
z/OS

Language Environment
Programming Guide for 64-bit Virtual
Addressing Mode
Version 2 Release 1

SA38-0689-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 199.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 2004, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this document xi
Using your documentation xi
How to read syntax diagrams xii

Symbols xii
Syntax items xii
Syntax examples xiii

This Programming Guide xiv
z/OS information xiv

How to send your comments to IBM xvii
If you have a technical problem xvii

Part 1. Creating AMODE 64
applications with Language
Environment 1

Chapter 1. Introduction to Language
Environment for AMODE 64 applications 3
Components of Language Environment for AMODE
64 applications. 3
Common runtime environment of Language
Environment for AMODE 64 applications. 4

Chapter 2. Preparing to bind and run
under Language Environment 7
Understanding the basics 7

Planning to bind and run 7
Binding AMODE 64 applications 8

Downward compatibility considerations 8
Checking which runtime options are in effect . . . 10

Chapter 3. Building and using AMODE
64 dynamic link libraries (DLLs) 13
Support for DLLs 13
DLL concepts and terms 13
Loading a DLL 14

Loading a DLL implicitly 14
Loading a DLL explicitly 15

Managing DLLs when running DLL applications . . 19
Loading DLLs 19
Sharing DLLs. 20
Freeing DLLs 21

Creating a DLL or a DLL application 21
Building a DLL 21

Writing your C DLL code. 21
Writing your C++ DLL code 22
Writing your Language Environment-conforming
AMODE 64 assembler DLL code 23

Compiling the DLL code 24
Binding the DLL code 24

Building a DLL application 26
Creating and using DLLs 27
DLL restrictions 28

Improving performance 29

Chapter 4. Binding, loading, and
running under batch 31
Basic binding and running under batch 31

Specifying runtime options in the EXEC
statement 31
Specifying runtime options with the CEEOPTS
DD card 32

Providing bind input 32
Writing JCL for the bind process 33
Binder control statements. 35

Bind options 36
Running an AMODE 64 application under batch . . 37

Program library definition and search order . . 37
Specifying runtime options under batch 38

Chapter 5. Binding and executing
AMODE 64 programs using z/OS UNIX . 39
Basic binding and running C/C++ applications
under z/OS UNIX 39
Invoking a shell from TSO/E 39
Using the c89 utility to bind and create AMODE 64
executable files 39
Running z/OS UNIX AMODE 64 application
programs using z/OS XL C/C++ functions 40

z/OS UNIX application program environments 40
Placing an MVS application executable program
in the file system 41
Running an MVS executable program from a
z/OS UNIX shell 41
Running POSIX-enabled programs using a z/OS
UNIX shell 41

Running POSIX-enabled programs outside the z/OS
UNIX shells 42

Running an MVS batch z/OS UNIX application
file that is HFS-resident 42
Running a z/OS UNIX application program that
is not HFS-resident 43

Chapter 6. Using runtime options . . . 45
Understanding the basics 45

Methods available for specifying runtime options 45
Order of precedence 46
Specifying suboptions in runtime options . . . 47
Specifying runtime options and program
arguments 47
CEEOPTS DD syntax 48

Creating application runtime option defaults with
CEEXOPT 48

© Copyright IBM Corp. 2004, 2013 iii

CEEXOPT invocation for CELQUOPT 49
CEEXOPT coding guidelines for CELQUOPT . . 50

C and C++ compatibility considerations 51

Part 2. Preparing an application to
run with Language Environment . . 53

Chapter 7. Using Language
Environment parameter list formats . . 55
Understanding the basics 55

Argument lists and parameter lists 55
Passing arguments between routines 55

Chapter 8. Making your application
reentrant 59
Understanding the basics 59
Making your C/C++ program reentrant 59

Natural reentrancy 59
Constructed reentrancy 59
Generating a reentrant program executable for C
or C++ 60

Installing a reentrant load module 60

Part 3. Language Environment
concepts, services, and models . . 61

Chapter 9. Initialization and termination
under Language Environment 63
Understanding the basics 63
Language Environment initialization 63
Language Environment termination 63

What causes termination 64
What happens during termination 64

Managing return codes in Language Environment 65
How the Language Environment enclave return
code is calculated 66
Setting and altering user return codes 66

Termination behavior for unhandled conditions . . 67
Determining the abend code. 67
Program interrupt abend and reason codes . . . 67

Chapter 10. Program model 69
Understanding the basics 69

Language Environment program model
terminology 69
Process 70
Enclave 71
Thread 72

The full Language Environment program model . . 73
Mapping the POSIX program model to the
Language Environment program model 73

Key POSIX program entities and Language
Environment counterparts 73
Scope of POSIX semantics 74

Chapter 11. Stack and heap storage . . 77
Understanding the basics 77

Runtime options and services 77
Stack storage overview 78

Tuning stack storage 79
Heap storage overview 80

Using heap pools to improve performance . . . 82
Tuning heap storage 83
User-created heap storage 85
Alternative vendor heap manager 85

Chapter 12. Language Environment
condition handling introduction 87
Understanding the basics 87

Runtime options. 87
The stack frame model 88

Resume cursor 88
What is a condition in Language Environment? . . 88
Steps in condition handling 89

Enablement step 89
Condition step 90
Termination step and the TERMTHDACT
runtime option 91

Invoking exception handlers 91
Responses to conditions 91
Condition handling scenarios 91

Scenario 1: Simple condition handling 92
Scenario 2: Exception handler present for
divide-by-zero 92

Chapter 13. Language Environment and
HLL condition handling interactions . . 95
Understanding the basics 95
C condition handling semantics 95

Comparison of C-Language Environment
terminology 96
Controlling condition handling in C 96
C condition handling actions 98
C signal representation of S/370 exceptions . . 101

C++ condition handling semantics 102
Language Environment and POSIX signal handling
interactions 102

Synchronous POSIX signal and Language
Environment condition handling interactions . . 103

Chapter 14. Using condition tokens 107
Understanding the basics 107

Related services 107
The effect of coding the fc parameter 107

Testing a condition token for success 108
Testing condition tokens for equivalence . . . 108
Testing condition tokens for equality 109

Effects of omitting the fc parameter 109
Understanding the structure of the condition token 109
Using symbolic feedback codes 111

Locating symbolic feedback codes for conditions 111
Including symbolic feedback code files 111

Condition tokens for C signals under C and C++ 112
q_data structure for abends. 113
q_data structure for arithmetic program
interruptions 114
q_data structure for square-root exception 116

iv z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Chapter 15. Using and handling
messages 117
Understanding the basics 117

Runtime options 117
APIs 117
Utilities 117

Creating messages 117
Creating a message source file 118
Using the CEEBLDTX utility 121
Files created by CEEBLDTX 123
Creating a message module table 127
Assigning values to message inserts 128
Interpreting runtime messages. 129
Specifying the national language 130
Runtime messages with POSIX 130
Handling message output 131
Using multiple message handling APIs 132

Chapter 16. Using date and time
services. 133

Chapter 17. National language support 135
Understanding the basics 135

Runtime options 135
C/C++ APIs. 135

Setting the national language 135
Setting the locale 135

Chapter 18. Locale callable services 137

Chapter 19. General callable services 139
Understanding the basics 139

Related services 139
__cdump() 139

Specifying a target directory for CEEDUMPs 139
__le_ceegtjs() 140
__librel() 140

Chapter 20. Math services 141

Part 4. Specialized Programming
Tasks 143

Chapter 21. Assembler considerations 145
Understanding the basics 145

Compatibility considerations 145
Register conventions 145

Considerations for coding or running assembler
routines 146

GOFF option 146
Asynchronous interrupts 146
Condition handling 147
Access to the inbound parameter string . . . 147
CELQSTRT, CELQMAIN, CELQFMAN 147
Mode considerations 147

Language Environment Library routine retention
(LRR) 147
Assembler macros 148

CELQPRLG macro — Generate a Language
Environment-conforming amode 64 prolog . . . 149
CELQEPLG macro — Terminate a Language
Environment-conforming AMODE 64 routine. . . 150
CEERCB macro — Generate an RCB mapping . . 151
CEEPCB macro — Generate a PCB mapping . . . 151
CEEEDB macro — Generate an EDB mapping . . 151
CEELAA macro — Generate an LAA mapping . . 151
CEELCA macro — Generate an LCA mapping . . 152
CEECAA macro — Generate a CAA mapping . . 152
CEEDSA macro — Generate a DSA mapping . . . 152
CEEDIA macro — Generate a DIA mapping . . . 153
CELQCALL macro — Call a Language
Environment-conforming AMODE 64 routine. . . 153
CEEPDDA macro — Define a data item in the
writeable static area (WSA) 155
CEEPLDA macro — Returns the address of a data
item defined by CEEPDDA. 156

Chapter 22. Using preinitialization
services with AMODE 64 159
Understanding the basics 159
Using preinitialization services 160
Macros that generate the PreInit table 160

CELQPIT 161
CELQPITY 161
CELQPITS 162

Invoking CELQPIPI 162
AMODE considerations 162
General register usage at entry to CELQPIPI 162
General register usage at exit from CELQPIPI 162

CELQPIPI interface 163
Initialization. 164
CELQPIPI(init_main) — initialize for main
routines 164
CELQPIPI(init_sub) — initialize for subroutines 166

Application invocation 167
CELQPIPI(call_main) — invocation for main
routine 167
CELQPIPI(call_sub) — invocation for
subroutines 169
CELQPIPI(call_sub_addr) — invocation for
subroutines by address 170
Invocation of a sequence of applications . . . 171
CELQPIPI(start_seq) — start a sequence of calls 172
CELQPIPI(end_seq) — end a sequence of calls 173

PreInit termination 173
CELQPIPI(term) — terminate environment . . 173
CELQPIPI(add_entry) — add an entry to the
PreInit table 174
CELQPIPI(delete_entry) — delete an entry from
the PreInit table 175
CELQPIPI(identify_entry) — identify an entry in
the PreInit table 176
CELQPIPI(identify_attributes) — identify the
program attributes in the PreInit table 177

Service routines 178
An example program invocation of CELQPIPI . . 185

Part 5. Appendixes 193

Contents v

Appendix. Accessibility 195
Accessibility features 195
Using assistive technologies 195
Keyboard navigation of the user interface 195
Dotted decimal syntax diagrams 195

Notices 199
Policy for unsupported hardware. 200

Minimum supported hardware 201
Programming Interface Information 201
Trademarks 201

Index 203

vi z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Figures

1. Components of Language Environment . . . 4
2. Language Environment's common runtime

environment 5
3. Using #pragma export to create a DLL

executable module named BASICIO 21
4. Using #pragma export to create a DLL

executable module triangle 22
5. Using _export to create DLL executable

module triangle 22
6. Assembler DLL application calling an

assembler DLL 27
7. Summary of DLL and DLL application

preparation and usage 28
8. Basic batch bind processing 32
9. Creating an AMODE 64 executable program

under batch 35
10. Using the INCLUDE binder control statement 35
11. Using the LIBRARY binder control statement 36
12. Sample invocation of CEEXOPT within

CELQUOPT source program 49
13. Call terminology refresher 55
14. Argument passing styles in Language

Environment 56
15. Program model illustration of resource

ownership 70
16. Overview of the full Language Environment

program model 73
17. Scope of semantics against POSIX processes

and Language Environment
processes/enclaves 75

18. Stack storage model for Language
Environment 79

19. Language Environment heap storage model 82
20. Condition processing 90
21. Scenario 1: Division by zero with no user

exception handlers present 92
22. Scenario 2: Division by zero with a user

handler present in routine B 93
23. C370A routine. 99
24. C370B routine 99
25. C370C routine 100
26. C condition handling example 100
27. Enablement step for signals under z/OS

UNIX 104
28. Language Environment condition token 110
29. Structure of abend qualifying data 114
30. q_data Structure for arithmetic program

interruption conditions 115
31. Example of a message source file 118
32. Example of a message module table with one

language 127
33. Example of a message module table with two

languages 128
34. Service routines 178
35. 64-bit function descriptors 179

© Copyright IBM Corp. 2004, 2013 vii

viii z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Tables

1. How to use z/OS Language Environment
publications xi

2. Syntax examples xiii
3. Prerequisite z/OS release level for compilers

that support downward compatibility 10
4. Required data sets used for binding 33
5. Optional data sets used for binding 34
6. Selected bind options 36
7. Formats for specifying runtime options and

program arguments 47
8. Semantic terms and methods for passing

arguments in Language Environment 56
9. Default passing style per HLL 57

10. Summary of enclave reason codes 66
11. Abend code values used by Language

Environment 67
12. Program interrupt abend and reason codes 67
13. Usage of stack and heap storage by Language

Environment-conforming languages 77
14. Language Environment default responses to

unhandled conditions 90

15. C conditions and default system actions 96
16. Mapping of S/370 exceptions to C signals 101
17. Mapping of abend signals to C signals 102
18. Language Environment condition tokens and

non-POSIX C signals 112
19. Language Environment condition tokens and

POSIX C signals. 112
20. Arithmetic program interruptions and

corresponding conditions 114
21. Square-root exception and corresponding

condition 116
22. Language Environment runtime message

severity codes 129
23. Condition tokens with POSIX 130
24. C/C++ redirected stream output 132
25. Assembler macros 148
26. Preinitialization services accessed using

CELQPIPI. 163
27. PreInit storage attributes control block field

descriptions 181

© Copyright IBM Corp. 2004, 2013 ix

x z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

About this document

IBM® z/OS Language Environment (also called Language Environment) for
AMODE 64 application provides common services and language-specific routines
in a single runtime environment for C, C++, and assembler applications. It offers
consistent and predictable results for language applications, independent of the
language in which they are written.

Language Environment is the prerequisite runtime environment for applications
generated with z/OS® XL C/C++.

Language Environment consists of the common execution library (CEL) and the
runtime libraries for C/C++.

Using your documentation
The publications provided with Language Environment are designed to help you:
v Manage the runtime environment for applications generated with a Language

Environment-conforming compiler.
v Write applications that use the Language Environment callable services.
v Develop interlanguage communication applications.
v Customize Language Environment.
v Debug problems in applications that run with Language Environment.
v Migrate your high-level language applications to Language Environment.

Language programming information is provided in the supported high-level
language programming manuals, which provide language definition, library
function syntax and semantics, and programming guidance information.

Each publication helps you perform different tasks, some of which are listed in
Table 1.

Table 1. How to use z/OS Language Environment publications

To ... Use ...

Evaluate Language Environment® z/OS Language Environment Concepts Guide

Plan for Language Environment
z/OS Language Environment Concepts Guide

z/OS Language Environment Runtime Application
Migration Guide

Install Language Environment z/OS Program Directory

Customize Language Environment z/OS Language Environment Customization

Understand Language Environment
program models and concepts z/OS Language Environment Concepts Guide

z/OS Language Environment Programming Guide

z/OS Language Environment Programming Guide for
64-bit Virtual Addressing Mode

Find syntax for Language Environment
runtime options and callable services

z/OS Language Environment Programming Reference

© Copyright IBM Corp. 2004, 2013 xi

Table 1. How to use z/OS Language Environment publications (continued)

To ... Use ...

Develop applications that run with
Language Environment

z/OS Language Environment Programming Guide
and your language programming guide

Debug applications that run with
Language Environment, diagnose
problems with Language Environment

z/OS Language Environment Debugging Guide

Get details on runtime messages z/OS Language Environment Runtime Messages

Develop interlanguage communication
(ILC) applications

z/OS Language Environment Writing Interlanguage
Communication Applications and your language
programming guide

Migrate applications to Language
Environment

z/OS Language Environment Runtime Application
Migration Guide and the migration guide for each
Language Environment-enabled language

How to read syntax diagrams
This section describes how to read syntax diagrams. It defines syntax diagram
symbols, items that may be contained within the diagrams (keywords, variables,
delimiters, operators, fragment references, operands) and provides syntax examples
that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments)
that comprise a command statement. They are read from left to right and from top
to bottom, following the main path of the horizontal line.

For users accessing the Information Center using a screen reader, syntax diagrams
are provided in dotted decimal format.

Symbols
The following symbols may be displayed in syntax diagrams:

Symbol
Definition

��─── Indicates the beginning of the syntax diagram.

───� Indicates that the syntax diagram is continued to the next line.

�─── Indicates that the syntax is continued from the previous line.

───�� Indicates the end of the syntax diagram.

Syntax items
Syntax diagrams contain many different items. Syntax items include:
v Keywords - a command name or any other literal information.
v Variables - variables are italicized, appear in lowercase, and represent the name

of values you can supply.
v Delimiters - delimiters indicate the start or end of keywords, variables, or

operators. For example, a left parenthesis is a delimiter.
v Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal

(=), and other mathematical operations that may need to be performed.
v Fragment references - a part of a syntax diagram, separated from the diagram to

show greater detail.

xii z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

v Separators - a separator separates keywords, variables or operators. For example,
a comma (,) is a separator.

Note: If a syntax diagram shows a character that is not alphanumeric (for
example, parentheses, periods, commas, equal signs, a blank space), enter the
character as part of the syntax.

Keywords, variables, and operators may be displayed as required, optional, or
default. Fragments, separators, and delimiters may be displayed as required or
optional.

Item type
Definition

Required
Required items are displayed on the main path of the horizontal line.

Optional
Optional items are displayed below the main path of the horizontal line.

Default
Default items are displayed above the main path of the horizontal line.

Syntax examples
The following table provides syntax examples.

Table 2. Syntax examples

Item Syntax example

Required item.

Required items appear on the main path of the
horizontal line. You must specify these items.

�� KEYWORD required_item ��

Required choice.

A required choice (two or more items) appears
in a vertical stack on the main path of the
horizontal line. You must choose one of the
items in the stack.

�� KEYWORD required_choice1
required_choice2

��

Optional item.

Optional items appear below the main path of
the horizontal line.

�� KEYWORD
optional_item

��

Optional choice.

An optional choice (two or more items)
appears in a vertical stack below the main path
of the horizontal line. You may choose one of
the items in the stack.

�� KEYWORD
optional_choice1
optional_choice2

��

Default.

Default items appear above the main path of
the horizontal line. The remaining items
(required or optional) appear on (required) or
below (optional) the main path of the
horizontal line. The following example displays
a default with optional items.

��
default_choice1

KEYWORD
optional_choice2
optional_choice3

��

Variable.

Variables appear in lowercase italics. They
represent names or values.

�� KEYWORD variable ��

About this document xiii

Table 2. Syntax examples (continued)

Item Syntax example

Repeatable item.

An arrow returning to the left above the main
path of the horizontal line indicates an item
that can be repeated.

A character within the arrow means you must
separate repeated items with that character.

An arrow returning to the left above a group
of repeatable items indicates that one of the
items can be selected,or a single item can be
repeated.

�� �KEYWORD repeatable_item ��

�� �

,

KEYWORD repeatable_item ��

Fragment.

The fragment symbol indicates that a labelled
group is described below the main syntax
diagram. Syntax is occasionally broken into
fragments if the inclusion of the fragment
would overly complicate the main syntax
diagram.

�� KEYWORD fragment ��

fragment:

,required_choice1
,default_choice

,required_choice2
,optional_choice

This Programming Guide
Be familiar with the Language Environment product and C/C++ or assembler.
C/C++ is used generically to refer to information that applies to both C and C++.

For application programming, you will need to use this book and z/OS Language
Environment Programming Reference. This book contains information about binding,
running, and using services within the Language Environment environment, the
Language Environment program model, and language- and operating
system-specific information, where applicable. z/OS Language Environment
Programming Reference contains more detailed information, as well as specific
syntax for using runtime options and callable services.
v Part 1 includes a basic introduction to Language Environment. It also explains

the steps for creating and running executable programs, and provides an
overview of runtime options.

v Part 2 describes how to prepare an application to run in Language Environment.
v Part 3 describes Language Environment concepts, services, and models,

including initialization and termination, program model, storage, condition
handling, messages, and callable services.

v Part 4 addresses specialized programming tasks, such as assembler
considerations, and preinitialization services.

z/OS information
This information explains how z/OS references information in other documents
and on the web.

xiv z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

When possible, this information uses cross document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see z/OS Information Roadmap.

To find the complete z/OS library, including the z/OS Information Center, see
z/OS Internet Library (http://www.ibm.com/systems/z/os/zos/bkserv/).

About this document xv

http://www.ibm.com/systems/z/os/zos/bkserv/

xvi z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual
Addressing Mode
SA38-0689-00

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/

systems/z/support/).

© Copyright IBM Corp. 2004, 2013 xvii

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xviii z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Part 1. Creating AMODE 64 applications with Language
Environment

This section explains the steps for creating and running an AMODE 64 executable
program, and provides an overview of runtime options.

Note: The terms in this section having to do with linking (bind, binding, and so
forth) refer to the process of creating an AMODE 64 executable program from
object modules (the output produced by compilers and assemblers). The program
used is the DFSMS program management binder. The binder extends the services
of the linkage editor and is the default program provided for creating an
executable.

© Copyright IBM Corp. 2004, 2013 1

2 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Chapter 1. Introduction to Language Environment for AMODE
64 applications

Language Environment supports 64-bit addressing for applications written in C,
C++, or Language Environment-conforming Assembler.

In the 64-bit addressing mode (AMODE 64) Language Environment supports
addresses that are 64 bits in length, which allows access to data in virtual storage
up to 16 exabytes. Hence applications that work with large databases or large
volumes of data can consolidate data in one address space. There are a few things
to note:
v An AMODE 64 Language Environment application supports XPLINK linkage

only and the C runtime environment is always initialized. A new library,
CELQLIB, is shipped for AMODE 64 support, while the existing libraries
continue to be shipped and supported.

v Preinitialized environments are supported via CELQPIPI.
v The user stack and heap, along with most of Language Environment storage is

above the 2 GB bar.
v There is a new anchor for AMODE 64 applications so register 12 no longer

needs to be reserved for the address of the CAA.
v The only means of communication between AMODE 64 and AMODE 24 or

AMODE 31 applications is through mechanisms that can communicate across
processes or address spaces. However, Language Environment applications that
use AMODE 64 can run with existing applications that use AMODE 24 or
AMODE 31 on the same physical z/OS system.

v Where necessary, there are new Language Environment runtime options to
support AMODE 64 applications. The new runtime options primarily support
the new stack and heap storage located above the bar. Some of the existing
options are no longer available.

Components of Language Environment for AMODE 64 applications
As shows, Language Environment for 64-bit Virtual Addressing Mode consists of
the following components:
v Basic routines that support starting and stopping programs, allocating and

managing storage, and indicating and handling error conditions, and providing
debugging facilities.

v C/C++ runtime library services, including math services and date and time
services, that are commonly needed by programs running on the system.

© Copyright IBM Corp. 2004, 2013 3

The z/OS XL C/C++ compiler with the LP64 compiler option is the IBM Language
Environment-conforming language compiler that currently supports 64-bit
addressing.

Along with the change in addressing mode to use 64 bits, the other important
consideration is that long data types also use 64 bits. The industry standard name
for this data model is LP64, which translates roughly to "long and pointer data
types use 64 bits." The Language Environment support for AMODE 24 and
AMODE 31 applications is ILP32, meaning "integer, long, and pointer data types
use 32 bits."

Language Environment also provides new Assembler macros that support creating
Language Environment conforming Assembler applications that run AMODE 64.

Common runtime environment of Language Environment for AMODE
64 applications

Figure 2 on page 5 illustrates the common environment that Language
Environment creates.

Language Environment

Language Environment callable service interface,
common services, and support routines

C/C++ language- specific library

Figure 1. Components of Language Environment

Introducing Language Environment for AMODE 64 applications

4 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Assembler

ASM

C/C++

C/C++

Batch TSO

(C/C++ only)

DB2UNIX

System

Services

Assembler

does not

require a

runtime library

LANGUAGE ENVIRONMENT

Operating

Environment

z/OS

Compilers

Source

Code

CEL

C/C++

Figure 2. Language Environment's common runtime environment

Chapter 1. Introduction to Language Environment for AMODE 64 applications 5

6 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Chapter 2. Preparing to bind and run under Language
Environment

This topic describes the basic information that you need to know before binding
and running AMODE 64 applications under Language Environment. The
procedures are similar to that used by AMODE 24 and AMODE 31 applications.

This topic is not intended to illustrate every aspect of binding and running you
might want to learn. Detailed instructions about binding and running AMODE 64
applications are provided in subsequent topics, and in z/OS MVS Program
Management: User's Guide and Reference.

Note: The term bind is used to describe the process of converting compiler output
into AMODE 64 executable programs. The binder is the name of the z/OS program
that performs this process.

Understanding the basics
Language Environment library routines are divided into two categories: resident
routines and dynamic routines. The resident routines are linked with the application
and include such things as the bootstrap routines. The dynamic routines are not
part of the application and are dynamically loaded during run time.

The way Language Environment code is packaged keeps the size of AMODE 64
application executable programs small. In most cases when you apply Language
Environment maintenance, you do not have to rebind the application code except
under rare and special circumstances.

The binder converts an object module into an AMODE 64 executable program and
stores it in a library. The executable program can then be run from that library at
any time. Language translators such as compilers and assemblers, produce object
modules. The binder processes AMODE 64 object modules along with control
statements and previously bound modules, to produce an executable program
(program object) and stores it. The executable program can be stored into either a
PDS/E library or UNIX file system, from where it can subsequently be run at any
time. The executable program can then be run from that library. Only the program
management binder can be used to perform the bind process for AMODE 64
applications. See z/OS MVS Program Management: User's Guide and Reference for a
complete discussion of services to create, load, modify, list, read, transport, and
copy AMODE 64 executable programs.

Planning to bind and run
There are certain considerations that you must be aware of before binding and
running AMODE 64 applications under Language Environment.

Language Environment resident routines for AMODE 64 applications are located in
the SCEEBND2 library. Language Environment dynamic routines are located in the
SCEERUN and SCEERUN2 libraries. The Language Environment libraries are
located in data sets identified with a high-level qualifier specific to the installation.

The following is a summary of the Language Environment libraries and their
contents:

© Copyright IBM Corp. 2004, 2013 7

SCEERUN
There are some members in this PDS, such as message catalogs, that are used
by AMODE 64 applications.

SCEERUN2
A PDSE which contains the runtime library routines needed during execution
of AMODE 64 applications.

SCEEBND2
Contains all Language Environment resident routines for AMODE 64
applications. It provides only a small number of resident routines, since most
of the functions formerly provided in those static libraries are instead provided
using dynamic linkage.

SCEELIB
Contains side-decks for DLLs provided by Language Environment.

Many of the APIs available to AMODE 64 applications appear externally as
DLL functions. See Chapter 3, “Building and using AMODE 64 dynamic link
libraries (DLLs),” on page 13 for information about DLLs. To resolve these
references from AMODE 64 applications, a definition side-deck must be
included when binding the application. The SCEELIB library contains the
following side-decks:
v CELQS003 — Side-deck to resolve references to callable services in the

C/C++ runtime library when binding an AMODE 64 application.
v CELQSCPP — Side-deck to resolve references to C++ runtime library (RTL)

definitions that may be required when binding an AMODE 64 application.

The functions in these side-decks can be called from an AMODE 64
application. However, they cannot be used as the target of an explicit
dllqueryfn() or dlsym() against the DLL.

Binding AMODE 64 applications
The main entry point for an AMODE 64 application is CELQSTRT, which must be
identified as the entry point during the bind process.

The XL C/C++ compiler generates CELQSTRT for main() and fetchable functions,
and references to CELQSTRT for other functions. Language Environment-
conforming AMODE 64 assembler programs do not generate CELQSTRT but do
generate references to CELQSTRT.

When the application does not contain a generated CELQSTRT, the CELQSTRT
that resides in the Language Environment SCEEBND2 library can be used.

Avoid using the NCAL binder option so that the automatic library call mechanism
of the binder can resolve references to CELQSTRT and other bootstrap routines.

Downward compatibility considerations
Language Environment-conforming AMODE 64 applications cannot run on any
release prior to z/OS Version 1 Release 6. As of z/OS Version 1 Release 7,
Language Environment provides downward compatibility support for Language
Environment-conforming AMODE 64 applications. Assuming that required
programming guidelines and restrictions are observed, this support enables
programmers to develop applications on higher release levels of the operating
system, for deployment on execution platforms that are running lower release
levels of the operating system. For example, you may use z/OS V1R7 (and

Preparing to use Language Environment

8 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Language Environment) on a development system where applications are coded,
link edited, and tested, while using z/OS V1R6 (and Language Environment) on
their production systems where the finished application modules are deployed.

Downward compatibility support is not the roll-back of new function to prior
releases of the operating system. Applications developed exploiting the downward
compatibility support must not use Language Environment function that is
unavailable on the lower release of the operating system where the application will
be deployed. The downward compatibility support includes toleration PTFs for
lower releases of the operating system (specific PTF numbers can be found in the
PSP buckets), to assist in diagnosis of applications that violate the programming
requirements for this support.

The downward compatibility support provided by z/OS V1R7 and later, and by
the toleration PTFs, does not change Language Environment's upward
compatibility. That is, applications coded and link-edited with one release of
Language Environment will continue to execute on later releases of Language
Environment, without a need to recompile or relink-edit the application,
independent of the downward compatibility support.

The application requirements and programming guidelines for downward
compatibility are:
v The application must only use Language Environment function that is available

on the release level of the operating system used on the target deployment
system.

v The application must only use Language Environment function that is available
on the release level of the operating system used for developing and link-editing
the application, by using the appropriate Language Environment object libraries,
header files, and macros.

v The release level of the operating system used for application development and
link-editing must be at least the level that is the prerequisite of the compiler
products (XL C/C++) that are used to develop the application.

v The release level of the operating system used on the target deployment system
must be at least the level that is the prerequisite of the compiler products that
are used to develop the application.

v The release level of the operating system used for application development and
link-editing must be at least z/OS V1R6 for Language Environment-conforming
AMODE 64 applications.

v The program object format of the application must be no greater than the
highest level supported on the target deployment system.

The term "Language Environment function" used in the discussion of downward
compatibility support refers to:
v Language Environment callable services (see z/OS Language Environment

Programming Reference).
v Language Environment runtime options
v C/C++ library functions
v UNIX branding functions
v Other new language functionality that has an explicit operating system release

prerequisite that is documented in the user publications. For example, with
z/OS V1R6 Language Environment, new support was added for Language

Preparing to use Language Environment

Chapter 2. Preparing to bind and run under Language Environment 9

Environment-conforming AMODE 64 applications. This support is available on
z/OS V1R6 Language Environment or later, but is not available on prior
releases.

The compiler products that support development of downward compatible
applications are listed in the following table, along with their prerequisite
minimum release level of the operating system. (Prior releases of the compilers
beyond those listed in the following table are still supported by Language
Environment, but do not provide downward compatibility for Language
Environment-conforming AMODE 64 applications. They only support upward
compatibility.)

Table 3. Prerequisite z/OS release level for compilers that support downward compatibility

Compiler product z/OS release level prerequisite

z/OS XL C/C++ compiler z/OS V1R6

The diagnosis assistance that will be provided by the toleration PTFs includes:
v Options processing: Whenever an application exploits Language Environment

runtime options that are unavailable on the release of the operating system the
application is executed on, a message will be issued. In order to issue this
message, toleration PTFs are available down to OS/390® V2R6, and you must
apply them on the target system. The use of environment variables, even specific
Language Environment ones, is not covered by this support.

v Detection of unsupported function: In many cases where a programmer
disregards the requirements and programming guidelines and exploits a
Language Environment function that is unavailable on the release of the
operating system the application is executed on, Language Environment will
raise a new condition. With an unhandled condition, the application is
terminated. In order to raise this new condition, toleration PTFs are available
down to OS/390 V2R6, and you must apply them on the target system.

v C/C++ headers: As of OS/390 V2R10, support has been added to the C/C++
headers shipped with Language Environment to allow application developers to
"target" a specific release, in order to ensure that the application has not taken
advantage of any new C/C++ library function. See z/OS XL C/C++ User's Guide
for details of how the TARGET compiler option can be used to create
downward-compatible applications and prevent application developers from
using new C/C++ library functions in applications.

v Detection of unsupported program object format: If the program object format
is at a level which is not supported by the target deployment system, then the
deployment system will produce an abend when trying to load the application
program. The abend will indicate that DFSMS/MVS was unable to find or load
the application program. Correcting this problem does not require the
installation of any toleration PTFs. Rather the application developer will need to
re-create the program object which is compatible with older deployment system.
For information about using the Program Management binder COMPAT option,
see z/OS MVS Program Management: User's Guide and Reference.

Checking which runtime options are in effect
Using the Language Environment runtime option RPTOPTS, you can control
whether an Options Report is produced after a successful running of the
application. The Options Report shows all of the runtime options that were in
effect when the application began to run. The IBM-supplied default for RPTOPTS
is OFF, meaning that the Options Report is not produced. If you override the

Preparing to use Language Environment

10 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

default setting of RPTOPTS, using one of the mechanisms described in Chapter 6,
“Using runtime options,” on page 45, and the application completes successfully,
the Options Report is written to the C stderr stream. For more information on the
C stderr stream, see z/OS XL C/C++ Programming Guide.

For the syntax of RPTOPTS, see z/OS Language Environment Programming Reference.

Preparing to use Language Environment

Chapter 2. Preparing to bind and run under Language Environment 11

12 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Chapter 3. Building and using AMODE 64 dynamic link
libraries (DLLs)

The z/OS dynamic link library (DLL) facility provides a mechanism for packaging
programs and data into program objects (DLLs) that can be accessed from other
separate program objects. A DLL can export symbols representing routines that may
be called from outside the DLL, and can import symbols representing routines or
data or both in other DLLs, avoiding the need to link the target routines into the
same program objects as the referencing routine. When an application references a
separate DLL for the first time, it is automatically loaded into memory by the
system.

An application that has been compiled and linked to be AMODE 64 uses the
XPLINK linkage convention, which is automatically enabled for DLL support.
There is no distinction between “DLL code” and “non-DLL code” as there is for
AMODE 31 applications.

This chapter defines concepts and shows how to build DLLs and DLL applications.

Support for DLLs
DLL support is available for AMODE 64 applications running under the following
systems:
v z/OS batch
v TSO
v z/OS UNIX System Services

AMODE 64 applications compiled with the XL C and XL C++ compilers can create
and reference DLLs. The High Level Assembler (HLASM) Release 5 can also be
used to create AMODE 64 assembler routines if the supporting Language
Environment macros are used. For more details on Language Environment
assembler macro support, see Chapter 21, “Assembler considerations,” on page 145.

DLL concepts and terms
Function

In this chapter, function is used to generically refer to a callable routine or
program, and is specifically applicable to C and C++.

Variable
In this chapter, variable is used to generically refer to a data item, such as
a static variable in C/C++.

Application
All the code executed from the time an AMODE 64 executable program is
invoked until that program, and any programs it directly or indirectly
calls, is terminated.

DLL An executable module that exports functions, variable definitions, or both,
to other DLLs or DLL applications. The executable code and data are
bound to the program at run time. The code and data in a DLL can be
shared by several DLL applications simultaneously.

© Copyright IBM Corp. 2004, 2013 13

DLL application
An application that references imported functions, imported variables, or
both, from other DLLs.

Executable program (or executable module)
A file which can be loaded and executed on the computer. For AMODE 64
applications, z/OS only supports program objects created by the binder
that reside in either a PDSE or in the HFS.

Object code (or object module)
A file output from a compiler after processing a source code module,
which can subsequently be used to build an AMODE 64 executable
program module.

Source code (or source module)
A file containing a program written in a programming language.

Imported functions and variables
Functions and variables that are not defined in the executable module
where the reference is made, but are defined in a referenced DLL.

Non-imported functions and variables
Functions and variables that are defined in the same executable module
where a reference to them is made.

Exported functions or variables
Functions or variables that are defined in one executable module and can
be referenced from another executable module. When an exported function
or variable is referenced within the executable module that defines it, the
exported function or variable is also nonimported.

Writable Static Area (WSA)
An area of memory that is modifiable during program execution. Typically,
this area contains global variables and function and variable descriptors for
DLLs. The environment supplied to an XPLINK function (in register 5) is
the part of WSA that is applicable to that function.

Function descriptor
An internal control block containing information needed by compiled code
to call a function.

Loading a DLL
A DLL is loaded implicitly when an application references an imported variable or
calls an imported function. DLLs can be explicitly loaded by calling dllload() or
dlopen(). Due to optimizations performed, the DLL implicit load point may be
moved and is only done before the actual reference occurs.

Loading a DLL implicitly
When an application uses functions or variables defined in a DLL, the compiled
code loads the DLL. This implicit load is transparent to the application. The load
establishes the required references to functions and variables in the DLL by
updating the control information contained in function descriptors and variable
pointers.

If a C++ DLL contains static classes, their constructors are run when the DLL is
loaded. Their destructors run once after the main function returns.

To implicitly load a DLL from C or C++, do one of the following:

Dynamic link libraries (DLLs)

14 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

v Statically initialize a variable pointer to the address of an exported DLL variable.
v Reference a function pointer that points to an exported function.
v Call an exported function.
v Reference (use, modify, or take the address of) an exported variable.
v Call through a function pointer that points to an exported function.

When the first reference to a DLL is from static initialization of a C or C++ variable
pointer, the DLL is loaded before the main function is invoked. Any C++
constructors are run before the main function is invoked.

Loading a DLL explicitly
The use of DLLs can also be explicitly controlled by C/C++ application code at the
source level. The application uses explicit source-level calls to one or more runtime
services to connect the reference to the definition. The connections for the reference
and the definition are made at run time.

The DLL application writer can explicitly call the following C runtime services:
v dllload(), which loads the DLL and returns a handle to be used in future

references to this DLL
v dllqueryfn(), which obtains a pointer to a DLL function
v dllqueryvar(), which obtains a pointer to a DLL variable
v dllfree(), which frees a DLL loaded with dllload()

The following runtime services are also available as part of the Single UNIX
Specification, Version 3:
v dlopen(), which loads the DLL and returns a handle to be used in future

references to this DLL.
v dlclose(), which frees a DLL that was loaded with dlopen().
v dlsym(), which obtains a pointer to an exported function or exported variable.
v dlerror(), which returns information about the last DLL failure on this thread

that occurred in one of the dlopen() family of functions.

While you can use both families of explicit DLL services in a single application,
you cannot mix usage across those families. So a handle returned by dllload() can
be used only with dllqueryfn(), dllqueryvar(), or dllfree(). And a handle
returned by dlopen() can be used only with dlsym() and dlclose().

Since the dlopen() family of functions are part of the Single UNIX Specification,
Version 3, they should be used in a new application if cross-platform portability is
a concern.

For more information about the C runtime services, see z/OS XL C/C++ Runtime
Library Reference.

To explicitly call a DLL in your application:
v Determine the names of the exported functions and variables that you want to

use. You can get this information from the DLL provider's documentation or by
looking at the definition side-deck file that came with the DLL. A definition
side-deck is a directive file that contains an IMPORT control statement for each
function and variable exported by that DLL.

Dynamic link libraries (DLLs)

Chapter 3. Building and using AMODE 64 dynamic link libraries (DLLs) 15

v If you are using the dllload() family of functions, include the DLL header file
<dll.h> in your application. If you are using the dlopen() family of functions,
include the DLL header file <dlfcn.h> in your application.

v Compile your source as usual.
v Bind your object with the binder using the same AMODE value as the DLL.

Note: You do not need to bind with the definition side-deck if you are calling
the DLL explicitly with the runtime services, since there are no references from
the source code to function or variable names in the DLL for the binder to
resolve. Therefore the DLL will not be loaded until you explicitly load it with
the dllload() or dlopen() runtime service.

“Explicit use of a DLL in a C application” and “Explicit use of a DLL in a
application using the dlopen() family of functions” on page 17 are examples of
applications that use explicit DLL calls.

Explicit use of a DLL in a C application
The following example shows explicit use of a DLL in a C application.
#include <dll.h>
#include <stdio.h>
#include <string.h>

#ifdef __cplusplus
extern "C" {

#endif

typedef int (DLL_FN)(void);

#ifdef __cplusplus
}

#endif

#define FUNCTION "FUNCTION"
#define VARIABLE "VARIABLE"

static void Syntax(const char* progName) {
fprintf(stderr, "Syntax: %s <DLL-name> <type> <identifier>\n"

" where\n"
" <DLL-name> is the DLL to load,\n"
" <type> can be one of FUNCTION or VARIABLE\n"
" and <identifier> is the function or variable\n"
" to reference\n", progName);

return;
}

main(int argc, char* argv[]) {
int value;
int* varPtr;
char* dll;
char* type;
char* id;
dllhandle* dllHandle;

if (argc != 4) {
Syntax(argv[0]);
return(4);

}dll = argv[1];
type = argv[2];
id = argv[3];

dllHandle = dllload(dll);
if (dllHandle == NULL) {

perror("DLL-Load");

Dynamic link libraries (DLLs)

16 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

fprintf(stderr, "Load of DLL %s failed\n", dll);
return(8);

}

if (strcmp(type, FUNCTION)) {
if (strcmp(type, VARIABLE)) {

fprintf(stderr,
"Type specified was not " FUNCTION " or " VARIABLE "\n");

Syntax(argv[0]);
return(8);

}
/*
* variable request, so get address of variable
*/
varPtr = (int*)(dllqueryvar(dllHandle, id));
if (varPtr == NULL) {

perror("DLL-Query-Var");
fprintf(stderr, "Variable %s not exported from %s\n", id, dll);
return(8);

}
value = *varPtr;
printf("Variable %s has a value of %d\n", id, value);

}
else {

/*
* function request, so get function descriptor and call it
*/
DLL_FN* fn = (DLL_FN*) (dllqueryfn(dllHandle, id));
if (fn == NULL) {

perror("DLL-Query-Fn");
fprintf(stderr, "Function %s() not exported from %s\n", id, dll);
return(8);

}
value = fn();
printf("Result of call to %s() is %d\n", id, value);

}
dllfree(dllHandle);

return(0);
}

Explicit use of a DLL in a application using the dlopen() family of
functions

#define _UNIX03_SOURCE

#include <dlfcn.h>
#include <stdio.h>
#include <string.h>

#ifdef __cplusplus
extern "C" {

#endif

typedef int (DLL_FN)(void);

#ifdef __cplusplus
}

#endif

#define FUNCTION "FUNCTION"
#define VARIABLE "VARIABLE"

static void Syntax(const char* progName) {
fprintf(stderr, "Syntax: %s <DLL-name> <type> <identifier>\n"

" where\n"
" <DLL-name> is the DLL to open,\n"

Dynamic link libraries (DLLs)

Chapter 3. Building and using AMODE 64 dynamic link libraries (DLLs) 17

" <type> can be one of FUNCTION or VARIABLE,\n"
" and <identifier> is the symbol to reference\n"
" (either a function or variable, as determined by"
" <type>)\n", progName);

return;
}
main(int argc, char* argv[]) {

int value;
void* symPtr;
char* dll;
char* type;
char* id;
void* dllHandle;
if (argc != 4) {

Syntax(argv[0]);
return(4);

}

dll = argv[1];
type = argv[2];
id = argv[3];

dllHandle = dlopen(dll, 0);
if (dllHandle == NULL) {

fprintf(stderr, "dlopen() of DLL %s failed: %s\n", dll, dlerror());
return(8);

}

/*
* get address of symbol (may be either function or variable)
*/
symPtr = (int*)(dlsym(dllHandle, id));
if (symPtr == NULL) {

fprintf(stderr, "dlsym() error: symbol %s not exported from %s: %s\n"
, id, dll, dlerror());

return(8);
}

if (strcmp(type, FUNCTION)) {
if (strcmp(type, VARIABLE)) {

fprintf(stderr,
"Type specified was not " FUNCTION " or " VARIABLE "\n");

Syntax(argv[0]);
return(8);

}
/*
* variable request, so display its value
*/
value = *(int *)symPtr;
printf("Variable %s has a value of %d\n", id, value);

}
else {

/*
* function request, so call it and display its return value
*/
value = ((DLL_FN *)symPtr)();
printf("Result of call to %s() is %d\n", id, value);

}
dlclose(dllHandle);

return(0);
}

For more information about the DLL functions, see z/OS XL C/C++ Runtime Library
Reference.

Dynamic link libraries (DLLs)

18 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Managing DLLs when running DLL applications
This section describes how Language Environment manages loading, sharing and
freeing DLLs when you run a DLL application.

Loading DLLs
When you load an AMODE 64 DLL for the first time, either implicitly or via an
explicit dllload() or dlopen(), writable static area is initialized. If the DLL is
written in C++ and contains static objects, then their constructors are run.

You can load DLLs from a z/OS UNIX HFS as well as from conventional data sets.
The following list specifies the order of a search for unambiguous and ambiguous
file names.
v Unambiguous file names

– If the file has an unambiguous HFS name (it starts with a ./ or contains a /),
the file is searched for only in the HFS.

– If the file has an unambiguous MVS™ name, and starts with two slashes (//),
the file is only searched for in MVS.

v Ambiguous file names

For ambiguous cases, the settings for POSIX are checked.
– When specifying the POSIX(ON) runtime option, the runtime library attempts

to load the DLL as follows:
1. An attempt is made to load the DLL from the HFS. This is done using the

system service BPX4LOD. For more information on this service, see z/OS
UNIX System Services Programming: Assembler Callable Services Reference.
If the environment variable LIBPATH is set, each directory listed will be
searched for the DLL. Otherwise the current directory will be searched for
the DLL. Note that a search for the DLL in the HFS is case-sensitive.

2. If the DLL is found and contains an external link name of eight characters
or less, the uppercase external link name is used to attempt a LOAD from
the caller's MVS load library search order. If the DLL is not found or the
external link name is more than eight characters, then the load fails.

3. If the DLL is found and its sticky bit is on, any suffix is stripped off. Next,
the name is converted to uppercase, and the base DLL name is used to
attempt a LOAD from the caller's MVS load library search order. If the
DLL is not found or the base DLL name is more than eight characters, the
version of the DLL in the HFS is loaded.

4. If the DLL is found and does not fall into one of the previous two cases, a
load from the HFS is attempted.

If the DLL could not be loaded from the HFS because the file was not found
or the application doesn't have sufficient authority to search for or read that
file (that is, BPX4LOD fails with errnos ENOENT, ENOSYS, or EACCESS),
then an attempt is made to load the DLL from the caller's MVS load library
search order. For all other failures from BPX4LOD, the load of the DLL is
terminated.
- For an implicit DLL load, the error is reported with the errno and errnojr

displayed in message CEE3512S.
- For an explicit DLL load with dllload(), the service returns with the

failing errno and errnojr values set.
- For an explicit DLL load with dlopen(), the dlerror() service will return

the failing error.

Dynamic link libraries (DLLs)

Chapter 3. Building and using AMODE 64 dynamic link libraries (DLLs) 19

Correct the indicated error and re-run the application.
If the DLL could not be loaded from the HFS, an attempt is made to load the
DLL from the caller's MVS load library search order. This is done by calling
the LOAD service with the DLL name, which must be eight characters or less (it
will be converted to uppercase). LOAD searches for it in the following
sequence:
1. Runtime library services (if active)
2. Job pack area (JPA)
3. TASKLIB
4. STEPLIB or JOBLIB. If both are allocated, the system searches STEPLIB

and ignores JOBLIB.
5. LPA
6. Libraries in the linklist
For more information, see z/OS MVS Initialization and Tuning Guide

– When POSIX(OFF) is specified the sequence is reversed.
- An attempt to load the DLL is made from the caller's MVS load library

search order.
- If the DLL could not be loaded from the caller's MVS load library then an

attempt is made to load the DLL from the HFS.

Recommendation: All DLLs used by an application should be referred to by
unique names, whether ambiguous or not. Using multiple names for the same DLL
(for example, aliases or symlinks) may result in a decrease in DLL load
performance. The use of HFS symbolic links by themselves will not degrade
performance, as long as the application refers to the DLL solely through the
symbolic link name. To help ensure this, when building an application with
implicit DLL references always use the same side deck for each DLL. Also, make
sure that explicit DLL references with dllload() specify the same DLL name (case
matters for HFS loads).

Changing the search order for DLLs while the application is running (for example,
changing LIBPATH) may result in errors if ambiguous file names are used.

Sharing DLLs
DLLs are shared at the enclave level (as defined by Language Environment). A
referenced DLL is loaded only once per enclave and only one copy of the writable
static is created or maintained per DLL per enclave. Thus, one copy of a DLL
serves all modules in an enclave regardless of whether the DLL is loaded implicitly
or explicitly. A copy is implicit through a reference to a function or variable. A
copy is explicit through a DLL load. You can access the same DLL within an
enclave both implicitly and by explicit runtime services.

All accesses to a variable in a DLL in an enclave refer to the single copy of that
variable. All accesses to a function in a DLL in an enclave refer to the single copy
of that function.

Although only one copy of a DLL is maintained per enclave, multiple logical loads
are counted and used to determine when the DLL can be deleted. For a given DLL
in a given enclave, there is one logical load for each explicit dllload() or dlopen()
request. DLLs that are referenced implicitly may be logically loaded at application
initialization time if the application references any data exported by the DLL, or
the logical load may occur during the first implicit call to a function exported by
the DLL.

Dynamic link libraries (DLLs)

20 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Freeing DLLs
You can free explicitly loaded DLLs with a dllfree() or dlclose() request. This
request is optional because the DLLs are automatically deleted by the runtime
library when the enclave is terminated.

Implicitly loaded DLLs cannot be deleted from the DLL application code. They are
deleted by the runtime library at enclave termination. Therefore, if a DLL has been
both explicitly and implicitly loaded, the DLL can only be deleted by the runtime
when the enclave is terminated.

Creating a DLL or a DLL application
Building an AMODE 64 DLL or a DLL application is similar to creating a C or C++
application. It involves the following steps:
1. Writing your source code
2. Compiling your source code
3. Binding your object modules

See z/OS XL C/C++ Programming Guide for additional language-specific details.

Building a DLL
This section shows how to build a DLL. See “Building a DLL application” on page
26 for information about building a DLL application.

Writing your C DLL code
To build a C DLL, write code using the #pragma export directive to export specific
external functions and variables as shown in Figure 3.

For the previous example, the functions bopen(), bclose(), bread(), and bwrite()
are exported; the variable berror is exported; and the variable buffer is not
exported.

#pragma export(bopen)
#pragma export(bclose)
#pragma export(bread)
#pragma export(bwrite)
int bopen(const char* file, const char* mode) {

...
}
int bclose(int) {

...
}
int bread(int bytes) {

...
}
int bwrite(int bytes) {

...
}
#pragma export(berror)
int berror;
char buffer[1024];

...

Figure 3. Using #pragma export to create a DLL executable module named BASICIO

Dynamic link libraries (DLLs)

Chapter 3. Building and using AMODE 64 dynamic link libraries (DLLs) 21

Note: To export all defined functions and variables with external linkage in the
compilation unit to the users of the DLL, compile with the EXPORTALL compile
option. All defined functions and variables with external linkage will be accessible
from this DLL and by all users of this DLL. However, exporting all functions and
variables has a performance penalty, especially when compiling with the C/C++
IPA option. When you use EXPORTALL you do not need to include #pragma export
in your code.

Writing your C++ DLL code
To create a C++ DLL:
v Ensure that classes and class members are exported correctly, especially if they

use templates.
v Use _Export or the #pragma export directive to export specific functions and

variables.
For example, to create a DLL executable module TRIANGLE, export the
getarea() function, the getperim() function, the static member objectCount and
the static constructor for class triangle using #pragma export:

v Do not inline the function if you apply the _Export keyword to the function
declaration.

v Always export static constructors and destructors when using the _Export
keyword.

v Apply the _Export keyword to a class. This keyword automatically exports static
members and defined functions of that class, constructors, and destructors.

_class Export triangle
{

public:
static int objectCount;

class triangle : public area
{

public:
static int objectCount;
getarea();
getperim();
triangle::triangle(void);

};
#pragma export(triangle::objectCount)
#pragma export(triangle::getarea())
#pragma export(triangle::getperim())
#pragma export(triangle::triangle(void))

Figure 4. Using #pragma export to create a DLL executable module triangle

class triangle : public area
{

public:
static int _Export objectCount;
double _Export getarea();
double _Export getperim();
_Export triangle::triangle(void);

};

Figure 5. Using _export to create DLL executable module triangle

Dynamic link libraries (DLLs)

22 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

double getarea();
double getperim();
triangle::triangle(void);

};

v To export all external functions and variables in the compilation unit to the users
of this DLL, you can also use the compiler option EXPORTALL. This compiler
option is described in z/OS XL C/C++ User's Guide, and #pragma export
directives are described in detail in z/OS XL C/C++ Language Reference. If you use
the EXPORTALL option, you do not need to include #pragma export or _Export in
your code.

Writing your Language Environment-conforming AMODE 64
assembler DLL code

To build an assembler DLL, your assembler routine must conform to Language
Environment conventions for AMODE 64 applications. To do this, begin by using
the Language Environment macros CELQPRLG and CELQEPLG. The EXPORT=
keyword parameter on the CELQPRLG macro allows you to identify specific
assembler entry points for export. The CEEPDDA macro allows you to define data
in your assembler routine that can be exported. Details on all Language
Environment assembler macros are in Chapter 21, “Assembler considerations,” on
page 145.

The following code shows how to use Language Environment macros to create an
AMODE 64 assembler DLL.
DLLFUNC CELQPRLG EXPORT=YES,PSECT=ADLA6EVP
DLLFUNC ALIAS C’dllfunc64’
* Symbolic Register Definitions and Usage
R3 EQU 3 RETURN VALUE
R5 EQU 5 ENVIRONMENT
R6 EQU 6 ENTRY POINT ADDRESS
R7 EQU 7 RETURN POINT ADDRESS
R8 EQU 8 Work register
R9 EQU 9 Work register
R15 EQU 15 Entry point address
*

WTO ’ADLL6EV2: Exported function dllfunc64 entered’,ROUTCDE=11
*

WTO ’ADLL6EV2: Setting DllVar64 to 456’,ROUTCDE=11*
CEEPLDA DllVar64,REG=9
LA R8,456
ST R8,0(R9)

*
WTO ’ADLL6EV2: Truncating exported string to "Hello"’, X

ROUTCDE=11
*

CEEPLDA DllStr64,REG=9
LA R8,0
STC R8,5(R9)

*
WTO ’ADLL6EV2: Done.’,ROUTCDE=11

*
SR R3,R3

RETURN DS 0H
CELQEPLG

*
CEEPDDA DllVar64,SCOPE=EXPORT
DC A(123)
CEEPDDA END
CEEPDDA DllStr64,SCOPE=EXPORT
DC C’Hello World’
DC X’00’

Dynamic link libraries (DLLs)

Chapter 3. Building and using AMODE 64 dynamic link libraries (DLLs) 23

CEEPDDA END
*

LTORG
CEEDSAHP CEEDSA SECTYPE=XPLINK

CEECAA
*

END DLLFUNC

The CELQPRLG prolog macro has EXPORT=YES specified to mark this entry point
exported. In this particular case we want the exported function known externally
in lower case, so the CELQPRLG macro is followed by an assembler ALIAS
statement. The ALIAS can be used to nam" the exported function with a
mixed-case name up to 256 characters long. This assembler DLL also has two
exported variables, DllVar64 (intial value = 123) and DllStr64 (initial value is the C
string "Hello World"). When the exported function dllfunc64 is called, it sets
"DllVar64" to 456 and truncates the "DllStr64" C string to "Hello".

For more information about the macros, see Chapter 21, “Assembler
considerations,” on page 145.

Compiling the DLL code
For C or C++ source, compile with the LP64 compiler option. There is no additional
option when compiling with LP64 to generate “DLL-enabled code.” All AMODE 64
C and C++ code is automatically enabled for DLLs.

Note: DLLs must be reentrant; you must use the RENT C compiler option (C++ is
always reentrant).

For assembler source, you must use the GOFF option.

Binding the DLL code
Use the DLL support in the DFSMS binder, for linking AMODE 64 DLL
applications. Note that binder-based AMODE 64 DLLs must reside in PDSEs,
rather than PDS data sets. When binding a DLL application using the DFSMS
binder, the following binder externals are used:
v The binder option CASE(MIXED) is required when binding DLLs that use

mixed-case exported names.
v The binder options RENT, DYNAM(DLL), and COMPAT(PM4) or

COMPAT(CURRENT) are required.
v When binding a DLL, a SYSDEFSD DD statement must be specified, indicating

the data set where the binder should create a DLL definition side-deck. The DLL
definition side-deck contains IMPORT control statements for each of the symbols
exported by a DLL. If you are using z/OS UNIX, specify the following option
for the bind step for c89 or the c++ command:
-W l,DLL

v The binder SYSLIN input, the binding code that references DLL code, must
include the DLL definition side-decks for the DLLs that are to be dynamically
referenced from the module being bound. See z/OS MVS Program Management:
User's Guide and Reference for further details.

Binding C
When binding the C object module as shown in Figure 3 on page 21, the binder
generates the following definition side-deck:

Dynamic link libraries (DLLs)

24 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

IMPORT CODE64 ’BASICIO’ bopen
IMPORT CODE64 ,BASICIO, bclose
IMPORT CODE64 ,BASICIO, bread
IMPORT CODE64 ,BASICIO, bwrite
IMPORT DATA64 ,BASICIO, berror

You can edit the definition side-deck to remove any functions or variables that you
do not want to export. For instance, in the above example, if you do not want to
expose berror, remove the control statement IMPORT DATA64 ,BASICIO, berror
from the definition side-deck.

Note:

1. You should also provide a header file containing the prototypes for exported
functions and external variable declarations for exported variables.

2. Side-decks are created without newline characters, therefore you cannot edit
them with an editor that expects newline characters, such as vi in z/OS UNIX.

For more information on binding C, see z/OS XL C/C++ User's Guide.

Binding C++
When binding the C++ object modules shown in Figure 4 on page 22, the binder
generates the following definition side-deck.
IMPORT CODE64 ,TRIANGLE, getarea__8triangleFv
IMPORT CODE64 ,TRIANGLE, getperim__8triangleFv
IMPORT CODE64 ,TRIANGLE, __ct__8triangleFv

You can edit the definition side-deck to remove any functions and variables that
you do not want to export. In the above example, if you do not want to expose
getperim(), remove the control statement IMPORT CODE64 ,TRIANGLE,
getperim__8triangleFv from the definition side-deck.

Note:

1. Removing functions and variables from the definition side-deck does not
minimize the performance impact caused by specifying the EXPORTALL
complier option.

2. Side-decks are created without newline characters, therefore you cannot edit
them with an editor that expects newline characters, such as vi in z/OS UNIX.

The definition side-deck contains mangled names, such as getarea__8triangleFv.
To find the original function or variable name in your source module, review the
compiler listing created or use the CXXFILT utility. This will permit you to see both
the mangled and demangled names. For more information on the CXXFILT utility,
and on binding C++, see z/OS XL C/C++ User's Guide.

Binding assembler
When binding the assembler object module as shown in “Writing your Language
Environment-conforming AMODE 64 assembler DLL code” on page 23, the binder
generates the following definition side-deck:
IMPORT CODE64,’ADLL6EV2’,’dllfunc64’
IMPORT DATA64,’ADLL6EV2’,’DllStr64’
IMPORT DATA64,’ADLL6EV2’,’DllVar64’

Dynamic link libraries (DLLs)

Chapter 3. Building and using AMODE 64 dynamic link libraries (DLLs) 25

Building a DLL application
The DLL application may consist of multiple source modules. Some of the source
modules may contain references to imported functions, imported variables, or both.

To use a load-on-call DLL in your DLL application, perform the following steps:
1. Write the DLL application code. Write it as you would if the functions were

statically bound. Assembler code that will access imported functions and/or
imported variables must use the Language Environment macros.

2. Compile the DLL application code.
v Compile the C source files with the following compiler options:

– LP64

– RENT

– LONGNAME

These options instruct the compiler to generate special code when calling
functions and referencing external variables.

v Compile your C source files with the following compiler options:
v Compile your C++ source files with the LP64 compiler option.
v Assembler DLL application source files must be assembled with the GOFF

option.
3. Bind the DLL application code.

v The binder option CASE(MIXED) is required when binding DLL applications
that use mixed-case exported names.

v The binder options RENT, DYNAM(DLL), and COMPAT(PM4) or COMPAT(CURRENT)
are required.

Include the definition side-deck from the DLL provider in the set of object
modules to bind. The binder uses the definition side-deck to resolve references
to functions and variables defined in the DLL. If you are referencing multiple
DLLs, you must include multiple definition side-decks.

Note: Because definition side-decks in automatic library call (autocall)
processing will not be resolved, you must use the INCLUDE statement.

After final autocall processing of DD SYSLIB is complete, all DLL-type references
that are not statically resolved are compared to IMPORT control statements. Symbols
on IMPORT control statements are treated as definitions, and cause a matching
unresolved symbol to be considered dynamically rather than statically resolved. A
dynamically resolved symbol causes an entry in the binder B_IMPEXP to be created.
If the symbol is unresolved at the end of DLL processing, it is not accessible at run
time.

Addresses of statically bound symbols are known at application load time, but
addresses of dynamically bound symbols are not. Instead, the runtime library that
loads the DLL that exports those symbols finds their addresses at application run
time. The runtime library also fixes up the importer's linkage blocks (descriptors)
in C_WSA64 during program execution.

The following code fragment illustrates how a C++ application can use the
TRIANGLE DLL described previously (see “Writing your C++ DLL code” on page
22). Compile normally and bind with the definition side-deck provided with the
TRIANGLE DLL.

Dynamic link libraries (DLLs)

26 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

The following code fragment illustrates how an assembler routine can use the
ADLL6EV2 DLL described previously (see “Writing your Language
Environment-conforming AMODE 64 assembler DLL code” on page 23). Assemble
and bind with the definition side-deck provided with the ADLL6EV2 DLL.

See Figure 7 on page 28 for a summary of the processing steps required for the
application (and related DLLs).

Creating and using DLLs
Figure 7 on page 28 summarizes the use of DLLs for both the DLL provider and
for the writer of applications that use them. In this example, application ABC is
referencing functions and variables from two DLLs, XYZ and PQR. The connection
between DLL preparation and application preparation is shown. Each DLL shown

extern int getarea(); /* function prototype */
main () {

...
getarea(); /* imported function reference */
...

}

DLLAPPL CELQPRLG PSECT=ADLA6IFP
*
R3 EQU 3 RETURN VALUE
R5 EQU 5 ENVIRONMENT
R6 EQU 6 ENTRY POINT ADDRESS
R7 EQU 7 RETURN POINT ADDRESS
R8 EQU 8 WORK REGISTER
R9 EQU 9 WORK REGISTER
*

WTO ’ADLA6IV4: Calling imported function dllfunc64’,ROUTCDE=11
*

CELQCALL dllfunc64,WORKREG=10
*

WTO ’ADLA6IV4: Getting address of imported var DllVar64’, X
ROUTCDE=11

*
CEEPLDA DllVar64,REG=9

*
* Set value of imported variable to 789
*

LA R8,789
ST R8,0(,R9)

*
WTO ’ADLA6IV4: Done.’,ROUTCDE=11

*
SR R3,R3

RETURN DS 0H
CELQEPLG

*
CEEPDDA DllVar64,SCOPE=IMPORT
LTORG

CEEDSAHP CEEDSA SECTYPE=XPLINK
CEECAA

*
END DLLAPPL

Figure 6. Assembler DLL application calling an assembler DLL

Dynamic link libraries (DLLs)

Chapter 3. Building and using AMODE 64 dynamic link libraries (DLLs) 27

contains a single compilation unit. The same general scheme applies for DLLs
composed of multiple compilation units, except that they have multiple compiles
and a single bind for each DLL. For simplicity, this example assumes that ABC
does not export variables or functions and that XYZ and PQR do not use other
DLLs.

DLL restrictions
Consider the following restrictions when creating DLLs and DLL applications:

DLL DLLAPPLICATION

DLL Source:

hooVar definition
kooVar definition
foo() definition
goo() definition

DLL Source:

rooVar definition
sooVar definition
boo() definition
soo() definition

XYZ.c

XYZ.obj

XYZ.objdef

ABC.c

ABC.obj

PQR.c

PQR.obj

PQR.objdef

Compile with
EXPORTALL, DLL

Compile
with
DLL

Compile with
EXPORTALL, DLL

DLL TEXT DLL TEXTAPPL TEXT

Import code 'XYZ' foo
Import code 'XYZ' goo
Import data 'XYZ hooVar
Import data 'XYZ' kooVar

Import code 'PQR' boo
Import code 'PQR' soo
Import data 'PQR' rooVar
Import data 'PQR' sooVar

Link

Bind

XYZ.pobj ABC.pobj PQR.pobj

DLL program DLL programApplication program

foo() ref
goo() ref
boo() ref
hooVar ref
kooVar ref
rooVar ref

Application Source:

Bind Bind

Figure 7. Summary of DLL and DLL application preparation and usage

Dynamic link libraries (DLLs)

28 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

v The AMODE of a DLL application must be the same as the AMODE of the DLL
that it calls. For the case described here, that means both the DLL and DLL
application must be AMODE 64. There is no support for mixing AMODE 64
with either AMODE 31/AMODE 24 applications.

v DLLs must be REENTRANT. Be sure to specify the RENT option when you bind
your code. Unpredictable results will occur if you bind a DLL as NORENT. One
possible symptom you may see that indicates the DLL was bound as NORENT
is more than one writable static area for the same DLL.

v In a C/C++ DLL application that contains main(), main() cannot be exported.
v In C++ applications, you cannot implicitly or explicitly perform a physical load

of a DLL while running static destructors. However, a logical load of a DLL
(meaning that the DLL has previously been loaded into the enclave) is allowed
from a static destructor. In this case, references from the load module containing
the static destructor to the previously-loaded DLL are resolved.

v You cannot use the C functions set_new_handler() or set_unexpected() in a
DLL if the DLL application is expected to invoke the new handler or unexpected
function routines.

v When using the explicit C DLL functions in a multithreaded environment, avoid
any situation where one thread frees a DLL while another thread calls any of the
DLL functions. For example, this situation occurs when a main() function uses
dllload() or dlopen() to load a DLL, and then creates a thread that uses the
ftw() function. The ftw() target function routine is in the DLL. If the main()
function uses dllfree() or dlclose() to free the DLL, but the created thread
uses ftw() at any point, you will get an abend.
To avoid a situation where one thread frees a DLL while another thread calls a
DLL function, do either of the following:
– Do not free any DLLs by using dllfree() or dlclose() (Language

Environment will free them when the enclave is terminated).
– Have the main() function call dllfree() or dlclose() only after all threads

have been terminated.
v For C/C++ DLLs to be processed by IPA, they must contain at least one function

or method. Data-only DLLs will result in a compilation error.
v The use of circular C++ DLLs may result in unpredictable behavior related to

the initialization of non-local static objects. For example, if a static constructor
(being run as part of loading DLL "A") causes another DLL "B" to be loaded,
then DLL "B" (or any other DLLs that "B" causes to be loaded before static
constructors for DLL "A" have completed) cannot expect non-local static objects
in "A" to be initialized (that is what static constructors do). You should ensure
that non-local static objects are initialized before they are used, by coding
techniques such as counters or by placing the static objects inside functions.

Improving performance
This section contains some hints on using DLLs efficiently. Effective use of DLLs
may improve the performance of your application.
v If you are using a particular DLL frequently across multiple address spaces, the

DLL can be installed in dynamic LPA. Installing in dynamic LPA may give you
the performance benefits of a single rather than multiple load of the DLL.

v Group external variables into one external structure.
v When using z/OS UNIX avoid unnecessary load attempts.

Dynamic link libraries (DLLs)

Chapter 3. Building and using AMODE 64 dynamic link libraries (DLLs) 29

Language Environment supports loading a DLL residing in the HFS or a data
set. However, the location from which it tries to load the DLL first varies
depending whether your application runs with the runtime option POSIX(ON) or
POSIX(OFF).
If your application runs with POSIX(ON), Language Environment tries to load the
DLL from the HFS first. If your DLL is a data set member, you can avoid
searching the HFS directories. To direct a DLL search to a data set, prefix the
DLL name with two slashes (//) as is in the following example:
//MYDLL

If your application runs with POSIX(OFF), Language Environment tries to load
your DLL from a data set. If your DLL is an HFS file, you can avoid searching a
data set. To direct a DLL search to the HFS, prefix the DLL name with a period
and slash (./) as is done in the following example.
./mydll

Note: DLL names are case sensitive in the HFS. If you specify the wrong case
for your DLL that resides in the HFS, it will not be found.

v For C/C++ IPA, you should only export subprograms (functions and C++
methods) or variables that you need for the interface to the final DLL. If you
export subprograms or variables unnecessarily (for example, by using the
EXPORTALL option), you severely limit IPA optimization. In this case, global
variable coalescing and pruning of unreachable or 100% inlined code does not
occur. To be processed by IPA, DLLs must contain at least one subprogram.
Attempts to process a data-only DLL will result in a compilation error.

Dynamic link libraries (DLLs)

30 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Chapter 4. Binding, loading, and running under batch

You process an AMODE 64 application under batch by submitting batch jobs to the
operating system. A job might consist of one or more of the following job steps:
v Compiling a program
v Binding an application
v Running an application

IBM-supplied cataloged procedures allow you to compile, bind or load, and run an
application without supplying all the job control language (JCL) required for a job
step. For information about cataloged procedures for AMODE 64 applications, see
z/OS XL C/C++ User's Guide . If the statements in the cataloged procedures do not
match your requirements exactly, you can modify them or add new statements for
the duration of a job.

The following section provides an overview of binding, loading, and running
Language Environment-conforming applications under batch. For detailed
information about binding, see z/OS MVS Program Management: User's Guide and
Reference.

z/OS UNIX has its own section on binding, loading, and running C applications
(see Chapter 5, “Binding and executing AMODE 64 programs using z/OS UNIX,”
on page 39).

Basic binding and running under batch
This section describes how to accept and to override the default Language
Environment runtime options under MVS.

Specifying runtime options in the EXEC statement
You can pass runtime options by using the PARM= parameter in your JCL. The
general form for specifying runtime options in the PARM parameter of the EXEC
statement is:
//[stepname] EXEC PGM=program_name,
// PARM=’[runtime options/][program parameters]’

For example, if you want to generate a storage report and runtime options report
for an AMODE 64 program named PROGRAM1, specify the following:
//GO1 EXEC PGM=PROGRAM1,PARM=’RPTSTG(ON),RPTOPTS(ON)/’

The runtime options that are passed to the main routine must be followed by a
slash (/) to separate them from program parameters. For HLL considerations to
keep in mind when specifying runtime options, see “Specifying runtime options
and program arguments” on page 47. The EXECOPS option for C and C++ is used
to specify that runtime options passed as parameters at execution time are to be
processed by Language Environment. The option NOEXECOPS specifies that
runtime options are not to be processed from execution parameters and are to be
treated as program parameters.

© Copyright IBM Corp. 2004, 2013 31

For z/OS XL C/C++, a user can specify either EXECOPS or NOEXECOPS in a
#pragma runopts directive or as a compiler option. EXECOPS is the default for
z/OS XL C/C++. When EXECOPS is in effect, you can pass runtime options in the
EXEC statement in your JCL.

Specifying runtime options with the CEEOPTS DD card
Language Environment supports the ability to provide additional runtime options
through a DD card. The name of the DD must be CEEOPTS. The DD must be
available during intialization of the "enclave" so that the options can be merged.

The "Last Where Set" column of the Language Environment Run-Time Options
report uses DD:CEEOPTS to indicate that CEEOPTS was the last time this option
was set.

The CEEOPTS DD is ignored for programs invoked using one of the exec() family
of functions.

For more information, see “CEEOPTS DD syntax” on page 48.

Providing bind input
Input to the bind process can be:
v One or more object modules
v Control statements for the bind process
v Previously bound AMODE 64 executable programs you want to combine into a

single AMODE 64 executable module
v A DLL side-deck if your application implicitly references DLL functions or data

Figure 8 shows the basic batch bind process for your application.

Binder

Object
Module

Language
Environment
resident
libraries

User
libraries
(if required)

SYSLIB
(automatic
call library)

SYSLIN
(primary input)

Executable
Program

SYSLMOD
(load module library)

Figure 8. Basic batch bind processing

Running under batch

32 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Writing JCL for the bind process
You can use cataloged procedures rather than supply all the JCL required for a job
step. You can use JCL statements to override the statements of the cataloged
procedure to tailor the information provided by the bind process.

For a description of the IBM-supplied cataloged procedures that include a bind
step, see z/OS XL C/C++ User's Guide

v Invoking with the EXEC Statement
Use the EXEC job control statement in your JCL to invoke the binder. The EXEC
statement is:
//LKED EXEC PGM=IEWL

v Using the PARM Parameter
Use the PARM parameter of the EXEC job control statement to select one or
more of the optional facilities provided by the binder. For example, if you want
a mapping of the AMODE 64 executable program produced by the bind process,
specify:
//LKED EXEC PGM=IEWL,PARM=’MAP’

For a description of bind options, see “Bind options” on page 36.
v Required DD Statements

The bind process requires three standard data sets. You must define these data
sets in DD statements with the ddnames SYSLIN, SYSLMOD, and SYSPRINT.
The required data sets and their characteristics are shown in Table 4.

Table 4. Required data sets used for binding

ddname Type Function

SYSLIN Input Primary input to the bind process consists of a sequential
data set, members from a PDS or PDSE, or an in-stream
data set. The primary input must be composed of one or
more separately compiled object modules or bind control
statements. An executable program cannot be part of the
primary input, although it can be introduced by the
INCLUDE control statement (see “Using the INCLUDE
statement” on page 35).

SYSLMOD Output The data set where output (executable program) from the
bind process is stored. It must be a PDSE or a file in the
HFS (using PATH=).

SYSPRINT Output SYSPRINT defines the location for the listing that includes
reference tables for the executable program.

Output from the bind process:

v Diagnostic messages

v Informational messages

v Module map

v Cross-reference list

v Optional DD Statements
If you want to use the automatic call library, you must define a data set using a
DD statement with the name SYSLIB. You can also specify additional data sets
containing object modules and AMODE 64 executable programs as additional
input to the bind process. These data set names and their characteristics are
shown in Table 5 on page 34.

Running under batch

Chapter 4. Binding, loading, and running under batch 33

Table 5. Optional data sets used for binding

ddname Type Function

SYSLIB1 Library Secondary input to the binder consists of object modules or
load modules that are included in the executable program
from the automatic call library. The automatic call library
contains load modules or object modules that are used as
secondary input to the binder to resolve external symbols
left undefined after all the primary input has been
processed. The automatic call library can include:

v Libraries that contain object modules, with or without
binder control statements

v Libraries that contain executable programs

v The libraries that contain the Language Environment
resident routines. For a description of this data set see
“Planning to bind and run” on page 7).

SYSLIB is input to the binder only if the CALL=NO bind
option is not in effect (see Table 6 on page 36, in z/OS MVS
Program Management: User's Guide and Reference, or z/OS
TSO/E Command Reference for more information). You can
also identify secondary input to the binder with the
INCLUDE statement.

A routine compiled with a Language Environment-
conforming compiler cannot be executed until the
appropriate Language Environment resident routines have
been linked into the executable program. The Language
Environment resident routines are contained in the
SCEEBND2 library; the data set name could be
CEE.SCEEBND2. If you are unsure where SCEEBND2 has
been installed at your location, contact your system
administrator. This data set must be specified in the SYSLIB
statement in your JCL.

In the following example, the SYSLIB DD statement is
written so that Language Environment resident library
routines are included as secondary input into your
executable program:

//SYSLIB DD DSNAME=CEE.SCEEBND2,DISP=SHR

User-specified2 Input You can use ddnames to get additional executable
programs and object modules.

Notes:
1 Required for library runtime routines
2 Optional data set

v Examples of bind JCL
A typical sequence of job control statements for binding an object module
(compiled with LP64) into an AMODE 64 executable program is shown in
Figure 9 on page 35. The ENTRY binder control statement in the figure identifies
CELQSTRT as the entry point for the AMODE 64 executable program. The
NAME binder control statement in the figure puts PROGRAM1 in
USER.LOADLIB with the member name PROGRAM1.

Running under batch

34 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

v Adding Members to a Library
The output from the binder is usually placed in a private program library.
The automatic call library that is used as input to the binder can be a Language
Environment library (SCEEBND2 for AMODE 64 applications), a compiler
library, a private program library, or a subroutine library.
When you are adding a member to a library, you must specify the member
name as follows:
– When a single module is produced as output from the binder, the member

name can be specified as part of the data set name in the SYSLMOD.
– When more than one module is produced as output from the binder, the

member name for each module must be specified in the NAME option or the
NAME control statement. The member name cannot be specified as part of
the data set name.

Binder control statements
The following sections describe when and how to use the INCLUDE and LIBRARY
control statements with the binder.

Using the INCLUDE statement
Use the INCLUDE control statement to specify additional object modules or
AMODE 64 executable programs that you want included in the output executable
program. Figure 10 contains an example of how to bind the CELQUOPT CSECT
with your application. In the example, CELQUOPT is used to establish application
runtime option defaults; see Chapter 6, “Using runtime options,” on page 45 for
more information.

//LKED64X EXEC PGM=IEWL,REGION=20M,
// PARM=’AMODE=64,RENT,DYNAM=DLL,CASE=MIXED,MAP,LIST=NOIMP’
//SYSPRINT DD SYSOUT=*
//SYSLMOD DD DSNAME=USER.PDSELIB,UNIT=SYSALLDA,
// DISP=(NEW,KEEP),SPACE=(TRK,(7,7,1)),DSNTYPE=LIBRARY
//SYSLIB DD DSNAME=CEE.SCEEBND2,DISP=SHR
//SYSLIN DD DSNAME=USER.OBJLIB(PROGRAM1),DISP=SHR
// DD DSNAME=CEE.SCEELIB(CELQS003),DISP=SHR
//SYSDEFSD DD DUMMY
//SYSIN DD *

ENTRY CELQSTRT
NAME PROGRAM1(R)

/*

Figure 9. Creating an AMODE 64 executable program under batch

//SYSLIB DD DSNAME=CEE.SCEEBND2,DISP=SHR
//SYSLIN DD DSNAME=USER.OBJLIB(PROGRAM1),DISP=SHR
// DD DDNAME=SYSIN
//SYSIN DD *

INCLUDE SYSLIB(CELQUOPT)...
/*

Figure 10. Using the INCLUDE binder control statement

Running under batch

Chapter 4. Binding, loading, and running under batch 35

Using the LIBRARY statement
Use the LIBRARY statement to direct the binder to search a library other than that
specified in the SYSLIB DD statement. This method resolves only external
references that are listed on the LIBRARY statement. All other unresolved external
references are resolved from the library in the SYSLIB DD statement.

In Figure 11 the LIBRARY statement is used to resolve the external reference
PROGRAM2 from the library that is described in the TESTLIB DD statement.

Data sets specified by the INCLUDE statement are incorporated as the binder
encounters the statement. In contrast, data sets specified by the LIBRARY
statement are used only when there are unresolved references after all the other
input is processed.

Bind options
SYSLMOD and SYSPRINT are the data sets used for output. The output varies,
depending on the options you select, as shown in Table 6. The underlined options
are the defaults.

Table 6. Selected bind options

Option Function

XREF | NOXREF Specifies if a cross-reference list of data variables is generated.

LIST | NOLIST Specifies if a listing of the bind control statements is generated

NCAL | CALL Specifies if the automatic library call mechanism should be
used to locate the modules referred to by the executable
program being processed. Use the NCAL command to suppress
resolution of external differences.

If you do not specify NCAL, the automatic call library
mechanism is used to locate the modules referred to by the
executable program being processed. Do not use NCAL if your
application calls external routines that need to be resolved by
an automatic library call.

PRINT | NOPRINT Specifies if bind messages are written on the data set defined
by the SYSLOUT DD statement.

MAP | NOMAP Specifies if a map of the load modules is generated and placed
in the PRINT data set.

RENT | NORENT Specifies if a module is reenterable, that is it can be executed
by more than one task at a time. A task may begin executing
the module before a previous task has completed execution. See
Chapter 8, “Making your application reentrant,” on page 59 for
additional information.

//SYSLIN DD DSNAME=USER.OBJLIB(PROGRAM1),DISP=SHR
// DD DDNAME=SYSIN
//TESTLIB DD DSNAME=USER.TESTLIB,DISP=SHR
//SYSIN DD *

LIBRARY TESTLIB(PROGRAM2)...
/*

Figure 11. Using the LIBRARY binder control statement

Running under batch

36 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

You always receive diagnostic and informational messages as the result of binding,
even if you do not specify any options. You can get the other output items by
specifying options in the PARM parameter of the EXEC statement in your JCL for
binding. See “Writing JCL for the bind process” on page 33 for more information.

For more information about bind options, see z/OS MVS Program Management:
User's Guide and Reference.

Running an AMODE 64 application under batch
Under batch, you can request the execution of an AMODE 64 executable program
in an EXEC statement in your JCL. The EXEC statement marks the beginning of
each step in a job or procedure, and identifies the executable program or cataloged
procedure that executes.

The general form of the EXEC statement is:
//[stepname] EXEC PGM=program_name

The program_name is the name of the member or alias of the program to be
executed. The specified program must be one of the following:
v An executable program that is a member of a private library specified in a

STEPLIB DD statement in your JCL.
v An executable program that is a member of a private library specified in a

JOBLIB DD statement in your JCL.
v An executable program that has been loaded into shared system storage using

dynamic LPA.
v An executable program that is a member of a system library. Examples of system

libraries are SYS1.LINKLIB and libraries specified in the LNKLST.

Unless you have indicated that the executable program is in a private library, it is
assumed that the executable program is in a system library and the system
libraries are searched for the name you specify.

Program library definition and search order
You can define the library in a DD statement in the following ways:
v With the ddname STEPLIB at any point in the job step. The STEPLIB is searched

before any system library or JOBLIB specified in a JOBLIB DD statement for the
job step in which it appears (although an executable program can also be passed
to subsequent job steps in the usual way). When a STEPLIB and JOBLIB are both
present, the STEPLIB is searched for the step in which it appears and, for that
step, the JOBLIB is ignored.
The system searches for executable programs in the following order of
precedence:
1. Library specified in STEPLIB statement
2. Library specified in JOBLIB statement
3. LPA or ELPA
4. The system library SYS1.LINKLIB and libraries concatenated to it through

the active LNKLSTxx member of SYS1.PARMLIB
In the following example, the system searches USER.PDSELIB for the routine
PROGRAM1 and USER.PDSELIB2 for the routine PROGRAMA:
//JOB8 JOB DAVE,MSGLEVEL=(2,0)
//STEP1 EXEC PGM=PROGRAM1
//STEPLIB DD DSNAME=USER.PDSELIB,DISP=SHR

Running under batch

Chapter 4. Binding, loading, and running under batch 37

//*
//STEP2 EXEC PGM=PROGRAMA
//STEPLIB DD DSNAME=USER.PDSELIB2,DISP=SHR

v With the ddname JOBLIB immediately after the JOB statement in your JCL. This
library is searched before the system libraries. If any AMODE 64 executable
program is not found in the JOBLIB, the system looks for it in the system
libraries.
In the following example, the system searches the private library USER.PDSELIB
for the member PROGRAM1, reads the member into storage, and executes it.
//JOB8 JOB DAVE,MSGLEVEL=(2,0)
//JOBLIB DD DSNAME=USER.PDSELIB,DISP=SHR
//STEP1 EXEC PGM=PROGRAM1

Specifying runtime options under batch
Each time your application runs, a set of runtime options must be established.
These options determine many of the properties of how the application runs,
including its performance, error handling characteristics, storage management, and
production of debugging information. Under batch, you can specify runtime
options in any of the following places (for additional information about the ways
to specify runtime options, see “Methods available for specifying runtime options”
on page 45):
v In the CELQROPT CSECT, where region-level default options are specified (for

more information, see z/OS Language Environment Customization).
v In the CELQUOPT CSECT where user-supplied default options are located (for

more information, see “Creating application runtime option defaults with
CEEXOPT” on page 48).

v In the CEEPRMxx parmlib member, where system-level defaults are specified
(for more information, see z/OS Language Environment Customization).

v #pragma runopts in C/C++ source code (for more information, see “Methods
available for specifying runtime options” on page 45).

v In the PARM parameter of the EXEC statement in your JCL.
v In z/OS on the GPARM parameter of the IBM-supplied cataloged procedure (for

more information, see z/OS XL C/C++ User's Guide).
v In the _CEE_RUNOPTS environment variable, when your application is running

under z/OS UNIX and is invoked by one of the exec or spawn family of
functions.

Running under batch

38 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Chapter 5. Binding and executing AMODE 64 programs using
z/OS UNIX

The interface to the binder for z/OS UNIX System Services (z/OS UNIX) C
applications is the z/OS UNIX c89 utility or the cc command, and for C++
applications it is the c++ command. You can use them to compile and bind a z/OS
UNIX C/C++ program in one step, or bind application object modules after the
compilation. You must, however, invoke one of the z/OS UNIX shell keywords
before you can issue the c89 utility. For more information about using the utility
and these commands, see z/OS UNIX System Services Command Reference.

For more information about compiling your XL C/C++ applications, see z/OS XL
C/C++ User's Guide.

Basic binding and running C/C++ applications under z/OS UNIX
z/OS UNIX supports the following environments for running your z/OS UNIX
C/C++ AMODE 64 applications:
v TSO/E in the z/OS UNIX shell
v Batch
v The z/OS UNIX shell through MVS batch

Using the z/OS UNIX-supplied c89 utility or cc command or c++ command, you
can compile and bind a z/OS UNIX C/C++ application in one step, or bind
application object modules separately. To produce an executable file, issue c89 and
pass it object modules (file.o HFS files or //file.OBJ MVS data sets) without using the
-c option.

See z/OS UNIX System Services Command Reference for information about the c89
utility.

Invoking a shell from TSO/E
To begin a z/OS UNIX shell session, you first log on to TSO/E and then invoke
the TSO/E OMVS command. This starts a login shell, from which you can enter
shell commands.

You can also login with rlogin or telnet.

See z/OS UNIX System Services User's Guide for more information about starting a
shell session.

Using the c89 utility to bind and create AMODE 64 executable files
To bind a z/OS UNIX C/C++ application's object modules to produce an AMODE
64 executable file, specify the utility and pass it object modules (file.o HFS files or
//file.OBJ MVS data sets). The utility recognizes that these are object modules
produced by previous C/C++ compilations and does not invoke the compiler for
them.

© Copyright IBM Corp. 2004, 2013 39

To compile source files without binding them, use the -c option to create object
modules only. You can use the -o option with the command to specify the name
and location of the executable file to be created.

For a complete description of all the options, see z/OS UNIX System Services
Command Reference.
v To bind an AMODE 64 application object module to create the mymod64.out

executable file in the current directory, specify:
c89_64 -o mymod64.out usersource.o

Invoking c89_64 is specific to the xlc utility. The path must include the location
where the xlc utility is installed because the xlc utility is not installed in the
/bin directory.

v To bind an AMODE 64 application object module to create the default executable
file a.out in the working directory, specify:
c89 -Wl,lp64 usersource.o

v To bind an AMODE 64 application object module to create the mymod.out
executable file in the app/bin directory, relative to your working directory,
specify:
c89 -o app/bin/mymod.out -Wl,lp64 usersource.o

v To bind several AMODE 64 application object modules to create the mymod.out
executable file in the app/bin directory, relative to your working directory,
specify:
c89 -o app/bin/mymod.out -Wl,lp64 usersrc.o ottrsrc.o "//PGM.OBJ(PW...APP)"

v To bind an AMODE 64 application object module to create the MYLOADMD
executable member of the MVS APPROG.LIB data set for your user ID, specify:
c89 -o "//APPROG.LIB(MYLOADMD)" -Wl,lp64 usersource.o

Running z/OS UNIX AMODE 64 application programs using z/OS XL
C/C++ functions

You can use the z/OS XL C/C++ functions in different ways to run your z/OS
UNIX AMODE 64 applications.

z/OS UNIX application program environments
z/OS UNIX supports the following environments from which you can run your
z/OS UNIX applications using z/OS XL C/C++ functions:
v z/OS UNIX shells
v TSO/E

You cannot directly call a z/OS UNIX application that resides in an HFS file
from the TSO/E READY prompt. However, you can do so with a TSO/E
BPXBATCH command, and with a REXX EXEC.

v MVS batch
You cannot directly use the JCL EXEC statement to run a z/OS UNIX
application program that resides in an HFS file because you cannot put an HFS
filename on the JCL EXEC statement. However, by using the BPXBATCH
program, you can run a z/OS UNIX application that resides in an HFS file. You
supply the name of the program as an argument to the BPXBATCH program,
which runs under MVS batch and invokes a z/OS UNIX shell environment.
(BPXBATCH also lets you call a program directly without having to also run a
shell.) You can also run a z/OS UNIX application that resides in an HFS file by
calling a REXX EXEC to invoke it under MVS batch.

Running under z/OS UNIX

40 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Placing an MVS application executable program in the file
system

If you have a z/OS UNIX application executable file as a member in an MVS data
set and want to place it in a directory in the z/OS UNIX file system, you can use
the OPUTX or OGETX z/OS UNIX TSO/E commands to copy the member into the
directory. For a description of these commands, see z/OS UNIX System Services
Command Reference. For examples of using these commands, see z/OS UNIX System
Services User's Guide.

Running an MVS executable program from a z/OS UNIX shell
If your z/OS UNIX application resides in MVS data sets and you need to run the
application executable program from within a shell, you can pass a call to the
module to TSO/E. In many cases, you can also use the tso utility. If you entered
the shell from TSO/E using the OMVS command, you can use the TSO function
key to pass the command to TSO/E. For example, if your executable program is
myprog in data set my.loadlib, type the following (from the shell) to pass the
command to TSO/E:
tso "call ’my.loadlib(myprog)’"

When the program completes, the shell session is restored. You can also run an
MVS program from a shell by associating it with an HFS file by using sticky-bit or
external link. See z/OS UNIX System Services Command Reference for more
information about the chmod and the ln commands.

Running POSIX-enabled programs using a z/OS UNIX shell

Issuing the executable from a shell
Before an HFS program can be run in a shell, it must be given the appropriate
mode authority for a user or group of users. You can update the mode authority
for an executable by using the chmod command. See z/OS UNIX System Services
Command Reference for the format and description of chmod. Note that when c89
creates an executable, the file is given execute permission for all users.

After you have updated the mode authority, enter the program name from the
shell command line. For example,
v If you want to run the program data_crunch from your working directory,
v You have the directory where the program resides defined in your search path,

and
v You are authorized to run the program,

enter:
data_crunch

When running such programs, you can specify invocation runtime options only by
setting the environment variable _CEE_RUNOPTS before invoking the program.
For example, under a z/OS UNIX shell you can use the export command. For
example:
export _CEE_RUNOPTS="rpto(on)..."

To further update the runtime options, you can issue another export.

Issuing a setup shell script from a shell
To run a z/OS UNIX shell script that sets up an z/OS UNIX executable file and
then runs the program, you give the appropriate mode authority for a user or

Running under z/OS UNIX

Chapter 5. Binding and executing AMODE 64 programs using z/OS UNIX 41

group of users to run it. You can update the mode authority (access permission)
for a shell script file by using the chmod command. See z/OS UNIX System Services
Command Reference for the format and description of chmod. After mode authority is
given, enter the script file name from the shell command line.

Running POSIX-enabled programs outside the z/OS UNIX shells

Running an MVS batch z/OS UNIX application file that is
HFS-resident

To run a z/OS UNIX executable application file from an HFS file under MVS
batch, invoke the IBM-supplied BPXBATCH program either from TSO/E, or by
using JCL or a REXX EXEC (not batch). BPXBATCH performs an initial user login
to run a specified program from the shell environment.

Before you invoke BPXBATCH, you must have the appropriate privilege to read
from and write to HFS files. You should also allocate STDOUT and STDERR HFS
files for writing any program output, such as error messages. Allocate the standard
files using the PATH options on either the TSO/E ALLOCATE command or the
JCL DD statement.

For a detailed discussion of the BPXBATCH program syntax and its use, and an
example of running shell utilities under MVS batch using the BPXBATCH
program, see z/OS UNIX System Services Command Reference.

Invoking BPXBATCH from TSO/E
You can invoke BPXBATCH from TSO/E in the following ways:
v From the TSO/E READY prompt
v From a CALL command
v As a REXX EXEC

To run the /myap/base_comp application program from your user ID, direct its
output to the file /myap/std/my.out. Write any error messages to the file
/myap/std/my.err and copy the output and error data to MVS data sets. You could
write a REXX EXEC similar to the following example:
/* base_comp REXX exec */
"Allocate File(STDOUT) Path(’/u/myu/myap/std/my.out’)

Pathopts(OWRONLY,OCREAT,OTRUNC)
Pathmode(SIRWXU) Pathdisp(DELETE,DELETE)"

"Allocate File(STDERR) Path(’/u/myu/myap/std/my.err’)
Pathopts(OWRONLY,OCREAT,OTRUNC)
Pathmode(SIRWXU) Pathdisp(DELETE,DELETE)"

"BPXBATCH PGM /u/myu/myap/base_comp"

"Allocate File(output1) Dataset(’MYAPPS.STD(BASEOUT)’)"
"Ocopy Indd(STDOUT) Outdd(output1) Text Pathopts(OVERRIDE)"

"Allocate File(output2) Dataset(’MYAPPS.STD(BASEERR)’)"
"Ocopy Indd(STDERR) Outdd(output2) Text Pathopts(OVERRIDE)"

Enter the name of the REXX EXEC from the TSO/E READY prompt to invoke
BPXBATCH. When the REXX EXEC completes, the STDOUT and STDERR
allocated files are deleted.

Invoking BPXBATCH Using JCL
To invoke BPXBATCH using JCL, submit a job that executes an application
program and allocates the standard files using DD statements. For example, if you

Running under z/OS UNIX

42 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

want to run the /myap/base_comp application program from your user ID, direct its
output to the file /myap/std/my.out. Direct any error messages to be written to the
file /myap/std/my.err; code the JCL statements as follows:
//jobname JOB ...
//stepname EXEC PGM=BPXBATCH,PARM=’PGM /u/myu/myap/base_comp’
//STDOUT DD PATH=’/u/myu/myap/std/my.out’,
// PATHOPTS=OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU
//STDERR DD PATH=’/u/myu/myap/std/my.err’,
// PATHOPTS=OWRONLY,OCREAT,OTRUNC),PATHMODE=SIRWXU

Invoking the spawn syscall in a REXX EXEC from TSO/E
A REXX EXEC can directly call a program which resides in the HFS with the
spawn() syscall. Following is an example of a REXX program that can be called
from TSO/E.
/* REXX */
RC = SYSCALLS(’ON’)
If RC<0 | RC>4 Then Exit RC
Address SYSCALL
fstdout = ’fstdout’
fstderr = ’fstderr’
’open’ fstdout O_RDWR+O_TRUNC+O_CREAT 700
stdout = RETVAL
’open’ fstderr O_RDWR+O_TRUNC+O_CREAT 700
stderr = RETVAL
map.0=-1
map.1=stdout
map.2=stderr
parm.0=1
parm.1=’/bin/c89’
’spawn /bin/c89 3 map. parm. __environment.’
spid = RETVAL
serrno = ERRNO
If spid==-1 Then Do

str =’unable to spawn’ parm.1’, errno=’serrno
’write’ stderr ’str’
Exit serrno

End
’waitpid (spid) waitpid. 0’
xrc = waitpid.W_EXITSTATUS
If xrc^=0 Then Do

str =parm.1 ’failed, exit status=’xrc
’write’ stderr ’str’

End
Exit xrc

Running a z/OS UNIX application program that is not
HFS-resident

Submit a z/OS UNIX AMODE 64 application executable program using z/OS XL
C/C++ functions (an executable file that is an MVS PDSE member) to run under
the MVS batch environment using the JCL EXEC statement the same way you
would submit a traditional C/C++ AMODE 31 application. The POSIX(ON)
runtime option must be specified.

Running under z/OS UNIX

Chapter 5. Binding and executing AMODE 64 programs using z/OS UNIX 43

44 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Chapter 6. Using runtime options

This topic describes Language Environment runtime option specification methods
and runtime compatibility considerations.

Understanding the basics
Language Environment provides a set of IBM-supplied default runtime options
that control certain aspects of program processing. A system programmer can
modify the IBM-supplied defaults on a system-level or region-level basis to suit the
application programmers' need at their site. An application programmer can
further refine these options based on individual program needs. When an
application runs, runtime options are merged in a specific order of precedence to
determine the actual values in effect. For more information, see “Order of
precedence” on page 46.

For syntax and detailed information about individual runtime options, including
how Language Environment runtime options map to specific HLL options, see
z/OS Language Environment Programming Reference.

Methods available for specifying runtime options
Language Environment runtime options can be specified in the following ways:

As system-level defaults
Runtime options can be established as system-level defaults through a
member in the system parmlib. The format of the parmlib member name is
CEEPRMxx. The member is identified during IPL by a CEE=xx statement,
either in the IEASYSyy dataset or in the IPL PARMS. After IPL, the active
parmlib member can be changed with a SET CEE=xx command. Individual
options can be changed with a SETCEE command.

For more information about specifying system-level default options, see
z/OS MVS Initialization and Tuning Reference and z/OS Language Environment
Customization.

As region-level defaults
The CEEXOPT macro can be used to create a CELQROPT load module to
establish defaults for a particular region. CELQROPT is optional, but if it is
used, code just the runtime options to be changed. Runtime options which
are omitted from CELQROPT will remain the same as the system-level
defaults (if present) or IBM-supplied defaults. The CELQROPT module
resides in a user-specified load library.

For more information about specifying region-level defaults, see z/OS
Language Environment Customization.

As application defaults
The CELQUOPT assembler language source program sets application
defaults using the CEEXOPT macro. The CELQUOPT source program can
be edited and assembled to create an object module, CELQUOPT. The
CELQUOPT object module must be linked with an application to establish
application defaults.

© Copyright IBM Corp. 2004, 2013 45

In TSO/E commands, on application invocation
You can specify runtime options as options on the CALL command. See
z/OS Language Environment Programming Guide for more information.

In the _CEE_RUNOPTS environment variable
If you run C/C++ applications that are invoked by one of the exec or
spawn family of functions, you can use the environment variable
_CEE_RUNOPTS to specify invocation Language Environment runtime
options. For more information on using the environment variable
_CEE_RUNOPTS, see z/OS XL C/C++ Programming Guide.

In JCL
You can specify runtime options in the PARM parameter of the JCL EXEC
statement or as a DD card named CEEOPTS. See “Specifying runtime
options in the EXEC statement” on page 31 and “Specifying runtime
options with the CEEOPTS DD card” on page 32 for details.

In your C/C++ source code:
C provides the #pragma runopts directive, with which you can specify
runtime options in your source code.

You must specify #pragma runopts in the source file that contains your
main function, before the first C statement. Only comments and other
pragmas can precede #pragma runopts.

Specify #pragma runopts as follows:

Syntax

�� #pragma runopts (�

,

option) ��

where option is a Language Environment runtime option.

For C++ applications, the following values are not allowed for compilation:
v NOEXECOPS | EXECOPS
v NOREDIR | REDIR
v NOARGPARSE | ARGPARSE

You must use the corresponding C++ compiler options.

For more information about using C/C++ pragmas, see z/OS XL C/C++
User's Guide.

Order of precedence
It is possible for all the methods listed in “Methods available for specifying
runtime options” on page 45 to be used for a given application. The order of
precedence (from highest to lowest) between option specification methods is:
1. Options specified on invocation of the application (or in the case of an

application invoked by one of the exec or spawn family of functions, options
specified in the environment variable _CEE_RUNOPTS).

2. Options specified at invocation time through a DD card (DD:CEEOPTS). The
CEEOPTS DD is ignored for programs invoked using one of the exec() family
of functions.

Using runtime options

46 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

3. Options specified in a CELQUOPT CSECT. There are a few methods available
to provide a CELQUOPT CSECT:
v Assemble a CELQUOPT. For more information, see “Creating application

runtime option defaults with CEEXOPT” on page 48.
v Specify the C/C++ #pragma runopts() directive within a source program.

The compiler generates the CELQUOPT CSECT from the given options.
If you select #pragma runopts(), specify it in one and only one compile unit in
the application; for example, in the main routine. If multiple CELQUOPTs are
present, binder input ordering determines which CELQUOPT is used in an
executable program. Only the first CELQUOPT CSECT linked in an executable
program is applied. The binder treats any subsequent CELQUOPTs seen in the
input as duplicates and they will be ignored.

4. Region-level default options defined within CELQROPT.
5. System-level default options changed after IPL with a SETCEE command.
6. System-level default options changed after IPL with a SET CEE command.
7. System-level default options set in a CEEPRMxx parmlib member and

identified during IPL by a CEE=xx statement. This statement can be specified
either in the IEASYSyy data set or in the IPL parameters.

8. IBM-supplied defaults.

When the non-overrideable (NONOVR) attribute is specified for a runtime option,
all methods of specifying that runtime option with higher precedence are ignored.

Example: An order of precedence example:
IBM-supplied default IOHEAP64=((1M,1M,FREE,12K,8K,FREE,4K,4K,FREE),OVR)
CEEPRMxx used at IPL IOHEAP64=((1M,1M,FREE,4K,4K,FREE,4K,4K,FREE),OVR)
CELQUOPT IOHEAP64=(,,KEEP)

Used at runtime IOHEAP64(1M,1M,KEEP,4K,4K,FREE,4K,4K,FREE)

Specifying suboptions in runtime options
Use commas to separate suboptions of runtime options. If you do not specify a
suboption, you must still specify the comma to indicate its omission, for example
STACK64(,,512M). However, trailing commas are not required; STACK64(1M,2M) is
valid. If you do not specify any suboptions, either of the following is valid:
STACK64 or STACK64().

Specifying runtime options and program arguments
To distinguish runtime options from program arguments that are passed to
Language Environment, the options and program arguments are separated by a
forward slash (/). For more information on program arguments, see “Argument
lists and parameter lists” on page 55.

Runtime options precede program arguments whenever they are specified in JCL
or in TSO/E commands on application invocation.

Table 7. Formats for specifying runtime options and program arguments

When... Format

Only runtime options are present runtime options/

Using runtime options

Chapter 6. Using runtime options 47

Table 7. Formats for specifying runtime options and program arguments (continued)

When... Format

Only program arguments are present

1. If a slash is present in the arguments, a preceding slash
is mandatory.

2. If a slash is not present in the arguments, a preceding
slash is optional.

One of the following:

1. /program arguments

2. program arguments

or

/program arguments

Both runtime options and program arguments are present runtime options/program
arguments

CEEOPTS DD syntax
To specify the CEEOPTS DD statement, use the following syntax:
v For in-stream JCL:

//CEEOPTS DD *
POSIX(ON),STACK64(2M,2M,256M)

v For a sequential data set:
//CEEOPTS DD DSN=MY.CEEOPTS.DATASET,DISP=SHR

v For a partitioned data set:
//CEEOPTS DD DSN=MY.CEEOPTS.DATASET(MYOPTS),
// DISP=SHR

v To ignore the DD statement:
//CEEOPTS DD DUMMY

For more information, see section "Using the CEEOPTS DD statement" in z/OS
Language Environment Programming Guide.

Creating application runtime option defaults with CEEXOPT
You can specify a set of application-specific runtime option defaults with the
CELQUOPT assembler language source program. When the CELQUOPT source
program is assembled, the CEEXOPT macro creates an object module, called
CELQUOPT, that can be linked with a program to establish application default
options.

The CEE.SCEESAMP dataset contains the IBM-supplied sample for the
CELQUOPT source program, as shown in Figure 12 on page 49. In the CELQUOPT
sample, all runtime options are coded with the IBM-supplied default suboption
values. See z/OS Language Environment Programming Reference to select the values
appropriate for your application.

The options and suboptions specified in CELQUOPT override the defaults, unless
the system-level or region-level defaults were set as nonoverrideable (NONOVR).
Options specified in CELQUOPT cannot be designated as overrideable or
nonoverrideable.

The CEE.SCEESAMP dataset also contains CEEWQUOP, which is the sample job
used to assemble the CELQUOPT source program to create the CELQUOPT object
module in a user-specified library. CEEWQUOP does not use SMP/E to create the
CELQUOPT object module, so it can be run several times to create several different
CELQUOPT modules, each in its own user-specified library.

Using runtime options

48 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

CEEXOPT invocation for CELQUOPT
To invoke CEEXOPT and create the CELQUOPT object module, do the following:
1. Copy member CELQUOPT from CEE.SCEESAMP into CEEWQUOP in place of

the comment lines following the SYSIN DD statement.
2. Change the parameters on the CEEXOPT macro statement in CELQUOPT to

reflect the values you have chosen for this application-specific runtime options
module.

3. Code just the options you want to change. Options omitted from CELQUOPT
will remain the same as the defaults.

4. Change DSNAME=YOURLIB in the SYSLMOD DD statement to the name of the
partitioned data set into which you want your CELQUOPT module to be
link-edited.

Note: If you have a CELQUOPT module in your current data set, it will be
replaced by the new version.

5. Check the SYSLIB DD statement to ensure the data set names are correct.

CEEWQUOP must run with a condition code of 0.

CELQUOPT CSECT
CELQUOPT AMODE 64
CELQUOPT RMODE ANY

CEEXOPT CEEDUMP=(60,SYSOUT=*,FREE=END,SPIN=UNALLOC) X
DYNDUMP=(*USERID,NODYNAMIC,TDUMP), X
ENVAR=(’’), X
FILETAG=(NOAUTOCVT,NOAUTOTAG), X
HEAPCHK=(OFF,1,0,0,0,1024,0,1024,0), X
HEAPPOOLS=(OFF,8,10,32,10,128,10,256,10,1024,10, X
2048,10,0,10,0,10,0,10,0,10,0,10,0,10), X
HEAPPOOLS64=(OFF,8,4000,32,2000,128,700,256,350, X
1024,100,2048,50,3072,50,4096,50,8192,25,16384,10, X
32768,5,65536,5), X
HEAPZONES=(0,ABEND,0,ABEND), X
HEAP64=(1M,1M,KEEP,32K,32K,KEEP,4K,4K,FREE), X
INFOMSGFILTER=(OFF,,,,), X
IOHEAP64=(1M,1M,FREE,12K,8K,FREE,4K,4K,FREE), X
LIBHEAP64=(1M,1M,FREE,16K,8K,FREE,8K,4K,FREE), X
NATLANG=(ENU), X
NOTEST=(ALL,*,PROMPT,INSPPREF), X
PAGEFRAMESIZE64=(4K,4K,4K,4K,4K,4K,4K), X
POSIX=(OFF), X
PROFILE=(OFF,’’), X
RPTOPTS=(OFF), X
RPTSTG=(OFF), X
STACK64=(1M,1M,128M), X
STORAGE=(NONE,NONE,NONE,), X
THREADSTACK64=(OFF,1M,1M,128M), X
TERMTHDACT=(TRACE,,96), X
TRACE=(OFF,,DUMP,LE=0), X
TRAP=(ON,SPIE)

END

Figure 12. Sample invocation of CEEXOPT within CELQUOPT source program

Using runtime options

Chapter 6. Using runtime options 49

CEEXOPT coding guidelines for CELQUOPT
You should be aware of the following coding guidelines for the CEEXOPT macro:
v A continuation character (X in the source) must be present in column 72 on each

line of the CEEXOPT invocation except the last line.
v Options and suboptions must be specified in uppercase. Only suboptions that

are strings can be specified in mixed case or lowercase.
v A comma must end each option except for the final option. If the comma is

omitted, everything following the option is treated as a comment.
v If one of the string suboptions contains a special character, such as embedded

blank or unmatched right or left parenthesis, the string must be enclosed in
apostrophes (' '), not in quotation marks (" "). A null string can be specified with
either adjacent apostrophes or adjacent quotation marks.
To get a single apostrophe (') or a single ampersand (&) within a string, two
instances of the character must be specified. The pair is counted as only one
character in determining if the maximum allowable string length has been
exceeded, and in setting the effective length of the string.

v Avoid unmatched apostrophes in any string. The error cannot be captured
within CEEXOPT itself; instead, the assembler produces a message such as
IEV063 *** ERROR *** NO ENDING APOSTROPHE

which bears no particular relationship to the suboption in which the apostrophe
was omitted. Furthermore, none of the options is properly parsed if this mistake
is made.

v Macro instruction operands cannot be longer than 1024 characters. If the number
of characters to the right of the equal sign is greater than 1024 for any keyword
parameter in the CEEXOPT invocation, a return code of 12 is produced for the
assembly, and the options are not parsed properly.

v You can completely omit the specification of any runtime option. Options not
specified retain the current default values. There are two other methods
available for omitting an option, as follows:
– Specify the option with only a comma following the equal sign, for example:

HEAP64=, X

– Specify the option with empty parentheses and comma following the equal
sign, for example:
HEAP64=(), X

In either case, the continuation character (X in this example) must still be present
in column 72.

v You can completely omit any suboption of those runtime options which are
included. Default values are then supplied for each of the missing suboptions in
the options control block that is generated, and these values are ignored at the
time Language Environment merges the options. You can use commas to
indicate the omission of one or more suboptions for options having more than
one suboption. For example, if you wish to specify only the second suboption of
the STORAGE option, the omission of the 1st, 3rd, and 4th suboptions can be
indicated in any of the following ways:
STORAGE=(,NONE), X
STORAGE=(,NONE,), X
STORAGE=(,NONE,,), X

Because suboptions are positional parameters, do not omit the comma if the
corresponding suboption is omitted and another suboption follows.

Using runtime options

50 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

v Options that permit only one suboption do not need to enclose that suboption in
parentheses. For example, the NATLANG option can be specified in either of the
following ways:
NATLANG=(ENU), X
NATLANG=ENU, X

Performance considerations
For optimal performance when using CELQUOPT, code only those options that
you want to change. This enhances performance by minimizing the number of
options lines Language Environment must scan. Options and suboptions that are to
remain the same as the defaults do not need to be repeated. For example, if the
only change you want to make is to define STACK64 with an initial value of 2M
and an increment of 2M, include only that runtime option, as shown in the
following example:
CELQUOPT CSECT
CELQUOPT AMODE 64
CELQUOPT RMODE ANY

CEEXOPT STACK64=(2M,2M)
END

C and C++ compatibility considerations
C provides the #pragma runopts directive for you to specify runtime options in
your source code. When #pragma runopts(execops) is in effect (the default), you
can pass runtime options from the command line. Runtime options must be
followed by a slash (/).

If the main routine is C and #pragma runopts(noexecops) is specified in the source,
you cannot enter runtime options on the command line. Language Environment
interprets the entire string on the command line including runtime options, if
present, as program arguments to the main routine.

See z/OS Language Environment Programming Reference for a description of the
EXECOPS runtime option.

Using runtime options

Chapter 6. Using runtime options 51

52 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Part 2. Preparing an application to run with Language
Environment

© Copyright IBM Corp. 2004, 2013 53

54 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Chapter 7. Using Language Environment parameter list
formats

This chapter describes how to pass parameters to external routines under
Language Environment. The methods described do not apply to internal routines
or to compiled code that invokes its own library routines.

Understanding the basics
When writing a Language Environment-conforming AMODE 64 application, it is
important to consider how parameters are passed to the application on invocation.
The type of parameter list created by the operating system and passed to Language
Environment when an application is run varies according to the operating system
or subsystem used. Language Environment repackages the various formats so that
what is actually passed to the main routine when it is invoked on most supported
operating systems is a halfword prefixed character string. In C and C++, you can
pass arguments to the main routine through argv and argc. If you set up your C or
C++ main routine according to the rules of the language, you generally do not
need to do anything special to receive parameters from the operating system. In
this case, use the constructs provided by the C or C++ language. Refer to z/OS XL
C/C++ Language Reference for more details.

Argument lists and parameter lists
Figure 13 summarizes the terminology used with Language Environment to
describe passing parameters to and from routines. In Figure 13, a calling routine
passes an argument list to a called routine. That same list is referred to as a
parameter list when it is received by the called routine. Under Language
Environment, the formats of the argument and parameter lists are identical. The
only difference between the two terms is whether they are being used from the
point of view of the calling or the called routine.

Passing arguments between routines
Language Environment-conforming HLLs use the semantic terms by value and by
reference to indicate how changes in the argument values for a called routine affect
the calling routine:

By value
Any changes made to the argument value by the called routine will not
alter the original argument passed by the calling routine.

Routine being
called (callee)

caller returns

a value (optionally)

caller receives a

parameter list

caller receives

a value (optionally)

Call

Routine that calls
(caller)

Caller passes an

argument list

Figure 13. Call terminology refresher

© Copyright IBM Corp. 2004, 2013 55

By reference
Changes made by the called routine to the argument value can alter the
original argument value passed by the calling routine.

Under Language Environment you can pass arguments directly and indirectly as
follows:

Direct The value of the argument is passed directly in the parameter list. You
cannot pass an argument by reference (direct).

Indirect
A pointer to the argument value is passed in the parameter list.

Table 8 summarizes the semantic terms by value and by reference and the direct
and indirect methods for passing arguments. The table shows what is passed to
routines.

Table 8. Semantic terms and methods for passing arguments in Language Environment

Method By value By reference

Direct The value of the object is passed Not allowed under Language
Environment

Indirect A pointer points to the value of an
object

A pointer points to the object

Figure 14 illustrates these argument passing styles. In Figure 14, register 1 (R1)
points to the value of an object, or to an argument list containing either a pointer
to the value of an object or a pointer to the object.

HLL semantics usually determine when data is passed by value or by reference.
The AMODE 64 support provided by Language Environment supports argument
passing styles as shown in Table 9 on page 57.

Object

R1

By Reference (Indirect)

. . .

Pointer

. . .

Value of
an object

Object

R1

By Value (Indirect)

. . .

Pointer

. . .

Object
R1

By Value (Direct)

Value of
an object

Figure 14. Argument passing styles in Language Environment

Language Environment Parameter list formats

56 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Table 9. Default passing style per HLL

Language Default argument

C By value (direct)

C++ By value (direct)C++ also supports by reference (indirect), if a
prototype specifies it with ampersand (&).

Language Environment Parameter list formats

Chapter 7. Using Language Environment parameter list formats 57

Language Environment Parameter list formats

58 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Chapter 8. Making your application reentrant

AMODE 64 applications can be made reentrant. Reentrancy allows more than one
user to share a single copy of a load module. If your application is not reentrant,
each application that calls your application must load a separate copy of your
application.

Understanding the basics
The following routines must be reentrant:
v Routines to be loaded into the LPA or ELPA

Your routine should be reentrant if it is a large routine that is likely to have
multiple concurrent users. Less storage is used if multiple users share the routine
concurrently. Reentrancy also offers some performance enhancement because there
is less paging to auxiliary storage.

If you want your routine to be reentrant, ensure that it does not alter any static
storage that is part of the executable program; if the static storage is altered, the
routine is not reentrant and its results are unpredictable.

Making your C/C++ program reentrant
Under C/C++, reentrant programs can be categorized by their reentrancy type as
follows:

Natural reentrancy
The attribute of programs that contain no modifiable external data.

Natural reentrancy is not applicable to C++.

Constructed reentrancy
The attribute of applications that contain modifiable external data and
require additional processing to become reentrant. By default, all C++
programs are made reentrant via constructed reentrancy.

Natural reentrancy
A C program is naturally reentrant if it contains no modifiable external data. In C,
the following are considered modifiable external data:
v Variables using the extern storage class
v Variables using the static storage class
v Writable strings

If your C program is naturally reentrant, you do not need to use the RENT
compiler option. After compiling and binding, install it in one of the locations
listed in “Installing a reentrant load module” on page 60.

Constructed reentrancy
A constructed reentrant program is created by using the binder to combine all of
the object modules produced by the XL C/C++ compiler. The target data set for
the AMODE 64 executable must be a PDSE or the UNIX file system.

© Copyright IBM Corp. 2004, 2013 59

The compile-time initialization information from one or more object modules is
combined into a single initialization unit.

Programs with constructed reentrancy are split into two parts:
v A variable or nonreentrant part that contains external data
v A constant or reentrant part that contains executable code and constant data

Each user running the program receives a private copy of the first part (mapped
by the binder), which is initialized at run time. The second part can be shared
across multiple spaces or sessions only if it is installed with dynamic LPA.

Generating a reentrant program executable for C or C++
To generate a reentrant C object module, follow these steps:
1. For C, if your program contains external data, compile your source files using

the RENT (and LP64) compiler option. For C++, compile your source files with
LP64; by default the compiler builds reentrant programs using constructed
reentrancy. See z/OS XL C/C++ User's Guide for more information.

2. To produce an executable program, use the binder to combine all of the input
into an AMODE 64 executable program.

3. To get the greatest benefit from reentrancy, install your executable program in
one of the locations listed in “Installing a reentrant load module.”

Installing a reentrant load module
You will get the most benefit from reentrancy if you link the program with the
RENT attribute and any other attributes you would normally use, and have your
system programmer install the load module in the link pack area of the system
using dynamic LPA.

Modules may be added or removed from the dynamic LPA after an IPL using the
SET PROG=xx console command.

Reentrant applications

60 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Part 3. Language Environment concepts, services, and
models

This section provides more information about Language Environment and the
services it provides.

© Copyright IBM Corp. 2004, 2013 61

62 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Chapter 9. Initialization and termination under Language
Environment

This chapter describes initialization and termination of AMODE 64 applications
under Language Environment. It describes how you can customize your AMODE
64 applications during initialization and termination by using Language
Environment runtime options and APIs.

Understanding the basics
Initialization and termination establish the state of various parts of the Language
Environment program model. The program model describes three major entities of
a program structure:

Process
A collection of resources (code and data).

Enclave
A collection of program units consisting of exactly one main routine and
zero or more subroutines.

Thread
The basic unit of execution.

The z/OS UNIX System Services (z/OS UNIX) program model differs somewhat
from the Language Environment program model. Refer to “Mapping the POSIX
program model to the Language Environment program model” on page 73 for
more information. For more detailed definitions of program model and other
Language Environment terms, see Chapter 10, “Program model,” on page 69.

When you run a routine, Language Environment initializes the runtime
environment by creating a process, an enclave, and an initial thread.

During termination, all threads, the enclave and process are terminated.

Language Environment initialization
During initialization, a process, an enclave, and then an initial thread are created.

Process initialization sets up the framework to manage an enclave. Enclave
initialization creates the framework to manage enclave-related resources and the
threads that run within the enclave. Thread initialization acquires a stack and
enables the condition manager for the thread.

Language Environment termination
Language Environment termination provides services that restore the operating
environment to its original state after your application either runs to completion or
terminates abnormally. You can affect termination through the use of runtime
options and APIs.

© Copyright IBM Corp. 2004, 2013 63

What causes termination
Under Language Environment, an application terminates when any of the
following conditions occur:
v The last thread in the enclave terminates (which in turn terminates the enclave).
v The main routine in the enclave returns to its caller.
v An HLL construct issues a request for the termination of an enclave, for

example:
– C's abort() function
– C's raise(SIGTERM) function
– C's _exit() function
– C's exit() function

v A default POSIX signal is received, where the default is termination.
v An abend is requested by the application (that is, the application calls

__cabend()).
v An unhandled condition of severity 2 or greater occurs. (See “Termination

behavior for unhandled conditions” on page 67 for information.)

What happens during termination
The following sequence of events occurs during termination:
1. C atexit() functions and c++ static destructors are invoked, if present. They

are not invoked if _exit calls for termination or if abnormal termination occurs.
2. For normal termination, the enclave return code is set (see “Managing return

codes in Language Environment” on page 65). For abnormal termination
caused by an unhandled condition of severity 2 or greater, an abend is returned
(see “Termination behavior for unhandled conditions” on page 67).

3. The environment is terminated:
v The enclave is terminated
v All enclave resources are returned to the operating system
v Any files that Language Environment manages are closed
v The debugger is terminated, if active
v The profiler is terminated, if active

When a condition of severity 2 and/or greater occurs, depending on the setting of
the TERMTHDACT runtime option, you might receive a message, a trace of the
active routines, or a dump. For more information on TERMTHDACT, see z/OS
Language Environment Programming Reference.

Thread termination
A thread terminating in a non-POSIX environment is analogous to an enclave
terminating, because Language Environment supports only single threads. See
“Enclave termination” on page 65 for information on enclave termination.

POSIX thread termination: A thread terminates due to pthread_exit(),
pthread_kill(), or pthread_cancel(), or simply returns from the start routine of
the thread in a POSIX environment. When a thread issues a exit() or _exit() or
encounters an unhandled condition, that thread terminates and all other active
threads are also forced to terminate. The z/OS UNIX (POSIX) environment
supports multiple threads; each thread is terminated, as follows:
v The stack storage associated with the thread is freed
v The thread status is set
v Cleanup handlers and destructor routines are driven
v The stack is collapsed

Initialization and termination

64 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

For more detailed information on POSIX functions, refer to the following resources:
v “Language Environment and POSIX signal handling interactions” on page 102
v “Mapping the POSIX program model to the Language Environment program

model” on page 73
v z/OS UNIX System Services User's Guide

Enclave termination
When an enclave terminates, Language Environment releases resources allocated
on behalf of the enclave and performs various other activities including the
following:
v If present, calls atexit() functions and C/C++ static destructors
v Calls HLL-specific termination routines for HLLs that were active during the

executing of the program
v Deletes modules loaded by Language Environment
v Frees all storage obtained by Language Environment services
v Frees Language Environment control blocks for the enclave
v Language Environment sets a return code and reason code or an abend
v Restores the program mask and registers to preinitialization values
v Returns control to the enclave creator

Process termination
Process termination occurs when the enclave terminates. Process termination
releases the process control block (PCB) and associated resources, and returns
control to the creator of the process.

Language Environment explicitly relinquishes all resources it acquires. Routines
that acquire resources directly from the host system (such as opening a DCB) must
explicitly relinquish the resource. If these resources are not explicitly released, the
environment can be corrupted because Language Environment has no method for
releasing these resources.

POSIX process termination: In a z/OS UNIX environment, POSIX process
termination maps to Language Environment enclave termination. For specific
information on POSIX default signal action at POSIX process termination when
running in an z/OS UNIX environment, see “Language Environment and POSIX
signal handling interactions” on page 102.

In a z/OS UNIX environment, the following occurs if the process being terminated
is a child process:
v The parent process is notified with a wait or a waitpid or saving of the exit

status code.
v A new parent process ID is assigned to all child processes of the terminated

process.
v If the process is a controlling process, the controlling terminal associated with

the session is disassociated from the session allowing it to be acquired by a new
controlling process.

Managing return codes in Language Environment
This section discusses how Language Environment calculates and uses return
codes and reason codes during enclave termination. The return codes between
subroutine calls that are implemented with programming language constructs are
addressed in the appropriate language-specific programming guides.

Initialization and termination

Chapter 9. Initialization and termination under Language Environment 65

How the Language Environment enclave return code is
calculated

When an enclave terminates, Language Environment provides a Language
Environment enclave return code and an enclave reason code (sometimes called a
return code modifier). The Language Environment enclave return code is
calculated by summing the user return code generated by the HLL and the enclave
reason code as follows:
Language Environment enclave return code = user return code + enclave reason code

The Language Environment enclave return code is placed in register 15, and the
enclave reason code is placed in register 0.

Setting and altering user return codes
User return codes can be set and altered by language constructs. As described in
the following sections, the user return code value is based on the reason an enclave
terminates and the language of the routine that initiates termination.

For C and C++
If a normal return from main() terminates the application, the user return code
value is 0. When a C or C++ routine terminates an enclave with a language
construct such as exit(n) or return(n), the value of n is used.

If the enclave terminates due to an unhandled condition of severity 2 or greater,
the user return code value is 0. For information on unhandled conditions, see
“Termination behavior for unhandled conditions” on page 67. For more
information about C or C++ language constructs, see z/OS XL C/C++ Programming
Guide.

How the enclave reason code is calculated
The enclave reason code provides additional information in support of the enclave
return code. Language Environment calculates the enclave reason code by
multiplying a severity code (that indicates how an enclave terminated) by 1000.

The severity code is initially set to 0, indicating normal enclave termination. If the
Termination_Imminent due to STOP (T_I_S) condition is signaled, it is set to 1. If
the enclave terminates due to an unhandled condition of severity 2 or greater, the
enclave reason code is set according to the severity of the unhandled condition that
caused the enclave to terminate, as shown in Table 10. For more information about
Language Environment conditions and severity codes, see Table 14 on page 90.

Table 10 contains a summary of the enclave reason code produced when an enclave
terminates. The condition severity column indicates the reason code for the original
condition.

Table 10. Summary of enclave reason codes

Condition severity Meaning
Enclave reason
code — (R0)

0 Normal application termination 0

Severity 1 condition Termination_Imminent due to STOP 1000

Unhandled severity 2 condition Error — abnormal termination abend

Unhandled severity 3 condition Severe error — abnormal termination abend

Unhandled severity 4 condition Critical error — abnormal termination abend

Initialization and termination

66 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Termination behavior for unhandled conditions
When there is an unhandled condition of severity 2 or greater, an enclave
terminates with an abend. Language Environment will assign an abend code,
return code and reason code, as described in this section. You can also assign
values yourself, as described in “Setting and altering user return codes” on page
66.

For a discussion of conditions and how they are handled in Language
Environment, see Table 14 on page 90. For specific information pertaining to POSIX
signal action defaults and unhandled conditions in a z/OS UNIX environment, see
“Language Environment and POSIX signal handling interactions” on page 102.

Determining the abend code
Language Environment terminates the enclave with the same abend code that
caused the unhandled condition of severity 2 or greater if the unhandled condition
was generated by an abend.

Table 11 shows the abend code and reason code used when the enclave terminates
due to the various unhandled conditions of severity 2 or greater.

Table 11. Abend code values used by Language Environment

Unhandled condition Abend code Abend reason code

ABEND The original abend code The original abend reason
code

Program interrupt For program interrupt abend
codes, see “Program interrupt
abend and reason codes”

Software-raised condition A user 4038 abend X'1'

Unsuccessful LOAD The abend code that would have
been used by the operating
system.

The abend reason code that
would have been used by the
operating system.

Program interrupt abend and reason codes
A program interrupt can cause an unhandled condition of severity 2 or greater.
The abend codes and reason codes shown in Table 12 are issued for program
interrupts.

Table 12. Program interrupt abend and reason codes

Program interrupts Abend code Abend reason code

Operation exception S0C1 00000001

Privileged operation exception S0C2 00000002

Execute exception S0C3 00000003

Protection exception S0C4 00000004

Segment translation exception (note 1) S0C4 00000004

Page translation exception (note 2) S0C4 00000004

Addressing exception S0C5 00000005

Specification exception S0C6 00000006

Data exception S0C7 00000007

Fixed-point overflow exception S0C8 00000008

Initialization and termination

Chapter 9. Initialization and termination under Language Environment 67

Table 12. Program interrupt abend and reason codes (continued)

Program interrupts Abend code Abend reason code

Fixed-point divide exception S0C9 00000009

Decimal overflow exception S0CA 0000000A

Decimal divide exception S0CB 0000000B

Exponent overflow exception S0CC 0000000C

Exponent underflow exception S0CD 0000000D

Significance exception S0CE 0000000E

Floating-point divide exception S0CF 0000000F

Note:

1. The operating system issues abend code S0C4 reason code 10 for segment translation
program interrupts.

2. The operating system issues abend code S0C4 reason code 11 for page translation
program interrupts.

Initialization and termination

68 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Chapter 10. Program model

Now that you have been introduced to how AMODE 64 applications run in
Language Environment, you need to understand the model of program
management under which Language Environment operates. This chapter provides
an overview of the Language Environment model.

The Language Environment program model supports the language semantics of
applications that run in the common run-time environment and defines the way
routines or programs are put together to form an application. Language
Environment implements a subset of the POSIX program model. Features not
supported in z/OS Language Environment are indicated in this manual.

The POSIX program model differs somewhat from the Language Environment
program model. Refer to “Mapping the POSIX program model to the Language
Environment program model” on page 73 for more information.

Understanding the basics
The Language Environment program model has three basic entities — the process,
enclave, and thread, each of which Language Environment creates whenever you
start execution of an AMODE 64 application. This section describes each of these
entities and their relationship to program management.

Language Environment program model terminology
Some terms used to describe the program model are common programming terms;
others have meanings that are specific to a given language. It is important that you
understand the meaning of the terminology Language Environment uses and how
it compares with existing languages. For more detailed definitions of these and
other Language Environment terms, please consult the glossary in z/OS Language
Environment Concepts Guide.

Language Environment terms and their HLL equivalents
Process

The highest level of the Language Environment program model; a
collection of resources, both program code and data, consisting of at least
one enclave.

Enclave
The enclave defines the scope of HLL semantics. In Language
Environment, a collection of routines, one of which is designated as the
main routine. The enclave contains at least one thread.

Thread
An execution entity that consists of synchronous invocations and
terminations of routines. The thread is the basic runtime path within the
Language Environment program model; dispatched by the system with its
own runtime stack, instruction counter, and registers.

Routine
In Language Environment, either a procedure, function, or subroutine.

© Copyright IBM Corp. 2004, 2013 69

Terminology for data
Automatic data

Data that does not persist across calls. In the absence of a specific
initializer, automatic data get “accidental” values that may depend on the
behavior of the caller or the last function to be called by the caller.

External data
Data with one or more named points by which the data can be referenced
by other program units and data areas. External data is known throughout
an enclave.

Local data
Data known only to the routine in which it is declared; equivalent to local
data in C, C++.

Figure 15 shows the simplest form of the Language Environment program model
and the resources that each component controls. Refer to the figure as you read
about the program model.

Process
A process is a collection of resources, both application code and data, consisting of
one or more related enclaves (described in the next section). The process is the

Thread

A line of execution

Enclave

A collection of
routines, 1 main,
0 or more subroutines

Resources Owned

* Thread
* Heap
* External files
* Portion of routine
that can be shared,
such as static data

Resources Owned

* Stack
* Condition manager

Process

A collection of
Resources

Resources Owned

* Enclave
* Language Environment
message file

* Portion of routine that
can be shared, such as
code and constants

Indicates where user code resides

Indicates logical entities

Figure 15. Program model illustration of resource ownership

Program model

70 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

outermost or highest level runtime component of the common run-time
environment. The resources maintained at the process level do not affect the
language semantics of an application running at the enclave level.

The Language Environment library is an example of the type of resource that is
maintained at the process level. The Language Environment library is loaded at
process initialization, although it could be loaded for any of the individual
enclaves within the process at enclave initialization. The process is used in the
same way by all enclaves created within the process. It has no effect on the HLL
semantics of applications running within each of the enclaves.

Each process has an address space that is logically separate from those of other
processes. Except for communications with each other using certain Language
Environment mechanisms, no resources are shared between processes; processes do
not share storage, for example. A process can create other processes. However, all
processes are independent of one another; they are not hierarchically related.

Although the Language Environment program model supports applications
consisting of one or more processes, z/OS Language Environment supports only a
single process for each application that runs in the common run-time environment.

Enclave
A key feature of the program model is the enclave, which consists of one or more
load modules, each containing one or more separately compiled, bound routines. A
load module can include HLL routines, assembler routines, and Language
Environment routines.

The enclave defines the scope of language semantics. By definition, the scope of
a language statement is that portion of code in which it has semantic effect. The
enclave defines the scope of the language semantics for its component routines.
Scope encompasses names, external data sharing, and control statements such as
C's exit() statement.

The enclave defines the scope of the definition of the main routine and
subroutines. The enclave boundary defines whether a routine is a main routine or
a subroutine. The first routine to run in the enclave is known as the main routine in
Language Environment. All others are designated subroutines of the main routine.

The first routine invoked in the enclave must be capable of being designated main
according to the rules of the language of the routine. For example, a main routine
in a Language Environment-conforming C or C++ application would be the
main() routine. All other routines invoked in the enclave must be capable of being

a subroutine according to the rules of the languages of the routines.

If a routine is capable of being invoked as either a main or subroutine, and
recursive invocations are allowed according to the rules of the language, the
routine can be invoked multiple times within the enclave. The first of these
invocations could be as a main routine and the others as subroutines.

The enclave defines the scope and visibility of certain types of data. These types
of data are listed as follows:

Automatic data
Automatic data is allocated with the same value on entry and reentry into
a routine if it has been initialized to that value in the semantics of the

Program model

Chapter 10. Program model 71

language used. Values of the data at exit from the routine are not retained
for the next entry into the routine. The scope of automatic data is a routine
invocation within an enclave.

External data
External data persists over the lifetime of an enclave and retains last-used
values whenever a routine is reentered. The scope of external data is that
of the enclosing enclave; all routines invoked within the enclave recognize
the external data. Examples are C or C++ data objects of extern storage
class.

Local data
The scope of local data is that of the enclosing enclave; however, local data
is recognized only by the routine that defines it. Examples are any C
variables with block scope.

The enclave defines the scope of language statements. The enclave defines the
scope of language statements — for example, those that stop execution of the
outermost routine within an enclave. C's exit() statement is an example of such a
statement. When one of these statements is executed, the main routine within the
enclave terminates. Thus, the enclave defines the scope of the language statements.
Prior to returning, resources obtained by the routines in the enclave are released
and any open files are closed.

Additional enclave characteristics
The enclave has additional characteristics.

Management of resources
The enclave manages most Language Environment resources, such as the
thread and heap storage. Heap storage, for example, is shared among all
threads within an enclave. Allocated heap storage remains allocated until
explicitly freed or until the enclave terminates. None of the
enclave-managed resources are shared between enclaves.

Multiple enclaves
z/OS Language Environment provides explicit support for a single enclave
within a single process. Language Environment “nested” enclaves are not
supported for AMODE 64 applications.

Thread
Within each enclave is a thread, the basic runtime path represented by the machine
state; conditions raised during execution are isolated to that runtime path.

Threads share all of the resources of an enclave and therefore do not need to
selectively create or load new copies of resources, code, or data. Although a thread
does not own its storage, it can address all storage within the enclave. All threads
are independent of one another and are not related hierarchically. A thread is
dispatched with its own runtime stack, instruction counter, registers, and condition
handling mechanisms.

Because threads operate with unique runtime stacks, they can run concurrently
within an enclave and allocate and free their own storage. Concurrent, or parallel,
processing, is useful when code is event-driven, or for improving the performance
of a large application.

Program model

72 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

The full Language Environment program model
Figure 16 illustrates the relationship between the various entities that make up the
Language Environment program model.

As Figure 16 shows, each process exists within its own address space. An enclave
consists of one main routine with any number of subroutines. External data is
available only within the enclave in which it resides. External data items that
happen to be identically named in different enclaves reference distinct storage
locations; the scope of external data, as described earlier, is the enclave. Threads
running in an AMODE 64 environment cannot create new “nested” enclaves.

Mapping the POSIX program model to the Language Environment
program model

Language Environment in conjunction with z/OS UNIX supports POSIX standards
(POSIX 1003.1 and POSIX 1003.1c) and the XPG4 standard. The POSIX standard
follows a program model which differs somewhat from the Language Environment
program model. This section provides a helpful comparison of both models.

The following descriptions are intended to be a brief review for C users of the
characteristics of POSIX program entities. For full definitions of these terms, refer
to the ISO/IEC9945 for POSIX 1003.1 and POSIX 1003.1c. The XPG4 standard is
described in detail in X/Open Specification Issue 4.

Key POSIX program entities and Language Environment
counterparts

POSIX defines four program model constructs:

Process
An address space, at least one thread of control that executes within that
address space, and the thread's or threads' required system resources.

In general, POSIX processes are peers; they run asynchronously and are
independent of one other, unless your application logic requests otherwise.

Some aspects of selected processes are hierarchical, however. A C process
can create another C process (no ILC is allowed) by calling the fork() or

ext
data

X

ext
data

Y

. . .

sub sub

thread

sub submain

thread

enclave

process

Figure 16. Overview of the full Language Environment program model

Program model

Chapter 10. Program model 73

spawn() functions. Certain function semantics are defined in terms of the
parent process (the invoker of the fork) and the child process (cloned after
the fork). For example, when a parent process issues a wait() or
waitpid(), the parent process' logic is influenced by the status of the child
process or processes.

A Language Environment process with a single enclave maps
approximately to a POSIX process. In Language Environment, starting a
main routine creates a new process. In POSIX, issuing a fork() or a
spawn() creates a new process. A POSIX sigaction of stop, terminate, or
continue applies to the entire POSIX process.

A Language Environment process with multiple enclaves is a Language
Environment extension to POSIX and is not supported for AMODE 64
applications.

Note: The scope of a specific POSIX function might be the Language
Environment process or Language Environment enclave. See “Scope of
POSIX semantics” for details.

Process group
Collection of processes. Group membership allows member processes to
signal one another, and affects certain termination semantics.

No Language Environment entity maps directly to a POSIX process group.

Session
Collection of process groups. Conceptually, a session corresponds to a
logon session at a terminal.

No Language Environment entity maps directly to a POSIX session, but a
session is a rough equivalent of a Language Environment application
whose execution scope is bound by the end user logon and logoff.

Thread
A single flow of control within a process. Each thread has its own thread
ID, state of any timers, errno value, thread-specific bindings, and the
required system resources to support a flow of control. Threads are
independent and not hierarchically related.

A Language Environment thread maps to a POSIX thread. POSIX
pthread_create creates a new thread under Language Environment.

An enclave that contains multiple threads cannot issue fork(), either
explicitly or implicitly (popen() being mapped to fork() and exec()).

Scope of POSIX semantics
Some general rules for the scope of POSIX processes follow, as illustrated in
Figure 17 on page 75:
v POSIX semantics applied to a POSIX process from outside the POSIX process

(interprocess semantics) are applied to a Language Environment process. For
example, a signal directed from a process to another process using kill is
applied to a Language Environment process.

v POSIX semantics scoped to within the current POSIX process (intraprocess
semantics) apply to the current Language Environment enclave. For example,
heap storage is recognized throughout an enclave.

Program model

74 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

POSIX Process

Semantics Applied to Process
from outside the Process

Language Environment Process
with One Enclave

Semantics Applied to Process
from outside the Process

Language Environment Process
with Multiple Enclaves

Semantics Applied to Process
from outside the Process

For a Language Environment process
with a single enclave, scoping to
the process or to the (only)
enclave has the same semantic
effect.

Process Process
Enclave

Process
Enclave

Enclave

Semantics
Scoped
within
Process

Semantics
Scoped
within
Enclave

Semantics
Scoped
within
Enclave

.

.

.

Figure 17. Scope of semantics against POSIX processes and Language Environment processes/enclaves

Chapter 10. Program model 75

76 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Chapter 11. Stack and heap storage

Language Environment provides services that control the stack and heap storage
used at run time. Language Environment-conforming HLLs and assembler routines
use these services for all storage requests.

Understanding the basics
Language Environment provides the following types of storage:
v Stack storage is automatically created by Language Environment and is used for

routine linkage and automatic storage. Refer to “Stack storage overview” on
page 78 for more information.

v Heap storage is dynamically allocated at a routine's first request for storage that
has a lifetime not related to the execution of the current routine. Refer to “Heap
storage overview” on page 80 for more information.

In addition to heap and stack storage, Language Environment provides a function
that allows AMODE 64 applications to manipulate memory objects. The
__moservices() function allows an application to:
v Create a memory object that will be associated with the current Language

Environment enclave. The user can request certain attributes to be applied to the
memory object, such as the dump priority, and the size of the page frames to be
used when backing it.

v Free a memory object that was created using a previous __moservices() call
v Specify a shared memory dump priority to be used when allocating shared

memory

For more information about __moservices(), refer to z/OS XL C/C++ Runtime Library
Reference.

Table 13 summarizes the ways in which Language Environment-conforming
languages use stack and heap storage. The remainder of this section further
discusses stack and heap storage concepts and terminology.

Table 13. Usage of stack and heap storage by Language Environment-conforming languages

Language Stack Heap

C or C++ v Automatic variables
v Library routines

Variables allocated by:
v malloc() function
v __malloc31() function
v __malloc24() function
v calloc() function
v realloc() function
v Static external (RENT)

Runtime options and services
HEAP64

Allocates storage for user-controlled dynamically allocated variables

HEAPCHK
Specifies that heap storage be inspected for damage

© Copyright IBM Corp. 2004, 2013 77

HEAPPOOLS
Improves the performance of heap storage allocation above the 16-MB line
and below the 2-GB bar

HEAPPOOLS64
Improves the performance of heap storage allocation above the 2-GB bar

HEAPZONES
Provides a heap check zone for each storage request

IOHEAP64
Allocates I/O-related storage

LIBHEAP64
Allocates library heap storage

PAGEFRAMESIZE64
Specifies the preferred page frame size in virtual storage for HEAP64,
LIBHEAP64, IOHEAP64 and STACK64 storage that is obtained during
application initialization and runtime

RPTSTG
Generates a storage report

STACK64
Controls stack allocation above the 2-GB bar

STORAGE
Controls the initial content of heap and stack

THREADSTACK64
Controls the stack allocation for each thread, except the initial thread, in a
multithreaded environment

See z/OS Language Environment Programming Reference for syntax information about
runtime options.

Stack storage overview

Note: The term stack refers to the user stack, which is an independent area of stack
storage that is located above the 2 GB bar, designed to be used by both library
routines and compiled code. All references to stack storage and stack frame are to
real storage allocation, as opposed to invocation stack, which refers to a conceptual
stack.

Stack storage is the storage provided by Language Environment that is needed for
routine linkage and any automatic storage. It is a contiguous area of storage
obtained directly from the operating system. Stack storage is automatically
provided at thread initialization.

A storage stack is a data structure that supports procedure or block invocation (call
and return). It is used to provide both the storage required for the application
initialization and any automatic storage used by the called routine. Each thread has
a separate and distinct stack.

The storage stack is divided into smaller segments called stack frames, which are
also known as dynamic storage areas (DSAs). A stack frame, or DSA, is
dynamically acquired storage composed of a register save area and an area
available for dynamic storage allocation for items such as program variables. Stack
frames are added to the user stack when a routine is entered, and removed upon

Stack and heap storage

78 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

exit in a last in, first out (LIFO) manner. Stack frame storage is acquired during the
execution of a program and is allocated every time a procedure, function, or block
is entered, as, for example, when a call is made to a Language Environment
callable service, and is freed when the procedure or block returns control.

The stack is allocated as one large area of contiguous storage, the size of which is
specified by the maximum size parameter of the STACK64 runtime option. Only a
portion of the stack is initially available to the application, the amount specified in
the initial size parameter of the STACK64 runtime option. The rest of the stack
storage is "guarded," which prevents the application from storing into it. When the
initial stack area becomes full, a stack increment is created by the operating system
by unguarding additional storage contiguous to the currently available stack area.
The amount of storage to unguard is specified by the increment size parameter of
the STACK64 runtime option.

See z/OS Language Environment Programming Reference for more information about
using the STACK64 runtime option.

You can use the PAGEFRAMESIZE64 runtime option to request large page frames
for stack storage. Large pages are a special-purpose feature to improve
performance; therefore, using large pages is not recommended for all types of
workloads. For more information about large pages, see z/OS MVS Programming:
Assembler Services Guide .

Figure 18 shows the standard 64-bit Language Environment stack storage model.

Tuning stack storage
For best performance, the initial stack size should be set large enough to satisfy all
requests for stack storage. The Language Environment storage report generated by
the RPTSTG(ON) option shows you how much stack storage is being used, as well
as the total number of stack increments which were required by the application.
An initial stack segment that is too large can waste storage and degrade overall
system performance.

You can tune stack storage by using the Language Environment STACK64 and
THREADSTACK64 runtime options; consult z/OS Language Environment Programming
Reference for details.

RPTSTG(ON) and the STORAGE runtime option can have a negative affect on the
performance of your application, because as the application runs, statistics are kept

1M guard
area

Unused
area

(guarded)

Unused
area

(guarded)

1M guard
area

Low

Low High

High

1M boundary

1M boundary

1M boundary

1M boundary

Segment originSegment origin

Stack floor

Stack floor

BOS BOS

Increment
size

Stack
area

Stack
area

Initial segment After increment

Figure 18. Stack storage model for Language Environment

Stack and heap storage

Chapter 11. Stack and heap storage 79

on storage requests. Therefore, always use the IBM-supplied default setting
RPTSTG(OFF) when running production jobs. Use RPTSTG(ON) and STORAGE
only when debugging or tuning applications. See z/OS Language Environment
Programming Reference for more information about RPTSTG and STORAGE.

The default value of 128MB for the maximum stack size of the STACK64 and
THREADSTACK64 runtime options may cause excessive use of system resources
(such as real storage) when running a multithreaded application that creates many
pthreads. For such applications, you should use the Language Environment
Storage Report (RPTSTG runtime option) to determine your application's actual
pthread stack storage usage. Then use the THREADSTACK64 runtime option to set
the maximum stack size to a value closer to the actual usage.

Heap storage overview
Heap storage is used to allocate storage that has a lifetime that is not related to the
execution of the current routine. The storage is shared among all program units
and all threads in an enclave. (Any thread can free heap storage.) It remains
allocated until you explicitly free it or until the enclave terminates.

Heap storage can be allocated or freed several ways. When using C, storage is
typically obtained using the malloc(), calloc(), and realloc() functions, and
released using the free() function; for C++, the new and delete operators are used.
For z/OS Language Environment, heap storage is made up of one or more heap
segments that are comprised of an initial heap segment, and, as needed, one or
more heap increments, which are allocated as additional storage is required. The
initial heap may or may not be preallocated prior to the start of the application
code, depending on the type of heap. See Figure 19 on page 82 for an illustration
of Language Environment heap storage.

Each heap segment is subdivided into individual heap elements. Heap elements
are obtained by a call to one of the heap allocation functions, and are allocated
within the initial heap segment by the z/OS Language Environment storage
management routines. When the initial heap segment becomes full, Language
Environment gets another segment, or increment, from the operating system.

There are three basic types of heaps. The user heap is the heap storage that is used
by the application program, and is obtained and freed by the various C/C++
mechanisms. The library heap is the heap storage that is used internally by
Language Environment. In addition, the storage that is used by Language
Environment I/O services are managed separately in the I/O heap.

Each heap is subdivided further, based on the requested location of the storage.
There is a 64-bit heap for storage that is allocated above the 2-GB bar. For storage
allocated below the 16-MB line, there is a 24-bit heap. And, for storage that is
located above the 16-MB line but below the 2-GB bar, there is a 31-bit heap.
Storage from the below-the-bar locations is useful for communicating with other
programs or system services that are not capable of addressing above-the-bar
storage. Language Environment provides two heap functions that the application
can use to obtain storage from the below-the-bar heaps; __malloc24() is used to
obtain storage from the 24-bit heap, and __malloc31() is used to obtain storage
from the 31-bit heap. In both cases, the free() function is used to make the storage
available again within the heap. See z/OS XL C/C++ Runtime Library Reference for
more information about __malloc24() and __malloc31().

Stack and heap storage

80 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Language Environment provides runtime options to tune heap storage usage:
HEAP64, LIBHEAP64, and IOHEAP64, for the user heap, library heap, and I/O
heap, respectively. Within each of these runtime options, you can specify the size
of the initial and increment segments for the 64-bit, 31-bit, and 24-bit sections of
the heaps. You can also specify the disposition of an increment segment when it is
no longer in use; KEEP indicates that the segment remains part of the heap, and
FREE indicates that the segment storage should be returned to the operating
system.

For the 64-bit section of the user heap, a third disposition FILL can be specified.
When a storage request results in a new increment that is larger than incr64, there
is often free space available within this increment. When this free space is used to
satisfy other small requests, the disposition FREE will be less useful as this large
increment might not become empty and therefore freed. To address this issue, the
disposition FILL makes these large increments appear to have no free space, which
allows them to be freed whenever the heap element which created them is freed.
While using FILL allows these increments to be freed when no longer needed, they
temporarily may be using more storage than otherwise required.

Note that the initial segment within each heap is never returned to the operating
system. See the z/OS Language Environment Programming Reference for more details
on these runtime options.

You can use the PAGEFRAMESIZE64 runtime option to request large page frames
for heap storage. Large pages are a special-purpose feature to improve
performance; therefore, using large pages is not recommended for all types of
workloads. See z/OS MVS Programming: Assembler Services Guide for more
information about large pages.

You can use the Language Environment STORAGE option to diagnose the use of
uninitialized and freed storage.

You can use the HEAPCHK runtime option to run heap storage tests, and to help
identify storage leaks. The HEAPZONES runtime option can be used to identify
storage overlay damage.

See Chapter 6, “Using runtime options,” on page 45 and z/OS Language
Environment Programming Reference for more information about using Language
Environment runtime options.

Figure 19 on page 82 shows the Language Environment heap storage model.

Stack and heap storage

Chapter 11. Stack and heap storage 81

Using heap pools to improve performance
Heap pools is an optional storage allocation algorithm for C/C++ applications that
is much faster than the normal malloc()/free() algorithm in most circumstances.
The algorithm is designed to avoid contention for storage in a multithreaded
application, and therefore it is important to investigate if your application can
benefit from its use.

The heap pools algorithm allows for between one and twelve sizes of storage cells
that are allocated from pools out of the heap. For each size, from one to 255 pools
can be created where each pool is used by a portion of the threads for allocating
storage.

For storage above the 2 GB bar, the sizes of the cells, the number of pools for each
size, and the sizes of cell pool extents are specified by the HEAPPOOLS64 runtime
option, which is also used to enable the heap pools algorithm. For storage above
the 16 MB line and below the 2 GB bar, the sizes of the cells, the number of pools
for each size, and the size of cell pool extents are specified by the HEAPPOOLS
runtime option, which is also used to enable the heap pools algorithm.

Note: Use of the Vendor Heap Manager (VHM) overrides the use of the
HEAPPOOLS64 and HEAPPOOLS runtime options.

Applications that should use heap pools
The following types of applications can benefit from the use of heap pools:
v Multi-threaded applications: although single-threaded applications can benefit

from the heap pools algorithm, multi-threaded applications can get the most
benefit because the proper use of heap pools virtually eliminates contention for
heap storage.

v Applications which issue many storage requests with a malloc() of 64K bytes or
less, because the heap pools algorithm cannot be used for a malloc() that is
greater than 64K bytes.

v Applications that are not storage constrained: the heap pools algorithm gives up
storage for speed. When untuned, the heap pools algorithm uses much more

ELEMENT 1

/ / / / / / / / / / / / /

\ \ \ \ \ \ \ \ \ \ \ \ \
/ / / / / / / / / / / / /
\ \ \ \ \ \ \ \ \ \ \ \ \
/ / / / / / / / / / / / /
\ \ \ \ \ \ \ \ \ \ \ \ \

/ / / / / / / / / / / / /
\ \ \ \ \ \ \ \ \ \ \ \ \

\ \ \ \ \ \ \ \ \ \ \ \ \

\ \ \ \ \ \ \ \ \ \ \ \ \
/ / / / / / / / / / / / /

ELEMENT 2

INITIAL SEGMENT INCREMENT

Unallocated
storage

Elements

/ /init_size/ / / /incr_size/ /

HEAP

Figure 19. Language Environment heap storage model

Stack and heap storage

82 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

storage than the normal malloc()/free() algorithm; when properly tuned it
uses only slightly more. Therefore, storage constrained applications should try
heap pools, but only if the cell sizes and cell pool counts are carefully tuned.
(For tuning information, see “Tuning heap storage”.) It is possible that some
applications running with the heap pools algorithm will have to increase their
region size.

Heap pools modes of operation
You can use the HEAPPOOLS64 option in two modes:

ON This mode is selected by specifying the runtime option
HEAPPOOLS64(ON). In this mode, cells can be any size between 8 and
64K that is a multiple of 8. This mode avoids contention during storage
allocation and release. This mode uses less storage.

ALIGN
This mode is selected by specifying HEAPPOOLS64(ALIGN). In addition
to avoiding contention during storage allocation and release, the goal of
this mode is to reduce cache contention when two adjacent cells are being
updated at the same time. Only multi-threaded applications will gain
additional benefits from using ALIGN mode instead of ON mode. This
mode uses more storage.

You can use the HEAPPOOLS option in two modes:

ON This mode is selected by specifying the runtime option HEAPPOOLS(ON).
This mode avoids contention during storage allocation and release. This
mode uses less storage.

ALIGN
This mode is selected by specifying HEAPPOOLS(ALIGN). In addition to
avoiding contention during storage allocation and release, the goal of this
mode is to reduce cache contention when two adjacent cells are being
updated at the same time. Only multi-threaded applications will gain
additional benefits from using ALIGN mode instead of ON mode. This
mode uses more storage.

Choosing the number of pools for a cell size: Contention occurs when two or
more threads are allocating or freeing cells that are the same size at the same time.
Using multiple pools should eliminate some of this contention because only a
portion of the threads will be allocating from each pool. For most cell sizes, there is
little contention and one pool will be sufficient. However, there may be one or two
cell sizes where many successful get heap requests are occurring and the maximum
cells used is high. These sizes may be candidates for multiple pools. Determining
the optimum number of pools to use for these cell sizes will involve comparing
performance measurements, like throughput, when different values are used for a
representative application workload.

Tuning heap storage
For best performance, the initial heap segment should be large enough to satisfy all
requests for heap storage. The Language Environment storage report generated by
the RPTSTG(ON) runtime option shows you how much heap storage is being
used, the total number of segments allocated to the heap, the statistics for the
optional heap pools algorithm, and the recommended values for the HEAP64,
LIBHEAP64, IOHEAP64, HEAPPOOLS64, and HEAPPOOLS runtime options. You
can use this information to tune your application to minimize the number of
segments allocated and freed.

Stack and heap storage

Chapter 11. Stack and heap storage 83

The heap pools algorithm (see “Using heap pools to improve performance” on
page 82) can be used to significantly increase the performance of heap storage
allocation, especially in a multi-threaded application that experiences contention
for heap storage. However, if the algorithm is not properly tuned, heap storage
could be used inefficiently.

Tuning the HEAPPOOLS64 algorithm for an application is a three-step process:
1. Run your application with the runtime options HEAPPOOLS64(ON) or

HEAPPOOLS64(ALIGN) as appropriate (using the default cell sizes and
counts), and RPTSTG(ON) for some time with a representative application
workload. Then examine the HEAPPOOLS64 Statistics and HEAPPOOLS64
Summary" sections of the Storage Report for Enclave report.

2. Change the cell sizes in the HEAPPOOLS64 runtime option to the Suggested
Cell Sizes column from the first run. Rerun the application with a
representative workload, using the default counts in the HEAPPOOLS64
option. Examine the storage report.

3. The values listed in the Maximum Cells Used column of the HEAPPOOLS64
Summary should be the optimal values for the counts to minimize storage use.
For a cell size that has multiple pools, the correct value to use is the largest
"Maximum Cells Used" value for that size multiplied by the number of pools
for that size.

Any time there is a significant change in the workload, repeat these tuning steps to
obtain optimal HEAPPOOLS64 values.

Tuning the HEAPPOOLS algorithm for an application is a three-step process:
1. Run your application with the runtime options HEAPPOOLS(ON) or

HEAPPOOLS(ALIGN) as appropriate using the following cell sizes and
percentages:
(8,10,32,10,128,10,256,10,1024,10,2048,10,3072,1,4096,1,
8192,1,16384,1,32768,1,65536,1)

and RPTSTG(ON) for some time with a representative application workload. It
may be necessary for the application to increase the region size.

2. Change the cell sizes in the HEAPPOOLS runtime option to the Suggested Cell
Sizes from the first run. Rerun the application with a representative workload,
using the default percentages in the HEAPPOOLS option. Examine the storage
report.

3. The values listed as Suggested Percentages for Current Cell Sizes are the
recommended values to minimize storage usage. Evaluate these values before
finalizing cell pool sizes.

Any time there is a significant change in the workload, repeat these tuning steps to
obtain optimal HEAPPOOLS values.

RPTSTG(ON) and the STORAGE runtime option can have a negative affect on the
performance of your application. Therefore, always use the IBM-supplied default
setting RPTSTG(OFF) when running production jobs. Use RPTSTG(ON) and
STORAGE(xx,xx,xx) only to debug applications. See z/OS Language Environment
Programming Reference for more information about RPTSTG and STORAGE.

Usage notes:

1. These recommendations are dynamic and represent values for this particular
run. The values may change with each run performed.

Stack and heap storage

84 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

2. Long-running applications may have an adverse effect on the statistical data
collection. Fixed-length counters may overflow, causing incorrect HEAPPOOL
recommendations. If the recommendations appear to be unrealistic, rerun with
a reduced application run time.

User-created heap storage
Language Environment can also manage, as a heap, storage which is obtained by a
C/C++ application. The following functions provide this user-created heap storage
capability:
v _ucreate() – Creates a heap using storage provided by the caller
v _umalloc() – Allocates storage elements from the user-created heap
v _ufree() – Returns storage elements to the user-created heap
v _uheapreport() – Generates a storage report to help tune the application's use of

the user-created heap

This allows the application more flexibility in choosing the attributes of the heap
storage. For instance, the storage could be shared memory that is accessed by
multiple programs.

For more information about the user-created heap functions, see z/OS XL C/C++
Runtime Library Reference.

Alternative vendor heap manager
Language Environment provides a mechanism such that a vendor can provide an
alternative vendor heap manager (VHM) that can be used by Language
Environment C/C++ applications. The VHM replaces the malloc() (default
operator new and default operator new [] are included), free() (default operator
delete and default operator delete [] are included), calloc() and realloc()
functions.

The VHM does not manage the following:
v User created heaps (__ucreate, __umalloc, __ufree)
v __malloc24(), __malloc31()
v IOHEAP64
v LIBHEAP64

Using _CEE_HEAP_MANAGER to invoke the alternative Vendor
Heap Manager
This environment variable is set by the user or the application to indicate that the
Vendor Heap Manager (VHM), identified by the dllname, is to be used to manage
the user heap. The format of the environment variable is:
_CEE_HEAP_MANAGER=dllname

Note: This environment variable must be set using one of the following
mechanisms:
v ENVAR runtime option.
v Inside the file specified by the _CEE_ENVFILE or _CEE_ENVFILE_S

environment variable.

Either of these locations is before any user code gets control, meaning prior to the
static constructors, and/or main getting control. Setting of this environment
variable once the user code has begun execution will not activate the VHM, but the
value of the environment variable will be updated.

Stack and heap storage

Chapter 11. Stack and heap storage 85

Stack and heap storage

86 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Chapter 12. Language Environment condition handling
introduction

This topic outlines the Language Environment condition handling model in a
POSIX(OFF) environment. It describes what constitutes a condition in Language
Environment and how Language Environment supplements existing HLL condition
handling methods. It also presents several condition handling scenarios to
demonstrate how Language Environment condition handling works.

The topics that follow describe in detail the steps involved in condition handling
under Language Environment, HLL-specific condition handling considerations, and
Language Environment-POSIX signal handling interactions.

Understanding the basics
There are two main concepts of Language Environment condition handling: the
stack frame-based model and the unique, 16-byte condition token that it provides
to communicate information about conditions to Language Environment resources
and services.

Language Environment uses stack frames to keep track of a routine's order of
execution, and the exception handlers available for each routine. This ensures that
conditions can be isolated and handled precisely where they occur in a routine.

One of the most useful features of the condition handling model is the condition
token: a 16-byte data type that contains information about each condition. You can
use the condition token as a feedback code or to communicate with Language
Environment message services. Unlike a return code, which is specific to the caller
and callee of a routine, a condition token communicates between all the routines
involved in an application. A condition token contains more instance-specific
information about a condition than a return code does.

HLL condition handling techniques are discussed in Chapter 13, “Language
Environment and HLL condition handling interactions,” on page 95.

Runtime options
TRAP Indicates whether Language Environment routines should handle abends

and program interrupts.

APIs

__le_cib_get()
Returns pointer to the condition information block that is associated with a
condition token passed to a user-written condition handler

__set_exception_handler()
Registers an Exception Handler function for the current stack frame.
Exception Handlers are used to process exceptions at the thread level
(unlike signal catchers which process signals at the process level).

© Copyright IBM Corp. 2004, 2013 87

__reset_exception_handler()
A nonstandard function that unregisters the Exception Handler function
that was previously registered by the __set_exception_handler() function,
for the current stack frame.

The stack frame model
A stack consists of an ordered set of stack elements, called stack frames, which are
managed in a last-in first-out manner. In this information, unqualified references to
stack mean invocation stack. The invocation stack can contain multiple invocation
stack frames, which represent invocation instances of routines. A stack frame is
added to the stack on entry to a routine and removed from the stack on exit from
the routine.

The Language Environment condition handling model is based on stack frames, in
which condition handling can be different in different stack frames. Another
condition handling model is global condition handling, which means that one
condition handling mechanism remains in effect for the life of an application.

The following cause a stack frame to be added to the invocation stack:
v A function call in C or C++ that has not been inlined
v Calling a Language Environment or C API
v Invoking C signal catcher
v Invoking Language Environment exception handler
v C++ throw()

A stack frame is added to the stack every time a new routine is entered and
removed when it is exited. Language Environment uses stack frames to keep track
of such things as the routine currently executing, the point at which an error
occurs, and the point at which execution should resume after the condition is
handled.

Resume cursor
The resume cursor generally points to the next sequential instruction where a
routine would continue running if it were to resume. Initially, the resume cursor is
positioned after the machine instruction that caused or signaled the condition.
Move the resume cursor using C++ throw() and catch clauses.

What is a condition in Language Environment?
Language Environment defines a condition as any event that can require the
attention of a running application or the HLL routine supporting the application. A
condition is also known as an exception, interrupt, or signal. Language
Environment makes it possible to respond to events that in the past might have
caused a routine to abend, including hardware-detected errors or operating
system-detected errors.

All of the following can generate a condition in Language Environment:

Hardware-detected errors
Also known as program interruptions, these are signaled by the central
processing unit. Examples are the fixed-overflow and addressing
exceptions. The operating system derives the error codes from the codes
defined for the machine on which the application is running. The error
codes differ from machine to machine.

Condition handling introduction

88 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Operating system-detected errors
These are software errors and are reported as abends. An example is an
OPEN error.

Software-generated signals
Signals are conditions intentionally and explicitly created by Language
Environment library routines, or language constructs such as C's raise()
or C++ throw().

Under Language Environment, an exception is the original event, such as a
hardware signal, software-detected event, or user-signaled event, that is a potential
condition. Through the enablement step (described briefly in “Steps in condition
handling” and in detail in Chapter 13, “Language Environment and HLL condition
handling interactions,” on page 95), Language Environment might deem an
exception to be a condition, at which point it can be handled by Language
Environment, user-written exception handlers, if they are present, or HLL
condition handling semantics.

Steps in condition handling
Language Environment condition handling is performed in three distinct steps: the
enablement, condition, and termination steps.

Enablement step
Enablement refers to the determination that an exception should be processed as a
condition. The enablement step begins at the time an exception occurs in your
application. In general, you are not involved with the enablement step; Language
Environment determines which exceptions should be enabled (treated as
conditions) and which should be ignored, based on the languages currently active
on the stack. If you do not specify explicitly or as a default any of the services or
constructs discussed in this section, the default enablement of your HLL applies.

If Language Environment ignores an exception, the exception is not seen as a
condition and does not undergo condition handling. Processing resumes at the
next sequential instruction.

You can affect the enablement of exceptions in the following ways:
v Set the TRAP runtime option to handle or ignore abends and program checks.

See “TRAP effects on the condition handling process” for more information.
v Disable specific conditions by doing one of the following:

– Code a construct such as signal(sigfpe, SIG_IGN) in a C/C++ function to
request that program checks (in this case divide-by-zero) be ignored if they
occur in either routine. Execution continues at the next sequential instruction
after the one that caused the divide-by-zero condition.

TRAP effects on the condition handling process
The TRAP runtime option specifies how Language Environment handles abends
and program interrupts; TRAP(ON,SPIE) is the IBM-supplied default. For more
information about the TRAP runtime option, see z/OS Language Environment
Programming Reference.

When TRAP(ON,SPIE) is in effect, Language Environment is notified of abends
and program interrupts. Language semantics and C/C++ signal handlers can then

Condition handling introduction

Chapter 12. Language Environment condition handling introduction 89

be invoked to handle semantics, C/C++ signal handlers. An exception to this
behavior is that Language Environment cannot handle Sx22 abends, even if
TRAP(ON) is specified.

Condition step
The condition step begins after the enablement step has completed and Language
Environment determines that an exception in your application should be handled
as a condition. In the simplest form of this step, Language Environment traverses
the stack beginning with the stack frame for the routine in which the condition
occurred and progresses towards earlier stack frames. Throughout the following
discussion, refer to Figure 20.

1. Language Environment condition handling begins at the most recently
activated stack frame. This is the stack frame associated with the routine that
incurred the condition. In Figure 20, this is A, or routine 4.

2. Language Environment traverses the stack, stack frame by stack frame, towards
earlier stack frames. This is in the direction of arrow B in Figure 20. C/C++
signal handlers or C++ catch clauses can all respond by percolating or
handling the condition (see “Responses to conditions” on page 91 for a
discussion of these actions).

3. Condition handling is complete if one of the handlers requests the application
to resume execution. If all stack frames have been visited, and no condition
handler has requested a resume, the language of the routine in which the
exception occurred can enforce default condition handling semantics.

4. Language Environment default actions are then taken based on the severity of
the unhandled condition, as indicated in Table 14.

Table 14. Language Environment default responses to unhandled conditions. Language Environment's default
responses to unhandled conditions fall into one of two types, depending on whether the condition was signaled using
CEESGL and an fc parameter, or the condition came from any other source.

Severity of condition Condition came from any other source

0 (Informative message) Resume without issuing message.

1 (Warning Message) Resume without issuing message.

2 (Program terminated in error) Terminate the thread. Message issued if TERMTHDACT(MSG) is
specified.

3 (Program terminated in severe error) Terminate the thread. Message issued if TERMTHDACT(MSG) is
specified.

4 (Program terminated in critical error) Terminate the thread. Message issued if TERMTHDACT(MSG) is
specified.

A B D F

C E G

Routine 4 SF

Routine 3 SF

Routine 2 SF

Routine 1 SF

Figure 20. Condition processing

Condition handling introduction

90 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Termination step and the TERMTHDACT runtime option
You can use the TERMTHDACT runtime option to set the type of information you
receive after your application terminates in response to a severity 2, 3, or 4
condition. For example, you can specify that a message or dump is to be generated
if the application terminates.

TERMTHDACT behavior under z/OS UNIX differs slightly; for details, see
“Termination step under z/OS UNIX” on page 105.

Invoking exception handlers
After a condition is enabled, Language Environment steps through the stack and
passes control to the most recently established condition handling routines in the
stack. Condition handling routines can be in the form of the user-written exception
handlers, or a language-specific condition handling mechanism:

User-written exception handler
See z/OS XL C/C++ Runtime Library Reference.

Language-specific condition handling semantics
If language-specific semantics are established within a stack frame, they are
honored. Of course, the language-specific handling mechanisms act only on
those conditions for which the language has a defined action. The language
percolates all other conditions by passing them on to the next condition
handler.

If a condition is unhandled after the stack is traversed, default
language-specific and Language Environment condition semantics take
over.

Responses to conditions
Exception handlers are routines written to respond to conditions in one of the
following ways:

Resume
A resume occurs when a condition handler determines that the condition
was handled and normal application execution should resume. A program
resumes running usually at the instruction immediately following the point
where the condition occurred.

A resume cursor points to the place where a routine should resume.

Percolate
A condition is percolated if a condition handler declines to handle it.
Example: No catch clause at this stack frame.
v With the next condition handler associated with the current stack frame.

This can be either the first condition handler in a queue of
user-established exception handlers, or the language-specific condition
semantics.

Condition handling scenarios
The following condition handling scenarios can help you better understand what
occurs during the condition handling steps. The scenarios differ in complexity,
with Scenario 1 being the easiest to understand.

Condition handling introduction

Chapter 12. Language Environment condition handling introduction 91

See Chapter 13, “Language Environment and HLL condition handling
interactions,” on page 95 if you are interested in specific HLL condition handling
behavior.

Scenario 1: Simple condition handling
Refer to Figure 21 throughout the following discussion.

In this scenario, there are no C/C++ handlers created by a call to signal() or
user-written exception handlers.
1. A divide-by-zero exception occurs in routine B.
2. The divide-by-zero exception is enabled by the language of the stack frame in

which it occurred because it is a problem that, if it remains unhandled, causes
termination.

3. The following occurs in the condition step:
v No handlers have been registered, so the condition is percolated from B's

stack frame to A's stack frame.
v No handlers have been registered, so the condition is percolated.
v After the oldest stack frame (in this case, that for routine A) has been

checked, HLL and Language Environment default actions occur. Assume that
the HLL percolates the condition to Language Environment.
Language Environment examines the severity of the unhandled
divide-by-zero condition (severity 3), so termination step is started.

4. The following occurs during the termination step:
v Language Environment takes the default action for the unhandled condition,

which terminates the enclave.

Scenario 2: Exception handler present for divide-by-zero
Scenario 2 is much the same as scenario 1, except that routine B has a user-written
exception handler established to handle the divide-by-zero condition. Refer to
Figure 22 on page 93 throughout the following scenario.

Routine B

Routine A

Divide-by-zero exception occurs here

Figure 21. Scenario 1: Division by zero with no user exception handlers present

Condition handling introduction

92 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

The handler established by routine B is designed to deal with divide-by-zero and
possibly other conditions that occur either during its execution or in the routines
that it calls. For a divide-by-zero condition, the handler is to print a message and
continue processing.
1. A divide-by-zero exception occurs in routine B.
2. The divide-by-zero exception is enabled by the language of the stack frame in

which it occurred because it is a problem that, if it remains unhandled, causes
termination.

3. The following occurs in the condition step:
v If a user-written exception handler has been registered using

__set_exception_handler() on routine B's stack frame, it is given control.
The handler recognizes the divide-by-zero as a condition it is capable of
dealing with. It produces a message, does appropriate clean-up, and then
long jumps back to a recovery point previously established by setjmp().

4. The condition is now considered to be handled and is never seen by Language
Environment default handler.

Routine B

Routine A

Cond HldrA

Cond HldrB

Divide-by_zero condition occurs here

Figure 22. Scenario 2: Division by zero with a user handler present in routine B

Condition handling introduction

Chapter 12. Language Environment condition handling introduction 93

Condition handling introduction

94 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Chapter 13. Language Environment and HLL condition
handling interactions

This is the second part of the condition handling discussion. It would be helpful
for you to read Chapter 12, “Language Environment condition handling
introduction,” on page 87 before reading this chapter. Chapter 12, “Language
Environment condition handling introduction,” on page 87 introduces you to
terminology and concepts that are discussed in the present chapter, and offers a
brief overview of pre-Language Environment HLL condition handling. It discusses
in detail the Language Environment condition handling model and the many
services that you can use to tailor how conditions are handled in your application.
In addition, it introduces the three steps of condition handling in Language
Environment.

Understanding the basics
This chapter discusses HLL condition handling semantics, focusing on how HLL
semantics interact with the Language Environment condition handling model and
services. C and C++ are each discussed, and condition handling scenarios and
examples are provided. This chapter also outlines the interactions between POSIX
signal handling and Language Environment condition handling. See one of the
following sections for details:
v “C condition handling semantics”
v “C++ condition handling semantics” on page 102
v “Language Environment and POSIX signal handling interactions” on page 102

If you are running a single-language application written in C or C++, which have
extensive built-in error handling functions, and you are relying entirely upon the
semantics of these languages to handle errors, you will not notice much difference
in how errors are handled under Language Environment.

C condition handling semantics
This section describes C condition handling in an POSIX(OFF) environment. If you
run applications that contain POSIX functions, you should also read “Language
Environment and POSIX signal handling interactions” on page 102, which
discusses the interaction between POSIX signal handling and Language
Environment condition handling.

C employs a global condition handling model, which, on initialization, defines the
actions that are taken when a condition is raised. The actions defined by C apply
to an entire enclave, not just to a routine or block within an enclave. You can alter
a specific action that the C condition handler takes when a condition is raised,
however, by coding signal() function calls in your applications.

C recognizes a number of errors; some correspond directly to the errors detected
by the hardware or the operating system, and some are unique to C. All actions for
condition handling are controlled by the contents of the C global error table.
Table 15 on page 96 contains default C-language error handling semantics.

© Copyright IBM Corp. 2004, 2013 95

Table 15. C conditions and default system actions

C condition Origin Default action

SIGILL Execute exception Operation
exception Privileged operation

raise(SIGILL)

Abnormal termination (return
code=3000)

SIGSEGV Addressing exception Protection
exception Specification exception

raise(SIGSEGV)

Abnormal termination (return
code=3000)

SIGFPE Data exception Decimal divide
Exponent overflow Fixed-point
divide Floating-point divide

raise(SIGFPE)

Abnormal termination (return
code=3000)

SIGABRT abort() function

raise(SIGABRT)

Abnormal termination (return
code=2000)

SIGABND Abend the function Abnormal termination (return
code=3000)

SIGTERM Termination request

raise(SIGTERM)

Abnormal termination (return code
= 3000)

SIGINT Attention condition Abnormal termination (return code
= 3000)

SIGIOERR I/O errors Ignore the condition

SIGUSR1 User-defined condition Abnormal termination (return
code=3000)

SIGUSR2 User-defined condition Abnormal termination (return
code=3000)

Masked Exponent overflow Fixed-point
underflow Significance

These exceptions are disabled. They
are ignored during the condition
handling process, even if you try to
enable them using the CEE3SPM
callable service.

Comparison of C-Language Environment terminology
The term signal is defined differently under C than under Language Environment,
and you need to know the distinction to understand how C and Language
Environment condition handling interact. Here is a comparison of the terminology
Language Environment and C use to describe the same general idea:
v Using C functions, you register a signal handler by using the signal() function,

and you raise a signal using the raise() function.
You can think of signal as the C term for a Language Environment condition. To
simplify the following discussion, the term condition is used in place of signal.

C signal handling functions are recognized in C++ applications. You can write a
condition handling routine in C++ using C signal() and raise() functions.
Unique C++ exception handling functions are discussed in “C++ condition
handling semantics” on page 102.

Controlling condition handling in C
In C, conditions can come from two main sources:

Condition handling interactions

96 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

v An exception might occur because of an error in the code. The exception might
or might not be seen as a condition, depending on how you use the signal()
function.

v You can explicitly report a condition by using the raise() function.

Using the signal() function
The C signal() function call alters the actions that the global error table specifies
will be taken for a given condition. You can use signal() to do the following:
v Ignore the condition completely. You do this by specifying

signal(sig_num,SIG_IGN), where sig_num represents the condition to be ignored.
When the action for the condition is to ignore it, the condition is considered to
be disabled. The condition will therefore not be seen.

Note: Exceptions to this rule are the SIGABND condition and the system or user
abend represented by Language Environment message number 3250. These are
never ignored, even if you specify SIG_IGN in a call to signal().

v Reset condition handling to the defaults shown in Table 15 on page 96. Actions
for handling a condition are implicitly reset to the system default when the
condition is reported, but at times you need to explicitly reset condition
handling. Specify signal(sig_num, SIG_DFL), where sig_num is the condition to
be reset.

v Call a signal handler to handle the condition. Specify signal(sig_num,
sig_handler), where sig_num represents the condition to be handled, and
sig_handler represents a pointer to the user-written function that is called when
the condition occurs.

Using the raise() function
When the C raise() function is called for any of the conditions listed in Table 15
on page 96, a corresponding Language Environment condition is automatically
raised. For detailed descriptions of conditions EDC6000 through EDC6004, see z/OS
XL C/C++ Programming Guide and z/OS Language Environment Runtime Messages.

C atexit() considerations
In all C applications, the atexit list is honored only after all condition handling
activity has taken place and all user code is removed from the stack, which
invalidates any jump buffer previously established.

With C, you can register a number of routines that gain control during the
termination of an enclave. When using the C atexit() function, consider the
following:
v A C atexit routine can nominate only C routines, but those routines can call

routines written in other languages.
v User-written exception handlers can be registered while running an atexit

routine. However, any jump buffers established are invalid.
v If a severity 2 or greater condition arises while running an atexit routine and it

is unhandled, further atexit routines are skipped and the Language
Environment environment is terminated.

v A C exit() function issued within an atexit routine halts all other atexit
functions.

v If, while running an atexit routine, an attempt to register another atexit
routine is made, the registration is ignored. The atexit routine returns a nonzero
result indicating a failure to register the routine.

Condition handling interactions

Chapter 13. Language Environment and HLL condition handling interactions 97

C++ supports atexit(), but any function pointer input to atexit() must be
declared as having extern "C" linkage.

C condition handling actions
In this section the condition handling semantics of C-only applications are
described as they relate to the Language Environment condition handling model.
Condition handling for applications with both C and non-C routines is discussed
in z/OS Language Environment Writing Interlanguage Communication Applications.

If an exception occurs while a C routine is executing, the following activities are
performed:
1. The Language Environment enablement step of condition handling is entered.

If the action defined for the exception is to ignore it for one of the following
reasons, the condition is disabled. Execution continues at the next sequential
instruction after the point where the condition occurred.
v You have specified SIG_IGN in a call to the signal() function for any C

condition except SIGABND or the system or user abend represented by the
Language Environment message number 3250.

v The exception is one of those listed as masked in Table 15 on page 96.
v You did not specify any action, but the default action for the condition is

SIG_IGN (see Table 15 on page 96).
2. If SIG_IGN is not specified or defaulted for the exception, and the exception is

not masked, the Language Environment condition step of condition handling is
entered. These activities then occur:
v If you have registered a signal handler for the condition, that handler is

invoked.
v If the signal handler handles the condition, control returns to the routine in

which the condition occurred. If the signal handler cannot handle the
condition, it might force termination by issuing exit() or abort(), or might
issue a longjmp().
Condition handling can only continue after a signal handler gains control if
you specify SIG_DFL in a call to signal().

v If exception handlers at every stack frame have had a chance to respond to
the condition and it still remains unhandled, the Language Environment
default actions described in Table 14 on page 90 take place.

3. Language Environment terminates the enclave.

C condition handling examples
The following sections describe various scenarios of condition handling.

Condition occurs with no signal handler present: The following three figures
illustrate how a condition such as a divide-by-zero is handled in a C routine in
Language Environment if you do not use any Language Environment callable
services, or don't have any user-written exception handlers registered.

There is no signal handler registered for C370C or any of the other C routines, so
the condition is percolated through all of the stack frames on the stack. At this
point, C default actions take place of percolating the condition to Language
Environment. Language Environment takes its default action for an unhandled
severity 3 condition and terminates the application.

Condition handling interactions

98 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Figure 23 is a C main routine that calls C370B, a subroutine that passes data to
another subroutine, C370C.

Figure 24 is a C subroutine that calls C370C, and passes data to it.

Figure 25 on page 100 generates a divide-by-zero. The divide-by-zero condition is
percolated back to C370B, to C370A, and to Language Environment default
behavior.

/*Module/File Name: EDCMLTA */
/***/
/* Demonstrate a failing C/370 program */
/* with multiple active routines */
/* on the stack. The call sequence is as follows: */
/* C370A ---> C370B ---> C370C (which does a divide-by-zero) */
/***/

#include <stdio.h>

int y = 0;
void C370B(void);

int main(void) {

printf("In Program C370A\n");
C370B();

}

Figure 23. C370A routine

/*Module/File Name: EDCMLTB */
/**/
/* This routine is called to pass data forward to C370C. */
/* C370C will then cause a zero divide. */
/**/

#include <stdio.h>

extern int y;
void C370C(int);

void C370B(void) {

int x;
printf("In Program C370B\n");
x = y;
C370C(x);

}

Figure 24. C370B routine

Condition handling interactions

Chapter 13. Language Environment and HLL condition handling interactions 99

Condition occurs with signal handler present: Figure 26 contains a simple
example of a C application in which y = a/b is a mathematical operation. signal
(SIGFPE, c_handler) is a signal invocation that registers the routine c_handler()
and gives it control if a floating-point divide exception occurs.

/*Module/File Name: EDCMLTC */
/**/
/* This routine is called by C370B to generate a zero divide. */
/**/

#include <stdio.h>

void C370C(int y) {

printf("In Program C370C\n");
y = 1/y;

}

Figure 25. C370C routine

/*Module/File Name: EDCCSIG */
/**/
/* A routine with a C/370 condition handler registered. */
/**/

#include <stdio.h>
#include <signal.h>

#ifdef __cplusplus
extern "C" {
#endif

void c_handler(int);
#ifdef __cplusplus
}
#endif
int main(void) {

int a=8, b=0, y;
/* .

.

. */
signal (SIGFPE, c_handler);
/* .

.

. */
y = a/b;
/* .

. */
}

void c_handler(int i)
{

printf("handled SIGFPE\n");
/* .

. */
return;

}

Figure 26. C condition handling example

Condition handling interactions

100 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

If b = 0, a floating-point divide condition occurs. Language Environment condition
handling begins:
v The enablement step occurs.

– If Table 15 on page 96 indicates that floating-point divide is a masked
exception, the exception is ignored. The floating-point divide is not a masked
exception, however.

– If SIG_IGN is specified for the SIGFPE exception in any of the three examples,
then the SIGFPE exception is ignored. However, this does not occur.

The floating-point divide condition is enabled and enters the condition step of
condition handling.

If none of the above takes place, the condition manager gives the C signal-handler
control. This handler in turn invokes c_handler() as specified in the signal()
function in Figure 26 on page 100. Control is then returned to the instruction
following the one that caused the condition.

C signal representation of S/370 exceptions
S/370 exceptions and abends are mapped to C signals. Therefore, if both of the
following condition are true, you can apply C signal handling functions to S/370
exceptions and abends:
v You have set the TRAP(ON,SPIE) or the TRAP(ON,NOSPIE) runtime option

(Language Environment condition handling is enabled)

C signal representations for the following exceptions are provided in this section:
v For S/370 exceptions generated by the hardware, see Table 16. Some of the

exceptions listed in the table can be masked off for normal Language
Environment execution.

v For abends, see Table 17 on page 102.

Table 16. Mapping of S/370 exceptions to C signals

Interrupt code Interrupt code description C signal type

01 Operation exception SIGILL

02 Privileged-operation exception SIGILL

03 Execution exception SIGILL

04 Protection exception SIGSEGV

05 Addressing exception SIGSEGV

06 Specification exception SIGILL

07 Data exception SIGFPE

08 Fixed-point overflow exception n/a

09 Fixed-point divide exception SIGFPE

10 Decimal-overflow exception SIGFPE

11 Decimal-divide exception SIGFPE

12 Exponent-overflow exception SIGFPE

13 Exponent-underflow exception n/a

14 Significance exception n/a

15 Floating-point divide exception SIGFPE

Condition handling interactions

Chapter 13. Language Environment and HLL condition handling interactions 101

Table 17 lists the C signal type for abends that can occur under Language
Environment.

Table 17. Mapping of abend signals to C signals

Message Abend description C signal type

CEE3250 User-initiated abends (SVC 13) SIGABND

CEE3250 MVS(VSAM or others)-initiated abends SIGABND

No message
delivered

Language Environment abends for severity 4 errors
(U40xx)

n/a

No message
delivered

Language Environment-initiated abends n/a

C++ condition handling semantics
C++ includes the C condition handling model and new C++ constructs throw, try,
and catch. For more information on these C++ constructs, see z/OS XL C/C++
Language Reference. If you use C exception handling constructs (signal/raise) in
your C++ routine, condition handling will proceed as described in “C condition
handling semantics” on page 95. You can use C or C++ condition handling
constructs in your C++ applications, but do not mix C constructs with C++
constructs in the same application because undefined behavior could result.

If you use C exception handling, a C++ routine can register a signal handler by
coding signal() to handle exceptions raised in either a C or a C++ routine. If you
use the C++ exception handling model, only C++ routines can catch a thrown
object. When a thrown object is handled by a catch clause, execution will continue
after the catch clause in the routine. If a thrown object goes unhandled after each
stack frame has had a chance to handle it, C++ defines that the terminate()
function is called. By default, terminate() calls abort(). You can call the C++
library function set_terminate() to register your own function to be called by
terminate. When terminate() finishes calling the user's function, it will call
abort().

C routines do not support try, throw, and catch, nor can C routines use signal()
to register a handler for thrown objects. A C++ routine cannot register a handler
via signal() to catch thrown objects; it must use catch clauses. try, throw, and
catch cannot handle hardware exceptions, nor C, or Language Environment
exceptions.

Language Environment and POSIX signal handling interactions
If you want to run an application that uses POSIX signal handling functions under
z/OS UNIX, you need to know how Language Environment condition handling
might affect your application. For a detailed discussion of POSIX signal handling
functions, see z/OS XL C/C++ Programming Guide. For details about the Language
Environment condition handling model, see Chapter 12, “Language Environment
condition handling introduction,” on page 87.

In Language Environment, POSIX signals are distinguished as follows:

Synchronous Signal Handling
If a signal is delivered to the thread that caused the signal to be sent (the
incurring thread), and the signal is not blocked, Language Environment's
synchronous signal handling semantics apply and you can use Language

Condition handling interactions

102 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Environment condition services to handle the condition as described in
“Synchronous POSIX signal and Language Environment condition
handling interactions.” Like asynchronous signals, synchronous POSIX
signals do not increment the ERRCOUNT error count.

Asynchronous Signal Handling
Asynchronous signals include the following:
v Signals generated because of a kill(), raise(), pthread_kill(),

killpg() or sigqueue() in a multithread environment that are delivered
to a thread that did not cause the signal to be sent.

v Signals generated because of a kill(), killpg() or sigqueue() from a
different POSIX process.

v All signals that were blocked when first sent, and later unblocked.
v Signals generated by an external interrupt not caused by any specific

thread. For example, signals can be generated in response to a command
typed in at the terminal.

v SIGCHLD, which is sent to a parent process when one of its child
processes terminates.

v Signals, such as SIGALRM, generated by the kernel.

Asynchronous signals are handled according to the semantics defined by
POSIX. Language Environment condition handling semantics do not apply;
for example, the ERRCOUNT runtime option does not increment its error
count when an asynchronous signal is sent.

Synchronous POSIX signal and Language Environment
condition handling interactions

This section discusses how Language Environment processes most synchronous
POSIX signals. (In this section, the term POSIX signal includes both POSIX-defined
signals and C-language signals.) With the exception of the POSIX signals listed in
“POSIX signals that do not enter condition handling” on page 105, normal
Language Environment condition handling steps occur after a specific thread is
selected as the target of a possible signal delivery. This applies whether the signal
was directed to a specific thread or to a process (or processes).

Synchronous signal handling takes effect for the following signals, unless they are
blocked by the signal mask, or are declared by the arrival of another signal:
v A hardware or software exception caused by a specific thread, which will be

delivered to the incurring thread
These are the exceptions typically caught by ESTAE or ESPIE.

v A kill() to the current process, a raise(), or a sigqueue() if the process has but
a single thread or the signal happens to be delivered to the thread that issued
the kill(), raise() or sigqueue().

v A pthread_kill() issued by a thread to itself

The signal mask is ignored for a signal caused by a program check.

Language Environment processes POSIX signals by using the three general steps of
Language Environment condition handling: enablement, condition, and
termination.

Condition handling interactions

Chapter 13. Language Environment and HLL condition handling interactions 103

Enablement step for signals under z/OS UNIX
Figure 27 illustrates how z/OS UNIX determines if a signal is enabled, ignored, or
blocked. A few POSIX signals do not go through this process. See “POSIX signals
that do not enter condition handling” on page 105 for details.

If a signal is ignored or blocked, the signal does not enter Language Environment
synchronous condition handling. If a signal is enabled, z/OS UNIX passes it to the
Language Environment enablement step (described in “Enablement step” on page
89). From there, Language Environment either disables the signal, or passes it into
the Language Environment condition step.

Condition step for POSIX signals under Language Environment
You might find it helpful to read about the Language Environment condition step
before reading this section.
1. At each stack frame (or until the condition is handled, or all of your

application's stack frames have been visited), do the following:
v If the signal action was set in a call to signal(), the action requested by the

signal handler takes place.
If the signal action was set in a call to sigaction(), sigactionset() or
bsd_signal(), the action is ignored until a later step.

2. When all application stack frames have been visited, the incurring stack frame's
language defaults are applied.

Signal occurs under
z/OS UNIX

Is the signal a
POSIX-defined

signal?

Is the SIG_IGN set
for the
signal?

Ignore signal,
and resume
processing

Ignore blocking, pass signal
to Language Environment

no

no

no

no

no

no

yes

yes

yes

yes

yes

yes

Is the signal an
abend or program
check, or was the
incurring routine

a C routine?

Does the signal
mask request

a block?

Is the signal
a program

check?

Does the signal
map to a POSIX

signal?

Pass signal to Language Environment

Pass signal to Language Environment

Block, and resume

Pass signal to Language Environment

Figure 27. Enablement step for signals under z/OS UNIX

Condition handling interactions

104 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

C applies its default only if the signal action was set in a call to signal().
Otherwise, the signal is percolated.

3. If the signal is percolated from the previous step, the following occurs:
v If the signal is a POSIX signal whose signal action was set in a call to

sigaction(), sigactionset() or bsd_signal(), the POSIX action (SIG_DFL
or a catcher) is applied.

v For any other signal, Language Environment applies its default actions
(described in Table 14 on page 90).

Termination step under z/OS UNIX
In a POSIX(ON) environment, Language Environment's termination step takes
place as described, with one exception: the behavior of the TERMTHDACT
runtime option. If POSIX(ON) is set, TERMTHDACT takes effect only if enclave
termination results from a program check or abend, not from signal generating
functions such as raise(), kill(), pthread_kill(), killpg() or sigqueue().

POSIX signals that do not enter condition handling
Certain POSIX signals do not go through the condition handling steps described
above:
v SIGKILL and SIGSTOP cannot be caught or ignored; they always take effect.
v SIGCONT immediately begins all stopped threads in a process if SIG_DFL is set.
v SIGTTIN, SIGTTOU, and SIGSTP immediately stop all threads in a process if

SIG_DFL is set.

For IBM extensions to POSIX signals that do not go through condition handling:
v SIGDUMP cannot be caught or ignored; it always takes effect.
v SIGTHSTOP and SIGTHCONT cannot be caught or ignored; they always take

effect.
v SIGTRACE cannot be caught or ignored; it always takes effect.

Condition handling interactions

Chapter 13. Language Environment and HLL condition handling interactions 105

Condition handling interactions

106 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Chapter 14. Using condition tokens

Language Environment uses the 16-byte condition token data type to perform a
variety of communication functions. This information describes the format of the
condition token and its components, and how you can use the condition token to
react to conditions and communicate conditions with other routines.

Understanding the basics
If you provide an fc parameter in a call to a Language Environment callable
service, the service sets fc to a specific value called a condition token and returns it
to your application. (See “The effect of coding the fc parameter” for more
information.)

If you do not specify the fc parameter in a call to a Language Environment service,
Language Environment generates a condition token for any nonzero condition and
passes it to Language Environment condition handling. (See “Effects of omitting
the fc parameter” on page 109 for more information.)

The condition token is used by the routines of your application to communicate
with message services, the condition manager, and other routines within the
application. For example, you can use it with Language Environment message
services to write a diagnostic message associated with a particular condition to a
file. You can also determine if a particular condition has occurred by testing the
condition token, or a symbolic representation of it. The structure of the condition
token is described in “Understanding the structure of the condition token” on page
109, and symbolic feedback codes are discussed in “Using symbolic feedback
codes” on page 111.

Language Environment condition tokens contain a 8-byte instance specific
information (ISI) token. The ISI token can contain (depending on whether a
condition occurred) insert data that further describes the condition and that can be
used, for example, to write a specific message to a file. In addition to insert data,
the ISI can contain qualifying data (q_data) that user-written exception handlers
use to identify and react to a specific condition.

Related services
Language Environment provides callable services to help you construct and
decompose your own condition tokens.

__le_condition_token_build()
Builds a new condition token in your application.

The effect of coding the fc parameter
The feedback code is the last parameter of all Language Environment callable
services. C, C++, routines do not have to do so. (See z/OS Language Environment
Programming Reference for information on how to provide the feedback code
parameter in each HLL.) When the fc parameter is provided and a condition is
raised, the following sequence of events occurs: the condition token to react to
conditions and communicate conditions with other routines.

© Copyright IBM Corp. 2004, 2013 107

1. The callable service in which the condition occurred builds a condition token
for the condition. The condition token is a 16-byte representation of a Language
Environment condition. Each condition is associated with a single Language
Environment runtime message.

2. The callable service places information into the ISI, which might contain the
following:
v A timestamp
v Information that is inserted into a message associated with the condition

For example, you can use the __le_msg_add_insert() callable service (see
z/OS Language Environment Programming Reference) to generate message
inserts.

3. If the severity of the detected condition is critical (severity = 4), it is raised
directly to the condition manager. Language Environment then processes the
condition, as described in “Condition step” on page 90.

4. If the condition severity is not critical (severity less than 4), the condition token
is returned to the routine that called the service.

5. When the condition token is returned to your application, you can use the
condition token in the following ways:
v Ignore it and continue processing.
v Get, format, and dispatch the message for display using the

__le_msg_get_and_write() callable service.
v Store the message in a storage area using the __le_msg_get() callable service.
v Use the __le_msg_write() callable service to dispatch a user-defined message

string to a destination that you specify.
v Compare the condition token to one that is known to you so that you can

react appropriately. You can test the condition token for success, equivalence
or equality.

See z/OS Language Environment Programming Reference for more information
about Language Environment callable services.

Testing a condition token for success
To test a condition token for success, it is sufficient to determine if the first 4 bytes
are zero; if the first 4 bytes are zero, the remainder of the condition token is zero,
indicating that a successful call was made to the service.

The Language Environment condition handling model provides two ways you can
check for success using the fc parameter. You can compare the value returned in fc
to the symbolic feedback code CEE000, or you can compare it to a 16-byte
condition token containing all zeroes coded in your routine. See “Using symbolic
feedback codes” on page 111 for details.

You do not necessarily need to check the feedback code after every invocation of a
service or to check for success before proceeding with execution. However, if you
want to ensure that your application is invoking callable services successfully, test
the feedback code after each call to a service.

Testing condition tokens for equivalence
Two condition tokens are equivalent if they represent the same type of condition,
even if not necessarily the same instance of the condition. For example, you could
have two occurrences of an out-of-storage condition. Though equivalent conditions,
they are not necessarily equal because they occur in different locations in your
program.

Using condition tokens

108 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

To determine whether two condition tokens are equivalent, compare the first 8
bytes of each condition token to one another. These bytes are static and do not
change depending on the given instance of the condition.

You might want to check for equivalence when writing a message about a type of
condition that occurs in your application or when registering a condition handling
routine to respond to a given type of condition.

There are two ways to check for equivalent condition tokens:
v You can break down the condition token by coding it as a structure and looking

at its individual components.
v The easiest way to test for equivalence is to compare the value returned in fc

with the symbolic feedback code for the condition you are interested in
handling. Symbolic feedback codes represent only the first 8 bytes of a 16-byte
condition token. See “Using symbolic feedback codes” on page 111 for details.

Testing condition tokens for equality
To determine whether two condition tokens are equal (that is, the same instance or
occurrence of the condition token), you must compare all 16 bytes of each
condition token with each other. The last 8 bytes can change from instance to
instance of a given condition.

The only way to test condition tokens for equality is to compare the value returned
in fc with another condition token that has either been returned from a call to a
service, or that you have coded as a 16-byte condition token in your routine.
Symbolic feedback codes are used to test for equivalence; they are not useful in
testing for equality because they represent only the first 8 bytes of the condition
token.

Effects of omitting the fc parameter
When a feedback code is not provided, any nonzero condition is raised. Signaled
conditions are processed by Language Environment, as described in “Condition
step” on page 90. If the condition remains unhandled at the end of processing,
Language Environment takes the Language Environment default action (defined in
Table 14 on page 90). The message delivered is the translation of the condition
token into English (or another supported national language).

Understanding the structure of the condition token
Figure 28 on page 110 illustrates the structure of the condition token, with bit
offsets shown above the components:

Using condition tokens

Chapter 14. Using condition tokens 109

Every condition token contains the components indicated in Figure 28:

Condition_ID
A 4-byte identifier that, with the facility ID, describes the condition that the
token communicates. The format of Condition_ID depends on whether a
Case 1 (service condition) or Case 2 (class/cause code) condition is being
represented. Language Environment callable services and most applications
can produce Case 1 conditions. Case 2 conditions could be produced by
some operating systems and compiler libraries. Language Environment
does not produce them directly.

Figure 28 illustrates the format of the Condition_ID for Case 1 and Case 2
conditions.

Case Specifies if the condition token is for a Case 1 or Case 2 condition.

Severity
Specifies the severity of the condition represented by the condition token.

Control
Specifies if the facility ID has been assigned by IBM.

Facility ID
A 3-character alphanumeric string that identifies the product or component
of a product that generated the condition; for Language Environment, the
facility ID is CEE. Although all Language Environment-conforming HLLs
use Language Environment message and condition handling services, the
actual runtime messages generated under Language Environment still
carry the language identification in the facility ID.

When paired with a message number, a facility ID uniquely identifies a
message in the message source file. The facility ID and message number
persist throughout an application. This allows the meaning of the condition
and its associated message to be determined at any point in the application
after a condition has occurred.

If you create a new facility_ID to use with a message source file you
created using CEEBLDTX (see “Creating messages” on page 117), be aware
that the facility ID must be part of the message source file name. Therefore,
you must follow the naming guidelines to ensure the module name does
not abend.

0 - 31 34 - 36 37 - 39 40 - 63 64 - 12732-33

0 - 15
Severity
Number

0 - 15
Class
Code

16 - 31
Message
Number

16 - 31
Cause
Code

Condition_ID Severity
Number

Control
Code

Facility_ID ISICase

Number

For Case 1 condition tokens,
Condition_ID is:

A symbolic feedback code represents the first 8 bytes of a condition
token. It contains the Condition_ID, Case Number, Severity Number,
Control Code, and Facility_ID, whose bit offsets are indicated.

For Case 2 condition tokens,
Condition_ID is:

Figure 28. Language Environment condition token

Using condition tokens

110 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

ISI An 8-byte Instance Specific Information token associated with a given
instance of the condition. A nonzero ISI token provides instance specific
information. The ISI token contains data on message inserts for the
message associated with the condition and a q_data_token containing 8
bytes of qualifying data. The ISI token is typically built by Language
Environment for system or Language Environment-signaled conditions.
The __le_msg_add_insert() callable service can be used to define the
message inserts within the ISI for a condition token.

The message insert information cannot be retrieved directly; however, the
entire formatted message with inserts can be formatted and placed in an
application-provided character string using __le_msg_get().

Using symbolic feedback codes
Language Environment provides symbolic feedback codes representing the first 8
bytes of a 16-byte condition token. Using Language Environment-provided
symbolic feedback codes saves you from having to define an 8-byte condition
token in your code whenever you want to check for the occurrence of a condition.
Symbolic feedback codes are limited to testing for conditions rather than actual
condition instances: no ISI information is tested using symbolic feedback codes
because the comparison is only performed against the first 8 bytes of the condition
token.

Language Environment provides include files (copy files) that define all Language
Environment symbolic feedback codes. See “Including symbolic feedback code
files” for information about Language Environment symbolic feedback code files.

Locating symbolic feedback codes for conditions
In Language Environment you can locate symbolic feedback codes in the following
ways:
v Look in the first column of the symbolic feedback codes table listed after each of

the callable services in z/OS Language Environment Programming Reference.

Including symbolic feedback code files
Symbolic feedback codes are provided for Language Environment, C or C++
conditions. The symbolic feedback code files are stored in the SCEESAMP sample
library. To use symbolic feedback codes, you must include the symbolic feedback
code files in your source code. The symbolic feedback code files have file names of
the form xxxyyyCT, where:

xxx
Indicates the facility ID of the conditions represented in the file. For example,
EDCyyyCT contains condition tokens for C- or C++-specific conditions (those
with the facility ID of EDC).

xxx can be CEE (Language Environment) or EDC (C or C++).

yyy
Indicates the facility ID of the language in which the declarations are coded.

CT Stands for “condition token.”

To use symbolic feedback codes, include the file in your source code using the
appropriate language construct.

Using condition tokens

Chapter 14. Using condition tokens 111

Condition tokens for C signals under C and C++
You need the condition token representing an event as input to many Language
Environment condition and message handling services. C signals have condition
token representations that you can use for this purpose. Table 18 contains condition
tokens for C signals seen in C or C++ applications not running in a POSIX
environment (for example, C or C++ running POSIX(OFF)). The signals listed in
Table 18 have a condition token representation with facility ID of EDC.

Table 18. Language Environment condition tokens and non-POSIX C signals

Severity
Message
number

Symbolic
feedback code Case Severity Control ID Signal name

Signal
number

3 6000 EDC5RG 1 3 1 EDC SIGFPE 8

3 6001 EDC5RH 1 3 1 EDC SIGILL 4

3 6002 EDC5RI 1 3 1 EDC SIGSEGV 11

3 6003 EDC5RJ 1 3 1 EDC SIGABND 18

3 6004 EDC5RK 1 3 1 EDC SIGTERM 15

3 6005 EDC5RL 1 3 1 EDC SIGINT 2

2 6006 EDC5RM 1 2 1 EDC SIGABRT 3

3 6007 EDC5RN 1 3 1 EDC SIGUSR1 16

3 6008 EDC5RO 1 3 1 EDC SIGUSR2 17

1 6009 EDC5RP 1 1 1 EDC SIGIOERR 27

Table 19 contains condition token for C signals that are seen in C applications
running POSIX(ON). The signals listed in Table 19 have a condition token
representation with facility ID of CEE.

Table 19. Language Environment condition tokens and POSIX C signals

Severity
Message
Number

Symbolic
Feedback Code Case Severity Control ID Signal Name

Signal
Number

3 5201 CEE52H 1 3 1 CEE SIGFPE 8

3 5202 CEE52I 1 3 1 CEE SIGILL 4

3 5203 CEE52J 1 3 1 CEE SIGSEGV 11

3 5204 CEE52K 1 3 1 CEE SIGABND 18

3 5205 CEE52L 1 3 1 CEE SIGTERM 15

3 5206 CEE52M 1 3 1 CEE SIGINT 2

2 5207 CEE52N 1 2 1 CEE SIGABRT 3

3 5208 CEE52O 1 3 1 CEE SIGUSR1 16

3 5209 CEE52P 1 3 1 CEE SIGUSR2 17

3 5210 CEE52Q 1 3 1 CEE SIGHUP 1

3 5211 CEE52R 1 3 1 CEE SIGSTOP 7

3 5212 CEE52S 1 3 1 CEE SIGKILL 9

3 5213 CEE52T 1 3 1 CEE SIGPIPE 13

3 5214 CEE52U 1 3 1 CEE SIGALRM 14

1 5215 CEE52V 1 1 1 CEE SIGCONT 19

1 5216 CEE530 1 1 1 CEE SIGCHLD 20

Using condition tokens

112 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Table 19. Language Environment condition tokens and POSIX C signals (continued)

Severity
Message
Number

Symbolic
Feedback Code Case Severity Control ID Signal Name

Signal
Number

3 5217 CEE531 1 3 1 CEE SIGTTIN 21

3 5218 CEE532 1 3 1 CEE SIGTTOU 22

1 5219 CEE533 1 1 1 CEE SIGIO 23

3 5220 CEE534 1 3 1 CEE SIGQUIT 24

3 5221 CEE535 1 3 1 CEE SIGTSTP 25

3 5222 CEE536 1 3 1 CEE SIGTRAP 26

1 5223 CEE537 1 1 1 CEE SIGIOERR 27

1 5224 CEE538 1 1 1 CEE SIGDCE 38

3 5225 CEE539 1 3 1 CEE SIGPOLL 5

3 5226 CEE53A 1 3 1 CEE SIGURG 6

3 5227 CEE53B 1 3 1 CEE SIGBUS 10

3 5228 CEE53C 1 3 1 CEE SIGSYS 12

1 5229 CEE53D 1 1 1 CEE SIGWINCH 28

1 5230 CEE53E 1 1 1 CEE SIGXCPU 29

1 5231 CEE53F 1 1 1 CEE SIGXFSZ 30

3 5232 CEE53G 1 3 1 CEE SIGVTALRM 31

3 5233 CEE53H 1 3 1 CEE SIGPROF 32

5234 CEE53I 1 1 1 CEE SIGDUMP 39

5235 CEE53J 1 1 1 CEE SIGDANGER 33

5236 CEE53K 1 1 1 CEE SIGTHSTOP 34

5237 CEE53L 1 1 1 CEE SIGTHCONT 35

5238 CEE53M 1 1 1 CEE SIGTRACE 37

q_data structure for abends
When Language Environment fields an abend, condition CEE35I (corresponding to
message number 3250) is raised. Language Environment provides q_data
(qualifying data) for system or user abends as part of the ISI token for condition
CEE35I. The q_data associated with abends is also listed by message number in
z/OS Language Environment Runtime Messages.

q_data is composed of a list of addresses pointing to information that can be used
by HLL and user-written exception handlers to react to a condition. The q_data
structure for an abend is shown in Figure 29 on page 114.

If an abend occurs, Language Environment signals condition CEE35I
(corresponding to message number 3250) and builds the q_data structure shown in
Figure 29 on page 114.

Using condition tokens

Chapter 14. Using condition tokens 113

parm count (input)
A fullword field containing the total number of parameters in the q_data
structure, including parm count. In this case, the value of parm count is a
fullword containing the integer 3.

abend code (input)
A 4-byte field containing the abend code in the following format:

system abend code
The 12-bit system completion (abend) code. If these bits are all zero, then
the abend is a user abend.

user abend code
The 12-bit user completion (abend) code. The abend is a user abend when
bits 8 through 19 are all zero.

reason code (input)
A 4-byte field containing the reason code accompanying the abend code. If a
reason code is not available, reason code has the value zero.

q_data structure for arithmetic program interruptions
If one of the arithmetic program interruptions shown in Table 20 occurs, and the
corresponding condition is signaled, Language Environment builds the q_data
structure shown in Figure 30 on page 115.

Table 20. Arithmetic program interruptions and corresponding conditions

Program interruption (see note 1)
Program interruption

code Condition
Message
number

Fixed-point overflow exception 08 CEE348 3208

Fixed-point divide exception 09 CEE349 3209

Exponent-overflow exception 0C CEE34C 3212

Exponent-underflow exception 0D CEE34D 3213

Floating-point divide exception 0F CEE34F 3215

Unnormalized-operand exception 1E CEE34U 3230

q_data_token

parm code

Q_DATAADDRESS LIST

abend code

reason code

Figure 29. Structure of abend qualifying data

system abend code

0 7 8 19 20 31

user abend code

Using condition tokens

114 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Table 20. Arithmetic program interruptions and corresponding conditions (continued)

Program interruption (see note 1)
Program interruption

code Condition
Message
number

Notes:

1. The square root exception is also an arithmetic program interruption, but is treated like
the condition from the square root mathematical routine.

The q_data structure shown in Figure 30 is built by Language Environment for the
conditions of exponent overflow, exponent underflow, floating-point divide,
fixed-point overflow, fixed-point divide, and unnormalized-operand exceptions. As
a result, the q_data structure provides the following information:

parm_count (input)
A 4-byte binary integer containing the value 6, which is the total number of
q_data fields in the q_data structure, including parm_count.

mach_inst_result_desc (input)
The q_data descriptor for mach_inst_result.

mach_inst_result (input)
The value left in the machine register (general register, floating-point register,
or element of a vector register) by the failing machine instruction. Based on the
program interruption, mach_inst_result has one of the following lengths and
types (as reflected in the q_data descriptor field mach_inst_result_desc):

Program interruption Length and type
Fixed-point overflow exception 4- or 8-byte binary integer
Fixed-point divide exception 8-byte binary integer
Exponent-overflow exception 4-, 8-, or 16-byte floating-point number
Exponent-underflow exception 4-, 8-, or 16-byte floating-point number
Floating-point divide exception 4-, 8-, or 16-byte floating-point number
Unnormalized-operand exception (occurs
only on vector instructions)

4- or 8-byte floating-point number

This is also the result value with which execution is resumed when the user
condition handler requests the resume action (result code 10).

q_data_token

parm_count

fixup_resume_value_desc

Q DATAADDRESS LISTISI

mach_inst_result_desc

fixup_resume_value

mach_inst_result

mach_inst_address

Figure 30. q_data Structure for arithmetic program interruption conditions

Using condition tokens

Chapter 14. Using condition tokens 115

fixup_resume_value_desc (input)
The q_data descriptor for fixup_resume_value.

fixup_resume_value (input/output)
The fix-up value which, for the exceptions other than the unnormalized-
operand exception, is the result value with which execution is resumed.
fixup_resume_value initially has one of the following values:
v For an exponent-underflow exception, the value 0
v For an unnormalized-operand exception, the value 0
v For one of the other program interruptions, the same value as in

mach_inst_result

Based on the program interruption, fixup_resume_value has the following
lengths and types (as reflected in the q_data descriptor field
fixup_resume_value_desc):

Program interruption Length and type
Fixed-point overflow exception 4- or 8-byte binary integer
Fixed-point divide exception 8-byte binary integer or two 4-byte binary

integers (remainder, quotient)
Exponent-overflow exception 4-, 8-, or 16-byte floating-point number
Exponent-underflow exception 4-, 8-, or 16-byte floating-point number
Floating-point divide exception 4-, 8-, or 16-byte floating-point number
Unnormalized-operand exception (occurs
only on vector instructions)

4- or 8-byte floating-point number

mach_inst_address (input)
The address of the machine instruction that is causing the program
interruption.

q_data structure for square-root exception
A square-root exception is the program interruption that occurs when a square root
instruction is executed with a negative argument. If a square-root exception occurs
and the corresponding condition as shown in Table 21 is signaled, Language
Environment builds the q_data structure shown in Figure 30 on page 115.

Table 21. Square-root exception and corresponding condition

Program interruption
Program interruption

code Condition
Message
number

Square-root exception 1D CEE1UQ 2010

For a square-root exception, Language Environment signals the same condition
(CEE1UQ) as it does when one of the square root routines detects a negative
argument. For this exception, a user-written condition handler can request the
same resume and fix-up and resume actions that it can request when the condition
is signaled by one of the square root routines.

Using condition tokens

116 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Chapter 15. Using and handling messages

Use the Language Environment message services to create, issue, and handle
messages for Language Environment-conforming applications.

Understanding the basics
The Language Environment message services provide a common method of
handling and issuing messages for AMODE 64 applications.

When a condition is raised in your application, either Language Environment
common routines or language-specific runtime routines can issue messages to
stderr. The messages can provide information about the condition and suggest
possible solutions to errors.

You can use Language Environment APIs and runtime options to modify message
handling.

Runtime options
NATLANG

Specifies the national language runtime message file

APIs
__le_msg_add_insert()

Stores and loads message insert data about a condition

__le_msg_get()
Gets a message

__le_msg_get_and_write()
Gets, formats and writes a message

__le_msg_write()
Writes a message

For more information about the APIs, see z/OS XL C/C++ Runtime Library Reference.

Utilities
CEEBLDTX

Transforms source files into loadable TEXT files

Creating messages
The following sections explain how to create messages to use in your routines. To
create a message, you:
1. Create a message source file
2. Assemble the message source file with the CEEBLDTX utility
3. Create a message module table
4. Assign values to message inserts
5. Use messages in code to get message output

© Copyright IBM Corp. 2004, 2013 117

Creating a message source file
The message source file contains the message text and information associated with
each message. Standard tags and format are used for message text and different
types of message information. The tags and format of the message source files are
used by the CEEBLDTX utility to transform the source file into a loadable TEXT
file.

Under TSO/E, if you specify a partially qualified name, TSO/E adds the current
prefix (usually userid) as the leftmost qualifier and TEXT as the rightmost qualifier.
The message source file should have a fixed record format with a record length of
80.

When creating a message file, make sure your sequential numbering attribute is
turned off in the editor so that trailing sequence numbers are not generated.
Trailing blanks in columns 1–72 are ignored. At least one message data set (TSO/E)
is required for each national language version of your messages.

All tags used to create the source file begin with a colon (:), followed by a
keyword and a period (.). All tags must begin in column 1, except where noted.
Comments in the message source file must begin with a period asterisk (.*) in the
leftmost position of the input line.

Figure 31 shows an example of a message source file with a facility ID of XMP.

The tags used in message source files are:

:facid. The facility ID is required at the beginning of every message file. It is used
as the first 3 characters of the message number. All messages within a
source file have the same facility ID. For example, all messages issued by
Language Environment have a facility ID of CEE. The facility ID is
combined with a 4-digit identification number and the message severity
code to form the message number. The facility ID can contain any
alphanumeric (A–Z, a–z, 0–9) characters.

Omitting the facility ID tag, causes an error during the creation of the
loadable message file. Errors are also caused by multiple occurrences of
this tag, or by the use of blanks or special characters in the facility ID.

If your C application is running with POSIX(OFF), Language Environment
issues messages with a facility ID of EDC for compatibility. For more
information, see “Runtime messages with POSIX” on page 130.

:facid.XMP
:msgno.10
:msgsubid.0001
:msgname.EXMPLMSG
:msgclass.I
:msg.This is an example of an insert,
:tab.+1
:ins 1.a simple insert
:msg., within a message.
:xpl.This is a simple example of how to put an insert into a message.
:presp.No programmer response required.
:sysact.No system action is taken.

Figure 31. Example of a message source file

Using messages

118 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Note: The facility ID is also used as the first 3 characters of the condition
token.

:msgno.
This tag is required. The message number tag defines the beginning and
end of information for a message. All information up to the next :msgno.
tag refers to the current message. The message number appears as the 4
digits following the message prefix, and is used to identify the message in
a message source file. Multiple messages can use the same message
number, but only if a :msgsubid. tag is used within the message.

The message numbers used with the :msgno. tags must be in ascending
order. The message numbers can be from 1 to 4 numeric (0–9) characters.
Leading zeros will be added if fewer than 4 characters are used.

If your application is running with POSIX(ON), message numbers 5201
through 5209 are used whereas the same messages use message numbers
6000 through 6008 when POSIX(OFF) is in effect. For more information, see
“Runtime messages with POSIX” on page 130.

:msgsubid.
This tag is optional. The message subidentifier tag distinguishes between
different messages with the same message number. If every message has a
unique message number, the :msgsubid. tag is unnecessary.

The numbers associated with the :msgsubid. tags must be unique and in
ascending order within messages that have the same message number. The
number associated with the :msgsubid. tag can be from 1 to 4 numeric (0–9)
characters. Leading zeros will be added if fewer than 4 digits are used.

:msgname.
The :msgname. tag is used to give a name to a message. This name becomes
the symbolic name of the condition token associated with the message, and
is placed into the COPY file generated by the CEEBLDTX utility. For
example, if EXMPLMSG is used for the :msgname. tag in a message with a
facility ID of XMP, the symbolic feedback code for the condition associated
with this message is also EXMPLMSG.

If a message name is omitted, the facility ID plus the base-32 equivalent of
the message number is used as the symbolic message name. If additionally
the :msgsubid. tag is used, the message subidentifier preceded by an
underscore is appended to the message name. For example, if :msgno. has a
value of 10 and the facility ID is XMP, the symbolic feedback code for the
condition associated with a message is XMP00A. If additionally the
:msgsubid. tag is used with a value of 0001, the symbolic feedback code is
XMP00A_0001.

:msgclass.
This tag is required. The :msgclass. (or :msgcl.) tag makes up the final part
of the message identification. It requires a case-sensitive character that
indicates the severity code of the message. This character corresponds to
the level of severity of the condition token associated with the message. If
the :msgclass. tag differs from the severity level of the condition token, the
severity assigned to the condition token is used. Refer to Table 22 on page
129 for the severity codes, levels of severity, and condition descriptions.

:msg. The :msg. tag indicates the beginning of partial or complete text of the
message to be displayed. The message text can appear in any national
language known to Language Environment (including DBCS characters).
For a list of the supported national languages, refer to z/OS Language

Using messages

Chapter 15. Using and handling messages 119

Environment Programming Reference. The :msg. tag can be repeated as often
as necessary to construct a message. It is not required if the message
consists only of message inserts. If the message text for a message requires
more than one line, all lines are left-aligned with the beginning of the first
line of message text.

The message text ends with the last nonblank character. There is no fixed
space reserved for the message, so there is no requirement to reserve any
additional space for message translation.

:hex. The :hex. tag indicates the beginning of a hexadecimal character
string. If used, it must be within the text of a :msg. tag. It is
terminated by an :ehex. tag. The :hex. tag can occur anywhere
within the message text.

:ehex. The :ehex. tag terminates a string of hexadecimal characters. This
tag can occur anywhere within the message text.

:dbc. The :dbc. tag defines text of DBCS characters. The string itself
cannot contain any SBCS characters, but it must begin with a
shift-out character and end with a shift-in character.

:tab.n The :tab. tag indicates that the next part of the message will be tabbed over
a given number of spaces or tabbed to a given column. If the number is
preceded by a plus sign, it indicates the next part of the message will be
moved over the specified number of spaces from the current position.
Otherwise, the number indicates the column where the next message part
will begin. The tab value must be between 1 and 255. If necessary, a new
line of output is automatically created to accommodate the tab value. This
includes the case where the current position is greater than a specified tab
column.

:tbn. The :tbn. tag is used to force any text written on a subsequent line to start
in the current column until an :etbn. tag is found.

:etbn. The :etbn. tag turns off the tabs set by a :tbn. tag.

:ins n.[text]
The :ins. tag defines a message insert. The insert is a variable that is
assigned a value with the CEECMI callable service. The insert number (n)
can be any number between 1 and 9. The text following the period
describes the insert. This text is optional, and is included only in a message
file when the value assigned to the insert is not known. For example, the
text variable name after an insert tag indicates that a variable name is
assigned to the insert.

One value can be assigned to each insert used in a message. Insert tags can
be moved around, interchanged, or omitted, but the insert values cannot be
changed. The order of the :ins n. tags, not the insert number, determines
the order of the inserts.

:newline.
The :newline. tag creates a new message line that can be used for multiline
messages.

:xpl. This tag is optional. The :xpl. tag indicates text used to explain the
condition. It is not printed as part of the message, but is included if the
message SCRIPT file is formatted and printed.

:presp.
This tag is optional. The :presp. tag indicates text that describes the

Using messages

120 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

suggested programmer response. It is not printed as part of the message,
but is included if the message SCRIPT file is formatted and printed or
displayed online.

:sysact.
This tag is optional. The :sysact. tag indicates text that describes the system
action. It is not printed as part of the message, but is included if the
message SCRIPT file is formatted and printed or displayed online.

Using the CEEBLDTX utility

z/OS UNIX interface
ceebldtx [-C csect_name] [-I secondary_file_name]

[-P] [-S] [-c class] [-d delimiter]
[-l BAL | C | COBOL | FORTRAN | PLI] [-s id]
in_file out_file

Note: The ceebldtx utility is lowercase in the z/OS UNIX interface and only works
with z/OS UNIX files; MVS data sets are not applicable.

Operands

in_file
Required. The name of the file containing the message source.

out_file
Required. The name of the resulting assembler source file containing the
messages, inserts, and other items, suitable for input into the High Level
Assembler. Extension of .s is assumed if none is present.

Options

-C csect_name

This option is used to explicitly specify the CSECT name. An uppercase
version of the CSECT name will be used. By default, the CSECT name is
the output file base name.

A CSECT name greater than 8 characters requires the use of the GOFF
option when assembling the out_file.

-I secondary_file_name
The name of the secondary input file generated for the language specified
with the -l (lowercase L) option. If no suffix is present in the
secondary_file_name specified, the extension is .h for C, .fortran for
Fortran, and .copy for all others.

-P This option is used to save previous prologs, if files being generated
already exist in the directory and contain prologs. By default, previous
prologs are not reused.

-S This option is used to indicate sequence numbers should be generated in
the files produced. By default, no sequence numbers are generated.

-c class
This option is used to specify the default value for :msgclass. in cases
where the tag is not coded.

-d APOST | ' | QUOTE | "
This option is used to specify which COBOL delimiter to use. Used in
combination with the -l (lowercase L) COBOL option. By default, APOST is
used as the delimiter.

Using messages

Chapter 15. Using and handling messages 121

Note: Quotation marks should be escaped to avoid them being treated as
shell metacharacters.

Examples:
ceebldtx -l COBOL -I secondary_file_name -d \’ in_file out_file
ceebldtx -l COBOL -I secondary_file_name -d \" in_file out_file
ceebldtx -l COBOL -I secondary_file_name -d QUOTE in_file out_file

-l BAL | C | COBOL | FORTRAN | PLI
This options is used to specify the language to be used in generating a
secondary input file. Used in combination with the -I (uppercase i)
secondary_file_name option. The file will contain declarations for the
condition tokens associated with each message in the message source file.
The language is accepted in lower and upper case.

Note: C370 is also supported.

-s id
This option is used to specify the default value for :msgsubid. in cases
where the tag is not coded.

TSO/E interface

�� CEEBLDTX in_file out_file
BAL(secondary_file_name)
C(secondary_file_name)

APOST
COBOL(secondary_file_name)

'
QUOTE
"

FORTRAN(secondary_file_name)
PLI(secondary_file_name)

�

�
CLASS(class) CSECT(csect_name) MSGID(id)

SEQ

NOSEQ
�

�
PROL

NOPROL
��

in_file
The name of the file containing the message source. The fully qualified data set
name must be enclosed in single quotes if you do not want a TSO/E prefix.

out_file
The name of the resulting assembler source file containing the messages,
inserts, and other items, suitable for input into the High Level Assembler. The
fully qualified data set name must be enclosed in single quotes if you do not
want a TSO/E prefix.

options

APOST | ' | QUOTE | "
Specify the delimiter to use, APOST is used by default. This option is used
to specify which COBOL delimiter to use. Honored in combination with
COBOL(secondary_file_name) option.

Using messages

122 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

BAL(secondary_file_name) | C(secondary_file_name) |
COBOL(secondary_file_name) | FORTRAN(secondary_file_name) |
PLI(secondary_file_name)

secondary_file_name: The name of the secondary input file for the
specified language. The file will contain declarations for the condition
tokens associated with each message in the message source file. The fully
qualified data set name must be enclosed in single quotes if you do not
want a TSO/E prefix.

Note:

1. Only the last language (secondary_file_name) will be used.
2. C370(secondary_file_name) is also supported.

CLASS(class)
This option is used to specify the default value for :msgclass. in cases
where the tag is not present.

CSECT(csect_name)

This option is used to explicitly specify the CSECT name. An uppercase
version of the CSECT name will be used. By default, the CSECT name is
the output file base name.

A CSECT name greater than 8 characters requires the use of the GOFF
option when assembling the out_file.

MSGSID(id)
This option is used to specify the default value for :msgsubid. in cases
where the tag is not present.

PROL | NOPROL
Specify PROL to reuse prolog from the previous file version, if previous
version exists. Specify NOPROL to ignore the previous prolog. PROL is
default.

SEQ | NOSEQ
Specify SEQ to generate files with sequence numbers. Specify NOSEQ to
generate files without sequence number. SEQ is default.

Note: The CEEBLDTX utility is a REXX EXEC that resides in SCEECLST data set.

Files created by CEEBLDTX
The CEEBLDTX utility creates several files from the message source file. It creates
an assembler source file, which can be assembled into an object ("TEXT") file and
link-edited into a module in an MVS load library. When the name of the module is
placed in a message module table, the Language Environment message services
can dynamically access the messages. See “Creating a message module table” on
page 127 for more information about creating a message module table.

The CEEBLDTX utility optionally creates secondary input files (COPY or
INCLUDE), which contain the declarations for the condition tokens associated with
each message in the message source file. When a program uses the secondary
input file, the condition tokens can then be used to reference the message from the
message table. The :msgname. tag indicates the symbolic name of the condition
token.

To use the CEEBLDTX utility with the sample file shown in Figure 31 on page 118,
issue the environment corresponding command example. After the out_file is

Using messages

Chapter 15. Using and handling messages 123

generated, High Level Assembler can be used to assemble the out_file into an
object and the binder can be used to link-edit the object into a module in an MVS
load library. (A CSECT name greater than 8 characters requires the use of the High
Level Assembler GOFF option for assembling the primary out_file.):

TSO/E:
CEEBLDTX example exmplasm pli(exmplcop)

The in_file is EXAMPLE, the out_file is EXMPLASM, and the PL/I secondary
input file is EXMPLCOP.

z/OS UNIX:
ceebldtx -l PLI -I exmplcop example exmplasm

The in_file is example, the out_file is exmplasm.s, and the PL/I secondary input
file is exmplcop.copy.

CEEBLDTX error messages
Language Environment issues the following messages for CEEBLDTX errors:

Return Code=-1 IRX0005I Machine storage exhausted

Explanation: Rexx terminated execution due to lack of
storage. (See IRX0005I in the z/OS TSO/E Messages.)

Programmer response: Attempt one of the following
options:

1. Increase the virtual storage space available on the
system.

2. Split up the script in_file, into two or more
files(Adjust the Message Module Table for the
corresponding split.)

Return Code=0005 Error reading file ssssssss.

Explanation: Error occurred while reading file ssssssss.

Programmer response: Validate file accessibility.

Return Code=0006 Error erasing file ssssssss.

Explanation: Error occurred while erasing file ssssssss.

Programmer response: Validate file accessibility.

Return Code=0007 Error writing file ssssssss.

Explanation: Error occurred while writing file ssssssss.

Programmer response: Validate file accessibility.

Return Code=0008 Bad filename ssssssss: forward
slash not allowed at the end of a
filename.

Explanation: Filenames are not allowed to end with
forward slashes.

Programmer response: Modify the filename to not end
with a forward slash.

Return Code=0009 Option x requires an argument.

Explanation: Option specified must be accompanied
by an argument.

Programmer response: Specify an argument with the
option.

Return Code=0010 Invalid option = x. Valid options
are: CIPScdls.

Explanation: Invalid option specified.

Programmer response: Specify zero or more valid
options.

Return Code=0011 Bad data set name ssssssss.

Explanation: The data set name is not correctly
specified.

Programmer response: Validate the name of the data
set is correct.

Return Code=0020 CSECT name ssssssss is greater
than 63 characters.

Explanation: The CSECT name ssssssss is greater than
63 characters and will cause an error during assembly.

Programmer response: Make sure the CSECT name is
63 characters or less.

Return Code=0021 CSECT name ssssssss does not
begin with a letter, $, #, @ or underscore
(_).

Explanation: The CSECT name ssssssss does not begin
with a letter, $, #, @ or underscore (_) and will cause an
error during assembly.

Programmer response: Make sure that the CSECT
name ssssssss begins with a letter, $, #, @ or underscore
(_).

Return Code=-1 • Return Code=0021

124 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Return Code=0028 ssssssss SCRIPT not found on any
accessed disk.

Explanation: The SCRIPT file with the name ssssssss
does not exist.

Programmer response: Make sure the name is given
correctly and is accessible.

Return Code=0040 Error on line nnn in message nnnn
Insert number greater than mmmm.

Explanation: An insert number greater than the
allowable maximum was specified. The current
maximum allowable insert number is 9.

Programmer response: Specify an insert number of 9
or less.

Return Code=0044 Error on line nnn Duplicate
:FACID. tags found with the given script
file.

Explanation: Only one facility ID can be specified in
the SCRIPT file.

Programmer response: Specify only one facility ID in
the SCRIPT file.

Return Code=0048 No :FACID. tag found within the
given script file.

Explanation: A 3-character facility ID must be
specified in the SCRIPT file with the :facid. tag.

Programmer response: Specify a 3-character facility ID
with the :facid. tag.

Return Code=0052 Error on line nnn Message
number nnnn found out of range
mmmm to mmmm.

Explanation: A message was found with a number
outside the valid range. The current valid range is 0 to
9999.

Programmer response: Correct the invalid message
number on the given line of the SCRIPT file.

Return Code=0056 Number of hex digits not
divisible by 2 on line nnn in message
nnnn.

Explanation: Hexadecimal strings must contain an
even number of digits.

Programmer response: Specify an even number of
digits for the hexadecimal string.

Return Code=0060 Invalid hexadecimal digits on line
nnn in message nnnn.

Explanation: Valid hexadecimal digits are 0–9 and
A–F. Invalid digits were detected.

Programmer response: Specify only digits 0–9 and
A–F within a hexadecimal string.

Return Code=0064 Number of DBCS bytes not
divisible by 2 on line nnn in message
nnnn.

Explanation: Doublebyte character strings must
contain an even number of bytes.

Programmer response: Specify an even number of
bytes for the doublebyte character string.

Return Code=0068 PLAS out_file name must be
longer than the message facility ID pppp.

Explanation: The ASSEMBLE file name must be
greater than 3 characters.

Programmer response: Specify an ASSEMBLE out_file
name of greater than 3 characters.

Return Code=0072 Message facility ID pppp on line
nnn was longer than 4 characters.

Explanation: Facility ID must be exactly 3 characters
long, with no blanks.

Programmer response: Specify a 3-character facility
ID.

Return Code=0076 Message class on line nnn was not
a valid message class type: IWESCFA.

Explanation: Message class must be one of the valid
message classes.

Programmer response: Specify a valid message class.

Return Code=0080 Tag not recognized on line nnn.

Explanation: A tag that was not recognized was
encountered.

Programmer response: Check the tag for proper
spelling and use.

Return Code=0084 The first tag was not a :FACID.
tag on line nnn.

Explanation: The first tag of the SCRIPT file must be
the facility ID tag.

Programmer response: Specify the facility ID tag as
the first tag in the SCRIPT file.

Return Code=0028 • Return Code=0084

Chapter 15. Using and handling messages 125

Return Code=0088 Unexpected tag found on line
nnn.

Explanation: A valid tag was found in an unexpected
location in the SCRIPT file; it is likely out of order.

Programmer response: Check the order of the tags in
the SCRIPT file.

Return Code=0092 Duplicate tags ttt found on line
nnn.

Explanation: Duplicate :msgname., :msgclass., or
:msgsubid. tags were found for a single message.

Programmer response: Remove the extra tag from the
message script.

Return Code=0096 No :MSGNO. tags found within
the given SCRIPT file.

Explanation: A message file must have at least one
message in it, and it must be denoted by a :msgno. tag.

Programmer response: Specify at least one message in
the message file.

Return Code=0098 No :MSGCLASS. (or :MSGCL.)
tag found for message nnnn.

Explanation: A :msgclass. (or :msgcl.) tag was not
found for message nnnn.

Programmer response: Specify a :msgclass. tag to
indicate the severity code of the message and verify the
tag is located after the :msgno. tag. Alternatively you
can use the -c (CLASS) option to provide a default
value for messages which have no :msgclass. (or
:msgcl.) tag specified.

Return Code=0100 Insert number was not provided
or was less than 1 on line nnn.

Explanation: A positive insert number must be
provided for each insert.

Programmer response: Specify a positive insert
number of 9 or less for the insert.

Return Code=0104 Message subid was out of the
range mmmm to mmmm on line nnn.

Explanation: A message subid was found with a
number outside the valid range. The current valid
range is 0 to 9999.

Programmer response: Correct the invalid message
subid on the given line of the SCRIPT file.

Return Code=0108 Existing secondary file, ssssssss,
found, but not on A-disk.

Explanation: A secondary file with the name ssssssss
doe not exist on A-disk.

Programmer response: Make sure the name is given
correctly and is accessible.

Return Code=0112 The current ADDRESS
environment not CMS, TSO/E, or z/OS
UNIX.

Explanation: CEEBLDTX utility is not being executed
in a supported environment.

Programmer response: Transport the utility to either
CMS, TSO/E, or z/OS UNIX environment and try
executing again.

Return Code=nnn Undefined error number nnn
issued.

Explanation: An undefined error was encountered.

Programmer response: Contact your service
representative.

Return Code=0088 • Return Code=nnn

126 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Creating a message module table
Language Environment locates the user-created messages using a message module
table that you code in assembler.

The message module table begins with a header that indicates the number of
languages in the table. In Figure 32, for example, only English is used, so the first
fullword of the header declares the constant F’1’.

In the message module table in Figure 33 on page 128, however, English and
Japanese are used, so the first fullword of the header declares the constant F’2’.
Following the message module table header are tables for each language.

TITLE ’UXMPMSGT’
UXMPMSGT CSECT

DC F’1’ number of languages
DC CL8’ENU ’ language identifier
DC A(TABLEENU) pointer to first language table

TABLEENU DC F’01’ lowest message number in module
DC F’100’ highest message number in module
DC CL8’EXMPLASM’ message module name
DC F’-1’ flags indicating the last...
DC F’-1’ 16-byte entry (a dummy entry)...
DC CL8’DUMMY’ in the language table
END UXMPMSGT

Figure 32. Example of a message module table with one language

Creating a message module table

Chapter 15. Using and handling messages 127

Each language table has one or more 16-byte entries that indicate the name of a
load module and the range of message numbers the module contains. The first
fullword of each 16-byte entry contains the lowest message number within the
corresponding module; the second fullword contains the highest message number
for that module. The last 8 bytes of each 16-byte entry contain the name of the
message module to be loaded. For example, in Figure 33, Japanese messages
numbered 101–200 are found in module ZOGMSGJ2. Finally, each language table
ends with a dummy 16-byte entry whose first two fullwords contain the flag F’-1’
indicating the end of the language table.

Use an 8-character format for the title of the message module table: 'U' (to indicate
that the table contains user-created messages), followed by a 3-character facility ID,
followed by MSGT. For example, the title of the message module table for
messages using a facility ID of XMP would be UXMPMSGT as shown in Figure 32
on page 127; the title of the message module table for messages having a facility
ID of ZOG would be UZOGMSGT as shown in Figure 33.

After you create the message module table:
1. Assemble it into a loadable TEXT file using High Level assembler.
2. Store the message module table in a library where it can be dynamically

accessed while your routine is running.

Assigning values to message inserts
After you add message insert tags to the message source file, you can use the
Language Environment API __le_msg_add_insert() to assign values to the inserts.

TITLE ’UZOGMSGT’
UZOGMSGT CSECT

DC F’2’ number of languages
DC CL8’ENU ’ first language identifier
DC A(TABLEENU) pointer to first language table
DC CL8’JPN ’ second language identifier
DC A(TABLEJPN) pointer to second language table

TABLEENU DC F’01’ lowest message number in first module
DC F’100’ highest message number in first module
DC CL8’ZOGMSGE1’ first message module name
DC F’101’ lowest message number in second module
DC F’200’ highest message number in second module
DC CL8’ZOGMSGE2’ second message module name

...
DC F’-1’ flags indicating the last...
DC F’-1’ 16-byte entry (a dummy entry)...
DC CL8’DUMMY’ in the language table

TABLEJPN DC F’01’ lowest message number in first module
DC F’100’ highest message number in first module
DC CL8’ZOGMSGJ1’ first message module name
DC F’101’ lowest message number in second module
DC F’200’ highest message number in second module
DC CL8’ZOGMSGJ2’ second message module name

...
DC F’-1’ flags indicating the last...
DC F’-1’ 16-byte entry (a dummy entry)...
DC CL8’DUMMY’ in the language table
END UZOGMSGT

Figure 33. Example of a message module table with two languages

Creating a message module table

128 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Values do not need to be assigned to inserts in sequential order. For example, the
value of insert 3 can be assigned before the value for insert 1. For more
information about __le_msg_add_insert() see z/OS XL C/C++ Runtime Library
Reference.

Interpreting runtime messages
Runtime messages are designed to provide information about conditions and
possible solutions to errors that occur in your routine. Language Environment
common routines and language-specific runtime routines issue runtime messages.
All runtime messages in Language Environment are composed of the following:
v A 3-character facility ID used by all messages generated under Language

Environment or a particular Language Environment-conforming product. This
prefix indicates the Language Environment component that generated the
message, and is also the facility ID in the condition token. Language
Environment uses the ID of the condition token to write the message associated
with the condition. For more information about the condition token, see
Chapter 14, “Using condition tokens,” on page 107.

v A message number that identifies the message associated with the condition.
v A severity level that indicates the severity of the condition that was raised.

The format of every runtime message is FFFnnnnx

FFF
Represents the facility ID. In z/OS, facility IDs that begin with A through I are
reserved for IBM use.

nnnn
Represents the message number.

x Represents the severity code. This character indicates the level of severity (1, 2,
3, or 4) of the message.

Table 22 lists the severity codes, corresponding severity levels, explanations of the
severity codes, and the default actions that are taken if conditions corresponding to
each level of severity are unhandled.

Table 22. Language Environment runtime message severity codes

Severity
code

Level of
severity Explanation

Default action if condition
unhandled

I 0 An informational message (or, if
the entire token is zero, no
information).

No message issued.

W 1 A warning message; service
completed, probably successfully.

No message issued.
Processing continues for all
languages.

E 2 Error detected, correction
attempted, service completed,
perhaps successfully.

Issues message and
terminates thread.

S 3 Severe error detected, service
incomplete with possible side
effects.

Issues message and
terminates thread.

C 4 Critical error detected, service
incomplete with condition
signaled.

Issues message and
terminates thread.

Assigning values to message inserts

Chapter 15. Using and handling messages 129

Language Environment messages can appear even though you made no explicit
calls to Language Environment services.

Some Language Environment conditions have qualifying data associated with the
instance specific information (ISI) for the condition. For more information about
qualifying data, see “q_data structure for abends” on page 113.

Specifying the national language
You can use Language Environment national language support to view runtime
messages in mixed- and uppercase U.S. English and in Japanese. You can also use
national language support to select the most appropriate language variables for
your messages, such as language character set, left-to-right text, single-byte
character set (SBCS), and double-byte character set (DBCS).

Language Environment message services support requirements for national
language support machine-readable information such as message formatting,
message delivery, and normalization (removes the adjacent shift-out, shift-in
character in order to make DBCS strings as compatible as possible).

The NATLANG runtime option allows you to set the national language used for
messages before you run your routine. The default national language is mixed and
uppercase U.S. English. See z/OS Language Environment Programming Reference for
more information on the NATLANG runtime option.

Runtime messages with POSIX
When your C application is running with POSIX(ON), some messages have
changed both facility ID and message number. Messages that had a facility ID of
EDC and ranged from message number 6000 through 6008 prior to running with
POSIX(ON) now have a facility ID of CEE and use message numbers 5201 through
5209. Messages 5210 through 5233 are new for POSIX(ON) and thus do not have a
corresponding POSIX(OFF) message number, except for message 5223, which has a
facility ID of EDC and a message number of 6009 while running with POSIX(OFF).
When your C application is running with POSIX(OFF), facility ID EDC is still used
for message numbers 6000 through 6009.

If your C application is coded to respond to specific facility IDs or specific message
numbers for processing, you must specify POSIX(OFF) to receive the facility ID of
EDC and message numbers 6000 through 6009.

Table 23 shows the conditions, their condition numbers, and facility IDs.

Table 23. Condition tokens with POSIX

Condition token
Facility ID with
POSIX(ON)

Message number
with POSIX(ON)

Facility ID with
POSIX(OFF)

Message number
with POSIX(OFF)

SIGFPE CEE 5201 EDC 6000

SIGILL CEE 5202 EDC 6001

SIGSEGV CEE 5203 EDC 6002

SIGABND CEE 5204 EDC 6003

SIGTERM CEE 5205 EDC 6004

SIGINT CEE 5206 EDC 6005

SIGABRT CEE 5207 EDC 6006

SIGUSR1 CEE 5208 EDC 6007

Interpreting runtime messages

130 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Table 23. Condition tokens with POSIX (continued)

Condition token
Facility ID with
POSIX(ON)

Message number
with POSIX(ON)

Facility ID with
POSIX(OFF)

Message number
with POSIX(OFF)

SIGUSR2 CEE 5209 EDC 6008

SIGHUP CEE 5210 na na

SIGSTOP CEE 5211 na na

SIGKILL CEE 5212 na na

SIGPIPE CEE 5213 na na

SIGALRM CEE 5214 na na

SIGCONT CEE 5215 na na

SIGCHLD CEE 5216 na na

SIGTTIN CEE 5217 na na

SIGTTOU CEE 5218 na na

SIGIO CEE 5219 na na

SIGQUIT CEE 5220 na na

SIGTSTP CEE 5221 na na

SIGTRAP CEE 5222 na na

SIGIOERR CEE 5223 EDC 6009

SIGDCE CEE 5224 na na

SIGPOLL CEE 5225 na na

SIGURG CEE 5226 na na

SIGBUS CEE 5227 na na

SIGSYS CEE 5228 na na

SIGWINCH CEE 5229 na na

SIGXCPU CEE 5230 na na

SIGXFSZ CEE 5231 na na

SIGVTALRM CEE 5232 na na

SIGPROF CEE 5233 na na

SIGDUMP CEE 5234 na na

SIGDANGER CEE 5235 na na

SIGTHSTOP CEE 5236 na na

SIGTHCONT CEE 5237 na na

SIGTRACE CEE 5238 na na

Handling message output
Runtime messages are directed to stderr. You may redirect stderr using regular
C/C++ methods.

Using C or C++ I/O functions
Runtime messages and perror() messages are directed to the stderr standard
stream output device.

Message output issued by a call to the printf() function is directed to stdout.

Runtime messages with POSIX

Chapter 15. Using and handling messages 131

You can change the destination of printf() output by redirection. For example,
1>&2 on the command line at routine invocation redirects stdout to the stderr
destination.

Table 24 lists the possible destinations of redirected stderr and stdout standard
stream output.

Table 24. C/C++ redirected stream output

Stderr not redirected

Stderr redirected to
destination other
than stdout

Stderr redirected to
stdout

stdout not redirected stdout to itself stdout to itself Both to stdout

stderr to itself stderr to its other
destination

stdout redirected to
destination other than
stderr

stdout to its other
destination

stdout to its other
destination

Both to the other
stdout destination

stderr to itself stderr to its other
destination

stdout redirected to
stderr

Both to stderr Both to the other
stderr destination

When stderr and
stdout are redirected
to each other (this is
not recommended),
output from both is
directed to whichever
was specified first.

For more information about redirecting standard streams in C or C++, see z/OS XL
C/C++ Programming Guide.

Using multiple message handling APIs
See the z/OS XL C/C++ Runtime Library Reference for more information about using
the Language Environment message handling APIs.

Handling message output

132 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Chapter 16. Using date and time services

Language Environment for 64-bit Virtual Addressing Mode supports C/C++ and
assembler. The C/C++ runtime library provides a large selection of date and time
functions. See z/OS XL C/C++ Runtime Library Reference for details.

© Copyright IBM Corp. 2004, 2013 133

134 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Chapter 17. National language support

Language Environment for 64-bit Virtual Addressing Mode supports C/C++ and
assembler. National Language support is provided through runtime option NATLANG
and the C/C++ runtime library function setlocale().

Understanding the basics
National language support services allow you to customize Language Environment
output (such as messages, options reports, storage reports, or CEEDUMPs) for a
given country by specifying the following:
v The language in which runtime messages are displayed and printed
v The currency symbol, date & time format, and other locale sensitive information

Runtime options
NATLANG

Sets national language for runtime messages

C/C++ APIs
setlocale()

Establishes the currency symbol, date & time format, and other locale
sensitive information

Setting the national language
You can set the national language with the NATLANG runtime option. The national
language settings affects the error messages. Message translations are provided for
the following languages:

ENU Mixed-case U.S. English

UEN Uppercase U.S. English

JPN Japanese

Setting the locale
See z/OS XL C/C++ Runtime Library Reference and z/OS XL C/C++ Programming
Guide for more information about setlocale() and localization.

© Copyright IBM Corp. 2004, 2013 135

136 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Chapter 18. Locale callable services

Language Environment for 64-bit Virtual Addressing Mode supports C/C++ and
assembler. The C/C++ runtime library provides a large selection of locale-related
functions. See z/OS XL C/C++ Runtime Library Reference and z/OS XL C/C++
Programming Guide for details.

© Copyright IBM Corp. 2004, 2013 137

138 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Chapter 19. General callable services

Language Environment for 64-bit Virtual Addressing Mode supports C/C++ and
assembler. The C/C++ runtime library provides a set of interfaces that perform
general services not directly related to a specific Language Environment function.

Understanding the basics
The general services are a set of C/C++ APIs that are not directly related to a
specific Language Environment function.

Related services

XL C/C++ APIs
__cdump()

Generates a dump of the Language Environment runtime environment

__le_ceegtjs()
Retrieves the value of an exported JCL symbol.

__librel()
Returns the XL C/C++ runtime library release level

__cdump()
The __cdump() function generates a formatted dump of the Language Environment
runtime environment. Output from __cdump() is normally written to the ddname
CEEDUMP. The call to __cdump() does not cause your application to terminate. For
an example of a formatted dump, see z/OS Language Environment Debugging Guide.
The __cdump() function can be called by your application when you want:
v A trace of calls so you can see the order in which applications were called
v Condition information
v Entry information
v Stack frame contents
v Storage around each register (96 bytes)

If your application runs in a non-fork()ed address space, the CEEDUMP DD
statement specifies the name of the dump file. If your application runs in the z/OS
UNIX environment, the CEEDUMP DD can contain the PATH= keyword, which
specifies the fully qualified path and file name.

Specifying a target directory for CEEDUMPs
If your application runs in an address space for which you issued a fork() and the
CEEDUMP DD data set has not been dynamically allocated, the dump is directed
according to the following order:
1. The directory found in environment variable _CEE_DMPTARG

2. Your current working directory, if it is not the root directory (/), if this
directory is writable, and if the CEEDUMP pathname (made up of the cwd
pathname plus the ceedump file name) does not exceed 1024 characters

3. The directory found in environment variable TMPDIR/ (which specifies the
location of a temporary directory other than /tmp)

© Copyright IBM Corp. 2004, 2013 139

4. The /tmp directory

The generated name of the dump is CEEDUMP.date.time.pid where pid is the z/OS
UNIX process ID.

__le_ceegtjs()
The __le_ceegtjs() function retrieves the value of an exported JCL symbol. See
z/OS XL C/C++ Runtime Library Reference for more information about the
__le_ceegtjs() function.

__librel()
The __librel() function retrieves the XL C/C++ runtime library release level. The
value returned by __librel() can be tested to determine if you can use new or
extended functions that are available in a particular release. For example,
snprintf(), dlopen(), and __superkill() are functions available in a particular
release. Before using any of these functions, you can test the Language
Environment version to make sure you are running on the release of Language
Environment that supports them. See z/OS XL C/C++ Runtime Library Reference for
more information on the __librel() function.

General callable services

140 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Chapter 20. Math services

Language Environment for 64-bit Virtual Addressing Mode supports C/C++ and
assembler. The C/C++ runtime library provides a large selection of math functions.
See z/OS XL C/C++ Runtime Library Reference and z/OS XL C/C++ Programming
Guide for details.

© Copyright IBM Corp. 2004, 2013 141

142 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Part 4. Specialized Programming Tasks

The chapters in this section describe advanced or specialized tasks that you can
perform in Language Environment.

© Copyright IBM Corp. 2004, 2013 143

144 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Chapter 21. Assembler considerations

You can run AMODE 64 applications written in assembler language in Language
Environment. AMODE 64 applications written in C or C++ can also call or be
called by assembler language applications.

This topic discusses considerations for assembler applications.

You can write assembler language applications that conform to the 64-bit XPLINK
call linkage. z/OS Language Environment Vendor Interfaces has details on the 64-bit
XPLINK architecture that will be useful to an assembler programmer.

Understanding the basics
Whether you plan to execute a single-language assembler application or a
multiple-language application containing assembler code, you must follow a
number of restrictions under Language Environment.

For example, to communicate with Language Environment and other applications
running in the common run-time environment, your assembler application must
preserve the use of certain registers and storage areas in a consistent way. Calling
conventions for AMODE 64 assembler programs must follow the 64-bit XPLINK
linkage conventions. In addition, your assembler program is restricted from using
some operating system services. These conventions and restrictions are described
in this information.

Compatibility considerations
If you are coding a new assembler routine that you want to conform to the
Language Environment interface for AMODE 64 applications or if your assembler
routine calls Language Environment services, you must use the macros provided
by Language Environment. For a list of these macros, see “Assembler macros” on
page 148. Throughout this information, Language Environment-conforming assembler
routine refers to an assembler routine coded using the CELQPRLG and associated
macros.

Save areas
Any AMODE 64 assembler routine that is used within the scope of a Language
Environment application must use 64-bit XPLINK save area conventions.

Note:

1. Language Environment-conforming AMODE 64 assembler main routines are not
supported.

2. Language Environment does not support the linkage stack.

Register conventions
To communicate properly with assembler routines, you must observe certain
register conventions on entry into the assembler routine (while it runs), and on exit
from the assembler routine.

© Copyright IBM Corp. 2004, 2013 145

Language Environment-conforming assembler
When you use the macros that are listed in “Assembler macros” on page 148 to
write your Language Environment-conforming assembler routines, the macros
generate code that follows the required register conventions.

On entry into the Language Environment-conforming AMODE 64 assembler main
routine, registers must contain the following values because they are passed
without change to the CELQPRLG macro:

R0 Undefined

R1-R3 General registers 1 through 3 can be used to pass part of the parameter list.
If they are not used to pass parameters, then they are undefined.

R4 Caller's 64-bit XPLINK register save area (biased by 2K)

R5 Address of called routine's 64-bit XPLINK environment

R6 Undefined

R7 Return address

All others
Undefined

On entry into a Language Environment-conforming AMODE 64 assembler routine,
CELQPRLG stores the caller's registers (R4 through R15) in its own DSA.

At all times while the Language Environment-conforming AMODE 64 assembler
routine is running, R4 must point to 2K (2048) bytes before the routine's DSA. This
is the concept of a biased stack pointer.

On exit from a Language Environment-conforming AMODE 64 assembler routine,
these registers contain:

R0 Undefined

R1-R3 General registers 1 through 3 can be used to return part of the return value
to the calling program. If they do not contain return value information,
then they are undefined.

All others
The contents they had upon entry

Considerations for coding or running assembler routines
This section summarizes some areas you might need to consider when coding or
running an assembler routine under Language Environment.

GOFF option
Language Environment-conforming AMODE 64 assembler routines must be
assembled using the GOFF option. The Language Environment macros listed in
this information generate an error message if GOFF is not specified.

Asynchronous interrupts
If an asynchronous signal is being delivered to a thread running with POSIX(ON),
the thread is interrupted for the signal only when the execution is:
v In a user C or C++ routine
v Just before a return to a C or C++ routine

Assembler considerations

146 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

v Just before an invocation of a Language Environment library from a user routine

C or C++ routines might need to protect against asynchronous signals based on the
application logic including the possible use of the POSIX signal-blocking function
that is available.

Condition handling
Language Environment default condition handling actions occur for assembler
routines unless you have registered a user-written condition handler using
__set_exception_handler(). For more information about
__set_exception_handler(), see z/OS XL C/C++ Runtime Library Reference.

Language Environment relinquishes all enclave-level resources obtained by
Language Environment when the enclave terminates, and all process-level
resources when the process terminates.

Access to the inbound parameter string
You can access the 64-bit XPLINK form of the inbound parameter list for the
AMODE 64 assembler routine in the calling routine's save area any time after
routine initialization. CELQPRLG will always save general registers 1 through 3 in
the first 3 words of the “argument area” in the caller's save area so that the
parameter list is complete.

Requirement: All parameters that are passed to and from AMODE 64 assembler
code be passed by reference.

CELQSTRT, CELQMAIN, CELQFMAN
Assembler programs cannot call or use directly CELQSTRT, CELQMAIN, or
CELQFMAN as a standard entry point. Results are unpredictable if this rule is
violated.

When binding an AMODE 64 application, it must be possible for the binder to
resolve CELQSTRT. As long as the NCAL bindor option is not specified,
CELQSTRT is automatically resolved. If NCAL is used, it becomes necessary to
explicitly include CELQSTRT in the bind process.

The main entry point for an AMODE 64 application is CELQSTRT. On the
assembler END instruction, do not specify anything other than CELQSTRT as the
point to which control can be transferred after the program is loaded.

Mode considerations
The CELQPRLG macro automatically sets the module to AMODE 64 and RMODE
ANY. There is no support for mixing AMODE 31 or AMODE 24 routines in the
same Language Environment process.

Language Environment Library routine retention (LRR)
Language Environment library routine retention is not supported for AMODE 64
applications.

Assembler considerations

Chapter 21. Assembler considerations 147

Assembler macros
Language Environment provides the following macros to assist in the entry, calling,
and exit of AMODE 64 assembler routines, to map external control blocks, to create
assembler DLLs, and to use DLLs from assembler routines:

These macro definitions can be found in the Language Environment SCEEMAC
data set, which should be specified on the SYSLIB DD statement when assembling
your AMODE 64 program.

Table 25. Assembler macros

Macros Actions Comments

CELQPRLG Gnerates a Language Environment-
conforming AMODE 64 prolog.

You must use CELQPRLG with the following
macros. See “CELQPRLG macro — Generate a
Language Environment-conforming amode 64
prolog” on page 149 for the syntax).

CELQEPLG Generates a Language Environment-
conforming AMODE 64 epilog and
terminates the assembler routine.

See “CELQEPLG macro — Terminate a Language
Environment-conforming AMODE 64 routine” on
page 150 for the syntax.

CEERCB Generates an RCB mapping. See “CEERCB macro — Generate an RCB mapping”
on page 151 for the syntax.

CEEPCB Generates a PCB mapping. See “CEEPCB macro — Generate a PCB mapping”
on page 151 for the syntax.

CEEEDB Generates an EDB mapping. See “CEEEDB macro — Generate an EDB mapping”
on page 151 for the syntax.

CEELAA Generates an LAA mapping. See “CEELAA macro — Generate an LAA
mapping” on page 151 for the syntax.

CEELCA Generates an LCA mapping. See “CEELCA macro — Generate an LCA mapping”
on page 152 for the syntax.

CEECAA Generates a CAA mapping. See “CEECAA macro — Generate a CAA mapping”
on page 152 for the syntax.

CEEDSA Generates a DSA mapping. See “CEEDSA macro — Generate a DSA mapping”
on page 152 for the syntax.

CEEDIA Generates a DIA mapping. See “CEEDIA macro — Generate a DIA mapping”
on page 153 for the syntax.

CELQCALL Calls a Language Environment-conforming
AMODE 64 routine. It is similar to the CALL
macro, except that it supports dynamic calls
to AMODE 64 routines in a DLL.

See “CELQCALL macro — Call a Language
Environment-conforming AMODE 64 routine” on
page 153 for the syntax.

CEEPDDA Defines a data item in the writeable static
area (WSA), or declares a reference to an
imported data item.

See “CEEPDDA macro — Define a data item in the
writeable static area (WSA)” on page 155 for the
syntax.

CEEPLDA Returns the address of a data item that is
defined by CEEPDDA. It is intended to be
used to get the address of imported or
exported variables residing in the writeable
static area (WSA).

See “CEEPLDA macro — Returns the address of a
data item defined by CEEPDDA” on page 156 for
the syntax.

Assembler considerations

148 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

CELQPRLG macro — Generate a Language Environment-conforming
amode 64 prolog

CELQPRLG provides a Language Environment-conforming prolog for AMODE 64
routines. The macro generates reentrant code.

You must use CELQPRLG in conjunction with the CELQEPLG macro.

CELQPRLG assumes that the registers contain what is described in “Register
conventions” on page 145 for AMODE 64 assembler routines.

Syntax

�� name CELQPRLG
ENTNAME= 160 bytes

, DSASIZE= size

�

�
, PARMWRDS= 8

, BASEREG= register
, PSECT=

�

�
, PARMREG= register NO

, EXPORT= YES

�

�
NO

, FETCHABLE= RENT
NORENT

, GT2KSTK= YES
��

name
If ENTNAME=epname is specified, then name is used as the name of the 64-bit
XPLINK entry marker, else name is the name of the entry point and name#C is
used as the name of the 64-bit XPLINK entry marker.

ENTNAME
The optional name of the entry point.

DSASIZE
The amount of space used by prolog code for the 64-bit XPLINK DSA
(excluding the 2K bias), the largest parameter list built by this routine, and
local automatic variables that are to be allocated for the duration of this
routine. This value will be rounded up to a multiple of 32-bytes. If unspecified,
the size of the automatic area is the size of a fixed portion of the 64-bit
XPLINK DSA without any argument area or automatic variables (160 bytes).
This is indicated by the label CEEDSAHPSZ (in the DSA mapping generated
by the CEEDSA macro. See “CEEDSA macro — Generate a DSA mapping” on
page 152 for syntax), and is also the minimum required size.

PARMWRDS
Specifies the number of 4-byte words in the input parameter list. If this is
omitted, then the routine will be treated as vararg.

BASEREG
Designates the required base register. The macro generates code needed for

Assembler considerations

Chapter 21. Assembler considerations 149

setting the value of the register and for establishing addressibility. The default
is register 8. If register equals NONE, no code is generated for establishing
addressibility.

PSECT
The name to be assigned to the AMODE 64 assembler routine PSECT area. The
PSECT is used to establish this routines 64-bit XPLINK environment. For more
information about the PSECT area, see HLASM Language Reference.

PARMREG
Specifies the register to hold the address of the argument area in the caller's
save area.

EXPORT
Indicates whether this entry point will be exported. For EXPORT=NO this
entry point can only be called from other routines that are bound into the same
program object. For EXPORT=YES, this entry point will be marked as an
exported DLL function. If you want the exported name to be a long name.
mixed case, or both, follow the CELQPRLG macro with an ALIAS statement.
For more information about on DLLs, including full sample assembler DLL
routines, see Chapter 3, “Building and using AMODE 64 dynamic link libraries
(DLLs),” on page 13.

For the extry point to be available as an exported DLL function, you must
specify the DYNAM(DLL) binder option, and the resulting program object
must reside in a PDSE.

FETCHABLE
If NO is specified, then this entry point is not be marked as fetchable. If RENT
or NORENT is specified, then the CELQEPLG macro will generate either a
reentrant or non-reentrant CELQFMAN structure, respectively, so that this
entry point can be fetched.

GT2KSTK
If YES is specified, then an unconditional “large stack frame” prolog is used
that checks for the 64-bit XPLINK stack floor in the LAA, instead of depending
on the write-protected guard page. This parameter must be specified if
DSASIZE is greater than 2048 (that is, the 2K stack bias).

Usage notes:

1. The CELQPRLG macro automatically sets the module to AMODE 64 and
RMODE ANY.

2. Unless otherwise indicated, no register values should be expected to remain
unchanged after the code generated by CELQPRLG has executed.

3. When more than one CELQPRLG macro invocation occurs in an assembly, it is
the programmer's responsibility to code DROP statements for the base registers
set up by the previous invocation of the CELQPRLG macro.

CELQEPLG macro — Terminate a Language Environment-conforming
AMODE 64 routine

CELQEPLG provides a Language Environment-conforming epilog and is used to
terminate, or return from, a Language Environment-conforming routine. This
macro also generates the necessary structures (for example, PPA1, PPA2 and
CELQFMAN) for the AMODE 64 application.

Assembler considerations

150 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Syntax

��
name

CELQEPLG ��

name
The optional name operand, which becomes the label on the exit from this
routine. The name does not have to match the prolog.

CEERCB macro — Generate an RCB mapping

Syntax

�� CEERCB ��

CEERCB is used to generate a region control block (RCB) mapping. This macro has
no parameters, and no label can be specified.

CEEPCB macro — Generate a PCB mapping

Syntax

�� CEEPCB ��

CEEPCB is used to generate a process control block (PCB) mapping. This macro
has no parameters, and no label can be specified.

CEEEDB macro — Generate an EDB mapping

Syntax

�� CEEEDB ��

CEEEDB is used to generate an enclave data block (EDB) mapping. This macro has
no parameters, and no label can be specified.

CEELAA macro — Generate an LAA mapping

Assembler considerations

Chapter 21. Assembler considerations 151

Syntax

�� CEELAA
YES

DSECT= NO

��

CEELAA is used to generate a library anchor area (LAA) mapping. If the optional
DSECT parameter is specified as YES (which is also the default), then a DSECT
definition of the LAA is produced. Otherwise, storage is reserved (with labels) for
the LAA.

CEELCA macro — Generate an LCA mapping

Syntax

�� CEELCA
YES

DSECT= NO

��

CEELCA is used to generate a library communication area (LCA) mapping. If the
optional DSECT parameter is specified as YES (which is also the default), then a
DSECT definition of the LCA is produced. Oherwise storage is reserved (with
labels) for the LCA.

CEECAA macro — Generate a CAA mapping

Syntax

�� CEECAA ��

CEECAA is used to generate a common anchor area (CAA) mapping. This macro
has no parameters, and no label can be specified. CEECAA is required for the
CEEENTRY macro.

CEEDSA macro — Generate a DSA mapping

Syntax

�� CEEDSA SECTYPE=XPLINK ��

Assembler considerations

152 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

CEEDSA is used to generate a dynamic save area (DSA) mapping. The parameter
SECTYPE=XPLINK must be specified in order to generate a 64-bit XPLINK DSA.
The minimum size of a 64-bit XPLINK DSA is contained in an assembler EQUATE
CEEDSAHPSZ.

CEEDIA macro — Generate a DIA mapping

Syntax

�� CEEDIA
YES

DSECT= NO

��

CEEDIA is used to generate a debugger interfaces area (DIA) mapping. If the
optional DSECT parameter is specified as YES (which is also the default), then a
DSECT definition of the DIA is produced. Otherwise, storage is reserved (with
labels) for the DIA.

CELQCALL macro — Call a Language Environment-conforming
AMODE 64 routine

CELQCALL can be used to pass control from an AMODE 64 assembler program to
another AMODE 64 control section at a specified entry point. It is meant to be
used with the CELQPRLG prolog and CELQEPLG macros. The target of
CELQCALL can be resolved either statically (bound with the same program object)
or dynamically (imported from a DLL).

The CELQCALL macro does not generate any return codes. Return information
may be placed in GPR 3 (and possibly GPRs 2 and 1, or the floating point
registers) by the called program, as specified by 64-bit XPLINK linkage
conventions. For more information, refer to z/OS Language Environment Vendor
Interfaces.

GPRs 0, 1, 2, 3, 5, 6, and 7 are not preserved by this macro.

Syntax

��
label

CELQCALL entry-name
, (parm1 , ...)

�

� , WORKREG= reg ��

label
Optional label beginning in column 1.

entry-name
Specifies the entry name of the program to be given control. This entry name
can reside in the same program object, or can be an exported DLL function.

Assembler considerations

Chapter 21. Assembler considerations 153

, (parm1, ...)
One or more parameters to be passed to the called program. The parameters
are copied to the argument area in the calling program's DSA, and then GPRs
1, 2, and 3 are loaded with the first three words of this argument area.
Sufficient space must be reserved in the caller's argument area to contain the
largest possible parameter list. A minimum of 8 words (32 bytes) must always
be allocated for the argument area. Use the DSASIZE= parameter on the
CELQPRLG prolog macro to ensure the calling program's DSA is large enough.

At this time, the CELQCALL macro only supports passing parameters by
reference.

WORKREG=
A numeric value representing a general purpose register between 8 and 15,
inclusive, that can be used as a work register by this macro. Its contents will
not be preserved.

Usage notes:

1. This macro requires that the calling routine's 64-bit XPLINK environment
address is in register 5 (as it was when the routine was first invoked).

2. This macro requires that a PSECT was defined by the CELQPRLG prolog
macro.

3. This macro requires the GOFF assembler option.
4. This macro requires the binder to bind, and the RENT and DYNAM(DLL)

binder options. You will also need the CASE(MIXED) binder option if the
entry-name is mixed case.

5. The output from the binder must be a PM4 (or higher) format program object,
and therefore must reside in either a PDSE or the HFS.

The following AMODE 64 assembler example shows a call to an AMODE 64
routine named Xif1 where no parameters are passed.
ADLA6IF1 CELQPRLG DSASIZE=DSASZ,PSECT=ADLA6IFP
*
R3 EQU 3 RETURN VALUE
*

WTO ’ADLA6IF1: Calling imported AMODE 64 function Xif1’, X
ROUTCDE=11

*
CELQCALL Xif1,WORKREG=10

*
SGR R3,R3

RETURN DS 0H
CELQEPLG

*
LTORG

CEEDSAHP CEEDSA SECTYPE=XPLINK
MINARGA DS 8F
DSASZ EQU *-CEEDSAHP_FIXED

END ADLA6IF1

This is an example of AMODE 64 assembler code calling a function with 5
parameters.
ADLA6IF7 CELQPRLG DSASIZE=DSASZ,PSECT=ADLA6IFP
*
R3 EQU 3 RETURN VALUE
*

WTO ’ADLA6IF7: Calling imported AMODE 64 function Xif7 passiX
ng parmeters (15,33,"Hello world",45.2,9)’, X
ROUTCDE=11

Assembler considerations

154 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

*
CELQCALL Xif7,(PARM1,PARM2,PARM3,PARM4,PARM5),WORKREG=10

*
SGR R3,R3

RETURN DS 0H
CELQEPLG

*
LTORG

PARM1 DC FL4’15’
PARM2 DC FL2’33’
PARM3 DC C’Hello world’

DC X’00’
PARM4 DC D’45.2’
PARM5 DC FL4’9’
CEEDSAHP CEEDSA SECTYPE=XPLINK
ARGAREA DS 10F
DSASZ EQU *-CEEDSAHP_FIXED

END ADLA6IF7

CEEPDDA macro — Define a data item in the writeable static area
(WSA)

CEEPDDA can be used to define data in WSA, and optionally specify it as either
exported or imported data.

If the CEEPDDA macro is followed by data constants, it is declared data, and must
be followed by a subsequent CEEPDDA invocation with only the END parameter
to mark the end of the declared data. If there are no subsequent data constants, a
reference is created for the imported data.

Syntax

��
label

CEEPDDA
dataname , SCOPE= LOCAL

EXPORT
IMPORT

END

��

label
Optional label beginning in column 1.

dataname
Specifies the name of the data item. It is case-sensitive and can be up to 255
characters in length. This name can reside in the same program object, or can
be an exported DLL function.

SCOPE= {LOCAL|EXPORT|IMPORT}
Optional keyword parameter that results in the data being exported if
SCOPE=EXPORT is specified and this instance of CEEPDDA is to declare data,
or the data being imported if SCOPE=IMPORT is specified and this instance of
CEEPDDA generates a reference to data (that is, no data constants follow
macro). The use of SCOPE=LOCAL can be used to declare data in WSA that is
not exported.

END
The use of CEEPDDA with the END parameter is used to indicate the end of

Assembler considerations

Chapter 21. Assembler considerations 155

this defined data item, and must be used with an invocation of CEEPDDA
with the SCOPE=EXPORT or SCOPE=LOCAL keyword parameter.

Usage notes:

1. This macro requires the GOFF assembler option.
2. This macro requires the binder to bind, and the RENT and DYNAM(DLL)

binder options. You will also need the CASE(MIXED) binder option if the
dataname is mixed case.

3. The output from the binder must be a PM4 (or higher) format program object,
and therefore must reside in either a PDSE or the HFS.

For more information about DLLs, including full sample assembler DLL routines,
see Chapter 3, “Building and using AMODE 64 dynamic link libraries (DLLs),” on
page 13.

The following example illustrates how to export data from assembler. The first
exported data item is an integer with the initial value 123, and the second exported
data item is the character string "Hello World" with a terminating NULL (x'00')
character:

CEEPDDA DllVar,SCOPE=EXPORT
DC A(123)
CEEPDDA END
CEEPDDA DllStr,SCOPE=EXPORT
DC C’Hello World’
DC X’00’
CEEPDDA END

The following example illustrates how to import the variable named Biv1 into
assembler.

CEEPDDA Biv1,SCOPE=IMPORT

CEEPLDA macro — Returns the address of a data item defined by
CEEPDDA

CEEPLDA is used to obtain the address of a local, imported, or exported data item.
The required dataname label will name the data item, is case-sensitive, and can be
up to 255 characters in length.

Registers 0, 14, and 15 are not preserved by this macro.

Syntax

��
label

CEEPLDA dataname , REG= register ��

label
Optional label beginning in column 1.

dataname
Specifies the name of the data item whose address is returned. It is
case-sensitive and can be up to 255 characters in length.

Assembler considerations

156 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

REG=
The numeric value of the register to contain the address of the data that is
identified by dataname. Registers 0, 14, and 15 cannot be used.

Usage notes:

1. This macro requires the GOFF assembler option.
2. This macro requires the binder to bind, and the RENT and DYNAM(DLL)

binder options. You will also need the CASE(MIXED) binder option if the
dataname is mixed case.

3. The output from the binder must be a PM3 (or higher) format program object,
and therefore must reside in either a PDSE or the HFS.

For more information about DLLs, including full sample assembler DLL routines,
see Chapter 3, “Building and using AMODE 64 dynamic link libraries (DLLs),” on
page 13.

The following example illustrates how to obtain the address of an imported
variable in WSA and store an integer value into it. This particular example uses a
corresponding CEEPDDA instance for an imported variable, but an exported or
local variable would also work. For more information, see “CEEPDDA macro —
Define a data item in the writeable static area (WSA)” on page 155.
* Obtain address of imported variable Biv1 in register 9

CEEPLDA Biv1,REG=9
* Set value of imported variable to 123

LA R8,123
ST R8,0(,R9)

...
CEEPDDA Biv1,SCOPE=IMPORT

Assembler considerations

Chapter 21. Assembler considerations 157

Assembler considerations

158 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Chapter 22. Using preinitialization services with AMODE 64

Language Environment Preinitialization (PreInit) is commonly used to enhance
performance for repeated invocations of an application or for a complex
application where there are many repetitive requests and where fast response is
required. For instance, if an assembler routine invokes either a number of
Language Environment-conforming HLL routines or the same HLL routine a
number of times, the creation and termination of that HLL environment multiple
times is needlessly inefficient. A more efficient method is to create the HLL
environment only once for use by all invocations of the routine.

PreInit lets an application initialize an HLL environment once, perform multiple
executions using that environment, and then explicitly terminate the environment.
Because the environment is initialized only once (even if you perform multiple
executions), you free up system resources and allow for faster responses to your
requests.

In the 64-bit environment, CELQPIPI, will provide the interface for preinitialized
routines. Using CELQPIPI, you can initialize an environment, invoke applications,
terminate an environment, and add an entry to the PreInit table. (The PreInit table
contains the names and entry point addresses of routines that can be executed in
the preinitialized environment.)

CEEPIPI will continue to be the 31-bit PreInit interface.

Understanding the basics
PreInit support can be divided into two areas:
v PreInit assembler driver support

Users must create a PreInit driver that is used to create a PreInit environment.
The driver will setup the PreInit environment, load the PreInit interface
CELQPIPI. CELQPIPI is loaded RMODE(31), AMODE(64). All PreInit requests
must be made from a non-Language Environment-conforming driver (such as
assembler).
The following assembler macros are provided to be used in the driver to define
the PreInit table:
– CELQPIT PreInit table header
– CELQPITY PreInit table entry
– CELQPITS PreInit table end
The driver will be used to invoke the PreInit interface by using function calls to
CELQPIPI using the standard OS linkage parameter list.
Function calls to CELQPIPI from the customer PreInit driver:
– init_main
– init_sub
– call_main
– call_sub
– call_sub_addr
– term
– start_seq

© Copyright IBM Corp. 2004, 2013 159

– end_seq
– add_entry
– delete_entry
– identify_entry
– identify_attributes

v Application program support running in the PreInit environment.
The PreInit table contains the names and entry point addresses of each routine
that can be executed within the PreInit environment.
The applications defined in the PreInit table must be able to run as AMODE 64
(with XPLINK implied).
Languages Supported:
– C
– C++
– Assembler (64-bit Language Environment-conforming assembler)
– Language mix of the above

Using preinitialization services
Language Environment Preinitialization consists of three parts:
v PreInit Table
v Assembler Driver Program
v CELQPIPI Service

The PreInit Table is built by the user (using Language Environment supplied
macros). It identifies the set of routines that the user will be invoking within a
given pre-initialized environment. Language Environment uses this table to
pre-load these routines during PreInit initialization and to identify the set of
Language Environment languages that may be used by this pre-initialized
environment.

The assembler Driver program is a user-written program that is used to control a
pre-initialized environment. It consists of a series of calls to the CELQPIPI service,
to initialize a PreInit environment, invoke user routines, and terminate a PreInit
environment.

The CELQPIPI is a service provided by Language Environment to support 64-bit
pre-initialized environments. All of the operations that are required to use a PreInit
environment are accessed through calls to this service.

Macros that generate the PreInit table
Language Environment provides the following assembler macros to generate the
PreInit table for you:
v CELQPIT
v CELQPITY
v CELQPITS

These macro definitions can be found in the Language Environment SCEEMAC
data set, which should be specified on the SYSLIB DD statement when assembling
your program.

160 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

CELQPIT
CELQPIT generates a header for the PreInit table.

Syntax

�� table_name CELQPIT
NOSTOR=

ABEND
RC

��

table_name
Assembler symbolic name assigned to the first word in the PreInit table. The
address of this symbol should be used as the ceexptbl_addr parameter in a
CELQPIPI(init_main) or a CELQPIPI(init_sub) call.

NOSTOR=
Indicates whether CELQPIPI caller wants Language Environment to abend or
return a return code if initial storage allocations are not successful.

NOSTOR=ABEND
Indicates abend is desired (default)

NOSTOR=RC
Indicates a return code is desired

CELQPITY
CELQPITY generates an entry within the PreInit table.

Syntax

�� CELQPITY ,
name entry_point

��

name
An eight character string containing the load name of the routine that can be
invoked within the Language Environment preinitialized environment. This
name must be provided if Language Environment is to load the routine,
otherwise it is optional.

entry_point
Doubleword routine address to which control is transferred, or 0, to indicate
that the module is to be dynamically loaded. This parameter is optional.

You have the option of specifying either, both, or neither of these parameters:
v If name is omitted and entry_point is present, the comma must be present.
v If neither name nor entry_point are provided, an empty PIT entry is created

which can be filled in later with the CELQPIPI(add_entry) preinitialization
function.

v If name is provided and entry_point is zero, Language Environment will load
the routine.

v If both parameters are present, name is ignored and entry_point is used as the
start of the routine, unless it is 0.

Chapter 22. Using preinitialization services with AMODE 64 161

Note: Each invocation of the CELQPITY macro generates a new row in the PreInit
table. The first entry is row 0, the second is row 1, and so on.

CELQPITS
CELQPITS identifies the end of the PreInit table.

This macro has no parameters.

Syntax

�� CELQPITS ��

Invoking CELQPIPI
The interface to the PreInit environment is from a user-written AMODE 64 PreInit
driver. The CELQPIPI service is loaded using the LOAD macro:
LOAD EP=CELQPIPI

The entry point address returned in register 0 by the LOAD macro will have bit 63
set to 1, which indicates that CELQPIPI is AMODE 64. Bit 63 must be set to 0
before the address can be used by either the CALL macro or a BASR instruction.

AMODE considerations
CELQPIPI does not perform any AMODE switching. CELQPIPI expects to receive
control in AMODE 64. It always returns control in the same AMODE in which it
received control. If, on entry, the AMODE is not 64, CELQPIPI will return with
return code 48.

General register usage at entry to CELQPIPI
The following registers must have the prescribed contents when control reaches
CELQPIPI.

R0 Undefined.

R1 Must point to an indirect parameter list consisting of 8 byte addresses that
point to the parameters.

R2-R12
Undefined.

R13 Must point to a 36-word doubleword-aligned format 4 save area. Seez/OS
MVS Programming: Assembler Services Guide for a description of a format 4
save area.

R14 The return address.

R15 The address of CELQPIPI.

General register usage at exit from CELQPIPI
Registers have the following contents when control returns to the caller of
CELQPIPI.

R0 Not preserved.

162 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

R1 Not preserved.

R2-R12
Preserved.

R13 Preserved.

R14 Not preserved.

R15 Return code.

CELQPIPI interface
The following section describes how to invoke the PreInit interface, CELQPIPI, to
perform the following tasks:
v Initialization
v Application invocation
v Termination
v Addition of an entry to the PreInit table
v Deletion of a main entry from the PreInit table
v Identification of an entry in the PreInit table

The PreInit services offered under Language Environment, using CELQPIPI are
listed in Table 26.

Table 26. Preinitialization services accessed using CELQPIPI

Function code
Integer
value Service performed

Initialization

init_main 1 Create and initialize an environment for multiple
executions of main routines.

init_sub 3 Create and initialize an environment for multiple
executions of subroutines.

Application invocation

call_main 2 Invoke a main routine within an already initialized
environment.

call_sub 4 Invoke a subroutine within an already initialized
environment.

call_sub_addr 10 Invoke a subroutine by function descriptor.

Termination

term 5 Explicitly terminate the environment without
executing a user routine.

Invoke a sequence of applications

start_seq 7 Start a sequence of uninterruptable calls to a number
of subroutines.

end_seq 8 Terminate a sequence of uninterruptable calls to a
number of subroutines.

Addition of an entry to PreInit table

add_entry 6 Dynamically add a candidate routine to execute
within the preinitialized environment.

Deletion of an entry from PreInit table

delete_entry 11 Delete an entry from the PreInit table, making it
available for subsequent add_entry functions.

Chapter 22. Using preinitialization services with AMODE 64 163

Table 26. Preinitialization services accessed using CELQPIPI (continued)

Function code
Integer
value Service performed

Identification of a PreInit table entry

identify_entry 13 Identify the programming language of an entry in the
PreInit table.

identify_attributes 16 Identify the attributes of an entry in the PreInit table.

Initialization
Language Environment supports two forms of preinitialized environments. The
first, supports the execution of main routines. The second, supports the execution
of subroutines.

The primary difference between these environments is the amount of Language
Environment initialization (and termination) that occurs on each application
invocation call. With an environment that supports main routines, most of the
application's execution environment is reinitialized with each invocation. With an
environment that supports subroutines, very little of the execution environment is
reinitialized with each invocation. This difference has its advantages and
disadvantages.

For the main environment, the advantages are that a new, pristine environment is
created. The disadvantage is poorer performance.

For the subenvironment, the advantage is that it provides the best performance.
The disadvantages are that the environment is left in the state that the previous
application left it in, and the runtime options cannot be changed.

CELQPIPI(init_main) — initialize for main routines
The invocation of this routine:
v Creates and initializes a new common run-time environment (process) that

allows the execution of main routines multiple times
v Sets the environment dormant so that exceptions are percolated out of it
v Returns a token identifying the environment to the caller
v Returns a code in Register 15 indicating whether an environment was

successfully initialized

Syntax

�� CALL CELQPIPI (init_main , ceexptbl_addr , �

� service_rtns , token) ��

init_main (input)
A fullword function code (integer value = 1) containing the init_main request.

ceexptbl_addr (input)
A doubleword containing the address of the PreInit table to be used during
initialization of the new environment. Language Environment does not alter

164 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

the user-supplied copy of the table. If an entry address is zero and the entry
name is non-blank, Language Environment searches for the routine and
dynamically loads it. Language Environment places the entry address in the
corresponding slot of a Language Environment-maintained table.

service_rtns (input)
A 64-bit pointer containing the address of the service routine vector or 0, if
there is no service routine vector. See “Service routines” on page 178 for more
information.

token (output)
A doubleword containing a unique value used to represent the environment.

The token should be used only as input to additional calls to CELQPIPI, and
should not be altered or used in any other manner.

Return codes
Register 15 contains a return code indicating if an environment was successfully
initialized. Possible return codes (in decimal) are:

0 A new environment was successfully initialized.

4 The function code is not valid.

8 All addresses in the table were not resolved. One or more LOAD failures
were encountered. Initialization continues.

12 Storage for the preinitialization environment could not be obtained.

32 All addresses in the table were not resolved. One or more routines within
the table were not AMODE 64 or were generated by a non Language
Environment conforming HLL. Initialization continues.

40 All addresses in the table were not resolved. One or more LOAD failures
were encountered, and one or more routines within the table were not
AMODE 64 or were generated by a non Language Environment
conforming HLL. Initialization continues.

48 CELQPIPI was called from a non-64-bit environment.

56 An unhandled condition occurred.

60 One or more reserved fields in the service routine vector were non-zero.

64 In the service routine vector, the @LOAD field was non-zero and the
@DELETE field was zero, or the @LOAD field was zero and the @DELETE
field was non-zero. The LOAD and DELETE routines must both be present
in the service vector, or both fields must be zero.

68 In the service routine vector, the @GETSTORE field was non-zero and the
@FREESTORE field was zero, or the @GETSTORE field was zero and the
@FREESTORE field was non-zero. The GETSTORE and FREESTORE
routines must both be present in the service vector, or both fields must be
zero.

Usage notes
v The identify_attributes function can be used to determine what entry in the

PreInit table failed to load when a return code of 8 was returned.
v CELQPIPI supports the creation of multiple PreInit Main environments.

– C/C++ main routines must be initialized with (init_main).
– C/C++ routines that are the target of (call_main) must contain a main().

Chapter 22. Using preinitialization services with AMODE 64 165

Restriction
v Only one PreInit environment, per TCB, may have the POSIX runtime option set

to ON.

CELQPIPI(init_sub) — initialize for subroutines
The invocation of this routine:
v Creates and initializes a new common run-time environment (process and

enclave) that allows the execution of subroutines multiple times
v Sets the environment dormant so that exceptions are percolated out of it
v Returns a token identifying the environment to the caller
v Returns a code in Register 15 indicating whether an environment was

successfully initialized
v Ensures that when the environment is dormant, it is immune to other Language

Environment enclaves that are created or terminated

Syntax

�� CALL CEELQPIPI (init_sub , ceexptbl_addr , �

� service_rtns , runtime_opts , token) ��

init_sub (input)
A fullword function code (integer value = 3) containing the init_sub request.

ceexptbl_addr (input)
A doubleword containing the address of the PreInit table to be used during
initialization of the new environment. Language Environment does not alter
the user-supplied copy of the table. If an entry address is zero and the entry
name is nonblank, Language Environment searches for the routine and
dynamically loads it. Language Environment then places the entry address in
the corresponding slot of Language Environment's copy of the PreInit table.

service_rtns (input)
A 64-bit pointer containing the address of the service routine vector or 0, if
there is no service routine vector. See “Service routines” on page 178 for more
information.

runtime_opts (input)
A fixed-length 255-character string containing runtime options (see z/OS
Language Environment Programming Reference for a list of runtime options that
you can specify).

Note: The runtime options you specify will apply to all of the subroutines that
are called by the (call_sub) function. This includes options such as POSIX.
Therefore, all of your subroutines must have the same characteristics and
requirements needed for these runtime options.

token (output)
A doubleword containing a unique value used to represent the environment.
The token should be used only as input to additional calls to CELQPIPI, and
should not be altered or used in any other manner.

166 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Return codes
Register 15 contains a return code indicating the success or failure of the call.
Possible return codes (in decimal) are:

0 A new environment was successfully initialized.

4 The function code is not valid.

8 All addresses in the table were not resolved. One or more LOAD failures
were encountered. Initialization continues

12 Storage for the preinitialization environment could not be obtained.

32 All addresses in the table were not resolved. One or more routines within
the table were not AMODE 64 or were not fetchable or were generated by
a non Language Environment conforming HLL. Initialization continues.

40 All addresses in the table were not resolved. One or more LOAD failures
were encountered, and one or more routines within the table were not
AMODE 64 or were not fetchable or were generated by a non Language
Environment conforming HLL . Initialization continues.

48 CELQPIPI was called from a non-64-bit environment.

56 An unhandled condition occurred.

60 One or more reserved fields in the service routine vector were non-zero.

64 In the service routine vector, the @LOAD field was non-zero and the
@DELETE field was zero, or the @LOAD field was zero and the @DELETE
field was non-zero. The LOAD and DELETE routines must both be present
in the service vector, or both fields must be zero.

68 In the service routine vector, the @GETSTORE field was non-zero and the
@FREESTORE field was zero, or the @GETSTORE field was zero and the
@FREESTORE field was non-zero. The GETSTORE and FREESTORE
routines must both be present in the service vector, or both fields must be
zero.

Usage notes
v The identify_attributes function can be used to determine what entry in the

PreInit table failed to load when a return code of 8 was returned.
v CELQPIPI supports the creation of multiple PreInit Subroutine environments.

Restriction
v Only one PreInit environment, per TCB, may have the POSIX runtime option set

to ON.

Application invocation
Language Environment provides multiple facilities for invoking either main
routines or subroutines. When invoking a main routine, the preinitialized
environment must have been created and initialized using the CELQPIPI(init_sub)
function. Similarly, when invoking a subroutine, the preinitialized environment
must have been created and initialized using the CELQPIPI(init_sub) function.

CELQPIPI(call_main) — invocation for main routine
This invocation of CELQPIPI invokes as a main routine the routine that you
specify.

Chapter 22. Using preinitialization services with AMODE 64 167

Syntax

�� CALL CELQPIPI (call_main , ceexptl_index , token , �

� runtime_opts , parm_ptr , enclave_return_code , �

� enclave_reason_code , appl_feedback_code) ��

call_main (input)
A fullword function code (integer value = 2) containing the call_main request.

ceexptbl_index (input)
A doubleword containing the row number within the PreInit table of the entry
that should be invoked. The index starts at 0.

token (input)
A doubleword with the value of the token returned by CELQPIPI(init_main)
when the common run-time environment is initialized. The token must identify
a previously preinitialized environment that is not active at the time of the call.

runtime_opts (input)
A fixed-length 255-character string containing runtime options. (See z/OS
Language Environment Programming Reference for a list of runtime options that
you can specify.)

parm_ptr (input)
A doubleword containing the address of the parameter list or 0 (zero). The
parameter list is copied to the appropriate location in the stack frame and
general purpose registers 1, 2 and 3 are loaded from the parameter list when
the main routine is executed. The parameter list that is passed must be in a
format that HLL subroutines expect (for example, in an argc, argv format for C
routines).

enclave_return_code (output)
A fullword containing the enclave return code returned by the called routine
when it finished executing. For more information about return codes, see
“Managing return codes in Language Environment” on page 65.

enclave_reason_code (output)
A fullword containing the enclave reason code returned by the environment
when the routine finished executing. For more information about reason codes,
see “Managing return codes in Language Environment” on page 65.

appl_feedback_code (output)
A 128-bit condition token indicating why the application terminated.

Return codes
A return code is provided in register 15 and can contain the following values:
0 The environment was activated and the routine called.
4 The function code is not valid.
12 The indicated environment was initialized for subroutines. No routine was

executed.
16 The token is not valid.
20 The index points to an entry that is not valid or empty.
24 The index that was passed is outside the range of the table.
48 CELQPIPI was called from a non-64-bit environment.

168 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

CELQPIPI(call_sub) — invocation for subroutines
This invocation of CELQPIPI invokes as a subroutine the routine that you specify.
The environment is not reinitialized.

Syntax

�� CALL CELQPIPI (call_sub , ceexptl_index , token , parm_ptr , �

� sub_return_code , sub_reason_code , sub_feedback_code) ��

call_sub (input)
A fullword function code (integer value = 4) containing the call_sub request for
a subroutine.

ceexptbl_index (input)
A doubleword containing the row number of the entry within the PreInit table
that should be invoked; the index starts at 0.

token (input)
A doubleword with the value of the token returned when the common
run-time environment is initialized. This token is initialized by the (init_sub).
The token must identify a previously preinitialized environment that is not
active at the time of the call.

parm_ptr (input)
A doubleword containing the address of the parameter list or 0 (zero). The
parameter list is copied to the appropriate location in the stack frame and
general purpose registers 1, 2 and 3 are loaded from the parameter list when
the routine is executed.

The length of the parameter list is determined from PPAs of the routine. If the
routine takes a variable length parameter list, the length of the parameter list
will be assumed to be 256 bytes

Floating point and complex values can only be passed by reference.

sub_ret_code (output)
A fullword containing the subroutine return code. When a PreInit call_sub
ends normally, the sub_ret_code is set with the value of R15 returned from the
subroutine. If the enclave is terminated due to an error or due to the routine
explicitly invoking a language-specific service that causes a stop or exit
semantic, this contains the enclave return code for termination.

sub_reason_code (output)
A fullword containing the subroutine reason code. This is 0 for normal
subroutine returns. If the enclave is terminated due to an error or due to the
routine explicitly invoking a language-specific service that causes a stop or exit
semantic, this contains the enclave reason code for termination.

sub_feedback_code (output)
A 16-byte field containing the feedback code for enclave termination. This is
the CEE000 feedback code for normal subroutine returns. If the enclave is
terminated due to an error or due to the routine explicitly invoking a
language-specific service that causes a stop or exit semantic, this contains the
enclave feedback code for termination.

Chapter 22. Using preinitialization services with AMODE 64 169

Return codes
A return code is provided in register 15 and can contain the following values:

0 The environment was activated and the routine called.

4 The function code is not valid.

12 The indicated environment was initialized for main routines. No routine
was executed.

16 The token is not valid.

20 The index points to an entry that is not valid or empty.

24 The index passed is outside the range of the table.

28 The enclave was terminated but the process level persists.

This value indicates the enclave was terminated while the process was
retained. This can occur due to a STOP statement being issued or due to an
unhandled condition. The sub_ret_code, sub_reason_code, and
sub_feedback_code indicate this action.

48 CELQPIPI was called from a non-64-bit environment.

CELQPIPI(call_sub_addr) — invocation for subroutines by
address

This PreInit call is the same as 'call_sub' except the routine is identified by its
address, not its index in the PreInit table.

Syntax

�� CALL CELQPIPI (call_sub_addr , routine_addr , �

� function_pointer , token , parm_ptr , sub_ret_code , �

� sub_reason_code , sub_feedback_code) ��

call_sub_addr (input)
A fullword function code (integer value = 10) containing the call_sub request
for a subroutine.

routine_addr (input/output)
A doubleword containing the address of the routine that should be invoked. If
this value is zero, then the function_pointer will be used to invoke the routine.

function_pointer (input/output)
A 16 byte field used to invoke the routine directly. The first time (and first time
after enclave termination occurred) a routine is called, this field must be zero.
On subsequent calls to the same routine, the value returned in this field should
be used. This will ensure that there is only one copy of writable static area for
the routine and that static constructors are only run once.

token (input)
A doubleword with the value of the token returned by (init_sub) when the
common run-time environment is initialized.

The token must identify a previously preinitialized environment that is not
active at the time of the call.

170 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Note: If the token pointing to the previously preinitialized environment is a
non-XPLINK environment and the subprogram to be invoked is XPLINK, then
a return code of 40 will be returned because this is not valid.

parm_ptr (input)
A doubleword containing the address of the parameter list or 0 (zero). The
parameter list is copied to the appropriate location in the stack frame and
general purpose registers 1, 2 and 3 are loaded from the parameter list when
the routine is executed.

The length of the parameter list is determined from PPAs of the routine. If the
routine takes a variable length parameter list, the length of the parameter list
will be assumed to be 256 bytes

Floating point and complex values can only be passed by reference.

sub_ret_code (output)
A fullword containing the subroutine return code. When a PreInit call_sub
ends normally, the sub_ret_code is set with the value of R15 returned from the
subroutine. If the enclave is terminated due to an error or due to the routine
explicitly invoking a language-specific service that causes a stop or exit
semantic, this contains the enclave return code for termination.

sub_reason_code (output)
A fullword containing the subroutine return code. If the enclave is terminated
due to an error or due to the routine explicitly invoking a language-specific
service that causes a stop or exit semantic, this contains the enclave return
code for termination.

sub_feedback_code (output)
A 16-byte field containing the feedback code for enclave termination. This is
the CEE000 feedback code for normal subroutine returns. If the enclave is
terminated due to an error or due to the routine explicitly invoking a
language-specific service that causes a stop or exit semantic, this contains the
enclave feedback code for termination.

Return codes
A return code is provided in register 15 and can contain the following values:
0 The environment was activated and the routine called.
4 The function code is not valid.
12 The indicated environment was initialized for main routines. No routine

was executed.
16 The token is not valid.
28 The enclave was terminated but the process level persists.

This value indicates the enclave was terminated while the process was
retained. This can occur due to a STOP or EXIT statement (or an exit()
function) being issued or due to an unhandled condition. The sub_ret_code,
sub_reason_code, and sub_feedback_code indicate this action.

32 The function_pointer passed is not a valid function pointer.
48 CELQPIPI was called from a non-64-bit environment.
52 The function_pointer could not be obtained from the routine_addr.

Invocation of a sequence of applications
When the driver program needs to invoke multiple subroutines in a sequence,
improved performance can be obtained through the use of the start_seq and
end_seq PreInit functions. The facility will minimize the overhead of each program
invocation.

Chapter 22. Using preinitialization services with AMODE 64 171

In order to exploit this feature the user must ensure that no activity is performed
by the driver program between the PreInit calls, and all of these calls must be to
the same preinitialized environment.

To use this facility the driver program first calls CELQPIPI(start_seq), then is can
make multiple calls to CELQPIPI(call_sub) or CELQPIPI(call_sub_addr), and finally
it ends the sequence with a call to CELQPIPI(end_seq).

CELQPIPI(start_seq) — start a sequence of calls
This invocation of CELQPIPI declares that a sequence of uninterrupted calls is
made to a number of subroutines by this driven program to the same preinitialized
environment. This minimizes the overhead between calls by performing as much
activity as possible at the start of a sequence of calls.

Syntax

�� CALL CELQPIPI (start_seq , token) ��

start_seq (input)
A fullword function code (integer value = 7) containing the start_seq request.

token (input)
A doubleword with the value of the token returned by CELQPIPI(init_sub)
when the common runtime environment is initialized.

The token must identify a previously preinitialized environment for subroutines
that are dormant at the time of the call.

Return codes
A return code is provided in register 15 and can contain the following values:

0 The environment was prepared for a sequence of calls.

4 The function code is not valid.

16 The token is not valid.

20 Sequence already started using token.

48 CELQPIPI was called from a non-64–bit environment.

Usage notes
v CELQPIPI(start_seq) may only be used in conjunction with preinitialized

environment that was created and initialized by CELQPIPI(init_sub). A return
code of 4 is set if the environment was not created by CELQPIPI(init_sub), since
this function code is invalid for a token that is not for a subroutine.

v CELQPIPI(start_seq) minimizes the overhead of invoking subroutines by
performing as much activity as possible at the start of the sequence of calls, thus
reducing the activity performed on each subroutine invocation within the
sequence.

v Only CELQPIPI(call_sub) and CELQPIPI(call_sub_addr) invocation are allowed
between the CELQPIPI(start_seq) and the CELQPIPI(end_seq) calls.

v The same PreInit preinitialized environment token must be used on all of the
PreInit calls within a sequence, including the calls to CELQPIPI(start_seq) and
CELQPIPI(end_seq). Otherwise return code is set for invalid token (16).

172 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

CELQPIPI(end_seq) — end a sequence of calls
This invocation of CELQPIPI declares that a sequence of uninterrupted calls to
subroutines by this driver program has finished.

Syntax

�� CALL CELQPIPI (end_seq , token) ��

end_seq (input)
A fullword function code (integer value = 8) containing the end_seq request

token (input)
A doubleword with the value of the token returned by CELQPIPI(init_sub)
when the common runtime environment is initialized.

The token must identify a previously preinitialized environment for subroutines
that are dormant at the time of the call.

Return codes
A return code is provided in register 15 and can contain the following values:

0 The environment is no longer prepared for a sequence of calls.

4 The function code is not valid.

16 The token is not valid.

20 The token was not used in a start_seq call.

48 CELQPIPI was called from a non-64–bit environment.

PreInit termination
Although there are two types of preinitialized environments, and two functions to
create them, there is only one function to terminate these environments.

The call to CELQPIPI(term) will terminate a single preinitialized environment, and
it is the responsibility of the driver program to issue the term function for each
preinitialized environment created.

CELQPIPI(term) — terminate environment
This invocation of CELQPIPI terminates the environment identified by the value
given in token. This service is used for terminating environments created for
subroutines or main routines.

Syntax

�� CALL CELQPIPI (term , token , env_return_code) ��

term (input)
A fullword function code (integer value = 5) containing the termination
request.

Chapter 22. Using preinitialization services with AMODE 64 173

token (input)
A doubleword with the value of the token of the environment to be
terminated. This token is returned by a CELQPIPI(init_main), or
CELQPIPI(init_sub) request during the initialization call.

The token must identify a previously preinitialized environment that is dormant
at the time of the call.

env_return_code (output)
A fullword integer which is set to the return code from the environment
termination.

If the environment was initialized for a main routine or a subroutine, and the
last CELQPIPI(call_sub) or CELQPIPI(call_sub_addr) issued stop semantics, the
value of env_return_code is zero.

If the environment was initialized for a subroutine and the last
CELQPIPI(call_sub) or CELQPIPI(call_sub_addr) did not terminate with stop
semantics, env_return_code contains the same value as that in sub_ret_code from
the last CELQPIPI(call_sub) or CELQPIPI(call_sub_addr).

Return codes
Upon return, register 15 contains a return code indicating the success or failure of
this request and can contain the following values:

0 The environment was activated and termination was requested.

4 Non-valid function code.

16 The token is not valid.

48 CELQPIPI was called from a non-64–bit environment.

Usage notes
v All resources obtained are released when the environment terminates.
v All routines loaded by Language Environment are deleted when the

environment terminates.
v Subsequent references to token by preinitialization services result in an error

indicating the token is not valid.

CELQPIPI(add_entry) — add an entry to the PreInit table
This invocation of CELQPIPI adds an entry for the environment represented by
token in the Language Environment-maintained table. If a routine entry address is
not provided, the routine name is used to dynamically load the routine and add it
to the PreInit table. The PreInit table index for the new entry is returned to the
calling routine.

Syntax

�� CALL CELQPIPI (add_entry , token , routine_name , �

� routine_entry , ceexptbl_index) ��

add_entry (input)
A fullword function code (integer value = 6) containing the add_entry request.

174 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

token (input)
A doubleword with the value of the token associated with the environment
that adds this new routine. This token is returned by a CELQPIPI(init_main),
or CELQPIPI(init_sub) request.

The token must identify a previously preinitialized environment that is dormant
at the time of the call.

routine_name (input)
A character string of length 8, left-justified and padded right with blanks,
containing the name of the routine. To indicate the absence of the name, this
field should be blank. If routine_entry is zero, this is used as the load name.

routine_entry (input/output)
The routine entry address that is added to the PreInit table. If routine_entry is
zero on input, routine_name is used as the load name. On output, routine_entry
is set to the load address of routine_name.

ceexptbl_index (output)
The doubleword index to the PreInit table where this routine was added. If the
return code is nonzero, this value is indeterminate. The index starts at zero.

Return codes
Upon return, register 15 contains a return code indicating the success or failure of
this request and can contain one of the following values:

0 The routine was added to the PreInit table.

4 Non-valid function code.

12 The routine did not contain a valid Language Environment entry prolog.
Ensure that the routine was compiled with a current Language
Environment enabled compiler. The PreInit table was not updated. The
routine_entry is set to the address of the loaded routine.

16 The token is not valid.

20 The routine_name contains only blanks and the routine_entry was zero. The
PreInit table was not updated.

24 The routine_name was not found or there was a load failure; the PreInit
table was not updated.

28 The PreInit table is full. No routine was added to the table, nor was any
routine loaded by Language Environment.

48 CELQPIPI was called from a non-64–bit environment.

CELQPIPI(delete_entry) — delete an entry from the PreInit
table

This function deletes an entry from the PreInit table. The entry is then available for
subsequent (add_entry) functions.

Syntax

�� CALL CELQPIPI (delete_entry , token , ceexptbl_index) ��

Chapter 22. Using preinitialization services with AMODE 64 175

delete_entry (input)
fullword function code (integer value = 11) containing the delete_entry request

token (input)
a doubleword with the value of the token of the environment. This is the token
returned by a CELQPIPI(init_main), or CELQPIPI(init_sub) request.

ceexptbl_index (input)
the index into the PreInit table of the entry to delete.

Return codes
Upon return, R15 contains a return code indicating the success or failure of this
request and may contain the following values:

0 The routine was deleted from the PreInit table

4 The function code is not valid.

16 The token is not valid

20 The PreInit table entry indicated by ceexptbl_index was empty.

24 The index passed is outside the range of the table.

28 The system request to delete the routine failed; the routine was not deleted
from the PreInit table.

48 CELQPIPI was called from a non-64–bit environment.

Usage notes
v If the routine indicated by ceexptbl_index had been loaded by CELQPIPI, it will

be deleted.

CELQPIPI(identify_entry) — identify an entry in the PreInit
table

The invocation of this routine identifies the language of the entry point for a
routine in the PreInit table.

Syntax

�� CALL CELQPIPI (identify_entry , token , ceexptbl_index , �

� programming language) ��

identify_entry (input)
A fullword containing the identify_entry function code (integer value=13).

token (input)
A doubleword with the value of the token of the environment. This is the
token returned by a CELQPIPI(init_main) or CELQPIPI(init_sub) request.

ceexptbl_index (input)
A doubleword containing the index in the PreInit table of the entry to identify
the programming language.

programming language (output)
A fullword with one of the following possible values:

3 C/C++

176 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

15 Language Environment-enabled assembler

Return codes
Upon return, register 15 contains a return code indicating the success or failure of
this request and can contain the following values:

0 The programming language has been returned.

4 Non-valid function code.

16 The token is not valid.

20 The PreInit table entry indicated by ceexptbl_index was empty.

24 The index passed is outside the range of the table.

48 CELQPIPI was called from a non-64–bit environment.

Usage notes
v The programming_language can be used by the driver program to determine the

format of the parameter list specified on a call_main, for those cases where the
language of the routine associated with ceexptbl_index is not known.

v When a PreInit table entry contains multiple languages, programming_language
is the language of the entry point for the entry.

CELQPIPI(identify_attributes) — identify the program
attributes in the PreInit table

This invocation of CELQPIPI identifies the program attributes of a program in the
PreInit table.

Syntax

�� CALL CELQPIPI (identify_attributes , token , �

� ceexptbl_index program_attributes) ��

identify_attributes (input)
A fullword function code (integer value = 16) containing the identify_attributes
request

token (input)
A doubleword with the value of the token of the environment. This is the
token returned by a CELQPIPI(init_main), or CELQPIPI(init_sub).

ceexptbl_index (input)
A doubleword containing the index in the PreInit table of the entry to identify
the programming attributes.

program_attributes (output)
A fullword (32–bit) mask value is returned. :

X'80000000'
The Preinitialization entry was loaded by Language Environment.

X'40000000'
The Preinitialization entry could not be loaded, address not resolved.

Chapter 22. Using preinitialization services with AMODE 64 177

X'20000000'
The Preinitialization routine is not valid.

X'10000000'
The function descriptor is not valid.

Return codes
Upon return, register 15 contains a return code indicating the success or failure of
this request and can contain the following values:

0 The Preinitialization environment mask has been returned.

4 Non-valid function code.

16 The token is not valid.

20 The PreInit table entry indicated by ceexptbl_index was empty.

24 The index passed is outside the range of the table.

48 CELQPIPI was called from a non-64–bit environment.

Service routines
Under Language Environment, you can specify service routines when executing a
main routine or subroutine in the preinitialized environment. To use the routines,
specify a list of addresses of the routines in a service routine vector as shown in
Figure 34.

The service routine vector is composed of a list of doubleword addresses of 64-bit
XPLINK function pointers for routines that are used instead of Language
Environment service routines. The list of addresses is preceded by the number of
doubleword addresses in the list, as specified in the count field of the vector. The
service_rtns parameter that you specify in calls to CELQPIPI(init_main) and

reserved
(must be 0)

@GETSTORE

@FREESTORE

reserved
(must be 0)

reserved
(must be 0)

@MSGRTN

@LOAD

@DELETE

User Word
(doubleword)

00000000 + countSERV_RTNS

Figure 34. Service routines

178 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

CELQPIPI(init_sub) contains the address of the vector itself. If the pointer is
specified as zero (0), Language Environment routines are used instead of the
service routines that are shown in Figure 35.

The service routines must be 64-bit XPLINK functions. The function descriptors
pointed to by the service vector are standard 64-bit function descriptors.

When the service routine is called, Register 5 will contain the first 8 bytes in the
function descriptor. The service routine will be called at the entry point address
contained in the second 8 bytes of the function descriptor. Register 7 will be the
return address to Language Environment. Register 4 will point to the caller's DSA,
and the service routine can obtain a 64-bit XPLINK DSA using the usual methods.

In most cases, Register 4 points into the normal 64-bit XPLINK stack for the
current TCB. In a few cases, Register 4 might point to some other fixed-size 64-bit
stack, or to the regular 64-bit Language Environment stack for a different TCB. In
these cases, there will be at least 4K of free space in the nonstandard stack to
obtain a new XPLINK DSA.

The first three XPLINK parameters are passed in Registers 1, 2, and 3. Parameters
4 through 'n' are available in the caller's XPLINK argument area, starting 0x898
bytes past the input Register 4. The service routine can save the first three
parameters (in registers 1, 2, and 3) in the caller's argument area starting at offset
0x880, if required.

These XPLINK function descriptions must remain accessible at the specified
address from the time of the first CELQPIPI initialization call until the final
CELQPIPI termination call has returned.

The @GETSTORE and @FREESTORE service routines must be specified together; if
one is zero, the call to CELQPIPI(init_main) or CELQPIPI(init_sub) fails. The same
is true for the @LOAD and @DELETE service routines. If you specify the
@GETSTORE and @FREESTORE service routines, you do not have to specify the
@LOAD and @DELETE service routines, and vice versa.

When replacing only the storage management routines without the program
management routines, the user must be aware that they may not be accounting for
all of the storage obtained on behalf of the application. Contents management
obtains storage for the load module being loaded. This storage will not be
managed by the user storage management routines.

00000000
A fullword zero at the start of the service routine vector.

Count A fullword binary number representing the number of doublewords that
follow. The count does not include itself. If the count does include any of
the reserved doublewords, those doublewords must be set to zero.

environment
(register 5)

+00

+08

+10

entry point
address

Figure 35. 64-bit function descriptors

Chapter 22. Using preinitialization services with AMODE 64 179

User Word
A doubleword that is passed to the service routines. The user word is
provided as a means for your routine to communicate to the service
routines.

@LOAD
This routine loads named routines for application management. The
parameters that are passed contain the following:

Name_addr
The 64-bit address of the name of the module to load (input
parameter).

User_word
A doubleword user field (input parameter).

Load_point
Either zero (0), or the 64-bit address where the @LOAD routine is
to store the load point address of the loaded routine (input and
output parameter). If not zero, it points to an 8-byte area. The
64-bit address of the load point is to be saved in this output area.

Entry_point
The 64-bit entry point address of the loaded routine (output
parameter).

Module_size
The fixed binary(31) size of the module that was loaded (output
parameter).

Return_code
The fullword return code from load (output).

Reason_code
The fullword reason code from load (output).

The following table lists the return and reason codes. AA should be the
Abend (low 16 bits) code from the LOAD MACRO, and RR can be the
reason code (low 16 bits) from the LOAD MACRO:

Return code Reason code Description

0 0 Successful

0 3 Successful - loaded using
SVC8

8 AARR Unsuccessful - module not
found

12 AARR Unsuccessful - not enough
storage

16 AARR Unsuccessful

20 AARR Unsuccessful - module came
from unauthorized library
(abend code 306 from
LOAD)

@DELETE
This routine deletes routines for application management. The parameters
that are passed contain the following:

180 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Name_addr
The 64-bit address of the module name to be deleted (input
parameter).

Name_length
A fixed binary(31) length of module name (input parameter).

User_word
A doubleword user field (input parameter).

Rsvd_word
A fullword reserved for future use. Any value that might be
present in this parameter should not be relied upon.

Return_code
The fullword return code from the delete service (output
parameter).

Reason_code
The fullword reason code from the delete service (output
parameter).

The following table lists the return and reason codes.

Return code Reason code Description

0 0 Successful

4 4 Unsuccessful - DELETE
failed

@GETSTORE
This routine allocates storage on behalf of the Language Environment
storage manager. Three types of storage can be requested: below the 16MB
line, below the 2GB bar, and above the 2GB bar. The parameter list that is
passed contains the following:

PISA_Addr
A doubleword address of the PreInit storage attributes (PISA)
control block (input parameter). This control block, defined in
macro CELQPIDF, contains the attributes that the GETSTORE
routine is to use when obtaining the storage. Table 27 shows the
control block field descriptions.

Table 27. PreInit storage attributes control block field descriptions

Name Description

PisaVersion A fullword field that contains the version number of this PISA. The only valid value for
this field is currently 1, but other values may be added in the future when new storage
attributes are added to this interface. The GETSTORE service routine should check this
field to verify that it supports the specified version; if it cannot support the version, it
should return with a return code of 8.

PisaAmount An unsigned doubleword that contains the amount of storage requested. For
below-the-bar storage, the amount of storage to obtain is in the number of bytes. For
above-the-bar storage, the size of the memory object to obtain is in the number of
megabytes.
Note: Above-the-bar storage that is returned by @GETSTORE must be aligned on a 1
MB boundary.

Chapter 22. Using preinitialization services with AMODE 64 181

Table 27. PreInit storage attributes control block field descriptions (continued)

Name Description

PisaFlags A doubleword flag area. The flags are defined as follows:

PisaBelowtheLine
Bit zero in PisaFlags is ON if the requested storage is required to be below the
16 MB line.

PisaBelowtheBar
Bit one in PisaFlags is ON if the requested storage is required to be below the
2 GB bar.

PisaAbovetheBar
Bit two in PisaFlags is ON if the requested storage is required to be above the
2 GB bar.

PisaGuardLoc
Bit three in PisaFlags specifies whether the guard location is at the low virtual
end or the high virtual end of the memory object. Bit three is OFF if the guard
areas are created starting from the origin of the memory object; that is, from
the low virtual end. Bit three is ON if the guard areas are created at the end of
the memory object, that is, at the high virtual end. This flag is used for
above-the-bar storage only, and only has meaning when PisaGuardSize is
nonzero. Failure to guard the memory object as requested may cause
Language Environment's stack management features to work incorrectly.

PisaPageFrameSize1MEG
Bit four in PisaFlags is ON if the memory object is to be backed by
1-megabyte page frames (equivalent to IARV64 PageFrameSize=1MEG). When
both bits four and five are off, the memory object is backed by 4 KB page
frames (equivalent to IARV64 PageFrameSize=4K). This flag is used for
above-the-bar storage only. Failure to provide storage with this attribute might
have a performance impact in your application.

PisaPageFrameSizeMAX
Bit five in PisaFlags is ON if the memory object is to be backed by the largest
page frame size supported (equivalent to IARV64 PageFrameSize=MAX).
When both bits four and five are off, the memory object is backed by 4 KB
page frames (equivalent to IARV64 PageFrameSize=4K). This flag is used for
above-the-bar storage only. Failure to provide storage with this attribute might
have a performance impact in your application.

PisaSubpool_no A fixed binary(31) subpool number from 0 to 127. Language Environment allocates
storage from the process-level storage pools. This field is used for below-the-bar storage
only.

PisaDumpPriority A fullword dump priority for memory objects. This field is used for above-the-bar
storage only. Failure to provide storage with the requested dump priority may result in
a dump that does not contain useful diagnostic information.

PisaGuardSize A doubleword indicating the number of megabytes of guard area to be created at the
high or low end of the memory object. This field is used for above-the-bar storage only.
Failure to guard the memory object as requested might cause Language Environment's
stack management features to work incorrectly.

PisaUsertkn A doubleword token to be associated with a group of memory objects. This can be used
on a later FREESTORE request to free all memory objects that are associated with this
value. This field is used for above-the-bar storage only.
Note: Non-authorized callers cannot directly use the UserTkn provided by Language
Environment because Language Environment uses the authorized word in the high
half. Refer to the sample @GETSTORE routine to see one way of handling this.

182 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

User_word
A doubleword field containing the user word supplied in the
Service Routine Vector (input parameter).

Stg_address
A doubleword address of the storage obtained or zero (output
parameter) .

Obtained
An unsigned doubleword that contains the number of bytes (below
the bar) or megabytes (above the bar) obtained (output parameter).

Note: Storage must be obtained in a key that is compatible with
the application.

Return code
The fullword return code from the @GETSTORE service (output
parameter).

Reason code
The fullword reason code from the @GETSTORE service (output
parameter).

The following table lists the return and reason codes:

Return code Reason code Description

0 0 Successful

8 0 The specified version of the
PISA is not supported by this
service routine.

16 0 Unsuccessful - uncorrectable
error occurred.

@FREESTORE
This routine frees storage on behalf of the Language Environment storage
manager. The parameter list that is passed contains the following:

Stg_address
The doubleword address of the storage or memory object to free
(input parameter) .

Note: Stg_address is zero when MatchUsertkn is ON.

Amount
An unsigned doubleword that contains the amount of storage in
bytes to free (input parameter). This field is used for below-the-bar
storage only.

Subpool_no
The fixed binary(31) subpool number from 0 to 127 (input
parameter). This parameter is used for below-the-bar storage only.

Flags A doubleword flag area (input parameter), defined as follows:

MatchUsertkn
Bit zero in Flags indicates how the value specified in parameter
UserTkn is to be used. If MatchUsertkn is ON, the
@FREESTORE routine is expected to free all memory objects
that are associated with this user token (equivalent to IARV64
MATCH=USERTKN). If MatchUsertkn is OFF, @FREESTORE is

Chapter 22. Using preinitialization services with AMODE 64 183

to use this user token when freeing a single memory object
with the origin in Stg_address (equivalent to
MATCH=SINGLE). This flag is used for above-the-bar storage
only.

UserTkn
A doubleword token that identifies the memory object or a group
of memory objects to be detached (input parameter). This
parameter is used for above-the-bar storage only.

User word
A doubleword field containing the user word supplied in the
Service Routine Vector (input parameter).

Return code
The fullword return code from the @FREESTORE service (output
parameter) .

Reason code
The fullword reason code from the @FREESTORE service (output
parameter).

The following table lists the return and reason codes.

Return code Reason code Description

0 0 Successful

16 0 Unsuccessful - uncorrectable
error occurred.

@MSGRTN
This routine allows error messages to be processed by the caller of the
application.

If the message pointer is zero, your message routine is expected to return
the size of the line to which messages are written (in the line_length field).
This allows messages to be formatted correctly; that is, broken at places
such as blanks.

Message
A pointer to the first byte of text that is printed, or zero (input
parameter).

Msg_len
The fixed binary(31) length of the message (input parameter).

User word
A doubleword user field (input parameter).

Line_length
The fixed binary(31) size of the output line length (output
parameter). This is used when Message is zero.

Return code
The fullword return code from the @MSGRTN service (output
parameter).

Reason code
The fullword reason code from the @MSGRTN service (output
parameter).

The following table lists the return and reason codes.

184 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Return code Reason code Description

0 0 Successful

16 4 Unsuccessful - uncorrectable
error occurred.

An example program invocation of CELQPIPI
This section contains a sample CELQPIPI program invocation with an AMODE 64
PreInit assembler driver program.

The assembler driver, CEEWQPIP, invokes CELQPIPI to:
v Initialize a main routine environment under Language Environment, with

service routines CEEWQLOD, CEEWQDEL, CEEWQGST, CEEWQFST, and
CEEWQMSG replacing any Language Environment LOAD, DELETE,
GETSTORE, FREESTORE, and MSGRTN service routines, respectively.

v Load and call CEEWQPMA, a reentrant HLL main routine written in C, which
causes the replacement service routines to be run.

v Terminate the Language Environment environment.
**
*
*
* ======== --
* CEEWQPIP - AMODE64 PreInit Driver with service routines
* ======== --
*
*
* This sample PreInit driver illustrates the use of LOAD, DELETE
* GETSTORE, FREESTORE, and MSGRTN replacement routines in an
* AMODE64 driver.
*
*
* This sample driver does the following:
*
* 1) CELQPIPI INIT_MAIN request, with a single-entry PreInit table
* containing "CEEWQPMA", which is a C main() program.
*
* Service Routine Vector contains:
*
* - Count = 9
* - User Word points to a below-the-bar work area for
* the LOAD and DELETE replacement routines
* - LOAD replacement routine is "CEEWQLOD"
* - DELETE replacement routine is "CEEWQDEL"
* - GETSTORE replacement routine is "CEEWQGST"
* - FREESTORE replacement routine is "CEEWQFST"
* - MSGRTN replacement routine is "CEEWQMSG"
* - All other doublewords in the service vector are 0
*
** 2) CELQPIPI CALL_MAIN request, for the only row (0) in the
* PreInit table.
*
* - The Runtime options are "POSIX(ON)"
*
* - The parms passed to the C main() program are:
*
* argc = 3
* argv[0]= "ceewqpma"
* argv[1]= "Parm1"
* argv[2]= "Parm2"
*

Chapter 22. Using preinitialization services with AMODE 64 185

*
* 3) CELQPIPI TERM request
*
*
*
*
* Note: This text deck must be bound with the following:
*
* CEEWQLOD -- LOAD replacement routine
* CEEWQDEL -- DELETE replacement routine
* CEEWQGST -- GETSTORE replacement routine
* CEEWQFST -- FREESTORE replacement routine
* CEEWQMSG -- MSGRTN replacement routine
* CELQSTRT (from SCEEBND2)
* CELQETBL (from SCEEBND2)
* CELQLLST (from SCEEBND2)
*
*
* Note: At runtime, the C main() program (CEEWQPMA) must be available
* for LOAD.
*
*

CEEWQPIP CSECT ,
CEEWQPIP AMODE 64
CEEWQPIP RMODE 31

SYSSTATE AMODE64=YES
SAM64 ,

*
*
* Standard 64-bit entry linkage
* -----------------------------
*

STMG R14,R12,SAVF4SAG64RS14-SAVF4SA(R13) Save caller regs
BASR R11,0 Set up basereg
USING *,R11 Addressabliity
GETMAIN RU,LV=DSA_L Obtain DSA
STG R13,SAVF4SAPREV-SAVF4SA(,R1) Set backchain
STG R1,SAVF4SANEXT-SAVF4SA(,R13) Set fwd chain
MVC SAVF4SAID-SAVF4SA(R4,R13),=A(SAVF4SAID_VALUE) "F4SA"
LGR R13,R1 Set up DSAreg
USING DSA,R13 Addressability

*
*
* Issue LOAD for CELQPIPI (will ABEND if LOAD fails)
* -----------------------
*

WTO ’CEEWQPIP: LOADing CELQPIPI’,ROUTCDE=11
*

LOAD EP=CELQPIPI LOAD LE main module
NG R0,=X’00000000FFFFFFFE’ Clear low (AMODE64) bit
STG R0,CELQPIPI_EP Save CELQPIPI E.P. Address

*
*
* Set up Service Routine Vector and parm
* --------------------------------------
*

MVC SV_DYNAMIC,SV_STATIC Copy over into DSA
LA R15,USER_AREA Point to 1000-byte user area
STG R15,SV_UWORD SV user word -> user area
LA R15,SV_DYNAMIC Address of modifiable SV
STG R15,SERVICE_RTNS Save as parm for INIT_MAIN

*
*
* Do CELQPIPI INIT_MAIN
* ---------------------
*

186 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

WTO ’CEEWQPIP: Doing CELQPIPI INIT_MAIN’,ROUTCDE=11
*

LG R15,CELQPIPI_EP Address of CELQPIPI E.P.
*

CALL (15), X
(INIT_MAIN, CELQPIPI INIT_MAIN request X
CEEXPTBL_ADDR, Address of CELQPIPI table X
SERVICE_RTNS, Address of service rtn vector X
TOKEN), Token from INIT_MAIN X
MF=(E,CALL_PL)*

*
* Check results of INIT_MAIN
*

LTGR R2,R15 Check CELQPIPI R/C
BZ INIT_OK Go do CALL_MAIN, if OK
WTO ’CEEWQPIP: CELQPIPI INIT_MAIN failed’,ROUTCDE=11
MVC RC_MSGD,RC_MSGC Create modifiable message text
LH R15,RC_MSGCN(R2) Get printable R/C
STH R15,RC_MSGDN Save in modifiable text
MVC WTO_PLD(WTO_PLL),WTO_PLC Create modifiable WTO plist
WTO TEXT=RC_MSGD,ROUTCDE=11,MF=(E,WTO_PLD)
B DO_TERM Bypass CALL_MAIN

INIT_OK EQU *
*
*

* Do CELQPIPI CALL_MAIN
* ---------------------
*

WTO ’CEEWQPIP: Doing CELQPIPI CALL_MAIN’,ROUTCDE=11
*

LG R15,CELQPIPI_EP Address of CELQPIPI E.P.
*

CALL (15), X
(CALL_MAIN, CELQPIPI CALL_MAIN request X
CEEXPTL_INDEX, CELQPIPI table index (= 0) X
TOKEN, Token from INIT_MAIN X
RUNTIME_OPTS, Runtime Options X
PARM_PTR, Ptr to C main() parmlist X
ENCLAVE_RETURN_CODE, Enclave return code X
ENCLAVE_REASON_CODE, Enclave reason code X
APPL_FEEDBACK_CODE), Application feedback code X
MF=(E,CALL_PL)

*
*
* Check results of CALL_MAIN
*

LTR R2,R15 Check CELQPIPI R/C
BZ CALL_OK Bypass message, if OK
WTO ’CEEWQPIP: CELQPIPI CALL_MAIN failed’,ROUTCDE=11
MVC RC_MSGD,RC_MSGC Create modifiable message text
LH R15,RC_MSGCN(R2) Get printable R/C
STH R15,RC_MSGDN Save in modifiable text
MVC WTO_PLD(WTO_PLL),WTO_PLC Create modifiable WTO plist
WTO TEXT=RC_MSGD,ROUTCDE=11,MF=(E,WTO_PLD)

CALL_OK EQU *
*
** Do CELQPIPI TERM
* ----------------
*
DO_TERM EQU *

WTO ’CEEWQPIP: Doing CELQPIPI TERM’,ROUTCDE=11
*

LG R15,CELQPIPI_EP Address of CELQPIPI E.P.
*

CALL (15), X
(TERM, CELQPIPI TERM request X

Chapter 22. Using preinitialization services with AMODE 64 187

TOKEN, Token from INIT_MAIN X
ENV_RETURN_CODE), Environment return code X
MF=(E,CALL_PL)

*
LTR R2,R15 Check CELQPIPI R/C
BZ TERM_OK Bypass message, if OK
WTO ’CEEWQPIP: CELQPIPI TERM failed’,ROUTCDE=11

TERM_OK EQU *
*
*
* Return to caller with R/C=0
* ---------------------------
*

WTO ’CEEWQPIP: Returning’,ROUTCDE=11
*

LGR R1,R13 Addr for FREEMAIN
LG R13,SAVF4SAPREV-SAVF4SA(,R13) Caller’s DSA addr
FREEMAIN RU,A=(1),LV=1024 Get rid of DSA
LA R15,0 Set R/C = 0
LG R14,SAVF4SAG64RS14-SAVF4SA(,R13) Restore R14
LMG R0,R12,SAVF4SAG64RS0-SAVF4SA(R13) Restore R0-R12
SAM31 ,
BR R14 Return to caller

*
*
* ----------------
* Static constants
* ----------------
*

LTORG ,
*
INIT_MAIN DC F’1’ Initialize for main routines
CALL_MAIN DC F’2’ Call main routine
TERM DC F’5’ Terminate
*
RC_MSGC DS 0CL28

DC AL2(26)
DC C’ CELQPIPI R/C: nn’

RC_MSGCN DC C’00..04..08..12..16..20..24..28..32..36..’
DC C’40..44..48..52..56..60..64..68..72..76..’

*
WTO_PLC WTO TEXT=RC_MSGD,ROUTCDE=11,MF=L
*
CEEXPTBL_ADDR DC AD(CEEXPTBL) Address of PIPI table
CEEXPTL_INDEX DC AD(0) 1st row of CEEXPTBL = 0
*
RUNTIME_OPTS DC CL255’POSIX(ON)’
PARM_PTR DC AD(P_PLIST)
*
** CELQPIPI service routine vector (static copy)
*

DS 0D
SV_STATIC DS 0XL80 10 doublewords
SV_RES DC A(0) Reserved (must be 0)
SV_COUNT DC A(9) 9 entries in service vector
SV_UWORD_ DC AD(*-*) Will be filled in at runtime
SV_2 DC AD(0) Reserved (must be 0)
SV_LOAD DC AD(FD_L) Pointer to FD for LOAD routine
SV_DELETE DC AD(FD_D) Pointer to FD for DELETE routine
SV_GETSTOR DC AD(FD_G) Pointer to FD for GETSTORE routine
SV_FREESTOR DC AD(FD_F) Pointer to FD for FREESTOR routine
SV_7 DC AD(0) Reserved (must be 0)
SV_8 DC AD(0) Reserved (must be 0)
SV_MSGRTN DC AD(FD_M) Pointer to FD for MSGRTN routine
*
*
* Function Descriptor for CEEWQLOD (load replacement)

188 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

*
EXTRN CEEWQLOD

CEEWQLOD XATTR LINKAGE(XPLINK),REFERENCE(CODE)
*

DS 0D
FD_L DS 0CL16

DC RD(CEEWQLOD) PSECT Address
DC AD(CEEWQLOD) E.P. Address

*
** Function Descriptor for CEEWQDEL (delete replacement)
*

EXTRN CEEWQDEL
CEEWQDEL XATTR LINKAGE(XPLINK),REFERENCE(CODE)
*

DS 0D
FD_D DS 0CL16

DC RD(CEEWQDEL) PSECT address
DC AD(CEEWQDEL) E.P. Address

*
* Function Descriptor for CEEWQGST (getstore replacement)
*

EXTRN CEEWQGST
CEEWQGST XATTR LINKAGE(XPLINK),REFERENCE(CODE)
*

DS 0D
FD_G DS 0CL16

DC RD(CEEWQGST) PSECT address
DC AD(CEEWQGST) E.P. Address

*
* Function Descriptor for CEEWQFST (freestore replacement)
*

EXTRN CEEWQFST
CEEWQFST XATTR LINKAGE(XPLINK),REFERENCE(CODE)
*

DS 0D
FD_F DS 0CL16

DC RD(CEEWQFST) PSECT address
DC AD(CEEWQFST) E.P. Address

*
* Function Descriptor for CEEWQMSG (msgrtn replacement)
*

EXTRN CEEWQMSG
CEEWQMSG XATTR LINKAGE(XPLINK),REFERENCE(CODE)
*

DS 0D
FD_M DS 0CL16

DC RD(CEEWQMSG) PSECT address
DC AD(CEEWQMSG) E.P. Address

*
** CELQPIPI table (with 1 static entry)
*
CEEXPTBL CELQPIT , Start of CELQPIPI table

CELQPITY CEEWQPMA,0 Dynamically load CEEEQPMA
CELQPITS , End of CELQPIPI table

*
*
* Parmlist for C main()
*

DS 0D
P_PLIST DS 0XL16
P_ARGC DC FD’3’ argc = 3
P_ARGV DC AD(P_ARG) pointer to argv
*

DS 0D
P_ARG DS 0XL16 argv
P_ARG0 DC AD(P_NAMEBUF) argv[0]
P_ARG1 DC AD(P_ARGBUF1) argv[1]

Chapter 22. Using preinitialization services with AMODE 64 189

P_ARG2 DC AD(P_ARGBUF2) argv[2]
DC AD(0)

*
P_NAMEBUF DS 0CL9 argv[0]

DC CL8’ceewqpma’ program name
DC XL1’0’ NULL terminator

*
P_ARGBUF1 DS 0CL6 argv[1]

DC CL5’Parm1’ 1st parm = "Parm1"
DC XL1’0’ NULL terminator

*
P_ARGBUF2 DS 0CL6 argv[2]

DC CL5’Parm2’ 2nd parm = "Parm2"
DC XL1’0’ NULL terminator
DS 0D

*
** -----------------------------------
* DSA (below the bar, due to GETMAIN)
* -----------------------------------
*
DSA DSECT ,

DS CL(SAVF4SA_LEN) F4 savearea
DS 0D

*
CELQPIPI_EP DS AD Address of CELQPIPI E.P.
TOKEN DS AD Token (from INIT_MAIN)
SERVICE_RTNS DS AD Address of Service vector
APPL_FEEDBACK_CODE DS 2AD Fdbk code from CALL_MAIN
ENCLAVE_RETURN_CODE DS F Return code from CALL_MAIN
ENCLAVE_REASON_CODE DS F Reason code from CALL_MAIN
ENV_RETURN_CODE DS F Rtn code from CELQPIPI TERM
*
RC_MSGD DS 0CL28 Return code message for WTO

DS CL2 Text length = 26
DS CL24 ’ CELQPIPI R/C: ’

RC_MSGDN DS CL2 ’nn’
*

DS 0D
SV_DYNAMIC DS 0XL(L’SV_STATIC) Modifiable service vector

DS AD 0000000 + count
SV_UWORD DS AD User word

DS AD doubleword 2
DS AD doubleword 3
DS AD doubleword 4
DS AD doubleword 5
DS AD doubleword 6
DS AD doubleword 6
DS AD doubleword 7
DS AD doubleword 8
DS AD doubleword 9

*
DS 0D

CALL_PL CALL ,(,,,,,,,),MF=L 8-parm CALL parmlist
*

DS 0D
WTO_PLD WTO TEXT=RC_MSGD,ROUTCDE=11,MF=L
WTO_PLL EQU *-WTO_PLD
*

DS 0D
USER_AREA DS XL1000 1000-byte below-the-bar
* workarea for LOAD and
* DELETE replacement routines

DS 0D
DSA_L EQU *-DSA Length of DSA
*
*
* --------------------------

190 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

* Control Blocks and equates
* --------------------------
*

YREGS ,
IHASAVER ,

*
END

A sample AMODE 64 Assembler LOAD replacement service routine, CEEWQLOD,
can be found in SCEESAMP(CEEWQLOD).

A sample AMODE 64 Assembler DELETE replacement service routine,
CEEWQDEL, can be found in SCEESAMP(CEEWQDEL).

A sample AMODE 64 Assembler GETSTORE replacement service routine,
CEEWQGST, can be found in SCEESAMP(CEEWQGST).

A sample AMODE 64 Assembler FREESTORE replacement service routine,
CEEWQFST, can be found in SCEESAMP(CEEWQFST).

A sample AMODE 64 Assembler MSGRTN replacement service routine,
CEEWQMSG, can be found in SCEESAMP(CEEWQMSG).

The following example is a sample AMODE 64 C main routine.
/***
*
*
* ======== ------------------------------
* CEEWQPMA -- Sample AMODE64 PreInit program
* ======== ------------------------------
*
*
* This program is invoked with two parms (always assumed present)
* by the CEEWQPIP AMODE64 PreInit driver program.
*
*
*
* Processing is:
*
* 1) Print out POSIX(ON/OFF) state to verify POSIX(ON) runtime
* option.
*
* 2) Print out first two parms
*
* 3) Issue perror() to cause a LOAD request (and later DELETE)
*
*
***/

#define _XOPEN_SOURCE_EXTENDED 1

#include <errno.h>
#include <stdio.h>
#include <stdlib.h>

int main(int argc, char * argv[])
{

printf("\nCEEWQPMA: Called -- __isPosixOn()=%d\n", __isPosixOn());

printf("CEEWQPMA: main() argc = %d\n" , argc);
printf(" argv[0]= \"%s\"\n" , argv[0];
printf(" argv[1]= \"%s\"\n" , argv[1];
printf(" argv[2]= \"%s\"\n\n", argv[2];

Chapter 22. Using preinitialization services with AMODE 64 191

errno = ESTALE;
perror("CEEWQPMA: Test message");

printf("\nCEEWQPMA: Returning\n");

return 0;
}

192 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Part 5. Appendixes

© Copyright IBM Corp. 2004, 2013 193

194 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Appendix. Accessibility

Accessible publications for this product are offered through the z/OS Information
Center, which is available at www.ibm.com/systems/z/os/zos/bkserv/.

If you experience difficulty with the accessibility of any z/OS information, please
send a detailed message to mhvrcfs@us.ibm.com or to the following mailing
address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually

© Copyright IBM Corp. 2004, 2013 195

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!

196 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix. Accessibility 197

198 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 2004, 2013 199

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

200 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming Interface Information
This book documents intended Programming Interfaces that allow the customer to
write programs to obtain the services of Language Environment in z/OS.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at www.ibm.com/legal/copytrade.shtml (http://www.ibm.com/legal/
copytrade.shtml).

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle, its affiliates, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 201

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

202 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

Index

Special characters
__cdump() function 139
__le_ceegtjs() function 140
__librel() function 140

A
accessibility 195

contact IBM 195
features 195

AMODE 64 applications
common runtime environment 4

application
binding using 39
invoking MVS executable programs

from a z/OS UNIX shell 41
placing MVS load modules in the

z/OS UNIX file system 41
running

from the z/OS UNIX shell 41
under batch 42
under MVS batch 42

Assembler
asynchronous interrupts 146
condition handling 147
considerations 145
GOFF option 146
Language Environment-conforming

assembler 146
macros 148
register conventions 145
save areas 145

assistive technologies 195

B
basics

understanding the 7
bind input

providing 32
binder

module name 35
binder interface

utility 39
BPXBATCH program

invoking from TSO/E 42
running an executable HFS file under

batch 42

C
CEEBLDTX utility 121

error messages 124
CEECAA macro 152
CEEDIA macro 153
CEEDSA macro 152
CEEEDB macro 151
CEELAA macro 151
CEELCA macro 152

CEEOPTS DD syntax 48
CEEPCB macro 151
CEEPDDA macro 155
CEEPLDA macro 156
CEERCB macro 151
CEEXOPT 48
CELQCALL macro 153
CELQEPLG macro 150
CELQPRLG macro 149
command

syntax diagrams xii
condition handling

scenarios 91
condition step 90
condition tokens 107

fc parameter
coding 107
omitting 109

for C signals under C and C++ 112
structure of 109
symbolic feedback codes 111

including 111
locating 111

testing
for equality 109
for equivalence 108
for success 108

D
Date and Time Services 133
definition side-deck 24
DLLs (dynamic link libraries) 13

application 13
applications 13
binding a DLL 24
binding a DLL application 25
C or C++ example 16
calling explicitly 15
calling implicitly 14
creating 21

#pragma export 21
C 21
description 21
exporting functions 21

entry point 29
example 27
freeing 21
function 13
load-on-call 14
loading 19
managing the use of 19
performance 29
restrictions 28
sharing among application executable

files 20
using 26
variable 13

E
enclave 71
exception handler present for

divide-by-zero 92
executable files

invoking MVS executable programs
from a z/OS UNIX shell 41

placing MVS load modules in the
z/OS UNIX file system 41

running
from the z/OS UNIX shell 41
under batch 42
under MVS batch 42

exporting functions 14

F
functions 14

exported 14
imported 14

H
heap storage 77

overview 80
tuning 83
user-created 85
using to improve performance 82

I
I/O heap 80
INCLUDE statement 35

K
keyboard

navigation 195
PF keys 195
shortcut keys 195

L
Language Environment condition

handling 87
library heap 80
Library Routine Rentention (LRR) 147
LIBRARY statement 36

M
math services 141
message module table 127
messages

using and handling 117

© Copyright IBM Corp. 2004, 2013 203

N
national language support 135
navigation

keyboard 195
Notices 199

P
program

binding using 39
placing MVS load modules in the

z/OS UNIX file system 41
running under z/OS UNIX 40

Q
q data structure

for abends 113
for arithmetic program

interruptions 114
for square-root exception 116

R
resume cursor 88
Return Code= nnn 126
Return Code=-1 124
Return Code=0005 124
Return Code=0006 124
Return Code=0007 124
Return Code=0008 124
Return Code=0009 124
Return Code=0010 124
Return Code=0011 124
Return Code=0020 124
Return Code=0021 124
Return Code=0028 125
Return Code=0040 125
Return Code=0044 125
Return Code=0048 125
Return Code=0052 125
Return Code=0056 125
Return Code=0060 125
Return Code=0064 125
Return Code=0068 125
Return Code=0072 125
Return Code=0076 125
Return Code=0080 125
Return Code=0084 125
Return Code=0088 126
Return Code=0092 126
Return Code=0096 126
Return Code=0098 126
Return Code=0100 126
Return Code=0104 126
Return Code=0108 126
Return Code=0112 126
runtime options

creating defaults with CEEXOPT 48
list of 77
specifying under batch 38

runtime services
list of 77

S
sending comments to IBM xvii
shortcut keys 195
simple condition handling 92
stack frame model 88
stack storage 77

overview 78
tuning 79

syntax diagrams
how to read xii

T
thread 72
trademarks 201

U
user heap 80
user interface

ISPF 195
TSO/E 195

utility
bind object modules 39
interface to the binder 39

V
variables 14

exported 14

204 z/OS V2R1.0 Language Environment Programming Guide for 64-bit Virtual Addressing Mode

����

Product Number: 5650-ZOS

Printed in USA

SA38-0689-00

	Contents
	Figures
	Tables
	About this document
	Using your documentation
	How to read syntax diagrams
	Symbols
	Syntax items
	Syntax examples

	This Programming Guide
	z/OS information

	How to send your comments to IBM
	If you have a technical problem

	Part 1. Creating AMODE 64 applications with Language Environment
	Chapter 1. Introduction to Language Environment for AMODE 64 applications
	Components of Language Environment for AMODE 64 applications
	Common runtime environment of Language Environment for AMODE 64 applications

	Chapter 2. Preparing to bind and run under Language Environment
	Understanding the basics
	Planning to bind and run
	Binding AMODE 64 applications

	Downward compatibility considerations
	Checking which runtime options are in effect

	Chapter 3. Building and using AMODE 64 dynamic link libraries (DLLs)
	Support for DLLs
	DLL concepts and terms
	Loading a DLL
	Loading a DLL implicitly
	Loading a DLL explicitly
	Explicit use of a DLL in a C application
	Explicit use of a DLL in a application using the dlopen() family of functions

	Managing DLLs when running DLL applications
	Loading DLLs
	Sharing DLLs
	Freeing DLLs

	Creating a DLL or a DLL application
	Building a DLL
	Writing your C DLL code
	Writing your C++ DLL code
	Writing your Language Environment-conforming AMODE 64 assembler DLL code
	Compiling the DLL code
	Binding the DLL code
	Binding C
	Binding C++
	Binding assembler

	Building a DLL application
	Creating and using DLLs
	DLL restrictions
	Improving performance

	Chapter 4. Binding, loading, and running under batch
	Basic binding and running under batch
	Specifying runtime options in the EXEC statement
	Specifying runtime options with the CEEOPTS DD card

	Providing bind input
	Writing JCL for the bind process
	Binder control statements
	Using the INCLUDE statement
	Using the LIBRARY statement

	Bind options
	Running an AMODE 64 application under batch
	Program library definition and search order

	Specifying runtime options under batch

	Chapter 5. Binding and executing AMODE 64 programs using z/OS UNIX
	Basic binding and running C/C++ applications under z/OS UNIX
	Invoking a shell from TSO/E
	Using the c89 utility to bind and create AMODE 64 executable files
	Running z/OS UNIX AMODE 64 application programs using z/OS XL C/C++ functions
	z/OS UNIX application program environments
	Placing an MVS application executable program in the file system
	Running an MVS executable program from a z/OS UNIX shell
	Running POSIX-enabled programs using a z/OS UNIX shell
	Issuing the executable from a shell
	Issuing a setup shell script from a shell

	Running POSIX-enabled programs outside the z/OS UNIX shells
	Running an MVS batch z/OS UNIX application file that is HFS-resident
	Invoking BPXBATCH from TSO/E
	Invoking BPXBATCH Using JCL
	Invoking the spawn syscall in a REXX EXEC from TSO/E

	Running a z/OS UNIX application program that is not HFS-resident

	Chapter 6. Using runtime options
	Understanding the basics
	Methods available for specifying runtime options
	Order of precedence
	Specifying suboptions in runtime options
	Specifying runtime options and program arguments
	CEEOPTS DD syntax

	Creating application runtime option defaults with CEEXOPT
	CEEXOPT invocation for CELQUOPT
	CEEXOPT coding guidelines for CELQUOPT
	Performance considerations

	C and C++ compatibility considerations

	Part 2. Preparing an application to run with Language Environment
	Chapter 7. Using Language Environment parameter list formats
	Understanding the basics
	Argument lists and parameter lists
	Passing arguments between routines

	Chapter 8. Making your application reentrant
	Understanding the basics
	Making your C/C++ program reentrant
	Natural reentrancy
	Constructed reentrancy
	Generating a reentrant program executable for C or C++

	Installing a reentrant load module

	Part 3. Language Environment concepts, services, and models
	Chapter 9. Initialization and termination under Language Environment
	Understanding the basics
	Language Environment initialization
	Language Environment termination
	What causes termination
	What happens during termination
	Thread termination
	Enclave termination
	Process termination

	Managing return codes in Language Environment
	How the Language Environment enclave return code is calculated
	Setting and altering user return codes
	For C and C++
	How the enclave reason code is calculated

	Termination behavior for unhandled conditions
	Determining the abend code
	Program interrupt abend and reason codes

	Chapter 10. Program model
	Understanding the basics
	Language Environment program model terminology
	Language Environment terms and their HLL equivalents
	Terminology for data

	Process
	Enclave
	Additional enclave characteristics

	Thread

	The full Language Environment program model
	Mapping the POSIX program model to the Language Environment program model
	Key POSIX program entities and Language Environment counterparts
	Scope of POSIX semantics

	Chapter 11. Stack and heap storage
	Understanding the basics
	Runtime options and services

	Stack storage overview
	Tuning stack storage

	Heap storage overview
	Using heap pools to improve performance
	Applications that should use heap pools
	Heap pools modes of operation

	Tuning heap storage
	User-created heap storage
	Alternative vendor heap manager
	Using _CEE_HEAP_MANAGER to invoke the alternative Vendor Heap Manager

	Chapter 12. Language Environment condition handling introduction
	Understanding the basics
	Runtime options

	The stack frame model
	Resume cursor

	What is a condition in Language Environment?
	Steps in condition handling
	Enablement step
	TRAP effects on the condition handling process

	Condition step
	Termination step and the TERMTHDACT runtime option

	Invoking exception handlers
	Responses to conditions
	Condition handling scenarios
	Scenario 1: Simple condition handling
	Scenario 2: Exception handler present for divide-by-zero

	Chapter 13. Language Environment and HLL condition handling interactions
	Understanding the basics
	C condition handling semantics
	Comparison of C-Language Environment terminology
	Controlling condition handling in C
	Using the signal() function
	Using the raise() function
	C atexit() considerations

	C condition handling actions
	C condition handling examples

	C signal representation of S/370 exceptions

	C++ condition handling semantics
	Language Environment and POSIX signal handling interactions
	Synchronous POSIX signal and Language Environment condition handling interactions
	Enablement step for signals under z/OS UNIX
	Condition step for POSIX signals under Language Environment
	Termination step under z/OS UNIX
	POSIX signals that do not enter condition handling

	Chapter 14. Using condition tokens
	Understanding the basics
	Related services

	The effect of coding the fc parameter
	Testing a condition token for success
	Testing condition tokens for equivalence
	Testing condition tokens for equality

	Effects of omitting the fc parameter
	Understanding the structure of the condition token
	Using symbolic feedback codes
	Locating symbolic feedback codes for conditions
	Including symbolic feedback code files

	Condition tokens for C signals under C and C++
	q_data structure for abends
	q_data structure for arithmetic program interruptions
	q_data structure for square-root exception

	Chapter 15. Using and handling messages
	Understanding the basics
	Runtime options
	APIs
	Utilities

	Creating messages
	Creating a message source file
	Using the CEEBLDTX utility
	z/OS UNIX interface
	TSO/E interface

	Files created by CEEBLDTX
	CEEBLDTX error messages

	Creating a message module table
	Assigning values to message inserts
	Interpreting runtime messages
	Specifying the national language
	Runtime messages with POSIX
	Handling message output
	Using C or C++ I/O functions

	Using multiple message handling APIs

	Chapter 16. Using date and time services
	Chapter 17. National language support
	Understanding the basics
	Runtime options
	C/C++ APIs

	Setting the national language
	Setting the locale

	Chapter 18. Locale callable services
	Chapter 19. General callable services
	Understanding the basics
	Related services
	XL C/C++ APIs

	__cdump()
	Specifying a target directory for CEEDUMPs

	__le_ceegtjs()
	__librel()

	Chapter 20. Math services
	Part 4. Specialized Programming Tasks
	Chapter 21. Assembler considerations
	Understanding the basics
	Compatibility considerations
	Save areas

	Register conventions
	Language Environment-conforming assembler

	Considerations for coding or running assembler routines
	GOFF option
	Asynchronous interrupts
	Condition handling
	Access to the inbound parameter string
	CELQSTRT, CELQMAIN, CELQFMAN
	Mode considerations

	Language Environment Library routine retention (LRR)
	Assembler macros
	CELQPRLG macro — Generate a Language Environment-conforming amode 64 prolog
	CELQEPLG macro — Terminate a Language Environment-conforming AMODE 64 routine
	CEERCB macro — Generate an RCB mapping
	CEEPCB macro — Generate a PCB mapping
	CEEEDB macro — Generate an EDB mapping
	CEELAA macro — Generate an LAA mapping
	CEELCA macro — Generate an LCA mapping
	CEECAA macro — Generate a CAA mapping
	CEEDSA macro — Generate a DSA mapping
	CEEDIA macro — Generate a DIA mapping
	CELQCALL macro — Call a Language Environment-conforming AMODE 64 routine
	CEEPDDA macro — Define a data item in the writeable static area (WSA)
	CEEPLDA macro — Returns the address of a data item defined by CEEPDDA

	Chapter 22. Using preinitialization services with AMODE 64
	Understanding the basics
	Using preinitialization services
	Macros that generate the PreInit table
	CELQPIT
	CELQPITY
	CELQPITS

	Invoking CELQPIPI
	AMODE considerations
	General register usage at entry to CELQPIPI
	General register usage at exit from CELQPIPI

	CELQPIPI interface
	Initialization
	CELQPIPI(init_main) — initialize for main routines
	Return codes
	Usage notes
	Restriction

	CELQPIPI(init_sub) — initialize for subroutines
	Return codes
	Usage notes
	Restriction

	Application invocation
	CELQPIPI(call_main) — invocation for main routine
	Return codes

	CELQPIPI(call_sub) — invocation for subroutines
	Return codes

	CELQPIPI(call_sub_addr) — invocation for subroutines by address
	Return codes

	Invocation of a sequence of applications
	CELQPIPI(start_seq) — start a sequence of calls
	Return codes
	Usage notes

	CELQPIPI(end_seq) — end a sequence of calls
	Return codes

	PreInit termination
	CELQPIPI(term) — terminate environment
	Return codes
	Usage notes

	CELQPIPI(add_entry) — add an entry to the PreInit table
	Return codes

	CELQPIPI(delete_entry) — delete an entry from the PreInit table
	Return codes
	Usage notes

	CELQPIPI(identify_entry) — identify an entry in the PreInit table
	Return codes
	Usage notes

	CELQPIPI(identify_attributes) — identify the program attributes in the PreInit table
	Return codes

	Service routines
	An example program invocation of CELQPIPI

	Part 5. Appendixes
	Appendix. Accessibility
	Accessibility features
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming Interface Information
	Trademarks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	H
	I
	K
	L
	M
	N
	P
	Q
	R
	S
	T
	U
	V

