input/output)
Given a caaptr as input, this CWI returns the next caaptr in the enclave.

fc (output/optional)
A 12-byte feedback code passed by reference. The following symbolic condition
can result from this service:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

Note: Upon first call, the caaptr value most likely should be register 12 of the
active thread. Because this is a loop, this service can then be repeatedly called until
the original caaptr value is encountered again.

CEETSFB — translate standard feedback token
The CEETSFB CWI constructs a Language Environment standard feedback code
from a 12-byte feedback token.

Syntax

void (*CEECELVTSFB) (fb_token, sym_fbcode, [fc])
FEED_BACK *fb_token;
VSTRING *sym_fbcode;
FEED_BACK *fc;

CEECELVTSFB
A field in the CEL LIBVEC that points to the Translate Standard Feedback
Token CWI. Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) CAA address is in R12
L R15,3020(,R15)
BALR R14,R15

fb_token (input)
A 12-byte condition token that is constructed from the CEL symbolic feedback
code. The I_S_Info field will be ignored.

sym_fbcode (output)
An 80-byte character string symbolic condition feedback code. If the condition
token is unknown, this field will be undefined.

CEETGCAA

354 z/OS V2R1.0 Language Environment Vendor Interfaces

fc (output/optional)
An optional parameter in which the callable service feedback code will be
placed. The following conditions may result from this service.

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE3A9 Severity 1

Msg_No 3401

Message The condition token was not recognized and the
value of the sym_fbcode is undefined.

Programmer
Response

Contact your service representative.

System Action Value of the feedback token is undefined.

Explanation A condition token was not able to be translated into
a corresponding condition name.

CEE3AA Severity 2

Msg_No 3402

Message The condition token passed is invalid and the value
of the sym_fbcode is undefined.

Programmer
Response

Contact your service representative.

System Action Value of the symbolic feedback code is undefined.

Explanation A condition token was determined to be invalid and
is not able to be translated into a corresponding
condition name.

Note:

1. This CWI is usually called by a member event handler when processing the
translate event-event 20.

2. A standard symbolic feedback code consists of the three letter facility ID
catenated with message number expressed in base 32.

CEETSFC — translate standard feedback code
The CEETSFC CWI constructs a condition token from a symbolic feedback code in
Language Environment standard form.

Syntax

void (*CEECELVTSFC) (sym_fbcode, fb_token, [fc])
VSTRING *sym_fbcode;
FEED_BACK *fb_token;
FEED_BACK *fc;

CEECELVTSFC
A field in the CEL LIBVEC that points to the Translate Standard Feedback
Code CWI. Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) CAA address is in R12
L R15,3024(,R15)
BALR R14,R15

CEETSFB

Chapter 9. Debugging and performance analysis 355

sym_fbcode (input)
A halfword-prefixed character string symbolic condition name.

fb_token (output)
A 12-byte condition token that is constructed from the symbolic feedback code.
The I_S_Info field will be set to binary zero.

fc (output/optional)
An optional parameter in which the callable service feedback code will be
placed. The following conditions may result from this service.

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE3A8 Severity 3

Msg_No 3400

Message The condition feedback code was not recognized and
the value of the fb_token is undefined.

Explanation The condition name was not able to be translated
into a corresponding Language Environment
condition code.

Programmer
Response

Contact your service representative.

System Action Value of the condition token is undefined.

Note:

1. This CWI is usually called by a member event handler when processing the
translate event-event 20.

2. A standard symbolic feedback code consists of the three letter facility ID
catenated with message number expressed in base 32.

Debug tool-provided event handlers
One of the most important things a debug tool must do to be called by Language
Environment is provide two logical event handlers:
v An event handler to handle general Language Environment events. When the

debugger initializes, it must place the address of this event handler in the
member list slot that corresponds to the debugger's member identifier. If the
debugger has no member identifier, it should not modify any slots in the
member list. If that slot is already initialized, then two members are using the
same member identifier, and debugger initialization should fail.

v An event handler to handle debug events. The address of this event handler is
maintained by Language Environment in the PCB field, CEEPCBDBGEH. When
Language Environment initializes, this field is initialized to zero; when
Language Environment loads the debug event handler, it sets this field to the
address of the debug event handler.

Debug tool event handler
The debug event handler is loadable by Language Environment with the following:

CEETSFC

356 z/OS V2R1.0 Language Environment Vendor Interfaces

|

v If the __CEE_DEBUG_FILENAME31 environment variable is not defined, the
name CEEEVDBG is used to load the debug event handler from the MVS load
library search order.

v If the __CEE_DEBUG_FILENAME31 environment variable is defined and the
value specified is acceptable, Language Environment uses the value as the name
of the debug event handler and loads it from the z/OS UNIX file system. This
name, combined with the path name (in the z/OS UNIX file system) that is
specified in the LIBPATH environment variable, provides the fully qualified path
name for the debug event handler.

By default, Language Environment will only accept the value /bin/dbx31vdbg,
which is used by dbx.

To allow other values, a list of allowed values must be created in a file named
_CEE_DEBUG_FILENAME31.list in the directory /etc. Add each allowable value
exactly as it will be returned by the getenv() function (excluding the NULL
character at the end) to the file. Each value must be on a line by itself, with no
comments, no leading blanks and no trailing blanks. Lines are terminated with the
newline character.

When the value is not /bin/dbx31vdbg, Language Environment will open the file
/etc/_CEE_DEBUG_FILENAME31.list and read each line. If a line is found that
matches the value for the environment variable _CEE_DEBUG_FILENAME31, the
value will be accepted. When the value is not accepted, Language Environment
will issue a message, the debug event handler will not be loaded and the
application will continue.

The attempt to load the debug event handler is performed from either the z/OS
UNIX file system or the MVS load library search order, but not both.

For additional information on invoking the debug event handler, see “Event code
16 — Debug Tool event” on page 506. Specification of which debug tool to be used
is made at run time by exposing its name to the system for Language Environment
to LOAD. A load failure indicates to Language Environment that a debug tool is
not available while this program is running. The debug event handler is loaded
and initialized when any one of the following occur:
v An initial command string or PROMPT is discovered and the TEST runtime

option is in effect.
v The error condition is raised for the first time and the TEST runtime option is in

effect with the ERROR suboption specified.
v Any condition is raised for the first time and the TEST runtime option is in

effect with the ALL suboption specified.
v A call to CEETEST is made, regardless of the TEST runtime option setting.

Language Environment notifies the debugger of events through the address of the
debug tool event handler contained in the CEEPCBDBGEH. The event handler
interface is defined in Table 55 and the bit map descriptions are in Table 56 on page
360. The CWI CEE3CBTS event handler interface is defined in Table 57 on page
361.

Table 55. Debugger Language Environment event handler interface

Debug Tool Event Debug Tool
Event Code

Parm 2 Parm 3 Parm 4

Condition raised 101 CIB result code

Debug Interfaces

Chapter 9. Debugging and performance analysis 357

|
|
|

|
|
|
|
|
|

|
|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

Table 55. Debugger Language Environment event handler interface (continued)

Debug Tool Event Debug Tool
Event Code

Parm 2 Parm 3 Parm 4

Unhandled condition 103 CIB result code

User handler next 105 CIB v 1
v 2

v user handler address
v member event

handler address

Goto 111 DSA DSA format

PIPI Sub Initialization 115

PIPI Sub Termination 116

Enclave init 118 creator's EDB

Enclave term 119

Thread init 120 creator's CAA

Debug tool term 121

Thread term 122

External entry 123 v Parm 2 = DSA (see note)

v Parm 3 = cmd string

v Parm 4 = INPL

v Parm 5 = DSA format

Module load 124 DSA module descriptor DSA format

Module delete 125 DSA module name DSA format

Storage free 126 storage storage length

Condition promote 127 CIB result code

Condition goto 128 DSA DSA format

Attention 129

Debug tool program
check

130 result code

Message redirect 131 msg_text ddname

CALL CEETEST 132 DSA (see note 1) cmd string DSA format

Execute Hook
invocation

133 v Parm 2 = DSA

v Parm 3 = hook offset

v Parm 4 = DSA format

v Parm 5 = A buffer containing general purpose registers

v Parm 6 = Return address to the routine that was interrupted

v Parm 7 = Entry point to the routine that was interrupted

mutex_init 140 initializing thread_id mutex (for bit mask
descriptions, see
Table 56 on page 360)

mutex_destroy 141 destroying thread_id mutex

mutex_lock 142 owner thread_id mutex

mutex_unlock 143 thread_id releasing mutex mutex

mutex_wait 144 waiting thread_id mutex

mutex_unwait 145 posted thread_id mutex

mutex_relock 146 owner thread_id mutex

Debug Interfaces

358 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 55. Debugger Language Environment event handler interface (continued)

Debug Tool Event Debug Tool
Event Code

Parm 2 Parm 3 Parm 4

mutex_unrelock 147 owner thread_id mutex

cond_init 150 initializing thread_id condition var cv attr object

cond_destroy 151 destroying thread_id condition var

cond_wait 152 waiting thread_id condition var mutex

cond_unwait 153 posted thread_id condition var mutex

Initial thread create 160 initial thread_id nil stack_size

Initial thread exit 161 initial thread_id

Pthread create 162 creating thread_id created thread_id stack_size

Pthread created 163 created thread_id nil stack_size

Pthread exit 164 created thread_id

Pthread wait 165 joining thread_id joined thread_id

Pthread unwait 166 joining thread_id joined thread_id

Imminent CAA Chain
Addition

167

CAA Chain Addition
Complete

168

Imminent CAA Chain
Deletion

169

CAA Chain Deletion
Complete

170

POSIX fork()
imminent

171 thread_id

In child process 172

POSIX exec()
imminent

173

Process clean up
imminent

174

Spawn is imminent 175

UNIX file system
load module

176 DSA UNIX file system
module descriptor

DSA format

Delete UNIX file
system load module

177 DSA UNIX file system
module name

DSA format

In parent process 178

After spawn 179

CALL CEE3CBTS 180 (for parameter descriptions,
see Table 57 on page 361)

rwlock lock for read 181 thread_id rwlock

rwlock lock for write 182 thread_id rwlock

rwlock wait for read 183 thread_id rwlock

rwlock wait for write 184 thread_id rwlock

Debug Interfaces

Chapter 9. Debugging and performance analysis 359

Table 55. Debugger Language Environment event handler interface (continued)

Debug Tool Event Debug Tool
Event Code

Parm 2 Parm 3 Parm 4

Multiple event
Execute Hook
invocation

189 v Parm 2 = DSA

v Parm 3 = hook offset

v Parm 4 = DSA format

v Parm 5 = A buffer containing general purpose registers

v Parm 6 = Return address to the routine that was interrupted

v Parm 7 = Entry point to the routine that was interrupted

v Parm 8 = Event mask

Note:

1. This is the requestor's DSA, which means an HLL library routine DSA is likely the requestor of the Language
Environment service or user DSA.

2. If DSA format is 1 in a 64–bit environment, i.e. XPLink DSA, 64-bit address of 64-bit'ized DSA

Table 56. Debugger Language Environment event handler bit mask descriptions

Bit mask Description

'00000000'X The object is a private mutex with the non-recursive
characteristic.

'00000001'X The object is a private mutex with the recursive
characteristic.

'00800000'X The object is a shared mutex with the non-recursive
characteristic.

'00800001'X The object is a shared mutex with the recursive
characteristic.

'08000001'X The object is a private rwlock with the recursive
characteristic.

'08800001'X The object is a shared rwlock with the recursive
characteristic.

Note:

1. Indicators are available for objects that are shared and separate events for each
type of lock.This information indicates the shared object has two copies of DBX
that run in different address spaces for applications that use a shared mutex or
rwlock. The first occurrence of a lock event, and the fact the object is shared,
causes a new control structure for this object. That is, when the following
unique events occur and the high order bit of the mutex_object content is ON,
a control structure with a lock count of one will be created. This makes the
view of a shared mutex or rwlock available in the using address space after the
originating address space has initialized the shared object.
142 mutex object
181 rwlock object, locking for read
183 rwlock object, locking for write

2. Shared mutex and rwlock objects will always be presented even if the
NODEBUG option is one of the object's attributes.

3. If a shared object acquire event is reported and there is no entry for the lock
object, an entry will be created for the object with a lock count of one. Then
when an unlock event happens which sets the lock count to zero, the entry for
the shared object will be removed.

Debug Interfaces

360 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 57. CWI CEE3CBTS event handler interface parameters

Number Name Description

1 Function Code Integer values passed to CEE3CBTS by the invoker of the CWI.
1 Attach Debug
2 Start Debug
3 Suspend Debug
4 Resume Debug
5 Stop Debug
6 Attach Debug_Thread

2 TCP/IP address inout A fullword binary integer containing the TCP/IP address of the
debugger GUI.

3 Debugger port ID inout A fullword binary integer containing the port ID of the debugger
daemon.

4 Client Process IDinout A fullword binary integer containing the Process ID of the client.

5 Client Thread ID inout A fullword binary integer containing the Thread ID of the client.

6 Client IP address inout A fullword binary integer containing the IP address of the client.

7 Debug Flow inout A fullword binary integer containing debug flow information as
provided by CBC.

CAA
A fullword binary integer that contains the address of the CAA.

CIB
A fullword binary integer that contains the address of the CIB.

DSA
A fullword binary integer that contains the address of the DSA.

DSA format
A fullword binary integer set to one of the following:
0 The format of the DSA is a standard OS linkage register save area

(with/without Language Environment fields including NAB).
1 The format of the DSA is XPLINK style.

General purpose registers
A 64-byte buffer containing the general purpose registers stored in order 0 to
15 at the time the debug hook was executed. If the debugger changes these
register values, the new values will be used when control is returned to the
routine that executed the debug hook.

return_address
A fullword pointer containing the address of the instruction where control will
be returned to the routine that executed the debug hook. If the debugger
changes this address, control will be returned to the new location.

entry_ptr
A fullword pointer containing the address of the entry point of the routine that
contains the debug hook.

EDB
A fullword binary integer that contains the address of the EDB.

module name
A halfword-prefixed string of the module name being deleted.

UNIX file system module name
A fullword-prefixed string of the module name being deleted.

Debug Interfaces

Chapter 9. Debugging and performance analysis 361

module descriptor
A structure describing the module that was just loaded. The structure is as
follows:

dcl 1 module descriptor,
3 load point pointer,
3 module size fixed,
3 entry point pointer,
3 name length fixed(15),
3 module name char(255);

UNIX file system module descriptor
A structure describing the module that was just loaded. The structure is as
follows:

dcl 1 UNIX file system module descriptor,
3 load point pointer,
3 module size fixed,
3 entry point pointer,
3 name length fixed(31),
3 module name char(255);

result code
A fixed(31) binary value action for condition manager to take. The supported
values are:
110 Resume at the resume cursor
120 Percolate to next condition handler

storage length
A fixed(31) binary value containing the number of bytes of storage.

cmd string
A halfword-prefixed string containing the debug command.

msg_text
A halfword-prefixed string of the text that is transmitted by Language
Environment message services.

ddname
An 8–byte character string, left-justified, padded right with blanks of the target
ddname.

INPL
The Initialization Parameter List as passed to CEEINT. For the format of the
INPL, see Figure 55 on page 155.

start_rtn
A function pointer to the start routine for the pthread.

thread_id
An 8-byte thread identifier.

mutex
A pointer to a mutex object.

recursive
A recursive type mutex.

nonrecurs
A nonrecursive type mutex.

condition var
A pointer to a condition variable object.

cv attr object
A pointer to a condition variable attributes object.

Debug Interfaces

362 z/OS V2R1.0 Language Environment Vendor Interfaces

stack_size
A stack size attribute (in bytes) of initial or created thread.

nil
Unused; null pointer.

event mask
a fullword binary value in which each bit represents a different hook event.
When the bit is '1'b, the event occurred. The values of the bits are:
Bit Event
0-11 Not used
12 Multiple Event Hook
13 Allocate Descriptor Built
14 Block Entry
15 Not used
16 User label
17 Begin of statement
18 Call return
19-20 Not used
21 Start of loop
22 If evaluated TRUE
23 If evaluated FALSE
24 Switch/case/select choice start
25 Switch/case/select default start
26 Multiple flows join
27 Not used
28 Call begin
29 Goto
30 Procedure exit
31 Multiple exit

Note:

1. A message is issued if the load fails because the debug tool is not available.
2. All parameters are passed by reference.
3. Return codes (in decimal) are placed in R15

00 Success
16 Critical error in the debug tool; do not invoke again.

4. The debugger signals a CEE2F1 condition when it needs to quit from a nested
enclave.

Language Environment actions for the interactive debug tool
This section discusses the actions Language Environment takes on behalf of a
debug tool.

Language Environment parses the TEST runtime option on behalf of the debug
tool and sets the appropriate flags within the Language Environment options
control block. Language Environment sets the initial values for the test level and
the debug tool event handler in the PCB. After its initial setting during the
initialization of the first enclave within the process, this field is updated only by
debug tool commands such as the SET TEST command. It is not influenced by
nested enclave invocations. For every new enclave spawned and every thread
being terminated, if the debug tool has been initialized, Language Environment
thread initialization/termination calls the debug event with an enclave
initialization or termination event code.

If the debug tool has been initialized, messages can be directed to the Language
Environment message file are delivered to the debug tool by calling the debug
event handler. In addition, the Language Environment error handler calls the

Debug Interfaces

Chapter 9. Debugging and performance analysis 363

debug event handler for all enabled conditions. The debug event handler is called
after the enablement phase and prior to calling the condition handlers. It is also
called when a condition is promoted. Upon the occurrence of an attention
interrupt, Language Environment calls the debug event handler with an event code
indicating an attention interrupt. The debug tool can set hooks, process the event
within certain restrictions, and wait for a synchronization point.

Language Environment interactive debug data areas
Language Environment provides data areas for a debug tool's use. These areas are
described in this section. The CAA fields are as follows:
v Initial command string address and length is contained within the Language

Environment options control block.
v The TEST option's command file ddname is contained within the Language

Environment options control block.
v Indication of ALL, ERROR, or NONE TEST suboption is contained within the

Language Environment options control block.
v Any debug tool can provide an event handler. The address of this handler

should be placed in the member list slot for its member identifier, during
debugger initialization, allowing processing of normal events. Debug type events
are passed to one of the debug event handlers, CEEEVDBG or
__CEE_DEBUG_FILENAME31. The two event handlers can be the same routine,
if desired.

Execute hook support
Language Environment gives you the capability to establish an exit that gains
control when a compiled execute hook (EX) is enabled and executed. The
user-provided exit is identified by the HLL user exit (CEEBINT) that is invoked
during initialization of the Language Environment environment. Language
Environment owns the HLL user exit and provides support for the execute hook
exit.

The compiled execute hook can be a single event hook or a multiple event hook. A
multiple event hook represents the simultaneous of more than one execute hook
event. The multiple event hook collapses multiple EX instructions into a single EX
instruction, followed by a NOP instruction.

Language Environment initialization:
v Establishes the address of the hook handler entry point
v Sets the hook handler suffix
v Sets the hooks (CAA+X'01A8' thru CAA+X'01F0' for a length of X'48') to

X'0700',S(CEECAAUDHOOK)
v Sets the hook handler prefix

Invoking the event handler:
v Single event hook:

If the debugger has been initialized when a single event hook is enabled and
executed, the debugger event handler is invoked with the following interface:
1. Event code 133
2. A DSA that was in control when the hook was executed
3. The offset of the hooks within the hook set that was executed (a multiple of

4 ranging from 0 to 15 inclusive)
4. DSA format

Debug Interfaces

364 z/OS V2R1.0 Language Environment Vendor Interfaces

5. A buffer containing general purpose registers
6. Return address to the routine that was interrupted
7. Entry point to the routine that was interrupted

v Multiple event hook:
If the debugger has been initialized when a multiple event hook is enabled and
executed and the hook for at least one of the events is active, the debugger event
handler is invoked with the following interface:
1. Event code 189
2. A DSA that was in control when the hook was executed
3. The offset of a multiple event hook is a specific number determined by the

events
4. DSA format.
5. A buffer containing general purpose registers
6. Return address to the routine that was interrupted
7. Entry point to the routine that was interrupted
8. Event mask

In addition, R12 points to the CAA.

To enable a particular execute hook, set the first 2 bytes of the hook to X'45C0'. To
disable a particular execute hook, set the first 2 bytes of the hook to X'0700'. No
other values should be used for these first 2 bytes.

Performance analysis support
Language Environment provides support for performance analysis, or profiler
tools. You can use a profiler tool to determine the performance level of an
application; for example, trace data from a profiler tool can reveal the areas of an
application that require the most processing time.

The C/C++ Performance Analyzer is available with the IBM C/C++ Productivity
Tools for z/OS product. Use the Performance Analyzer to help analyze,
understand, and tune your C and C++ applications for improved performance.

Profile tool event handler
The profile event handler is loadable by Language Environment with the name
CEEEVPRF. The profiler event handler is loaded and initialized if the PROFILE
runtime option is in effect and the TEST runtime option is not specified.

Reminder: If the TEST runtime option is specified, the PROFILE runtime option is
ignored and a profiler tool is not loaded. A load failure occurs if Language
Environment cannot find the CEEEVPRF routine or if the routine is not available.

The CEEPCBPRFEH field of the PCB contains the address of the profiler event
handler. Language Environment uses this address to notify the profiler tool of
certain events. These events, which are described in Table 58 on page 366, are a
subset of the notifications and parameters that Language Environment passes to
the debug tool event handler.

Debug Interfaces

Chapter 9. Debugging and performance analysis 365

Table 58. Profile tool — Language Environment event handler interface

Profile Tool Event
Profile Tool
Event Code Parm 2 Parm 3 Parm 4

Condition raised 101 CIB result code

Unhandled condition 103 CIB result code

Enclave init 118 creator's EDB

Enclave term 119

Thread init 120 creator's CAA

Profile tool term 121

Thread term 122

External entry 123 DSA address (see note) profiler invocation
string

v Parm 4 = INPL

v Parm 5 = DSA
format

Condition promote 127 CIB result code

Execution Hook
invocation

133 v Parm 2 = DSA

v Parm 3 = hook offset

v Parm 4 = DSA format

v Parm 5 = A buffer containing general purpose registers

v Parm 6 = Return address to the routine that was interrupted

v Parm 7 = Entry point to the routine that was interrupted

v Parm 8 = Eight-byte clock value returned by the STORE Clock (STCK)
instruction

v Parm 9 = Eight-byte elapsed CPU time in microseconds returned by the
TIMEUSED assembler service

Initial thread create 160 initial thread_id nil stack_size

Initial thread exit 161 initial thread_id

Pthread create 162 creating thread_id created thread_id stack_size

Pthread created 163 created thread_id nil stack_size

Pthread exit 164 created thread_id

POSIX fork()
imminent

171 thread_id

In child process 172

POSIX exec()
imminent

173

Process clean up
imminent

174

Spawn is imminent 175

In parent process 178

After spawn() 179

Performance Analysis Support

366 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 58. Profile tool — Language Environment event handler interface (continued)

Profile Tool Event
Profile Tool
Event Code Parm 2 Parm 3 Parm 4

Multiple event
Execute Hook
invocation

189 v Parm 2 = DSA

v Parm 3 = hook offset

v Parm 4 = DSA format

v Parm 5 = A buffer containing general purpose registers

v Parm 6 = Return address to the routine that was interrupted

v Parm 7 = Entry point to the routine that was interrupted

v Parm 8 = eight-byte clock value returned by the STORE Clock (STCK)
instruction

v Parm 9 = eight-byte elapsed CPU time in microseconds returned by the
TIMEUSED assembler service

v Parm 10 = Event mask

Note: This is the requestor's DSA, which means an HLL library routine DSA is likely the requestor of the Language
Environment service or user DSA.

CAA
A fullword binary integer that contains the address of the CAA.

CIB
A fullword binary integer that contains the address of the CIB.

DSA
A fullword binary integer that contains the address of the DSA.

EDB
A fullword binary integer that contains the address of the EDB.

Hook offset
A fullword binary integer that contains the offset of the hook that was
executed within the hook set. (This value is a multiple of 4 ranging from 0 to
52 inclusive.)

DSA format
A fullword binary integer set to one of the following:
0 The format of the DSA is a standard OS linkage register save area

(with/without Language Environment fields including NAB).
1 The format of the DSA is XPLINK style.

General purpose registers
A 64-byte buffer containing the general purpose registers stored in order 0 to
15 at the time the debug hook was executed. If the debugger changes these
register values, the new values will be used when control is returned to the
routine that executed the debug hook.

return_address
A fullword pointer containing the address of the instruction where control will
be returned to the routine that executed the debug hook. If the debugger
changes this address, control will be returned to the new location.

entry_ptr
A fullword pointer containing the address of the entry point of the routine that
contains the debug hook.

result code
A fixed(31) binary value action for condition manager to take. The supported
values are:

Performance Analysis Support

Chapter 9. Debugging and performance analysis 367

110 Resume at the resume cursor
120 Percolate to next condition handler

storage length
A fixed(31) binary value containing the number of bytes of storage.

profiler invocation string
A halfword-prefixed string that contains the invocation string of the profiler
tool. This value, which is specified as the string parameter of the PROFILE
runtime option, it is translated to upper case characters. For more information
about the runtime option, see z/OS Language Environment Programming
Reference.

INPL
The Initialization Parameter List as passed to CEEINT. For the format of the
INPL, see Figure 55 on page 155.

thread_id
An 8-byte thread identifier.

stack_size
A stack size attribute (in bytes) of initial or created thread.

nil
Unused; null pointer.

event mask
a fullword binary value in which each bit represents a different hook event.
When the bit is '1'b, the event occurred. The values of the bits are:
Bit Event
0-11 Not used
12 Multiple Event Hook
13 Allocate Descriptor Built
14 Block Entry
15 Not used
16 User label
17 Begin of statement
18 Call return
19-20 Not used
21 Start of loop
22 If evaluated TRUE
23 If evaluated FALSE
24 Switch/case/select choice start
25 Switch/case/select default start
26 Multiple flows join
27 Not used
28 Call begin
29 Goto
30 Procedure exit
31 Multiple exit

Language Environment actions for profiler
Language Environment parses the PROFILE runtime option on behalf of the profile
tool and sets the appropriate flags and profiler invocation string with the Options
Control Block (OCB). If the TEST runtime option has also been specified, Language
Environment issues a message to indicate that the TEST option will take
precedence; that is, Language Environment will load the specified debug tool and
will not load the specified profiler tool. If the NOTEST runtime option is specified,
Language Environment loads module CEEEVPRF and stores the entry point
address in the PCB (field CEEPCBPRFEH).

Performance Analysis Support

368 z/OS V2R1.0 Language Environment Vendor Interfaces

Chapter 10. DFSORT interface

This chapter describes and discusses the DFSORT interface. Note that whenever
DFSORT is mentioned, an equivalent sort product can be used.

DFSORT interface description
Typically, an implicit enclave boundary occurs when an application issues an SVC
LINK. However, this is not the case when DFSORT is invoked directly; that is,
Language Environment will create a new enclave for DFSORT. To simplify calls to
DFSORT, Language Environment concentrates the logic of the DFSORT invocation
into the Language Environment service CEE3SRT.

When CEE3SRT is invoked, the routine acquires a new stack frame and some flags
are set to indicate DFSORT invocation. As a result, the path length is slightly
longer than if your application used LINK SVC to invoke DFSORT directly.
However, when you invoke CEE3SRT, the routine also establishes exit DSAs and
calls DFSORT using defined interfaces, which are described in the z/OS DFSORT
Application Programming Guide.

Language Environment supports the DFSORT extended parameter list, which
allows parameters to be placed above the 16M line. DFSORT Version 1 Release 1.1
or later is required for extended parameter list support.

CEE3SRT — call DFSORT
Purpose

This CWI interface establishes an exit DSA and call DFSORT.

Syntax

CEE3SRT
Call this CWI interface as follows:
L R12,A(CAA) Get the address of CAA in R12
L R15,CEECAACELV-CEECAA(,R12)
L R15,2916(,R15)
BALR R14,R15

dfsort_plist
The address of the extended parameter list that is passed to DFSORT. The
DFSORT extended parameter list is shown in Figure 79 on page 370. Language
Environment reserves the use of the address of the ESTAE area pointer (+X'14'
into the extended parameter list). Language Environment gets the exit address
to establish the environment for the member-specified exit, before this exit gets
control. It is the caller's responsibility to adhere to the DFSORT interface, as
described in the z/OS DFSORT Application Programming Guide.

void CEE3SRT (dfsort_extended_plist, ret_code)

STRUCT *dfsort_extended_plist;
INT4 *ret_code;

© Copyright IBM Corp. 1991, 2015 369

ret_code
The return code from the DFSORT invocation which is contained within R15
upon return from DFSORT. Refer to the DFSORT library for detailed
information on the return codes. It is the CEE3SRT caller's responsibility to
manage the DFSORT return code. For example, COBOL would save it in the
SORT-RETURN special register.

Usage notes
v Note the following restrictions:

– DFSORT does not run under CICS. Language Environment calls DFSORT
using EXEC CICS LOAD and BALR 14,15 while executing under CICS.

– DFSORT is not supported in a POSIX(ON) environment.
– Language Environment only supports E15, E35, and E32 exits.

v Identifying restrictions on DFSORT invocation on a per-HLL basis is the
responsibility of the particular HLL.

v Language Environment calls DFSORT using SVC LINK while executing under
z/OS.

v The caller of CEE3SRT must provide and manage the DFSORT exit addresses
using the extended parameter list. Typically, the address of an exit identifies an
HLL library routine which, in turn, calls a user routine. If no user exit routine is
needed, a zero can be specified in the extended parameter list.
Language Environment gets the exit address in the DFSORT PLIST and replaces
it with a Language Environment routine so that Language Environment can,
among other things, establish R12 and R13 to point to the CAA and a DSA
respectively prior to calling the caller's supplied exit.

v When a DFSORT user exit is called, the registers are as follows:

R1 Address of a parameter list for the particular exit

R12 Address of the CAA

R13 Address of a standard DSA-formatted save area with a valid NAB
established

R14 The return address

R15 Address of the exit's entry point
v Invocation of DFSORT from within a DFSORT user exit is restricted in Language

Environment.
v R15 is used to pass return codes back to DFSORT from the user exit.
v The exit address that is passed to CEE3SRT is called, honoring the AMODE bit,

and with R12 and R13 established as described above.

SORTEPL DSECT
CONTROL DS A Addr of control statements or zero
E15_E32 DS A Addr of user exit E15 or E32, or zero
E35 DS A Addr of user exit E35 or zero
USER DS A User exit addr constant or zero
ALTSEQ DS A Addr of ALTSEQ translation table or zero
ESTAE DS A Addr of ESTAE area pointer or zero
E18 DS A Addr of user exit E18 or zero
E39 DS A Addr of user exit E39 or zero
END_MARK DS F F’-1’ to indicate the end

Figure 79. DFSORT's extended parameter list

CEE3SRT

370 z/OS V2R1.0 Language Environment Vendor Interfaces

v Language Environment uses the ESTAE area pointer. For additional information,
see “Error handling within SORT exits.”

v A new enclave is not created when calling DFSORT in z/OS even though an RB
boundary is crossed.

v CEE3SRT restores the program mask from the value in the CAA upon return
from the call. If the program mask is altered (using CEE3SPM or a dynamic call)
in the DFSORT user exit, the effect persists upon return from DFSORT.

ILC within SORT exits
Inter-language communication (ILC) is allowed within the DFSORT user exit, as
long as the ILC is performed within the same load module. ILC is not permitted in
dynamically loaded routines.

Error handling within SORT exits
Language Environment terminates all routines up to the routine that called
DFSORT (using CEE3SRT) for all abends. Neither HLL condition handlers nor user
handlers established within the DFSORT exit is driven for abends occurring within
DFSORT or the DFSORT exit.

When a condition is raised by an abend, the handle cursor and the resume cursor
are set to the return point following the call to CEE3SRT. The information in the
CIB contains the information on the condition that was raised in the sort exit and
an indication that the condition occurred while in DFSORT (including the USER
DFSORT exit). The current invocation of DFSORT is terminated and error handling
starts with the stack frame of the caller of CEE3SRT.

Conditions raised either by CEESGL or by a program interrupt continues to
operate in the same manner, independent of the CEE3SRT call. However, when the
resume cursor is moved to a stack frame that precedes the CEE3SRT stack frame,
Language Environment terminates the DFOSRT invocation.

Messages and conditions
The following conditions can arise during the invocation of CEE3SRT:

Condition

CEE35L Severity 4

Msg_No 3253

Message Catastrophic exception raised within the CEE3SRT
invocation.

CEE35M Severity 4

Msg_No 3254

Message Incorrect DFSORT PLIST passed to CEE3SRT.

CEE35N Severity 4

Msg_No 3255

Message Attempt to invoke CEE3SRT from within a DFSORT
exit.

CEE3SRT

Chapter 10. DFSORT interface 371

DFSORT Interface

372 z/OS V2R1.0 Language Environment Vendor Interfaces

Chapter 11. Math library

The interface conventions provided by the Language Environment math service
library routines are:
v Scalar routines callable service call
v Scalar routines CWI for all HLLs

Language Environment math service library consists of two logical libraries. All
routines in one library are called with the callable service interface. All routines in
the other library are called using the CWI interface. When a condition is
encountered in the callable service invocation, the condition token is constructed. If
the caller specifies to receive the condition token, control is returned to the caller. If
the caller does not specify to receive the condition token, it is presented to the
condition handler for processing. When a condition is encountered in the CWI
invocation the language-specific condition handlers are called to handle it. These
condition handling rules are the same for software and hardware detected
conditions.

Calling math services from an application
Math services can be called either from HLLs or from assembler, if Language
Environment is initialized. There are two ways to call math services:
1. From individual HLLs as that language's own intrinsic math service (CWI or

Register CWI)
2. From any HLL or assembler as a callable service

Math service condition handling requirements
Math services need to satisfy semantic condition handling requirements of all
Language Environment members. A condition in a math service is treated
differently than a condition elsewhere in either the generated code or in the other
routines of the language library. This section lists what special functions are
needed by condition handlers that support math services.

Individual programming languages vary widely in handling semantic action in
regard to math services. When a condition occurs in a CWI, the condition handling
mechanism needs to provide the following information to the condition handler:
v Indication that a condition occurred in a math service
v The name or other identification of the math service
v The type of condition

This information is communicated in the CIB (condition information block)
constructed by the math service for software-detected conditions or by the ESTAE
exit of the operating system provided by Language Environment for
hardware-detected conditions.

© Copyright IBM Corp. 1991, 2015 373

Member-specific condition handling
Member language condition handlers needing to do special processing for
conditions originated in math services are assisted as follows; if an execution
interruption occurred in a math service, CIB_MRC will have one of the following
values:

'1'B Indicates math service originated condition.

'0'B Indicates nonmath service condition.

Data types and their abbreviations
Table 59 shows the data types used in this section and their abbreviations.

Table 59. Data types and their abbreviations

Abbreviation Data Type Explanation

R*S 32-bit single floating-point number (hexadecimal)

R*L 64-bit double floating-point number (hexadecimal)

R*E 128-bit extended floating-point number (hexadecimal)

C*S complex number consisting of two 32-bit single floating-point
numbers

C*L complex number consisting of two 64-bit double floating-point
numbers

C*E complex number consisting of two 128-bit extended floating-point
numbers

I*S 32-bit binary integer number

L*S 32-bit logical value

I*J 64-bit binary integer number

I*H 16-bit binary integer number

I*K 8-bit binary integer number

I*U 8-bit unsigned binary integer number

CWI conventions for scalar math services
The Language Environment math library scalar functions are accessed through a
CWI entry point. HLLs invoke math routines at the CWI conventional interface or
at the CWI register interface.

Table 60 on page 375 and Figure 80 on page 376 show supported formats. The first
format uses the register interface, where the address of the parameter is placed in a
register and the result is in a floating-point register. The second format uses the
conventional interface where GPR1 contains the address of the parameter list and
the result is returned in storage.

Upon entry, standard Language Environment linkage conventions are assumed:

GPR12
CAA

GPR13
Save area

Math services

374 z/OS V2R1.0 Language Environment Vendor Interfaces

GPR14
Return address

GPR15
Entry point

Register interface
This is a S/370 platform-specific extension. Upon entry, GPR1 contains the address
of the first argument, GPR2 contains the address of the second argument, and
GPR3 contains the address of the third argument for functions with three
arguments as shown in the following figure. The result is returned in the register
or registers as shown in Table 61.

Table 60. CWI register interface format

One Input Parameter Two Input Parameters Three Input Parameters

R1 = @(parm 1) R1 = @(parm 1) R1 = @(parm 1)

R2 = @(parm 2) R2 = @(parm 2)

R3 = @(parm 3)

Upon return, registers 4-14 contain the same values as they did when the routine
was entered. Registers 2 and 3 are preserved by routines of one input parameter.
Register 3 is preserved by routines of two input parameters.

Table 61. Result registers for scalar routines (CWI register interface)

Result Data Type Real Part Imaginary Part

R*S FPR0

R*L FPR0

R*E FPR0,2

C*S FPR0 FPR2

C*L FPR0 FPR2

C*E FPR0,2 FPR4,6

I*S GPR0

Conventional interface
Upon entry, GPR1 contains address of the parameter list as shown in Figure 80 on
page 376.

Math Services

Chapter 11. Math library 375

Upon return, registers 2-14 contain the same values as they did when the routine
was entered.

Condition token values for math services
Figure 81 shows the condition token values.

Math services
The Language Environment math services library consists of 239 scalar routines.
Math service entry point names have a specific format. All entry points are
8-character names.

The first three characters are always CEE.

The fourth character is one of the following values:

S Scalar routine, AWI callable service entry point

T Scalar routine, CWI callable service entry point

9 Scalar routine, register CWI entry point

The fifth character designates the data type of input parameter(s):

I → I*S 32-bit binary integer number

S → R*S
32-bit single floating-point number

parameter 1 parameter 1 parameter 1

return value

return value

return value

parameter 2 parameter 2

parameter 3

R1 R1 R1
One input parameter Two input parameters Three input parameters

Figure 80. HLL CWI parameter list format

X'00'
X'00' X'00' X'00' X'00' X'00' X'00'X'0000'

X'02' X'51'

Severity

Case Sev Control

C E E

Facility ID: CEE

Msg_No: see Table 29 on page 222

C/S/C Byte has the following values:

X'51' for failure (severity 2)
X'00' for success

Msg_No C/S/C Facility ID

success
failure

0
0

1
0

1
0

1
0

0
0

0
0

0
0

0
0

Figure 81. Condition token values for math services

Math Services

376 z/OS V2R1.0 Language Environment Vendor Interfaces

D → R*L
64-bit double floating-point number

Q → R*E
128-bit extended floating-point number

T → C*S
32-bit single float-complex number

E → C*L
64-bit double float-complex number

R → C*E
128-bit extended float-complex number

J → I*J 64-bit binary integer number

H → I*H
16-bit binary integer number

K → I*K
8-bit binary integer number

U → I*U
8-bit unsigned binary integer number

The last three characters are a mnemonic designating the unique routine.

Scalar math services
Table 62 describes the scalar math services in Language Environment.

Note:

1. Msg_No is a decimal value identifying a given condition. Routines that do not
raise conditions have an asterisk (*) in the Msg_No column.

2. The implementation of several math services involved calls to other math
services. These called math services can generate conditions and messages.

Table 62. Language Environment Scalar math services

Math
Operation

Entry Name Callable Service,
CWI, Register CWI

Arg Type(s) Result
Type

Algorithm
Source

Msg_No

Absolute Function

CEE9HABS I*2 I*2 AFBFABS *

CEESIABS CEETIABS CEE9IABS I*S I*S AFBFABS *

CEE9JABS I*L I*L AFBFABS *

CEESSABS CEETSABS CEE9SABS R*S R*S AFBFABS *

CEESDABS CEETDABS
CEE9DABS

R*L R*L AFBFABS *

CEESQABS CEETQABS
CEE9QABS

R*E R*E AFBFABS *

CEESTABS CEETTABS CEE9TABS C*S R*S VSFCSABS *

CEESEABS CEETEABS CEE9EABS C*L R*L VSFCLABS 2025

CEESRABS CEETRABS CEE9RABS C*E R*E AFBCQABS *

Arccosine

CEESSACS CEETSACS CEE9SACS R*S R*S VSFSACOS 2016

Math Services

Chapter 11. Math library 377

Table 62. Language Environment Scalar math services (continued)

Math
Operation

Entry Name Callable Service,
CWI, Register CWI

Arg Type(s) Result
Type

Algorithm
Source

Msg_No

CEESDACS CEETDACS
CEE9DACS

R*L R*L VSFLACOS 2016

CEESQACS CEETQACS
CEE9QACS

R*E R*E AFBQASCN 2016

Arcsine

CEESSASN CEETSASN
CEE9SASN

R*S R*S VSFSASIN 2016

CEESDASN CEETDASN
CEE9DASN

R*L R*L VSFLASIN 2016 2025

CEESQASN CEETQASN
CEE9QASN

R*E R*E AFBQASCN 2016

Arctangent

CEESSATN CEETSATN
CEE9SATN

R*S R*S VSFSATAN *

CEESDATN CEETDATN
CEE9DATN

R*L R*L VSFLATAN 2025

CEESQATN CEETQATN
CEE9QATN

R*E R*E AFBQATN2 *

CEESTATN CEETTATN
CEE9TATN

C*S C*S IBMBMKXA 2022

CEESEATN CEETEATN
CEE9EATN

C*L C*L IBMBMKYA 2022

CEESRATN CEETRATN
CEE9RATN

C*E C*E IBMBMKZA 2022

Arctangent2

CEESSAT2 CEETSAT2 CEE9SAT2 R*S R*S R*S VSFSATN2 2014

CEESDAT2 CEETDAT2 CEE9DAT2 R*L R*L R*L VSFLATN2 2014 2025

CEESQAT2 CEETQAT2 CEE9QAT2 R*E R*E R*E AFBQATN2 2014

Conjugate of Complex

CEESTCJG CEETTCJG CEE9TCJG C*S C*S AFBFCONJ *

CEESECJG CEETECJG CEE9ECJG C*L C*L AFBFCONJ *

CEESRCJG CEETRCJG CEE9RCJG C*E C*E AFBFCONJ *

Cosine

CEESSCOS CEETSCOS CEE9SCOS R*S R*S VSFSCOS 2017

CEESDCOS CEETDCOS
CEE9DCOS

R*L R*L VSFLCOS 2017

CEESQCOS CEETQCOS
CEE9QCOS

R*E R*E AFBQSCN 2017

CEESTCOS CEETTCOS
CEE9TCOS

C*S C*S AFBCSSCN 2013 2019

CEESECOS CEETECOS
CEE9ECOS

C*L C*L AFBCLSCN 2013 2019

CEESRCOS CEETRCOS
CEE9RCOS

C*E C*E AFBCQSCN 2013 2019

Math Services

378 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 62. Language Environment Scalar math services (continued)

Math
Operation

Entry Name Callable Service,
CWI, Register CWI

Arg Type(s) Result
Type

Algorithm
Source

Msg_No

Cotangent

CEESSCTN CEETSCTN
CEE9SCTN

R*S R*S VSFSCOTN 2002 2017

CEESDCTN CEETDCTN
CEE9DCTN

R*L R*L VSFLCOTN 2002 2017

CEESQCTN CEETQCTN
CEE9QCTN

R*E R*E AFBQTNCT 2002 2017

Cube Root

CEETDCRT R*L R*L new *

Error Function

CEESSERC CEETSERC CEE9SERC R*S R*S AFBSERF *

CEESDERC CEETDERC
CEE9DERC

R*L R*L AFBLERF *

CEESQERC CEETQERC
CEE9QERC

R*E R*E AFBQERF *

CEESSERF CEETSERF CEE9SERF R*S R*S AFBSERF *

CEESDERF CEETDERF CEE9DERF R*L R*L AFBLERF *

CEESQERF CEETQERF CEE9QERF R*E R*E AFBQERF *

Exponential (base e)

CEESSEXP CEETSEXP CEE9SEXP R*S R*S VSFSEXP 2011

CEESDEXP CEETDEXP
CEE9DEXP

R*L R*L VSFLEXP * 2011 2025

CEESQEXP CEETQEXP
CEE9QEXP

R*E R*E AFBFQXPQ 2011

CEESTEXP CEETTEXP CEE9TEXP C*S C*S AFBCSEXP 2009 2015

CEESEEXP CEETEEXP CEE9EEXP C*L C*L AFBCLEXP 2009 2015

CEESREXP CEETREXP CEE9REXP C*E C*E AFBCQEXP 2009 2013

Exponentiation (**)

CEESDXPD CEETDXPD
CEE9DXPD

R*L R*L R*L VSFFDXPD 2006 2020 2025

CEESEXPE CEETEXPE CEE9EXPE C*L C*L C*L AFBFCDCD 2008

CEESIXPI CEETIXPI CEE9IXPI I*S I*S I*S AFBFIXPI 2003

CEESSXPI CEETSXPI CEE9SXPI R*S I*S R*S AFBFRXPI 2004

CEESDXPI CEETDXPI CEE9DXPI R*L I*S R*L AFBFDXPI 2004

CEESQXPI CEETQXPI CEE9QXPI R*E I*S R*E AFBFQXPI 2004

CEESTXPI CEETTXPI CEE9TXPI C*S I*S C*S AFBFCXPI 2008

CEESEXPI CEETEXPI CEE9EXPI C*L I*S C*L AFBFCDXI 2008

CEESRXPI CEETRXPI CEE9RXPI C*E I*S C*E AFBFCQXI 2008

CEE9JXPI I*L I*S I*L AFBF8XPI 2003

CEE9IXPJ I*S I*L I*S AFBFIXP8 2003

CEE9JXPJ I*L I*L I*L AFBF8XP8 2003

CEE9SXPJ R*S I*L R*S AFBFRXP8 2004

Math Services

Chapter 11. Math library 379

Table 62. Language Environment Scalar math services (continued)

Math
Operation

Entry Name Callable Service,
CWI, Register CWI

Arg Type(s) Result
Type

Algorithm
Source

Msg_No

CEE9DXPJ R*L I*L R*L AFBFDXP8 2004

CEE9QXPJ R*E I*L R*E AFBFQXP8 2004

CEE9TXPJ C*S I*L C*S AFBFCXP8 2008

CEE9EXPJ C*L I*L C*L AFBFCDX8 2008

CEE9RXPJ C*E I*L C*E AFBFCQX8 2008

CEESQXPQ CEETQXPQ
CEE9QXPQ

R*E R*E R*E AFBFQXPQ 2020 2021

CEESRXPR CEETRXPR CEE9RXPR C*E C*E C*E AFBFCQCQ 2008

CEESSXPS CEETSXPS CEE9SXPS R*S R*S R*S VSFFRXPR 2006 2020

CEESTXPT CEETTXPT CEE9TXPT C*S C*S C*S AFBFCXPC 2008

CEESQXP2 CEETQXP2 CEE9QXP2 R*E R*E AFBFQXPQ 2007

Exp(x)-1

CEETDEM1 R*L R*L new 2011

Floating Complex Divide

CEESTDVD CEETTDVD
CEE9TDVD

C*S C*S C*S VSFCSAD *

CEESEDVD CEETEDVD
CEE9EDVD

C*L C*L C*L VSFCLAD *

CEESRDVD CEETRDVD
CEE9RDVD

C*E C*E C*E AFBCQRIT *

Floating Complex Multiply

CEESTMLT CEETTMLT
CEE9TMLT

C*S C*S C*S AFBCSAM *

CEESEMLT CEETEMLT
CEE9EMLT

C*L C*L C*L AFBCLAM *

CEESRMLT CEETRMLT
CEE9RMLT

C*E C*E C*E AFBCQRIT *

Gamma Function

CEESSGMA CEETSGMA
CEE9SGMA

R*S R*S AFBSGAMA 2005

CEESDGMA CEETDGMA
CEE9DGMA

R*L R*L AFBLGAMA 2005

Hyperbolic Arccosine

CEETDACH R*L R*L new 2010

Hyperbolic Arcsine

CEETDASH R*L R*L new *

Hyperbolic Arctangent

CEESSATH CEETSATH
CEE9SATH

R*S R*S IBMBMLSA 2017

CEESDATH CEETDATH
CEE9DATH

R*L R*L IBMBMLLA 2017

CEESQATH CEETQATH
CEE9QATH

R*E R*E IBMBMLEA 2017

Math Services

380 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 62. Language Environment Scalar math services (continued)

Math
Operation

Entry Name Callable Service,
CWI, Register CWI

Arg Type(s) Result
Type

Algorithm
Source

Msg_No

CEESTATH CEETTATH
CEE9TATH

C*S C*S IBMBMKXA 2022

CEESEATH CEETEATH
CEE9EATH

C*L C*L IBMBMKYA 2022

CEESRATH CEETRATH
CEE9RATH

C*E C*E IBMBMKZA 2022

Hyperbolic Cosine

CEESSCSH CEETSCSH CEE9SCSH R*S R*S VSFSCOSH 2016

CEESDCSH CEETDCSH
CEE9DCSH

R*L R*L AFBLSCNH 2016

CEESQCSH CEETQCSH
CEE9QCSH

R*E R*E AFBQSCNH 2016

CEESTCSH CEETTCSH
CEE9TCSH

C*S C*S IBMBMGXA *

CEESECSH CEETECSH
CEE9ECSH

C*L C*L IBMBMGYA *

CEESRCSH CEETRCSH
CEE9RCSH

C*E C*E IBMBMGZA *

Hyperbolic Sine

CEESSSNH CEETSSNH
CEE9SSNH

R*S R*S VSFSSINH 2016

CEESDSNH CEETDSNH
CEE9DSNH

R*L R*L AFBLSCNH 2016

CEESQSNH CEETQSNH
CEE9QSNH

R*E R*E AFBQSCNH 2016

CEESTSNH CEETTSNH
CEE9TSNH

C*S C*S IBMBMGXA *

CEESESNH CEETESNH
CEE9ESNH

C*L C*L IBMBMGYA *

CEESRSNH CEETRSNH
CEE9RSNH

C*E C*E IBMBMGZA *

Hyperbolic Tangent

CEESSTNH CEETSTNH
CEE9STNH

R*S R*S VSFSTANH *

CEESDTNH CEETDTNH
CEE9DTNH

R*L R*L AFBLTANH *

CEESQTNH CEETQTNH
CEE9QTNH

R*E R*E AFBQTANH *

CEESTTNH CEETTTNH
CEE9TTNH

C*S C*S IBMBMHXA *

CEESETNH CEETETNH
CEE9ETNH

C*L C*L IBMBMHYA *

CEESRTNH CEETRTNH
CEE9RTNH

C*E C*E IBMBMHZA *

Imaginary part of Complex

Math Services

Chapter 11. Math library 381

Table 62. Language Environment Scalar math services (continued)

Math
Operation

Entry Name Callable Service,
CWI, Register CWI

Arg Type(s) Result
Type

Algorithm
Source

Msg_No

CEESTIMG CEETTIMG
CEE9TIMG

C*S R*S AFBFIMAG *

CEESEIMG CEETEIMG
CEE9EIMG

C*L R*L AFBFIMAG *

CEESRIMG CEETRIMG
CEE9RIMG

C*E R*E AFBFIMAG *

Load exponent

CEETDSCB R*L I*S R*L new 2024 2025

Logarithm Base e

CEESSLOG CEETSLOG
CEE9SLOG

R*S R*S VSFSLGN 2012

CEESDLOG CEETDLOG
CEE9DLOG

R*L R*L VSFLLGN 2012

CEESQLOG CEETQLOG
CEE9QLOG

R*E R*E AFBFQXPQ 2012

CEESTLOG CEETTLOG
CEE9TLOG

C*S C*S AFBCSLOG 2018

CEESELOG CEETELOG
CEE9ELOG

C*L C*L AFBCLLOG 2018

CEESRLOG CEETRLOG
CEE9RLOG

C*E C*E AFBCQLOG 2018

Logarithm Base 10

CEESSLG1 CEETSLG1 CEE9SLG1 R*S R*S VSFSLGC 2012

CEESDLG1 CEETDLG1
CEE9DLG1

R*L R*L VSFLLGC 2012

CEESQLG1 CEETQLG1
CEE9QLG1

R*E R*E AFBFQXPQ 2012

Logarithm Base 2

CEESSLG2 CEETSLG2 CEE9SLG2 R*S R*S IBMBMDSA 2012

CEESDLG2 CEETDLG2
CEE9DLG2

R*L R*L IBMBMDLA 2012

CEESQLG2 CEETQLG2
CEE9QLG2

R*E R*E IBMBMYEA 2012

Loge(1.0 + x)

CEETDL1P R*L R*L new 2012

Log Gamma Function

CEESSLGM CEETSLGM
CEE9SLGM

R*S R*S AFBSGAMA 2005

CEESDLGM CEETDLGM
CEE9DLGM

R*L R*L new 2005 2031

Modular Arithmetic

CEE9HMOD I*2 I*2 I*2 AFBFMODI *

CEESIMOD CEETIMOD
CEE9IMOD

I*S I*S I*S AFBFMODI *

Math Services

382 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 62. Language Environment Scalar math services (continued)

Math
Operation

Entry Name Callable Service,
CWI, Register CWI

Arg Type(s) Result
Type

Algorithm
Source

Msg_No

CEE9JMOD I*L I*L I*L AFBFMODI *

CEESSMOD CEETSMOD
CEE9SMOD

R*S R*S R*S VSFFMODR *

CEESDMOD CEETDMOD
CEE9DMOD

R*L R*L R*L VSFFMODR *

CEESQMOD CEETQMOD
CEE9QMOD

R*E R*E R*E VSFFMODR *

Nearest Integer

CEESSNIN CEETSNIN CEE9SNIN R*S I*S AFBFNINT *

CEESDNIN CEETDNIN
CEE9DNIN

R*L I*S AFBFNINT *

CEE9QNIN R*E I*S AFBFNINT *

CEE9SNJN R*S I*L AFBFNINT *

CEE9DNJN R*L I*L AFBFNINT *

CEE9QNJN R*E I*L AFBFNINT *

Nearest Whole Number

CEE9QNWN R*E R*E AFBFNINT *

CEESSNWN CEETSNWN
CEE9SNWN

R*S R*S AFBFNINT *

CEESDNWN CEETDNWN
CEE9DNWN

R*L R*L AFBFNINT *

Nextafter

CEETDNXA R*L R*L new *

Positive Difference

CEE9HDIM I*2 I*2 I*2 AFBFDIM *

CEESIDIM CEETIDIM CEE9IDIM I*S I*S I*S AFBFDIM *

CEE9JDIM I*L I*L I*L AFBFDIM *

CEESSDIM CEETSDIM CEE9SDIM R*S R*S R*S AFBFDIM *

CEESDDIM CEETDDIM
CEE9DDIM

R*L R*L R*L AFBFDIM *

CEESQDIM CEETQDIM
CEE9QDIM

R*E R*E R*E AFBFDIM *

Remainder

CEETDREM R*L R*L R*L new 2030

Sine

CEESSSIN CEETSSIN CEE9SSIN R*S R*S VSFSSIN 2017

CEESDSIN CEETDSIN CEE9DSIN R*L R*L VSFLSIN 2017 2025

CEESQSIN CEETQSIN CEE9QSIN R*E R*E AFBQSCN 2017

CEESTSIN CEETTSIN CEE9TSIN C*S C*S AFBCSSCN 2013 2019

CEESESIN CEETESIN CEE9ESIN C*L C*L AFBCLSCN 2013 2019

CEESRSIN CEETRSIN CEE9RSIN C*E C*E AFBCQSCN 2013 2019

Square Root

Math Services

Chapter 11. Math library 383

Table 62. Language Environment Scalar math services (continued)

Math
Operation

Entry Name Callable Service,
CWI, Register CWI

Arg Type(s) Result
Type

Algorithm
Source

Msg_No

CEESSSQT CEETSSQT CEE9SSQT R*S R*S VSFSSQRT 2010

CEESDSQT CEETDSQT
CEE9DSQT

R*L R*L VSFLSQRT 2010

CEESQSQT CEETQSQT
CEE9QSQT

R*E R*E AFBQSQRT 2010

CEESTSQT CEETTSQT CEE9TSQT C*S C*S AFBCSSQT *

CEESESQT CEETESQT CEE9ESQT C*L C*L AFBCLSQT *

CEESRSQT CEETRSQT CEE9RSQT C*E C*E AFBCQSQT *

Tangent

CEESSTAN CEETSTAN
CEE9STAN

R*S R*S VSFSTAN 2017

CEESDTAN CEETDTAN
CEE9DTAN

R*L R*L VSFLTAN 2017 2025

CEESQTAN CEETQTAN
CEE9QTAN

R*E R*E AFBQTNCT 2002 2017

CEESTTAN CEETTTAN
CEE9TTAN

C*S C*S IBMBMHXA *

CEESETAN CEETETAN
CEE9ETAN

C*L C*L IBMBMHYA *

CEESRTAN CEETRTAN
CEE9RTAN

C*E C*E IBMBMHZA *

Transfer of Sign

CEE9HSGN I*2 I*2 I*2 AFBFSIGN *

CEE9JSGN I*L I*L I*L AFBFSIGN *

CEESISGN CEETISGN CEE9ISGN I*S I*S I*S AFBFSIGN *

CEESSSGN CEETSSGN
CEE9SSGN

R*S R*S R*S AFBFSIGN *

CEESDSGN CEETDSGN
CEE9DSGN

R*L R*L R*L AFBFSIGN *

CEESQSGN CEETQSGN
CEE9QSGN

R*E R*E R*E AFBFSIGN *

Truncation

CEESSINT CEETSINT CEE9SINT R*S R*S AFBFAINT *

CEESDINT CEETDINT CEE9DINT R*L R*L AFBFAINT *

CEESQINT CEETQINT CEE9QINT R*E R*E AFBFAINT *

Unbiased exponent

CEETILGB R*L I*S new 2029

CEETDLGB R*L R*L new 2029

Degree input/output trigonometry functions
Table 63 on page 385 lists the supported degree input/output trigonometry
functions

Math Services

384 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 63. Degree input/output trigonometry functions

Math
Operation

Entry Name Callable Service,
CWI, Register CWI

Arg Type(s) Result
Type

Algorithm
Source

Msg_No

Sine

CEETSSND CEE9SSND R*S R*S IBMRMGSB *

CEETDSND CEE9DSND R*L R*L IBMRMGLB *

CEETQSND CEE9QSND R*E R*E IBMRMGEB *

Cosine

CEETSCSD CEE9SCSD R*S R*S IBMRMGSD *

CEETDCSD CEE9DCSD R*L R*L IBMRMGLD *

CEETQCSD CEE9QCSD R*E R*E IBMRMGED *

Tangent

CEETSTND CEE9STND R*S R*S IBMRMHSB *

CEETDTND CEE9DTND R*L R*L IBMRMHLB *

CEETQTND CEE9QTND R*E R*E IBMRMHEB
CEEIQTND

*

Arcsine

CEE9SASD R*S R*S CEEISASN 2016

CEE9DASD R*L R*L CEEIDASN 2016 2025

CEE9QASD R*E R*E CEEIQASN 2016

Arccosine

CEE9SACD R*S R*S CEEISACS 2016

CEE9DACD R*L R*L CEEIDACS 2016

CEE9QACD R*E R*E CEEIQACS 2016

Arctangent

CEETSATD CEE9SATD R*S R*S IBMRMKSB *

CEETDATD CEE9DATD R*L R*L IBMRMKLB 2025

CEETQATD CEE9QATD R*E R*E IBMRMKEB *

Arctangent 2

CEETSA2D CEE9SA2D R*S R*S R*S IBMRMKSD 2014

CEETDA2D CEE9DA2D R*L R*L R*L IBMRMKLD 2014 2025

CEETQA2D CEE9QA2D R*E R*E R*E IBMRMKED 2014

Entry point names for scalar bit manipulation routines
Table 64 summarizes the entry point names, the parameter types, and the result
types for the scalar bit manipulation routines.

Table 64. Language Environment Scalar bit manipulation routines

Math
Operation

Entry Name Callable Service,
CWI, Register CWI

Arg Type(s) Result
Type

Algorithm
Source

Msg_No

Bit Shift

CEESISHF CEETISHF CEE9ISHF I*S I*S I*S AFBBTSHS 2028

CEE9JSHF I*L I*L I*L AFBBTSH8 2028

Math Services

Chapter 11. Math library 385

Table 64. Language Environment Scalar bit manipulation routines (continued)

Math
Operation

Entry Name Callable Service,
CWI, Register CWI

Arg Type(s) Result
Type

Algorithm
Source

Msg_No

CEE9KSHF I*1 I*1 I*1 AFBBTSH1 2028

CEE9HSHF I*2 I*2 I*2 AFBBTSH2 2028

CEE9USHF U*1 U*1 U*1 AFBBTSH1 2028

Left Shift

CEE9ILSH I*S I*S I*S AFBBTSHS 2028

CEE9JLSH I*L I*L I*L AFBBTSH8 2028

CEE9KLSH I*1 I*1 I*1 AFBBTSH1 2028

CEE9HLSH I*2 I*2 I*2 AFBBTSH2 2028

CEE9KLSH U*1 U*1 U*1 AFBBTSH1 2028

Right Shift

CEE9IRSH I*S I*S I*S AFBBTSHS 2028

CEE9JRSH I*L I*L I*L AFBBTSH8 2028

CEE9KRSH I*1 I*1 I*1 AFBBTSH1 2028

CEE9HRSH I*2 I*2 I*2 AFBBTSH2 2028

CEE9KRSH U*1 U*1 U*1 AFBBTSH1 2028

Bit Clear

CEESICLR CEETICLR CEE9ICLR I*S I*S I*S AFBBTSHS 2028

CEE9JCLR I*L I*L I*L AFBBTSH8 2028

CEE9KCLR I*1 I*1 I*1 AFBBTSH1 2028

CEE9HCLR I*2 I*2 I*2 AFBBTSH2 2028

CEE9KCLR U*1 U*1 U*1 AFBBTSH1 2028

Bit Set

CEESISET CEETISET CEE9ISET I*S I*S I*S AFBBTSHS 2028

CEE9JSET I*L I*L I*L AFBBTSH8 2028

CEE9KSET I*1 I*1 I*1 AFBBTSH1 2028

CEE9HSET I*2 I*2 I*2 AFBBTSH2 2028

CEE9KSET U*1 U*1 U*1 AFBBTSH1 2028

Bit Test

CEESITST CEETITST CEE9ITST I*S I*S I*S AFBBTSHS 2028

CEE9JTST I*L I*L I*S AFBBTSH8 2028

CEE9KTST I*1 I*1 I*S AFBBTSH1 2028

CEE9HTST I*2 I*2 I*S AFBBTSH2 2028

CEE9KTST U*1 U*1 I*S AFBBTSH1 2028

CEE9ITJT I*S I*S I*L AFBBTSHS 2028

CEE9JTJT I*L I*L I*L AFBBTSH8 2028

CEE9KTJT I*1 I*1 I*L AFBBTSH1 2028

CEE9HTJT I*2 I*2 I*L AFBBTSH2 2028

CEE9KTJT U*1 U*1 I*L AFBBTSH1 2028

Math Services

386 z/OS V2R1.0 Language Environment Vendor Interfaces

Message ID — message text for math library
The following symbolic parameters are used in Table 65.

rtn_name
The name of the routine that issued the message. Usually, there is one
routine for each combination of input and output data types. Look up the
routine to determine valid data types for a particular routine.

limit Contains the limit value for a given routine; for details, see Table 66 on
page 388.

range Contains the range values (lower and upper limits) for a given routine; see
Table 66 on page 388.

Table 65. Math message_IDs

Msg_No Msg_ID Explanation

2002 CEE1UI The argument value is too close to one of the singularities (plus or minus pi/2, plus
or minus 3pi/2, ... for the tangent; or plus or minus pi, plus or minus 2pi, ... for the
cotangent) in math service rtn_name.

2003 CEE1UJ For an exponentiation operation (I**J) where I and J are integers, I is equal to zero and
J is less than or equal to zero in math service rtn_name.

2004 CEE1UK For an exponentiation operation (R**I) where R is real and I is integer, R is equal to
zero and I is less than or equal to zero in math service rtn_name.

2005 CEE1UL The value of the argument is outside the valid range range in math service rtn_name.

2006 CEE1UM For an exponentiation operation (R**S) where R and S are real values, R is equal to
zero and S is less than or equal to zero in math service rtn_name.

2007 CEE1UN The exponent exceeds limit in math service rtn_name.

2008 CEE1UO For an exponentiation operation (Z**P) where the complex base Z equals zero, the real
part of the complex exponent P, or the integer exponent P, is less than or equal to zero
in math service rtn_name.

2009 CEE1UP The value of the real part of the argument is greater than limit in math service
rtn_name.

2010 CEE1UQ The argument is less than limit in math service rtn_name.

2011 CEE1UR The argument is greater than limit in math service rtn_name.

2012 CEE1US The argument is less than or equal to limit in math service rtn_name.

2013 CEE1UT The absolute value of the imaginary part of the argument is greater than limit in math
service rtn_name.

2014 CEE1UU Both arguments are equal to limit in math service rtn_name.

2015 CEE1UV The absolute value of the imaginary part of the argument is greater than or equal to
limit in math service rtn_name.

2016 CEE1V0 The absolute value of the argument is greater than limit in math service rtn_name.

2017 CEE1V1 The absolute value of the argument is greater than or equal to limit in math service
rtn_name.

2018 CEE1V2 The real and imaginary parts of the argument are equal to limit in math service
rtn_name.

2019 CEE1V3 The absolute value of the real part of the argument is greater than or equal to limit in
math service rtn_name.

2020 CEE1V4 For an exponentiation operation (R**S) where R and S are real values, either R is equal
to zero and S is negative or R is negative and S is not an integer whose absolute value
is less than or equal to limit in math service rtn_name.

Math services

Chapter 11. Math library 387

Table 65. Math message_IDs (continued)

Msg_No Msg_ID Explanation

2021 CEE1V5 For an exponentiation operation (X**Y) the argument combination of Y*log2(X)
generates a number greater than or equal to limit in math service rtn_name.

2022 CEE1V6 The value of the argument is plus or minus limit in math service rtn_name.

2024 CEE1V8 Overflow has occurred in the calculation in math routine rtn_name.

2025 CEE1V9 An underflow has occurred in math service rtn_name.

2028 CEE1VC The value of the second argument was outside the valid range limit in math service
rtn_name.

2029 CEE1VD The value of the argument was equal to limit in math routine rtn_name.

2030 CEE1VE The value of the second argument was equal to limit in math routine rtn_name.

2031 CEE1VF The value of the argument was a nonpositive whole number in math routine
rtn_name.

2040 CEE1VO The value of the third argument was outside the valid range limit in math routine
rtn_name.

2041 CEE1VP The absolute value of the second argument was greater than either the value of the
third argument or the number of bits in the first argument in math routine rtn_name.

2042 CEE1VQ The sum of the second and the third arguments was greater than the number of bits
in the first argument in math routine rtn_name.

2043 CEE1VR The value of the second or third argument was less than 0 in math routine rtn_name.

Language Environment math services — value of inserts
Table 66 shows the value of inserts for the math services.

Table 66. Language Environment Math services - value of inserts

Msg_No Callable Service or CWI Value of Insert (Limit or Range)

2002 CEESSCTN CEESQTAN CEESDCTN
CEESQCTN

NULL

2003 CEESIXPI NULL

2004 CEESSXPI CEESDXPI CEESQXPI NULL

2005 CEESSGMA CEESDGMA 2**-252 < X < 57.5744

2005 CEESSLGM CEESDLGM 0 < X < 4.2937*10**73

2006 CEESSXPS CEESDXPD NULL

2007 CEESQXP2 252

2008 CEESTXPI CEESEXPI CEESRXPI
CEESTXPT CEESEXPE CEESRXPR

NULL

2009 CEESTEXP CEESEEXP CEESREXP 174.673

2010 CEESSSQT CEESDSQT CEESQSQT 0

2011 CEESSEXP CEESDEXP CEESQEXP 174.673

2012 CEESSLOG CEESDLOG CEESQLOG
CEESSLG1 CEESDLG1 CEESQLG1
CEESSLG2 CEESDLG2 CEESQLG2

0

2013 CEESTSIN CEESESIN CEESRSIN
CEESTCOS CEESECOS CEESRCOS

174.673

2013 CEESREXP 2**100

2014 CEESSAT2 CEESDAT2 CEESQAT2 0

Math services

388 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 66. Language Environment Math services - value of inserts (continued)

Msg_No Callable Service or CWI Value of Insert (Limit or Range)

2015 CEESTEXP pi*(2**18) (pi*(2**18) = .823 550 E +06)

2015 CEESEEXP pi*(2**50) (pi*(2**50) = .353 711 887 601 422 01D +16)

2016 CEESSASN CEESDASN CEESQASN
CEESSACS CEESDACS CEESQACS

1

2016 CEESSSNH CEESDSNH CEESQSNH
CEESSCSH CEESDCSH CEESQCSH

175.366

2017 CEESSSIN CEESSCOS CEESSTAN
CEESSCTN

pi*(2**18) (pi*(2**18) = .823 550 E +06)

2017 CEESDSIN CEESDCOS CEESDTAN
CEESDCTN

pi*(2**50) (pi*(2**50) = .353 711 887 601 422 01D +16)

2017 CEESQSIN CEESQCOS CEESQTAN
CEESQCTN

2**100

2017 CEESSATH CEESDATH CEESQATH 1

2018 CEESTLOG CEESELOG CEESRLOG 0

2019 CEESTSIN CEESTCOS pi*(2**18) (pi*(2**18) = .823 550 E +06)

2019 CEESRSIN CEESRCOS 2**100

2019 CEESESIN CEESECOS pi*(2**50) (pi*(2**50) = .353 711 887 601 422 01D +16)

2020 CEESSXPS 16 ** 6 - 1

2020 CEESDXPD 16 ** 14 - 1

2020 CEESQXPQ 16 ** 28 - 1

2021 CEESQXPQ 252

2022 CEESTATN CEESEATN CEESRATN 1i

2022 CEESTATH CEESEATH CEESRATH 1

2024 CEETDSCB NULL

2025 CEESDASN CEESDATN CEESDAT2
CEESDEXP CEESDSIN CEESDTAN
CEESDXPD CEESEABS

NULL

2028 CEESISHF CEETISHF CEE9ISHF
CEE9JSHF CEE9KSHF CEE9HSHF
CEE9USHF CEE9ILSH CEE9JLSH
CEE9KLSH CEE9HLSH CEE9IRSH
CEE9JRSH CEE9KRSH CEE9HRSH
CEESICLR CEETICLR CEE9ICLR
CEE9JCLR CEE9KCLR CEE9HCLR
CEESISET CEETISET CEE9ISET
CEE9JSET CEE9KSET CEE9HSET
CEESITST CEETITST CEE9ITST
CEE9JTST CEE9KTST CEE9HTST
CEE9ITJT CEE9JTJT CEE9KTJT
CEE9HTJT

0 < = X < = 31

2029 CEETILGB CEETDLBG 0

2030 CEETDREM 0

2031 CEETDLGM NULL

2040 CEE9ISHC CEE9JSHC CEE9KSHC
CEE9HSHC CEE9USHC

0 < x3 < = number_of_bits_in_x1

(where x1 means the first input argument and x3 means the
third input argument)

Math services

Chapter 11. Math library 389

Table 66. Language Environment Math services - value of inserts (continued)

Msg_No Callable Service or CWI Value of Insert (Limit or Range)

2041 CEE9ISHC CEE9JSHC CEE9KSHC
CEE9HSHC CEE9USHC

NULL

2042 CEE9IBIT CEE9JBIT CEE9KBIT
CEE9HBIT

NULL

2043 CEE9IBIT CEE9JBIT CEE9KBIT
CEE9HBIT

NULL

Language Environment conversion services
Language Environment provides 3 conversion services to perform the most
complex and numerically sensitive part of converting numeric data between
decimal character and floating-point representations: the mathematics of the
conversion between decimal and float, while leaving other activities, likely to be
specific to the calling environment, to be handled by the calling routine. The most
important feature of this conversion is accuracy; correctly rounded conversions
provide the only guarantee of recoverable values.

Terminology
The following terms are used with these definitions:

user data
Numeric data in the forms recognized as syntactically valid in programs
and products that call the conversion routines. The forms permitted for
user data are varied, and not always syntactically consistent with one
another across languages and other products. These conversion routines
therefore provide only the most fundamental conversion capabilities, and
rely on the caller to manage the details of creating and enforcing syntactic
correctness in the calling environment.

input Conversion of decimal data in character form (external representation) to
hexadecimal floating-point (internal representation).

output
Conversion of hexadecimal floating-point data (internal representation) to
decimal data in character form (external representation).

digits In numeric data represented in character form, the decimal digits only
(with no decimal point, no signs, no exponent) sometimes used to refer to
hexadecimal or binary digits, which will be clear from the context.

value part
In numeric data represented in character form, the significant decimal
digits and possibly, a decimal point.

exponent
An integer value indicating the power of ten by which the value part must
be multiplied to obtain the actual value of a numeric datum.

ulp Unit in the Last Place

F-format
Character data in a form where only the value part is specified. Examples:

Math services

390 z/OS V2R1.0 Language Environment Vendor Interfaces

E-format
Character data in scientific notation, where a numeric value part, as defined
above, is followed by an exponent indicator, usually the letter ’E’, and a
possibly signed integer that indicates a power of ten by which the numeric
value should be multiplied.

In some languages, the exponent indicator may be omitted and an explicit
exponent sign is used to indicate the presence of an exponent.

scale factor
Some languages, Fortran and PL/I, particularly, permit the user to specify
in a FORMAT statement a power of ten by which the floating-point datum
should be scaled during conversion. These scale factors are explicitly
provided to the conversion interface only for F-format output conversions.
For the other conversions, they are handled by the caller.

CEEYCVHE — E-format output conversion routine
E-format (scientific notation) output is the simplest and most natural decimal
format for hex floating-point data, since both express a numeric value in terms of
its most significant digits. The output of this conversion is the number of most
significant digits requested by the caller, with the last digit correctly rounded. The
caller can then create the user data by adding signs, decimal points, and formatting
the exponent as desired.

Extra precision may be requested. For example, the caller may request 15 output
decimal digits from a 4-byte hex float input, even though a 1-ulp change in the
input value could cause all decimal digits from the 6th through the 15th to change.

Syntax

void CEEYCVHE (float_input, float_len, char_len, dec_chars, dec_exponent, [fc])
VFLOAT *float_input;
INT4 *float_len;
INT4 *char_len;
CHARn *dec_chars;
INT4 *dec_exponent;
FEED_BACK *fc;

CEEYCVHE
Call this CWI interface as follows:
L R12,A(CAA) address of CAA
L R15,CEECAACELV-CEECAA(,R12) address of libvec
L R15,3504(,R15) address of routine
BALR R14,R15 invoke the CEEYCVHE

float_input (input)
The floating-point value to be converted to decimal. A negative zero will be
treated as a positive zero. If negative zeros are significant in the calling
environment, it is the caller's responsibility to distinguish between negative
and positive zeros.

’12.345’ ’12345’ ’0’
’.12345’ ’12345.’ ’.0’

’12.345E+00’ ’12345E-3’ ’0E0’ ’1.0E+000000001’
’.12345E2’ ’12345.E-03’ ’.0E0’

Conversion services

Chapter 11. Math library 391

An input floating-point value may be unnormalized. If the presence of
unnormalized data is significant in the calling environment, it is the caller's
responsibility to detect and accommodate the fact of unnormalization.

Note: VS Fortran currently produces unnormalized E-format decimal output
for unnormalized hex inputs. The intent is to let the user see the loss of
significance directly. However, it has been decided that this is a
language-dependent facility, and should be separately handled by languages
that require it.

float_len (input)
The length of the floating-point input argument. The allowed values would be
4, 8, and 16.

char_len (input)
The number of decimal characters (digits) in the output character string. There
may be from 1 to 35 digits. If the value of the floating-point number float_input
is zero, an implementation is not required to check the validity of this
argument.

dec_chars (output)
A string of 1 to 35 decimal characters representing the pure decimal fraction of
the converted result. These digits will contain the leading significant digits of
the converted result:
v The leading digit is nonzero if the input floating-point value is not zero.
v The last output digit is correctly rounded.
v The (implied) decimal point lies immediately to the left of the first digit of

the output string.
v The width of the output field may be from 1 to 35 characters.

dec_exponent (output)
A signed integer specifying the power of ten by which the decimal fraction
must be multiplied to give the true value of the output number. This is the
value that will normally be placed following an ’E’ in the final result.

The value of this exponent may be adjusted by the caller to accommodate any
scale factor that may have been provided in the language's format
conversion-control specification. (VS Fortran and PL/I output formatting
permit the specification of a scaling factor that shifts the position of the
decimal point. For example, the value ’.12345E+67’ can be displayed as
’123.45E+64’.)

The actual placement of a decimal point, and subsequent adjustments to the
external exponent and its conversion and formatting, are the responsibility of
the caller.

fc (output/optional)
An 8-byte feedback code. The following conditions may result from this
service:

Condition

CEE03G Severity 3

Msg_No 0112

Message For data conversion from internal floating-point form to
character form, the value specified for the length of the
output character string is outside the acceptable range. The
valid range for E-format conversion is 1 to 35, and for
F-format conversion is 2 to 36.

Conversion services

392 z/OS V2R1.0 Language Environment Vendor Interfaces

Condition

CEE2H8 Severity 0

Msg_No 2600

Message Success with zero result. The conversion has been completed
successfully, and the result is a true zero value.

CEE2H9 Severity 0

Msg_No 2601

Message Success with positive result. The conversion has been
completed successfully, and the result is strictly greater than
zero.

CEE2HA Severity 0

Msg_No 2602

Message Success with a negative result. The conversion has been
completed successfully, and the result is strictly less than
zero.

Note: C runtime library (C RTL) can call this routine to perform the ecvt function
with no extra formatting. The returned function value can be obtained from
dec_chars. The returned decpt value can obtained from dec_exponent and sign can be
obtained from feedback code.

E-format output examples
For example, the following strings and exponents returned by CEEYCVHE could
be converted by its caller to the external user data representations shown in
Figure 82.

The output string of decimal digits is treated as a pure fraction. The exponent and
decimal point may be placed in any combination to represent the value in the
desired user data representation.

CEEYCVHF — F-format output conversion routine
F-format output requires that data be converted to a fixed point format with a
specified number of decimal places following the decimal point. As such, it is
limited by two factors. First, producing a fixed number of decimal places may be
in conflict with the property of floating-point data that it carry a fixed number of
significant digits. Many values of such data can produce output with more digits
than are actually significant. This is one reason for the second limitation: F-format
output conversions tend to be applied to data with values in a known, and rather
narrower, range than for data using E-format conversions.

Output External Examples of Possible Final User Data
Digits Exponent Representations (Formatted by Caller)

’10’ +1 1.0 10.E-1 .1E+1 1
’10’ +2 10.0 10.E+0 .1E+2 10
’12’ -1 0.012 12.E-3 1.2E-2
’501’ 0 0.501 5.01E-1 501E-3
’23’ +3 230.0 2.3E+2 .23E+3 230

Figure 82. Examples of E-format output conversions

Conversion services

Chapter 11. Math library 393

F-format output produces fixed point output, with no decimal exponent. The
floating-point value 10**10 would be formatted as a '1' digit followed by ten '0'
digits:
’10000000000.’

and not as (for example) the E-format result
’1.0E10’

The size of the output string is dictated by three factors:
v The mandatory presence of a decimal point.
v The desired number (including zero) of decimal digits following the decimal

point.
v The magnitude of the input floating-point value , which may require the

placement of digits preceding the decimal point.

The output value is always right-justified in the output field, with leading blanks
filling any unneeded positions. If the output string is too short to hold the output
characters, an appropriate return or feedback code will indicate the field overflow.

Visualizing F-format conversions
There is a simple way to visualize what happens in converting floating-point data
using F-type formatting box.
1. First, imagine that the number is written in infinite-precision fixed point

decimal format.
2. If there is any scaling, move the decimal point right or left appropriately.
3. Put a horizontal window of single-character panes (the window's length is the

same as the length of the output character string) over the resulting string of
digits, making sure the decimal point is always visible. Round the rightmost
visible digit, using the first discarded digit. Further adjustments may be needed
to the position of the decimal point after rounding, if a carry out of the
high-order position occurs. In this case, the window may have to be shifted,
and it is possible the result will no longer fit.

4. Detect error conditions such as:
a. No nonzero digits in the window
b. Overflow
c. No decimal point is visible

Syntax

void CEEYCVHF (float_input, float_len, scale, frac_digits, char_len, dec_chars, [fc])
VFLOAT *float_input;
INT4 *float_len;
INT4 *scale;
INT4 *frac_digits;
INT4 *char_len;
CHARn *dec_chars;
FEED_BACK *fc;

CEEYCVHF
Call this CWI interface as follows:
L R12,A(CAA) address of CAA
L R15,CEECAACELV-CEECAA(,R12) address of libvec
L R15,3508(,R15) address of routine
BALR R14,R15 invoke the CEEYCVHF

Conversion services

394 z/OS V2R1.0 Language Environment Vendor Interfaces

float_input (input)
The floating-point value to be converted to decimal. A negative zero will be
treated as a positive zero. If negative zeros are significant in the calling
environment, it is the caller's responsibility to distinguish between negative
and positive zeros.

An input floating-point value may be unnormalized. If the presence of
unnormalized data is significant in the calling environment, it is the caller's
responsibility to detect and accommodate the fact of unnormalization.

Note: VS Fortran currently produces unnormalized E-format decimal output
for unnormalized hex inputs. The intent is to let the user see the loss of
significance directly. However, it has been decided that this is a
language-dependent facility, and should be separately handled by languages
that require it.

float_len (input)
The length of the floating-point input argument. The allowed values are 4, 8,
and 16.

scale (input)
A signed integer specifying the power of ten by which the decimal fraction
must be multiplied to give the desired value of the output number. This value
represents the number of places the decimal point should be shifted relative to
the unscaled value.

frac_digits (input)
A nonnegative integer specifying the number of digits to be placed following
the decimal point.

char_len (input)
The number of decimal characters (digits) in the output character string. There
may be from 2 to 36 characters, containing a decimal point and 1 to 35 digits
and/or blanks. If the value of the floating-point number float_input is zero, an
implementation is not required to check the validity of this argument.

dec_chars (output)
A string of 2 to 36 characters (a decimal point, one or more decimal digits, and
possibly blanks) representing the converted result. A decimal point is always
correctly placed in the dec_chars output string.

If the input floating-point value is identically zero, no characters are stored,
and the return code will indicate the zero value. The caller is responsible for
formatting the user data. This is done because zero fields are often blanked, or
are formatted according to rules that may vary, depending on the language.

The nonblank output characters will be right-adjusted in the output string
dec_chars. The last character position of the string will contain either the
correctly rounded least significant decimal digit, or a decimal point, if no
fraction digits are requested. Extra (unneeded) character positions at the left
end of the string will be set to blanks.

It is possible for all output digits to be zero. If this condition arises,
feedback/return codes will indicate that a nonzero input value has produced a
correctly-rounded zero output. (Some languages do not permit attaching a
minus sign to a zero. Thus, the conversion routines must be able to detect and
manage this condition.)

Conversion services

Chapter 11. Math library 395

At least one decimal digit is always produced, either immediately before the
decimal point (if no fraction digits were requested) or immediately after the
decimal point (if the rounded magnitude of the input floating-point number
float_input is less than 1.0).

No leading zeros will appear to the left of the decimal point. Zero results will
cause specific settings of the feedback/return code. A decimal digit will
precede the decimal point only if the magnitude of the input floating-point
number is at least 1.0.

The last (least significant) digit is always correctly rounded.

The width of the output field may be larger than needed, in the sense that
more digits are requested than are truly significant. For example, if the input
floating-point value were changed by one ULP, then one or more digits to the
left of the lowest-order output digit would change. Alternatively, changing the
low-order decimal digit by 1, or more, and converting back to hex would not
yield a different hex float number from the value originally supplied for
output conversion to decimal.

In all cases, the conversion routine will supply no more than 35 significant
digits.

If the magnitude of the input argument would cause the size of the output
character string to exceed the allotted string length, the conversion will be
abandoned and a feedback/return code setting will indicate conversion failure.
The contents of dec_chars is unpredictable.

fc (output/optional)
An 8-byte feedback code. The following conditions may result from this
service:

Condition

CEE03F Severity 3

Msg_No 0111

Message For data conversion from internal floating-point form to
character form, the number of fraction digits specified was
either negative or greater than the value specified for the
length of the character string.

CEE03G Severity 3

Msg_No 0112

Message For data conversion from internal floating-point form to
character form, the value specified for the length of the output
character string is outside the acceptable range. The valid
range for E-format conversion is 1 to 35, and for F-format
conversion is 2 to 36.

CEE2H8 Severity 0

Msg_No 2600

Message Success with zero result. The conversion has been completed
successfully, and the result is a true zero value.

CEE2H9 Severity 0

Msg_No 2601

Message Success with positive result. The conversion has been
completed successfully, and the result is strictly greater than
zero.

Conversion services

396 z/OS V2R1.0 Language Environment Vendor Interfaces

Condition

CEE2HA Severity 0

Msg_No 2602

Message Success with negative result. The conversion has been
completed successfully, and the result is strictly less than zero.

CEE2HB Severity 0

Msg_No 2603

Message Success with plus-rounded-to-zero result The conversion has
been completed successfully, and the result contains a zero
result that was created by a strictly positive input value that
rounded to zero.

CEE2HC Severity 0

Msg_No 2604

Message Success with minus-rounded-to-zero result. The conversion has
been completed successfully, and the result contains a zero
result that was created by a strictly negative input value that
rounded to zero.

CEE2HE Severity 2

Msg_No 2606

Message Result overflows output field. The float_input argument is
either too large, or the output string dec_chars is too small to
contain the fixed-point representation of the input argument.

Note: C runtime library (C RTL) can call this routine to perform the basic
conversion. It will then format the returned fcvt function value based on the
returned values in dec_chars. The value decpt can be obtained by locating the
position of the radix character in dec_chars. Also, the value of sign can be obtained
from feedback code.

F-format output examples
In Figure 83 on page 398, the character ’b’ represents a blank. Assume in each case
that the output character string dec_chars is 7 characters long.

Conversion services

Chapter 11. Math library 397

CEEYCVHI — decimal to float input conversion routine
The input conversion routines take a string of decimal characters representing a
pure fraction, and a binary integer representing a decimal exponent, and converts
them to the best approximating floating-point value.

It is important to remember that the input datum is considered to be infinitely
precise. That is, the conversion routine assumes an infinite number of trailing zeros
following the last input digit. Actual real-world data does not behave this way.
Such data is usually contaminated by estimation errors in at least the last digit.
The ability of an application to capture information that could provide error
estimates or error intervals requires techniques beyond the capabilities of these
conversion interfaces. (The ACRITH package was designed specifically to provide
this kind of information.)

The requirement that the decimal digits be treated as pure fractions may require
that numeric user data in each product's favorite or traditional representations be
pre-scanned by the caller (for syntactic validation, among other things) to remove
embedded decimal points, sign characters, and to determine the value of any
explicitly-specified decimal exponent.

For example, suppose the caller wishes to convert input user data from one of
these character strings:

Input Fraction Character Feedback
Float Digits String Code
Value Requested

0.0 5 <none> Success_with_zero_result
-0.0 5 <none> Success_with_zero_result
0.0077 0 ’bbbbb0.’ Success_with_plus-rounded-to-zero_result
0.0077 1 ’bbbbb.0’ Success_with_plus-rounded-to-zero_result
-0.0077 0 ’bbbbb0.’ Success_with_minus-rounded-to-zero_result
-0.0077 1 ’bbbbb.0’ Success_with_minus-rounded-to-zero_result
0.0077 2 ’bbbb.01’ Success_with_positive_result
0.0077 3 ’bbb.008’ Success_with_positive_result
0.0077 4 ’bb.0077’ Success_with_positive_result
0.0077 5 ’b.00770’ Success_with_positive_result
0.0077 6 ’.007700’ Success_with_positive_result
0.5000 0 ’bbbbb1.’ Success_with_positive_result
0.5000 1 ’bbbbb.5’ Success_with_positive_result
3.4567 0 ’bbbbb3.’ Success_with_positive_result
3.4567 1 ’bbbb3.5’ Success_with_positive_result
3.4567 2 ’bbb3.46’ Success_with_positive_result
3.4567 3 ’bb3.457’ Success_with_positive_result
3.4567 4 ’b3.4567’ Success_with_positive_result
3.4567 5 ’3.45670’ Success_with_positive_result
3.4567 6 undefined Result_overflows_output_field
-0.9876 0 ’bbbbb1.’ Success_with_negative_result
-0.9876 1 ’bbbb1.0’ Success_with_negative_result
-0.9876 2 ’bbbb.99’ Success_with_negative_result
-0.9876 6 ’.987600’ Success_with_negative_result
34.5678 0 ’bb1235.’ Success_with_positive_result
34.5678 1 ’b1234.6’ Success_with_positive_result
34.5678 2 ’1234.57’ Success_with_positive_result
34.5678 3 undefined Result_overflows_output_field

Figure 83. Examples of F-format output conversions

Conversion services

398 z/OS V2R1.0 Language Environment Vendor Interfaces

Then, in all of these cases, the character data and exponent passed to the
conversion routine would be:

Similarly, if an input user datum had the form ’1.2345E+67’, then the character
data and exponent passed to the conversion routine would be:

Further examples are shown in “Input examples” on page 401and in Figure 84. In
Figure 84, floating-point values are shown as their equivalent decimal
approximations. To illustrate, the following digit strings and exponents would be
converted to the internal floating-point values as indicated.

The string of decimal digits is treated as a pure fraction. The decimal exponent is
derived externally (by the caller) from a combination of known decimal point
placement, any explicit exponent of a form like ’Enn’, and the scale factor.

Syntax

void CEEYCVHI (dec_chars, char_len, dec_exponent, float_len, float_result, [fc])
CHARn *dec_chars;
INT4 *char_len;
INT4 *dec_exponent;
INT4 *float_len;
VFLOAT *float_result;
FEED_BACK *fc;

CEEYCVHI
Call this CWI interface as follows:
L R12,A(CAA) address of CAA
L R15,CEECAACELV-CEECAA(,R12) address of libvec
L R15,3512(,R15) address of routine
BALR R14,R15 invoke the CEEYCVHI

dec_chars (input)
A string of 1 to 35 decimal characters representing the pure decimal fraction to

’ 12.345 ’
or ’.12345E+2 ’
or ’12345.E-003’

exponent = +2
digit string = ’12345’

exponent = +68
digit string = ’12345’

Decimal Decimal Resulting Output
Digit String Exponent Floating-point Value

’1’ +5 10000.0
’10’ -1 0.01
’10’ -2 0.001
’501’ -3 .000501
’23’ +1 2.3
’23’ +3 230.0

Figure 84. Examples of input conversions

Conversion services

Chapter 11. Math library 399

be converted. There may be no signs, decimal points, commas, exponents, etc.
in the string. The leading digit may be zero. The input service will
automatically handle unnormalized data, for example: ’0025’. However, the
total number of input digits processed is still limited to 35. The string of digits
is treated by the conversion routine as though there is an implied decimal
point at the left end of the string.

char_len (input)
The number of decimal characters (digits) in the input character string. There
may be from 1 to 35 digits. The actual length of the input character string may
be greater than the number of decimal digits, but only the number of digits
specified will be used in the conversion.

The conversion routine will ignore excess decimal digits whose values cannot
affect the value of the converted result. (35 decimal digits provide sufficient
precision to separate all representable 16-byte hex float values.) Invalid data in
those ignored digit positions may or may not cause unpredictable results or
other error or exception conditions.

dec_exponent (input)
A signed integer specifying the power of ten by which the decimal fraction
must be multiplied to give the true value of the input number to be converted
to floating-point. The caller determines this value from a combination of:
v The position of any decimal point (if it was present) within the original

input user data,
v Any exponent value specified in the original user data.
v Any scale factor specified in the HLL's format conversion-control

specification.

float_len (input)
The length of the floating-point result. For System/370 hexadecimal
floating-point, the allowed values are 4, 8, and 16; for IEEE floating-point, the
allowed values are 4 and 8.

float_result (output)
The converted floating-point result. A result may or may not be stored here;
see the discussion of fc.

fc (output/optional)
An 8-byte feedback code. The following conditions may result from this
service:

Condition

CEE03E Severity 3

Msg_No 0110

Message For data conversion from character form to internal
floating-point form, an invalid character was specified in the
input character string character_string.

CEE03H Severity 3

Msg_No 0113

Message For data conversion from character form to internal
floating-point form, the value specified for the length of the
input character string is outside the acceptable range. The valid
range is 1 to 35.

Conversion services

400 z/OS V2R1.0 Language Environment Vendor Interfaces

Condition

CEE2H8 Severity 0

Msg_No 2600

Message Success with zero result. The conversion has been completed
successfully, and the result is a true zero value.

CEE2H9 Severity 0

Msg_No 2601

Message Success with positive result. The conversion has been
completed successfully, and the result is strictly greater than
zero.

CEE2HF Severity 2

Msg_No 2607

Message Result has underflowed. The conversion would have resulted
in a number smaller than the underflow threshold for the
floating-point representation. A true floating-point zero result
has been returned in float_result.

CEE2HG Severity 2

Msg_No 2608

Message Result has overflowed. The conversion would have resulted in
a number larger than the overflow threshold for the
floating-point representation. The maximum possible
floating-point magnitude has been returned in float_result.

Input examples
Figure 85 shows examples of input conversions, including zero and out-of range
values. The example assumes that a System/370 4-byte hexadecimal float_result
was requested.

Decimal Decimal 4-byte Hex
Digits Exponent Float_Result Feedback Code

’100’ +4 X’433E8000’ Success_with_positive_result
’100’ +3 X’42640000’ Success_with_positive_result
’100’ +2 X’41A00000’ Success_with_positive_result
’100’ +1 X’41100000’ Success_with_positive_result
’100’ 0 X’4019999A’ Success_with_positive_result
’100’ -1 X’3F28F5C3’ Success_with_positive_result

’000’ +4 X’00000000’ Success_with_zero_result

’12345’ -123 X’00000000’ Result_has_underflowed
’12345’ +123 X’7FFFFFFF’ Result_has_overflowed

Figure 85. Examples of input conversions with feedback indicated

Conversion services

Chapter 11. Math library 401

Conversion services

402 z/OS V2R1.0 Language Environment Vendor Interfaces

Chapter 12. Dump and tracing services

This section covers the dump services available in Language Environment and
includes information on the Language Environment tracing facilities.

Dump services
Language Environment provides the following dump services. The dumps
generated by these services are designed to be easier to read than a system dump,
which can often minimize the need to examine a system dump. The first service,
CEE3DMP, is a callable service. The remaining are CWIs and are not intended to
be called by the application writer.

CEE3DMP
CEE3DMP is a callable service. It dumps the runtime environment of
Language Environment and the member language libraries in an easily
understandable form. CEE3DMP is the only dump service that can be
called directly by an application program. It produces a dump report that
is formatted into pages for printing. When providing a multithread dump,
Language Environment must quiesce all other threads within the
application. When the dump option THREAD(CURRENT) is specified,
only the current thread is dumped. When the dump option THREAD(ALL)
is specified, the current thread is dumped first and then, starting with the
IPT, all remaining threads are dumped one at a time. For more information
see z/OS Language Environment Programming Reference.

CEESDMP
CEESDMP is a CWI. It symbolically dumps the variables of one routine.
The format is similar to the symbolic dump of variables in the CEE3DMP
report.

CEETRCB
CEETRCB is a CWI. This low-level service assists in tracing the call chain
backwards. It identifies the language, program unit, entry point, current
location, caller's DSA, and other information from the address of a DSA or
save area for a program unit.

CEETBCK
CEETBCK is a CWI which will replace CEETRCB. It assists in tracing the
call chain backwards. It identifies the language, program unit, entry point,
current location, caller's DSA, and other information from the address of a
DSA or save area for a program unit.

To perform language-specific processing for CEE3DMP, CEESDMP, and CEETRCB,
each HLL must provide utility and dump exit routines in their libraries. These exit
routines are called with the member event handler using event codes 6 and 7. For
a description of the calling method, see “Language Environment member list and
event handler” on page 86. The following CWI dump services can only be used in
dump exits. They format information that is placed in the dump report or written
to the message file:

CEELDMP
Writes a single line message into the dump report.

© Copyright IBM Corp. 1991, 2015 403

CEEVDMP
Formats the name, type, value, and other information about a variable and
writes it to the dump report.

CEEHDMP
Dumps a section of storage in hexadecimal and character.

CEEBDMP
Dumps a control block.

Figure 86 shows possible transfers of control among an application program, a
member language library, and Language Environment for dump processing.

CEE3DMP, CEESDMP, CEETBCK or CEETRCB can be called:
v By a member language library as part of member language dump services
v By a member language library as part of language-specific error handling
v By Language Environment exception handling

In addition, CEE3DMP can be called directly by the application program. These
dump utilities then call member language library dump exits and utility exits,
which in turn call CEELDMP, CEEVDMP, CEEBDMP, and CEEHDMP.

Output from CEE3DMP is written to a file whose DDNAME is specified on the call
to CEE3DMP using Language Environment message services. All output from
CEESDMP is written to the message file.

The remainder of this section describes the dump services, and their linkage to a
dump exit routine. Linkage to the utility exit is described in “Event code 6 —
event handler utilities event” on page 491.

Member Dump
Service

Member Error
Handling

CEE3DMP
CEESDMP
CEETRCB
CEETBCK

CEELDMP

CEEVDMP

CEEBDMP

CEEHDMP

Member Dump
Exit

and Utility
Exit

Application
Program

Member
Library

Language Environment

Lang Env Condition
Handling

Figure 86. Transferring control between application program, member language library, and
Language Environment

Dump and Tracing Services

404 z/OS V2R1.0 Language Environment Vendor Interfaces

CEE3DMP — runtime environment dump service
This callable service generates a dump of the runtime environment. Sections of the
dump are selectively included, depending on options specified with the options
parameter. For more information see z/OS Language Environment Programming
Reference.

CEESDMP — symbolic dump of a routine
This low-level service symbolically dumps all variables in a program unit to the
message file. The format of this dump is similar to the symbolic dump of variables
in the CEE3DMP report when the VARIABLES option is specified.

Syntax

void CEESDMP (dsaptr, fc)
INT4 *dsaptr;
FEED_BACK *fc;

CEESDMP
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) Address of CAA in R12
L R15,2892(,R15)
BALR R14,R15

dsaptr (input)
A fullword containing the DSA address of the routine whose variables are
being dumped.

fc (output)
A 12-byte feedback code passed by reference. The following symbolic
conditions can result from this service:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE30V Severity 3

Msg_No 3103

Message An error occurred in writing messages to the dump file. This
could be caused by a bad file name specified with the FNAME
option.

Note: Member language dump exits are called to interpret the values of their
symbol tables and dump variables with calls to CEEVDMP. This is done primarily
with function codes 4 and 5. This is identical to the processing of CEE3DMP with
function codes 2 and 3 except that CEEVDMP formats the data for the terminal
and sends it to the message file.

CEETRCB — traceback utility

Note: CEETRCB has been deprecated but remains for compatibility. CEETRCB
does not provide information about the format of the DSA. It should be considered
obsolete and calls to it should eventually be replaced with calls to the CWI
CEETBCK.

CEE3DMP

Chapter 12. Dump and tracing services 405

This low-level service assists in tracing the call chain backwards. It identifies the
language, program unit, entry point, current location, caller's DSA, and other
information from the address of a DSA or save area for a program unit. This is
essential for creating meaningful traceback messages.

Syntax

void CEETRCB (dsaptr, caaptr, member_id, program_unit_name,
program_unit_name_length, program_unit_address, entry_name, entry_name_length,
entry_address, call_instruction_address, statement_id, statement_id_length, cibptr,
main_program, callers_dsaptr, fc)
POINTER *dsaptr;
POINTER *caaptr;
INT4 *member_id;
CHARn *program_unit_name;
INT4 *program_unit_name_length;
INT4 *program_unit_address;
CHARn *entry_name;
INT4 *entry_name_length;
INT4 *entry_address;
INT4 *call_instruction_address;
CHARn *statement_id;
INT4 *statement_id_length;
POINTER *cibptr;
INT4 *main_program;
POINTER *callers_dsaptr;
FEED_BACK *fc;

CEETRCB
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) Address of CAA in R12
L R15,0072(,R15)
BALR R14,R15

dsaptr (input)
A fullword pointer containing the address of the DSA for the current routine in
the traceback. This can also be the address of a standard 18 fullword save area
if Language Environment conventions were not used for the routine.

caaptr (input)
A fullword pointer containing the address of the CAA associated with the DSA
or save area pointed to by dsaptr.

member_id (output)
A fullword binary integer to contain the member identifier for the routine
associated with the DSA. If the member ID cannot be determined, this
parameter is set to negative one.

program_unit_name (output)
A fixed-length character string of arbitrary length to contain the name of the
program unit containing the routine associated with the DSA. If the program
unit name cannot be determined, this parameter is set to all blanks. If the
program unit name cannot fit within the supplied string, it is truncated.
(Truncation of DBCS preserves even byte count and SI/SO pairing.)

program_unit_name_length (input/output)
A fullword binary integer containing the length of the program unit name
string on entry and the actual length of the program unit name placed in the
string on exit. If the program unit name cannot be determined, this parameter
is set to zero. The maximum length a string can be is 256 bytes. Lengths less
than zero are treated as zero. Lengths greater than 256 are treated as 256.

CEETRCB

406 z/OS V2R1.0 Language Environment Vendor Interfaces

program_unit_address (output)
A fullword binary integer containing the address of the start of the program
unit for the routine associated with the DSA. If the program unit address
cannot be determined, this parameter is set to zero.

entry_name (output)
A fixed-length character string of arbitrary length to contain the name of the
entry point into the routine associated with the DSA. If the entry point name
cannot be determined, this parameter is set to all blanks. If the entry point
name cannot fit within the supplied string, it is truncated. (Truncation of DBCS
preserves even byte count and SI/SO pairing.)

entry_name_length (input/output)
A fullword binary integer containing the length of the entry point name string
on entry and the actual length of the entry point name placed in the string on
exit. If the entry point name cannot be determined, this parameter is set to
zero. The maximum length a string can be is 256 bytes. Lengths less than zero
are treated as zero. Lengths greater than 256 are treated as 256.

entry_address (output)
A fullword binary integer that contains the address of the entry point into the
routine associated with the DSA. If the entry point address cannot be
determined, this parameter is set to zero.

call_instruction_address (output)
A fullword binary integer that contains the address of the instruction that
caused transfer out of the routine. This is either the address of a BALR or
BASSM instruction if transfer was made by subroutine call, or the address of
the interrupted statement if transfer was caused by an exception. If the address
cannot be determined, this parameter is set to zero.

statement_id (output)
A fixed-length character string of arbitrary length that contains the identifier of
the statement containing the instruction which caused transfer out of the
routine. If the statement cannot be determined, this parameter is set to all
blanks. If the statement ID cannot fit within the supplied string, it is truncated.
(Truncation of DBCS preserves even byte count and SI/SO pairing.)

statement_id_length (input/output)
A fullword binary integer containing the length of the statement ID string on
entry and the actual length of the statement ID placed in the string on exit. If
the statement ID cannot be determined, this parameter is set to zero. The
maximum length a string can be is 256 bytes. Lengths less than zero are treated
as zero. Lengths greater than 256 are treated as 256.

cibptr (output)
A fullword pointer containing the address of the CEECIB associated with the
DSA if an exception occurred. If no exception occurred, this parameter is set to
zero. Note that if an exception caused transfer out of the routine, the state of
the registers after the last instruction ran in the routine is saved in the CIB,
rather than in the DSA.

main_program (output)
A fullword binary integer set to one of the following:

0 The routine associated with the DSA is not the main program.

1 The routine associated with the DSA is the main program.

callers_dsaptr (output)
A fullword pointer containing the address of the DSA or save area of the caller.

CEETRCB

Chapter 12. Dump and tracing services 407

If the address of the caller's DSA cannot be determined or is not valid (points
to inaccessible storage), then this parameter is set to zero.

fc (output)
A 12-byte feedback code passed by reference. The following symbolic
conditions can result from this service:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE310 Severity 3

Msg_No 3104

Message Information could not be successfully extracted for this DSA. It
is likely that the dsaptr parameter does not point to an actual
DSA or save area.

Note: CEETRCB uses member event handler utility exits, described in “Event code
6 — event handler utilities event” on page 491.

CEETBCK — traceback utility (replaces CEETRCB)
The CEETBCK CWI assists in tracing the call chain backwards. It identifies the
language, program unit, entry point, current location, caller's DSA, and other
information from the address of a DSA or save area for a program unit. This is
essential for creating meaningful traceback messages. The CWI will handle both
upward- and downward-growing stacks.

Note: There are several reasons for executing CEETBCK instead of just updating
CEETRCB:
v For XPLINK, a routine's registers on entry are saved in the routine's own stack

frame instead of its caller's stack frame.
v For XPLINK, the return address stored in a DSA is the caller's return address

and not the return address to the stack frame owner.
v Additional parameters which indicate the stack frame format for both the input

and the output (caller's) DSA are maintained.
v The function of the call_instruction_address parameters has changed and a new

parameter callers_call_instruction has been added.

Syntax

void CEETBCK (dsaptr, dsa_format, caaptr, member_id, program_unit_name,
program_unit_name_length, program_unit_address, call_instruction_address, entry_name,
entry_name_length, entry_address, callers_call_instruction_address, callers_dsaptr,
callers_dsa_format, statement_id, statement_id_length, cibptr, main_program, fc)
POINTER *dsaptr;
INT4 *dsa_format;
POINTER *caaptr;
INT4 *member_id;
CHARn *program_unit_name;
INT4 *program_unit_name_length;
INT4 *program_unit_address;
INT4 *call_instruction_address;
CHARn *entry_name;
INT4 *entry_name_length;

CEETRCB

408 z/OS V2R1.0 Language Environment Vendor Interfaces

INT4 *entry_address;
INT4 *callers_call_instruction_address;
POINTER *callers_dsaptr;
INT4 *callers_dsa_format;
CHARn *statement_id;
INT4 *statement_id_length;
POINTER *cibptr;
INT4 *main_program;
FEED_BACK *fc;

CEETBCK
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) Address of CAA in R12
L R15,304(,R15)
BALR R14,R15

dsaptr (input)
A fullword pointer containing the address of the DSA for the current routine in
the traceback. This can also be the address of a standard 18 fullword save area
if Language Environment conventions were not used for the routine.

DSA_format (input/output)
A fullword binary integer set to one of the following:

0 The format of the DSA is a Standard OS linkage register save area
(with or without Language Environment fields, including the next
available byte).

1 The format of the DSA is XPLINK style.

-1 The format of the DSA is unknown. When multiple calls are made to
CEETBCK to scan the call chain, the callers_dsa_format returned from
the previous call can be used here.

caaptr (input)
A fullword pointer containing the address of the CAA associated with the DSA
or save area pointed to by dsaptr.

member_id (output)
A fullword binary integer containing the member identifier for the routine
associated with the DSA. If the member ID cannot be determined, this
parameter is set to negative one.

program_unit_name (output)
A fixed-length character string of arbitrary length containing the name of the
program unit containing the routine associated with the DSA. If the program
unit name cannot be determined, this parameter is set to all blanks. If the
program unit name cannot fit within the supplied string, it is truncated.
(Truncation of DBCS preserves even byte count and SI/SO pairing.)

program_unit_name_length (input/output)
A fullword binary integer containing the length of the program unit name
string on entry, and the actual length of the program unit name placed in the
string on exit. If the program unit name cannot be determined, this parameter
is set to zero. The maximum length a string can be is 256 bytes. Lengths less
than zero are treated as zero. Lengths greater than 256 are treated as 256.

program_unit_address (output)
A fullword binary integer containing the address of the start of the program
unit for the routine associated with the DSA. If the program unit address
cannot be determined, this parameter is set to zero.

call_instruction_address (input/output)
A fullword binary integer that contains the address of the instruction that

CEETBCK

Chapter 12. Dump and tracing services 409

caused transfer out of the routine. This is either the address of a BASR, BALR
or BASSM instruction if transfer was made by subroutine call, or the address
of the interrupted statement if transfer was caused by an exception. When
multiple calls are made to CEETBCK to scan the call chain, the
callers_call_instruction returned from the previous call can be used here. If the
address is not known, this parameter should be set to zero. When this
parameter is zero on input and the address can be determined, it will be
returned.

entry_name (output)
A fixed-length character string of arbitrary length to contain the name of the
entry point into the routine associated with the DSA. If the entry point name
cannot be determined, this parameter is set to all blanks. If the entry point
name cannot fit within the supplied string, it is truncated. (Truncation of DBCS
preserves even byte count and SI/SO pairing.)

entry_name_length (input/output)
A fullword binary integer containing the length of the entry point name string
on entry, and the actual length of the entry point name placed in the string on
exit. If the entry point name cannot be determined, this parameter is set to
zero. The maximum length a string can be is 256 bytes. Lengths less than zero
are treated as zero. Lengths greater than 256 are treated as 256.

entry_address (output)
A fullword binary integer that contains the address of the entry point into the
routine associated with the DSA. If the entry point address cannot be
determined, this parameter is set to zero.

callers_call_instruction_address (output)
A fullword binary integer that contains the address of the instruction that
caused transfer out of the caller. This is either the address of a BASR, BALR or
BASSM instruction if transfer was made by subroutine call, or the address of
the interrupted statement if transfer was caused by an exception. If the address
cannot be determined, this parameter is set to zero.

callers_dsaptr (output)
A fullword pointer containing the address of the DSA or save area of the caller.
If the address of the caller's DSA cannot be determined or is not valid (points
to inaccessible storage), then this parameter is set to zero.

callers_DSA_format (output)
A fullword binary integer set to one of the following:

0 The format of the DSA is a Standard OS linkage register save area
(with or without Language Environment fields, including the next
available byte.)

1 The format of the DSA is XPLINK style.

statement_id (output)
A fixed-length character string of arbitrary length that contains the identifier of
the statement containing the instruction which caused transfer out of the
routine. If the statement cannot be determined, this parameter is set to all
blanks. If the statement ID cannot fit within the supplied string, it is truncated.
(Truncation of DBCS preserves even byte count and SI/SO pairing.)

statement_id_length (input/output)
A fullword binary integer containing the length of the statement ID string on
entry, and the actual length of the statement ID placed in the string on exit. If
the statement ID cannot be determined, this parameter is set to zero. The

CEETBCK

410 z/OS V2R1.0 Language Environment Vendor Interfaces

maximum length a string can be is 256 bytes. Lengths less than zero are treated
as zero. Lengths greater than 256 are treated as 256.

cibptr (output)
A fullword pointer containing the address of the CEECIB associated with the
DSA if an exception occurred. If no exception occurred, this parameter is set to
zero. Note that if an exception caused transfer out of the routine, the state of
the registers after the last instruction ran in the routine is saved in the CIB,
rather than in the DSA.

main_program (output)
A fullword binary integer set to one of the following:

0 The routine associated with the DSA is not the main program.

1 The routine associated with the DSA is the main program.

fc (output)
A 12-byte feedback code passed by reference. The following symbolic
conditions can result from this service:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE310 Severity 3

Msg_No 3104

Message Information could not be successfully extracted for this DSA. It
is likely that the dsaptr parameter does not point to an actual
DSA or save area.

Note: CEETBCK uses member event handler utility exits (Event Code 6).

Example
The code example below shows a sample program called CELEBC53, which uses
the CEETBCK function.
/**
*
* CELEBC53: This example uses the CEETBCK() function.
*
* Notes: Can be compiled C or C++, 31-bit XPLINK or non-XPLINK
*
* For non-XPLINK C++, compile with DLL(CBA) compiler
* option
*
* For non-XPLINK C, compile with NODLL (default) or
* DLL(CBA) compiler options.
*
* Use the DEBUG(SYMBOL) compiler option to get non-blank
* statement IDs.
*
* Flow: - main() calls function1()
* - function1() calls function2()
* - function2() does divide by 0, causing SIGFPE, which drives
* catch1()
* - catch1() raise()s SIGUSR1, which drives catch2()
* - catch2() calls CEE3CIB() to get a starting DSA for the
* traceback, and then calls CEETBCK() in a loop
*
**/

/* XPLINK(ON) and STACK(1K,1K,...) cause extra DSAs to appear */

#pragma runopts(POSIX(ON), XPLINK(ON), STACK(1K,1K,ANY,KEEP,1K,1K))

CEETBCK

Chapter 12. Dump and tracing services 411

#define _XOPEN_SOURCE_EXTENDED 1
#include <ceeedcct.h>
#include <errno.h>
#include <leawi.h>
#include <signal.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h> /* _FBCHECK() uses memcmp() */

/* --- */
/* Prototype for CEETBCK() function and MACRO to invoke it */
/* --- */

/* non-XPLINK -- use Library vector, since there is no stub */
/* ========== -- */

#ifndef __XPLINK__

#ifdef __cplusplus
extern "C"
#endif
typedef
void CEETBCK_t(_POINTER * /* dsaptr */

, _INT4 * /* dsa_format */
, _POINTER * /* caaptr */
, _INT4 * /* member_id */
, char * /* program_unit_name */
, _INT4 * /* program_unit_name_length */
, _INT4 * /* program_unit_address */
, _INT4 * /* call_instruction_address */
, char * /* entry_name */
, _INT4 * /* entry_name_length */
, _INT4 * /* entry_address */
, _INT4 * /* callers_call_instruction_address */
, _POINTER * /* callers_dsaptr */
, _INT4 * /* callers_dsa_format */
, char * /* statment_id */
, _INT4 * /* statement_id_length */
, _POINTER * /* cibptr */
, _INT4 * /* main_program */
, _FEEDBACK * /* fc */
);

typedef
struct ceeleov /* partial mapping of library vector */
{
char pad__[304]; /* skip down to CEETBCK entry */
void *CEELEOVTBCK; /* pointer to CEETBCK in library vector */

} ceeleov_t;

struct caa /* partial mapping of CAA */
{
char pad__[816]; /* skip down to library vector ptr */
ceeleov_t *ceecaaleov; /* pointer to library vector */

};

/* MACRO to get address of CEETBCK() from library vector, and make */
/* sure high-order bit is off */

#define CEETBCK \
(\
*(CEETBCK_t *) \
(\
(\
(unsigned long) \
((((struct caa *)_gtca())->ceecaaleov)->CEELEOVTBCK) \
) \
& \
0x7FFFFFFFUL \
) \
)

#else

/* XPLINK -- use XPLINK side deck instead of library vector */
/* ====== -- */

#ifdef __cplusplus
extern "C"

CEETBCK

412 z/OS V2R1.0 Language Environment Vendor Interfaces

#endif
void CEETBCK(_POINTER * /* dsaptr */

, _INT4 * /* dsa_format */
, _POINTER * /* caaptr */
, _INT4 * /* member_id */
, char * /* program_unit_name */
, _INT4 * /* program_unit_name_length */
, _INT4 * /* program_unit_address */
, _INT4 * /* call_instruction_address */
, char * /* entry_name */
, _INT4 * /* entry_name_length */
, _INT4 * /* entry_address */
, _INT4 * /* callers_call_instruction_address */
, _POINTER * /* callers_dsaptr */
, _INT4 * /* callers_dsa_format */
, char * /* statment_id */
, _INT4 * /* statement_id_length */
, _POINTER * /* cibptr */
, _INT4 * /* main_program */
, _FEEDBACK * /* fc */
);

#pragma map(CEETBCK, "CEEKTBCK")
#endif

/* --- */
/* Signal catcher for SIGFPE */
/* --- */
#ifdef __cplusplus
extern "C"
#endif

void catch1(int sig)
{
#line 4444
if (0 != raise(SIGUSR1))
{
printf("raise(SIGUSR1) failed, errno=%d\n", errno);
exit(-1);

}

exit(0); /* normal exit -- can’t return after divide by 0 */
}

/* --- */
/* Signal catcher for SIGUSR1 */
/* --- */

#ifdef __cplusplus
extern "C"
#endif
void catch2(int sig)
{
int rc;
int loop;
_CEECIB *cib_ptr;
_POINTER dsaptr;
_INT4 dsa_format;
_POINTER caaptr;
_INT4 member_id;
char program_unit_name[2000];
_INT4 program_unit_name_length;
_INT4 program_unit_address;
_INT4 call_instruction_address;
char entry_name[256];
_INT4 entry_name_length;
_INT4 entry_address;
_INT4 callers_call_instruction_address;
_POINTER callers_dsaptr;
_INT4 callers_dsa_format;
char statement_id[256];
_INT4 statement_id_length;
_POINTER cibptr;
_INT4 main_program;
_FEEDBACK fc;

/* Find CIB to get a starting DSA for input to CEETBCK() */

CEE3CIB((_FEEDBACK *)NULL /* get most recent CIB */
, &cib_ptr /* pointer to most recent CIB */

CEETBCK

Chapter 12. Dump and tracing services 413

, &fc /* feedback code from CEE3CIB */
);

if (0 != _FBCHECK(fc, CEE000))
{
printf("CEE3CIB failed -- fc != CEE000\n");
exit(-1);

}

if (cib_ptr == NULL)
{
printf("No CIB pointer returned from CEE3CIB()\n");
exit(-1);

}

/* Set up for first call to CEETBCK */
caaptr = (_POINTER)_gtca(); /* our CAA */
dsaptr = (_POINTER)(cib_ptr->cib_sv1); /* starting DSA */
dsa_format = -1; /* DSA format unknown */
call_instruction_address = 0; /* not yet known */

/* Main loop to call CEETBCK to display call chain traceback */
/* --- */

loop = 1;
do
{
program_unit_name_length = sizeof program_unit_name;
entry_name_length = sizeof entry_name;
statement_id_length = sizeof statement_id;

/* Call CEETBCK to get information about one DSA */
CEETBCK(&dsaptr
, &dsa_format
, &caaptr
, &member_id
, program_unit_name
, &program_unit_name_length
, &program_unit_address
, &call_instruction_address
, entry_name
, &entry_name_length
, &entry_address
, &callers_call_instruction_address
, &callers_dsaptr
, &callers_dsa_format
, statement_id
, &statement_id_length
, &cibptr
, &main_program
, &fc);

if (0 != _FBCHECK(fc, CEE000))
{
printf("CEETBCK failed -- dsaptr = %08p\n", dsaptr);
exit(-1);

}
printf("--\n");
printf("DSA ptr/fmt (input) = %08X/%d\n"

, dsaptr
, dsa_format
);

printf("DSA ptr/fmt (caller) = %08X/%d\n"
, callers_dsaptr
, callers_dsa_format
);

printf("CAA/CIB ptr = %08X/%08X %s\n"
, caaptr
, cibptr
, cibptr == NULL ? "" : "<==== CIB"
);

printf("main-flag/member-ID = %d/%d %s\n"
, main_program
, member_id
, main_program == 1 ? "(main)" : ""
);

printf("PU addr/entry addr = %08X/%08X\n"
, program_unit_address
, entry_address
);

CEETBCK

414 z/OS V2R1.0 Language Environment Vendor Interfaces

printf("CALL addr/caller’s = %08X/%08X\n"
, call_instruction_address
, callers_call_instruction_address
);

printf("PU name = \"%.*s\"\n"
, program_unit_name_length
, program_unit_name
);

printf("entry name = \"%.*s\"\n"
, entry_name_length
, entry_name
);

printf("statement ID = \"%.*s\"\n"
, statement_id_length
, statement_id
);

/* Set up to call CEETBCK for next DSA, or end loop */

if (callers_dsaptr != 0)
{
dsaptr = callers_dsaptr;
dsa_format = callers_dsa_format;
call_instruction_address = callers_call_instruction_address;

}
else
{
printf("--\n");
loop = 0; /* end of traceback -- end loop */

}
} while (loop == 1);
return;

}
/* --- */
/* function1() and function2() */
/* --- */

void function2(unsigned long long ull
, unsigned long ul
, long l
)

{
/* Cause divide by zero, to raise SIGFPE and drive catch1() */

#line 3333
printf("!!! shouldn’t see this line !!!\n", 1/ull, 1/ul, 1/l);

}

void function1(void)
{
#line 2222
function2(0ULL, 0UL, 0L); /* should not return */

}

/* --- */
/* Main program */
/* --- */

int main(void)
{
if (SIG_ERR == sigset(SIGFPE, &catch1))
{ printf("sigset(SIGFPE, &catch1) failed, errno=%d\n", errno);

return -1;
}
if (SIG_ERR == sigset(SIGUSR1, &catch2))
{ printf("sigset(SIGUSR1, &catch2) failed, errno=%d\n", errno);

return -1;
}
#line 1111 function1(); /* should not return
/ return -1; / shouldn’t get here */

}

The code example below shows the output produced by sample program
CELEBC53, shown above.
/**
Sample output, when running CELEBC53 compiled non-XPLINK C++ :
--
DSA ptr/fmt (input) = 227E5B00/1
DSA ptr/fmt (caller) = 227E5BC0/1

CEETBCK

Chapter 12. Dump and tracing services 415

CAA/CIB ptr = 219B2B48/227FD990 <==== CIB
main-flag/member-ID = 0/3
PU addr/entry addr = 223B33D8/223B33D8
CALL addr/caller’s = 223B3A54/21B6CB92
PU name = ""
entry name = "raise"
statement ID = ""

--
DSA ptr/fmt (input) = 227E5BC0/1
DSA ptr/fmt (caller) = 227F8018/0
CAA/CIB ptr = 219B2B48/00000000
main-flag/member-ID = 0/1
PU addr/entry addr = 21B6B950/21B6B9A8
CALL addr/caller’s = 21B6CB92/0001FEF2
PU name = ""
entry name = "CEEVROND"
statement ID = ""
--
DSA ptr/fmt (input) = 227F8018/0
DSA ptr/fmt (caller) = 227F33D8/0
CAA/CIB ptr = 219B2B48/00000000
main-flag/member-ID = 0/1
PU addr/entry addr = 0001FEE0/0001FEE0
CALL addr/caller’s = 0001FEF2/2199EC1A
PU name = "CEEVSSFR"
entry name = "CEEVSSFR"
statement ID = ""
--
DSA ptr/fmt (input) = 227F33D8/0
DSA ptr/fmt (caller) = 227F3218/0
CAA/CIB ptr = 219B2B48/00000000
main-flag/member-ID = 0/3
PU addr/entry addr = 2199EB88/2199EB88
CALL addr/caller’s = 2199EC1A/21B6E830
PU name = "//’POSIX.ESAME.TESTCASE.C(CELEBC53)’"
entry name = "catch1"
statement ID = "4444"
--
DSA ptr/fmt (input) = 227F3218/0
DSA ptr/fmt (caller) = 227F9800/1
CAA/CIB ptr = 219B2B48/00000000
main-flag/member-ID = 0/1
PU addr/entry addr = 21B6D7E8/21B6D7E8
CALL addr/caller’s = 21B6E830/225976A4
PU name = "CEEVRONU"
entry name = "CEEVRONU"
statement ID = ""
--
DSA ptr/fmt (input) = 227F9800/1
DSA ptr/fmt (caller) = 227FA360/1
CAA/CIB ptr = 219B2B48/00000000
main-flag/member-ID = 0/3
PU addr/entry addr = 22596A78/22596A78
CALL addr/caller’s = 225976A4/21B686B2
PU name = ""
entry name = "__zerro"
statement ID = ""
--
DSA ptr/fmt (input) = 227FA360/1
DSA ptr/fmt (caller) = 227E3AA0/1
CAA/CIB ptr = 219B2B48/00000000
main-flag/member-ID = 0/1
PU addr/entry addr = 21B686A0/21B686B0
CALL addr/caller’s = 21B686B2/22596A36
PU name = ""
entry name = "CEEVHPFR"
statement ID = ""
--
DSA ptr/fmt (input) = 227E3AA0/1
DSA ptr/fmt (caller) = 227E3B20/1
CAA/CIB ptr = 219B2B48/00000000
main-flag/member-ID = 0/3
PU addr/entry addr = 22596860/22596860
CALL addr/caller’s = 22596A36/21B6CB92
PU name = ""
entry name = "__zerros"
statement ID = ""

CEETBCK

416 z/OS V2R1.0 Language Environment Vendor Interfaces

--
DSA ptr/fmt (input) = 227E3B20/1
DSA ptr/fmt (caller) = 227F3018/0
CAA/CIB ptr = 219B2B48/00000000
main-flag/member-ID = 0/1
PU addr/entry addr = 21B6B950/21B6B9A8
CALL addr/caller’s = 21B6CB92/0001FEF2
PU name = ""
entry name = "CEEVROND"
statement ID = ""
--
DSA ptr/fmt (input) = 227F3018/0
DSA ptr/fmt (caller) = 227F4098/0
CAA/CIB ptr = 219B2B48/00000000
main-flag/member-ID = 0/1
PU addr/entry addr = 0001FEE0/0001FEE0
CALL addr/caller’s = 0001FEF2/21A89254
PU name = "CEEVSSFR"
entry name = "CEEVSSFR"
statement ID = ""
--
DSA ptr/fmt (input) = 227F4098/0
DSA ptr/fmt (caller) = 227EF158/0
CAA/CIB ptr = 219B2B48/00000000
main-flag/member-ID = 0/1
PU addr/entry addr = 21A88528/21A88528
CALL addr/caller’s = 21A89254/2199EEB6
PU name = "CEEHDSP"
entry name = "CEEHDSP"
statement ID = ""
--
DSA ptr/fmt (input) = 227EF158/0
DSA ptr/fmt (caller) = 227EF098/0
CAA/CIB ptr = 219B2B48/227F4990 <==== CIB
main-flag/member-ID = 0/3
PU addr/entry addr = 2199EE18/2199EE18
CALL addr/caller’s = 2199EEB6/2199EFB8
PU name = "//’POSIX.ESAME.TESTCASE.C(CELEBC53)’"
entry name = "function2(unsigned long long,unsigned long,long)"
statement ID = "3333"
--
DSA ptr/fmt (input) = 227EF098/0
DSA ptr/fmt (caller) = 227EF018/0
CAA/CIB ptr = 219B2B48/00000000
main-flag/member-ID = 0/3
PU addr/entry addr = 2199EF40/2199EF40
CALL addr/caller’s = 2199EFB8/0001FEF2
PU name = "//’POSIX.ESAME.TESTCASE.C(CELEBC53)’"
entry name = "function1()"
statement ID = "2222"
--
DSA ptr/fmt (input) = 227EF018/0
DSA ptr/fmt (caller) = 227D01B8/0
CAA/CIB ptr = 219B2B48/00000000
main-flag/member-ID = 0/1
PU addr/entry addr = 0001FEE0/0001FEE0
CALL addr/caller’s = 0001FEF2/2199F28A
PU name = "CEEVSSFR"
entry name = "CEEVSSFR"
statement ID = ""
--
DSA ptr/fmt (input) = 227D01B8/0
DSA ptr/fmt (caller) = 227D00F0/0
CAA/CIB ptr = 219B2B48/00000000
main-flag/member-ID = 0/3
PU addr/entry addr = 2199EFE0/2199EFE0
CALL addr/caller’s = 2199F28A/22266AD0
PU name = "//’POSIX.ESAME.TESTCASE.C(CELEBC53)’"
entry name = "main"
statement ID = "1111"

--
DSA ptr/fmt (input) = 227D00F0/0
DSA ptr/fmt (caller) = 227D0030/0
CAA/CIB ptr = 219B2B48/00000000
main-flag/member-ID = 0/3
PU addr/entry addr = 222669F0/222669F0
CALL addr/caller’s = 22266AD0/21A55660
PU name = "EDCZHINV"
entry name = "EDCZHINV"

CEETBCK

Chapter 12. Dump and tracing services 417

statement ID = ""
--
DSA ptr/fmt (input) = 227D0030/0
DSA ptr/fmt (caller) = 00000000/0
CAA/CIB ptr = 219B2B48/00000000
main-flag/member-ID = 1/1 (main)
PU addr/entry addr = 21A554A8/21A554A8
CALL addr/caller’s = 21A55660/2199E3C4
PU name = "CEEBBEXT"
entry name = "CEEBBEXT"
statement ID = ""
--

*/

Member language dump exit
While dump services are running, all member-specific processing is performed
through an exit to the member event handler with an event code of 7. For more
information about establishing member event handlers, see “Language
Environment member list and event handler” on page 86. Each member language
is required to supply a dump exit routine.

CEELDMP — single line message dump service
The CEE3DMP low-level service allows member language dump exits to place a
single-line message into the dump. These are usually informational messages, such
as the attributes of a file. Member language library dump exits should always use
CEELDMP to write messages into the dump. They should never write directly to
CEE3DMP through Language Environment message services. Otherwise, Language
Environment dump services cannot keep track of the number of lines in the dump
to break pages correctly.

Syntax

void CEELDMP (message, message_length, fc)
CHARn *message;
INT4 *message_length;
FEED_BACK *fc;

CEELDMP
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) Address of CAA in R12
L R15,0036(,R15)
BALR R14,R15

message (input)
A fixed-length character string of arbitrary length containing the message to be
placed in the dump. It does not include printer control characters. Control
characters and leading blanks are added by Language Environment dump
services.

message_length (input)
A fullword binary integer containing the length of the message string. The
string can be up to 120 bytes long. The string length is treated as zero if it is
less than zero. String lengths greater than 120 are truncated to 120 bytes.

fc (output)
A 2-byte feedback code passed by reference. The following symbolic conditions
can result from this service; if more than one error condition occurs, the
feedback code reflects the last diagnosed condition:

CEETBCK

418 z/OS V2R1.0 Language Environment Vendor Interfaces

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE30S Severity 2

Msg_No 3100

Message The message was longer than 120 bytes. It has been truncated to
120.

CEE30V Severity 3

Msg_No 3103

Message An error occurred in writing messages to the dump file.

CEEVDMP — variable dump service
CEEVDMP is a low-level service that assists in formatting and dumping variables
for member languages. This service promotes consistency in the display of
variables among member languages.

Syntax

void CEEVDMP (statement_id, statement_id_length, indent, level, name, name_length,
type, type_length, value, value_length, value_division, array_continued, fc)
CHARn *statement_id;
INT4 *statement_id_length;
INT4 *indent;
INT4 *level;
CHARn *name;
INT4 *name_length;
CHARn *type;
INT4 *type_length;
CHARn *value;
INT4 *value_length;
INT4 *value_division;
INT4 *array_continued;
FEED_BACK *fc;

CEEVDMP
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) Address of CAA in R12
L R15,0048(,R15)
BALR R14,R15

statement_id (input)
A fixed-length character string containing an identifier of the statement from
which the dumped variable is declared. This is usually a statement number.

statement_id_length (input)
A fullword binary integer containing the length of the statement identifier. The
length is zero if there is no statement identifier for the variable. The maximum
length is 8 bytes. Values less than zero are treated as zero. Values greater than
8 bytes are truncated to 8.

indent (input)
A fullword binary integer containing the number of additional blanks to insert
after the statement identifier and before the level of the variable. This feature
indents fields of a structure or elements of an array. The maximum indent

CEELDMP

Chapter 12. Dump and tracing services 419

allowed is 10 blanks. Indent values less than zero are regarded as zero. Values
greater than 10 blanks are truncated to 10.

level (input)
A fullword binary integer containing the level of the variable if the variable is
a field in a record or structure. It can be in the range of 1 to 255. If the
language does not use level numbers or the variable does not have a level
number, the level value is zero. Level values less than zero are regarded as
zero. Values greater than 255 are truncated to 255.

name (input)
A fixed-length character string containing the name of the variable. The
subscript is part of character string if the variable is an array element.

name_length (input)
A fullword binary integer containing the length of the name. If the name_length
is greater than 16 characters, the succeeding fields of the message are placed
on the next line in the dump. A name_length less than zero is regarded as zero.
The maximum name_length is 60 characters. Lengths greater than 60 characters
are truncated to 60.

type (input)
A fixed-length character string containing the variable data type. Other
variable attributes can be placed in this string if they are known. The type
character string should contain only blanks if the data type is not known.
Trailing blanks are ignored. If the length of the string is more than 16
characters, the type and value fields of the message are placed on the next line
in the dump.

type_length (input)
A fullword binary integer containing the length of the data type string. The
value field of the message is placed on the next line in the dump if the
type_length is greater than 16 characters. The maximum type_length is 60
characters. A type_length that is less than zero is regarded as zero. Values
greater than 60 characters are truncated to 60.

value (input)
A fixed-length character string containing the value of the variable. For arrays,
it is recommended that the value field show more than one element of the
array to minimize the number of lines in the dump. Examples of array output
are shown in Note 2 on page 422.

value_length (input)
A fullword binary integer containing the length of the value string. If the
length of the string is more than 60 characters, it is divided and printed on one
or more following lines in the dump as needed. The actual point of division is
indicated by the value_division parameter. A value_length that is less than zero is
regarded as zero.

value_division (input)
A fullword binary integer indicating how a value string should be divided
when it is more than 60 characters. It can contain one of the following values;
values that are not valid are treated as 1.
1 Divide the string every 60 characters, without regard to the contents of

the string.
2 Divide the string at blanks, if possible.

array_continued (input)
A fullword binary integer indicating additional calls to CEEVDMP to dump
other elements of the same array. This allows CEEVDMP to compress multiple

CEEVDMP

420 z/OS V2R1.0 Language Environment Vendor Interfaces

lines of the same array with the same values. This saves space if the array
contains many elements with the same value. This parameter should be one of
the following; values that are not valid are treated as 0.
0 This is not a dump of an array or this is the last call to CEEVDMP to

dump an array.
1 This is the dump of an array and additional calls to CEEVDMP are

made to dump additional elements of this array.

fc (output)
A 12-byte feedback code passed by reference. The following symbolic
conditions can result from this service; if more than one error condition occurs,
the feedback code reflects the last diagnosed condition:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE30V Severity 3

Msg_No 3103

Message An error occurred in writing messages to the dump file.

CEE312 Severity 3

Msg_No 3106

Message An invalid parameter value was specified.

The dump output has the format shown in Figure 87.

1 The statement identifier. This field is removed if the identifier is all blanks
or zero.

2 The indent, shown at its maximum of 10 blanks. There is always one more
space between the statement identifier and the level than the indent
number. So, for this example, there are 11 spaces.

3 The level number; if the level number is 0, this field is removed.

4 The name of the variable, array, or field.

5 The type information.

6 A character representation of the value of the data. It is the responsibility
of the user of CEEVDMP to translate the data to character and to precede
the value with the appropriate number of spaces if right justification is
desired. Any characters with byte values between X'00' and X'3F' are
displayed as periods, except for DBCS shift-out and shift-in codes. When
the value wrapping to a new line causes DBCS data to be divided, even
byte count and SI/SO pairing is preserved.

Usage Notes:

12345678 123456789012345678901234567890123456789012345678901234567890ABCDEFGHIJKLMNOP ABCDEFGHIJKLMNOP123

1 2 3 4 65

Figure 87. CEEVDMP output format

CEEVDMP

Chapter 12. Dump and tracing services 421

1. When elements in the dump of an array are removed because the elements
have the same value, the following message is inserted (a and b are the names
of the first and last element suppressed):
a to b elements same as above.

2. The following is an example of a variable and a record in COBOL:

CEEHDMP — hexadecimal storage dump service
The CEEHDMP low-level service dumps a section of storage in both hex and
character representations. It contains protection against addresses that are not
valid.

Syntax

void CEEHDMP (title, title_length, address, length, fc)
CHARn *title;
INT4 *title_length;
INT4 *address;
INT4 *length;
FEED_BACK *fc;

CEEHDMP
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) Address of CAA in R12
L R15,0044(,R15)
BALR R14,R15

title (input)
A fixed-length character string that identifies the displayed storage section.

title_length (input)
A fullword binary integer containing the length of the title. The maximum
length is 60 characters.

address (input)
A 31-bit address of the first byte of storage to be dumped.

length (input)
A fullword binary integer containing the length of the storage area.

fc (output)
A 12-byte feedback code passed by reference. The following symbolic
conditions can result from this service; if more than one error condition occurs,
the feedback code reflects the last diagnosed condition:

00000024 77 BAD-FLAG X N
00000029 01 PRINT-DATE AN-GR
00000030 02 FILLER X(16) TODAY’S DATE IS
00000032 02 PRINT-MONTH X(9) APRIL
00000033 02 FILLER XX *** Invalid data for this data type ***

Hex 0000
00000034 02 PRINT-DAY 99 *** Invalid data for this data type ***

Hex 0000
00000035 02 FILLER XXX ,19
00000036 02 PRINT-YEAR 99 88

CEEVDMP

422 z/OS V2R1.0 Language Environment Vendor Interfaces

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE30T Severity 2

Msg_No 3101

Message The title string was longer than 132 characters and was
truncated.

CEE30V Severity 3

Msg_No 3103

Message An error occurred in writing messages to the dump file.

CEE313 Severity 3

Msg_No 3107

Message Dump terminated before all storage could be dumped because
inaccessible storage was encountered.

Lines in the dump contain the format shown in Figure 88.

1 The string given on the title argument. The string is truncated if it is too
long to fit on a single dump line.

2 The starting address of this section of storage.
3 The offset in hexadecimal from the first byte of the dump.
4 The hexadecimal address of the first byte dumped on the line.
5 32 bytes of storage dumped as 8 single hexadecimal numbers.
6 The same 32 bytes of storage dumped in character form. Any byte values

between X'00' and X'3F' are displayed as periods, however.

Usage Notes:

1. If an address that is not valid is detected, the following message is displayed
instead of the storage contents:

Inaccessible storage.

2. CEEHDMP suppresses multiple lines of identical data, as CEEVDMP does.

CEEBDMP — control block dump service
The CEEBDMP low-level service dumps a control block with field identifiers. The
fields themselves can be displayed in binary, hexadecimal, or character. CEEBDMP
provides a standard format for control block dumps by determining how many
fields to display on each line of a dump.

TITLE:
12345678 12345678 12345678 12345678 12345678 12345678 12345678 12345678 |abcdefghijklmopqrstuvwxyzabcdef|+000000

00123456
00123456

1 2

3 4 5 6

Figure 88. CEEHDMP output format

CEEHDMP

Chapter 12. Dump and tracing services 423

Syntax

void CEEBDMP (title, title_length, address, offset, nfields, field_ids, field_lengths,
field_types, fc)
CHARn *title;
INT4 *title_length;
INT4 *address;
INT4 *offset;
INT4 *nfields;
CHAR8 *field_ids;
INT4 *field_lengths;
INT4 *field_types;
FEED_BACK *fc;

CEEBDMP
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) Address of CAA in R12
L R15,0052(,R15)
BALR R14,R15

title (input)
A fixed-length character string that identifies the control block.

title_length (input)
A fullword binary integer containing the length of the title. The maximum
length is 60 characters.

address (input)
The 31-bit address of the control block.

offset (input)
A fullword binary integer containing the offset from the address of the control
block to the first field of the control block.

nfields (input)
A fullword binary integer containing the number of fields in the control block.

field_ids (input)
An array of 8-character strings. Each element in the array contains an identifier
for a field in the control block. The elements appear in the array in the same
order in which the fields are arranged in storage. If a field identifier is less
than 8 characters long, it should be left justified and padded on the right with
blanks.

field_lengths (input)
An array of fullword binary integers containing the byte length of the fields in
the control block. For example, a fullword pointer would be 4 bytes long and
thus have a length of 4. This table parallels the names array.

field_types (input)
An array of fullword binary integers containing codes for field dump formats.
The codes are defined as follows:
1 Display the field in hexadecimal.
2 Display the field in binary.
3 Display the field in character.

fc (output)
A 12-byte feedback code passed by reference. The following symbolic
conditions can result from this service; if more than one error condition occurs,
the feedback code reflects the last diagnosed condition:

CEEBDMP

424 z/OS V2R1.0 Language Environment Vendor Interfaces

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE30T Severity 2

Msg_No 3101

Message The title string was longer than 132 characters and was
truncated.

CEE30V Severity 3

Msg_No 3103

Message An error occurred in writing messages to the dump file.

CEE313 Severity 3

Msg_No 3107

Message Dump terminated before entire control block could be dumped
because inaccessible storage was encountered.

The control block dump has the format shown in Figure 89.

1 The name of the control block specified by the title argument.
2 The address of the control block.
3 The offset in the control block to the first field listed on the line. It is

always preceded with a plus (+) or minus (-) sign.
4 The identifier for a field in the control block. The identifier can be up to 8

characters. It is padded with periods to make the field length 9 characters
long.

5 The contents of the field. It is either a binary, hexadecimal, or character
string. If the field is longer than 4 bytes and is displayed in hexadecimal,
or longer than 1 byte and is displayed in binary, or longer than 8 bytes and
displayed in character, then additional contents are displayed where the
next field would normally be displayed, separated by two blanks.
Examples of this form in hexadecimal and character are shown in the third
line of the Output Format shown above. When displaying a field in
character, any byte values between X'00' and X'3F' are displayed as periods.

Note: If an address that is not valid is detected, the following message is
displayed instead of field identifiers and contents:

Inaccessible storage.

TITLE:
+000000
+00001C

12345678
12345678

12345678
abcdefgh

01010101 01010101
00123456

ABCDE. . . .
ABCDE. . . .

ABCDE. . . .
ABCDE. . . .

ABCDE. . . .
12345678

ABCDE. . . .ABCDE. . . .
abcdefgh

abcdefgh
abcdefgh

1 2

3 4 5

Figure 89. CEEBDMP output format

CEEBDMP

Chapter 12. Dump and tracing services 425

Other dump-related CWIs
The following CWIs, which are described in this section, provide additional
dump-related services:
v CEE3CDO
v CEEKSNP
v CEEURTB

CEE3CDO — check dump options
CEE3CDO validates the options that could be passed to the Language
Environment callable service CEE3DMP.

Syntax

void (*CEECELVKCDO) (options, position, [fc])
VSTRING *options;
INT4 *position;
FEED_BACK *fc;

CEECELVKCDO
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) Address of CAA in R12
L R15,3380(,R15)
BALR R14,R15

options (input)
A halfword-prefixed character string containing options describing the type,
format, and destination of dump information. Options are declared as a string
of keywords separated by blanks or commas. Some options have suboptions
which follow the option keyword and are contained in parentheses. These are
the same options supported by the Language Environment callable service
CEE3DMP. For more information, see z/OS Language Environment Programming
Guide.

position (output)
A fixed-binary(31) integer that is the index (character offset within the string)
where the first option or delimiter that is not valid was discovered. If no errors
are discovered, this value is zero.

fc (output/optional)
A 12-byte feedback code passed by reference. If specified as an argument,
feedback information (a condition token) is returned to the calling routine. If
not specified, and the requested operation was not successfully completed, the
condition is signaled to the condition manager. The following symbolic
conditions can result from this service; if several simultaneous error conditions
occur, the feedback code reflects the last diagnosed condition:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE314 Severity 2

Msg_No 3108

Message An invalid option, suboption, or delimiter was found.

Other Dump-Related CWIs

426 z/OS V2R1.0 Language Environment Vendor Interfaces

CEEKSNP — produce a SNAP dump
This CWI generates a system SNAP dump of the runtime environment. Once
complete, execution continues.

Syntax

void (*CEECELVKSNP) (id, reserved, [fc]);
INT4 *id;
VSTRING *reserved;
FEED_BACK *fc;

CEECELVKSNP
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) Address of CAA in R12
L R15,3392,R15
BALR R14,R15

id (input)
An integer in the range 0 to 255 used in an identification string within the
SNAP output.

reserved (input)
A halfword-prefixed character string reserved for future use. Its value must be
a zero-length character string.

fc (output/optional)
A 12-byte feedback code passed by reference. If specified as an argument,
feedback information (a condition token) is returned to the calling routine. If
not specified, and the requested operation was not successfully completed, the
condition is signaled to the condition manager. The following symbolic
conditions can result from this service:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE33R Severity 1

Msg_No 3195

Message The SNAP dump file could not be opened.

Explanation The SNAP dump file could not be opened.

Programmer
Response

If a SNAP dump was desired, determine the reason the
file could not be opened and correct the problem.

System Action No SNAP dump was taken.

CEE33S Severity 1

Msg_No 3196

Message The ID number was not in the allowed range.

Explanation The ID number must be in the range 0 to 255; it was not
in that range.

Programmer
Response

This is an internal problem. Contact your service
representative.

System Action The ID number 255 was used.

CEEKSNP

Chapter 12. Dump and tracing services 427

Condition

CEE33T Severity 1

Msg_No 3197

Message An invalid value for reserved was passed.

Explanation An invalid value for the reserved argument was passed to
the SNAP dump service.

Programmer
Response

This is an internal problem. Contact your service
representative.

System Action The invalid value was ignored.

CEE33U Severity 3

Msg_No 3198

Message A SNAP dump was requested on an unsupported system.

Explanation The SNAP dump service was called to produce a SNAP
dump on an unsupported system.

Programmer
Response

This is an internal problem. Contact your service
representative.

System Action The SNAP dump was not produced.

CEE33V Severity 3

Msg_No 3199

Message An error was returned from the SNAP system function.

Explanation The SNAP system function returned an error. The SNAP
dump service could not be completed.

Programmer
Response

This is an internal problem. Contact your service
representative.

System Action The SNAP dump was not produced.

Usage Notes:

1. This service is not available under CICS. Calling it when executing under CICS
results in feedback code CEE33U.

2. The ddname used is CEESNAP. If CEESNAP is not defined then no dump is
produced and CEE33R is returned.

3. CEEKSNP uses the SDATA=(ALL) SNAP option, which dumps items such as
the PSA, SQA, SWA, I/O supervisor control blocks, and the PDATA=(ALL)
SNAP option, which dumps items such as the JPA, LPA, virtual storage
subpools (0-127, 252).

4. The contents of the SNAP dump reflects the state of the registers and memory
at the time the SNAP macro is called.

CEEURTB — produce a user routine traceback
The CEEURTB CWI generates a traceback of user routines from the point of the
call to CEEURTB. The traceback consists of, where determinable, entry name,
program unit name, statement number, offset and entry address. The output of the
traceback is directed to the MSGFILE. When complete, execution continues.

Syntax

void (*CEECELVMURTB) (levels, [fc]);

CEEKSNP

428 z/OS V2R1.0 Language Environment Vendor Interfaces

INT4 *levels;
FEED_BACK *fc;

CEECELVMURTB
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) Address of CAA in R12
L R15,3368(,R15)
BALR R14,R15

levels (input)
A fixed-binary (31) number representing the maximum number of levels of
user routines to trace back. If levels is 0, then all user routines are traced back.

fc (output/optional)
A 12-byte feedback code passed by reference. If specified as an argument,
feedback information (a condition token) is returned to the calling routine. If
omitted, and the requested operation was not successfully completed, the
condition is signaled to the condition manager.

The following symbolic conditions can result from this service:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE30Q Severity 3

Msg_No 3098

Message The user routine traceback could not be completed.

Explanation The user routine traceback could not be completed due to an
error detected in tracing back through the DSA chain.

Programmer
Response

Attempt to perform problem determination through the use
of a dump.

System
Action

The user routine traceback is not completed.

Usage Notes:

1. levels refers to the number of program unit level qualifiers within an
application. For example, nested PL/I begin blocks are treated as one level.

2. If levels is 1, the format of the traceback is as follows. The traceback is in text;
the traceback stops at the first program unit level qualifier. For example, nested
PL/I begin blocks are treated as one level.

3. If levels is 0 (complete traceback) or greater than 1, the traceback is generated in
a table format for the requested number of levels. The format of the traceback
is as follows.

from entry BEGIN BLOCK at entry offset +00000082 at address 00020D70
from entry EXT_AB at entry offset +00000036 at address 00020D78
from entry EXT_01 at entry offset +00000040 at address 00020C58
from program unit DUMP03 at entry LABEL_E: BEGIN at statement 22 at offset
+00000082 at address 00020598

CEEURTB

Chapter 12. Dump and tracing services 429

Tracing services
The TRACE runtime option controls whether tracing is active, the size of the trace
buffer, the type of trace events to record, and whether a dump containing only the
trace table should be taken at enclave termination. TRACE establishes the setting
that indicates if the trace facility is active.

Syntax

�� TRACe (
OFF

ON
,

table_size
,

DUMP

NODUMP
,

LE= n
, �

�
ID x = n

,
memid = n

) ��

ON Indicates the tracing facility is active.

OFF
Indicates the tracing facility is inactive; this the default.

table_size
Determines the size of the trace table and is specified in bytes or as nK.

DUMP
Requests that a Language Environment formatted dump, containing at a
minimum the trace table, be taken at program termination (normal or
abnormal) independent of the setting of the TERMTHDACT runtime option.

LE=
Requests global trace for all Language Environment members to generate trace
records into the trace table. All members include Language Environment as
well as z/OS XL C/C++ and Berkeley sockets. The number that can be
specified on this parameter is only the global trace levels (for a description of
global and member-specific trace levels, see the description of n below). The
value is limited to a range of 0–FF

IDx=
Identifies a specific Language Environment member ID that generates trace
records for the trace table. This parameter is to be used only under the
direction of IBM service.

traceback of user routines:
Program Unit Entry Statement PU Offset Entry Offset Address

BEGIN BLOCK +00000D70 +00000082 00020D70
EXT_AB +00000D28 +00000036 00020D28
EXT_01 +00000C58 +00000040 00020C58

DUMP03 LABEL_E: BEGIN
22 +00000598 +00000082 00020598

DUMP03 E 21 +000004F8 +00000082 000204F8
DUMP03 D 17 +00000454 +00000086 00020454
DUMP03 %BLOCK5 14 +000003AC +0000008E 000203AC
DUMP03 C 13 +00000318 +0000007E 00020318
DUMP03 B 11 +0000020C +000000EE 0002020C
DUMP03 A 6 +0000015C +00000092 0002015C
DUMP03 DUMP03 4 +000000AC +000000AC 000200AC

Tracing

430 z/OS V2R1.0 Language Environment Vendor Interfaces

x Specifies the member ID number, where x can be an integer from 1-17,
inclusive. More than one IDx = n can be specified at a time.

memid=
A symbolic name of the following specific Language Environment members:
CEL Language Environment member ID of 1
C370 Language Environment member ID of 3 (C/C++)
PLI Language Environment member ID of 10

Specific member tracing is specified by either the IDx= or the memid=
parameter. For example, C runtime library tracing can be specified either as
ID3= or C370=; CEL can be specified as ID1= or CEL=. More than one memid=
can be specified at a time. This parameter is to be used only under the
direction of IBM service.

n A hex number that represents a 32-bit mask where each bit is associated with a
specific trace type. The n value can be a maximum of 8 characters that
represent a maximum of 8 hex digits. If less than 8 hex digits are specified, the
value is padded on the left with zeroes (for example, 17 represents
X'00000017'). The low-order eight bits are reserved for global trace events
(those that apply to all Language Environment members).

Global and member-specific tracing
Every Language Environment member has a 32-bit field that contains its trace
levels (or trace types). The first 24 bits are defined by each member; these bits are
referred to as the member trace levels. Language Environment defines the last 8
bits to have one specific meaning across all Language Environment members; these
bits are referred to as the global trace levels. In Language Environment, only the
following global trace levels are defined:
0 No tracing
1 Library entry and exit trace
2 Locking trace
4 Monitor call
20 XPLINK/non-XPLINK transition trace for AMODE 31 only. If #pragma

linkage (xxxxxxxx, OS_UPSTACK) is specified, no transitions are recorded.

For a description of trace types 1 and 2, see z/OS Language Environment Debugging
Guide. Trace type 4 enables and disables monitor call number 1351.

Global trace levels can be set in two ways. First, using the LE=n option on the
trace runtime option. You can activate either of the global trace options by
specifying LE=1, LE=2, or both of the global traces by specifying LE=3. Second,
using the low-order 8 bits of the 32-bit field for specific member using the memid=
suboption or the IDx= suboption. You can activate the library entry and exit global
trace for callable service calls and return to Language Environment by specifying
CEL=1. Note the X'01' is the low-order 8 bits of the 32–bit field.

A member can choose not to implement one of the global trace levels, but it must
not redefine the meaning of the low-order 8 bits.

The member-specific trace suboption for the C/C++ library is called C370. For the
TRACE option, the terms C/370, C370, and C/C++ are used interchangeably. In all
cases they refer to the C/C++ language-specific runtime library component of
Language Environment. Some examples of the trace setting are:

TRACE(ON,,,LE=1)
Set global trace type 1 (RTL entry/exit) tracing

Tracing

Chapter 12. Dump and tracing services 431

TRACE(ON,,,LE=2)
Set global trace type 2 user mutex and condition variable tracing

TRACE(ON,,,LE=3)
Set both trace types 1 and 2

TRACE(ON,,,CEL=1)
Set Language Environment callable service entry/exit tracing

TRACE(ON,,,C370=1)
Set C/C++ runtime library function entry/exit tracing

TRACE(ON,,,LE=1,CEL=100,C370=200)
Set the first Language Environment trace plus the second C/C++ trace and
the first global trace level for all members in the application

TRACE(ON,,,LE=1,CEL=102,C370=200)
Set the first Language Environment trace plus the second global trace but
only for Language Environment, plus the second C/C++ trace and the first
global trace level for all members

TRACE(ON,,,LE=20)
Set global trace type 20 XPLINK/non-XPLINK transition tracing for
AMODE 31 only. Transitions across OS_UPSTACK linkage are not
recorded.

TRACE runtime options usage notes
v The IBM-supplied default is TRACE(ON, 4K, LE=0, CEL=700).
v The TRACE suboptions for member-specific tracing are not recommended for

regular use, but are used by customers under the direction of IBM service.

CEEKCTRC — add a trace table entry
CEEKCTRC is a CWI callable service that adds a Trace Table Entry (TTE) to the
single trace table.

Syntax

void CEEKCTRC (trace_buffer, [trace_buffer_len])
CHAR4 *trace_buffer;
INT4 *[trace_buffer_len];

CEEKCTRC
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) Address of CAA in R12
L R15,3480(,R15)
BALR R14,R15

trace_buffer (input)
The trace buffer to be included in the TTE when it is added to the trace table.
It is the caller's responsibility to provide the trace buffer with the member ID
and the member-specific type along with the member-specific information, if
any.

trace_buffer_len (input)
The length of the trace buffer. The minimum length is 8 bytes (which includes
the member ID and the member-specific Type), and the maximum length is
112. If omitted, 112 is assumed. The format of the first 8 bytes is as follows; the
remaining 104 bytes are member-definable:

Byte Usage

Tracing

432 z/OS V2R1.0 Language Environment Vendor Interfaces

0 Member ID
1-3 Member-defined flags
4-7 Member-defined trace record type

Usage Notes:

1. Callers of this service do not need to have acquired a new stack frame, because
this service has a dedicated save area for its use.

2. The CWI adds the timestamp and the thread ID to the TTE.
3. Caller's of this CWI must first test the CEECAA_TRACE_ACTIVE flag before

calling this CWI.
4. The trace CWI can be called:

v From the start of member enclave initialization
v To the end of member enclave termination
v Excluding member dump processing
Calls to the CEEKCTRC CWI should be conditional. It is the responsibility of
the caller to insure this. All trace points in the RTL would follow the basic
structure shown in Figure 90.

At member enclave initialization, the member’s unique trace levels
and the low-order 8 bits of the global trace levels from the OCB
should be merged and stored in a 32-bit field in the member’s
thread-level control block, such as:

struct { /* Trace levels: */
/* Combination of 24 member */
/* unique trace levels and 8 */
/* global trace levels */
/* */
/* Member unique trace levels: */

int free_1 : 21; /* ’FFFFF8..’x - */
int TraceType3 : 1; /* ’.....4..’x - Trace type 3 */
int TraceType2 : 1; /* ’.....2..’x - Trace type 2 */
int TraceType1 : 1; /* ’.....1..’x - Trace type 1 */

/* */
/* Global trace levels: */

int free_3 : 6; /* ’......FC’x - */
int RtlLocks : 1; /* ’.......2’x - RTL/user locking */
int RtlFunc : 1; /* ’.......1’x - RTL function */

/* entry/exit */
} Trace; /* */

At every trace point, the following code would be used to test
for trace active and that this specific trace type has been requested.

#include "the file that contains your trace structure"
.
.
.

if ((ceecaa_trace) && /* Trace is active */
(Trace.TraceType1)) { /* and specific trace type was */

/* specified */
Format trace entry
Invoke CEEKCTRC

}

Figure 90. Example: calling the CEEKCTRC CWI from the C RTL

CEEKCTRC

Chapter 12. Dump and tracing services 433

434 z/OS V2R1.0 Language Environment Vendor Interfaces

Chapter 13. Subsystem considerations

Language Environment provides support which, when used in conjunction with
facilities provided in CICS Version 4 Release 1, gives programmers the ability to
write and run Language Environment-enabled command level application
programs (run units) in the CICS environment. When this support is used, CICS
appears to the Language Environment-enabled program essentially as an operating
system, and provides all job, task, and program management facilities. If CICS is
being run in 31-bit mode under z/OS, this support permits Language
Environment-enabled application programs to run in either 24-bit mode or 31-bit
mode. Language Environment-enabled application programs also run on CICS
under z/OS.

Communication between a Language Environment-enabled program (run unit) and
a non-Language Environment-enabled program (run unit) can be accomplished
with CICS facilities such as EXEC CICS LINK and XCTL commands.

Note: Fortran is not supported in this environment.

CICS and POSIX
Applications running with POSIX(ON) and not supported under CICS; if you try
running an application with POSIX(ON) under CICS, you receive a warning
message and execution continues.

Background information
The following sections provide some background information necessary before a
detailed discussion of CICS.

Terminology
The following terminology is unique to the CICS environment. The Language
Environment program model under batch environment defines some of the terms
differently. “Language Environment-CICS and Language Environment-batch
program models” on page 438 correlate these two program models.

CICS CICS is a licensed program product that runs on S/370, ESA/370, and
ESA/390 architectures. It consists of a general purpose data
communication or on-line transaction processing system, an on-line system
controller, and some batch utilities capable of supporting a network of
many thousands of terminals. It is used for commercial business
transactions, rather than primarily scientific or engineering work.
Throughout this section, the term “CICS” indicates CICS/ESA, CICS/MVS,
or both; it does not indicate CICS/VM, unless an explicit reference is
required.

Translator
A CICS Command Language Translator takes the application program
source code and translates the CICS commands into the appropriate
language statements. It also provides useful diagnostics.

Partition
A fixed-size subdivision of main storage allocated to a job step or system
task. For example, a partition is established during a CICS initialization

© Copyright IBM Corp. 1991, 2015 435

(start-up job). Partition initialization is creation of an environment which is
common to all transactions running in that environment.

Thread
A collection of (or a transaction consisting of) one or more run units
(programs), each of which can be at a different language level. There can
be multiple threads (transactions) running in parallel within a single CICS
partition. The run units in a thread communicate with each other only by
issuing EXEC CICS LINK or XCTL commands.

Transaction
A piece of processing initiated by a single request (transaction ID code),
usually from a terminal. A single transaction consists of one or more
application programs (run units) that, when run, carry out the processing
needed.

Task The CICS activity necessary to set up and run an application program on
behalf of a user is called a task. A task is, in the simple case, an instance of
a transaction. A task can read from and write to the terminal, read and
write files, start other tasks, and do many other things. All these activities
are controlled by and requested through CICS commands in the
application program. CICS manages many tasks at the same time. The
number of tasks running at any one instant depends on the characteristics
of the processor.

Run unit
A statically and/or dynamically bound running set of one or more
programs (defined below) that communicate with each other by CALL
statement. In a CICS environment, a run unit is called at the start of a
CICS task (triggered by entering a transaction ID at the terminal) or by
issuing EXEC CICS LINK or EXEC CICS XCTL commands from another
run unit. Each run unit has its own Language Environment environment.

Program
A running (link-edited load module) set of one or more object programs
that communicate with each other by static CALL statements. Unlike run
units, programs are called with dynamic CALLs (through use of EXEC
CICS LOAD). Programs that call each other dynamically are part of the
same run unit. They run in the same Language Environment environment
as their caller. A program must be defined as a single entry in PPT. Notice
that a single run unit can have multiple programs separately link-edited
with separate PPT entries.

Language Environment-Enabled Program
A program with a special layout entry that contains Language
Environment eye catcher (CEE) and references to Prolog Information
Blocks. This is also referred to as a Fully Language Environment-Enabled
program. Prolog Information Blocks contain information that is needed by
Language Environment while the program is running. For more
information on requirements of being a Language Environment-Enabled
Program, see “Routine layout” on page 6.

Object Program
A set or group of machine language instructions that can be run, and other
material designed to interact with data to provide problem solutions.
Object programs are generated as a result of source program compilation
(or assembly).

CICS

436 z/OS V2R1.0 Language Environment Vendor Interfaces

Compiler
A program that translates a program written in an HLL into a machine
language object program.

Working Storage
Depends on the programming language of the application program, as
follows:

ASM The storage defined in the current DFHEISTG DSECT.

COBOL
All data storage defined in the WORKING-STORAGE section of
the program.

Except for COBOL programs, working storage starts with a standard
format register save area; that is, R14 and R12 are stored at offset 12 and
R13 at offset 4.

Token A group of language characters that logically belong together. Tokens such
as keywords, symbols and storage addresses are used to identify a given
environment. Language Environment adopts storage addresses as
environment tokens. Partition, thread and run unit tokens are
double-word. The first word is zero and the second word is a 31-bit
address.

LIBVEC
A Language Environment vector transfer table, which is part of CEEPCOM
and contains a series of slots, one for each Language Environment routine
called. A slot is also provided for special CICS routines.

PCT CICS Program Control Table that defines the transactions known to the
system.

PPT CICS Processing Program Control Table that defines all the application
programs and maps in the system, and also various CICS modules and
tables.

Running a program under CICS
It is useful to review some contextual information about running an application
program under CICS before we proceed. Most importantly, the terms “run unit”
and “program” require some clarification.

An event, generally receipt of an input message containing a transaction ID code,
or possibly receipt of data identifying some other event which has been equated to
a transaction ID code, (a 3270 terminal Program Function Key), triggers a CICS
transaction.

CICS looks up the transaction ID code in the Program Control Table (DFHPCT)
and extracts from that table the name of the program (or at least the first program)
that is to process the transaction.

In preparation for running this program (and any other programs subsequently
called as part of this transaction), the CICS Task Management Program attaches a
CICS task to define the transaction as an item of work dispatchable by the CICS
task dispatcher. This task is purely a CICS task, not an operating system task.

When the transaction processing task exists, the CICS Program Control Program
looks up the identity of the required program in the Processing Program Table
(DFHPPT) that contains information about programs (for example, language,

CICS

Chapter 13. Subsystem considerations 437

whether in storage or not, use count, and entry point address). Next, the CICS
Program Control Program loads the program into storage if necessary and calls
runtime language interface module (loaded during CICS initialization) to initialize
the runtime environment and call the program.

This program need not perform all the processing associated with a transaction. It
can request to call other programs with EXEC CICS LINK, EXEC CICS XCTL, or a
language CALL construct. Each program identified in such a request is accessed
and called with its entry in DFHPPT just as the first one was. From the CICS
program management point of view, initiation of the first application program
associated with this transaction task marks the beginning of a thread of programs.

This thread of programs can traverse only one program or many programs, all
called in the service of the original transaction. Each such program must have an
entry in the PPT and must be loadable by the CICS program loader. It must be a
link-edited load module. It can contain a single object module or object modules
produced by several compilations and combined by the linkage editor. Within the
load module, the component modules can call each other with CALL statements,
or function invocations, but CICS has no knowledge of this.

Each program (link-edited load module with a PPT entry) can be written in any
language that is compatible with CICS (COBOL, C/C++, PL/I, or assembler).
When a program is called through CICS facilities, it represents a run unit and has
its own Language Environment environment. Statically linked ILC applications are
supported under CICS between COBOL, C/C++, and assembler. Both static and
dynamic ILC between PL/I, COBOL, and C are supported under CICS.

CICS discourages the coding of large or complex programs and encourages the
implementation of complex transactions by the use of several programs called
with, and communicating by means of, CICS facilities.

In summary, for the rest of this discussion, the term program in the Language
Environment-CICS application environment means a link-edited load module with
a PPT entry, consisting of at least one program's object module and perhaps other
object modules. Such a program, when called with CICS facilities (EXEC CICS
LINK or XCTL), represents a run unit and has its own Language Environment
environment. The terms run unit and program can loosely be used unless an
attention to a particular one is required.

Language Environment-CICS and Language
Environment-batch program models

The following illustration and notes describe the correlation between the Language
Environment-CICS program model and the Language Environment-batch program
model. In general, the CICS Subsystem itself is not implemented as a Language
Environment-enabled application. However, it is presented here in the form of a
Language Environment-enabled application to illustrate the relationship of the two
program models.

CICS

438 z/OS V2R1.0 Language Environment Vendor Interfaces

Note:

1. Language Environment Process in the Language Environment-batch program
model is the same as the CICS Partition in the Language Environment-CICS
program model – an address space that consists of at least one enclave (CICS
run unit), a collection of code and data. Unlike the Language Environment
process, a character string argument (containing the runtime options) cannot be
passed to the CICS partition. Also, default overrides cannot be passed to the
CICS partition.

2. As in Language Environment process initialization, the anchor vector is set up
at CICS partition initialization.

3. The Language Environment-batch program model does not provide an
equivalent term to the CICS Thread in the Language Environment-CICS
program model. The sequence of currently active CICS run units (Language
Environment enclaves) for a single transaction is called a CICS Thread.

4. The CICS run unit in the Language Environment-CICS program model is an
equivalent of the Language Environment Enclave in the Language
Environment-batch program model.
The CICS run unit initialization in the Language Environment-CICS program
model is same as the Language Environment Enclave creation in the Language
Environment-batch program model.

5. Unlike the Language Environment-batch program model, the Language
Environment-CICS program model only supports a single Language

C I C S

Language Environment lib

Lang Env enclave,
CICS run unit

Lang Env thread Lang Env thread

Lang Env enclave,
CICS run unit

CICS
thread A

mainmain sub

ext
data X

ext
data X

ext
data Y

ext
data Z

sub

LINK or XCTL

CICS
thread B

CICS
thread C . . .

. . .

.

Figure 91. Language Environment-CICS and Language Environment-batch program model

CICS

Chapter 13. Subsystem considerations 439

Environment thread within an enclave (CICS run unit). Multiple Language
Environment enclaves within a process (CICS partition) are supported.
Transfer of control within an enclave in the Language Environment-CICS
program model is only accomplished with the CALL statement. Unlike the
Language Environment-batch program model, transfer of control within an
enclave with Language Environment thread creation service is not supported in
the Language Environment-CICS program model.
The Language Environment-CICS program model does not support the
multitask function of the Language Environment-batch program model. It
supports the multithread function of CICS.

6. As in the Language Environment-batch program model, one enclave can
transfer control to another enclave in the Language Environment-CICS program
model. This happens as a result of running EXEC CICS LINK or EXEC CICS
XCTL from the CICS run unit within the enclave.

7. In the Language Environment-CICS program model, abend propagation
continues to be allowed only if the enclave (run unit) was created using the
EXEC CICS LINK command.

8. All other definitions in the Language Environment-batch program model apply
to the Language Environment-CICS program model.

Language Environment-CICS interface
Language Environment provides an environment (Language Environment-CICS
interface) that supports application programs (transactions) written in HLLs under
CICS. The Language Environment-CICS interface routine (CEECCICS) uses the API
and ERTLI protocols provided by CICS extensively. In summary, the interface
between Language Environment and CICS is accomplished through:
1. A CALL interface (ERTLI) from CICS to Language Environment with the

Language Environment-CICS interface control routine CEECCICS.
2. EXEC CICS commands issued by Language Environment routines where

appropriate to request CICS system services.

Languages supported
The primary languages that CICS provides specific command translators for, and
which are supported within Language Environment-CICS environment include:
COBOL, PL/I, C, C++, and assembler.

Language Environment provides the following support for member-language
libraries and application programs (transactions) running under CICS:
v Language Environment-CICS interface control module
v Language Environment partition initialization/termination
v Language Environment thread initialization/termination
v Language Environment run unit (program) initialization/invocation/termination
v Program management
v Storage management
v Exception handling
v Message services
v Dump services
v Enclaves

CICS

440 z/OS V2R1.0 Language Environment Vendor Interfaces

Extended runtime language interface
The extended runtime language interface protocol is a set of special calls made
from CICS to the Language Environment-CICS interface control module
CEECCICS. Language Environment library routines call CICS services with the API
protocol (command level interface). CICS makes the following runtime language
interface calls to the Language Environment-CICS interface routine:

Interface call Description

“Partition initialization (Language
Environment enablement)” on page
445

Made for Language Environment enablement during
CICS initialization

“Partition termination (Language
Environment disablement)” on page
448

Made for Language Environment disablement during
CICS shut-down.

“Establish ownership type call” on
page 449

Made to identify the language of the application
program. A Language Environment-enabled
application program can be written in any Language
Environment-enabled language.

“Thread initialization” on page 453 Made for thread (transaction) initialization.

“Thread termination” on page 455 Made for thread (transaction) termination

“Run unit (program) initialization”
on page 455

Made for run unit (program) initialization.

“Run unit (program) termination”
on page 460

Made for run unit (program) termination.

“Run unit (program) begin
invocation” on page 461

Made to begin run unit (program) invocation.

“Run unit (program) end
invocation” on page 463

Made to end run unit (program) invocation.

“Error recovery” on page 471 Enables the Language Environment-CICS interface
routine to perform error recovery processing, if
possible.

“Determine working storage and
static storage” on page 472

Made for determining program working storage
address to display the storage during program
debugging using CICS EDF.

“Perform GOTO call” on page 473 Made for transferring control to a condition label
specified by the EXEC CICS HANDLE CONDITION
condition (label), or EXEC CICS HANDLE AID option
(label), or EXEC CICS HANDLE ABEND LABEL
(label) commands in the program.

ERTLI general call syntax
The following general syntax is used to describe each of the CICS calls to the
Language Environment-CICS interface routine (CEECCICS). Note that this syntax
is different than the Language Environment callable services syntax described
elsewhere in this book.

Syntax

Call CEECCICS (function, rsncode, args...) Retcode (rc)

function
A fullword integer (a binary value) function code describing the function to be
performed.

CICS

Chapter 13. Subsystem considerations 441

rsncode (output)
A fullword integer that contains the Language Environment or member
language-specific reason code when the function is not performed successfully
(rc = 16). CICS issues a message (to the operator's console) quoting this reason
code returned by Language Environment and abends the task. The reason code
format is nnnffrr:

nnn 3-digit member ID, 000-127 for IBM and 128-255 for non-IBM products
(001 for Language Environment and 005 for COBOL).

ff 2-digit function code (10 for partition initialization).

rr 2-digit unique reason code within a function.

args...
Additional arguments based on the function being performed.

rc (output)
A fullword integer that contains the return code that is passed back in R15. It
can contain one of the following values:

0 Function was performed successfully.

16 Function was not performed successfully. The rsncode parameter
contains a code that describes the reason for the failure.

ERTLI conventions
To avoid confusion, the following conventions are used in describing the extended
runtime language interface:
v SYSEIB translator option:

The Language Environment library routines that use the EXEC CICS commands
must be translated with the SYSEIB translator option. As a result, a second EIB
called system EIB (different from the user EIB) is used to contain information
regarding the commands issued by Language Environment routines. There is no
need to save and restore the user EIB around the commands issued by Language
Environment routines. A routine translated with the SYSEIB option must:
– Run in AMODE(31) as the system EIB is located above 16M.
– Obtain the address of the system EIB using the EXEC CICS ADDRESS EIB

command. This command returns system EIB address only if the routine is
translated with SYSEIB option. Otherwise, it returns the user EIB address.
Notice that for the Language Environment-CICS interface routine, CICS
passes the system EIB address in the argument list of the ERTLI calls.

– Be aware that use of the SYSEIB translator option implies use of the
NOHANDLE option on the commands.

– Copy all relevant fields from the system EIB to program instance local storage
as soon as possible (this is because there is only one system EIB); for example,
before running:
- Another EXEC CICS command
- A native language call or function or service that can run one or more

EXEC CICS commands
v Register usage:

With all the above calls made by CICS to the Language Environment-CICS
interface routine or made by the Language Environment-CICS interface routine
to the member language-specific interface routines, the following standards
apply:

R1 Address of the stored argument list

R13 Address of register save area

ERTLI Call

442 z/OS V2R1.0 Language Environment Vendor Interfaces

R14 Return address

R15 Entry point address on entry (for example, CEECCICS)

R15 Return code on return
v Argument list:

The argument list is shown in Figure 92.

v Each item in the argument list passed by CICS is the address of the
corresponding argument. The last argument does not have the high-order bit on
for calls to member-specific ERTLI.

v The first argument is always a pointer pointing to a fullword binary value which
identifies the function to be performed. The meaning of the remaining
arguments depends on this function code. The actual argument list for each of
the above ERTLI calls are described later in this document.

v When the nth argument is described as THING, it means that the nth word of
the stored argument list is the address of THING (n starts at 1 for the first
argument of the call).

v Where the callee (Language Environment-CICS interface control routine) sets a
value in THING, THING is called a RECEIVER (output) argument. Notice that
the special calls provided for COBOL to call CICS services have been replaced
by receiver arguments on the CICS to Language Environment calls (ERTLI).

v Language Environment adopts storage addresses as environment tokens.
Partition, thread, and run unit tokens are doublewords. The first word is zero
and the second word is a 31-bit address.

v All addresses in the interfaces are assumed to be 31-bit addresses. Where a
described address is the address of a routine, the top bit is set to indicate the
addressing mode in which the routine is called. The bit is set ON to indicate
AMODE(31). This mode is set by the caller before passing control to the routine.

v The program (run unit) entry point address passed by CICS is a doubleword
entity. The first word is the actual entry point address and the second word is
zero.

v If the Language Environment-CICS interface routines change the program mask,
it must be restored before control is returned to CICS.

v On return from these calls, CICS expects a zero value in R15 for a successful call;
for an abnormal return, R15 should contain a nonzero value (16). CICS issues a
message quoting the reason code returned by Language Environment in the
argument list of these calls. The possible reason codes are described under each
call discussion.

A(Arg List) arg1 ptr

arg2 ptr

arg3 ptr

argn ptr

Func. Code

Arg2

Arg3

R1 Arg List

Argn

Argument

Figure 92. CICS call argument list

ERTLI Conventions

Chapter 13. Subsystem considerations 443

Flowchart of activities
Figure 93 provides an overview of processing for Language Environment-CICS run
unit initialization, invocation, and termination.

Similarly, Figure 94 on page 445 shows an overview of processing for Language
Environment-CICS run unit termination.

C I C S

Partition
Init.Call

Thread
Init.Call

Run Unit
Init.Call

Run Unit Begin
Invocation

Language
Env-CICS

Int.

Lang Env
Partition

Init.

Thread
Initial-
ization

Run Unit
Initial-
ization

Lan Env
Program

Init.

Lan Env
Program

Term.

Lan Env
Enabled

Language
Specific
Partition

Init.

Language
Specific
Thread

Init.

Language
Specific
Run Unit

Init.

Language
Specific
Program

Init.

Language
Specific
Program

Term.

P
R
O
G
R
A
M

Figure 93. Language Environment-CICS run unit initialization, invocation, and termination

CICS

444 z/OS V2R1.0 Language Environment Vendor Interfaces

Language Environment-CICS interface routines' DSA
To ensure reentrancy of the Language Environment-CICS interface routines and the
language-specific Language Environment-CICS interface routines, a Dynamic
Storage Area (DSA) is acquired at partition and thread initialization to be used for
stack frames. Run unit initialization routines use the DSA acquired at thread
initialization. This temporary stack mechanism is modeled after the Language
Environment stack mechanism. The length of this stack storage is predetermined
and should be greater than the sum of all possible active stacks used by Language
Environment-CICS interface routines. The maximum length of the stack is 1024
bytes. If exceeded, an ABEND of 4093 is issued.

The Language Environment stack mechanism provides consistency with batch
environment in terms of calling a common set of Language Environment routines
such as option processing, storage management, and exception handling.

Partition initialization (Language Environment enablement)
Enablement of Language Environment is performed by a partition initialization call
to the Language Environment-CICS interface module during CICS initialization.
CICS loads (OS conditional load) and calls the Language Environment-CICS
interface module (CEECCICS) during the system initialization. CEECCICS must be
in an authorized data set for the OS LOAD to be successful.

If CICS can not load the Language Environment-CICS interface module no
message is issued and processing continues without Language Environment. If the
Language Environment partition initialization fails, CICS outputs a message
quoting the reason code returned by Language Environment and continue
processing as if Language Environment is not present.

The Language Environment-CICS interface module communicates with CICS with
ERTLI and EXEC CICS commands and with Language Environment with standard
CALLs to enable and maintain the Language Environment environment. Another
similar interaction disables the Language Environment environment in response to
CICS shut-down processing.

C I C S

Run Unit
Term. Call

Thread
Init. Call

Partition
Term. Call

Language
Env-CICS

Int.

Run Unit
Termina-

tion

Thread
Termina-

tion

Lang Env
Partition
Terminat-

tion

Language
Specific
Run Unit

Term.

Language
Specific
Thread
Term.

Language
Specific
Partition

Term.

Figure 94. Language Environment-CICS run unit termination

CICS

Chapter 13. Subsystem considerations 445

The Language Environment-CICS interface module remains in storage to support
communication between CICS and Language Environment as long as Language
Environment is enabled.

Syntax

Call CEECCICS (10, rsncode, syseib, preasa, ptoken, eiblen, twalen, cellevel, getcaa,
setcaa, partinit_flags, langavl) Retcode (rc)

rsncode (output)
A fullword integer in nnnffrr format to contain the member language-specific
partition initialization reason code or one of the following Language
Environment reason codes:

11000 Invalid parameter was passed

11010 Storage was not available

11020 The library was not loaded

11030 Language-specific partition initialization was not done

syseib
The system EXEC interface block, as defined by CICS. This control block
contains information about running the CICS commands issued by Language
Environment. There is no need to save and restore the user EIB around the
commands issued by Language Environment. The system EIB address is above
16M.

preasa
A preallocated save area to be used by Language Environment to issue its first
EXEC CICS GETMAIN command. The size of this save area is same as the size
of DFHEISTG (248 bytes).

ptoken (output)
A doubleword value to contain a token representing the Language
Environment partition environment.

eiblen
A fullword integer containing the system EIB length.

twalen (output)
A fullword integer that contains the length of the preallocated thread work
area. This work area is allocated by CICS from the user (task local)
RMODE(ANY) storage for each thread, and passed to the Language
Environment-CICS interface at thread initialization. The work area address is
above 16M. You can return a length equal to 0. In this case, you must acquire
the thread work area (if one is required) during thread initialization using
EXEC CICS GETMAIN command.

cellevel (output)
A fullword integer that contains the Language Environment-CICS interface
level.

getcaa
The CICS specific GET_CAA routine address. This routine returns the CAA
address of the current run unit. It runs in AMODE=ANY,RMODE=24.

setcaa
The CICS specific SET_CAA routine address. This routine is called to set the
current run unit's CAA address in a CICS control block for a later retrieval
with GET_CAA routine. It runs in AMODE=ANY,RMODE=24.

Partition Initialization

446 z/OS V2R1.0 Language Environment Vendor Interfaces

partinit_flags (input/output) * Formerly 'langdef' *
A 32 byte flag field used to communicate interface information between CICS
and Language Environment. The structure is depicted in Figure 95.

langavl (output)
A fullword binary value to contain bit settings for the languages that provide a
Language Environment-CICS member event handler (CEEEVnnn) capable of
handling both the existing (non-Language Environment-enabled) application

DCL 1 PARTINIT_FLAGS, /* CICS/Lang Env interface flags */
/* */

2 CICS_FLAGS BIT(128), /*+00 CICS interface level flags */
3 CICS_PROG_OBJ BIT(1), /* .00 CICS supports program objs */
3 Reserved BIT(1), /* .01 Reserved for CICS */
3 CICS_OTE_PHASE1 BIT(1), /* .02 CICS is at Phase I of OTE */
3 CICS_REUSE_RWA BIT(1), /* .03 CICS supports reusable RWAs */
3 CICS_OTE_PHASE2 BIT(1), /* .04 CICS is at Phase II of OTE */
3 CICS_LDMDNAME BIT(1), /* .05 CICS provides program name */
3 CICS_AUTOTUNE BIT(1), /* .06 CICS supports automatic storage*/

/* tuning. */
3 CICS_AUTOTUNE_SET BIT(1), /* .07 CICS indicates automatic stg */

/* tuning should be done. This bit*/
/* valid only if AUTOTUNE is ON. */

3 CICS_RE BIT(1), /* .08 CICS supports reusable enclaves*/
3 Reserved BIT(1), /* .09 Reserved for CICS */
3 CICS_TRAN BIT(1), /* .10 CICS indicates transaction dump*/

/* service routines are available.*/
3 * BIT(1), /* .11 Reserved */
3 CICS_DBGINFO BIT(1), /* .12 CICS indicates it can pass */

/* A(Debug info blk) in pgminfo1 */
3 * BIT(1), /* .13 Reserved */
3 CICS_EXT_REG BIT(1), /* .14 CICS supports extended register*/

/* interface in Run Unit (program)*/
/* End Invocation TERMINFO area */

3 Reserved BIT(113),/* Reserved for future use */
/* */

2 LE_FLAGS BIT(128), /*+10 Lang Env interface level flags */
3 LE_PROG_OBJ BIT(1), /* .00 Lang Env supports program objs */
3 Reserved BIT(1), /* .01 Reserved for CICS */
3 LE_OTE_PHASE1 BIT(1), /* .02 Lang Env is at Phase I of OTE */
3 LE_REUSE_RWA BIT(1), /* .03 Lang Env supports reusable RWAs*/
3 LE_OTE_PHASE2 BIT(1), /* .04 Lang Env is at Phase II of OTE */
3 LE_LDMDNAME BIT(1), /* .05 Set by Lang Env. Indicates that*/

/* needs the address of the load */
/* module name in pgminfo1 (for */
/* storage tuning exit). */

3 LE_AUTOTUNE BIT(1), /* .06 Lang Env supports automatic */
/* storage tuning. */

3 LE_AUTOTUNE_SET BIT(1), /* .07 Lang Env indicates automatic */
/* storage tuning will be done. */

3 LE_RE BIT(1), /* .08 Lang Env supports reus enclaves*/
3 Reserved BIT(1), /* .09 Reserved for CICS */
3 LE_TRAN BIT(1), /* .10 Lang Env indicates the trans */

/* dump service routines required */
/* available. */

3 * BIT(1), /* .11 Reserved */
3 LE_DBGINFO BIT(1), /* .12 Lang Env indicates it supports */
/* copy A(Debug info blk) to PCB */

3 * BIT(1), /* .13 Reserved */
3 LE_EXT_REG BIT(1), /* .14 Lang Env supports extended */

/* register interface in Run Unit */
/* (program) End Invocation */
/* TERMINFO area */

3 Reserved BIT(113);/* Reserved for future use */
/* */

Figure 95. Structure of interface flags field

Partition Initialization

Chapter 13. Subsystem considerations 447

programs as well as the new (Language Environment-enabled) application
programs running in CICS environment. CICS uses this information to decide
whether to interface with Language Environment or continue to interface with
the languages directly as before (prior to Language Environment). Bit
definitions are:

Usage Notes:

1. Bit 3 (fourth bit) of the CICS_FLAGS parameter on partition_initialization will
be set by CICS to indicate that CICS supports reusable run unit work areas
(RRWA). This bit maps to an existing structure in the RCB. It will be reserved
and called 'CEERCB_CICS_RRWA_OK'. This bit can then be tested by
Language Environment or its members to determine if this environment is
supported.

2. Bi t5 (sixth bit) of CICS_FLAGS parameter on partition_initialization will be set
by CICS to indicate that CICS will provide the address of the load module
name in pgminfo1.
If the CICS support to provide the program name is not available, the address
of the program name passed to the storage tuning user exit in the CEESTX
CICS specific control block will be zero.

3. LE_FLAGS bit 3 will be set by CEECPINI (Partition initialization) to signify that
Language Environment supports the interface changes including the reusable
run unit work area.

4. If CICS is running at a higher level than Language Environment, then
Language Environment will run and CICS will descend to match the Language
Environment level.

5. If Language Environment detects CICS is running at a lower level than
Language Environment, then Language Environment will deactivate all higher
level functions in order to match the CICS level.

6. Bit 6 (TUNE_SUP) of the CICS_FLAGS parameter on partition_initialization
will be set by CICS to indicate that CICS has the support for automatic storage
tuning. When this bit is on:
v The value in Bit7 (LE_AUTODST) will indicate the setting for system

initialization parameter AUTODST.
v CICS provides a pointer to a 96 byte area in pgminfo2.

v CICS provides support for the new bit in pgminfo2 that indicates to CICS to
update its sizes for RUWA and the 96 byte area at rununit termination.

Partition termination (Language Environment disablement)
Disablement of Language Environment is performed by Partition Termination Call
to the Language Environment-CICS interface module during CICS termination.
CICS calls the Language Environment-CICS interface module (CEECCICS) for

Value of Bit0 (far left bit):
1=Assembler member event handler (CEEEV015) is available
0=Assembler member event handler (CEEEV015) is not available

Value of Bit1
1=C or C++ member event handler (CEEEV003) is available
0=C or C++ member event handler (CEEEV003) is not available

Value of Bit2
1=COBOL member event handler (CEEEV005) is available
0=COBOL member event handler (CEEEV005) is not available

Value of Bit3
1=PL/I member event handler (CEEEV010) is available
0=PL/I member event handler (CEEEV010) is not available

Partition Initialization

448 z/OS V2R1.0 Language Environment Vendor Interfaces

partition termination during the normal system termination. This occurs after
PLTSD (Program List Table of programs to run during Shut-Down) processing
completes.

If partition termination fails, CICS outputs a message quoting the reason code
returned by Language Environment. CICS does not issue the Partition Termination
Call during the following situations:
v Immediate System Termination (CEMT PERFORM SHUTDOWN IMMEDIATE)
v Abnormal System Termination

Member event handlers are called for process termination prior to the Partition
Termination Call.

Syntax

Call CEECCICS (11, rsncode, syseib, preasa, ptoken) Retcode (rc)

rsncode (output)
A fullword integer in nnnffrr format to contain the member language-specific
partition termination reason code or one of the following Language
Environment reason codes:

11100 Invalid parameter was passed

11110 The library was not released

11120 Storage was not freed

11130 Language-specific partition termination was not done

syseib
The system EXEC interface block, as defined by CICS. Its address is above
16M.

preasa
A preallocated save area supplied by CICS. The size of this save area is 248
(DFHEISTG length) bytes.

ptoken
A doubleword value containing the Language Environment partition token
passed back to CICS at partition initialization.

Establish ownership type call
When CICS loads any program, the CICS Program Control Program calls Language
Environment to determine if Language Environment is managing the program. It
then looks up the program name in its Processing Program Table (DFHPPT) to get
its language type, determines whether it is in storage, and if it is, where its entry
point is. If the program is not in storage, it is loaded into storage and its entry
point address is placed in its PPT entry.

If the program is, for example, a COBOL program, CICS needs to know which
language library (OS/VS COBOL, VS COBOL II, or Language Environment) to
interface with. For Language Environment-enabled programs, the PPT's LANG
parameter is not required (or LANG=NOTAPPLIC). Language
Environment-enabled programs are identifiable through the Language
Environment eye catcher at their entry point and through the information provided
in Program Prolog Areas PPA1 and PPA2. For more information on requirements
of being a Language Environment-enabled program, see “Routine layout” on page
6.

CICS

Chapter 13. Subsystem considerations 449

CICS discovers the language type and the run unit work area length (if desired to
be preallocated) with "Establish Ownership Type Call" to the Language
Environment-CICS interface routine the first time it loads a program. This call is
made after partition initialization and prior to Thread and/or run unit
initialization call and is subject to certain rules:
v The call for programs defined as LANG=NOTAPPLIC is issued if the Language

Environment-CICS interface is enabled. The routine CEECCICS must have been
loaded by CICS and Language Environment partition initialization must have
been completed successfully by Language Environment.

v The call for programs defined as LANG=C or COBOL or PL/I is issued if the
Language Environment-CICS interface is enabled for those languages.

Syntax

Call CEECCICS (50, rsncode, syseib, preasa, ptoken, reserved1, reserved2, pgminfo1,
pgminfo2) Retcode (rc)

rsncode (output)
A fullword integer in nnnffrr format to contain the member language-specific
establish ownership reason code or one of the following Language
Environment reason codes:

15000 Invalid parameter was passed

15020 Program ownership type and/or run unit work area length was not
established

15030 Language-specific establish ownership failed

15060 The application provided a program object that cannot be supported
with the current level of CICS.

syseib
The system EXEC interface block, as defined by CICS. Its address is above
16M.

preasa
A preallocated save area (above 16M) supplied by CICS. The size of this save
area is 248 (DFHEISTG length) bytes.

ptoken
A doubleword value containing the Language Environment partition token
passed back to CICS at partition initialization.

reserved1
A reserved argument; it is neither referred to, nor set by, Language
Environment.

reserved2
A reserved argument; it is neither referred to, nor set by, Language
Environment.

pgminfo1
The following structure of information supplied by CICS to Language
Environment, as shown in Figure 96 on page 451.

Establish Ownership

450 z/OS V2R1.0 Language Environment Vendor Interfaces

struc_length
A fullword integer value containing the pgminfo1 structure length.

rulang
A fullword binary value indicating the language type of the run unit (main
program) as defined in PPT. In PPT, LANG=NOTAPPLIC can be used for
Language Environment-enabled application programs. For bit definitions,
see Figure 96.

ruloada
A fullword value containing the load module address of the run unit. This
address in conjunction with the entry point address is used to access run
unit prolog information (PPA1, PPA2) when necessary.

ruloadl
A fullword value containing the load module length of the run unit. This
value is used to validate the addresses accessed through the run unit
prolog information (PPA1, PPA2) when necessary.

ruentry
A fullword value containing the entry point address of the run unit. This
address is given control at run unit begin invocation call for Language
Environment-enabled programs. The run unit entry is established at
link-edit time. The high-order bit indicates the AMODE of the run unit.

DCL 1 PGMINFO1, /* Data from CICS to Lang Env */
2 STRUC_LENGTH FIXED BIN(31), /*+00 pgminfo1 structure length */
2 RULANG, /*+04 Run unit’s "main" program

language defined in PPT as */
3 ASSEMBLER BIT(1), /*+04.0 LANG=ASSEMBLER */
3 C370 BIT(1), /*+04.1 LANG=C/370 */
3 COBOL BIT(1), /*+04.2 LANG=COBOL II */
3 PLI BIT(1), /*+04.3 LANG=PL/I */
3 RPG BIT(1), /*+04.4 LANG=RPG */
3 NOTAPPLIC BIT(1), /*+04.5 LANG=NOTAPPLIC or blank */
3 * BIT(2), /* Reserved */

2 FLAGS, /*+05 Additional Flags */
3 OPEN_PROGRAM BIT(1), /*+05.0 1 = Program runs only on

OTE TCB and can use
Open C functions

0 = Program may run on
OTE or QR TCB */

3 * BIT(7), /* Reserved */
2 RULOADMOD,
3 RULOADA POINTER, /*+08 Run unit load module addr */
3 RULOADL FIXED BIN(31), /*+0C Run unit load module length */

2 ENTRY_STATIC,
3 RUENTRY POINTER, /*+10 Run unit Entry Point Addr */
3 RUSTATIC POINTER, /*+14 Run unit Static Address */

2 PREARWA_31 POINTER, /*+18 Preallocated run unit work */
/* area above 16Meg */

2 PREARWA_24 POINTER, /*+1C Preallocated run unit work */
/* area below 16Meg */

2 APAL POINTER, /*+20 Application Pgm Arg List */
2 RTOPTS POINTER, /*+24 Runtime options string */

/* specified during debugging */
2 RTOPTSL FIXED BIN(31), /*+28 Runtime opts string length */
2 RULOAD_NAMEA POINTER, /*+2C Address of the run unit */

/* load module name */
2 * POINTER, /*+30 Reserved */
2 RUDEBUGA POINTER, /*+34 Address of the run unit */

/* Debug Info Block */

Figure 96. Structure of information supplied to CICS by Language Environment for
PGMINFO1

Establish Ownership

Chapter 13. Subsystem considerations 451

rustatic
A fullword. This is passed in R0 to the main program at run unit begin
invocation call.

ruload_namea
A fullword address that points to the load module name. The load module
name is 8-bytes long and is padded with blanks.

rudebuga
A fullword address that points to the run unit degug info block. The debug
info block is 8-bytes long and is padded with blanks.

pgminfo2 (output)
The structure of information supplied to CICS by Language Environment, as
shown in the code example below.
DCL 1 PGMINFO2, /* Pgm Info from Lang Env to */

/* CICS */
2 STRUC_LENGTH FIXED BIN(31), /* pgminfo2 structure length */
2 RWALEN_31 FIXED BIN(31), /* Run unit workarea length */

/* above 16 megabyte */
2 RWALEN_24 FIXED BIN(31), /* Run unit workarea length */

/* below 16 megabyte */
2 PGMTYPE BIT(32), /* Program Type of the "Main" */
3 CEEENABLE BIT(2), /* Lang Env Enablement */

/* 11 - Fully Lang Env- */
/* enabled */
/* programs (w/ PPAs) */
/* 10 - Partially Lang Env- */
/* enabled programs (old */
/* or new w/o PPAs) */
/* 01 - Not Lang Env-enabled */
/* programs */
/* 00 - Don’t know: programs */
/* which can’t be identi- */
/* fied. eg. OS/VS COBOL */

3 MIXED BIT(1), /* Mixed or Single language */
/* load module */
/* 1 - Mixed */
/* 0 - Single */

3 COMPAT BIT(1), /* Compatibility Requirement */
/* 1 - Required */
/* 0 - Not Required */

3 EXECUTE BIT(1), /* Program Execution */
/* 1 - Executable */
/* 0 - Not Executable */

3 ASSEMBLER BIT(1), /* "Main" Program Language */
/* 1 - Assembler */
/* 0 - Not Assembler */

3 C370 BIT(1), /* "Main" Program Language */
/* 1 - C/370 */
/* 0 - Not C/370 */

3 COBOLII BIT(1), /* "Main" Program Language */
/* 1 - VS COBOL II */
/* 0 - Not VS COBOL II */

3 OSCOBOL BIT(1), /* "Main" Program Language */
/* 1 - OS/VS COBOL */
/* 0 - Not OS/VS COBOL */

3 PLI BIT(1), /* "Main" Program Language */
/* 1 - OS PL/I */
/* 0 - Not OS PL/I */

3 UPDATE_PGMINFO2 BIT(1), /* Output parameter on rununit */
/* termination call. ON= tells */
/* CICS to update its control */
/* blocks with the following */
/* fields in PGMINFO2: */
/* - RWALEN_31 */
/* - RWA;EM_24 */
/* - STG_TUNE_AREA */

3 * BIT(21), /* Reserved */
2 * CHAR(4), /* additional CEL defined info */
3 EPTYPE FIXED(8), /* type of module entry point: */

Establish Ownership

452 z/OS V2R1.0 Language Environment Vendor Interfaces

/* 0 - old */
/* 1 - ppa1 */
/* 2 - ceestart */
/* 3 - ppa1 w v1r2 ceestart */
/* 4 - v1r2 ceestart */

3 NEEDOPTP BIT(1), /* Member language of main */
/* needs to be called for */
/* option processing event */

3 PGM_ALL31_ON BIT(1), /* 31 bit */
3 STX_LDMOD_ELIG BIT(1), /* Load module is eligible for */

/* the storage tuning user */
/* exit. */
/* ON = enable the storage */
/* tuning user exit for this */
/* load module. */
/* OFF = disable the storage */
/* tuning user exit for this */
/* load module. */

3 * BIT(13), /* */
3 MEMID FIXED(8), /* Member id of the language */

/* of the "main" program */
2 * CHAR(8) /* Est Ownership return fields */
3 dopt_ptr POINTER, /* pointer to default OCB */
3 uopt_ptr POINTER, /* pointer to user OCB */

2 AUTOTUNE_AREA@ POINTER, /* pointer to a 96 byte area */
/* for Lang Env to remember */
/* storage tuning values. */

struc_length
A fullword integer value that contains the pgminfo2 structure length.

rwalen_31 (output)
A fullword value to contain the above 16M run unit work area length. This
work area is preallocated by CICS and passed to Language
Environment-CICS interface routine at run unit initialization call. The run
unit work area length is the sum of the run unit work areas required by
Language Environment and member languages.

rwalen_24 (output)
A fullword value to contain the below 16M run unit work area length. This
work area is preallocated by CICS and passed to Language
Environment-CICS interface routine at run unit initialization call. The run
unit work area length is the sum of the run unit work areas required by
Language Environment and member languages.

pgmtype (output)
A fullword value to contain information regarding the main program of
the run unit:
v If the main program is Language Environment enablement.
v If the run unit is a single or mixed language load module.
v If compatibility is required at invocation.

memid (output)
A fullword value to contain the member ID of the language of the main
program of the run unit. CICS can provide this information back to the
system programmer if desired.

Thread initialization
Processing a transaction can involve a single run unit or several run units in the
same or different languages. The sequence of currently active run units for a single
transaction is called a CICS thread. Thread initialization is performed when the
first transaction run unit is encountered in a thread, and CICS calls the Language

Establish Ownership

Chapter 13. Subsystem considerations 453

Environment-CICS interface module to request it. This request is made through the
Thread Initialization Call. If the thread cannot be initialized then CICS abends the
task.

Syntax

Call CEECCICS (20, rsncode, syseib, preasa, ptoken, ttoken, preatwa, pgminfo1,
pgminfo2, statusflags) Retcode (rc)

rsncode (output)
A fullword integer in nnnffrr format to contain the member language-specific
thread initialization reason code or one of the following Language
Environment reason codes:

12000 Invalid parameter was passed

12020 Thread work area was not preallocated

12030 Language-specific thread initialization was not done

syseib
The system EXEC interface block, as defined by CICS. Its address is above
16M.

preasa
A preallocated save area supplied by CICS. The size of this save area is 248
(DFHEISTG length) bytes. It can be used for issuing CICS commands if
necessary.

ptoken
A doubleword value containing the Language Environment partition token
passed back to CICS at partition initialization.

ttoken (output)
A doubleword value to contain the Language Environment thread token.

preatwa
The address of the preallocated thread work area. The length of this work area
was passed to CICS at Language Environment partition initialization.

pgminfo1
The same structure of information supplied by CICS to Language Environment
in an establish ownership type call; see Figure 96 on page 451.

pgminfo2
The same structure of information supplied by CICS to Language Environment
in an establish ownership type call; see pgminfo2.

statusflags
The same structure of information supplied by CICS to Language
Environment, as shown in Figure 97.

1 CEECICS_STATUS_FLAGS BIT(32) BASED(CEECICS_ARG11PTR),
3 CEECICS_CICS_AP_TRACE, /* State of AP trace */
5 CEECICS_TRACE_LEVEL1 BIT(1), /* Level 1 trace is requested */
5 CEECICS_TRACE_LEVEL2 BIT(1), /* Level 2 trace is requested */

Figure 97. Structure of information supplied to CICS by Language Environment for
STATUSFLAGS

Thread Initialization

454 z/OS V2R1.0 Language Environment Vendor Interfaces

If the initial program in a transaction is a reusable enclave, then the CICS thread
(Language Environment process) is marked as a Language Environment/CICS
reusable process.

Thread termination
Thread termination occurs when a transaction is completed or is being terminated.
This is done through the thread termination call from CICS to the Language
Environment-CICS interface module. All thread level clean-up, such as freeing the
acquired storage, occurs at this stage. Language Environment resets the thread
token back to 0 at completion of the thread termination. The language-specific
thread termination also occurs at this stage.

Usage Notes:

1. CICS issues the thread termination call if, and only if, a nonzero thread token
has been returned to CICS by Language Environment at thread initialization.
The same applies to the member languages.

2. Language Environment processing assumes that there will never be a scenario
needed where a process might 'switch' to non-reusable after being initialized
reusable.

Syntax

Call CEECCICS (21, rsncode, syseib, preasa, ptoken, ttoken) Retcode (rc)

rsncode (output)
A fullword integer in nnnffrr format to contain the member language-specific
thread termination reason code or one of the following Language Environment
reason codes:

12100 Invalid parameter was passed

12110 Active run unit(s) were detected

12130 Language-specific thread termination was not done

syseib
The system EXEC interface block, as defined by CICS. Its address is above
16M.

preasa
A preallocated save area supplied by CICS. The size of this save area is 248
bytes. It can be used for issuing CICS commands, such as FREEMAIN, if
necessary.

ptoken
A doubleword value containing the Language Environment partition token
passed back to CICS at partition initialization.

ttoken (input/output)
A doubleword value containing the Language Environment thread token
passed back to CICS at thread initialization.

Run unit (program) initialization
The next stage prior to run unit (program) invocation is the run unit initialization.
This is requested by CICS through the run unit initialization call after loading the
run unit (Language Environment-enabled PPT module) and prior to control being
passed to it. Run unit load point, entry point, parameter list as well as the

Thread Initialization

Chapter 13. Subsystem considerations 455

Language Environment thread token are provided in this call. If the run unit can
not be initialized, CICS abends the task. Run unit initialization occurs at:
v CICS task attachment
v EXEC CICS LINK or EXEC CICS XCTL commands

Syntax

Call CEECCICS (30, rsncode, syseib, preasa, ptoken, ttoken, rtoken, pgminfo1, pgminfo2,
ioinfo, runinfo, retoken) Retcode (rc)

rsncode (output)
A fullword integer in nnnffrr format to contain one of the following Language
Environment reason codes:

13000 Invalid parameter was passed

13010 No run unit work area was passed

13040 No application program argument list was passed

13200 Invalid parameter was passed when the direct invoke bit is set

13210 No run unit work area was passed when the direct invoke bit is set

13230 Language-specific run unit invocation failed when the direct invoke bit
is set

13240 No application program argument list was passed when the direct
invoke bit is set

syseib
The system EXEC interface block, as defined by CICS. This control block
contains information about running the CICS commands issued by Language
Environment. There is no need to save and restore the user EIB around the
commands issued by Language Environment. The system EIB address is above
16M.

Note: The user EIB, which is different than the system EIB, is passed to the
application program in the application program argument list.

preasa
A preallocated save area passed to Language Environment by CICS. The size of
this save area is 248 bytes.

ptoken
A doubleword value containing the Language Environment partition token
established at partition initialization.

ttoken
A doubleword value containing the Language Environment thread token
established at thread initialization.

rtoken (output)
A doubleword value to contain the Language Environment run unit token.

pgminfo1
The structure of information supplied by CICS to Language Environment is
shown in Figure 98 on page 457.

Run Unit Init

456 z/OS V2R1.0 Language Environment Vendor Interfaces

struc_length
A fullword value containing the pgminfo1 structure length.

rulang
A fullword binary value indicating the language type of the run unit (main
program) as defined in PPT. In PPT, LANG=NOTAPPLIC can be used for
Language Environment-enabled application programs. For bit definitions,
see above.

ruloada
A fullword value containing the load address of the run unit. This address
in conjunction with the entry point address is used to access run unit
prolog information (PPA1, PPA2) when necessary.

ruloadl
A fullword value containing the load module length of the run unit. This
value is used to validate the addresses accessed through the run unit
prolog information (PPA1, PPA2) when necessary.

ruentry
A fullword value containing the entry point address of the run unit. This
address is given control at the run unit begin invocation call for Language
Environment-enabled programs. The run unit entry is established at
link-edit time. The high-order bit indicates the AMODE of the run unit.

DCL 1 PGMINFO1, /* Data from CICS to Lang Env */
2 STRUC_LENGTH FIXED BIN(31), /*+00 pgminfo1 structure length */
2 RULANG, /*+04 Run unit’s "main" program

language defined in PPT as */
3 ASSEMBLER BIT(1), /*+04.0 LANG=ASSEMBLER */
3 C370 BIT(1), /*+04.1 LANG=C/370 */
3 COBOL BIT(1), /*+04.2 LANG=COBOL II */
3 PLI BIT(1), /*+04.3 LANG=PL/I */
3 RPG BIT(1), /*+04.4 LANG=RPG */
3 NOTAPPLIC BIT(1), /*+04.5 LANG=NOTAPPLIC or blank */
3 * BIT(2), /* Reserved */

2 FLAGS, /*+05 Additional Flags */
3 OPEN_PROGRAM BIT(1), /*+05.0 1 = Program runs only on

OTE TCB and can use
Open C functions

0 = Program may run on
OTE or QR TCB */

3 * BIT(7), /* Reserved */
2 RULOADMOD,
3 RULOADA POINTER, /*+08 Run unit load module addr */
3 RULOADL FIXED BIN(31), /*+0C Run unit load module length */

2 ENTRY_STATIC,
3 RUENTRY POINTER, /*+10 Run unit Entry Point Addr */
3 RUSTATIC POINTER, /*+14 Run unit Static Address */

2 PREARWA_31 POINTER, /*+18 Preallocated run unit work */
/* area above 16Meg */

2 PREARWA_24 POINTER, /*+1C Preallocated run unit work */
/* area below 16Meg */

2 APAL POINTER, /*+20 Application Pgm Arg List */
2 RTOPTS POINTER, /*+24 Runtime options string */

/* specified during debugging */
2 RTOPTSL FIXED BIN(31), /*+28 Runtime opts string length */
2 RULOAD_NAMEA POINTER, /*+2C Address of the run unit */

/* load module name */
2 * POINTER, /*+30 Reserved */
2 RUDEBUGA POINTER, /*+34 Address of the run unit */

/* Debug Info Block */

Figure 98. Structure of information supplied to Language Environment by CICS

Run Unit Init

Chapter 13. Subsystem considerations 457

rustatic
A full word passed in R0 to the main program at the run unit begin
invocation call.

prearwa_31
A fullword value containing the address of the preallocated run unit work
area above 16M. The length of this preallocated work area was passed back
to CICS at establish ownership type call prior to run unit initialization call.
This work area can be initialized to contain CAA, HEAP, ISA and other
Language Environment control blocks.

prearwa_24
A fullword value containing the address of the preallocated run unit work
area below 16M. The length of this preallocated work area was passed
back to CICS at establish ownership type call prior to run unit initialization
call. This work area can be initialized to contain control blocks that have to
be below 16M.

apal
A fullword value containing the address of the application program
argument list. This argument list contains the address of the user EIB and
the address of a COMMAREA.

rtopts
A fullword value containing the address of the runtime options string
passed to CICS during debugging with CICS EXEC Debugging Facility
(EDF). For example, CEDF terminal-ID,ON,'runtime options'.

rtoptsl
A fullword value containing the length of the runtime options string.

When EDF is invoked in the following fashion:
CEDF term,ON,INSPECT

a special character string is passed to Language Environment during run
unit initialization in the rtopts parameter. The following string is passed:
TEST,TERM=xxxx

where xxxx is the terminal identifier for the terminal where debugging
information should be communicated. (This can either be information for a
3270-type terminal or communication to/from a workstation.) Language
Environment detects this string, and internally initializes as if the options
string TEST was passed. Also, Language Environment passes the terminal
identifier to Debug Tool as a new, fifth parameter of the external entries
debugger event.

ruload_namea
A fullword address that points to the load module name. The load module
name is 8-bytes long and is padded with blanks.

rudebuga
A fullword address that points to the run unit degug info block. The debug
info block is 8-bytes long and is padded with blanks.

pgminfo2
The structure of information described at establish ownership type call.

ioinfo (output)
A structure that contains the standard input/output and error file information
(transient data queue names or spool file classes). The structure declaration is

Run Unit Init

458 z/OS V2R1.0 Language Environment Vendor Interfaces

in Figure 99.

runinfo (input)
Address of a fullword containing information about how the run unit should
be initialized and whether it should be immediately invoked after initialization.
See Figure 100.

retoken (input)
A doubleword value to contain the run-unit token of the most recently invoked
JVM in the chain (or zero if none exists). The presence of a n address tells
Language Environment there is a JVM reusable enclave as a parent.

Note: The run unit initialization process operates as follows, resulting in shortened
path lengths and improved performance:
1. The INVOKE bit is tested and if on, run unit initialization calls run unit begin

invocation directly using the registers/parmlist passed by CICS for the run unit
initialization call.

2. The RWA_REUSE bit is tested in run unit initialization and a new bit,
CEEEDB_CICS_RUNREUSE, is turned on to indicate that the run work area
may be reused.

DCL 1 IOINFO, /* I/O Information Structure */
/* */

2 STD_IN, /* Standard input file */
3 QORS_IN CHAR(1), /* - either */

/* ’Q’, transient data queue */
/* ’S’, spoolfile */

3 TDQN_IN CHAR(4), /* - queue name */
3 SPOC_IN CHAR(1), /* - spool class */

/* */
2 STD_OUT, /* Standard output file */
3 QORS_OUT CHAR(1), /* - either */

/* ’Q’, transient data queue */
/* ’S’, spoolfile */

3 TDQN_OUT CHAR(4), /* - queue name */
3 SPOC_OUT CHAR(1), /* - spool class */

/* */
2 STD_ERR, /* Standard error file */
3 QORS_ERR CHAR(1), /* - either */

/* ’Q’, transient data queue */
/* ’S’, spoolfile */

3 TDQN_ERR CHAR(4), /* - queue name */
3 SPOC_ERR CHAR(1), /* - spool class */

Figure 99. Structure of standard I/O information provided to Language Environment by CICS

DCL 1 RUNINFO BIT(32), /* Run Information */
2 INVOKE BIT(1), /* Call Lan Env Begin Invocation*/

/* after initialization? */
/* 0 - Return after init */
/* 1 - Call Begin Invocation */

2 RWA_REUSE BIT(1), /* RWA candidate for reuse? */
/* 0 - No */
/* 1 - Yes */

2 * BIT(30), /* Reserved */

Figure 100. Run information supplied to Language Environment by CICS

Run Unit Init

Chapter 13. Subsystem considerations 459

Run unit (program) termination
After the Language Environment-CICS interface routine returns from the run unit
end invocation call to CICS, CICS can the drive Language Environment-CICS
interface routine with the run unit termination call. Run unit termination call can
occur as frequent as the run unit end invocation call or it might only occur when
CICS is under stress.

Syntax

Call CEECCICS (31, rsncode, syseib, preasa, ptoken, ttoken, rtoken, terminfo) Retcode
(rc)

rsncode (output)
A fullword integer that contains one of the following Language Environment
reason codes:

13100 Invalid parameter was passed

13110 Wrong thread token was passed

13140 No PTB was passed

syseib
The system EXEC interface block, as defined by CICS for use by Language
Environment and language-specific interface routines. The system EIB address
is above 16M.

preasa
A fullword value containing the preallocated save area address to be used by
Language Environment to issue the last EXEC CICS FREEMAIN command.
The size of this save area is 248 bytes.

ptoken
A doubleword value containing the Language Environment partition token
established at partition initialization.

ttoken
A doubleword value containing the Language Environment thread token
established at thread initialization.

rtoken
A doubleword value containing the Language Environment run unit token
established at run unit initialization.

terminfo
A 32 bit structure that communicates termination information from CICS to
Language Environment. See Figure 101.

DCL 1 TERMINFO BIT(32), /* CICS termination information */
2 TCB_SWITCH BIT(1), /* Indicates TCB has been */

/* switched and clean-up should */
/* be bypassed */
/* For OTE and reusable enclaves*/
/* CICS may or may not call Lang*/
/* Env for the proper TCB that */
/* original task (TCB) was */
/* dubbed on */

Figure 101. Termination information supplied from CICS to Language Environment

Run Unit Termination

460 z/OS V2R1.0 Language Environment Vendor Interfaces

Run unit (program) begin invocation
After a successful Language Environment run unit initialization, CICS calls the
Language Environment-CICS interface routine for the run unit begin invocation
call. Language Environment-CICS interface routine then calls the main Language
Environment-enabled program at its entry point established at link-edit time. If the
program is not a Language Environment-enabled program, the language-specific
interface routine is called to do the run unit invocation instead. A single link-edited
load module under CICS can have only one functional entry point which is
established at link-edit time. The application program argument list is passed to
the program.

Before control is transferred to the main program, the initialization assembler user
exit and the HLL initialization user exit is called and spool files if appropriate is
opened. These spool files are closed at run unit end invocation.

If the run unit abends or terminates with a CICS request (EXEC CICS ABEND,
EXEC CICS XCTL, or EXEC CICS RETURN), control is not returned to CICS from
the run unit begin invocation. Then run unit end invocation call is made by CICS.

Syntax

Call CEECCICS (32, rsncode, syseib, preasa, ptoken, ttoken, rtoken, pgminfo1, pgminfo2,
ioinfo) Retcode (rc)

rsncode (output)
A fullword integer in nnnffrr format to contain the member language-specific
run unit invocation reason code or one of the following Language Environment
reason codes:

13200 Invalid parameter was passed

13210 No run unit work area was passed

13230 Language-specific run unit invocation failed

13240 No application program argument list was passed

syseib
The system EXEC interface block, as defined by CICS. This control block
contains information about running the CICS commands issued by Language
Environment. There is no need to save and restore the user EIB around the
commands issued by Language Environment. The system EIB address is above
16M.

Note: The user EIB, which is different than the system EIB, is passed to the
application program in the application program argument list.

preasa
A preallocated save area passed to Language Environment by CICS. The size of
this save area is 248 bytes.

ptoken
A doubleword value containing the Language Environment partition token
established at partition initialization.

ttoken
A doubleword value containing the Language Environment thread token
established at thread initialization.

Begin Invocation

Chapter 13. Subsystem considerations 461

rtoken
A doubleword value containing the Language Environment run unit token
established at run unit initialization.

pgminfo1
The structure of information supplied by CICS to Language Environment as
shown in Figure 98 on page 457; this is the same structure as in the run unit
initialization call.

pgminfo2
The structure of information supplied by CICS to Language Environment as
shown in the example here; this is the same structure as in the run unit
initialization call.

ioinfo
A structure that contains the standard input/output and error file information
(transient data queue names or spool file classes). The structure declaration
follows:

std_in
A sub-structure that contains information regarding the standard input file.
CICS acquires this information from the user through a user exit prior to
the run unit begin invocation call to Language Environment.

qors_in
A character ('Q' or 'S') flag to indicate whether the file is a transient
data queue or a spoolfile.

tdqn_in
A 4-character standard input transient data queue name when qors_in
flag is set to 'Q'.

spoc_in
A character identifying the standard input spool file class when qors_in
flag is set to 'S'.

std_out
A sub-structure that contains information regarding the standard output

DCL 1 IOINFO, /* I/O Information Structure */

2 STD_IN, /* Standard input file */
3 QORS_IN CHAR(1), /* - either */

/* ’Q’, transient data queue, or */
/* ’S’, spoolfile */

3 TDQN_IN CHAR(4), /* - queue name */
3 SPOC_IN CHAR(1), /* - spool class */

2 STD_OUT, /* Standard output file */
3 QORS_OUT CHAR(1), /* - either */

/* ’Q’, transient data queue, or */
/* ’S’, spoolfile */

3 TDQN_OUT CHAR(4), /* - queue name */
3 SPOC_OUT CHAR(1), /* - spool class */

2 STD_ERR, /* Standard error file */
3 QORS_ERR CHAR(1), /* - either */

/* ’Q’, transient data queue, or */
/* ’S’, spoolfile */

3 TDQN_ERR CHAR(4), /* - queue name */
3 SPOC_ERR CHAR(1), /* - spool class */

Figure 102. Structure of information supplied to Language Environment by CICS

Begin Invocation

462 z/OS V2R1.0 Language Environment Vendor Interfaces

file. CICS acquires this information from the user through a user exit prior
to the run unit begin invocation call to Language Environment.

qors_out
A character ('Q' or 'S') flag to indicate whether the file is a transient
data queue or a spoolfile.

tdqn_out
A 4-character standard output transient data queue name when qors_in
flag is set to 'Q'.

spoc_out
A character identifying the standard output spool file class when
qors_in flag is set to 'S'.

std_err
A sub-structure that contains information regarding the standard error file.
CICS acquires this information from the user through a user exit prior to
the run unit begin invocation call to Language Environment.

qors_err
A character ('Q' or 'S') flag to indicate whether the file is a transient
data queue or a spoolfile.

tdqn_err
A 4-character standard error transient data queue name when qors_in
flag is set to 'Q'.

spoc_err
A character identifying the standard error spool file class when qors_in
flag is set to 'S'.

The Language Environment Initialization routine (CEEINT), which is usually called
from the application program or a language library (COBOL for z/OS and VM and
VM's bootstrap library routine IGZCBS0) after the invocation of the application
program, checks the Language Environment anchor first (with CEEARLU). Since
under CICS, the Language Environment environment is initialized prior to the run
unit (program) invocation at partition, thread and run unit initialization, no further
action is required. Control is returned to the caller of the CEEINT with an
appropriate return code indicating that the Language Environment environment is
up. The program continues to run. For a detail information regarding the CEEINT
and the possible return codes, see “CEEINT interface” on page 157.

Run unit (program) end invocation
The Language Environment-CICS interface routine is called for run unit end
invocation as a result of a normal return (with language terminating statements)
from the run unit begin invocation or as a result of a CICS terminating command
from the application program or Language Environment.

If the program undergoes normal termination through the language statements
such as COBOL's STOP RUN, PL/I's END or RETURN or SIGNAL FINISH,
Language Environment termination imminent condition is raised by the program
load module. After this condition is handled by the Language Environment
exception handler, control is returned to the Language Environment run unit begin
invocation routine with the return address (R14) originally stored in the first save
area of the program work area. Language Environment run unit begin invocation
routine then returns to CICS. Next, the Language Environment-CICS interface
routine expects a call for run unit end invocation to do the invocation-based clean
ups.

Begin Invocation

Chapter 13. Subsystem considerations 463

If the program undergoes termination (normal or abnormal) as a result of running
the EXEC CICS XCTL, RETURN, or SEND PAGE RELEASE commands or from an
abend (program check or EXEC CICS ABEND command), the Language
Environment-CICS interface module is driven by CICS. The run unit end
invocation call receives the run unit token to identify the Language Environment
run unit that is being terminated. A program termination block (PTB, the
TERMINFO structure) is also provided by CICS to describe the termination
situation (normal or abnormal). This call notifies Language Environment that one
of the resources for which it is responsible is terminating due to some reason that
might not yet be known.

Restrictions on the Language Environment run unit end invocation routine are:
v It must always return to the address in R14
v It must not issue EXEC CICS ABEND (it can issue any other EXEC CICS

command that does not raise a subsequent error)

Syntax

Call CEECCICS (33, rsncode, syseib, preasa, ptoken, ttoken, rtoken, pgminfo1, pgminfo2,
ptb) Retcode (rc)

rsncode (output)
A fullword integer that contains one of the following Language Environment
reason codes:

13300 Invalid parameter was passed

13310 Wrong thread token was passed

13320 No PTB was passed

syseib
The system EXEC interface block, as defined by CICS for use by Language
Environment and language-specific interface routines. The system EIB address
is above 16M.

preasa
A fullword value containing the preallocated save area address to be used by
Language Environment to issue the last EXEC CICS FREEMAIN command.
The size of this save area is 248 bytes.

ptoken
A doubleword value containing the Language Environment partition token
established at partition initialization.

ttoken
A doubleword value containing the Language Environment thread token
established at thread initialization.

rtoken
A doubleword value containing the Language Environment run unit token
established at run unit initialization.

pgminfo1
The structure of information supplied by CICS to Language Environment, as
shown in Figure 98 on page 457; this is the same structure as in the run unit
begin call.

End Invocation

464 z/OS V2R1.0 Language Environment Vendor Interfaces

pgminfo2
The structure of information supplied by CICS to Language Environment, as
shown in the example here; this is the same structure as in the run unit begin
call.

ptb
A fullword value containing the address of the program termination block, the
TERMINFO structure. This structure contains information regarding the normal
and abnormal termination of a run unit. For abnormal termination, information
such as PSW, general purpose registers, floating-point registers and access
registers at the time of interrupt are provided. A retry mechanism is also
provided. A declaration of the PTB is shown in Figure 103 on page 466.

End Invocation

Chapter 13. Subsystem considerations 465

termcode
A fullword binary value that contains bit settings to indicate the nature,
the cause and the location of the run unit end invocation. The following
table describes each of the bit settings:

Bit setting Description

Bit0 (abnorm) Indicates an abnormal termination. It indicates a normal termination
when it is off.

DCL 1 TERMINFO, /* Program Termination Block */
2 TERMCODE BIT(32), /* Termination Code - see below */
3 ABNORM BIT(1), /* .00 Abnormal Termination */
3 NORMCEL BIT(1), /* .01 Normal Termination (LE) */
3 NORMRET BIT(1), /* .02 Normal Termination (return) */
3 NORMASM BIT(1), /* .03 Normal Termination (ASM) */
3 ABNPCHK BIT(1), /* .04 Abnormal Term (PGM Check) */
3 ABNOTHER BIT(1), /* .05 Abnormal Term (ABEND) */
3 ABNLINK BIT(1), /* .06 Abnormal Term (lower level) */
3 HANDELAB BIT(1), /* .07 User HANDLE ABEND pending */
3 PTBINUSE BIT(1), /* .08 PTB is busy */
3 PSWCICS BIT(1), /* .09 PSW is in CICS code */
3 NODUMP BIT(1), /* .10 CICS specified nodump */
3 CANCEL BIT(1), /* .11 CICS specified cancel */
3 PCHKGR64 BIT(1), /* .12 CICS supplying 64-bit regs */
3 PCHKAR BIT(1), /* .13 CICS supplying access regs */
3 PCHKFR16 BIT(1), /* .14 CICS supplying 16 FPRs, FPC */
3 * BIT(17), /* reserved */

2 ABCODE CHAR(4), /* CICS Abend Code */
2 PCHK, /* Program Check Information */
3 PCHK_PSW CHAR(16), /* - PSW */
3 PCHK_INT, /* - Interrupt Data */
4 PCHK_ILC CHAR(2), /* - Instruction Length Code */
4 PCHK_INC CHAR(2), /* - Interruption Code */
4 PCHK_EAD CHAR(4), /* - Exception Address */

3 PCHK_GR POINTER, /* - General Registers (32-bit or */
/* 64-bit registers) */

3 PCHK_FR POINTER, /* - floating-point Registers */
/* (4 FPRs or 16 FPRs and FPC */
/* register) */

3 PCHK_AR POINTER, /* - Access Registers (if present) */
2 COMMREGS POINTER, /* Registers at last CICS command */

/* (Appl or library -- 32-bit or */
/* 64-bit registers) */

2 CONTCODE BIT(32), /* Continuation Code (receiver) */
3 TERM BIT(1), /* .00 Continue RU termination */
3 EXEC BIT(1), /* .01 Resume at RTRY_GR R15 */
3 RTRY BIT(1), /* .02 Resume at RTRY_AD */
3 TERMOTETCB BIT(1), /* .03 Terminate the OTE TCB */
3 * BIT(1), /* reserved */
3 RTRYGR64 BIT(1), /* .05 Retry with 64-bit registers */
3 RTRYAR BIT(1), /* .06 Retry with access registers */
3 RTRYFR16 BIT(1), /* .07 Retry with 16 FPRs and FPC */
3 * BIT(24), /* reserved */

2 RTRY, /* Retry Information (receiver) */
3 RTRY_AD POINTER, /* - Resume Address */
3 RTRY_PM POINTER, /* - Program Mask */
3 RTRY_GR POINTER, /* - General Registers (32-bit or */

/* 64-bit registers) */
3 RTRY_FR POINTER, /* - floating-point Registers */

/* (4 FPRs or 16 FPRs and FPC */
/* register) */

3 RTRY_AR POINTER, /* - Access Registers (if present) */
2 * POINTER, /* Reserved */

Figure 103. Program termination block (PTB) declaration

End Invocation

466 z/OS V2R1.0 Language Environment Vendor Interfaces

Bit setting Description

Bit1 (normcel) Indicates that a normal termination is caused by a CICS command in a
Language Environment-enabled run unit. Notice that the caller does not
get control back after an EXEC CICS RETURN in a called (link-edited)
routine.

Bit2 (normret) Indicates that a normal termination is caused by a BR 14 from the run
unit begin invocation (program has ended with a language statement).

Bit3 (normasm) Indicates that a normal termination is caused by a CICS command in a
called (link-edited) assembler routine.

Bit4 (abnpchk) Indicates that an abnormal termination is caused by a program check
(abend ASRA) in a run unit.

Bit5 (abnother) Indicates that an abnormal termination is caused by an abend. See the
ABCODE.

Bit6 (abnlink) Indicates that the lower level (linked to) run unit has terminated
abnormally.

Bit7 (handleab) Indicates that a user HANDLE ABEND routine is pending. The
Language Environment exception manager should not handle the
exception.

Bit8
(input/output)
(ptbinuse)

Indicates that this PTB is busy. It is set by Language Environment
during the exception handling to avoid recursion. It is turned off by
Language Environment when the exception handling completes.

Bit9 (pswcics) Indicates that the PSW is in the CICS code.

Bit10 (nodump) Indicates that CICS specified nodump.

Bit11 (cancel) Indicates that CICS specified cancel.

Bit12 (pchkgr64) Indicates that CICS is supplying 64-bit registers 0-15 rather than 32-bit
registers 0-15 in the areas pointed to by PCHK_GR and COMMREGS.
This bit is valid only if both the CICS_EXT_REG and LE_EXT_REG flags
in the Partition Init flags are 1. If CICS_EXT_REG or LE_EXT_REG is 0,
Bit12 is not valid and is assumed to be 0.

Bit13 (pchkar) Indicates that CICS is supplying the access registers in the area pointed
to by pchk_ar. If Bit13 is 0, no access registers are supplied. This bit is
valid only if both CICS_EXT_REG and LE_EXT_REG flags in the
Partition Init flags are 1. If CICS_EXT_REG or LE_EXT_REG is 0, Bit13 is
not valid and is assumed to be 0.

Bit14 (pchkfr16) Indicates that CICS is supplying all 16 floating-point registers and the
floating-point control register in the area pointed to by pchk_fr, rather
than just the 4 floating-point registers (0, 2, 4, 6). This bit is valid only if
both CICS_EXT_REG and LE_EXT_REG flags in the Partition Init flags
are 1. If CICS_EXT_REG or LE_EXT_REG is 0, Bit14 is not valid, and is
assumed to be 0.

abcode
A 4-byte character string that identifies the abend code for the abnormal
termination.

pchk
A structure that contains the program check information for the abnormal
termination.

pchk_psw
An 8-byte field containing the Program Status Word (PSW). Notice that
the first word of the PSW contains information such as the condition
code and program mask at the time of interrupt and the second word

End Invocation

Chapter 13. Subsystem considerations 467

of the PSW contains the address and the AMODE of the instruction
after the instruction which caused the program check.

pchk_int
An 8-byte field containing the instruction length code (2 bytes),
interruption code (2 bytes) and the exception address (4 bytes).

pchk_gr
If TERMCODE Bit12 is 0, pchk_gr points to a 64-byte storage area that
contains the 32-bit registers (R0-R15) at the time of the program check.
If TERMCODE Bit12 is 1, and both CICS_EXT_REG and LE_EXT_REG
in the Partition Init flags are 1, pchk_gr points to a 128-byte storage area
that contains the 64-bit registers (R0-R15) at the time of the program
check.

pchk_fr
If TERMCODE Bit14 is 0, pchk_fr points to a 32-byte storage area that
contains the floating-point registers F0, F2, F4, and F6 at the time of the
program check. If TERMCODE Bit14 is 1, and both CICS_EXT_REG
and LE_EXT_REG in the Partition Init flags are 1, pchk_fr points to a
132-byte storage area that contains all 16 floating-point registers and
the floating-point control (FPC) register at the time of the program
check. The register values are saved in the order: F0, F1, F2, F3, F4, F5,
F6, F7, F8, F9, F10, F11, F12, F13, F14, F15, FPC register. pchk_fr might
point to the same area as rtry_fr.

pchk_ar
If TERMCODE Bit13 is 1, and both CICS_EXT_REG and LE_EXT_REG
in the Partition Init flags are 1, pchk_ar points to a 64-byte storage area
that contains access registers (AR0-AR15) at the time of the program
check. If TERMCODE Bit13 is 0, pchk_ar is not valid. pchk_ar might
point to the same area as rtry_ar.

commregs
If TERMCODE Bit12 is 0, commregs points to a 64-byte storage area that
contains the 32-bit registers (R0-R15) at the time of the last CICS command.
If TERMCODE Bit12 is 1, and both CICS_EXT_REG and LE_EXT_REG in
the Partition Init flags are 1, commregs points to a 128-byte storage area that
contains the 64-bit registers (R0-R15) at the time of the last CICS command.
In either case, the CICS command could have been issued from an
application program or a library routine.

contcode (output)
A fullword binary value to contain bit settings to indicate if the run unit
end invocation should continue.

Bit setting Description

Bit0 (term) Set by Language Environment when normal or abnormal run unit end
invocation is considered complete. CICS continues its run unit end
invocation process without calling Language Environment for the run
unit end invocation of the same run unit again.

End Invocation

468 z/OS V2R1.0 Language Environment Vendor Interfaces

Bit setting Description

Bit1 (exec) Set by Language Environment to have CICS continue running the run
unit at the retry address in R15 in the rtry_gr field. If contcode bit 5 is
set, only the lower 31 bits of the 64-bit R15 value are used as the retry
address. CICS sets up all the 32-bit or 64-bit registers from the retry
structure before resuming the program with a branch on R15. The retry
PSW (RTRY_AD) is ignored. Language Environment is recalled for the
run unit end invocation later for this run unit.
Note: The termination routine can change a normal termination into an
abnormal termination by setting Bit1 of CONTCODE and making the
retry point the address of an EXEC CICS ABEND.

Bit2 (rtry) Set by Language Environment to have CICS continue running the run
unit at the retry PSW (RTRY_AD) with the retry registers (RTRY_GR,
RTRY_FR, and RTRY_AR if contcode Bit6 is on) set by Language
Environment. CICS resumes using a method that allows all resume
registers and the resume PSW to be set to the requested values as control
is passed to the resume point. Language Environment is called for the
run unit end call for this run unit later.

Bit3 (termotetcb) CICS must terminate the OTE TCB.

Bit5 (rtrygr64) Indicates that Language Environment is returning 64-bit registers 0-15
rather than 32-bit registers 0-15 in the area pointed to by rtry_gr. This bit
is valid only if both CICS_EXT_REG and LE_EXT_REG flags in the
Partition Init flags are 1. If CICS_EXT_REG is 0 or LE_EXT_REG is 0,
Bit5 is not valid and is assumed to be 0.

Bit6 (rtryar) Indicates that Language Environment is returning access registers
AR0-AR15 in the area pointed to by pchk_ar. If Bit5 is 0, no access
registers are being returned. This bit is valid only if both
CICS_EXT_REG and LE_EXT_REG flag in the Partition Init flags are 1. If
CICS_EXT_REG is 0 or LE_EXT_REG is 0, Bit6 is not valid and is
assumed to be 0.

Bit7 (rtryfr16) Indicates that Language Environment is returning all 16 floating-point
registers (F0-F15) and the floating-point control register (FPC) in the area
pointed to by rtry_fr, rather than just the 4 floating-point registers (F0,
F2, F4, F6). This bit is valid only if both CICS_EXT_REG and
LE_EXT_REG flag in the Partition Init flags are 1. If CICS_EXT_REG is 0
or LE_EXT_REG is 0, Bit7 is not valid, and is assumed to be 0.

rtry (input/output)
A pointer structure. The retry pointers address areas into which Language
Environment places the retry information when the run unit might be
continued at some point in the code. Before calling Language Environment,
CICS sets these pointers to address the same areas as are used to hold the
registers at program check or abend (PCHK) details. When a retry has been
requested, Language Environment will reset these variables to the value in
the resume cursor.

rtry_ad
The retry address desired by Language Environment. CICS uses this
address to build the retry PSW or load it into R15 (depending upon the
CONTCODE) before continuing to run.

rtry_pm
A pointer to a one byte field to contain the retry condition code (Bits 2
and 3) and program mask (Bits 4-7). Bits 0 and 1 are not used.

rtry_gr
If CICS_EXT_REG in the Partition Init flags is 0, rtry_gr points to a

End Invocation

Chapter 13. Subsystem considerations 469

64-byte storage area. If CICS_EXT_REG in the Partition Init flags is 1,
rtry_gr points to a 128-byte storage area. When Language Environment
returns to CICS, contcode Bit5 determines the contents of the area
pointed to by rtry_gr. When contcode Bit5 is 0, this area contains 32-bit
general registers R0-R15. When contcode Bit5 and LE_EXT_REG are 1,
this area contains 64-bit general registers R0-R15.

rtry_fr
If CICS_EXT_REG in the Partition Init flags is 0, rtry_fr points to a
32-byte storage area. If CICS_EXT_REG in the Partition Init flags is 1,
rtry_fr points to a 132-byte area. When Language Environment returns
to CICS, contcode Bit7 determines the contents of the area pointed to
by rtry_fr. When contcode Bit7 is 0, this area contains floating-point
registers 0, 2, 4, and 6 for the retry. When contcode Bit7 and
LE_EXT_REG are 1, this area contains floating-point registers 0-15 and
the floating-point control (FPC) register. The register values are saved
in the order: F0, F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, F11, F12, F13,
F14, F15, FPC register. rtry_fr might point to the same area as pchk_fr.

rtry_ar
If CICS_EXT_REG in the Partition Init flags is 1, rtry_ar points to a
64-byte storage area. If CICS_EXT_REG in the Partition Init flags is 0,
rtry_ar is not valid. When Language Environment returns to CICS,
contcode Bit6 determines the contents of the area pointed to by rtry_fr.
When contcode Bit6 is 0, the contents of this area is undefined. When
contcode Bit6 and LE_EXT_REG are 1, the area pointed to by rtry_ar
contains access registers AR0-AR15 for the retry. rtry_ar might point to
the same area as pchk_ar.

If the program is terminated with the following commands, CICS requests the
Language Environment-CICS interface routine through the run unit end invocation
call to terminate the run unit invocation:
v EXEC CICS XCTL
v EXEC CICS RETURN
v EXEC CICS SEND PAGE RELEASE

Bit1 or Bit3 (normal termination due to a CICS command) of TERMCODE are ON
at this call. The Language Environment-CICS interface routine performs run unit
end invocation activities, set Bit0 of CONTCODE to indicate that CICS should
continue run unit end invocation without reentering the Language
Environment-CICS interface routine and return to CICS. Notice that the
termination imminent condition is not raised in this case. The termination
imminent condition is raised if Language Environment is not terminating for
cleanup purposes and one or more of the following conditions are true:
v A user handler is active
v A PL/I finish on_unit is active
v The debug handler is active
v Runtime option TEST(ALL,,) is specified

For any other case, there is no handler that may take action, so termination
imminent is not raised to improve performance.

If the program is terminated with one of the following methods, CICS requests the
Language Environment-CICS interface routine through the run unit end invocation
call to terminate the run unit invocation:

End Invocation

470 z/OS V2R1.0 Language Environment Vendor Interfaces

v EXEC CICS ABEND command
v Program Check (abend ASRA by CICS)

Bit0 (abnormal termination) of TERMCODE is ON at this call. If TRAP runtime
option is in effect, the Language Environment-CICS interface routine calls the
Language Environment exception handler. Otherwise, it returns to CICS.

When Language Environment is called for run unit end invocation again after the
exception handling, it performs all the run unit end invocation activities and return
to CICS. After control is returned to CICS by Language Environment run unit end
invocation, CICS can drive Language Environment run unit termination to do the
run unit clean up.

Due to the nature of the activities in the run unit end invocation (for example,
storages are not freed and loaded routines are not released), there is no
requirement for language-specific run unit end invocation.

Error recovery
When CICS first finds a program check, it calls the Language Environment-CICS
interface routine to examine the exception and perform error recovery, if possible.
Because this interface routine is called before CICS calls its own internal recovery
procedures, console messages or dumps may not have been issued.

This call allows Language Environment to perform some of the low level error
functions. This includes “shunt” routines and the Language Environment
application resume function. This routine is not called for CICS ABEND conditions.

The following restrictions apply to this routine:
v It must always return to the address in R14
v It must not issue any EXEC CICS commands

Syntax

Call CEECCICS (34, rsncode, ptb, preasa) Retcode (rc)

rsncode (output)
A fullword integer; it is initially set to zero.

ptb (input, output)
A fullword value containing the address of the program termination block, the
TERMINFO structure. This structure contains information regarding the normal
and abnormal termination of a run unit. For abnormal termination, information
such as PSW, general purpose registers, floating-point registers and access
registers at the time of interrupt are provided. A retry mechanism is also
provided. Figure 103 on page 466 shows a declaration of the PTB.

preasa (input, output)
A preallocated save area passed to Language Environment by CICS. The size of
this save area is 248 bytes.

rc (output)
The following values should also be placed in R15 on exit. In addition to the
return code, the resume code in the PTB must be set.

0 Language Environment can resolve the error; the PSW, general purpose
registers, and floating-point registers have been updated.

End Invocation

Chapter 13. Subsystem considerations 471

4 Language Environment could not resolve the error; CICS processing
continues.

Determine working storage and static storage
In order for CICS Execution Diagnostic Facility (EDF) to be able to display the
program's working storage (DSA stack) and static storage, CICS makes the
determine working storage address call to the Language Environment-CICS
interface module. Through the program register save area (pgmrsa) argument
passed by CICS, Language Environment examines the program entry point (R15
saved in the caller's DSA) to determine if the program is a Language
Environment-enabled program. If so, the member ID of the program's language is
remembered. Otherwise, the member ID is determined through the lang argument
passed by CICS.

In either case (Language Environment-enabled or not), the member-specific
interface routine associated with the member ID is called to provide the working
storage address (most probably same as the pgmrsa) and the static storage address
and their length. This is because the working storage address could potentially be
different than the DSA (as in COBOL) and the static storage could potentially be
separate from the program load module.

Syntax

Call CEECCICS (60, rsncode, syseib, preasa, ptoken, ttoken, rtoken, lang, pgmrsa, wsa,
wsl, ssa, ssl, pgmep) Retcode (rc)

rsncode (output)
A fullword integer that contains one of the following Language Environment
reason codes:

16000 Invalid parameter was passed

16030 Language-specific determine working storage address failed

16040 Working storage address and length was not determined

syseib
The system EXEC interface block, as defined by CICS for use by Language
Environment and language-specific interface routines. The system EIB address
is above 16M.

preasa
A preallocated save area passed to Language Environment by CICS. The size of
this save area is 248 bytes.

ptoken
A doubleword value containing the Language Environment partition token
established at partition initialization.

ttoken
A doubleword value containing the Language Environment thread token
established at thread initialization.

rtoken
A doubleword value containing the Language Environment run unit token
established at run unit initialization.

lang
A fullword value identifying the language of the program which issued a CICS

Error Recovery

472 z/OS V2R1.0 Language Environment Vendor Interfaces

command. Bit definitions are shown in Figure 104.

pgmrsa
A fullword value containing the address of the register save area (DSA) of the
program which is issuing the CICS command.

wsa (output)
A fullword value to contain the working storage address (DSA) of the program
issuing the command.

wsl (output)
A fullword value to contain the length of the working storage of the program
issuing the command (DSA length).

ssa (output)
A fullword value to contain the static storage address of the program issuing
the command.

ssl (output)
A fullword value to contain the length of the static storage of the program
issuing the command.

pgmep
A fullword value to contain the address of the program entry point of the
program that is issuing the CICS command.

Perform GOTO call
When a HANDLE CONDITION condition (label) or a HANDLE AID option (label)
or a HANDLE ABEND LABEL (label) is in effect in the user program and CICS
raises that condition, the need for transferring control to the specified label arises.
This need is satisfied through the perform GOTO call from CICS to the Language
Environment-CICS interface module.

Syntax

Call CEECCICS (70, rsncode, syseib, preasa, ptoken, ttoken, rtoken, lang, label, invkdsa,
gotoflgs) Retcode (rc)

rsncode (output)
A fullword integer that contains one of the following Language Environment
reason codes:

17000 Invalid parameter was passed

17040 GOTO Out-Of-Block was not performed

17060 Invalid DSA chain

DCL 1 LANG, /* Language of program issuing */
/* HANDLE CONDITION or AID cmd */

2 ASSEMBLER BIT(1), /* LANG=ASSEMBLER */
2 C370 BIT(1), /* LANG=C/370 */
2 COBOL BIT(1), /* LANG=COBOL II */
2 PLI BIT(1), /* LANG=PL/I */
2 RPG BIT(1), /* LANG=RPG */
2 NOTAPPLIC BIT(1), /* LANG=NOTAPPLIC or blank */
3 * BIT(26), /* Reserved */

Figure 104. Lang bit definition for CEECICS (60)

Determine work storage

Chapter 13. Subsystem considerations 473

syseib
The system EXEC interface block, as defined by CICS for use by Language
Environment and language-specific interface routines. The system EIB address
is above 16M.

preasa
A preallocated save area passed to Language Environment by CICS. The size of
this save area is 248 bytes.

ptoken
A doubleword value containing the Language Environment partition token
established at partition initialization.

ttoken
A doubleword value containing the Language Environment thread token
established at thread initialization.

rtoken
A doubleword value containing the Language Environment run unit token
established at run unit initialization.

lang
A fullword value identifying the language of the program which issued EXEC
CICS HANDLE CONDITION, AID or ABEND command. Bit definitions are
shown in Figure 105.

label
A fullword value containing the label argument information passed to CICS by
the member language-generated code (the CALL statement) for EXEC CICS
HANDLE CONDITION or AID or ABEND commands. For COBOL programs,
this is the address of an area (64 bytes) that contains all 16 general registers (in
the order of R14, R15, R0-R13) at the time of the HANDLE command. For
assembler programs, a resume point and registers 14 and 15 are passed.

invkdsa
A fullword value containing the address of the DSA of the program that
caused the condition.

gotoflgs (output)
A fullword value that is used to indicate if the GOTO is allowed. Bit
definitions are shown in Figure 106 on page 475.

DCL 1 LANG, /* Language of program issuing */
/* HANDLE CONDITION or AID cmd */

2 ASSEMBLER BIT(1), /* LANG=ASSEMBLER */
2 C370 BIT(1), /* LANG=C/370 */
2 COBOL BIT(1), /* LANG=COBOL II */
2 PLI BIT(1), /* LANG=PL/I */
2 RPG BIT(1), /* LANG=RPG */
2 * BIT(27), /* Reserved */

Figure 105. Lang bit definition for CEECICS (70)

Perform GOTO call

474 z/OS V2R1.0 Language Environment Vendor Interfaces

CEECTCB — set TCB+X'144' routine
The sole function of this routine is to set TCB+X'144' to a storage area that is
nonfetch protected and set that storage to zero. CEECTCB is always invoked by
the CICS AP-BIND independent of the storage protect feature being on or
available. CEECTCB is called by loading the executable named CEECTCB (using
the LOAD SVC service and BALR to the entry point) or by linking directly to
CEECTCB (using the LINK SVC service). The CEECTCB executable resides in the
SCEERUN data set.

Syntax

CEECTCB

CEECTCB
The load name of the Language Environment routine that alters the storage of
TCB+'144' to point to a nonfetch protected, key 8, block of storage.

Entry Conditions:

1. Execution mode is supervisor state
2. A standard save area is not provided
3. The PSW key is the TCB key (TCBPKF)
4. Extraction authority is needed for IVSK (control reg, bit 4)
5. R1 must be zero
6. R14 is the return address
7. AMODE(31)/RMODE(ANY)
8. ASCMODE is primary

Exit Conditions:

1. Execution mode remains supervisor state
2. R15 contains the following values

X'00' Success

X'04' The area pointed to by TCB+X'144' was not TCBPKF/fetch protected

X'08' GETMAIN failure

X'0C' Setting the value at TCB+X'144' failed (CS failure?)

X'10' TCB+X'144' was zero

X'14' Entry into CEECTCB was not in TCBPKF key

X'18' R1 was not zero upon entry

X'1C' (TCB+X'144' -> Anchorword) was not zero.

DCL 1 GOTOFLGS, /* Perform GOTO Flags */
2 GOTONOCD BIT(1), /* ON=GOTO cannot be performed */

/* because cross program */
/* branching is not supported */
/* by a member language. */

2 * BIT(31), /* Reserved */

Figure 106. Lang bit definition for GOTOFLGS

Perform GOTO call

Chapter 13. Subsystem considerations 475

3. The PSW key is same as on entry
4. R2-R14 remain unchanged
5. ARs, FPRs remain unaltered
6. The condition code does not contain any useful information
7. It is CICS' responsibility to delete CEECTCB
8. AMODE and ASCMODE are unchanged

CEECCICS — partition initialization changes
The reason code value of X'11050' denotes partition initialization failure, due to a
problem with a CEECTCB failure. CEECCICS checks the value of the field pointed
to by TCB+144, for a the eyecatcher CEECTCB value set by CEECTCB. If the
eyecatcher is not found, Language Environment partition initialization fails and
sets the return code and reason code passed back to CICS appropriately.

If partition initialization was successful, R15 contains 0; otherwise, R15 contains 16.
The reason code parameter, rsncode, that is passed back to CICS identifies one of
the following failures:

rsncode (output)
A fullword integer in nnnffrr format to contain the member language-specific
partition initialization reason code or one of the following Language
Environment reason codes:

11000 Invalid parameters were passed

11010 Storage was not available

11020 LIBVEC was not loaded

11030 Language-specific partition initialization was not done

11040 Language Environment process initialization failed, due to an internal
abend

11050 Language Environment anchor vector setup failed

IMS considerations
IMS supports PL/I, C, COBOL, and assembler applications.

IMS to Language Environment
The new interface from IMS to Language Environment supports all Language
Environment-enabled languages. ILC capabilities are enhanced. IMS constructs a
parameter list as shown in Figure 107 on page 477.

XPLINK applications are supported under IMS. For more information about
XPLINK, see “Extra Performance Linkage (XPLINK) CALL linkage conventions”
on page 116.

CEECTCB

476 z/OS V2R1.0 Language Environment Vendor Interfaces

Usage notes:

1. R1 contains the address of a parameter address list. Each word in the list
contains the address of a PCB.

2. R1 has the high-order bit on indicating this particular parameter list format.
3. This interface can be manufactured regardless of the mechanism of application

invocation (for example, BALR or SVC LINK).
4. IMS always constructs this parameter list format regardless of the LANG

option on the PSB.
5. The last word in each of the above boxes has the high order bit set on, as

indicated by the '1'.
6. When the indirect list is passed to the application, the high order bit should be

turned off in the last A(PCB_n).

Compatibility concerns
Current PL/I, COBOL, and assembler support continues to work. Having the
high-order bit on in R1 does not alter the use of R1 as an address.

Note: PL/I no longer needs to intercept calls to PLI2DLI. The Language
Environment-to-IMS interface enables Language Environment to ask if IMS wants
to process any errors that occur.

Also, the LANG option has no effect on the format of the parameter list built by
IMS. Thus, any PSB can be used with any HLL application. Any adjustment to the
contents of R1 to accommodate the various HLL requirements is performed by the
Language Environment or the HLL-specific library, not by IMS.

Language Environment to IMS — CEETDLI
Language Environment is providing a callable service, CEETDLI, that is callable
from any HLL that provides R12 pointing to the CAA and R13 pointing to a DSA.
It has the same programming requirements (parameters) as the pre-Language
Environment entry names: CTDLI, ASMTDLI, and CBLTDLI.

The Language Environment callable service calls IMS through a new entry point in
module DFSLI000: DFSLICEL. The parameter list and the caller's save area can
reside above or below the 16M line.

R1

A(Indirect List)

A(=F'0')

A(PCB_1) A(A(PCB_1))

A(A(PCB_2))A(PCB_2)

'1'+A(PCB_n) '1'+A(A(PCB_n))

F'0'

.

Figure 107. IMS parameter list format

IMS

Chapter 13. Subsystem considerations 477

DFSLI000 is linked with the user's application code, and DFSLICEL is entered in
the AMODE of the application.

The parmcount parameter is optional for CEETDLI.

CEETDLI uses a 2-byte length field (LL) indicating the total length of an IMS
message or Scratch Pad Area (SPA). CEETDLI employs a flat parameter list. That
is, each entry in the parameter address list points directly to the argument. The
parameters described in the IMS/VS Version 2 Application Programming Guide should
be used with the new name CEETDLI.

The ABTERMENC(ABEND) runtime option or the CEEBXITA assembler user exit
can be used by the installation to force an abend at application termination. These
methods force data base rollbacks for applications terminating abnormally.

The PLITDLI, CBLTDLI, ASMTDLI, and CTDLI interfaces continue to function in
their current capacity.

Implementation
IMS always constructs the parameter list as shown in Figure 107 on page 477,
regardless of the LANG option in the PSB. IMS also adds a new entry point to
DFSLI000 called DFSLICEL. This entry supports any of the member languages
running in the Language Environment environment. Only Language
Environment-enabled code should call CEETDLI.

On entry to CEETDLI, Language Environment takes the appropriate steps to insure
exceptions and abends that occur while executing in IMS code are percolated.

IMS

478 z/OS V2R1.0 Language Environment Vendor Interfaces

Chapter 14. Anchor support

The Language Environment anchor is the address of its main control block, the
CAA. There is one CAA per thread, and the CAA is created during thread
initialization. When the address of the anchor is unknown to the executing routine,
it must be obtained. This usually occurs when an old routine calls a newly
compiled, Language Environment-enabled routine. Upon entry into the new
routine, the Language Environment anchor service must be able to return the
Language Environment anchor using the same sequence of code regardless of the
environment under which the application is executing.

Under CICS, one CAA exists per CICS run unit. Because multiple CICS run units
can exist under one z/OS TCB, the TCB cannot directly hold the address of the
CAA. However, the TCB can point to a code sequence that obtains the anchor.

Anchor service
Figure 108 shows the anchor service, which is based upon the z/OS control block
structure. In particular, it is based upon the CVT and the TCB. A fullword field has
been reserved in the z/OS TCB for the use of TCB+X'144' byLanguage
Environment. This TCB fullword points to a doubleword field that can be altered
by Language Environment initialization/termination routines. Language
Environment uses the first fullword to point to a control block known as the
Language Environment anchor vector. The Language Environment anchor vector
contains the addresses of two routines, the fetch anchor routine and the set anchor
routine. At offset X'08' is a pointer to the fullword where the CAA address is
saved. When this field is zero, the CAA address must be obtained using the get
anchor routine.

Fetch the anchor routine
The fetch anchor routine retrieves the current Language Environment anchor and
returns it to its caller. A standard code sequence is employed to allow programs to
obtain the anchor in a similar manner without incurring the overhead of
specialized code for each operating system.

Description of the fetch anchor routine

Input v R12 has the entry point address.

v R14 has the return address.

Addr of Lang
Env Anchor
Vector

TCB

X'144'
+0

+0

+4

+8

+C
+4 Used for LRR

A(CAA_GET)

Language Environment
Anchor Vector

A(CAA_SET)

A(A(CAA)) or 0

reserved - 0

Figure 108. Structure of the Language Environment anchor vector

© Copyright IBM Corp. 1991, 2015 479

Description of the fetch anchor routine

Output R12 has the returned CAA.

Code
sequence
to call
this
routine

L R12,16 Get the CVT address
L R12,0(R12) A(TCB old/new)
L R12,4(R12) A(TCB New)
L R12,X’144’(R12) A(A(Language Environment Anchor Vector)) from TCB
L R12,0(R12) A(Language Environment Anchor Vector)
L R12,0(R12) A(’Get Anchor’ Routine)
BALR R14,R12 Go get the anchor.

The fetch (get) anchor routine has the following requirements:
v R0 and R12 are destroyed across this call. All other registers are preserved.
v The Language Environment anchor is returned in R12.
v R14 is used as the return register.
v The only available work registers are R12 and R0.
v A save area is not provided by the caller.
v AMODE switching is not performed.
v This code sequence assumes Language Environment is active.

Set the anchor routine
The set anchor routine saves the token (for example, the address of the CAA) for
future retrieval requests. This can also be used to reset the anchor to zero. A
standard code sequence is employed to allow programs to set the anchor in a
similar manner without incurring the overhead of specialized code for each
operating system.

Description of the set anchor routine

Input v R12 has the CAA address or zero.

v R14 has the return address.

v R15 has the entry point address.

Output No output is generated for this routine.

Code
sequence
to call
this
routine

L R15,16 Get the CVT address
L R15,0(R15) A(TCB old/new)
L R15,4(R15) A(TCB New)
L R15,X’144’(R15) A(A(Language Environment Anchor Vector)) from TCB
L R15,0(R15) A(Language Environment Anchor Vector)
L R15,4(R15) A(’Set Anchor’ Routine)
*
* Note that R12 either has the anchor or zero
*
BALR R14,R15 Go set the anchor.

The set anchor routine has the following requirements:
v The available registers are R0, R12, R14, and R15. All other registers are

preserved.
v A save area is not provided by the caller.
v AMODE switching is not performed.
v This code sequence assumes the Language Environment environment is active.

Anchor Introduction

480 z/OS V2R1.0 Language Environment Vendor Interfaces

CEEARLU — anchor lookup
Purpose

This routine sets register 12 to the Language Environment anchor. The anchor
points to the CAA if Language Environment has been initialized.

Format

CEEARLU
Call this CWI interface as follows:
L R15,=V(CEEARLU)
BALR R14,R15

Usage
v Upon return, R12 contains the address of the CAA, or zero if Language

Environment has not been initialized.
v R14 and R15 are used as linkage registers. R0 is destroyed across the call. R13 is

not used.
v This routine is meant to be a fast way of retrieving the anchor. The address of

the CAA is not validated by this routine.
v AMODE switching is not performed across this call.
v For additional information on the anchor lookup, see Chapter 14, “Anchor

support,” on page 479.
v If the Language Environment environment is not initialized, a value of zero is

returned. This routine does not cause the Language Environment environment to
be established.

v It must be linked with the program. It is not meant to be called from an HLL
program.

Anchor considerations
ATTACH processing obtains a doubleword containing the address of the anchor
vector in writable storage and initializes it to zero. In addition, the field at
TCB+X'144' is initialized to point to this doubleword.

z/OS extends the size of the GETMAINed storage area by a doubleword used for
the program's initial register save area. Note that the fullword for the service
routine vector address is contained within the user's private space.

During Language Environment initialization, a Language Environment anchor
vector is GETMAINed and initialized. The address of the GETMAINed anchor
vector is placed into the first fullword provided by z/OS. The code shown in
Figure 109 on page 482 is an example of the Language Environment anchor vector
code used to set and obtain the Language Environment anchor. Language
Environment saves the anchor value directly within the Language Environment
anchor vector. At offset X'08' is a pointer to the fullword where the CAA address is
saved. This does not occur under other systems/subsystems.

Call CEEARLU

CEEARLU

Chapter 14. Anchor support 481

Bypassing anchor lookup, set, or reset
The CEEPIPI(call_sub_addr_nochk) call invokes a subroutine without causing
Language Environment to perform anchor look-up, set, or reset. For more
information, including the call syntax, see “CEEPIPI — invocation for subroutine
by address” on page 197.

ANCHOR CSECT
DC A(GETCAA) A(Obtain the Current CAA Addr)
DC A(SETCAA) A(Set the current CAA Addr)
DC A(CAA) Pointer to the saved CAA address
DC A(0) Reserved

**
* Obtain the current CAA Pointer *
**
GETCAA DS 0H

L 12,CAA-GETCAA(12) Get the anchor into R12
BR 14 Return to the caller

**
* Set the current CAA Pointer *
**
SETCAA DS 0D

ST 12,CAA-SETCAA(15) Save/clear the anchor
BR 14 Return to the caller

**
* Misc writable storage *
**
CAA DC A(0) Spot to save the anchor

DS 0D
SIZE EQU *-ANCHOR

END

Figure 109. Example of code to set and obtain the Language Environment anchor

Anchor considerations

482 z/OS V2R1.0 Language Environment Vendor Interfaces

Chapter 15. Member language information

This section addresses the compiler and library programmers of those HLLs that
run in Language Environment. It contains a list of restricted host system services,
an overview of the structure of the executable program, and how the member
languages interact with Language Environment.

OS services — restricted use
Language Environment provides a set of services that are used to insulate the HLL
library routines from the underlying host system or subsystem. In providing such
functions, the HLL library routines should use the Language Environment-
provided services even though a similar service is provided by the underlying
system. If the underlying system service is used, Language Environment cannot
guarantee some of the consequences that might occur. Listed below is a set of
those services which should be avoided because they might interfere with the
Language Environment operations. The use of the services should be avoided by
members.

Service
Language Environment Equivalent Service

GETMAIN
Language Environment heap storage services.

FREEMAIN
Language Environment heap storage services.

LINK The LINK is recognized as an enclave boundary for compatibility. A call of
DFSORT requires a LINK SVC to be issued. Special action needs to be
taken to support DFSORT calls.

XCTL Language Environment does not provide an exact equivalent substitute
function. The use of CEEPLOD and a BALR entry (with additional logic)
should be sufficient to support XCTL.

LOAD
Language Environment program management CEEPLOD.

DELETE
Language Environment program management CEEPDEL.

ABEND
Language Environment CEE3ABND service is an alternative. Signaling
(through CEESGL) a condition is a preferred method.

SPIE The entire Language Environment condition management scheme
minimizes the need to issue a SPIE. Issuing a SPIE directly interferes with
Language Environment operation. Many aspects of Language Environment
condition management can be used to advantage, such as the shunt
service, the enablement phase, and default handling.

STAE The entire Language Environment condition management scheme
minimizes the need to issue a STAE. Issuing a STAE directly interferes with
Language Environment operation. Many aspects of the condition
management can be used to advantage, such as the shunt service, the
enablement phase, and default handling.

© Copyright IBM Corp. 1991, 2015 483

STAX The entire Language Environment condition management scheme
minimizes the need to issue a STAX. However, issuing a STAX might prove
to be useful in some instances.

Structure of executable programs
An executable program that is fully Language Environment-enabled contains
Language Environment-generated compiled code and the following additional
constructs:

CEESTART
This CSECT, pointed to by PPA2, contains an external adcon for an
externals table for various pieces of information concerning the executable
program. See “CEESTART” on page 144 for details.

CEEBETBL
This CSECT, pointed to by CEESTART, contains various external adcons for
the executable program. Two adcons are especially important: the address
of the assembler user exit and the language list. See “CEEBETBL —
Language Environment externals table” on page 152 for details.

CEEBLLST
This CSECT contains a series of weak external adcons for the signature
CSECTs the HLLs produce. If a particular slot in this vector of adcons is
nonzero, a member has been identified as being present in the executable
program. See “CEEBLLST — language list” on page 153 for details.

CEEINT
This is the Language Environment bootstrap routine. It's main function of
this routine is to dynamically load the Language Environment initialization
routines and then transfer control over to the routine that does the work of
bringing up Language Environment. See “CEEINT interface” on page 157
for details.

Central control blocks
The Language Environment program model describes four levels: region, process,
enclave, and thread. A control block is established to manage each of these levels:

RCB Region Control Block

PCB Process Control Block

EDB Enclave Data Block

CAA Thread level resource (Common Anchor Area)

Each HLL is enrolled as a member within the Language Environment environment.
The list of members is known as the member list. This is an array of structures,
indexed by the member ID, that contains member-specific information, and the
address of an event handler. Two member lists are maintained within Language
Environment: one at the process level, the other member list is found at the
enclave level. Each slot within either member list for any given member has the
same format.

The event handler for each HLL that is represented in the executable program is
loaded during Language Environment-initialization, and its address saved in the
appropriate slot in the member list. When certain events occur, the event handler is
called to either notify the member that the event has occurred, or to solicit some
information from the member.

OS Services

484 z/OS V2R1.0 Language Environment Vendor Interfaces

To identify those member languages that are represented in the executable
program, each member language has to generate a signature CSECT whose name is
unique to that particular member language. Checking for the presence of this
uniquely named CSECT, one can determine if the member language is represented.
Language Environment performs this check during initialization. Language
Environment maintains a list of weak external address constants, which can be
found through the CEESTART CSECT.

Event handler
The event handler is a member-supplied routine that is called at various times as a
program runs when a significant event has occurred, or when the environment
needs some information that is held by the member. During environment
initialization, Language Environment determines the set of members present in the
application and loads the event handler for each member language. The name of
the event handler is manufactured by concatenating a fixed prefix and the member
ID. The name constructed is CEEEVnnn, where nnn is the member number. The
address of the event handler is saved for later retrieval. The values for nnn are in
Figure 16 on page 20.

Linkage to the member event handler is through BALR 14,15, and R1 contains a
standard parameter address list. The first parameter always indicates the type of
event for which the event handler has been called. Additional parameters are
dependent upon the specific event.

The event handler places the following return codes (in decimal) in R15:
-4 The event handler does not want to process the event.
0 The event handler was successful.
16 The event handler encountered an unrecoverable error.

All environment services are available during the handling of the event, including
the stack and heap, except for the options event and the main-opts event. This is
Event Code 4, which is called by environment initialization to allow compatibility
processing of runtime options.

With the exception of the CAA, PCB, process member list (MEML), and anchor
vector, Language Environment can allocate control blocks above the line. Any
member code that accesses a Language Environment control block must run in
AMODE(31) to have addressability to the control blocks.

The event handler is called with the dump Event Code, 7, while processing various
dump services. The dump event code has a function code that describes which
dump service is to be performed. The remaining parameters for the dump event
vary according to the specific sub-function code. See “Event code 7 — dump event
handler event” on page 496 for more information.

Language utilities function 6 has a sub-function code that describes what
information is being requested. The remaining parameters for the utilities event
vary according to the specific function code. For details, see “Event code 6 — event
handler utilities event” on page 491.

Event handler calls
The following sections describe event handler calls. The calls are used in all
environments, unless otherwise noted.

Central Control Blocks

Chapter 15. Member language information 485

Event code 1 — handle condition represented by the CIB
event

Syntax

ceecib (input)
The CEECIB for which the condition handler is being called. This value is
passed by reference. Part of the CEECIB is the condition_token and the
machine environment for the procedure in which the condition occurred. (For
more details, see “Language Environment condition information block” on
page 288.)

results (output)
Contains the instructions indicating the actions that the language-specific
handler wants the Language Environment condition manager to take as a
result of processing the condition. This field is passed by reference. The
following are valid responses:

Response
results
value Description

resume 10 Resume at the resume cursor (condition has been handled).

percolate 20 Percolate to the next condition handler.

21 Percolate to the first user condition handler for the next stack
frame. (This can skip a language-specific exception handler for
this stack frame as well as the remaining user condition handlers
in the queue at this stack frame.)

promote 30 Promote to the next condition handler.

31 Promote to the next stack frame. (This can skip a
language-specific exception handler for this stack frame as well
as any remaining user condition handlers in the queue at this
stack frame.)

32 Promote and restart condition handling with the first condition
handler for the stack frame that is denoted by the handler cursor
location.

33 Promote and restart condition handling with the first condition
handler for the stack frame that is denoted by the resume cursor
location.

enablement 40 Ignore the condition; the thread is resumed where interrupted.

41 Enable the condition for condition handling.

42 Enable the condition and transform the condition (using the
new_condition parameter).

percolate
enablement

50 Percolate the enablement to the calling stack frame.

51 Transform the condition (using the new_condition parameter) and
percolate the enablement to the calling stack frame.

Call CEEEVnnn (1, ceecib, results, new_condition)

void *ceecib;
INT4 *results;
FEEDBACK *new_condition;

Event Code 1

486 z/OS V2R1.0 Language Environment Vendor Interfaces

new_condition (output)
The new condition token representing the promoted condition. This field is
used only for result values that denote promote.

Usage notes
v For a description of the calling method, see “Language Environment member list

and event handler” on page 86.
v It is not valid to promote a condition without returning a new condition token.

If the original condition is returned in new_condition, the condition manager acts
as if 20 had been specified as the results value.

v Prior to a condition being promoted, the Message Insert Block (MIB) must be
populated with the new inserts for the promoted condition if necessary.

v The language-specific handlers are automatically established by stack frame. The
Language Environment condition manager determines the language associated
with a given stack frame, and then calls the event handler with the appropriate
event code for enablement, condition handling, or condition handling for stack
frame zero.

v The language-specific handlers are automatically disestablished when the stack
frame is popped off the stack either using a return, a GOTO out of block, or
moving the resume cursor.

v If a resume is requested, the member that owns the target stack frame is called
immediately prior to passing control to the target stack frame. For details, see
“Event code 10 — resume from a condition handler event” on page 501.

Event code 2 — perform enablement for this stack frame
event

Syntax

ceecib (input)
The CEECIB for which the condition handler is being called. This value is
passed by reference. Part of the CEECIB is the condition_token and the
machine environment for the procedure in which the condition occurred. (For
more details, see “Language Environment condition information block” on
page 288.)

results (output)
Contains the instructions indicating the actions the language-specific handler
wants the Language Environment condition manager to take as a result of
processing the condition. This field is passed by reference. The following are
valid responses:

Response results value Description

resume 10 Resume at the resume cursor (condition has been
handled).

Call CEEEVnnn (2, ceecib, results, new_condition)

void *ceecib;
INT4 *results;
FEEDBACK *new_condition;

Event Code 1

Chapter 15. Member language information 487

Response results value Description

percolate 20 Percolate to the next condition handler.

21 Percolate to the first user condition handler for the next
stack frame. (This can skip a language-specific exception
handler for this stack frame as well as the remaining
user condition handlers in the queue at this stack
frame.)

promote 30 Promote to the next condition handler.

31 Promote to the next stack frame. (This can skip a
language-specific exception handler for this stack frame
as well as any remaining user condition handlers in the
queue at this stack frame.)

enablement 40 Ignore the condition; the thread is resumed where
interrupted.

41 Enable the condition for condition handling.

42 Enable the condition and transform the condition (using
the new_condition parameter).

percolate
enablement

50 Percolate the enablement to the calling stack frame.

51 Transform the condition (using the new_condition
parameter) and percolate the enablement to the calling
stack frame.

new_condition (output)
The new condition token representing the promoted condition. This field is
used only for result values that denote promote.

Usage notes
v For a description of the calling method, see “Language Environment member list

and event handler” on page 86.
v It is invalid to promote a condition without returning a new condition token. If

the original condition is returned in new_condition, the condition manager acts as
if a result of 20 had been specified.

v Prior to a condition being promoted, the MIB must be populated with the new
inserts for the promoted condition if necessary.

v The language-specific handlers are automatically established by stack frame. The
Language Environment condition manager determines the language associated
with a given stack frame, and then calls the event handler with the appropriate
event code for enablement, condition handling, or condition handling for stack
frame zero.

v The language-specific handlers are automatically disestablished when the stack
frame is popped off the stack either using a return, a GOTO out of block, or
moving the resume cursor.

v If a resume is requested, the member that owns the target stack frame is called
immediately prior to passing control to the target stack frame. For details, see
“Event code 10 — resume from a condition handler event” on page 501.

Event Code 2

488 z/OS V2R1.0 Language Environment Vendor Interfaces

Event code 3 — handle condition according to language
defaults event

Syntax

ceecib (input)
The CEECIB for which the condition handler is being called. This value is
passed by reference. Part of the CEECIB is the condition_token and the
machine environment for the procedure in which the condition occurred. (For
more details, see “Language Environment condition information block” on
page 288.)

results (output)
Contains the instructions indicating the actions the language-specific handler
wants the Language Environment condition manager to take as a result of
processing the condition. This field is passed by reference. The following are
valid responses:

Response results value Description

resume 10 Resume at the resume cursor (condition has been
handled).

percolate 20 Percolate to the next condition handler.

21 Percolate to the first user condition handler for the next
stack frame. (This can skip a language-specific exception
handler for this stack frame as well as the remaining user
condition handlers in the queue at this stack frame.)

promote 30 Promote to the next condition handler.

31 Promote to the next stack frame. (This can skip a
language-specific exception handler for this stack frame as
well as any remaining user condition handlers in the
queue at this stack frame.)

33 Promote and restart condition handling for the first
condition handler for the stack frame that is denoted by
the resume cursor location.

enablement 40 Ignore the condition; the thread is resumed where
interrupted.

41 Enable the condition for condition handling.

42 Enable the condition and transform the condition (using
the new_condition parameter).

percolate
enablement

50 Percolate the enablement to the calling stack frame.

51 Transform the condition (using the new_condition
parameter) and percolate the enablement to the calling
stack frame.

new_condition (output)
The new condition token representing the promoted condition. This field is
used only for result values that denote promote.

Call CEEEVnnn (3, ceecib, results, new_condition)

void *ceecib;
INT4 *results;
FEEDBACK *new_condition;

Event Code 3

Chapter 15. Member language information 489

Usage notes
v For a description of the calling method, see “Language Environment member list

and event handler” on page 86.
v It is invalid to promote a condition without returning a new condition token. If

the original condition is returned in new_condition, the condition manager acts as
if a result of 20 had been specified.

v Prior to a condition being promoted, the MIB must be populated with the new
inserts for the promoted condition if necessary.

v The language-specific handlers are automatically established by stack frame. The
Language Environment condition manager determines the language associated
with a given stack frame, and then calls the event handler with the appropriate
event code for enablement, condition handling, or condition handling for stack
frame zero.

v The language-specific handlers are automatically disestablished when the stack
frame is popped off the stack either using a return, a GOTO out of block, or
moving the resume cursor.

v If a resume is requested, the member that owns the target stack frame is called
immediately prior to passing control to the target stack frame. For details, see
“Event code 10 — resume from a condition handler event” on page 501.

Event code 4 — runtime options event
Purpose

This event has limited capabilities; no Language Environment callable services are
available. The purpose is to allow the members to handle runtime options in a
compatible fashion.

Syntax

ocb_addr (input)
The address of an OCB

ceestart_addr (input)
The address of CEESTART

inpl_addr (input)
The address of the main entry point

work_area (input)
The address of a 512-byte work area

Usage notes
v This event is not called if a CEEUOPT CSECT is found in the load module, or if

more than one member is present in the load module.
v Only the member identified by the member ID in the INPL is called.

Call CEEEVnnn (4, ocb_addr, ceestart_addr, inpl_addr, work_area)

POINTER *ocb_addr;
POINTER *ceestart_addr;
POINTER *inpl_addr;
POINTER *work_area;

Event Code 3

490 z/OS V2R1.0 Language Environment Vendor Interfaces

Event code 5 — main-opts event
Purpose

If INPL is control level 0 and the number of words indicate 6, or the control level
is 1 and the invoke_mainopts flag is set, then the event handler whose member ID
is found in the INPL is called requesting the main-opts word to be dynamically
completed. If the event does not produce a main-opts word (indicated by returning
a -4 in R15 or leaving the main-opts word unaltered), the following characteristics
are assumed for the main-opts word: PLIST(HOST) and EXECOPS.

Syntax

inpl_addr (input)
The INPL passed to CEEINT or CEEP#INT or the INPL generated by CEEPIPI.

R13_addr (input)
A fullword containing the R13 value passed into CEEINT or CEEP#INT or
CEEPIPI (call_main).

R0_addr (input)
A fullword containing the R0 value passed into CEEINT or zero when
CEEP#INT or CEEPIPI (init_main) are the enclave initialization method.

R1_addr (input)
A fullword containing the R1 value passed into CEEINT or zero when
CEEP#INT or CEEPIPI (init_main) are the enclave initialization method.

main_opt_addr (input)
The main-opts word.

Usage notes
v This event is invoked while processing a CEEPIPI (call_main) and calling a

program with the any of the following:
– The entry point style is not CEESTART
– The entry point style is CEESTART and CEEMAIN is old format
– The entry point style is CEESTART,CEEMAIN is new format, the INPL is new

format, and the main-opts word is not valid
v A fixed size stack is available for use during this event.

Event code 6 — event handler utilities event
Purpose

Various Language Environment services, including exception handling, perform
language-specific functions. To perform these functions, Language Environment
receives information through the member language utility exit. The utility exit
passes Language Environment the information it needs to perform the required
processing. It is a part of a member event handler, using Event Code 6. Language
Environment Dump Processing makes calls to member event handler 6 (Utilities).

Call CEEEVnnn (5, inpl_addr, R13_addr, R0_addr, R1_addr, main_opt_addr)

POINTER *inpl_addr;
POINTER *R13_addr;
POINTER *R0_addr;
POINTER *R1_addr;
POINTER *main_opt_addr;

Event Code 5

Chapter 15. Member language information 491

Many of theses calls provide a DSA address as input and expect the member to
provide information about the routine that owns the stack frame. The description
and linkage to the event handler for each of these exits is shown below. All
linkages have the event code of 6, followed by a unique function code, followed by
parameters specific to the utility.

This event code performs several functions based upon the function_code passed as
the second parameter. There are four function_codes for which the DSA address is
passed as input:

1 DSA Ownership

2 Entry Point and Compile Unit Identification

3 Statement Identification

4 DSA Classification

Syntax

For the DSA Ownership exit, a member language specifies if a DSA is associated
with a routine that it owns, or a routine that is written in that language. Language
Environment uses this exit to determine the owner of code that does not have a
PPA-style entry. Language Environment first checks to see if the code contains a
PPA-style entry. The eye catcher of the saved R15 in the caller's DSA is checked to
determine if it points to a Language Environment entry point. If this is not true,
Language Environment calls member language exits for DSA ownership until a
language claims ownership.

dsaptr (input)
A fullword pointer to an active DSA or save area.

ownership (output)
A fullword binary integer set to contain:

0 The source code corresponding to the DSA is not in the member
language.

1 The source code corresponding to the DSA is in the member language.

dsa_format (input)
A fullword binary integer set to one of the following:

0 The format of the DSA is a Standard OS linkage register save area
(with/without Language Environment fields including NAB).

1 The format of the DSA is XPLINK style.

For the Entry Point and Compile Unit Identification exit, a member language
identifies the entry point name, entry address, compile unit name, compile unit
address, and current instruction address for a routine, given the DSA, CAA, and
CIB associated with the routine. This exit is called only if a routine does not have a
PPA-style entry.

Call CEEEVnnn (6, 1, dsaptr, ownership, dsa_format)

POINTER *dsaptr;
INT4 *ownership;
INT4 *dsa_format;

Event Code 6

492 z/OS V2R1.0 Language Environment Vendor Interfaces

dsaptr (input)
A fullword pointer to an active DSA or save area.

cibptr (input)
A fullword pointer to the CIB for the current condition, if one exists.
Otherwise, this parameter is zero.

compile_unit_name (output)
A fixed-length character string of arbitrary length to contain the name of the
compile unit containing the routine associated with the DSA. If the compile
unit name cannot be determined, this parameter should be set to all blanks. If
the compile unit name cannot fit within the supplied string, it should be
truncated. (Truncation of DBCS should preserve even byte count and SI/SO
pairing.)

compile_unit_name_length (output)
A fullword binary integer containing the length of the compile unit name
string on entry and to contain the actual length of the compile unit name
placed in the string on exit. If the compile unit name cannot be determined,
this parameter should be set to zero. The maximum length a string can be is
256 bytes.

compile_unit_address (output)
A fullword binary integer to contain the address of the start of the compile
unit. If the compile unit address cannot be determined, this parameter should
be set to zero.

entry_name (output)
A fixed-length character string of arbitrary length to contain the name of the
entry point into the routine associated with the DSA. If the entry point name
cannot be determined, this parameter should be set to all blanks. If the entry
point name cannot fit within the supplied string, it should be truncated.
(Truncation of DBCS should preserve even byte count and SI/SO pairing.)

entry_name_length (output)
A fullword binary integer containing the length of the entry point name string
on entry and to contain the actual length of the entry point name placed in the
string on exit. If the entry point name cannot be determined, this parameter
should be set to zero. The maximum length a string can be is 256 bytes.

entry_address (output)
A fullword binary integer to contain the address of the entry point. If the entry
address cannot be determined, this parameter should be set to zero.

Call CEEEVnnn (6, 2, dsaptr, cibptr, compile_unit_name, compile_unit_name_length,
compile_unit_address, entry_name, entry_name_length, entry_address, call_instruction_address,
caaptr, dsa_format)

POINTER *dsaptr;
POINTER *cibptr;
CHAR *compile_unit_name;
INT4 *compile_unit_name_length;
POINTER *compile_unit_address;
CHAR *entry_name;
INT *entry_name_length;
POINTER *entry_address;
POINTER *call_instruction_address;
POINTER *caaptr;
INT4 *dsa_format;

Event Code 6

Chapter 15. Member language information 493

call_instruction_address (output)
A fullword binary integer to contain the address of the instruction which
transferred control out of the routine. This should either be the address of a
calling instruction, such as BALR or BASSM, or the address of an interrupted
instruction if control was transferred due to an exception. If the address cannot
be determined, this parameter should be set to zero.

caaptr (input)
A fullword pointer to the CAA for the enclave associated with the DSA.

dsa_format (input)
A fullword binary integer set to one of the following:

0 The format of the DSA is a Standard OS linkage register save area
(with or without Language Environment fields including NAB).

1 The format of the DSA is XPLINK style.

For this exit, Statement Identification, a member language identifies the statement
number given an instruction address and the entry address into a routine. Also, the
address of the DSA for the routine and the address of the CIB for the routine are
passed, in case current register contents are also needed to determine the statement
number.

entry_address (input)
A fullword binary integer containing the address of an entry point into the
routine.

call_instruction_address (input)
A fullword binary integer containing the address of an instruction in the
statement to be identified. Note that this can also be the address of an
instruction in a small routine that does not have its own DSA (for example,
fetch glue code). In such cases, the small routine is considered an extension of
the code for the statement which called the routine. In these cases, the member
language should pass back the statement number of the caller of the small
routine.

dsaptr (input)
A fullword pointer containing the address of the DSA for the routine.

cibptr (input)
A fullword pointer containing the address of the CIB for the current condition.
If there is no CIB, this parameter is zero.

statement_id (output)
A fixed-length character string of arbitrary length to contain the statement
identifier of the instruction pointed to by call_instruction_address. If the
statement cannot be determined, this parameter should be set to all blanks. If
the statement ID cannot fit within the supplied string, it should be truncated.
(Truncation of DBCS must preserve even byte count and SI/SO pairing.)

Call CEEEVnnn (6, 3, entry_address, call_instruction_address, dsaptr, cibptr, statement_id,
statement_id_length, dsa_format)

POINTER *entry_address;
POINTER *call_instruction_address;
POINTER *dsaptr;
POINTER *cibptr;
CHAR *statement_id;
INT4 *statement_id_length;
INT4 *dsa_format;

Event Code 6

494 z/OS V2R1.0 Language Environment Vendor Interfaces

statement_id_length (output)
A fullword binary integer containing the length of the statement id string on
entry and the actual length of the statement id placed in the string on exit. If
the statement ID cannot be determined, this parameter should be set to zero.
The maximum length a string can be is 256 bytes.

dsa_format (input)
A fullword binary integer set to one of the following:

0 The format of the DSA is a Standard OS linkage register save area
(with/without Language Environment fields including NAB).

1 The format of the DSA is XPLINK style.

For this exit, DSA Classification, a member language identifies the type of DSA
that is associated with the procedure.

dsaptr (input)
A fullword pointer containing the address of the DSA or save area.

class (output)
A fixed-binary(31) fullword passed by reference indicating the classification of
the passed DSA. The following is the format of the returned fullword. It can be
quickly checked to distinguish library code from compiled code, identify the
member, and allow the members to qualify the type of compiled/library if
needed.
X’abcd yyzz’

zz - is the member ID with a max of X’FF’
yy - is used by the member to qualify the compiled

code type or the library code type
d - 1 if library code; 2 if compiled code

dsa_format (input)
A fullword binary integer set to one of the following:

0 The format of the DSA is a Standard OS linkage register save area
(with or without Language Environment fields including NAB).

1 The format of the DSA is XPLINK style.

The following list is the set of acceptable return values.

Return value

X'0001 0001' Library routine Language Environment

X'0001 0003' Library routine C/C++

X'0001 0005' Library routine COBOL

X'0001 0006' Library routine Debug Tool

X'0002 0003' Compiled code C/370 or C/C++

X'0002 0005' Compiled code COBOL

X'0002 0006' Compiled code Debug Tool

Call CEEEVnnn (6, 4, dsaptr, class, dsa_format)

POINTER *dsaptr;
INT4 *class;
INT4 *dsa_format;

Event Code 6

Chapter 15. Member language information 495

Event code 7 — dump event handler event
Purpose

CEL Dump Processing makes calls to member event handlers for Event Code 7
(Dump). Many of these calls provide a DSA address as input and expect the
member to provide information about the routine that owns the stack frame. This
event handler code performs several CEEDUMP related functions based upon the
function_code passed as the second parameter. There are five function_codes for
which the DSA address is passed as input:
2 Dump arguments of a routine.
3 Dump variables of a routine.
4 Dump control blocks associated with a routine.
5 Dump storage for a routine.
18 Dump condition information for DSA/CIB.

Syntax

Calls to dump event handler are made with parameters shown in the following
sample procedure statement

function_code (input)
A fullword binary integer that specifies the dump function to be performed. It
must contain one of the following values:

1 Dump an informational message to explain why the dump is being
taken. This function_code specifies that the exit of the language library
that called CEE3DMP print the error message that resulted from the
dump being taken in the first place. The informational messages would
normally be a copy of the error messages sent to MSGFILE for the
error. These messages could contain an ABEND code, the PSW, and
register contents at time of the error. If CEE3DMP was not called by a
member language library, member language libraries would normally
not print any messages in this exit.

2 Dump the arguments of a routine. If the member language cannot
distinguish between arguments and local variables for a routine, it
should dump the arguments at the same time it is called by dump
services to dump variables.

3 Dump the variables of a routine. This includes all local variables and
any shared external variables used by the routine. Member language
libraries should dump only those variables used or set by the routine if
this can be determined.

4 Dump control blocks associated with a routine. This includes the DSA

Call CEEEVnnn (7, function_code, additional_parms, fc, entry_ptr, dsa_format, call_addr)

INT4 *function_code;
POINTER *dsaptr;
POINTER *cibptr;
POINTER *caaptr;
POINTER *edbptr;
POINTER *pcbptr;
FEEDBACK *fc;
POINTER *entry_ptr;
INT4 *dsa_format;
POINTER *call_addr;

Event Code 7

496 z/OS V2R1.0 Language Environment Vendor Interfaces

mapped by the member language and any other control blocks
associated with the routine that are useful for debugging. This includes
compile information, symbol tables, and statement tables.

5 Dump storage for a routine. This includes automatic stack frame
storage and static local variable storage. Static data storage shared
between this routine and another routine should also be dumped. Only
one copy of a shared storage area should be dumped though.

6 Dump control blocks associated with a thread. The CAA for the thread
is dumped by Language Environment.

7 Dump storage associated with a thread. Language Environment dumps
all stack storage associated with the thread. Member languages can
dump any other stack storage that is associated with the thread using
this exit. Any stack storage used by the thread is dumped even though
it can not be associated with it. Only data storage should be dumped.
Storage containing code should not be dumped if possible.

8 Dump control blocks associated with an enclave. The EDB for the
enclave is dumped by Language Environment as well as the member
list. Member languages should dump communications areas that are
linked off of the member list. These are usually the static library
communications regions that are part of the application load module.

9 Dump storage associated with an enclave. Language Environment
dumps all heap storage associated with the enclave. Member languages
can dump any other storage that is associated with the enclave using
this exit. This usually includes storage obtained through direct calls to
the operating system storage management. Only data storage should
be dumped. Storage containing code should not be dumped if possible.

10 Dump status and attributes of files. Language Environment dumps the
status and attributes of files used by message services. Member
languages should dump status and attributes of their own files. This
includes all currently open files as well as any previously open files in
the course of running an application.

11 Dump control blocks associated with files. Control blocks and other
language-specific control blocks that keep file status are dumped.

12 Dump storage buffers associated with files. These buffers are allocated
by the operating system and typically do not use Language
Environment heap services. Buffer storage allocated by Language
Environment heap services can be dumped.

13 Dump control blocks associated with the process. The PCB for the
process is dumped by Language Environment.

14 Dump storage associated with the process. Only data storage should be
dumped. Storage containing code should not be dumped.

15 Dump any additional global information. This information appears at
the end of the dump report. A list of loaded library modules is an
example of additional global information.

16 Dump the variables of the enclave. This includes all static external
variables used by the enclave.

17 End of dump call. This indicates that there are no additional calls to
the event handler for this instance of dump.

18 Dump condition information associated with the passed DSA/CIB

Event Code 7

Chapter 15. Member language information 497

pointer. For example, PL/I displays ONCHAR, ONSOURCE, ONKEY,
and ONCOUNT values when applicable.

additional_parms (input)
Parameters specific to a certain function code. Notice that the
dump_event_code 7 always precedes the function code. See Figure 110 to view
the syntax.

dsaptr (input)
A fullword binary integer containing the address of a DSA.

cibptr (input)
A fullword binary integer containing the address of the CIB for the routine.
This parameter is zero if the routine does not have a CIB.

caaptr (input)
A fullword binary integer containing the address of a CAA.

edbptr (input)
A fullword binary integer containing the address of an EDB.

pcbptr (input)
A fullword binary integer containing the address of a PCB.

fc (output)
A 12-byte feedback code passed by reference. The following symbolic
conditions might result from this exit:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE30V Severity 3

Msg_No 3103

Message An error occurred in writing messages to the dump file.

Call CEEEVnnn (7, 1, fc)
Call CEEEVnnn (7, 2, dsaptr, cibptr, caaptr, fc, entry_ptr, dsa_format, call_addr)
Call CEEEVnnn (7, 3, dsaptr, cibptr, caaptr, fc, entry_ptr, dsa_format, call_addr)
Call CEEEVnnn (7, 4, dsaptr, cibptr, caaptr, fc, entry_ptr, dsa_format, call_addr)
Call CEEEVnnn (7, 5, dsaptr, cibptr, caaptr, fc, entry_ptr, dsa_format, call_addr)
Call CEEEVnnn (7, 6, caaptr, fc)
Call CEEEVnnn (7, 7, caaptr, fc)
Call CEEEVnnn (7, 8, edbptr, fc)
Call CEEEVnnn (7, 9, edbptr, fc)
Call CEEEVnnn (7, 10, edbptr, fc, caaptr)
Call CEEEVnnn (7, 11, edbptr, fc, caaptr)
Call CEEEVnnn (7, 12, edbptr, fc, caaptr)
Call CEEEVnnn (7, 13, pcbptr, fc)
Call CEEEVnnn (7, 14, pcbptr, fc)
Call CEEEVnnn (7, 15, edbptr, fc)
Call CEEEVnnn (7, 16, edbptr, fc)
Call CEEEVnnn (7, 17, fc)
Call CEEEVnnn (7, 18, dsaptr, cibptr, caaptr, fc, entry_ptr, dsa_format, call_addr)

Figure 110. Syntax by function_code

Event Code 7

498 z/OS V2R1.0 Language Environment Vendor Interfaces

Condition

CEE311 Severity 3

Msg_No 3105

Message Member language dump exit was unsuccessful.

entry_ptr (input)
A fullword pointer containing the address of the entry point for the routine
that owns the stack frame.

dsa_format (input)
A fullword binary integer set to one of the following:

0 The format of the DSA is a Standard OS linkage register save area
(with/without Language Environment fields including NAB).

1 The format of the DSA is XPLINK style.

call_addr (input)
A fullword pointer containing the address of the instruction that caused
transfer out of the routine that owns the stack frame. If the calling instruction
cannot be determined, then the value is zero. This is either the address of the
BASR, BALR or BASSM instruction if transfer was made by a subroutine call
or the address of the interrupted statement if the transfer was caused by an
exception.

Event code 8 — new load module event
Purpose

This event notifies the members that a new executable program (load module or
program object) was introduced to the enclave. This function is intended to be
used when a high level language performs a dynamic call. It is also used when a
DLL is first loaded, either by an explicit reference (for example, by using the C
dllload() function) or by an implicit reference.

Syntax

entry_ptr (input)
Language Environment only recognizes the following entry_point styles:
v C/370-style PPA
v Language Environment routine entry layouts (see “Routine layout” on page

6.)
v Language Environment-format CEESTART
v Language Environment callable service stubs

ceestart_ptr (input)
CEESTART, if Language Environment recognized the executable program, or
zero if Language Environment did not recognize the executable program.

Call CEEEVnnn (8, entry_ptr, ceestart_ptr, idinfo, wsa, loadinfo)

POINTER *entry_ptr;
POINTER *ceestart_ptr;
INT4 *idinfo;
POINTER *wsa;
POINTER *loadinfo;

Event Code 7

Chapter 15. Member language information 499

idinfo (input)
A fullword that gives the member language additional information about the
calling environment. A new executable program is introduced into the enclave
by a COBOL dynamic call, PL/I or C/C++ fetch, CEEPIPI services, and DLL
implicit or explicit load. The following bits are defined:

0–23 Reserved

24–31 Load_reason. The following values indicate the reason the executable
program was loaded:

1 The program was loaded because of a dynamic call, fetch, or
CEEPIPI service. In this case, Language Environment does not
preserve the writable static area (WSA) address because each of
the members has defined ILC interfaces to support usage of
the WSA, as required by the member languages. For example,
a C/C++ fetch() call will obtain a WSA for every request, while
a COBOL dynamic call will obtain a WSA area only for the
first request.

2 The program was loaded due to the explicit or implicit
reference of a DLL. The member should be obtained and
fully-initialize the WSA. Language Environment will preserve
the WSA address that is returned by the member to complete
the initialization required before making a DLL available for
use by the requesting DLL application.

wsa (input/output)
A fullword that contains the address of the WSA that was obtained and
initialized by the member. If the idinfo indicates that the executable unit is a
DLL, Language Environment will save the WSA and provide it to the DLL
when the DLL is invoked. This parameter is initially set to zero when it is
passed to a member language's event handler. It will contain the WSA address
on subsequent calls when the WSA address is return by a member language.

loadinfo (output)
A fullword that will be passed as input to the DLL Initialization (22) and Static
Constructor (25) events. It can be used to pass information to these events
about the module that was just loaded.

Event code 9 — new condition event
Purpose

This event notifies all members that a new condition is about to be processed. This
can be used by members to keep sets of condition handling related control areas
concurrently with Language Environment condition handling.

Syntax

function_code (input)
A 31-bit fixed-binary field that describes the action that is being reported.

Call CEEEVnnn (9, function_code, cib_ptr)

INT4 *function_code;
POINTER *cib_ptr;

Event Code 8

500 z/OS V2R1.0 Language Environment Vendor Interfaces

Value Meaning

1 A new CIB is ready for processing.

2 An old CIB is collapsing.

cib_ptr (input)
A pointer to the new or old CIB.

Usage notes
v The notification of the event handlers occurs after the condition has been

enabled. This is done prior to the debug or any other event handler being called
to process the new condition.

v The CIBs are treated as a stack. Even if CIBs go away due to move resume
cursor this event notifies the members of the collapsing of the CIBs in LIFO
order.

v If the event handler indicates an unrecoverable error with a 16 return code,
condition management issues ABEND U4091-14.

v The CIB address can only be used as a token for the purpose of identifying
which condition is ready for processing or is collapsing.

Event code 10 — resume from a condition handler event
Purpose

This event code identifies that a resumption from a condition handler occurs
within the target_dsa.

Syntax

target_dsa (input)
The DSA that is the target for the resume.

target_dsa_fmt (input)
The format of the DSA pointed to by target_dsa. Possible values are:
0 non-XPLINK
1 XPLINK

ph_callee_dsa (input)
A pointer to the DSA of the routine called by the routine owning the DSA
pointed to by target_dsa.

ph_callee_dsa_fmt (input)
The format of the DSA pointed to by ph_callee_dsa. Possible values are:
0 non-XPLINK
1 XPLINK

Usage notes
v The Language Environment condition manager determines the member that

owns the stack frame that is the target of the resume. Once determined,

Call CEEEVnnn (10, target_dsa, target_dsa_fmt, ph_callee_dsa, ph_callee_dsa_fmt)

void *target_dsa;
INT4 *target_dsa_fmt;
void *ph_callee_dsa;
INT4 *ph_callee_dsa_fmt;

Event Code 9

Chapter 15. Member language information 501

Language Environment condition manager calls the particular member's event
handler just prior to performing the resume operation into the stack frame.

v It is the member's responsibility to perform the necessary actions to allow the
resume to occur within the target_dsa.

v The ph_callee_dsa parameter is provided in case the event handler needs to
extract registers from the DSA pointed to by target_dsa. Registers which are
saved in the DSA pointed to by target_dsa for non-XPLINK are mostly saved in
the DSA pointed to by ph_callee_dsa, if target_dsa_fmt is XPLINK. Note that
ph_callee_dsa_fmt might not be the same as target_dsa_fmt. Also, the DSA pointed
to by ph_callee_dsa may belong to a Language Environment transition or
Language Environment overflow routine.

Event code 11 — DSA exit routines event
Purpose

An exit routine can be used to perform activities on behalf of a stack frame when
the stack is being collapsed as the result of a return from a main, an immediate
STOP request, a GOTO out of block, or a move resume cursor request. Exit
routines allow for activities such as the closing of files and releasing of system
resources that are held.

Members not requiring Exit DSAs may, for performance reasons, request that this
processing be disabled. This applies to normal, or non-abend, enclave terminations
initiated by a call to the CEETREN or CEETREC services. This is implemented
with a parameter used on the Enclave Initialization Event, Event Code 18. Refer to
this event for more information on enabling this feature. When this feature is on,
the traverse of the stack for exit DSA routines is not executed and the DSA Exit
event call is skipped. If multiple language members are present in an enclave, all
must indicate that the DSA Exit scan may be skipped. Stack traverse and DSA Exit
processing continues to occur for terminations with an abend pending or a GOTO
out of block or move resume cursor request if the feature is enabled or not.

An exit routine is established in one of two mechanisms, as described below. The
exit routine has two different interfaces depending upon the mechanism used to
establish the exit.
v The stack frame (DSA) is marked as requiring DSA exit processing by flags set

within the DSA.
v The PPA1 has the exit DSA flag on.

Syntax

dsa_addr (input)
The address of the DSA that is being abnormally collapsed (nonreturn style).

dsa_fmt (input)
The format of the DSA pointed to by dsa_addr. Possible values are:
0 non-XPLINK
1 XPLINK

Call CEEEVnnn (11, dsa_addr, dsa_fmt, ph_callee_dsa_addr, ph_callee_dsa_fmt)

POINTER *dsa_addr;
INT4 *dsa_fmt;
POINTER *ph_callee_dsa_addr;
INT4 *ph_callee_dsa_fmt;

Event Code 10

502 z/OS V2R1.0 Language Environment Vendor Interfaces

ph_callee_dsa_addr (input)
A pointer to the DSA of the routine called by the routine owning the DSA
pointed to by dsa_addr.

ph_callee_dsa_fmt (input)
The format of the DSA pointed to by ph_callee_dsa_addr. Possible values are:
0 non-XPLINK
1 XPLINK

Usage notes
v The HLL event handler is called with the Event Code 11 and the address of the

stack frame that is being popped off the stack.
v If conditions arise while running they should be signaled to the Language

Environment condition manager.
v No condition token is provided to the exit routine. It is assumed that the exit

routine completed without error whenever it returns to the Language
Environment condition manager.

v The ph_callee_dsa_addr parameter is provided in case the event handler needs to
extract registers from the DSA pointed to by dsa_addr. Registers which are saved
in the DSA pointed to by dsa_addr for non-XPLINK are mostly saved in the DSA
pointed to by ph_callee_dsa_addr, if dsa_fmt is XPLINK Note that ph_callee_dsa_fmt
might not be the same as dsa_fmt. Also, the DSA pointed to by ph_callee_dsa_addr
may belong to a Language Environment transition or Language Environment
overflow routine.

Event code 12 — national language change event
Purpose

This event notifies all members that the national language has been changed using
Language Environment callable services. The members are notified before the
options control block is updated.

Syntax

nat_lang (input)
The new national language (character(3)). For a list of supported national
languages, see z/OS Language Environment Programming Reference.

Event code 13 — country code change event
Purpose

This event notifies all members that the country code has been changed using
Language Environment callable services. The members are notified before the
options control block is updated.

Call CEEEVnnn (12, nat_lang)

INT *nat_lang;

Event Code 11

Chapter 15. Member language information 503

Syntax

country_code (input)
The new country code (character(2)). For a list of supported country codes, see
z/OS Language Environment Programming Reference.

Event code 14 — main routine invocation event
Purpose

This event is called in both CICS and non-CICS environments to allow the member
language to invoke the main program and handle normal return from the main
program. This event allows member languages to apply language-specific
semantics for main programs in cases where the language library does not gain
control before Language Environment during initialization. This occurs in
non-CICS environments when the environment is initialized by CEESTART, and is
always the case in CICS environments.

Syntax

mainaddr (input)
The address of the main routine found either in CEEMAIN/PLIMAIN when
CEESTART entered directly, or the PIPI table address when initialized through
CEEPIPI (init_main) or the main address from the INPL or the alternate main
in the EPL when being invoked through CEEP#CAL.

amode (input)
An AMODE indicator for the main program. This is a fullword with the
amode in the least significant bit.

mainopts (input)
The main options word from the INPL.

apal (input)
The R1 value to be passed to the main routine. When CEESTART is executed
directly, this is determined by either the call to CEECELVBPLST, the PLIST
manipulation CWI, or CEEEDBDEFPLPTR field in the EDB. When starting
execution from a CEEPIPI (call_main) function, this is the parm_pointer in the
CEEPIPI parameter list. When starting execution from a CEEP#CAL function,
this is the PLIST from the EPL.

altentryaddr (input)
An alternative entry address branched to if available. No assumptions can be
made about the format of this entry point. Any initialization the event handler

Call CEEEVnnn (13, country_code)

INT *country_code;

Call CEEEVnnn (14, mainaddr, amode, mainopts, apal, altentryaddr, XPLINKenvaddr)

POINTER *mainaddr;
INT *amode;
INT *mainopts;
POINTER *apal;
POINTER *altentryaddr;
POINTER *XPLINKenvaddr;

Event Code 13

504 z/OS V2R1.0 Language Environment Vendor Interfaces

needs to accomplish before branching to this address must still be performed
using the mainaddr parameter. If an alternative entry address is not available,
this parameter is NULL.

XPLINKenvaddr (input)
The address of the XPLINK-compiled main program's environment. If the main
program is non-XPLINK, or doesn't have an environment, this parameter is
NULL.

Usage notes
v This event is called in both CICS and non-CICS environments.
v Language Environment allocates a DSA in order to call the MAIN routine.
v The member event handler must perform any AMODE switching required to

invoke the MAIN routine.
v When control returns from this event, Language Environment performs

termination activities similar CEETREN.
v This call is made for CICS when the invoke parameter of the Enclave

Initialization event (see “Event code 18 — enclave initialization event” on page
507) was set to 1 by the language event handler for the language of the main, or
when the maininv_on flag in INPL word 7 is set.

v This call is made for non-CICS when the maininv_on flag in INPL word 7 is set.
v Under CICS, the return code from the application program should be placed in

CEECAACICSRSN before returning from this event.
v CICS SPF: Language Environment calls languages in the application key for this

event. This key can be key 8 or key 9, depending on the EXECKEY setting for
the application program in the PPT.

v CICS SPF: The parameters and storage areas pointed to by the parameters can
potentially be in key 8 storage, with the exception of the apal parameter, which is
in the application key.

Event code 15 — atterm event
Purpose

The atterm event is called during termination of an enclave. It is called after all
user stack frames have been removed from the stack and prior to calling the
members for the enclave termination event. Only the members that have been
explicitly registered using the CWI CEEATTRM are called.

Syntax

The parameter list that is passed to this event consists of a single parameter, the
Event Code 15.

Usage notes
v For more information on Language Environment return codes, reason codes,

existing language semantics, processing, and conventions, see z/OS Language
Environment Debugging Guide.

Call CEEEVnnn (15)

Event Code 14

Chapter 15. Member language information 505

Event code 16 — Debug Tool event
Purpose

The Debug Tool event code is reserved for calls from member event handlers to
the debugger. For more information, see the documentation supplied with the
debugger.

Event code 17 — process initialization event
Purpose

Perform language-specific process initialization. This event is driven during
preinitialization for main routines when the environment is being brought up
during an INIT request. Application-specific initialization is left until a main
routine is about to be called at a CALL request (see “Event code 18 — enclave
initialization event” on page 507). The members that are called with this event
code are found by looking into the load modules that are passed in the PIPI table.

When library reuse is active, the specified reuse_state value indicates if this is the
first process event call to a given member during the current reuse environment. In
the reuse environment, Language Environment does not free the initial storage
allocated for Language Environment control blocks or delete Language
Environment modules or member event handlers between invocations of Language
Environment-enabled programs. Library reuse will be active if a program uses LRR
(Library Retention Routine) or if it is a medium-weight POSIX process.

At termination, all resources obtained through the service routine vector during
process initialization must be released explicitly. Language Environment does not
implicitly release any resource obtained during the process initialization event.

A combination of Event 17 and Event 18 should initialize the HLL-specific aspects
of the environment for a given application. The counterpart for this event is Event
21.

Syntax

reuse_state (input)
One of the following codes, which indicate if library reuse is active and if this
is the first time in the current reuse environment that the event handler is
called for process initialization.
0 Reuse is not in effect.
1 Reuse is in effect; this is the first call for process initialization.
2 Reuse is in effect; this is not the first call for process initialization.

Upon entry into the member event handler, the following is available:
v R13 points to a DSA into which the event handler is able to store its caller's

registers.
v R12 is pointing to a simulated CAA allowing stack frame acquisition.
v A fixed size stack is available for use by the HLLs when called for process

initialization. The stack size is 1024 bytes. There is no stack overflow support.

Call CEEEVnnn (17, reuse_state)

INT *reuse_state;

CODE Event

506 z/OS V2R1.0 Language Environment Vendor Interfaces

v The simulated CAA has a pointer to the PCB. The simulated CAA has a zero
pointer to the EDB.

v R1 contains the address of a standard O/S style PLIST with a single parameter
of Event Code 17.

v The addresses of LOAD and DELETE services and GETMAIN/FREEMAIN
services are held in the PCB. It is the caller's responsibility to relinquish
resources obtained at the process level.

v The format of the member list at the process level is of the same format as the
member list at the enclave level.

Usage notes
v This event is called in both CICS and non-CICS environments.
v This event is called at most once during the execution of a CICS transaction.

Member languages should initialize for the transaction during this call.
v This event is always called before enclave initialization for a member language.

However, enclave initialization for other languages can precede process
initialization for a language, if a subordinate enclave introduces a new language
into the process.

v CICS SPF: Language Environment calls languages in key 8 for this event.
Storage for parameters can be in key 8.

Event code 18 — enclave initialization event
Purpose

Perform language-specific enclave initialization. All language-specific initialization
for the CICS run unit should be performed during this call.

Syntax

pgmmask (input/output)
A fullword containing the program mask in the right-most bits. This output
program mask is ignored, when event 18 is called to initialize a member that
appears only in the dependent member list of a signature CSECT in the
language list."

inpl (input)
The initialization parameter list for the enclave.

invoke (output/CICS only)
A fullword that is set to indicate that Language Environment should call the
member language to invoke the main procedure:
0 Language Environment should invoke the main procedure directly.
1 Language Environment should give control to the member language to

invoke the main procedure.

Call CEEEVnnn (18, pgmmask, inpl, invoke, ioinfo, tolerate_newstk, idinfo, wsa, skipedsa)

INT4 *pgmmask;
POINTER *inpl;
INT4 invoke;
STRUCT ioinfo;
INT4 *tolerate_newstk;
INT4 *idinfo;
POINTER *wsa;
INT4 *skipedsa;

Event Code 17

Chapter 15. Member language information 507

This parameter is initially set to zero and is used only under CICS. This
parameter is only recognized for the member language whose main procedure
is written in that language.

ioinfo (input/CICS only)
A structure describing the standard input, output, and error streams as defined
by CICS. This parameter is only valid under CICS.

tolerate_newstk (input)
A fullword that indicates if the member language can support the performance
enhancements to the stack extension routines. This parameter is initially set to
zero when passed to the member language event handler. If the member
language can tolerate the high-performance stack behavior, it should set this
word to a nonzero value. If not, it should leave the value as zero. On return
from the member event handler, Language Environment queries the value of
the parameter and uses the appropriate stack handling code.

idinfo (input)
A fullword that indicates to the member language additional information that
identifies the calling environment. Language Environment issues the enclave
initialization event when a new common runtime environment is created for
the set of members represented in an executable program and when an
established environment needs to be augmented by adding additional
members represented in a newly-loaded executable program. The following
bits are defined:

0–7 Init_reason. The following values indicate the reason for the enclave
initialization event.

1 The initial build of the Language Environment. The reasons for
this include: batch initialization, initialization for CEEPIPI,
creation of nested enclave, and CICS run-unit initialization.

2 The Language Environment was previously built and
additional members need to be added to the existing
environment. The reasons for this include: the dynamic call,
fetch, adding routines to the CEEPIPI environment, or DLL
load module which caused a load of an executable program
that contains members that are new to the environment. In this
case, Event Code 8 (see “Event code 8 — new load module
event” on page 499) will follow to allow the member to obtain
and initialize the WSA. Because Event Code 8 is always
provided and Event Code 18 is only provided when new
members are introduced into the environment, the WSA should
be obtained once using Event Code 8.

8–15 dll_type. This value indicates if the executable program is a DLL; the
values are defined as follows:

0 The executable program is not a DLL; it is either a load
module or a program object.

1 The executable program is a DLL. This means it can export
variables, functions, or both; optionally, the DLL can also
import variables or functions.

17–31 Reserved; must be zero

wsa (input/output)
A fullword that contains the address of the member-obtained and initialized

Event Code 18

508 z/OS V2R1.0 Language Environment Vendor Interfaces

WSA. If idinfo indicates that the executable program is a DLL, Language
Environment will save the WSA address and provide it to the DLL when the
DLL is invoked.

skipedsa (output)
A fullword that indicates if DSA Exit processing may be bypassed at normal,
non-abend pending, enclave termination initiated by a call from the CEETREN
or CEETREC services. The default is zero, which indicates DSA Exit processing
should occur as previously at enclave termination. The member sets this
fullword to a non-zero value to indicate it has no requirement for Exit DSA
processing at normal enclave termination.

This event is used to initialize HLL portions at the enclave level. The order in
which the member event handlers are driven is first based on the ascending order
of the member ID. However, if the member ID is identified by a numerically lower
ID in the dependencies part of the signature CSECT, then it could be called prior
to a lower ID.

All Language Environment services are available at the time of this event. The
member can influence the program mask setting by placing its requirements of the
program mask in the second parameter as described below.

Upon entry into the member event handler for the enclave initialization event, the
following is available:
v R1 contains the address of a standard O/S style PLIST (all of the parameters are

passed by reference) with the following PLIST:
1. Event code 18.
2. Fullword field in which the program mask is held in the right-most bits;

upon input, this field is zero.
3. Initialization PLIST (INPL) passed to CEEINT.
4. Fullword indicating how Language Environment should call the member

language to invoke a main procedure; this parameter is initially set to zero.
5. Structure describing the standard input, output, and error streams as defined

by CICS.
6. Fullword indicating if the member language can support performance

enhancements to the stack extension routines. This parameter is initially set
to zero.

7. Fullword that indicates to the member language additional information to
identify the calling environment.

8. Fullword that contains the address of the WSA that was obtained and
initialized by the member.

9. Fullword indicating if the member language wishes to skip the Exit DSA
scan at normal termination. This parameter is initially set to zero.

v R12 addresses the CAA
v R13 addresses a DSA
v R14, R15 are linkage registers

In the preinitialized interface, this event is driven for main routines to complete
initialization for a specific application running within an enclave. This event occurs
during the CALL request for main routines to allow HLLs complete their
initialization for a particular application or for a particular run of an application.

Event Code 18

Chapter 15. Member language information 509

The combination of Event 17 and Event 18 should initialize the HLL specific
aspects of the environment for a given application. The counterpart for this event
is Event 19.

All callable services except CEE3CRE are available during Event 18. Stack storage
is available.

Usage notes
v This event is called in CICS and non-CICS environments.
v CICS SPF: Language Environment calls languages in key 8 for this event.

Storage for parameters can be in key 8.

Event code 19 — enclave termination event
Purpose

Perform language-specific enclave termination. This call allows the HLL to
semantically terminate the application by enforcing the language semantics of a
terminating enclave. Enclave-related resources should be released. This event is the
counterpart of Event 18.

In the preinitialization interface, this event is driven for applications that run as
main routines for the CALL request.

Syntax

inpl (input)
The initialization parameter list for the enclave. Because the member ERTLI
run unit termination call is no longer being made, the member languages
should terminate for the run unit during this call. This event is used to
terminate HLL portions at the enclave level. The order in which the member
event handlers are called is in the reverse order of initialization. The
dependencies are determined from the signature CSECTs. For more
information, see “Signature CSECT” on page 151. Upon entry into the member
event handler, the following is available:
v R1 contains the address of a standard O/S style PLIST (all of the parameters

are passed by reference) with the PLIST consisting of the following:
– An event code indicating enclave termination 19
– The initialization parameter list that was passed to CEEINT during

Language Environment initialization. The initialization parameter list is
described here. It is assumed to be a read-only parameter list. Also, the
member-defined field which directly follows the owning member ID,
must be used only by the owning member.

v R12 addresses the CAA
v R13 addresses a DSA
v R14, R15 are linkage registers

Usage notes
v This event is called in both CICS and non-CICS environments.

Call CEEEVnnn (19, inpl)

POINTER *inpl;

Event Code 18

510 z/OS V2R1.0 Language Environment Vendor Interfaces

v CICS SPF: Language Environment calls languages in key 8 for this event.
Storage for parameters can be in key 8.

Event code 20 — query/build feedback code event
Purpose

The Query/Build event handler is used to convert 12-byte character strings to
condition tokens and condition tokens to 12-byte character strings.

Syntax

function_code (input)
Defines if this event is a query or build function. The functions are defined as
follows:

1 Fixed-binary(31) indicating query feedback token event

2 Fixed-binary(31) indicating build feedback token event

additional_parms (input/output)
Parameters specific to a certain function code. The following parameters are for
each function code:

cond_name (input/output)
A halfword-prefixed character string symbolic condition name.

cond_token (input/output)
A 12-byte condition token that is constructed from the symbolic name. The
I_S_Info field is set to binary zero.

ownership (input)
Fixed-binary (31) set to contain

0 This member does not recognize this cond_name

1 For query, this member recognizes this cond_name and has filled in the
cond_token. For build, this member recognizes this cond_token and has
filled in the cond_name.

Usage notes
v If the condition token is unrecognized, the value of cond_token is undefined.
v Language Environment recognizes only those cond_names that start with cel; and

have a corresponding message within the Language Environment message set. If
Language Environment does not recognize the cond_name, then all of the active
members are invoked by the event handlers polling each member until one

Call CEEEVnnn (20, function_code, additional_parms, ownership)

INT4 *function code;
INT2 *cond_name;
CHARn *cond_token;
INT4 *ownership;

Call CEEEVnnn (20, 1, cond_name, cond_token, ownership)

Call CEEEVnnn (20, 2, cond_token, cond_name, ownership)

Figure 111. Syntax by function_code

Event Code 19

Chapter 15. Member language information 511

claims the cond_name returning the cond_token. Each member can validate if the
condition token exists within their message set by the CEEGETFB CWI. If the
cond_name remains unclaimed, the appropriate feedback code is returned.

Event code 21 — process termination event
Purpose

Event code 21 performs language-specific process termination. This event is used
to terminate HLL portions at the process level. The order in which the member
event handlers are called is undefined. In particular, the dependency list is not
honored. Upon entry into the member event handler, the following is available:
v R13 points to a DSA into which the event handler is able to store its caller's

registers.
v R12 is pointing to a simulated CAA allowing stack frame acquisition.
v A fixed size stack is available for use by the HLLs when called for process

initialization. The stack size is 1024 bytes. There is no stack overflow support.
v The simulated CAA has a pointer to the PCB. The simulated CAA has a zero

pointer to the EDB.
v The addresses of LOAD and DELETE services and GETMAIN/FREEMAIN

services are held in the PCB. It is the caller's responsibility to relinquish
resources obtained at the process level.

v The format of the member list at the process level is of the same format as the
member list at the enclave level.

v The CEERCB_REUSE_STATE field, which indicates the state of library reuse and
had one of the following values:
0 Reuse is not in effect
1 or 2 Reuse is in effect.
3 The reuse environment is terminating.

The PLIST is an OS-style PLIST containing the single parameter of the event code
for process termination.

At termination, all resources obtained at the process level MUST be released
explicitly. Language Environment does not implicitly release any resource obtained
at the process level. (Do not depend upon the resource persisting, even if the
resource was not explicitly released.)

During preinitialization, this event indicates that the HLL should relinquish all
resources maintained at the process level. Note all HLL semantics for a terminating
application has already been accomplished by event 20 enclave termination event.
This event is driven for a preinitialization TERM request for a main application.

The counterpart for this event is “Event code 17 — process initialization event” on
page 506.

Syntax

Call CEEEVnnn (21, reuse_participant)

INT *reuse_participant;

Event Code 20

512 z/OS V2R1.0 Language Environment Vendor Interfaces

reuse_participant
Indicates if the member participates in library reuse; a value of 1 indicates
participation.

Usage notes
v This event is called in both CICS and non-CICS environments.
v This event is called only if process initialization was called.
v In CICS, this event is called during transaction termination. Member languages

should terminate for the transaction during this call.
v CICS SPF: Language Environment calls languages in key 8 for this event.

Storage for parameters can be in key 8.
v Members must set the reuse_participant parameter to 1 if they participate in

library reuse and need to be called for final process termination when the reuse
environment terminates.

Event code 22 — DLL initialization event
Purpose

This event is designed to be used by languages with Dynamic Link Libraries
(DLLs) to perform initialization specific to the use of those DLLs. The event is
driven during Language Environment enclave initialization, after the debugger
initialization events but prior to the invocation of the main routine. The event is
also driven by Language Environment whenever a new module has been loaded,
immediately following the invocation of the New Load Module Event (8). In all
cases, this event will be followed by a call to the Static Constructor Event (25).

Syntax

idinfo (input)
A fullword that indicates to the member language additional information
identifying the calling environment. A new executable unit (load module or
program object) is introduced to the enclave by COBOL dynamic call, PL/1 or
C fetch, CEEPIPI services, or DLL implicit or explicit load. The following bits
are defined:

0 - 23 reserved

24 - 31 The value indicates the load_reason. The values are defined as follows:
0 The load was due to main Language Environment

initialization.
1 The load was due to dynamic call, fetch, or ceepipi service.
2 The load was due to the explicit or implicit reference of a DLL.

loadinfo (input/output)
A fullword returned from the New Load Module (8) event containing
information about the module that was just loaded. If this event is being called
as part of main Language Environment initialization flow (load_reason is zero),
then the New Load Module event was not called and loadinfo is zero. It can
optionally be modified by this event for use by the subsequent call to the Static
Object Constructor event.

Call CEEEVnnn (22, idinfo, loadinfo)

INT4 *idinfo;
INT4 *loadinfo;

Event Code 21

Chapter 15. Member language information 513

A return code is placed in R15 by the Event Handler. The following return codes
(in decimal) are defined:
-4 The Event Handler does not want to process the event.
0 The Event Handler was successful.
16 The Event Handler encountered an unrecoverable error.

Event code 23 — stack frame zero processing event
Purpose

Calls the condition handler identified by the CEEHDHDL CWI. For information on
registering a stack frame zero condition handler, see “CEEHDHDL — register an
event handler for stack frame zero processing” on page 269.

Syntax

ceecib (input)
The CEECIB for which the condition handler is being called. This value is
passed by reference. Part of the CEECIB is the condition_token and the
machine environment for the procedure in which the condition occurred. (For
more details, see“Language Environment condition information block” on page
288.)

results (output)
Contains the instructions indicating the actions the language-specific handler
wants the Language Environment condition manager to take as a result of
processing the condition. This field is passed by reference. The following are
valid responses:

Response results value Description

resume 10 Resume at the resume cursor (condition has been
handled).

percolate 20 Percolate to the next condition handler.

21 Percolate to the first user condition handler for the
next stack frame. (This can skip a language-specific
exception handler for this stack frame as well as the
remaining user condition handlers in the queue at
this stack frame.)

23 To force CEL default condition handling for the
unhandled condition when condition was signaled
from CEESGL callable service with a feedback code.

promote 30 Promote to the next condition handler.

31 Promote to the next stack frame. (This can skip a
language-specific exception handler for this stack
frame as well as any remaining user condition
handlers in the queue at this stack frame.)

33 Promote and restart condition handling for the first
condition handler for the stack frame denoted by the
resume cursor location.

Call CEEEVnnn (23, ceecib, results, new_condition)

void *ceecib;
INT4 *results;
FEEDBACK *new_condition;

Event Code 23

514 z/OS V2R1.0 Language Environment Vendor Interfaces

Response results value Description

enablement 40 Ignore the condition; the thread is resumed where
interrupted.

41 Enable the condition for condition handling.

42 Enable the condition and transform the condition
(using the new_condition parameter).

percolate
enablement

50 Percolate the enablement to the calling stack frame.

51 Transform the condition (using the new_condition
parameter) and percolate the enablement to the
calling stack frame.

new_condition (output)
The new condition token representing the promoted condition. This field is
used only for result values that denote promote.

Usage notes
v For a description of the calling method, see “Language Environment member list

and event handler” on page 86.
v It is invalid to promote a condition without returning a new condition token. If

the original condition is returned in new_condition, the condition manager acts as
if a result of 20 had been specified.

v Prior to a condition being promoted, the MIB must be populated with the new
inserts for the promoted condition if necessary.

v The language-specific handlers are automatically established by stack frame. The
Language Environment condition manager determines the language associated
with a given stack frame, and then calls the event handler with the appropriate
event code for enablement, condition handling, or condition handling for stack
frame zero.

v The language-specific handlers are automatically disestablished when the stack
frame is popped off the stack either using a return, a GOTO out of block, or
moving the resume cursor.

v If a resume is requested, the member that owns the target stack frame is called
immediately prior to passing control to the target stack frame. For details, see
“Event code 10 — resume from a condition handler event” on page 501.

v CICS SPF: Language Environment calls languages in key 8 for this event.

Event code 24 — POSIX events event
Purpose

The event handler is a member supplied routine that is invoked at various times
throughout the execution of a program when an event had occurred. The address
of each member's event handler is held in the Language Environment member list,
in the third word of the appropriate member's block.

During Language Environment initialization, Language Environment loads
CEEEVxxx, where xxx is the member number, if there is a corresponding signature
CSECT in the load module. Language Environment saves this address in the
appropriate slot in the member list.

Linkage to the member event handler is by BALR 14,15, and R1 contains the
address of a standard parameter address list. The first parameter always indicates

Event Code 23

Chapter 15. Member language information 515

the type of event for which the event handler has been called. Additional
parameters are dependent upon the specific event.

With the introduction of POSIX support, a new event code has been added to the
existing set of event codes to identify various POSIX-related events that occur
during the execution of the application. An accompanying function code, or event
sub-code, uniquely identifies the POSIX event.

Syntax

function_code (input)
Each of the POSIX-related events are discussed here:

1 POSIX fork() notification. This event is invoked before requesting the
kernel to fork a new process when the calling process is not
multi-threaded. It allows the members to indicate if they can tolerate a
fork() request. Toleration is indicated by setting R15 to zero. If the
member cannot tolerate a fork(), R15 is set to -4. If any member in the
application cannot tolerate the fork(), the request to fork is denied. In a
multi-threaded environment, function code 9 is used.

2 POSIX fork() in child. This event allows the members in the
newly-forked child process to refresh their control blocks before the
application code gains control. It is called when the process is not
multi-threaded. In a multi-threaded environment, function code 12 is
used.

3 POSIX asynchronous signal. This event is invoked when an
asynchronous signal is received on a particular thread. The BPXYPPSD
contains the information regarding the action to take for the specific
signal. It is the responsibility of the member to either terminate the
application or to resume at the next sequential instruction following
the point of interrupt.

4 POSIX thread initialization. This event is driven on the newly created
thread with a new CAA. A copy of the parent thread's CAA is passed
to the event handler. This allows selective inheriting or copying of
fields from the parent's CAA into the new CAA addressed by R12.
There is no guarantee that the parent thread exists at the time of this
event. It is the member's responsibility to access only those pointers
that do not cause a reference to freed storage.

5 POSIX thread termination. This event offers the members the
opportunity to clean up any thread-related resource that was allocated.

6 POSIX process initialization. This event is driven for POSIX(ON)
applications under the Initial Process Thread (IPT). The POSIX
environment has been initialized and all POSIX services are available.
This event is driven after the Language Environment process
initialization and after Language Environment enclave initialization.

Call CEEEVnnn (24, function_code, additional_parms)

INT4 *function_code;
POINTER *ppsd_addr;
INT *dsa_fmt;
POINTER *valid_interrupt_dsa;
POINTER *caa_copy_addr;
INT *interrupt_flags

Event Code 24

516 z/OS V2R1.0 Language Environment Vendor Interfaces

7 POSIX process termination. This event is driven on the thread that
requested termination, and not necessarily on the IPT. All threads have
been terminated except the one driving this event. All POSIX functions
are available. However, the use pthread_create() is restricted. This
event is driven before the Language Environment enclave termination
event. The intent of this event is to allow the cleanup of POSIX-related
resources for the POSIX process.

By contrast, the Language Environment enclave termination event is
always driven on the IPT to allow z/OS-related resources to be
released. The POSIX environment has been terminated when this event
is invoked and the POSIX flag in the EDB has been turned off.

9 POSIX multi-threaded fork() notification. This event is invoked before
requesting the kernel to fork a new process in a multi-threaded
environment. It allows the members to indicate if they can tolerate a
multi-threaded fork() request. Toleration is indicated by setting R15 to
zero. If the member cannot tolerate a fork() from a multi-threaded
environment, R15 is set to -4. If any member in the application cannot
tolerate the fork(), the request to fork is denied.

10 POSIX multi-threaded fork() lock. If the member tolerates the fork()
request, any locking needed to prepare for the fork() is done.

11 POSIX multi-threaded fork() in parent after fork(). This event allows
the members to undo any locking that occurred for the POSIX
multi-threaded fork() notification. Any member that returned a zero
return code for the POSIX multi-threaded fork() notification event is
called for this event.

12 POSIX multi-threaded fork() in child. This event allows the members in
the newly-forked child process to refresh their control blocks before the
application code gains control.

13 POSIX process cleanup. This event is driven just prior to Language
Environment requesting cleanup of the POSIX process.

additional_parms (input)
Parameters specific to a certain function code. The following diagram shows
the parameters for each event.

ppsd_addr (input)
A fullword binary integer containing the address of the BPXYPPSD, which

Call CEEEVnnn (24, 1)
Call CEEEVnnn (24, 2)
Call CEEEVnnn (24, 3, ppsd_ptr, dsa_fmt, valid_interrupt_dsa,
interrupt_flags)
Call CEEEVnnn (24, 4, caa_copy_addr)
Call CEEEVnnn (24, 5, last_thread)
Call CEEEVnnn (24, 6)
Call CEEEVnnn (24, 7)
Call CEEEVnnn (24, 9)
Call CEEEVnnn (24, 10)
Call CEEEVnnn (24, 11)
Call CEEEVnnn (24, 12)
Call CEEEVnnn (24, 13)

Event Code 24

Chapter 15. Member language information 517

#rbfevh/sfcfig2

is a z/OS UNIX control block. For a description of the fields in the
BPXYPPSD, see z/OS UNIX System Services Programming: Assembler Callable
Services Reference.

dsa_fmt (input)
The format of the active DSA when the signal was received. This DSA is
pointed to by register 4 or 13 saved in the PPSD pointed to by ppsd_ptr.
Possible values for dsa_fmt are:

0 non-XPLINK

1 XPLINK

valid_interrupt_dsa (input)
This is a pointer to the valid DSA that was used to expand the Language
Environment stack from when the member event 24 handler was called.
This may differ from the value in PPSD register 4 or 13. This value should
be passed through to CEE3RSUM (in the valid_interrupt_dsa field in the
CEE3RSUM resume information area) when resuming the user application
after handling the signal.

caa_copy_addr (input)
A fullword binary integer containing the address of the copy of the
parent's CAA.

last_thread (input)
Flag to indicate if this event is being called by the last thread in a
terminating process. Possible values for last_thread are:
0 It is not the last thread
1 It is the last thread

interrupt_flags (input)
A fullword flag area. Bit 4 in the flags is ON if the valid_interrupt_dsa was
saved in the CEECAA_SAVSTACK field at the time of interrupt. If the
application is resumed where it was interrupted, the valid_interrupt_dsa
must be restored to the CEECAA_SAVSTACK field.

Bit 5 in the flags is ON if valid_interrupt_dsa was saved in the field pointed
to by the CEECAA_SAVSTACK_ASYNC field at the time of interrupt. If
the application is resumed where it was interrupted, the valid_interrupt_dsa
must be restored to the field pointed to by the
CEECAA_SAVSTACK_ASYNC field. The remaining bits are reserved for
future use and must be zero.

A return code is placed in R15 by the event handler. The following return codes (in
decimal) are defined:
-4 Event handler does not want to process the event
0 Event handler was successful
16 Event handler encountered an unrecoverable error

Typically, all Language Environment services are available during the handling of
the event, including the stack and heap.

Event code 25 — static object constructor event
Purpose

Constructors and destructors are not resources, but are routines that are executed
during the creation and destruction of application variables. Application variables
can be static, automatic, or dynamic. Automatic variables are thread resources. The

Event Code 24

518 z/OS V2R1.0 Language Environment Vendor Interfaces

invocation of constructors and destructors for those variables is performed by each
thread. Static variables and dynamic variables are enclave resources, so the
constructors and destructors are executed once for the creation/destruction of each
static and dynamic variable in the enclave.

Constructors and destructors for automatic and dynamic variables are driven by
the languages libraries or compiled code, without specific support from Language
Environment. Constructors and destructors for static variables are driven by
language libraries from within the static constructor and static destructor events.

The static object constructor lets a member gain control to perform constructor
initialization prior to the invocation of the main routine. CEECONST is a CWI,
called by member languages from their the enclave initialization event logic, to
register the member to gain control, by the member event handler, for two events:
1. Static constructor event (Event Code 25)
2. Static destructor event (Event Code 36)

By requiring member languages to register for these events, the overhead of the
event calls is avoided for member languages that do not need the event.

Syntax

fc (output)
A 12-byte feedback code that indicates the result of this service. This parameter
must be specified. The following symbolic conditions can result from this
service:

Condition

CEE000 Severity 0

Msg_No N/A

Message The service completed successfully.

CEE38U Severity 4

Msg_No 3358

Message The service was invoked outside of the member
enclave initialization. No action was taken.

The Static Constructor Event is designed to be used by languages with object
oriented features to drive constructor functions (initialization methods) for all
statically allocated objects. The event is driven during Language Environment
enclave initialization, after the debugger initialization events but prior to the
invocation of the main routine. The event is also driven by Language Environment
whenever a new module has been loaded, immediately following the invocation of
the DLL Initialization Event (22).

void CEECONST (fc)

FEED_BACK *fc;

Event Code 25

Chapter 15. Member language information 519

idinfo (input)
A fullword that indicates to the member language additional information
identifying the calling environment. A new executable unit (load module or
program object) is introduced into the enclave by COBOL dynamic call, PL/1
or C fetch, CEEPIPI services, or DLL implicit or explicit load. The following
bits are defined:

0 - 23 reserved

24 - 31 The value indicates the load_reason. The values are defined as follows:
0 The load was due to main Language Environment

initialization.
1 The load was due to dynamic call, fetch, or ceepipi service. In

this case, static constructors are run immediately.
2 The load was due to the explicit or implicit reference of a DLL.

Static constructors will only be run if they are at the level
represented by the initial DLL load (for example, all DLL
initialization has been completed).

loadinfo (input)
A fullword returned from the New Load Module (8) or DLL Initialization (22)
event containing information about the module that was just loaded.

A return code is placed in R15 by the Event Handler. The following return codes
(in decimal) are defined:
-4 The Event Handler does not want to process the event.
0 The Event Handler was successful.
16 The Event Handler encountered an unrecoverable error.

Usage notes
v This event is driven only if the member language has registered for static

constructor/destructor events by calling the CEECONST CWI during the enclave
initialization event.

v All services of Language Environment are available during this event.
v Application code may be driven during this event.

Event code 26 — region initialization event
Purpose

Perform language-specific initialization that can be shared among all processes in
an address space.

Syntax

Call CEEEVnnn (25, idinfo, loadinfo)

INT4 *idinfo;
INT4 *loadinfo;

Call CEEEVnnn (26, rcbptr, process_permstglen)

POINTER *rcbptr;
INT *process_permstglen;

Event Code 25

520 z/OS V2R1.0 Language Environment Vendor Interfaces

rcbptr (input)
The address of the Region Control Block (RCB) for the region. The member
languages can reference fields of the RCB and reference/set the MEMLDEF
field of the region member list anchored off the RCB.

process_permstglen (output)
Set by the member language to the amount of permanent process storage that
the language requests during process initialization (using the Get Permanent
Process Storage macro, CEEXGPPS. This parameter is initially set to zero.

Usage notes
v This event is called in both CICS and non-CICS environments.
v For CICS, the CICS region defines the address space. Each running Language

Environment-enabled transaction in the partition is a process in the region.
Other S/370 environments do not support multiple processes in a single address
space. However, member language init/term should still be structured as if that
were a possibility, to maximize common code between CICS and other
environments.

v Storage for parameters can be in key 8.

Event code 27 — region termination event
Purpose

Perform language-specific termination for the region.

Syntax

rcbptr (input)
The address of the RCB for the region. The member languages can reference
fields of the RCB and reference/set the MEMLDEF field of the region member
list anchored off the RCB.

Usage notes
v This event is called in both CICS and non-CICS environments.
v CICS SPF: Language Environment calls languages in key 8 for this event.

Storage for parameters can be in key 8.

Event code 28 — identify module entry point event
Purpose

This event is used to determine the language of the procedure identified as the
entry point of the module. Also, if the entry point is a main procedure, then return
an INPL, as defined on the CEEINT CWI call. This INPL is used to initialize an
enclave in order to invoke the main procedure.

Call CEEEVnnn (27, rcbptr)

POINTER *rcbptr;

Event Code 26

Chapter 15. Member language information 521

Syntax

loadmodptr (input)
The address of the start of the load module.

entryptr (input)
The address of the entry point of the load module.

identified (output)
A fullword set to one of two values:
0 The procedure is not of the member's language.
1 The procedure is of the member's language.

main (output)
A fullword set to one of two values:
0 The procedure is not a main procedure.
1 The procedure is a main procedure.

inplptr (input/output)
The address of the INPL to be used to initialize the enclave. Enough storage is
provided so that the member can build the INPL within the provided storage,
or the member can set the inplptr parameter to point to other storage
containing the INPL.

loadmodlen (input)
A fullword set to the length of the load module.

Usage notes
v This event is called only when running under CICS.
v If a member event handler detects an error during this event, it should return

with return code 16, and place the reason code for the error in
CEECAACICSRSN field of the CAA. Language Environment passes this reason
code to CICS.

v If a member event handler detects a non-terminating condition (for example, the
INPL cannot be built due to missing csects in the module), it should return with
return code 4, and place the reason code for the error in CEECAACICSRSN field
of the CAA. Language Environment passes this reason code to CICS and returns
control to CICS without further processing.

v CICS SPF: Language Environment calls languages in key 8 for this event.
Storage for parameters can be in key 8.

Event code 29 — determine enclave work area lengths event
Purpose

This event is used to determine the amount of permanent enclave storage that a
member language requests during enclave initialization for a particular application
program. Permanent enclave storage is allocated using the CEEXGPES macro.

Call CEEEVnnn (28, loadmodptr, entryptr, identified, main, inplptr, loadmodlen)

POINTER *loadmodptr;
POINTER *entryptr;
INT4 *identified;
INT4 *main;
POINTER *inplptr;
INT4 *loadmodlen;

Event Code 28

522 z/OS V2R1.0 Language Environment Vendor Interfaces

Syntax

inpl (input)
The INPL for the enclave. The INPL was either obtained by Language
Environment from examining the code at the entry point of the load module or
was obtained by the member language of the main procedure using the
identify module entry point Event Code 28.

enclave_permstglen_31 (output)
A fullword integer to contain the amount of AMODE 31 storage, in bytes, that
the member language needs at the enclave level. If no storage is needed, this
parameter should be set to zero.

enclave_permstglen_24 (output)
A fullword integer to contain the amount of AMODE 24 storage, in bytes, that
the member language needs at the enclave level. If no storage is needed, this
parameter should be set to zero.

Usage notes
v This event is called only when running under CICS.
v If a member event handler detects an error during this event, it should return

with return code 16, and place the reason code for the error in
CEECAACICSRSN field of the CAA. Language Environment passes this reason
code to CICS.

v CICS SPF: Language Environment calls languages in key 8 for this event.
Storage for parameters can be in key 8.

Event code 31 — determine working storage (CICS only) event
Purpose

This event is called to determine the address and length of the storage containing
local variables for an executing routine. This information is returned to CICS EDF
utility.

Syntax

pgmrsa (input)
The address of the save area of a routine.

memwsa (output)
A fullword to be set to the address of the routine's working storage or DSA. If
this cannot be determined, the field should be set to zero.

Call CEEEVnnn (29, inpl, enclave_permstglen_31, enclave_permstglen_24)

POINTER *inpl;
INT4 *enclave_permstglen_31;
INT4 *enclave_permstglen_24;

Call CEEEVnnn (31, pgmrsa, memwsa, memwsl)

POINTER *pgmrsa;
POINTER *memwsa;
INT4 *memwsl;

Event Code 29

Chapter 15. Member language information 523

memwsl (output)
A fullword to be set to the length of the routine's working storage or DSA. If
this cannot be determined, the field should be set to zero.

Usage notes
v This event is called only when running under CICS.
v If a member event handler detects an error during this event, it should return

with return code 16, and place the reason code for the error in
CEECAACICSRSN field of the CAA. Language Environment passes this reason
code to CICS.

v CICS SPF: Language Environment calls languages in key 8 for this event.
Storage for parameters can be in key 8.

Event code 32 — perform GOTO validation (CICS only) event
Purpose

This event is used to verify with the member language that a GOTO-out-of-block
can be performed which transfers control to a location specified on an EXEC CICS
HANDLE CONDITION condition (label).

Syntax

pgmrsa (input)
The address of the save area of a routine that is being exited by a
GOTO-out-of-block in order to transfer control to the EXEC CICS HANDLE
CONDITION condition (label).

xpgmind (output)
A fullword set to indicate if the GOTO-out-of-block is restricted for this
routine:
0 The GOTO-out-of-block is allowed.
1 The GOTO-out-of-block is not allowed.

Usage notes
v This event is called only when running under CICS.
v If a member event handler detects an error during this event, it should return

with return code 16, and place the reason code for the error in
CEECAACICSRSN field of the CAA. Language Environment passes this reason
code to CICS.

v CICS SPF: Language Environment calls languages in key 8 for this event.
Storage for parameters can be in key 8.

Event code 33 — member needs options processing event
Purpose

This event polls all members to see if quick options can be processed.

Call CEEEVnnn (32, pgmrsa, xpgmind)

POINTER *pgmrsa;
INT4 *xpgmind;

Event Code 31

524 z/OS V2R1.0 Language Environment Vendor Interfaces

Syntax

need_opts_processing (input)
A fullword set to indicate if quick options processing can be done.
0 Quick options processing cannot be done.
1 Quick options processing can be done.

Event code 34 — command line equivalent event
Purpose

This event allows a member language to process a command line equivalent string.
Runtime options can be changed and the parameter list to pass to the main
program can be changed.

Syntax

ocb_addr (input)
The address of an OCB.

R1_at_entry (input)
The R1 value passed to CEEINT.

plist (output)
The address of the argument list to be interpreted as the inbound parameter.

Usage notes
v The OCB passed to this event will contain the IBM-supplied defaults,

system-level defaults, region-level defaults, and programmer defaults merged.
v Only the member identified by the member ID in the INPL is called when the

reqcmdequ flag in the main options word of the INPL is ON.
v This event has limited capabilities. There is a fixed stack available and a

partially initialized CAA. No Language Environment callable services can be
used from this event.

v Members which change a runtime option should change the corresponding OCB
where_set field to PROGRAM_INVOCATION, which will cause the options
report to show "Invocation command" for that option.

v Members which support main programs being called with a nonsupported
parameter list can use this event to do their own command-line equivalent
processing.

Call CEEEVnnn (33, need_opts_processing)

INT4 *need_opts_processing;

Call CEEEVnnn (34, ocb_addr, R1_at_entry, plist)

POINTER *ocb_addr;
POINTER *R1_at_entry;
POINTER *plist;

Event Code 33

Chapter 15. Member language information 525

|
|

Event code 35 — default options event
Purpose

The purpose of this event is to allow the members to set default runtime options in
a compatible fashion.

Syntax

ocb_addr (input)
The address of an OCB. The OCB passed to this event will contain the
IBM-supplied defaults, system-level defaults, and region-level defaults merged.

ceestart_addr (input)
The address of CEESTART.

inpl_addr (input)
The address of the initialization parameter list (INPL).

work_area (input)
The address of a 512-byte work area.

Usage notes
v Only the member identified by the member ID in the INPL is called when the

defoptreq flag in the main options word of the INPL is ON.
v This event has limited capabilities. There is a fixed stack available and a

partially-nitialized CAA. No Language Environment callable services can be
used from this event.

v Members that set a default option should change the corresponding OCB
where_set field to DEFAULT_SETTING, which will cause the options report to
show "Default setting" for that option.

v Members that recognize that the application being run needs a specialized set of
runtime options can use this event to tailor the default options appropriately.

Event code 36 — static destructor event
Purpose

This event is designed to be used by languages with object oriented features to
drive destructor functions (uninitialization methods) for all statically allocated
objects. This event is driven during Language Environment enclave termination,
after stack collapse, but prior to debugger termination events. This event occurs
after the atterm event.

Syntax

Call CEEEVnnn (35, ocb_addr, ceestart_addr, inpl_addr, work_area)

POINTER *ocb_addr;
POINTER *ceestart_addr;
POINTER *inpl_addr;
POINTER *work_area;

void CEEEVnnn (event_code)

INT4 *event_code = 36;

Event Code 35

526 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|

event_code (input)
Is a fullword integer with value 36 indicating that this is the static destructor
event call.

Usage notes
v This event is driven only if the member language has registered for static

constructor/destructor events by calling the CEECONST CWI during the enclave
initialization event.

v All services of Language Environment are available during this event.
v Application code may be driven during this event.

Event code 37 — preallocated storage event
Purpose

This event allows user-supplied storage to be used as the initial segment of user
stack or user heap storage.

Syntax

ocb_addr (input)
The address of an OCB.

R1_at_entry (input)
The R1 value passed to CEEINT.

init_stack_addr (output)
The address of the initial segment of stack storage.

init_stack_len (output)
The length of the initial stack segment.

init_heap_addr (output)
The address of the initial segment of heap storage.

init_heap_len (output)
The length of the initial heap segment.

Usage notes
v Only the member identified by the member ID in the INPL is called when the

prealloc flag in the main options word of the INPL is ON.
v This event has limited capabilities. There is a fixed stack available and a

partially initialized CAA. No Language Environment callable services can be
used from this event.

v The output of this event is used for the initial segment only. For the increment
segments, location, and disposition of the user stack and user heap storage, the
corresponding suboption specifications in the STACK and HEAP runtime
options continue to be used.

Call CEEEVnnn (37, ocb_addr, R1_at_entry, init_stack_addr, init_stack_len, init_heap_addr,
init_heap_len)

POINTER *ocb_addr;
POINTER *R1_at_entry;
POINTER *init_stack_addr;
POINTER *init_stack_len;
POINTER *init_heap_addr;
POINTER *init_heap_len;

Event Code 36

Chapter 15. Member language information 527

Note: If the location specification is BELOW, but the user-supplied storage is
above the 16M line, the member is responsible for diagnosis and a return code
of 16 must be returned by this event.

v The user-supplied storage must be located at a valid address and be on a
doubleword boundary. The length must also be a multiple of 8. Otherwise, a
return code of 16 must be returned by this event. If there is no user-supplied
storage, a zero length must be returned as the output.

v The OCB passed to this event contains options merged through the Assembler
user exit level.

v The user-supplied storage is not freed by Language Environment at termination.
v The user-supplied user heap storage is subject to the AMODE of the application

that requests storage. The user-supplied storage is ignored if the following
occurs:
– The user-supplied storage is above the 16M line, and
– The ANYWHERE suboption of the HEAP option is in effect, and
– The application that requests storage is in AMODE(24)
Language Environment allocates below the line storage using the initsz24 and
incrsz24 suboptions from the HEAP runtime option. In all other cases, the
preallocated storage is used.

Event code 38 — normal resume in DSA event
Purpose

This event code identifies that a normal (non-condition handler) resumption occurs
within the target_dsa.

Syntax

target_dsa (input)
The DSA that is the target for the resume.

target_dsa_fmt (input)
The format of the DSA pointed to by target_dsa. Possible values are:
0 non-XPLINK
1 XPLINK

ph_callee_dsa (input)
A pointer to the DSA of the routine called by the routine owning the DSA
pointed to by target_dsa.

ph_callee_dsa_fmt (input)
The format of the DSA pointed to by ph_callee_dsa. Possible values are:
0 non-XPLINK
1 XPLINK

Usage notes
v The Language Environment condition manager determines the member that

owns the stack frame that is the target of the resume. Once determined,

Call CEEEVnnn (38, target_dsa, target_dsa_fmt, ph_callee_dsa, ph_callee_dsa_fmt)

void *target_dsa;
INT *target_dsa_fmt;
void *ph_callee_dsa;
INT *ph_callee_dsa_fmt;

Event Code 37

528 z/OS V2R1.0 Language Environment Vendor Interfaces

Language Environment condition manager calls the particular member's event
handler just prior to performing the resume operation into the stack frame.

v It is the member's responsibility to perform the necessary actions to allow the
resume to occur within the target_dsa.

v The ph_callee_dsa parameter is provided in case the event handler needs to
extract registers from the DSA pointed to by target_dsa. Registers which are
saved in the DSA pointed to by target_dsa for non-XPLINK are mostly saved in
the DSA pointed to by ph_callee_dsa, if target_dsa_fmt is XPLINK Note that
ph_callee_dsa_fmt might not be the same as target_dsa_fmt. Also, the DSA pointed
to by ph_callee_dsa may belong to a Language Environment transition or
Language Environment overflow routine.

Event code 39 — interrupt received event
Purpose

This event identifies special processing to determine if it is safe to accept the
interrupt. This is a special interface between the signal interface routine of
Language Environment and the PL/I multitasking library and COBOL with
multi-threading toleration.

Syntax

function_code (input)
The functions are defined as follows:

1 Determine if the module pointed to by module_pointer can accept the
interrupt.

2 Language Environment has determined that the interrupt must be put
back to the kernel. Determine how the interrupt can be resolicited.

module_pointer (input)
This argument is a pointer to one of the modules pointed to from the saved
register 15 in one of the DSAs on the stack.

ppsd_pointer (input)
Is the address of a control structure received by the Language Environment
signal interface routine from the kernel (defined in BPXYPPSD). This structure,
referred to as the PPSD contains PSW and register information that can be
used to determine where the interrupt occurred and how to handle it.

return_value (output)
If the function_code is 1, COBOL or PL/I returns one of the following values:

1 Accept the interrupt. For COBOL or PL/I this means the module
pointed to by module_pointer is a COBOL or PL/I user module and it
can accept the interrupt. That is, it is safe to accept the interrupt.

2 Do not accept the interrupt. For COBOL or PL/I this means it is a

Call CEEEVnnn (39, function_code, module_pointer, ppsd_pointer, return_value, dsa_pointer,
Retcode(return_code))

INT4 *function_code;
CEE_ENTRY *module_pointer;
CEE_TOKEN *ppsd_pointer;
INT4 *return_value;
CEE_DSA *dsa_pointer;
INT4 *return_code;

Event Code 38

Chapter 15. Member language information 529

|
|
|
|

COBOL or PL/I user module, but cannot accept the interrupt. That is,
it is not safe to accept the interrupt. Therefore, the interrupt must be
put back.

3 Do not know what to do. For COBOL or PL/I this means the module
pointed to by module_pointer is not a COBOL or PL/I user module, and
it is up to Language Environment to take a proper action.

If the function_code is 2, COBOL or PL/I returns one of the following values:

1 Insert CEEOSIGR into stack at the DSA pointed to by dsa_pointer.

2 Do not insert CEEOSIGR; instead swap the LIBVEC pointers with the
'signal glue versions' from CEELVTL.

3 Insert CEEOSIGR into stack at the DSA pointed to by dsa_pointer and
swap the LIBVEC pointers with the 'signal glue versions' from
CEELVTL.

4 Just put back the interrupt.

5 Do not know what to do. It is up to Language Environment to take a
proper action.

dsa_pointer (input/output)
When used as input, this value is the DSA address of the module_pointer. For
COBOL or PL/I, if it is a synchronous delivery, the DSA can be used along
with the module prologue code to ensure the module is a COBOL or PL/I
module.

When used as output, this value applies to function code 2 only. If
function_code is 2 and the return_value is 1 or 3, this parameter is returned
pointing to the DSA whose saved register 14 should be replaced with the
address of CEEOSIGR. Otherwise, this parameter is ignored.

return_code (input)
Standard event handler return code (-4, 0, 16)

Usage notes
v R12 points to a valid CAA.
v R13 contains the address of a valid DSA with a register save area that can be

used to save the caller's registers.
v The NAB in DSA pointed to by R13 cannot be used. If dynamic storage is

required, it must be acquired using GETMAIN or it must be preallocated and
the address saved in a control block whose address is accessible through the
CAA. Calls to any routines including Language Environment services that
require dynamic storage are strictly prohibited.

v The COBOL or PL/I event handler will be called with this function whenever
Language Environment has to decide what to do with the interrupt and PL/I
Multitasking is active (CEEEDBPLITASKING = 1) or COBOL has been
initialized. COBOL or PL/I must then determine and tell CEEOSIGH/I/J/P
what to do with the interrupt.

v COBOL or PL/I event handler should register a shunt routine in CEECAADMC
when storage access could result in a program check. Because a shunt could
have already been registered, the current value in CEECAADMC must be saved
before registering a shunt and restored before returning to Language
Environment.

v If the event handler returns an undefined disposition value, the action will take
the default; that is, the interrupt will be put back and do nothing.

Event Code 39

530 z/OS V2R1.0 Language Environment Vendor Interfaces

v The event handler must pass back a return code in R15. These codes are the
same as other events. If a nonzero return code is passed back by the event
handler, the action will take the default, which is to put back the interrupt and
do nothing.

v CEEOSIGH/I/J/P will put out a trace entry to indicate the disposition result of
the Event 39 invocation. If the disposition is to accept the interrupt, the trace
entry will indicate the interrupt is accepted by a COBOL or PL/I user module. If
the disposition is to put back the interrupt, the trace entry will indicate the
signal put back codes.
Along with the existing signal put back codes defined in Language
Environment, the following lists signal put back codes specific for the Event 39
support:

Code Description

Signal_return
codes

06 Signal_Return1, set reg 14 in the user DSA to point to CEEOSIGR.
It is corresponding to Event 39 function code 2 return value 1.

08 Signal_Return1, do nothing but put back. It is corresponding to
Event 39 function code 2 return value 4.

Signal_Return2
codes

09 Signal_Return1, swapped LIBVEC pointers to the signal glue code
versions. It is corresponding to Event 39 function code 2 return
value 2.

10 Signal_Return1, swapped LIBVEC pointers to the signal glue code
versions and set reg 14 in the user's stack frame to point to
CEEOSIGR. It is corresponding to Event 39 function code 2 return
value 3.

Event code 40 — get/release function pointer event
Purpose

The Get/Release Function Pointer event is used to obtain or release a function
pointer for a function that resides in a separate load module.

Syntax

func_code (input)
Defines if this event is a Get or Release request. The functions are defined as
follows:
1 Fixed binary(31), indicating Get Function Pointer event
2 Fixed binary(31), indicating Release Function Pointer event

func_pointer (output)
For the Get Function Pointer event, contains the returned function pointer. For
the Release Function Pointer event, this value contains the function pointer to
release.

entry_pointer (input)
Language Environment recognizes the following func_addr style; Language
Environment does not recognize any other entry styles:

Call CEEEVnnn (40, function_code, func_pointer, entry_pointer, ceestart_ptr)

INT4 *function_code;
POINTER *func_pointer;
POINTER *entry_pointer;
POINTER *ceestart_ptr;

Event Code 39

Chapter 15. Member language information 531

v C/370-style PPA
v Language Environment routine entry layout
v Language Environment-format CEESTART
v Language Environment AWI stubs

ceestart_ptr (input)
CEESTART of the load module; the load module must be recognized by
Language Environment.

Usage notes
v All function pointers obtained must be released before deleting the load module

which contains the associated functions.
v The CEE3ADDM service must be called prior to calling this event handler, to

augment the set of currently active members and to notify members that a new
load module has been introduced into the enclave.

v C and C++ are the only target languages that support the Get Function Pointer
service.

v The function pointer is returned with the high-order bit indicating the AMODE
of the routine. You must provide the necessary AMODE switching code when
passing control to the function pointer.

v Event 40, function code 2 must be called to release each function pointer
obtained, before deleting the load module containing the associated function.

v If the load module contains any ILC or the loading and loaded modules are
written in different languages, the load module should not be deleted.

v A C function that is called using a pointer returned by Event 40 will have access
to the writable static area, if it exists.

v To use Event 40 to obtain a function pointer for a C function, the C function
must either:
– Be compiled with the pragma linkage(...,fetchable) directive, or
– Have the function name specified as the entry point when the module is

linked.
In addition, C++ routines must be compiled as extern “C”.

v Event 40 cannot be used to obtain a function pointer for a C main() routine.
v If you use Event 40 to obtain a function pointer for a C or C++ function, calling

the function pointer will give control to a glue routine. This routine will perform
AMODE switching, if needed, before passing control to the C/C++ routine.

v If you use Event 40 to obtain a function pointer for a C or C++ routine that is
compiled as a DLL, the routine cannot export any functions or variables.

Event code 41 — cancel/release load module event
Purpose

This event notifies a member language that an executable program (load module
or program object) is about to be released and to perform any necessary cleanup
related to the executable program.

Event Code 40

532 z/OS V2R1.0 Language Environment Vendor Interfaces

Syntax

entry_point (input)
Entry point of the module

ceestart_ptr (input)
CEESTART address, if the executable program was recognized, or zero, if it
was not recognized

load_point (input)
Beginning address of the module

module_length (input)
Number of bytes in the module

idinfo (input)
A fullword that tells the member language additional information about the
calling environment. A new executable program is introduced into the enclave
by a COBOL dynamic call, PL/I or C fetch, CEEPIPI services, and DLL implicit
and explicit load. The following bits are defined:
0–23 Reserved
24–31 The value indicates the load_reason provided on the Event Code 8 (see

“Event code 8 — new load module event” on page 499). The following
values are defined:
1 The load was due to a dynamic call, fetch, or CEEPIPI service.
2 The load was due to the explicit or implicit reference of a DLL.

Usage notes
v The member should do any cleanup required related to the module.
v CEEPIPI(call_sub_addr_nochk), which is described “CEEPIPI — invocation for

subroutine by address” on page 197, calls this event after the target has returned
from the call function.

Event code 42 — automatic destructor event
Purpose

This event enables languages with object-oriented features to drive destructor
routines (uninitialization methods) for automatic objects on the stack. This event is
driven only for C++. This event is driven for each remaining stack frame that
needs destructors to be run on a thread that is terminated using pthread_exit() or
on a thread that is being cancelled as the result of a pthread_cancel() issued by
another thread.

Call CEEEVnnn (41, entry_point, ceestart_ptr, load_point, module_length, idinfo)

POINTER *entry_point;
POINTER *ceestart_ptr;
POINTER *load_point;
POINTER *module_length;
INT4 *idinfo;

Event Code 41

Chapter 15. Member language information 533

Syntax

stack_frame_ptr
Pointer to the stack frame for which destructors need to be run.

stack_frame_fmt (input)
The format of the DSA pointed to by stack_frame_ptr. Possible values are:
0 non-XPLINK
1 XPLINK

ph_callee_stack_frame_ptr (input)
A pointer to the DSA of the routine called by the routine owning the DSA
pointed to by stack_frame_ptr.

ph_callee_stack_frame_fmt (input)
The format of the DSA pointed to by ph_callee_stack_frame_ptr. Possible values
are:
0 non-XPLINK
1 XPLINK

Event code 44 — member program mask event
Purpose

The event allows a member language to report back the program mask
requirements for that member language. Language Environment adds the bits in
the member's output program mask to the program mask used while the enclave is
active. This event is called when a member is added to an existing enclave and in
the following situations:
v The member was previously added as a dependent member, that appeared only

in the dependent member list of a signature CSECT in the language list. Event
18 (enclave Initialization event) was called at that time, but the output program
mask from Event 18 was ignored

v The member now being added has a signature CSECT in the language list of the
new module being added to the enclave. The output program mask from Event
44 will now be honored.

All callable services except CEE3CRE are available during event 44. Stack storage
is also available

Syntax

Call CEEEVnnn (42, stack_frame_ptr, stack_frame_fmt, ph_callee_stack_frame_ptr,
ph_callee_stack_frame_fmt)

POINTER *stack_frame_ptr;
INT *stack_frame_fmt;
POINTER *ph_callee_stack_frame_ptr;
INT *ph_callee_stack_frame_fmt;

Call CEEEVnnn (44, pgmmask)

INT4 *pgmmask

Event Code 42

534 z/OS V2R1.0 Language Environment Vendor Interfaces

pgmmask (input / output)
A fullword containing the program mask in the rightmost bits. The bits in this
output mask are added to the program mask that is in effect when the enclave
is running.

All Language Environment services are available at the time of this event. The
member can influence the program mask setting by placing its requirements of the
program mask in the second parameter as described below.

Upon entry into the member event handler for the member program mask event,
the following is available:

R1 Contains the address of a standard O/S style PLIST (all of the parameters
are passed by reference) with the following PLIST:
v Event code 44
v Fullword field in which the program mask is held in the right-most bits;

upon input, this field is zero.

R12 Addresses the CAA

R13 Addresses the DSA

R14, R15
Linkage registers

Usage notes
v This event might be called in CICS and non-CICS environments.
v CICS SPF: Language Environment might call languages in key 8 for this event.

Storage for parameters can be in key 8.

Event Code 44

Chapter 15. Member language information 535

Event Code 44

536 z/OS V2R1.0 Language Environment Vendor Interfaces

Chapter 16. z/OS UNIX System Services support

This section describes the support provided by Language Environment services for
z/OS UNIX System Services (z/OS UNIX). All of the interfaces described in this
section are intended for applications that include a C environment. The threading
interfaces that are provided as CWIs support the POSIX 1003.4a (draft 6)
specification. These threading functions cannot be dynamically fetched. For more
information about individual CWIs, see the corresponding C functions in z/OS XL
C/C++ Runtime Library Reference.

Note:

1. Functions that end with the characters _np are extensions to the POSIX
standard.

2. Unless otherwise is specified, access to the CWIs in the following sections
requires that the runtime option POSIX be set to ON.

3. Fortran is not supported in this environment.
4. The CWI arguments for the thread attributes object, the mutex attributes object,

the condition variable attributes object, and the rwlock attributes object must be
declared in the calling routine. These data types correspond to typedefs defined
in the C/C++ runtime library header sys/types.h. For example, the thread
attributes object is defined by pthread_attr_t. The size of the object in the
calling routine must match the C definition.

Thread management functions
The following sections describe the various thread management functions.

CEEOPAI
C library interface: pthread_attr_init()

CEEOPAI initializes a thread attribute object, attr. The resulting thread attribute
object (possibly modified by subsequent assignment to its members), when used by
the create thread function, defines the attributes for the thread to be created.

A single thread attribute object can be used multiple times, thus creating a number
of threads with the same characteristics. It is the user's responsibility to serialize
changes to the thread attribute object.

Syntax

void CEEOPAI (attr, [fc])
CEE_PTAT *attr;
FEED_BACK *fc;

CEEOPAI
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0124(,R15)
BALR R14,R15

© Copyright IBM Corp. 1991, 2015 537

attr (input)
The user-supplied thread attribute object to be initialized. The thread attribute
object is defined by the C/C++ typedef of pthread_attr_t in the sys/types.h
header.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
initializing the new thread attribute object.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEEOPAD
C library interface: pthread_attr_destroy()

CEEOPAD makes the thread attribute object, which is referred to by attr, unusable.
An error occurs if the attribute object is used after it has been destroyed

Syntax

void CEEOPAD (attr, [fc])
CEE_PTAT *attr;
FEED_BACK *fc;

CEEOPAD
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0128(,R15)
BALR R14,R15

attr (input)
The initialized thread attribute object.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
destroying the thread attribute object.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE5F1 Severity 3

Msg_No 5601

Message Thread attribute object that is not valid was passed.

CEEOPAI CWI

538 z/OS V2R1.0 Language Environment Vendor Interfaces

CEEOPAGD
C library interface: pthread_attr_getdetachstate()

CEEOPAGD obtains the thread's detachstate attribute from the specified thread
attribute object.

Syntax

void CEEOPAGD (attr, detachstate, [fc])
CEE_PTAT *attr;
INT4 *detachstate;
FEED_BACK *fc;

CEEOPAGD
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0132(,R15)
BALR R14,R15

attr (input)
The initialized thread attribute object.

detachstate (output)
0 the thread remains in an undetached state after termination of the

thread
1 the thread is detached on completion

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
getting the thread stack size attribute.

The following message identifiers and associated severities can be returned by
the service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE5F1 Severity 3

Msg_No 5601

Message Thread attribute object that is not valid was specified.

CEEOPAGS
C library interface: pthread_attr_getstacksize()

CEEOPAGS obtains the thread's stack_size attribute from the specified thread
attribute object.

Syntax

void CEEOPAGS (attr, stack_size, [fc])
CEE_PTAT *attr;
INT4 *stack_size;
FEED_BACK *fc;

CEEOPAGD CWI

Chapter 16. z/OS UNIX System Services support 539

CEEOPAGS
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0140(,R15)
BALR R14,R15

attr (input)
The initialized thread attribute object.

stack_size (output)
The non-negative stack_size attribute value (in bytes).

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
getting the thread stack size attribute.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE5F1 Severity 3

Msg_No 5601

Message Thread attribute object that is not valid was specified.

CEEOPAGW
C library interface: pthread_attr_getweight_np()

CEEOPAGW obtains the thread's threadweight attribute from the specified thread
attribute object.

Syntax

void CEEOPAGW (attr, threadweight, [fc])
CEE_PTAT *attr;
INT4 *threadweight;
FEED_BACK *fc;

CEEOPAGW
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0148(,R15)
BALR R14,R15

attr (input)
The initialized thread attribute object.

threadweight (output)
v 0 - indicates a heavy weight thread.
v 1 - indicates a medium weight thread.

Note: Light weight threads are not supported.

CEEOPAGS CWI

540 z/OS V2R1.0 Language Environment Vendor Interfaces

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
getting the thread's threadweight attribute.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE5F1 Severity 3

Msg_No 5601

Message Thread attribute object that is not valid was specified.

CEEOPASD
C library interface: pthread_attr_setdetachstate()

The detachstate of the thread attribute object indicates if a thread should either be
detached immediately upon completion or remain nondetached. CEEOPASD sets
the appropriate value in the thread attribute object.

Syntax

void CEEOPASD (attr, detachstate, [fc])
CEE_PTAT *attr;
INT4 *detachstate;
FEED_BACK *fc;

CEEOPASD
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0136(,R15)
BALR R14,R15

attr (input)
The initialized thread attribute object.

detachstate (input)
v 0 - indicates that the thread remains in an undetached state after termination

of the thread.
v 1 - indicates that the thread is detached on completion.
v

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
setting the thread detachstate attribute.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

CEEOPAGW CWI

Chapter 16. z/OS UNIX System Services support 541

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE5F1 Severity 3

Msg_No 5601

Message Thread attribute object that is not valid was specified.

CEE5F2 Severity 3

Msg_No 5602

Message The value of detachstate is not 0 or 1.

CEEOPASS
C library interface: pthread_attr_setstacksize()

CEEOPASS sets the thread's stack_size attribute in the specified thread attribute
object, attr. Note the thread's stack_size attribute is initialized to the size specified
by the STACK runtime option when the thread attribute object is initialized.

Syntax

void CEEOPASS (attr, stack_size, [fc])
CEE_PTAT *attr;
INT4 *stack_size;
FEED_BACK *fc;

CEEOPASS
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0144(,R15)
BALR R14,R15

attr (input)
The initialized thread attribute object.

stack_size (input)
The non-negative initial size (in bytes) of the runtime stack for a thread.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
setting the thread stack size attribute.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE5F1 Severity 3

Msg_No 5601

Message Thread attribute object that is not valid was specified.

CEEOPASD CWI

542 z/OS V2R1.0 Language Environment Vendor Interfaces

Condition

CEE5FC Severity 3

Msg_No 5612

Message The stack_size attribute did not contain a valid value.

CEEOPASW
C library interface: pthread_attr_setweight_np()

CEEOPASW sets the threadweight property in the specified thread attribute object.

Syntax

void CEEOPASW (attr, threadweight, [fc])
CEE_PTAT *attr;
INT4 *threadweight;
FEED_BACK *fc;

CEEOPASW
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0152(,R15)
BALR R14,R15

attr (input)
The initialized thread attribute object.

threadweight (input)
v 0 - indicates a heavy weight thread.
v 1 - indicates a medium weight thread.

Note: Light weight threads are not supported.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
setting the thread weight attribute.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE5F1 Severity 3

Msg_No 5601

Message Thread attribute object that is not valid was specified.

CEE5F3 Severity 3

Msg_No 5603

Message Value for threadweight is not valid.

CEEOPASS CWI

Chapter 16. z/OS UNIX System Services support 543

CEEOPC
C library interface: pthread_create()

CEEOPC creates a new thread in the caller's enclave and in the context of the
current enclave with the specified attribute, attr. The new thread starts executing
the routine at the entry point referred to by routine_addr with arg as its sole
argument. When the routine returns, thread is implicitly terminated using the
return value of the program as the termination status. The thread is detached
according to the detachstate setting of the thread attribute specified at thread
creation.

Upon successful completion of this function, the thread identifier of the newly
created thread is returned in the location referred to by thread_id. Other threading
functions may use thread_id as a token in their parameter lists to refer to the new
thread.

Syntax

void CEEOPC (routine_addr, [arg], [attr], thread_id, [fc]
CEE_ENTRY *routine_addr;
CEE_TOKEN *arg;
CEE_PTAT *attr;
CEE_THDID *thread_id;
FEED_BACK *fc;

CEEOPC
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0048(,R15)
BALR R14,R15

routine_addr (input)
The entry point of an external routine (not a nested procedure) that the new
thread starts executing.

arg (input/optional)
An argument to be passed to the routine at its entry point. Its type is
determined by the requirements of the routine called. This is the R1 value that
is inbound to the target routine.

attr (input/optional)
The thread attributes object to be used for the new thread. When attr is
omitted, the default attributes are used.

thread_id (output)
The unique thread identifier generated by Language Environment. It is used to
refer to the new thread in other services. The thread identifier occupies a
double word. The exact content of the thread identifier is not externalized.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
creating the new thread.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

CEEOPC CWI

544 z/OS V2R1.0 Language Environment Vendor Interfaces

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE5F1 Severity 3

Msg_No 5601

Message The attributes object parameter did not contain a valid initialized
attributes object (POSIX PTAT).

CEE5F4 Severity 3

Msg_No 5604

Message A new thread could not be created due to some system-detected
error with error code <err_code> and reason code <rsn_code>.

CEE5F5 Severity 3

Msg_No 5605

Message There was not enough storage available to create the new thread.

Usage Notes:

1. It is assumed that routine_addr is currently available and does not require an
explicit LOAD performed.

2. The new thread starts execution at the external procedure given in
routine_addr and shares the context of the current enclave.

3. The thread shares all resources of the enclave.
4. The new thread has access to a new, independent stack. In particular, a new

stack frame zero is provided.
5. The new thread inherits the execution priority from its creator. The size of the

stack is determined by the stack size thread attribute.
6. The user must serialize use of shared resources, for instance, external data or

arguments.
7. Arguments can be passed to the routine to be executed if the routine is

declared to accept them. Output arguments and in/out arguments can be
passed. Since the thread runs asynchronously with the creating thread,
arguments passed by reference become shared variables and their use should
be serialized, if necessary. Since the thread doesn't return to its creator, output
arguments returned by value could be lost if the storage referred to by the
arguments no longer exists. This might occur if the caller provided automatic
storage for the arguments to the new thread.

8. POSIX provides a per-process signal vector and a per-thread signal mask.
9. The thread_id is used to refer to the thread as input to other services. No other

use of thread_id is allowed.
10. Success of thread creation is reported by the fc. This does not report on

success of Language Environment initialization in the new thread nor the
successful execution of the code on the thread. If the fc is nonzero, thread_id is
not valid. If the fc is zero, the thread_id is valid and can be used in functions
that require thread identifiers.

11. The new thread's state is runnable.

CEEOPE
C library interface: pthread_exit()

CEEOPC CWI

Chapter 16. z/OS UNIX System Services support 545

CEEOPE terminates the calling thread within the current enclave. A thread
termination status can be specified so that it becomes available to a thread waiting
for the terminating thread. The status remains available until the thread is
detached. Thread termination does not release any application-visible enclave (or
process) resources such as mutexes.

This function does not return to its caller.

Syntax

void CEEOPE (status)
INT4 *status;

CEEOPE
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0072(,R15)
BALR R14,R15

status (input)
The value of thread termination status to become available to a thread waiting
for the current thread to terminate. The value is user-defined.

CEEOPEQ
C library interface: pthread_equal()

CEEOPEQ compares the specified thread identifiers. Upon successful completion of
this function, a nonzero value is returned in the result argument if the specified
thread identifiers are equal. Otherwise, a zero value is returned.

Syntax

void CEEOPEQ (thread_id1, thread_id2, result, [fc])
CEE_THDID *thread_id1;
CEE_THDID *thread_id2;
INT2 *result;
FEED_BACK *fc;

CEEOPEQ
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0088(,R15)
BALR R14,R15

thread_id1 (input)
The thread identifier of the first thread.

thread_id2 (input)
The thread identifier of the second thread.

result (output)
The result of the thread_id comparison. A nonzero value indicates the two
thread identifiers are equal and a zero value indicates otherwise.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
comparing the thread identifiers.

CEEOPE CWI

546 z/OS V2R1.0 Language Environment Vendor Interfaces

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEEOPJ
C library interface: pthread_join()

CEEOPJ suspends execution of the calling thread until the target thread specified
by thread_id terminates. The calling thread is thus placed into the blocked state.
When the target thread completes, the calling thread is placed into the runnable
state. The target thread cannot be the calling thread. If the target thread is already
terminated, the call returns without the calling thread being blocked.

Upon successful completion of this function:
1. The termination status of the target thread is returned in the location referred

to by status. This is set for normal return using pthread_exit().
2. If the detach parameter of CEEOPJ, WithDetach, is set to one (1), CEEOPJ

detaches the target thread before returning. Otherwise, CEEOPJ does not detach
the target thread.

Syntax

void CEEOPJ (thread_id, WithDetach, status, [fc])
CEE_THDID *thread_id;
INT4 *WithDetach;
POINTER *status;
FEED_BACK *fc;

CEEOPJ
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0068(,R15)
BALR R14,R15

thread_id (input)
The unique thread identifier of the target thread.

WithDetach (input)
The indicator of whether the target thread should be detached before CEEOPJ
returns.
0 Do not detach
1 Detach

status (input/output)
The location in which the value passed to the thread termination function by
the terminating (target) thread is returned.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
waiting for the thread termination.

CEEOPEQ CWI

Chapter 16. z/OS UNIX System Services support 547

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE5F6 Severity 3

Msg_No 5606

Message The value specified by thread_id is not a valid thread identifier.

CEE5F7 Severity 3

Msg_No 5607

Message The value specified by thread_id is the thread identifier of the
currently executing thread.

CEE5F8 Severity 3

Msg_No 5608

Message The z/OS UNIX BPX1PTJ system call by CEEOPJ failed.

CEE5F9 Severity 3

Msg_No 5609

Message The thread specified by thread_id is not in an undetached state, is
currently joined by another thread, or does not exist.

CEEOPO
C library interface: pthread_once()

CEEOPO insures the routine passed is executed only once during the execution of
a POSIX process (based upon the once_ctl that is passed).

Syntax

void CEEOPO (once_ctl, init_rtn, [fc])
INT4 *once_ctl;
ENTRY *init_rtn;
FEED_BACK *fc;

CEEOPO
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0084(,R15)
BALR R14,R15

once_ctl (input)
Determines whether the init_rtn has been called for the POSIX process. This
variable must be initialized to the value of the PTHREAD_ONCE_INIT
constant defined in the C/C++ library pthread.h header.

init_rtn (input)
The user routine that is executed on behalf of the pthread_once call. The user
routine is invoked without any parameters.

fc (output/optional)
The feedback code returned by the service.

CEEOPJ CWI

548 z/OS V2R1.0 Language Environment Vendor Interfaces

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE5GJ Severity 3

Msg_No 5651

Message The once_control parameter did not contain a valid value.

Usage Notes:

1. Nested CEEOPO invocations are allowed.
2. Although longjmp() can be used in an init_rtn, be aware that if longjmp()

prevents the init_rtn from completing, CEEOPO will not terminate; any threads
that are in a wait for the once_ctl will remain in a wait.

CEEOPS
C library interface: pthread_self()

CEEOPS obtains the identifier of the calling thread. This is useful since the thread
creation call does not provide the thread identifier to the created thread.

Upon successful completion of this function, the thread identifier of the calling
thread is returned in the specified argument, thread_id.

Syntax

void CEEOPS (thread_id, [fc])
CEE_THDID *thread_id;
FEED_BACK *fc;

CEEOPS
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0080(,R15)
BALR R14,R15

thread_id (output)
The thread identifier of the calling thread.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
getting the calling thread identifier.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEEOPO CWI

Chapter 16. z/OS UNIX System Services support 549

Signal handling CWIs
This section describes the CWIs for signal handling.

CEEOKILL
C library interfaces: kill(), pthread_kill(), raise(), sigqueue()

This CWI supports the C/C++ kill(), pthread_kill(), raise(), and sigqueue()
functions. The specific mapping is as follows:

The function value is set based on the severity code in the feedback token (fc).

Syntax

void CEEOKILL (function, process_id, thread_id, cond_rep, sig_val, [q_data_token], [fc])
INT4 *function;
CEE_TOKEN *process_id;
CEE_THDID *thread_id;
FEED_BACK *cond_rep;
CEE_TOKEN *sig_val;
CEE_TOKEN *q_data_token;
FEED_BACK *fc;

CEEOKILL
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0028(,R15)
BALR R14,R15

function (input)
Indicate the origin of this CWI request. It is 1 for kill(), 2 for pthread_kill()
and 3 for sigqueue(). raise() is mapped to kill() to self (for example,
function value = 1).

process_id (input)
Ignored unless the function value is 1. It indicates the process identifier to
which the signal is to be sent. If that identifier is zero, the signal is sent to all
processes (excluding an unspecified set of system processes) whose group
identifier is equal to the process group identifier of the sender and for which
the process has permission to send a signal. If the process identifier is negative
(but not -1), the signal is sent to all of the processes (excluding an unspecified
set of system processes) whose process group identifier is equal to the absolute
value of this argument and for which the process has permission to send a
signal.

thread_id (input)
Ignored unless the function value is 2. If the thread identifier is nonzero, the
signal is sent to the identified thread. If the thread identifier is zero, the signal
is sent to the process(es) based on the process identifier setting.

cond_rep (input)
The condition token defining the signal to be raised. The valid conditions are
CEE5201 through CEE5222. CEE5223 and CEE5234 are supported in z/OS

kill(pid, sig): CEEOKILL(’1’, pid, ’0’, Cond_Token, ’0’, fc)
pthread_kill(tid, sig): CEEOKILL(’2’, ’0’, tid, Cond_Token, ’0’, fc)
sigqueue(pid, sig_val): CEEOKILL(’3’, pid, ’0’, Cond_Token, ’sig_val’, ’0’, fc)
raise(sig): CEEOKILL(’1’, getpid(), ’0’, Cond_Token, ’0’, fc)

Signal Handling CWIs

550 z/OS V2R1.0 Language Environment Vendor Interfaces

UNIX System Services. Additionally, CEE5200 represents the signal number
value of zero and indicates the request for the validation the arguments but
causes no signal to be sent. For a list of condition tokens that map to signals,
see z/OS Language Environment Programming Guide.

sig_val (input)
Ignored unless the function value is 3. It indicates the value to be supplied
with the signal when it is delivered to the process identified by the pid.

q_data_token (input/optional)
32-bit data to be placed in the ISI for use in accessing the qualifying data
associated with the given instance of the signal.

fc (output/optional)
A condition token returned by the service, indicating the degree of success of
the service. Note that the module returning the code is in parentheses, but to
the caller, it appears that CEEOKILL can return any of these.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message The function failed due to POSIX(OFF) in effect (CEEOKILL).

CEE55L Severity 3

Msg_No 5301

Message The value specified by cond_rep represents a condition that is
not valid or a condition that is not a POSIX signal as defined for
this product (CEEOKILL).

CEE55M Severity 3

Msg_No 5302

Message The service was unsuccessful due to a z/OS Environmental or
Internal error (CEEOSIGG). Consult the Reason_Code returned
to determine the exact reason the error occurred. The following
reason code can accompany this error: JRPTCANCELERROR.

Note that Return_Code and Reason_Code are returned as part of the qualifying
data information of the fc, as shown in Figure 112.

Q_Data_Token @parm1

@parm2

@parm3

parm count (=3)

Return_Code

Reason_Code

ISI of fc

Figure 112. Condition qualifying data returned by CEEOKILL CWI

CEEOKILL CWI

Chapter 16. z/OS UNIX System Services support 551

Thread keyed data CWIs
The CWIs in this section support POSIX thread keyed data functions.

CEEOPGS
C library interface: pthread_getspecific()

CEEOPGS obtains the thread-specific value associated with a key that was
obtained from a previous call to CEEOPKC. Different threads can have different
values bound to the same key.

When successful, CEEOPGS stores the value currently bound to the specified key to
the storage location referred to by the storage location which is in turn referred to
by value. Language Environment manages the storage associated with the
key/value bindings.

Syntax

void CEEOPGS (key, value, [fc])
CEE_THDKEY *key;
POINTER *value;
FEED_BACK *fc;

CEEOPGS
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0096(,R15)
BALR R14,R15

key (input)
The identifier for which the value is to be obtained. The key is generated by a
previous call to CEEOPKC.

value (output)
The address of the address of the location to store the value currently
associated with the key identifier. The value binding for the key is specific to
the thread. The value typically is the address of a storage area to be
unallocated during thread termination by the destructor function.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
creating the new key.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message POSIX services not available.

Thread keyed data CWIs

552 z/OS V2R1.0 Language Environment Vendor Interfaces

Condition

CEE5CQ Severity 3

Msg_No 5530

Message The key value is not valid. That is, the key identifier is not one of
the keys previously defined by CEEOPKC.

CEE5CS Severity 3

Msg_No 5532

Message Thread termination is in progress. This operation is not allowed. A
key get operation is not permitted during thread termination.

CEE5CT Severity 3

Msg_No 5533

Message Program interrupt referring to user parameters.

Usage Notes:

1. Different threads can bind different values to the same key.
2. This function cannot be called during thread termination.

CEEOPKC
C library interface: pthread_key_create()

CEEOPKC creates a new unique key in the enclave of the caller and in the context
of the current enclave. The destructor is a pointer to a function to be executed upon
thread termination. The CEEOPKC service assigns a key identifier and returns it in
the location referred to by key. Key identifiers and their associated destructor
functions are common to all threads in the enclave.

Syntax

void CEEOPKC (key, [destructor], [fc])
CEE_THDKEY *key;
CEE_ENTRY *destructor;
FEED_BACK *fc;

CEEOPKC
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0092(,R15)
BALR R14,R15

key (output)
The unique key identifier generated by Language Environment. Any thread
within the enclave can refer to this key.

destructor (input/optional)
The function pointer which is the user routine to gain control during thread
termination. This routine must be an external routine (not a nested procedure).
This parameter can be omitted.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
creating the new key.

CEEOPGS CWI

Chapter 16. z/OS UNIX System Services support 553

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message POSIX is not initialized.

CEE5CM Severity 3

Msg_No 5526

Message There was not enough storage available to create the new key.

CEE5CN Severity 3

Msg_No 5527

Message The key name space is exhausted. The key creation would have
resulted in more than the system imposed limit for the maximum
number of data keys which can be created per enclave.

CEE5CO Severity 3

Msg_No 5528

Message Thread termination is in progress. This operation is not allowed.
Key creation is not permitted during thread termination.

CEE5CT Severity 3

Msg_No 5533

Message The key pointer passed is not valid.

Usage Notes:

1. It is assumed that destructor is currently available and does not require an
explicit LOAD performed.

2. The key identifier returned can be used by all threads within the enclave that
uses the CEEOPSS and CEEOPGS services.

CEEOPKD
C library interface: pthread_key_delete()

CEEOPKD deletes a thread-specific data key in the caller's enclave and in the
context of the current enclave.

Syntax

void CEEOPKD (key, [fc])
CEE_THDKEY *key;
FEED_BACK *fc;

CEEOPKD
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0564(,R15)
BALR R14,R15

CEEOPKC CWI

554 z/OS V2R1.0 Language Environment Vendor Interfaces

key (input)
A key identifier returned by a previous invocation of CEEOPKC.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
creating the new key.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message POSIX is not initialized.

CEE5CT Severity 3

Msg_No 5533

Message The key pointer passed is not valid.

CEEOPSS
C library interface: pthread_setspecific()

CEEOPSS establishes a thread-specific value to a key obtained by a previous call to
CEEOPKC. Different threads can bind different values to the same key.

When successful, CEEOPSS obtains the value from the location referred to by value
and assigns it to a Language Environment-managed storage location associated
with the key.

Syntax

void CEEOPSS (key, value, [fc])
CEE_THDKEY *key;
CEE_TOKEN *value;
FEED_BACK *fc;

CEEOPSS
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0100(,R15)
BALR R14,R15

key (input)
The identifier to associate with the value. The identifier is generated by a
previous call to CEEOPKC.

value (input)
The value to be associated with the key identifier. The value binding for the
key is specific to the thread. The value typically is the address of a storage area
to be unallocated during thread termination by the destructor function.

CEEOPKD CWI

Chapter 16. z/OS UNIX System Services support 555

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
creating the new key.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE5CP Severity 3

Msg_No 5529

Message There was not enough storage available to bind the value to the key.

CEE5CQ Severity 3

Msg_No 5530

Message The key value is not valid. The key identifier is not one of the keys
previously defined by CEEOPKC.

CEE5CR Severity 3

Msg_No 5531

Message Thread termination is in progress. This operation is not allowed. A
key set operation is not permitted during thread termination.

CEE5CT Severity 3

Msg_No 5533

Message Incorrect user parameter caused a program exception.

Usage Notes:

1. Different threads can bind different values to the same key.
2. Calling this function during thread termination can result in undefined

behavior.

Thread cancellation CWIs
The CWIs in this section support POSIX thread cancellation functions.

Usage Notes:

1. The routine to be executed was previously established by the CEEOPCPU
service.

2. It is assumed that routine is currently available and does not require an explicit
LOAD performed.

CEEOPCPO
C library interface: pthread_cleanup_pop()

CEEOPCPO removes the routine at the top of the cleanup stack of the calling
thread and optionally executes it, if execute is nonzero. The cleanup stack is what is
specific to cleanup routines registered for the thread by the CEEOPCPU service.
The processing of the registered cleanup routines also takes place at thread
termination.

CEEOPSS CWI

556 z/OS V2R1.0 Language Environment Vendor Interfaces

Syntax

void CEEOPCPO (execute, [fc])
INT4 *execute;
FEED_BACK *fc;

CEEOPCPO
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0060(,R15)
BALR R14,R15

execute (input)
An indicator to execute the cleanup routine that is being popped. If execute is
nonzero, the routine that was previously registered through the CEEOPCPU
service is executed.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
popping and optionally executing the routine.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message POSIX services not available.

CEE5FS Severity 3

Msg_No 5628

Message Thread termination is in progress. This operation is not
allowed. Calls to cleanup routine functions are not permitted
during thread termination.

CEE5FT Severity 3

Msg_No 5629

Message No routine to execute (stack is empty).

CEEOPCPU
C library interface: pthread_cleanup_push()

CEEOPCPU registers a new thread-specific cleanup routine. The routine is a pointer
to a function to be executed as a result of thread termination, and optionally as
part of the processing of CEEOPCPO. The arg value refers to an optional argument
that is passed to the cleanup routine when it is called. The registration of a cleanup
routine is on a per-thread basis at a given stack frame.

Syntax

void CEEOPCPU (routine, [arg], [fc])

CEEOPCPO CWI

Chapter 16. z/OS UNIX System Services support 557

CEE_ENTRY *routine;
CEE_TOKEN *arg;
FEED_BACK *fc;

CEEOPCPU
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0064(,R15)
BALR R14,R15

routine (input)
The entry point of a routine which is to be executed at thread termination and
(optionally) upon a call to CEEOPCPO. An optional value can be passed to this
routine.

arg (input/optional)
An argument that is passed to routine when it is executed.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
pushing the cleanup routine.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message POSIX services not available.

CEE5FQ Severity 3

Msg_No 5626

Message There was not enough storage available to register the cleanup
handler.

CEE5FR Severity 3

Msg_No 5627

Message Thread termination is in progress. This operation is not allowed.
Cleanup routine registration is not permitted during thread
termination.

Usage Notes:

1. It is assumed that routine is currently available and does not require an explicit
LOAD performed.

2. This routine does not do any validation of the routine address.
3. Cleanup handlers that are pushed in a destructor routine but not popped

explicitly, are not executed. According to POSIX, the order of execution at
thread termination is first cleanup handlers, then destructor routines.

4. If a longjmp() is executed that exits the cleanup handler and returns into a
point of the executing code, remaining cleanup handlers that have not yet been
popped remain pending. If POSIX is ON, a longjmp() out of a cleanup handler
is defined as an undefined behavior (such as an error).

CEEOPCPU CWI

558 z/OS V2R1.0 Language Environment Vendor Interfaces

Thread synchronization — mutex and read-write locks
The CWIs in this section support POSIX mutex and read-write locks thread
synchronization.

CEEOPMD
C library interfaces: pthread_mutex_destroy(), pthread_rwlock_destroy()

CEEOPMD destroys the mutex or read-write lock referred to by lock_object.
Attempting to destroy a locked mutex or read-write lock results in an error
condition.

Syntax

void CEEOPMD (lock_object, [fc])
CEE_MUTEX *lock_object;
FEED_BACK *fc;

CEEOPMD
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0284(,R15)
BALR R14,R15

lock_object (input)
The mutex or read-write lock to be destroyed.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
destroying the mutex or read-write lock.

The following message identifiers and associated severities can be returned by
the service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message The service is unavailable unless POSIX(ON) runtime option
specified and z/OS UNIX System Services are started.

CEE5I5 Severity 3

Msg_No 5701

Message The pthread_mutex_t object specified by lock_object is not valid
(not initialized).

CEE5I7 Severity 3

Msg_No 5703

Message Address exception accessing pthread_mutex_t object specified
by lock_object.

Synchronization mutex

Chapter 16. z/OS UNIX System Services support 559

Condition

CEE5I8 Severity 4

Msg_No 5704

Message Address exception while referencing storage allocated by mutex
initialization for pthread_mutex_t object specified by lock_object.

CEE5I9 Severity 3

Msg_No 5705

Message Pthread_mutex_t object specified by lock_object is damaged.

CEE5II Severity 3

Msg_No 5714

Message The pthread_mutex_t object specified by lock_object is busy.

CEE5IK Severity 4

Msg_No 5716

Message Unable to free storage allocated by mutex initialization for
pthread_mutex_t object specified by lock_object.

CEE5K4 Severity 3

Msg_No 5764

Message The lock object specified by lock_object was not initialized.

CEE5K6 Severity 3

Msg_No 5766

Message An addressing exception occurred referencing a lock object.

CEE5K7 Severity 4

Msg_No 5767

Message Address exception while referencing system storage allocated
by lock object initialization.

CEE5K8 Severity 3

Msg_No 5768

Message The lock object specified by lock_object has been changed since
it was initialized.

CEE5KH Severity 3

Msg_No 5777

Message The lock object specified by lock_object was busy.

CEE5KJ Severity 4

Msg_No 5779

Message System lock storage could not be freed.

CEE5KQ Severity 3

Msg_No 5786

Message The callable service BPX1SLK failed during shared lock
processing. The system return code was return_code, the reason
code was reason_code, X'00'.

CEEOPMD CWI

560 z/OS V2R1.0 Language Environment Vendor Interfaces

Condition

CEE5L4 Severity 3

Msg_No 5796

Message The callable service, BPX1SMC, failed during shared lock
processing. The system return code was return_code. The reason
code was return_code X'00'.

CEEOPMI
C library interfaces: pthread_mutex_init(), pthread_rwlock_init()

CEEOPMI initializes the mutex or read-write lock referred to by lock_object with the
attributes identified by attr_object. If this function fails, the mutex or read-write
lock is not initialized and the contents of lock_object is undefined.

Syntax

void CEEOPMI (lock_object, attr_object, lock_type, [fc])
CEE_MUTEX *lock_object;
CEE_LOCKATTR *attr_object;
INT4 *lock_type;
FEED_BACK *fc;

CEEOPMI
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0280(,R15)
BALR R14,R15

lock_object (input/output)
The mutex or read-write lock to be initialized.

attr_object (input)
The attributes object used to initialize the mutex or read-write lock.

lock_type (input)
A full word integer with the following defined values:

X'00000000'
mutex (without _OPEN_SYS_MUTEX_EXT feature)

X'00000001'
read-write lock

X'00000002'
extended mutex (with _OPEN_SYS_MUTEX_EXT feature)

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
initializing the lock_object.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEEOPMD CWI

Chapter 16. z/OS UNIX System Services support 561

Condition

CEE4S9 Severity 3

Msg_No 5001

Message The service is unavailable unless POSIX(ON) runtime option
specified and z/OS UNIX System Services are started.

CEE5I7 Severity 3

Msg_No 5703

Message Address exception accessing object specified by lock_object or
attr_object.

CEE5I8 Severity 4

Msg_No 5704

Message Address exception while referencing storage allocated by
mutex initialization for pthread_mutex_t object specified by
lock_object.

CEE5IC Severity 3

Msg_No 5708

Message The pthread_mutex_t object specified by lock_object was already
initialized.

CEE5ID Severity 3

Msg_No 5709

Message The pthread_mutexattr_t object specified by attr_object is not
valid (not initialized).

CEE5IE Severity 3

Msg_No 5710

Message Insufficient storage to initialize the pthread_mutex_t object
specified by lock_object.

CEE5IK Severity 4

Msg_No 5716

Message Unable to free storage allocated by mutex initialization for
pthread_mutex_t object specified by lock_object.

CEE5IP Severity 0

Msg_No 5721

Message Insufficient resource to initialize mutex specified by lock_object.

CEE5IQ Severity 0

Msg_No 5722

Message Insufficient privilege to initialize mutex specified by lock_object.

CEE5K6 Severity 3

Msg_No 5766

Message An addressing exception occurred referencing a lock object.

CEE5K7 Severity 4

Msg_No 5767

Message Address exception while referencing system storage allocated
by lock object initialization.

CEEOPMI CWI

562 z/OS V2R1.0 Language Environment Vendor Interfaces

Condition

CEE5KB Severity 3

Msg_No 5771

Message The pthread_rwlock_t object specified by lock_object was
already initialized.

CEE5KC Severity 3

Msg_No 5772

Message The lock attribute object specified by attr_object was not
initialized.

CEE5KD Severity 3

Msg_No 5773

Message Insufficient storage to initialize the pthread_rwlock_t object
specified by lock_object.

CEE5KJ Severity 4

Msg_No 5779

Message System lock storage could not be freed.

CEE5KO Severity 0

Msg_No 5784

Message Insufficient resource to initialize another read-write lock
specified by lock_object.

CEE5KP Severity 0

Msg_No 5785

Message Insufficient privilege to initialize the read-write lock specified
by lock_object.

CEE5KQ Severity 3

Msg_No 5786

Message The callable service BPX1SLK failed during shared lock
processing. The system return code was return_code, the reason
code was reason_code, X'00'.

CEE5L4 Severity 3

Msg_No 5796

Message The callable service, BPX1SMC, failed during shared lock
processing. The system return code was return_code. The reason
code was return_code, X'00'.

CEEOPML
C library interface: pthread_mutex_lock()

CEEOPML acquires (locks) the mutex referred to by mutex. If the mutex is already
locked by another thread, the calling thread blocks until the mutex becomes
available. This function returns with the mutex in the locked state with the calling
thread as its owner.

Syntax

void CEEOPML (mutex, [fc])

CEEOPMI CWI

Chapter 16. z/OS UNIX System Services support 563

CEE_MUTEX *mutex;
FEED_BACK *fc;

CEEOPML
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0288(,R15)
BALR R14,R15

mutex (input)
The mutex to be locked.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
locking the mutex.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message The service is unavailable unless POSIX(ON) runtime option
specified and z/OS UNIX System Services are started.

CEE5I6 Severity 3

Msg_No 5702

Message The current thread already owns the pthread_mutex_t object
specified by mutex.

CEE5IO Severity 4

Msg_No 5720

Message Mutex specified by mutex was not locked because thread was
forced to terminate.

CEE5IS Severity 0

Msg_No 5724

Message Not enough resource (other than memory).

CEE5K4 Severity 3

Msg_No 5764

Message The mutex specified by mutex was not initialized.

CEE5K6 Severity 3

Msg_No 5766

Message An addressing exception occurred referencing a lock object.

CEE5K7 Severity 4

Msg_No 5767

Message Address exception while referencing system storage allocated
by lock object initialization.

CEEOPML CWI

564 z/OS V2R1.0 Language Environment Vendor Interfaces

Condition

CEE5KQ Severity 3

Msg_No 5786

Message The callable service BPX1SLK failed during shared lock
processing. The system return code was return_code, the reason
code was reason_code, X'00'.

CEE5L4 Severity 3

Msg_No 5796

Message The callable service, BPX1SMC, failed during shared lock
processing. The system return code was return_code. The
reason code was return_code X'00'.

Usage Notes:

1. An attempt by the current owner of a mutex to relock the mutex is allowed if
the CEEOPXS service was used to give the mutex the attribute RECURSIVE
before the mutex was initialized with the CEEOPMI service. Otherwise, the
mutex has (by default) the attribute NONRECURSIVE, and any request to
relock it fails.

2. A recursive mutex must be unlocked as many times as it has been locked and
relocked to relinquish ownership.

3. Only the owning thread (the thread which acquired a mutex) can unlock it.

CEEOPML2
C library interface: pthread_mutex_lock()

CEEOPML2 is the C-callable Language Environment interface to the
pthread_mutex_lock() function.

Syntax

int CEEOPML2 (mutex)
pthread_mutex_t *mutex;

CEEOPML2
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12)
L R15,316(,R15)
BALR R14,R15

mutex (input)
Identifies the mutex to be locked.

CEEOPML2 can return the following function values:

0 Function completed successfully.

-1 An error occurred; errno can be one of the following values:
EINVAL

The specified mutex is not valid.
EDEADLK

The specified mutex is already locked.
EAGAIN

The specified mutex could not be acquired because the maximum
number of recursive locks for the mutex has been exceeded.

CEEOPML CWI

Chapter 16. z/OS UNIX System Services support 565

CEEOPMT
C library interface: pthread_mutex_trylock()

CEEOPMT conditionally acquires (locks) the mutex referred to by mutex.
Conditionally means the call always returns immediately, whether or not the lock
is acquired. If the mutex is already locked, the mutex is not acquired. When
successful, this function returns with the mutex in the locked state with the calling
thread as its owner.

Syntax

void CEEOPMT (mutex, [fc])
CEE_MUTEX *mutex;
FEED_BACK *fc;

CEEOPMT
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0296(,R15)
BALR R14,R15

mutex (input)
The mutex to be locked conditionally.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
locking the mutex conditionally. The following message identifiers and
associated severities can be returned by the service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message The service is unavailable unless POSIX(ON) runtime option
specified and z/OS UNIX System Services are started.

CEE5I5 Severity 3

Msg_No 5701

Message The pthread_mutex_t object specified by mutex is not valid (not
initialized).

CEE5I8 Severity 4

Msg_No 5704

Message Address exception while referencing storage allocated by mutex
initialization for pthread_mutex_t object specified by mutex.

CEE5IB Severity 0

Msg_No 5707

Message The pthread_mutex_t object specified by mutex is busy.

CEE5IO Severity 4

Msg_No 5720

Message Thread forced by quiesce.

CEEOPMT CWI

566 z/OS V2R1.0 Language Environment Vendor Interfaces

Condition

CEE5IS Severity 0

Msg_No 5724

Message Not enough resource (other than memory).

CEE5K4 Severity 3

Msg_No 5764

Message The mutex specified by mutex was not initialized.

CEE5K6 Severity 3

Msg_No 5766

Message An addressing exception occurred referencing a lock object.

CEE5K7 Severity 4

Msg_No 5767

Message Address exception while referencing system storage allocated by
lock object initialization.

CEE5KQ Severity 3

Msg_No 5786

Message The callable service BPX1SLK failed during shared lock processing.
The system return code was return_code, the reason code was
reason_code, X'00'.

Usage Notes:

1. If the CEEOPXS service was used to give the mutex the attribute RECURSIVE
before the mutex was initialized with the CEEOPMI service, the thread which
locked the mutex can relock it with lock service, CEEOPML, or trylock service,
CEEOPMT. In other words, trylock returns with success rather than busy
feedback code, if the thread already owns a recursive mutex. Only when the
mutex is nonrecursive, which is the default attribute for mutexes, does trylock
return the busy feedback code if the mutex is already locked.

2. A recursive mutex must be unlocked as many times as it has been locked and
relocked to relinquish ownership.

3. Only the owning thread (the thread that acquired a mutex) can unlock it.

CEEOPMU
C library interface: pthread_mutex_unlock()

CEEOPMU releases a mutex held by the calling thread. A recursive mutex must be
unlocked as many times as it has been locked and relocked to relinquish
ownership. Only the owning thread (the thread that acquired a mutex) can unlock
it.

Syntax

void CEEOPMU (mutex, [fc])
CEE_MUTEX *mutex;
FEED_BACK *fc;

CEEOPMU
Call this CWI interface as follows:

CEEOPMT CWI

Chapter 16. z/OS UNIX System Services support 567

L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0292(,R15)
BALR R14,R15

mutex (input)
The mutex to be unlocked.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
unlocking the mutex.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message The service is unavailable unless POSIX(ON) runtime option
specified and z/OS UNIX System Services are started.

CEE5IA Severity 3

Msg_No 5706

Message The current thread does not own the pthread_mutex_t object
specified by mutex.

CEE5K4 Severity 3

Msg_No 5764

Message The mutex specified by mutex was not initialized.

CEE5K6 Severity 3

Msg_No 5766

Message An addressing exception occurred referencing a lock object.

CEE5K7 Severity 4

Msg_No 5767

Message Address exception while referencing system storage allocated by
lock object initialization.

CEE5KQ Severity 3

Msg_No 5786

Message The callable service BPX1SLK failed during shared lock processing.
The system return code was return_code, the reason code was
reason_code, X'00'.

CEE5L4 Severity 3

Msg_No 5796

Message The callable service, BPX1SMC, failed during shared lock processing.
The system return code was return_code. The reason code was
return_code X'00'.

CEEOPMU2
C library interface: pthread_mutex_unlock()

CEEOPMU CWI

568 z/OS V2R1.0 Language Environment Vendor Interfaces

CEEOPMU2 is the C-callable Language Environment interface to the
pthread_mutex_unlock() function.

Syntax

int CEEOPMU2 (mutex)
pthread_mutex_t *mutex;

CEEOPMU2
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12)
L R15,320(,R15)
BALR R14,R15

mutex (input)
Identifies the mutex to be locked.

CEEOPMU2 can return the following function values:

0 Function completed successfully.

-1 An error occurred; errno can be one of the following values:
EINVAL

The specified mutex is not valid.
EPERM

The current thread does not own the mutex.

CEEOPRL
C library interface: pthread_rwlock_rdlock()

CEEOPRL acquires (locks) the read-write lock for read referred to by rwlock. If the
read-write lock is already locked for write by another thread, or if there are threads
waiting for the read-write lock for write, the calling thread blocks until the
read-write lock becomes available. This function returns with the read-write lock in
the locked state with the calling thread as its holder.

Syntax

void CEEOPRL (rwlock, [fc])
CEE_RWLOCK *rwlock;
FEED_BACK *fc;

CEEOPRL
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,500(,R15)
BALR R14,R15

rwlock (input)
The read-write lock to be locked for read.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
locking the read-write lock for read.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

CEEOPMU2 CWI

Chapter 16. z/OS UNIX System Services support 569

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message The service is unavailable unless POSIX(ON) runtime option
specified and z/OS UNIX System Services are started.

CEE5K4 Severity 3

Msg_No 5764

Message The read-write lock specified by the rwlock was not initialized.

CEE5K5 Severity 3

Msg_No 5765

Message The read-write lock specified by rwlock had already been locked by
the same thread for writing. A read-write lock can only be locked
for reading multiple times by the same thread.

CEE5K6 Severity 3

Msg_No 5766

Message An addressing exception occurred referencing a lock object.

CEE5K7 Severity 4

Msg_No 5767

Message Address exception while referencing system storage allocated by
lock object initialization.

CEE5KN Severity 4

Msg_No 5783

Message Read-write lock specified by rwlock was not locked because thread
was forced to terminate.

CEE5KQ Severity 3

Msg_No 5786

Message The callable service BPX1SLK failed during shared lock processing.
The system return code was return_code, the reason code was
reason_code, X'00'.

CEE5KR Severity 3

Msg_No 5787

Message Not enough resource (other than memory).

CEE5KU Severity 3

Msg_No 5790

Message Insufficient storage to lock the read-write lock object specified by
rwlock.

CEE5KV Severity 4

Msg_No 5791

Message System read-write lock storage could not be freed.

Usage Notes:

CEEOPRL CWI

570 z/OS V2R1.0 Language Environment Vendor Interfaces

1. Multiple threads will be granted the read-write lock for read if no thread holds
the read-write lock for write and no thread is blocked waiting for the
read-write lock for write.

2. A read-write lock locked for read must be unlocked as many times as it has
been locked and relocked to relinquish ownership.

CEEOPRL2
C library interface: pthread_rwlock_rdlock()

CEEOPRL2 is the C-callable Language Environment interface to the pthread_
rwlock_rdlock() function for a read lock.

Syntax

int CEEOPRL2 (rwlock)
pthread_rwlock_t *rwlock;

CEEOPRL2
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12)
L R15,520(,R15)
BALR R14,R15

rwlock (input)
Identifies the read-write lock to be locked for read.

CEEOPRL2 can return the following function values:

0 Function completed successfully.

-1 An error occurred; errno can be one of the following values:

EINVAL
The specified read-write lock is not valid.

EDEADLK
The specified read-write lock is already locked.

EAGAIN
The specified read-write lock could not be acquired because the
maximum number of recursive locks for the read-write lock has
been exceeded.

ENOMEM
Not enough memory to acquire a lock.

CEEOPRT
C library interface: pthread_rwlock_tryrdlock()

CEEOPRT conditionally acquires (locks) the read-write lock for read referred to by
rwlock. Conditionally means the call always returns immediately, whether or not
the lock is acquired. If the read-write lock is already locked for write, or if there
are threads waiting for the read-write lock for write, the read-write lock is not
acquired. The exception is when the calling thread has already locked the
read-write lock for read, in which case it will still acquire the lock. When
successful, this function returns with the read-write lock in the locked state with
the calling thread as its owner.

CEEOPRL CWI

Chapter 16. z/OS UNIX System Services support 571

Note: Only the owning thread (the thread that acquired a read-write lock) can
unlock it.

Syntax

void CEEOPRT (rwlock, [fc])
CEE_RWLOCK *rwlock;
FEED_BACK *fc;

CEEOPRT
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,504(,R15)
BALR R14,R15

rwlock (input)
The read-write lock to be locked for read conditionally.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
locking the read-write lock for read conditionally.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message The service is unavailable unless POSIX(ON) runtime option
specified and z/OS UNIX System Services are started.

CEE5K4 Severity 3

Msg_No 5764

Message The read-write lock specified by the rwlock was not initialized.

CEE5K6 Severity 3

Msg_No 5766

Message An addressing exception occurred referencing a lock object.

CEE5K7 Severity 4

Msg_No 5767

Message Address exception while referencing system storage allocated by
lock object initialization.

CEE5KN Severity 4

Msg_No 5783

Message Read-write lock specified by rwlock was not locked because thread
was forced to terminate.

CEEOPRT CWI

572 z/OS V2R1.0 Language Environment Vendor Interfaces

Condition

CEE5KQ Severity 3

Msg_No 5786

Message The callable service BPX1SLK failed during shared lock processing.
The system return code was return_code, the reason code was
reason_code, X'00''.

CEE5KR Severity 3

Msg_No 5787

Message Not enough resource (other than memory).

CEE5KS Severity 3

Msg_No 5788

Message The read-write lock specified by rwlock was busy.

CEE5KU Severity 3

Msg_No 5790

Message Insufficient storage to lock the read-write lock object specified by
rwlock.

CEE5KV Severity 4

Msg_No 5791

Message System read-write lock storage could not be freed.

Usage Notes:

1. It is assumed that routine is currently available and does not require an explicit
LOAD performed.

CEEOPRU
C library interface: pthread_rwlock_unlock()

CEEOPRU releases a read-write lock held by the calling thread. A read-write lock
must be unlocked as many times as it has been locked, and relocked to relinquish
ownership. Only the holding thread (the thread that acquired a read-write lock)
can unlock it.

Syntax

void CEEOPRU (rwlock, [fc])
CEE_RWLOCK *rwlock;
FEED_BACK *fc;

CEEOPRU
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,516(,R15)
BALR R14,R15

rwlock (input)
The read-write lock to be unlocked.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
unlocking the read-write lock.

CEEOPRT CWI

Chapter 16. z/OS UNIX System Services support 573

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message The service is unavailable unless POSIX(ON) runtime option
specified and z/OS UNIX System Services are started.

CEE5K4 Severity 3

Msg_No 5764

Message The read-write lock specified by the rwlock was not initialized.

CEE5K6 Severity 3

Msg_No 5766

Message An addressing exception occurred referencing a lock object.

CEE5K7 Severity 4

Msg_No 5767

Message Address exception while referencing system storage allocated by lock
object initialization.

CEE5KN Severity 4

Msg_No 5783

Message Read-write lock specified by rwlock was not locked because thread
was forced to terminate.

CEE5KQ Severity 3

Msg_No 5786

Message The callable service BPX1SLK failed during shared lock processing.
The system return code was return_code, the reason code was
reason_code, X'00'.

CEE5KU Severity 3

Msg_No 5790

Message Insufficient storage to lock the read-write lock object specified by
rwlock.

CEE5KV Severity 4

Msg_No 5791

Message System read-write lock storage could not be freed.

CEEOPRU2
C library interface: pthread_rwlock_unlock()

CEEOPRU2 is the C-callable Language Environment interface to the pthread_
rwlock_unlock() function.

CEEOPRU CWI

574 z/OS V2R1.0 Language Environment Vendor Interfaces

Syntax

int CEEOPRU2 (rwlock)
pthread_rwlock_t *rwlock;

CEEOPRU2
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12)
L R15,528(,R15)
BALR R14,R15

rwlock (input)
The read-write lock to be unlocked.

CEEOPRU2 can return the following function values:

0 Function completed successfully.

-1 An error occurred; errno can be one of the following values:
EINVAL

The specified read-write lock is not valid.
EPERM

The current thread does not own the read-write lock object.
ENOMEM

There is not enough memory during the unlock process.

CEEOPWL
C library interface: pthread_rwlock_wrlock()

CEEOPWL acquires (locks) the read-write lock for write referred to by rwlock. If the
read-write lock is already locked by another thread or threads, the calling thread
blocks until the read-write lock becomes available. This function returns with the
read-write lock in the locked state with the calling thread as a holder.

Syntax

void CEEOPWL (rwlock, [fc])
CEE_RWLOCK *rwlock;
FEED_BACK *fc;

CEEOPWL
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,508(,R15)
BALR R14,R15

rwlock (input)
The read-write lock to be locked for write.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
locking the read-write lock for write.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

CEEOPRU2 CWI

Chapter 16. z/OS UNIX System Services support 575

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message The service is unavailable unless POSIX(ON) runtime option
specified and z/OS UNIX System Services are started.

CEE5K4 Severity 3

Msg_No 5764

Message The read-write lock specified by the rwlock was not initialized.

CEE5K6 Severity 3

Msg_No 5766

Message An addressing exception occurred referencing a lock object.

CEE5K7 Severity 4

Msg_No 5767

Message Address exception while referencing system storage allocated by lock
object initialization.

CEE5KA Severity 3

Msg_No 5770

Message The read-write lock specified by rwlock has already been locked by
the thread. A read-write lock can only be locked for reading multiple
times by the same thread.

CEE5KN Severity 4

Msg_No 5783

Message Read-write lock specified by rwlock was not locked because thread
was forced to terminate.

CEE5KQ Severity 3

Msg_No 5786

Message The callable service BPX1SLK failed during shared lock processing.
The system return code was return_code, the reason code was
reason_code, X'00'.

CEE5KU Severity 3

Msg_No 5790

Message Insufficient storage to lock the read-write lock object specified by
rwlock.

CEE5KV Severity 4

Msg_No 5791

Message System read-write lock storage could not be freed.

Usage Notes:

1. An attempt by the current holder of a read-write lock for write or read to
relock the read-write lock for write will cause a deadlock.

2. A read-write lock must be unlocked as many times as it has been locked, and
relocked to relinquish ownership.

CEEOPWL CWI

576 z/OS V2R1.0 Language Environment Vendor Interfaces

3. Only the holding thread (the thread which acquired a read-write lock for write)
can unlock it.

CEEOPWL2
C library interface: pthread_rwlock_wrlock()

CEEOPWL2 is the C-callable Language Environment interface to the pthread_
rwlock_wrlock() function for a write lock.

Syntax

int CEEOPWL2 (rwlock)
pthread_rwlock_t *rwlock;

CEEOPWL2
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12)
L R15,524(,R15)
BALR R14,R15

rwlock (input)
Identifies the read-write lock to be locked for write.

CEEOPWL2 can return the following function values:

0 Function completed successfully.

-1 An error occurred; errno is set to one of the following values:
EINVAL

The specified read-write lock is not valid.
EDEADLK

The specified read-write lock is already locked for write.
ENOMEM

Not enough memory to acquire a lock.

CEEOPWT
C library interface: pthread_rwlock_trywrlock()

CEEOPWT conditionally acquires (locks) the read-write lock for write referred to
by rwlock. Conditionally means the call always returns immediately, whether or not
the lock is acquired. If the read-write lock is already locked, the read-write lock is
not acquired. When successful, this function returns with the read-write lock in the
locked state with the calling thread as its owner.

Note: Only the owning thread (the thread that acquired a read-write lock) can
unlock it.

Syntax

void CEEOPWT (rwlock, [fc])
CEE_RWLOCK *rwlock;
FEED_BACK *fc;

CEEOPWT
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,512(,R15)
BALR R14,R15

CEEOPWL CWI

Chapter 16. z/OS UNIX System Services support 577

rwlock (input)
The read-write lock to be locked for write conditionally.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
locking the read-write lock for write conditionally.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message The service is unavailable unless POSIX(ON) runtime option specified
and z/OS UNIX System Services are started.

CEE5K4 Severity 3

Msg_No 5764

Message The read-write lock specified by the rwlock was not initialized.

CEE5K6 Severity 3

Msg_No 5766

Message An addressing exception occurred referencing a lock object.

CEE5K7 Severity 4

Msg_No 5767

Message Address exception while referencing system storage allocated by lock
object initialization.

CEE5KN Severity 4

Msg_No 5783

Message Read-write lock specified by rwlock was not locked because thread
was forced to terminate.

CEE5KQ Severity 3

Msg_No 5786

Message The callable service BPX1SLK failed during shared lock processing.
The system return code was return_code, the reason code was
reason_code, X'00'.

CEE5KT Severity 1

Msg_No 5785

Message The read-write lock specified by rwlock was busy.

CEE5KU Severity 3

Msg_No 5790

Message Insufficient storage to lock the read-write lock object specified by
rwlock.

CEE5KV Severity 4

Msg_No 5791

Message System read-write lock storage could not be freed.

CEEOPWT CWI

578 z/OS V2R1.0 Language Environment Vendor Interfaces

Usage notes:

1. The routine to be executed was previously established by the
pthread_cleanup_push() (CEEOPCPO) function.

2. It is assumed that routine is currently available and does not require an explicit
LOAD performed.

CEEOPXD
C library interface: pthread_mutexattr_destroy(), pthread_rwlockattr_destroy()

CEEOPXD destroys a mutex attributes object or read-write lock attributes object.

Syntax

void CEEOPXD (attr_object, [fc])
CEE_LOCKATTR *attr_object;
FEED_BACK *fc;

CEEOPXD
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0328(,R15)
BALR R14,R15

attr_object (input/output)
The initialized mutex attributes or read-write lock attributes object.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
deleting the mutex attributes or read-write lock attributes object.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message The service is unavailable unless POSIX(ON) runtime option
specified and z/OS UNIX System Services are started.

CEE5I7 Severity 3

Msg_No 5703

Message Address exception accessing pthread_mutexattr_t object specified by
attr_object.

CEE5I8 Severity 4

Msg_No 5704

Message Address exception while referencing storage allocated by mutex
initialization for pthread_mutex_t object specified by attr_object.

CEEOPWT CWI

Chapter 16. z/OS UNIX System Services support 579

Condition

CEE5ID Severity 3

Msg_No 5709

Message The pthread_mutexattr_t object specified by attr_object was not
initialized.

CEE5IF Severity 3

Msg_No 5711

Message The pthread_mutexattr_t object specified by attr_object has been
changed since it was initialized.

CEE5IL Severity 4

Msg_No 5717

Message Unable to free storage allocated by mutex attribute initialization for
pthread_mutexattr_t object specified by attr_object.

CEE5K6 Severity 3

Msg_No 5766

Message An addressing exception occurred referencing a lock attribute object.

CEE5K7 Severity 4

Msg_No 5767

Message An addressing exception occurred referencing system storage
allocated by lock attributes object initialization.

CEE5KC Severity 3

Msg_No 5772

Message The lock attribute object specified by attr_object was not initialized.

CEE5KE Severity 3

Msg_No 5774

Message A pthread_rwlockattr_t object specified by attr_object has been
changed since it was initialized

CEE5KK Severity 4

Msg_No 5780

Message Unable to free storage allocated by lock attribute initialization for
attributes object specified by attr_object.

CEEOPXG
C library interface: pthread_mutexattr_getkind_np()

CEEOPXG returns an integer value indicating mutex or read-write lock attributes
specified by a mutex or read-write lock attributes object. For attribute values, see
“CEEOPXS” on page 584.

Syntax

void CEEOPXG (attr_object, attr_value, call_type, [fc])
CEE_LOCKATTR *attr_object;
INT4 *attr_value;
INT4 *call_type;
FEED_BACK *fc;

CEEOPXD CWI

580 z/OS V2R1.0 Language Environment Vendor Interfaces

CEEOPXG
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0332(,R15)
BALR R14,R15

attr_object (input/output)
The initialized attributes object.

attr_value (output)
The location that will contain values specifying mutex or read-write lock
attributes. The values returned are described under “CEEOPXS” on page 584,
the description of new_attr_value.

call_type (input)
A full word integer with the following defined values:
v X'00000001' = settype (setkind_np) attributes for private
v X'00000002' = setpshared attributes for shared.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
interrogating the mutex or read-write lock attributes object.

Note: call_type values can be combined, so that X'00000003'would indicate that
both settype and setpshared values may be changed.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message This service is unavailable unless POSIX(ON) runtime option
specified and z/OS UNIX System Services are started.

CEE5I8 Severity 4

Msg_No 5704

Message Address exception while referencing storage allocated by mutex
attribute initialization for pthread_mutexattr_t object specified by
attr_object.

CEE5ID Severity 3

Msg_No 5709

Message The pthread_mutexattr_t object specified by attr_object is not valid
(not initialized).

CEE5IJ Severity 3

Msg_No 5715

Message Address exception attempting to store attribute value at return
address specified by attr_value.

CEEOPXG CWI

Chapter 16. z/OS UNIX System Services support 581

Condition

CEE5IM Severity 4

Msg_No 5718

Message Valid attribute value for pthread_mutexattr_t object specified by
attr_object not found in attribute object storage.

CEE5K7 Severity 4

Msg_No 5767

Message An addressing exception occurred referencing system storage
allocated by lock attributes object initialization.

CEE5KC Severity 3

Msg_No 5772

Message The lock attribute object specified by attr_object was not initialized.

CEE5KI Severity 3

Msg_No 5778

Message Address exception attempting to store attribute value at return
address specified by attr_value.

CEE5KL Severity 4

Msg_No 5781

Message Valid lock attribute value for lock attribute object specified by
attr_object not found in lock attribute storage.

CEEOPXI
C library interface: pthread_mutexattr_init(), pthread_rwlockattr_init()

CEEOPXI initializes the mutex attributes or read-write lock attributes object
specified by attr_object. Upon successful completion of this function, the attributes
object is set to this implementation's default. For attribute values, see “CEEOPXS”
on page 584.

Syntax

void CEEOPXI (attr_object, lock_type, [fc])
CEE_LOCKATTR *attr_object;
INT4 *lock_type;
FEED_BACK *fc;

CEEOPXI
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0324(,R15)
BALR R14,R15

attr_object (input)
The caller-provided attributes object.

lock_type (input)
A full word integer with the following defined values:
v X'00000000' = mutex
v X'00000001' = read-write lock

CEEOPXG CWI

582 z/OS V2R1.0 Language Environment Vendor Interfaces

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
initializing the new attributes object.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message The service is unavailable unless POSIX(ON) runtime option
specified and z/OS UNIX System Services are started.

CEE5I7 Severity 3

Msg_No 5703

Message Address exception accessing pthread_mutexattr_t object specified
by attr_object.

CEE5I8 Severity 4

Msg_No 5704

Message Address exception while referencing storage allocated by mutex
attribute initialization for pthread_mutexattr_t object specified by
attr_object.

CEE5IG Severity 3

Msg_No 5712

Message The pthread_mutexattr_t object specified by attr_object was
already initialized.

CEE5IH Severity 3

Msg_No 5713

Message Insufficient storage to initialize the pthread_mutexattr_t object
specified by attr_object.

CEE5IL Severity 4

Msg_No 5717

Message Unable to free storage allocated by mutex attribute initialization
for pthread_mutexattr_t object specified by attr_object.

CEE5K6 Severity 3

Msg_No 5766

Message An addressing exception occurred referencing a lock attribute
object.

CEE5K7 Severity 4

Msg_No 5767

Message An addressing exception occurred referencing system storage
allocated by lock attributes object initialization.

CEEOPXI CWI

Chapter 16. z/OS UNIX System Services support 583

Condition

CEE5KF Severity 3

Msg_No 5775

Message The pthread_rwlockattr_t object specified by attr_object was
already initialized.

CEE5KG Severity 3

Msg_No 5776

Message Insufficient storage to initialize the pthread_rwlockattr_t object
specified by attr_object.

CEE5KK Severity 4

Msg_No 5780

Message Unable to free storage allocated by lock attribute initialization
for attributes object specified by attr_object.

CEEOPXS
C library interface: pthread_mutexattr_setkind_np()

CEEOPXS changes the mutex or read-write lock attributes specified by a mutex
attributes object or read-write lock attributes object. For each attribute pair
described below a default is listed. This is the default resulting from calling
CEEOPXI to initialize the attribute object prior to using CEEOPXS to change any
attribute value. Valid attributes are:

RECURSIVE
If a mutex object is initialized with an attribute object which has been
assigned the attribute RECURSIVE, the mutex is given the attribute
RECURSIVE. A thread can lock and relock a recursive mutex any number
of times. However, only the thread owning the recursive mutex can relock
it, and only the thread owning the recursive mutex can unlock it. A
recursive mutex must be unlocked as many times as it is locked, and
relocked to relinquish ownership.The default attribute for a read-write lock
is recursive. Unlike a mutex, more than one thread may lock and relock a
read-write lock so long as it is only locked for read. For read-write locks,
only the RECURSIVE attribute is supported.

NONRECURSIVE
The default attribute for a mutex is nonrecursive. If a thread attempts to
relock a nonrecursive mutex that it owns (has already locked), the lock
request fails.A read-write lock is by definition recursive and never should
be changed to nonrecursive.

DEBUG
State changes to this mutex or read-write lock should be reported to the
debug interface. For mutexes, the default is DEBUG.

NODEBUG
State changes to this mutex or read-write lock should not be reported to
the debug interface even though it is present. For read-write locks the
default is NODEBUG. For read-write locks only the NODEBUG attribute is
supported.

CEEOPXI CWI

584 z/OS V2R1.0 Language Environment Vendor Interfaces

ERRORCHECK
Prior to increasing the lock object count, determine if increasing the count
would result in an error condition. For both mutexes and read-write locks,
the default is ERRORCHECK.

NOERRORCHECK
No checking for error conditions is done. NOERRORCHECK can only be
set for mutexes.

PRIVATE
The mutex or read-write lock will reside in local memory. The default for
mutexes and read-write locks is PRIVATE.

SHARED
The mutex or read-write lock will reside in shared memory.

Syntax

void CEEOPXS (attr_object, new_attr_value, call_type, [fc])
CEE_LOCKATTR *attr_object;
INT4 *new_attr_value;
INT4 *call_type;
FEED_BACK *fc;

CEEOPXS
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0336(,R15)
BALR R14,R15

attr_object (input/output)
The location that contains the token of an initialized attributes object.

new_attr_value (input/output)
The location of a value specifying a mutex or read-write lock attribute. Valid
values for the low order 16 bits of new_attr_value are:

Settype: For pthread_mutexattr_setkind_np (pthread_mutexattr_settype):

0 NONRECURSIVE+DEBUG+ERRORCHECK

1 RECURSIVE+DEBUG+ERRORCHECK

2 NONRECURSIVE+NODEBUG+ERRORCHECK

3 RECURSIVE+NODEBUG+ERRORCHECK

4 NONRECURSIVE+DEBUG+NOERRORCHECK

5 RECURSIVE+DEBUG+NOERRORCHECK

6 NONRECURSIVE+NODEBUG+NOERRORCHECK

7 RECURSIVE+NODEBUG+NOERRORCHECK

Setpshared: For pthread_mutexattr_setpshared (and pthread_rwlockattr_setpshared):
0 PRIVATE
8 SHARED

The value for the high order 16 bits of new_attr_value must be zero.

call_type (input)
A full word integer with the following defined values:
v X'00000001' = settype (setkind_np) attributes for private
v X'00000002' = setpshared attributes for shared.

CEEOPXS CWI

Chapter 16. z/OS UNIX System Services support 585

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
setting the mutex or read-write lock attributes object. The following message
identifiers and associated severities can be returned by the service in the
feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message The service is unavailable unless POSIX(ON) runtime option
specified and z/OS UNIX System Services are started.

CEE5I8 Severity 4

Msg_No 5704

Message Address exception while referencing storage allocated by mutex
attribute initialization for pthread_mutexattr_t object specified by
attr_object.

CEE5ID Severity 3

Msg_No 5709

Message The pthread_mutexattr_t object specified by attr_object is not valid
(not initialized).

CEE5IN Severity 3

Msg_No 5719

Message The attribute value specified by new_attr_value is not valid.

CEE5K7 Severity 4

Msg_No 5767

Message An addressing exception occurred referencing system storage
allocated by lock attributes object initialization.

CEE5KC Severity 3

Msg_No 5772

Message The lock attribute object specified by attr_object was not initialized.

CEE5KM Severity 3

Msg_No 5782

Message The lock attribute value specified by new_attr_value was not valid.

Note: call_type values can be combined, so that X'00000003'would indicate that
both settype and setpshared values may be changed.

Thread synchronization — condition variables
The CWIs in this section support POSIX condition variables thread synchronization
functions.

CEEOPCB
C library interface: pthread_cond_broadcast()

CEEOPXS CWI

586 z/OS V2R1.0 Language Environment Vendor Interfaces

CEEOPCB unblocks all threads (if any) that are waiting (blocked) on the condition
object referred to by cond. This call has no effect if there are no threads waiting on
the condition object.

Syntax

void CEEOPCB (cond, [fc])
CEE_TOKEN *cond;
FEED_BACK *fc;

CEEOPCB
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0224(,R15)
BALR R14,R15

cond (input)
The condition object on which other threads can be blocked.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
signaling the condition.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message The service is unavailable unless POSIX(ON) runtime option
specified and z/OS UNIX System Services are started.

CEE5IU Severity 3

Msg_No 5726

Message The condition object specified by cond is not initialized.

CEE5IV Severity 3

Msg_No 5727

Message Unexpected return code from z/OS UNIX condition post, BPX1CPO,
callable service.

CEE5J0 Severity 4

Msg_No 5728

Message Address exception while referencing storage allocated by condition
initialization for cond_t object specified by cond.

CEE5J3 Severity 3

Msg_No 5731

Message Unexpected return code from z/OS UNIX condition setup, BPX1CSE,
callable service.

CEEOPCB CWI

Chapter 16. z/OS UNIX System Services support 587

Condition

CEE5L3 Severity 3

Msg_No 5795

Message The callable service, BPX1SMC, failed during shared condition
variable processing. The system return code was return_code. The
reason code was return_code X'00'.

CEEOPCD
C library interface: pthread_cond_destroy()

CEEOPCD destroys the condition object specified by cond. Attempting to destroy a
condition object associated with threads in condition wait or timed wait results in
an error condition.

Syntax

void CEEOPCD (cond, [fc])
CEE_COND *cond;
FEED_BACK *fc;

CEEOPCD
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0216(,R15)
BALR R14,R15

cond (input)
The condition object to be destroyed.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
destroying the condition object.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message The service is unavailable unless POSIX(ON) runtime option
specified and z/OS UNIX System Services are started.

CEE5IU Severity 3

Msg_No 5726

Message The cond_t object specified by cond is not valid (not initialized).

CEE5J0 Severity 4

Msg_No 5728

Message Address exception while referencing storage allocated by condition
initialization for cond_t object specified by cond.

CEEOPCB CWI

588 z/OS V2R1.0 Language Environment Vendor Interfaces

Condition

CEE5JC Severity 3

Msg_No 5740

Message Address exception accessing cond_t object specified by cond.

CEE5JH Severity 4

Msg_No 5745

Message Unable to free storage allocated by condition initialization for cond_t
object specified by cond.

CEE5JJ Severity 3

Msg_No 5747

Message The cond_t object specified by cond is busy.

CEE5JK Severity 3

Msg_No 5748

Message Cond_t object specified by cond is damaged.

CEE5L3 Severity 3

Msg_No 5795

Message The callable service, BPX1SMC, failed during shared condition
variable processing. The system return code was return_code. The
reason code was return_code X'00'.

CEEOPCI
C library interface: pthread_cond_init()

CEEOPCI initializes the condition object referred to by cond with the attributes
identified by condattr. If this function fails, the condition object is not initialized
and the contents of cond are undefined. If a condition attribute object is not
specified, default condition attributes are used.

Syntax

void CEEOPCI (cond, condattr, [fc])
CEE_COND *cond;
CEE_TOKEN *condattr;
FEED_BACK *fc;

CEEOPCI
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0212(,R15)
BALR R14,R15

cond (input/output)
The condition object to be initialized.

condattr (input/optional)
The condition attributes object used to initialize the condition object.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
initializing the condition object.

CEEOPCD CWI

Chapter 16. z/OS UNIX System Services support 589

The following message identifiers and associated severities can be returned by
the service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message The service is unavailable unless POSIX(ON) runtime option
specified and z/OS UNIX System Services are started.

CEE5J0 Severity 4

Msg_No 5728

Message Address exception while referencing storage allocated by
initialization for object specified by cond or condattr.

CEE5JC Severity 3

Msg_No 5740

Message Address exception accessing object specified by cond or condattr.

CEE5JE Severity 3

Msg_No 5742

Message The cond_t object specified by cond is already initialized.

CEE5JF Severity 3

Msg_No 5743

Message The condattr_t object specified by condattr is not valid (not
initialized).

CEE5JG Severity 3

Msg_No 5744

Message Insufficient storage to initialize the cond_t object specified by cond.

CEE5JH Severity 4

Msg_No 5745

Message Unable to free storage allocated by condition initialization for cond_t
object specified by cond.

CEEOPCS
C library interface: pthread_cond_signal()

CEEOPCS unblocks at least one of the threads (if any) that are waiting (blocked)
on the condition object referred to by cond. This call has no effect if there are no
threads waiting on the condition object.

Syntax

void CEEOPCS (cond, [fc])
CEE_TOKEN *cond;
FEED_BACK *fc;

CEEOPCS
Call this CWI interface as follows:

CEEOPCI CWI

590 z/OS V2R1.0 Language Environment Vendor Interfaces

L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0220(,R15)
BALR R14,R15

cond (input)
The condition object on which other threads can be blocked.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
signaling the condition.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message The service is unavailable unless POSIX(ON) runtime option
specified and z/OS UNIX System Services are started.

CEE5IU Severity 3

Msg_No 5726

Message The condition object specified by cond is not initialized.

CEE5IV Severity 3

Msg_No 5727

Message Unexpected return code from z/OS UNIX condition post, BPX1CPO,
callable service.

CEE5J0 Severity 4

Msg_No 5728

Message Address exception while referencing storage allocated by condition
initialization for cond_t object specified by cond.

CEE5J3 Severity 3

Msg_No 5731

Message Unexpected return code from z/OS UNIX condition setup, BPX1CSE,
callable service.

CEE5L3 Severity 3

Msg_No 5795

Message The callable service, BPX1SMC, failed during shared condition
variable processing. The system return code was return_code. The
reason code was return_code X'00'.

CEEOPCT
C library interface: pthread_cond_timedwait()

This function is same as the CEEOPCW function, except that an error is returned if
the absolute time specified by tv_sec and tv_nsec passes before the condition
specified by cond is signaled. The associated mutex is reacquired before return.

CEEOPCS CWI

Chapter 16. z/OS UNIX System Services support 591

Syntax

void CEEOPCT (cond, mutex, tv_sec, tv_nsec, [fc])
CEE_TOKEN *cond;
CEE_MUTEX *mutex;
INT4 *tv_sec;
INT4 *tv_nsec;
FEED_BACK *fc;

CEEOPCT
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0232(,R15)
BALR R14,R15

cond (input)
The condition variable to wait on.

mutex (input)
The associated locked mutex.

tv_sec (input)
Specifies time in seconds from midnight, January 1, 1970 UTC when CEEOPCT
should cease wait for a condition signal. The value specified must be greater
than zero (0) and less than 2,147,483,648 seconds. If a positive value is specified
and is less than or equal to current calendar time expressed seconds from
midnight, January 1, 1970 UTC, CEEOPCT returns immediately, thus indicating
that the time to wait has elapsed.

tv_nsec (input)
Specifies time in nanoseconds to be added to tv_sec to determine when
CEEOPCT should cease wait for a condition signal. The value specified must
be greater than or equal to zero (0) and less than 1,000,000,000 (1,000 million).

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
waiting for the condition variable.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message The service is unavailable unless POSIX(ON) runtime option
specified and z/OS UNIX System Services are started.

CEE5I5 Severity 3

Msg_No 5701

Message The mutex specified by mutex is not initialized.

CEE5I8 Severity 4

Msg_No 5704

Message Address exception while referencing storage allocated by mutex
initialization for pthread_mutex_t object specified by mutex.

CEEOPCT CWI

592 z/OS V2R1.0 Language Environment Vendor Interfaces

Condition

CEE5IA Severity 3

Msg_No 5706

Message The mutex specified by mutex is not owned by the calling thread.

CEE5IO Severity 4

Msg_No 5720

Message Mutex specified by mutex not reacquired after condition wait
terminated because thread was forced to terminate.

CEE5IU Severity 3

Msg_No 5726

Message The condition variable specified by cond is not initialized.

CEE5J0 Severity 4

Msg_No 5728

Message Address exception while referencing storage allocated by
condition initialization for cond_t object specified by cond.

CEE5J1 Severity 3

Msg_No 5729

Message The mutex specified by mutex is a recursive mutex.

CEE5J2 Severity 3

Msg_No 5730

Message A mutex other than the mutex specified by mutex is already
associated with the condition specified by cond.

CEE5J3 Severity 3

Msg_No 5731

Message Unexpected return code from z/OS UNIX condition setup,
BPX1CSE, callable service.

CEE5J5 Severity 3

Msg_No 5731

Message The value specified by tv_sec is not valid.

CEE5J6 Severity 3

Msg_No 5734

Message The value specified by tv_nsec is not valid.

CEE5J7 Severity 3

Msg_No 5735

Message System time of day clock is not valid.

CEE5J8 Severity 1

Msg_No 5736

Message The time specified by tv_sec and tv_nsec to wait for condition
signal has passed.

CEE5J9 Severity 3

Msg_No 5737

Message Unexpected return code from condition timedwait, BPX1CTW or
BPX1STE, callable service.

CEEOPCT CWI

Chapter 16. z/OS UNIX System Services support 593

Condition

CEE5L3 Severity 3

Msg_No 5795

Message The callable service, BPX1SMC, failed during shared condition
variable processing. The system return code was return_code. The
reason code was return_code X'00'.

Note: The Language Environment date/time services can be used to obtain the
needed number of seconds for the abstime. The user needs to obtain the number of
seconds from 00:00:00 14 Oct 1585 until 00:00:00 1 Jan 1970. When calculated, that
time can be saved and used to determine the absolute time.

CEEOPCW
C library interface: pthread_cond_wait()

CEEOPCW blocks the calling thread until another thread calls the condition signal
or broadcast service specifying the same condition object cond. CEEOPCW releases
the associated mutex object mutex before blocking the thread. Before returning to
the caller, CEEOPCW reacquires (locks) the mutex again.

Syntax

void CEEOPCW (cond, mutex, [fc])
CEE_TOKEN *cond;
CEE_MUTEX *mutex;
FEED_BACK *fc;

CEEOPCW
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0228(,R15)
BALR R14,R15

cond (input)
The condition object to wait on.

mutex (input)
The associated locked mutex.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
waiting for the condition variable.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message The service is unavailable unless POSIX(ON) runtime option
specified and z/OS UNIX System Services are started.

CEEOPCT CWI

594 z/OS V2R1.0 Language Environment Vendor Interfaces

Condition

CEE5I5 Severity 3

Msg_No 5701

Message The mutex specified by mutex is not initialized.

CEE5I8 Severity 4

Msg_No 5704

Message Address exception while referencing storage allocated by
condition initialization for pthread_mutex_t object specified by
mutex.

CEE5IA Severity 3

Msg_No 5706

Message The mutex specified by mutex is not owned by the calling
thread.

CEE5IO Severity 4

Msg_No 5720

Message Mutex specified by mutex not reacquired after condition wait
terminated because thread was forced to terminate.

CEE5IU Severity 3

Msg_No 5726

Message The condition variable specified by cond is not initialized.

CEE5J0 Severity 4

Msg_No 5728

Message Address exception while referencing storage allocated by
condition initialization for cond_t object specified by cond.

CEE5J1 Severity 3

Msg_No 5729

Message The mutex specified by mutex is a recursive mutex.

CEE5J2 Severity 3

Msg_No 5730

Message A mutex other than the mutex specified by mutex is already
associated with the condition specified by cond.

CEE5J3 Severity 3

Msg_No 5731

Message Unexpected return code from z/OS UNIX condition setup,
BPX1CSE, callable service.

CEE5J4 Severity 3

Msg_No 5732

Message Unexpected return code from z/OS UNIX condition wait,
BPX1CWA, callable service.

CEE5L3 Severity 3

Msg_No 5795

Message The callable service, BPX1SMC, failed during shared condition
variable processing. The system return code was return_code. The
reason code was return_code X'00'.

CEEOPCW CWI

Chapter 16. z/OS UNIX System Services support 595

CEEOPDD
C library interface: pthread_condattr_destroy()

CEEOPDD destroys a condition attributes object.

Syntax

void CEEOPDD (condattr, [fc])
CEE_TOKEN *condattr;
FEED_BACK *fc;

CEEOPDD
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0248(,R15)
BALR R14,R15

condattr (input/output)
The location that contains the token of an initialized condition attributes object.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
deleting the condition attributes object.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message The service is unavailable unless POSIX(ON) runtime option
specified and z/OS UNIX System Services are started.

CEE5J0 Severity 4

Msg_No 5728

Message Address exception while referencing storage allocated by condition
attribute initialization for condattr_t object specified by condattr.

CEE5JC Severity 3

Msg_No 5740

Message Address exception accessing condattr_t object specified by condattr.

CEE5JD Severity 4

Msg_No 5741

Message Unable to free storage allocated by condition attribute initialization
for condattr_t object specified by condattr.

CEE5JF Severity 3

Msg_No 5743

Message The condattr_t object specified by condattr is not valid (not
initialized).

CEEOPDD CWI

596 z/OS V2R1.0 Language Environment Vendor Interfaces

Condition

CEE5JI Severity 3

Msg_No 5746

Message Condattr_t object specified by condattr is damaged.

CEEOPDG
C library interface: pthread_condattr_getkind_np()

CEEOPDG returns an integer value indicating attributes specified by a condition
variable attributes object. Valid attributes are:

DEFAULT
N/A

NODEBUG
Indicates that condition variable services should not report state changes
for a condition variable which was initialized with this attribute.

PRIVATE
Indicates that condition variable resides in local memory. This is the
default.

SHARED
Indicates that condition variable resides in shared memory.

Syntax

void CEEOPDG (condattr, kind, [fc])
CEE_TOKEN *condattr;
INT4 *kind;
FEED_BACK *fc;

CEEOPDG
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0252(,R15)
BALR R14,R15

condattr (input/output)
The location that contains the token of an initialized condition variable
attributes object.

kind (output)
The location of a value specifying a condition variable attribute. Values
returned by CEEOPDG are:

0 DEFAULT

2 NODEBUG+PRIVATE

8 DEBUG+SHARED

10 NODEBUG+SHARED

In addition to the other attributes, if the _OPEN_SYS_MUTEX_EXT feature
switch is set, the PRIVATE and SHARED attributes set by
pthread_condattr_setpshared is returned.

CEEOPDD CWI

Chapter 16. z/OS UNIX System Services support 597

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
interrogating the condition variable attributes object.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message This service is unavailable unless POSIX(ON) runtime option
specified and z/OS UNIX System Services are started.

CEE5J0 Severity 4

Msg_No 5728

Message Address exception while referencing storage allocated by condition
variable attribute initialization for condattr_t object specified by
condattr.

CEE5JF Severity 3

Msg_No 5743

Message The condattr_t object specified by condattr is not valid (not
initialized).

CEE5JM Severity 3

Msg_No 5750

Message Address exception attempting to store attribute value at address
specified for kind.

CEE5JN Severity 4

Msg_No 5751

Message Valid attribute value for condattr_t object specified by condattr not
found in attribute object storage.

CEEOPDI
C library interface: pthread_condattr_init()

CEEOPDI initializes a condition attributes object. There are no implementation
defined attributes for condition variables.

Syntax

void CEEOPDI (condattr, [fc])
CEE_TOKEN *condattr;
FEED_BACK *fc;

CEEOPDI
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0244(,R15)
BALR R14,R15

CEEOPDG CWI

598 z/OS V2R1.0 Language Environment Vendor Interfaces

condattr (input)
The location of the caller-provided condition attributes object.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
initializing the new condition attributes object.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message The service is unavailable unless POSIX(ON) runtime option
specified and z/OS UNIX System Services are started.

CEE5J0 Severity 4

Msg_No 5728

Message Address exception while referencing storage allocated by condition
attribute initialization for condattr_t object specified by condattr.

CEE5JA Severity 3

Msg_No 5738

Message The condattr_t object specified by condattr is already initialized.

CEE5JB Severity 3

Msg_No 5739

Message Insufficient storage to initialize the condattr_t object specified by
condattr.

CEE5JC Severity 3

Msg_No 5740

Message Address exception accessing condattr_t object specified by condattr.

CEE5JD Severity 4

Msg_No 5741

Message Unable to free storage allocated by condition attribute initialization
for condattr_t object specified by condattr.

CEEOPDS
C library interface: pthread_condattr_setkind_np()

CEEOPDS changes attributes specified by a condition variable attributes object.
Valid attributes are:

DEFAULT
N/A

NODEBUG
Indicates that condition variable services should not report state changes
for a condition variable which was initialized with this attribute.

CEEOPDI CWI

Chapter 16. z/OS UNIX System Services support 599

Syntax

void CEEOPDS (condattr, kind, [fc])
CEE_TOKEN *condattr;
INT4 *kind;
FEED_BACK *fc;

CEEOPDS
Call this CWI interface as follows:
L R15,CEECAALEOV-CEECAA(,R12) CAA address is in R12
L R15,0256(,R15)
BALR R14,R15

condattr (input/output)
The location that contains the token of an initialized condition variable
attributes object.

kind (input/output)
The location of a value specifying a condition variable attribute. Valid values
are:

0 DEFAULT

2 NODEBUG

X'8000'
PRIVATE

X'8008'
SHARED

CEEOPDS can be used to set the normal condition variable attributes, or to set
the PRIVATE / SHARE attributes for pthread_condattr_setpshared. These two
types of request cannot be combined in a single call to CEEOPDS. If the
_OPEN_SYS_MUTEX_EXT feature switch is set, you can specify the PRIVATE
/ SHARED attributes for pthread_condattr_setpshared.

fc (output/optional)
The feedback code returned by the service. It indicates the degree of success in
setting the condition variable attributes object.

The following message identifiers and associated severities can be returned by the
service in the feedback code fc.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4S9 Severity 3

Msg_No 5001

Message The service is unavailable unless POSIX(ON) runtime option
specified and z/OS UNIX System Services are started.

CEE5J0 Severity 4

Msg_No 5728

Message Address exception while referencing storage allocated by condition
variable attribute initialization for condattr_t object specified by
condattr.

CEEOPDS CWI

600 z/OS V2R1.0 Language Environment Vendor Interfaces

Condition

CEE5JF Severity 3

Msg_No 5743

Message The condattr_t object specified by condattr is not valid (not
initialized).

CEE5JL Severity 3

Msg_No 5749

Message The attribute value specified by kind is not valid.

Process control functions support
In addition to those functions that are explicitly provided for threading
applications, there are a number of POSIX 1003.1 functions that have either
expanded definitions or new definitions. This section contains the CWIs that
support those functions.

CEEOEXEC
CEEOEXEC replaces the prior POSIX process image with a new process image for
the executable file being run, supporting the POSIX 1003.1 exec() function.

Syntax

void CEEOEXEC (path_name_length, path_name, argument_count,
argument_length_list, argument_list, environment_count, environment_data_length,
environment_data_list, [fc])
INT4 *path_name_length;
VSTRING *path_name;
INT4 *argument_count;
POINTER *argument_length_list;
POINTER *argument_list;
INT4 *environment_count;
POINTER *environment_data_length;
POINTER *environment_data_list;
FEEDBACK *fc;

CEEOEXEC
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) CAA address is in R12
L R15,3288(,R15)
BALR R14,R15

path_name_length (input)
Specifies the name of a full word containing the length of the path name of the
file (program) to be run. The length can be up to 1023 bytes long.

path_name (input)
Specifies the name of a field of length file_name_length containing the fully
qualified path name of the file (program) to be run. Each component of the
path name can be up to 255 characters long. The complete path name can be
up to 1023 characters long and does not require a terminating character.

argument_count (input)
Specifies the name of a full word containing a count of the number of pointers
in the argument_length_list and the argument_list lists. If the program needs no
arguments, specify zero.

CEEOPDS CWI

Chapter 16. z/OS UNIX System Services support 601

argument_length_list (input)
Specifies the address of the first in a list of pointers. Each pointer in the list is
the address of a full word giving the length of one of the arguments to be
passed to the specified program. If the program needs no arguments, specify
zero.

argument_list (input)
Specifies the address of a list of pointers. Each pointer in the list is the address
of a character string which is an argument to be passed to the specified
program. Each argument is of the length specified by the corresponding
element in the argument_length_list. If the program needs no arguments, specify
zero.

environment_count (input)
Specifies the name of a full word containing a count of the number of pointers
in the environment_data_length and the environment_data_list lists. If the program
needs no arguments, specify zero.

environment_data_length (input)
Specifies the address of the first in a list of pointers. Each pointer in the list is
the address of a full word giving the length of one of the environment
variables to be passed to the specified program. If the program does not use
environment variables, specify zero.

environment_data_list (input)
Specifies the address of a list of pointers. Each pointer in the list is the address
of a character string consisting of one of the environment variables to be
passed to the specified program. Each environment list argument is of the
length specified by the corresponding element in the environment_length_list. If
the program does not use environment variables, specify zero.

fc (output/optional)
The parameter in which the CWI service feedback code is placed. The
following conditions can result from this CWI service.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4SA Severity 3

Msg_No 5002

Message POSIX function not available. z/OS UNIX System Services were not
started.

CEE512 Severity 3

Msg_No 5154

Message The requested exec() failed because it was invoked from a
multithread environment.

CEE519 Severity 3

Msg_No 5161

Message The z/OS UNIX callable service BPX1EXC for the exec() function
was unsuccessful. The system return code was [return_code]; the
reason code was [reason_code].

Qualifying Data:

CEEOEXEC CWI

602 z/OS V2R1.0 Language Environment Vendor Interfaces

No. Name Input/
Output

Type Value

1 parm_count Input INT4 3

2 return_code Input INT4 Return code from kernel, BPX1EXC function

nn Codes defined by ANSI C, POSIX, and z/OS
UNIX

3 reason_code Input INT4 Reason code from kernel, BPX1EXC function

nn Codes defined by ANSI C, POSIX, and z/OS
UNIX

Usage notes:

1. Replaces the prior process image with a new process image for the executable
file being run.

2. Target of exec() must be a C program and live in the POSIX file system and
POSIX(ON) runtime option must be present.

3. Establishes an exit routine with the kernel, to gain control after the kernel has
validated the exec() and prior to replacing the process image. In this exit
routine, Language Environment drives member languages for enclave
termination.

4. The values of the return_code and reason_code are as defined in the z/OS UNIX
System Services Programming: Assembler Callable Services Reference and the
OpenEdition for VM/ESA: Callable Services Reference.

5. This function is accessible independent of the POSIX runtime option.

CEEOFORK
CEEOFORK creates a new POSIX process, called a child process, supporting the
POSIX 1003.1 fork() function. CEEOFORK supports the XPG4 standard vfork()
function.

Note: The CEEOFORK CWI does not support the use of fork handlers. Support for
the registration and execution of fork handlers only exists in the C/C++ Runtime
Library.

Syntax

void CEEOFORK (function_code, pid, [fc])
INT4 *function_code;
INT4 *pid;
FEED_BACK *fc;

CEEOFORK
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) CAA address is in R12
L R15,3284(,R15)
BALR R14,R15

function_code (input)
A full word binary integer that specifies whether the function is fork() or
vfork(). It must contain one of the following values:

0 Language Environment has been requested to perform fork(), if the
member language tolerate the fork(). If so, perform fork().

CEEOEXEC CWI

Chapter 16. z/OS UNIX System Services support 603

1 Language Environment has been requested to perform vfork(), if the
member language tolerate the vfork(). If so, perform vfork().

pid (output)
A full word binary integer to contain the process identifier of the
newly-created child process. When fork() or vfork() returns to the calling
(parent) process, it returns the process identifier of the newly create
child.Because the child is a duplicate, it contains the same call to fork() or
vfork() that was in the parent. Execution of the child begins with this fork()
or vfork() call returning a value of zero, the child then proceeds with normal
execution.If the pid is returned as minus 1, then no child process was created,
for the reason specified in feedback token CEE510.

fc (output/optional)
The parameter in which the CWI service feedback code is placed. The
following conditions can result from this CWI service.

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE4SA Severity 3

Msg_No 5002

Message POSIX function not available. z/OS UNIX system services were not
started.

CEE50V Severity 3

Msg_No 5151

Message Language Environment member identifier number [member_id]
cannot tolerate the POSIX fork() or vfork() function.

CEE510 Severity 3

Msg_No 5152

Message The z/OS UNIX callable service for the fork() function was
unsuccessful. The system return code was [return_code]; the reason
code was [reason_code].
Note: The system return code and reason code are documented in
the z/OS UNIX manual.

CEE512 Severity 3

Msg_No 5154

Message The requested fork() or vfork() service failed because it was
invoked from a multithread environment.

Qualifying data (when CEE510):

No. Name Input/
Output

Type Value

1 parm_count Input INT4 3

2 return_code Input INT4 Return code from kernel, BPX1FRK function

nn Codes defined by ANSI C, POSIX,
and z/OS UNIX

CEEOFORK CWI

604 z/OS V2R1.0 Language Environment Vendor Interfaces

No. Name Input/
Output

Type Value

3 reason_code Input INT4 Reason code from kernel, BPX1FRK function

nn Codes defined by ANSI C, POSIX,
and z/OS UNIX

Usage notes:

1. The new process (called the child process) is a duplicate of the process that calls
fork() (called the parent process).

2. Member languages are notified (event code 24 and function code 1) that a
fork() has been requested and can the member tolerate a fork().
The event handler CEEEVnnn sets the return code in R15 to the following
values:

0 Member language can tolerate fork()

-4 Member language cannot tolerate fork()

16 Event handler encountered an unrecoverable error.
3. Member languages are notified (event code 24 and function code 2) to perform

any required cleanup in the child process.
4. The values of the return_code and reason_code (nn) are as defined in the z/OS

UNIX System Services Programming: Assembler Callable Services Reference.
5. This function is accessible independent of the POSIX runtime option.

CEEOSPWN
CEEOSPWN creates a new POSIX process and immediately loads the process
image from an executable file in the z/OS UNIX file system. The kernel callable
service, BPX1SPN, is invoked to perform most of this function. The child process is
created in a new address space unless the environment variable _BPX_SHAREAS
has a value of 'YES', in which case the child process shares the address space with
its parent. If the _BPX_SHAREAS value is 'NO' the process runs in a separate
address space from the caller's address space.

Syntax

void CEEOSPWN (path_name_length, path_name, argument_count,
argument_length_list, argument_list, environment_count, environment_data_length,
environment_data_list, filedesc_count, filedesc_list, inherit_area_len, inherit_area,
process_id, [fc])
INT4 *path_name_length;
VSTRING *path_name;
INT4 *argument_count;
POINTER *argument_length_list;
POINTER *argument_list;
INT4 *environment_count;
POINTER *environment_data_length;
POINTER *environment_data_list;
INT4 *filedesc_count;
VSTRING *filedesc_list;
INT4 *inherit_area_len;
VSTRING *inherit_area;
INT4 *process_id;
FEED_BACK *fc;

CEEOFORK CWI

Chapter 16. z/OS UNIX System Services support 605

CEEOSPWN
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) CAA address is in R12
L R15,0100(,R15)
BALR R14,R15

path_name_length (input)
Specifies the name of a full word containing the length of the pathname of the
file (program) to be run. The length can be up to 1023 bytes long.

path_name (input)
Specifies the name of a field of length path_name_length containing the fully
qualified pathname of the file (program) to be run. Each component of the
pathname can be up to 255 characters long. The complete pathname can be up
to 1023 characters long, and does not require a terminating character.

argument_count (input)
Specifies the name of a full word containing a count of the number of pointers
in the argument_length_list and the argument_list lists. If the program need no
arguments, specify zero.

argument_length_list (input)
Specifies the address of the first in a list of pointers. Each pointer in the list is
the address of a full word giving the length of one of the arguments to be
passed to the specified program. If the program needs no arguments, specify
zero.

argument_list (input)
Specifies the address of a list of pointers. Each pointer in the list is the address
of a character string which is an argument to be passed to the specified
program. Each argument is of the length specified by the corresponding
element in the argument_length_list. If the program needs no arguments, specify
zero.

environment_count (input)
Specifies the name of a full word containing a count of the number of pointers
in the environment_data_length and the environment_data_list lists. If the program
need no arguments, specify zero.

environment_data_length (input)
Specifies the address of the first in a list of pointers. Each pointer in the list is
the address of a full word giving the length of one of the environment
variables to be passed to the specified program. If the program does not use
environment variables, specify zero.

environment_data_list (input)
Specifies the address of a list of pointers. Each pointer in the list is the address
of a character string consisting of one of the environment variables to be
passed to the specified program. Each environment list argument is of the
length specified by the corresponding element in the environment_length_list. If
the program does not use environment variables, specify zero.

filedesc_count (input)
Specifies the name of a full word containing a count of the number of file
descriptors the child process shall inherit. It may take a value from -1 to
OPEN_MAX. If the value is -1, all file descriptors from the parent are inherited
without remapping by the child and the filedesc_list is ignored. If the value is 0,
no file descriptors are inherited by the child and the filedesc_list is ignored.

filedesc_list (input)
Specifies the name of a list of full word file descriptor remap values. Except for

CEEOSPWN CWI

606 z/OS V2R1.0 Language Environment Vendor Interfaces

those file descriptors designated by SPAWN_FDCLOSED, each of the child's
file descriptors in the range zero to filedesc_count-1 shall inherit file descriptor
remap values filedesc_list(1) to filedesc_list(filedesc_count). (The constant
SPAWN_FDCLOSED is defined in thez/OS UNIX macro, BPXYCONS.)

inherit_area_len (input)
Specifies the name of a full word that contains the length of the inheritance
structure specified in inherit_area. If this argument contains a value of zero, the
inherit_area argument is ignored.

inherit_area (input)
Specifies the name of a data area that contains the inheritance structure for the
child process. (The inheritance structure is defined in the z/OS UNIX macro,
BPXYINHE.)

process_id (output)
Specifies the process id(PID) of the child process.

fc (output/optional)
Specifies the optional feedback token where the CWI feedback code will be
placed. If this argument is omitted and the CWI will return a feedback code
other than CEE000, the CWI will 'raise' this feedback code as an error
condition.

The following conditions can result from this CWI service:

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE513 Severity 3

Msg_No 5155

Message The z/OS UNIX callable service, BPX1SPN, for the spawn() and
spawnp() functions was unsuccessful. The system return code was
[return_code], the reason code was [reason_code].

Qualifying data (when CEE513):

No. Name Input/
Output

Type Value

1 parm_count input INT4 3

2 return_code input INT4 Return code from kernel, BPX1SPN function

nn codes defined by ANSI C, POSIX, and
z/OS UNIX

3 reason_code input INT4 Reason code from kernel, BPX1SPN function

nn codes defined by ANSI C, POSIX, and
z/OS UNIX

Usage notes:

1. The new process (called the child process) inherits the following attribute from
the process that calls spawn/spawnp. For further details, see POSIX .4b draft 8.

2. Member languages are notified that a spawn/spawnp has been requested and
given the opportunity to indicate whether they can tolerate a spawn/spawnp.

CEEOSPWN CWI

Chapter 16. z/OS UNIX System Services support 607

The event handler CEEVnnn sets the return code in register 15 to 0 if member
language can tolerate being spawn/spawnp, -4 if member language cannot
tolerate being spawn/spawnp, and 16 if the event handler encountered an
unrecoverable error.

3. The values for the return code and reason code are defined in the z/OS UNIX
System Services Programming: Assembler Callable Services Reference.

4. This function is accessible independent of the POSIX runtime option.

Miscellaneous utilities
The CWIs in this section provide varied functions.

CEEOEXIT
CEEOEXIT CWI service terminates the calling process.

Syntax

void CEEOEXIT (status)
INT4 *status;

CEEOEXIT
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) CAA address is in R12
L R15,3292(,R15)
BALR R14,R15

status (output)
A full word binary integer containing the status field conforming to the
allowable exit status values of:

X'000000'xx
Normal Termination. The child process ended due to a normal
termination of the process with status code indicated as xx, where xx
can be any value.

Usage notes:

1. If the application was invoked due to an exec() or fork(), the kernel does not
return to the caller. If it cannot complete its processing successfully, an EC6
abend is issued.

2. If an incorrect exit status is specified, the kernel issues an EC6 abend and a
reason code X'0B19C00F'.

3. This function is accessible independent of the POSIX runtime option.

CEEOXEXE
When a POSIX process is to exec a new file (terminate a current process),
Language Environment must be able to run clean up functions to terminate its
environment properly. CEEOXEXE is the exec exit routine given control to perform
normal enclave termination.

Syntax

void CEEOXEXE (plist)
POINTER *plist;

CEEOSPWN CWI

608 z/OS V2R1.0 Language Environment Vendor Interfaces

plist (input)
Specifies the name of a full word containing the address of the user exit
parameter list. This value is in R1 when the user exit is invoked. If the user
exit does not require parameters, specify 0.

Support for POSIX functions getenv(), setenv(), and clearenv()
Environment variables are contained in an array of null-terminated strings of the
form name=value in the POSIX process. These environment variables are
manipulated by the functions listed below, or by the external variable extern char
**environ. The names cannot contain the equal sign character (=).

Access to environment variables using **environ cannot be guaranteed in a POSIX
application that uses multiple threads. Access by these functions serializes access to
the environment variables and guarantees consistency of the environment variable
array in a threaded environment.

The functions that manipulate environment variables are listed as follows:

Syntax
#include <sys/types.h>
char *getenv(const char *name);
int setenv(const char *name, char *newvalue, int overwrite);
int clearenv(void);

getenv()
Searches the environment variable list for a string of the form name=value
and returns a pointer to value if such a string is present, NULL otherwise.
For details, see the POSIX 1003.1 definition.

setenv()
Searches the environment variable list for a string of the form name=value.
If found and the overwrite argument is nonzero, the newvalue is substituted
for the current value. If the string is not found, add it to the environment
variable list. For details, see the POSIX 1003.1 definition.

clearenv()
Clears all of the environment variables in the POSIX process. For details,
see the POSIX 1003.1 definition.

Errors
The errors that can occur, beyond those defined by POSIX, are:

EMVSBADCHAR
Bad input character

ENOMEM
Not enough memory available

CEEBENV
Syntax

void CEEBENV (function_code, name_length, name, value_length, value, overwrite, [fc])
INT4 *function_code;
INT4 *name_length;
VSTRING *name;

CEEOXEXE

Chapter 16. z/OS UNIX System Services support 609

INT4 *value_length;
POINTER *value;
INT4 *overwrite;
FEEDBACK *fc;

CEEBENV
Call this CWI interface as follows:
L R15,CEECAACELV-CEECAA(,R12) CAA address is in R12
L R15,3416(,R15)
BALR R14,R15

function_code (input)
A full word binary integer containing the function code of the one of the
following values:

1 Perform getenv(). Searches the environment list for environment
variable specified by name and if found returns a pointer to value.

2 Perform setenv() . Adds, changes, or deletes an environment variable
in the environment list.

3 Perform clearenv() . Clears all environment variables in the
environment list.

4 Perform internal getenv(). Functionally the same as (1) except that it is
used internally within the library. The environment variable is returned
in a buffer that is independent of the buffer used by external callers of
getenv().

name_length (input/output)
A full word binary integer containing the length of the name for the
environment variable. If request is clearenv(), this argument is ignored.

name (input/output)
Specifies the address of the name of an environment variable. If request is
clearenv(), this argument is ignored.

value_length (input/output)
A full word binary integer containing the length of the value for the
environment variable. This argument is output from getenv(), and input to
setenv(). If request is clearenv(), this argument is ignored. A length of zero
indicates a delete request.

value (input/output)
Specifies the address of a field which contains the address of a null terminated
string containing the value of the environment variable, or zero if this is a
delete request. This argument is output from getenv(), and input to setenv().
If request is clearenv(), this argument is ignored.

overwrite (input)
A full word binary integer. If nonzero, setenv() changes the existing value of
existing name to value or deletes the existing environment variable and adds a
new environment variable. If request is getenv() or clearenv(), this argument
is ignored.

fc (output/optional)
The parameter in which the CWI service feedback code is placed. The
following conditions can result from this CWI service.

CEEBENV CWI

610 z/OS V2R1.0 Language Environment Vendor Interfaces

Condition

CEE000 Severity 0

Msg_No 0000

Message The service completed successfully.

CEE51O Severity 3

Msg_No 5176

Message Not enough memory available.

CEE51P Severity 3

Msg_No 5177

Message Bad input character detected for name or value.

CEE51Q Severity 3

Msg_No 5178

Message Bad address detected for the envar anchor or environment variable
array.

CEE51R Severity 3

Msg_No 5179

Message A parameter to the environment variable processing routine
contained an invalid value.

CEE51S Severity 0

Msg_No 5180

Message The specified environment variable name already exists.

Usage notes:

1. The environment variables are always available, independent of the
POSIX(ON|OFF) setting.

2. This function is also available from the CEEENV callable service. For more
information, see z/OS Language Environment Programming Reference.

3. The environment array is searched sequentially, and the first occurrence of name
is used.

4. Access to the environment variable array is as follows:
ceeedbenviron points to a field (either ceeedenvar or C's **environ in writable
static) which points to a null terminated array of null terminated character
strings of the format name=value.

5. Because an application can manipulate the environment using the environ
pointer, Language Environment cannot guarantee a single instance of any
particular environment variable.

6. This function can manipulate the value of the pointer environ, copies of that
pointer need not be valid after call to this function.

7. For a getenv() request, the storage returned for the value character string is
supplied by Language Environment. There is one buffer per thread. Thus, it is
the user's responsibility to use or save the value prior to the next call to
getenv() on that thread.

8. Environment variable names that begin with “_BPXK_” are passed to the kernel
through the callable service, BPX1ENV. Language Environment members and
their users should not define environment variables that begin with the
characters “_BPXK_”; otherwise, there may be conflicts with z/OS
UNIX-defined variable names that begin with those characters.

CEEBENV CWI

Chapter 16. z/OS UNIX System Services support 611

CEEBENV CWI

612 z/OS V2R1.0 Language Environment Vendor Interfaces

Chapter 17. COBOL-specific vendor interfaces

This section describes the COBOL-specific interfaces, ILBOLLDX, IGZCXCC,
IGZXAPI, and IGZCXSF.

ILBOLLDX — OS/VS COBOL library load/delete exit
Purpose

When you link-edit an OS/VS COBOL NORES program with SCEELKED and
include certain CSECTs, you can make the OS/VS COBOL NORES program act
like a RES program. For more information about link-editing OS/VS COBOL
applications with SCEELKED and having them act like RES programs, see the
Enterprise COBOL for z/OS library (http://www-01.ibm.com/support/
docview.wss?uid=swg27036733).

Syntax

R1 (input)
R1 contains a function code in byte 2 and a library routine identifier in byte 3
as shown below.

R0 (output)
R0 must be set to the address of the OS/VS COBOL library load module when
a load function is done.

Usage notes
v The OS/VS COBOL library load/delete exit will get control when normally a

load or delete of ILBOCOM0 or ILBOSR would occur. The OS/VS COBOL
library load/delete exit can then provide a unique copy of the ILBOCOM and
ILBOSRV modules per task (TCB).

v To enable the OS/VS COBOL library load/delete exit, a customer written CSECT
called ILBOLLDX must be link edited with the following ILBO load modules:
– ILBONTR (which is in the SCEERUN data set)
– ILBOSRV (which is in the SCEERUN data set and the SCEELKED data set)
– ILBOSTT (which is in the SCEERUN data set and the SCEELKED data set)
Language Environment does not provide any usermod jobs to perform the link
editing of the OS/VS COBOL library load/delete exit into Language

void ILBOLLDX

byte 0 1 2 3

R1= |xx|xx|ff|ll|

Where:
Library Routine

Reserved (xx) Function (ff) Identifier (ll)
---------------- ---------------- ------------------
Always hex 00 01 - Load 01 - ILBOCOM0

02 - Delete 02 - ILBOSR

© Copyright IBM Corp. 1991, 2015 613

|
|

http://www-01.ibm.com/support/docview.wss?uid=swg27036733
http://www-01.ibm.com/support/docview.wss?uid=swg27036733

Environment. It is the responsibility of the customer who is using the OS/VS
COBOL library load/delete exit to do this. Additionally, all OS/VS NORES
programs must be relink-edited using the modified SCEELKED data set.
When ILBOLLDX is link edited with the ILBO routines, the link-edit attributes
must not be altered and all of the ALIASes associated with each load module
must be preserved. For link-edit information to link-edit ILBOLLDX with the
ILBO routines, see Figure 113, Figure 114, and Figure 115.

v On entry, R14 contains the return address and R15 the entry point address.
v No save area will be passed to ILBOLLDX to save the caller's registers.
v Registers 2-13 must be preserved.
v ILBOLLDX must be REENTRANT (because it will be link-edited with reentrant

ILBO routines).
v ILBOLLDX must be AMODE 24, RMODE 24.
v ILBOLLDX will be entered in AMODE 24 and must return in AMODE 24.
v If ILBOLLDX detects an error condition, it must ABEND, as the caller does not

expect return except when the operation is successful.

Required link edit parameters: NCAL,RENT,REFR

Link edit control cards:

INCLUDE SCEERUN(ILBONTR)
INCLUDE YOURLIB(ILBOLLDX)
ORDER ILBONTR
ENTRY ILBONTR
ALIAS ILBONTR0
NAME ILBONTR(R)

Figure 113. Link edit information to enable ILBOLLDX in ILBONTR

Required link edit parameters: LET,NCAL,REUS

Link edit control cards:

INCLUDE SCEERUN(ILBOSRV)
INCLUDE YOURLIB(ILBOLLDX)
ORDER ILBOSRV
ORDER IGZEOB2
ALIAS ILBOSR,ILBOSRV0,ILBOSRV1,ILBOSR3,ILBOSR5,ILBOST
ALIAS ILBOSTP0,ILBOSTP1
ENTRY ILBOSRV
NAME ILBOSRV(R)

Figure 114. Link edit information to enable ILBOLLDX in ILBOSRV

Required link edit parameters: LET,NCAL,RENT,REFR

Link edit control cards:

INCLUDE AIGZMOD1(ILBOSTT)
INCLUDE YOURLIB(ILBOLLDX)
ORDER ILBOSTT
ORDER IGZEOB2
ALIAS ILBOSTT0
ALIAS ILBOSTT2
ENTRY ILBOSTT
NAME ILBOSTT(R)

Figure 115. Link edit information to enable ILBOLLDX in ILBOSTT

ILBOLLDX

614 z/OS V2R1.0 Language Environment Vendor Interfaces

v ILBOLLDX must support the concept of “use counts”. An instance of a routine
(the copy associated with a given task, for example) should not be deleted
unless the count of delete requests for that instance equals the count of load
requests. For example, if the following sequence of events is received for an
instance of given library routine, the instance must not be deleted until the last
delete in the sequence: load, load, delete, load, delete, delete.

v OS/VS COBOL RES programs cannot be run with the ILBOLLDX support.
Unpredictable results will occur if done.

v ILBOLLDX is not called when the OS/VS COBOL NORES program is running
as NORES.

v Once ILBOLLDX is link-edited with the ILBO routines, ILBOLLDX must support
all environments in which it is used.

IGZCXCC — COBOL call/cancel routine
Purpose

The COBOL CALL/CANCEL interface, IGZCXCC, can be called from an assembler
program to get the equivalent function of doing a COBOL dynamic call and a
COBOL CANCEL. You can use the interface to call and cancel any programs that
can be dynamically called or cancelled from a COBOL program. IGZCXCC
provides two functions:
1. CALL with program name provided.
2. CANCEL with program name provided.

Note: Starting with OS/390 Version 2 Release 6, the IGZCXCC functions of CALL
with entry point provided and CANCEL with entry point provided are no longer
available because they can cause problems when used with other high level
languages. If you have a need to perform the load and delete activity, use the
Language Environment preinitialization support (CEEPIPI), and provide your own
load and delete service routines. For information about CEEPIPI and its support of
user-supplied service routines, see z/OS Language Environment Programming Guide.

Syntax

R1 (input)
R1 contains the address of a structure that provides a function code and the
necessary information for each function code. The structure can be in storage
above the 16M line.
v The structure for CALL a program with program name is shown in

Figure 116 on page 616
v The structure for CANCEL a program with program name is shown in

Figure 117 on page 616

R15 (output)
Content varies, depending on whether this is a CALL or CANCEL request. For
CALL, R15 is set to the R15 value returned from the program that is the target
of the CALL. Figure 116 on page 616 shows the structure for CALL with name;
note that all fields shown are input only.

void IGZCXCC

ILBOLLDX

Chapter 17. COBOL-specific vendor interfaces 615

For CANCEL, R15 is set to 0. Figure 117 shows the structure; all fields are
input only.

Usage notes
v IGZCXCC can only be used on z/OS non-CICS. IGZCXCC is supported in a

multithread environment.
v IGZCXCC is AMODE(31) and RMODE(ANY). It expects to be entered in

AMODE(31) via BASSM. It returns using a BSM. Assembler routines that call
IGZCXCC must access it by issuing a LOAD SVC instruction. IGZCXCC must
not be link edited with any other load modules, otherwise it will cause upward
compatibility problems when moving from one release of Language
Environment to another.

v IGZCXCC can not be invoked with a LINK. If it is invoked with a LINK, it will
signal condition IGZ0099C with error code 4.

v IGZCXCC expects to be called from a Language Environment-enabled assembler
program.

v R12 must point to the CAA on entry.
v R13 must point to a DSA with a valid NAB.
v The COBOL portion of Language Environment must be initialized prior to the

call to IGZCXCC.
v If a parameter list is passed, the high order bit of the address of the last

parameter must be on to indicate the end of the parameter list.
v There are no restrictions when mixing COBOL dynamic CALLs, COBOL

CANCELs, IGZCXCC CALL with name provided (function code 1), and
IGZCXCC CANCEL with name provided (function code 2).

+---+
0 | Function = 1. |
| Fullword binary. |
| |
+---+

4 | Pointer to module name. Pointer. |
| |
| |
+---+

8 | Load module name length. Fullword binary. |
| Valid values: 1 to 8 |
| |
+---+

C | Addr of the parameter list. Pointer. |
| Valid values: 0 or address of parameter |
| list. |
+---+

Figure 116. Structure for CALL with name

+---+
0 | Function = 2. |
| Fullword binary. |
| |
+---+

4 | Pointer to module name. Pointer. |
| |
| |
+---+

8 | Load module name length. Fullword binary. |
| Valid values: 1 to 8 |
| |
+---+

Figure 117. Structure for CANCEL with name

IGZCXCC

616 z/OS V2R1.0 Language Environment Vendor Interfaces

v If a Language Environment-enabled assembler program that is going to call
IGZCXCC is called by OS/VS COBOL programs or VS COBOL II programs,
specify NAB=NO and MAIN=NO in the CEEENTRY macro.

v When a IGZCXCC CANCEL call is done for a program that either has not been
dynamically called or has already been canceled, no action is taken, and no
condition is signaled. This is the same behavior as a COBOL CANCEL.

IGZXAPI — COBOL file and runtime information query routine
Purpose

IGZXAPI is a loadable module, which can be called to query information about a
running COBOL program. Below is sample code for calling the routine:

LOAD EP=IGZXAPI
..
LA R1,[parm area] see note below
BALR R14,R15
..

Note: [parm area] is an array of addresses. Only the first address entry is used,
which points to XINFO, XINFO2, and everything below DSECT. (In this
description, a DSECT is also known as an "information structure".)

Syntax

R1 (input)
Points to the parameter area.

(output)
The data structure (XINFO or XINFO2) is populated. Registers R2-R13 remain
unchanged.

File information query

To query file information of a running COBOL program (language member
identifier 4).

The DSECT XINFO is the information structure to communicate with the file
information routine. The caller should take note of the following data fields:

XNREST
This is the number of files remaining to be returned from the query.

On the first call, the caller has to set this field to zero. This indicates the
first call. The routine returns information of the first file; XNREST is set by
the routine to the number of files remaining.

On subsequent calls, the caller should not modify any of the data fields
returned from the previous call. The routine will return information of the
next file.

When the last file has been returned, this field is set to zero by the routine.

void IGZXAPI

IGZCXCC

Chapter 17. COBOL-specific vendor interfaces 617

|
|
|

|

|

|
|

|
|
|
|
|

|
|
|

|
|

|
|

|
|
|

|

|
|

|
|

|
|

|
|
|

|
|
|

|

XNFILES
This is an output field, and indicating the total number of files. This is
returned by the routine in the first call, and remains unchanged in
subsequent calls.

XDSA This is the DSA address of the COBOL program being queried. This is set
by the caller in the first call, and must not be modified in subsequent calls.

Only COBOL files in this program are returned.

XLEN Length of the XINFO data structure. Caller should set this field to the
length of XINFO, 124.

Caller should provide storage for XINFO.

XFNCODE
This is the function code. Set to 1 by caller for file information query.

All other data fields are output from the routine. The caller should not modify any
of these fields, including the ones marked as reserved for future use.

Note: SD files are not physical data files. They don't actually exist until the sort is
active. The current sort record, if present, is provided by way of the runtime
information query (in XINFO2).

Runtime information query

To query general runtime information. The DSECT XINFO2 is the information
structure to communicate with the runtime information routine. On input:

XDSA2
The DSA address of the COBOL program to be queried.

XLEN2
Length of XINFO2.

Caller should set this to 48.

Caller should provide memory for this data structure.

XFNCODE2
This is the function code. Set to 2 for general runtime information query.

All other fields are output from the routine. The calling convention is the same as
the file information routine.

CWSA address query

To find the COBOL working storage area address of a given entry point. DSECT
XINFO3 is the information structure to communicate with the CWSA address
query routine. On input:

XEP3 The entry point address of the COBOL program to be queried.

XLEN3
Length of XINFO3.

Caller should set this to 40.

Caller should provide memory for this data structure.

XFNCODE3
This is the function code. Set to 3 for WSA address query.

IGZXAPI

618 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|
|
|

||
|

|

||
|

|

|
|

|
|

|
|
|

|

|
|

|
|

|
|

|

|

|
|

|
|

|

|
|
|

||

|
|

|

|

|
|

R12 Register 12 points to the Language Environment CAA.

All other fields are output from the routine. The calling convention is the same as
the file information routine. This routine requires the Language Environment to be
up and running.

File status update

To update the file status variable of the specified file. DSECT XINFO4 is the
information structure. On input:

XDSA4
The DSA address of the COBOL program.

The file, whose file status variable is to be updated, must be defined in this
program.

XLEN4
Length of XINFO4.

Caller should set this to 76.

Caller should provide memory for this data structure.

XFNCODE4
This is the function code. Set to 4 for file status update.

XFILENM
COBOL FD name of the file.

XFSTATUS
Address of the buffer area containing the new file status data.

Data in this area will be copied to the file status variable in the COBOL
program. No checking is done on this data. Exactly XFSLEN bytes will be
copied from this buffer to the file status variable.

XFSLEN
Length of the XFSTATUS buffer area.

R12 Register 12 points to the Language Environment CAA.

There is no output field from this routine. The calling convention is the same as
the file information routine. This routine requires the Language Environment to be
up and running.

Layout of the information structure

The layout of the information structure is described below.
--
* 1 2 3 4 5 6 7
*
* 345678901234567890123456789012345678901234567890123456789012345678901
*
XINFO DSECT
XFNCODE DS F Input: Function code, =1 for file information
XFILLER0 DS A reserved
XSIG DS F X’C0B00501’
XVER DS H Version of this information structure block
XLEN DS H Input: Length of this data structure, 120
XDSA DS A Input: DSA of COBOL program to be querired
*
XNFILES DS H Total number of files
*

IGZXAPI

Chapter 17. COBOL-specific vendor interfaces 619

||

|
|
|

|

|
|

|
|

|
|

|
|

|

|

|
|

|
|

|
|

|
|
|

|
|

||

|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

* BNREST is input field during the first call, set it to zero;
* on return, contains the remaing number of files to go
*
XNREST DS H Input in first call, set to zero
*
XDCB DS A Address of DCB or ACB
XDDNAME DS A Address of DDNAME (8 characters)
XFNAME DS A Address of file name (30 characters)
*
XCFLAG1 DS X Compile time information flags
XSOPTNL EQU X’80’ SELECT OPTIONAL
XRCDSPN EQU X’40’ Record format spanned
XBLKED EQU X’20’ Record format blocked
XLINAGE EQU X’10’ Linage is specified
XLINFOOT EQU X’08’ Linage FOOTING is specified
XLINTOP EQU X’04’ Linage TOP is specified
XLINBOT EQU X’02’ Linage BOTTOM is specified
XBUFUSE EQU X’01’ Buffer usage indicator
*
XCFLAG2 DS X Compile time information flags
XEXTFILE DS X’80’ External file

FILLER2 DS X Reserved
FILLER3 DS X Reserved
*
XORG1 DS X File Type
XVSAM EQU X’01’ VSAM
XLSEQ EQU X’02’ Line Sequential
XQSAM EQU X’03’ QSAM
*
XORG2 DS X File Organization
XORGSEQ EQU X’01’ Sequential
XORGIND EQU X’02’ Indexed
XORGREL EQU X’03’ Relative
*
XACCESS DS X File Access Mode
XACCSEQ EQU X’01’ Sequential
XACCRAN EQU X’02’ Random
XACCDYN EQU X’03’ Dynamic
*
XRECFM DS X Record Format
XRECFIX EQU X’01’ Fixed
XRECVAR EQU X’02’ Variable
XRECUND EQU X’03’ Undefined
*
XRFLAG1 DS X Run time information flags 1
XOPOPT EQU X’80’ OPEN, missing optional file
XOPREV EQU X’40’ OPEN REVERSED (valid when XOPENED)
XOPNOREW EQU X’20’ OPEN, NO REWIND (valid when XOPENED)
XCLNOREW EQU X’10’ CLOSE, NO REWIND (valid when XCLOSED)
XCLLOCK EQU X’08’ CLOSE, LOCK (valid when XCLOSED)
XCLREMOV EQU X’04’ CLOSE FOR REMOVAL (valid when XCLOSED)
XSOKACT EQU X’02’ A successful action since OPEN
*
XRFLAG2 DS X Run time information flags 2
XPEND EQU X’20’ OPEN or CLOSE pending
XSEOF EQU X’10’ Previous READ hit end of file
XEOP EQU X’08’ End of page
XMOPTNL EQU X’04’ OPTIONAL FILE MISSING
XADVAFT EQU X’02’ WRITE AFTER ADVANCING x LINES
XADVBEF EQU X’01’ WRITE BEFORE ADVANCING x LINES

FILLER4 DS H Reserved
*
XFMODE DS X Current file mode
XOPENED EQU X’01’ Opened
XCLOSED EQU X’02’ Closed

IGZXAPI

620 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

XNEVERO EQU X’03’ Never opened
*
XOMODE DS X Information about OPEN (valid when XOPENED)
XOPIN EQU X’01’ OPEN INPUT
XOPOUT EQU X’02’ OPEN OUTPUT
XOPIO EQU X’03’ OPEN IO
XOPEXT EQU X’04’ OPEN EXTENDED
*
XCMODE DS X Information about CLOSE (valid when XCLOSED)
XCLFILE EQU X’01’ CLOSE
XCLUNIT EQU X’02’ CLOSE REEL/UNIT
*
XLASTREQ DS X Last operation on file
XLASTRD EQU X’01’ READ
XLASTWRT EQU X’02’ WRITE
XLASTRWT EQU X’03’ REWRITE
XLASTSTR EQU X’04’ START
XLASTDLT EQU X’05’ DELETE
XLASTOPN EQU X’06’ OPEN
XLASTCLO EQU X’07’ CLOSE
*
* Various LINAGE values
*
XLNLING DS F Linage
XLNFOOT DS F Linage footing
XLNTOP DS F Linage top
XLNBOT DS F Linage bottom
XLNCTR DS F Linage counter
*
* File Status
*
XFSTAT DS X File status, in 2 hex bytes
XVSMCOD DS X VSAM feedback code
XVSMRET DS X VSAM return code
XVSMFUNC DS X VSAM function code
*
XADVVAL DS F Write after/before advancing value
*
XRECLEN DS F Record length; max length for variable rec
XBLKLEN DS F Block size
XRECLAD DS A Address of address of record
XBUFAD DS A Address of buffer provided by DFSMS
*
XPNAME DS A Address of program name
XPNAMLEN DS H Program name length
FILLER5 DS H Reserved
*
FILLER6 DS 4F Reserved
*
* 1 2 3 4 5 6 7
*
* 345678901234567890123456789012345678901234567890123456789012345678901
*
--
*
* 1 2 3 4 5 6 7
*
* 345678901234567890123456789012345678901234567890123456789012345678901
*
XINFO2 DSECT
XFNCODE2 DS F Input: Function code, =2 for RT information
FILLER10 DS A reserved
XSIG2 DS F X’C0B00501’
XVER2 DS H Version of this information structure block
XLEN2 DS H Input: Length of this data structure, 48
XDSA2 DS A Input: DSA of COBOL program to be querired
*

IGZXAPI

Chapter 17. COBOL-specific vendor interfaces 621

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

FILLER11 DS X Reserved
FILLER12 DS X Reserved
FILLER13 DS X Reserved
*
XRFLAG4 DS X Run Time Flags
XINSORT EQU X’02’ Sort is active
XISMAIN EQU X’01’ Program is main
*
XSDREC DS A Address of active sort record
XSDLEN DS F Sort record len
FILLER14 DS 4F Reserved
*
*
* 1 2 3 4 5 6 7
*
* 345678901234567890123456789012345678901234567890123456789012345678901
*
--
*
* 1 2 3 4 5 6 7
*
* 345678901234567890123456789012345678901234567890123456789012345678901
*
XINFO3 DSECT
XFNCODE3 DS F Input: Function code, =3 for WSA address query
FILLER30 DS A reserved
XSIG3 DS F X’C0B00501’
XVER3 DS H Version of this information structure block
XLEN3 DS H Input: Length of this data structure, 40
*
XEP3 DS A Input: Entry point address of COBOL program
XWSA DS A Address of WSA
*
FILLER31 DS 4F Reserved
*
*
--
*
* 1 2 3 4 5 6 7
*
* 345678901234567890123456789012345678901234567890123456789012345678901
*
XINFO4 DSECT
XFNCODE4 DS F Input: Function code, =4 for file status update
FILLER40 DS A reserved
XSIG4 DS F X’C0B00501’
XVER4 DS H Version of this information structure block
XLEN4 DS H Input: Length of this data structure, 76
*
XDSA4 DS A Input: DSA address of COBOL program
XFILENM DS CL30 File Name. COBOL FD name of the file.
FILLER42 DS CL2
XFSTATUS DS A Addr of buff containing new File Status data
XFSLEN DS F Length of XFSTATUS buffer
*
FILLER31 DS 4F Reserved
*
*
* 1 2 3 4 5 6 7
*
* 345678901234567890123456789012345678901234567890123456789012345678901
*
--

IGZXAPI

622 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Usage notes
v R13 must point to the caller’s DSA.
v R14 is the return address.
v R15 is the entry point address of IGZXAPI.
v On return from the routine, R15 is set to zero if the call is successful. R15 is set

to non-zero if the call is not successful and the requested information is not
available.

IGZCXSF — COBOL extract side file routine
Purpose

The COBOL Extract Side File interface, IGZCXSF, can be called from a Language
Environment-conforming program to extract the following information from a
COBOL SYSDEBUG side file:
v Compilation information
v Procedure table
v Expanded program source

Syntax

R1 (input)
The address of the parm list which contains the addresses of the following 3
parms:

side-file-name (input) – Character(1024) Varying
The SYSDEBUG side file name preceded by a half-word length. It contains
the data set name, data set name with member name, or fully qualified
HFS name.

program-name (input) – Character(160) Varying
The program name preceded by a half-word length. It contains the
program name associated with the desired compile unit within the
SYSDEBUG side file.

output-structure (output) – 7 fullwords
The structure to contain the output data. The format of the structure is as
follows:

Table 67. Output-structure format

Description

00 Address of compilation information. Fullword address.

04 Length of compilation information. Fullword binary.

08 Address of procedure table. Fullword address.

0C Length of procedure table. Fullword binary.

10 Address of expanded program source. Fullword address.

14 Length of expanded program source. Fullword binary.

18 LRECL of expanded program source. Fullword binary.

call IGZCXSF(side-file-name, program-name, output-structure)

IGZXAPI

Chapter 17. COBOL-specific vendor interfaces 623

|

|

|

|

|
|
|

|

R15 (output)
The return code. The possible values are listed below.

-1 Unsupported environment

0 Successful

4 Data set/File not found

8 Allocate error

12 Deallocate error

16 Open error (for example, member not found)

20 Close error

24 Read error

28 Decompress error

32 Storage not available

36 Invalid function code

40 Invalid file attribute (for example, PDS but no member, member but
not PDS)

44 Verification failed (for example, not a valid side file, program name not
found)

48 Unexpected EOF

52 No TIOT ENQ

Usage notes
v IGZCXSF can only be used on z/OS non-CICS.
v IGZCXSF is AMODE(31) and RMODE(ANY). It expects to be entered in

AMODE(31). It returns using a BSM. Routines that call IGZCXSF must access it
by a dynamic load (for example, issuing a LOAD SVC, using CEELOAD,
COBOL dynamic call, PL/I fetch, C fetch). IGZCXSF must not be linkedited with
any other load modules, otherwise it will cause upward compatibility problems
when moving from one release of Language Environment to another.

v IGZCXSF expects to be called from a Language Environment-conforming
program.

v R12 must point to the CAA on entry.
v R13 must point to a DSA with a valid NAB.
v The user is responsible for freeing each of the three storage areas (address of

compilation information, address of procedure table, and address of expanded
program source that are returned in the output structure) using Language
Environment free heap storage services (for example, CALL
CEEFRST(address,feedback-code) or CALL CEEVFRST(address,feedback-code)).
If the storage is not freed by the user, it will be implicitly freed by Language
Environment at enclave termination.

Compilation information
1. The address and length of the compilation information are returned in the

output structure.
2. This maps to TIMEVRS through USER LEVEL INFO plus 1 word that contains

the length of the procedure division code

IGZCXSF

624 z/OS V2R1.0 Language Environment Vendor Interfaces

+00 CL14 YYYYMMDDHHMMSS (compile date and time)
+0E CL6 VVRRMM (compiler version/release/modification level)
+14 H CCSID value
+16 XL2 unused
+18 XL2 Info bytes 28-29
+1A XL2 Year Window value
+1C XL23 Info bytes 1-23
+33 XL1 COBOL signature level
+34 F # DATA DIVISION statements
+38 F # PROCEDURE DIVISION statements
+3C XL4 Info bytes 24-27
+40 XL4 User compiler level
+44 F Length of the procedure division code

3. TIMEVRS through USER LEVEL INFO is documented in the Enterprise COBOL
Programming Guide 2.6.4.4.1 Example: program initialization code and
following sections. Here is an example of the TIMEVRS through USER LEVEL
INFO:

000068 F2F0F0F9 DC CL4’2009’ @TIMEVRS: YEAR OF COMPILATION
00006C F0F9F3F0 DC CL4’0930’ MONTH/DAY OF COMPILATION
000070 F1F0F4F8 DC CL4’1048’ HOURS/MINUTES OF COMPILATION
000074 F1F6 DC CL2’16’ SECONDS FOR COMPILATION DATE
000076 F0F4F0F2F0F0 DC CL6’040200’ VERSION/RELEASE/MOD LEVEL OF PROD
00007C 0474 DC X’0474’ UNSIGNED BINARY CODE PAGE CCSID VALUE
00007E 0000 DC AL2’0’ AVAILABLE HALF-WORD
000080 0000 DC X’0000’ INFO. BYTES 28-29
000082 076C DC X’076C’ SIGNED BINARY YEARWINDOW OPTION VALUE
000084 A0487C4C2000 DC X’A0487C4C2000’ INFO. BYTES 1-6
00008A 000000080000 DC X’000000080000’ INFO. BYTES 7-12
000090 000000000800 DC X’000000000800’ INFO. BYTES 13-18
000096 0000000000 DC X’0000000000’ INFO. BYTES 19-23
00009B 00 DC X’00’ COBOL SIGNATURE LEVEL
00009C 00000001 DC X’00000001’ # DATA DIVISION STATEMENTS
0000A0 00000003 DC X’00000003’ # PROCEDURE DIVISION STATEMENTS
0000A4 000080 DC X’000080’ INFO. BYTES 24-26
0000A7 00 DC X’00’ INFO. BYTE 27
0000A8 40404040 DC C’ ’ USER LEVEL INFO (LVLINFO)

Procedure table
1. The address and length of the procedure table are returned in the output

structure.
2. Each entry is 6 bytes long.
3. The format of each entry is as follows:

a. The line number of the statement is in the first 20 bits.
b. The verb number (v) on the line is in the next 3 bits.
c. The existence of a Paragraph Name or Section Name on the line (p) is in the

next 1 bit.
d. The displacement from the start of the CSECT for this statement is in the

next 3 bytes.
e. The following table displays the entry format:

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

Bits: 8 Bits: 8 Bits: 4 3 1 Bits: 8 Bits: 8 Bits: 8

line number of statement v p displacement from CSECT start

Expanded program source
1. The address and length of the expanded program source are returned in the

output structure.

IGZCXSF

Chapter 17. COBOL-specific vendor interfaces 625

2. The record length (LRECL) is returned in the output structure.
3. The data contained in each record depends on the LRECL

a. For LRECL 78:
1) Columns 1-6 contains the compiler generated source code line number.
2) Columns 7-78 contains the COBOL sequence number and program

source (from columns 1-72 of the source file).
b. For LRECL 86:

1) Columns 1-6 contains the compiler generated source code line number.
2) Columns 7-78 contains the COBOL sequence number and program

source (from columns 1-72 of the source file).
3) Columns 79-86 contains the COBOL suffix area (from columns 73-80 of

the source file).

IGZCXSF

626 z/OS V2R1.0 Language Environment Vendor Interfaces

Chapter 18. PL/I-specific vendor interfaces

This section describes the PL/I-specific interface, IBMPXSF.

IBMPXSF — PL/I extract side file routine
Purpose

The PL/I extract side file interface, IBMPXSF, can be called from a Language
Environment-conforming program to extract the following information from a PL/I
SYSDEBUG side file:
v Compilation information
v Statement table
v Expanded program source

Syntax

R1 (input)
The address of the parm list which contains the addresses of the following 3
parms:

side-file-name (input) – character(1024) varying
The SYSDEBUG side file name preceded by a half-word length. It contains
the data set name, data set name with member name, or fully qualified
HFS name.

program-name (input) – character(160) varying
The program name preceded by a half-word length. It contains the
program name associated with the desired compile unit within the
SYSDEBUG side file.

output-structure (output) – 7 fullwords
The structure to contain the output data. The format of the structure is as
follows:

Table 68. Output-structure format

Description

00 Address of compilation information. Fullword address.

04 Length of compilation information. Fullword binary.

08 Address of statement table. Fullword address.

0C Length of statement table. Fullword binary.

10 Address of expanded program source. Fullword address.

14 Length of expanded program source. Fullword binary.

18 Max LRECL of expanded program source. Fullword binary.

R15 (output)
The return code. The possible values are listed below.

Call IBMPXSF(side-file-name, program-name, output-structure)

© Copyright IBM Corp. 1991, 2015 627

-1 Unsupported environment

-2 Unsupported version/release of the compiler

0 Successful

4 Data set/File not found

8 Allocate error

12 Deallocate error

16 Open error (for example, member not found)

20 Close error

24 Read error

28 Decompress error

32 Storage not available

36 Invalid function code

40 Invalid file attribute (for example, PDS but no member, member but
not PDS)

44 Verification failed (for example, not a valid side file, program name not
found)

48 Unexpected EOF

52 No TIOT ENQ

Usage notes
v IBMPXSF can only be used on z/OS non-CICS.
v IBMPXSF is AMODE(31) and RMODE(ANY). It expects to be entered in

AMODE(31). It returns using a BSM. Routines that call IBMPXSF must access it
by a dynamic load (for example, issuing a LOAD SVC, using CEELOAD,
COBOL dynamic call, PL/I fetch, C fetch). IBMPXSF must not be linkedited with
any other load modules, otherwise it will cause upward compatibility problems
when moving from one release of Language Environment to another.

v IBMPXSF expects to be called from a Language Environment-conforming
program.

v R12 must point to the CAA on entry.
v R13 must point to a DSA with a valid NAB.
v The user is responsible for freeing each of the three storage areas (address of

compilation information, address of statement table, and address of expanded
program source that are returned in the output structure) using Language
Environment free heap storage services (for example, CALL
CEEFRST(address,feedback-code) or CALL CEEVFRST(address,feedback-code)).
If the storage is not freed by the user, it will be implicitly freed by Language
Environment at enclave termination.

v The minimum Enterprise PL/I compiler level supported by IBMPXSF is
V4R1M0.

v The following compiler options are required to ensure that the SYSDEBUG side
file contains the complete expanded program source and statement table:
– TEST(SEPARATE) – the ALL and NOHOOK sub-options are also

recommended but not required.
– GONUMBER(SEPARATE) – required to produce the statement table in the

SYSDEBUG side file.

IBMPXSF

628 z/OS V2R1.0 Language Environment Vendor Interfaces

– MACRO or PP(MACRO) is required if there are %INCLUDE statements in the
source (using the MACRO suboption CASE(ASIS) will leave the case of the
source unchanged).

– LISTVIEW(AFTERALL) – required if include files, EXEC CICS commands, or
SQL code are in the source.

Compilation information
1. The address and length of the compilation information are returned in the

output structure.
2. This maps to the following side file header

+00 H Length of side file header info in halfwords
+02 H Version of side file header
+04 CL3 Eyecatcher ('SID')
+07 CL17 YYYYMMDDHHMMSSTTT (compile date and time)
+18 CL6 VVRRMM (compiler version/release/modification level)
+1E H # of include files
+20 CL8 YYYYMMDD (compiler build date; version >= 2 only)

Statement table
1. The address and length of the statement table are returned in the output

structure.
2. The statement table consists of one or more block statement structures which

represent the blocks in the compile unit.
3. Each block statement structure may contain one or more statement sections

depending on the length of the code for the block.
4. The format of each block statement structure entry is as follows (may be

repeated as needed):
a. Block statement header

+00 F Offset of block entry within compile unit
+04 F Length of generated code for block

b. Statement section (one for every x’8000’ bytes of code in the block)
+08 F Section end offset (from the start of statement table)
+0C XL6 Struct statement table entry (repeated until section end offset is reached)

+00 XL2 Statement offset (including reserved flags)
+02 XL4 Statement number and index

BL10 file index (should be 0 if the correct compiler options were used)
BL17 statement number
BL5 reserved

c. End block delimiter
+nn XL6 X'0E0E0E0E0E0E'

5. The end of the statement table may contain up to 8 bytes of padding.
6. When there are multiple statement sections for a block, the statement offset

requires a base increment of x’8000’ for each statement section after the first
one to determine the actual offset into the block.

7. To determine the statement offset value, AND the 2 bytes with x’7FFE’ to
remove the high order and low order bits.

8. To determine the offset into the module, the block offset value from the
statement block header must also be added to the statement offset value.

9. The following is the layout for the block statement structure:

IBMPXSF

Chapter 18. PL/I-specific vendor interfaces 629

10. The following displays the entry layout for the statement table:

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6

1 Bits: 14 1 10 17 5

x statement offset value x file index statement number x

Expanded program source
1. The address and length of the expanded program source are returned in the

output structure.
2. The data is mapped as follows:

+00 F number of records
+04 F max LRECL
Expanded source code (repeated as needed)

+08 CL2+n struct variable length strings
+00 H LRECL
+02 CLn statement

3. The expanded source code does not contain the statement numbers; the source
lines should be numbered sequentially starting with 1.

+---+
| Block offset | Block Code |
| | Length |
+---+
| Section end |
| offset |
+--------------------------------+
| Statement descriptor |
+--------------------------------+
| Statement descriptor |
+--------------------------------+
| Statement descriptor | |
+--------------------------------+

...

...
Repeat descriptors to section end

New section appears here (if block length >= x'8000')
Else block end string (x'0E0E0E0E0E0E')

New block statement structure appears here if needed
Else end of stmt table (with up to 8 bytes of padding)

Figure 118. Structure for the block statement

IBMPXSF

630 z/OS V2R1.0 Language Environment Vendor Interfaces

Chapter 19. C/C++ special purpose interfaces for IEEE
floating-point

This section describes the C/C++ special purpose interfaces for IEEE floating-point.

IEEE binary floating-point introduction
Starting with the IBM S/390 Generation 5 Server, support for IEEE binary
floating-point (IEEE floating-point) as defined by the ANSI/IEEE Standard
754-1985, IEEE Standard for Binary Floating-Point Arithmetic, is included. Starting
with Version 2 Release 6, OS/390 (including the Language Environment and
C/C++ components) has added support for IEEE floating-point.

Note:

1. You must have OS/390 Release 6 or later to use the IEEE floating-point
instructions. In OS/390 Version 2 Release 6, the base control program (BCP)
was enhanced to support the new IEEE floating-point hardware in the IBM
S/390 Generation 5 Server. This enabled programs running on OS/390 Release
6 or later to use the IEEE floating-point instructions and 16 floating-point
registers. In addition, the BCP provided simulation support for all the new
floating-point hardware instructions. This enabled applications that make light
use of IEEE floating-point, and which could tolerate the overhead of software
simulation, to execute on OS/390 Release 6 or later without requiring an IBM
S/390 Generation 5 Server.

2. The terms “binary floating-point” and “IEEE floating-point” are used
interchangeably. The abbreviations BFP and HFP, which are used in some
function names, refer to binary floating-point and S/390 hexadecimal
floating-point (hexadecimal floating-point), respectively.

3. IEEE binary floating-point is fully supported in a CICS environment only if
CICS TS Version 4 or later is in use.

The z/OS XL C/C++ compiler provides a FLOAT option to select the format of
floating-point numbers produced in a compile unit. The FLOAT option allows you
to select either IEEE floating-point or hexadecimal floating-point format. For
information on the z/OS XL C/C++ compiler options, see z/OS XL C/C++ User's
Guide.

The C/C++ runtime library interfaces support both IEEE floating-point and
hexadecimal floating-point formats. These interfaces are documented in z/OS XL
C/C++ Runtime Library Reference.

The primary documentation for the IEEE floating-point support is contained in the
z/Architecture® Principles of Operation, SA22-7832, and the z/OS XL C/C++ User's
Guide.

IEEE floating-point is provided on S/390 primarily to enhance interoperability and
portability between S/390 and other platforms. It is anticipated that IEEE
floating-point will be most commonly used for new and ported applications, and
in emerging environments, such as Java. Customers should not migrate existing
applications that use hexadecimal floating-point to IEEE floating-point, unless there
is a specific reason (such as a need to interoperate with a non-S/390 platform).

© Copyright IBM Corp. 1991, 2015 631

IBM does not recommend mixing floating-point formats in an application.
However, for applications which must handle both formats, the C/C++ runtime
library does provide some support which is described below.

IEEE decimal floating-point introduction
Starting with z/OS V1R8, including the Language Environment and C/C++
components, support has been added for IEEE decimal floating-point as defined by
the ANSI/IEEE Standard P754/D0.15.3, IEEE Standard for Floating-Point
Arithmetic.

Note:

1. You must have z/OS V1R8 or higher to use IEEE decimal floating-point, the
hardware must have the Decimal Floating Point Facility installed, and the
__STDC_WANT_DEC_FP__ feature test macro must be defined.

2. The abbreviation DFP refers to IEEE decimal floating-point.
3. IEEE decimal floating-point is fully supported in a CICS environment only if

CICS TS Version 4 or later is in use.

The z/OS XL C/C++ compiler provides a DFP option to include support for IEEE
decimal floating-point numbers. For details on the z/OS XL C/C++ support, see
the description of the DFP option in z/OS XL C/C++ User's Guide.

New C/C++ runtime library interfaces, which support IEEE decimal floating-point
numbers have been added for z/OS V1R8, and other existing interfaces have been
updated to support DFP. These interfaces are documented in z/OS XL C/C++
Runtime Library Reference.

The primary documentation for the IEEE decimal floating-point support is
contained in z/Architecture Principles of Operation, SA22-7832 and z/OS XL C/C++
User's Guide.

Reference information for IEEE floating-point can also be found in z/OS XL C/C++
Language Reference.

Selection of fdlibm or fdlibm replacement functions
In 1999, the C/C++ Runtime Library provided IEEE754 floating-point arithmetic
support in support of IBM’s Java group. The Java language had a bit-wise
requirement for its math library, meaning that all platforms needed to produce the
same results as Sun Microsystems’ fdlibm (Freely Distributed LIBM) library.
Therefore, Sun Microsystems’ fdlibm code was ported to the C/C++ Runtime
Library to provide IEEE754 floating-point arithmetic support. Subsequent to the
C/C++ Runtime Library’s 1999 release of IEEE754 floating-point math support,
IBM's Java group provided their own support of IEEE754 floating point arithmetic
and no longer use the C/C++ Runtime Library for this support.

Beginning in z/OS V1R9, a subset of the original fdlibm functions are being
replaced by new versions that are designed to provide improved performance and
accuracy. The new versions of these functions are replaced at the existing entry
points. However, as a migration aid, IBM has provided new entry points for the
original fdlibm versions. Applications that take no action will automatically use the
updated functions. There are two methods for accessing the original functions. The
details about the two methods are as follows:

IEEE binary floating-point

632 z/OS V2R1.0 Language Environment Vendor Interfaces

To access the original fdlibm functions, you can use the following methods:
1. If the application has not included math.h or uses feature test macro

_FP_MODE_VARIABLE, environment variable
_EDC_IEEEV1_COMPATIBILITY_ENV can be set to ON in order to access the
original versions of the functions. If the environment variable is not set or set
to any value other than ON, the new versions of the functions will be used.
This method does not require the application to be recompiled. Note that if the
application is running in variable mode and was either compiled FLOAT(HEX)
or has used __fp_setmode() to switch over to hexadecimal floating-point mode,
the hexadecimal versions of the functions will be called no matter the setting of
the environment variable.

2. If the application includes math.h, does not use feature test macro
_FP_MODE_VARIABLE, and uses FLOAT(IEEE) compiler option, the
application will need to be recompiled with feature test macro
_IEEEV1_COMPATIBILITY defined so that the affected math functions can be
mapped to the new entry points that provide the old behavior. This method
requires the application to be recompiled. See z/OS XL C/C++ Runtime Library
Reference for more information on the _IEEEV1_COMPATIBILITY feature test
macro.

Note: IBM suggests always including math.h, so it is likely that the application
will need to use the previous second method if it is desired to use the old versions
of the functions.

IEEE floating-point functions
The following sections describe the IEEE floating-point functions.

__chkbfp() — check IEEE facilities usage
Standards

Standards / Extensions C or C++ Dependencies

z/OS V1.8 (for DFP)

Syntax

General description

The system sets a flag in the secondary task control block (STCB) when IEEE
floating-point hardware facilities or simulated facilities (including additional
floating-point (AFP) registers in hexadecimal floating-point) are first accessed by a
task. The __chkbfp() function returns the state of this flag.

Return values

0 IEEE floating-point facilities (including AFP registers in hexadecimal
floating-point mode) have not been used by the task.

1 IEEE floating-point facilities have been used by the task. (This includes
both IEEE binary and decimal floating-points.)

#include <_Ieee754.h>
int __chkbfp(void);

IEEE Decimal Floating-Point

Chapter 19. C/C++ special purpose interfaces for IEEE floating-point 633

Usage information

To use IEEE decimal floating-point, the hardware must have the Decimal
Floating-Point Facility installed.

Related information
v “__fp_level() — determine type of IEEE facilities available” on page 637

__fp_btoh() — convert from IEEE floating-point to
hexadecimal floating-point

Standards

Standards / Extensions C or C++ Dependencies

Both OS/390 V2R6

Syntax

General description

The __fp_btoh() function converts data in IEEE floating-point format, pointed to by
src_ptr, to hexadecimal floating-point format, and stores the hexadecimal
floating-point value at the location pointed to by trg_ptr. src_ptr and trg_ptr point
to C floating-point variables of type float, double, or long double as indicated by
src_type and trg_type. Valid values for src_type and trg_type are _FP_FLOAT,
_FP_DOUBLE, and _FP_LONG_DOUBLE. rmode specifies rounding mode for
inexact mappings. Valid values are:

Value Description
_FP_BH_NR

No rounding
_FP_BH_RZ

Rounding toward zero
_FP_BH_BRN

Biased round to nearest
_FP_BH_RN

Round to nearest
_FP_BH_RP

Round toward +infinity
_FP_BH_RM

Round toward -infinity

Return values

If invalid src_type, trg_type, or rmode is specified, __fp_btoh() returns -1. Otherwise,
it returns the following values:

0 Zero (IEEE floating-point +zero or -zero value mapped to hexadecimal
floating-point +zero or -zero value, respectively).

1 Underflow (IEEE floating-point value is too small to map to hexadecimal

#include <_Ieee754.h>
int __fp_btoh(void *src_ptr, int src_type,

void *trg_ptr, int trg_type,
int rmode);

__chkbfp()

634 z/OS V2R1.0 Language Environment Vendor Interfaces

floating-point). In this case *trg_ptr is set to the hexadecimal floating-point
value corresponding to the smallest convertible IEEE floating-point value.

2 Success (with rounding performed as indicated by rmode).

3 Overflow (IEEE floating-point value is too large to map to hexadecimal
floating-point). In this case *trg_ptr is set to the hexadecimal floating-point
value corresponding to the largest convertible IEEE floating-point value.

Related information
v “__fp_htob() — convert from hexadecimal floating-point to IEEE floating-point”

on page 636

__fp_cast() — cast between floating-point data types
Standards

Standards / Extensions C or C++ Dependencies

Both OS/390 V2R6

Syntax

General description

The __fp_cast() function casts between C floating-point data types, when the data
format does not match the format specified by the FLOAT compiler option. The
mode parameter indicates the format of source and target floating-point values
pointed to by src_ptr and trg_ptr. Valid values for the mode parameter are
_FP_HFP_MODE for hexadecimal floating-point format and _FP_BFP_MODE for
IEEE floating-point format.

src_type and trg_type indicate the C data type (float, double, or long double) of the
source and target floating-point values, respectively. Valid values for src_type and
trg_type are _FP_FLOAT, _FP_DOUBLE or _FP_LONG_DOUBLE.

Return values

If invalid values for mode, src_type or trg_type are specified, __fp_cast() returns -1.
Otherwise, it performs the requested cast and returns 0.

Related information
v “__fp_setmode() — set IEEE or hexadecimal mode” on page 638
v “__fp_swapmode() — set IEEE or hexadecimal mode” on page 639
v “__isBFP() — determine application floating-point mode” on page 645

#include <_Ieee754.h>
int __fp_cast(int mode, void *src_ptr, int src_type,

void *trg_ptr, int trg_type);

__fp_btoh()

Chapter 19. C/C++ special purpose interfaces for IEEE floating-point 635

__fp_htob() — convert from hexadecimal floating-point to
IEEE floating-point

Standards

Standards / Extensions C or C++ Dependencies

Both OS/390 V2R6

Syntax

General description

The __fp_htob() function converts data in hexadecimal floating-point format,
pointed to by src_ptr, to IEEE floating-point format, and stores the IEEE
floating-point value at the location pointed to by trg_ptr. src_ptr and trg_ptr point
to C floating-point variables of type float, double, or long double as indicated by
src_type and trg_type. Valid values for src_type and trg_type are _FP_FLOAT,
_FP_DOUBLE, and _FP_LONG_DOUBLE. rmode specifies rounding mode for
inexact mappings. Valid values are:

Value Description
_FP_HB_NR

No rounding
_FP_HB_RZ

Rounding toward zero
_FP_HB_BRN

Biased round to nearest
_FP_HB_RN

Round to nearest
_FP_HB_RP

Round toward +infinity
_FP_HB_RM

Round toward -infinity

Return values

If invalid src_type, trg_type, or rmode is specified, __fp_htob() returns -1. Otherwise,
it returns the following values:

0 Zero (hexadecimal floating-point +zero or -zero value mapped to IEEE
floating-point +zero or -zero value, respectively).

1 Underflow (hexadecimal floating-point value is too small to map to IEEE
floating-point). In this case, *trg_ptr is set to the IEEE floating-point value
corresponding to the smallest convertible hexadecimal floating-point value.

2 Success (with rounding performed as indicated by rmode).

3 Overflow (hexadecimal floating-point value is too large to map to IEEE
floating-point). In this case, *trg_ptr is set to the IEEE floating-point value
corresponding to the largest convertible hexadecimal floating-point value.

#include <_Ieee754.h>
int __fp_htob(void *src_ptr, int src_type,

void *trg_ptr, int trg_type,
int rmode);

__fp_htob

636 z/OS V2R1.0 Language Environment Vendor Interfaces

Related information
v “__fp_btoh() — convert from IEEE floating-point to hexadecimal floating-point”

on page 634

__fp_level() — determine type of IEEE facilities available
Standards

Standards / Extensions C or C++ Dependencies

Both OS/390 V2R6

Syntax

General description

The system provides simulation of IEEE floating-point hardware (including
additional floating-point registers in hexadecimal mode). The __fp_level() function
determines the level of IEEE floating-point support available.

Return values
0 No IEEE floating-point support available.
1 IEEE floating-point simulation is available.
2 IEEE floating-point hardware is available.

Related information
v “__chkbfp() — check IEEE facilities usage” on page 633

__fp_read_rnd() — determine rounding mode
Standards

Standards / Extensions C or C++ Dependencies

Both OS/390 V2R6

Syntax

General description

For an application running in IEEE floating-point mode, the __fp_read_rnd()
function returns the current rounding mode indicated by the rounding mode field
of the floating-point control (FPC) register. For an application running in
hexadecimal floating-point mode, __fp_read_rnd() returns 0.

Note: This function does not return or update decimal floating-point rounding
mode bits.

#include <_Ieee754.h>
int __fp_level(void);

#include <float.h>
__fprnd_t __fp_read_rnd(void);

__fp_htob

Chapter 19. C/C++ special purpose interfaces for IEEE floating-point 637

Return values

For an application running in IEEE floating-point mode, __fp_read_rnd() returns
the following:

Value Rounding Mode
_FP_RND_RZ

Round toward 0
_FP_RND_RN

Round to nearest
_FP_RND_RP

Round toward +infinity
_FP_RND_RM

Round toward -infinity

For an application running in hexadecimal floating-point mode, __fp_read_rnd()
returns 0.

Related information
v “__fp_setmode() — set IEEE or hexadecimal mode”
v “__fp_swap_rnd() — swap rounding mode” on page 640
v “__isBFP() — determine application floating-point mode” on page 645

__fp_setmode() — set IEEE or hexadecimal mode
Standards

Standards / Extensions C or C++ Dependencies

Both OS/390 V2R6

Syntax

General description

The __fp_setmode() function sets a flag to tell C/C++ runtime library functions
whether to interpret parameters as IEEE floating-point or hexadecimal
floating-point values based on the value of mode as follows:

Value Description
_FP_MODE_RESET

Use the FLOAT compile option to determine the format of floating-point
parameters.

_FP_HFP_MODE
Interpret parameters as hexadecimal floating-point values.

_FP_BFP_MODE
Interpret parameters as IEEE floating-point values.

Note: The compiler defines the __BFP__ macro if the FLOAT(IEEE) compile option
is chosen. Otherwise, it undefines the __BFP__ macro. Headers related to
floating-point, <float.h>, <limits.h>, and <math.h>, use the __BFP__ macro to select
floating-point-type-specific bindings for functions and constants at compile-time.
Applications that use __fp_setmode() must use the _FP_MODE_VARIABLE macro

#include <_Ieee754.h>
void __fp_setmode(int mode);

__fp_read_rnd

638 z/OS V2R1.0 Language Environment Vendor Interfaces

to prevent type-specific compile-time binding of functions and constants as
illustrated by the following example:

Return values

None

Related information
v “__fp_cast() — cast between floating-point data types” on page 635
v “__fp_swapmode() — set IEEE or hexadecimal mode”
v “__fp_swap_rnd() — swap rounding mode” on page 640
v “__isBFP() — determine application floating-point mode” on page 645

__fp_swapmode() — set IEEE or hexadecimal mode
Standards

Standards / Extensions C or C++ Dependencies

Both OS/390 V2R6

Syntax

General description

The __fp_swapmode() function sets a flag to tell C/C++ runtime library functions
whether to interpret parameters as IEEE floating-point or hexadecimal
floating-point values based on the value of mode as follows:

Value Description
_FP_MODE_RESET

Use the FLOAT compile option to determine the format of floating-point
parameters.

_FP_HFP_MODE
Interpret parameters as hexadecimal floating-point values.

_FP_BFP_MODE
Interpret parameters as IEEE floating-point values.

Usage Notes:

1. Language Environment Library code and non-Language Environment Library
code which have the Language Environment library bit set must use
__fp_swapmode() to explicitly set floating point behavior. Failure to do so
could result in incorrect floating point values.

#define _FP_MODE_VARIABLE
#include <float.h>
#include <limits.h>
#include <math.h>
...

#include <_Ieee754.h>
int __fp_swapmode(int mode);

__fp_setmode

Chapter 19. C/C++ special purpose interfaces for IEEE floating-point 639

2. Users of the Language Environment library bit which call c-rtl functions which
could potentially use floating point values, need to use the __fp_swapmode()
function as in the following example.
a. Customer application compiled for IEEE floating point math, calls the C++

class library.
b. the C++ class library calls __fp_swapmode(), as follows:

Return values

__fp_swapmode() returns a flag (same values as above) with the changed from
floating point mode of operation. If __fp_swapmode() is passed a value for fpmode
other than the values shown above, the changed-to floating point mode will
remain unchanged. The return value will continue to be the changed-from floating
point mode.

Related information
v “__fp_cast() — cast between floating-point data types” on page 635
v “__fp_setmode() — set IEEE or hexadecimal mode” on page 638
v “__fp_swap_rnd() — swap rounding mode”
v “__isBFP() — determine application floating-point mode” on page 645

__fp_swap_rnd() — swap rounding mode
Standards

Standards / Extensions C or C++ Dependencies

Both OS/390 V2R6

Syntax

General description

For an application running in IEEE floating-point mode, the __fp_swap_rnd()
function returns the current rounding mode specified by the rounding mode field
of the floating-point control (FPC) register and sets the rounding mode field in the
FPC based on the value of rmode as follows:

Value Rounding Mode
_FP_RND_RZ

Round toward 0

int custmode;

/*save customer fp mode and set fp mode to HFP */
custmode = __fp_swapmode (_FP_HFP_MODE);

/* perform call to c-rtl */
sprintf();

/* restore customer fp mode */
__fp_setmode(custmode);

#include <float.h>
__fprnd_t __fp_swap_rnd(__fprnd_t rmode);

__fp_swapmode

640 z/OS V2R1.0 Language Environment Vendor Interfaces

_FP_RND_RN
Round to nearest

_FP_RND_RP
Round toward +infinity

_FP_RND_RM
Round toward -infinity

Note:

1. When processing IEEE floating-point values, the C/C++ runtime library math
functions require IEEE rounding mode of round to nearest. The C/C++ runtime
library takes care of setting round to nearest rounding mode while executing
math functions and restoring application rounding mode before returning to
the caller.

2. This function does not return or update decimal floating-point rounding mode
bits.

3. For an application running in hexadecimal floating-point mode,
__fp_swap_rnd() returns 0.

Return values

For an application running in IEEE floating-point mode, __fp_swap_rnd() function
returns the following values; for an application running in hexadecimal
floating-point mode, __fp_swap_rnd() returns 0.

Value Description
_FP_RND_RZ

Round toward 0
_FP_RND_RN

Round to nearest
_FP_RND_RP

Round toward +infinity
_FP_RND_RM

Round toward -infinity

Related information
v “__fp_read_rnd() — determine rounding mode” on page 637
v “__fp_setmode() — set IEEE or hexadecimal mode” on page 638
v “__fp_swapmode() — set IEEE or hexadecimal mode” on page 639
v “__isBFP() — determine application floating-point mode” on page 645

__fpc_rd() — read floating-point control register
Standards

Standards / Extensions C or C++ Dependencies

Both OS/390 V2R6

Syntax

#include <_Ieee754.h>
void __fpc_rd(_FP_fpcreg_t *fpc_ptr);

__fp_swap_rnd

Chapter 19. C/C++ special purpose interfaces for IEEE floating-point 641

General description

The __fpc_rd() function stores the contents of the floating-point control (FPC)
register at the location pointed to by fpc_ptr.

Note: This function does not return or update decimal floating-point rounding
mode bits.

Return values

None

Related information
v “__fpc_rs() — read floating-point control register and change rounding mode

field”
v “__fpc_rw() — read and write the floating-point control register” on page 643
v “__fpc_sm() — set floating-point control register rounding mode field” on page

644
v “__fpc_wr() — write the floating-point control register” on page 645
v “__fp_read_rnd() — determine rounding mode” on page 637

__fpc_rs() — read floating-point control register and change
rounding mode field

Standards

Standards / Extensions C or C++ Dependencies

Both OS/390 V2R6

Syntax

General description

The __fpc_rs() function stores the current contents of the floating-point control
(FPC) register at the location pointed to by cur_ptr and then sets the rounding
mode field of the FPC based on the value specified by rmode as follows:

Value Rounding Mode
_RMODE_RN

Round to nearest
_RMODE_RZ

Round toward zero
_RMODE_RP

Round toward +Infinity
_RMODE_RM

Round toward -Infinity

Note:

1. When processing IEEE floating-point values, the C/C++ runtime library math
functions require IEEE rounding mode of round to nearest. The C/C++ runtime

#include <_Ieee754.h>
void __fpc_rs(_FP_fpcreg_t *cur_ptr, _FP_rmode_t rmode);

__fpc_rd

642 z/OS V2R1.0 Language Environment Vendor Interfaces

library takes care of setting round to nearest rounding mode while executing
math functions and restoring application rounding mode before returning to
the caller.

2. This function does not return or update decimal floating-point rounding mode
bits.

Return values

None

Related information
v “__fpc_rd() — read floating-point control register” on page 641
v “__fpc_rw() — read and write the floating-point control register”
v “__fpc_sm() — set floating-point control register rounding mode field” on page

644
v “__fpc_wr() — write the floating-point control register” on page 645
v “__fp_swap_rnd() — swap rounding mode” on page 640

__fpc_rw() — read and write the floating-point control register
Standards

Standards / Extensions C or C++ Dependencies

Both OS/390 V2R6

Syntax

General description

The __fpc_rw() function stores the current contents of the floating-point control
(FPC) register at the location pointed to by cur_ptr and then replaces the contents
of the floating-point control (FPC) register with the value pointed to by new_ptr.

Note:

1. When processing IEEE floating-point values, the C/C++ runtime library math
functions require IEEE rounding mode of round to nearest. The C/C++ runtime
library takes care of setting round to nearest rounding mode while executing
math functions and restoring application rounding mode before returning to
the caller.

2. This function does not return or update decimal floating-point rounding mode
bits.

Return values

None

Related information
v “__fpc_rd() — read floating-point control register” on page 641

#include <_Ieee754.h>
void __fpc_rw(_FP_fpcreg_t *cur_ptr, _FP_fpcreg_t *new_ptr);

__fpc_rs

Chapter 19. C/C++ special purpose interfaces for IEEE floating-point 643

v “__fpc_rs() — read floating-point control register and change rounding mode
field” on page 642

v “__fpc_sm() — set floating-point control register rounding mode field”
v “__fpc_wr() — write the floating-point control register” on page 645
v “__fp_swap_rnd() — swap rounding mode” on page 640

__fpc_sm() — set floating-point control register rounding
mode field

Standards

Standards / Extensions C or C++ Dependencies

Both OS/390 V2R6

Syntax

General description

The __fpc_sm() function changes the rounding mode field of the floating-point
control (FPC) register based on the value of rmode as follows:

Value Description
_RMODE_RN

Round to nearest
_RMODE_RZ

Round toward zero
_RMODE_RP

Round toward +infinity
_RMODE_RM

Round toward -infinity

Note:

1. When processing IEEE floating-point values, the C/C++ runtime library math
functions require IEEE rounding mode of round to nearest. The C/C++ runtime
library takes care of setting round to nearest rounding mode while executing
math functions and restoring application rounding mode before returning to
the caller.

2. This function does not return or update decimal floating-point rounding mode
bits.

Return values

None

Related information
v “__fpc_rd() — read floating-point control register” on page 641
v “__fpc_rs() — read floating-point control register and change rounding mode

field” on page 642
v “__fpc_wr() — write the floating-point control register” on page 645

#include <_Ieee754.h>
void __fpc_sm(_FP_rmode_t rmode);

__fpc_rw

644 z/OS V2R1.0 Language Environment Vendor Interfaces

v “__fpc_rw() — read and write the floating-point control register” on page 643
v “__fp_swap_rnd() — swap rounding mode” on page 640

__fpc_wr() — write the floating-point control register
Standards

Standards / Extensions C or C++ Dependencies

Both OS/390 V2R6

Syntax

General description

The __fpc_wr() function replaces the contents of the floating-point control (FPC)
register with the value pointed to by fpc_ptr.

Note:

1. When processing IEEE floating-point values, the C/C++ runtime library math
functions require IEEE rounding mode of round to nearest. The C/C++ runtime
library takes care of setting round to nearest rounding mode while executing
math functions and restoring application rounding mode before returning to
the caller.

2. This function does not return or update decimal floating-point rounding mode
bits.

Return values

None

Related information
v “__fpc_rd() — read floating-point control register” on page 641
v “__fpc_rs() — read floating-point control register and change rounding mode

field” on page 642
v “__fpc_rw() — read and write the floating-point control register” on page 643
v “__fpc_sm() — set floating-point control register rounding mode field” on page

644
v “__fp_swap_rnd() — swap rounding mode” on page 640

__isBFP() — determine application floating-point mode
Standards

Standards / Extensions C or C++ Dependencies

Both OS/390 V2R6

#include <_Ieee754.h>
void __fpc_wr(_FP_fpcreg_t *fpc_ptr);

__fpc_sm

Chapter 19. C/C++ special purpose interfaces for IEEE floating-point 645

Syntax

General description

The __isBFP() function determines the application floating-point mode.

Return values

__isBFP() returns 1, if the floating-point mode of the caller is IEEE; it returns 0, if
the floating-point mode of the caller is hexadecimal.

Related information
v “__fp_read_rnd() — determine rounding mode” on page 637
v “__fp_setmode() — set IEEE or hexadecimal mode” on page 638
v “__fp_swapmode() — set IEEE or hexadecimal mode” on page 639
v “__fp_swap_rnd() — swap rounding mode” on page 640

__to_xx() – C/C++ compiler casting support
Standards

Standards / Extensions C or C++ Dependencies

z/OS V1R8

Syntax

The following prototypes are not supplied in any header file, so they must be
defined before these functions can be used. See Table 69 on page 648 for a
description of the conv and value_p arguments.

#include <_Ieee754.h>
int __isBFP(void)

__isBFP

646 z/OS V2R1.0 Language Environment Vendor Interfaces

Note: The only names that can be called are the #pragma mapped names
beginning with @@. These names are also the default compiler short names.

General description

These functions convert an input floating-point number pointed to by value_p to an
output floating-point number of the return type shown in the prototypes in the
previous format section. The conv parameter specifies the type of the input
floating-point number, as well as the rounding mode to use. The return values of
__to_b1(), __to_b2(), and __to_b4() are always binary floating-point numbers of the
indicated length. The return values of __to_h1(), __to_h2(), and __to_h4() are
always hexadecimal floating-point numbers of the indicated length.

#ifdef __cplusplus
extern "C" {
#endif

float __to_b1(unsigned int conv, void *value_p);
double __to_b2(unsigned int conv, void *value_p);
long double __to_b4(unsigned int conv, void *value_p);
_Decimal32 __to_d1(unsigned int conv, void *value_p);
_Decimal64 __to_d2(unsigned int conv, void *value_p);
_Decimal128 __to_d4(unsigned int conv, void *value_p);
float __to_h1(unsigned int conv, void *value_p);
double __to_h2(unsigned int conv, void *value_p);
long double __to_h4(unsigned int conv, void *value_p);

#ifdef __cplusplus
}
#endif

#pragma map(__to_b1, "\174\174TO\174B1")
#pragma map(__to_b2, "\174\174TO\174B2")
#pragma map(__to_b4, "\174\174TO\174B4")
#pragma map(__to_d1, "\174\174TO\174D1")
#pragma map(__to_d2, "\174\174TO\174D2")
#pragma map(__to_d4, "\174\174TO\174D4")
#pragma map(__to_h1, "\174\174TO\174H1")
#pragma map(__to_h2, "\174\174TO\174H2")
#pragma map(__to_h4, "\174\174TO\174H4")

__to_xx

Chapter 19. C/C++ special purpose interfaces for IEEE floating-point 647

Table 69. Arguments for __to_xx()

Argument Description

conv Conversion descriptor:

Bits 0-18
Must be 0

Bit 19 Allow or suppress exceptions
0 Do not suppress any hardware exceptions during the conversion
1 Suppress any hardware exceptions using the FPC register or program check

shunting in Language Environment Program check shunting does not suppress
HFP exponent overflow exceptions when all of the following conditions are
met:
v TRAP(ON,NOSPIE) is in effect.
v Using __to_h1() to convert input hexadecimal floating-point double or long

double values, or using __to_h2() to convert input hexadecimal long double
values.

v The input value is too large to convert to the shorter format, causing the
hardware to report an HFP exponent overflow.

Bits 20-23
Type of input value; other values are not valid:
0 Hexadecimal float
1 Hexadecimal double
2 Hexadecimal long double
5 Binary float
6 Binary double
7 Binary long double
8 _Decimal32
9 _Decimal64
A _Decimal128

Bits 24-27
Exception control flags. These bits must all be zero when converting from DFP input to
DFP output, BFP input to BFP output, or HFP input to HFP output. They are honored
only when converting between any two of the following: DFP, BFP, HFP.)

Bit 24 Inexact suppression control
0 IEEE-inexact exceptions are recognized and reported in the normal

manner
1 IEEE-inexact exceptions are not recognized

Bit 25 Must be zero

Bit 26 HFP-overflow control; this bit must be zero unless the output value is HFP.
0 HFP-overflow exceptions are reported as IEEE-invalid-operation

exceptions and are subject to the IEEE-invalid-operation mask
1 HFP-overflow exceptions are reported as IEEE-overflow exceptions

and are subject to the IEEE-overflow mask

__to_xx

648 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 69. Arguments for __to_xx() (continued)

Argument Description

conv (continued)
Bit 27 HFP-underflow control/DFP quantum control

v If the output number is HFP (underflow control) :
0 HFP underflow causes the result to be set to a true zero with the same sign

as the input, and the underflow is not reported. The result in this case is
inexact and is subject to the inexact-suppression control (Bit 24)

1 HFP underflow is reported as an IEEE-underflow exception, and is subject
to the IEEE-underflow mask.

v If the output number is DFP (quantum control) :
0 The preferred quantum for exact DFP results is the maximum possible,

which means that trailing zeroes are removed and the exponent is adjusted
upward, if possible. For example, _Decimal32 100.0 becomes +0000001.E+02.

1 The preferred quantum for exact DFP results is 1, which means that the
exponent is 0, when possible, and the output number is an integer that may
have trailing zeroes. For example: _Decimal32 100.0 becomes +0000100.E+00,
and _Decimal32 1000000000.0 becomes +1000000.E+03.

Bits 28-31
A rounding mode; other values are not valid:
0 according to DFP rounding mode in FPC
1 according to BFP rounding mode in FPC
8 round to nearest, ties to even
9 round towards 0
A round toward +infinity
B round toward -infinity
C round to nearest, ties away from 0
D round to nearest, ties toward 0
E round away from 0
F round to prepare for shorter precision
Note:

1. When converting a binary floating-point value to a shorter binary floating-point
value, rounding mode must be 1.

2. When converting a decimal floating-point value to a shorter decimal floating-point
value, the rounding mode must be 0, 8, 9, A, B, C, D, E, F.

3. When converting a hexadecimal floating-point value to another hexadecimal
floating-point value, the rounding mode must be valid, but does not affect the
result, which is rounded by the hardware.

4. When converting a decimal floating-point value to a longer decimal floating-point
value, or a binary floating-point value to a longer binary floating-point value, the
rounding mode must be valid, but is otherwise ignored (there is no rounding).

5. When the input and output type is the same (no conversion), the rounding mode
must be valid, but is otherwise ignored.

value_p Pointer to the input floating-point value to be converted to the return type for this function. The
type of the floating-point value depends on the conv parameter.

Return values

These functions return floating-point values as shown in the prototypes. When the
conv parameter is not valid, the floating-point return value is 0.0. The return value
is undefined when the input floating-point number cannot be converted to a return
value of the requested type.

These functions do not set errno.

__to_xx

Chapter 19. C/C++ special purpose interfaces for IEEE floating-point 649

Note: When either the input value or output value are not hexadecimal
floating-point, the raising of IEEE exceptions is allowed or suppressed by the
combination of the five exception control flags and the current value of the
exception mask bits in the floating-point control register (FPC). If both the input
and output values are HFP, the raising of exceptions is controlled by the program
mask in the PSW and Bit 19 in the exception control flags.

Related information

There are no prototypes provided for these functions. These functions are called by
the compiler to support casting operations.

When executing on hardware that does not have the PFPO facility installed, the
IEEE Interruption-Simulation (IIS) facility reports some of the exceptions that can
occur when the conversion between numbers is in any two of the following
formats:
v BFP
v DFP
v HFP

IIS might cause the contents of the floating-point control (FPC) register to be
different from regular IEEE exceptions. In particular, the FPC flags and DXC bytes
are different. See z/Architecture Principles of Operation for more information about
the FPC register contents after IIS events.

__to_xx

650 z/OS V2R1.0 Language Environment Vendor Interfaces

Part 2. Language Environment vendor interfaces for AMODE
64 applications

This part of the book applies to AMODE 64.

© Copyright IBM Corp. 1991, 2015 651

652 z/OS V2R1.0 Language Environment Vendor Interfaces

Chapter 20. Common interfaces and conventions for AMODE
64 applications

This section describes the common runtime library components of Language
Environment for AMODE 64 applications.

Common runtime environment
A thread is represented by a Library Anchor Area (LAA). All thread- and
enclave-related resources can be located either directly within the LAA or through
the LAA. An enclave is one or more executable programs each containing one or
more compilation units. The executable program that contains the main routine is
known as the root executable. An enclave can consist of multiple executable
programs. Fetch mechanisms, such as the C fetch() function or DLL load,
introduce a new executable program into the enclave.

Library not all linkable
Most Language Environment routines cannot be statically linked. In general, it is
not possible to make a complete, self-contained AMODE 64 executable.

Reentrancy
All Language Environment library code is reentrant. All read/write areas are
dynamically acquired from stack or heap. Language Environment provides a
reentrant environment for compiled code.

Recursion
All Language Environment-supplied library code can be called recursively. For
example, if an interrupt occurs in a Language Environment routine and the
exception is signaled to some other code (user, Language Environment, or
language-specific), that code could, in turn, during its exception processing, use the
function that originally caused the exception. This does not mean that the
application itself is recursive.

Special handling of certain situations, such as short-on-storage conditions, cause
recursive entry to be detected and handled appropriately.

AMODE/RMODE
All Language Environment library routines run AMODE 64.

Member code AMODE restrictions
Language Environment can allocate any of its control blocks above the 2 GB Bar.
Any member code that accesses a Language Environment control block must run
in AMODE 64 to have addressability to the control blocks.

External names
Language Environment supports external names such as files, programs, and data
structures in the same manner as the host system. External names are limited to
eight SBCS characters. No supported host system permits DBCS names.

© Copyright IBM Corp. 1991, 2015 653

Some languages permit longer names to be used when referring to externally
named objects. In order to conform to the host system requirements, each language
can use an algorithm to convert a long internal name to a shorter name that is
acceptable to the host system.

Language Environment does not define a common naming convention or name
conversion algorithm. Users are responsible for ensuring that names are not
ambiguous when long names are converted. External and internal forms of names
must match after conversion to a shorter form of the name.

Routine layout
The following table shows the two types of AMODE 64 entry points that Language
Environment recognizes as Language Environment-conforming routines.

Table 70. AMODE 64 entry points

Entry point type is... If...

Language
Environment-conforming
XPLINK

The entry point minus 16 is X'00C300C500C500F1'. XPLINK
linkage conventions are used. For layout detail see
Figure 119.

CELQSTRT CSECT The entry point + 32 is CL8’CEESTART’.

The layout entry for XPLINK routines is shown in Figure 119. The layout entry for
XPLINK routines is defined by the Version field at offset X'00' in the PPA1, see
Figure 123 on page 657.

Eyecatcher
A 7-byte field containing the XPLINK eyecatcher, XL7'00C300C500C500'.

Mark Type
Field marking the type of code. Entry code is C'1'.

Offset to PPA1
A signed fullword representing the offset from the start of the entry
marker to the start of the PPA1.

DSA Size/32
A 27-bit field representing the size of the routine's DSA in 32-byte
increments.

Figure 119. Layout entry of Language Environment-conforming routines – XPLINK

Language Environment Conventions

654 z/OS V2R1.0 Language Environment Vendor Interfaces

Entry Flags
A 5-bit field containing flag bits to identify the type of routine. If bit 1 is
on, the routine is an XPLEAF routine. XPLEAF routines save caller's
registers in their own stack frame, but do not update the stack pointer. Bit
2 indicates whether the routine uses the alloca() service.

The compiler emits an XPLINK stack extension marker in front of the call to
Language Environment for the overflow prolog sequence for the +4K DSA
scenario. Figure 120 depicts this marker.

Eyecatcher
A 7-byte field containing the XPLINK eyecatcher, XL7'00C300C500C500'.

Mark Type
Field marking the type of code. XPLINK stack extension is C'2'.

Offset to entry marker from XPLINK stack extension marker/8
The signed offset from the start of the XPLINK stack extension marker to
the start of the entry point marker in doublewords.

The XPLINK end of data marker is placed after, or at the end of a section of code,
where the compiler may have placed constants. Language Environment's
asynchronous signal deliverer uses this in its scan backwards to identify that a
signal did not arrive inside a function's prolog. Figure 121 depicts this marker.

Figure 120. XPLINK stack extension marker

Figure 121. XPLINK end of data marker

Language Environment Conventions

Chapter 20. Common interfaces and conventions for AMODE 64 applications 655

Eyecatcher
A 7-byte field containing the XPLINK eyecatcher, XL7'00C300C500C500'.

Mark Type
Field marking the type of code. XPLINK end of data is C'3'.

Offset to entry marker from XPLINK end of data marker/8
The signed offset from the start of XPLINK end of data marker to the start
of the entry point marker in doublewords.

Language Environment implements an 8-byte XPLINK stub entry marker for
Language Environment and C runtime stubs. Figure 122 depicts this marker.

Eyecatcher
A 7-byte field containing the XPLINK eyecatcher, XL7'00C300C500C500'.

Mark Type
Field marking the type of code. XPLINK Stub is Entry C'4'.

Prolog information blocks
The prolog information blocks for the XPLINK layout are defined in Figure 123 on
page 657, Figure 124 on page 658, and Figure 130 on page 666. The prolog
information exists for every block or internal procedure.

Program Prolog Area-1 (PPA1) appears for every Language Environment entry
point. There is a one-to-one correlation between a PPA1 and a DSA. The content of
the entry/label name field is defined by member languages. The name can be
SBCS characters or DBCS characters bracketed by shift-codes. Member-defined
information can be placed starting at offset X'20'. Fields described as fullword
offsets are treated as signed offsets.

Program Prolog Area-2 (PPA2) appears once for each compile unit and can
immediately follow the primary PPA1. The control level field indicates the change
level of the prolog. The timestamp and version information normally appears at
the end of PPA2 and is optional. The version and release data fields identify the
level of the compiler that produced the object code. You can use the PPA2 field at
offset X'10' to determine the primary entry point for the compilation unit. It is zero
if the compilation unit primary entry point does not exist. Member-defined
information can be placed at the end of PPA2.

Program Prolog Area-3 (PPA3), if available, appears once for every Language
Environment entry point. It provides additional information about an entry point,
and typically contains information relevant for problem determination tools. There
is a one-to-one correlation between a PPA1 and a PPA3. The PPA3 layout may
differ among different member languages.

Figure 122. XPLINK stub entry marker

Language Environment Conventions

656 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|
|
|
|

Program Prolog Area-4 (PPA4), if available, appears once for each compilation unit.
It provides additional information about a compilation unit, and typically contains
information relevant for problem determination tools. There is a one-to-one
correlation between a PPA2 and a PPA4. The PPA4 layout may differ among
different member languages.

In the timestamp block, as shown in Figure 132 on page 667, the two characters
that indicate the version are to be used at the discretion of the high level language
that produces the block; they are not interrogated by Language Environment. In
addition, the dump service uses the service level field to add the module service
level information to the traceback.

PPA1 in support of XPLINK
To optimize the space used for control purposes, the structure and contents of the
PPA1 for XPLINK have been redefined. The control block is made up of a fixed
part followed by a contiguous optional part, with the presence of optional fields
indicated by flag bits. Optional fields, if present, are stored immediately following
the fixed part of the PPA1 aligned on fullword boundaries in the order specified
below.

The PPA1 is located through an offset field preceding the entry point which
provides flexibility to group all PPA1s either by compilation unit or by module.
The new PPA1 content is extensible in that a Version field identifies the particular
table structure. Program prolog areas are mandatory for languages participating in
XPLINK. Each entry point must have a corresponding PPA1 associated with it.

Version LE Signature X‘CE’ Saved GPR Mask
(Lan Env Signature)

Signed Offset to PPA2 from start of PPA1

PPA1 Flags 1 PPA1 Flags 2 PPA1 Flags 3 PPA1 Flags 4

Length/4 of Parms Length/2 of Prolog Alloca Reg Offs/2 R4
Chg

Length of Code

+00

+04

+08

+0C

+10

PPA1: XPLINK Entry Point Block Fixed Area (Version 3)

Figure 123. Prolog constants format – level 4 (XPLINK), PPA1: entry point block (Version 3)

Language Environment Conventions

Chapter 20. Common interfaces and conventions for AMODE 64 applications 657

|
|
|
|
|

PPA1 fixed area fields:

Version: An 8-bit field that is set to X'02' to identify this PPA1 as having the Level
4, XPLINK (Version 3) layout.

Language Environment Signature: An 8-bit field that must be set to X'CE'.

Saved GPR mask: A 16-bit mask, indicating which registers are saved and restored
by the associated routine. Bit 0 indicates register 0, followed by bits for registers 1
to 15 in order.

Signed offset to PPA2 from the start of PPA1: The offset of the PPA2 block belonging
to the compilation unit containing the function described by this PPA1.

PPA1 flag 1: Program flags (PPA1 offset X'08') are shown in Figure 124 and are
described below.

Version
CEL Signature X’CE’
(Lang Env Signature)

Saved GPR Mask

Signed offset to PPA2 from start of PPA1

PPA1 Flag 1 PPA1 Flag 2 PPA1 Flag 3 PPA1 Flag 4
DSA Format
0: 32 bit
1: 64 bit
0: Short form PPA1
1: Reserved
Exception Model
0: Own
1: Caller’s
PPA3 type flags
0: tiny PPA3
1: full PPA3
Invoke member for
DSA exit event
XPLink Exit DSA
Special Linkage
Vararg function

Procedure
0: Internal
1: External
Reserved, 0
Reserved, 0
Reserved, 0
Reserved, 0
Reserved, 0
Reserved, 0
Reserved, 0

State Variable
Locator
Argument Area
Length
FPR Mask
AR Mask
Member PPA1 Word
Block Debug Info
Interface Mapping
Flags
Java Method
Locator Table

Reserved, 0
Reserved, 0
VR Mask , 0
Reserved, 0
Reserved, 0
Reserved, 0
Reserved, 0
Name Length
and Name

Indicating fields in
optional area

Indicating fields in
optional area

0

1

2

3

4

5
6
7

0

1
2
3
4
5
6
7

0
1
2
3
4
5
6
7

0

1

2
3
4
5
6

7

Length/4 of Parms Length/2 of Prolog Alloca Reg

Offset/2 to
StackPointer

Update

Length of Code

+0

+4

+8

+12
0x0c

+16
0x10

Figure 124. PPA1: XPLINK entry point block fixed area (Version 3) details

Language Environment Conventions

658 z/OS V2R1.0 Language Environment Vendor Interfaces

|

|
|
|

The PPA1 flag 1 field (PPA1 offset X'08') contains 8 bits, as shown above, and are
described as follows:

Bit
location Description

Bit 0 Format of General Purpose Registers (GPR) save area
0 Indicates that GPRs are saved as 32-bit quantities.
1 Indicates that GPRs are saved as 64-bit quantities.

Bit 1 Format of PPA1
0 Indicates that this is a short form of the PPA1.
1 Reserved.

Bit 2 Exception Model Flag

0 Indicates that this routine uses it's own exception model.

1 Indicates that this routine inherited the exception model from its
caller.

Bit 3 PPA3 Type Flag
0 Indicates that the PPA3 is a tiny PPA3.
1 Indicates that the PPA3 is a full PPA3.

Bit 4 Call Member for DSA Exit flag

0 Indicates that the owning member of the DSA should not be called for
Exit DSA processing.

1 Indicates that the owning member of the DSA should be called for
Exit DSA processing.

Bit 5 XPLINK Exit DSA Flag

0 Indicates that the associated stack frame is not an XPLINK Exit DSA.

1 Indicates that the associated stack frame is an XPLINK Exit DSA and
its GPR7 (return addr) should be given control during stack collapse.

Bit 6 Special Linkage Flag

0 Indicates that this is not a special linkage routine.

1 Indicates that this is a special linkage routine used to handle calls
between XPLINK and non-XPLINK routines or to handle calls that
cause a stack segment extension.

Bit 7 Vararg Flag
0 Indicates that this is not a variable argument (Vararg) routine.
1 Indicates that this is a Vararg routine.

’0.......’B GPR Save area is 32-bit.
’1.......’B GPR Save area is 64-bit.
’.0......’B Indicates that this is a short form of the PPA1.
’..0.....’B Own exception model.
’..1.....’B Inherited exception model.
’...0....’B Tiny PPA3.
’...1....’B Full PPA3.
’....0...’B Do Not call member for Exit DSA event.
’....1...’B Call member for Exit DSA event.
’.....0..’B Stack frame is Not an XPLINK Exit DSA.
’.....1..’B Stack frame is an XPLINK Exit DSA.
’......0.’B This is not a Special linkage routine.
’......1.’B This is a Special linkage routine.
’.......0’B Not a Vararg routine.
’.......1’B Vararg routine.

Figure 125. Language Environment PPA1 flag 1 offset X'08'

Language Environment Conventions

Chapter 20. Common interfaces and conventions for AMODE 64 applications 659

|
|

|

PPA1 flag 2: Program flags (PPA1 offset X'09') are shown in Figure 124 on page
658 and are described below.

Bit
location Description

Bit 0 Internal/External procedure

0 Indicates that this procedure is an internal procedure with a nesting
level greater than zero.

1 Indicates that this procedure is an external procedure with a nesting
level of zero.

Bit 1 - 7 Reserved for future use.

PPA1 flag 3: Program flags (PPA1 offset X'0A') are shown in Figure 124 on page
658 and are described below.

Bit
location Description

Bit 0 State Variable Locator Flag
0 Indicates that this field is not present in the optional part of the PPA1.
1 Indicates that this field is present in the optional part of the PPA1.

Bit 1 Argument Area Length
0 Indicates that this field is not present in the optional part of the PPA1.
1 Indicates that this field is present in the optional part of the PPA1.

’0...............’B Internal procedure
’1...............’B External procedure
’.0000000’B Reserved for future use (must all be zero).

Figure 126. Language Environment PPA1 flag 2 offset X'09'

’0.......’B State Variable locator field is not in optional area.
’1.......’B State Variable locator field is in the optional area.
’.0......’B Argument Area Length is not in the optional area.
’.1......’B Argument Area Length is in the optional area.
’..0.....’B FP Register Mask is not in the optional area.
’..1.....’B FP Register Mask is in the optional area.
’...0....’B No ARs are saved. AR mask not in optional area.
’...1....’B ARs are saved. AR mask in optional area.
’....0...’B Member PPA1 word is not present in optional area.
’....1...’B Member PPA1 word is present in the optional area.
’.....0..’B Offset to PPA3 is not present in optional area.
’.....1..’B Offset to PPA3 is present in the optional area.
’......0.’B Interface mapping flags not in the optional area.
’......1.’B Interface mapping flags in the optional area.
’.......0’B Java Method Locator Table not in the optional area.
’.......1’B Java Method Locator Table in the optional area.

Figure 127. Language Environment PPA1 flag 3 offset X'0A'

Language Environment Conventions

660 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|

Bit
location Description

Bit 2 Floating-Point Registers Flag

0 Indicates that the Floating-Point registers are not saved in the DSA.

1 Indicates that the Floating-Point registers are saved in the DSA and
that the FPR mask and Offset to FPR savearea is present in the
optional PPA1 area. If this field is present, the entire word containing
FPR Mask and AR Mask is present in the optional area.

Bit 3 Access Registers Flag

0 Indicates that the Access Registers are not saved in the DSA.

1 Indicates that the Access Registers (as indicated by the Saved AR Bit
Mask field) are saved in the DSA and the AR mask in the optional
area. If this field is present, the entire word containing FPR Mask,
Alloca Reg, and AR Mask is present in the optional area.

Bit 4 Member PPA1 Word Flag
0 Indicates that this field is not present in the optional part of the PPA1.
1 Indicates that this field is present in the optional part of the PPA1.

Bit 5 Offset to PPA3 Flag
0 Indicates that this field is not present in the optional part of the PPA1.
1 Indicates that this field is present in the optional part of the PPA1.

Bit 6 Interface Mapping Flag
0 Indicates that this field is not present in the optional part of the PPA1.
1 Indicates that this field is present in the optional part of the PPA1.

Bit 7 Java Method Locator Table
0 Indicates that this field is not present in the optional part of the PPA1.
1 Indicates that this field is present in the optional part of the PPA1.

PPA1 flag 4: Program flags (PPA1 offset X'0B') are shown in Figure 124 on page
658 and are described below.

Bit
location Description

Bit 0 - 1 Reserved for future optional fields

Bit 2 Vector Register flags:

0 Indicates that the Vector registers are not saved in the DSA.

1 Indicates that the Vector registers are saved in the DSA and that the
VR mask and Offset to VR save area is present in the optional PPA1
area.

Bit 3 - 6 Reserved for future optional fields.

’00......’B Reserved for future optional fields (must all be zero).
’..0.....’B VR register mask is not in the optional area.
’..1.....’B VR register mask is in the optional area.
'...0000.'B Reserved for future optional fields (must all be zero).

’.......0’B Name length and name are not in the optional area.
’.......1’B Name length and name in the optional area.

Figure 128. Language Environment PPA1 flag 4 offset X'0B'

Language Environment Conventions

Chapter 20. Common interfaces and conventions for AMODE 64 applications 661

|
|
|
|

|

||

||

||

||
|
|

||

Bit
location Description

Bit 7 Procedure/Label Name Flag

0 Indicates that the length of name field and the entry/label name field
are not present in the optional part of the PPA1.

1 Indicates that the length of name field and the entry/label name field
are present in the optional part of the PPA1.

Length/4 of parms: Length of expected parameter area for this function in fullwords
(for vararg functions, the length of the fixed portion of the parameter list). This is
used for copying parameters on stack extension. For vararg functions, the entire
caller's argument area must be copied on stack extension.

Length/2 of prolog: Length of prolog instruction sequence in halfwords starting
from the entry point. The prolog is complete when all conditions described in this
architecture are satisfied. This includes: saving the non-volatile registers used by
the function, including FPRs, ARs and VRs; updating the stack pointer; and
loading the alloca() register. Other instructions from the function body, including
setting up various base registers, may be moved into the prolog, so no component
can assume anything about the state of registers within the prolog without
scanning the prolog code.

alloca() register: The register used to point to automatic storage (and other parts of
the originally-allocated stack frame) in functions that use alloca(). This must be
zero if alloca() is not used.

Offset/2 to stack pointer update: The offset in halfwords from the Entry Point to the
beginning of the instruction that updates the stack pointer (GPR4). For XPLeaf
routines, this field will be set to zero.

Length of code: The length of the code for this function, starting from the entry
point marker associated with this PPA1 to the last instruction in the function, in
bytes. This does not necessarily include instructions which are the target of
"execute," which may be in other parts of the code section, the stack frame, or
writable static.

PPA1 optional area fields: There are several optional PPA1 Fields; each one's
presence indicated by a flag bit in PPA1 flags3 or PPA1 s4. Where an optional field
is less than 4 bytes in length, the entire word is present if any of the fields in that
word are present. Unused parts of the word are filled with zeroes. The optional
fields are fullword aligned and appear in the order listed here. The field name and
length are given:

Field name
Field

length

State Variable Locator (PPA1 Flag 3, Bit 0) 4

Field name
Field

length

Argument Area Length (PPA1 Flag 3, Bit 1) 4

Language Environment Conventions

662 z/OS V2R1.0 Language Environment Vendor Interfaces

|

Field name
Field

length

FPR mask (PPA1 Flag 3, Bit 2) AR mask (PPA1 Flag 3, Bit 3) 4

Note: If either Bit 2 or Bit 3 of 3 is on, the fullword variable representing FPR
mask and AR mask is present.

Field name
Field

length

Floating Point Register Save Area Locator (PPA1 Flag 3, Bit 2) 4

Field name
Field

length

Access Register Save Area Locator (PPA1 Flag 3, Bit 3) 4

Field name
Field

length

PPA1 Member Word (PPA1 Flag 3, Bit 4) 4

Field name
Field

length

Offset to PPA3 (PPA1 Flag 3, Bit 5) 4

Field name
Field

length

Interface Mapping Flags (PPA1 Flag 3, Bit 6) 4

Field name
Field

length

Java Method Locator Table (MLT) (PPA1 Flag 3, Bit 7) 8

Field name
Field

length

VR mask (PPA1 Flag 4, Bit 2) Reserved
8

Vector Register Save Area Locator

Field name
Field

length

Length of Name (PPA1 Flag 4, Bit 7) Name of Function variable
lengthName of Function (continued)

State variable locator: Defines the location of the state variable. Bits 0-3 contain the
number of a GPR whose contents are added to the unsigned offset in bits 4-31 to
calculate the address of the state variable. The register used to address the State
Variable, typically the stack register or the alloca() register, must be set in the
prolog and retain its value throughout the function. This field is optional; its
presence is indicated by PPA1 flag 3, bit 0.

Language Environment Conventions

Chapter 20. Common interfaces and conventions for AMODE 64 applications 663

|

|

|
|
|

||
|
|
|

Argument area length: Length of argument area allocated by this function on the
stack. If present, this field contains the size of the largest argument list used by this
function. This field is optional; its presence is indicated by PPA1 flag 3, bit 1.

However, this field is required for every function that contains a call with an
argument list longer than 128 bytes.

FPR mask: A 16-bit mask indicating which of FPRs are saved and restored by this
routine. Bit 0 indicates FPR0, followed by bits for FPR1 to FPR 15. Space is
reserved in the function's local storage for those FPRs actually saved by the
function. This field is optional; its presence is indicated by PPA1 flags3, bit 2. The
word containing this field, if present, has either PPA1 flags3 bits 2 or 3 on.

Access register mask: Reserved for future use.

Floating Point Register Save Area locator: Defines the location of the Floating Point
Register Save Area. Bits 0-3 contain the number of a GPR whose contents are
added to the unsigned offset in bits 4-31 to calculate the address of this save area.
The register used to address this save area, typically the stack register or the
alloca() register, must be set in the prolog and retain its value throughout the
function. This field is optional; its presence is indicated by PPA1 flag 3, bit 2.

Access Register Save Area locator: Defines the location of the Access Register Save
Area. Bits 0-3 contain the number of a GPR whose contents are added to the
unsigned offset in bits 4-31 to calculate the address of this save area. The register
used to address this save area, typically the stack register or the alloca() register,
must be set in the prolog and retain its value throughout the function. This field is
optional; its presence is indicated by PPA1 flag 3, bit 3.

Member PPA1 word: This word contains the following information for C/C++
when present.

For C/C++, this word is used for flags as shown in the preceding figure and are
described as follows:

Bit
location Description

Bit 0 - 23 Reserved (must be zero)

Bit 24 Noargparse
0 Indicates argparse.
1 Indicates no argparse.

Bit 25 Noredirection
0 Indicates redirection.
1 Indicates no redirection.

’000000000000000000000000........’B Reserved (must be zero)
’........................0.......’B Argparse
’........................1.......’B No argparse
’.........................0......’B Redirection
’.........................1......’B No redirection
’..........................0.....’B Execops
’..........................1.....’B No execops
’...........................00000’B Reserved (must be zero)

Figure 129. Language Environment PPA1 flag word as defined by C/C++

Language Environment Conventions

664 z/OS V2R1.0 Language Environment Vendor Interfaces

Bit
location Description

Bit 26 Noexecops
0 Indicates execops.
1 Indicates no execops.

Bit 27 - 31 Reserved (must be zero)

Offset to PPA3: Signed offset to PPA3 from the start of PPA1. This field is optional;
its presence is indicated by PPA1 flag 3, bit 5.

Interface mapping flags: This field is provided to allow interface mapping by a glue
routine when an XPLINK routine is called from non-XPLINK. It describes the
linkage type, the floating-point parameters expected by this routine, and the format
of the function return value. This field is optional; its presence is indicated by
PPA1 flag 3, bit 6.

Java method locator table: Used to locate meta-information for Java classes. This
field is optional; its presence is indicated by PPA1 flag 3, bit 7.

Vector Register area: An 8-byte area used to provide Vector Register related
infomation including VR mask and Vector Register save area locator. This field is
optional; its presence is indicated by PPA1 Flag 4, Bit 2.

VR mask is an 8-bit mask indicating which of the VRs are saved and restored by
this routine. Bit 0 indicates VR16, followed by bits for VR17 to VR23. Space is
reserved in the routine's local storage for those VRs actually saved by the routine.

Vector Register save area locator defines the location of the Vector Register save
area. Bits 0-3 contain the number of a GPR whose contents are added to the
unsigned offset in Bits 4-31 to calculate the address of this save area. The register
used to address this save area, typically the stack register or the alloca() register,
must be set in the prolog and retain its value throughout the routine.

The reserved bits must all be zero.

Language Environment Conventions

Chapter 20. Common interfaces and conventions for AMODE 64 applications 665

|
|

|

|
|
|

|
|
|

|
|
|
|
|

|

PPA2 in support of XPLINK

Level 4 (XPLINK), PPA2: compile unit block bits:

The XPLINK(STOREARGS) and XPLINK flags were added in PPA2 Level 4.

Timestamp and version: Figure 132 on page 667 shows the format of the
information in the timestamp and version.

PPA2: Compile Unit Block

Member Identifier Member Subid Member Defined Control Level (= 4)

Signed offset from PPA2 to CELQSTRT for load module

Signed offset from PPA2 to PPA4. Zero if PPA4 is not available.

Signed offset from PPA2 to timestamp/version information or zero

Signed offset from PPA2 to the compilation unit’s Primary Entry Point

+00

+04

+08

+0C

+10

+14 Compilation flags

........

Figure 130. Prolog constants format – level 4 (64-bit XPLINK), PPA2: compile unit block

’0.......’B Indicates that program was compiled for hexadecimal floating-point
’1.......’B Indicates that program was compiled for binary floating-point
’.0......’B Indicates that the code is compiler generated user code
’.1......’B Indicates that the code is associated with library code
’..0.....’B Program does not contain service information
’..1.....’B Program contains service information
’...0....’B Not compiled with XPLINK(STOREARGS)
’...1....’B Compiled with XPLINK(STOREARGS)
’....0...’B Reserved
’.....0..’B Compiled unit is EBCDIC
’.....1..’B Compiled unit is ASCII
’......0.’B No additional compiler information after service information
’......1.’B Additional compiler information after service information
’.......0’B Not compiled with XPLINK
’.......1’B Compiled with XPLINK
’........ 0.......’B Reserved
’........ .0......’B MD5 signature is not located at 16 bytes before the timestamp
’........ .1......’B MD5 signature is located at 16 bytes before the timestamp
’........ ..0.....’B Not compiled with FLOAT(AFP(VOLATILE))
’........ ..1.....’B Compiled with FLOAT(AFP(VOLATILE))
’........ ...00000 00000000 00000000’B Reserved

Figure 131. Level 4 (XPLINK), PPA2: compile unit block bits

Language Environment Conventions

666 z/OS V2R1.0 Language Environment Vendor Interfaces

|

|
|
|

C/C++ DWARF 64-bit PPA4 layout
PPA4 conforms to this layout under these conditions:
v Member identifier (PPA2 offset X'00') is 3
v PPA4 version in PPA4 program flags is 2
v PPA4 program flags indicates 64-bit compile

Table 71. C/C++ DWARF 64-bit PPA4 layout

Offset Length Description

X'00' 4 PPA4 debug flags for PPA4
version 2

X'04' 4 PPA4 program flags

X'08' 8 Signed offset from
CELQSTRT address to
NORENT static

X'10' 8 Signed offset from WSA to
RENT static

X'18' 8 Signed offset from PPA4 to
symbol offset table

X'20' 8 Signed offset from PPA4 to
code csect

X'28' 8 Length of code csect (in
bytes)

X'30' 8 Signed offset from PPA4 to
DWARF line number table
embedded in C_CDA class
[optional field, check PPA4
debug flags]

PPA4 debug flags
PPA4 debug flags for PPA4 version 2 - PPA4 offset X'00' are shown in the
following code sample:

’0.......’B DWARF line number table is not in C_CDA class.
’1.......’B DWARF line number table is in C_CDA class.
’.0......’B Primary source file name is not available.
’.1......’B Primary source file name follows DWARF sidefile name.

(prefixed with 2 bytes string length)
’..0.....’B DWARF is not embedded in NOLOAD D_* class

CL4'yyyy' Year of compilation

CL4'mmdd' Date of compilation

CL4'hhmm' Time of compilation

CL4'rrmm' Release/Modification

CL2'ss' Time of compilation CL2 'vv' Version

00

04

08

0C

10

14 Untruncated service level stringService level string length

Figure 132. Timestamp and version information

Language Environment Conventions

Chapter 20. Common interfaces and conventions for AMODE 64 applications 667

|
|

|

|

|

||

|||

|||
|

|||

|||
|
|

|||
|

|||
|

|||
|

|||
|

|||
|
|
|
|
|

|
|
|

|
|
|
|
|
|

’..1.....’B DWARF is embedded in NOLOAD D_* class
’...0....’B DWARF is not embedded in LOAD D_* class
’...1....’B DWARF is embedded in LOAD D_* class
’....0...’B Compilation unit is compiled with DEBUG
’....1...’B Compilation unit is not compiled with DEBUG
’.....000 00000000 00000000 00000000’B Reserved

PPA4 program flags
PPA4 program flags - PPA4 offset X'04' are shown in the following code example:

’00000000 00000...’B Reserved
’........0..’B 31-bit compile
’........1..’B 64-bit compile
’........00’B Reserved
’........ xxxxxxxx’B PPA4 version

0: DWARF information not present
1: COBOL V5 PPA4
2: C/C++ DEBUG(FORMAT(DWARF)) PPA4

’........ xxxxxxxx’B Offset to file name (zero if not applicable)
file name is prefixed with 4 bytes string length
PPA4 version is 0: unsigned offset from PPA4 to source file name
PPA4 version is 2: unsigned offset from PPA4 to DWARF sidefile name

Language Environment dynamic storage area
An AMODE 64 XPLINK DSA (Dynamic Storage Area) is described in Figure 133. In
an XPLINK function, the currently active DSA is located by GPR4. However, GPR4
is "biased" by x'800' (2048) bytes. This bias needs to be added to the contents of
GPR4 to get the actual start of the XPLINK register save area. XPLINK DSAs can
be back-chained using the value of GPR4 in the register save area. However, GPR4
is only optionally saved. The correct way to find the caller's DSA is to add the size
of the current DSA to its location.

Note:

1. CEEDSAHP_BIAS: This is the size of the bias between the actual value in the
XPLINK stack register (GPR4) and the start of the DSA. This area is not usable
by the current function. It will contain the DSAs of any called XPLINK
functions.

2. CEEDSAHP4T015: A called XPLINK function will only save the registers that
might be altered during its execution.

3. CEEDSAHP_ARGLIST: Area where argument list for called functions is built.
Only parameters that are not passed in registers will be stored into the
argument area.

CEEDSAHP_BIAS - Stack Bias, DO NOT USE

Note 2

Note 3

CEEDSAHP4TO15 - Save area for GPRs 4-15

Reserved for use by run-time

CEEDSAHP_ARGLIST - Start of variable length argument list

CEEDSAHPTRAN - Debug Area

CEEDSAHP_ARG_PRE - Argument prefix area

880

878

000

800

860

870

Note 1

Figure 133. Language Environment dynamic storage area – XPLINK format for AMODE 64
applications

Language Environment Conventions

668 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Language Environment control block mappings
This section shows the control block mappings for AMODE 64 applications.

Language Environment library anchor area
The library anchor area (LAA), shown in the code example below , is a control
block that is allocated during TCB initialization. This is key 0, authorized storage.
For mapping information on the LAA, see the SCEEMAC(CEELAA) data set.
1 CEELAA

Language Environment LIBRARY ANCHOR AREA (LAA)
==
OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE 0 CEELAA LAA mapping
0 (0) CHARACTER 4 CEELAAEYE Eyecatcher ’LAA ’
4 (4) SIGNED 4 CEELAA_VER version
8 (8) ADDRESS 4 CEELAA_PREV ptr to previous LAA
12 (C) ADDRESS 4 CEELAA_NEXT ptr to next LAA
16 (10) ADDRESS 4 CEELAA_STCB addr of associated STCB
20 (14) BITSTRING 2 CEELAA_ASID asid of this LAA
22 (16) CHARACTER 2 CEELAA_RSVD1 reserved
24 (18) CHARACTER 112 CEELAA_COMPILER_C

+18x compiler dependent flds
24 (18) CHARACTER 40 CEELAA_COMP_31B

31 bit
24 (18) ADDRESS 4 CEELAA_STACKFLOOR31

stack floor
28 (1C) ADDRESS 4 CEELAA_STACKOVFLOW31

stack ovrfl rtn
32 (20) ADDRESS 4 CEELAA_GTAB31 GTAB addr
36 (24) ADDRESS 4 CEELAA_LCA31 LCA addr
40 (28) ADDRESS 4 CEELAA_TRT31 addr of trt spc
44 (2C) CHARACTER 20 CEELAA_RSVD31_1

reserved
64 (40) CHARACTER 72 CEELAA_COMP_64B

64 bit
64 (40) CHARACTER 8 CEELAA_STACKFLOOR64
64 (40) ADDRESS 4 CEELAA_STKFLR64_HI
68 (44) ADDRESS 4 CEELAA_STKFLR64_LO
72 (48) CHARACTER 8 CEELAA_STACKOVFLOW64
72 (48) ADDRESS 4 CEELAA_STKOVFL64_HI
76 (4C) ADDRESS 4 CEELAA_STKOVFL64_LO
80 (50) CHARACTER 8 CEELAA_GTAB64 GTAB addr
88 (58) CHARACTER 8 CEELAA_LCA64 LCA addr
96 (60) CHARACTER 8 CEELAA_TRT64 addr -trt space
104 (68) CHARACTER 32 CEELAA_RSVD64_1

Reserved
136 (88) CHARACTER 8 CEELAA_JIT_RSVD1

Reserved for JIT
144 (90) CHARACTER 8 CEELAA_JIT_RSVD2

Reserved for JIT
152 (98) CHARACTER 48 * Reserved future
200 (C8) BITSTRING 1 CEELAA_FLAG1 Flags *** CANNOT MOVE! ***

1... CEELAA_LEACTIVE
"X’80’" LE env is active

.1.. CEELAA_LEPENDING
"X’40’" LE env is pending

..1. CEELAA_IPT "X’20’" this is the IPT

...1 CEELAA_MEMLIMIT
"X’10’" Memlimit hit during a
stk ovflw request

.... 1... CEELAA_RSTK_ACTIVE
"X’08’" Reserve Stk active

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

.... .1.. CEELAA_RESERVE_STACK_REQUEST
"X’04’" This bit is set by the
Stack
Overflow SRB routine to
indicate to Cond.
Management that a switch to the
Rsv Stack is necessary

.... ..1. CEELAA_OVERFLOW_ABEND

Mappings

Chapter 20. Common interfaces and conventions for AMODE 64 applications 669

"X’02’" Set by Stack Over- flow
SRB to tell Cond. Mgmt to abend

.... ...1 CEELAA_FIRST_IN_CHAIN
"X’01’" Reserved

201 (C9) BITSTRING 1 CEELAA_FLAG2 Flags - byte 2
1... CEELAA_OVERFLOW_INVALID

"X’80’" Non-USER stack o/f
202 (CA) BITSTRING 1 CEELAA_FLAG3 Flags - byte 3
203 (CB) BITSTRING 1 CEELAA_FLAG4 Flags - byte 4
204 (CC) CHARACTER 36 * Reserved future
240 (F0) CHARACTER 8 CEELAA_64BIT_CB_STG

Addr of control blks above bar
248 (F8) CHARACTER 8 CEELAA_31BIT_CB_STG

Addr of control blks below bar
256 (100) CHARACTER 24 CEELAA_31BIT 31 bit stuff
256 (100) ADDRESS 4 CEELAA_SVCVEC31

system svce vector
260 (104) ADDRESS 4 CEELAA_SANC31 addr of first SANC
264 (108) CHARACTER 1 CEELAA_CURKEY31

key of current stk
265 (109) CHARACTER 15 CEELAA_RSVD31 reserved
280 (118) CHARACTER 24 CEELAA_64BIT 64 bit stuff
280 (118) CHARACTER 8 CEELAA_SVCVEC64

system svce vector
288 (120) CHARACTER 8 CEELAA_SANC64 addr of first SANC
296 (128) CHARACTER 1 CEELAA_CURKEY64

key - current stack
297 (129) CHARACTER 7 CEELAA_RSVD64 reserved
304 (130) CHARACTER 24 CEELAA_HEAP heap related fields
304 (130) CHARACTER 8 CEELAA_ENSQ64 addr of 64bit ENSQ
312 (138) CHARACTER 8 CEELAA_THDLHEAP64ID

64bit Library thread heap id
320 (140) CHARACTER 8 CEELAA_THDLHEAP31ID

31bit Library thread heap id
328 (148) ADDRESS 4 CEELAA_IPTLAA address of LAA for the IPT
332 (14C) ADDRESS 4 CEELAA_MASTERLAA

reserved
336 (150) CHARACTER 48 CEELAA_RSVD3 reserved
384 (180) CHARACTER 1 CEELAA_END(0) end of block

.... ...1 CEELAA_CURRENT_VERSION
"1"

.... ...1 CEELAA_VERSION_1
"1"

384 (180) CEELAA_LEN "*-CEELAA"

Figure 134 on page 671 provides the cross reference to the LAA.

Library Anchor Area (LAA)

670 z/OS V2R1.0 Language Environment Vendor Interfaces

Language Environment library control area
The library control area (LCA), Figure 135 on page 672, is a control block that is
allocated in the key of the caller when Language Environment is initialized. The
LCA is pointed to by CEELAA_LCA64. For mapping information, see the

1 CROSS REFERENCE
HEX HEX

NAME OFFSET VALUE LEVEL
==== ====== ======== =====
CEELAA 0 1
CEELAA_ASID 14 2
CEELAA_COMP_31B 18 2
CEELAA_COMP_64B 40 2
CEELAA_COMPILER_C 18 2
CEELAA_CURKEY31 108 2
CEELAA_CURKEY64 128 2
CEELAA_CURRENT_VERSION 180 1 2
CEELAA_END 180 2
CEELAA_ENSQ64 130 2
CEELAA_FIRST_IN_CHAIN C8 1 2
CEELAA_FLAG1 C8 2
CEELAA_FLAG2 C9 2
CEELAA_FLAG3 CA 2
CEELAA_FLAG4 CB 2
CEELAA_GTAB31 20 2
CEELAA_GTAB64 50 2
CEELAA_HEAP 130 2
CEELAA_IPT C8 20 2
CEELAA_IPTLAA 148 2
CEELAA_JIT_RSVD1 88 2
CEELAA_JIT_RSVD2 90 2
CEELAA_LCA31 24 2
CEELAA_LCA64 58 2
CEELAA_LEACTIVE C8 80 2
CEELAA_LEN 180 180 2
CEELAA_LEPENDING C8 40 2
CEELAA_MASTERLAA 14C 2
CEELAA_MEMLIMIT C8 10 2
CEELAA_NEXT C 2
CEELAA_OVERFLOW_ABEND C8 2 2
CEELAA_OVERFLOW_INVALID C9 80 2
CEELAA_PREV 8 2
CEELAA_RESERVE_STACK_REQUEST C8 4 2
CEELAA_RSTK_ACTIVE C8 8 2
CEELAA_RSVD1 16 2
CEELAA_RSVD3 150 2
CEELAA_RSVD31 109 2
CEELAA_RSVD31_1 2C 2
CEELAA_RSVD64 129 2
CEELAA_RSVD64_1 68 2
CEELAA_SANC31 104 2
CEELAA_SANC64 120 2
CEELAA_STACKFLOOR31 18 2
CEELAA_STACKFLOOR64 40 2
CEELAA_STACKOVFLOW31 1C 2
CEELAA_STACKOVFLOW64 48 2
CEELAA_STCB 10 2
CEELAA_STKFLR64_HI 40 2
CEELAA_STKFLR64_LO 44 2
CEELAA_STKOVFL64_HI 48 2
CEELAA_STKOVFL64_LO 4C 2
CEELAA_SVCVEC31 100 2
CEELAA_SVCVEC64 118 2
CEELAA_THDLHEAP31ID 140 2
CEELAA_THDLHEAP64ID 138 2
CEELAA_TRT31 28 2
CEELAA_TRT64 60 2
CEELAA_VER 4 2
CEELAA_VERSION_1 180 1 2
CEELAA_31BIT 100 2
CEELAA_31BIT_CB_STG F8 2
CEELAA_64BIT 118 2
CEELAA_64BIT_CB_STG F0 2
CEELAAEYE 0 2

Figure 134. Library anchor area (LAA) field descriptions

Library Control Area (LCA)

Chapter 20. Common interfaces and conventions for AMODE 64 applications 671

SCEEMAC(CEELCA) data set.

Figure 136 on page 673 provides the cross reference to the LCA.

1 CEELCA

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION

======== ======== ========= ======== ============== ===============================
0 (0) STRUCTURE 864 CEELCA Flags - byte 2
0 (0) STRUCTURE 864 CEELCA LCA mapping
0 (0) CHARACTER 856 CEELCALEN Length used for dwrd filler
0 (0) CHARACTER 4 CEELCAEYE eyecatcher ’LCA ’
4 (4) SIGNED 4 CEELCA_VER version
8 (8) ADDRESS 8 CEELCA_CAA +8 ptr to the CAA

16 (10) ADDRESS 4 CEELCA_DIA +16 ptr to the DIA
20 (14) CHARACTER 4 CEELCA_RSVD1B reserved
24 (18) ADDRESS 4 CEELCA_LAA addr of associated LAA
28 (1C) ADDRESS 4 CEELCA_OSSPL@ Ptr to OS call parm list
32 (20) ADDRESS 8 CEELCA_SAVSTACK

Saved Stack Pointer when OS_NOSTACK
linkage routine is called. After the
call returns, the CEELCA_SAVSTACK
field must be set back to zero.
When the value is not zero, condition
management and signal processing
use this value as the current stack
pointer. Asynchronous signals are
put back if the interrupt occurs
outside the bounds of the routine
that owns the stack frame.

40 (28) ADDRESS 256 CEELCA_CELQINIT
ptr to CELQINIT

48 (30) CHARACTER 256 CEELCA_TRT Space for C TRT
304 (130) ADDRESS 8 CEELCA_SHUNT ptr to the shunt routine
312 (138) CHARACTER 4 CEELCA_FDSETFD

Work area used by 64-bit UU version
for 31-bit mode field in CAA

316 (13C) CHARACTER 4 * (reserved)
320 (140) ADDRESS 8 CEELCA_RSVFLD01

Unavailable for use
328 (148) ADDRESS 8 CEELCA_RSVFLD02

Unavailable for use
336 (150) ADDRESS 8 CEELCA_SAVSTACK_ASYNC

When the value is not zero,
CEELCA_SAVSTACK_ASYNC contains the
the address of a 8-byte field
provided by the application that
holds the Saved Stack Pointer
when the register for the stack
pointer is being used for other purposes.
Zero otherwise. When the field exists
and is not zero, Condition Management
and signal processing will use this value
as the current stack pointer. Asynchronous
signals will be processed even if the
interrupt occurs outside the bounds of
the routine that owns the stack frame.

816 (330) ADDRESS 8 CEELCA_CELQ6TLC
ptr to CELQ6TLC

824 (338) CHARACTER 32 CEELCA_RSVD2 (reserved)
856 (358) CHARACTER 8 * Dword boundary filler

Figure 135. Library control area (LCA) field descriptions

Library Control Area (LCA)

672 z/OS V2R1.0 Language Environment Vendor Interfaces

Language Environment common anchor area
Each thread is represented by a common anchor area (CAA), as the code example
below shows. The CAA is generated during thread initialization and deleted
during thread termination. It is pointed to by CEELCA_CAA. For mapping
information on the CAA, see the SCEEMAC(CEECAA) data set.
1 CEECAA

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============= ==============================

0 (0) STRUCTURE 0 CEECAA , CAA mapping
0 (0) BITSTRING 1280 CEECAA_EXTERNAL(0)

Fields external in 31-bit mode
0 (0) BITSTRING 688 * Reserved for "external" fields

688 (2B0) BITSTRING 2 * Padding
690 (2B2) BITSTRING 2 CEECAA_INVAR(0)

Field that is at same fixed
offset in both 31-bit and
64-bit CAAs

690 (2B2) BITSTRING 1 CEECAA_INVAR_0
Byte 0

1... CEECAA_64 "X’80’" ON/OFF = 64/31-bit CAA
EQU X’40 Reserved
EQU X’20 Reserved
EQU X’10 Reserved
EQU X’08 Reserved
EQU X’04 Reserved
EQU X’02 Reserved
EQU X’01 Reserved

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

691 (2B3) BITSTRING 1 CEECAA_INVAR_1
Byte 1
EQU X’80’ Reserved
EQU X’40’ Reserved
EQU X’20’ Reserved
EQU X’10’ Reserved
EQU X’08’ Reserved
EQU X’04’ Reserved

1 CROSS REFERENCE
HEX HEX

NAME OFFSET VALUE LEVEL
==== ====== ======== =====
CEELCA 0 1
CEELCA_CAA 8 2
CEELCA_CELQINIT 28 2
CEELCA_CELQ6TLC 330 2
CEELCA_DIA 10 2
CEELCA_FDSETFD 138 2
CEELCA_LAA 18 2
CEELCA_LEN 338 358 2
CEELCA_OSSPL@ 1C 2
CEELCA_RSVD1B 14 2
CEELCA_RSVD2 338 2
CEELCA_RSVFLD01 140 2
CEELCA_RSVFLD02 148 2
CEELCA_SAVSTACK 20 2
CEELCA_SAVSTACK_ASYNC 150 2
CEELCA_SHUNT 130 2
CEELCA_TRT 30 2
CEELCA_VER 4 2
CEELCAEYE 0 2
CEELCALEN 0 2

Figure 136. Library control area (LCA) field descriptions (cross reference)

Common Anchor Area (CAA)

Chapter 20. Common interfaces and conventions for AMODE 64 applications 673

EQU X’02’ Reserved
EQU X’01’ Reserved

692 (2B4) BITSTRING 4 * Padding
696 (2B8) BITSTRING 72 * Reserved for "external fields"
768 (300) BITSTRING 16 * Reserved
784 (310) BITSTRING 80 CEECAAMEMBER_AREA(0)

CGEN, for C Member
784 (310) ADDRESS 8 CEECAACGENE Reserved
792 (318) BITSTRING 24 * Reserved
816 (330) ADDRESS 8 CEECAACTHD Address of CTHD
824 (338) ADDRESS 8 * Reserved
832 (340) ADDRESS 8 CEECAACPCB Address of C PCB
840 (348) ADDRESS 8 CEECAACEDB Address of C CEDB
848 (350) BITSTRING 16 *
864 (360) BITSTRING 3 * Reserved
867 (363) BITSTRING 1 CEECAAFLAG2 2nd flags byte

EQU X’80’ Reserved
EQU X’40’ Reserved

..1. CEECAATIP "X’20’" Thread termination in
progress

...1 CEECAA_THREAD_INITIAL
"X’10’" If on, indicates this
is the IPT

.... 1... CEECAA_TRACE_ACTIVE
"X’08’" If on, library trace is
active
(TRACE runtime option was set)

.... .1.. CEECAA_ALTSTK_ACTIVE
"X’04’" If on, alt stack active
EQU X’02’ Reserved

.... ...1 CEECAA_USRSTK_ACTIVE
"X’01’" If on, context
switching user stack is active

868 (364) BITSTRING 1 CEECAALEVEL LE/370 level identifier
869 (365) BITSTRING 3 * Reserved
872 (368) ADDRESS 8 CEECAADMC Addr of ESPIE Devil-May-Care

rtn
880 (370) BITSTRING 8 * Reserved
888 (378) ADDRESS 8 CEECAAERR Addr of the current CIB
896 (380) DBL WORD 8 CEECAA_FIRSTDSA(0)

LE64 First DSA
896 (380) ADDRESS 8 CEECAADDSA Addr of the dummy DSA
904 (388) ADDRESS 8 CEECAAEDB Address of the EDB
912 (390) ADDRESS 8 CEECAAPCB Address of the PCB

The following two fields are used for the validation of the CAA
==

920 (398) ADDRESS 8 CEECAAEYEPTR Addr of CAA eyecatcher
928 (3A0) ADDRESS 8 CEECAAPTR Addr of this CAA
936 (3A8) BITSTRING 40 * Reserved
976 (3D0) CHARACTER 8 CEECAATHDID Posix thread id
984 (3D8) ADDRESS 8 CEECAARCB A(RCB)
992 (3E0) BITSTRING 104 * End

Figure 137 on page 675 shows the cross reference to the CAA.

Common Anchor Area (CAA)

674 z/OS V2R1.0 Language Environment Vendor Interfaces

Language Environment debugger interfaces area
The debugger interfaces area (DIA), as shown in the code example below, is a
control block that is allocated in the key of the caller when Language Environment
is initialized. The DIA is pointed to by CEELCA_DIA. For mapping information on
the DIA, see the SCEEMAC(CEEDIA) data set.
1 CEEDIA

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

0 (0) STRUCTURE 0 CEEDIA DIA Mapping
0 (0) CHARACTER 680 CEEDIALEN(0) Length used for dwrd filler
0 (0) CHARACTER 4 CEEDIAEYE eyecatcher ’DIA ’
4 (4) SIGNED 4 CEEDIAVER version
8 (8) CHARACTER 68 CEEDIAHOOKS(0)

Hook control words
8 (8) CHARACTER 4 CEEDIAALLOC ALLOCATE descr. Built
12 (C) CHARACTER 4 CEEDIASTATE New statement begins
16 (10) CHARACTER 4 CEEDIAENTRY Block entry
20 (14) CHARACTER 4 CEEDIAEXIT Block exit
24 (18) CHARACTER 4 CEEDIAMEXIT Multiple block exit
28 (1C) CHARACTER 32 CEEDIAPATHS(0)

PATH hooks
28 (1C) CHARACTER 4 CEEDIALABEL At a label constant
32 (20) CHARACTER 4 CEEDIABCALL Before CALL
36 (24) CHARACTER 4 CEEDIAACALL After CALL
40 (28) CHARACTER 4 CEEDIADO DO block starting
44 (2C) CHARACTER 4 CEEDIAIFTRUE True part of IF
48 (30) CHARACTER 4 CEEDIAIFFALSE False part of IF
52 (34) CHARACTER 4 CEEDIAWHEN WHEN group starting
56 (38) CHARACTER 4 CEEDIAOTHER OTHERWISE group
60 (3C) CHARACTER 4 CEEDIACGOTO GOTO hook for C
64 (40) CHARACTER 4 CEEDIARSVDH1 Reserved hook

1 CROSS REFERENCE
HEX HEX

NAME OFFSET VALUE LEVEL
==== ====== ======== =====
CEECAA 0 1
CEECAA_ALTSTK_ACTIVE 363 4 2
CEECAA_EXTERNAL 0 2
CEECAA_FIRSTDSA 380 2
CEECAA_INVAR 2B2 2
CEECAA_INVAR_0 2B2 2
CEECAA_INVAR_1 2B3 2
CEECAA_THREAD_INITIAL 363 10 2
CEECAA_TRACE_ACTIVE 363 8 2
CEECAA_USRSTK_ACTIVE 363 1 2
CEECAA_64 2B2 80 2
CEECAACEDB 348 2
CEECAACGENE 310 2
CEECAACPCB 340 2
CEECAACTHD 330 2
CEECAADDSA 380 2
CEECAADMC 368 2
CEECAAEDB 388 2
CEECAAERR 378 2
CEECAAEYEPTR 398 2
CEECAAFLAG2 363 2
CEECAALEVEL 364 2
CEECAAMEMBER_AREA 310 2
CEECAAPCB 390 2
CEECAAPTR 3A0 2
CEECAARCB 3D8 2
CEECAATHDID 3D0 2
CEECAATIP 363 20 2

Figure 137. Common anchor area (CAA) field descriptions (cross references) AMODE 64

Debugger Interfaces Area (DIA)

Chapter 20. Common interfaces and conventions for AMODE 64 applications 675

68 (44) CHARACTER 4 CEEDIARSVDH2 Reserved hook
72 (48) CHARACTER 4 CEEDIAMULTEVT Multiple Event Hook
76 (4C) BITSTRING 4 CEEDIAMEVMASK Multiple Event Hook Mask
80 (50) ADDRESS 8 CEEDIAHLLEXIT HLL Exit
88 (58) CHARACTER 80 CEEDIADBG(0) CodeDT CAA Debug Fields
88 (58) ADDRESS 8 CEEDIADBGCTLA PL/I-CodeDT Interface
96 (60) ADDRESS 8 CEEDIADBGVIEW Bas-View CodeDT CB
104 (68) ADDRESS 8 CEEDIADBGGOTO Gto_Goto_Rec CodeDT CB
112 (70) ADDRESS 8 CEEDIADBGMFET DT Module Fetch Struct
120 (78) ADDRESS 8 CEEDIABOSADDR Bas_BOSS_Control DT CB
128 (80) CHARACTER 16 CEEDIAOHPSW PSW for Overlay Hooks
144 (90) ADDRESS 8 CEEDIAOHRESUME

Overlay Hooks Resume
152 (98) CHARACTER 8 CEEDIADBGFLAG(0)

CodeDT Flags Area
152 (98) BITSTRING 1 CEEDIADBGFLG0 CodeDT Flag Byte 0
153 (99) BITSTRING 1 CEEDIADBGFLG1 CodeDT Flag Byte 1
154 (9A) BITSTRING 1 CEEDIADBGFLG2 CodeDT Flag Byte 2
155 (9B) BITSTRING 1 CEEDIADBGFLG3 CodeDT Flag Byte 3
156 (9C) BITSTRING 1 CEEDIADBGFLG4 CodeDT Flag Byte 4
157 (9D) CHARACTER 3 * Reserved
160 (A0) SIGNED 4 CEEDIADBGINVS Recursive CodeDT Invoc.
164 (A4) CHARACTER 4 * Reserved

CEEDIAHOOK Code to Pass Control to Hook Handler: STG
R8,2096(4) LLGT R8,PSALAA-PSA(,0) USING CEELAA,R8 LG
R8,CEELAA_LCA64 DROP R8 USING CEELCA,R8 LLGT R8,CEELCA_DIA
DROP R8 USING CEEDIA,R8 STMG 0,15,CEEDIA_R0 LG R6,DIA_DIMA
LMG R5,R6,0(R6) BASR R7,R6 NOPR 0

==
168 (A8) BITSTRING 46 CEEDIAHOOK Code to pass control
216 (D8) ADDRESS 8 CEEDIADIMA A(debugger entry)

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============== ===============================

Register Save Area - When an event hook hits, an EX statement
transfers control to the CEEDIAHOOK code via a BRAS and the users
registers are saved in locations CEEDIAR0 through CEEDIAR15. Because
a BRAS stores the return address in R0, we can use that value as the
IP portion of the PSW which is constructed for use by an RP instruction
that returns control back to the program.

==
224 (E0) CHARACTER 136 CEEDIAHOOKSA(0)

Hooks Save Area
224 (E0) CHARACTER 16 CEEDIAPSW(0) PSW
224 (E0) SIGNED 8 CEEDIATOP PSW Modes, Mask, etc
232 (E8) ADDRESS 8 CEEDIAR0 Register 0
240 (F0) ADDRESS 8 CEEDIAR1 Register 1
248 (F8) ADDRESS 8 CEEDIAR2 Register 2
256 (100) ADDRESS 8 CEEDIAR3 Register 3
264 (108) ADDRESS 8 CEEDIAR4 Register 4
272 (110) ADDRESS 8 CEEDIAR5 Register 5
280 (118) ADDRESS 8 CEEDIAR6 Register 6
288 (120) ADDRESS 8 CEEDIAR7 Register 7
296 (128) ADDRESS 8 CEEDIAR8 Register 8
304 (130) ADDRESS 8 CEEDIAR9 Register 9
312 (138) ADDRESS 8 CEEDIAR10 Register 10
320 (140) ADDRESS 8 CEEDIAR11 Register 11
328 (148) ADDRESS 8 CEEDIAR12 Register 12
336 (150) ADDRESS 8 CEEDIAR13 Register 13
344 (158) ADDRESS 8 CEEDIAR14 Register 14
352 (160) ADDRESS 8 CEEDIAR15 Register 15

CEEHCHK5 Save Area - When the hook handler is BASRed into,
it has to determine if the calling routine was a leaf before
adjusting R4 to obtain stack storage. CEEHCHK5 will be called
to make this determination. The following fields and associated
storage will be pre allocated and made available to construct a
parameter list and to provide a save area for CEEHCHK5.

==

Debugger Interfaces Area (DIA)

676 z/OS V2R1.0 Language Environment Vendor Interfaces

360 (168) CHARACTER 256 CEEDIACHK5(0) Storage for CEEHCHK5 call
360 (168) ADDRESS 8 CEEDIACHK5CAL Address of CEEHCHK5
368 (170) CHARACTER 48 CEEDIACHK5PRMS(0)

Storage for CHK5 Parms
368 (170) ADDRESS 8 CEEDIAPRM1 CHK5 Parm 1
376 (178) ADDRESS 8 CEEDIAPRM2 CHK5 Parm 2
384 (180) ADDRESS 8 CEEDIAPRM3 CHK5 Parm 3
392 (188) ADDRESS 8 CEEDIAPRM4 CHK5 Parm 4
400 (190) ADDRESS 8 CEEDIAPRM5 CHK5 Parm 5
408 (198) ADDRESS 8 CEEDIAPRM6 CHK5 Parm 6
416 (1A0) CHARACTER 144 CEEDIACHK5SA Save Area for HCHK5 call
560 (230) SIGNED 4 CEEDIACHK5RC HCHK5 Return Code
564 (234) SIGNED 4 * Padding
568 (238) ADDRESS 8 CEEDIACHK5DSA HCHK5 Good DSA Pointer
576 (240) ADDRESS 8 CEEDIACHK5EP HCHK5 EP Pointer
584 (248) CHARACTER 32 * Reserved for CHK5 exp
616 (268) CHARACTER 64 * Reserved for DIA exp.
680 (2A8) CHARACTER 8 * Dword boundary filler
680 (2A8) CEEDIA_LEN "*-CEEDIA"

The following code sample provides the cross reference to the DIA.
1 CROSS REFERENCE

HEX HEX
NAME OFFSET VALUE LEVEL
==== ====== ======== =====
CEEDIA 0 1
CEEDIA_LEN 2A8 2B0 2
CEEDIAACALL 24 2
CEEDIAALLOC 8 2
CEEDIABCALL 20 2
CEEDIABOSADDR 78 2
CEEDIACGOTO 3C 2
CEEDIACHK5 168 2
CEEDIACHK5CAL 168 2
CEEDIACHK5DSA 238 2
CEEDIACHK5EP 240 2
CEEDIACHK5PRMS 170 2
CEEDIACHK5RC 230 2
CEEDIACHK5SA 1A0 2
CEEDIADBG 58 2
CEEDIADBGCTLA 58 2
CEEDIADBGFLAG 98 2
CEEDIADBGFLG0 98 2
CEEDIADBGFLG1 99 2
CEEDIADBGFLG2 9A 2
CEEDIADBGFLG3 9B 2
CEEDIADBGFLG4 9C 2
CEEDIADBGGOTO 68 2
CEEDIADBGINVS A0 2
CEEDIADBGMFET 70 2
CEEDIADBGVIEW 60 2
CEEDIADIMA D8 2
CEEDIADO 28 2
CEEDIAENTRY 10 2
CEEDIAEXIT 14 2
CEEDIAEYE 0 2
CEEDIAHLLEXIT 50 2
CEEDIAHOOK A8 2
CEEDIAHOOKS 8 2
CEEDIAHOOKSA E0 2
CEEDIAIFFALSE 30 2
CEEDIAIFTRUE 2C 2
CEEDIALABEL 1C 2
CEEDIALEN 0 2
CEEDIAMEVMASK 4C 2
CEEDIAMEXIT 18 2
CEEDIAMULTEVT 48 2
CEEDIAOHPSW 80 2
CEEDIAOHRESUME 90 2
CEEDIAOTHER 38 2

Debugger Interfaces Area (DIA)

Chapter 20. Common interfaces and conventions for AMODE 64 applications 677

CEEDIAPATHS 1C 2
CEEDIAPRM1 170 2
CEEDIAPRM2 178 2
CEEDIAPRM3 180 2
CEEDIAPRM4 188 2
CEEDIAPRM5 190 2
CEEDIAPRM6 198 2
CEEDIAPSW E0 2
CEEDIARSVDH1 40 2
CEEDIARSVDH2 44 2
CEEDIAR0 E8 2
CEEDIAR1 F0 2

CEEDIAR10 138 2
CEEDIAR11 140 2
CEEDIAR12 148 2
CEEDIAR13 150 2
CEEDIAR14 158 2
CEEDIAR15 160 2
CEEDIAR2 F8 2
CEEDIAR3 100 2
CEEDIAR4 108 2
CEEDIAR5 110 2
CEEDIAR6 118 2
CEEDIAR7 120 2
CEEDIAR8 128 2
CEEDIAR9 130 2
CEEDIASTATE C 2
CEEDIATOP E0 2
CEEDIAVER 4 2
CEEDIAWHEN 34 2

Language Environment enclave data block
Each enclave is represented by an enclave data block (EDB), Figure 138 on page
679, which supports the program model. All enclave-related resources are provided
in the EDB. It is generated during enclave initialization and deleted during enclave
termination. For mapping information on the EDB, see the SCEEMAC(CEEEDB)
data set.

Debugger Interfaces Area (DIA)

678 z/OS V2R1.0 Language Environment Vendor Interfaces

Figure 139 provides the cross reference to the EDB.

Language Environment process control block
Each process is represented by a process control block (PCB); Figure 140 on page
680 shows the format. All process resources are anchored, provided for, or can be
obtained through the PCB. The PCB is generated during process initialization and
deleted during process termination. For mapping information on the PCB, see the
SCEEMAC(CEEPCB) data set.

1 CEEEDB

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============= ===============================

0 (0) STRUCTURE 0 CEEEDB 0D EDB mapping
0 (0) STRUCTURE 0 CEEEDB 0D EDB mapping
0 (0) BITSTRING 512 CEEEDB_EXTERNAL(0)

External part in 31-bit mode
0 (0) BITSTRING 8 CEEEDBEYE Eyecatcher ’CEEEDB ’
8 (8) CHARACTER 248 * Reserved area

256 (100) SIGNED 4 CEEEDBFLAGS(0)
256 (100) BITSTRING 1 CEEEDBFLAG1 EDB Flags

1... CEEEDBMAINI "X’80’" Main program
initialized
EQU X’40’ Initial amode

..1. CEEEDBACTIV "X’20’" Environment is active

...1 CEEEDBTIP "X’10’" Termination In Progress
EQU X’08’ Pre-Init Compat. is
active

.... .1.. CEEEDB_POSIX "X’04’" POSIX environment active

.... ..1. CEEEDBMULTITHREAD
"X’02’" Multi-threading
environment

.... ...1 CEEEDB_OMVS_DUBBED
"X’01’" OpenMVS is dubbed

257 (101) BITSTRING 15 * Reserved
272 (110) ADDRESS 8 CEEEDBOPTCB A(options control block)
280 (118) BITSTRING 232 * Reserved End

Figure 138. Enclave data block (EDB) field descriptions (AMODE 64)

1 CROSS REFERENCE
HEX HEX

NAME OFFSET VALUE LEVEL
==== ====== ======== =====
CEEEDB 0 1
CEEEDB 0 1
CEEEDB_EXTERNAL 0 2
CEEEDB_OMVS_DUBBED 100 1 2
CEEEDB_POSIX 100 4 2
CEEEDBACTIV 100 20 2
CEEEDBEYE 0 2
CEEEDBFLAGS 100 2
CEEEDBFLAG1 100 2
CEEEDBMAINI 100 80 2
CEEEDBMULTITHREAD 100 2 2
CEEEDBOPTCB 110 2
CEEEDBTIP 100 10 2

Figure 139. Enclave data block (EDB) field descriptions (cross reference)

Enclave Data Block (EDB)

Chapter 20. Common interfaces and conventions for AMODE 64 applications 679

Figure 141 provides the cross reference to the PCB.

Language Environment region control block
Regions are defined to effectively manage the resources for multiple processes,
allowing, for instance, for the reuse of resources. There is one RCB per instance of
a Language Environment environment and there is no link between RCB in
separate Language Environment environments. For mapping information on the
RCB, see the SCEEMAC(CEERCB) data set. Figure 142 on page 681 shows the

1 CEEPCB

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============= ===============================

0 (0) STRUCTURE 0 CEEPCB , PCB mapping
0 (0) BITSTRING 448 CEEPCB_EXTERNAL(0)

External part in 31-bit mode
0 (0) BITSTRING 8 CEEPCBEYE Eyecatcher ’CEEPCB ’
8 (8) CHARACTER 248 * Reserved for "external" fields

256 (100) BITSTRING 3 * Reserved
259 (103) BITSTRING 1 CEEPCBFLAG2

EQU X’80’ Reserved
EQU X’40’ Reserved
EQU X’20’ Reserved
EQU X’10’ Reserved

==
.... 1... CEEPCB_OMVS "X’08’" OpenMVS is up and

available
EQU X’04’ Reserved
EQU X’02’ Reserved
EQU X’01’ Reserved

260 (104) CHARACTER 4 * Padding
264 (108) ADDRESS 8 CEEPCBDBGEH A(debug event handler)
272 (110) BITSTRING 40 * Reserved
312 (138) ADDRESS 8 CEEPCBRCB Address of the RCB
320 (140) BITSTRING 24 * Reserved
344 (158) BITSTRING 1 CEEPCBFLAG6

EQU X’80’ Reserved
EQU X’40’ Reserved
EQU X’20’ Reserved
EQU X’10’ Reserved

.... 1... CEEPCB_SIMD EQU X’08’ SIMD supported
EQU X’04’ Reserved
EQU X’02’ Reserved
EQU X’01’ Reserved

345 (159) BITSTRING 103 * Reserved
End

Figure 140. Process control block (PCB) field descriptions (AMODE 64)

1 CROSS REFERENCE
HEX HEX

NAME OFFSET VALUE LEVEL
==== ====== ======== =====
CEEPCB 0 1
CEEPCB_EXTERNAL 0 2
CEEPCB_OMVS 103 8 2
CEEPCB_SIMD 158 8 2
CEEPCBDBGEH 108 2
CEEPCBEYE 0 2
CEEPCBFLAG2 103 2
CEEPCBRCB 138 2

Figure 141. Process control block (PCB) field descriptions (cross reference)

Process Control Block (PCB)

680 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|
|
|
|
|
|
|
|
|
|

|

format of the RCB.

Figure 143 provides the cross reference to the RCB.

1 CEERCB
OFFSET OFFSET

DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ========= ======== ============= ===============================

0 (0) STRUCTURE 0 CEERCB , RCB mapping
0 (0) BITSTRING 128 CEERCB_EXTERNAL(0)

External portion in 31-bit mode
0 (0) CHARACTER 8 CEERCBEYE eyecatcher ’CEERCB ’
8 (8) CHARACTER 56 * Reserved for "external" fields

64 (40) BITSTRING 16 * Reserved
80 (50) SIGNED 4 CEERCB_VERSION_ID(0)

LE Ver., Rel. and Mod.
80 (50) BITSTRING 1 CEERCBPRODID Product Number
81 (51) BITSTRING 1 CEERCBVERID Version Version Number
82 (52) BITSTRING 1 CEERCBRELID Release Release Number
83 (53) BITSTRING 1 CEERCBMODID Modification ID
84 (54) CHARACTER 4 * Padding
88 (58) ADDRESS 8 CEERCB_PCBCHAIN

Address of PCB
96 (60) CHARACTER 32 * Reserved End

Figure 142. Region control block (RCB) field descriptions

1 CROSS REFERENCE
HEX HEX

NAME OFFSET VALUE LEVEL
==== ====== ======== =====
CEERCB 0 1
CEERCB_EXTERNAL 0 2
CEERCB_PCBCHAIN 58 2
CEERCB_VERSION_ID 50 2
CEERCBEYE 0 2
CEERCBMODID 53 2
CEERCBPRODID 50 2
CEERCBRELID 52 2
CEERCBVERID 51 2

Figure 143. Region control block (RCB) field descriptions (cross reference)

Region control block (RCB)

Chapter 20. Common interfaces and conventions for AMODE 64 applications 681

682 z/OS V2R1.0 Language Environment Vendor Interfaces

Chapter 21. Compiler-writer interfaces (CWIs) supported for
AMODE 64 applications

The following table lists the CWIs that Language Environment supports for
AMODE 64 applications.

Table 72. CWIs for AMODE 64 applications

CWI Function Page

__dsa_prev() Returns the address of the DSA prior to
dsa_p on the Language Environment stack

“__dsa_prev() — Chain back to previous DSA” on
page 733

__ep_find() Returns the address of the entry point of
the function owning the dsa_p DSA

“__ep_find() — returns the address of the entry
point of the function owning the dsa_p DSA” on

page 736

__vhm_event() Drives an event into any vendor heap
manager

“__vhm_event()” on page 721

© Copyright IBM Corp. 1991, 2015 683

|
|

|
|
|

|

684 z/OS V2R1.0 Language Environment Vendor Interfaces

Chapter 22. CALL linkage convention for AMODE 64
applications

This chapter describes the program call linkage convention supported by Language
Environment for AMODE 64 applications.

Terminology
The terminology around the call or function invocation is not exactly the same in
all HLLs. Figure 144 summarizes the terminology in this section.

The formats of a Language Environment argument list and parameter list are
identical. Rather than refer to both formats in this section, the term argument list
only is used. However, everything that applies to an argument list format also
applies to a parameter list format.

There are two access modes for arguments:

Direct The value of the argument is placed directly in the argument list body.

Indirect
The body of the argument list contains a pointer to the argument value.

Programming languages have two basic argument passing semantics:

By value
The value of the object is passed. No change made by the callee to the
argument value is reflected in the calling routine.

By reference
Changes made by the callee to the argument value are reflected in the
calling routine.

TERMINOLOGY REFRESHER

Routine that calls
(a caller)

Routine being
called (callee)

argument list parameter
list

Caller passes
Callee
receives

Callee
returns

a value
(optionally)

call

Figure 144. CALL terminology refresher

© Copyright IBM Corp. 1991, 2015 685

XPLINK CALL linkage conventions for AMODE 64 applications
The following sections describe the Language Environment XPLINK protocols for
passing arguments to external routines.

The primary goal of XPLINK is to make subroutine calls as fast and efficient as
possible by removing all nonessential instructions from the main path. This is
achieved by introducing the following:
v growing the stack from higher to lower addresses ("negative-" or

"downward-growing")
– to eliminate overhead in stack frame allocation
– to eliminate need for inline stack overflow check
– to allow for an improved epilog
– to allow addressability to information (such as parameters) in the caller's

stack frame
v biasing the stack pointer (by 2048 bytes), so that small functions can save

registers in their own stack frame before updating the stack pointer, avoiding
address generation interlocks

v reassignment of registers to support more efficient saving and restoring of
registers in function prologs and epilogs

v parameter passing in registers, accepting return values in registers
v elimination of Inter-language Call (ILC) overhead (marking of stack frame) for

non-ILC calls
v faster call sequences for inter-module calls
v passing the address of the data area associated with a function, its

"environment", to the function on entry
v no branching around CEL words
v use of relative branching for function calls where possible
v unification of the various (RENT and NORENT, DLL and NODLL) function

pointer implementations, reducing the costs of all operations involving function
pointers

An important additional goal is the reduction in size of the function in memory.
This is accomplished by eliminating unused information in function control blocks.

Register usage and linkage
The following list shows the register use and linkage.

GPR1-3 => arguments (depending upon type)
GPR4 => the caller’s stack frame in the downward-

growing stack. This is biased and actually points to 2048
bytes before the real start of the stack frame.

GPR5 => the called routine’s environment pointer
GPR6 => the entry point in the called routine if

the call was made by a BASR instruction
GPR7 => the return point in the caller’s routine. The return point

also contains information to determine if the call
was made via BASR or branch relative.

GPR8-15 => preserved
FPRs => arguments (depending upon type)
VR24-31 => arguments (depending upon type)

XPLINK CALL linkage

686 z/OS V2R1.0 Language Environment Vendor Interfaces

|

Stack format
Figure 145 shows the Language Environment AMODE 64 XPLINK stack storage
model.

Figure 145. Language EnvironmentAMODE 64 XPLINK stack storage model

Register Usage

Chapter 22. CALL linkage convention for AMODE 64 applications 687

Stack frame mapping
The prolog of a function usually allocates space (referred to as a “frame”, “Stack
Frame”, or “DSA”- dynamic storage area) in the Language Environment-provided
stack segment for its own purposes and to support calls to other routines.

Figure 146 shows the stack frame layout. The stack register points to a location
2048 bytes before the stack frame for the currently active routine. It grows from
numerically higher storage addresses to numerically lower ones, that is the stack
frame for a called function is always at a lower address than the calling function.
The stack frame is 32-byte-aligned.

Table 73 on page 689 describes the contents of each area within the stack frame
shown in Figure 146.

Guard Area (1 MB)

Stack Frames for called functions

Backchain

Environment
Entry Point

Return Address
R8
R9

R10
R11
R12
R13
R14
R15

Reserved (16 bytes)

Debug Area (8 bytes)

Reserved (8 Bytes)

Argument Area:
Parm 1
Parm 2

Local (automatic) Storage

Savearea
(96 bytes)

Saved FPRs Saved ARs

High
Addresses

Low
Addresses

Stack
Pointer (R4)

+2048

+2144

+2160

+2168

+2176

Saved VRs

Figure 146. Language Environment XPLINK stack frame layout for AMODE 64 applications

Stack Frame Mapping

688 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 73. Content of XPLINK stack frame for AMODE 64 applications

AMODE 64 stack frame
area

Content

Save area This area is always present when a stack frame is required. It holds up to 12 registers.
The first two doublewords hold, optionally, GPRs 4 and 5, the registers containing the
address of the previous stack frame and the environment address passed into the
function. This is followed by the two doublewords containing GPR6, which may or may
not hold the actual entry point address depending on the type of call, and GPR7, the
return address. As many of the 8 non-volatile registers as are used by the called function
are saved in the following 64 bytes.

Except when registers are saved in the prolog, this area may not be altered by compiled
code. The PPA1 GPR Save Mask indicates which GPRs are saved in this area by the
prolog.

Stack overflow is detected by the STMG instruction used to save registers in this save
area.

Storage of the Backchain field in the save area is triggered by the optional
XPLINK(BACKCHAIN) compiler option, or at the convenience of the compiler.

The environment address is stored when the TEST compiler option or the optional
XPLINK(STOREARGS) compiler option is specified, or at the convenience of the compiler.

The third doubleword in the save area contains the value in GPR6 on entry to the routine.
If the routine was called with a BASR instruction, the address is that of the function entry
point.

The fourth doubleword contains the return address. The return point can be examined to
determine how the function was called:

v If the function was called with a BASR instruction, the entry point address can be
found in the third doubleword of the save area

v If the function was called with a relative branch, the entry point can be computed from
the return address and the branch offset contained in the relative branch instruction

Reserved These areas are always present and are for the exclusive use of the runtime. It is
uninitialized by compiled code.

Debugger area This area is always present and is for the exclusive use of the debugger. It is uninitialized
by compiled code.

Argument area This area is at the fixed DSA offset of 128 bytes into the caller's stack frame. It contains
the argument lists passed on function calls made by the function associated with this
stack frame. The called function finds its parameters in the caller's stack frame.
Requirement: A minimum of four doublewords (32 bytes) must be always be allocated.

Local storage This is the space owned by the executing procedure and may be used for its local
variables and temporaries.

Stack overflow
To maximize function call performance, XPLINK replaces the explicit inline check
for overflow with a storage protect mechanism that detects stores past the end of
the stack area.

The stack floor is the lowest usable address of the current stack area. In the lower
storage addresses, it is preceded by a store-protected guard area used to detect
stack overflows.

Availability of space for a stack frame is ensured in the function prolog usually by
storing into the start of the called function's frame. In case of overflow, this triggers
an exception which in turn causes a contiguous extension of the stack by Language

Stack Frame Mapping

Chapter 22. CALL linkage convention for AMODE 64 applications 689

Environment. Functions with a DSA larger than the guard area use the stack floor
address in the LAA to verify space availability. Extensions to the stack area are
transparent to the application.

Stores into the guard area done outside the prolog and done outside "alloca"
built-in processing are treated as not valid and cause the application to be
terminated.

Prolog/epilog examples
This section contains typical prolog and epilog code sequences for AMODE 64
XPLINK. These are examples, not definitive code sequences that must be generated
by conforming compilers.

Table 74 shows the layout of a small size stack frame, where the dsasize is less
than, or equal to, 2048 bytes (dsasize ≤ 2048 bytes).

Table 74. Prolog/epilog example: small size (AMODE 64) stack frame

DC 0D’0’,XL8’00C300C500C500F1’.C.E.E.1
DC A(*-8-PPA1),AL.27(dsasize/32),AL.5(flags)

EP STMG 6,lastused,2048-dsasize+16(4)
AGHI 4,-dsasize update stack pointer
...
function body
...
LMG 7,lastused,2048+24(4) restore registers
LA 4,dsasize(,4) restore stack pointer
B 2(,7) return to caller

Table 75 shows the layout of an intermediate size stack frame. In this case, the
dsasize is greater than 2048 bytes but less than 1 M (2048 < dsasize ≤ 1M).

Table 75. Prolog/epilog example: intermediate size (AMODE 64) stack frame

DC 0D’0’,XL8’00C300C500C500F1’.C.E.E.1
DC A(*-8-PPA1),AL.27(dsasize/32),AL.5(flags)

EP AGHI 4,-dsasize update stack pointer
STMG 6,lastused,2048+16(4)
...
function body
...
LMG 7,lastused,2048+24(4) restore registers
AGHI 4,dsasize restore stack pointer
B 2(,7) return to caller

Table 76 shows a large size stack frame, where the dsasize is greater that 1 M
(dsasize > 1M).

Table 76. Prolog/epilog example: large size (AMODE 64) stack frame

DC 0D’0’,XL8’00C300C500C500F1’.C.E.E.1

Stack Frame Mapping

690 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 76. Prolog/epilog example: large size (AMODE 64) stack frame (continued)

DC A(*-8-PPA1),AL.27(dsasize/32),AL.5(flags)
EP DS 0D

STMG 2,3,2048+136(4)
LGR 0,4 Save caller’s stack register

* For this particular example, the instructions below assume dsasize =
x’100140’
LGHI 2,H’-16’
SLLG 2,2,16
AGHI 2,H’-320’
AGR 4,2 update stack pointer
LLGT 3,1208 get LAA address from PSALAA

* Check bottom of stack
CG 4,CEELAA_STACKFLOOR64–CEELAA(,3)
JM EXT

STK DS 0H
LGR 3,0
LG 3,2048+144(,3)
STMG 5,9,2048+8(4)
STG 0,2048(,4)
LGR 2,0
LG 2,2048+136(,2)
...
function body
...
LMG 4,lastused,2048(4) restore registers
B 2(,7) return to caller
...
DC 0D’0’,XL8’00C300C500C500F2’.C.E.E.2
DC A(this marker - entry point marker)/8

EXT DS 0D
LG 3,CEELAA_STACKOVFLOW64–CEELAA(,3)
BASR 3,3 call Language Environment stack

extender
NOPR 7
J STK

Table 77 shows an example with the following characteristics: XPLINK, no alloca,
no storeargs, saves regs 5-9, dsasize=360256 (AMODE 64).

Table 77. Prolog/epilog example: XPLINK, no alloca, no storeargs, saves regs 5-9, DSA
size=360256 (AMODE 64)

@1L0 DS 0D
=F’12779717’
=F’12910833’
=F’168’
=F’360256’

main DS 0D
STMG r2,r3,2184(r4) save 2nd parm + R3
LGR r0,r4 save original R4
STMG r5,r9,-358200(r4) save caller’s registers

Prolog/Epilog Examples

Chapter 22. CALL linkage convention for AMODE 64 applications 691

Table 77. Prolog/epilog example: XPLINK, no alloca, no storeargs, saves regs 5-9, DSA
size=360256 (AMODE 64) (continued)

LGHI r2,H’-5’ high 16 bits of DSA length
SLLG r2,r2,16 move into proper spot
AGHI r2,H’-32576’ low 16 bits of DSA length
AGR r4,r2 R4 = new DSA address
STG r0,2048(,r4) save backchain in DSA
LGR r2,r0 point to caller’s DSA
LG r2,2184(,r2) restore 2nd parm
function body
LMG r4,r9,2048(r4) restore caller’s registers
SRG r3,r3 R/C = 0
B 2(,r7) return to caller

Stack extension
When the stack frame size is greater than the guard area size, the new stack
pointer value must be compared to the CEELAA_STACKFLOOR64 field. When the
stack pointer is less, then a stack expansion routine must be called explicitly to
create the new stack increment.

DSA extension -- alloca: Sometimes a program's automatic (stack) storage
requirements are not known until runtime. DSA extension allows a program to
dynamically allocate additional automatic (stack) storage. (The C/C++ compiler
built-in function alloca is the C/C++ implementation of DSA extension.) For
XPLINK, allocating additional stack storage also requires moving the register save
area at the beginning of the stack frame (the GPR4 value will change). This storage
is automatically freed when the function in which it was acquired returns.

The following rules must be observed when handling alloca in XPLINK:
v The stack pointer (GPR4) must always point to a location 2048 bytes before the

current function's stack frame. This may or may not be within the guard area.
v Functions that use “alloca” must use a different register (called the “alloca

register”) to address their automatic storage and their parameters. This register
must be set to point to automatic storage (computed from GPR4) in the prolog;
it must keep this value throughout the function (until register contents are
restored in the epilog).

v A function that uses “alloca” must acquire a stack frame and its prolog must
store GPRs 4, 6 and 7 in its stack frame. Such a function cannot be considered an
XPLeaf routine and may not be marked as such in the PPA.

v The argument area used to construct argument lists for called function must be
addressed using the top of the stack pointer (GPR4).

v All live values from the beginning of the stack frame up to and including the
entire argument area must be copied to the new start of the stack frame. This
includes all saved registers. It does not include the Debug Area or the Reserved
fields. If an argument list is under construction when alloca is called, it includes
those arguments already constructed. When an external call is made to the
runtime for alloca the generated code must ensure that any live values in the
argument area are copied; the runtime is responsible for copying the entire
96-byte savearea.

v alloca rounds all requested storage amounts to a multiple of 32 bytes to
maintain stack frame alignment.

Prolog/Epilog Examples

692 z/OS V2R1.0 Language Environment Vendor Interfaces

Functions that use “alloca” require changes to their prologs and epilogs to
maintain addressability to their automatic variables and parameter list. Also, as
Table 78 shows, fields in the entry mask and PPA1 must correctly indicate that the
routine uses a DSA extension.

Table 78. Prolog/epilog example: changes needed to maintain addressability

DC 0D’0’,XL8’00C300C500C500F1’ .C.E.E.1
DC A(*-8-PPA1),AL.27 (dsasize/32),AL.5(flags)

EP STM 4,lastused,2048-dsasize(4)
STMG 1,Rx,2112(4) if XPLINK(STOREARGS), TEST, or

varargs
AGHI 4,-dsasize update stack pointer
LA Ry,128+argsize(,4) set alloca register
...
function body (addresses auto storage using the alloca register)
...
L 7,2048+24(,4) restore return address
LMG 8,lastused,2048+32 restore remaining registers
L 4,dsasize(,4) restore stack pointer
BR 7 return to caller

Exceptions
The following sections describe rules and exceptions applicable to prologs and
epilogs. Note that, in these rules, “pointing to stack frame” means “pointing to
2048 bytes before the stack frame”.

Rules applicable to prologs:

v The prolog must be contiguous (except for the out-of-line call to the stack
extender) and less than or equal to 128 bytes in length.

v When a function requires a stack frame, it must check the stack segment for
space availability in the prolog and it must save GPRs 6 and 7 in the Save Area.
GPR6 must be saved by the instruction that checks for stack space availability.

v Saved GPRs must always be saved in their canonical location, which is as if an
STMG 4,15,2048(4) had been executed.

v When a routine does not require a stack frame, it must maintain the contents of
GPR7 (return address) and GPR6 received at entry at all times (not just during
prolog execution) for exception handling purposes.

v GPRs 6 and 7 may not be changed in the prolog.
v Any instruction that is part of the window ranging from the entry point up to

and including the instruction updating GPR4, may not introduce any potential
exceptions other than as might be caused by an invalid GPR4.

v Except for a NOP, a prolog may not start with a Branch on Condition instruction
(opcode 0x47).

v If the stack pointer (GPR4) is updated before the registers are saved GPR0 must
be set to the value in GPR4 at function entry before GPR4 is updated. GPR0 is
updated by Language Environment during stack extension; the updated value
should be stored in the backchain field of the stack frame.

v GPR4 points to the caller's stack frame, the new stack frame, or the proposed
new stack frame location (possibly in the guard area) throughout the prolog. No
other value is allowed.

DSA Extension

Chapter 22. CALL linkage convention for AMODE 64 applications 693

v GPRs 5-15 may not be modified in the prolog until after GPR4 is updated to
point to the new stack frame.

v If an explicit check for stack overflow is not done in the prolog using the "End
of Stack" field maintained by Language Environment, the first instruction that
touches the new stack frame must be one of the following:
– STMG 4,x,2048(4)
– STMG 5,x,2056(4)
– STMG 6,x,2064(4)
– STMG 4,x,2048–dsasize(4)
– STMG 5,x,2056–dsasize(4)
– STMG 6,x,2064–dsasize(4)

Rules applicable to epilogs:

v The epilog must be contiguous and less than or equal to 128 bytes in length.
v Except for XPLeaf routines, epilog code must extract the return address from the

savearea, and it must do this before updating GPR4 to point to the caller's stack
frame. In XPLeaf routines, the return address must be taken from GPR7, which
remains unaltered by compiled code throughout the life of the function. This
allows the runtime to steal the return address for its own purposes.

v GPR4 must point to the current function's stack frame on entry to the epilog;
when it's updated it must point to the caller's stack frame. No other value is
allowed.

v The epilog contains no call, including alloca.
v Compiled code may not refer to its own stack frame after updating GPR4 .

XPLeaf routines: XPLeaf routines are functions that make no function calls
(including alloca); do not contain try, catch, or throw statements; and do not
acquire their own stack frame. Restriction: GPRs 4, 6 and 7 must not be altered by
the routine.

Stack overflow exception: In XPLINK stack frame allocation is designed to
trigger a protection exception when insufficient storage remains in the current
stack area. This exception requires proper handling in the Language Environment
interrupt exit.

A valid request for stack extension can be recognized by Language Environment as
follows:
v The exception is caused by STMG 4,x,nnnn(4), STMG 5,x,nnnn(4), or STMG

6,x,nnnn(4).
v The target address in nnnn(4) is within the guard area.
v The exception address is within the prolog defined by the PPA1 of the function

experiencing the exception.

Exception processing may need to distinguish between a request made in the
function prolog and through "alloca". For example, set up and initialization of an
extension may be different in the two cases (for example, copying of parameters).
The prolog length field in the PPA1 is provided for this purpose.

For requests in the prolog, the required stack frame size is available in the entry
point marker; for requests in alloca, it must be taken from GPR1.

Exceptions

694 z/OS V2R1.0 Language Environment Vendor Interfaces

When a stack overflow occurs, the caller's arguments must be made available in
the newly-created stack segment.

Stack unwinding: Because XPLINK does not always provide a backchain, a new
method for unwinding the stack must be followed:
1. Determine if the current instruction address is in a function prolog by

following the directions in “Determining if an execution point is in a prolog.”
2. If the current point of execution is in a prolog, determine whether GPR4 has

been updated (the offset of the beginning of the instruction updating GPR4 is
in the PPA1).

3. If GPR4 has been updated, reverse this by adding the DSA size (found in the
entry point marker for the function) to GPR4. This is the address of the
previous stack frame.

4. At this point, GPR4 points to a 2048 bytes before a valid stack frame (the
caller's in the case on an incomplete prolog).

5. Using the current GPR4 value, locate the entry point of the function associated
with the stack frame.
Locate the return address of the function in the fourth doubleword of the
current stack frame at 2072(4). At the return address, find the call type to
determine the instruction making the call.
v If it's a relative branch compute the target offset from the branch instruction

contents and its address to determine the entry point.
v If it's a BASR instruction, the entry point to the function is the value passed

into the function in GPR6 and stored in the third doubleword of the current
stack frame at 2064(4).

6. The current entry point can be used to locate the PPA1 for this function, but
this is not required for stack unwinding:
a. Subtract 16 from the entry point address to get the address of the entry

point marker.
b. Add the fullword at 8 bytes past this address (the PPA1 offset) to this

value.
7. “Special linkage” stack frames contain identifying markers; Language

Environment architecture specifies how to use information in this stack frame
to get to the previous stack frame.

8. The entry point marker contains a flag to indicate whether alloca is used in
the function. If it is not, the entry point marker contains the dsasize of the
function associated with the current stack frame; add this value to the current
stack frame address to get the address of the previous stack frame.

9. If alloca is used in the function the previous value of GPR4 (2048 bytes before
the previous stack frame) is stored at 2048(4).

10. Continue, as required.

Determining if an execution point is in a prolog: From a point of execution, scan
backwards for up to 128 bytes, looking for a doubleword-aligned marker as
described in “Code markers” on page 696.
v If a marker is not found, the current point of execution is not in a prolog.
v If a marker is found but it is not an entry point marker, the current point of

execution is not in a prolog.
v If a marker is found and it is an entry point marker:

– In the entry point marker, the fullword at offset +8 contains the offset, from
the marker, of the associated PPA1.

Exceptions

Chapter 22. CALL linkage convention for AMODE 64 applications 695

– The PPA1 contains the length of the prolog. If the current point of execution
is not within this range (from the entry point, the doubleword following the
entry point marker), the current point of execution is not in a prolog.

Finding the entry point of the current function:

1. Determine if the current point of execution is in a prolog. If it is, the entry
point is at the beginning of the prolog.

2. Locate the return address of the function in the fourth doubleword of the
current stack frame at 2072(4). At the return address find the call type, to
determine the instruction making the call. If it's a relative branch compute the
target offset from the branch instruction contents and its address to determine
the entry point. If it is a BASR instruction, the entry point to the function is the
value passed into the function in GPR6 and stored in the third doubleword of
the current stack frame at 2064(4).

Code markers
This section describes the following sequences that identify points in code that are
significant to Language Environment. Each of these is doubleword-aligned and has
the same initial 7-byte sequence. Markers that could be found in the body of
compiled code (types 2 and 3) contain offset/8 of the associated entry point marker
at offset+8.
v Entry point marker (type 1)
v Stack extension marker (type 2)
v Data marker (type 3)
v Stub marker (type 4)

Table 79 shows the format of entry point marker type 1.

Table 79. Entry point marker (type 1) AMODE64

+0 0x00 ’C’ 0x00 ’E’ 0x00 ’E’ 0x00 ’1’

+8 offset of PPA1 from entry point marker dsasize/32 EP flags

In an entry point marker, the fullword at offset +8 is an offset from the beginning
of the Entry Point marker to the PPA1 associated with the entry point. "EP flags"
is:

. 1 ... Function is an XPLeaf routine, saving registers in its own stack frame but not
updating the stack pointer

. . 1 .. Function uses alloca

0 0 0 Must be zero

The stack extension marker (type 2), shown in Table 80 on page 697, identifies
stack extension code that is logically part of the function's prolog but not within
the range of instructions defined to be part of the prolog by the PPA1 "(Length of
prolog)/2" field.

Exceptions

696 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 80. Stack extension marker (type 2) AMODE64

+0 0x00 ’C’ 0x00 ’E’ 0x00 ’E’ 0x00 ’2’

+8 offset to entry point marker from this Marker/8 Reserved

The data marker (type 3), shown in Table 81, follows any data in the code section
that might be confused for a "real" marker because it contains the values in the
first seven bytes of any marker style.

Table 81. Data marker (type 3) AMODE64

+0 0x00 ’C’ 0x00 ’E’ 0x00 ’E’ 0x00 '3'

+8 offset to entry point marker from this Marker/8 Reserved

The stub marker (type 4), shown in Table 82, marks the beginning of runtime stubs.

Table 82. Stub marker (type 4) AMODE64

+0 0x00 ’C’ 0x00 ’E’ 0x00 ’E’ 0x00 ’4’

Function calls
In XPLINK, each function has a data area associated with it, its environment,
whose address is passed by a caller in GPR5. For externally visible functions, the
environment must be representable by an ESD record. For internal functions, the
value is the address of the stack pointer for the immediately containing lexical
scope.

Callers need two pieces of information for each function they call. This
information, organized in two consecutive doublewords on a doubleword
boundary, is referred to as a function descriptor:
v Address of the called function's environment area
v Address of the called function's entry point

Resolution of function linkage is done at the stage in the compile–bind–execute
process where enough information is available to make the proper choice with
respect to performance and flexibility. In some cases, calls can be resolved at
compile time. For calls outside a compilation unit the resolution is postponed to
the binder for best results, and when DLLs are used, to the runtime environment.

Calling scheme: Excluding parameter handling, calls are made up of a sequence
of instructions (CALL) that load the called function's Environment area address,
load the called function's entry point address, and invoke the called function.
Details of the generated sequences for different types of calls are described in
separate sections below. Calls to routines in Dynamic Link Libraries (DLLs) are
supported naturally without special compiler options.

Exceptions

Chapter 22. CALL linkage convention for AMODE 64 applications 697

With XPLINK, the function entry point address is not always passed to the called
function. To allow Language Environment and other tools to find the entry point
of the currently executing routine, every call site, which is located by the "return
address" field of the current stack frame, contains information necessary to locate
the entry points of both the calling and called functions and, if required,
information about floating-point parameters passed. This is done by encoding
information in a no-op instruction at the return point. The following diagrams
show how this is encoded using a 2–byte NOPR instruction.

Call information field:

CALL
* * NOPR 0(call type) Shown as NOPR type in subsequent

sequences

“Call type” is a 4-bit field describing the type of call. The call is not required to
pass the function entry point address; the NOP following the call, which can be
found through the return address (in GPR7), provides the information required to
compute the entry point address in cases where it is not passed in register.

Call Type

0000
Function is called with a BASR 7,6 instruction. GPR 6 contains its entry
point address.

0001
Function is called with a BRAS 7,EP instruction. The called function does
not have a base register on entry.

0010 Reserved

0011
Function is called with a BRASL 7,EP instruction. The called function
does not have a base register on entry.

0100 Reserved

0101 Reserved

0110 Reserved

0111 Special linkage

1... Reserved

Calls by name: The following sections describe the instructions that the compiler
will generate when calls to functions are made by name.

Calling name: For all calls by name (inter-module calls and calls to imported
functions), the compiler generates sequence of instructions that accomplish the
following:

Calls without long relative branch:

LMG 5,6,... load environment and function
addresses

...
BASR 7,6 call the function
NOPR calltype

Exceptions

698 z/OS V2R1.0 Language Environment Vendor Interfaces

Function Descriptor (space reserved by compiler):

DC AD(environment) address of function’s environment
DC AD(func) address of function

Calls with long relative branch:

LMG 5,... load environment and function
addresses

...
BRASL 7,called function call the function, offset received

by binder
NOPR calltype

Intra-module calls: When functions are bound within the same program object as
the caller, the address constants to the function's environment and entry point are
resolved directly by the binder and loader.

Calling imported functions: For calls to imported functions, the compiler will
generate the same instruction sequence as for intra-module calls. The function
descriptors for all calls to imported functions should be initialized by the binder as
required for delayed DLL loading.

Function descriptor, unresolved:

DC AD(function ID) function ID
DC AD(DLL loader) address of function

Function Descriptor, resolved:

DC AD(environment) address of function’s environment
DC AD(func) address of function

Calls by pointer: The following sections describe the instructions that the
compiler will generate when calls to functions are made by a pointer.

Function pointers: A function pointer is a data type whose values range over
procedure names. Variables of this type are usually used in procedure call contexts
where the particular procedure to be called cannot be determined at compile time.
They can also be passed as arguments of a call or used in comparison expressions.

Exceptions

Chapter 22. CALL linkage convention for AMODE 64 applications 699

Function pointers are a doubleword quantity that is the address of a function
descriptor. With some exceptions, there is only one "call-by-pointer" function
descriptor per entry point for calls made by function pointer. The exceptions are:
v pointers to internal (nested) functions, discussed below
v pointers to fetched functions and function pointers created by fetched function

because the same function can be fetched more than once

This is different from previous linkage where more than one function descriptor -
and different function pointer values - could exist for one function, each created in
the WSA of the routine that takes the address of or calls the function. With a
unique function pointer value, long to pointer casting works as expected when
used with DLLs, providing the same result as with S/390 non-DLL and on most
other platforms. Also, function pointer comparisons are significantly faster.

Language Environment creates function descriptors for functions whose address is
taken in a separate dynamically acquired storage area based on information added
to a module by the binder.

Calling sequence:

LG Rx,fp load address of descriptor
from function pointer

...
1 LMG 5,6,0(Rx) load environment and function

addresses
...
BASR 7,6 call the function
NOPR calltype

Function Descriptor, unresolved:

DC AD(function ID) address of function’s
environment

DC AD(DLL loader) address of function

Function Descriptor, resolved:

DC AD(environment) address of function’s
environment

DC AD(func) address of function

Reentrancy: Reentrant programs are structured to allow more than one user to
share a single copy of a program object. Users create reentrant programs by
writing code that does not modify data in the executable. This is referred to as a
naturally-eentrant program. In many languages, users can also request that the
compiler create reentrant programs on their behalf by allocating external data in

Exceptions

700 z/OS V2R1.0 Language Environment Vendor Interfaces

the writable static area; this is referred to as constructed-reentrancy. If a function
refers to data in the writable static, its environment must also reside in writable
static.

When a program is naturally-reentrant it may be desirable to bypass constructed
reentrancy to avoid allocation and initialization of a writable static area.

Argument passing register conventions: The following tables describe the
XPLINK register conventions used for passing arguments.

Register
Conventions on function entry

Volatility
exit

GPR 0 undefined not preserved

GPR 1
1st doubleword of argument list or undefined

n/a
part of return value or undefined

GPR 2
2nd doubleword of argument list or undefined

n/a
part of return value or undefined

GPR 3
3rd doubleword of argument list or undefined

n/a
part of return value or undefined

GPR 4 Pointer to caller's stack frame - 2048 preserved

GPR 5 Address of environment not preserved

GPR 6 undefined not preserved

GPR 7 Return address not preserved

GPR 8-11 Undefined preserved

GPR 13-15 Undefined preserved

Register
Conventions on function entry

Volatility
exit

FPR 0
FP parameter 1 or undefined

not preserved
part of return value or undefined

FPR 2
FP parameter 2 or part of FP parameter 1 in register
pair 0,2 (for long double) or undefined not preserved
part of return value or undefined

FPR 4
FP parameter or undefined

not preserved
part of return value or undefined

FPR 6
FP parameter or part of an FP parameter in register
pair 4,6 (for long double) or undefined not preserved
part of return value or undefined

FPR 1, 3, 5 and 7 undefined not preserved

FPR 8-15 undefined preserved

Register
Conventions on function entry

Volatility
exit

VR 0-7 undefined not preserved

Exceptions

Chapter 22. CALL linkage convention for AMODE 64 applications 701

|
|
|
|
|

|||

Register
Conventions on function entry

Volatility
exit

VR 8-15 undefined

Bytes 0-7 are
preserved due to
overlap with
FPR8-15, bytes
8-15 are not
preserved

VR 16-23 undefined preserved

VR 24-31
Vector type parameters or undefined.

not preserved
VR24 is used for returns.

Argument passing: XPLINK uses a logical argument list consisting of contiguous
doublewords, where some arguments are passed in registers and some in storage.
The argument list is located in the caller's stack frame at a fixed offset (+2176) from
the beginning of the stack frame. It provides space for all arguments, including
those passed in registers. Its size is sufficient to contain all the arguments passed
on any call statement from a procedure associated with the stack frame. The
argument list must not include arguments that are pointers to locations in the
argument list.

The rules for argument passing in registers are as follows:
v The first three doublewords of the argument area, regardless of their

composition or source, are passed in GPRs 1, 2, and 3, and not in the argument
area, except for:
– Floating point values, including the real or imaginary constituents of complex

types
– Vector arguments

v Except for arguments in the variable part of a vararg parameter list, up to four
floating-point value arguments (the first four) are loaded into floating-point
registers FPR0, FPR2, FPR4, FPR6 and not passed in the argument area, although
space is set aside for these arguments in the argument area. In this fashion, up
to four floating-point arguments can be passed depending on their precision
(single, double, extended), provided each of these can be fully (considering the
constituent parts of complex arguments separately) contained in the remaining
available FPRs.
An extended precision floating point parameter (long double) is always passed
in FPR0/2 or FPR4/6. If, for example, the first floating point parameter is
double (passed in FPR0) and the second floating point parameter is long double
FPR2 will be unused in the parameter list.
If a floating point argument occupies one of the first three doublewords in the
argument area, a prototype for the function is visible, and the argument is not
part of the vararg portion of a parameter list, the corresponding GPR's value is
undefined on entry to the called function.

v Except for arguments in the variable part of a vararg parameter list, up to eight
vector arguments are passed in VR24-31, and not passed in the argument area,
although space is set aside for these arguments in the argument area. If a vector
argument occupies one of the first three words in the argument area, a prototype
for the function is visible, and the argument is not part of the vararg portion of
a parameter list, the corresponding GPR's value is undefined on entry to the
called function.

Register Conventions

702 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|
|
|

||

|
|
|
|
|
|

|||

|
|
|
|
|

|

|
|
|
|
|
|
|

v Normally, arguments passed in registers are not stored in the argument list
although a doubleword in the argument list is reserved for them.
Exception: If it is required that part of a floating point or vector value be stored
in the argument area, then the entire floating or vector value is stored in the
argument area. This situation arises in calls to unprototyped functions or in the
vararg portion of a parameter list when part of the floating point or vector
parameter is in the first three doublewords of the argument area.

For calls to unprototyped functions, where the caller cannot know whether the
called function contains a variable vararg portion, the argument list must be
constructed to allow a call to either a vararg or non-vararg function. In this
situation, floating-point or vector arguments in the first three doublewords of the
parameter list are passed in GPRs, FPRs or VRs. Other floating point arguments
passed in FPRs or VRs are also passed in the argument list.

To support vararg functions and calls to unprototyped functions, the minimum
argument area length must be 32 bytes.

The compiler passes the maximum number of parameters that fit this encoding
scheme so the parameters in registers match between caller and called functions.
When calling a vararg routine, no argument in the variable portion of the
argument is passed in a Floating Point Register or Vector Register. When calling
unprototyped functions, floating point or vector parameters are passed in FPRs or
VRs matching this encoding scheme and are also shadowed by the caller, in GPRs
or memory

Function return values: Functions return their values according to type:
1. Integral and pointer data types ≤64 bits in length are widened to 64 bits and

returned in GPR3.
2. Floating point types, including complex types, are returned FPR0, FPR2, FPR4

and FPR6, using as many registers as required.
Restriction: Not every language supports complex types. For the purposes of
argument passing and function return values, in every language every
aggregate that is (a) not a union, and (b) contains exactly two floating-point
types of the same size (4, 8, or 16 bytes) is treated as a complex type.

3. Vector data types are returned in VR24.
4. Aggregates or packed decimal types 1-8 bytes in length are returned left

adjusted in GPR1.
5. Aggregates or packed decimal types 9-16 bytes in length are returned left

adjusted in GPRs 1 and 2.
6. Aggregates or packed decimal types 17-24 bytes in length are returned left

adjusted in GPRs 1, 2, and 3.
7. Any other type is always completely returned in a buffer allocated by the caller.

The address of this buffer is passed as a hidden first argument. For example,
struct {double,long double,double} is returned entirely in a buffer, with no
part of the aggregate returned in registers.

8. Functions returning a return value and a reason code will pass the return value
in GPR3 and the reason code in GPR2. In this case, both the return value and
the reason code must be integral types that are less than or equal to 64 bits in
length; or, they may be aggregates consisting of a single integral type that are
less than or equal to 64 bits in length.

Argument Passing

Chapter 22. CALL linkage convention for AMODE 64 applications 703

|
|
|

|
|
|
|
|
|
|

|

Function Return Values

704 z/OS V2R1.0 Language Environment Vendor Interfaces

Chapter 23. Program initialization and termination for AMODE
64 applications

Initialization and termination establishes the state of the components of the
Language Environment program model for AMODE 64 supporting C/C++ and
Language Environment-conforming Assembler applications. Specifically, this
section discusses the initialization and termination of a process, an enclave, and a
thread.

Initialization overview
The program model describes three major constructs of a program structure. The
constructs are:

Process
A collection of resources (code and data)

Enclave
A collection of program units consisting of exactly one main and zero or
more subroutines

Thread
The basic unit of execution and owner of an exception handler, a stack,
and the machine state

Initialization provides for the construction of the entities described in this model.
Brief descriptions of process, enclave, and thread initialization follow.

Process Initialization
Process initialization sets up the framework to manage the enclave. It is
during process initialization that the library anchor area (LAA) is obtained
and initialized. For more information, see Chapter 20, “Common interfaces
and conventions for AMODE 64 applications,” on page 653.

Enclave Initialization
Enclave initialization creates the framework to manage enclave-related
resources and the threads that run within the enclave.

Thread Initialization
Thread initialization consists of the acquisition of a stack and the
enablement of the condition manager for the thread.

The first user routine to gain control within the enclave is the main routine. If user
parameters are passed from the host system/subsystem, the user parameters are
made available to the main routine. By the time the main routine receives control,
the following resources are available:
v Stack storage
v Heap storage
v Condition handling
v Message services
v Math library

© Copyright IBM Corp. 1991, 2015 705

Termination overview
The following section covers enclave and process termination.

Enclave termination
An enclave terminates when one of the following events occurs:
v The last thread in the enclave terminates.
v The main routine in the enclave returns to its caller through an implicit or

explicit return.
v An HLL construct issues a request for the termination of an enclave (for

example, using the abort(), raise(SIGTERM), _exit(), or exit() functions of C).
v When a severity 2 or greater condition remains unhandled, the thread

terminates. When a thread terminates due to an unhandled condition, the
enclave also terminates.

When an enclave terminates, Language Environment releases resources allocated
on behalf of the enclave and performs various other activities such as the following
v Language Environment exception handlers are canceled.
v All modules loaded by Language Environment are deleted.
v All storage obtained by way of Language Environment services is freed.
v All Language Environment control blocks for the enclave are freed.
v Return code and reason code are set in R15 and R0, respectively.
v The program mask and registers are restored to their values at the call to

enclave initialization.
v Control is returned to the enclave creator.

Process termination
Process termination occurs after enclave termination. Process termination returns to
the creator of the process. The resources allocated on behalf of the process are
released. Language Environment explicitly relinquishes all resources that were
obtained by Language Environment. Routines that obtain resources directly from
the host system (such as opening a DCB) need to explicitly relinquish the resource,
because Language Environment does not have any knowledge of its acquisition.

Putting initialization and termination together
This section contains an overview of running an application, Many details are
omitted, but the overview summarizes how all of the pieces fit together.
v The operating system passes control to the application providing a save area,

which is known as the O/S Save Area.
v The application does a STMG into the O/S Save Area to preserve the operating

system's registers.
v The application calls CELQBST with R13 pointing to the O/S Save Area (and

some other parameters as well).
v While running CELQBST, Language Environment initializes the process and the

enclave.
v The main routine is called.
v If the user code completes through an HLL construct such as exit(), or if the

main routine returns to its caller, the enclave is terminated.
v The return code and reason code are set into R15 and R0 and returned.

Init/Term

706 z/OS V2R1.0 Language Environment Vendor Interfaces

v Control is returned through the save area that was passed to CELQBST during
Language Environment initialization. First the registers are restored from the
O/S Save Area, including R14. Then control is returned using R14. In this
example, control is returned to the operating system.

Member interfaces for initialization
The following section covers enclave initialization. CELQBST is the Language
Environment initialization routine that establishes a Language Environment
environment (the process and the enclave within the process) in which an
application can run. CELQBST relies on a number of components to be bound with
the application. Language Environment uses these components to describe the
contents of the application, and to locate other elements contained in the
application. A description of these components follows.

CELQSTRT
The CELQSTRT CSECT is a required part of each application; it identifies an
application. Language Environment must be able to access CELQSTRT throughout
the duration of the Language Environment environment. It must not be bound
with a program object that is deleted during application execution. Language
Environment provides a default version of CELQSTRT, but it can also be generated
by the compiler.

CELQSTRT is the entry point for any language that provides a CELQMAIN main.
Entry into CELQSTRT causes the Language Environment environment to be
initialized and execution to be passed to the main routine as specified in
CELQMAIN.

CELQSTRT is also used for any language that provides a CELQFMAN fetchable
subroutine. However, entry into CELQSTRT for a fetchable subroutine is not
allowed. Subroutines must be invoked using other methods, such as C fetch().

As the code sample below shows, CELQSTRT is logically divided into five
sections; Table 83 on page 708 describes their content. It is intended that the section
structure and fields currently defined in CELQSTRT will remain constant over
time. It is also intended that necessary changes to CELQSTRT will be made in an
upwardly compatible manner, to preserve the structure and fields as currently
defined.
SECTION 1

CELQSTRT CSECT ,
CELQSTRT AMODE 64
CELQSTRT RMODE ANY

WXTRN CELQMAIN
WXTRN CELQFMAN
WXTRN CELQBST
EXTRN CELQETBL
EXTRN CELQLLST

SECTION 2

NOP 0
NOP 2
STMG 14,12,8(13) SAVE CALLER REGS
BRU AROUND BRANCH AROUND SIGNATURE

SIGNATUR EQU * START OF SIGNATURE
DC AL2(AROUND-SIGNTUR) LEN OF SIGNATURE
DC X’CE’ CEL Signature
DC X’03’ CEL Member ID
DC X’03’ CEL Version number

Init/Term

Chapter 23. Program initialization and termination for AMODE 64 applications 707

DC X’0F’ CEL Coded release number
DC AD(PLIST) Point to parameter list
DC CL8’CEESTART’ EYE-CATCHER
DC X’01’ 1 = XPLINK Main
DC X’00’ Reserved

AROUND EQU *

SECTION 3

BALR 3,0 ADDRESSABILITY
USING *,3
LG 15,BSTRAP Get address of CELQBST
LTGR 15,15 See if no CELQBST
BNZ BALR OK -- go call CELQBST
ABEND CEEABND_INIT,REASON=CEERSN_64_NOMAIN,DUMP 4093-536

BALR BALR 0,15 Branch to bootstrap

SECTION 4

PLIST DS 0D
DC AD(CELQMAIN) CELQMAIN CSECT ADDRESS or 0
DC H’-3’ VERSION MARKER
DC AL2(CEESTLEN) CELQSTRT parameter length
DC XL4’00’ Pad
DC AD(0) Reserved
DC AD(0) Reserved
DC AD(0) Reserved
DC AD(SIGNATUR) A(SIGNATURE ABOVE)
DC AD(0) Reserved
DC AD(CELQFMAN) CELQFMAN CSECT ADDRESS or 0
DC AD(CELQLLST) Language list address
DC AD(0) Reserved
DC AD(CELQETBL) Table of CEL External Entries

CEESTLEN EQU *-PLIST Length of parameter list

SECTION 5

BSTRAP DC AD(CELQBST) Address of bootstrap routine
DC CL8’CELQSTRT’ 64-bit-only Eyecatcher

CEEABND_ INIT EQU 4093 Abend completion code
CEERSN_64_NOMAIN EQU 536 Abend reason code per CEEXABCD
C_DATA64 CATTR RMODE(ANY),ALIGN(3)

END CELQSTRT

Table 83. Contents of the CELQSTRT CSECT

Section Number Content

Section 1 Declarations for the entry points and external routines.

Section 2 Additional entry points and signature. The signature is used for
identification and provides access to the parameter list found in section 4.

mm Member identifier of the creator. The HLL compilers should set
this value to their corresponding member identifier.

vv Member-defined version level; Language Environment has no
dependencies on it. This contains a version level corresponding
to the CELQSTRT defined by Language Environment or the
compiler.

rr Member-defined release level; Language Environment has no
dependencies on it. This contains a release level corresponding
to the CELQSTRT defined by Language Environment or the
compiler.

Section 3 Executable code that invokes the bootstrap routine CELQBST. Control is
not returned to CELQSTRT once the bootstrap routine is invoked.
Minimal logic is contained within this section of CELQSTRT.

Initialization

708 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 83. Contents of the CELQSTRT CSECT (continued)

Section Number Content

Section 4 Parameter list that is passed to the bootstrap routine. This parameter list
is also intended to remain unchanged in future releases.

AD(CELQMAIN)
Points to the CELQMAIN CSECT for the main, or 0.

VERSION MARKER
An identifying characteristic for the CELQSTRT PLIST.

CEESTLEN
Indicates the number of bytes contained within this PLIST.

AD(SIGNATUR)
Points to the CELQSTRT signature contained in section 2.

AD(CELQFMAN)
Points to the CELQFMAN CSECT that is used during fetch, or 0.

AD(CELQETBL)
Points to the Language Environment externals table. It is
through the externals table that Language Environment passes
program object information into initialization.

Section 5 Bootstrap routine addresses. This provides the routine address to the
initialization bootstrap routine.

BSTRAP
Address of the bootstrap routine. The Language Environment
provided version of CELQSTRT has a WXTRN to CELQBST and
requires that CELQBST be INCLUDEd during bind of the
application.

CELQMAIN
The CELQMAIN CSECT contains the address of the main routine.

RENT CELQMAIN

+0 0x04 0x00 0x00 0x01

+4 0x00 0x00 0x00 0x00

+8 AD(main entry point)

+10 AD(CELQINPL)

+18 A(0), or -1 if no environment

+1C Q(environment), or -1 if no environment

NORENT CELQMAIN

+0 0x05 0x00 0x00 0x01

+4 0x00 0x00 0x00 0x00

+8 AD(main entry point)

+10 AD(CELQINPL)

Initialization

Chapter 23. Program initialization and termination for AMODE 64 applications 709

NORENT CELQMAIN

+18 AD(environment), or 0 if no environment

CELQFMAN
The CELQFMAN CSECT contains the address of a fetchable subroutine.
v RENT CELQFMAN

Offset

+0 0x04 0x00 0x00 0x01

+4 0x00 0x00 0x00 0x00

+8 AD(fetchable entry point)

+10 A(0), or -1 if no environment

+14 Q(environment), or -1 if no environment

v NORENT CELQFMAN

Offset

+0 0x05 0x00 0x00 0x01

+4 0x00 0x00 0x00 0x00

+8 AD(fetchable entry point)

+10 AD(environment), or 0 if no environment

CELQBST operation
The Language Environment bootstrap routine CELQBST takes the actions that are
described in Table 84.

Table 84. Bootstrap behavior

Enclave Initialized? MAIN? FMAIN? Comments

No Yes No Initialize the enclave and execute MAIN

No Yes Yes Initialize the enclave and execute MAIN

No No No Abend 4093-536

No No Yes Abend 4093-536

Yes Yes No Abend 4093-516

Yes Yes Yes Abend 4093-516

Yes No Yes Abend 4093-536

Yes No No Abend 4093-536

Note:

1. Enclave Initialized is No if CELQBST has not yet been called.

2. MAIN refers to the address of the main routine contained in the CELQMAIN CSECT.

3. FMAIN refers to the address of the main routine contained in the CELQFMAN CSECT.

Initialization

710 z/OS V2R1.0 Language Environment Vendor Interfaces

CELQETBL — Language Environment externals table
The CELQETBL CSECT, shown in Figure 147, is bound with any Language
Environment-conforming AMODE 64 application program. The externals table
contains various external references to entities in the executable program, which
allows Language Environment to locate entities if they exist in the executable
program.

The CELQETBL contains the following information:
v A fullword containing the number of doublewords in CELQETBL, where the

first doubleword is this fullword and the fullword of 0s that follows.
v A doubleword of 0s.
v A doubleword of 0s.
v A fullword of 0s followed by the fullword address of the language list

(CELQLLST). This is a vector of weak external references for the signature
CSECTs. When an entry in the vector is nonzero, the corresponding HLL is
present in the executable program and its language-specific initialization is
performed. (This is provided by Language Environment.)

v A fullword of 0s followed by the fullword address of the user declared option
table (CELQUOPT) or zero. If a zero is discovered, then user-defined runtime
options are not available (for example, bound with the application).

v A fullword of 0s followed by the fullword address of the termination stub
(CELQTRM) that releases the resources obtained in CELQBST. Essentially, the
termination stub deletes the routine loaded by CELQBST and returns using R14
found in the save area provided on entry to CELQBST.

v A doubleword of 0s.
v A doubleword of 0s.
v A fullword of 0s followed by the fullword address of the loader information

table (IEWBLIT), which is created by the Binder.
v A doubleword of 0s.

CELQETBL CSECT ,
CELQETBL AMODE 64
CELQETBL RMODE 31

WXTRN CELQUOPT
WXTRN IEWBLIT

ETBL_ENTRIES DC F’10’ Number of doublewords in this table
DC F’0’ Padding

ETBL_A_1 DC AD(0) Reserved
ETBL_A_2 DC AD(0) Reserved
ETBL_A_CELQLLST DC F’0’

DC V(CELQLLST) Language List
ETBL_A_CELQUOPT DC F’0’

DC V(CELQUOPT) User declared runtime option table
ETBL_A_CELQTRM DC F’0’

DC V(CELQTRM) Termination stub routine address
ETBL_A_6 DC AD(0) Reserved
ETBL_A_7 DC AD(0) Reserved
ETBL_A_IEWBLIT DC F’0’

DC V(IEWBLIT) Loader information table
ETBL_A_9 DC AD(0) Reserved

END

Figure 147. CELQETBL CSECT format

CELQETBL

Chapter 23. Program initialization and termination for AMODE 64 applications 711

CELQLLST — Language Environment language list

Note: AMODE 64 Language Environment supports C/C++ and Language
Environment-conforming assembler. No other members are available. There are
currently no member event handlers. The definition of the Language List is
provided for completeness.

The language list is a vector of WXTRNs of the signature CSECTs and is generated
by Language Environment. Language Environment checks for the presence of a
member in the application in the language list. If the member represented by a
specific offset in this list is not present or requires no special initialization, its
WXTRN is unresolved. If the WXTRN is resolved, then Language Environment
dynamically loads the event handler routine for that member, and stores the
address in the member list. Language Environment then calls the event handler,
passing an event code to the event handler routine. The language list has zero
through seventeen entries statically allocated in Language Environment. Language
Environment uses the number of entries in the language list as a loop counter
when it is necessary to loop through the language list entries. The format of the
language list is shown in the following code sample.

CELQLLST CSECT , LANGUAGE ENVIRONMENT LANGUAGE LIST HEADER
CELQLLST AMODE 64
CELQLLST RMODE 31

DC CL4’LLHD’
DC AL2(CEELLIST-CELQLLST) Length of list header
DC AL2(1) Lang Env list version number
DC A((LLISTEND-CEELLIST)/8) Number of list entries
DC F’0’ Padding
DC AD(CEELLIST) Pointer to the language list

CEELLIST DS 0D Lang Env language list
WXTRN CELQSG00
DC AD(CELQSG00) 00 RSVD
WXTRN CELQSG01
DC AD(CELQSG01) 01 Language Environment
WXTRN CELQSG02
DC AD(CELQSG02) 02 RSVD
WXTRN CELQSG03
DC AD(CELQSG03) 03 C/C++
WXTRN CELQSG04
DC AD(CELQSG04) 04 RSVD
WXTRN CELQSG05
DC AD(CELQSG05) 05 RSVD for COBOL
WXTRN CELQSG06
DC AD(CELQSG06) 06 RSVD for Debug Tool
WXTRN CELQSG07
DC AD(CELQSG07) 07 RSVD for Fortran
WXTRN CELQSG08
DC AD(CELQSG08) 08 RSVD (do not use)

WXTRN CELQSG09
DC AD(CELQSG09) 09 RSVD
WXTRN CELQSG10
DC AD(CELQSG10) 10 RSVD for PL/I
WXTRN CELQSG11
DC AD(CELQSG11) 11 RSVD for Enterprise PL/I
WXTRN CELQSG12
DC AD(CELQSG12) 12 RSVD (do not use)
WXTRN CELQSG13
DC AD(CELQSG13) 13 RSVD
WXTRN CELQSG14
DC AD(CELQSG14) 14 RSVD
WXTRN CELQSG15
DC AD(CELQSG15) 15 Assembler
WXTRN CELQSG16
DC AD(CELQSG16) 16 RSVD

Language List

712 z/OS V2R1.0 Language Environment Vendor Interfaces

DC AD(0) Dummy entry must contain X’00’
DS 0D

LLISTEND DC AD(0) Mark the end of list
END

Signature CSECT

Note: AMODE 64 Language Environment supports C/C++ and Language
Environment-conforming Assembler. No other members are available. There are
currently no member event handlers. The definition of the Signature CSECT is
provided for completeness.

Each language called by Language Environment for member-specific initialization
and termination must generate a CELQSGnn signature CSECT. The signature
CSECT denotes the presence of a member in the application. In addition, the
signature CSECT provides a mechanism for the member to convey user load
module information to the dynamically loaded member event handler. The nn
value is the decimal member number for each language.

In addition, the signature CSECT can contain a list of member identifiers upon
which this current member is dependent. Language Environment orders these
dependencies and calls the member-specific initializations in the dependent order.
Termination is performed in the reverse order. Language Environment assumes
that circular dependencies do not occur.

The format of the signature CSECT is shown in Figure 148. During enclave
initialization, the signature CSECT can be accessed indirectly through the
initialization parameter list.

Initialization parameter list
As Figure 149 on page 715 shows, the initialization parameter list is presented in
two parts. The first part only contains the following tems:
v Doubleword address of a doubleword which contains the address of the entry

point. For HLLs that do not have multiple entry points, the entry point is the
address of the main routine.

v A fullword offset, from offset 0 of the first part of the initialization parameter
list, to the second part of the initialization parameter list. The offset is treated as
a signed offset.

The second part of the initialization parameter list consists of the following
information:

CELQSGnn CSECT
CELQSGnn AMODE 64
CELQSGnn RMODE 31

DC CL4’S0nn’ Eye catcher
DC AL2(CELQSGND-CELQSGnn) Length of csect
DC H’257’ Version id (0101)
DC H’0’ Number of dependent member IDs
DC H’0’ Offset from the start of the CSECT...

* ...to the one-byte member IDs
DC F’0’ reserved
DC 53AD(0) reserved

CELQSGND DS 0X End of CELQSGnn
END

Figure 148. Signature CSECT format

Language List

Chapter 23. Program initialization and termination for AMODE 64 applications 713

v A byte indicating the control level. The value is X'01'.
v Two reserved bytes of 0s
v A byte of flags (currently unused).
v A reserved fullword of 0s.
v The doubleword address of a doubleword containing the address of the main

entry point of the application.
v The doubleword address of the CELQSTRT CSECT.
v The doubleword address of the CELQETBL CSECT.
v A fullword containing the member identifier that created this initialization

parameter list.
v A reserved fullword of 0s.
v A doubleword that is used by the member identified by the above member ID.
v A fullword containing options related to the main (currently unused).
v A reserved fullword of 0s.

Signature CSECT

714 z/OS V2R1.0 Language Environment Vendor Interfaces

Member interfaces for termination
For normal enclave termination, the following sequence occurs:
1. Termination is requested.
2. Normal handling of the condition occurs without regard to the condition itself.
3. Call “at-termination” routines, where applicable.
4. If a debug tool is active, it is called for enclave termination.
5. Terminate the enclave.

Figure 149. Format of the initialization parameter list for AMODE 64 applications

Signature CSECT

Chapter 23. Program initialization and termination for AMODE 64 applications 715

When Language Environment cannot successfully terminate the enclave, it abends
with user completion code 4094. For example, this can occur when the program
has overwritten Language Environment storage, causing Language Environment
control blocks to no longer be valid. The reason code associated with the ABEND
U4094 indicates the cause of the failure. The reason codes are described in z/OS
Language Environment Runtime Messages.

Language Environment transforms abends into signaled conditions, which, if
unhandled, result in nonzero return and feedback codes. In the case that Language
Environment finds that its operation is severely compromised, it terminates the
process with a U4xxx abend. Abends treated this way have return codes in the
range 4000 to 4095. Termination is immediate (using SVC 13).

CEECOPP — Runtime Option Compiler Service
Purpose

CEECOPP allows compilers to convert runtime options strings specified in a source
program to an options control block (OCB). This interface also supports the
runtime options that are not part of the OCB, specifically REDIR, EXECOPS, and
ARGPARSE. These options are returned in the Supplementary Options Control
Block (SOCB). The compiler would then create the OCB in the same format as the
CELQUOPT CSECT file. This service is loadable and requires multiple calls, one to
obtain the size of the working storage block (which includes the size of the OCB),
and subsequent calls for the HLL to pass the runtime options string and the
working storage and receive the parsed output.

CEECOPP is called by loading the executable named CEECOPP (using the LOAD
SVC service), which resides in the SCEERUN data set. Then, call the entry point
returned from the load using the syntax shown.

Syntax

function_code (input)
Indicates the type of request. The valid function codes and meanings are:

4 Obtain the size of working storage. The first call is required to
communicate to the caller how much storage is required by Language
Environment to parse the options, the size of the resulting OCB, and
the size of the error table. It is the caller's responsibility to acquire the
storage and return the address to Language Environment in the second
call.

void CEECOPP (function_code, storage_size, storage_addr, options, ocb_addr, socb_addr,
roet_addr, ocb_status, socb_status, rc)

INT4 *function_code;
INT4 *storage_size;
POINTER *storage_addr;
PREFIXSTR *options;
POINTER *ocb_addr;
POINTER *socb_addr;
POINTER *roet_addr;
POINTER *ocb_status;
POINTER *socb_status;
INT4 *rc;

Signature CSECT

716 z/OS V2R1.0 Language Environment Vendor Interfaces

5 Initialize OCB and parse the supplied options. The second call is used
to initialize the OCB and to parse the options and save them in the
OCB.

6 Parse the supplied options. Subsequent calls are used to parse the
options save them in the OCB created by function code 5.

storage_size (output)
The amount of storage required by Language Environment to do the parse.
This size includes the amount of working storage needed to parse the string,
the resulting OCB, and an error table. This is used in conjunction with
function_code equal to 4.

storage_addr (input)
The address of storage of the length returned by Language Environment in the
first call. This is used in conjunction with function_code 5 and 6.

options (input)
A character string containing the runtime options. This is a halfword-prefixed
length string. The string is not altered and can reside in read-only storage. This
is used with function_code 5 and 6.

ocb_addr (output)
The address of the options control block that was created with the parsed
options. The compiler should convert this block into a CELQUOPT CSECT. The
storage used for the OCB is obtained from the storage provided by the caller.
The length of the OCB is found directly within the OCB itself. The OCB is
constructed so that there are no relocatable address constants and is essentially
a stream of hex information. This is used with function_code 5 and 6. For an
example of an options control block, see Appendix A, “Options control block
and supplementary options control block,” on page 821.

socb_addr (output)
The address of a supplementary options control block (SOCB) that was created
with the parsed options. The compiler should convert this block into a format
that is suited to the caller. Language Environment does not retain this
information. The storage used for the SOCB is obtained from the storage
provided by the caller. The length of the SOCB is found directly within the
SOCB itself. The SOCB is constructed so that there are no relocatable address
constants and is essentially a stream of hex information. This is used with
function_code 5 and 6. For an example of a supplementary options control
block, see Appendix A, “Options control block and supplementary options
control block,” on page 821.

roet_addr (output)
The address of the runtime options error table created. The caller could convert
this error table into error messages as part of the compiler output in its normal
way of outputting errors. This is used with function_code 5 and 6. The format of
the runtime options error table is shown in Figure 150 on page 719.

ocb_status (output)
A fullword integer that contains the status of output OCB. If zero, no OCB
entries were made. If nonzero, OCB entries have been made.

socb_status (output)
A fullword integer that contains the status of output SOCB. If zero, no SOCB
entries were made. If nonzero, SOCB entries have been made.

rc (output)
A fullword integer that contains the return code. This is used in conjunction
with both function_code 5 and 6. The possible values are:

Signature CSECT

Chapter 23. Program initialization and termination for AMODE 64 applications 717

0 Options parsed with no errors, OCB entries made.

4 Invalid function code detected. No action performed.

8 Invalid function code sequence. Function code 6 (parse only) was
received before function code 5 (initialize and parse).

Usage notes
v In the OCB, there are no address constants; therefore, no RLDs need to be

created.
v Options string length limitation is 64K bytes.
v CEECOPP is reentrant and is marked AMODE(31)/RMODE(ANY). It is the

caller's responsibility to insure the proper AMODE upon entry. CEECOPP does
not switch AMODEs.

v Invocation of CEECOPP is through BALR 14,15.
v If the OCB_status parameter is zero, the compiler should not generate the

CELQUOPT CSECT.
v If the roet_error_count field in the ROET is not zero, errors occurred in the parse

of the options string. The errors are contained in the table.
v The roet_error_code field is in the format of a Language Environment condition

token, which is described in Figure 151 on page 726. The message numbers
associated with the feedback codes that could be found in the runtime options
error table are between CEE3601I and CEE3629I. For a description of these
messages, see z/OS Language Environment Runtime Messages .

v Figure 150 on page 719 shows the format of the runtime options error table.

Signature CSECT

718 z/OS V2R1.0 Language Environment Vendor Interfaces

Chapter 24. Storage management for AMODE 64 applications

The Language Environment storage manager provides services that control the
stack and heap storage used at run time. The initial allocation of stack and above
the bar storage for heap is done during Language Environment initialization. The
storage manager:
v Manages heap storage.
v Manages stack storage.
v Interfaces with host operating system to allocate/free storage
v Detects the out-of-storage condition and signals the exception handler
v Releases (or keeps track) of free heap storage segments
v Cleans-up resources at termination

Stack storage is allocated as a large memory object, guarded and based on the
STACK64 runtime option (see z/OS Language Environment Programming Reference).

In addition to the storage manager, Language Environment provides an interface to
a vendor heap manager for use with C/C++ applications.

0

0 0

1

1

2

2

401

Reserved

Error code Insert string length

Run-Time Options ErrorTable

Run-Time Options ErrorTable Insert Array Entry

Error count

Reserved Insert string

Error array entries

Error inserts counts

Insert arrays

.

.

.

.

.

.

.

.

.

Figure 150. Runtime options error table (64-bit)

© Copyright IBM Corp. 1991, 2015 719

Vendor heap manager interface for AMODE 64 applications
The vendor heap manager interface allows an external heap manager product to
support C/C++ applications by an event driven interface. The following routines
are supported:
v malloc() (C++ default operator new and default operator new[] are included)
v calloc()

v realloc()

v free() (C++ default operator delete and default operator delete[] are included)

The following routines are not supported:
v __malloc31()

v __malloc24()

Requirements from the vendor
A vendor, wishing to provide a replacement for functions that obtain or release
storage from the user heap, needs to provide a DLL that:
v resides in either the z/OS UNIX file system or a PDSE
v runs AMODE 64
v contains the following exported function:

void __cee_heap_manager(int, void *);

The purpose of this routine is to be the communication vehicle between
Language Environment and the vendor heap manager (VHM). The
communication will be in the form of event codes and data areas. The prototype
for the function is in the header file, <edcwccwi.h>.

The replacement should provide a "memory manager" that is fast (when not
running in debug mode), thread-safe, and storage efficient.

Support provided for the vendor heap manager interface
The communication between Language Environment and the vendor heap
manager (VHM) is through events and data structures. The C header,
<edcwccwi.h>, contains the interfaces required to create a vendor heap manager. It
is located in member EDCWCCWI of the SCEESAMP data set. To include
<edcwccwi.h> in an application, the header file must be copied into a PDS or
z/OS UNIX file system in which the C/C++ compiler will find it. This includes the
C structures required as input to the VHM event calls.

The following events are supported and are defined in: <edcwccwi.h>
v _VHM_INIT - Initialization event
v _VHM_TERM - Termination event
v _VHM_REPORT (optional)

Initialization event (_VHM_INIT)
Initialization event (_VHM_INIT): This event is driven during initialization of the
Language Environment enclave prior to any user code being given control. The
purpose of this event is for the VHM to give Language Environment the addresses
of the replacement services. Language Environment will use these routines, instead
of its own, to manage the user heap. The VHM can, at this time, use getenv() to
query any environment variables it has defined that will customize its operation.

Vendor heap manager interface

720 z/OS V2R1.0 Language Environment Vendor Interfaces

The VHM should initialize its environment at this time, possibly allocating its own
control blocks and the initial user heap segment.

The data area passed is defined as follows:

Termination event (_VHM_TERM)
This optional event is driven during termination of the Language Environment
enclave, after all application code has completed, but before the C library resources
are terminated. There is no data area passed with this event. The purpose of this
event is for the VHM to write, to stderr, any reports, as necessary, and then
cleanup the user heap storage its has managed for the enclave.

Usage notes
v Regarding serialization, the VHM must be thread-safe. One way to detect a

multi-threaded environment is to test the CEEEDBMULTITHREAD bit; see page
Table 16 on page 68 for more information.

v The VHM should not use malloc(), free(), calloc() or realloc() from within
the replacement services, to avoid potential recursive calls.

Activating the vendor heap manager
Users choose the option to use the vendor heap manager at run time. They do this
by setting the _CEE_HEAP_MANAGER environment variable. This environment
variable is set by the end-user or the application to indicate that the vendor heap
manager (VHM) will be used to manage the user heap. This environment variable
must be set using one of the following mechanisms:
v ENVAR runtime option
v inside the file specified by the _CEE_ENVFILE environment variable
v export _CEE_HEAP_MANAGER

Each of these locations is before any user code gets control, meaning prior to the
static constructors, and/or main() getting control. Setting of this environment
variable, once the user code has begun execution, will not activate the VHM, but
the value of the environment variable will be updated.

__vhm_event()
This function drives an event into the vendor heap manager. Note that a vendor
heap manager must be active.

struct __event1_s {
void * __ev1_free;
void * __ev1_malloc;
void * __ev1_realloc;
void * __ev1_calloc;
void * __ev1_xp_free;
void * __ev1_xp_malloc;
void * __ev1_xp_realloc;
void * __ev1_xp_calloc;
unsigned int __ev1_le_xplink : 1,

__ev1_le_reserved : 31;
unsigned int __ev1_vhm_xplink : 1,

__ev1_vhm_reserved : 31;
};

Vendor heap manager interface

Chapter 24. Storage management for AMODE 64 applications 721

Syntax

#include <edcwccwi.h>

void__vhm_event (int event,...)

event
identifies the VHM event to execute. The function calls the
__cee_heap_manager() inside the vendor heap manager function with the event
as the argument. It supports the _VHM_REPORT event.

...
an optional argument that can be used to set special options in the event to be
driven.

__alcaxp() — AMODE 64 DSA extension (alloca)
This function is invoked by C/C++ compiler generated code to extend an XPLINK
downward-growing stack frame. The linkage will be normal XPLINK conventions
for call-by-name. It will appear like a function that takes an integer for input and
returns void. It is used by the compiler to implement the compiler built-in function
alloca().

Syntax

#include <edcwccwi.h>

void __alcaxp (long storage_size)

storage_size
the amount of additional stack storage being requested in bytes. This value
will be rounded up to a multiple of 16 to ensure that the stack frame remains
on a quadword boundary.

Usage Notes:

1. This function changes the value of the stack pointer (R4) and moves the register
save area.

2. The argument area is never copied. The compiler must never assume that
something placed in the argument area is still there across a call to this
function.

3. The address of this function is resolved like other C-RTL functions for XPLINK
(through a side deck). There is no stub for non-XPLINK.

4. If there is not sufficient room in the current stack segment, this routine handles
stack expansion.

5. It is the responsibility of the caller to calculate the address of the allocated
storage. The allocated storage is located immediately following the argument
area. The reason for this is that the compiler, which will know the size of the
argument area, can generate more efficient code to perform the calculation.

6. The Vendor Interfaces header file, <edcwccwi.h>, is located in member
EDCWCCWI of the SCEESAMP data set. In order to include <edcwccwi.h> in
an application, the header file must be copied into a PDS or into a directory in
the z/OS UNIX file system where the C/C++ compiler will find it.

Vendor heap manager interface

722 z/OS V2R1.0 Language Environment Vendor Interfaces

Memory object dump priority
When obtaining memory objects, Language Environment uses the IARV64
DUMPPRIORITY keyword to identify the relative priorities in which the objects
are to be included in a dump. All Language Environment stack memory objects are
given a priority of 5; all heap memory objects are given a priority of 15. Other
AMODE 64 programs, such as Java, can allocate memory objects and assign their
own dump priorities.

Memory object user tokens
Language Environment uses the IARV64 USERTKN keyword to identify all
memory objects that it allocates on behalf of an AMODE 64 application. This token
is used to refer to the memory objects as a set; for example, when fork() is called to
create a process, or when cleaning up above the bar resources at termination. The
token is a double word (8 bytes). In the high half of the double word, Language
Environment places the address of the Library Anchor Area (LAA) of the Initial
Process Thread (IPT). The low half of the token varies depending on the
environment:
v Non-Preinit applications: the low half of the token is set to zero.
v Preinit applications: For memory objects related to base Language Environment

structures and work areas, the low half of the token is set to one; for memory
objects related to the current enclave, the low half of the token is set to zero.

Applications that obtain their own above the bar storage can use this user token to
associate their memory objects with those of Language Environment. Depending
on the actual token value used, such an association allows:
v These memory objects to be dumped along with those of Language

Environment.
v These memory objects to be propagated on a fork().
v These memory objects to be cleaned up during environment termination.

Note: To use this format of user token, IARV64 requires that the caller be
authorized.

When building a user token, applications can locate the address of the LAA of the
IPT by first locating the address of the LAA for the current pthread, pointed to by
field PSALAA in the system prefix save area (IHAPSA). Within this LAA that is
mapped by macro CEELAA, field CEELAA_IPTLAA contains the address of the
LAA of the IPT for the current process. When building the user token, if the code
might not always be executed when a valid AMODE 64 Language Environment
exists, the code must first check whether the flag CEELAA_LeActive in the LAA is
on. This ensures that field CEELAA_IPTLAA is valid.

Saving the stack pointer
Language Environment provides two fields where the stack pointer can be saved:

CEELCA_SAVSTACK
The CEELCA_SAVSTACK field can be used by an application or a
compiler to save the stack pointer before calling a routine using
OS_NOSTACK linkage. After the call returns, the CEELCA_SAVSTACK
field must be set back to zero. The value in CEELCA_SAVSTACK is used
as the current stack frame when:

__alcaxp()

Chapter 24. Storage management for AMODE 64 applications 723

1. The Language Environment ESPIE exit routine, ESTAE exit routine or
signal interface routine (SIR) gets control.

2. The value in CEELCA_SAVSTACK is not zero.

For asynchronous signal processing, typically the interrupt PSW is outside
the routine that owns the stack frame and the signal is put back.

The c macro __LE_SAVSTACK_ADDR defined in sample header file
edcwccwi.h is the address of the CEELCA_SAVSTACK field.

CEELCA_SAVSTACK_ASYNC
The CEELCA_SAVSTACK_ASYNC field can be used by applications that
have large sections of code that does not require access to the Language
Environment stack but can benefit from having an additional register
available. The CEELCA_SAVSTACK_ASYNC field is a pointer to the field
where the stack pointer will be saved. Language Environment initializes
CEELCA_SAVSTACK_ASYNC to zero. The application needs to set up the
field where the stack pointer will be saved and store the address of that
field in CEELCA_SAVSTACK_ASYNC. The storage for the field must be in
the application key and persist for the life of the thread.

When initializing CEELCA_SAVSTACK_ASYNC, appropriate action needs
to be taken if CEELCA_SAVSTACK_ASYNC is not zero. Because it is
possible to directly access the field where the stack pointer will be stored,
consider the consequences if some part of the application is doing so.

Whenever the Language Environment stack is being used, either
CEELCA_SAVSTACK_ASYNC must be zero or the field pointed to by
CEELCA_SAVSTACK_ASYNC must be zero.

The value in the field pointed to by CEELCA_SAVSTACK_ASYNC is used
as the current stack frame when:
1. The Language Environment ESPIE exit routine, ESTAE exit routine, or

signal interface routine (SIR) gets control.
2. CEELCA_SAVSTACK_ASYNC is not zero.
3. The value in the field pointed to by CEELCA_SAVSTACK_ASYNC is

not zero

For asynchronous signal processing, the signal is always handled as if the
interrupt PSW was inside the routine that owns the stack frame.

The C macro __LE_SAVSTACK_ASYNC_ADDR, defined in the sample
header file edcwccwi.h, is the address of the CEELCA_SAVSTACK_ASYNC
field.

__alcaxp()

724 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|

|
|

Chapter 25. Condition representation for AMODE 64
applications

This chapter describes the format and use of condition representation within
Language Environment for AMODE 64 applications.

Conditions can be defined in a number of ways. Some examples are hardware- or
software-detected events (which might or might not be critical for the application
to run properly), asynchronous events, or the completion of a unit of work
(successfully or unsuccessfully).

Systems communicate information about conditions in a variety of ways. Return
and condition codes are examples of condition information. Also, common usage is
almost nonexistent in representing or communicating these conditions across IBM
products or platforms. Therefore, Language Environment defines a consistent data
type to represent conditions and communicate information about them to enable
ILC and cross-system source code portability of applications.

The methodology presented here is required for the representation and
communication of condition-related information:
v As a feedback code (return information) from some Language Environment

callable services
v As input to the Language Environment condition manager
v As input to the Language Environment message services

Condition representation model
A condition in Language Environment is communicated with a 16-byte (128-bit)
condition token data type. The return information (feedback code) from a
Language Environment callable service is an instance of this data type.

The advantages of the condition token data type include:
v The shared data type ties together the Language Environment callable services,

condition management, and message services components of Language
Environment.

v A message that can be displayed or logged in a file is associated with each
instance of a condition.

v As a feedback code, the data type can be stored or logged for later processing (if
the message associated with the feedback code has inserts, the message must be
obtained before it is saved).

v Symbolic names can be equated to defined feedback codes and hardware
conditions.

The format of the condition token data type allows four different cases, or types, of
conditions to be represented. Two of the four types are cross-system consistent.
The other two are reserved for future expansion or describe platform-specific
conditions. Some Language Environment callable services use this condition token
data type to return information as a feedback code.

© Copyright IBM Corp. 1991, 2015 725

Data objects
Language Environment condition representation data objects are defined in this
section.

Condition token data type
The condition token data type communicates with message services, condition
management, Language Environment callable services, and user applications. For
the detailed layout of the condition token data type, see Figure 151.

An instance of a condition token is 16 bytes (128 bits) long, as shown in Figure 152
on page 727.

Figure 151. Language EnvironmentCondition token for AMODE 64 applications

Condition Representation

726 z/OS V2R1.0 Language Environment Vendor Interfaces

CONDITION_ID
A 4-byte identifier that describes the condition with the FACILITY_ID. The
case field determines the type of identifier. Two identifiers are defined to
be cross-system consistent:
1. Case 1 - Service Condition, which is used by all Language

Environment callable services and most application programs.

SEVERITY
A 2-byte binary integer with the following possible values:

0 Information only (or, if the entire token is zero, no
information).

1 Warning — service completed, probably correctly.

2 Error detected — correction attempted; service
completed, perhaps incorrectly.

3 Severe error — service not completed.

4 Critical error — service not completed; condition
signaled.

Although the field is obviously capable of containing other
values, these are not architected. If a critical error (severity = 4)

CEECTOK DSECT DS 0D
CONDITION_ID DS 0F
*
* Case 1 definitions for CONDITION_ID
*
SEVERITY DS H Condition severity (0-4)
MSG_NUMBER DS H Related message number
*
* Case 2 definitions for CONDITION_ID
*

ORG CONDITION_ID
CLASS_CODE DS H Message associated with the class
CAUSE_CODE DS H Message associated with the cause
*
* Common part of the feedback code
*
FLAGS DS X Bits for Case/Severity/Control
*
* Case definitions
* B’xx......’
CASE1 EQU B’01000000’
CASE2 EQU B’10000000’
*
* Severity definitions
* B’..xxx...’
SEV0 EQU B’00000000’ Severity 0 condition
SEV1 EQU B’00001000’ Severity 1 condition
SEV2 EQU B’00010000’ Severity 2 condition
SEV3 EQU B’00011000’ Severity 3 condition
SEV4 EQU B’00100000’ Severity 4 condition
*
* Control definitions
* B’.....xxx’
IBM_ASSIGN EQU B’00000001’ IBM assigned the facility id
CTL_RSVD1 EQU B’00000010’ Reserved - must be 0
CTL_RSVD2 EQU B’00000100’ Reserved - must be 0
*
* Facility ID
*
FACILITY_ID DS CL3 3 char string that ids the product
*
* Instance Specific Information Token
*
I_S_Info DS D Token to the ISI

Figure 152. Condition token for AMODE 64 applications

Condition Representation

Chapter 25. Condition representation for AMODE 64 applications 727

occurs during a Language Environment callable service, it is
always signaled to the condition manager, rather than returned
synchronously to the caller.

MSG_NUMBER
A 2-byte binary number that identifies the message associated
with the condition. The combination of Facility_ID and Msg_No
uniquely identifies a condition.

2. Case 2 - Class/Cause Code Condition, which is used by some
operating systems and compiler runtime libraries.

CLASS_CODE
A 2-byte, binary number that identifies the message subid
associated with the class of the condition.

CAUSE_CODE
A 2-byte, binary number that identifies the message ID
associated with the cause of the condition.

Note: The message subid and the message identifier are tags found in
the message source file.

FACILITY_ID
A 3-character, alphanumeric string that identifies a product or component
within a product. Note that special characters, including space, cannot be
used.

The Facility_ID is associated with the repository (for example, a file) of the
runtime messages. The conventions for naming the message repository,
however, are platform-specific. The Facility_ID need not be unique within
the system and can be determined by the application writer. If a unique ID
is required (for IBM and non-IBM products), an ID can be obtained by
contacting an IBM project office.

A Facility_ID assigned by IBM to an IBM product must begin with one of
the letters A through I, inclusive. A Facility_ID assigned by IBM to a
product other than an IBM's must not begin with a letter A through I. For
information on how to indicate if the Facility_ID has been assigned by
IBM, see Control below. There are no constraints (other than the
alphanumeric requirement) on a Facility_ID not assigned by IBM.

Language Environment constructs a load name consisting of the form T ||
Facility_ID || MSGT:

T The character 'I' if the Facility_ID was assigned by IBM, or the
character 'U' if the Facility_ID was not assigned by IBM.

Facility_ID
The three character facility ID as described above.

MSGT
The four characters MSGT.

For example, given an IBM assigned facility ID of CEE, the constructed
load name would be ICEEMSGT.

Note: The Msg_No/Facility_ID identifies a condition for a Language
Environment-enabled product. This identification is required to be
persistent beyond the scope of a single session. This allows the meaning of
the condition and its associated message to be determined after the session

Condition Representation

728 z/OS V2R1.0 Language Environment Vendor Interfaces

that produced the condition has ended. The message inserts and the
I_S_Info need to be explicitly saved to allow persistence after the session
has concluded.

Case A 2-bit field that defines the format of the Condition_ID portion of the
token. The value 1 identifies a case 1 condition, the value 2 identifies a
case 2 condition. The values 0 and 3 are reserved.

Severity
A 3-bit field indicating a condition's severity. Severity values are the same
as defined under a case 1 Condition_ID. When evaluating the severity, the
same rules apply for signaling case 2 conditions as for case 1 conditions.
For a case 1 condition, this field contains the same value as the Severity
field in the Condition_ID.

Note: This field is valid for both case 1 and 2 conditions. It can be used
with either condition token to evaluate the condition's severity.

Control
A 3-bit field containing flags describing or controlling various aspects of
condition handling, as follows:
..1 Indicates Facility_ID has been assigned by IBM.
.1. Reserved.
1.. Reserved.

I_S_INFO
A doubleword containing a token that identifies the Instance Specific
Information (ISI) associated with the given condition. If an ISI is not
associated with a given condition token, the ISI field contains binary zero.
The ISI token provides access to various instance specific information such
as message inserts and qualifying data.

Feedback code
A feedback code is an instance of a condition token. A feedback code is returned
from a Language Environment callable service if the caller has passed a reference
to an area to hold it. To test a feedback code for equivalence, the first eight bytes
should be compared because they are static. The last eight bytes can change from
instance to instance.

Condition Representation

Chapter 25. Condition representation for AMODE 64 applications 729

730 z/OS V2R1.0 Language Environment Vendor Interfaces

Chapter 26. National language support and message services
for AMODE 64 applications

This chapter describes Language Environment National Language Support (NLS)
and message handling services for AMODE 64 applications.

National language support
Language Environment provides services to support many NLS machine readable
information (MRI) requirements, such as: message formatting, message delivery,
casing, folding, and normalization. Language Environment formats messages for
any national language known to it. Language Environment provides runtime
messages for the following national languages:
v ENU (Mixed-case English USA)

– Message text is made up of SBCS characters and consists of both uppercase
and lowercase letters.

– Message inserts can contain DBCS characters.
– Long messages are split at an SBCS blank if possible or split by the output

line length if a blank separator does not exist.
v UEN (Uppercase English USA)

This is identical to the mixed-case USA English language except the message text
consists of uppercase letters. Message inserts can be in lowercase or might use
lowercase codepoints to make use of SBCS Katakana capabilities.

v JPN (Japanese)
This language supports devices that have both DBCS and SBCS capabilities; its
characteristics are:
– Message text can be made interchangeably of SBCS and DBCS characters.
– If a long message extends beyond the print line and the text is SBCS, it is

split at a blank when possible. If a blank separator does not exist, text is split
by the output line length. If the text is DBCS, the message is split at a DBCS
blank if possible. If a blank separator does not exist, it is split at the last
DBCS character that allows a shift-in to be inserted. The next line begins with
a shift-out character.

The national language can be set using the NATLANG runtime option. One
current language is maintained at the enclave level and remains in effect until it is
changed. If the message text is not available for the current national language
setting, the IBM-supplied default is used instead.

Language Environment message services
Language Environment provides message services to format and deliver runtime
messages. The following C functions are extensions to the C runtime library:

__le_msg_write()
writes a message string to stderr.

__le_msg_get_and_write()
takes a message associated with a condition and writes it to stderr.

© Copyright IBM Corp. 1991, 2015 731

|
|

__le_msg_get()
retrieves, formats, and stores message data for a condition.

__le_msg_add_insert()
creates a message insert.

__le_condition_token_build()
builds a 16–byte condition token for use in retrieving messages from a
Language Environment message repository.

For more information about the functions, see z/OS XL C/C++ Runtime Library
Reference.

C/C++-specific vendor interfaces
For information on the C/C++-specific vendor interfaces, see “C/C++-specific
vendor interfaces” on page 248.

National language support

732 z/OS V2R1.0 Language Environment Vendor Interfaces

Chapter 27. Condition management for AMODE 64
applications

This section describes what constitutes a condition in Language Environment, how
Language Environment supplements existing HLL condition handling methods,
and how the Language Environment condition handling model works. It describes
in detail the steps involved in condition handling under Language Environment,
HLL-specific condition handling considerations, Language Environment — POSIX
signal handling interactions, and how you can communicate events that happen in
a routine to another routine.

For a discussion of Language Environment condition handling models in the
POSIX(ON) and POSIX(OFF) environments, see z/OS Language Environment
Programming Guide for 64-bit Virtual Addressing Mode.

Application programming interfaces (APIs)
The APIs provided by Language Environment for condition management for
AMODE 64 applications are __dsa_prev(), __ep_find() and __far_jump().

__dsa_prev() — Chain back to previous DSA
Purpose

The __dsa_prev() function returns the address of the DSA prior to dsa_p on the
Language Environment stack. Two types of backchaining request are supported --
logical and physical. The req_type parameter is used to select either logical or
physical backchaining. For physical backchaining, the address of the DSA
immediately prior to dsa_p is always returned. That DSA can be a transition or
overflow DSA, or the DSA of a normal routine. For logical backchaining,
__dsa_prev() keeps looking backward on the Language Environment stack until a
normal DSA is found, skipping over any transition or overflow DSAs.

If the dummy Language Environment DSA is reached while backchaining, a NULL
pointer is returned, and errno is set to ESRCH.

__dsa_prev() can be used when the Language Environment stack of interest is not
in the current address space. To access storage outside the current address space,
the user must provide the callback_p parameter. callback_p is a pointer to a
user-written function that fetches all required data for __dsa_prev(). Generally, the
(*callback_p)() function would obtain the data using some application-dependent
method (like BPX1PTR) and move it into the current address space, where
__dsa_prev() can access it directly. If the Language Environment stack of interest is
in the same address space and is directly accessible to __dsa_prev(), callback_p can
be NULL.

© Copyright IBM Corp. 1991, 2015 733

|
|

Syntax

const void *dsa_p
Pointer to the current DSA. __dsa_prev() returns a pointer to the DSA logically
or physically previous to dsa_p, depending on the value of the req_type
parameter. dsa_p may point to a DSA in another address space or in some
other place not directly accessible by __dsa_prev(). If this address is not
directly accessible, the callback_p parameter must be non-NULL. The callback
function will be used to access dsa_p indirectly.

int req_type
Controls if transition DSAs are returned. The allowed values for req_type are:

__EDCWCCWI_PHYSICAL
Physical backchaining causes __dsa_prev() to return the address of the
DSA immediately prior to dsa_p. The returned DSA can be either a
transition or normal DSA.

__EDCWCCWI_LOGICAL
Logical backchaining causes __dsa_prev() to skip over any transition
DSAs that it finds while backchaining, and not pass them back. The
address of the most recent normal DSA previous to dsa_p is returned.
Doing logical backchaining is the same as doing physical backchaining
one or more times, stopping when a normal DSA is found.

int dsa_fmt
The format of the DSA pointed to by dsa_p. The allowed value for dsa_fmt is:

__EDCWCCWI_DOWN
This value indicates that dsa_p points to a 64–bit DSA.

void * (*callback_p)()
Pointer to a user-provided function that fetches data not normally accessible by
__dsa_prev(). If callback_p is NULL, __dsa_prev() accesses dsa_p and any other
required Language Environment data areas directly in the current address
space. The Language Environment stack and all other data needed for
backchaining must be directly accessible to __dsa_prev() in this case.

The user-provided (*callback_p)() function is passed the address and length of
data to access. It must fetch the data in some application-dependent manner,
and make the data available in the current address space in a place accessible
to __dsa_prev(). (*callback_p)() must return a pointer to the copied data. This
data must remain available to __dsa_prev() until the next call to (*callback_p)(),
or until __dsa_prev() returns to its caller, whichever happens first. On
subsequent calls, (*callback_p)() is allowed to reuse the same data passback area.

There is no provision for (*callback_p)() to pass back an error return code,
indicating that the requested data could not be obtained. If (* callback_p)()
cannot return the requested data, it must not return to __dsa_prev(). When an
error occurs, (*callback_p)() may:
v longjmp() back to some error return point in the user code that called

__dsa_prev().

#include <edcwccwi.h>

void __dsa_prev(const void * dsa_p, int req_type, int dsa_fmt, void * (*callback_p)(void
*data_p, size_t data_l), const void *caa_p, int *prev_fmt, void **ph_callee_dsa_p, int
*ph_callee_dsa_fmt);

__dsa_prev()

734 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|
|

v ABEND or otherwise terminate abnormally.
v exit(), pthread_exit(), etc.
v Raise a caught signal where the catcher does longjmp() so as not to return to

__dsa_prev().
v Use Language Environment condition management to bypass __dsa_prev()

after the error and resume in user code.
v Recover in some other way that does not involve returning to __dsa_prev().

__dsa_prev() calls (*callback_p)() with two parameters:

void *data_p
Pointer to the start of the required data. This address might not be in the
current address space.

size_t data_l
The number of bytes of data required. data_l will never exceed 16 bytes. If
(*callback_p)() cannot pass back the complete data requested, it must not
return to __dsa_prev().

const void *caa_p
Pointer to the Language Environment CAA for the thread owning the dsa_p
DSA. This parameter must be non-NULL whenever callback_p is non-NULL,
and it may point to a CAA in some other address space. If callback_p is NULL,
caa_p may also be NULL. If caa_p is NULL, the current CAA (of the thread
where __dsa_prev() is running) is used. In this case, it is assumed that dsa_p
points to a DSA on the Language Environment stack for the caller's thread.

int *prev_fmt
Pointer to an optional passback area where __dsa_prev() will return the DSA
format of the prior DSA. The possible values passed back in this field are the
same as the values for dsa_fmt.

If prev_fmt is NULL, the DSA format for the previous DSA is not passed back.
If __dsa_prev() cannot find the previous DSA and returns a NULL value, the
field pointed to by prev_fmt is not altered.

void **ph_callee_dsa_p
Pointer to an optional passback area where __dsa_prev() will return the
address of the DSA of the physical callee. The physical callee is the function
called by the function owning the returned DSA. The physical callee can be a
Language Environment overflow or stack expansion routine, or it can be a
normal user or Language Environment function. If physical backchaining is
requested, *ph_callee_dsa_p will be the same as dsa_p after __dsa_fmt() returns.

If ph_callee_dsa_p is NULL, the address of the physical callee DSA is not passed
back.

If __dsa_prev() cannot find the previous DSA and returns a NULL value, the
field pointed to by ph_callee_dsa_p is not altered.

int *ph_callee_dsa_fmt
ph_callee_dsa_fmt is a pointer to an optional passback area where __dsa_prev()
will return the DSA format of the physical callee's DSA. The possible values
passed back in this field are the same as the values for dsa_fmt.

If ph_callee_dsa_fmt is NULL, the format of the physical callee DSA is not
passed back. If __dsa_prev() cannot find the previous DSA and returns a
NULL value, the field pointed to by ph_callee_dsa_fmt is not altered.

__dsa_prev()

Chapter 27. Condition management for AMODE 64 applications 735

Return values
v If successful, __dsa_prev() returns the address of the previous DSA. In addition,

if errno is zero when __dsa_prev() is called, one of the following errno values
may be set to pass back additional information:

EACCES
TIndicates that the returned DSA pointer is for the Language
Environment dummy DSA (pointed to by the CAA ceecaaddsa field).
This is not an error, and all returned or passed-back information is valid.

EALREADY
Indicates that the input DSA pointer (dsa_p) is for the Language
Environment dummy DSA (pointed to by the CAA CEECAADDSA
field). This is not an error, and all returned or passed-back information is
valid.

v If unsuccessful, __dsa_prev() returns a NULL pointer, and sets errno to one of
the following values:

ESRCH
Indicates that there was no DSA previous to dsa_p that could satisfy the
physical or logical backchaining request. This error also occurs if dsa_p is
NULL when __dsa_prev() is called.

EINVAL
This error can occur if:
– caa_p was NULL and callback_p was not NULL.
– req_type was not __EDCWCCWI_PHYSICAL or

__EDCWCCWI_LOGICAL.
– dsa_fmt was not __EDCWCCWI_DOWN.

Usage notes
v If the return code from __dsa_prev() is NULL, the listed errno values are set

even if errno was non-zero when __dsa_pr() was called. When the return code
from __dsa_pr() is not NULL, errno is not changed if it was not zero when
__dsa_prev() was called.

v __dsa_prev() may cause program checks if it accesses invalid addresses. This is
especially likely to happen if callback_p is NULL and the Language Environment
stack being looked at is corrupted. For this reason, the caller should consider
having a signal catcher set up to handle SIGSEGV with appropriate error
recovery.

v The Vendor Interfaces header file, <edcwccwi.h>, is located in member
EDCWCCWI of the SCEESAMP data set. In order to include <edcwccwi.h> in an
application, the header file must be copied into a PDS or into a directory in the
z/OS UNIX file system where the C/C++ compiler will find it.

__ep_find() — returns the address of the entry point of the
function owning the dsa_p DSA

Purpose

The __ep_find() function returns the address of the entry point of the function
owning the dsa_p DSA. __ep_find() can be used when the passed-in DSA is not in
the current address space. To access storage outside the current address space, the
user must provide the callback_p parameter, which is a pointer to a user-written
function that fetches all data required by __ep_find(). Generally, the (*callback_p)()
function would obtain the data using some application-dependent method (like

__dsa_prev()

736 z/OS V2R1.0 Language Environment Vendor Interfaces

|

|

|

|
|
|
|
|
|

BPX1PTR) and move it into the current address space, where __ep_find() can
access it directly. If the passed-in DSA is in the same address space and is directly
accessible to __ep_find(), callback_p can be NULL.

Syntax

const void * dsa_p
Pointer to the DSA. dsa_p may point to a DSA in another address space or in
some other place not directly accessible by __ep_find(). If this address is not
directly accessible, the callback_p parameter must be non-NULL. The callback
function will be used to access dsa_p indirectly.

int dsa_fmt
The format of the DSA pointed to by dsa_p. The allowed values for dsa_fmt are:

__EDCWCCWI_UP
This value indicates that dsa_p points to a non-XPLINK DSA.

__EDCWCCWI_DOWN
This value indicates that dsa_p points to an XPLINK DSA.

void * (*callback_p)()
Pointer to a user-provided function that fetches data not normally accessible by
__ep_find(). If callback_p is NULL, __ep_find() accesses dsa_p and any other
required Language Environment data areas directly in the current address
space. All required data must be directly accessible to __ep_find() in this case.
The user-provided (*callback_p)() function is passed the address and length of
data to access. It must fetch the data in some application-dependent manner,
and make the data available in the current address space in a place accessible
to __ep_find(). (*callback_p)() must return a pointer to the copied data. This
data must remain available to __ep_find() until the next call to (*callback_p)(),
or until __ep_find() returns to its caller, whichever happens first. On
subsequent calls, (*callback_p)() is allowed to reuse the same data passback area.
There is no provision for (*callback_p)() to pass back an error return code,
indicating that the requested data could not be obtained. If (*callback_p)()
cannot return the requested data, it must not return to __ep_find(). When an
error occurs, (*callback_p)() may:
v longjmp() back to some error return point in the user code that called

__ep_find()
v abend or otherwise terminate abnormally
v exit(), pthread_exit()
v Raise a caught signal where the catcher does longjmp() so as not to return to

__ep_find()
v Use Language Environment condition management to bypass __ep_find()

after the error and resume in user code
v Recover in some other way that does not involve returning to __ep_find().

__ep_find() calls (*callback_p)() with two parameters:

void * data_p
Pointer to the start of the required data. This address might not be in the
current address space.

#include <edcwccwi.h>

void *_ep_find (const void * dsa_p, int dsa_fmt, void * (*callback_p)(void * data_p, size_t
data_l))

__ep_find()

Chapter 27. Condition management for AMODE 64 applications 737

|

|
|
|
|

|
|
|

|
|

|
|
|
|
|

|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|
|

|
|

|

|

|
|
|

size_t data_l
The number of bytes of data required. data_l will never exceed 16 bytes. If
(*callback_p)() cannot pass back the complete data requested, it must not
return to __ep_find().

Return values
v If successful, __ep_find() returns the entry point address of the function owning

the dsa_p DSA.
v If unsuccessful, __ep_find() returns a NULL pointer, and sets errno. to one of the

following values:

ESRCH
This error indicates that the entry point could not be located for the
passed-in DSA. This error also occurs if dsa_p is NULL when __ep_find()
is called.

EINVAL
This error occurs if dsa_fmt is not __EDCWCCWI_UP or
__EDCWCCWI_DOWN.

Usage notes
v __ep_find() may cause program checks if it accesses invalid addresses. This is

especially likely to happen if callback_p is NULL and the DSA being looked at is
not valid. For this reason, the caller should consider having a signal catcher set
up to handle SIGSEGV with appropriate error recovery.

v The Vendor Interfaces header file, <edcwccwi.h>, is located in member
EDCWCCWI of the SCEESAMP data set. To include <edcwccwi.h> in an
application, the header file must be copied into a PDS or into a directory in the
UNIX file system where the z/OS XL C/C++ compiler will find it.

__far_jump() — Perform far jump
Purpose

The __far_jump() interface performs a function similar to longjmp(). However, it
does not require a setjmp() to be performed previously. The information required
to perform this "nonlocal goto" is provided by the user in the __jumpinfo structure.
This information includes registers and signal mask. The target address of the
jump is not supplied separately. It is supplied as two of the register values in the
GPR set in the __jumpinfo structure, register 4 for the target DSA address and
register 7 for the target code address.

Syntax

struct __jumpinfo * JumpInfo
The __jumpinfo structure must be cleared before it is filled in to ensure that all
reserved areas are zero. The __jumpinfo structure appears in the following
format:
{

char __ji_u1[68];
char __ji_mask_saved;

#include <edcwccwi.h>

void __far_jump (struct __jumpinfo * JumpInfo);

__ep_find()

738 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|
|
|

|

|
|

|
|

|
|
|
|

|
|
|

|

|
|
|
|

|
|
|
|

|

char __ji_u2[3];
sigset_t __ji_sigmask;
char __ji_u3[11];
unsigned __ji_fl_fp4 :1;
unsigned __ji_fl_fp16 :1;
unsigned __ji_fl_fpc :1;
unsigned __ji_fl_res1a :1;
unsigned __ji_fl_res1b :1;
unsigned __ji_fl_res2 :1;
unsigned __ji_fl_exp :1;
unsigned __ji_fl_res2a :1;

char __ji_u4[12];
struct __jumpinfo_vr_ext *__ji_vr_ext;

#ifndef _LP64
char __ji_u7[4]; //only available in AMode 31

#endif
char __ji_u8[16];
long __ji_gr[16];
int __ji_u5[16];
double __ji_fpr[16];
int __ji_fpc;
char __ji_u6[60];

} __jumpinfo_t;

long __ji_gr[16]
Contains the values of the 16 general purpose registers. The value for
Register 7 is used as the target address of the jump. The value for Register
4 is used as the target DSA address.

double __ji_fpr[16]
Contains the values of the floating-point registers as indicated by the
__ji_fl_fp4 and __ji_fl_fp16 flags. When __ji_fl_fp16 is one, it contains all 16
floating-point registers. When __ji_fl_fp16 is zero and __ji_fl_fp4 is one, it
contains only floating-point registers 0, 2, 4 , and 6 in fields __ji_fpr[0],
__ji_fpr[2], __ji_fpr[4], and __ji_fpr[6]. When __ji_fl_fp16 is zero and
__ji_fl_fp4 is zero, it contains no floating-point registers.

char __ji_mask_saved
Set to non-zero value when the signal mask field (__ji_sigmask) is valid.

sigset_t __ji_sigmask
Contains the signal mask value when __ji_mask_saved is a nonzero value.

int __ji_fpc
Contains the floating point control register value when __ji_fl_fpc is set to
one.

unsigned __ji_fl_fp4:1
Set to one when values for only floating point registers 0, 2, 4, and 6 are
provided in __ji_fpr.

unsigned __ji_fl_fp16:1
Set to one when values for all 16 floating point registers are provided in
__ji_fpr.

unsigned __ji_fl_fpc:1
Set to one when value for the floating point control register is provided in
__ji_fpc.

unsigned __ji_fl_exp:1
Set to one when explicit backchaining is complete to the target DSA.

__ji_vr_ext
When the Vector Registers are available on the target machine, the

__far_jump()

Chapter 27. Condition management for AMODE 64 applications 739

|
|
|
|
|
|

|
|

__ji_vr_ext field can be set to a pointer to vector register save area or set to
NULL if vector registers are not to be restored.
typedef char __jumpinfo_vector_t[16];
struct __jumpinfo_vr_ext
{

short __ji_ve_version;
char __ji_ve_u[14];
__jumpinfo_vector_t__ji_ve_savearea[32];

}

__ji_ve_version
Always set to zero.

__ji_ve_u
Reserved bytes and should always set to all zero.

__ji_ve_savearea
Contains the values of 32 Vector Registers (16 bytes each).

Return values

The __far_jump() function has no returned value. When __far_jump() completes,
program execution continues at the target address.

Usage notes
v The library does not attempt to verify the contents of the __jumpinfo structure.

Incorrect data can lead to unpredictable results.
v The caller of __far_jump() can optionally supply a signal mask suitable to the

target of the jump.
v The caller of __far_jump() provides the GPR & FPR sets needed for the target of

the __far_jump(). The GPR set is always complete. The FPR set is 0, 4, or 16
registers , as indicated by the __ji_fl_fp4 and __ji_fl_fp16 fields.

v The Vendor Interfaces header file, <edcwccwi.h>, is located in member
EDCWCCWI of the SCEESAMP data set. In order to include <edcwccwi.h> in an
application, the header file must be copied into a PDS or a directory in which
the C/C++ compiler will find it.

Language Environment shunt routine for AMODE 64 applications
Along with application interfaces, Language Environment provides a shunt routine
for condition management of AMODE 64 applications. A shunt is a low-level error
handling routine intended for use by language library routines and debug tools. A
shunt is typically used when a segment of code needs to protect itself from a likely
error. An incorrect address while following a control block chain is an example of
an error that activates a shunt routine.

A shunt is usually established for short periods of time while the library routines
or debug tools are providing services to the application. Language Environment
establishes an ESPIE error recovery routine for program interrupts and an ESTAE
recovery routine for abends. These recovery routines check for and setup for retry
to a shunt, as appropriate. Shunt routines do not return to the Language
Environment condition manager. There is no return code from the shunt routine.

Establishing a program interrupt shunt service
A program interrupt shunt routine is established by setting its address in the CAA
(CEECAADMC). When the shunt address gains control, the AMODE is the
AMODE at the time of the program interrupt. Setting an address in the

__far_jump()

740 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|

|
|
|
|
|
|
|

|
|

|
|

|
|

CEECAADMC effectively cancels the previously established shunt routine, if any.
Only one shunt routine can be in effect at a time. Language Environment does not
provide any facility for stacking the shunt addresses. A save is not needed prior to
establishing your own shunt routine.

The shunt routine is removed by removing its address from the CEECAADMC. A
value of zero should be assigned to CEECAADMC as soon as possible. A shunt
routine should be removed as soon as it is not needed. Information about the error
is provided to the shunt routine through the CEECAAPRGCK field in the CAA,
which is set to the value of the program interrupt code.

Usage Notes:

1. R0 through R15 have the same value when the shunt routine gains control as
they did when the program check occurred.

2. The shunt routine cannot assume that the range of the base registers used at
the time that the program check occurred extends to the shunt routine. The
shunt routine might need to re-establish addressability upon entry.

3. The CEECAADMC field should be cleared as soon as it is no longer needed.
4. A shunt routine should never span a call statement. A shunt routine that gains

control with another program's registers will usually fail on the first branch
attempt. The routine that is called does not have to save the address of your
shunt routine.

5. The Language Environment condition manager clears the CEECAADMC field
when the program interrupt shunt routine is called.

Other Language Environment condition manager topics
For information about Language Environment default condition handling, see z/OS
Language Environment Programming Guide for 64-bit Virtual Addressing Mode. For
information about Language Environment runtime options, see z/OS Language
Environment Programming Reference.

Language Environment condition information block
Each condition is represented by a Condition Information Block (CIB). The CIB is
built by the condition manager and is used as an information repository for data
required by the condition handling facilities. The CIB is not intended to be altered
by the user. The complete CIB is listed in the z/OS Language Environment Debugging
Guide.

Errors during condition handling
Every effort should be made to ensure that further exceptions do not occur during
the condition handling process. However, errors may still occur. To identify the
state (or point in time) of the Language Environment condition manager, a state
setting is contained in the CIB. The valid states, constant values, and actions taken
by the Language Environment condition manager are listed in Table 85.

Table 85. CEECIB state variable, constant values, and associated actions for AMODE 64 applications

State Value Value Variable Meaning Condition Manager
Actions with Nested
Condition

cib_state_enable 1 The language-specific enablement handler is
in control. This is set by the Language
Environment condition manager.

Terminate the enclave via
abend 4087-C.

Condition Management

Chapter 27. Condition management for AMODE 64 applications 741

Table 85. CEECIB state variable, constant values, and associated actions for AMODE 64 applications (continued)

State Value Value Variable Meaning Condition Manager
Actions with Nested
Condition

cib_state_eh 2 A user condition handler, registered
via__set_exception_handler(), is in control.
This is set by the Language Environment
condition manager.

Terminate the enclave via
abend 4087-2.

cib_state_memb 3 A language-specific exception handler is in
control. This is set by the Language
Environment condition manager.

Terminate the enclave via
abend 4087-3.

cib_state_SF0 4 A language-specific exception handler is in
control for stack frame zero. This is set by the
Language Environment condition manager.

Terminate the enclave via
abend 4087-4.

cib_state_evnt 5 A language-specific exception handler is in
control for incidental service. This is set by
the Language Environment condition
manager.

Terminate the enclave via
abend 4087-5.

cib_state_ipat 6 The debug tool is in control. This is set by the
Language Environment condition manager.

Call the debug tool event
handler indicating this
event, then terminate the
enclave via abend 4087-6.

cib_state_msg 7 Language Environment message services are
being called by the Language Environment
condition manager; this is set by the
Language Environment condition manager.

Terminate the enclave via
abend 4087-7.

cib_state_dump 8 Used when traceback or dump services are
being called.

Terminate the enclave via
abend 4087-8.

cib_state_Memb_AR_MODE 9 Used for member processing when recursion
is allowed.

While in this state, the
Language Environment
condition manager
tolerates the occurrence of
a nested condition.

cib_state_ab_term_exit 10 Used when an abnormal termination exit is
called; the cib_state_ab_term_exit variable
contains the name of the exit.

Terminate the enclave via
abend 4087-A.

cib_state_recursion 100 A language-specific user handler is in control.
This value is set by the language-specific
exception handler. While in this state, the
Language Environment condition manager
tolerates the occurrence of a nested condition.
This is set by subordinate condition handlers
and debug tools when calling user code.

Tolerate nested conditions.

Language Environment-issued abends
Language Environment issues abends for some fatal errors. For these errors, the
Language Environment condition manager terminates the process without the
subordinate exception handlers being called.

Language Environment issues user abends with codes of 4000 and above. When
Language Environment issues an abend, the normal condition processing does not
occur. Language Environment percolates the abend if the abend drives the ESTAE

Condition Management

742 z/OS V2R1.0 Language Environment Vendor Interfaces

exit of Language Environment. User abends of 4000 and above that are not issued
by Language Environment are not percolated.

The products running under Language Environment should be aware that abend
codes that are 4000 through 4095 are reserved for Language Environment use.
These abend codes are used by Language Environment and possibly the members
to signify that the environment is no longer usable.

In general, other abend codes are intercepted by the Language Environment
condition manager. These produce messages and possibly dumps. The philosophy
of the Language Environment exception manager is to provide diagnostic messages
and not abend.

Condition Management

Chapter 27. Condition management for AMODE 64 applications 743

744 z/OS V2R1.0 Language Environment Vendor Interfaces

Chapter 28. Debugging and performance analysis for AMODE
64 applications

Language Environment provides interfaces upon which a debug tool, such as
Debug Tool, can be built. The interfaces defined by Language Environment to a
debug tool fall into the following classes: callable service, event handlers, and data
areas. These interfaces, and the actions Language Environment takes on the behalf
of a debug tool, are described in the following sections.

Language Environment also provides interfaces upon which a performance
analysis tool, which is often called a profiler, can be built. This support is described
in “Performance analysis support” on page 365. Much of this support is similar to
the support Language Environment provides for debugging tools. Therefore, a
debugging tool and a profiler cannot be used at the same time.

Language Environment-provided functions for the debug tool

__le_debug_set_resume_mch() — set resume machine state
The __le_debug_set_resume_mch() function allows the debug event handler to
modify the machine state that will be used to resume after the debug event
handler returns a result code of resume (110). (This only applies to event codes for
which result code is a parameter.)

A recommended approach for using this function is to start with the current
resume machine state. This can be obtained from the CIB. Changes then can be
made to the registers, PSW, or other components in your local copy of the machine
state. Later, if the debug event handler returns a result code of resume, the
information from the updated machine state is used to resume the application
program.

Syntax

#include <__le_api.h>

void __le_debug_set_resume_mch (__mch_t *position, _FEEDBACK *fc)

position (input)
A pointer to a valid machine state to which the resume cursor is be moved.

fc (output/optional)
A pointer to a 16-byte Feedback Code where the results of this function will be
stored. Feedback codes returned include:

CEE000 Severity 0
Msg_No N/A
Message The service completed successfully.

CEE07V Severity 2
Msg_No 0255
Message position parameter is not a machine state.

© Copyright IBM Corp. 1991, 2015 745

Usage notes
v When an interrupt has occurred in a routine that has saved the stack pointer in

the CEELCA_SAVSTACK field or in the field pointed to by the
CEELCA_SAVSTACK_ASYNC field, the resume cursor is initially set up so that
the stack pointer is restored to that field if the application is resumed. However,
if the resume cursor is moved, the stack pointer is not restored to that field
unless certain fields in the machine state are set.

v To restore the stack pointer to the CEELCA_SAVSTACK field, the flags
INT_SF_VALID and SAVSTACK must be set to 1 and the field INT_SF must
contain the stack pointer.

v To restore the stack pointer to the field pointed to by the
CEELCA_SAVSTACK_ASYNC field, the flags INT_SF_VALID and
SAVSTACK_ASYNC must be set to 1 and the field INT_SF must contain the
stack pointer.

v Only the stack pointer that was saved at the time of the interrupt can be
restored and only be restored to the field where it was saved.

__setHookEvents() — specify execute hook events for target
process

The __setHookEvents() function sets the execute hook events state for all threads
owned by the target enclave and referenced using asfTargetThreadRef as specified
by the eventsMask parameter. Callback functions let you provide address space
free access to storage in the target process.

Restriction: Because C and C++ linkage conventions are incompatible,
__setHookEvents() cannot receive a C++ function pointer as one of the callback
routine function pointers. If you attempt to pass a C++ function pointer to
__SetHookEvents(), the compiler will flag it as an error. You can pass a C or C++
function to __SetHookEvents() by declaring it as extern "C".

Syntax

#include <__ledbug.h>

int __setHookEvents (int eventsMask, const asfCallback Functions,

*asfCallbacks,
const asfTargetRef *asfTargetThreadRef,
const threadSpec

*reservedForFutureUse);

eventsMask
Used as a bit mask to specify which types of instruction hook events to enable
and which events to disable. For each bit in eventsMask that is set to 1, the
corresponding instruction hook event is enabled. For each bit that is set to 0,
the corresponding instruction hook event is disabled. Bits that do not
correspond to instruction hook events are reserved and must be set to 0. The
following macros define the bit values corresponding to the instruction events:

__le_debug_set_resume_mch()

746 z/OS V2R1.0 Language Environment Vendor Interfaces

const asfCalbackFunctions *asfCallbacks
Specifies the callback functions for copying data between the controlling
process and the target process. If the controlling and target processes are the
same or if they are running in the same address space, asfCallbacks can be a
null pointer. The addresses of the callback functions are specified by the
following structure type:

v asfGetStoreCallback is a pointer to a function that copies the amount of data
specified by *dataLength bytes from the target process memory specified by
targetSrce to localDest. localDest must point to a buffer with a capacity of at
least *dataLength bytes. On return, *dataLength is set to the number of bytes
actually copied intolocalDest. If any of the requested target process data
cannot be copied, all bytes starting from the target process address specified
bytargetSrce up to the first non-copyable byte are copied to localDest.
*dataLength is set to the number of bytes copied, and (*asfGetStoreCallback)()
returns the appropriate error value. If all the requests are copied
successfully, *dataLength is unchanged and (*asfGetStoreCallback)() returns
asfResultOK .

v asfSetStoreCallback is a pointer to a function that copies *dataLength bytes of
data from localSrce to the target process memory specified by targetDest. On
return, *dataLength is set to the number of bytes that could have been copied
into targetDest. If any of the requested target process data cannot be
updated, none of the target process' memory is changed, *dataLength is set to
the difference between the target process address specified by targetDest and

THOOK_LABEL
THOOK_STATEMENT
THOOK_ACALL
THOOK_DO
THOOK_IFTRUE
THOOK_IFFALSE
THOOK_WHEN
THOOK_OTHER
THOOK_POST
THOOK_BCALL
THOOK_GOTO
THOOK_EXIT
THOOK_MEXIT
THOOK_MULTIEVT
THOOK_ALLOC
THOOK_ENTRY

typedef struct {
/**/
/* callback function copies data to controlling */
/* process buffer from target process memory */
/**/
asfCallbackResult (*asfGetStoreCallback)(

void *localDest,
const asfTargetRef *targetSrce,
size_t *dataLength);

/***/
/* callback function copies data to target process */
/* memory from controlling process buffer */
/***/
asfCallbackResult (*asfSetStoreCallback)(

const asfTargetRef *targetDest,
const void *localSrce,
size_t *dataLength);

} asfCallbackFunctions;

__setHookEvents()

Chapter 28. Debugging and performance analysis for AMODE 64 applications 747

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

the next lowest non-updatable target process address, and
(*asfSetStoreCallback)() returns the appropriate error value. If all of the target
process memory was updated successfully, *dataLength is unchanged and
(*asfSetStoreCallback)() returns asfResultOK.

The two callback functions must return an appropriate value to the caller. They
must not exit(), longjmp(), execute a PL/I ON clause or C++ throw statement,
or transfer control to any routine that bypasses returning to the caller. The type
of a target process memory reference is defined as follows:

v asid contains the identifier of the address space that contains the referenced
target process memory.

v addr is the virtual address of the target process memory within the specified
address space.

The return type of the address space free callback functions is defined as
follows:

v asfResultOK specifies that the callback function returned successfully.
Memory in the controlling process or target process is updated as requested.

The remaining values indicate an error in locating or accessing the target
process memory. If one of the following values is returned, no memory in the
target process is updated. If data is being copied from the target process to the
controlling process, the largest contiguous length of memory is copied, starting
from the specified target process address:
v asfResultAddressSpaceNotAvailable: the asid member of the target process

memory reference is not valid, or the address space to which it refers is not
available to the controlling process.

v asfResultPageNotMapped: the target process address space is available to the
controlling process, but the specified virtual address is not mapped within
that address space.

v asfResultPageNotAvailable: the target process address space is available and
the virtual address is mapped, but the data contained in that page is not
available to the controlling process. For example, the target process memory
is paged out and the target process is suspended, or the target process
memory is contained in a dump that does not include the requested memory
location.

v asfResultPageNotAccessable: the target process address space is available, the
virtual address is mapped and available, but the controlling process does not
have access to the storage because of key, page or segment protection.

typedef struct {
int asid; /* target address space identifier */
void *addr; /* memory address within target address

* space */
} asfTargetRef;

typedef enum {
asfResultOK,
asfResultAddressSpaceNotAvailable,
asfResultPageNotMapped,
asfResultPageNotAvailable,
asfResultPageNotAccessable

} asfCallbackResult;

__setHookEvents()

748 z/OS V2R1.0 Language Environment Vendor Interfaces

const asfTargetRef *asfTargetThreadRef
Specifies the address space identifier and virtual address of the target
Language Environment environment anchor associated with a particular target
thread in the target enclave. For AMODE 31 applications, this is the address of
the CAA, which is loaded into register R12 while the thread is running. For
AMODE 64 applications, it is the address of the LAA, stored in the prefix page
at PSALAA while the thread is running. If the calling thread is also the target
thread, asfTargetThreadRef can be a null pointer. If asfCallbacks is a null pointer,
the asid member of *asfTargetThreadRef is ignored. If asfCallbacks is not a null
pointer, asfTargetThreadRef and asfTargetThreadRef->addr must also not be a null
pointers.

const threadSpec *reservedForFutureUse
Specifies a null pointer. It is included to simplify future specifications of
particular threads, rather than all threads in the target enclave.

Returned value
If successful, __setHookEvents() returns 0.

If an error occurs, the execute hook event state of the target process is unchanged
and a negative value is returned:
v If any parameter is not valid, -1 is returned.
v If the target process runtime environment does not support instruction hook

events, -2 is returned.

Usage notes
v Restriction: Because C and C++ linkage conventions are incompatible,

__setHookEvents() cannot receive a C++ function pointer as one of the callback
routine function pointers. If you attempt to pass a C++ function pointer to
__setHookEvents(), the compiler flags it as an error. You can pass a C or C++
function to __setHookEvents() by declaring it as extern 'C'.

v The bit value macros can be bit-wise ORed to calculate the eventsMask value.

Debug tool-provided event handlers
One of the most important things a debug tool must do to be called by Language
Environment is provide an event handler to handle debug events. The address of
this event handler is maintained by Language Environment in the PCB field,
CEEPCBDBGEH. When Language Environment initializes, this field is initialized to
zero; when Language Environment loads the debug event handler, it sets this field
to the address of the debug event handler.

Debug tool event handler
The debug event handler is a DLL with an exported function called one
CELQVDBG. The default name of the DLL is also CELQVDBG. The
__CEE_DEBUG_FILENAME64 environment variable can be used to specify a
different DLL name. Language Environment checks for the environment variable. If
the variable exists, Language Environment uses the value specified as the name of
the debug event handler DLL and loads it.

You can specify the debug tool to be used at run time by exposing its name to the
system for Language Environment to LOAD. A load failure indicates to Language
Environment that a debug tool is not available while this program is running. The
debug event handler is loaded and initialized when any one of the following
occur:

__setHookEvents()

Chapter 28. Debugging and performance analysis for AMODE 64 applications 749

v An initial command string or PROMPT is discovered and the TEST runtime
option is in effect.

v The error condition is raised for the first time and the TEST runtime option is in
effect with the ERROR suboption specified.

v Any condition is raised for the first time and the TEST runtime option is in
effect with the ALL suboption specified.

v A call to __ctestc is made, regardless of the TEST runtime option setting.

Language Environment notifies the debugger of events by calling the CELQVDBG
function. The event handler interface is defined in Table 86 and the bit map
descriptions are in Table 87 on page 752.

Table 86. Debugger Language Environment event handler interface for AMODE 64 applications

Debug Tool Event Debug Tool
Event Code

Parm 2 Parm 3 Parm 4

Condition raised 101 CIB result code

Unhandled condition 103 CIB result code

User handler next 105 CIB
1

2

function pointer
for user handler
function pointer
for member
handler

Goto 111 DSA DSA format

PIPI Sub Initialization 115

PIPI Sub Termination 116

Enclave init 118 creator's EDB

Enclave term 119

Thread init 120 creator's CAA

Debug tool term 121

Thread term 122

External entry 123 v Parm 2 = DSA (see note)

v Parm 3 = cmd string

v Parm 4 = INPL

v Parm 5 = DSA format

Module load 124 DSA module descriptor DSA format

Module delete 125 DSA module name DSA format

Storage free 126 storage storage length

Condition promote 127 CIB result code

Condition goto 128 DSA DSA format

Debug tool program
check

130 result code

Message redirect 131 msg_text ddname

CALL CEETEST 132 DSA (see note 1) cmd string DSA format

Debug Interfaces

750 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 86. Debugger Language Environment event handler interface for AMODE 64 applications (continued)

Debug Tool Event Debug Tool
Event Code

Parm 2 Parm 3 Parm 4

Execute Hook
invocation

133 v Parm 2 = DSA

v Parm 3 = hook offset

v Parm 4 = DSA format

v Parm 5 = A buffer containing general purpose registers

v Parm 6 = Return address to the routine that was interrupted

v Parm 7 = Entry point to the routine that was interrupted

mutex_init 140 initializing thread_id mutex (for bit mask
descriptions, see
Table 56 on page 360)

mutex_destroy 141 destroying thread_id mutex

mutex_lock 142 owner thread_id mutex

mutex_unlock 143 thread_id releasing mutex mutex

mutex_wait 144 waiting thread_id mutex

mutex_unwait 145 posted thread_id mutex

mutex_relock 146 owner thread_id mutex

mutex_unrelock 147 owner thread_id mutex

cond_init 150 initializing thread_id condition var cv attr object

cond_destroy 151 destroying thread_id condition var

cond_wait 152 waiting thread_id condition var mutex

cond_unwait 153 posted thread_id condition var mutex

Initial thread create 160 initial thread_id nil stack_size

Initial thread exit 161 initial thread_id

Pthread create 162 creating thread_id created thread_id stack_size

Pthread created 163 created thread_id nil stack_size

Pthread exit 164 created thread_id

Pthread wait 165 joining thread_id joined thread_id

Pthread unwait 166 joining thread_id joined thread_id

Imminent CAA Chain
Addition

167

CAA Chain Addition
Complete

168

Imminent CAA Chain
Deletion

169

CAA Chain Deletion
Complete

170

POSIX fork()
imminent

171 thread_id

In child process 172

POSIX exec()
imminent

173

Process clean up
imminent

174

Debug Interfaces

Chapter 28. Debugging and performance analysis for AMODE 64 applications 751

Table 86. Debugger Language Environment event handler interface for AMODE 64 applications (continued)

Debug Tool Event Debug Tool
Event Code

Parm 2 Parm 3 Parm 4

Spawn is imminent 175

UNIX file system
load module

176 DSA UNIX file system
module descriptor

DSA format

Delete UNIX file
system load module

177 DSA UNIX file system
module name

DSA format

In parent process 178

After spawn 179

rwlock lock for read 181 thread_id rwlock

rwlock lock for write 182 thread_id rwlock

rwlock wait for read 183 thread_id rwlock

rwlock wait for write 184 thread_id rwlock

Multiple event
Execute Hook
invocation

189 v Parm 2 = DSA

v Parm 3 = hook offset

v Parm 4 = DSA format

v Parm 5 = A buffer containing general purpose registers

v Parm 6 = Return address to the routine that was interrupted

v Parm 7 = Entry point to the routine that was interrupted

v Parm 8 = Event mask

Note:

1. This is the requestor's DSA, which means an HLL library routine DSA is likely the requestor of the Language
Environment service or user DSA.

2. If DSA format is 1 in a 64–bit environment, i.e. XPLink DSA, 64-bit address of 64-bit'ized DSA

Table 87. Debugger Language Environment event handler bit mask descriptions for AMODE 64 applications

Bit mask Description

'00000000'X The object is a private mutex with the non-recursive characteristic.

'00000001'X The object is a private mutex with the recursive characteristic.

'00800000'X The object is a shared mutex with the non-recursive characteristic.

'00800001'X The object is a shared mutex with the recursive characteristic.

'08000001'X The object is a private rwlock with the recursive characteristic.

'08800001'X The object is a shared rwlock with the recursive characteristic.

CAA
A doubleword binary integer that contains the address of the CAA.

CIB
A doubleword binary integer that contains the address of the CIB.

DSA
A doubleword binary integer that contains the address of the DSA.

DSA format
A fullword binary integer set to:
1 The format of the DSA is XPLINK style.

Debug Interfaces

752 z/OS V2R1.0 Language Environment Vendor Interfaces

General purpose registers
A 128-byte buffer containing the general purpose registers stored in order 0 to
15 at the time the debug hook was executed. If the debugger changes these
register values, the new values will be used when control is returned to the
routine that executed the debug hook.

return_address
A doubleword pointer containing the address of the instruction where control
will be returned to the routine that executed the debug hook. If the debugger
changes this address, control will be returned to the new location.

entry_ptr
A fullword pointer containing the address of the entry point of the routine that
contains the debug hook.

EDB
A doubleword binary integer that contains the address of the EDB.

module name
A halfword-prefixed string of the module name being deleted.

UNIX file system module name
A fullword-prefixed string of the module name being deleted.

module descriptor
A structure describing the module that was just loaded. The structure is as
follows:

UNIX file system module descriptor
A structure describing the module that was just loaded. The structure is as
follows:

result code
A fixed(31) binary value action for condition manager to take. The supported
values are:
v 110 — Resume at the resume cursor
v 120 — Percolate to next condition handler

storage length
A fixed(31) binary value containing the number of bytes of storage.

cmd string
A halfword-prefixed string containing the debug command.

dcl 1 module descriptor,
3 load point pointer(64),
3 module size fixed,

3 * char(4),
3 entry point pointer(64),

3 name length fixed(15),
3 module name char(255);

dcl 1 UNIX file system module descriptor,
3 load point pointer(64),
3 module size fixed,

3 * char(4),
3 entry point pointer(64),

3 name length fixed(31),
3 module name char(255);

Debug Interfaces

Chapter 28. Debugging and performance analysis for AMODE 64 applications 753

msg_text
A halfword-prefixed string of the text that is transmitted by Language
Environment message services.

ddname
An 8–byte character string, left-justified, padded right with blanks of the target
ddname.

INPL
The initialization parameter list. For the format of the INPL, see Figure 55 on
page 155.

start_rtn
A function pointer to the start routine for the pthread.

thread_id
An 8-byte thread identifier.

mutex
A pointer to a mutex object.

recursive
A recursive type mutex.

nonrecurs
A nonrecursive type mutex.

condition var
A pointer to a condition variable object.

cv attr object
A pointer to a condition variable attributes object.

stack_size
A fixed (63) stack size attribute (in bytes) of initial or created thread.

nil
Unused; null pointer.

event mask
a fullword binary value in which each bit represents a different hook event.
When the bit is '1'b, the event occurred. The values of the bits are:
Bit Event
0-11 Not used
12 Multiple Event Hook
13 Allocate Descriptor Built
14 Block Entry
15 Not used
16 User label
17 Begin of statement
18 Call return
19-20 Not used
21 Start of loop
22 If evaluated TRUE
23 If evaluated FALSE
24 Switch/case/select choice start
25 Switch/case/select default start
26 Multiple flows join
27 Not used
28 Call begin
29 Goto
30 Procedure exit
31 Multiple exit

Usage Notes:

Debug Interfaces

754 z/OS V2R1.0 Language Environment Vendor Interfaces

1. A message is issued if the load fails because the Debug tool is not available.
2. All parameters are passed by reference.
3. Return codes (in decimal) are placed in R3

00 Success
16 Critical error in the debug tool; do not invoke again.

4. The debugger signals a CEE2F1 condition when it needs to quit from a nested
enclave.

Language Environment actions for the interactive debug tool
This section discusses the actions Language Environment takes on behalf of a
debug tool.

Language Environment parses the TEST runtime option on behalf of the debug
tool and sets the appropriate flags within the Language Environment options
control block. Language Environment sets the initial values for the test level and
the debug tool event handler in the PCB. After its initial setting during the
initialization of the first enclave within the process, this field is updated only by
debug tool commands such as the SET TEST command. It is not influenced by
nested enclave invocations. For every new enclave spawned and every thread
being terminated, if the debug tool has been initialized, Language Environment
thread initialization/termination calls the debug event with an enclave
initialization or termination event code.

If the debug tool has been initialized, Language Environment messages and
messages using Language Environment services are delivered to the debug tool by
calling the debug event handler. In addition, the Language Environment error
handler calls the debug event handler for all enabled conditions. The debug event
handler is called after the enablement phase and prior to calling the exception
handlers. It is also called when a condition is promoted.

Language Environment interactive debug data areas
Language Environment provides data areas for a debug tool's use. These areas are
described in this section. The CAA fields are as follows:
v Initial command string address and length is contained within the Language

Environment options control block.
v The TEST option's command file ddname is contained within the Language

Environment options control block.
v Indication of ALL, ERROR, or NONE TEST suboption is contained within the

Language Environment options control block.

Execute hook support
The compiled execute hook can be a single event hook or a multiple event hook. A
multiple event hook represents the simultaneous occurrence of more than one
execute hook event. The multiple event hook collapses multiple EX instructions
into a single EX instruction, followed by a NOP instruction.

Invoking the event handler:
v Single event hook:

If the debugger has been initialized when a single event hook is enabled and
executed, the debugger event handler is invoked with the following interface:
1. Event code 133

Debug Interfaces

Chapter 28. Debugging and performance analysis for AMODE 64 applications 755

2. A DSA that was in control when the hook was executed
3. The offset of the hooks within the hook set that was executed (a multiple of

4 ranging from 0 to 15 inclusive)
4. DSA format
5. A buffer containing general purpose registers
6. Return address to the routine that was interrupted
7. Entry point to the routine that was interrupted

v Multiple event hook:
If the debugger has been initialized when a multiple event hook is enabled and
executed and the hook for at least one of the events is active, the debugger event
handler is invoked with the following interface:
1. Event code 189
2. A DSA that was in control when the hook was executed
3. The offset of a multiple event hook is a specific number determined by the

events
4. DSA format.
5. A buffer containing general purpose registers
6. Return address to the routine that was interrupted
7. Entry point to the routine that was interrupted
8. Event mask

Use __setHookEvents() to enable or disable execution hooks.

Performance analysis support
Language Environment provides support for performance analysis, or profiler
tools. You can use a profiler tool to determine the performance level of an
application; for example, trace data from a profiler tool can reveal the areas of an
application that require the most processing time.

The C/C++ Performance Analyzer is available with the IBM C/C++ Productivity
Tools for the z/OS product. Use the Performance Analyzer to help analyze,
understand, and tune your C and C++ applications for improved performance.

Profile tool event handler
The profile event handler is A DLL named CELQVPRF with an exported function
called CELQVPRF. The profiler event handler is loaded and initialized if the
PROFILE runtime option is in effect and the TEST runtime option is not specified.

Reminder: If the TEST runtime option is specified, the PROFILE runtime option is
ignored and a profiler tool is not loaded. A load failure occurs if Language
Environment cannot find the CELQVPRF routine or if the routine is not available.

Language Environment calls the CELQVPRF function to notify the profiler tool of
certain events. These events, which are described in Table 88 on page 757, are a
subset of the notifications and parameters that Language Environment passes to
the debug tool event handler.

Debug Interfaces

756 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 88. Profile tool — Language Environment event handler interface for AMODE 64 applications

Profile Tool Event Profile Tool
Event Code

Parm 2 Parm 3 Parm 4

Condition raised 101 CIB result code

Unhandled condition 103 CIB result code

Enclave init 118 creator's EDB

Enclave term 119

Thread init 120 creator's CAA

Profile tool term 121

Thread term 122

External entry 123 DSA address (see note) profiler invocation
string

v Parm 4 = INPL

v Parm 5 = DSA
format

Condition promote 127 CIB result code

Execution Hook
invocation

133 v Parm 2 = DSA

v Parm 3 = hook offset

v Parm 4 = DSA format

v Parm 5 = A buffer containing general purpose registers

v Parm 6 = Return address to the routine that was interrupted

v Parm 7 = Entry point to the routine that was interrupted

v Parm 8 = Eight-byte clock value returned by the STORE Clock (STCK)
instruction

v Parm 9 = Eight-byte elapsed CPU time in microseconds returned by the
TIMEUSED assembler service

Initial thread create 160 initial thread_id nil stack_size

Initial thread exit 161 initial thread_id

Pthread create 162 creating thread_id created thread_id stack_size

Pthread created 163 created thread_id nil stack_size

Pthread exit 164 created thread_id

POSIX fork()
imminent

171 thread_id

In child process 172

POSIX exec()
imminent

173

Process clean up
imminent

174

Spawn is imminent 175

In parent process 178

After spawn() 179

Performance Analysis Support

Chapter 28. Debugging and performance analysis for AMODE 64 applications 757

Table 88. Profile tool — Language Environment event handler interface for AMODE 64 applications (continued)

Profile Tool Event Profile Tool
Event Code

Parm 2 Parm 3 Parm 4

Multiple event
Execute Hook
invocation

189 v Parm 2 = DSA

v Parm 3 = hook offset

v Parm 4 = DSA format

v Parm 5 = A buffer containing general purpose registers

v Parm 6 = Return address to the routine that was interrupted

v Parm 7 = Entry point to the routine that was interrupted

v Parm 8 = eight-byte clock value returned by the STORE Clock (STCK)
instruction

v Parm 9 = eight-byte elapsed CPU time in microseconds returned by the
TIMEUSED assembler service

v Parm 10 = Event mask

Note: This is the requestor's DSA, which means an HLL library routine DSA is likely the requestor of the Language
Environment service or user DSA.

CAA
A doubleword binary integer that contains the address of the CAA.

CIB
A doubleword binary integer that contains the address of the CIB.

DSA
A doubleword binary integer that contains the address of the DSA.

EDB
A doubleword binary integer that contains the address of the EDB.

Hook offset
A fullword binary integer that contains the offset of the hook that was
executed within the hook set. (This value is a multiple of 4 ranging from 0 to
52 inclusive.)

DSA format
A fullword binary integer set to:
1 The format of the DSA is XPLINK style.

General purpose registers
A 128-byte buffer containing the general purpose registers stored in order 0 to
15 at the time the debug hook was executed. If the debugger changes these
register values, the new values will be used when control is returned to the
routine that executed the debug hook.

return_address
A doubleword pointer containing the address of the instruction where control
will be returned to the routine that executed the debug hook. If the debugger
changes this address, control will be returned to the new location.

entry_ptr
A doubleword pointer containing the address of the entry point of the routine
that contains the debug hook.

result code
A fixed(31) binary value action for condition manager to take. The supported
values are:
v 110 — Resume at the resume cursor
v 120 — Percolate to next condition handler

Performance Analysis Support

758 z/OS V2R1.0 Language Environment Vendor Interfaces

storage length
A fixed (31) binary value containing the number of bytes of storage.

profiler invocation string
A halfword-prefixed string that contains the invocation string of the profiler
tool. This value, which is specified as the string parameter of the PROFILE
runtime option, it is translated to upper case characters. For more information
about the runtime option, see z/OS Language Environment Programming
Reference.

INPL
The Initialization Parameter List. For the format of the INPL, see Figure 55 on
page 155.

thread_id
An 8-byte thread identifier.

stack_size
A fixed (63) stack size attribute (in bytes) of initial or created thread.

nil
Unused; null pointer.

event mask
a fullword binary value in which each bit represents a different hook event.
When the bit is '1'b, the event occurred. The values of the bits are:
Bit Event
0-11 Not used
12 Multiple Event Hook
13 Allocate Descriptor Built
14 Block Entry
15 Not used
16 User label
17 Begin of statement
18 Call return
19-20 Not used
21 Start of loop
22 If evaluated TRUE
23 If evaluated FALSE
24 Switch/case/select choice start
25 Switch/case/select default start
26 Multiple flows join
27 Not used
28 Call begin
29 Goto
30 Procedure exit
31 Multiple exit

Language Environment actions for profiler
Language Environment parses the PROFILE runtime option on behalf of the profile
tool and sets the appropriate flags and profiler invocation string with the Options
Control Block (OCB). If the TEST runtime option has also been specified, Language
Environment issues a message to indicate that the TEST option will take
precedence; that is, Language Environment will load the specified debug tool and
will not load the specified profiler tool. If the NOTEST runtime option is specified,
Language Environment loads module CELQVPRF.

Performance Analysis Support

Chapter 28. Debugging and performance analysis for AMODE 64 applications 759

Performance Analysis Support

760 z/OS V2R1.0 Language Environment Vendor Interfaces

Chapter 29. Anchor support for AMODE 64 applications

For AMODE 64 applications, register 12 can no longer be relied upon to contain
the address of Language Environment common anchor area (CAA). Instead a new
Language Environment anchor, library anchor area (LAA), is being defined for
AMODE 64 applications that is anchored in the prefix save area (PSA) field
PSALAA.

On every TCB ATTACH of an AMODE 64 application, the Language Environment
LAA is allocated and initialized along with the STCB (Key 0 and subpool 253,
ELSQA). It is anchored from both the PSALAA and the STCB field STCBLAA.
Since this is Key 0 authorized storage, it can be read byLanguage Environment and
other unauthorized programs. When a TCB is dispatched, the contents of
STCBLAA are copied into PSALAA.

The LAA points to a new library common area (LCA). This control block is
allocated when Language Environment is initialized. It is allocated along with the
Language Environment control blocks in 31–bit storage in the key of the caller. It
contains information and pointers that can be set or reset by the application in the
key of the caller, including a pointer to the CAA.

To get the address of the Language Environment CAA in an AMODE 64
environment, the basing is:
PSALAA -> CEELAA_LCA64 -> CEELCA_CAA -> CAA

For more information on the library anchor area and library common area, see
Chapter 22, “CALL linkage convention for AMODE 64 applications,” on page 685.

© Copyright IBM Corp. 1991, 2015 761

762 z/OS V2R1.0 Language Environment Vendor Interfaces

Chapter 30. Preinitialized Environments for Authorized
Programs for AMODE 64 applications

Preinitialized Environments for Authorized Programs is a feature of Language
Environment for AMODE 64 applications. It allows authorized components to
create pre-initialized Language Environment environments that are able to execute
C/C++ and Language Environment-conforming assembler routines. To use
Preinitialized Environments for Authorized Programs, the caller must be running
supervisor state, with PSW key 1 to 7. The caller's PSW key must be the same for
all requests. When running in cross-memory mode, all data used by the routine
must be in the current primary address space. Access registers are not used to
address this data.

Preinitialized Environments for Authorized Programs are created, initialized, and
ended asynchronous to the execution of the C, C++, and Language
Environment-conforming Assembler routines. Each environment is a self-contained
process and has its own stack and heap. You have the option of managing the
environments (user-managed) or allowing Preinitialized Environments for
Authorized Programs to manage them (system-managed).

Creating Preinitialized Environments for Authorized Programs
You can initialize environments with a call using the CELAAUTH macro. On this
call, you can specify the characteristics of the environments you want to create,
including the management characteristics, runtime options, and the number of
environments. Environment initialization can only be performed in the home
address space in TCB or SRB mode.

Restriction: Cross-memory mode initialization is not allowed.

Preinitialized Environments for Authorized Programs are based on the AMODE 64
version of Language Environment and have the following characteristics:
v The linkage model is XPLINK.
v The storage for the stack, user heap, and most Language Environment control

blocks is allocated above the bar.
v Only AMODE 64 runtime options are valid.

In order for authorized applications to use this support, it is required that they
define SCEERUN2 and SCEERUN as authorized libraries. These libraries are part
of the z/OS program search order for the address space's cross-memory resource
owning (CMRO) task. You can do this in one of the following ways:
v Put SCEERUN2 and SCEERUN in the LNKLST.
v Define SCEERUN2 and SCEERUN to be APF-authorized, and placing them in

the application's TASKLIB or STEPLIB/JOBLIB concatenation.

Preinitialized Environments for Authorized Programs supports a subset of the
C/C++ library functions. For a list of these functions, see z/OS XL C/C++ Runtime
Library Reference.

© Copyright IBM Corp. 1991, 2015 763

Creating a user-managed environment
When creating a user-managed environment, you can supply runtime options by
passing a string of characters on the initialization call. These options are saved
with the user-managed environment and are merged into the runtime options set
when the runtime environment is created.

Each initialization call to CELAAUTH creates one environment. A token
representing the environment is returned to the caller. This token is used to
identify the newly-created environment on subsequent calls.

Creating a system-managed environment
When creating a set of system-managed environments, you need to create an
authorized environment definition table (AEDT). The AEDT describes the
attributes and management characteristics of the environments to be created. Each
AEDT contains one or more environment definition entries (AEDE). Each AEDE is
a set of characteristics that describe how and when an environment is to be
created. On later routine calls, you need to select an AEDE to run the call by
specifying the index in the AEDT corresponding to the appropriate AEDE.

Guidelines: When building the AEDT, for each AEDE specify:
v An optional runtime options string to be applied to any environment created for

that entry. The runtime option string for each AEDE is applied to each
environment on the first call using the environment, along with the options
specified by the main(). This initial set of options remains in effect for the life of
the environment, unless overridden by another runtime options string on a
subsequent call that uses this environment.

v The initial number of environments to be created
v The amount of time, in microseconds, to wait if no environments are available.

The minimum value is 0, which indicates that no wait is to be performed.
CELAAUTH uses this value to wait once for an available environment before
attempting to increment the number of environments. If the maximum number
of environments has been reached, CELAAUTH waits once more for an
available environment, using the specified time. Do not specify values greater
than 20 microseconds because this could have an adverse affect on CELAAUTH
processing.

v The number of environments to be incrementally created when all existing
environments are in use

v The maximum number of environments to be created
v A deferred initialization attribute that indicates whether to defer the creation of

the initial set of environments until the first call using that environment type

With system-managed environments, the caller needs to provide an 8-byte
identifier that identifies the set of managed environments within the address space.
This helps differentiate between sets of managed environments created by different
components or applications. The actual content of the environment ID is up to the
caller. For example, it could contain a pointer to an application's control block or
an 8-character value.

Recommendation: When characters are used for the environment ID, the value
should begin with the application's 3-4 character component ID to help avoid
confusion with other identifiers. Managed environment IDs beginning with the
characters "CEE", "CEL", and "EDC" are reserved for use by Language
Environment.

764 z/OS V2R1.0 Language Environment Vendor Interfaces

Preinitialized Environments for Authorized Programs tasks
The following tasks are important to Preinitialized Environments for Authorized
Programs when it performs specific functions:
v Resource-owning (ARO) TCB
v Preinitialized Environments for Authorized Programs worker task

Task-level resource managers are established within the address space the first time
an environment is created. These resource managers detect when the ARO or
worker task is terminating and performs any necessary cleanup.

Preinitialized Environments for Authorized Programs
resource-owning TCB
The Preinitialized Environments for Authorized Programs resource-owning (ARO)
TCB is the task to which CELAAUTH assigns ownership for system resources that
it obtains on behalf of the user. This ensures that environments are independent of
the dispatchable unit of work that created them and allows them to continue to
function after the related CELAAUTH call has ended. The default ARO TCB is the
cross memory resource owning (CMRO) TCB in the address space.

Preinitialized Environments for Authorized Programs worker task
CELAAUTH attaches a worker task to the ARO TCB. The worker task performs
functions that must be done in task mode. These include loading routine load
modules, DLLs, and fetchable modules requested by routines running in
environments within the address space. Note the following restrictions:
v Preinitialized Environments for Authorized Programs does not control or

override the search order used to locate a load module. The search order
established for the ARO TCB is used. This includes any JOBLIBs, STEPLIBs, or
TCBLIBs the application previously defined.

v Preinitialized Environments for Authorized Programs does not delete any of the
load modules that were loaded using the worker task.

v Only reentrant routines are supported.
v All load modules must reside in a PDSE.

Executing a routine in Preinitialized Environments for Authorized
Programs

An application can execute C, C++, and Language Environment-conforming
Assembler code by calling CELAAUTH with information describing the routine to
be run. The call to CELAAUTH must be made in primary ASC mode in the key in
which the routine should run.

Recommendation: All routines should be reentrant to reduce the storage
constraints.

In Preinitialized Environments for Authorized Programs, an application can call the
following types of routines:
v main()

Preinitialized Environments for Authorized Programs supports C/C++ main()
functions using one of the following:
– The name of the program object where main() resides if CELAAUTH needs to

load the program object
– The address of the program object entry point if the calling program loaded

the program object previously

Chapter 30. Preinitialized Environments for Authorized Programs for AMODE 64 applications 765

v Fetchable function
Preinitialized Environments for Authorized Programs supports calls to functions
that have been declared fetchable using the #pragma linkage compiler directive.
The function is identified by:
– The name of the program object where the function resides if CELAAUTH

needs to load the program object
– The address of the program object entry point if the calling program loaded

the program object previously
v Exported function

Preinitialized Environments for Authorized Programs supports calls to exported
functions from a DLL. The function is identified by supplying the name of the
function and the name of the DLL in which the function resides.

When returning from the first call for a specific routine, CELAAUTH returns a
token representing the routine. This routine token should be used on subsequent
calls to the same routine to allow CELAAUTH to pass control to the routine more
quickly.

Calling a main routine
When calling a main routine, additional runtime options are passed as a string of
characters on the call. This string is merged with the initialization runtime options
string, the application runtime options settings found in CELQUOPT, and the
system-level defaults, before initializing the environment. For more information,
see “Creating a user-managed environment” on page 764.

Each time a main is run within an environment, CELAAUTH reinitializes the
environment. This includes:
v Refreshing the main's WSA
v Resetting Language Environment component states
v Cleaning up unneeded heap allocations from a previous use

Calling a subroutine
When calling a subroutine, the input runtime options string is ignored. The
subroutine is run in an environment that is initialized using the initialization
runtime options string merged with the system-level defaults before initializing the
environment.

When a subroutine is run on an environment just after a main routine is run on
the same environment, the subroutine receives a reinitialized environment. When a
subroutine calls exit(), the atexits are invoked and environment terminates after
the atexits. The next time this environment is used, it is reinitialized.

Using runtime options
Most runtime options are valid for Preinitialized Environments for Authorized
Programs with the following exceptions:
v POSIX(ON) is not supported. If POSIX(ON) is specified, it is overridden by

POSIX(OFF).
v The generation of CEEDUMPs is not supported. The only valid options for

TERMTHDACT are QUIET, MSG, UAONLY, and UAIMM. If any other option is
specified, it is overridden with TERMTHDACT(UAONLY).

During the first environment initialization within an address space, a copy is made
of the currently active set of parmlib-level default runtime options. This set of

766 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|
|

|
|
|
|

options is merged with runtime options from other sources when each
environment is initialized. Subsequent changes to the parmlib-level options on the
system do not affect this local copy of the options.

Selecting an environment
For user-managed environments, the user provides an environment token that
identifies the environment in which the code should execute. If the environment is
already in use, CELAAUTH returns a reason code indicating that the environment
is unavailable.

For system-managed environments, CELAAUTH selects the environment with
which to execute the code. A new environment might be created if all the existing
environments are already being used. The user has no control over what specific
environments are used with each routine. These routines should be "stateless", not
relying on any data previously saved in the environment.

Recommendation: If this set of routines has complex state requirements or
dependencies, the application must use user-managed environments.

Providing recovery
To provide recovery, CELAAUTH establishes one of the following each time it is
called:
v an EUTFRR
v an ESTAE if RECOVERY=ESTAE is specified on the CELAAUTH macro

invocation

In addition to capturing serviceability information, CELAAUTH uses this recovery
routine to process Language Environment shunts, handle math overflows, and
drive Language Environment condition management for the application routines.

Restriction: With an EUTFRR established, the program cannot issue SVCs or
handle asynchronous interrupts.

Preinitialized Environments for Authorized Programs provides recovery for worker
tasks established under the ARO within each address space where environments
are created. This ensures that the task does not end prematurely. The worker task
recovery attempts to isolate the problem and makes sure the task remains active.
An ETXR routine is established in case worker task recovery cannot save the TCB.

Terminating Preinitialized Environments for Authorized Programs
CELAAUTH begins to clean up the environment when it receives a termination
call. For user-managed environments, resources related to the specific environment
that provided a token are freed. For system-managed environments, all existing
environments are cleaned up. When the last environment is ended, CELAAUTH
cleans any remaining tasks and resources that were obtained to manage the
environments.

Examples of using Preinitialized Environments for Authorized
Programs

Following are examples of using Preinitialized Environments for Authorized
Programs.

Chapter 30. Preinitialized Environments for Authorized Programs for AMODE 64 applications 767

Using Preinitialized Environments for Authorized Programs in
service request block (SRB) mode

In this example, Preinitialized Environments for Authorized Programs is being
used by an SRB mode exploiter. The user code running under the SRB uses the
CELAAUTH macro to call a C/C++ routine within the address space. The
CELAAUTH services locate an available environment, including an LAA, in which
to run the routine. The address of the LAA is placed in PSALAA before calling the
routine. If the routine requires an additional DLL to be loaded, CELAAUTH
queues a request to the worker task, which performs the load and returns the
information. If the SRB is preempted, the LAA address in PSALAA is saved in the
SSRB. This value is restored to PSALAA when the SRB is re-dispatched.

Using Preinitialized Environments for Authorized Programs in
cross-memory mode

In Figure 154 on page 769, Preinitialized Environments for Authorized Programs
are being used in cross-memory mode. A TCB has performed a program call into
the address space where environments have been initialized. The user code
running as the target of the program call uses the CELAAUTH macro to call a
C/C++ routine within the address space. The CELAAUTH services locate an
available environment, including an LAA, in which to run the routine. The address
of the LAA is placed in PSALAA and STCBLAA before calling the routine. If the
routine requires an additional DLL to be loaded, CELAAUTH queues a request to
the worker task, which performs the load and returns the load information. If the
TCB is preempted, the LAA address can be restored to PSALAA from STCBLAA

Process a
request by
scheduling
an SRB

SSRB

PSA

Worker TCB
manages pool
of environments

SRB

User code

Invoke C/C++
code using
CELAAUTH CELAAUTH

call processing
C code

Request
created to
load a DLL

Pool of Preinitialized
Environments for
Authorized Programs

TLAA
LAA

LAA
in use

LAA

LAA

Figure 153. Using Preinitialized Environments for Authorized Programs in SRB mode

768 z/OS V2R1.0 Language Environment Vendor Interfaces

when the TCB is re-dispatched.

CELAAUTH macro
The CELAAUTH macro allows you to create Preinitialized Environments for
Authorized Programs and to run C, C++, and Language Environment-conforming
assembler routines within those environments for AMODE 64 applications.
CELAAUTH is used to perform the following tasks:
v Environment initialization: Set up one or more environments for later use.
v Routine invocation: Call a C/C++ or Language Environment Assembler routine

using a previously initialized environment.
v Environment termination: Clean up one or more environments.

CELAAUTH environments
There are two forms of Preinitialized Environments for Authorized Programs:
user-managed and system-managed.

User-managed environment
In a user-managed environment, the invoker of CELAAUTH has complete control
over the environments. This includes the number created, when they are created
and destroyed, and the environment used to execute each called routine. For a
user-managed environment, an application can use these CELAAUTH request
types:

TCB

STCB

PSA

Worker TCB
manages pool
of environments

User code

Invoke C/C++
code using
CELAAUTH

CELAAUTH
call processing C code

PC

Request
created to
load a DLL

Pool of Preinitialized
Environments for
Authorized Programs

TLAA
LAA

LAA
in use

LAA

LAA

Via alet

Process a
request by
scheduling
a TCB

Figure 154. Using Preinitialized Environments for Authorized Programs in cross-memory mode

Chapter 30. Preinitialized Environments for Authorized Programs for AMODE 64 applications 769

USERINIT
Initialize an environment that is managed by the user. See “Syntax for
REQUEST=USERINIT” on page 771 for more information.

USERCALL
Call a routine using an environment that was initialized using USERINIT.
See “Syntax for REQUEST=USERCALL” on page 775 for more information.

USERTERM
End an environment that was created using USERINIT. See “Syntax for
REQUEST=USERTERM” on page 780 for more information.

System-managed environment
In a system-managed environment, CELAAUTH provides most of the management
of the environments. The caller of CELAAUTH only needs to specify the number
of environments to be created and the runtime options for these environments. For
a system-managed environment, an application can use these CELAAUTH request
types:

MNGDINIT
Define and initialize a set of environments that are to be managed by the
system. See “Syntax for REQUEST=MNGDINIT” on page 782 for more
information.

MNGDCALL
Call a routine using an environment that is part of the set of environments
that was initialized using MNGDINIT. See “Syntax for
REQUEST=MNGDCALL” on page 788 for more information.

MNGDUPDT
Call a routine using an environment that is part of the set of environments
that was initialized using MNGDUPDT. See “Syntax for
REQUEST=MNGDUPDT” on page 793 for more information.

MNGDTERM
End the set of environments that was created using MNGDINIT. See
“Syntax for REQUEST=MNGDTERM” on page 796 for more information.

Environment overview
The requirements for the caller are:

Requirement
Minimum authorization: Supervisor state with PSW key 1–7
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN

Requests for USERCALL and USERTERM must be made in
the same primary address space as a previous USERINIT
request.

Requests for MNGDCALL and MNGDTERM must be made
in the same primary address space as a previous
MNGDINIT request.

Restriction: Requests for USERINIT and MNGDINIT cannot
be made while in cross-memory mode.

AMODE: 64-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.

CELAAUTH

770 z/OS V2R1.0 Language Environment Vendor Interfaces

Requirement
Control parameters: Control parameters must be in the primary address space.

For REQUEST=USERCALL and REQUEST=MNGDCALL, all
data to be accessed by any C or C++ routines must be in the
primary address space as well.

Programming requirements
None.

Restrictions
None.

Input register information
When issuing the CELAAUTH macro, register 13 must contain the address of a
144-byte work area.

Attention: All 144 bytes of this work area might be changed during the
CELAAUTH invocation. This is important if the caller is attempting to use its
current register 13 save area as the work area. Important fields in the save area
might be destroyed, such as the previous save area address at offset X'80' in an
F4SA-style save area. If the caller is using a save area, it must ensure that
important fields in the save area are preserved. Use care when the caller's register
13 points to a dynamic area containing local variables to ensure that any variables
used by the CELAAUTH expansion are still addressable.

The caller does not have to place any information into any other registers unless
using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, if GPR 15 is non-zero
1 Used as a work register by the system
2-13 Unchanged
14 Used as a work register by the system
15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-15 Unchanged

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Syntax for REQUEST=USERINIT

CELAAUTH

Chapter 30. Preinitialized Environments for Authorized Programs for AMODE 64 applications 771

name name: symbol. Begin name in column 1.

� One or more blanks must precede CELAAUTH.

CELAAUTH

� One or more blanks must follow CELAAUTH.

REQUEST=USERINIT

,WRKJSTCB=SYSRULES Default: WRKJSTCB=SYSRULES
,WRKJSTCB=NO
,WRKJSTCB=YES

,FULLINIT=YES Default: FULLINIT=YES
,FULLINIT=NO

,RTO=rto rto: RS-type address or address in register (2) - (12)

,RTOLEN=rtolen rtolen: RS-type address or address in register (2) - (12)

,ENVTOKEN=envtoken envtoken: RS-type address or address in register (2) - (12)

,RECOVERY=EUTFRR Default: RECOVERY=EUTFRR
,RECOVERY=ESTAE

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

,MF=S Default: MF=S
,MF=(L,list addr) list addr: RS-type address or register (1) - (12)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters for REQUEST=USERINIT
The parameters are explained as follows:

name
is an optional symbol, starting in column 1, that is the name on the
CELAAUTH macro invocation. The name must conform to the rules for an
ordinary assembler language symbol. The default is no name.

CELAAUTH

772 z/OS V2R1.0 Language Environment Vendor Interfaces

REQUEST=USERINIT
REQUEST=USERINIT creates Preinitialized Environments for Authorized
Programs in the current primary address space and returns a token that
identifies the environment. Each USERINIT call establishes another
environment. The application must manage the set of environments USERINIT
creates.

,WRKJSTCB=SYSRULES
,WRKJSTCB=NO
,WRKJSTCB=YES

An optional parameter that indicates the job step attribute of any task that
CELAAUTH may attach to the Cross Memory Resource Owning task. This
keyword is only necessary if this task will be the first subtask attached under
this task, so the job step attribute is not clear. The default is
WRKJSTCB=SYSRULES.

,WRKJSTCB=SYSRULES
indicates that CELAAUTH will determine the proper job step attribute
with which to attach the task. CELAAUTH will use the job step attribute
of the current subtasks under the Cross Memory Resource Owning Task. If
no subtasks are found, then CELAAUTH will attach the task as non-job
step.

,WRKJSTCB=NO
indicates that the task must be a non-job step task.

,WRKJSTCB=YES
indicates that the attached task must be a job step task.

,FULLINIT=YES
,FULLINIT=NO

An optional parameter indicating whether the environment is to be fully
initialized during this call. The default is FULLINIT=YES.

,FULLINIT=YES
indicates full initialization is requested.

,FULLINIT=NO
indicates that minimal initialization is requested. Complete environment
initialization will occur upon first use.

,RTO=rto
An optional input parameter containing the runtime options to be associated
with the environment that is to be initialized during this call. The length of the
runtime options cannot exceed 4096 characters.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,RTOLEN=rtolen
When RTO=rto is specified, a required input parameter containing the length
of the runtime option string pointed to by RTO.

To code: Specify the RS-type address, or address in register (2)-(12), of a
doubleword field.

,ENVTOKEN=envtoken
A required output parameter that is to contain the token that will be used to
identify the environment that was just created. The contents of this
environment token will be provided by CELAAUTH, and must be used on
subsequent user-managed type calls to identify the environment.

CELAAUTH

Chapter 30. Preinitialized Environments for Authorized Programs for AMODE 64 applications 773

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,RECOVERY=EUTFRR
,RECOVERY=ESTAE

An optional parameter indicating the type of recovery routine to be set by
CELAAUTH for this invocation.

,RECOVERY=EUTFRR
indicates that an EUTFRR will be set.

,RECOVERY=ESTAE
indicates that an ESTAE will be set. When invoked in SRB mode, an
EUTFRR is always used.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)

CELAAUTH

774 z/OS V2R1.0 Language Environment Vendor Interfaces

,MF=(E,list addr,COMPLETE)
An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

Syntax for REQUEST=USERCALL

name name: symbol. Begin name in column 1.

� One or more blanks must precede CELAAUTH.

CELAAUTH

� One or more blanks must follow CELAAUTH.

REQUEST=USERCALL

,RTNNAME=rtnname rtnname: RS-type address or address in register (2) - (12)
,RTNADDR=rtnaddr rtnaddr: RS-type address or address in register (2) - (12)

,RNAMELEN=rnamelen rnamelen: RS-type address or address in register (2) - (12)

,DLLNAME=dllname dllname: RS-type address or address in register (2) - (12)

,RTO=rto rto: RS-type address or address in register (2) - (12)

CELAAUTH

Chapter 30. Preinitialized Environments for Authorized Programs for AMODE 64 applications 775

,RTOLEN=rtolen rtolen: RS-type address or address in register (2) - (12)

,PARMLIST=parmlist parmlist: RS-type address or address in register (2) - (12)

,RTNTOKEN=rtntoken rtntoken: RS-type address or address in register (2) - (12)

,ENVTOKEN=envtoken envtoken: RS-type address or address in register (2) - (12)

,RTNRETCODE=rtnretcode rtnretcode: RS-type address or address in register (2) - (12)

,RTNRSNCODE=rtnrsncode rtnrsncode: RS-type address or address in register (2) - (12)

,RTNFDBKCODE=rtnfdbkcode rtnfdbkcode: RS-type address or address in register (2) - (12)

,RECOVERY=EUTFRR Default: RECOVERY=EUTFRR
,RECOVERY=ESTAE

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

,MF=S Default: MF=S
,MF=(L,list addr) list addr: RS-type address or register (1) - (12)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters for REQUEST=USERCALL
The parameters are explained as follows:

name
is an optional symbol, starting in column 1, that is the name on the
CELAAUTH macro invocation. The name must conform to the rules for an
ordinary assembler language symbol. The default is no name.

REQUEST=USERCALL
REQUEST=USERCALL indicates that CELAAUTH invoke the specified C, C++,
or Language Environment-conforming Assembler routine, using the
environment represented by the supplied environment token. The environment
can be called serially multiple times. The values in the heap and WSA are
reinitialized between invocations only if the function is a C/C++ main.

,RTNNAME=rtnname
,RTNADDR=rtnaddr

A required input parameter.

CELAAUTH

776 z/OS V2R1.0 Language Environment Vendor Interfaces

,RTNNAME=rtnname
A parameter containing the 1-1024 character name of the routine to be
called. The length of this name is provided via the RNAMELEN keyword.
When DLLNAME is specified, then RTNNAME must be the name of a
function which has been exported from the DLL. Otherwise, RTNNAME
must be the name of a main() program or fetchable routine, and is limited
to 8 characters in length.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,RTNADDR=rtnaddr
A parameter containing the address of the routine to be called.

To code: Specify the RS-type address, or address in register (2)-(12), of an
eight-byte pointer field.

,RNAMELEN=rnamelen
When RTNNAME=rtnname is specified, a required input parameter containing
the length of the routine name specified on the RTNNAME keyword.

To code: Specify the RS-type address, or address in register (2)-(12), of a
doubleword field. rnamelen must be in the range 1 through 1024.

,DLLNAME=dllname
When RTNNAME=rtnname is specified, an optional input parameter containing
the 1-8 character name, padded with blanks, of the DLL from which the
function name specified on the RTNNAME keyword has been exported.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,RTO=rto
An optional input parameter containing the runtime options to be associated
with the environment when the specified main is called. The length of the
runtime options cannot exceed 4096 characters. This value is ignored if the
routine to be called is a subroutine.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,RTOLEN=rtolen
When RTO=rto is specified, a required input parameter containing the length
of the runtime option string pointed to by RTO.

To code: Specify the RS-type address, or address in register (2)-(12), of a
doubleword field.

,PARMLIST=parmlist
An optional input parameter containing the parameter list to be passed to the
routine that is to be called.
v The parameter list is copied to the appropriate location in the stack frame.
v general purpose registers 1, 2 and 3 are loaded from the parameter list when

the routine is executed.

The length of the parameter list is determined from the PPA1 of the routine. If
the routine takes a variable length parameter list, the length of the parameter
list is assumed to be 256 bytes. Floating point and complex values can only be
passed by reference.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

CELAAUTH

Chapter 30. Preinitialized Environments for Authorized Programs for AMODE 64 applications 777

,RTNTOKEN=rtntoken
An optional input/output parameter containing the token that identifies the
routine to be called. This token is built upon first invocation of the routine
within the environment, and returned to the caller for use on subsequent calls
using the same environment.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,ENVTOKEN=envtoken
A required input parameter containing the token that identifies the
environment to be used for this call.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,RTNRETCODE=rtnretcode
A required output parameter that is to contain the routine return code after the
routine has completed. For a main(), this is the enclave return code. For a
subroutine, this is the value that the subroutine provided on the return
statement that caused the subroutine to end. If the subroutine caused the
enclave to terminate due to an unhandled condition or a call to exit(), then this
is the enclave return code. For more information on the enclave return code,
see z/OS Language Environment Programming Guide.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,RTNRSNCODE=rtnrsncode
A required output parameter that is to contain the routine reason code after the
routine has completed. This value is 0 if the routine ended normally. If the
enclave is terminated due to an unhandled condition or a call to exit(), then
this is the enclave reason code. For more information on the enclave return
code, see z/OS Language Environment Programming Guide.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,RTNFDBKCODE=rtnfdbkcode
A required output parameter that is to contain the condition token indicating
why the application terminated. For normal completion of the routine, CEE000
is returned. If the enclave is terminated due to an unhandled condition or a
call to exit(), this field contains the enclave feedback code for termination.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,RECOVERY=EUTFRR
,RECOVERY=ESTAE

An optional parameter indicating the type of recovery routine to be set by
CELAAUTH for this invocation.

,RECOVERY=EUTFRR
indicates that an EUTFRR will be set.

,RECOVERY=ESTAE
indicates that an ESTAE will be set. When invoked in SRB mode, an
EUTFRR is always used.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

CELAAUTH

778 z/OS V2R1.0 Language Environment Vendor Interfaces

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

CELAAUTH

Chapter 30. Preinitialized Environments for Authorized Programs for AMODE 64 applications 779

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

Syntax for REQUEST=USERTERM

name name: symbol. Begin name in column 1.

� One or more blanks must precede CELAAUTH.

CELAAUTH

� One or more blanks must follow CELAAUTH.

REQUEST=USERTERM

,ENVTOKEN=envtoken envtoken: RS-type address or address in register (2) - (12)

,RECOVERY=EUTFRR Default: RECOVERY=EUTFRR
,RECOVERY=ESTAE

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

,MF=S Default: MF=S
,MF=(L,list addr) list addr: RS-type address or register (1) - (12)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters for REQUEST=USERTERM
The parameters are explained as follows:

CELAAUTH

780 z/OS V2R1.0 Language Environment Vendor Interfaces

name
is an optional symbol, starting in column 1, that is the name on the
CELAAUTH macro invocation. The name must conform to the rules for an
ordinary assembler language symbol. The default is no name.

REQUEST=USERTERM
REQUEST=USERTERM ends a user-managed environment.

,ENVTOKEN=envtoken
A required input parameter that contains the environment token which
identifies the environment to be terminated.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,RECOVERY=EUTFRR
,RECOVERY=ESTAE

An optional parameter indicating the type of recovery routine to be set by
CELAAUTH for this invocation.

,RECOVERY=EUTFRR
indicates that an EUTFRR will be set.

,RECOVERY=ESTAE
indicates that an ESTAE will be set. When invoked in SRB mode, an
EUTFRR is always used.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

CELAAUTH

Chapter 30. Preinitialized Environments for Authorized Programs for AMODE 64 applications 781

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

Syntax for REQUEST=MNGDINIT

name name: symbol. Begin name in column 1.

� One or more blanks must precede CELAAUTH.

CELAAUTH

� One or more blanks must follow CELAAUTH.

REQUEST=MNGDINIT

CELAAUTH

782 z/OS V2R1.0 Language Environment Vendor Interfaces

,MENVID=menvid menvid: RS-type address or address in register (2) - (12)

,WRKJSTCB=SYSRULES Default: WRKJSTCB=SYSRULES
,WRKJSTCB=NO
,WRKJSTCB=YES

,ENVDEFN=envdefn envdefn: RS-type address or address in register (2) - (12)

,RECOVERY=EUTFRR Default: RECOVERY=EUTFRR
,RECOVERY=ESTAE

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

,MF=S Default: MF=S
,MF=(L,list addr) list addr: RS-type address or register (1) - (12)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters for REQUEST=MNGDINIT
The parameters are explained as follows:

name
is an optional symbol, starting in column 1, that is the name on the
CELAAUTH macro invocation. The name must conform to the rules for an
ordinary assembler language symbol. The default is no name.

REQUEST=MNGDINIT
REQUEST=MNGDINIT creates Preinitialized Environments for Authorized
Programs in the current primary address space. This set of environments is
used to run routines during subsequent CELAAUTH MNGDCALL requests.
Only one set of managed environments using a specific managed environment
token can be established for an address space. All subsequent CELAAUTH
MNGDINIT calls using the same token will be unsuccessful.

,MENVID=menvid
A required input parameter containing the 8-byte ID that the caller wishes to
use to uniquely identify the new set of managed environments. This ID is used
on subsequent calls to CELAAUTH MNGDCALL to identify the set of
environments to be used with the call. The contents of this ID is completely up
to the caller. It can be a pointer to a control block, or a sequence of characters
uniquely identifying the set. When using characters, IBM recommends that the
caller begin the character sequence with its component ID, to help ensure

CELAAUTH

Chapter 30. Preinitialized Environments for Authorized Programs for AMODE 64 applications 783

uniqueness. IBM reserves managed environment IDs beginning with the
characters "CEE", "CEL", and "EDC", for Language Environment's own use.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,WRKJSTCB=SYSRULES
,WRKJSTCB=NO
,WRKJSTCB=YES

An optional parameter that indicates the job step attribute of any task that
CELAAUTH may attach to the Cross Memory Resource Owning task. This
keyword is only necessary if this task will be the first subtask attached under
this task, so the job step attribute is not clear. The default is
WRKJSTCB=SYSRULES.

,WRKJSTCB=SYSRULES
indicates that CELAAUTH will determine the proper job step attribute
with which to attach the task. CELAAUTH will use the job step attribute
of the current subtasks under the Cross Memory Resource Owning Task. If
no subtasks are found, then CELAAUTH will attach the task as non-job
step.

,WRKJSTCB=NO
indicates that the task must be a non-job step task.

,WRKJSTCB=YES
indicates that the attached task must be a job step task.

,ENVDEFN=envdefn
A required input parameter containing the address of the authorized
environment definition table (AEDT). This table is built by the caller. It defines
the characteristics for the environments that are to be created, as well as how
they should be managed. Each table must contain a header, as well as one or
more environment definition entries (AEDE). An environment definition entry
describes how and when an environment will be created. On later CELAAUTH
REQUEST(MNGDCALL) calls, the caller must specify the index of the AEDE
that is to be used to create or locate an environment to be used when calling
the routine. All fields within the table must be set. There are no default values.

The AEDT and AEDE are mapped by the CEEAEDT macro. Refer to this macro
for the complete details of the AEDT structure.

The header for the AEDT contains the following information:

AEDT_ID
CHAR(4) Table eyecatcher 'AEDT'

AEDT_VERSION
FIXED(16) Version number of the table

AEDT_FLAGS
BIT(16)

AEDT_NUMEDE
FIXED(64) Number of environment definition entries in this table

AEDT_DIAGRTN
PTR(64) Address of an optional diagnostic routine that can be provided
by the authorized application. This routine is called by the
Preinitialized Environments for Authorized Programs recovery routine
after determining that a dump is to be taken after an abend or
program check occurs while an application routine is in control within

CELAAUTH

784 z/OS V2R1.0 Language Environment Vendor Interfaces

an authorized environment. This gives the application an opportunity
to capture diagnostic information about the error.

The routine gains control in AMODE 64, supervisor state, key 0, in the
dispatchable unit and cross memory mode at time of failure, using
standard Format 4 save area (F4SA) linkage.

When the diagnostic routine is called, the relevant register contents are:

Register
Contents

0 The address of an 8-byte buffer that contains the diagnostic
token the user specified in the AEDT during system-managed
initialization

1 The address of the SDWA that was provided to the
Preinitialized Environments for Authorized Programs recovery
routine

13 The address of a Format 4 save area

14 The return address

15 The address of the diagnostic routine

When the diagnostic routine returns control to its caller, the relevant
register contents are:

Register
Contents

15 A value set by the application diagnostic routine that indicates
the actions that it wants the Preinitialized Environments for
Authorized Programs recovery routine to take as a result of its
processing of the error condition. The following values can
returned in register 15:

0 The application requests that Preinitialized
Environments for Authorized Programs take a dump
for this problem, which then occurs.

4 The application captured appropriate diagnostic
information. Preinitialized Environments for
Authorized Programs continues with its own error
recovery processing, but does not take any additional
dumps for this problem.

Note:

1. All other values returned by the diagnostic routine are
treated as if 0 had been returned.

2. This field is ignored if AEDT_VERSION is less than
#AEDTVersion2.

AEDT_DIAGTKN
CHAR(8) An optional 8-byte token that is associated with the
application's diagnostic routine. The token is provided to the
diagnostic routine when it is called. The contents of this token is
completely up to the caller. It is typically used to anchor an application
control block the diagnostic routine can use to locate application data.
This field is ignored if AEDT_DIAGRTN is zero.

CELAAUTH

Chapter 30. Preinitialized Environments for Authorized Programs for AMODE 64 applications 785

Note: This is field ignored if AEDT_VERSION is less than
#AEDTVersion2.

Each Environment Definition entry contains the following information:

AEDE_FLAGS
BIT(32)

AEDE_FULLINIT
BIT(1), '1...' within AEDE_FLAGS. Indicates whether each
environment is to be fully initialized during this call. '1'b indicates full
initialization is requested. '0'b indicates that no initialization is
requested; environment initialization will occur upon first use of each
environment.

AEDE_INIT
FIXED(64) Number of environments to create initially. Minimum value
is 1.

AEDE_WTIME
FIXED(64) Amount of time, in microseconds, to wait if no
environments are available. Minimum value is 0. 0 indicates that no
wait is to be performed. CELAAUTH uses this value to wait once for
an available environment prior to attempting to increment the number
of environments. If the maximum number of environments has been
reached, CELAAUTH waits once more for an available environment,
using the specified time.

AEDE_INCR
FIXED(64) Number of environments to create incrementally, when
more are needed. Minimum value is 0.

AEDE_MAX
FIXED(64) Maximum number of environments for this Environment
Definition Entry.

AEDE_RTO
PTR(64) Pointer to a field containing the runtime options to be used
with the environments for this Environment Definition Entry. The
length of the runtime options cannot exceed 4096 characters. When no
runtime options are provided, this field should be set to zero. Other
fields in the AEDE must be set to either the value used to initialize the
environment or set to zero.

AEDE_RTOLEN
FIXED(64) Length of the runtime option string pointed to by
AEDE_RTO. Other fields in the AEDE must be set to either the value
used to initialize the environment set or zero.

To code: Specify the RS-type address, or address in register (2)-(12), of an
eight-byte pointer field.

,RECOVERY=EUTFRR
,RECOVERY=ESTAE

An optional parameter indicating the type of recovery routine to be set by
CELAAUTH for this invocation.

,RECOVERY=EUTFRR
indicates that an EUTFRR will be set.

CELAAUTH

786 z/OS V2R1.0 Language Environment Vendor Interfaces

,RECOVERY=ESTAE
indicates that an ESTAE will be set. When invoked in SRB mode, an
EUTFRR is always used.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The

CELAAUTH

Chapter 30. Preinitialized Environments for Authorized Programs for AMODE 64 applications 787

list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

Syntax for REQUEST=MNGDCALL

name name: symbol. Begin name in column 1.

� One or more blanks must precede CELAAUTH.

CELAAUTH

� One or more blanks must follow CELAAUTH.

REQUEST=MNGDCALL

,RTNNAME=rtnname rtnname: RS-type address or address in register (2) - (12)
,RTNADDR=rtnaddr rtnaddr: RS-type address or address in register (2) - (12)

,RNAMELEN=rnamelen rnamelen: RS-type address or address in register (2) - (12)

,DLLNAME=dllname dllname: RS-type address or address in register (2) - (12)

,RTO=rto rto: RS-type address or address in register (2) - (12)

,RTOLEN=rtolen rtolen: RS-type address or address in register (2) - (12)

,PARMLIST=parmlist parmlist: RS-type address or address in register (2) - (12)

,RTNTOKEN=rtntoken rtntoken: RS-type address or address in register (2) - (12)

,MENVID=menvid menvid: RS-type address or address in register (2) - (12)

CELAAUTH

788 z/OS V2R1.0 Language Environment Vendor Interfaces

,ETINDEX=etindex etindex: RS-type address or address in register (2) - (12)

,RTNRETCODE=rtnretcode rtnretcode: RS-type address or address in register (2) - (12)

,RTNRSNCODE=rtnrsncode rtnrsncode: RS-type address or address in register (2) - (12)

,RTNFDBKCODE=rtnfdbkcode rtnfdbkcode: RS-type address or address in register (2) - (12)

,RECOVERY=EUTFRR Default: RECOVERY=EUTFRR
,RECOVERY=ESTAE

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

,MF=S Default: MF=S
,MF=(L,list addr) list addr: RS-type address or register (1) - (12)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters for REQUEST=MNGDCALL
The parameters are explained as follows:

name
is an optional symbol, starting in column 1, that is the name on the
CELAAUTH macro invocation. The name must conform to the rules for an
ordinary assembler language symbol. The default is no name.

REQUEST=MNGDCALL
REQUEST=MNGDCALL indicates that CELAAUTH invoke the specified C,
C++, or Language Environment-conforming Assembler routine, using an
environment from a set of system-managed environments.

,RTNNAME=rtnname
,RTNADDR=rtnaddr

A required input parameter.

,RTNNAME=rtnname
A parameter containing the 1-1024 character name of the routine to be
called. The length of this name is provided via the RNAMELEN keyword.
When DLLNAME is specified, then RTNNAME must be the name of a
function which has been exported from the DLL. Otherwise, RTNNAME
must be the name of a main() program or fetchable routine, and is limited
to 8 characters in length.

CELAAUTH

Chapter 30. Preinitialized Environments for Authorized Programs for AMODE 64 applications 789

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,RTNADDR=rtnaddr
A parameter containing the address of the routine to be called.

To code: Specify the RS-type address, or address in register (2)-(12), of an
eight-byte pointer field.

,RNAMELEN=rnamelen
When RTNNAME=rtnname is specified, a required input parameter containing
the length of the routine name specified on the RTNNAME keyword.

To code: Specify the RS-type address, or address in register (2)-(12), of a
doubleword field. rnamelen must be in the range 1 through 1024.

,DLLNAME=dllname
When RTNNAME=rtnname is specified, an optional input parameter containing
the 1-8 character name, padded with blanks, of the DLL from which the
function name specified on the RTNNAME keyword has been exported.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,RTO=rto
An optional input parameter containing the runtime options to be associated
with the environment when the specified main is called. The length of the
runtime options cannot exceed 4096 characters. This value is ignored if the
routine to be called is a subroutine.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,RTOLEN=rtolen
When RTO=rto is specified, a required input parameter containing the length
of the runtime option string pointed to by RTO.

To code: Specify the RS-type address, or address in register (2)-(12), of a
doubleword field.

,PARMLIST=parmlist
An optional input parameter containing the parameter list to be passed to the
routine that is to be called.
v The parameter list is copied to the appropriate location in the stack frame.
v general purpose registers 1, 2 and 3 are loaded from the parameter list when

the routine is executed.

The length of the parameter list is determined from the PPA1 of the routine. If
the routine takes a variable length parameter list, the length of the parameter
list is assumed to be 256 bytes. Floating point and complex values can only be
passed by reference.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,RTNTOKEN=rtntoken
An optional input/output parameter containing the token that identifies the
routine to be called. This token is built upon first invocation of the routine
within this set of environments, and returned to the caller for use on
subsequent calls using the same set of environments.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

CELAAUTH

790 z/OS V2R1.0 Language Environment Vendor Interfaces

,MENVID=menvid
A required input parameter containing the Managed Environment ID that
identifies the set of environments to be used for this call. This is the same ID
that had been provided during the call to CELAAUTH MNGDINIT call.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,ETINDEX=etindex
A required input parameter containing the index of the Environment Definition
Entry to be used when calling this routine. This value corresponds to one of
the Environment Definition Entries that were defined within the Environment
Definition Table that was an input on a previous CELAAUTH
REQUEST=MNGDINIT call.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,RTNRETCODE=rtnretcode
A required output parameter that is to contain the routine return code after the
routine has completed. For a main(), this is the enclave return code. For a
subroutine, this is the value that the subroutine provided on the return
statement that caused the subroutine to end. If the subroutine caused the
enclave to terminate due to an unhandled condition or a call to exit(), then this
is the enclave return code. For more information on the enclave return code,
see z/OS Language Environment Programming Guide.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,RTNRSNCODE=rtnrsncode
A required output parameter that is to contain the routine reason code after the
routine has completed. This value is 0 if the routine ended normally. If the
enclave is terminated due to an unhandled condition or a call to exit(), then
this is the enclave reason code. For more information on the enclave return
code, see z/OS Language Environment Programming Guide.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,RTNFDBKCODE=rtnfdbkcode
A required output parameter that is to contain the condition token indicating
why the application terminated. For normal completion of the routine, CEE000
is returned. If the enclave is terminated due to an unhandled condition or a
call to exit(), this field contains the enclave feedback code for termination.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,RECOVERY=EUTFRR
,RECOVERY=ESTAE

An optional parameter indicating the type of recovery routine to be set by
CELAAUTH for this invocation.

,RECOVERY=EUTFRR
indicates that an EUTFFR will be set.

,RECOVERY=ESTAE
indicates that an ESTAE will be set. When invoked in SRB mode, an
EUTFRR is always used.

CELAAUTH

Chapter 30. Preinitialized Environments for Authorized Programs for AMODE 64 applications 791

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant

CELAAUTH

792 z/OS V2R1.0 Language Environment Vendor Interfaces

code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

Syntax for REQUEST=MNGDUPDT

name name: symbol. Begin name in column 1.

� One or more blanks must precede CELAAUTH.

CELAAUTH

� One or more blanks must follow CELAAUTH.

REQUEST=MNGDUPDT

,MENVID=menvid menvid: RS-type address or address in register (2) - (12)

,ENVDEFN=xenvdefn
,RECOVERY=EUTFRR Default: RECOVERY=EUTFRR
,RECOVERY=ESTAE

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

,MF=S Default: MF=S
,MF=(L,list addr) list addr: RS-type address or register (1) - (12)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

CELAAUTH

Chapter 30. Preinitialized Environments for Authorized Programs for AMODE 64 applications 793

Parameters for REQUEST=MNGDUPDT
The parameters are explained as follows:

name
is an optional symbol, starting in column 1, that is the name on the
CELAAUTH macro invocation. The name must conform to the rules for an
ordinary assembler language symbol. The default is no name.

REQUEST=MNGDUPDT
REQUEST=MNGDUPDT indicates that Preinitialized Environments for
Authorized Programs will update the characteristics of a system-managed
environment set.

,MENVID=xmenvid
A required input parameter containing the Managed Environment ID that
identifies the set of environments to be updated. This is the same ID that had
been provided during the call to CELAAUTH MNGDINIT call.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,ENVDEFN=envdefn
A required input parameter containing the address of the authorized
environment definition table (AEDT). This table is built by the caller. It
indicates which characteristics for each environment definition entry are to be
updated. The table must contain the same number of entries as the one used to
initialize the environment set being updated.

The following characteristics can be updated:

AEDE_MAX
FIXED(64) Maximum number of environments for this Environment
Definition Entry. Minimum value is 1.
v If AEDE_MAX is equal to 0, or matches the current maximum

number of environments, no update is performed.
v If AEDE_MAX is larger than the current maximum number of

environments, Preinitialized Environments for Authorized Programs
updates the maximum number.

v If AEDE_MAX is smaller than the current maximum number of
environments, CELAAUTH returns a non-zero return code to
indicate that the request update cannot be performed.

AEDE_RTO
PTR(64) Pointer to a field containing the runtime options to be used
with the environments for this Environment Definition Entry. The
length of the runtime options cannot exceed 4096 characters. When no
runtime options are provided, this field should be set to zero.

AEDE_RTOLEN
FIXED(64) Length of the runtime option string pointed to by
AEDE_RTO.

To code: Specify the RS-type address, or address in register (2)-(12), of an
eight-byte pointer field.

,RECOVERY=EUTFRR

CELAAUTH

794 z/OS V2R1.0 Language Environment Vendor Interfaces

,RECOVERY=ESTAE
An optional parameter indicating the type of recovery routine to be set by
CELAAUTH for this invocation.

,RECOVERY=EUTFRR
indicates that an EUTFRR will be set.

,RECOVERY=ESTAE
indicates that an ESTAE will be set. When invoked in SRB mode, an
EUTFRR is always used.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

CELAAUTH

Chapter 30. Preinitialized Environments for Authorized Programs for AMODE 64 applications 795

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

Syntax for REQUEST=MNGDTERM

name name: symbol. Begin name in column 1.

� One or more blanks must precede CELAAUTH.

CELAAUTH

� One or more blanks must follow CELAAUTH.

REQUEST=MNGDTERM

,MENVID=menvid menvid: RS-type address or address in register (2) - (12)

,RECOVERY=EUTFRR Default: RECOVERY=EUTFRR
,RECOVERY=ESTAE

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX

CELAAUTH

796 z/OS V2R1.0 Language Environment Vendor Interfaces

,PLISTVER=0

,MF=S Default: MF=S
,MF=(L,list addr) list addr: RS-type address or register (1) - (12)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters for REQUEST=MNGDTERM
The parameters are explained as follows:

name
is an optional symbol, starting in column 1, that is the name on the
CELAAUTH macro invocation. The name must conform to the rules for an
ordinary assembler language symbol. The default is no name.

REQUEST=MNGDTERM
REQUEST=MNGDTERM ends a set of environments that were created using
MNGDINIT.

,MENVID=menvid
A required input parameter containing the Managed Environment ID that
identifies the set of environments to be terminated. This is the same ID that
had been provided during the call to CELAAUTH MNGDINIT call.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,RECOVERY=EUTFRR
,RECOVERY=ESTAE

An optional parameter indicating the type of recovery routine to be set by
CELAAUTH for this invocation.

,RECOVERY=EUTFRR
indicates that an EUTFRR will be set.

,RECOVERY=ESTAE
indicates that an ESTAE will be set. When invoked in SRB mode, an
EUTFRR is always used.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX

CELAAUTH

Chapter 30. Preinitialized Environments for Authorized Programs for AMODE 64 applications 797

,PLISTVER=0
An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

CELAAUTH

798 z/OS V2R1.0 Language Environment Vendor Interfaces

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

CELAAUTH general notes
v Each environment uses about 400 bytes of subpool 245 (common, fixed ESQA)

storage. You should keep this in mind when considering the number of
environments that your application creates.

v Preinitialized Environments for Authorized Programs forces POSIX(OFF) as the
runtime option during execution.

v Preinitialized Environments for Authorized Programs does not support calls to
z/OS UNIX System Services (USS).

v No locks can be held during calls to Preinitialized Environments for Authorized
Programs.

v Preinitialized Environments for Authorized Programs services must only be used
in full-function address spaces.

ABEND codes
None.

Return and reason codes
When the CELAAUTH macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains reason code.

The CEEALRC macro provides constants for all of the CELAAUTH return and
reason codes.

RC Explanation

00 #ALRTN_SUCCESS - The call was successful.

04 #ALRTN_QUALIFIED_SUCCESS - The call was successful, but additional
information was provided in the status code.

08 #ALRTN_INCORRECT_ENVIRONMENT - A problem was detected with
the environment of the caller.

0C #ALRTN_BAD_PARAMETERS - A problem was detected with one of the
CELAAUTH parameters.

10 #ALRTN_RESOURCE_ERROR - A problem was detected with a resource
needed by CELAAUTH Services.

14 #ALRTN_INTERNAL_ERROR - An internal CELAAUTH Services error
occurred.

Table 89 on page 800 contains hexadecimal return and reason codes, the equate
symbols associated with each reason code, and the meaning and suggested action
for each return and reason code. Each reason code for the CELAAUTH macro is
written in the format mmmffrrr, where:

mmm is the module ID where the reason code was set

ff is the function code of the CELAAUTH service in use
00: Internal processing

CELAAUTH

Chapter 30. Preinitialized Environments for Authorized Programs for AMODE 64 applications 799

01: USERINIT - user managed initialization
02: USERCALL - user managed call
03: USERTERM - user managed termination
04: MNGDINIT - system managed initialization
05: MNGDCALL - system managed call
06: MNGDTERM - system managed termination
07: MNGDUPDT - system managed update
10: Internal processing
11: Internal processing
12: Internal processing
13: Internal processing

rrr is the value that identifies the reason for the non-zero return code

Table 89. Return and reason codes for the CELAAUTH macro

Reason Code (rrr) Return Code Meaning and Action

004 10 Equate Symbol: #ALRC_SLE_MEMLIMIT_ZERO

Explanation: CELAAUTH Services attempted to obtain library storage.
However, memlimit was set to zero, so the call failed.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure the MEMLIMIT setting for this address
space is not zero.

008 10 Equate Symbol: #ALRC_SLE_NOISA

Explanation: CELAAUTH Services attempted to obtain library storage, but
the call failed.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Increase the MEMLIMIT size for the address
space.

00C 10 Equate Symbol: #ALRC_SLE_NO_STACK

Explanation: CELAAUTH Services attempted to obtain the initial stack
and heap storage, but the call failed.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Increase the MEMLIMIT size for the address
space.

CELAAUTH

800 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 89. Return and reason codes for the CELAAUTH macro (continued)

Reason Code (rrr) Return Code Meaning and Action

010 10 Equate Symbol: #ALRC_SCSRG_ERR

Explanation: When calling CELAAUTH's internal cellpool services to get
storage for the runtime options, the service call failed. The module id and
function code part of the reason code will help determine exactly where
the service call failed.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure there are enough storage resources on the
system.

014 14 Equate Symbol: #ALRC_SLE_TERM_FAILED

Explanation: CELAAUTH attempted to terminate the preinitialized
environment, but the call failed.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure the system is running correctly at the time.

100 10 Equate Symbol: #ALRC_WRONG_KEY

Explanation: CELAAUTH Services transfered control to the LE library, but
the Language Environment library did not get control in the correct key.
This is most likely be caused by CELQLIB, the LE 64-bit library, not in an
authorized dataset.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure CELQLIB is placed in a dataset that is in
the LPALST or LNKLST concatenation.

104 14 or 0C Equate Symbol: #ALRC_9RCVY

Explanation: While processing the request, CELAAUTH Services either
program checked or abnormally ended, causing the recovery to get
control. The recovery successfully recovered from the error, but the request
failed because of the program check or abend.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: If return code is #ALRTN_BAD_PARAMETERS,
ensure that the parameters are correct on the CELAAUTH call and that
the storage for the parameters is in the correct key.

108 04 Equate Symbol: #ALRC_ENCLAVE_TERMINATED

Explanation: On a CELAAUTH call subroutine or call dll subroutine, the
enclave should not terminate. However, during this call, the enclave is
terminated unexpectedly.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Make sure the called subroutine didn't cause any
program checks or abends during its execution.

CELAAUTH

Chapter 30. Preinitialized Environments for Authorized Programs for AMODE 64 applications 801

Table 89. Return and reason codes for the CELAAUTH macro (continued)

Reason Code (rrr) Return Code Meaning and Action

10C 14 Equate Symbol: #ALRC_UNHANDLED_CONDITION

Explanation: An unhandled condition occurred during enclave
initialization or enclave termination.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Contact IBM with details of the problem scenario.

110 10 or 0C Equate Symbol: #ALRC_MODULE_LOAD_FAILED

Explanation: If the return code is #ALRTN_RESOURCE_ERROR, that
means there was an error calling the LOAD service. If the return code is
#ALRTN_BAD_PARAMETERS, that means CELAAUTH's internal load
service is called with bad parameters.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: If return code is #ALRTN_RESOURCE_ERROR,
make sure there are enough system resources on the system. If return code
is #ALRTN_BAD_PARAMETERS, take a dump when this return code is
received, and contact IBM with the dump.

114 10 or 0C Equate Symbol: #ALRC_MODULE_DELETE_FAILED

Explanation: If the return code is #ALRTN_RESOURCE_ERROR, that
means there was an error calling the DELETE service. If the return code is
#ALRTN_BAD_PARAMETERS, that means CELAAUTH's internal delete
service is called with bad parameters.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: If return code is #ALRTN_RESOURCE_ERROR,
make sure there are enough system resources on the system. If return code
is #ALRTN_BAD_PARAMETERS, take a dump when this return code is
received, and contact IBM with the dump.

118 0C Equate Symbol: #ALRC_MODULE_NOT_FOUND

Explanation: On a CELAAUTH call by routine name call, CELAAUTH
Services attempted a load of the module based on the routine name.
However, the module with that name does not exist, the module load
failed.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure the routine name on the CELAAUTH call
is correct.

CELAAUTH

802 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 89. Return and reason codes for the CELAAUTH macro (continued)

Reason Code (rrr) Return Code Meaning and Action

11C 0C Equate Symbol: #ALRC_DLLLOAD_FAILED

Explanation: On a CELAAUTH call by dll, CELAAUTH Services
attempted a load of a dll based on the given dll name. However, the dll
with that name does not exist, the dll load failed.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure the dll name on the CELAAUTH call is
correct.

120 0C Equate Symbol: #ALRC_DLLQUERYFN_FAILED

Explanation: On a CELAAUTH call by dll subroutine, CELAAUTH
Services attempted to query the dll subroutine address. However, either
the subroutine is not exported, or it does not exist, the query failed.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure the dll subroutine name on the
CELAAUTH call is correct, and the subroutine is exported.

124 14 Equate Symbol: #ALRC_NEWMOD_FAILED

Explanation: New module initialization failed for the module that contains
the user routine.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Contact IBM with details of the problem scenario.

128 14 Equate Symbol: #ALRC_DLLINIT_FAILED

Explanation: DLL static initialization failed for the module that contains
the user routine.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Contact IBM with details of the problem scenario.

12C 14 Equate Symbol: #ALRC_STATCNST_FAILED

Explanation: The running of C++ static constructors failed for the module
that contains the user routine.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Contact IBM with details of the problem scenario.

CELAAUTH

Chapter 30. Preinitialized Environments for Authorized Programs for AMODE 64 applications 803

Table 89. Return and reason codes for the CELAAUTH macro (continued)

Reason Code (rrr) Return Code Meaning and Action

130 04 Equate Symbol: #ALRC_APPL_ABEND

Explanation: The user routine abended. The routine return code is set to
the abend completion code from the SDWA (SDWAABCC). The routine
reason code is set to the abend reason code from the SDWA (SDWACRC).

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Use the abend code and reason code to determine
the problem.

200 14 Equate Symbol: #ALRC_LATCH_CREATE_FAILED

Explanation: During CELAAUTH initialization, the service attempted to
create internal latch sets to be used later. However, the latch set create
failed.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure there are enough system resources on the
system.

300 0C Equate Symbol: #ALRC_INCORRECT_FUNCTION_CODE

Explanation: The function code in the user parameter list is unknown.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Make sure CELAAUTH Services is called through
the CELAAUTH or CELAUTHP macros.

304 10 Equate Symbol: #ALRC_INFRASTRUCT_STORAGE_OBTAIN_FAILED

Explanation: CELAAUTH Services failed to get the storage for the central
control block for CELAAUTH Services infrastructure.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure there are enough storage resources on the
system.

308 08 Equate Symbol: #ALRC_IRB_SCHEDULE_FAILURE

Explanation: CELAAUTH Services attempted to schedule an IRB to the
ARO task, but the scheduling of the IRB failed.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure there are enough system resources on the
system.

CELAAUTH

804 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 89. Return and reason codes for the CELAAUTH macro (continued)

Reason Code (rrr) Return Code Meaning and Action

30C 04 Equate Symbol: #ALRC_ADDITIONAL_ENVIRONMENTS_EXIST

Explanation: When CELAAUTH Services terminates a user managed or
system managed environment, it checks to see if it should terminate the
infrastructure as well. It found that there are still other environments
initialized, so it skipped infrastructure termination. This reason code does
not necessarily indicate an error, which is why the return code associated
with it is #ALRTN_QUALIFIED_SUCCESS. This is only an error if the
caller thinks that there shouldn't be any environment still initialized after
the call.

System Action: CELAAUTH returns this reason code back to the caller.

Programmer Response: If the caller thinks this is an error, a dump should
be taken, and contact IBM with the dump.

310 08 Equate Symbol: #ALRC_ENV_TOKEN_NOT_VALID

Explanation: On a user managed call, the environment token passed in is
not valid.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure a valid environment token is passed in.

314 08 Equate Symbol: #ALRC_AUTHLE_NOT_INITIALIZED

Explanation: An attempt to call a CELAAUTH service is made; however,
CELAAUTH Services infrastructure is not initialized.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure a USERINIT or MNGDINIT call is made
successfully before any other CELAAUTH services are called.

318 08 Equate Symbol: #ALRC_AUTHLE_UNABLE_TO_INIT_IN_XMEM

Explanation: Due to system restrictions in cross memory environment,
CELAAUTH does not support initialization in cross memory environment.
Any attempt to do so will receive this reason code back.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure the CELAAUTH initialization call is not
made in cross memory environment.

31C 08 Equate Symbol: #ALRC_AUTHLE_INIT_IN_PROGRESS_ERR

Explanation: While the CELAAUTH Services infrastructure is initialized,
no service requests are allowed until the infrastructure is fully initialized.
Any attempt to call CELAAUTH while CELAAUTH Services initialization
is in progress will result in this error reason code.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Wait a while before try calling CELAAUTH again.
If the problem persists, take a dump, and contact IBM with the captured
dump.

CELAAUTH

Chapter 30. Preinitialized Environments for Authorized Programs for AMODE 64 applications 805

Table 89. Return and reason codes for the CELAAUTH macro (continued)

Reason Code (rrr) Return Code Meaning and Action

320 08 Equate Symbol: #ALRC_AUTHLE_ALREADY_INITIALIZED_ERR

Explanation: If a system managed environment already exists, any attempt
to initialize a system managed environment with the same environment id
will result in this reason code.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Make sure the managed init should be done, and
the environment id is correct. Or make sure the managed environment is
terminated first before trying initialization again.

324 08 Equate Symbol: #ALRC_AUTHLE_TERM_IN_PROGRESS_ERR

Explanation: If CELAAUTH Services is in the middle of terminating its
infrastructure, any attempt to initialize CELAAUTH Services will result in
this reason code.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Wait a while before try calling CELAAUTH
Services initialization again. If the problem persists, take a dump, and
contact IBM with the captured dump.

328 10 Equate Symbol: #ALRC_PET_ALLOCATE_ERROR

Explanation: CELAAUTH Services attempted to allocate a Pause Element
Token. However, the allocation failed. This is most likely due to a system
resource shortage.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure there are enough system resources on the
system.

32C 14 or 10 Equate Symbol: #ALRC_PET_PAUSE_ERROR

Explanation: CELAAUTH Services attempted to pause on a Pause Element
Token. However, the pause failed. This is most likely due to a system
resource shortage.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure there are enough system resources on the
system.

330 14 Equate Symbol: #ALRC_PET_RELEASE_ERROR

Explanation: CELAAUTH Services attempted to release a Pause Element
Token. However, the release failed. This is most likely due to a system
resource shortage.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure there are enough system resources on the
system.

CELAAUTH

806 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 89. Return and reason codes for the CELAAUTH macro (continued)

Reason Code (rrr) Return Code Meaning and Action

334 10 Equate Symbol: #ALRC_PET_DEALLOCATE_ERROR

Explanation: CELAAUTH Services attempted to deallocate a Pause
Element Token. However, the deallocation failed. This is most likely due to
a system resource shortage.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure there are enough system resources on the
system.

338 08 Equate Symbol: #ALRC_LOCASCB_ERROR

Explanation: While calling CELAAUTH in a cross memory environment,
CELAAUTH Services attempted to locate the ASCB of the primary address
space. However, the attempt failed. This is most likely the result of a
system error.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure the system is running correctly at the time.

33C 0C Equate Symbol: #ALRC_ARO_TCB_NOT_VALID

Explanation: During CELAAUTH Services infrastructure initialization, the
caller passed in a Resource Owning Task TCB. However, the specified TCB
is not valid.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure the correct Resource Owning Task TCB is
specified.

340 0C Equate Symbol: #ALRC_ARO_TCB_NOT_BELOW_INIT

Explanation: CELAAUTH Services initialization is not permitted on a task
that's above the initiator task. Or CELAAUTH Services initialization is not
permitted with a resource owning task that is above the initiator task. This
is most likely cause by initializing CELAAUTH Services before the address
space is fully initialized.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure the address space is fully initialized, and
the resource owning task is not above the initiator task.

344 14 Equate Symbol: #ALRC_WRKRTASK_ATTACH_ERROR

Explanation: During CELAAUTH Services infrastructure initialization,
CELAAUTH attached a worker task to the CELAAUTH resource owning
task. The attach of the worker task failed. This is most likely due to a
shortage of system resources.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure there are enough system resource on the
system.

CELAAUTH

Chapter 30. Preinitialized Environments for Authorized Programs for AMODE 64 applications 807

Table 89. Return and reason codes for the CELAAUTH macro (continued)

Reason Code (rrr) Return Code Meaning and Action

348 14 Equate Symbol: #ALRC_CELQLIB_LOAD_FAILED

Explanation: During CELAAUTH Services infrastructure initialization,
CELAAUTH attempted to load the 64bit LE library. However, the load
failed.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure CELQLIB is in the library load search path.

34C 0C Equate Symbol: #ALRC_ENV_TOKEN_NOT_SPECIFIED

Explanation: On a CELAAUTH user managed call or user managed term,
the required parameter, environment token, is not specified.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure the environment token is specified on the
call.

350 08 Equate Symbol: #ALRC_AUTHLE_ENVIRONMENT_IN_USE

Explanation: During CELAAUTH user managed call and user managed
term, CELAAUTH Services attempted to exclusively lock the user
managed environment, but the user managed environment is currently in
use. Or during CELAAUTH system managed term, CELAAUTH Services
attempted to exclusively lock the system managed environment, but the
system managed environment is currently in use. Use the function code
part of the reason code to determined the exact cause of this problem.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Wait a while for the environment to get freed up,
before trying the service again. If the problem persists, take a dump, and
contact IBM with the captured dump.

354 0C Equate Symbol: #ALRC_RTOLEN_TOOBIG

Explanation: The runtime option string passed in during initialization or
call is too long.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Make sure the runtime options string length in the
parameter list correctly reflect the length of the runtime option string. And
the length of the runtime option string doesn't exceed the limit.

358 08 Equate Symbol: #ALRC_ENV_TOKEN_STALE

Explanation: During a CELAAUTH user call or user term, the
environment token specified belonged to a previous instance of the
environment. This means the environment was terminated before this call
was made, the environment token no longer refers to a valid environment.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure the correct environment token is specified.

CELAAUTH

808 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 89. Return and reason codes for the CELAAUTH macro (continued)

Reason Code (rrr) Return Code Meaning and Action

35C 0C Equate Symbol: #ALRC_RTN_TOKEN_NOT_VALID

Explanation: During a CELAAUTH user call or managed call, the routine
token specified is not valid.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure the correct routine token is specified.

360 08 Equate Symbol: #ALRC_RTN_TOKEN_STALE

Explanation: During a CELAAUTH user call or manage call, the routine
token specified belonged to a previous instance of the environment. This
means the environment that this routine token belonged to was terminated
before this call was made, the routine token no longer refers to a valid
environment.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure the correct routine token is specified.

364 08 Equate Symbol: #ALRC_RTN_ENV_TOKEN_MISMATCH

Explanation: During a CELAAUTH user call, the routine token specified
doesn't belonged to the environment specified by the environment token.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure the correct routine token and environment
token are specified.

368 0C Equate Symbol: #ALRC_RTN_NOT_MAIN_OR_FETCHABLE

Explanation: On a call main or call sub, the module loaded does not
contain a main or a fetchable subroutine.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure the load module specified in the routine
name field contains either a main or a fetchable routine.

36C 0C Equate Symbol: #ALRC_RTN_NAME_LENGTH_ERROR

Explanation: On a call main or call sub, the routine name length specified
in the parameter is not valid.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure the correct routine name length is
specified.

CELAAUTH

Chapter 30. Preinitialized Environments for Authorized Programs for AMODE 64 applications 809

Table 89. Return and reason codes for the CELAAUTH macro (continued)

Reason Code (rrr) Return Code Meaning and Action

370 0C Equate Symbol: #ALRC_DLL_RTN_NAME_LENGTH_ERROR

Explanation: On a call dll sub, the routine name length specified in the
parameter is not valid.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure the correct routine name length is
specified.

374 10 Equate Symbol: #ALRC_SCSRG_RTO_ERR

Explanation: When calling CELAAUTH Services internal cellpool services
to get storage for the runtime options, the service call failed.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure there are enough storage resources on the
system.

378 10 Equate Symbol: #ALRC_SCSRG_RTO_GRP_ERR

Explanation: When calling CELAAUTH Services internal cellpool services
to get storage for a group of runtime options, the service call failed.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure there are enough storage resources on the
system.

37C 10 Equate Symbol: #ALRC_SCSRG_ALEI_ERR

Explanation: When calling CELAAUTH Services internal cellpool services
to get storage for an environment information control block, the service
call failed.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure there are enough storage resources on the
system.

380 10 Equate Symbol: #ALRC_SCSRG_ALEI_GRP_ERR

Explanation: When calling CELAAUTH Services internal cellpool services
to get storage for a group of environment information control blocks, the
service call failed.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure there are enough storage resources on the
system.

CELAAUTH

810 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 89. Return and reason codes for the CELAAUTH macro (continued)

Reason Code (rrr) Return Code Meaning and Action

384 10 Equate Symbol: #ALRC_SCSRG_AEDT_ERR

Explanation: When calling CELAAUTH Services internal cellpool service
to get the storage for an Authorized Environment Definition Table, the
called service failed.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure there are enough storage resources on the
system.

388 10 Equate Symbol: #ALRC_SCSRG_CP_CREATE_ERR

Explanation: When calling CELAAUTH Services internal cellpool services
to create the internal cellpools, the create failed.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure there are enough storage resources on the
system.

38C 10 Equate Symbol: #ALRC_SCSRG_ALES_OBTAIN_ERR

Explanation: When calling CELAAUTH Services internal cellpool services
to get the storage for a System Managed control block, the called service
failed.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure there are enough storage resources on the
system.

390 0C Equate Symbol: #ALRC_ENVNUM_MISMATCH

Explanation: The init/incr/max environment numbers mismatch. There
are 3 possibilities: 1) init = max and the incr ^= 0 2) init < max and the
incr = 0 3) init > max

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Make sure the specified init/incr/max values in
the AEDT are correct.

394 0C Equate Symbol: #ALRC_RTO_MISMATCH

Explanation: The RTO length specified in the AEDT is non-zero, while the
RTO string in the AEDT is zero.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Make sure the RTO length and the RTO string are
correct.

CELAAUTH

Chapter 30. Preinitialized Environments for Authorized Programs for AMODE 64 applications 811

Table 89. Return and reason codes for the CELAAUTH macro (continued)

Reason Code (rrr) Return Code Meaning and Action

398 0C Equate Symbol: #ALRC_NO_EDE_ENTRY

Explanation: The user didn't specify any environment types in the
parameter list on a CELAUTH(MNGDINIT) call.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Make sure at least one AEDE entry is defined in
the AEDT.

39C 0C Equate Symbol: #ALRC_MENVID_NOT_FOUND

Explanation: A set of environments with the managed environment ID
specified on a CELAAUTH REQUEST(MNGDCALL) or
REQUEST(MNGDTERM) could not be located.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure that a set of environments for this
managed environment ID has been created using CELAAUTH
REQUEST(MNGDINIT).

3A0 08 Equate Symbol: #ALRC_ENV_SET_NOT_AVAILABLE

Explanation: The requested environment set is not in a state in which it
can be used by the current call. This probably indicates that the
environment set is in the process of being terminated.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure that no attempt is made to use an
environment set while it is being terminated.

3A4 10 Equate Symbol: #ALRC_MALRI_SCSRG_ERR

Explanation: Storage could not be obtained for a routine information
control block.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Examine the information from the cell pool
services call to determine the error.

3A8 08 Equate Symbol: #ALRC_ENV_SET_UNLOCK_FAILED

Explanation: The requested environment set could not be properly
unlocked.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Contact IBM with details of the problem scenario.

CELAAUTH

812 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 89. Return and reason codes for the CELAAUTH macro (continued)

Reason Code (rrr) Return Code Meaning and Action

3AC 0C Equate Symbol: #ALRC_BAD_MANAGED_ENV_ID

Explanation: The managed environment id is invalid. Specify a valid env
id.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Make sure the managed environment id not zero.

3B0 10 Equate Symbol: #ALRC_NO_AVAILABLE_ENVS

Explanation: All existing environments within the requested environment
type are in use, and no more environments can be created because the
maximum number has been reached.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: If this reason code occurs frequently, consider
increasing the maximum number of environments within the environment
type entry (field AEDE_MAX in macro CEEAEDT).

3B4 04 Equate Symbol: #ALRC_NOT_ALL_ENVS_CREATED

Explanation: The requested routine was successfully called. However,
while attempting to create additional environments for the current
environment type, one or more environments could not be created.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Examine the additional error information to
determine the error.

3B8 0C Equate Symbol: #ALRC_RTN_TOKEN_FAILURE

Explanation: CELAAUTH Services attempted to use the routine token
provided by the caller on a CELAAUTH REQUEST(USERCALL/
MNGDCALL). A failure occurred while accessing this token.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure that a valid routine token has been
provided on the CELAAUTH call.

3BC 0C Equate Symbol: #ALRC_AUTHLE_MVCSK_AEDE_NUM_ERR

Explanation: While attempting to copy the AEDE number from the user
passed in parameter list using the caller's key, CELAAUTH Services failed.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure that a valid AEDT is specified on the
CELAAUTH call.

CELAAUTH

Chapter 30. Preinitialized Environments for Authorized Programs for AMODE 64 applications 813

Table 89. Return and reason codes for the CELAAUTH macro (continued)

Reason Code (rrr) Return Code Meaning and Action

3C0 0C Equate Symbol: #ALRC_AUTHLE_MVCSK_AEDT_ERR

Explanation: While attempting to copy the AEDT from the user passed in
parameter list using the caller's key, CELAAUTH Services failed.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure that a valid AEDT is specified on the
CELAAUTH call.

3C4 0C Equate Symbol: #ALRC_AUTHLE_MVCDK_ENVTOKEN_ERR

Explanation: While attempting to store the environment token into the
user passed parameter list, CELAAUTH Services failed.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure that the environment token storage passed
in on the CELAAUTH call is valid.

3C8 0C Equate Symbol: #ALRC_AUTHLE_MVCSK_RTO_ERR

Explanation: While attempting to copy the runtime option strings from
user passed in parameter list using the caller's key, CELAAUTH Services
failed.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure that a valid runtime option string is
specified on the CELAAUTH call.

3CC 0C Equate Symbol: #ALRC_AUTHLE_MVCSK_RTNNAME_ERR

Explanation: While attempting to copy the routine name from the user
parameter list, a failure occurred.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure that a valid routine name is specified on
the CELAAUTH call.

3D0 0C Equate Symbol: #ALRC_AUTHLE_MVCSK_DLL_RTNNAME_ERR

Explanation: While attempting to copy the DLL routine name from the
user parameter list, a failure occurred.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure that a valid DLL routine name is specified
on the CELAAUTH call.

CELAAUTH

814 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 89. Return and reason codes for the CELAAUTH macro (continued)

Reason Code (rrr) Return Code Meaning and Action

3D4 0C Equate Symbol: #ALRC_ENV_TOKEN_FAILURE

Explanation: CELAAUTH Services attempted to use the environment
token provided by the caller on a CELAAUTH REQUEST(USERCALL). A
failure occurred while accessing this token.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure that a valid environment token has been
provided on the CELAAUTH call.

3D8 14 Equate Symbol: #ALRC_WRKRTASK_ATTACH_FAILURE

Explanation: CELAAUTH Services attempted to attach the worker task
using an IRB. The IRB failed while attempting the ATTACH. while
accessing this token.

System Action: A dump is taken to capture diagnostic information.
CELAAUTH returns this reason code back to the caller, after cleanup.

Programmer Response: Examine the dump to determine the reason for the
ATTACH failure. If the failure does not appear to be the fault of the user's
environment, contact IBM with the captured dump.

3DC 14 Equate Symbol: #ALRC_ALESTACK_OVERFLOW

Explanation: CELAAUTH Services attempted to allocate an additional
stack frame but the expansion overflowed the maximum boundary of the
entire stack.

System Action: An abend of 4088 is generated, a dump should be
captured.

Programmer Response: Contact IBM with the captured dump.

3E0 0C Equate Symbol: #ALRC_PARMLIST_FAILURE

Explanation: CELAAUTH Services attempted to access the user parameter
list, but a failure occurred.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Ensure that the parameter list is allocated in
storage that is accessible to the caller.

3E4 14 Equate Symbol: #ALRC_MODTABLE_FAILURE

Explanation: CELAAUTH Services attempted to access its module table,
but a failure occurred.

System Action: The reason code is returned back to the Language
Environment load service.

Programmer Response: Contact IBM with details of the problem scenario.

CELAAUTH

Chapter 30. Preinitialized Environments for Authorized Programs for AMODE 64 applications 815

Table 89. Return and reason codes for the CELAAUTH macro (continued)

Reason Code (rrr) Return Code Meaning and Action

3E8 0C Equate Symbol: #ALRC_MODULE_EP_FAILURE

Explanation: CELAAUTH Services attempted to access the user-provided
module entrypoint, but a failure occurred.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: If RTNADDR was specified, ensure that the
address that is provided is the CELQSTRT entrypoint for the routine. If
RTNNAME was specified, ensure that the entrypoint for the
corresponding load module is CELQSTRT.

3EC 14 Equate Symbol: #ALRC_WORKER_TASK_RM_RELEASED

Explanation: While the caller is waiting for the worker task to process a
request, the worker task is terminated, and the worker task resource
manager got control, and released the caller from waiting.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup. This reason is most likely caused by an earlier error.

Programmer Response: When this reason code is detected, the caller
should exit its code as soon as possible, and let CELAAUTH Services do
the necessary cleanup.

3F0 10 Equate Symbol: #ALRC_SCSRG_CP_DESTROY_ERR

Explanation: When calling CELAAUTH Services internal cellpool services
to destroy the internal cellpools, the destroy failed.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Contact IBM with details of the problem scenario.

3F4 08 Equate Symbol: #ALRC_WORKER_RESMGR_MEMTERM

Explanation: During worker task resource manager processing, it
terminated the address space because there are still units of work using
the worker task resources.

System Action: A dump with 4094 completion code and this reason code
is generated.

Programmer Response: Contact IBM with the captured dump.

FFC 08 Equate Symbol: #ALRC_AUTHLE_INTERNAL_ERR

Explanation: CELAAUTH Services failed to determine its state. This could
be caused by other unknown system errors, and/or because of storage
overlays.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: If the system appears to be running fine, take a
dump, and contact IBM support with the dump taken.

CELAAUTH

816 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 89. Return and reason codes for the CELAAUTH macro (continued)

Reason Code (rrr) Return Code Meaning and Action

3F8 0C Equate Symbol: .#ALRC_AEDT_SIZE_MISMATCH

Explanation: The AEDT_EDENUM value did not match the value used
when the set of system managed environments was initialized. The AEDT
specified for a MNGDUPDT request must contain the same number of
environment definition entries (AEDE) as the AEDT that was used for the
MNGDINIT request.

System Action: CELAAUTH returns this reason code back to the caller,
after cleanup.

Programmer Response: Make sure the AEDT_EDENUM value in the
AEDT is correct.

3FC 0C, 04 Equate Symbol: .#ALRC_MAX_ENV_DECREASE

Explanation: The AEDE_MAX value specified for at least one AEDE was
less than the value currently in effect. The maximum number of
environments can only be increased. The AEDE_MAX value must be
greater than the value specified for the MNGDINIT request and any
previous MNGDUPDT requests.

System Action: CELAAUTH returns this reason code to the caller after
cleanup. When the return code is #ALRTN_QUALIFIED_SUCCESS, the
requests of other AEDE entries containing AEDE_MAX values greater than
the value currently in effect are honored.

Programmer Response: Make sure the AEDE_MAX value in each AEDE is
correct.

400 04 Equate Symbol: .#ALRC_NO_UPDATES

Explanation: The AEDE_MAX value for every AEDE was either zero or
the value currently in effect. No updates were performed. The maximum
number of environments can only be increased. The AEDE_MAX value
must be greater than the value specified for the MNGDINIT request and
any previous MNGDUPDT requests for at least one AEDE.

System Action: CELAAUTH returns this reason code to the caller after
cleanup.

Programmer Response: Make sure the AEDE_MAX value in each AEDE is
correct.

CELAAUTH

Chapter 30. Preinitialized Environments for Authorized Programs for AMODE 64 applications 817

CELAAUTH

818 z/OS V2R1.0 Language Environment Vendor Interfaces

Part 3. Appendixes

© Copyright IBM Corp. 1991, 2015 819

820 z/OS V2R1.0 Language Environment Vendor Interfaces

Appendix A. Options control block and supplementary
options control block

The following sections describe the CEEOCB and CEESOCB macros, respectively.

Options control block
CEEOCB, the options control block (OCB), contains structures that describe the
basic settings and parameters of each Language Environment runtime option. The
following tables show the format of the OCB:
v Table 90 shows the type field definitions.
v Figure 155 on page 822 and following figures show the OCB field descriptions.
v Table 91 on page 866 shows the OCB constants.

Table 90. Options control block (OCB) and supplementary options control block (SOCB) type
field definitions

Type Definition

POINTER A platform-dependent address pointer

BITSTRING A string of bits of the defined length

CHARACTER A string of characters (character array) of the defined length

DECIMAL A two-byte or four-byte signed integer value

PTRINTOAREA A two-byte or four-byte signed integer

SIGNED A two-byte or four-byte signed integer

STRUCTURE A mapping of a storage area; the displacement of a data item from the
beginning of the OCB structure

© Copyright IBM Corp. 1991, 2015 821

1 CEEOCB

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB ,
0 (0) CHARACTER 1 CEEOCB_AREA_AREA(0)
0 (0) CHARACTER 8 CEEOCB_EYECATCHER
8 (8) SIGNED 2 CEEOCB_VERSION_RELEASE
10 (A) SIGNED 2 CEEOCB_LENGTH
12 (C) ADDRESS 4 *
16 (10) BITSTRING 1 CEEOCB_FORMAT

.... CEEOCB_FORMAT_31
"X’00’"

.... ...1 CEEOCB_FORMAT_64
"X’01’"

17 (11) BITSTRING 1 CEEOCB_IBM_SUPPLIED
.... CEEOCB_USER_SUPPLIED

"X’00’"
1... CEEOCB_IBM_SUPPLIED

"X’80’"
18 (12) BITSTRING 1 *(2)
20 (14) CHARACTER 8 CEEOCB_RSVD1(0)
20 (14) BITSTRING 1 CEEOCB_RSVD1_BIT_FLAG

1... CEEOCB_RSVD1_ON
"X’80’"

.1.. CEEOCB_RSVD1_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_RSVD1_ON_V
"X’01’"

21 (15) BITSTRING 1 *
22 (16) SIGNED 2 CEEOCB_RSVD1_WHERE_SET
24 (18) ADDRESS 4 CEEOCB_RSVD1_SUB_OPTIONS
28 (1C) CHARACTER 8 CEEOCB_AIXBLD(0)
28 (1C) BITSTRING 1 CEEOCB_AIXBLD_BIT_FLAG

1... CEEOCB_AIXBLD_ON
"X’80’"

.1.. CEEOCB_AIXBLD_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_AIXBLD_ON_V
"X’01’"

29 (1D) BITSTRING 1 *
30 (1E) SIGNED 2 CEEOCB_AIXBLD_WHERE_SET
32 (20) ADDRESS 4 CEEOCB_AIXBLD_SUB_OPTIONS
36 (24) CHARACTER 8 CEEOCB_ALL31(0)
36 (24) BITSTRING 1 CEEOCB_ALL31_BIT_FLAG

1... CEEOCB_ALL31_ON
"X’80’"

.1.. CEEOCB_ALL31_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_ALL31_ON_V
"X’01’"

37 (25) BITSTRING 1 *
38 (26) SIGNED 2 CEEOCB_ALL31_WHERE_SET
40 (28) ADDRESS 4 CEEOCB_ALL31_SUB_OPTIONS
44 (2C) CHARACTER 8 CEEOCB_BELOWHEAP(0)
44 (2C) BITSTRING 1 CEEOCB_BELOWHEAP_BIT_FLAG

1... CEEOCB_BELOWHEAP_ON
"X’80’"

.1.. CEEOCB_BELOWHEAP_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_BELOWHEAP_ON_V
"X’01’"

45 (2D) BITSTRING 1 *
46 (2E) SIGNED 2 CEEOCB_BELOWHEAP_WHERE_SET

Figure 155. Options control block (OCB) field descriptions (Part 1)

CEEOCB Macro

822 z/OS V2R1.0 Language Environment Vendor Interfaces

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

48 (30) ADDRESS 4 CEEOCB_BELOWHEAP_SUB_OPTIONS
52 (34) CHARACTER 8 CEEOCB_CHECK(0)
52 (34) BITSTRING 1 CEEOCB_CHECK_BIT_FLAG

1... CEEOCB_CHECK_ON
"X’80’"

.1.. CEEOCB_CHECK_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_CHECK_ON_V
"X’01’"

53 (35) BITSTRING 1 *
54 (36) SIGNED 2 CEEOCB_CHECK_WHERE_SET
56 (38) ADDRESS 4 CEEOCB_CHECK_SUB_OPTIONS
60 (3C) CHARACTER 8 CEEOCB_PLITASKCOUNT(0)
60 (3C) BITSTRING 1 CEEOCB_PLITASKCOUNT_BIT_FLAG

1... CEEOCB_PLITASKCOUNT_ON
"X’80’"

.1.. CEEOCB_PLITASKCOUNT_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_PLITASKCOUNT_ON_V
"X’01’"

61 (3D) BITSTRING 1 *
62 (3E) SIGNED 2 CEEOCB_PLITASKCOUNT_WHERE_SET
64 (40) ADDRESS 4 CEEOCB_PLITASKCOUNT_SUB_OPTIONS
68 (44) CHARACTER 8 CEEOCB_ABTERMENC(0)
68 (44) BITSTRING 1 CEEOCB_ABTERMENC_BIT_FLAG

1... CEEOCB_ABTERMENC_ON
"X’80’"

.1.. CEEOCB_ABTERMENC_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_ABTERMENC_ON_V
"X’01’"

69 (45) BITSTRING 1 *
70 (46) SIGNED 2 CEEOCB_ABTERMENC_WHERE_SET
72 (48) ADDRESS 4 CEEOCB_ABTERMENC_SUB_OPTIONS
76 (4C) CHARACTER 8 CEEOCB_COUNTRY(0)
76 (4C) BITSTRING 1 CEEOCB_COUNTRY_BIT_FLAG

1... CEEOCB_COUNTRY_ON
"X’80’"

.1.. CEEOCB_COUNTRY_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_COUNTRY_ON_V
"X’01’"

77 (4D) BITSTRING 1 *
78 (4E) SIGNED 2 CEEOCB_COUNTRY_WHERE_SET
80 (50) ADDRESS 4 CEEOCB_COUNTRY_SUB_OPTIONS
84 (54) CHARACTER 8 CEEOCB_DEBUG(0)
84 (54) BITSTRING 1 CEEOCB_DEBUG_BIT_FLAG

1... CEEOCB_DEBUG_ON
"X’80’"

.1.. CEEOCB_DEBUG_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_DEBUG_ON_V
"X’01’"

85 (55) BITSTRING 1 *
86 (56) SIGNED 2 CEEOCB_DEBUG_WHERE_SET

Figure 156. Options control block (OCB) field descriptions (Part 2)

CEEOCB Macro

Appendix A. Options control block and supplementary options control block 823

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

88 (58) ADDRESS 4 CEEOCB_DEBUG_SUB_OPTIONS
92 (5C) CHARACTER 8 CEEOCB_ERRCOUNT(0)
92 (5C) BITSTRING 1 CEEOCB_ERRCOUNT_BIT_FLAG

1... CEEOCB_ERRCOUNT_ON
"X’80’"

.1.. CEEOCB_ERRCOUNT_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_ERRCOUNT_ON_V
"X’01’"

93 (5D) BITSTRING 1 *
94 (5E) SIGNED 2 CEEOCB_ERRCOUNT_WHERE_SET
96 (60) ADDRESS 4 CEEOCB_ERRCOUNT_SUB_OPTIONS
100 (64) CHARACTER 8 CEEOCB_FILEHIST(0)
100 (64) BITSTRING 1 CEEOCB_FILEHIST_BIT_FLAG

1... CEEOCB_FILEHIST_ON
"X’80’"

.1.. CEEOCB_FILEHIST_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_FILEHIST_ON_V
"X’01’"

101 (65) BITSTRING 1 *
102 (66) SIGNED 2 CEEOCB_FILEHIST_WHERE_SET
104 (68) ADDRESS 4 CEEOCB_FILEHIST_SUB_OPTIONS
108 (6C) CHARACTER 8 CEEOCB_ENVAR(0)
108 (6C) BITSTRING 1 CEEOCB_ENVAR_BIT_FLAG

1... CEEOCB_ENVAR_ON
"X’80’"

.1.. CEEOCB_ENVART_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_ENVAR_ON_V
"X’01’"

109 (6D) BITSTRING 1 *
110 (6E) SIGNED 2 CEEOCB_ENVAR_WHERE_SET
112 (70) ADDRESS 4 CEEOCB_ENVAR_SUB_OPTIONS
116 (74) CHARACTER 8 CEEOCB_FLOWC(0)
116 (74) BITSTRING 1 CEEOCB_FLOWC_BIT_FLAG

1... CEEOCB_FLOWC_ON
"X’80’"

.1.. CEEOCB_FLOWC_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_FLOWC_ON_V
"X’01’"

117 (75) BITSTRING 1 *
118 (76) SIGNED 2 CEEOCB_FLOWC_WHERE_SET
120 (78) ADDRESS 4 CEEOCB_FLOWC_SUB_OPTIONS
124 (7C) CHARACTER 8 CEEOCB_HEAP(0)
124 (7C) BITSTRING 1 CEEOCB_HEAP_BIT_FLAG

1... CEEOCB_HEAP_ON
"X’80’"

.1.. CEEOCB_HEAP_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_HEAP_ON_V
"X’01’"

125 (7D) BITSTRING 1 *
126 (7E) SIGNED 2 CEEOCB_HEAP_WHERE_SET

Figure 157. Options control block (OCB) field descriptions (Part 3)

CEEOCB Macro

824 z/OS V2R1.0 Language Environment Vendor Interfaces

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

128 (80) ADDRESS 4 CEEOCB_HEAP_SUB_OPTIONS
132 (84) CHARACTER 8 CEEOCB_INQPCOPN(0)
132 (84) BITSTRING 1 CEEOCB_INQPCOPN_BIT_FLAG

1... CEEOCB_INQPCOPN_ON
"X’80’"

.1.. CEEOCB_INQPCOPN_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_INQPCOPN_ON_V
"X’01’"

133 (85) BITSTRING 1 *
134 (86) SIGNED 2 CEEOCB_INQPCOPN_WHERE_SET
136 (88) ADDRESS 4 CEEOCB_INQPCOPN_SUB_OPTIONS
140 (8C) CHARACTER 8 CEEOCB_INTERRUPT(0)
140 (8C) BITSTRING 1 CEEOCB_INTERRUPT_BIT_FLAG

1... CEEOCB_INTERRUPT_ON
"X’80’"

.1.. CEEOCB_INTERRUPT_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_INTERRUPT_ON_V
"X’01’"

141 (8D) BITSTRING 1 *
142 (8E) SIGNED 2 CEEOCB_INTERRUPT_WHERE_SET
144 (90) ADDRESS 4 CEEOCB_INTERRUPT_SUB_OPTIONS
148 (94) CHARACTER 8 CEEOCB_LIBSTACK(0)
148 (94) BITSTRING 1 CEEOCB_LIBSTACK_BIT_FLAG

1... CEEOCB_LIBSTACK_ON
"X’80’"

.1.. CEEOCB_LIBSTACK_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_LIBSTACK_ON_V
"X’01’"

149 (95) BITSTRING 1 *
150 (96) SIGNED 2 CEEOCB_LIBSTACK_WHERE_SET
152 (98) ADDRESS 4 CEEOCB_LIBSTACK_SUB_OPTIONS
156 (9C) CHARACTER 8 CEEOCB_MSGQ(0)
156 (9C) BITSTRING 1 CEEOCB_MSGQ_BIT_FLAG

1... CEEOCB_MSGQ_ON
"X’80’"

.1.. CEEOCB_MSGQ_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_MSGQ_ON_V
"X’01’"

157 (9D) BITSTRING 1 *
158 (9E) SIGNED 2 CEEOCB_MSGQ_WHERE_SET
160 (A0) ADDRESS 4 CEEOCB_MSGQ_SUB_OPTIONS
164 (A4) CHARACTER 8 CEEOCB_MSGFILE(0)
164 (A4) BITSTRING 1 CEEOCB_MSGFILE_BIT_FLAG

1... CEEOCB_MSGFILE_ON
"X’80’"

.1.. CEEOCB_MSGFILE_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_MSGFILE_ON_V
"X’01’"

165 (A5) BITSTRING 1 *
166 (A6) SIGNED 2 CEEOCB_MSGFILE_WHERE_SET

Figure 158. Options control block (OCB) field descriptions (Part 4)

CEEOCB Macro

Appendix A. Options control block and supplementary options control block 825

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

168 (A8) ADDRESS 4 CEEOCB_MSGFILE_SUB_OPTIONS
172 (AC) CHARACTER 8 CEEOCB_NATLANG(0)
172 (AC) BITSTRING 1 CEEOCB_NATLANG_BIT_FLAG

1... CEEOCB_NATLANG_ON
"X’80’"

.1.. CEEOCB_NATLANG_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_NATLANG_ON_V
"X’01’"

173 (AD) BITSTRING 1 *
174 (AE) SIGNED 2 CEEOCB_NATLANG_WHERE_SET
176 (B0) ADDRESS 4 CEEOCB_NATLANG_SUB_OPTIONS
180 (B4) CHARACTER 8 CEEOCB_ERRUNIT(0)
180 (B4) BITSTRING 1 CEEOCB_ERRUNIT_BIT_FLAG

1... CEEOCB_ERRUNIT_ON
"X’80’"

.1.. CEEOCB_ERRUNIT_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_ERRUNIT_ON_V
"X’01’"

181 (B5) BITSTRING 1 *
182 (B6) SIGNED 2 CEEOCB_ERRUNIT_WHERE_SET
184 (B8) ADDRESS 4 CEEOCB_ERRUNIT_SUB_OPTIONS
188 (BC) CHARACTER 8 CEEOCB_OCSTATUS(0)
188 (BC) BITSTRING 1 CEEOCB_OCSTATUS_BIT_FLAG

1... CEEOCB_OCSTATUS_ON
"X’80’"

.1.. CEEOCB_OCSTATUS_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_OCSTATUS_ON_V
"X’01’"

189 (BD) BITSTRING 1 *
190 (BE) SIGNED 2 CEEOCB_OCSTATUS_WHERE_SET
192 (C0) ADDRESS 4 CEEOCB_OCSTATUS_SUB_OPTIONS
196 (C4) CHARACTER 8 CEEOCB_POSIX(0)
196 (C4) BITSTRING 1 CEEOCB_POSIX_BIT_FLAG

1... CEEOCB_POSIX_ON
"X’80’"

.1.. CEEOCB_POSIX_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_POSIX_ON_V
"X’01’"

197 (C5) BITSTRING 1 *
198 (C6) SIGNED 2 CEEOCB_POSIX_WHERE_SET
200 (C8) ADDRESS 4 CEEOCB_POSIX_SUB_OPTIONS
204 (CC) CHARACTER 8 CEEOCB_RPTSTG(0)
204 (CC) BITSTRING 1 CEEOCB_RPTSTG_BIT_FLAG

1... CEEOCB_RPTSTG_ON
"X’80’"

.1.. CEEOCB_RPTSTG_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_RPTSTG_ON_V
"X’01’"

205 (CD) BITSTRING 1 *
206 (CE) SIGNED 2 CEEOCB_RPTSTG_WHERE_SET

Figure 159. Options control block (OCB) field descriptions (Part 5)

CEEOCB Macro

826 z/OS V2R1.0 Language Environment Vendor Interfaces

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

208 (D0) ADDRESS 4 CEEOCB_RPTSTG_SUB_OPTIONS
212 (D4) CHARACTER 8 CEEOCB_RTEREUS(0)
212 (D4) BITSTRING 1 CEEOCB_RTEREUS_BIT_FLAG

1... CEEOCB_RTEREUS_ON
"X’80’"

.1.. CEEOCB_RTEREUS_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_RTEREUS_ON_V
"X’01’"

213 (D5) BITSTRING 1 *
214 (D6) SIGNED 2 CEEOCB_RTEREUS_WHERE_SET
216 (D8) ADDRESS 4 CEEOCB_RTEREUS_SUB_OPTIONS
220 (DC) CHARACTER 8 CEEOCB_SIMVRD(0)
220 (DC) BITSTRING 1 CEEOCB_SIMVRD_BIT_FLAG

1... CEEOCB_SIMVRD_ON
"X’80’"

.1.. CEEOCB_SIMVRD_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_SIMVRD_ON_V
"X’01’"

221 (DD) BITSTRING 1 *
222 (DE) SIGNED 2 CEEOCB_SIMVRD_WHERE_SET
224 (E0) ADDRESS 4 CEEOCB_SIMVRD_SUB_OPTIONS
228 (E4) CHARACTER 8 CEEOCB_STACK(0)
228 (E4) BITSTRING 1 CEEOCB_STACK_BIT_FLAG

1... CEEOCB_STACK_ON
"X’80’"

.1.. CEEOCB_STACK_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_STACK_ON_V
"X’01’"

229 (E5) BITSTRING 1 *
230 (E6) SIGNED 2 CEEOCB_STACK_WHERE_SET
232 (E8) ADDRESS 4 CEEOCB_STACK_SUB_OPTIONS
236 (EC) CHARACTER 8 CEEOCB_STORAGE(0)
236 (EC) BITSTRING 1 CEEOCB_STORAGE_BIT_FLAG

1... CEEOCB_STORAGE_ON
"X’80’"

.1.. CEEOCB_STORAGE_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_STORAGE_ON_V
"X’01’"

237 (ED) BITSTRING 1 *
238 (EE) SIGNED 2 CEEOCB_STORAGE_WHERE_SET
240 (F0) ADDRESS 4 CEEOCB_STORAGE_SUB_OPTIONS
244 (F4) CHARACTER 8 CEEOCB_AUTOTASK(0)
244 (F4) BITSTRING 1 CEEOCB_AUTOTASK_BIT_FLAG

1... CEEOCB_AUTOTASK_ON
"X’80’"

.1.. CEEOCB_AUTOTASK_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_AUTOTASK_ON_V
"X’01’"

245 (F5) BITSTRING 1 *
246 (F6) SIGNED 2 CEEOCB_AUTOTASK_WHERE_SET

Figure 160. Options control block (OCB) field descriptions (Part 6)

CEEOCB Macro

Appendix A. Options control block and supplementary options control block 827

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

248 (F8) ADDRESS 4 CEEOCB_AUTOTASK_SUB_OPTIONS
252 (FC) CHARACTER 8 CEEOCB_TRACE(0)
252 (FC) BITSTRING 1 CEEOCB_TRACE_BIT_FLAG

1... CEEOCB_TRACE_ON
"X’80’"

.1.. CEEOCB_TRACE_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_TRACE_ON_V
"X’01’"

253 (FD) BITSTRING 1 *
254 (FE) SIGNED 2 CEEOCB_TRACE_WHERE_SET
256 (100) ADDRESS 4 CEEOCB_TRACE_SUB_OPTIONS
260 (104) CHARACTER 8 CEEOCB_THREADHEAP(0)
260 (104) BITSTRING 1 CEEOCB_THREADHEAP_BIT_FLAG

1... CEEOCB_THREADHEAP_ON
"X’80’"

.1.. CEEOCB_THREADHEAP_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_THREADHEAP_ON_V
"X’01’"

261 (105) BITSTRING 1 *
262 (106) SIGNED 2 CEEOCB_THREADHEAP_WHERE_SET
264 (108) ADDRESS 4 CEEOCB_THREADHEAP_SUB_OPTIONS
268 (10C) CHARACTER 8 CEEOCB_TEST(0)
268 (10C) BITSTRING 1 CEEOCB_TEST_BIT_FLAG

1... CEEOCB_TEST_ON
"X’80’"

.1.. CEEOCB_TEST_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_TEST_ON_V
"X’01’"

269 (10D) BITSTRING 1 *
270 (10E) SIGNED 2 CEEOCB_TEST_WHERE_SET
272 (110) ADDRESS 4 CEEOCB_TEST_SUB_OPTIONS
276 (114) CHARACTER 8 CEEOCB_THREADSTACK(0)
276 (114) BITSTRING 1 CEEOCB_THREADSTACK_BIT_FLAG

1... CEEOCB_THREADSTACK_ON
"X’80’"

.1.. CEEOCB_THREADSTACK_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_THREADSTACK_ON_V
"X’01’"

277 (115) BITSTRING 1 *
278 (116) SIGNED 2 CEEOCB_THREADSTACK_WHERE_SET
280 (118) ADDRESS 4 CEEOCB_THREADSTACK_SUB_OPTIONS
284 (11C) CHARACTER 8 CEEOCB_TRAP(0)
284 (11C) BITSTRING 1 CEEOCB_TRAP_BIT_FLAG

1... CEEOCB_TRAP_ON
"X’80’"

.1.. CEEOCB_TRAP_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_TRAP_ON_V
"X’01’"

285 (11D) BITSTRING 1 *
286 (11E) SIGNED 2 CEEOCB_TRAP_WHERE_SET

Figure 161. Options control block (OCB) field descriptions (Part 7)

CEEOCB Macro

828 z/OS V2R1.0 Language Environment Vendor Interfaces

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

288 (120) ADDRESS 4 CEEOCB_TRAP_SUB_OPTIONS
292 (124) CHARACTER 8 CEEOCB_UPSI(0)
292 (124) BITSTRING 1 CEEOCB_UPSI_BIT_FLAG

1... CEEOCB_UPSI_ON
"X’80’"

.1.. CEEOCB_UPSI_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_UPSI_ON_V
"X’01’"

293 (125) BITSTRING 1 *
294 (126) SIGNED 2 CEEOCB_UPSI_WHERE_SET
296 (128) ADDRESS 4 CEEOCB_UPSI_SUB_OPTIONS
300 (12C) CHARACTER 8 CEEOCB_VCTRSAVE(0)
300 (12C) BITSTRING 1 CEEOCB_VCTRSAVE_BIT_FLAG

1... CEEOCB_VCTRSAVE_ON
"X’80’"

.1.. CEEOCB_VCTRSAVE_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_VCTRSAVE_ON_V
"X’01’"

301 (12D) BITSTRING 1 *
302 (12E) SIGNED 2 CEEOCB_VCTRSAVE_WHERE_SET
304 (130) ADDRESS 4 CEEOCB_VCTRSAVE_SUB_OPTIONS
308 (134) CHARACTER 8 CEEOCB_PRTUNIT(0)
308 (134) BITSTRING 1 CEEOCB_PRTUNIT_BIT_FLAG

1... CEEOCB_PRTUNIT_ON
"X’80’"

.1.. CEEOCB_PRTUNIT_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_PRTUNIT_ON_V
"X’01’"

309 (135) BITSTRING 1 *
310 (136) SIGNED 2 CEEOCB_PRTUNIT_WHERE_SET
312 (138) ADDRESS 4 CEEOCB_PRTUNIT_SUB_OPTIONS
316 (13C) CHARACTER 8 CEEOCB_XUFLOW(0)
316 (13C) BITSTRING 1 CEEOCB_XUFLOW_BIT_FLAG

1... CEEOCB_XUFLOW_ON
"X’80’"

.1.. CEEOCB_XUFLOW_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_XUFLOW_ON_V
"X’01’"

317 (13D) BITSTRING 1 *
318 (13E) SIGNED 2 CEEOCB_XUFLOW_WHERE_SET
320 (140) ADDRESS 4 CEEOCB_XUFLOW_SUB_OPTIONS
324 (144) CHARACTER 8 CEEOCB_CBLOPTS(0)
324 (144) BITSTRING 1 CEEOCB_CBLOPTS_BIT_FLAG

1... CEEOCB_CBLOPTS_ON
"X’80’"

.1.. CEEOCB_CBLOPTS_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_CBLOPTS_ON_V
"X’01’"

325 (145) BITSTRING 1 *
326 (146) SIGNED 2 CEEOCB_CBLOPTS_WHERE_SET

Figure 162. Options control block (OCB) field descriptions (Part 8)

CEEOCB Macro

Appendix A. Options control block and supplementary options control block 829

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

328 (148) ADDRESS 4 CEEOCB_CBLOPTS_SUB_OPTIONS
332 (14C) CHARACTER 8 CEEOCB_NONIPTSTACK(0)
332 (14C) BITSTRING 1 CEEOCB_NONIPTSTACK_BIT_FLAG

1... CEEOCB_NONIPTSTACK_ON
"X’80’"

.1.. CEEOCB_NONIPTSTACK_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_NONIPTSTACK_ON_V
"X’01’"

333 (14D) BITSTRING 1 *
334 (14E) SIGNED 2 CEEOCB_NONIPTSTACK_WHERE_SET
336 (150) ADDRESS 4 CEEOCB_NONIPTSTACK_SUB_OPTIONS
340 (154) CHARACTER 8 CEEOCB_RPTOPTS(0)
340 (154) BITSTRING 1 CEEOCB_RPTOPTS_BIT_FLAG

1... CEEOCB_RPTOPTS_ON
"X’80’"

.1.. CEEOCB_RPTOPTS_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_RPTOPTS_ON_V
"X’01’"

341 (155) BITSTRING 1 *
342 (156) SIGNED 2 CEEOCB_RPTOPTS_WHERE_SET
344 (158) ADDRESS 4 CEEOCB_RPTOPTS_SUB_OPTIONS
348 (15C) CHARACTER 8 CEEOCB_ANYHEAP(0)
348 (15C) BITSTRING 1 CEEOCB_ANYHEAP_BIT_FLAG

1... CEEOCB_ANYHEAP_ON
"X’80’"

.1.. CEEOCB_ANYHEAP_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_ANYHEAP_ON_V
"X’01’"

349 (15D) BITSTRING 1 *
350 (15E) SIGNED 2 CEEOCB_ANYHEAP_WHERE_SET
352 (160) ADDRESS 4 CEEOCB_ANYHEAP_SUB_OPTIONS
356 (164) CHARACTER 8 CEEOCB_ABPERC(0)
356 (164) BITSTRING 1 CEEOCB_ABPERC_BIT_FLAG

1... CEEOCB_ABPERC_ON
"X’80’"

.1.. CEEOCB_ABPERC_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_ABPERC_ON_V
"X’01’"

357 (165) BITSTRING 1 *
358 (166) SIGNED 2 CEEOCB_ABPERC_WHERE_SET
360 (168) ADDRESS 4 CEEOCB_ABPERC_SUB_OPTIONS
364 (16C) CHARACTER 8 CEEOCB_TERMTHDACT(0)
364 (16C) BITSTRING 1 CEEOCB_TERMTHDACT_BIT_FLAG

1... CEEOCB_TERMTHDACT_ON
"X’80’"

.1.. CEEOCB_TERMTHDACT_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_TERMTHDACT_ON_V
"X’01’"

365 (16D) BITSTRING 1 *
366 (16E) SIGNED 2 CEEOCB_TERMTHDACT_WHERE_SET

Figure 163. Options control block (OCB) field descriptions (Part 9)

CEEOCB Macro

830 z/OS V2R1.0 Language Environment Vendor Interfaces

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

368 (170) ADDRESS 4 CEEOCB_TERMTHDACT_SUB_OPTIONS
372 (174) CHARACTER 8 CEEOCB_DEPTHCONDLMT(0)
372 (174) BITSTRING 1 CEEOCB_DEPTHCONDLMT_BIT_FLAG

1... CEEOCB_DEPTHCONDLMT_ON
"X’80’"

.1.. CEEOCB_DEPTHCONDLMT_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_DEPTHCONDLMT_ON_V
"X’01’"

373 (175) BITSTRING 1 *
374 (176) SIGNED 2 CEEOCB_DEPTHCONDLMT_WHERE_SET
376 (178) ADDRESS 4 CEEOCB_DEPTHCONDLMT_SUB_OPTIONS
380 (17C) CHARACTER 8 CEEOCB_CBLPSHPOP(0)
380 (17C) BITSTRING 1 CEEOCB_CBLPSHPOP_BIT_FLAG

1... CEEOCB_CBLPSHPOP_ON
"X’80’"

.1.. CEEOCB_CBLPSHPOP_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_CBLPSHPOP_ON_V
"X’01’"

381 (17D) BITSTRING 1 *
382 (17E) SIGNED 2 CEEOCB_CBLPSHPOP_WHERE_SET
384 (180) ADDRESS 4 CEEOCB_CBLPSHPOP_SUB_OPTIONS
388 (184) CHARACTER 8 CEEOCB_CBLQDA(0)
388 (184) BITSTRING 1 CEEOCB_CBLQDA_BIT_FLAG

1... CEEOCB_CBLQDA_ON
"X’80’"

.1.. CEEOCB_CBLQDA_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_CBLQDA_ON_V
"X’01’"

389 (185) BITSTRING 1 *
390 (186) SIGNED 2 CEEOCB_CBLQDA_WHERE_SET
392 (188) ADDRESS 4 CEEOCB_CBLQDA_SUB_OPTIONS
396 (18C) CHARACTER 8 CEEOCB_PUNUNIT(0)
396 (18C) BITSTRING 1 CEEOCB_PUNUNIT_BIT_FLAG

1... CEEOCB_PUNUNIT_ON
"X’80’"

.1.. CEEOCB_PUNUNIT_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_PUNUNIT_ON_V
"X’01’"

397 (18D) BITSTRING 1 *
398 (18E) SIGNED 2 CEEOCB_PUNUNIT_WHERE_SET
400 (190) ADDRESS 4 CEEOCB_PUNUNIT_SUB_OPTIONS
404 (194) CHARACTER 8 CEEOCB_RDRUNIT(0)
404 (194) BITSTRING 1 CEEOCB_RDRUNIT_BIT_FLAG

1... CEEOCB_RDRUNIT_ON
"X’80’"

.1.. CEEOCB_RDRUNIT_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_RDRUNIT_ON_V
"X’01’"

405 (195) BITSTRING 1 *
406 (196) SIGNED 2 CEEOCB_RDRUNIT_WHERE_SET

Figure 164. Options control block (OCB) field descriptions (Part 10)

CEEOCB Macro

Appendix A. Options control block and supplementary options control block 831

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

408 (198) ADDRESS 4 CEEOCB_RDRUNIT_SUB_OPTIONS
412 (19C) CHARACTER 8 CEEOCB_RECPAD(0)
412 (19C) BITSTRING 1 CEEOCB_RECPAD_BIT_FLAG

1... CEEOCB_RECPAD_ON
"X’80’"

.1.. CEEOCB_RECPAD_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_RECPAD_ON_V
"X’01’"

413 (19D) BITSTRING 1 *
414 (19E) SIGNED 2 CEEOCB_RECPAD_WHERE_SET
416 (1A0) ADDRESS 4 CEEOCB_RECPAD_SUB_OPTIONS
420 (1A4) CHARACTER 8 CEEOCB_USRHDLR(0)
420 (1A4) BITSTRING 1 CEEOCB_USRHDLR_BIT_FLAG

1... CEEOCB_USRHDLR_ON
"X’80’"

.1.. CEEOCB_USRHDLR_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_USRHDLR_ON_V
"X’01’"

421 (1A5) BITSTRING 1 *
422 (1A6) SIGNED 2 CEEOCB_USRHDLR_WHERE_SET
424 (1A8) ADDRESS 4 CEEOCB_USRHDLR_SUB_OPTIONS
428 (1AC) CHARACTER 8 CEEOCB_NAMELIST(0)
428 (1AC) BITSTRING 1 CEEOCB_NAMELIST_BIT_FLAG

1... CEEOCB_NAMELIST_ON
"X’80’"

.1.. CEEOCB_NAMELIST_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_NAMELIST_ON_V
"X’01’"

429 (1AD) BITSTRING 1 *
430 (1AE) SIGNED 2 CEEOCB_NAMELIST_WHERE_SET
432 (1B0) ADDRESS 4 CEEOCB_NAMELIST_SUB_OPTIONS
436 (1B4) CHARACTER 8 CEEOCB_PC(0)
436 (1B4) BITSTRING 1 CEEOCB_PC_BIT_FLAG

1... CEEOCB_PC_ON "X’80’"
.1.. CEEOCB_PC_NOOVERRIDE

"X’40’"
.... ...1 CEEOCB_PC_ON_V

"X’01’"
437 (1B5) BITSTRING 1 *
438 (1B6) SIGNED 2 CEEOCB_PC_WHERE_SET
440 (1B8) ADDRESS 4 CEEOCB_PC_SUB_OPTIONS

This option is now obsolete - Do not use
==

444 (1BC) CHARACTER 8 CEEOCB_LIBRARY(0)
444 (1BC) BITSTRING 1 CEEOCB_LIBRARY_BIT_FLAG

1... CEEOCB_LIBRARY_ON
"X’80’"

.1.. CEEOCB_LIBRARY_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_LIBRARY_ON_V
"X’01’"

Figure 165. Options control block (OCB) field descriptions (Part 11)

CEEOCB Macro

832 z/OS V2R1.0 Language Environment Vendor Interfaces

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

445 (1BD) BITSTRING 1 *
446 (1BE) SIGNED 2 CEEOCB_LIBRARY_WHERE_SET
448 (1C0) ADDRESS 4 CEEOCB_LIBRARY_SUB_OPTIONS

This option is now obsolete - Do not use
==

452 (1C4) CHARACTER 8 CEEOCB_VERSION(0)
452 (1C4) BITSTRING 1 CEEOCB_VERSION_BIT_FLAG

1... CEEOCB_VERSION_ON
"X’80’"

.1.. CEEOCB_VERSION_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_VERSION_ON_V
"X’01’"

453 (1C5) BITSTRING 1 *
454 (1C6) SIGNED 2 CEEOCB_VERSION_WHERE_SET
456 (1C8) ADDRESS 4 CEEOCB_VERSION_SUB_OPTIONS

This option is now obsolete - Do not use
==

460 (1CC) CHARACTER 8 CEEOCB_RTLS(0)
460 (1CC) BITSTRING 1 CEEOCB_RTLS_BIT_FLAG

1... CEEOCB_RTLS_ON
"X’80’"

.1.. CEEOCB_RTLS_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_RTLS_ON_V
"X’01’"

461 (1CD) BITSTRING 1 *
462 (1CE) SIGNED 2 CEEOCB_RTLS_WHERE_SET
464 (1D0) ADDRESS 4 CEEOCB_RTLS_SUB_OPTIONS
468 (1D4) CHARACTER 8 CEEOCB_HEAPCHK(0)
468 (1D4) BITSTRING 1 CEEOCB_HEAPCHK_BIT_FLAG

1... CEEOCB_HEAPCHK_ON
"X’80’"

.1.. CEEOCB_HEAPCHK_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_HEAPCHK_ON_V
"X’01’"

469 (1D5) BITSTRING 1 *
470 (1D6) SIGNED 2 CEEOCB_HEAPCHK_WHERE_SET
472 (1D8) ADDRESS 4 CEEOCB_HEAPCHK_SUB_OPTIONS
476 (1DC) CHARACTER 8 CEEOCB_PROFILE(0)
476 (1DC) BITSTRING 1 CEEOCB_PROFILE_BIT_FLAG

1... CEEOCB_PROFILE_ON
"X’80’"

.1.. CEEOCB_PROFILE_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_PROFILE_ON_V
"X’01’"

477 (1DD) BITSTRING 1 *
478 (1DE) SIGNED 2 CEEOCB_PROFILE_WHERE_SET
480 (1E0) ADDRESS 4 CEEOCB_PROFILE_SUB_OPTIONS
484 (1E4) CHARACTER 8 CEEOCB_HEAPPOOLS(0)
484 (1E4) BITSTRING 1 CEEOCB_HEAPPOOLS_BIT_FLAG

Figure 166. Options control block (OCB) field descriptions (Part 12)

CEEOCB Macro

Appendix A. Options control block and supplementary options control block 833

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

1... CEEOCB_HEAPPOOLS_ON
"X’80’"

.1.. CEEOCB_HEAPPOOLS_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_HEAPPOOLS_ON_V
"X’01’"

485 (1E5) BITSTRING 1 *
486 (1E6) SIGNED 2 CEEOCB_HEAPPOOLS_WHERE_SET
488 (1E8) ADDRESS 4 CEEOCB_HEAPPOOLS_SUB_OPTIONS
492 (1EC) CHARACTER 8 CEEOCB_INFOMSGFILTER(0)
492 (1EC) BITSTRING 1 CEEOCB_INFOMSGFILTER_BIT_FLAG

1... CEEOCB_INFOMSGFILTER_ON
"X’80’"

.1.. CEEOCB_INFOMSGFILTER_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_INFOMSGFILTER_ON_V
"X’01’"

493 (1ED) BITSTRING 1 *
494 (1EE) SIGNED 2 CEEOCB_INFOMSGFILTER_WHERE_SET
496 (1F0) ADDRESS 4 CEEOCB_INFOMSGFILTER_SUB_OPTIONS
500 (1F4) CHARACTER 8 CEEOCB_XPLINK(0)
500 (1F4) BITSTRING 1 CEEOCB_XPLINK_BIT_FLAG

1... CEEOCB_XPLINK_ON
"X’80’"

.1.. CEEOCB_XPLINK_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_XPLINK_ON_V
"X’01’"

501 (1F5) BITSTRING 1 *
502 (1F6) SIGNED 2 CEEOCB_XPLINK_WHERE_SET
504 (1F8) ADDRESS 4 CEEOCB_XPLINK_SUB_OPTIONS
508 (1FC) CHARACTER 8 CEEOCB_FILETAG(0)
508 (1FC) BITSTRING 1 CEEOCB_FILETAG_BIT_FLAG

1... CEEOCB_FILETAG_ON
"X’80’"

.1.. CEEOCB_FILETAG_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_FILETAG_ON_V
"X’01’"

509 (1FD) BITSTRING 1 *
510 (1FE) SIGNED 2 CEEOCB_FILETAG_WHERE_SET
512 (200) ADDRESS 4 CEEOCB_FILETAG_SUB_OPTIONS
516 (204) CHARACTER 8 CEEOCB_HEAP64(0)
516 (204) BITSTRING 1 CEEOCB_HEAP64_BIT_FLAG

1... CEEOCB_HEAP64_ON
"X’80’"

.1.. CEEOCB_HEAP64_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_HEAP64_ON_V
"X’01’"

517 (205) BITSTRING 1 *
518 (206) SIGNED 2 CEEOCB_HEAP64_WHERE_SET

Figure 167. Options control block (OCB) field descriptions (Part 13)

CEEOCB Macro

834 z/OS V2R1.0 Language Environment Vendor Interfaces

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

520 (208) ADDRESS 4 CEEOCB_HEAP64_SUB_OPTIONS
524 (20C) CHARACTER 8 CEEOCB_HEAPPOOLS64(0)
524 (20C) BITSTRING 1 CEEOCB_HEAPPOOLS64_BIT_FLAG

1... CEEOCB_HEAPPOOLS64_ON
"X’80’"

.1.. CEEOCB_HEAPPOOLS64_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_HEAPPOOLS64_ON_V
"X’01’"

525 (20D) BITSTRING 1 *
526 (20E) SIGNED 2 CEEOCB_HEAPPOOLS64_WHERE_SET
528 (210) ADDRESS 4 CEEOCB_HEAPPOOLS64_SUB_OPTIONS
532 (214) CHARACTER 8 CEEOCB_IOHEAP64(0)
532 (214) BITSTRING 1 CEEOCB_IOHEAP64_BIT_FLAG

1... CEEOCB_IOHEAP64_ON
"X’80’"

.1.. CEEOCB_IOHEAP64_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_IOHEAP64_ON_V
"X’01’"

533 (215) BITSTRING 1 *
534 (216) SIGNED 2 CEEOCB_IOHEAP64_WHERE_SET
536 (218) ADDRESS 4 CEEOCB_IOHEAP64_SUB_OPTIONS
540 (21C) CHARACTER 8 CEEOCB_LIBHEAP64(0)
540 (21C) BITSTRING 1 CEEOCB_LIBHEAP64_BIT_FLAG

1... CEEOCB_LIBHEAP64_ON
"X’80’"

.1.. CEEOCB_LIBHEAP64_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_LIBHEAP64_ON_V
"X’01’"

541 (21D) BITSTRING 1 *
542 (21E) SIGNED 2 CEEOCB_LIBHEAP64_WHERE_SET
544 (220) ADDRESS 4 CEEOCB_LIBHEAP64_SUB_OPTIONS
548 (224) CHARACTER 8 CEEOCB_STACK64(0)
548 (224) BITSTRING 1 CEEOCB_STACK64_BIT_FLAG

1... CEEOCB_STACK64_ON
"X’80’"

.1.. CEEOCB_STACK64_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_STACK64_ON_V
"X’01’"

549 (225) BITSTRING 1 *
550 (226) SIGNED 2 CEEOCB_STACK64_WHERE_SET
552 (228) ADDRESS 4 CEEOCB_STACK64_SUB_OPTIONS
556 (22C) CHARACTER 8 CEEOCB_THREADSTACK64(0)
556 (22C) BITSTRING 1 CEEOCB_THREADSTACK64_BIT_FLAG

1... CEEOCB_THREADSTACK64_ON
"X’80’"

.1.. CEEOCB_THREADSTACK64_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_THREADSTACK64_ON_V
"X’01’"

557 (22D) BITSTRING 1 *
558 (22E) SIGNED 2 CEEOCB_THREADSTACK64_WHERE_SET

Figure 168. Options control block (OCB) field descriptions (Part 14)

CEEOCB Macro

Appendix A. Options control block and supplementary options control block 835

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

560 (230) ADDRESS 4 CEEOCB_THREADSTACK64_SUB_OPTIONS
564 (234) CHARACTER 8 CEEOCB_DYNDUMP(0)
564 (234) BITSTRING 1 CEEOCB_DYNDUMP_BIT_FLAG

1... CEEOCB_DYNDUMP_ON
"X’80’"

.1.. CEEOCB_DYNDUMP_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_DYNDUMP_ON_V
"X’01’"

565 (235) BITSTRING 1 *
566 (236) SIGNED 2 CEEOCB_DYNDUMP_WHERE_SET
568 (238) ADDRESS 4 CEEOCB_DYNDUMP_SUB_OPTIONS
572 (23C) CHARACTER 8 CEEOCB_CEEDUMP(0)
572 (23C) BITSTRING 1 CEEOCB_CEEDUMP_BIT_FLAG

1... CEEOCB_CEEDUMP_ON
"X’80’"

.1.. CEEOCB_CEEDUMP_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_CEEDUMP_ON_V
"X’01’"

573 (23D) BITSTRING 1 *
574 (23E) SIGNED 2 CEEOCB_CEEDUMP_WHERE_SET
576 (240) ADDRESS 4 CEEOCB_CEEDUMP_SUB_OPTIONS

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

580 (244) CHARACTER 8 CEEOCB_PAGEFRAMESIZE(0)
580 (244) BITSTRING 1 CEEOCB_PAGEFRAMESIZE_BIT_FLAG

1... CEEOCB_PAGEFRAMESIZE_ON
"X’80’"

.1.. CEEOCB_PAGEFRAMESIZE_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_PAGEFRAMESIZE_ON_V
"X’01’"

581 (245) BITSTRING 1 *
582 (246) SIGNED 2 CEEOCB_PAGEFRAMESIZE_WHERE_SET
584 (248) ADDRESS 4 CEEOCB_PAGEFRAMESIZE_SUB_OPTIONS
588 (24C) BITSTRING 1 CEEOCB_HEAPZONES_BIT_FLAG

1... CEEOCB_HEAPZONES_ON
"X’80’"

.1.. CEEOCB_HEAPZONES_NOOVERRIDE
"X’40’"

.... ...1 CEEOCB_HEAPZONES_ON_V
"X’01’"

589 (24D) BITSTRING 1 *
590 (24E) SIGNED 2 CEEOCB_HEAPZONES_WHERE_SET
592 (250) ADDRESS 4 CEEOCB_HEAPZONES_SUB_OPTIONS

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

596 (254) CHARACTER 8 CEEOCB_PAGEFRAMESIZE64(0)
596 (254) BITSTRING 1 CEEOCB_PAGEFRAMESIZE64_BIT_FLAG

1... CEEOCB_PAGEFRAMESIZE64_ON
"X'80'"

.1.. CEEOCB_PAGEFRAMESIZE64_NOOVERRIDE
"X'40'"

.... ...1 CEEOCB_PAGEFRAMESIZE64_ON_V
"X'01'"

597 (255) BITSTRING 1 *
598 (256) SIGNED 2 CEEOCB_PAGEFRAMESIZE64_WHERE_SET
600 (258) ADDRESS 4 CEEOCB_PAGEFRAMESIZE64_SUB_OPTIONS

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_ABTERMENC_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_ABTERMENC_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) SIGNED 4 CEEOCB_ABTERMENC_EXITMODE
0 (0) STRUCTURE 0 CEEOCB_BELOWHEAP_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_BELOWHEAP_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) SIGNED 4 CEEOCB_BELOWHEAP_INIT_SIZE
8 (8) SIGNED 4 CEEOCB_BELOWHEAP_INCR_SIZE
12 (C) BITSTRING 1 CEEOCB_BELOWHEAP_SUB_BIT_FLAG

1... CEEOCB_BELOWHEAP_LOCATION
"X’80’"

.1.. CEEOCB_BELOWHEAP_DISPOSITION
"X’40’"

0 (0) STRUCTURE 0 CEEOCB_COUNTRY_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_COUNTRY_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) CHARACTER 2 CEEOCB_COUNTRY_CODE
0 (0) STRUCTURE 0 CEEOCB_DEPTHCONDLMT_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_DEPTHCONDLMT_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) SIGNED 4 CEEOCB_DEPTHCONDLMT_N
0 (0) STRUCTURE 0 CEEOCB_ENVAR_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_ENVAR_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) ADDRESS 4 CEEOCB_ENVAR_STRING_O

Figure 169. Options control block (OCB) field descriptions (Part 15)

CEEOCB Macro

836 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_ENVAR_STRING_S
0 (0) CHARACTER 1 CEEOCB_ENVAR_STRING(0)
0 (0) SIGNED 2 CEEOCB_ENVAR_STRING_LENGTH
2 (2) CHARACTER 250 CEEOCB_ENVAR_STRING_STRING
0 (0) STRUCTURE 0 CEEOCB_ERRCOUNT_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_ERRCOUNT_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) SIGNED 4 CEEOCB_ERRCOUNT_N
0 (0) STRUCTURE 0 CEEOCB_ERRUNIT_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_ERRUNIT_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) SIGNED 4 CEEOCB_ERRUNIT_N
0 (0) STRUCTURE 0 CEEOCB_FLOWC_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_FLOWC_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) SIGNED 4 CEEOCB_FLOWC_MAX_PROCEDURES

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_HEAP_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_HEAP_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) SIGNED 4 CEEOCB_HEAP_INIT_SIZE
8 (8) SIGNED 4 CEEOCB_HEAP_INCR_SIZE
12 (C) BITSTRING 1 CEEOCB_HEAP_SUB_BIT_FLAG

1... CEEOCB_HEAP_LOCATION
"X’80’"

.1.. CEEOCB_HEAP_DISPOSITION
"X’40’"

13 (D) BITSTRING 1 *(3)
16 (10) SIGNED 4 CEEOCB_HEAP_INITSZ24
20 (14) SIGNED 4 CEEOCB_HEAP_INCRSZ24

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_LIBSTACK_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_LIBSTACK_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) SIGNED 4 CEEOCB_LIBSTACK_INIT_SIZE
8 (8) SIGNED 4 CEEOCB_LIBSTACK_INCR_SIZE
12 (C) BITSTRING 1 CEEOCB_LIBSTACK_SUB_BIT_FLAG

1... CEEOCB_LIBSTACK_LOCATION
"X’80’"

.1.. CEEOCB_LIBSTACK_DISPOSITION
"X’40’"

Figure 170. Options control block (OCB) field descriptions (Part 16)

CEEOCB Macro

Appendix A. Options control block and supplementary options control block 837

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_MSGFILE_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_MSGFILE_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) ADDRESS 4 CEEOCB_MSGFILE_DDNAME_O
8 (8) ADDRESS 4 CEEOCB_MSGFILE_RECFM_O
12 (C) SIGNED 4 CEEOCB_MSGFILE_LRECL
16 (10) SIGNED 4 CEEOCB_MSGFILE_BLKSIZE
0 (0) STRUCTURE 0 CEEOCB_MSGFILE_DDNAME_S
0 (0) CHARACTER 1 CEEOCB_MSGFILE_DDNAME(0)
0 (0) SIGNED 2 CEEOCB_MSGFILE_DDNAME_LENGTH
2 (2) CHARACTER 8 CEEOCB_MSGFILE_DDNAME_STRING
10 (A) CHARACTER 1 *
11 (B) CHARACTER 1 CEEOCB_MSGFILE_DDNAME_ENQ
0 (0) STRUCTURE 0 CEEOCB_MSGFILE_RECFM_S
0 (0) CHARACTER 1 CEEOCB_MSGFILE_RECFM(0)
0 (0) SIGNED 2 CEEOCB_MSGFILE_RECFM_LENGTH
2 (2) CHARACTER 4 CEEOCB_MSGFILE_RECFM_STRING

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_NATLANG_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_NATLANG_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) CHARACTER 3 CEEOCB_NATLANG_NATIONAL_LANG
7 (7) BITSTRING 1 CEEOCB_NATLANG_SUB_BIT_FLAG

1... CEEOCB_NATLANG_UENGLISH
"X’80’"

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_PRTUNIT_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_PRTUNIT_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) SIGNED 4 CEEOCB_PRTUNIT_N

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_PUNUNIT_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_PUNUNIT_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) SIGNED 4 CEEOCB_PUNUNIT_N

Figure 171. Options control block (OCB) field descriptions (Part 17)

CEEOCB Macro

838 z/OS V2R1.0 Language Environment Vendor Interfaces

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_RDRUNIT_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_RDRUNIT_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) SIGNED 4 CEEOCB_RDRUNIT_N

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_RECPAD_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_RECPAD_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) SIGNED 4 CEEOCB_RECPAD_LEVEL

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_STACK_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_STACK_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) SIGNED 4 CEEOCB_STACK_INIT_SIZE
8 (8) SIGNED 4 CEEOCB_STACK_INCR_SIZE
12 (C) BITSTRING 1 CEEOCB_STACK_SUB_BIT_FLAG

1... CEEOCB_STACK_LOCATION
"X’80’"

.1.. CEEOCB_STACK_DISPOSITION
"X’40’"

13 (D) BITSTRING 1 *(3)
16 (10) SIGNED 4 CEEOCB_STACK_DSINIT_SIZE
20 (14) SIGNED 4 CEEOCB_STACK_DSINCR_SIZE

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 12 CEEOCB_STORAGE_SUB_OPTS
0 (0) BITSTRING 4 CEEOCB_STORAGE_SUB_OPTS_V

1... CEEOCB_STORAGE_HEAP_ALLOC_V
"X’80’"

.1.. CEEOCB_STORAGE_HEAP_FREE_V
"X’40’"

..1. CEEOCB_STORAGE_DSA_ALLOC_V
"X’20’"

...1 CEEOCB_STORAGE_RESERVE_SIZE_V
"X’10’"

1 (1) BITSTRING 1 *(3)
POS

4 (4) BITSTRING 1 CEEOCB_STORAGE_SUB_OPTS_FLAGS
1... CEEOCB_STORAGE_HEAP_ALLOC_SET

"X’80’"
.1.. CEEOCB_STORAGE_HEAP_FREE_SET

"X’40’"
..1. CEEOCB_STORAGE_DSA_ALLOC_SET

"X’20’"
...1 CEEOCB_STORAGE_DSA_CLEAR_SET

"X’10’"
5 (5) CHARACTER 1 CEEOCB_STORAGE_HEAP_ALLOC_VALUE
6 (6) CHARACTER 1 CEEOCB_STORAGE_HEAP_FREE_VALUE
7 (7) CHARACTER 1 CEEOCB_STORAGE_DSA_ALLOC_VALUE
8 (8) SIGNED 4 CEEOCB_STORAGE_RESERVE_SIZE

Figure 172. Options control block (OCB) field descriptions (Part 18)

CEEOCB Macro

Appendix A. Options control block and supplementary options control block 839

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_AUTOTASK_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_AUTOTASK_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) ADDRESS 4 CEEOCB_AUTOTASK_LOADMOD_O
8 (8) SIGNED 4 CEEOCB_AUTOTASK_NTASKS
0 (0) STRUCTURE 0 CEEOCB_AUTOTASK_LOADMOD_S
0 (0) CHARACTER 1 CEEOCB_AUTOTASK_LOADMOD(0)
0 (0) SIGNED 2 CEEOCB_AUTOTASK_LOADMOD_LENGTH
2 (2) CHARACTER 8 CEEOCB_AUTOTASK_LOADMOD_STRING

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_TEST_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_TEST_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) SIGNED 4 CEEOCB_TEST_CONTROL
8 (8) ADDRESS 4 CEEOCB_TEST_COMMAND_FILE_O
12 (C) ADDRESS 4 CEEOCB_TEST_INIT_COMMAND_O
16 (10) ADDRESS 4 CEEOCB_TEST_PREFERENCE_FILE_O

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_TEST_COMMAND_FILE_S
0 (0) CHARACTER 1 CEEOCB_TEST_COMMAND_FILE(0)
0 (0) SIGNED 2 CEEOCB_TEST_COMMAND_FILE_LEN
2 (2) CHARACTER 80 CEEOCB_TEST_COMMAND_FILE_STR

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_TEST_INIT_COMMAND_S
0 (0) CHARACTER 1 CEEOCB_TEST_INIT_COMMAND(0)
0 (0) SIGNED 2 CEEOCB_TEST_INIT_COMMAND_LEN
2 (2) CHARACTER 250 CEEOCB_TEST_INIT_COMMAND_STR

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_TEST_PREFERENCE_FILE_S
0 (0) CHARACTER 1 CEEOCB_TEST_PREFERENCE_FILE(0)
0 (0) SIGNED 2 CEEOCB_TEST_PREFERENCE_FILE_LEN
2 (2) CHARACTER 80 CEEOCB_TEST_PREFERENCE_FILE_STR

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_THREADSTACK_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_THREADSTACK_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) SIGNED 4 CEEOCB_THREADSTACK_INIT_SIZE
8 (8) SIGNED 4 CEEOCB_THREADSTACK_INCR_SIZE
12 (C) BITSTRING 1 CEEOCB_THREADSTACK_SUB_BIT_FLAG

Figure 173. Options control block (OCB) field descriptions (Part 19)

CEEOCB Macro

840 z/OS V2R1.0 Language Environment Vendor Interfaces

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

1... CEEOCB_THREADSTACK_LOCATION
"X’80’"

.1.. CEEOCB_THREADSTACK_DISPOSITION
"X’40’"

13 (D) BITSTRING 1 *(3)
16 (10) SIGNED 4 CEEOCB_THREADSTACK_DSINIT_SIZE
20 (14) SIGNED 4 CEEOCB_THREADSTACK_DSINCR_SIZE

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_TRACE_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_TRACE_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) SIGNED 4 CEEOCB_TRACE_TBL_SIZE
8 (8) BITSTRING 4 CEEOCB_TRACE_GLOBAL
12 (C) BITSTRING 1 CEEOCB_TRACE_FLAGS(4)
16 (10) ADDRESS 4 CEEOCB_TRACE_LVL_V_O
20 (14) ADDRESS 4 CEEOCB_TRACE_LVL_S_O
24 (18) ADDRESS 4 CEEOCB_TRACE_LVL_O

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_TRACE_LVL_V
0 (0) BITSTRING 1 CEEOCB_TRACE_LVL_V_FLAGS(4)

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_TRACE_LVL_S
0 (0) BITSTRING 1 CEEOCB_TRACE_LVL_S_FLAGS(4)

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_TRACE_LVL
0 (0) BITSTRING 1 CEEOCB_TRACE_LEVELS(0)
0 (0) BITSTRING 4 *
4 (4) BITSTRING 4 CEEOCB_TRACE_CEL
8 (8) BITSTRING 4 *
12 (C) BITSTRING 4 CEEOCB_TRACE_C370
16 (10) BITSTRING 20 *
36 (24) BITSTRING 4 *
40 (28) BITSTRING 4 CEEOCB_TRACE_PLI
44 (2C) BITSTRING 4 *
48 (30) BITSTRING 4 CEEOCB_TRACE_SOCKET
52 (34) BITSTRING 20 *

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_UPSI_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_UPSI_N_V

Figure 174. Options control block (OCB) field descriptions (Part 20)

CEEOCB Macro

Appendix A. Options control block and supplementary options control block 841

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

1 (1) BITSTRING 1 *(3)
4 (4) CHARACTER 8 CEEOCB_UPSI_N

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_USRHDLR_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_USRHDLR_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) ADDRESS 4 CEEOCB_USRHDLR_ROUTINE_O
8 (8) ADDRESS 4 CEEOCB_USRHDLR_SUPERHDLR_O

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_USRHDLR_ROUTINE_S
0 (0) CHARACTER 1 CEEOCB_USRHDLR_ROUTINE(0)
0 (0) SIGNED 2 CEEOCB_USRHDLR_ROUTINE_LENGTH
2 (2) CHARACTER 8 CEEOCB_USRHDLR_ROUTINE_STRING

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_USRHDLR_SUPERHDLR_S
0 (0) CHARACTER 1 CEEOCB_USRHDLR_SUPERHDLR(0)
0 (0) SIGNED 2 CEEOCB_USRHDLR_SUPERHDLR_LENGTH
2 (2) CHARACTER 8 CEEOCB_USRHDLR_SUPERHDLR_STRING

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_NAMELIST_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_NAMELIST_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) SIGNED 4 CEEOCB_NAMELIST_LEVEL

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_XUFLOW_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_XUFLOW_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) SIGNED 4 CEEOCB_XUFLOW_LEVEL

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_ANYHEAP_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_ANYHEAP_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) SIGNED 4 CEEOCB_ANYHEAP_INIT_SIZE
8 (8) SIGNED 4 CEEOCB_ANYHEAP_INCR_SIZE
12 (C) BITSTRING 1 CEEOCB_ANYHEAP_SUB_BIT_FLAG

1... CEEOCB_ANYHEAP_LOCATION
"X’80’"

Figure 175. Options control block (OCB) field descriptions (Part 21)

CEEOCB Macro

842 z/OS V2R1.0 Language Environment Vendor Interfaces

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

.1.. CEEOCB_ANYHEAP_DISPOSITION
"X’40’"

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_MSGQ_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_MSGQ_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) SIGNED 4 CEEOCB_MSGQ_N

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_ABPERC_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_ABPERC_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) BITSTRING 1 CEEOCB_ABPERC_SUB_OPTS_FLAGS

1... CEEOCB_ABPERC_NONE
"X’80’"

.1.. CEEOCB_ABPERC_USER
"X’40’"

..1. CEEOCB_ABPERC_SYST
"X’20’"

...1 CEEOCB_ABPERC_OTHR
"X’10’"

5 (5) BITSTRING 1 *(3)
8 (8) SIGNED 4 CEEOCB_ABPERC_ABNUM

@LI0021A
12 (C) CHARACTER 8 CEEOCB_ABPERC_ABCODE

@LI0021C

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_TERMTHDACT_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_TERMTHDACT_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) SIGNED 4 CEEOCB_TERMTHDACT_LEVEL
8 (8) BITSTRING 1 CEEOCB_TERMTHDACT_CICSDEST
9 (9) BITSTRING 1 *(3) NOT USED
12 (C) SIGNED 2 CEEOCB_TERMTHDACT_REGSTOR
14 (E) BITSTRING 1 *(2) NOT USED

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_THREADHEAP_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_THREADHEAP_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) SIGNED 4 CEEOCB_THREADHEAP_INIT_SIZE
8 (8) SIGNED 4 CEEOCB_THREADHEAP_INCR_SIZE
12 (C) BITSTRING 1 CEEOCB_THREADHEAP_SUB_BIT_FLAG

1... CEEOCB_THREADHEAP_LOCATION
"X’80’"

Figure 176. Options control block (OCB) field descriptions (Part 22)

CEEOCB Macro

Appendix A. Options control block and supplementary options control block 843

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

.1.. CEEOCB_THREADHEAP_DISPOSITION
"X’40’"

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_NONIPTSTACK_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_NONIPTSTACK_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) SIGNED 4 CEEOCB_NONIPTSTACK_INIT_SIZE
8 (8) SIGNED 4 CEEOCB_NONIPTSTACK_INCR_SIZE
12 (C) BITSTRING 1 CEEOCB_NONIPTSTACK_SUB_BIT_FLAG

1... CEEOCB_NONIPTSTACK_LOCATION
"X’80’"

.1.. CEEOCB_NONIPTSTACK_DISPOSITON
"X’40’"

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_PLITASKCOUNT_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_PLITASKCOUNT_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) SIGNED 4 CEEOCB_PLITASKCOUNT_TASKS

This option is now obsolete - Do not use
==

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_LIBRARY_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_LIBRARY_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) ADDRESS 4 CEEOCB_LIBRARY_NAME_O

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_LIBRARY_NAME_S
0 (0) CHARACTER 1 CEEOCB_LIBRARY_NAME(0)
0 (0) SIGNED 2 CEEOCB_LIBRARY_NAME_LENGTH
2 (2) CHARACTER 8 CEEOCB_LIBRARY_NAME_STRING

This option is now obsolete - Do not use
==

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_VERSION_SUB_OPTS
,

0 (0) BITSTRING 1 CEEOCB_VERSION_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) ADDRESS 4 CEEOCB_VERSION_NAME_O
0 (0) STRUCTURE 0 CEEOCB_VERSION_NAME_S

,
0 (0) CHARACTER 1 CEEOCB_VERSION_NAME(0)
0 (0) SIGNED 2 CEEOCB_VERSION_NAME_LENGTH
2 (2) CHARACTER 8 CEEOCB_VERSION_NAME_STRING

Figure 177. Options control block (OCB) field descriptions (Part 23)

CEEOCB Macro

844 z/OS V2R1.0 Language Environment Vendor Interfaces

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_HEAPCHK_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_HEAPCHK_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) SIGNED 4 CEEOCB_HEAPCHK_FREQUENCY
8 (8) SIGNED 4 CEEOCB_HEAPCHK_DELAY
12 (C) SIGNED 4 CEEOCB_HEAPCHK_CALL_LEVEL
16 (10) SIGNED 4 CEEOCB_HEAPCHK_POOL_CALL_LEVEL
20 (14) SIGNED 4 CEEOCB_HEAPCHK_POOL_ENTRIES
24 (18) SIGNED 4 CEEOCB_HEAPCHK_POOL_NUMBER
28 (1C) SIGNED 4 CEEOCB_HEAPCHK_POOL_ENTRIES31
32 (20) SIGNED 4 CEEOCB_HEAPCHK_POOL_NUMBER31

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_PROFILE_SUB_OPTS
,

0 (0) BITSTRING 1 CEEOCB_PROFILE_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) ADDRESS 4 CEEOCB_PROFILE_STRING_O

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_PROFILE_STRING_S
,

0 (0) CHARACTER 1 CEEOCB_PROFILE_STRING(0)
0 (0) SIGNED 2 CEEOCB_PROFILE_STRING_LENGTH
2 (2) CHARACTER 250 CEEOCB_PROFILE_STRING_STRING

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_HEAPPOOLS_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_HEAPPOOLS_SUB_OPTS_V(4)
4 (4) SIGNED 4 CEEOCB_HEAPPOOLS_POOL1_SIZE
8 (8) SIGNED 4 CEEOCB_HEAPPOOLS_POOL1_PRCNT
12 (C) SIGNED 4 CEEOCB_HEAPPOOLS_POOL2_SIZE
16 (10) SIGNED 4 CEEOCB_HEAPPOOLS_POOL2_PRCNT
20 (14) SIGNED 4 CEEOCB_HEAPPOOLS_POOL3_SIZE
24 (18) SIGNED 4 CEEOCB_HEAPPOOLS_POOL3_PRCNT
28 (1C) SIGNED 4 CEEOCB_HEAPPOOLS_POOL4_SIZE
32 (20) SIGNED 4 CEEOCB_HEAPPOOLS_POOL4_PRCNT
36 (24) SIGNED 4 CEEOCB_HEAPPOOLS_POOL5_SIZE
40 (28) SIGNED 4 CEEOCB_HEAPPOOLS_POOL5_PRCNT
44 (2C) SIGNED 4 CEEOCB_HEAPPOOLS_POOL6_SIZE
48 (30) SIGNED 4 CEEOCB_HEAPPOOLS_POOL6_PRCNT
52 (34) SIGNED 4 CEEOCB_HEAPPOOLS_POOL7_SIZE
56 (38) SIGNED 4 CEEOCB_HEAPPOOLS_POOL7_PRCNT
60 (3C) SIGNED 4 CEEOCB_HEAPPOOLS_POOL8_SIZE
64 (40) SIGNED 4 CEEOCB_HEAPPOOLS_POOL8_PRCNT
68 (44) SIGNED 4 CEEOCB_HEAPPOOLS_POOL9_SIZE
72 (48) SIGNED 4 CEEOCB_HEAPPOOLS_POOL9_PRCNT
76 (4C) SIGNED 4 CEEOCB_HEAPPOOLS_POOL10_SIZE
80 (50) SIGNED 4 CEEOCB_HEAPPOOLS_POOL10_PRCNT
84 (54) SIGNED 4 CEEOCB_HEAPPOOLS_POOL11_SIZE
88 (58) SIGNED 4 CEEOCB_HEAPPOOLS_POOL11_PRCNT

Figure 178. Options control block (OCB) field descriptions (Part 24)

CEEOCB Macro

Appendix A. Options control block and supplementary options control block 845

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

92 (5C) SIGNED 4 CEEOCB_HEAPPOOLS_POOL12_SIZE
96 (60) SIGNED 4 CEEOCB_HEAPPOOLS_POOL12_PRCNT
100 (64) BITSTRING 1 CEEOCB_HEAPPOOLS_SUB_OPTS_V_2(4)
104 (68) BITSTRING 1 CEEOCB_HEAPPOOLS_POOL1_POOLS
105 (69) BITSTRING 1 CEEOCB_HEAPPOOLS_POOL2_POOLS
106 (6A) BITSTRING 1 CEEOCB_HEAPPOOLS_POOL3_POOLS
107 (6B) BITSTRING 1 CEEOCB_HEAPPOOLS_POOL4_POOLS
108 (6C) BITSTRING 1 CEEOCB_HEAPPOOLS_POOL5_POOLS
109 (6D) BITSTRING 1 CEEOCB_HEAPPOOLS_POOL6_POOLS
110 (6E) BITSTRING 1 CEEOCB_HEAPPOOLS_POOL7_POOLS
111 (6F) BITSTRING 1 CEEOCB_HEAPPOOLS_POOL8_POOLS
112 (70) BITSTRING 1 CEEOCB_HEAPPOOLS_POOL9_POOLS
113 (71) BITSTRING 1 CEEOCB_HEAPPOOLS_POOL10_POOLS
114 (72) BITSTRING 1 CEEOCB_HEAPPOOLS_POOL11_POOLS
115 (73) BITSTRING 1 CEEOCB_HEAPPOOLS_POOL12_POOLS

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_INFOMSGFILTER_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_INFOMSGFILTER_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) CHARACTER 1 CEEOCB_INFOMSGFILTER_ENV1
5 (5) CHARACTER 1 CEEOCB_INFOMSGFILTER_ENV2
6 (6) CHARACTER 1 CEEOCB_INFOMSGFILTER_ENV3
7 (7) CHARACTER 1 CEEOCB_INFOMSGFILTER_ENV4

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_TRAP_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_TRAP_SUB_OPTS_V

1... CEEOCB_TRAP_SPIE_V
"X’80’"

1 (1) BITSTRING 1 *(3)
4 (4) BITSTRING 1 CEEOCB_TRAP_FLAGS

1... CEEOCB_TRAP_SPIE
"X’80’"

5 (5) BITSTRING 1 *(3)

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_FILETAG_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_FILETAG_SUB_OPTS_V

1... CEEOCB_FILETAG_AUTOCVT_V
"X’80’"

.1.. CEEOCB_FILETAG_AUTOTAG_V
"X’40’"

1 (1) BITSTRING 1 *(3)
4 (4) BITSTRING 1 CEEOCB_FILETAG_FLAGS

1... CEEOCB_FILETAG_AUTOCVT
"X’80’"

.1.. CEEOCB_FILETAG_AUTOTAG
"X’40’"

5 (5) BITSTRING 1 *(3)

Figure 179. Options control block (OCB) field descriptions (Part 25)

CEEOCB Macro

846 z/OS V2R1.0 Language Environment Vendor Interfaces

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_HEAP64_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_HEAP64_SUB_OPTS_V(2)

9 valid bits
2 (2) BITSTRING 1 *(2)
4 (4) SIGNED 8 CEEOCB_HEAP64_INIT_SIZE64
12 (C) SIGNED 8 CEEOCB_HEAP64_INCR_SIZE64
20 (14) BITSTRING 1 CEEOCB_HEAP64_SUB_BIT_FLAG64

.1.. CEEOCB_HEAP64_DISPOSITION64
"X’40’"

..1. CEEOCB_HEAP64_FILL64
"X’20’"

21 (15) BITSTRING 1 *(3)
24 (18) SIGNED 4 CEEOCB_HEAP64_INIT_SIZE31
28 (1C) SIGNED 4 CEEOCB_HEAP64_INCR_SIZE31
32 (20) BITSTRING 1 CEEOCB_HEAP64_SUB_BIT_FLAG31

.1.. CEEOCB_HEAP64_DISPOSITION31
"X’40’"

33 (21) BITSTRING 1 *(3)
36 (24) SIGNED 4 CEEOCB_HEAP64_INIT_SIZE24
40 (28) SIGNED 4 CEEOCB_HEAP64_INCR_SIZE24
44 (2C) BITSTRING 1 CEEOCB_HEAP64_SUB_BIT_FLAG24

.1.. CEEOCB_HEAP64_DISPOSITION24
"X’40’"

45 (2D) BITSTRING 1 *(3)

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_HEAPPOOLS64_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_HEAPPOOLS64_SUB_OPTS_V(4)

32 valid bits
4 (4) SIGNED 4 CEEOCB_HEAPPOOLS64_POOL1_SIZE
8 (8) SIGNED 4 CEEOCB_HEAPPOOLS64_POOL1_COUNT
12 (C) SIGNED 4 CEEOCB_HEAPPOOLS64_POOL2_SIZE
16 (10) SIGNED 4 CEEOCB_HEAPPOOLS64_POOL2_COUNT
20 (14) SIGNED 4 CEEOCB_HEAPPOOLS64_POOL3_SIZE
24 (18) SIGNED 4 CEEOCB_HEAPPOOLS64_POOL3_COUNT
28 (1C) SIGNED 4 CEEOCB_HEAPPOOLS64_POOL4_SIZE
32 (20) SIGNED 4 CEEOCB_HEAPPOOLS64_POOL4_COUNT
36 (24) SIGNED 4 CEEOCB_HEAPPOOLS64_POOL5_SIZE
40 (28) SIGNED 4 CEEOCB_HEAPPOOLS64_POOL5_COUNT
44 (2C) SIGNED 4 CEEOCB_HEAPPOOLS64_POOL6_SIZE
48 (30) SIGNED 4 CEEOCB_HEAPPOOLS64_POOL6_COUNT
52 (34) SIGNED 4 CEEOCB_HEAPPOOLS64_POOL7_SIZE
56 (38) SIGNED 4 CEEOCB_HEAPPOOLS64_POOL7_COUNT
60 (3C) SIGNED 4 CEEOCB_HEAPPOOLS64_POOL8_SIZE
64 (40) SIGNED 4 CEEOCB_HEAPPOOLS64_POOL8_COUNT
68 (44) SIGNED 4 CEEOCB_HEAPPOOLS64_POOL9_SIZE
72 (48) SIGNED 4 CEEOCB_HEAPPOOLS64_POOL9_COUNT
76 (4C) SIGNED 4 CEEOCB_HEAPPOOLS64_POOL10_SIZE
80 (50) SIGNED 4 CEEOCB_HEAPPOOLS64_POOL10_COUNT
84 (54) SIGNED 4 CEEOCB_HEAPPOOLS64_POOL11_SIZE
88 (58) SIGNED 4 CEEOCB_HEAPPOOLS64_POOL11_COUNT
92 (5C) SIGNED 4 CEEOCB_HEAPPOOLS64_POOL12_SIZE
96 (60) SIGNED 4 CEEOCB_HEAPPOOLS64_POOL12_COUNT
100 (64) BITSTRING 1 CEEOCB_HEAPPOOLS64_SUB_OPTS_V_2(4)
104 (68) BITSTRING 1 CEEOCB_HEAPPOOLS64_POOL1_POOLS
105 (69) BITSTRING 1 CEEOCB_HEAPPOOLS64_POOL2_POOLS
106 (6A) BITSTRING 1 CEEOCB_HEAPPOOLS64_POOL3_POOLS
107 (6B) BITSTRING 1 CEEOCB_HEAPPOOLS64_POOL4_POOLS
108 (6C) BITSTRING 1 CEEOCB_HEAPPOOLS64_POOL5_POOLS

Figure 180. Options control block (OCB) field descriptions (Part 26)

CEEOCB Macro

Appendix A. Options control block and supplementary options control block 847

|
|

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

109 (6D) BITSTRING 1 CEEOCB_HEAPPOOLS64_POOL6_POOLS
110 (6E) BITSTRING 1 CEEOCB_HEAPPOOLS64_POOL7_POOLS
111 (6F) BITSTRING 1 CEEOCB_HEAPPOOLS64_POOL8_POOLS
112 (70) BITSTRING 1 CEEOCB_HEAPPOOLS64_POOL9_POOLS
113 (71) BITSTRING 1 CEEOCB_HEAPPOOLS64_POOL10_POOLS
114 (72) BITSTRING 1 CEEOCB_HEAPPOOLS64_POOL11_POOLS
115 (73) BITSTRING 1 CEEOCB_HEAPPOOLS64_POOL12_POOLS

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_IOHEAP64_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_IOHEAP64_SUB_OPTS_V(2)

9 valid bits
2 (2) BITSTRING 1 *(2)
4 (4) SIGNED 8 CEEOCB_IOHEAP64_INIT_SIZE64
12 (C) SIGNED 8 CEEOCB_IOHEAP64_INCR_SIZE64
20 (14) BITSTRING 1 CEEOCB_IOHEAP64_SUB_BIT_FLAG64

.1.. CEEOCB_IOHEAP64_DISPOSITION64
"X’40’"

21 (15) BITSTRING 1 *(3)
24 (18) SIGNED 4 CEEOCB_IOHEAP64_INIT_SIZE31
28 (1C) SIGNED 4 CEEOCB_IOHEAP64_INCR_SIZE31
32 (20) BITSTRING 1 CEEOCB_IOHEAP64_SUB_BIT_FLAG31

.1.. CEEOCB_IOHEAP64_DISPOSITION31
"X’40’"

33 (21) BITSTRING 1 *(3)
36 (24) SIGNED 4 CEEOCB_IOHEAP64_INIT_SIZE24
40 (28) SIGNED 4 CEEOCB_IOHEAP64_INCR_SIZE24
44 (2C) BITSTRING 1 CEEOCB_IOHEAP64_SUB_BIT_FLAG24

.1.. CEEOCB_IOHEAP64_DISPOSITION24
"X’40’"

45 (2D) BITSTRING 1 *(3)

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_LIBHEAP64_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_LIBHEAP64_SUB_OPTS_V(2)

9 valid bits
2 (2) BITSTRING 1 *(2)
4 (4) SIGNED 8 CEEOCB_LIBHEAP64_INIT_SIZE64
12 (C) SIGNED 8 CEEOCB_LIBHEAP64_INCR_SIZE64
20 (14) BITSTRING 1 CEEOCB_LIBHEAP64_SUB_BIT_FLAG64

.1.. CEEOCB_LIBHEAP64_DISPOSITION64
"X’40’"

21 (15) BITSTRING 1 *(3)
24 (18) SIGNED 4 CEEOCB_LIBHEAP64_INIT_SIZE31
28 (1C) SIGNED 4 CEEOCB_LIBHEAP64_INCR_SIZE31
32 (20) BITSTRING 1 CEEOCB_LIBHEAP64_SUB_BIT_FLAG31

.1.. CEEOCB_LIBHEAP64_DISPOSITION31
"X’40’"

33 (21) BITSTRING 1 *(3)
36 (24) SIGNED 4 CEEOCB_LIBHEAP64_INIT_SIZE24
40 (28) SIGNED 4 CEEOCB_LIBHEAP64_INCR_SIZE24
44 (2C) BITSTRING 1 CEEOCB_LIBHEAP64_SUB_BIT_FLAG24

.1.. CEEOCB_LIBHEAP64_DISPOSITION24
"X’40’"

45 (2D) BITSTRING 1 *(3)

Figure 181. Options control block (OCB) field descriptions (Part 27)

CEEOCB Macro

848 z/OS V2R1.0 Language Environment Vendor Interfaces

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_STACK64_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_STACK64_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)

4 (4) SIGNED 8 CEEOCB_STACK64_INIT_SIZE
12 (C) SIGNED 8 CEEOCB_STACK64_INCR_SIZE
20 (14) SIGNED 8 CEEOCB_STACK64_MAX_SIZE

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_THREADSTACK64_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_THREADSTACK64_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) SIGNED 8 CEEOCB_THREADSTACK64_INIT_SIZE
12 (C) SIGNED 8 CEEOCB_THREADSTACK64_INCR_SIZE
20 (14) SIGNED 8 CEEOCB_THREADSTACK64_MAX_SIZE

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_DYNDUMP_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_DYNDUMP_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) ADDRESS 4 CEEOCB_DYNDUMP_HLQ_O
8 (8) BITSTRING 1 CEEOCB_DYNDUMP_4039_FLAGS

1... CEEOCB_DYNDUMP_4039_DYNAMIC
"X’80’"

.1.. CEEOCB_DYNDUMP_4039_NODYNAMIC
"X’40’"

..1. CEEOCB_DYNDUMP_4039_FORCE
"X’20’"

...1 CEEOCB_DYNDUMP_4039_BOTH
"X’10’"

9 (9) BITSTRING 1 CEEOCB_DYNDUMP_40XX_FLAGS
1... CEEOCB_DYNDUMP_40XX_TDUMP

"X’80’"
.1.. CEEOCB_DYNDUMP_40XX_NOTDUMP

"X’40’"
10 (A) BITSTRING 1 *(2)

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_DYNDUMP_HLQ_S
0 (0) CHARACTER 1 CEEOCB_DYNDUMP_HLQ(0)
0 (0) SIGNED 2 CEEOCB_DYNDUMP_HLQ_LENGTH
2 (2) CHARACTER 26 CEEOCB_DYNDUMP_HLQ_STRING

Figure 182. Options control block (OCB) field descriptions (Part 28)

CEEOCB Macro

Appendix A. Options control block and supplementary options control block 849

The OCB cross reference information is shown in Figure 184 on page 851 through
Figure 199 on page 866.

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 16 CEEOCB_CEEDUMP_SUB_OPTS
0 (0) BIT(32) 4 CEEOCB_CEEDUMP_SUB_OPTS_V

1... CEEOCB_CEEDUMP_PAGELEN_V
.1.. CEEOCB_CEEDUMP_SYSOUT_CLASS_V
..1. CEEOCB_CEEDUMP_SYSOUT_FNAME_V
...1 CEEOCB_CEEDUMP_FREE_V
.... 1... CEEOCB_CEEDUMP_SPIN_V

0 (0) BIT(27) POS(6) 4 *
4 (4) UNSIGNED 4 CEEOCB_CEEDUMP_PAGELEN
8 (8) CHARACTER 4 CEEOCB_CEEDUMP_SYSOUT_FNAME
12 (C) CHARACTER 1 CEEOCB_CEEDUMP_SYSOUT_CLASS
13 (D) BIT(8) 1 CEEOCB_CEEDUMP_FREE 0: FREE=END 1: FREE=CLOSE
14 (E) BIT(8) 1 CEEOCB_CEEDUMP_SPIN 0: SPIN=UNALLOC 1: SPIN=NO
15 (F) CHARACTER 1 *

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_PAGEFRAMESIZE_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_PAGEFRAMESIZE_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) SIGNED 2 CEEOCB_PAGEFRAMESIZE_HEAP
6 (6) SIGNED 2 CEEOCB_PAGEFRAMESIZE_ANYHEAP
8 (8) SIGNED 2 CEEOCB_PAGEFRAMESIZE_STACK
10 (A) SIGNED 2 *

OFFSET OFFSET
DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_PAGEFRAMESIZE64_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_PAGEFRAMESIZE64_SUB_OPTS_V
1 (1) BITSTRING 1 *(3)
4 (4) SIGNED 2 CEEOCB_PAGEFRAMESIZE64_USERHEAP_PF64
6 (6) SIGNED 2 CEEOCB_PAGEFRAMESIZE64_USERHEAP_PF31
8 (8) SIGNED 2 CEEOCB_PAGEFRAMESIZE64_LIBHEAP_PF64
10 (A) SIGNED 2 CEEOCB_PAGEFRAMESIZE64_LIBHEAP_PF31
12 (C) SIGNED 2 CEEOCB_PAGEFRAMESIZE64_IOHEAP_PF64
14 (E) SIGNED 2 CEEOCB_PAGEFRAMESIZE64_IOHEAP_PF31
16 (10) SIGNED 2 CEEOCB_PAGEFRAMESIZE64_STACK OFFSET OFFSET

DECIMAL HEX TYPE LENGTH NAME (DIM) DESCRIPTION
======== ======== ================== ============== ===============================

0 (0) STRUCTURE 0 CEEOCB_HEAPZONES_SUB_OPTS
0 (0) BITSTRING 1 CEEOCB_HEAPZONES_SUB_OPTS_V
1 (1) BITSTRING 1 *(4)
4 (4) SIGNED 4 CEEOCB_HEAPZONES_SIZE31
8 (8) SIGNED 4 CEEOCB_HEAPZONES_OUTPUT31
12 (C) SIGNED 4 CEEOCB_HEAPZONES_SIZE64
16 (10)SIGNED 4 CEEOCB_HEAPZONES_OUTPUT64

END OF CEEOCB

Figure 183. Options control block (OCB) field descriptions (Part 29)

CEEOCB Macro

850 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

1 CROSS REFERENCE
HEX HEX

NAME OFFSET VALUE LEVEL
==== ====== ======== =====
CEEOCB 0 1
CEEOCB_ABPERC 164 2
CEEOCB_ABPERC_ABCODE C 2
CEEOCB_ABPERC_ABNUM 8 2
CEEOCB_ABPERC_BIT_FLAG 164 2
CEEOCB_ABPERC_NONE 4 80 2
CEEOCB_ABPERC_NOOVERRIDE 164 40 2
CEEOCB_ABPERC_ON 164 80 2
CEEOCB_ABPERC_ON_V 164 1 2
CEEOCB_ABPERC_OTHR 4 10 2
CEEOCB_ABPERC_SUB_OPTIONS 168 2
CEEOCB_ABPERC_SUB_OPTS 0 1
CEEOCB_ABPERC_SUB_OPTS_FLAGS 4 2
CEEOCB_ABPERC_SUB_OPTS_V 0 2
CEEOCB_ABPERC_SYST 4 20 2
CEEOCB_ABPERC_USER 4 40 2
CEEOCB_ABPERC_WHERE_SET 166 2
CEEOCB_ABTERMENC 44 2
CEEOCB_ABTERMENC_BIT_FLAG 44 2
CEEOCB_ABTERMENC_EXITMODE 4 2
CEEOCB_ABTERMENC_NOOVERRIDE 44 40 2
CEEOCB_ABTERMENC_ON 44 80 2
CEEOCB_ABTERMENC_ON_V 44 1 2
CEEOCB_ABTERMENC_SUB_OPTIONS 48 2
CEEOCB_ABTERMENC_SUB_OPTS 0 1
CEEOCB_ABTERMENC_SUB_OPTS_V 0 2
CEEOCB_ABTERMENC_WHERE_SET 46 2
CEEOCB_AIXBLD 1C 2
CEEOCB_AIXBLD_BIT_FLAG 1C 2
CEEOCB_AIXBLD_NOOVERRIDE 1C 40 2
CEEOCB_AIXBLD_ON 1C 80 2
CEEOCB_AIXBLD_ON_V 1C 1 2
CEEOCB_AIXBLD_SUB_OPTIONS 20 2
CEEOCB_AIXBLD_WHERE_SET 1E 2
CEEOCB_ALL31 24 2
CEEOCB_ALL31_BIT_FLAG 24 2
CEEOCB_ALL31_NOOVERRIDE 24 40 2
CEEOCB_ALL31_ON 24 80 2
CEEOCB_ALL31_ON_V 24 1 2
CEEOCB_ALL31_SUB_OPTIONS 28 2
CEEOCB_ALL31_WHERE_SET 26 2
CEEOCB_ANYHEAP 15C 2
CEEOCB_ANYHEAP_BIT_FLAG 15C 2
CEEOCB_ANYHEAP_DISPOSITION C 40 2
CEEOCB_ANYHEAP_INCR_SIZE 8 2
CEEOCB_ANYHEAP_INIT_SIZE 4 2
CEEOCB_ANYHEAP_LOCATION C 80 2
CEEOCB_ANYHEAP_NOOVERRIDE 15C 40 2
CEEOCB_ANYHEAP_ON 15C 80 2
CEEOCB_ANYHEAP_ON_V 15C 1 2
CEEOCB_ANYHEAP_SUB_BIT_FLAG C 2
CEEOCB_ANYHEAP_SUB_OPTIONS 160 2
CEEOCB_ANYHEAP_SUB_OPTS 0 1
CEEOCB_ANYHEAP_SUB_OPTS_V 0 2
CEEOCB_ANYHEAP_WHERE_SET 15E 2
CEEOCB_AREA_AREA 0 2
CEEOCB_AUTOTASK F4 2
CEEOCB_AUTOTASK_BIT_FLAG F4 2
CEEOCB_AUTOTASK_LOADMOD 0 2
CEEOCB_AUTOTASK_LOADMOD_LENGTH 0 2
CEEOCB_AUTOTASK_LOADMOD_O 4 2
CEEOCB_AUTOTASK_LOADMOD_S 0 1
CEEOCB_AUTOTASK_LOADMOD_STRING 2 2
CEEOCB_AUTOTASK_NOOVERRIDE F4 40 2
CEEOCB_AUTOTASK_NTASKS 8 2

Figure 184. Options control block (OCB) field descriptions (cross references 1)

CEEOCB Macro

Appendix A. Options control block and supplementary options control block 851

HEX HEX
NAME OFFSET VALUE LEVEL
==== ====== ======== ======
CEEOCB_AUTOTASK_ON F4 80 2
CEEOCB_AUTOTASK_ON_V F4 1 2
CEEOCB_AUTOTASK_SUB_OPTIONS F8 2
CEEOCB_AUTOTASK_SUB_OPTS 0 1
CEEOCB_AUTOTASK_SUB_OPTS_V 0 2
CEEOCB_AUTOTASK_WHERE_SET F6 2
CEEOCB_BELOWHEAP 2C 2
CEEOCB_BELOWHEAP_BIT_FLAG 2C 2
CEEOCB_BELOWHEAP_DISPOSITION C 40 2
CEEOCB_BELOWHEAP_INCR_SIZE 8 2
CEEOCB_BELOWHEAP_INIT_SIZE 4 2
CEEOCB_BELOWHEAP_LOCATION C 80 2
CEEOCB_BELOWHEAP_NOOVERRIDE 2C 40 2
CEEOCB_BELOWHEAP_ON 2C 80 2
CEEOCB_BELOWHEAP_ON_V 2C 1 2
CEEOCB_BELOWHEAP_SUB_BIT_FLAG C 2
CEEOCB_BELOWHEAP_SUB_OPTIONS 30 2
CEEOCB_BELOWHEAP_SUB_OPTS 0 1
CEEOCB_BELOWHEAP_SUB_OPTS_V 0 2
CEEOCB_BELOWHEAP_WHERE_SET 2E 2
CEEOCB_CBLOPTS 144 2
CEEOCB_CBLOPTS_BIT_FLAG 144 2
CEEOCB_CBLOPTS_NOOVERRIDE 144 40 2
CEEOCB_CBLOPTS_ON 144 80 2
CEEOCB_CBLOPTS_ON_V 144 1 2
CEEOCB_CBLOPTS_SUB_OPTIONS 148 2
CEEOCB_CBLOPTS_WHERE_SET 146 2
CEEOCB_CBLPSHPOP 17C 2
CEEOCB_CBLPSHPOP_BIT_FLAG 17C 2
CEEOCB_CBLPSHPOP_NOOVERRIDE 17C 40 2
CEEOCB_CBLPSHPOP_ON 17C 80 2
CEEOCB_CBLPSHPOP_ON_V 17C 1 2
CEEOCB_CBLPSHPOP_SUB_OPTIONS 180 2
CEEOCB_CBLPSHPOP_WHERE_SET 17E 2
CEEOCB_CBLQDA 184 2
CEEOCB_CBLQDA_BIT_FLAG 184 2
CEEOCB_CBLQDA_NOOVERRIDE 184 40 2
CEEOCB_CBLQDA_ON 184 80 2
CEEOCB_CBLQDA_ON_V 184 1 2
CEEOCB_CBLQDA_SUB_OPTIONS 188 2
CEEOCB_CBLQDA_WHERE_SET 186 2
CEEOCB_CEEDUMP 23C 2
CEEOCB_CEEDUMP_BIT_FLAG 23C 3
CEEOCB_CEEDUMP_FREE D 2
CEEOCB_CEEDUMP_FREE_V 0 10 3
CEEOCB_CEEDUMP_NOOVERRIDE 23C 40 4
CEEOCB_CEEDUMP_ON 23C 80 4
CEEOCB_CEEDUMP_ON_V 23C 01 4
CEEOCB_CEEDUMP_PAGELEN 4 2
CEEOCB_CEEDUMP_PAGELEN_V 0 80 3
CEEOCB_CEEDUMP_SPIN E 2
CEEOCB_CEEDUMP_SPIN_V 0 08 3
CEEOCB_CEEDUMP_SUB_OPTIONS 240 3
CEEOCB_CEEDUMP_SUB_OPTS 0 1
CEEOCB_CEEDUMP_SUB_OPTS_V 0 2
CEEOCB_CEEDUMP_SYSOUT_CLASS C 2
CEEOCB_CEEDUMP_SYSOUT_CLASS_V 0 40 3
CEEOCB_CEEDUMP_SYSOUT_FNAME 8 2
CEEOCB_CEEDUMP_SYSOUT_FNAME_V 0 20 3
CEEOCB_CEEDUMP_WHERE_SET 23E 3

Figure 185. Options control block (OCB) field descriptions (cross references 2)

CEEOCB Macro

852 z/OS V2R1.0 Language Environment Vendor Interfaces

HEX HEX
NAME OFFSET VALUE LEVEL
==== ====== ======== =====
CEEOCB_CHECK 34 2
CEEOCB_CHECK_BIT_FLAG 34 2
CEEOCB_CHECK_NOOVERRIDE 34 40 2
CEEOCB_CHECK_ON 34 80 2
CEEOCB_CHECK_ON_V 34 1 2
CEEOCB_CHECK_SUB_OPTIONS 38 2
CEEOCB_CHECK_WHERE_SET 36 2
CEEOCB_COUNTRY 4C 2
CEEOCB_COUNTRY_BIT_FLAG 4C 2
CEEOCB_COUNTRY_CODE 4 2
CEEOCB_COUNTRY_NOOVERRIDE 4C 40 2
CEEOCB_COUNTRY_ON 4C 80 2
CEEOCB_COUNTRY_ON_V 4C 1 2
CEEOCB_COUNTRY_SUB_OPTIONS 50 2
CEEOCB_COUNTRY_SUB_OPTS 0 1
CEEOCB_COUNTRY_SUB_OPTS_V 0 2
CEEOCB_COUNTRY_WHERE_SET 4E 2
CEEOCB_DEBUG 54 2
CEEOCB_DEBUG_BIT_FLAG 54 2
CEEOCB_DEBUG_NOOVERRIDE 54 40 2
CEEOCB_DEBUG_ON 54 80 2
CEEOCB_DEBUG_ON_V 54 1 2
CEEOCB_DEBUG_SUB_OPTIONS 58 2
CEEOCB_DEBUG_WHERE_SET 56 2
CEEOCB_DEPTHCONDLMT 174 2
CEEOCB_DEPTHCONDLMT_BIT_FLAG 174 2
CEEOCB_DEPTHCONDLMT_N 4 2
CEEOCB_DEPTHCONDLMT_NOOVERRIDE 174 40 2
CEEOCB_DEPTHCONDLMT_ON 174 80 2
CEEOCB_DEPTHCONDLMT_ON_V 174 1 2
CEEOCB_DEPTHCONDLMT_SUB_OPTIONS 178 2
CEEOCB_DEPTHCONDLMT_SUB_OPTS 0 1
CEEOCB_DEPTHCONDLMT_SUB_OPTS_V 0 2
CEEOCB_DEPTHCONDLMT_WHERE_SET 176 2
CEEOCB_DYNDUMP 234 2
CEEOCB_DYNDUMP_4039_BOTH 8 10 2
CEEOCB_DYNDUMP_4039_DYNAMIC 8 80 2
CEEOCB_DYNDUMP_4039_FLAGS 8 2
CEEOCB_DYNDUMP_4039_FORCE 8 20 2
CEEOCB_DYNDUMP_4039_NODYNAMIC 8 40 2
CEEOCB_DYNDUMP_40XX_FLAGS 9 2
CEEOCB_DYNDUMP_40XX_NOTDUMP 9 40 2
CEEOCB_DYNDUMP_40XX_TDUMP 9 80 2
CEEOCB_DYNDUMP_BIT_FLAG 234 2
CEEOCB_DYNDUMP_HLQ 0 2
CEEOCB_DYNDUMP_HLQ_O 4 2
CEEOCB_DYNDUMP_HLQ_LENGTH 0 2
CEEOCB_DYNDUMP_HLQ_S 0 1
CEEOCB_DYNDUMP_HLQ_STRING 2 2
CEEOCB_DYNDUMP_NOOVERRIDE 234 40 2
CEEOCB_DYNDUMP_ON 234 80 2
CEEOCB_DYNDUMP_ON_V 234 1 2
CEEOCB_DYNDUMP_SUB_OPTIONS 238 2
CEEOCB_DYNDUMP_SUB_OPTS 0 1
CEEOCB_DYNDUMP_SUB_OPTS_V 0 2
CEEOCB_DYNDUMP_WHERE_SET 236 2
CEEOCB_ENVAR 6C 2
CEEOCB_ENVAR_BIT_FLAG 6C 2
CEEOCB_ENVAR_ON 6C 80 2
CEEOCB_ENVAR_ON_V 6C 1 2
CEEOCB_ENVAR_STRING 0 2
CEEOCB_ENVAR_STRING_LENGTH 0 2
CEEOCB_ENVAR_STRING_O 4 2
CEEOCB_ENVAR_STRING_S 0 1
CEEOCB_ENVAR_STRING_STRING 2 2

Figure 186. Options control block (OCB) field descriptions (cross references 3)

CEEOCB Macro

Appendix A. Options control block and supplementary options control block 853

HEX HEX
NAME OFFSET VALUE LEVEL
==== ====== ======== =====
CEEOCB_ENVAR_SUB_OPTIONS 70 2
CEEOCB_ENVAR_SUB_OPTS 0 1
CEEOCB_ENVAR_SUB_OPTS_V 0 2
CEEOCB_ENVAR_WHERE_SET 6E 2
CEEOCB_ENVART_NOOVERRIDE 6C 40 2
CEEOCB_ERRCOUNT 5C 2
CEEOCB_ERRCOUNT_BIT_FLAG 5C 2
CEEOCB_ERRCOUNT_N 4 2
CEEOCB_ERRCOUNT_NOOVERRIDE 5C 40 2
CEEOCB_ERRCOUNT_ON 5C 80 2
CEEOCB_ERRCOUNT_ON_V 5C 1 2
CEEOCB_ERRCOUNT_SUB_OPTIONS 60 2
CEEOCB_ERRCOUNT_SUB_OPTS 0 1
CEEOCB_ERRCOUNT_SUB_OPTS_V 0 2
CEEOCB_ERRCOUNT_WHERE_SET 5E 2
CEEOCB_ERRUNIT B4 2
CEEOCB_ERRUNIT_BIT_FLAG B4 2
CEEOCB_ERRUNIT_N 4 2
CEEOCB_ERRUNIT_NOOVERRIDE B4 40 2
CEEOCB_ERRUNIT_ON B4 80 2
CEEOCB_ERRUNIT_ON_V B4 1 2
CEEOCB_ERRUNIT_SUB_OPTIONS B8 2
CEEOCB_ERRUNIT_SUB_OPTS 0 1
CEEOCB_ERRUNIT_SUB_OPTS_V 0 2
CEEOCB_ERRUNIT_WHERE_SET B6 2
CEEOCB_EYECATCHER 0 2
CEEOCB_FILEHIST 64 2
CEEOCB_FILEHIST_BIT_FLAG 64 2
CEEOCB_FILEHIST_NOOVERRIDE 64 40 2
CEEOCB_FILEHIST_ON 64 80 2
CEEOCB_FILEHIST_ON_V 64 1 2
CEEOCB_FILEHIST_SUB_OPTIONS 68 2
CEEOCB_FILEHIST_WHERE_SET 66 2
CEEOCB_FILETAG 1FC 2
CEEOCB_FILETAG_AUTOCVT 4 80 2
CEEOCB_FILETAG_AUTOCVT_V 0 80 2
CEEOCB_FILETAG_AUTOTAG 4 40 2
CEEOCB_FILETAG_AUTOTAG_V 0 40 2
CEEOCB_FILETAG_BIT_FLAG 1FC 2
CEEOCB_FILETAG_FLAGS 4 2
CEEOCB_FILETAG_NOOVERRIDE 1FC 40 2
CEEOCB_FILETAG_ON 1FC 80 2
CEEOCB_FILETAG_ON_V 1FC 1 2
CEEOCB_FILETAG_SUB_OPTIONS 200 2
CEEOCB_FILETAG_SUB_OPTS 0 1
CEEOCB_FILETAG_SUB_OPTS_V 0 2
CEEOCB_FILETAG_WHERE_SET 1FE 2
CEEOCB_FLOWC 74 2
CEEOCB_FLOWC_BIT_FLAG 74 2
CEEOCB_FLOWC_MAX_PROCEDURES 4 2
CEEOCB_FLOWC_NOOVERRIDE 74 40 2
CEEOCB_FLOWC_ON 74 80 2
CEEOCB_FLOWC_ON_V 74 1 2
CEEOCB_FLOWC_SUB_OPTIONS 78 2
CEEOCB_FLOWC_SUB_OPTS 0 1
CEEOCB_FLOWC_SUB_OPTS_V 0 2
CEEOCB_FLOWC_WHERE_SET 76 2
CEEOCB_FORMAT 10 2
CEEOCB_FORMAT_31 10 0 2
CEEOCB_FORMAT_64 10 1 2

Figure 187. Options control block (OCB) field descriptions (cross references 4)

CEEOCB Macro

854 z/OS V2R1.0 Language Environment Vendor Interfaces

HEX HEX
NAME OFFSET VALUE LEVEL
==== ====== ======== =====
CEEOCB_HEAP 7C 2
CEEOCB_HEAP_BIT_FLAG 7C 2
CEEOCB_HEAP_DISPOSITION C 40 2
CEEOCB_HEAP_INCR_SIZE 8 2
CEEOCB_HEAP_INCRSZ24 14 2
CEEOCB_HEAP_INIT_SIZE 4 2
CEEOCB_HEAP_INITSZ24 10 2
CEEOCB_HEAP_LOCATION C 80 2
CEEOCB_HEAP_NOOVERRIDE 7C 40 2
CEEOCB_HEAP_ON 7C 80 2
CEEOCB_HEAP_ON_V 7C 1 2
CEEOCB_HEAP_SUB_BIT_FLAG C 2
CEEOCB_HEAP_SUB_OPTIONS 80 2
CEEOCB_HEAP_SUB_OPTS 0 1
CEEOCB_HEAP_SUB_OPTS_V 0 2
CEEOCB_HEAP_WHERE_SET 7E 2
CEEOCB_HEAPCHK 1D4 2
CEEOCB_HEAPCHK_BIT_FLAG 1D4 2
CEEOCB_HEAPCHK_CALL_LEVEL C 2
CEEOCB_HEAPCHK_DELAY 8 2
CEEOCB_HEAPCHK_FREQUENCY 4 2
CEEOCB_HEAPCHK_NOOVERRIDE 1D4 40 2
CEEOCB_HEAPCHK_ON 1D4 80 2
CEEOCB_HEAPCHK_ON_V 1D4 1 2
CEEOCB_HEAPCHK_POOL_CALL_LEVEL 10 2
CEEOCB_HEAPCHK_POOL_ENTRIES 14 2
CEEOCB_HEAPCHK_POOL_ENTRIES31 1C 2
CEEOCB_HEAPCHK_POOL_NUMBER 18 2
CEEOCB_HEAPCHK_POOL_NUMBER31 20 2
CEEOCB_HEAPCHK_SUB_OPTIONS 1D8 2
CEEOCB_HEAPCHK_SUB_OPTS 0 1
CEEOCB_HEAPCHK_SUB_OPTS_V 0 2
CEEOCB_HEAPCHK_WHERE_SET 1D6 2
CEEOCB_HEAPPOOLS 1E4 2
CEEOCB_HEAPPOOLS_BIT_FLAG 1E4 2
CEEOCB_HEAPPOOLS_NOOVERRIDE 1E4 40 2
CEEOCB_HEAPPOOLS_ON 1E4 80 2
CEEOCB_HEAPPOOLS_ON_V 1E4 1 2
CEEOCB_HEAPPOOLS_POOL1_PRCNT 8 2
CEEOCB_HEAPPOOLS_POOL1_SIZE 4 2
CEEOCB_HEAPPOOLS_POOL10_PRCNT 50 2
CEEOCB_HEAPPOOLS_POOL10_SIZE 4C 2
CEEOCB_HEAPPOOLS_POOL11_PRCNT 58 2
CEEOCB_HEAPPOOLS_POOL11_SIZE 54 2
CEEOCB_HEAPPOOLS_POOL12_PRCNT 60 2
CEEOCB_HEAPPOOLS_POOL12_SIZE 5C 2
CEEOCB_HEAPPOOLS_POOL2_PRCNT 10 2
CEEOCB_HEAPPOOLS_POOL2_SIZE C 2
CEEOCB_HEAPPOOLS_POOL3_PRCNT 18 2
CEEOCB_HEAPPOOLS_POOL3_SIZE 14 2
CEEOCB_HEAPPOOLS_POOL4_PRCNT 20 2
CEEOCB_HEAPPOOLS_POOL4_SIZE 1C 2
CEEOCB_HEAPPOOLS_POOL5_PRCNT 28 2
CEEOCB_HEAPPOOLS_POOL5_SIZE 24 2
CEEOCB_HEAPPOOLS_POOL6_PRCNT 30 2
CEEOCB_HEAPPOOLS_POOL6_SIZE 2C 2
CEEOCB_HEAPPOOLS_POOL7_PRCNT 38 2
CEEOCB_HEAPPOOLS_POOL7_SIZE 34 2

Figure 188. Options control block (OCB) field descriptions (cross references 5)

CEEOCB Macro

Appendix A. Options control block and supplementary options control block 855

HEX HEX
NAME OFFSET VALUE LEVEL
==== ====== ======== =====
CEEOCB_HEAPPOOLS_POOL8_PRCNT 40 2
CEEOCB_HEAPPOOLS_POOL8_SIZE 3C 2
CEEOCB_HEAPPOOLS_POOL9_PRCNT 48 2
CEEOCB_HEAPPOOLS_POOL9_SIZE 44 2
CEEOCB_HEAPPOOLS_SUB_OPTIONS 1E8 2
CEEOCB_HEAPPOOLS_SUB_OPTS 0 1
CEEOCB_HEAPPOOLS_SUB_OPTS_V 0 2
CEEOCB_HEAPPOOLS_WHERE_SET 1E6 2
CEEOCB_HEAPPOOLS64 20C 2
CEEOCB_HEAPPOOLS64_BIT_FLAG 20C 2
CEEOCB_HEAPPOOLS64_NOOVERRIDE 20C 40 2
CEEOCB_HEAPPOOLS64_ON 20C 80 2
CEEOCB_HEAPPOOLS64_ON_V 20C 1 2
CEEOCB_HEAPPOOLS64_POOL1_COUNT 8 2
CEEOCB_HEAPPOOLS64_POOL1_SIZE 4 2
CEEOCB_HEAPPOOLS64_POOL10_COUNT 50 2
CEEOCB_HEAPPOOLS64_POOL10_SIZE 4C 2
CEEOCB_HEAPPOOLS64_POOL11_COUNT 58 2
CEEOCB_HEAPPOOLS64_POOL11_SIZE 54 2
CEEOCB_HEAPPOOLS64_POOL12_COUNT 60 2
CEEOCB_HEAPPOOLS64_POOL12_SIZE 5C 2
CEEOCB_HEAPPOOLS64_POOL2_COUNT 10 2
CEEOCB_HEAPPOOLS64_POOL2_SIZE C 2
CEEOCB_HEAPPOOLS64_POOL3_COUNT 18 2
CEEOCB_HEAPPOOLS64_POOL3_SIZE 14 2
CEEOCB_HEAPPOOLS64_POOL4_COUNT 20 2
CEEOCB_HEAPPOOLS64_POOL4_SIZE 1C 2
CEEOCB_HEAPPOOLS64_POOL5_COUNT 28 2
CEEOCB_HEAPPOOLS64_POOL5_SIZE 24 2
CEEOCB_HEAPPOOLS64_POOL6_COUNT 30 2
CEEOCB_HEAPPOOLS64_POOL6_SIZE 2C 2
CEEOCB_HEAPPOOLS64_POOL7_COUNT 38 2
CEEOCB_HEAPPOOLS64_POOL7_SIZE 34 2
CEEOCB_HEAPPOOLS64_POOL8_COUNT 40 2
CEEOCB_HEAPPOOLS64_POOL8_SIZE 3C 2
CEEOCB_HEAPPOOLS64_POOL9_COUNT 48 2
CEEOCB_HEAPPOOLS64_POOL9_SIZE 44 2
CEEOCB_HEAPPOOLS64_SUB_OPTIONS 210 2
CEEOCB_HEAPPOOLS64_SUB_OPTS 0 1
CEEOCB_HEAPPOOLS64_SUB_OPTS_V 0 2
CEEOCB_HEAPPOOLS64_WHERE_SET 20E 2
CEEOCB_HEAPZONES 24C 2
CEEOCB_HEAPZONES_BIT_FLAG 24C 3
CEEOCB_HEAPZONES_NOOVERRIDE 24C 40 4
CEEOCB_HEAPZONES_ON 24C 80 4
CEEOCB_HEAPZONES_ON_V 24C 01 4
CEEOCB_HEAPZONES_OUTPUT31 8 2
CEEOCB_HEAPZONES_OUTPUT31_V 0 40 3
CEEOCB_HEAPZONES_OUTPUT64 10 2
CEEOCB_HEAPZONES_OUTPUT64_V 0 10 3
CEEOCB_HEAPZONES_SIZE31 4 2
CEEOCB_HEAPZONES_SIZE31_V 0 80 3
CEEOCB_HEAPZONES_SIZE64 C 2
CEEOCB_HEAPZONES_SIZE64_V 0 20 3
CEEOCB_HEAPZONES_SUB_OPTIONS 250 3
CEEOCB_HEAPZONES_SUB_OPTS 0 1
CEEOCB_HEAPZONES_SUB_OPTS_V 0 2
CEEOCB_HEAPZONES_WHERE_SET 24E 3
CEEOCB_HEAP64 204 2
CEEOCB_HEAP64_BIT_FLAG 204 2
CEEOCB_HEAP64_DISPOSITION24 2C 40 2
CEEOCB_HEAP64_DISPOSITION31 20 40 2
CEEOCB_HEAP64_DISPOSITION64 14 40 2
CEEOCB_HEAP64_FILL64 14 20 2
CEEOCB_HEAP64_INCR_SIZE24 28 2
CEEOCB_HEAP64_INCR_SIZE31 1C 2
CEEOCB_HEAP64_INCR_SIZE64 C 2
CEEOCB_HEAP64_INIT_SIZE24 24 2
CEEOCB_HEAP64_INIT_SIZE31 18 2
CEEOCB_HEAP64_INIT_SIZE64 4 2
CEEOCB_HEAP64_NOOVERRIDE 204 40 2
CEEOCB_HEAP64_ON 204 80 2
CEEOCB_HEAP64_ON_V 204 1 2

Figure 189. Options control block (OCB) field descriptions (cross references 6)

CEEOCB Macro

856 z/OS V2R1.0 Language Environment Vendor Interfaces

|

HEX HEX
NAME OFFSET VALUE LEVEL
==== ====== ======== =====
CEEOCB_HEAP64_SUB_BIT_FLAG24 2C 2
CEEOCB_HEAP64_SUB_BIT_FLAG31 20 2
CEEOCB_HEAP64_SUB_BIT_FLAG64 14 2
CEEOCB_HEAP64_SUB_OPTIONS 208 2
CEEOCB_HEAP64_SUB_OPTS 0 1
CEEOCB_HEAP64_SUB_OPTS_V 0 2
CEEOCB_HEAP64_WHERE_SET 206 2
CEEOCB_INFOMSGFILTER 1EC 2
CEEOCB_INFOMSGFILTER_BIT_FLAG 1EC 2
CEEOCB_INFOMSGFILTER_ENV1 4 2
CEEOCB_INFOMSGFILTER_ENV2 5 2
CEEOCB_INFOMSGFILTER_ENV3 6 2
CEEOCB_INFOMSGFILTER_ENV4 7 2
CEEOCB_INFOMSGFILTER_NOOVERRIDE 1EC 40 2
CEEOCB_INFOMSGFILTER_ON 1EC 80 2
CEEOCB_INFOMSGFILTER_ON_V 1EC 1 2
CEEOCB_INFOMSGFILTER_SUB_OPTIONS 1F0 2
CEEOCB_INFOMSGFILTER_SUB_OPTS 0 1
CEEOCB_INFOMSGFILTER_SUB_OPTS_V 0 2
CEEOCB_INFOMSGFILTER_WHERE_SET 1EE 2
CEEOCB_INQPCOPN 84 2
CEEOCB_INQPCOPN_BIT_FLAG 84 2
CEEOCB_INQPCOPN_NOOVERRIDE 84 40 2
CEEOCB_INQPCOPN_ON 84 80 2
CEEOCB_INQPCOPN_ON_V 84 1 2
CEEOCB_INQPCOPN_SUB_OPTIONS 88 2
CEEOCB_INQPCOPN_WHERE_SET 86 2
CEEOCB_INTERRUPT 8C 2
CEEOCB_INTERRUPT_BIT_FLAG 8C 2
CEEOCB_INTERRUPT_NOOVERRIDE 8C 40 2
CEEOCB_INTERRUPT_ON 8C 80 2
CEEOCB_INTERRUPT_ON_V 8C 1 2
CEEOCB_INTERRUPT_SUB_OPTIONS 90 2
CEEOCB_INTERRUPT_WHERE_SET 8E 2
CEEOCB_IOHEAP64 214 2
CEEOCB_IOHEAP64_BIT_FLAG 214 2
CEEOCB_IOHEAP64_DISPOSITION24 2C 40 2
CEEOCB_IOHEAP64_DISPOSITION31 20 40 2
CEEOCB_IOHEAP64_DISPOSITION64 14 40 2
CEEOCB_IOHEAP64_INCR_SIZE24 28 2
CEEOCB_IOHEAP64_INCR_SIZE31 1C 2
CEEOCB_IOHEAP64_INCR_SIZE64 C 2
CEEOCB_IOHEAP64_INIT_SIZE24 24 2
CEEOCB_IOHEAP64_INIT_SIZE31 18 2
CEEOCB_IOHEAP64_INIT_SIZE64 4 2
CEEOCB_IOHEAP64_NOOVERRIDE 214 40 2
CEEOCB_IOHEAP64_ON 214 80 2
CEEOCB_IOHEAP64_ON_V 214 1 2
CEEOCB_IOHEAP64_SUB_BIT_FLAG24 2C 2
CEEOCB_IOHEAP64_SUB_BIT_FLAG31 20 2
CEEOCB_IOHEAP64_SUB_BIT_FLAG64 14 2
CEEOCB_IOHEAP64_SUB_OPTIONS 218 2
CEEOCB_IOHEAP64_SUB_OPTS 0 1
CEEOCB_IOHEAP64_SUB_OPTS_V 0 2
CEEOCB_IOHEAP64_WHERE_SET 216 2
CEEOCB_LENGTH A 2

Figure 190. Options control block (OCB) field descriptions (cross references 7)

CEEOCB Macro

Appendix A. Options control block and supplementary options control block 857

HEX HEX
NAME OFFSET VALUE LEVEL
==== ====== ======== =====
CEEOCB_LIBHEAP64 21C 2
CEEOCB_LIBHEAP64_BIT_FLAG 21C 2
CEEOCB_LIBHEAP64_DISPOSITION24 2C 40 2
CEEOCB_LIBHEAP64_DISPOSITION31 20 40 2
CEEOCB_LIBHEAP64_DISPOSITION64 14 40 2
CEEOCB_LIBHEAP64_INCR_SIZE24 28 2
CEEOCB_LIBHEAP64_INCR_SIZE31 1C 2
CEEOCB_LIBHEAP64_INCR_SIZE64 C 2
CEEOCB_LIBHEAP64_INIT_SIZE24 24 2
CEEOCB_LIBHEAP64_INIT_SIZE31 18 2
CEEOCB_LIBHEAP64_INIT_SIZE64 4 2
CEEOCB_LIBHEAP64_NOOVERRIDE 21C 40 2
CEEOCB_LIBHEAP64_ON 21C 80 2
CEEOCB_LIBHEAP64_ON_V 21C 1 2
CEEOCB_LIBHEAP64_SUB_BIT_FLAG24 2C 2
CEEOCB_LIBHEAP64_SUB_BIT_FLAG31 20 2
CEEOCB_LIBHEAP64_SUB_BIT_FLAG64 14 2
CEEOCB_LIBHEAP64_SUB_OPTIONS 220 2
CEEOCB_LIBHEAP64_SUB_OPTS 0 1
CEEOCB_LIBHEAP64_SUB_OPTS_V 0 2
CEEOCB_LIBHEAP64_WHERE_SET 21E 2
CEEOCB_LIBRARY 1BC 2
CEEOCB_LIBRARY_BIT_FLAG 1BC 2
CEEOCB_LIBRARY_NAME 0 2
CEEOCB_LIBRARY_NAME_LENGTH 0 2
CEEOCB_LIBRARY_NAME_O 4 2
CEEOCB_LIBRARY_NAME_S 0 1
CEEOCB_LIBRARY_NAME_STRING 2 2
CEEOCB_LIBRARY_NOOVERRIDE 1BC 40 2
CEEOCB_LIBRARY_ON 1BC 80 2
CEEOCB_LIBRARY_ON_V 1BC 1 2
CEEOCB_LIBRARY_SUB_OPTIONS 1C0 2
CEEOCB_LIBRARY_SUB_OPTS 0 1
CEEOCB_LIBRARY_SUB_OPTS_V 0 2
CEEOCB_LIBRARY_WHERE_SET 1BE 2
CEEOCB_LIBSTACK 94 2
CEEOCB_LIBSTACK_BIT_FLAG 94 2
CEEOCB_LIBSTACK_DISPOSITION C 40 2
CEEOCB_LIBSTACK_INCR_SIZE 8 2
CEEOCB_LIBSTACK_INIT_SIZE 4 2
CEEOCB_LIBSTACK_LOCATION C 80 2
CEEOCB_LIBSTACK_NOOVERRIDE 94 40 2
CEEOCB_LIBSTACK_ON 94 80 2
CEEOCB_LIBSTACK_ON_V 94 1 2
CEEOCB_LIBSTACK_SUB_BIT_FLAG C 2
CEEOCB_LIBSTACK_SUB_OPTIONS 98 2
CEEOCB_LIBSTACK_SUB_OPTS 0 1
CEEOCB_LIBSTACK_SUB_OPTS_V 0 2
CEEOCB_LIBSTACK_WHERE_SET 96 2
CEEOCB_MSGFILE A4 2
CEEOCB_MSGFILE_BIT_FLAG A4 2
CEEOCB_MSGFILE_BLKSIZE 10 2
CEEOCB_MSGFILE_DDNAME 0 2
CEEOCB_MSGFILE_DDNAME_ENQ B 2
CEEOCB_MSGFILE_DDNAME_LENGTH 0 2
CEEOCB_MSGFILE_DDNAME_O 4 2
CEEOCB_MSGFILE_DDNAME_S 0 1
CEEOCB_MSGFILE_DDNAME_STRING 2 2
CEEOCB_MSGFILE_LRECL C 2
CEEOCB_MSGFILE_NOOVERRIDE A4 40 2
CEEOCB_MSGFILE_ON A4 80 2
CEEOCB_MSGFILE_ON_V A4 1 2

Figure 191. Options control block (OCB) field descriptions (cross references 8)

CEEOCB Macro

858 z/OS V2R1.0 Language Environment Vendor Interfaces

HEX HEX
NAME OFFSET VALUE LEVEL
==== ====== ======== =====
CEEOCB_MSGFILE_RECFM 0 2
CEEOCB_MSGFILE_RECFM_LENGTH 0 2
CEEOCB_MSGFILE_RECFM_O 8 2
CEEOCB_MSGFILE_RECFM_S 0 1
CEEOCB_MSGFILE_RECFM_STRING 2 2
CEEOCB_MSGFILE_SUB_OPTIONS A8 2
CEEOCB_MSGFILE_SUB_OPTS 0 1
CEEOCB_MSGFILE_SUB_OPTS_V 0 2
CEEOCB_MSGFILE_WHERE_SET A6 2
CEEOCB_MSGQ 9C 2
CEEOCB_MSGQ_BIT_FLAG 9C 2
CEEOCB_MSGQ_N 4 2
CEEOCB_MSGQ_NOOVERRIDE 9C 40 2
CEEOCB_MSGQ_ON 9C 80 2
CEEOCB_MSGQ_ON_V 9C 1 2
CEEOCB_MSGQ_SUB_OPTIONS A0 2
CEEOCB_MSGQ_SUB_OPTS 0 1
CEEOCB_MSGQ_SUB_OPTS_V 0 2
CEEOCB_MSGQ_WHERE_SET 9E 2
CEEOCB_NAMELIST 1AC 2
CEEOCB_NAMELIST_BIT_FLAG 1AC 2
CEEOCB_NAMELIST_LEVEL 4 2
CEEOCB_NAMELIST_NOOVERRIDE 1AC 40 2
CEEOCB_NAMELIST_ON 1AC 80 2
CEEOCB_NAMELIST_ON_V 1AC 1 2
CEEOCB_NAMELIST_SUB_OPTIONS 1B0 2
CEEOCB_NAMELIST_SUB_OPTS 0 1
CEEOCB_NAMELIST_SUB_OPTS_V 0 2
CEEOCB_NAMELIST_WHERE_SET 1AE 2
CEEOCB_NATLANG AC 2
CEEOCB_NATLANG_BIT_FLAG AC 2
CEEOCB_NATLANG_NATIONAL_LANG 4 2
CEEOCB_NATLANG_NOOVERRIDE AC 40 2
CEEOCB_NATLANG_ON AC 80 2
CEEOCB_NATLANG_ON_V AC 1 2
CEEOCB_NATLANG_SUB_BIT_FLAG 7 2
CEEOCB_NATLANG_SUB_OPTIONS B0 2
CEEOCB_NATLANG_SUB_OPTS 0 1
CEEOCB_NATLANG_SUB_OPTS_V 0 2
CEEOCB_NATLANG_UENGLISH 7 80 2
CEEOCB_NATLANG_WHERE_SET AE 2
CEEOCB_NONIPTSTACK 14C 2
CEEOCB_NONIPTSTACK_BIT_FLAG 14C 2
CEEOCB_NONIPTSTACK_DISPOSITON C 40 2
CEEOCB_NONIPTSTACK_INCR_SIZE 8 2
CEEOCB_NONIPTSTACK_INIT_SIZE 4 2
CEEOCB_NONIPTSTACK_LOCATION C 80 2
CEEOCB_NONIPTSTACK_NOOVERRIDE 14C 40 2
CEEOCB_NONIPTSTACK_ON 14C 80 2
CEEOCB_NONIPTSTACK_ON_V 14C 1 2
CEEOCB_NONIPTSTACK_SUB_BIT_FLAG C 2
CEEOCB_NONIPTSTACK_SUB_OPTIONS 150 2
CEEOCB_NONIPTSTACK_SUB_OPTS 0 1
CEEOCB_NONIPTSTACK_SUB_OPTS_V 0 2
CEEOCB_NONIPTSTACK_WHERE_SET 14E 2

Figure 192. Options control block (OCB) field descriptions (cross references 9)

CEEOCB Macro

Appendix A. Options control block and supplementary options control block 859

HEX HEX
NAME OFFSET VALUE LEVEL
==== ====== ======== =====
CEEOCB_OCSTATUS BC 2
CEEOCB_OCSTATUS_BIT_FLAG BC 2
CEEOCB_OCSTATUS_NOOVERRIDE BC 40 2
CEEOCB_OCSTATUS_ON BC 80 2
CEEOCB_OCSTATUS_ON_V BC 1 2
CEEOCB_OCSTATUS_SUB_OPTIONS C0 2
CEEOCB_OCSTATUS_WHERE_SET BE 2
CEEOCB_PAGEFRAMESIZE 244 2
CEEOCB_PAGEFRAMESIZE_ANYHEAP 6 2
CEEOCB_PAGEFRAMESIZE_ANYHEAP_V 0 40 3
CEEOCB_PAGEFRAMESIZE_BIT_FLAG 244 3
CEEOCB_PAGEFRAMESIZE_HEAP 4 2
CEEOCB_PAGEFRAMESIZE_HEAP_V 0 80 3
CEEOCB_PAGEFRAMESIZE_NOOVERRIDE 244 40 4
CEEOCB_PAGEFRAMESIZE_ON 244 80 4
CEEOCB_PAGEFRAMESIZE_ON_V 244 01 4
CEEOCB_PAGEFRAMESIZE_STACK 8 2
CEEOCB_PAGEFRAMESIZE_STACK_V 0 20 3
CEEOCB_PAGEFRAMESIZE_SUB_OPTIONS 248 3
CEEOCB_PAGEFRAMESIZE_SUB_OPTS 0 1
CEEOCB_PAGEFRAMESIZE_SUB_OPTS_V 0 2
CEEOCB_PAGEFRAMESIZE_WHERE_SET 246 3
CEEOCB_PAGEFRAMESIZE64 254 2
CEEOCB_PAGEFRAMESIZE64_BIT_FLAG 254 3
CEEOCB_PAGEFRAMESIZE64_IOHEAP_PF64 C 2
CEEOCB_PAGEFRAMESIZE64_IOHEAP_PF64_V 0 08 3
CEEOCB_PAGEFRAMESIZE64_IOHEAP_PF31 E 2
CEEOCB_PAGEFRAMESIZE64_IOHEAP_PF31_V 0 04 3
CEEOCB_PAGEFRAMESIZE64_LIBHEAP_PF64 8 2
CEEOCB_PAGEFRAMESIZE64_LIBHEAP_PF64_V 0 20 3
CEEOCB_PAGEFRAMESIZE64_LIBHEAP_PF31 A 2
CEEOCB_PAGEFRAMESIZE63_LIBHEAP_PF31_V 0 10 3
CEEOCB_PAGEFRAMESIZE64_NOOVERRIDE 254 40 4
CEEOCB_PAGEFRAMESIZE64_ON 254 80 4
CEEOCB_PAGEFRAMESIZE64_ON_V 254 01 4
CEEOCB_PAGEFRAMESIZE64_STACK 8 2
CEEOCB_PAGEFRAMESIZE64_STACK_V 0 02 3
CEEOCB_PAGEFRAMESIZE64_SUB_OPTIONS 258 3
CEEOCB_PAGEFRAMESIZE64_SUB_OPTS 0 1
CEEOCB_PAGEFRAMESIZE64_SUB_OPTS_V 0 2
CEEOCB_PAGEFRAMESIZE64_USERHEAP_PF64 4 2
CEEOCB_PAGEFRAMESIZE64_USERHEAP_PF64_V 0 80 3
CEEOCB_PAGEFRAMESIZE64_USERHEAP_PF31 6 2
CEEOCB_PAGEFRAMESIZE64_USERHEAP_PF31_V 0 40 3
CEEOCB_PAGEFRAMESIZE64_WHERE_SET 256 3
CEEOCB_PC 1B4 2
CEEOCB_PC_BIT_FLAG 1B4 2
CEEOCB_PC_NOOVERRIDE 1B4 40 2
CEEOCB_PC_ON 1B4 80 2
CEEOCB_PC_ON_V 1B4 1 2
CEEOCB_PC_SUB_OPTIONS 1B8 2
CEEOCB_PC_WHERE_SET 1B6 2
CEEOCB_PLITASKCOUNT 3C 2
CEEOCB_PLITASKCOUNT_BIT_FLAG 3C 2
CEEOCB_PLITASKCOUNT_NOOVERRIDE 3C 40 2
CEEOCB_PLITASKCOUNT_ON 3C 80 2
CEEOCB_PLITASKCOUNT_ON_V 3C 1 2
CEEOCB_PLITASKCOUNT_SUB_OPTIONS 40 2
CEEOCB_PLITASKCOUNT_SUB_OPTS 0 1
CEEOCB_PLITASKCOUNT_SUB_OPTS_V 0 2
CEEOCB_PLITASKCOUNT_TASKS 4 2
CEEOCB_PLITASKCOUNT_WHERE_SET 3E 2
CEEOCB_POSIX C4 2
CEEOCB_POSIX_BIT_FLAG C4 2
CEEOCB_POSIX_NOOVERRIDE C4 40 2
CEEOCB_POSIX_ON C4 80 2
CEEOCB_POSIX_ON_V C4 1 2
CEEOCB_POSIX_SUB_OPTIONS C8 2
CEEOCB_POSIX_WHERE_SET C6 2
CEEOCB_PROFILE 1DC 2
CEEOCB_PROFILE_BIT_FLAG 1DC 2
CEEOCB_PROFILE_NOOVERRIDE 1DC 40 2
CEEOCB_PROFILE_ON 1DC 80 2
CEEOCB_PROFILE_ON_V 1DC 1 2
CEEOCB_PROFILE_STRING 0 2
CEEOCB_PROFILE_STRING_LENGTH 0 2
CEEOCB_PROFILE_STRING_O 4 2
CEEOCB_PROFILE_STRING_S 0 1
CEEOCB_PROFILE_STRING_STRING 2 2
CEEOCB_PROFILE_SUB_OPTIONS 1E0 2
CEEOCB_PROFILE_SUB_OPTS 0 1
CEEOCB_PROFILE_SUB_OPTS_V 0 2
CEEOCB_PROFILE_WHERE_SET 1DE 2

Figure 193. Options control block (OCB) field descriptions (cross references 10)

CEEOCB Macro

860 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

HEX HEX
NAME OFFSET VALUE LEVEL
==== ====== ======== =====
CEEOCB_PRTUNIT 134 2
CEEOCB_PRTUNIT_BIT_FLAG 134 2
CEEOCB_PRTUNIT_N 4 2
CEEOCB_PRTUNIT_NOOVERRIDE 134 40 2
CEEOCB_PRTUNIT_ON 134 80 2
CEEOCB_PRTUNIT_ON_V 134 1 2
CEEOCB_PRTUNIT_SUB_OPTIONS 138 2
CEEOCB_PRTUNIT_SUB_OPTS 0 1
CEEOCB_PRTUNIT_SUB_OPTS_V 0 2
CEEOCB_PRTUNIT_WHERE_SET 136 2
CEEOCB_PUNUNIT 18C 2
CEEOCB_PUNUNIT_BIT_FLAG 18C 2
CEEOCB_PUNUNIT_N 4 2
CEEOCB_PUNUNIT_NOOVERRIDE 18C 40 2
CEEOCB_PUNUNIT_ON 18C 80 2
CEEOCB_PUNUNIT_ON_V 18C 1 2
CEEOCB_PUNUNIT_SUB_OPTIONS 190 2
CEEOCB_PUNUNIT_SUB_OPTS 0 1
CEEOCB_PUNUNIT_SUB_OPTS_V 0 2
CEEOCB_PUNUNIT_WHERE_SET 18E 2
CEEOCB_RDRUNIT 194 2
CEEOCB_RDRUNIT_BIT_FLAG 194 2
CEEOCB_RDRUNIT_N 4 2
CEEOCB_RDRUNIT_NOOVERRIDE 194 40 2
CEEOCB_RDRUNIT_ON 194 80 2
CEEOCB_RDRUNIT_ON_V 194 1 2
CEEOCB_RDRUNIT_SUB_OPTIONS 198 2
CEEOCB_RDRUNIT_SUB_OPTS 0 1
CEEOCB_RDRUNIT_SUB_OPTS_V 0 2
CEEOCB_RDRUNIT_WHERE_SET 196 2
CEEOCB_RECPAD 19C 2
CEEOCB_RECPAD_BIT_FLAG 19C 2
CEEOCB_RECPAD_LEVEL 4 2
CEEOCB_RECPAD_NOOVERRIDE 19C 40 2
CEEOCB_RECPAD_ON 19C 80 2
CEEOCB_RECPAD_ON_V 19C 1 2
CEEOCB_RECPAD_SUB_OPTIONS 1A0 2
CEEOCB_RECPAD_SUB_OPTS 0 1
CEEOCB_RECPAD_SUB_OPTS_V 0 2
CEEOCB_RECPAD_WHERE_SET 19E 2
CEEOCB_RPTOPTS 154 2
CEEOCB_RPTOPTS_BIT_FLAG 154 2
CEEOCB_RPTOPTS_NOOVERRIDE 154 40 2
CEEOCB_RPTOPTS_ON 154 80 2
CEEOCB_RPTOPTS_ON_V 154 1 2
CEEOCB_RPTOPTS_SUB_OPTIONS 158 2
CEEOCB_RPTOPTS_WHERE_SET 156 2
CEEOCB_RPTSTG CC 2
CEEOCB_RPTSTG_BIT_FLAG CC 2
CEEOCB_RPTSTG_NOOVERRIDE CC 40 2
CEEOCB_RPTSTG_ON CC 80 2
CEEOCB_RPTSTG_ON_V CC 1 2
CEEOCB_RPTSTG_SUB_OPTIONS D0 2
CEEOCB_RPTSTG_WHERE_SET CE 2

Figure 194. Options control block (OCB) field descriptions (cross references 11)

CEEOCB Macro

Appendix A. Options control block and supplementary options control block 861

HEX HEX
NAME OFFSET VALUE LEVEL
==== ====== ======== =====
CEEOCB_RSVD1 14 2
CEEOCB_RSVD1_BIT_FLAG 14 2
CEEOCB_RSVD1_NOOVERRIDE 14 40 2
CEEOCB_RSVD1_ON 14 80 2
CEEOCB_RSVD1_ON_V 14 1 2
CEEOCB_RSVD1_SUB_OPTIONS 18 2
CEEOCB_RSVD1_WHERE_SET 16 2
CEEOCB_RTEREUS D4 2
CEEOCB_RTEREUS_BIT_FLAG D4 2
CEEOCB_RTEREUS_NOOVERRIDE D4 40 2
CEEOCB_RTEREUS_ON D4 80 2
CEEOCB_RTEREUS_ON_V D4 1 2
CEEOCB_RTEREUS_SUB_OPTIONS D8 2
CEEOCB_RTEREUS_WHERE_SET D6 2
CEEOCB_RTLS 1CC 2
CEEOCB_RTLS_BIT_FLAG 1CC 2
CEEOCB_RTLS_NOOVERRIDE 1CC 40 2
CEEOCB_RTLS_ON 1CC 80 2
CEEOCB_RTLS_ON_V 1CC 1 2
CEEOCB_RTLS_SUB_OPTIONS 1D0 2
CEEOCB_RTLS_WHERE_SET 1CE 2
CEEOCB_SIMVRD DC 2
CEEOCB_SIMVRD_BIT_FLAG DC 2
CEEOCB_SIMVRD_NOOVERRIDE DC 40 2
CEEOCB_SIMVRD_ON DC 80 2
CEEOCB_SIMVRD_ON_V DC 1 2
CEEOCB_SIMVRD_SUB_OPTIONS E0 2
CEEOCB_SIMVRD_WHERE_SET DE 2
CEEOCB_STACK E4 2
CEEOCB_STACK_BIT_FLAG E4 2
CEEOCB_STACK_DISPOSITION C 40 2
CEEOCB_STACK_DSINCR_SIZE 14 2
CEEOCB_STACK_DSINIT_SIZE 10 2
CEEOCB_STACK_INCR_SIZE 8 2
CEEOCB_STACK_INIT_SIZE 4 2
CEEOCB_STACK_LOCATION C 80 2
CEEOCB_STACK_NOOVERRIDE E4 40 2
CEEOCB_STACK_ON E4 80 2
CEEOCB_STACK_ON_V E4 1 2
CEEOCB_STACK_SUB_BIT_FLAG C 2
CEEOCB_STACK_SUB_OPTIONS E8 2
CEEOCB_STACK_SUB_OPTS 0 1
CEEOCB_STACK_SUB_OPTS_V 0 2
CEEOCB_STACK_WHERE_SET E6 2
CEEOCB_STACK64 224 2
CEEOCB_STACK64_BIT_FLAG 224 2
CEEOCB_STACK64_INCR_SIZE C 2
CEEOCB_STACK64_INIT_SIZE 4 2
CEEOCB_STACK64_MAX_SIZE 14 2
CEEOCB_STACK64_NOOVERRIDE 224 40 2
CEEOCB_STACK64_ON 224 80 2
CEEOCB_STACK64_ON_V 224 1 2
CEEOCB_STACK64_SUB_OPTIONS 228 2
CEEOCB_STACK64_SUB_OPTS 0 1
CEEOCB_STACK64_SUB_OPTS_V 0 2
CEEOCB_STACK64_WHERE_SET 226 2

Figure 195. Options control block (OCB) field descriptions (cross references 12)

CEEOCB Macro

862 z/OS V2R1.0 Language Environment Vendor Interfaces

HEX HEX
NAME OFFSET VALUE LEVEL
==== ====== ======== =====
CEEOCB_STORAGE EC 2
CEEOCB_STORAGE_BIT_FLAG EC 3
CEEOCB_STORAGE_DSA_ALLOC_SET 4 20 3
CEEOCB_STORAGE_DSA_ALLOC_V 0 20 3
CEEOCB_STORAGE_DSA_ALLOC_VALUE 7 2
CEEOCB_STORAGE_DSA_CLEAR_SET 4 10 3
CEEOCB_STORAGE_HEAP_ALLOC_SET 4 80 3
CEEOCB_STORAGE_HEAP_ALLOC_V 0 80 3
CEEOCB_STORAGE_HEAP_ALLOC_VALUE 5 2
CEEOCB_STORAGE_HEAP_FREE_SET 4 40 3
CEEOCB_STORAGE_HEAP_FREE_V 0 40 3
CEEOCB_STORAGE_HEAP_FREE_VALUE 6 2
CEEOCB_STORAGE_NOOVERRIDE EC 40 4
CEEOCB_STORAGE_ON EC 80 4
CEEOCB_STORAGE_ON_V EC 01 4
CEEOCB_STORAGE_RESERVE_SIZE 8 2
CEEOCB_STORAGE_RESERVE_SIZE_V 0 10 3
CEEOCB_STORAGE_SUB_OPTIONS F0 3
CEEOCB_STORAGE_SUB_OPTS 0 1
CEEOCB_STORAGE_SUB_OPTS_FLAGS 4 2
CEEOCB_STORAGE_SUB_OPTS_V 0 2
CEEOCB_STORAGE_WHERE_SET EE 3
CEEOCB_TERMTHDACT 16C 2
CEEOCB_TERMTHDACT_BIT_FLAG 16C 2
CEEOCB_TERMTHDACT_CICSDEST 8 2
CEEOCB_TERMTHDACT_LEVEL 4 2
CEEOCB_TERMTHDACT_NOOVERRIDE 16C 40 2
CEEOCB_TERMTHDACT_ON 16C 80 2
CEEOCB_TERMTHDACT_ON_V 16C 1 2
CEEOCB_TERMTHDACT_REGSTOR C 2
CEEOCB_TERMTHDACT_SUB_OPTIONS 170 2
CEEOCB_TERMTHDACT_SUB_OPTS 0 1
CEEOCB_TERMTHDACT_SUB_OPTS_V 0 2
CEEOCB_TERMTHDACT_WHERE_SET 16E 2
CEEOCB_TEST 10C 2
CEEOCB_TEST_BIT_FLAG 10C 2
CEEOCB_TEST_COMMAND_FILE 0 2
CEEOCB_TEST_COMMAND_FILE_LEN 0 2
CEEOCB_TEST_COMMAND_FILE_O 8 2
CEEOCB_TEST_COMMAND_FILE_S 0 1
CEEOCB_TEST_COMMAND_FILE_STR 2 2
CEEOCB_TEST_CONTROL 4 2
CEEOCB_TEST_INIT_COMMAND 0 2
CEEOCB_TEST_INIT_COMMAND_LEN 0 2
CEEOCB_TEST_INIT_COMMAND_O C 2
CEEOCB_TEST_INIT_COMMAND_S 0 1
CEEOCB_TEST_INIT_COMMAND_STR 2 2
CEEOCB_TEST_NOOVERRIDE 10C 40 2
CEEOCB_TEST_ON 10C 80 2
CEEOCB_TEST_ON_V 10C 1 2
CEEOCB_TEST_PREFERENCE_FILE 0 2
CEEOCB_TEST_PREFERENCE_FILE_LEN 0 2
CEEOCB_TEST_PREFERENCE_FILE_O 10 2
CEEOCB_TEST_PREFERENCE_FILE_S 0 1
CEEOCB_TEST_PREFERENCE_FILE_STR 2 2
CEEOCB_TEST_SUB_OPTIONS 110 2
CEEOCB_TEST_SUB_OPTS 0 1
CEEOCB_TEST_SUB_OPTS_V 0 2
CEEOCB_TEST_WHERE_SET 10E 2

Figure 196. Options control block (OCB) field descriptions (cross references 13)

CEEOCB Macro

Appendix A. Options control block and supplementary options control block 863

HEX HEX
NAME OFFSET VALUE LEVEL
==== ====== ======== =====
CEEOCB_THREADHEAP 104 2
CEEOCB_THREADHEAP_BIT_FLAG 104 2
CEEOCB_THREADHEAP_DISPOSITION C 40 2
CEEOCB_THREADHEAP_INCR_SIZE 8 2
CEEOCB_THREADHEAP_INIT_SIZE 4 2
CEEOCB_THREADHEAP_LOCATION C 80 2
CEEOCB_THREADHEAP_NOOVERRIDE 104 40 2
CEEOCB_THREADHEAP_ON 104 80 2
CEEOCB_THREADHEAP_ON_V 104 1 2
CEEOCB_THREADHEAP_SUB_BIT_FLAG C 2
CEEOCB_THREADHEAP_SUB_OPTIONS 108 2
CEEOCB_THREADHEAP_SUB_OPTS 0 1
CEEOCB_THREADHEAP_SUB_OPTS_V 0 2
CEEOCB_THREADHEAP_WHERE_SET 106 2
CEEOCB_THREADSTACK 114 2
CEEOCB_THREADSTACK_BIT_FLAG 114 2
CEEOCB_THREADSTACK_DISPOSITION C 40 2
CEEOCB_THREADSTACK_DSINCR_SIZE 14 2
CEEOCB_THREADSTACK_DSINIT_SIZE 10 2
CEEOCB_THREADSTACK_INCR_SIZE 8 2
CEEOCB_THREADSTACK_INIT_SIZE 4 2
CEEOCB_THREADSTACK_LOCATION C 80 2
CEEOCB_THREADSTACK_NOOVERRIDE 114 40 2
CEEOCB_THREADSTACK_ON 114 80 2
CEEOCB_THREADSTACK_ON_V 114 1 2
CEEOCB_THREADSTACK_SUB_BIT_FLAG C 2
CEEOCB_THREADSTACK_SUB_OPTIONS 118 2
CEEOCB_THREADSTACK_SUB_OPTS 0 1
CEEOCB_THREADSTACK_SUB_OPTS_V 0 2
CEEOCB_THREADSTACK_WHERE_SET 116 2
CEEOCB_THREADSTACK64 22C 2
CEEOCB_THREADSTACK64_BIT_FLAG 22C 2
CEEOCB_THREADSTACK64_INCR_SIZE C 2
CEEOCB_THREADSTACK64_INIT_SIZE 4 2
CEEOCB_THREADSTACK64_MAX_SIZE 14 2
CEEOCB_THREADSTACK64_NOOVERRIDE 22C 40 2
CEEOCB_THREADSTACK64_ON 22C 80 2
CEEOCB_THREADSTACK64_ON_V 22C 1 2
CEEOCB_THREADSTACK64_SUB_OPTIONS 230 2
CEEOCB_THREADSTACK64_SUB_OPTS 0 1
CEEOCB_THREADSTACK64_SUB_OPTS_V 0 2
CEEOCB_THREADSTACK64_WHERE_SET 22E 2
CEEOCB_TRACE FC 2
CEEOCB_TRACE_BIT_FLAG FC 2
CEEOCB_TRACE_CEL 4 2
CEEOCB_TRACE_C370 C 2
CEEOCB_TRACE_FLAGS C 2
CEEOCB_TRACE_GLOBAL 8 2
CEEOCB_TRACE_LEVELS 0 2
CEEOCB_TRACE_LVL 0 1
CEEOCB_TRACE_LVL_O 18 2
CEEOCB_TRACE_LVL_S 0 1
CEEOCB_TRACE_LVL_S_FLAGS 0 2
CEEOCB_TRACE_LVL_S_O 14 2
CEEOCB_TRACE_LVL_V 0 1
CEEOCB_TRACE_LVL_V_FLAGS 0 2
CEEOCB_TRACE_LVL_V_O 10 2
CEEOCB_TRACE_NOOVERRIDE FC 40 2
CEEOCB_TRACE_ON FC 80 2
CEEOCB_TRACE_ON_V FC 1 2
CEEOCB_TRACE_PLI 28 2
CEEOCB_TRACE_SOCKET 30 2
CEEOCB_TRACE_SUB_OPTIONS 100 2
CEEOCB_TRACE_SUB_OPTS 0 1
CEEOCB_TRACE_SUB_OPTS_V 0 2
CEEOCB_TRACE_TBL_SIZE 4 2
CEEOCB_TRACE_WHERE_SET FE 2

Figure 197. Options control block (OCB) field descriptions (cross references 14)

CEEOCB Macro

864 z/OS V2R1.0 Language Environment Vendor Interfaces

HEX HEX
NAME OFFSET VALUE LEVEL
==== ====== ======== =====
CEEOCB_TRAP 11C 2
CEEOCB_TRAP_BIT_FLAG 11C 2
CEEOCB_TRAP_FLAGS 4 2
CEEOCB_TRAP_NOOVERRIDE 11C 40 2
CEEOCB_TRAP_ON 11C 80 2
CEEOCB_TRAP_ON_V 11C 1 2
CEEOCB_TRAP_SPIE 4 80 2
CEEOCB_TRAP_SPIE_V 0 80 2
CEEOCB_TRAP_SUB_OPTIONS 120 2
CEEOCB_TRAP_SUB_OPTS 0 1
CEEOCB_TRAP_SUB_OPTS_V 0 2
CEEOCB_TRAP_WHERE_SET 11E 2
CEEOCB_UPSI 124 2
CEEOCB_UPSI_BIT_FLAG 124 2
CEEOCB_UPSI_N 4 2
CEEOCB_UPSI_N_V 0 2
CEEOCB_UPSI_NOOVERRIDE 124 40 2
CEEOCB_UPSI_ON 124 80 2
CEEOCB_UPSI_ON_V 124 1 2
CEEOCB_UPSI_SUB_OPTIONS 128 2
CEEOCB_UPSI_SUB_OPTS 0 1
CEEOCB_UPSI_WHERE_SET 126 2
CEEOCB_USRHDLR 1A4 2
CEEOCB_USRHDLR_BIT_FLAG 1A4 2
CEEOCB_USRHDLR_NOOVERRIDE 1A4 40 2
CEEOCB_USRHDLR_ON 1A4 80 2
CEEOCB_USRHDLR_ON_V 1A4 1 2
CEEOCB_USRHDLR_ROUTINE 0 2
CEEOCB_USRHDLR_ROUTINE_LENGTH 0 2
CEEOCB_USRHDLR_ROUTINE_O 4 2
CEEOCB_USRHDLR_ROUTINE_S 0 1
CEEOCB_USRHDLR_ROUTINE_STRING 2 2
CEEOCB_USRHDLR_SUB_OPTIONS 1A8 2
CEEOCB_USRHDLR_SUB_OPTS 0 1
CEEOCB_USRHDLR_SUB_OPTS_V 0 2
CEEOCB_USRHDLR_SUPERHDLR 0 2
CEEOCB_USRHDLR_SUPERHDLR_LENGTH 0 2
CEEOCB_USRHDLR_SUPERHDLR_O 8 2
CEEOCB_USRHDLR_SUPERHDLR_S 0 1
CEEOCB_USRHDLR_SUPERHDLR_STRING 2 2
CEEOCB_USRHDLR_WHERE_SET 1A6 2
CEEOCB_VCTRSAVE 12C 2
CEEOCB_VCTRSAVE_BIT_FLAG 12C 2
CEEOCB_VCTRSAVE_NOOVERRIDE 12C 40 2
CEEOCB_VCTRSAVE_ON 12C 80 2
CEEOCB_VCTRSAVE_ON_V 12C 1 2
CEEOCB_VCTRSAVE_SUB_OPTIONS 130 2
CEEOCB_VCTRSAVE_WHERE_SET 12E 2
CEEOCB_VERSION 1C4 2
CEEOCB_VERSION_BIT_FLAG 1C4 2
CEEOCB_VERSION_NAME 0 2
CEEOCB_VERSION_NAME_LENGTH 0 2
CEEOCB_VERSION_NAME_O 4 2
CEEOCB_VERSION_NAME_S 0 1
CEEOCB_VERSION_NAME_STRING 2 2
CEEOCB_VERSION_NOOVERRIDE 1C4 40 2
CEEOCB_VERSION_ON 1C4 80 2
CEEOCB_VERSION_ON_V 1C4 1 2
CEEOCB_VERSION_RELEASE 8 2
CEEOCB_VERSION_SUB_OPTIONS 1C8 2
CEEOCB_VERSION_SUB_OPTS 0 1
CEEOCB_VERSION_SUB_OPTS_V 0 2
CEEOCB_VERSION_WHERE_SET 1C6 2

Figure 198. Options control block (OCB) field descriptions (cross references 15)

CEEOCB Macro

Appendix A. Options control block and supplementary options control block 865

Table 91. Options control block (OCB) constants

Len Type Value Name Description

4 DECIMAL 2792 OPTIONS_CONTROL_BLOCK_LENGTH

1 HEX 00 CEEOCB_FORMAT_31

1 HEX 01 CEEOCB_FORMAT_64

0 BIT 0 KEEP

0 BIT 1 FREE

0 BIT 0 ANYWHERE

0 BIT 1 BELOW

4 DECIMAL 1 RET_EXIT

4 DECIMAL 2 ABD_EXIT

2 DECIMAL 1 NONE_CONDITION test/notest

2 DECIMAL 2 ERROR_CONDITION

2 DECIMAL 4 ALL_CONDITION

2 DECIMAL 1 DUMP_CONDITION termthdact

2 DECIMAL 2 TRACE_CONDITION

2 DECIMAL 4 MSG_CONDITION

2 DECIMAL 8 QUIET_CONDITION

2 DECIMAL 16 UADUMP_CONDITION

2 DECIMAL 32 UAONLY_CONDITION

2 DECIMAL 64 UAIMM_CONDITION

2 DECIMAL 128 UATRACE_CONDITION

2 DECIMAL 64 CICSDDS_CONDITION

2 DECIMAL 128 CESE_CONDITION

2 DECIMAL 1 OLD_NAMELIST namelist

2 DECIMAL 2 F90_NAMELIST

2 DECIMAL 1 VAR_RECPAD recpad

2 DECIMAL 2 ON_RECPAD

2 DECIMAL 2 ALL_RECPAD

2 DECIMAL 4 OFF_RECPAD

2 DECIMAL 4 NONE_RECPAD

2 DECIMAL 1 AUTO_XUFLOW xuflow

HEX HEX
NAME OFFSET VALUE LEVEL
==== ====== ======== =====
CEEOCB_XPLINK 1F4 2
CEEOCB_XPLINK_BIT_FLAG 1F4 2
CEEOCB_XPLINK_NOOVERRIDE 1F4 40 2
CEEOCB_XPLINK_ON 1F4 80 2
CEEOCB_XPLINK_ON_V 1F4 1 2
CEEOCB_XPLINK_SUB_OPTIONS 1F8 2
CEEOCB_XPLINK_WHERE_SET 1F6 2
CEEOCB_XUFLOW 13C 2
CEEOCB_XUFLOW_BIT_FLAG 13C 2
CEEOCB_XUFLOW_LEVEL 4 2
CEEOCB_XUFLOW_NOOVERRIDE 13C 40 2
CEEOCB_XUFLOW_ON 13C 80 2
CEEOCB_XUFLOW_ON_V 13C 1 2
CEEOCB_XUFLOW_SUB_OPTIONS 140 2
CEEOCB_XUFLOW_SUB_OPTS 0 1
CEEOCB_XUFLOW_SUB_OPTS_V 0 2
CEEOCB_XUFLOW_WHERE_SET 13E 2

Figure 199. Options control block (OCB) field descriptions (cross references 16)

CEEOCB Macro

866 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 91. Options control block (OCB) constants (continued)

Len Type Value Name Description

2 DECIMAL 2 ON_XUFLOW

2 DECIMAL 4 OFF_XUFLOW

2 DECIMAL 128 DYN_DYNAMIC

2 DECIMAL 64 DYN_NODYNAMIC

2 DECIMAL 32 DYN_FORCE

2 DECIMAL 16 DYN_BOTH

2 DECIMAL 128 DYN_TDUMP

2 DECIMAL 64 DYN_NOTDUMP

7 CHARACTER DYNAMIC DYN_DYNAMIC_C

9 CHARACTER NODYNAMIC DYN_NODYNAMIC_C

5 CHARACTER FORCE DYN_FORCE_C

4 CHARACTER BOTH DYN_BOTH_C

5 CHARACTER TDUMP DYN_TDUMP_C

7 CHARACTER NOTDUMP DYN_NOTDUMP_C

2 DECIMAL 50 DEFAULT_SETTING

2 DECIMAL 100 IBM_SUPPLIED_DEFAULTS

2 DECIMAL 200 PROGRAMMER_DEFAULTS

2 DECIMAL 300 ASSEMBLER_USER_EXIT

2 DECIMAL 400 PROGRAM_INVOCATION

2 DECIMAL 500 REGION_DEFAULTS

2 DECIMAL 600 STGTUNE_USER_EXIT

2 DECIMAL 700 OVER_RIDE

2 DECIMAL 800 IG_NORED

2 DECIMAL 900 MAP_PED

2 DECIMAL 1000 CICS_CLER_TRANS

2 DECIMAL 1100 CICS_AUTO_TUNE

2 DECIMAL 23386 MAX_WHERE_SET

4 DECIMAL 1 ALLOW_ONLY_31BIT_RTO

4 DECIMAL 2 ALLOW_ONLY_64BIT_RTO

4 DECIMAL 3 ALLOW_ALL_RTO

4 DECIMAL 0 ERRCOUNT_DEFAULT_64

4 DECIMAL 2 ABTERMENC_DEFAULT_64

4 DECIMAL 10 DEPTHCONDLMT_DEFAULT_64

4 DECIMAL 15 MSGQ_DEFAULT_64

2 DECIMAL 1 PAGE_4K

2 DECIMAL 2 PAGE_1M

4 DECIMAL 1 HEAPZONES_QUIET

4 DECIMAL 2 HEAPZONES_MSG

4 DECIMAL 3 HEAPZONES_ABEND

4 DECIMAL 4 HEAPZONES_TRACE

5 CHARACTER QUIET HEAPZONES_QUIET_C

3 CHARACTER MSG HEAPZONES_MSG_C

5 CHARACTER ABEND HEAPZONES_ABEND_C

5 CHARACTER TRACE HEAPZONES_TRACE_C

CEEOCB Macro

Appendix A. Options control block and supplementary options control block 867

|

|

|

|

|

|

|

|

|

Supplementary options control block
The following three tables show the format of the SOCB, which is the
supplementary options control block:
v Table 90 on page 821 shows the type field definitions.
v Table 92 shows the SOCB field descriptions.
v Table 93 on page 869 shows the SOCB constants.
v Table 94 on page 870 shows the SOCB cross reference information.

Table 92. Supplementary options control block (SOCB) field descriptions

Offsets Type Len Name (Dim) (*= Reserved)

Dec Hex

0 (0) STRUCTURE 44 CEESOCB

0 (0) SIGNED 2 CEESOCB_VERSION_RELEASE

2 (2) SIGNED 2 CEESOCB_LENGTH

4 (4) CHARACTER 8 CEESOCB_EXECOPS

4 (4) BITSTRING 1 CEESOCB_EXECOPS_BIT_FLAG

1... CEESOCB_EXECOPS_ON

.1.. CEESOCB_EXECOPS_NOOVERRIDE

..11 111. *

.... ...1 CEESOCB_EXECOPS_ON_V

5 (5) BITSTRING 1 *

6 (6) SIGNED 2 CEESOCB_EXECOPS_WHERE_SET

8 (8) PTR INTOAREA 4 CEESOCB_EXECOPS_SUB_OPTIONS

12 (C) CHARACTER 8 CEESOCB_REDIR

12 (C) BITSTRING 1 CEESOCB_REDIR_BIT_FLAG

1... CEESOCB_REDIR_ON

.1.. CEESOCB_REDIR_NOOVERRIDE

..11 111. *

.... ...1 CEESOCB_REDIR_ON_V

13 (D) BITSTRING 1 *

14 (E) SIGNED 2 CEESOCB_REDIR_WHERE_SET

16 (10) PTR INTOAREA 4 CEESOCB_REDIR_SUB_OPTIONS

20 (14) CHARACTER 8 CEESOCB_ARGPARSE

20 (14) BITSTRING 1 CEESOCB_ARGPARSE_BIT_FLAG

1... CEESOCB_ARGPARSE_ON

.1.. CEESOCB_ARGPARSE_NOOVERRIDE

..11 111. *

.... ...1 CEESOCB_ARGPARSE_ON_V

21 (15) BITSTRING 1 *

22 (16) SIGNED 2 CEESOCB_ARGPARSE_WHERE_SET

24 (18) PTR INTOAREA 4 CEESOCB_ARGPARSE_SUB_OPTIONS

28 (1C) CHARACTER 8 CEESOCB_ENV

28 (1C) BITSTRING 1 CEESOCB_ENV_BIT_FLAG

1... CEESOCB_ENV_ON

CEESOCB Macro

868 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 92. Supplementary options control block (SOCB) field descriptions (continued)

Offsets Type Len Name (Dim) (*= Reserved)

Dec Hex

.1.. CEESOCB_ENV_NOOVERRIDE

..11 111. *

.... ...1 CEESOCB_ENV_ON_V

29 (1D) BITSTRING 1 *

30 (1E) SIGNED 2 CEESOCB_ENV_WHERE_SET

32 (20) PTR INTOAREA 4 CEESOCB_ENV_SUB_OPTIONS

36 (24) CHARACTER 8 CEESOCB_PLIST

36 (24) BITSTRING 1 CEESOCB_PLIST_BIT_FLAG

1... CEESOCB_PLIST_ON

.1.. CEESOCB_PLIST_NOOVERRIDE

..11 111. *

.... ...1 CEESOCB_PLIST_ON_V

37 (25) BITSTRING 1 *

38 (26) SIGNED 2 CEESOCB_PLIST_WHERE_SET

40 (28) PTR INTOAREA 4 CEESOCB_PLIST_SUB_OPTIONS

End of fixed portion

0 (0) STRUCTURE 8 CEESOCB_ENV_SUB_OPTS

0 (0) BITSTRING 4 CEESOCB_ENV_SUB_OPTS_V

1... CEESOCB_ENV_OP_V

0 (0) BITSTRING 3 *

4 (4) SIGNED 4 CEESOCB_ENV_OP

0 (0) STRUCTURE 8 CEESOCB_PLIST_SUB_OPTS

0 (0) BITSTRING 4 CEESOCB_PLIST_SUB_OPTS_V

1... CEESOCB_PLIST_FORMAT_V

0 (0) BITSTRING 3 *

4 (4) SIGNED 4 CEESOCB_PLIST_FORMAT

Table 93. Supplementary options control block (SOCB) constants

Len Type Value Name Description

4 DECIMAL 60 SOCB_LENGTH

4 DECIMAL 1 CEESOCB_PLIST_CMS

4 DECIMAL 2 CEESOCB_PLIST_HOST

4 DECIMAL 3 CEESOCB_PLIST_MVS

4 DECIMAL 4 CEESOCB_PLIST_TSO

4 DECIMAL 5 CEESOCB_PLIST_CICS

4 DECIMAL 6 CEESOCB_PLIST_IMS

4 DECIMAL 7 CEESOCB_PLIST_OS

4 DECIMAL 1 CEESOCB_ENV_CMS

4 DECIMAL 2 CEESOCB_ENV_MVS

4 DECIMAL 3 CEESOCB_ENV_IMS

CEESOCB Macro

Appendix A. Options control block and supplementary options control block 869

Table 94. Supplementary options control block (SOCB) cross reference

Name Hex Offset Hex Value

CEESOCB 0

CEESOCB_ARGPARSE 14

CEESOCB_ARGPARSE_BIT_FLAG 14

CEESOCB_ARGPARSE_NOOVERRIDE 14 40

CEESOCB_ARGPARSE_ON 14 80

CEESOCB_ARGPARSE_ON_V 14 01

CEESOCB_ARGPARSE_SUB_OPTIONS 18

CEESOCB_ARGPARSE_WHERE_SET 16

CEESOCB_ENV 1C

CEESOCB_ENV_BIT_FLAG 1C

CEESOCB_ENV_NOOVERRIDE 1C 40

CEESOCB_ENV_ON 1C 80

CEESOCB_ENV_ON_V 1C 01

CEESOCB_ENV_OP 4

CEESOCB_ENV_OP_V 0 80

CEESOCB_ENV_SUB_OPTIONS 20

CEESOCB_ENV_SUB_OPTS 0

CEESOCB_ENV_SUB_OPTS_V 0

CEESOCB_ENV_WHERE_SET 1E

CEESOCB_EXECOPS 4

CEESOCB_EXECOPS_BIT_FLAG 4

CEESOCB_EXECOPS_NOOVERRIDE 4 40

CEESOCB_EXECOPS_ON 4 80

CEESOCB_EXECOPS_ON_V 4 01

CEESOCB_EXECOPS_SUB_OPTIONS 8

CEESOCB_EXECOPS_WHERE_SET 6

CEESOCB_LENGTH 2

CEESOCB_PLIST 24

CEESOCB_PLIST_BIT_FLAG 24

CEESOCB_PLIST_FORMAT 4

CEESOCB_PLIST_FORMAT_V 0 80

CEESOCB_PLIST_NOOVERRIDE 24 40

CEESOCB_PLIST_ON 24 80

CEESOCB_PLIST_ON_V 24 01

CEESOCB_PLIST_SUB_OPTIONS 28

CEESOCB_PLIST_SUB_OPTS 0

CEESOCB_PLIST_SUB_OPTS_V 0

CEESOCB_PLIST_WHERE_SET 26

CEESOCB_REDIR C

CEESOCB_REDIR_BIT_FLAG C

CEESOCB_REDIR_NOOVERRIDE C 40

CEESOCB_REDIR_ON C 80

CEESOCB_REDIR_ON_V C 01

CEESOCB_REDIR_SUB_OPTIONS 10

CEESOCB_REDIR_WHERE_SET E

CEESOCB Macro

870 z/OS V2R1.0 Language Environment Vendor Interfaces

Table 94. Supplementary options control block (SOCB) cross reference (continued)

Name Hex Offset Hex Value

CEESOCB_VERSION_RELEASE 0

CEESOCB Macro

Appendix A. Options control block and supplementary options control block 871

CEESOCB Macro

872 z/OS V2R1.0 Language Environment Vendor Interfaces

Appendix B. CALL linkage argument examples

This section provides examples of linkage of FASTLINK CALL and XPLINK CALL
linkage arguments.

FASTLINK CALL linkage argument examples
The following sections provide different types of examples of FASTLINK CALL
linkage arguments.

Notational shorthand used
In the argument list and diagram examples shown in the following sections, all
arguments denote direct, by-value arguments. The following notation is used.

l denotes fixed bin (31)

d denotes double precision float

dxu denotes leftmost word of double precision (dxl-lower)

f denotes single precision float

e denotes extended precision float

s denotes fixed bin(15)

c denotes fixed bin(7) (or signed char in "C"), which is passed right justified
in a word

v denotes vector data type

s2-l4-f2
denotes a structure with leaf elements fixed bin(15), fixed bin(31), fixed
bin(31), and single precision within structures half words are aligned on
half word boundaries and full word binary is aligned on word boundaries
and space is skipped if necessary because of alignment requirements of
previous structure members. This is not meant to imply any commonality
in alignment or structure mapping rules across languages in Language
Environment but is just used for purposes of illustration

... indicates where value would be placed if it must be represented in storage

\\\ indicates sign extension for signed values and zero for unsigned ones

/// indicates structure padding (undefined contents)

Argument list examples
All examples shown are for non-extended-mode enabled routines.

© Copyright IBM Corp. 1991, 2015 873

||

Note that the compiler does not initialize the related argument slots in the
argument area of the stack, although they are still allocated in case the callee needs
them. Only one word is used in the corresponding argument slot in the argument
area.

The next examples illustrate the passing of argument areas by reference
parameters.

Example 1A: call Suba(l1,d,l2)

STORAGE MAPPING OF
WILL BE PASSED IN: ARG AREA ON THE STACK

R1 0 | l1... | P1

FP0 4 | du... | P2

8 | dl... | P3

STACK 12 | l2 | P4

Example 1B: call Suba(d,l1,l2)

STORAGE MAPPING OF
WILL BE PASSED IN: ARG AREA ON THE STACK

FP0 0 | du... | P1

4 | dl... | P2

GPR3 8 | l1... | P3

STACK 12 | l2 | P4

Example 1C: call Suba(&d,l1,&l2,&l3)

STORAGE MAPPING OF
WILL BE PASSED IN: ARG AREA ON THE STACK

GPR1 0 | address of d | P1

GPR2 4 | l1 | P2

GPR3 8 | address of l2 | P3

STACK 12 | address of l3 | P4

Argument Examples

874 z/OS V2R1.0 Language Environment Vendor Interfaces

Example 2: call Suba(e,l)

STORAGE MAPPING OF
WILL BE PASSED IN: ARG AREA ON THE STACK

FP0/FP2 0 | euu... | P1

4 | eul... | P2

8 | elu... | P3

12 | ell... | P4

STACK 16 | l | P5

Example 3: call Suba(d1,d2,l)

STORAGE MAPPING OF
WILL BE PASSED IN: ARG AREA ON THE STACK

FP0 0 | d1u... | P1

4 | d1l... | P2

STACK 8 | d2 | P3
| |

12 | | P4

STACK 16 | l | P5

Example 4: call Suba(l1,l2,d1,d2,l3)

STORAGE MAPPING OF
WILL BE PASSED IN: ARG AREA ON THE STACK

R1 0 | l1... | P1

R2 4 | l2... | P2

FP0 8 | d1u... | P3

12 | d1l... | P4

STACK 16 | d2 | P5

| |
20 | | P6

STACK 24 | l3 | P7

Argument Examples

Appendix B. CALL linkage argument examples 875

Example 5: call Suba(s,l1,e,l2)

STORAGE MAPPING OF
WILL BE PASSED IN: ARG AREA ON THE STACK

-----+----+----------
R1 0 |\\\\|\\\\|s... | P1

R2 4 | l1... | P2

FP0/FP2 8 | euu... | P3

12 | eul... | P4

16 | elu... | P5

20 | ell... | P6

STACK 24 | l2 | P7

Example 6: call Subc (s1-l1-d1,l2,f2,d2)

STORAGE MAPPING OF
WILL BE PASSED IN: ARG AREA ON THE STACK

----------+----------
R1 0 | s1 |////|////| <--- left justified or as

--------------------- dictated by struc mapping
R2 4 | l1... | P2 rules in language

R3 8 | d1u... | P3

STACK 12 | d1l | P4

STACK 16 | l2 | P5

STACK 20 | f2 | P6

STACK 24 | d2 | P8

| |
38 | | P9

Argument Examples

876 z/OS V2R1.0 Language Environment Vendor Interfaces

Note that you can not pass single precision floating point to a language like C++,
which, upon call, promotes all single precision value arguments to double
precision, and get it to work reliably. The first floating argument might happen to
work because it is in a register.

Note that C++ on 390 always performs a promote of short floating values to long
floating point. Thus, in some cases, C++ on 390 will not actually work as described
above.

Example 7: call Subb(l1, s1, l2, d1, f1, c1,s2,s3-l3-f2)

STORAGE MAPPING OF
WILL BE PASSED IN: ARG AREA ON THE STACK

R1 0 | l1... | P1

-----+----+----------
R2 4 |\\\\|\\\\|s1... | P2

R3 8 | l2... | P3

STACK 12 | d1 | P4

16 | | P5

STACK 20 | f1 | P6
-----+----+----+-----

STACK 24 |\\\\|\\\\|\\\\| c1 |

STACK 28 |\\\\|\\\\| s2 |
---------------+-----

STACK 32 | s3 |////|////| <--- left justified or as dictated
--------------------- by struct mapping rules in

STACK 36 | l3 | P10 language
--------------------|

STACK 40 | f2 | P11

Example 8: call Suba(f1,1,l2,f2)

STORAGE MAPPING OF
WILL BE PASSED IN: ARG AREA ON THE STACK

FP0 0 | f1... | P1

GPR2 4 | l1... | P2

GPR3 8 | l2... | P3

STACK 12 | f2 | P4

Argument Examples

Appendix B. CALL linkage argument examples 877

A vector argument is full-word-aligned and occupies 16 bytes in the argument list.

Function results
The handling of result values is very symmetric to the way parameters are passed
into the function. Values are loaded into the same registers. The only difference is
that a structure/string return value that does not fit in the first three GPRs is not
returned in the argument area; rather, it is returned in an area passed by the caller
as a hidden (first) parameter. (The same alignment rules are used as for
arguments.)

Result value Register type

boolean (less or equal to 32 bits) GPR1

integer byte, halfword, fullword GPR1 (sign extended appropriately)

floating point short, long FPR0

floating point extended FPR0 and FPR2

complex short, long FPR0 and FPR2

Example 9: call Suba(v,l)

STORAGE MAPPING OF
WILL BE PASSED IN: ARG AREA ON THE STACK

VR24 0 | vuu... | P1

4 | vul... | P2

8 | vlu... | P3

12 | vll... | P4

STACK 16 | l... | P5

Example 10: call Suba(l,d,v1,v2)

STORAGE MAPPING OF
WILL BE PASSED IN: ARG AREA ON THE STACK

R1 0 | l... | P1

FP0 4 | du... | P2

8 | dl... | P3

VR24 12 | vluu... | P5

16 | vlu1... | P6

20 | vllu... | P7

24 | vlll... | P8

VR25 28 | v2uu... | P9

32 | v2u1... | P10

36 | v21u... | P11

40 | v2l1... | P12

Argument Examples

878 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Result value Register type

complex extended FPR0 through FPR6

character (byte), halfword (Kanji) GPR1

pointer GPR1

first 3 words of structures/strings GPR1 through GPR3

vector data types VR24

Otherwise, the result will be returned in allocated storage whose address is passed
as the first (hidden) argument. The caller must provide the required storage and
pass its address as if it were the first argument. In FASTLINK this address, is
always passed in GPR1, and one less GPR is available to pass user arguments. If
the size of the return value is less than or equal to 3 words then the caller does not
pass a hidden parameter for the return value. Structure return values longer than
three words are passed partly in storage and partly in the GPRs following the
same rules as for structure value arguments. Note that C++ does not return arrays
but only a pointer to an array.

The following figure illustrates the argument list layout when a function is invoked
that returns a structure whose length is larger than 3 words.

FASTLINK passes more return values in registers than does C linkage. In these
cases, the simulated Code epilog may have to relocate values from registers to
storage.

XPLINK CALL linkage argument examples
Restriction: “Parameter Adjust” is not used for AMODE 64 applications only.

The following example shows “by reference” parameters. In this example,
“Parameter Adjust” is always zero and arguments are never passed in floating
point registers. The value of the high-order bit on the last, or any, reference
parameter is not defined here; this is left to the implementation, possibly specified
by language constructs such as #pragma in C.

Prototype: f0(int&, float&, double&,
struct {
/*... */ }&,

int&)

Offset in argument list +0 +4 +8 +12 +16

Stored in argument list No No No Yes Yes

A_Struct=Suba(f1,l1,l2,f2)

STORAGE MAPPING OF
WILL BE PASSED IN: ARG AREA ON THE STACK

GPR1 0 | @A_Struct... | Address where function returns value

FP0 4 | f1... | P1

GPR3 8 | l1... | P2

STACK 12 | l2 | P3

STACK 16 | f2 | P4

Argument Examples

Appendix B. CALL linkage argument examples 879

||

Prototype: f0(int&, float&, double&,
struct {
/*... */ }&,

int&)

Passed in Registers GPR1 GPR2 GPR3

Parameter Adjust 000000/000000/000000/000000

The remaining examples show “by value” semantics in parameter lists. “Parameter
Adjust” is zero except where shown.

Prototype: f1(int, int, int, int, int)

Offset in argument list +0 +4 +8 +12 +16

Stored in argument list No No No Yes Yes

Passed in Registers GPR1 GPR2 GPR3

Prototype: f2(char, short, int,
long
long)

Offset in argument list +0 +4 +8 +12

Stored in argument list No No No Yes

Passed in Registers GPR1 GPR2 GPR3

Prototype: f3(
long
long,

int, int)

Offset in argument list +0 +8 +12

Stored in argument list No No Yes

Passed in Registers GPR1/
GPR2

GPR3

Prototype: f4(
struct
{int,

int }, int, int)

Offset in argument list +0 +4 +8 +12

Stored in argument list No No No Yes

Passed in Registers GPR1 GPR2 GPR3

Prototype: f5(
struct
{float,

double }, int, int)

Offset in argument list +0 +8 +16 +20

Stored in argument list No No Yes Yes

Passed in Registers GPR1 GPR3

Prototype: f6(
struct
{double,

float }, int, int)

Offset in argument list +0 +8 +16 +20

Stored in argument list No No Yes Yes

Passed in Registers GPR1/2 GPR3

Argument Examples

880 z/OS V2R1.0 Language Environment Vendor Interfaces

Prototype: f7(double,
long
double,

double)

Offset in argument list +0 +8 +24

Stored in argument list No No Yes

Passed in Registers FPR0 FPR4/6

Parameter Adjust 100000/000000/100000/100000

Prototype: f8(int,
long
double,

int, double, int, double)

Offset in argument list +0 +4 +20 +24 +32 +36

Stored in argument list No No Yes No Yes No

Passed in Registers GPR1 FPR0/2 FPR4 FPR6

Parameter Adjust 100001/100000/100001/100001

Prototype: f9(double, double, double,
long
double)

Offset in argument list +0 +8 +16 +24

Stored in argument list No No No Yes

Passed in Registers FPR0 FPR2 FPR4

Parameter Adjust 100000/100000/100000/000000

Prototype: f10(double, double, double)

Offset in argument list +0 +8 +16

Stored in argument list No No No

Passed in Registers FPR0 FPR2 FPR4

Parameter Adjust 100000/100000/100000/000000

Prototype: f11(double, double, double,
struct {
double,

double})

Offset in argument list +0 +8 +16 +24 +32

Stored in argument list No No No No Yes

Passed in Registers FPR0 FPR2 FPR4 FPR6

Parameter Adjust 100000/100000/100000/100000

Prototype: f12(int, double, ...)

Actual Parameters int double

Offset in argument list +0 +4 +12 +16

Stored in argument list No No Yes Yes

Passed in Registers GPR1 FPR0

Parameter Adjust 100001/000000/000000/000000

Prototype: f13(double, ...)

Actual Parameters double

Argument Examples

Appendix B. CALL linkage argument examples 881

Prototype: f13(double, ...)

Offset in argument list +0 +8 +12

Stored in argument list No Yes Yes

Passed in Registers FPR0 GPR3

Parameter Adjust 100000/000000/000000/000000

The following two figures show how a C/C++ structure containing two doubles is
used to mimic the native COMPLEX(16) type in PLI (shown here passed by value).

Prototype: f14(double
struct {
double,

double})

Offset in argument list +0 +8 +16

Stored in argument list No No No

Passed in Registers FPR0 FPR2 FPR4

Parameter Adjust 100000/100000/100000/000000

Prototype:
DCL F15
ENTRY(

FLOAT
(16)

COMPLEX (16)

Offset in argument list +0 +8 +24

Stored in argument list No No No

Passed in Registers FPR0 FPR2 FPR4

Parameter Adjust 100000/100000/100000/000000

The following two figures show how a C/C++ structure containing two long
doubles is used to mimic the native COMPLEX(33) type in PLI.

Prototype: f16(double,
struct {
long
double,

long
double})

Offset in argument list +0 +8 +24

Stored in argument list No No Yes

Passed in Registers FPR0 FPR4/6

Parameter Adjust 100000/000000/100000/100000

Prototype:
DCL F17
ENTRY(

FLOAT
(16)

COMPLEX (33)

Offset in argument list +0 +8 +24

Stored in argument list No No Yes

Passed in Registers FPR0 FPR4/6

Parameter Adjust 100000/000000/100000/100000

The following figures show how unprototyped calls match the conventions
expected by both vararg and non-vararg functions.

Argument Examples

882 z/OS V2R1.0 Language Environment Vendor Interfaces

Prototype: (none)

Actual Parameters int int double

Offset in argument list +0 +4 +8 +12

Stored in argument list No No Yes Yes

Passed in Registers GPR1 GPR2
GPR3

FPR0

Parameter Adjust (none)

Prototype: f18(int, ...)

Actual Parameters int double

Offset in argument list +0 +4 +8 +12

Stored in argument list No No Yes Yes

Passed in Registers GPR1 GPR2 GPR3

Prototype: f19(int, int, double)

Offset in argument list +0 +4 +8

Stored in argument list No No No

Passed in Registers GPR1 GPR2 FPR0

Parameter Adjust 100010/000000/000000/000000

Prototype: (none)

Actual Parameters int int double
float
(IEEE)

Offset in argument list +0 +4 +8 +12 +16

Stored in argument list No No Yes Yes Yes

Passed in Registers GPR1 GPR2
GPR3

FPR2
FPR0

Parameter Adjust (none)

Prototype: f20(int, ...)

Actual Parameters int double
float
(IEEE)

Offset in argument list +0 +4 +8 +12 +16

Stored in argument list No No Yes Yes Yes

Passed in Registers GPR1 GPR2 GPR3

Prototype: f21(int, int, double,
float
(IEEE))

Offset in argument list +0 +4 +8 +16

Stored in argument list No No No No

Passed in Registers GPR1 GPR2 FPR0 FPR2

Parameter Adjust 100010/010000/000000/000000

Argument Examples

Appendix B. CALL linkage argument examples 883

Prototype: (none)

Actual Parameters int
float
(IEEE)

double
long
double

Offset in argument list +0 +4 +8 +12 +16

Stored in argument list No No Yes Yes Yes

Passed in Registers GPR1
GPR2 GPR3

FPR4
FPR6FPR0 FPR0

Parameter Adjust (none)

Prototype: f22(int, ...)

Actual Parameters
float
(IEEE)

double
long
double

Offset in argument list +0 +4 +8 +12 +16

Stored in argument list No No Yes Yes Yes

Passed in Registers GPR1 GPR2 GPR3

Prototype: f23(int,
float
(IEEE),

double,
long
double)

Offset in argument list +0 +4 +8 +16

Stored in argument list No No No No

Passed in Registers GPR1 FPR0 FPR2 FPR4
FPR6

Parameter Adjust 010001/100000/100000/100000

Prototype: (none)

Actual Parameters int
float
(Hex)

int
long
double

Offset in argument list +0 +4 +12 +16

Stored in argument list No No Yes Yes

Passed in Registers GPR1
GPR2/3

FPR4
FPR6FPR0

Parameter Adjust (none)

Prototype: f24(int,
float
(Hex),

int,
long
double)

Offset in argument list +0 +4 +12 +16

Stored in argument list No No Yes No

Passed in Registers GPR1 FPR0 FPR4
FPR6

Parameter Adjust 100001/000000/100001/100000

Argument Examples

884 z/OS V2R1.0 Language Environment Vendor Interfaces

Prototype: (none)

Actual Parameters int
float
(IEEE)

int
long
double

Offset in argument list +0 +4 +8 +12

Stored in argument list No No No Yes

Passed in Registers GPR1
GPR2

GPR3 FPR4
FPR6FPR0

Parameter Adjust (none)

Prototype: f25(int,
float
(IEEE),

...)

Actual Parameters int
long
double

Offset in argument list +0 +4 +8 +12

Stored in argument list No No No Yes

Passed in Registers GPR1 FPR0 GPR3

Prototype: f26(int,
float
(IEEE),

int,
long
double)

Offset in argument list +0 +4 +8 +12

Stored in argument list No No No No

Passed in Registers GPR1 FPR0 GPR3 FPR4
FPR6

Parameter Adjust 010001/000000/100001/100000

Prototype: f27(int,
float
(Hex),

...)

Actual Parameters int
long
double

Offset in argument list +0 +4 +12 +16

Stored in argument list No No Yes Yes

Passed in Registers GPR1 FPR0

The following figures show how vector type arguments are passed. A vector
argument is double-word-aligned and occupy 16 bytes in the argument list. And in
unprototyped calls, linkage need to match the conventions expected by both
vararg and non-vararg functions.

Prototype: f28(
vector
double,

vector
signed int

int)

Offset in argument list +0 +16 +32

Stored in argument list No No Yes

Passed in Registers VR24 VR25

Parameter Adjust (none)

Argument Examples

Appendix B. CALL linkage argument examples 885

|
|
|
|

|
||||
|
|||||

|||||||

|||||||

|||||||

||
|

Prototype: f29(int,
vector
signed int

int)

Offset in argument list +0 +4 +20

Stored in argument list No No Yes

Passed in Registers GPR1 VR24

Parameter Adjust (none)

Prototype: (none)

Actual
Parameters

int int vector double

Offset in argument list +0 +4 +8 +12 +16 +20

Stored in argument list No No Yes Yes Yes Yes

Passed in Registers GPR1 GPR2
GPR3

VR24

Parameter Adjust (none)

Prototype: f30(int, ...)

Actual
Parameters

int int vector double

Offset in argument list +0 +4 +8 +12 +16 +20

Stored in argument list No No Yes Yes Yes Yes

Passed in Registers GPR1 GPR2 GPR3

Parameter Adjust (none)

Prototype: f31(int, int, vector double)

Offset in argument list +0 +4 +8 +12 +16 +20

Stored in argument list No No No No No Yes

Passed in
Registers

GPR1 GPR2 VR24

Parameter Adjust (none)

Argument Examples

886 z/OS V2R1.0 Language Environment Vendor Interfaces

|
|||||||||

|||||||

|||||||

|||||||

||
|

||||

|
|||||

|||||||

|||||||

|||
||||

|

||
|

|||||||||

|
|||||

|||||||

|||||||

|||||||

||
|

||||||

|||||||

|||||||

|
|
||||

||
|

Appendix C. Accessibility

Accessible publications for this product are offered through IBM Knowledge
Center (http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome).

If you experience difficulty with the accessibility of any z/OS information, send a
detailed message to the Contact z/OS or use the following mailing address.

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
United States

Accessibility features

Accessibility features help users who have physical disabilities such as restricted
mobility or limited vision use software products successfully. The accessibility
features in z/OS can help users do the following tasks:
v Run assistive technology such as screen readers and screen magnifier software.
v Operate specific or equivalent features by using the keyboard.
v Customize display attributes such as color, contrast, and font size.

Consult assistive technologies
Assistive technology products such as screen readers function with the user
interfaces found in z/OS. Consult the product information for the specific assistive
technology product that is used to access z/OS interfaces.

Keyboard navigation of the user interface
You can access z/OS user interfaces with TSO/E or ISPF. The following
information describes how to use TSO/E and ISPF, including the use of keyboard
shortcuts and function keys (PF keys). Each guide includes the default settings for
the PF keys.
v z/OS TSO/E Primer

v z/OS TSO/E User's Guide

v z/OS ISPF User's Guide Vol I

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users who access IBM
Knowledge Center with a screen reader. In dotted decimal format, each syntax
element is written on a separate line. If two or more syntax elements are always
present together (or always absent together), they can appear on the same line
because they are considered a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that the screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number

© Copyright IBM Corp. 1991, 2015 887

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/systems/z/os/zos/webqs.html

(for example, all the syntax elements that have the number 3.1) are mutually
exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, your
syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol is placed next to a dotted decimal number to indicate that
the syntax element repeats. For example, syntax element *FILE with dotted decimal
number 3 is given the format 3 * FILE. Format 3* FILE indicates that syntax
element FILE repeats. Format 3* * FILE indicates that syntax element * FILE
repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol to provide information about the syntax elements. For example, the lines
5.1*, 5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a comma.
If no separator is given, assume that you use a blank to separate each syntax
element.

If a syntax element is preceded by the % symbol, it indicates a reference that is
defined elsewhere. The string that follows the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you must
refer to separate syntax fragment OP1.

The following symbols are used next to the dotted decimal numbers.

? indicates an optional syntax element
The question mark (?) symbol indicates an optional syntax element. A dotted
decimal number followed by the question mark symbol (?) indicates that all
the syntax elements with a corresponding dotted decimal number, and any
subordinate syntax elements, are optional. If there is only one syntax element
with a dotted decimal number, the ? symbol is displayed on the same line as
the syntax element, (for example 5? NOTIFY). If there is more than one syntax
element with a dotted decimal number, the ? symbol is displayed on a line by
itself, followed by the syntax elements that are optional. For example, if you
hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you know that the syntax elements
NOTIFY and UPDATE are optional. That is, you can choose one or none of them.
The ? symbol is equivalent to a bypass line in a railroad diagram.

! indicates a default syntax element
The exclamation mark (!) symbol indicates a default syntax element. A dotted
decimal number followed by the ! symbol and a syntax element indicate that
the syntax element is the default option for all syntax elements that share the
same dotted decimal number. Only one of the syntax elements that share the
dotted decimal number can specify the ! symbol. For example, if you hear the
lines 2? FILE, 2.1! (KEEP), and 2.1 (DELETE), you know that (KEEP) is the
default option for the FILE keyword. In the example, if you include the FILE

888 z/OS V2R1.0 Language Environment Vendor Interfaces

keyword, but do not specify an option, the default option KEEP is applied. A
default option also applies to the next higher dotted decimal number. In this
example, if the FILE keyword is omitted, the default FILE(KEEP) is used.
However, if you hear the lines 2? FILE, 2.1, 2.1.1! (KEEP), and 2.1.1
(DELETE), the default option KEEP applies only to the next higher dotted
decimal number, 2.1 (which does not have an associated keyword), and does
not apply to 2? FILE. Nothing is used if the keyword FILE is omitted.

* indicates an optional syntax element that is repeatable
The asterisk or glyph (*) symbol indicates a syntax element that can be
repeated zero or more times. A dotted decimal number followed by the *
symbol indicates that this syntax element can be used zero or more times; that
is, it is optional and can be repeated. For example, if you hear the line 5.1*
data area, you know that you can include one data area, more than one data
area, or no data area. If you hear the lines 3* , 3 HOST, 3 STATE, you know
that you can include HOST, STATE, both together, or nothing.

Notes:

1. If a dotted decimal number has an asterisk (*) next to it and there is only
one item with that dotted decimal number, you can repeat that same item
more than once.

2. If a dotted decimal number has an asterisk next to it and several items
have that dotted decimal number, you can use more than one item from the
list, but you cannot use the items more than once each. In the previous
example, you can write HOST STATE, but you cannot write HOST HOST.

3. The * symbol is equivalent to a loopback line in a railroad syntax diagram.

+ indicates a syntax element that must be included
The plus (+) symbol indicates a syntax element that must be included at least
once. A dotted decimal number followed by the + symbol indicates that the
syntax element must be included one or more times. That is, it must be
included at least once and can be repeated. For example, if you hear the line
6.1+ data area, you must include at least one data area. If you hear the lines
2+, 2 HOST, and 2 STATE, you know that you must include HOST, STATE, or
both. Similar to the * symbol, the + symbol can repeat a particular item if it is
the only item with that dotted decimal number. The + symbol, like the *
symbol, is equivalent to a loopback line in a railroad syntax diagram.

Appendix C. Accessibility 889

890 z/OS V2R1.0 Language Environment Vendor Interfaces

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1991, 2015 891

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

892 z/OS V2R1.0 Language Environment Vendor Interfaces

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Permission Notice
This book includes information about certain callable service stub and
linkage-assist (stub) routines contained in specific data sets that are intended to be
bound or link-edited with code and run on z/OS systems. In connection with your
authorized use of z/OS, you may bind or link-edit these stubs into your modules
and distribute your modules with the included stubs for the purposes of
developing, using, marketing and distributing programs conforming to the
documented programming interfaces for z/OS, provided that each stub is included
in its entirety, including any IBM copyright statements. These stubs have not been
thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply
the reliability, serviceability, or function of these stub programs. The stubs referred
to in this book are contained in one or more of the following data sets:
v CEE.SAFHFORT
v CEE.SCEEBIND
v CEE.SCEEBND2
v CEE.SCEECPP
v CEE.SCEELKED
v CEE.SCEELKEX
v CEE.SCEEOBJ
v CEE.SCEESPC
v CEE.SIBMAM24
v CEE.SIBMCALL
v CEE.SIBMCAL2
v CEE.SIBMMATH
v CEE.SIBMTASK

Programming interface information
This document describes intended Programming Interfaces that allow the customer
to write programs to obtain the services of Language Environment in z/OS.

It is to be expected that programs written using this technical information, because
of their dependencies on the detailed design and implementation of Language

Notices 893

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/

Environment, might need to be changed in order to run with new Language
Environment product releases or versions, or as a result of maintenance.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at www.ibm.com/legal/copytrade.shtml (http://www.ibm.com/legal/
copytrade.shtml).

Adobe, Acrobat, and PostScript are either registered trademarks or trademarks of
Adobe Systems Incorporated in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

894 z/OS V2R1.0 Language Environment Vendor Interfaces

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Index

Special characters
__ae_autoconvert_state() 253
__ae_thread_setmode() 250
__ae_thread_swapmode() 251
__alcaxp() 221, 722
__bldxfd() 331
__CEE_DEBUG_FILENAME31 356
__CEE_DEBUG_FILENAME64 749
__chkbfp() 633
__cttbl() 248
__dsa_prev() 273, 733
__ep_find () 36
__ep_find() 736
__far_jump() 276, 738
__fnwsa() 336
__fp_btoh() 634
__fp_cast() 635
__fp_htob() 636
__fp_level() 637
__fp_read_rnd() 637
__fp_setmode() 638
__fp_swap_rnd() 640
__fp_swapmode() 639
__fpc_rd() 641
__fpc_rs() 642
__fpc_rw() 643
__fpc_sm() 644
__fpc_wr() 645
__isASCII() 252
__isBFP() 645
__le_condition_token_build() 732
__le_debug_set_resume_mch()

for AMODE 64 applications 745
__le_msg_add_insert() 732
__le_msg_get_and_write() 731
__le_msg_get() 732
__le_msg_write() 731
__set_stack_softlimit() 279
__setHookEvents 343

for AMODE 64 applications 746
__stack_info() 225
__static_reinit() 338
__vhm_event() 220, 721
_BPX_SHAREAS 605
_CEE_ENVFILE 219
_CEE_HEAP_MANAGER 219, 721
_EDC_IEEEV1_COMPATIBILITY

_ENV 633
_to_xx() 646

Numerics
32-bit PPA3 layout, COBOL V5 31
32-bit PPA4 layout, C/C++ DWARF 31
32-bit PPA4 layout, COBOL V5 32
64-bit PPA4 layout, C/C++ DWARF 667

A
abend shunt routine 282
abend summary 183, 716
abends 291, 742
access register

conventions 5
accessibility 887

contact IBM 887
features 887

accessing original fdlibm functions 633
add new members to enclave CWI 165
ADDRESS 821
AMODE 4, 653
AMODE 64 applications

storage management 719
anchor 42, 669, 673
anchor considerations 481
anchor lookup, CEEARLU 481
anchor support 479, 761
API

__vhm_event() 220, 721
argument examples 873
argument/parameter list architecture 93,

685
access modes 93, 685
argument passing semantics 93, 685

ASCII
character mode

determine 252
set 250
swap 251

ASCII/EBCDIC 248
assistive technologies 887
atterm event 505
automatic destructor event 533

B
base locator table 33
BDI (block debug information) 11, 656
binary floating-point (see IEEE

floating-point) 631
BITSTRING 821
block debug information 11, 656
bootstrap routine, member 172

C
C/C++ special purpose interfaces for

IEEE floating-point 631
C/C++-specific vendor interfaces 248

__ae_autoconvert_state() 253
__ae_thread_setmode() 250
__ae_thread_swapmode() 251
__cttbl() 248
__isASCII() 252

CAA (common anchor area)
constants 48
cross reference 48
field descriptions 42

CAA (common anchor area) (continued)
format of 42, 673

CALL
conventions 93

for AMODE 64 applications 685
FASTLINK linkage 104
linkages 93, 685
standard linkage 94
XPLINK linkage 116, 686

CALL linkage argument examples 873
CALL or function invocation

argument/parameter list 93, 685
access modes 93, 685
argument passing semantics 93,

685
callable services

CEE3DMP 405
CEE3ERP 255
CEE3RSUM 256
CEE3SGLN 259
CEE3SMO 247
CEEBDMP 423
CEEHDMP 422
CEELDMP 418
CEEMRCM 270
CEESGLT 260
CEETDLI 477
CEEVDMP 419
CEEYDSAF 272
change the MSGFILE ddname 243
conversion services 390
dump services 403
dynamic storage services 205
interactive debug services 343, 745
math services 373
PLIST manipulation CWI 175
program mask 5
register content

at entry 4
at exit 5

user-created services 214
vendor heap manager interface 217,

720
XPLINK Compatibility Stack

Swapping Services 222
XPLINK DSA Extension Services 220

calling the preinitialization environment
in SRB mode 200

cancel load module event 532
cancel/release load module CWI 159
case 234, 729
CDI (compile debug information) 11,

656
CEE3ADDM 165
CEE3CBTS 346
CEE3CDO 426
CEE3CRE 167
CEE3CSYS 171
CEE3DDBC 175
CEE3DMP 405
CEE3ERP 255

© Copyright IBM Corp. 1991, 2015 895

CEE3MBR 172
CEE3PLST 175
CEE3RSUM 256
CEE3SMO 247
CEE3SMS 261
CEE3SMS2 263
CEE3SRT 369
CEEARLU 481
CEEATTRM 180
CEEBCRLM 159
CEEBDMP 423
CEEBENV CWI 609
CEEBETBL CSECT 152
CEEBFBC 348
CEEBLLST CSECT 153
CEEBSENM 160
CEEBSHL 186
CEEBSIOP 150
CEEBSRCM 161
CEECAAGETS 95
CEECCICS 446, 449, 450, 454, 455, 456,

460, 461, 464, 471, 472, 473, 476
CEECHMF 243
CEECIB 80, 288, 741
CEECLOS 239
CEECMIB 244
CEECOPP 183, 716
CEECTCB 475
CEECTOK 230
CEEDLLF 339
CEEEVDBG entry point 356
CEEEVPRF entry point 365, 756
CEEFMAIN 149
CEEGETFB 234
CEEGIN 176
CEEGOTO 265
CEEHDHDL 269
CEEHDMP 422
CEEINT 143, 157, 159
CEEINT interface 157
CEEKCTRC 432
CEEKRGPM 349
CEEKSNP 427
CEELDMP 418
CEEMAIN 149
CEEMCH 83
CEEMFNDM 245
CEEMRCM 270
CEEODMF 239
CEEOEXEC 601
CEEOEXIT 608
CEEOFORK 603
CEEOKILL() 550
CEEOPAD 538
CEEOPAGD 539
CEEOPAGS 539
CEEOPAGW 540
CEEOPAI 537
CEEOPASD 541
CEEOPASS 542
CEEOPASW 543
CEEOPC 544
CEEOPCB 586
CEEOPCD 588
CEEOPCI 589
CEEOPCPO 556
CEEOPCPU 557

CEEOPCS 590
CEEOPCT 591
CEEOPCW 594
CEEOPDD 596
CEEOPDG 597
CEEOPDI 598
CEEOPDS 599
CEEOPE 545
CEEOPEQ 546
CEEOPGS 552
CEEOPJ 547
CEEOPKC 553
CEEOPKD 554
CEEOPMD 559
CEEOPMF 240
CEEOPMI 561
CEEOPML 563
CEEOPML2 565
CEEOPMT 566
CEEOPMU 567
CEEOPMU2 568
CEEOPO 548
CEEOPRL 569
CEEOPRL2 571
CEEOPRT 571
CEEOPRU 573
CEEOPRU2 574
CEEOPS 549
CEEOPSS 555
CEEOPWL 575
CEEOPWL2 577
CEEOPWT 577
CEEOPXD 579
CEEOPXG 580
CEEOPXI 582
CEEOPXS 584
CEEOSPWN 605
CEEOXEXE 608
CEEPCB_DELETE 303
CEEPCB_LOAD 304
CEEPCB_ZFREEST 208
CEEPCB_ZGETST 207
CEEPDEL 300
CEEPDEL2 301
CEEPDELT 307
CEEPFDE 322
CEEPFWSA 335
CEEPGFD 163
CEEPIPI 197
CEEPLDE 320
CEEPLOD 297
CEEPLOD2 298
CEEPLODT 305
CEEPLVE 314
CEEPLVI 313
CEEPLVT 315
CEEPPOS 316
CEEPQDF 323
CEEPQDV 324
CEEPQLD 302
CEEPRFD 164
CEEQDMF 241
CEEQFBC 351
CEEQLOD 352
CEEQUMF 242
CEERCB_ZFREEST 210
CEERCB_ZGETST 209

CEERELU 177
CEESDMP 405
CEESGLN 259
CEESGLT 260
CEESNAP 428
CEESTART 144
CEETBCK 408
CEETDLI 477, 478
CEETGCAA 354
CEETGTFN 334
CEETHLOC 328
CEETLOC 327
CEETLOR 332
CEETRCB 405
CEETREC 178
CEETREN 179
CEETSFB 354
CEETSFC 355
CEEUOPT 183
CEEURTB 428
CEEV#FRS 212
CEEV#GTS 211
CEEVDMP 419
CEEVGTSB 210
CEEVGTUN 100
CEEVH2OS 224
CEEVHRPT 213
CEEVROND 222
CEEVRONU 223
CEEVSSEG 101
CEEVUHCR 214
CEEVUHFR 216
CEEVUHGT 215
CEEVUHRP 216
CEEVXPAL 221
CEEXETBL macro 152
CEEXVSEL macro 188
CEEYCVHE 391
CEEYCVHF 393
CEEYCVHI 398
CEEYDSAF 272
CEEYEPAF 35
CEEYPPAF 38
CEEZDEL 294
CEEZDELR 296
CEEZLOD 294
CEEZLODR 295
CELAAUTH 769
CELQBST 707

format 710
CELQETBL CSECT 711
CELQFMAN 710
CELQLLST CSECT 712
CELQMAIN

format 709
CELQSTRT 707
CELQUOPT 716
CELQVDBG entry point 749
central control blocks, member

language 484
CHARACTER 821
CIB (condition information block) 80
CICS

background information 435
extended runtime language

interface 441
languages supported 440

896 z/OS V2R1.0 Language Environment Vendor Interfaces

CICS (continued)
running an application program under

CICS 437
terminology 435
thread initialization 453
thread termination 455

cleanup routine processing 265
clearenv() 609
close ddname 239
COBOL

call/cancel routine 615
extract side file routine 623
file and runtime information query

routine 617
library load/delete exit 613

COBOL-specific vendor interfaces 613
command

syntax diagrams xix
command line equivalent event 525
common anchor area 42, 479, 673, 761
common naming conventions 4, 654
compilation units 3
compile debug information 11, 656
Component Broker Connector

(CBC) 346
condition handling 255, 733

math service library 373
condition code definitions 387

condition information block 80, 288, 741
condition manager 255

abends 291, 742
for AMODE 64 applications 733
interface

to error processing 284
interfaces

to shunt routine 281, 282, 740
condition representation

for AMODE 64 applications 725
model 229, 725
objectives 229, 725

condition token 726
Condition_ID

Case 1 232, 727
case 2 233, 728

contact
z/OS 887

control 234, 671, 729
control block dump service 423
conventions

access register 5
CALL linkage 93, 685
FASTLINK linkage 104
floating-point register 5
HLL condition handling 289
Language Environment service 3,

653
program mask 5
standard linkage 94
XPLINK linkage 116, 686

conversion services 390, 391, 393, 398
terminology 390

COUNTRY
description of 237

country code
country code change event 503

country code change event 503

created enclaves
CEE3CRE 167
creating a new enclave 167

creating nested encalves CWI 171
CWI (compiler-writer interface)

__alcaxp() 221
for AMODE 64 applications 722

__bldxfd() 331
__dsa_prev() 273, 733
__ep_find() 736
__far_jump() 276, 738
__fnwsa() 336
__set_stack_softlimit() 279
__setHookEvents 343
__stack_info 225
__static_reinit() 338
CEE3ADDM 165
CEE3CBTS 346
CEE3CDO 426
CEE3CRE 167
CEE3CSYS 171
CEE3DDBC 175
CEE3ERP 255
CEE3MBR 172
CEE3PLST 175
CEE3RSUM 256
CEE3SMS 261
CEE3SMS2 263
CEE3SRT 369
CEEARLU 481
CEEATTRM 180
CEEBCRLM 159
CEEBDMP 423
CEEBENV 609
CEEBFBC 348
CEEBSENM 160
CEEBSHL 186
CEEBSIOP 150
CEEBSRCM 161
CEECHMF 243
CEECLOS 239
CEECMIB 244
CEECOPP 183, 716
CEECTCB 475
CEEGETFB 234
CEEGIN 176
CEEGOTO 265
CEEHDHDL 269
CEEHDMP 422
CEEINT 143
CEEKCTRC 432
CEEKRGPM 349
CEEKSNP 427
CEELDMP 418
CEEMFNDM 245
CEEMRCM 270
CEEODMF 239
CEEOEXEC 601
CEEOEXIT 608
CEEOFORK 603
CEEOKILL() 550
CEEOPAD 538
CEEOPAGD 539
CEEOPAGS 539
CEEOPAGW 540
CEEOPAI 537
CEEOPASD 541

CWI (compiler-writer interface)
(continued)

CEEOPASS 542
CEEOPASW 543
CEEOPC 544
CEEOPCB 586
CEEOPCD 588
CEEOPCI 589
CEEOPCPO 556
CEEOPCPU 557
CEEOPCS 590
CEEOPCT 591
CEEOPCW 594
CEEOPDD 596
CEEOPDG 597
CEEOPDI 598
CEEOPDS 599
CEEOPE 545
CEEOPEQ 546
CEEOPGS 552
CEEOPJ 547
CEEOPKC 553
CEEOPKD 554
CEEOPMD 559
CEEOPMF 240
CEEOPMI 561
CEEOPML 563
CEEOPML2 565
CEEOPMT 566
CEEOPMU 567
CEEOPMU2 568
CEEOPO 548
CEEOPRL 569
CEEOPRL2 571
CEEOPRT 571
CEEOPRU 573
CEEOPRU2 574
CEEOPS 549
CEEOPSS 555
CEEOPWL 575
CEEOPWL2 577
CEEOPWT 577
CEEOPXD 579
CEEOPXG 580
CEEOPXI 582
CEEOPXS 584
CEEOSPWN 605
CEEPCB_DELETE 303
CEEPCB_LOAD 304
CEEPCB_ZFREEST 208
CEEPCB_ZGETST 207
CEEPDEL 300
CEEPDEL2 301
CEEPDELT 307
CEEPFDE 322
CEEPFWSA 335
CEEPGFD 163
CEEPLDE 320
CEEPLOD 297
CEEPLOD2 298
CEEPLODT 305
CEEPLVE 314
CEEPLVI 313
CEEPLVT 315
CEEPPOS 316
CEEPQDF 323
CEEPQDV 324

Index 897

CWI (compiler-writer interface)
(continued)

CEEPQLD 302
CEEPRFD 164
CEEQDMF 241
CEEQFBC 351
CEEQLOD 352
CEEQUMF 242
CEERCB_ZFREEST 210
CEERCB_ZGETST 209
CEESDMP 405
CEESGLN 259
CEESGLT 260
CEETBCK 408
CEETGCAA 354
CEETGTFN 334
CEETHLOC 328
CEETLOC 327
CEETLOR 332
CEETRCB 405
CEETREC 178
CEETREN 179
CEETSFB 354
CEETSFC 355
CEEURTB 428
CEEV#FRS 212
CEEV#GTS 211
CEEVDMP 419
CEEVGTSB 210
CEEVGTUN 100
CEEVH2OS 224
CEEVHRPT 213
CEEVROND 222
CEEVRONU 223
CEEVSSEG 101
CEEVUHCR 214
CEEVUHFR 216
CEEVUHGT 215
CEEVUHRP 216
CEEVXPAL 221
CEEYCVHE 391
CEEYCVHF 393
CEEYCVHI 398
CEEYDSAF 272
CEEYEPAF 35
CEEYPPAF 36, 38, 736
CEEZDEL 294
CEEZDELR 296
CEEZLOD 294
CEEZLODR 295
change the MSGFILE ddname 243
close ddname 239
conversion routine 398
dump services 427
message services 428
obtain program's invocation

name 176
PLIST manipulation CWI 175
process-level FREESTORE 207
process-level GETSTORE 207
region-level FREESTORE 208
region-level GETSTORE 208
set interrupt option 150
set return save area 174
snap dump services 427
user routine traceback service 428

CWI for scalar math routines 374

CWI services 294, 295, 296

D
data area

member list 86
data type definitions 89
data types

CEECTOK 230
CHARn 90
COMPLEX16 90
COMPLEX8 90
condition token 726
entry 90
ENTRY 90
FEED_BACK 90
FLOAT4 90
FLOAT8 90
HCURSOR 90
INT2 90
INT4 90
label 91
LABEL 90
POINTER 90
RCURSOR 90
VSTRING 90

ddname
CEECHMF, change MSGFILE

CWI 243
CEECLOS, close CWI 239
CEEODMF, open an input ddname

CWI 239
CEEOPMF, open MSGFILE CWI 240
CEEQDMF, query an input ddname

CWI 241
CEEQUMF, query MSGFILE

CWI 242
CEESNAP 428

debug event handler 356, 749
debug flags, PPA4 32, 667
debug services 343, 745
Debug Tool 343, 745
Debug Tool event 506
debugger interfaces area 675
debugger interfaces area (DIA)

format of 675
DECIMAL 821
default options event 526
degree input/output trig functions 385
destructor function processing 265
determine enclave work area lengths

event 522
determine working storage (CICS only)

event 523
DFSORT 369
dll initialization event 513
downward-growing stack frame

CEEVROND 222
run on 222

downward-growing stack segment
CEEVROND 222
run on 222

DSA (dynamic storage area XPLINK) 41,
668

DSA (dynamic storage area) 39
dummy DSA 40
layout 40

DSA (dynamic storage area) (continued)
managing library stack 98

example 99
managing user stack 95, 97

examples 96, 97
zeroth DSA 40

DSA Classification 495
DSA exit routine 502
DSA Ownership 492
dummy DSA block chain, setting 175
dump event handler event 496
dump services 403, 427

CEE3DMP 405
CEEBDMP 423
CEEHDMP 422
CEEKSNP 427
CEELDMP 418
CEESDMP 403
CEETRCB 405
CEEVDMP 419
member language dump exit 418
snap dump services 427

dynamic load libraries (DLL) 320
dynamic storage area 39
dynamic storage area XPLINK 41, 668
dynamic storage services 205

E
EBCDIC

character mode
determine 252
set 250
swap 251

EDB (enclave data block)
constants 66
cross reference 66
field descriptions 63
format of 63

edcwccwi.h 720
enclave data block 63
enclave data block (EDB)

format of 678
enclave initialization 141, 705
enclave initialization event 507
enclave level delete CWI services

CEEPDEL 300
CEEPDEL2 301

enclave level load CWI services
CEEPLOD 297

enclave level LOAD CWI services
CEEPLOD2 298

enclave services, program manager 296
enclave termination 142, 706
enclave termination event 510
enclaves

CEE3CRE 167
created enclaves 167
creating a new enclave 167

Entry Point and Compile Unit
Identification 492

environment variables
__CEE_DEBUG_FILENAME31 356
__CEE_DEBUG_FILENAME64 749
_BPX_SHAREAS 605
_CEE_ENVFILE 219, 721

898 z/OS V2R1.0 Language Environment Vendor Interfaces

environment variables (continued)
_CEE_HEAP_MANAGER 219, 220,

721
_EDC_IEEEV1_COMPATIBILITY

_ENV 633
LIBPATH 300, 356
POSIX 609

error handling 371, 799
error processing 284
error recovery, user-provided

CEE3ERP 255
CEE3RSUM 256

event codes
atterm 182, 505
automatic destructor 533
cancel load module 532
condition handling

condition enablement 280, 485
condition handling for given stack

frame 280, 485
stack frame zero handling 280,

485
Debug Tool 506
dump events 418
enclave initialization 181
enclave termination 181
get function pointer 531
GOTO target DSA 280, 501
interrupt received 529
main-opts event 491
member needs options

processing 524
normal target DSA 528
POSIX event code 515
process initialization 181
process termination 181
release function pointer 531
release load module 532
runtime options 181, 490, 525, 526,

527
static constructor 519
static destructor 526
utility event 491

event handler routine, member
language 485

event handler, with member list 87
events

atterm event 505
automatic destructor 533
cancel load module 532
command line equivalent event 525
country code change event 503
Debug Tool event 506
default options event 526
determine enclave work area lengths

event 522
determine working storage (CICS

only) event 523
dll initialization event 513
DSA exit routines event 502
dump event handler event 496
enclave initialization event 507
enclave termination event 510
get function pointer 531
handle condition according to

language defaults event 489

events (continued)
handle condition represented by the

CIB event 485
identify module entry point

event 521
interrupt received event 529
main routine invocation event 150,

504
main-opts event 491
member needs options processing

event 524
member program mask 534
national language change event 503
new condition event 500
new load module event 499
normal target DSA 528
perform enablement for this stack

frame event 487
perform GOTO validation (CICS only)

event 524
POSIX events event 515
preallocated storage event 527
process initialization event 506
process termination event 512
query/build feedback code event 511
region initialization event 520
region termination event 521
release function pointer 531
release load module 532
resume from a condition handler

event 501
runtime options event 490
stack frame zero processing

event 514
static destructor event 526
static object constructor event 518
utility event 491

examples
CALL linkage argument 873

exception handling, handler errors 288,
741

exit
dump 418
load/delete 613

exit routine 280, 502
explicit DLL reference

CEEPFDE 322
CEEPLDE 320
CEEPQDF 323
CEEPQDV 324

Extended Flag field 19
extended runtime language

interface 441
external names, Language

Environment 4, 653
externals table 152, 711

F
Facility_ID 233
FACILITY_ID 728
FDCB (function descriptor control block)

format of 329
feedback code 234, 729
feedback code routine

build 348
query 351

feedback code routine (continued)
translate 355

fetch
bootstrap behavior 150

fetch anchor routine 479
Find previous DSA

CEEYDSAF 272
flags, PPA4 debug 32, 667
flags, PPA4 program 33, 668
floating-point

register conventions 5
format of

CAA 42
CEESTART 149
EDB 63
LIBVEC descriptor 311
Non-XPLINK CEESTART 144
OCB 821
PCB 71
RCB 76
SOCB 868
XPLINK CEESTART 144

function descriptor control block 329
function invocation of old code 334
function prototypes 88

G
get function pointer CWI 163
get function pointer event 531
get next CAA pointer CWI 354
getenv() 609

H
handle condition according to language

defaults event 489
handle condition represented by the CIB

event 485
Header 248
header file

edcwccwi.h 720
heap management 205, 719
heap services 205

user-created services 214
vendor heap manager interface 217

for AMODE 64 applications 720
XPLINK Compatibility Stack

Swapping Services 222
XPLINK DSA Extension Services 220

hex storage dump service 422
HLL condition handling

conventions 289
HLL condition handling

information 291
HLL condition handling routine 280,

487, 489

I
IARV64 DUMPPRIORITY 723
IARV64 USERTKN 723
IBMPXSF 627
identify module entry point event 521
IEEE decimal floating-point 632
IEEE floating-point functions 633

Index 899

IEEE floating-point functions (continued)
__chkbfp() 633
__fp_btoh() 634
__fp_cast() 635
__fp_htob() 636
__fp_level() 637
__fp_read_rnd() 637
__fp_setmode() 638
__fp_swap_rnd() 640
__fp_swapmode() 639
__fpc_rd() 641
__fpc_rs() 642
__fpc_rw() 643
__fpc_sm() 644
__fpc_wr() 645
__isBFP() 645
_to_xx() 646

IEEE floating-point, C/C++ special
purpose interfaces 631

IGZCXCC 615
IGZCXSF 623
IGZXAPI 617
ILBOLLDX 613
ILC (interlanguage communication)

conventions 3
epilog code 33
load module 3
member identifier

Language Environment-enabled
language member identifiers 20

PPA1 10, 656
PPA2 11, 656
program flags, Language

Environment 15, 16, 17
prolog code

control level 11, 656
prolog information blocks 10, 656
routine layout 6, 654
service interface 3

ILC within SORT exits 371
implicit DLL reference

CEETGTFN 334
CEETLOC 327
CEETLOR 332

IMS 476
IMS (information management system)

implementation 478
IMS-to-Language Environment

interface 476
Language Environment-to-IMS

interface 477
information management system 476
init/term overview 143, 706
initialization 141, 705
initialization member event codes 181
initialization member interfaces

enclave initialization components
CEEINT 143
CEELLIST 143
CEESGnnn 143
CEESTART 143
CELQBST 707
CELQSTRT 707

initialization parameter list 154, 713
initialization/termination application

interfaces 183

initializing the preinitialization
environment 200

instance specific information (ISI) 234,
729

interactive debug services 343, 745
Language Environmentactions

for 363, 755
Language Environmentdata

areas 364, 755
interactive test services 343, 745
interface

to shunt routine 281, 282, 740
interface validation exit 187

CEEXVSEL macro 188
high-level selection criteria 188
language-specific

arguments passed to 191
example of 195

reference list 193
structure of 188

interface, Language Environment
service 3, 537, 653

interlanguage communication 3
with IMS interface 476

internal names 4, 653
interrupt

CEEBSIOP 150
set interrupt option CWI 150

interrupt received event 529
invalid resume request

CEESGLN 259
ISI (instance specific information) 234,

729
IVE (interface validation exit) 187

K
keyboard

navigation 887
PF keys 887
shortcut keys 887

L
LAA (library anchor area)

format of 669
Language Environment

abend summary 183, 716
abends 291, 742

initialization 159
storage management 100
termination 180, 716

CICS interface 440
common anchor area (CAA) 42, 479,

673, 761
conversion services 390, 391, 393, 398

terminology 390
ddname

CEECHMF 243
CEECLOS 239
CEEQDMF 241
CEEQUMF 242
CEESNAP 428

debugger interfaces area (DIA) 675
enclave data block (EDB) 63, 678
function control block (FDCB) 329

Language Environment (continued)
interface validation exit 187
library anchor area (LAA) 669
library control area (LCA) 671
non-XPLINK stack storage model 94
Preinitialized Environments for

Authorized Programs 763
process control block (PCB) 71, 679
region control block (PCB) 680
region control block (RCB) 76
shell, exit from/re-entry to,

CEEBSHL 186
variable control block (VDCB) 333
XPLINK stack storage model 687
XPLINKstack storage model 117

Language Environment-enabled language
member identifiers 20

language list 153, 712
language support 237

AMODE 64 applications 731
language-specific interface validation

exit 191
LCA (library control area)

format of 671
Leaf Routines 112
LIBPACK

CSECT definition 310
description 309

LIBPATH 300, 356
library anchor area 669
library control area 671
library stack

allocate/return storage 98
managing 98

library subroutine access 307
LIBVEC 308

CWI to low-level services 313
descriptor format 311
direct access instructions 309
indirect access instructions 309
initialization 312

library subroutine access table 308
LIBVEC

CWI to low-level services 313
description 308
descriptor format 311
direct access instructions 309
indirect access instructions 309
initialization 312
termination 315
verify load/delete 314

linkage
CEEVH2OS 224
OS linkage 224

linkage, CALL 93, 685
linkage, FASTLINK 104
linkage, standard 94
linkage, XPLINK 116, 686
load module

*name support
CICS 293
MVS 293
z/OS UNIX 294

definition of 3
Locates a field in the PPA1 optional area

CEEYPPAF 38

900 z/OS V2R1.0 Language Environment Vendor Interfaces

Locates XPLINK/non-XPLINK entry
point

CEEYEPAF 35
locator table, base 33
look up anchor routine 481
looking up RCBs 177

M
machine state block 83
macro

CEEOCB, options control block 821
CEESOCB, supplementary options

control block 868
CEEXVSEL, high-level selection

criteria 188
main routine invocation event 150, 504
main routine parameter list

processing 175
main-opts event 491
mask, program 5
math library

callable services 373
condition code definitions 387
conversion services 391, 393

conversion routine 398
CWI for scalar math routines 374
math services 376
message text 387

math services
degree input/output trig

functions 385
scalar bit manipulation routines 385
scalar math services 377
value of inserts 388

MCH (machine state block) 83
member bootstrap routine 172
member identifier

Language Environment-enabled
language member identifiers 20

member interfaces
for initialization 181
for termination 181

member language
about 483
central control blocks 484
event handler 485
restricted use of OS services 483

member list 86
member needs options processing

event 524
member program mask event 534
member termination interfaces 178, 715
memory object dump priority 723
memory object user tokens 723
message

single-line service 418
message handling 237

country code change event 503
find message insert 246
introduction 238
national language change event 503

message handling services 244
message services 247, 428

CEECMIB 244
CEEMFNDM 245
for AMODE 64 applications 731

message services (continued)
introduction 731

message text, math library 387
Mixed Mode Support for Enhanced ASCII

C-RTL
ASCII/EBCIDIC 248
Header information 249
Overview 248
Usage example 249

Msg_No 233, 728
MSGFILE

related CWIs 239

N
NAB (next available byte) 100
national language

national language change event 503
national language change event 503
navigation

keyboard 887
nested enclaves, creating 171
new condition event 500
new load module event 499
next available byte 100
NLS (national language support)

AMODE 64 applications 731
country code change event 503
message handling services 237
national language change event 503

Non-XPLINK CEESTART 144
normal resume event 528
normal resume in DSA event 528
normal target DSA 528
Notices 891

O
obtaining program's invocation

name 176
OCB (options control block)

constants 866
field descriptions 822

OCB (options control block) and SOCB
(supplementary options control block)

type field definitions 821
Optional Area field 19
options control block 821
OS/VS COBOL

call/cancel routine 615
extract side file routine 623
file and runtime information query

routine 617
library load/delete exit 613

out-of-storage condition 719

P
parameter list

main routine parameter list
processing 175

with IMS interface 476
parameter/parameter list

architecture 93, 685
access modes 93, 685
argument passing semantics 93, 685

PCB
constants 72
cross reference 73
field descriptions 71
format of 71

perform enablement for this stack frame
event 487

perform GOTO validation (CICS only)
event 524

performance analysis services
profile tool event handler 365, 756

PL/I
extract side file routine 627

PL/I-specific vendor interfaces 627
POSIX event code 515
POSIX function

clearenv() 609
getenv() 609
setenv() 609

PPA1 flag 1
program flags, Language

Environment 658
PPA1 Flag 1

program flags, Language
Environment 22

PPA1 flag 2
program flags, Language

Environment 660
PPA1 Flag 2

program flags, Language
Environment 23

PPA1 flag 3
program flags, Language

Environment 660
PPA1 Flag 3

program flags, Language
Environment 24

PPA1 flag 4
program flags, Language

Environment 661
PPA1 Flag 4

program flags, Language
Environment 25

PPA1 Word
program flags, Language

Environment 27, 664
PPA3 layout, COBOL V5 32-bit 31
PPA4 debug flags 32, 667
PPA4 layout, C/C++ DWARF 32-bit 31
PPA4 layout, C/C++ DWARF 64-bit 667
PPA4 layout, COBOL V5 32-bit 32
PPA4 program flags 33, 668
preallocated storage event 527
preinitialization interfaces 197
preinitialization service routines 200
Preinitialized Environments for

Authorized Programs 763
CELAAUTH 769
creating an environment 763

system-managed 764
user-managed 764

tasks 765
procedure prototypes 88
process control block 71
process control block (PCB)

format of 679
process initialization 141, 705

Index 901

process initialization event 506
process services, program manager 294
process termination 143, 706
process termination event 512
profiler tools 365, 756
program flags, PPA4 33, 668
program invocation name, obtaining 176
program manager 293

CWI services 294, 295, 296
enclave level services 296
load module name support

CICS 293
MVS 293
z/OS UNIX 294

process level services 294
region-level services 295
responsibilities 293

program mask
callable services 5
conventions 5

PTR INTOAREA 821

Q
query/build feedback code event 511
quick options 524

R
RCB (region control block)

constants 77
cross reference 78
field descriptions 76
format of 76

RCB look up 177
recursive Language Environment

code 3, 653
reentrancy, Language Environment 3,

653
reference list, interface validation

exit 193
region control block 76
region control block (RCB)

format of 680
region initialization event 520
region services, program manager 295
region termination event 521
register event handler 180
release function pointer CWI 164
release function pointer event 531
release load module event 532
REQUEST=MNGDCALL

parameters 789
syntax 788

REQUEST=MNGDINIT
parameters 783
syntax 782

REQUEST=MNGDTERM
parameters 797
syntax 796

REQUEST=MNGDUPDT
parameters 794
syntax 793

REQUEST=USERCALL
parameters 776
syntax 775

REQUEST=USERINIT
parameters 772
syntax 771

REQUEST=USERTERM
parameters 780
syntax 780

resource-owning TCB 765
resume from a condition handler

event 501
return save area, setting 174
returns the address of the entry point of

the function owning the dsa_p DSA.
__ep_find () 36, 736

RMODE 4, 653
routine

extract side file 627
routines, Language Environment

AMODE 4, 653
linking 3, 653
RMODE 4, 653

RUNOPTS 183, 716
runtime language interface,

extended 441
runtime options

compiler service, CEECOPP 183, 716
TRACE 430

runtime options event 490

S
scalar bit manipulation routines 385
scalar math services 377
segment

CEEVROND 222
CEEVRONU 223
CEEVSSEG 101
downward-growing stack

segment 222
stack segment bounds 101
upward-growing stack segment 223

sending comments to IBM xxiii
services, Language Environment

conventions 3, 653
interfaces 3, 653

set anchor routine 480
set dummy DSA block chain 175
set enclave name CWI 160
set enclave return code modifier

CWI 161
set return save area CWI 174
setenv() 609
severity 232, 234, 727, 729
shortcut keys 887
shunt routine 281, 740
shunt routine interface

abend 282
establishing 282, 740

signal
CEESGLN 259
CEESGLT 260

SIGNED 821
snap dump services 427
SOCB (supplementary options control

block)
constants 869
cross reference 870
field descriptions 868

SORT interface 369
specify execute hook events for

target 343, 746
stack frame

CEEVSSEG 101
segment bounds 101

stack frame zero processing event 514
stack management 96, 97
stack pointer, saving 723
stack segment

CEEVSSEG 101
segment bounds 101

stack segment ranges 225
Stack Swapping Services

XPLINK Compatibility 222
Statement Identification 494
static destructor event 526
static object constructor event 518
stderr 731
storage management 205, 719

abend
reason codes 100

dynamic storage services 205
heap 205, 719
library stack 98
NAB locator 100
stack 96, 97
user stack 95, 97
vendor heap manager 220, 721
XPLINK DSA extension 221

for AMODE 64 applications 722
STRUCTURE 821
stub

Call by Name 328
CEETHLOC 328

stub for trigger load
CEETHLOC 328
on XPLINK call by name 328
XPLINK 328

summary of changes xxv
Summary of changes xxv
supplementary options control

block 868
suppress printing of messages 247
synchronous condition handling

HLL condition handling
conventions 289

HLL condition handling
information 291

syntax diagrams
how to read xix

system-managed Preinitialized
Environments for Authorized Programs
environment 764

T
T_I_S condition 180
table, base locator 33
terminate without raising T_I_S 179
termination 141, 142, 705, 706

ABEND 4094 180, 716
CEESGLT 260

termination member event codes 181
termination member interfaces 178, 715
test services 343, 745

902 z/OS V2R1.0 Language Environment Vendor Interfaces

The preinitialization environment and
SRB mode 200

thread initialization 141, 705
thread level load/delete CWI services

CEEPDELT 307
CEEPLODT 305

TRACE runtime option 430
Traceback utility 408
tracing services

add a trace table entry,
CEEKCTRC 432

global tracing 431
member-specific tracing 431

trigger load on call 327
trigger load on reference 332
type field definitions

ADDRESS 821
BITSTRING 821
CHARACTER 821
DECIMAL 821
PTR INTOAREA 821
SIGNED 821
STRUCTURE 821

U
upward-growing stack frame

CEEVRONU 223
run on 223

upward-growing stack segment
CEEVRONU 223
run on 223

user interface
ISPF 887
TSO/E 887

user routine traceback service 428
user stack

allocate/extend/return storage 95
managing 96
obtain a DSA 97

user-created services 214
user-managed Preinitialized

Environments for Authorized Programs
environment 764

user-provided error recovery
CEE3ERP 255
CEE3RSUM 256

utility event 491

V
value of inserts, math services 388
variable descriptor control block 333
variable dump service 419
VDCB (variable descriptor control block)

format of 333
vendor heap manager 220, 721
vendor heap manager interface 217

for AMODE 64 applications 720
vendor interfaces, C/C++-specific 248
vendor interfaces, COBOL-specific 613
vendor interfaces, PL/I-specific 627

W
worker task 765
writable static area (WSA) 335

X
XPLINK CEESTART 144
XPLINK Compatibility Stack Swapping

Services 222
XPLINK DSA extension 221, 722
XPLINK DSA Extension Services 220
XPLINK to OS linkage on

upward-growing stack frame
CEEVH2OS 224
XPLINK to 224

XPLINK to OS linkage on
upward-growing stack segment

CEEVH2OS 224
XPLINK to 224

Z
z/OS UNIX support 537

Index 903

904 z/OS V2R1.0 Language Environment Vendor Interfaces

����

Product Number: 5650-ZOS

Printed in USA

SA38-0688-02

	Contents
	Figures
	Tables
	About this document
	Using your documentation
	How to read syntax diagrams
	z/OS information

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Summary of changes for z/OS Version 2 Release 1 (V2R1) as updated February, 2015
	Summary of changes for z/OS Version 2 Release 1 (V2R1) as updated December, 2013
	Summary of changes for z/OS Version 2 Release 1 (V2R1)

	Part 1. Language Environment vendor interfaces for AMODE 31 / AMODE 24 applications
	Chapter 1. Common interfaces and conventions
	Common runtime environment
	Library not all linkable
	Reentrancy
	Recursion
	AMODE/RMODE
	Member code AMODE restrictions
	External names
	General register usage at entry to callable services
	General register usage at exit from callable services
	Floating-point register conventions
	Access register conventions
	Program mask conventions
	Routine layout
	Prolog information blocks
	Epilog code
	Base locator table
	CEEYEPAF — locates an XPLINK or non-XPLINK entry point PPA1 and PPA2 from a passed DSA
	__ep_find () — returns the address of the entry point of the function owning the dsa_p DSA
	CEEYPPAF — locates a field in the PPA1 optional area based on a passed pointer to the PPA1

	Language Environment dynamic storage area – non-XPLINK
	Language Environment dynamic storage area – XPLINK
	Language Environment common anchor area
	Language Environment enclave data block
	Language Environment process control block
	Language Environment region control block
	Example of a condition information block
	Example of a machine state block
	Language Environment member list and event handler
	Language Environment callable services calling conventions
	Callable services syntax declarations
	Optional parameter support
	Data type definitions
	ENTRY variable
	LABEL variable
	Callable service example
	Invoking a callable service from C/C++

	Chapter 2. CALL linkage conventions
	Terminology
	Standard CALL linkage conventions
	Register usage
	Stack format
	CEEVGTUN — next available byte locator service
	CEEVSSEG — return the stack segment bounds
	Standard save area
	Argument list format

	FASTLINK CALL linkage conventions
	Register usage
	Stack frame mapping
	Argument list format
	Leaf routines
	Code sequences

	Extra Performance Linkage (XPLINK) CALL linkage conventions
	Register usage
	Stack frame mapping

	Chapter 3. Program initialization and termination
	Initialization overview
	Termination overview
	Enclave termination
	Process termination

	Putting initialization/termination together
	Member interfaces for initialization
	CEESTART
	CEEFMAIN
	CEEMAIN
	CEESTART operation
	CEESIOP — set interrupt option service
	Signature CSECT
	CEEBETBL — Language Environment externals table
	Event handler routines
	CEEBLLST — language list
	CEEINT interface
	CEEBCRLM — cancel/release load module
	CEEBSENM — set the enclave name
	CEEBSRCM — set the enclave return code modifier
	CEEPGFD — get function pointer
	CEEPRFD — release function pointer
	CEE3ADDM — add new members to the enclave
	CEE3CRE — create enclave
	CEE3CSYS — creating nested enclave
	CEE3MBR — member bootstrap routine
	CEE3SRSA — set return save area
	CEE3DDBC — set dummy DSA back chain
	CEE3PLST — PLIST manipulation
	CEEGIN — obtain the program's invocation name
	CEERELU — RCB lookup

	Member interfaces for termination
	CEETREC — explicit termination through HLL constructs
	CEETREN — terminate without raising T_I_S
	CEEATTRM — register event handler
	Termination sequence
	Termination failures
	T_I_S condition

	Member event codes for initialization and termination
	Language Environment abend summary
	CEECOPP — runtime option compiler service
	Options processing event

	User exits
	CEEBSHL — exit from/re-entry to Language Environment shell

	Language Environment interface validation exit
	Structure of the Language Environment interface validation exit
	CEEXVSEL — high-level selection criteria
	Language-specific interface validation exit

	Interface for preinitialization
	CEEPIPI — invocation for subroutine by address
	Preinitialization environment and system request block mode

	Chapter 4. Storage management
	Dynamic storage (heap) services
	Storage model
	CWI to the heap services
	Process-level heap storage management
	Region-level heap storage management
	CEEVGTSB — unconditional get heap below
	CEEV#GTS — get heap storage
	CEEV#FRS — free heap storage
	CEEVHRPT — obtain dynamic heap storage report

	User-created heap services
	CEEVUHCR — create a heap using user-provided storage
	CEEVUHGT — allocate storage from a user-created heap
	CEEVUHFR — return storage to a user-created heap
	CEEVUHRP — produce a storage report for a user-created heap

	Vendor heap manager interface
	Requirements from the vendor
	What the vendor should know
	Activating the vendor heap manager
	__vhm_event() API

	XPLINK DSA extension services
	CEEVXPAL — XPLINK DSA extension
	__alcaxp() — XPLINK DSA extension (alloca)

	XPLINK compatibility stack swapping services
	CEEVROND — run on downward-growing stack
	CEEVRONU — run on upward-growing stack
	CEEVH2OS — XPLINK to OS linkage on upward-growing stack

	__stack_info() - stack segment ranges
	Saving the stack pointer

	Chapter 5. Condition representation
	Condition representation model
	Data objects
	Condition token data type (CEECTOK)
	Feedback code

	CEEGETFB — Construct a condition token given a facility ID and a message number

	Chapter 6. National language support and message handler
	National language support
	Introduction to Language Environment message services
	MSGFILE — related CWIs
	CEECLOS — close ddname
	CEEODMF — open an input ddname
	CEEOPMF — open the MSGFILE ddname
	CEEQDMF — query an input ddname
	CEEQUMF — query the MSGFILE ddname
	CEECHMF — change the MSGFILE ddname
	Relationship between date/time and COUNTRY settings

	Message handling services
	CEECMIB — create a message insert area entry
	CEEMFNDM — return the MIB address
	CEE3SMO — suppress printing of messages

	C/C++-specific vendor interfaces
	__cttbl() — returns address of _LC_ctype_t structure
	ASCII/EBCDIC mixed mode support for enhanced ASCII C-RTL
	__ae_thread_setmode() — set character mode: ASCII or EBCDIC
	__ae_thread_swapmode() — swap character mode to ASCII or EBCDIC
	__isASCII() — determine character mode: ASCII or EBCDIC
	__ae_autoconvert_state() — returns automatic conversion state of thread

	Chapter 7. Condition management
	Compiler-writer interfaces (CWIs)
	CEE3ERP — support for user-provided error recovery
	CEE3RSUM — resume an interrupted program
	CEESGLN — signal invalid resume request
	CEESGLT — signal a condition and terminate
	CEE3SMS — set machine state
	CEE3SMS2 — set machine state 2
	CEEGOTO — restart execution at specified label
	CEEHDHDL — register an event handler for stack frame zero processing
	CEEMRCM — move the resume cursor
	CEEYDSAF — find the previous DSA
	__dsa_prev() — chain back to previous DSA
	__far_jump() — perform far jump (C/C++ and XPLINK only)
	__set_stack_softlimit() — set stack soft limit (C/C++ and XPLINK only)

	Other Language Environment routines and handlers
	Interface to the language-specific handlers
	DSA exit routines
	Shunt routine
	Attention handling
	Error processing

	Other Language Environment condition manager topics
	Language Environment condition information block
	Errors during condition handling

	HLL conventions and information
	HLL condition handling conventions
	HLL condition handling information

	Language Environment-issued abends

	Chapter 8. Program management
	Loading and deleting programs in different environments
	CWI to program management process services
	CEEZLOD — process load service
	CEEZDEL — process delete service

	CWI to program management region services
	CEEZLODR — region load service
	CEEZDELR — region delete service

	CWI to program management enclave services
	CEEPLOD — enclave level load service
	CEEPLOD2 — enclave/thread level load service
	CEEPDEL — enclave level delete service
	CEEPDEL2 — enclave level delete service
	CEEPQLD — return information about loaded module
	CEEPCB_DELETE — system dependent delete service
	CEEPCB_LOAD — system dependent load service
	CEEPLODT — thread level load service
	CEEPDELT – thread level delete service

	Library subroutine access
	LIBVECs
	LIBPACKs
	LIBVEC descriptor (LVD)
	LIBVEC initialization
	CWI to LIBVEC low-level services
	CEEPLVI — LIBVEC initialization
	CEEPLVE — verify load/delete
	CEEPLVT — LIBVEC termination

	CEEPPOS — program object services
	CWIs for explicit DLL reference
	CEEPLDE — load DLL
	CEEPFDE — DLL free
	CEEPQDF — query DLL function
	CEEPQDV — query DLL variable

	CWIs for implicit DLL reference
	CEETLOC — stub for trigger load on call
	CEETHLOC — stub for trigger load on XPLINK call by name
	FDCB — function descriptor control block
	__bldxfd() — build an XPLINK compatibility descriptor
	CEETLOR — stub for trigger load on reference
	VDCB — variable descriptor control block
	CEETGTFN — stub for function invocation of old code

	CWIs to find the writable static area (WSA)
	CEEPFWSA — find writable static area (WSA)
	__fnwsa() —- CWI to find a writable static area
	__static_reinit() — CWI to reinitialize writable static area

	CEEDLLF — DLL failure control block

	Chapter 9. Debugging and performance analysis
	Language Environment-provided CWIs for the debug tool
	__setHookEvents() — specify execute hook events for target process
	CEE3CBTS — pass component broker connector parameters
	CEEBFBC — build feedback code routine
	CEEKRGPM — register pattern match routine
	CEEQFBC — query feedback code routine
	CEEQLOD — query modules loaded with enclave level load service
	CEETGCAA — get next CAA pointer
	CEETSFB — translate standard feedback token
	CEETSFC — translate standard feedback code

	Debug tool-provided event handlers
	Debug tool event handler

	Language Environment actions for the interactive debug tool
	Language Environment interactive debug data areas
	Execute hook support

	Performance analysis support
	Profile tool event handler
	Language Environment actions for profiler

	Chapter 10. DFSORT interface
	DFSORT interface description
	CEE3SRT — call DFSORT
	ILC within SORT exits
	Error handling within SORT exits
	Messages and conditions

	Chapter 11. Math library
	Calling math services from an application
	Math service condition handling requirements
	Member-specific condition handling

	Data types and their abbreviations
	CWI conventions for scalar math services
	Register interface
	Conventional interface

	Condition token values for math services
	Math services
	Scalar math services
	Degree input/output trigonometry functions
	Entry point names for scalar bit manipulation routines

	Message ID — message text for math library
	Language Environment math services — value of inserts

	Language Environment conversion services
	Terminology
	CEEYCVHE — E-format output conversion routine
	CEEYCVHF — F-format output conversion routine
	CEEYCVHI — decimal to float input conversion routine

	Chapter 12. Dump and tracing services
	Dump services
	CEE3DMP — runtime environment dump service
	CEESDMP — symbolic dump of a routine
	CEETRCB — traceback utility
	CEETBCK — traceback utility (replaces CEETRCB)
	Member language dump exit
	CEELDMP — single line message dump service
	CEEVDMP — variable dump service
	CEEHDMP — hexadecimal storage dump service
	CEEBDMP — control block dump service

	Other dump-related CWIs
	CEE3CDO — check dump options
	CEEKSNP — produce a SNAP dump
	CEEURTB — produce a user routine traceback

	Tracing services
	Global and member-specific tracing
	CEEKCTRC — add a trace table entry

	Chapter 13. Subsystem considerations
	CICS and POSIX
	Background information
	Terminology
	Running a program under CICS
	Language Environment-CICS and Language Environment-batch program models

	Language Environment-CICS interface
	Languages supported
	Extended runtime language interface
	Flowchart of activities
	Language Environment-CICS interface routines' DSA
	Partition initialization (Language Environment enablement)
	Partition termination (Language Environment disablement)
	Establish ownership type call
	Thread initialization
	Thread termination
	Run unit (program) initialization
	Run unit (program) termination
	Run unit (program) begin invocation
	Run unit (program) end invocation
	Error recovery
	Determine working storage and static storage
	Perform GOTO call

	CEECTCB — set TCB+X'144' routine
	CEECCICS — partition initialization changes
	IMS considerations
	IMS to Language Environment
	Language Environment to IMS — CEETDLI
	Implementation

	Chapter 14. Anchor support
	Anchor service
	Fetch the anchor routine
	Set the anchor routine

	CEEARLU — anchor lookup
	Anchor considerations
	Bypassing anchor lookup, set, or reset

	Chapter 15. Member language information
	OS services — restricted use
	Structure of executable programs
	Central control blocks
	Event handler
	Event handler calls
	Event code 1 — handle condition represented by the CIB event
	Event code 2 — perform enablement for this stack frame event
	Event code 3 — handle condition according to language defaults event
	Event code 4 — runtime options event
	Event code 5 — main-opts event
	Event code 6 — event handler utilities event
	Event code 7 — dump event handler event
	Event code 8 — new load module event
	Event code 9 — new condition event
	Event code 10 — resume from a condition handler event
	Event code 11 — DSA exit routines event
	Event code 12 — national language change event
	Event code 13 — country code change event
	Event code 14 — main routine invocation event
	Event code 15 — atterm event
	Event code 16 — Debug Tool event
	Event code 17 — process initialization event
	Event code 18 — enclave initialization event
	Event code 19 — enclave termination event
	Event code 20 — query/build feedback code event
	Event code 21 — process termination event
	Event code 22 — DLL initialization event
	Event code 23 — stack frame zero processing event
	Event code 24 — POSIX events event
	Event code 25 — static object constructor event
	Event code 26 — region initialization event
	Event code 27 — region termination event
	Event code 28 — identify module entry point event
	Event code 29 — determine enclave work area lengths event
	Event code 31 — determine working storage (CICS only) event
	Event code 32 — perform GOTO validation (CICS only) event
	Event code 33 — member needs options processing event
	Event code 34 — command line equivalent event
	Event code 35 — default options event
	Event code 36 — static destructor event
	Event code 37 — preallocated storage event
	Event code 38 — normal resume in DSA event
	Event code 39 — interrupt received event
	Event code 40 — get/release function pointer event
	Event code 41 — cancel/release load module event
	Event code 42 — automatic destructor event
	Event code 44 — member program mask event

	Chapter 16. z/OS UNIX System Services support
	Thread management functions
	CEEOPAI
	CEEOPAD
	CEEOPAGD
	CEEOPAGS
	CEEOPAGW
	CEEOPASD
	CEEOPASS
	CEEOPASW
	CEEOPC
	CEEOPE
	CEEOPEQ
	CEEOPJ
	CEEOPO
	CEEOPS

	Signal handling CWIs
	CEEOKILL

	Thread keyed data CWIs
	CEEOPGS
	CEEOPKC
	CEEOPKD
	CEEOPSS

	Thread cancellation CWIs
	CEEOPCPO
	CEEOPCPU

	Thread synchronization — mutex and read-write locks
	CEEOPMD
	CEEOPMI
	CEEOPML
	CEEOPML2
	CEEOPMT
	CEEOPMU
	CEEOPMU2
	CEEOPRL
	CEEOPRL2
	CEEOPRT
	CEEOPRU
	CEEOPRU2
	CEEOPWL
	CEEOPWL2
	CEEOPWT
	CEEOPXD
	CEEOPXG
	CEEOPXI
	CEEOPXS

	Thread synchronization — condition variables
	CEEOPCB
	CEEOPCD
	CEEOPCI
	CEEOPCS
	CEEOPCT
	CEEOPCW
	CEEOPDD
	CEEOPDG
	CEEOPDI
	CEEOPDS

	Process control functions support
	CEEOEXEC
	CEEOFORK
	CEEOSPWN

	Miscellaneous utilities
	CEEOEXIT
	CEEOXEXE

	Support for POSIX functions getenv(), setenv(), and clearenv()
	Errors
	CEEBENV

	Chapter 17. COBOL-specific vendor interfaces
	ILBOLLDX — OS/VS COBOL library load/delete exit
	IGZCXCC — COBOL call/cancel routine
	IGZXAPI — COBOL file and runtime information query routine
	IGZCXSF — COBOL extract side file routine

	Chapter 18. PL/I-specific vendor interfaces
	IBMPXSF — PL/I extract side file routine

	Chapter 19. C/C++ special purpose interfaces for IEEE floating-point
	IEEE binary floating-point introduction
	IEEE decimal floating-point introduction
	Selection of fdlibm or fdlibm replacement functions
	IEEE floating-point functions
	__chkbfp() — check IEEE facilities usage
	__fp_btoh() — convert from IEEE floating-point to hexadecimal floating-point
	__fp_cast() — cast between floating-point data types
	__fp_htob() — convert from hexadecimal floating-point to IEEE floating-point
	__fp_level() — determine type of IEEE facilities available
	__fp_read_rnd() — determine rounding mode
	__fp_setmode() — set IEEE or hexadecimal mode
	__fp_swapmode() — set IEEE or hexadecimal mode
	__fp_swap_rnd() — swap rounding mode
	__fpc_rd() — read floating-point control register
	__fpc_rs() — read floating-point control register and change rounding mode field
	__fpc_rw() — read and write the floating-point control register
	__fpc_sm() — set floating-point control register rounding mode field
	__fpc_wr() — write the floating-point control register
	__isBFP() — determine application floating-point mode
	__to_xx() – C/C++ compiler casting support

	Part 2. Language Environment vendor interfaces for AMODE 64 applications
	Chapter 20. Common interfaces and conventions for AMODE 64 applications
	Common runtime environment
	Library not all linkable
	Reentrancy
	Recursion
	AMODE/RMODE
	Member code AMODE restrictions
	External names
	Routine layout
	Prolog information blocks
	PPA2 in support of XPLINK

	Language Environment dynamic storage area
	Language Environment control block mappings
	Language Environment library anchor area
	Language Environment library control area
	Language Environment common anchor area
	Language Environment debugger interfaces area
	Language Environment enclave data block
	Language Environment process control block
	Language Environment region control block

	Chapter 21. Compiler-writer interfaces (CWIs) supported for AMODE 64 applications
	Chapter 22. CALL linkage convention for AMODE 64 applications
	Terminology
	XPLINK CALL linkage conventions for AMODE 64 applications
	Register usage and linkage
	Stack format

	Chapter 23. Program initialization and termination for AMODE 64 applications
	Initialization overview
	Termination overview
	Enclave termination
	Process termination

	Putting initialization and termination together
	Member interfaces for initialization
	CELQSTRT
	CELQMAIN
	CELQFMAN
	CELQBST operation
	CELQETBL — Language Environment externals table
	CELQLLST — Language Environment language list
	Signature CSECT
	Initialization parameter list

	Member interfaces for termination
	CEECOPP — Runtime Option Compiler Service

	Chapter 24. Storage management for AMODE 64 applications
	Vendor heap manager interface for AMODE 64 applications
	Requirements from the vendor
	Support provided for the vendor heap manager interface
	Activating the vendor heap manager
	__vhm_event()

	__alcaxp() — AMODE 64 DSA extension (alloca)
	Memory object dump priority
	Memory object user tokens
	Saving the stack pointer

	Chapter 25. Condition representation for AMODE 64 applications
	Condition representation model
	Data objects
	Condition token data type
	Feedback code

	Chapter 26. National language support and message services for AMODE 64 applications
	National language support
	Language Environment message services
	C/C++-specific vendor interfaces

	Chapter 27. Condition management for AMODE 64 applications
	Application programming interfaces (APIs)
	__dsa_prev() — Chain back to previous DSA
	__ep_find() — returns the address of the entry point of the function owning the dsa_p DSA
	__far_jump() — Perform far jump

	Language Environment shunt routine for AMODE 64 applications
	Establishing a program interrupt shunt service

	Other Language Environment condition manager topics
	Language Environment condition information block
	Errors during condition handling

	Language Environment-issued abends

	Chapter 28. Debugging and performance analysis for AMODE 64 applications
	Language Environment-provided functions for the debug tool
	__le_debug_set_resume_mch() — set resume machine state
	__setHookEvents() — specify execute hook events for target process

	Debug tool-provided event handlers
	Debug tool event handler

	Language Environment actions for the interactive debug tool
	Language Environment interactive debug data areas
	Execute hook support

	Performance analysis support
	Profile tool event handler
	Language Environment actions for profiler

	Chapter 29. Anchor support for AMODE 64 applications
	Chapter 30. Preinitialized Environments for Authorized Programs for AMODE 64 applications
	Creating Preinitialized Environments for Authorized Programs
	Creating a user-managed environment
	Creating a system-managed environment
	Preinitialized Environments for Authorized Programs tasks

	Executing a routine in Preinitialized Environments for Authorized Programs
	Calling a main routine
	Calling a subroutine
	Using runtime options
	Selecting an environment
	Providing recovery

	Terminating Preinitialized Environments for Authorized Programs
	Examples of using Preinitialized Environments for Authorized Programs
	Using Preinitialized Environments for Authorized Programs in service request block (SRB) mode
	Using Preinitialized Environments for Authorized Programs in cross-memory mode

	CELAAUTH macro
	CELAAUTH environments
	Syntax for REQUEST=USERINIT
	Syntax for REQUEST=USERCALL
	Syntax for REQUEST=USERTERM
	Syntax for REQUEST=MNGDINIT
	Syntax for REQUEST=MNGDCALL
	Syntax for REQUEST=MNGDUPDT
	Syntax for REQUEST=MNGDTERM
	CELAAUTH general notes
	ABEND codes
	Return and reason codes

	Part 3. Appendixes
	Appendix A. Options control block and supplementary options control block
	Options control block
	Supplementary options control block

	Appendix B. CALL linkage argument examples
	FASTLINK CALL linkage argument examples
	XPLINK CALL linkage argument examples

	Appendix C. Accessibility
	Accessibility features
	Consult assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Permission Notice
	Programming interface information
	Trademarks

	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

