
z/OS

Language Environment
Customization
Version 2 Release 1

SA38-0685-01

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 279.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1991, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this document xi
Who should read this information xi
How to read syntax diagrams xi

Symbols. xi
Syntax items xi
Syntax examples xii

z/OS information xiii

How to send your comments to IBM . . xv
If you have a technical problem xv

z/OS Version 2 Release 1 summary of
changes xvii
Summary of changes for Language Environment xvii

Part 1. Language Environment
Customization: General information . 1

Chapter 1. Customization overview . . . 3
Deciding whether and what to customize. 3

Chapter 2. Description of Language
Environment target libraries 5

Chapter 3. Choosing your Language
Environment runtime library access . . 9
LNKLST 9
STEPLIB 9

Chapter 4. Placing Language
Environment modules in link pack and
LIBPACK 11
Tailoring the Fortran LIBPACKs 12

Choices to make now 12
Listing the contents of Fortran LIBPACKs 13

Modifying the JCL for AFHWLIST. 13
Deleting routines from Fortran LIBPACKs 14

Steps for modifying the JCL to delete routines
from a Fortran LIBPACK 14

Adding routines to Fortran LIBPACKs 15
Steps for modifying the JCL for adding routines
to a Fortran LIBPACK 15

Where to place the tailored Fortran LIBPACKs. . . 16

Part 2. Language Environment
Customization: Runtime options,
exits, and procedures 17

Chapter 5. Customizing Language
Environment runtime options 19
Creating system-level runtime option defaults with
CEEPRMxx 23

CEEPRMxx parmlib member 24
CEE= statement at IPL. 29
SET CEE command. 30
SETCEE command 31
D CEE command 34
CEEPRMCC - syntax checking under z/OS batch 36
CEEPRMCK - syntax checking under TSO/E . . 38

Creating region-level runtime option defaults with
CEEXOPT 39

Sample invocation of CEEXOPT within the
CEERDOPT member 40
Sample invocation of CEEXOPT within the
CEERCOPT member 41
Sample invocation of CEEXOPT within the
CELQRDOP member 42
CEEXOPT invocation for CEEROPT (AMODE 31) 43
CEEXOPT invocation for CELQROPT (AMODE
64) 43
CEEXOPT coding guidelines for CEEROPT and
CELQROPT 43

Chapter 6. Language Environment
runtime options 45
Cobol compatibility. 45
Runtime options. 45
ABPERC 46
ABTERMENC 47
AIXBLD (COBOL only) 49
ALL31 50
ANYHEAP 52
AUTOTASK | NOAUTOTASK (Fortran only) . . . 54
BELOWHEAP 54
CBLOPTS (COBOL only) 56
CBLPSHPOP (COBOL only) 57
CBLQDA (COBOL Only) 58
CEEDUMP 58
CHECK (COBOL only) 61
COUNTRY 61
DEBUG (COBOL only) 63
DEPTHCONDLMT 63
DYNDUMP 65
ENVAR. 68
ERRCOUNT 70
ERRUNIT (Fortran only) 71
FILEHIST (Fortran only) 72
FILETAG (C/C++ only) 72
HEAP 74
HEAP64 (AMODE 64 only) 77
HEAPCHK 79
HEAPPOOLS (C/C++ and Enterprise PL/I only) . . 81
HEAPPOOLS64 (AMODE 64 only) 84

© Copyright IBM Corp. 1991, 2013 iii

|
||
||
||
||
||
||
||
||
|
||
|
||
|
||
|
||
||
|
||
|
||

INFOMSGFILTER 86
INQPCOPN (Fortran only) 88
INTERRUPT 88
IOHEAP64 (AMODE 64 only) 89
LIBHEAP64 (AMODE 64 only) 91
LIBSTACK. 92
MSGFILE 94
MSGQ 97
NATLANG 98
OCSTATUS (Fortran only) 100
PC (Fortran only) 101
PLITASKCOUNT (PL/I only) 102
POSIX 103
PROFILE 104
PRTUNIT (Fortran only). 105
PUNUNIT (Fortran only) 105
RDRUNIT (Fortran only) 106
RECPAD (Fortran only) 106
RPTOPTS. 107
RPTSTG 108
RTEREUS (COBOL only) 110
SIMVRD (COBOL only) 112
STACK 113
STACK64 (AMODE 64 only) 116
STORAGE 118
TERMTHDACT 121
TEST | NOTEST 127
THREADHEAP 129
THREADSTACK 131
THREADSTACK64 (AMODE 64 only) 134
TRACE 135
TRAP 137
UPSI (COBOL only) 140
USRHDLR 141
VCTRSAVE 142
XUFLOW. 143

Chapter 7. Customizing user exits . . 145
Example 146
Changing the assembler language user exit . . . 146

Changing the installation-wide assembler
language user exit (non-CICS) 147
Changing the installation-wide assembler
language user exit (CICS) 147
Creating an application-specific assembler
language user exit 148

Changing the high-level language user exit . . . 148
Steps for modifying the JCL for CEEWHLLX 149

Customizing Language Environment abnormal
termination exits 149

Creating a Language Environment abnormal
termination exit 149
CEEEXTAN abnormal termination exit CSECT 150
Identifying the abnormal termination exit
(non-CICS) 151
Identifying the abnormal termination exit (CICS) 152
Identifying the abnormal termination exit
(AMODE 64) 152

Creating global user exit XPCFTCH (CICS) . . . 153
Using XPCFTCH for an Enterprise PL/I routine 153
Using XPCFTCH for a PL/I routine 153

Using XPCFTCH for a C/C++ routine 153
Creating a load notification user exit 154

Identifying the load notification user exit . . . 154
CEEBLNUE CSECT 154
CEEBLNUE sample 155

Creating a storage tuning user exit 156

Chapter 8. Customizing the cataloged
procedures 157
Making the cataloged procedure library available
to your jobs 157
Tailoring the cataloged procedures and CLISTs to
your site 159

Chapter 9. Using Language
Environment under CICS 161
Add program resource definitions for CICS . . . 161
Add destination control table (DCT) entries . . . 163
Specifying the side file interface to be used . . . 165
Add Language Environment-CICS data sets to the
CICS startup job stream 166
Language Environment automatic storage tuning
for CICS 167

Enclaves eligible for automatic storage tuning 167
Automatic storage tuning behavior 167
Altering the automatic storage tuning behavior 168

Chapter 10. Using Language
Environment under IMS 169
Initializing library routine retention 169
Ending library routine retention 169

Chapter 11. Customizing
language-specific features. 171
Choices to make now. 171
Modifying the OS/VS COBOL compatibility library
routines 171

OS/VS COBOL considerations. 172
Modifying the COBOL parameter list exit 173

Steps for modifying the JCL for IGZWAPSX . . 174
Modifying the COBOL runtime environment . . . 174

Modifying COBOL reusable environment
behavior 174
Modifying nested enclave behavior 175
Modifying COBOL formatted dump behavior 175
Modifying the behavior of the COBOL runtime
environment. 176
Modifying the JCL for IGZWARRE 176

Modifying the COBOL debug file name 176
Using a COBOL debug file user exit 177
Using the COBOL debug file user exit interface 177
COBOL debug file user exit samples 179

Changing the C/C++ locale time information . . 179
Modifying the JCL for EDCLLOCL 179

Part 3. Appendixes 181

iv z/OS V2R1.0 Language Environment Customization

Appendix A. Language Environment
user exits 183
Assembler and HLL user exits. 183

When assembler and HLL user exits are
invoked 183
CEEBXITA behavior during enclave
initialization 185
CEEBXITA behavior during enclave termination 185
CEEBXITA behavior during process termination 185
Specifying abend codes to be percolated by
Language Environment 186
Actions taken for errors that occur within the
exit 186
CEEBXITA assembler user exit interface . . . 186
Parameter values in the assembler user exit . . 190

Abnormal termination exit 193
Usage notes for AMODE 31 applications . . . 193
Usage notes for AMODE 64 applications . . . 194

Load notification user exit 195
Storage tuning user exit 198

Region initialization 199
Region termination 199
Enclave initialization 199
Enclave termination 199
New load module (CICS only) 200
Using the storage tuning user exit 200
Using the storage tuning user exit to collect
information 201
Using the storage tuning user exit to provide
storage values 201
Using the storage tuning user exit to provide
storage values 202
Storage tuning user exit interface 202

Appendix B. Using Fortran with
Language Environment 217
Customizing for Fortran applications link-edited
with Language Environment 217

Changing the unit attribute table default values 217
Customizing for Fortran applications link-edited
with VS FORTRAN 223

Changing the unit attribute table default values 223

Changing VS FORTRAN runtime option
defaults 229
Changing the error option table defaults . . . 234

Customizing Fortran LIBPACKs 238
Contents of the Fortran LIBPACK AFHPRNAG 238
Contents of the Fortran LIBPACK AFHPRNBG 243
Contents of the Fortran LIBPACK AFH5RENA 243
Contents of the Fortran LIBPACK AFH5RENB 245

Appendix C. Modules eligible for the
link pack area 247
Language Environment base modules 247
Language Environment C/C++ component
modules 248
Language Environment COBOL component
modules 249
Language Environment Fortran component
modules 250
Language Environment PL/I component modules 264

Appendix D. National language
support 271
Modifying the JCL for Japanese national language
support 271
National language support country codes for
Language Environment 271

Appendix E. Accessibility 275
Accessibility features 275
Using assistive technologies 275
Keyboard navigation of the user interface 275
Dotted decimal syntax diagrams 275

Notices 279
Policy for unsupported hardware. 280
Minimum supported hardware 281
Programming interface information 281
Trademarks 281

Index 283

Contents v

vi z/OS V2R1.0 Language Environment Customization

Figures

1. Effect of DEPTHCONDLMT(3) on condition
handling 64

2. Default CEEEXTAN 151
3. Updated CEEEXTAN 151
4. Sample of CEEBLNUE load notification user

exit CSECT 155
5. Format of an output transient data queue 163
6. Example of DFHDCT macro 165
7. Location of user exits 184
8. Interface for CEEBXITA assembler user exit 187
9. CEELNUE control block map 196

10. CEESTX control block map 203
11. CEESTX CICS-specific control block map 205
12. Mapping of the CEESTX storage values

control block 208
13. CEESTX storage used control block map 212
14. CEESTX storage allocated control block map 213
15. IBM-supplied macro instructions 221
16. Modified IBM-supplied macro instructions 222
17. IBM-supplied macro instructions 227
18. Modified IBM-supplied macro instructions 228
19. Modified IBM-supplied macro instructions 229

© Copyright IBM Corp. 1991, 2013 vii

viii z/OS V2R1.0 Language Environment Customization

Tables

1. Syntax examples xii
2. Description of data set target libraries for

Language Environment 5
3. Language Environment sample IEALPAnn or

PROGxx members in CEE.SCEESAMP . . . 11
4. Making the trade-off: Performance time versus

storage use. 12
5. SMP/E sample jobs for deleting routines from

Fortran LIBPACKs 14
6. SMP/E sample jobs for adding routines to

Fortran LIBPACKs 15
7. Runtime options, defaults, and

recommendations for Language Environment . 19
8. Samples for creating region-level runtime

option load modules 40
9. Condition handling of 0Cx ABENDS in a

CICS environment 124
10. Handling of software-raised conditions in a

CICS environment 125
11. TRAP runtime option settings 137
12. Sample customization jobs for the user exits 145
13. Sample assembler user exits for Language

Environment 146
14. Language Environment invocation procedures

in CEE.SCEEPROC. 157
15. Deciding how to make cataloged procedures

available to your jobs 158
16. Cataloged procedures and CLISTs information 159
17. Excluding programming language support

under CICS 162
18. Customizing programming languages with

sample customization jobs 171
19. Using the usermods in the IGZWZAP job to

modify the COBOL compatibility library . . 172

20. Register conventions for the COBOL debug
file user exit 178

21. Parameter values in the assembler user exit
(Part 1) 191

22. Parameter values in the assembler user exit
(Part 2) 192

23. Fortran LIBPACKs 238
24. Routines eligible for inclusion in the Fortran

LIBPACK AFHPRNAG 238
25. Routines eligible for inclusion in the Fortran

LIBPACK AFHPRNBG 243
26. Routines eligible for inclusion in the Fortran

LIBPACK AFH5RENA 243
27. routines eligible for inclusion in the Fortran

LIBPACK AFH5RENB. 246
28. Language Environment modules eligible for

inclusion in the link pack area and the
extended link pack area 247

29. C/C++ modules eligible for inclusion in the
link pack area and the extended link pack
area 248

30. COBOL modules eligible for inclusion in the
link pack area and the extended link pack
area 249

31. Fortran modules eligible for inclusion in the
link pack area and the extended link pack
area 251

32. PL/I modules eligible for inclusion in the link
pack area and the extended link pack area . . 264

33. JCL modifications for Japanese national
language support 271

34. Country codes 271

© Copyright IBM Corp. 1991, 2013 ix

|
||

x z/OS V2R1.0 Language Environment Customization

About this document

This document is designed to help you to customize IBM® z/OS® Language
Environment®. The first usage of every term listed in the glossary is indicated by
italics. You can find the definitions for these terms in z/OS Language Environment
Concepts Guide.

Who should read this information
This information is intended for systems programmers and system administrators
who plan to customize Language Environment. To use this information, you need
to be familiar with z/OS, the publications that describe your system, and job
control language (JCL).

How to read syntax diagrams
This section describes how to read syntax diagrams. It defines syntax diagram
symbols, items that may be contained within the diagrams (keywords, variables,
delimiters, operators, fragment references, operands) and provides syntax examples
that contain these items.

Syntax diagrams pictorially display the order and parts (options and arguments)
that comprise a command statement. They are read from left to right and from top
to bottom, following the main path of the horizontal line.

For users accessing the Information Center using a screen reader, syntax diagrams
are provided in dotted decimal format.

Symbols
The following symbols may be displayed in syntax diagrams:

Symbol
Definition

��─── Indicates the beginning of the syntax diagram.

───� Indicates that the syntax diagram is continued to the next line.

�─── Indicates that the syntax is continued from the previous line.

───�� Indicates the end of the syntax diagram.

Syntax items
Syntax diagrams contain many different items. Syntax items include:
v Keywords - a command name or any other literal information.
v Variables - variables are italicized, appear in lowercase, and represent the name

of values you can supply.
v Delimiters - delimiters indicate the start or end of keywords, variables, or

operators. For example, a left parenthesis is a delimiter.
v Operators - operators include add (+), subtract (-), multiply (*), divide (/), equal

(=), and other mathematical operations that may need to be performed.
v Fragment references - a part of a syntax diagram, separated from the diagram to

show greater detail.

© Copyright IBM Corp. 1991, 2013 xi

v Separators - a separator separates keywords, variables or operators. For example,
a comma (,) is a separator.

Note: If a syntax diagram shows a character that is not alphanumeric (for
example, parentheses, periods, commas, equal signs, a blank space), enter the
character as part of the syntax.

Keywords, variables, and operators may be displayed as required, optional, or
default. Fragments, separators, and delimiters may be displayed as required or
optional.

Item type
Definition

Required
Required items are displayed on the main path of the horizontal line.

Optional
Optional items are displayed below the main path of the horizontal line.

Default
Default items are displayed above the main path of the horizontal line.

Syntax examples
The following table provides syntax examples.

Table 1. Syntax examples

Item Syntax example

Required item.

Required items appear on the main path of the
horizontal line. You must specify these items.

�� KEYWORD required_item ��

Required choice.

A required choice (two or more items) appears
in a vertical stack on the main path of the
horizontal line. You must choose one of the
items in the stack.

�� KEYWORD required_choice1
required_choice2

��

Optional item.

Optional items appear below the main path of
the horizontal line.

�� KEYWORD
optional_item

��

Optional choice.

An optional choice (two or more items)
appears in a vertical stack below the main path
of the horizontal line. You may choose one of
the items in the stack.

�� KEYWORD
optional_choice1
optional_choice2

��

Default.

Default items appear above the main path of
the horizontal line. The remaining items
(required or optional) appear on (required) or
below (optional) the main path of the
horizontal line. The following example displays
a default with optional items.

��
default_choice1

KEYWORD
optional_choice2
optional_choice3

��

Variable.

Variables appear in lowercase italics. They
represent names or values.

�� KEYWORD variable ��

xii z/OS V2R1.0 Language Environment Customization

Table 1. Syntax examples (continued)

Item Syntax example

Repeatable item.

An arrow returning to the left above the main
path of the horizontal line indicates an item
that can be repeated.

A character within the arrow means you must
separate repeated items with that character.

An arrow returning to the left above a group
of repeatable items indicates that one of the
items can be selected,or a single item can be
repeated.

�� �KEYWORD repeatable_item ��

�� �

,

KEYWORD repeatable_item ��

Fragment.

The fragment symbol indicates that a labelled
group is described below the main syntax
diagram. Syntax is occasionally broken into
fragments if the inclusion of the fragment
would overly complicate the main syntax
diagram.

�� KEYWORD fragment ��

fragment:

,required_choice1
,default_choice

,required_choice2
,optional_choice

z/OS information
This information explains how z/OS references information in other documents
and on the web.

When possible, this information uses cross document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see z/OS Information Roadmap.

To find the complete z/OS library, including the z/OS Information Center, go to
the z/OS Internet library (http://www.ibm.com/systems/z/os/zos/bkserv/).

About this document xiii

http://www.ibm.com/systems/z/os/zos/bkserv/

xiv z/OS V2R1.0 Language Environment Customization

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R1.0 Language Environment Customization
SA38-0685-01

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/

systems/z/support/).

© Copyright IBM Corp. 1991, 2013 xv

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xvi z/OS V2R1.0 Language Environment Customization

z/OS Version 2 Release 1 summary of changes

See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS Introduction and Release Guide

Summary of changes for Language Environment
The following changes are made to z/OS V2R1 as updated December 2013.

Changed

Information about COBOL V5.1 (or later) programs has been added to “Add
Language Environment-CICS data sets to the CICS startup job stream” on page
166.

© Copyright IBM Corp. 1991, 2013 xvii

xviii z/OS V2R1.0 Language Environment Customization

Part 1. Language Environment Customization: General
information

This topic provides a Language Environment customization overview, description
of Language Environment target libraries, how to choose your Language
Environment runtime library access, and how to place Language Environment
modules in Link Pack and LIBPACK.

© Copyright IBM Corp. 1991, 2013 1

2 z/OS V2R1.0 Language Environment Customization

Chapter 1. Customization overview

You can customize Language Environment by either tailoring and installing
IBM-supplied usermods, or by tailoring and running specific jobs.

To tailor and install usermods:
1. Get the list of usermods that suit the programmer needs at your site. This topic

will help you create this list.
2. Copy the customization jobs from the SCEESAMP data set into one of your

private data sets so you will have unmodified copies of the jobs for your later
reference and use.

3. Apply the usermods to the target libraries, but do not accept them, and do not
modify the distribution libraries.

4. Use SMP/E RESTORE to remove a usermod if necessary (for example, if
programming needs at your site change) or before you apply service to the
modules it changes.

5. Reapply the usermod after successful installation of service.

To modify the JCL for customization jobs:
1. Copy the customization jobs from the SCEESAMP data set into one of your

private data sets so you will have unmodified copies of the jobs for your later
reference and use.

2. Add a job card appropriate for your site.
3. Add a JES Route card if your site requires one.
4. Modify the job according to the comments in the JCL or the instructions in this

information.
5. Save and submit the job.
6. Most jobs will run with a condition code of 0. Check the description of each job

to find out what condition code to expect. If the job did not run with the
condition code you expected:
v Check for an error message on the system console or the list output to find

the cause of the problem.
v Correct the problem.
v Rerun the job.
v Recheck the condition code.

Deciding whether and what to customize
Consider whether the IBM-supplied values for the runtime options provided with
Language Environment suits the needs of your site. These values control such
features as:
v The national language in which messages appear
v How a debug tool is invoked
v When condition handling is invoked
v How storage is allocated to the heap and stack
v How much storage is allocated
v The format of the program invocation character parameter
v Creation of a storage and runtime options report
v Shared storage allocations

© Copyright IBM Corp. 1991, 2013 3

If you do not want to customize Language Environment now, you can put it into
production using the IBM-supplied defaults. Or, you can use the instructions in
this information to customize Language Environment later, if you choose. For
many of the runtime options, application programmers can override the defaults in
their code.

Application programmers at your site will be the primary users of Language
Environment. Ask them what defaults they prefer for runtime options and user
exits, which affect their work directly. Doing so ensures that the modifications you
make will best support the application programs being developed at your site.

You need to make decisions about customizing:
v Runtime library access method (see Chapter 3, “Choosing your Language

Environment runtime library access,” on page 9)
v Runtime options (see Chapter 5, “Customizing Language Environment runtime

options,” on page 19)
v Assembler user exits (see Chapter 7, “Customizing user exits,” on page 145)
v Cataloged procedures (see Chapter 8, “Customizing the cataloged procedures,”

on page 157)

You also need to decide:
v Whether to install some routines in the link pack area (see Chapter 4, “Placing

Language Environment modules in link pack and LIBPACK,” on page 11)
v Whether to make Language Environment available under CICS® (see Chapter 9,

“Using Language Environment under CICS,” on page 161)
v Whether to customize any programming language-specific features (see

“Automatic storage tuning behavior” on page 167)

4 z/OS V2R1.0 Language Environment Customization

|
|
|
|
|

Chapter 2. Description of Language Environment target
libraries

Table 2 provides a description of the Language Environment target libraries and
when they are used. In most cases, the DDDEF entry for the data set is the same as
the low-level qualifier. For the cases where this is not true, the appropriate DDDEF
entry is listed. The high-level qualifier of these data sets may differ from customer
to customer, but the default value is CEE.

The data sets in Table 2 have a legend associated with them in the rightmost
columns of the table. The following descriptions explain the use and placing of
these data sets.
v AD (Application Development) — These data sets are used during the assembly,

compilation, or link-edit phases of application development. This does not
include the procedures and CLISTs that can be used by application developers.

v Ex (Execution) — These data sets are used during execution of an application
and must be placed in the program search order or be accessed directly through
DD statements.

v O (Other) — These data sets contain sample jobs, source code, procedures, or
CLISTs that are not used when assembling, compiling, link-editing, or executing
programs.

Table 2. Description of data set target libraries for Language Environment

DDDEF entry Data set name Description AD Ex O

SAFHFORT The Fortran-specific link-edit library that is used to
resolve certain Fortran intrinsic function names. In
link-edit steps, this library must precede SCEELKED if
Fortran functions are needed.

X

SCEEBIND Contains all Language Environment resident routines for
XPLINK applications. This one library replaces the four
libraries of resident routines for non-XPLINK applications
(SCEELKED, SCEELKEX, SCEEOBJ, and SCEECPP). It
must be used only when link-editing a program that
includes XPLINK-compiled object modules. This data set
will be eliminated in the near future and is being
replaced with SCEEBND2. Customers should use the
SCEEBND2 data set instead of SCEEBIND during
XPLINK application development.

X

SCEEBND2 Contains all Language Environment resident routines for
XPLINK applications. This one library replaces the four
libraries of resident routines for non-XPLINK applications
(SCEELKED, SCEELKEX, SCEEOBJ, and SCEECPP). It
must be used only when link-editing a program that
includes XPLINK-compiled object modules. The only
difference between this data set and SCEEBIND is the
record format. SCEEBND2 has a fixed blocked record
format.

X

SCEECICS Contains the COBOL-specific CICS runtime modules.
Will only be used in the DHFRPL DD concatenation.

X

SCEECLST Provides TSO/E CLISTs that C/C++ application
developers can use.

X

© Copyright IBM Corp. 1991, 2013 5

Table 2. Description of data set target libraries for Language Environment (continued)

DDDEF entry Data set name Description AD Ex O

SCEECMAP Contains the source for charmap files. X

SCEECPP Contains Language Environment resident definitions that
non-XPLINK C++ programs might need. This data set
must be used whenever link-editing a non-XPLINK
program that includes any C++ object.

X

SCEEGXLT Contains the GENXLT source for the code set converters. X

SCEEH SCEEH Contains ANSI C++ language headers used when
compiling C++ programs.

X

SCEEHARP SCEEH.ARPA.H Contains C-language headers used when compiling C
programs.

X

SCEEHH SCEEH.H Contains C-language headers used when compiling C
programs.

X

SCEEHNET SCEEH.NET.H Contains C-language headers used when compiling C
programs.

X

SCEEHNEI SCEEH.NETINET.H Contains C-language headers used when compiling C
programs.

X

SCEEHSYS SCEEH.SYS.H Contains C-language headers used when compiling C
programs.

X

SCEEHT SCEEH.T Contains ANSI C++ template files used when compiling
C++ programs.

X

SCEELIB Contains side-decks for DLLs provided by Language
Environment. Many of the language-specific callable
services available to XPLINK-compiled applications
appear externally as DLL functions. To resolve these
references from XPLINK applications, definition
side-decks are required.

X

SCEELKED Contains the link-edit stubs for non-XPLINK C/C++,
PL/I, COBOL and Fortran languages and Language
Environment-provided routines.

X

SCEELKEX Contains non-XPLINK C/C++ stubs that are not in
uppercase, truncated or mapped to another symbol. In
link-edit steps this library must precede SCEELKED if
unmapped names are used.

X

SCEELOCL Provides the locale source files (pre-XPG4). X

SCEELOCX Provides the locale source files as defined by the XPG4
standard.

X

SCEELPA Contains a subset of the SCEERUN modules that are
reentrant and reside above the 16-MB line. This data set
should be added to LPALSTxx for performance benefits.

X

SCEEMAC Provides assembler macros to be used when writing
assembler language code and using Language
Environment services.

X

SCEEMSGP Contains the message file to be used by the C pre-linker. X

SCEEOBJ Contains Language Environment resident definitions
which may be required for non-XPLINK OS/390® UNIX
System Services programs. This data set must be used
whenever link-editing a non-XPLINK UNIX program.

X

SCEEPROC Provides procedures used to link-edit and run Language
Environment-conforming applications.

X

6 z/OS V2R1.0 Language Environment Customization

Table 2. Description of data set target libraries for Language Environment (continued)

DDDEF entry Data set name Description AD Ex O

SCEERUN Contains the runtime library routines needed during
execution of applications written in C/C++, PL/I,
COBOL and FORTRAN.

X

SCEERUN2 Contains the runtime library routines needed during
execution of applications, and those that require to reside
in a PDSE.

X

SCEESAMP Provides sample jobs, usermods, parmlib samples, some
C headers, and some assembler macros.

X

SCEESPC Provides the System Programmer C (SPC) routines to
build free standing C applications. In link-edit steps, this
library must precede SCEELKED in the SYSLIB DD
concatenation.

X

SCEESPCO Provides the object decks for the SPC routines for the
SCEESPC data set.

X

SIBMCALL Provides the support for OS PL/I PLICALLA and
PLICALLB entry points. In link-edit steps, this library
must precede SCEELKED if PL/I for MVS™ and VM
applications use OS PL/I PLICALLA or PLICALLB as
entry points.

X

SIBMCAL2 Provides the support for OS PL/I PLICALLA and
PLICALLB entry points. In link-edit steps, this library
must precede SCEELKED if Enterprise PL/I applications
use OS PL/I PLICALLA or PLICALLB as entry points.

X

SIBMMATH Contains the stubs for old PL/I Version 2 Release 3 math
library routines. In link-edit steps, this library must
precede SCEELKED if PL/I for MVS and VM
applications use OS PL/I PLICALLA or PLICALLB as
entry points.

X

SIBMTASK Provides the PL/I multitasking facility. In link-edit steps,
this library must precede SCEELKED if PL/I
multitasking facility is to be used.

X

Chapter 2. Description of Language Environment target libraries 7

8 z/OS V2R1.0 Language Environment Customization

Chapter 3. Choosing your Language Environment runtime
library access

Applications that require the runtime library provided by Language Environment
can access the SCEERUN and SCEERUN2 data sets using:
v LNKLST
v STEPLIB

LNKLST
The Language Environment runtime libraries, SCEERUN, and SCEERUN2, can be
placed in LNKLST. In addition, heavily-used modules can be placed in LPA. For
more information see Appendix C, “Modules eligible for the link pack area,” on
page 247.

STEPLIB
If the SCEERUN and SCEERUN2 data sets cannot be placed in LNKLST, you can
STEPLIB the data sets for each application that requires them. One reason why the
Language Environment runtime libraries are not to be placed in LNKLST might be
that the pre-Language Environment runtime libraries (VS COBOL II, OS PL/I) are
placed in LNKLST and your site has not completed the migration to Language
Environment. See z/OS Language Environment Runtime Application Migration Guide
for details.

Applications that currently STEPLIB to the SCEERUN data set to gain access to the
runtime library provided by Language Environment, do not need to add the
SCEERUN2 data set as part of their STEPLIB concatenation. In fact, since
SCEERUN2 contains module names that do not intersect with any pre-Language
Environment runtime library or any existing library, IBM recommends that
SCEERUN2 be added to the LNKLST. This will not result in any adverse effects.

© Copyright IBM Corp. 1991, 2013 9

10 z/OS V2R1.0 Language Environment Customization

Chapter 4. Placing Language Environment modules in link
pack and LIBPACK

Placing routines in the LPA/ELPA reduces the overall system storage requirement
by making the routines shareable. Also, initialization/termination (init/term) time
is reduced for each application, since load time decreases. For example, if
Language Environment modules are not placed in LPA/ELPA, then under z/OS
UNIX, every fork() call will require approximately 4 MB to be copied into the
user address space.

The SCEERUN data set has many modules that are not reentrant, so you cannot
place the entire data set in the Link Pack Area (LPALSTxx parmlib). There is a data
set called SCEELPA that contains a subset of the SCEERUN modules: those that are
reentrant, reside above the line, and are heavily used by z/OS itself. If you put the
SCEERUN data set in the linklist (LNKLSTxx), you can place the SCEELPA data set
in LPA list (LPALSTxx). Doing this will improve performance.

You cannot place the SCEERUN2 data set as part of a LPALSTxx because it is a
PDSE. You must use the Dynamic LPA capability to move individual members of
SCEERUN2 into the Link Pack Area.

You can also add additional modules to the LPA, using the Modify Link Pack Area
(MLPA=) option at IPL. You can also use the Dynamic LPA capability (SET
PROG=). Using the Dynamic LPA method avoids the performance degradation that
occurs with the use of MLPA.

Choose which routines to put in the LPA/ELPA. See Appendix C, “Modules
eligible for the link pack area,” on page 247 for a complete list of modules you
may place in the LPA/ELPA.

Several members are installed in CEE.SCEESAMP for you to use as examples in
creating your IEALPAnn or PROGxx member. Table 3 lists the members and their
content.

Table 3. Language Environment sample IEALPAnn or PROGxx members in
CEE.SCEESAMP

Member name Description

CEEWLPA All Language Environment base modules eligible for the LPA except
callable service stubs. Uses Dynamic LPA.

EDCWLPA All C/C++ component modules eligible for LPA from SCEERUN
and SCEERUN2. Uses Dynamic LPA.

IGZWMLP4 All Language Environment COBOL component modules eligible for
LPA.

IBMALLP2 All Language Environment PL/I component modules eligible for
LPA

IBMPLPA1 MLPA macro for Enterprise PL/I

AFHWMLP2 All Language Environment Fortran modules eligible for LPA

If you want to load modules into the LPA, you do not need to place
CEE.SCEERUN or CEE.SCEERUN2 in the LNKLSTnn member. However, if

© Copyright IBM Corp. 1991, 2013 11

CEE.SCEERUN or CEE.SCEERUN2 is not in the LNKLSTnn member, you need to
make modules that are not included in the link pack areas available to your
application programs by copying the modules into a data set that can be either
included in the LNKLSTnn or used as a STEPLIB.

Using the entire CEE.SCEERUN or CEE.SCEERUN2 data set as a STEPLIB defeats
the purpose of placing the modules in the LPA.

Shared storage considerations
v Modules you copy into another (non-LPA) data set are not automatically

updated by SMP/E when you apply a service update. You must rerun your
copy job after you apply service to Language Environment to make the updated
modules available in the LNKLSTnn data set or in the STEPLIB.

v Examine the lists carefully to make sure that you are installing the correct
module for the national language support you have installed. Comments in
CEEWLPA, EDCWLPA, and IBMALLP2 identify the Japanese modules. In
IGZWMLP4, remove the module name IGZCMGEN if you do not want US
English mixed-case to be in the LPA and add IGZCMGJA if Japanese is installed
and you want it to be in the LPA.

v For more information about including modules in the LPA, see z/OS MVS
Initialization and Tuning Reference.

Tailoring the Fortran LIBPACKs
The Fortran component of Language Environment is shipped with individual
routines and with groupings of routines called LIBPACKs. A LIBPACK is a load
module that contains individual library routines packaged together by the linkage
editor into a single load module in order to reduce the time that would otherwise
be needed to load the individual routines.

You might want to customize the Fortran LIBPACKs to:
v Shorten the load time for the Fortran LIBPACK by reducing its size
v Minimize the virtual storage required for an application by eliminating

seldom-used routines from main storage
v Reduce the number of loads for application programs by adding frequently used

routines to Fortran LIBPACKs
v Reduce the size of the contents of shared storage

Usage notes

The Fortran LIBPACKs are generally shared among several different applications
and cannot be tuned for a specific application. Therefore, ideal Fortran LIBPACKs
contain only library routines that are common to all application programs.

Choices to make now
You need to decide whether to modify the Fortran LIBPACKs. If you modify the
Fortran LIBPACKs, you make a trade-off between use of storage and faster
performance of application programs. See Table 4.

Table 4. Making the trade-off: Performance time versus storage use

Type of Fortran LIBPACK Performance time Storage use

Partially loaded Slower because more routines
are loaded individually

Less virtual and shared
storage used

12 z/OS V2R1.0 Language Environment Customization

Table 4. Making the trade-off: Performance time versus storage use (continued)

Type of Fortran LIBPACK Performance time Storage use

Fully loaded Faster because no routines
loaded individually

More virtual and shared
storage used

You can use the information in the following sections and the tables in “Language
Environment Fortran component modules” on page 250 to decide which modules
to include in your Fortran LIBPACKs.

Language Environment provides four Fortran LIBPACKs, which you can customize
either during or following the installation of Language Environment.
v AFHPRNAG
v AFHPRNBG
v AFH5RENA
v AFH5RENB

After installation, each LIBPACK contains a default set of routines. You can remove
many of the routines if their functions aren't used frequently at your site, or you
can add others that you do use frequently.

Some examples

You can add or remove routines from the Fortran LIBPACKs to reflect the
requirements of your location. For example, to include only the group of general
routines that your location uses most often, eliminate unnecessary routines from
the Fortran LIBPACK.

If you plan to put your Fortran LIBPACK into shared storage and your shared
storage space is limited, consider reducing the size of your Fortran LIBPACKs. All
modules eligible to be in the Fortran LIBPACKs are reentrant and are therefore
eligible to be stored in the shared storage.

Listing the contents of Fortran LIBPACKs
Before tailoring your LIBPACKs, you might want to know their current structure,
such as which MODs SMP/E expects to be combined into a particular load
module, so that you can decide which ones to add or delete. Use SMP/E sample
job AFHWLIST in the SCEESAMP data set to invoke the SMP/E LIST command to
list the contents of your LIBPACKs.

Modifying the JCL for AFHWLIST
Perform the following steps to modify the JCL for AFHWLIST.
1. Change #GLOBALCSI to the data set name of your global CSI data set.

2. Change #TZONE to the name of your target zone.

3. Examine the LIBPACK names on the SMP/E LIST statement and remove the

comments as appropriate.

When you are done, AFHWLIST should run with a condition code of 0.

Chapter 4. Placing Language Environment modules in link pack and LIBPACK 13

Deleting routines from Fortran LIBPACKs
The sample jobs listed in Table 5 each contain SMP/E UCLIN and link-edit JCL
that you can modify to delete routines to one of the Fortran LIBPACKs. The
sample jobs are in target library CEE.SCEESAMP.

Table 5. SMP/E sample jobs for deleting routines from Fortran LIBPACKs

For applications
link-edited with... Use sample job...

To delete routines from
LIBPACK...

Which is
loaded ...

Language Environment AFHWDERA AFHPRNAG Above 16 MB

Language Environment AFHWDERB AFHPRNBG Below 16 MB

VS FORTRAN AFHWDVRA AFH5RENA Above 16 MB

VS FORTRAN AFHWDVRB AFH5RENB Below 16 MB

If the IBM-supplied LIBPACKs contain routines that your site does not use often,
you can delete them using the following SMP/E sample jobs.

Steps for modifying the JCL to delete routines from a Fortran
LIBPACK

Perform the following steps to modify the JCL to delete routines from a Fortran
LIBPACK. These steps use the AFHWDERA, AFHWDERB, AFHWDVRA, and
AFHWDVRB sample jobs.
1. Change #GLOBALCSI to the data set name of your global CSI data set.

2. Change #TZONE to the name of your target zone.

3. Modify the UCLIN step in the sample job to tell SMP/E to delete routines that

you do not want to include in your tailored LIBPACK.
v Remove the DELETE statement of any routine you want to include in your

LIBPACK.
v Remove the DELETE statement of any routine that is not currently in your

LIBPACK.
v If you run any of the sample jobs shown in Table 5 without modifying them,

you receive a minimum LIBPACK without any optional modules.

4. The LINK-EDIT step performs the actual link edit of the tailored LIBPACK by
replacing (deleting) the routines you have specified. The REPLACE statements
you keep in the LINK-EDIT step must match the routines you specified in the
UCLIN step.
When taking out the REPLACE records, ensure that all alias names (shown
with indented REPLACE records) are removed too. For example, if you decide
to remove AFHBCMVT, you need to remove AFHBCMVR as well.

5. Check the SYSLMOD DD statement to ensure that the data set name is correct.

When you are done, FHWDERA, AFHWDERB, AFHWDVRA, and AFHWDVRB
should run with a condition code of 4. Unresolved external references for any
optional modules not included in your LIBPACK are expected.

14 z/OS V2R1.0 Language Environment Customization

Adding routines to Fortran LIBPACKs
The sample jobs listed in Table 6 each contain SMP/E UCLIN and link-edit JCL
that you can modify to add routines to one of the Fortran LIBPACKs. The sample
jobs are in target library CEE.SCEESAMP.

Table 6. SMP/E sample jobs for adding routines to Fortran LIBPACKs

For applications
link-edited with... Use sample job...

To add routines to
LIBPACK...

Which is
loaded...

Language Environment AFHWAERA AFHPRNAG Above 16 MB

Language Environment AFHWAERB AFHPRNBG Below 16 MB

VS FORTRAN AFHWAVRA AFH5RENA Above 16 MB

VS FORTRAN AFHWAVRB AFH5RENB Below 16 MB

Note:

The jobs that add routines to the LIBPACKs add the versions of the routines that are in the
target libraries.

If the IBM-supplied LIBPACKs exclude routines that your site uses often, you can
add them using the SMP/E sample jobs that follow.

Steps for modifying the JCL for adding routines to a Fortran
LIBPACK

Perform the following steps to modify the JCL for adding routines to a Fortran
LIBPACK. These steps use the AFHWDERA, AFHWDERB, AFHWDVRA, and
AFHWDVRB sample jobs.
1. Change #GLOBALCSI to the data set name of your global CSI data set.

2. Change #TZONE to the name of your target zone.

3. Modify the UCLIN step to tell SMP/E to add the routines you want to include

in your tailored LIBPACK.
v Remove the ADD statement for each routine you are not adding to your

tailored LIBPACK.
v If you run the sample jobs shown in Table 6 without modifying them, you

receive a full LIBPACK, including all the required and optional LIBPACK
modules.

v If you attempt to add a routine that is already in the LIBPACK, you receive
an SMP/E error message.

4. The LINK-EDIT step performs the actual link edit of the tailored LIBPACK by

including the routines you specify.
The INCLUDE statements you keep in the LINK-EDIT step must match the
routines you want to include in your tailored LIBPACK, regardless of whether
you add the routine in the UCLIN step above or it is already in the LIBPACK.

5. Check the SYSLMOD DD statement to ensure that the data set name is correct.

Chapter 4. Placing Language Environment modules in link pack and LIBPACK 15

When you are done, AFHWAERA, AFHWAERB, AFHWAVRA, and AFHWAVRB
should run with a condition code of 0 if the LIBPACKs contain all of the optional
modules. Otherwise, each of these jobs returns a condition code of 4; unresolved
external references for any optional modules not included in the LIBPACKs are
expected.

Where to place the tailored Fortran LIBPACKs
The sample jobs tailor the LIBPACKs and then use them to replace the LIBPACKs
in the Language Environment target library SCEERUN. You could place them in
another data set instead, provided that the LOADs issued during runtime can find
them. The customized LIBPACKs must be found ahead of (in search-order
sequence or in library concatenation), or instead of, those that were installed with
the product. If you want to link edit a LIBPACK into an alternative library, modify
and run only the LINK-EDIT step of the sample jobs.

Note: Because SMP/E is only aware of the load modules link-edited into the
SCEERUN target library, SMP/E will not relink your LIBPACKs automatically
when you apply service if you use an alternative library.

16 z/OS V2R1.0 Language Environment Customization

Part 2. Language Environment Customization: Runtime
options, exits, and procedures

This topic provides information about customizing Language Environment runtime
options, using the CEEPRMxx parmlib member, customizing user exits,
customizing cataloged procedures, using Language Environment under CICS,
using Language Environment under IMS™, and customizing language-specific
features.

© Copyright IBM Corp. 1991, 2013 17

|
|
|
|
|

18 z/OS V2R1.0 Language Environment Customization

Chapter 5. Customizing Language Environment runtime
options

The default runtime option values IBM supplies with Language Environment may
not suit the application programmers' needs at your site. A systems programmer
can modify the IBM-supplied defaults on a system-level or region-level basis,
which can save time by reducing the need to override the runtime option defaults
as often. An application programmer can further refine these options based on
individual program needs. When an application runs, runtime options are merged
in a specific order of precedence to determine the actual values in effect. For more
information about setting runtime options on an application-level , see z/OS
Language Environment Programming Guide and z/OS Language Environment
Programming Guide for 64-bit Virtual Addressing Mode.

System-level defaults can be established through a member in the system parmlib
called CEEPRMxx or with a SETCEE operator command. Region-level defaults can
be established with a CEEROPT (AMODE 31) or CELQROPT (AMODE 64) load
module created by invoking the CEEXOPT macro. For more information about the
runtime options, default values, and syntax, see Chapter 6, “Language
Environment runtime options,” on page 45. You might not need to change most
default values.

Table 7 summarizes the Language Environment runtime options, defaults, and
recommended settings for applications running in CICS and non-CICS (for
example, batch or IMS) environments. The recommended setting for some runtime
options can vary, depending upon the language used to create the application or if
multiple (Multi) languages are used in the environment. When a recommendation
varies, the applicable settings for the languages are listed in the table. Also, the
table identifies the runtime options that are not applicable (N/A) in either the
CICS or non-CICS environment; Language Environment ignores these options if
they are specified.

Table 7. Runtime options, defaults, and recommendations for Language Environment

Option
Non-CICS CICS

Default Recommended Default Recommended

ABPERC NONE NONE N/A N/A

ABTERMENC (see
table note 1 on page
22)

ABEND ABEND ABEND ABEND

AIXBLD OFF OFF N/A N/A

ALL31 ON ON ON ON

ANYHEAP (see table
notes 3 on page 22
and 11 on page 23)

16K,8K,ANY,FREE 16K,8K,ANY,FREE (C,
COBOL, Multi, PL/I)

48K,8K,ANY,FREE
(Fortran)

4K,4080,ANY,FREE 4K,4080,ANY,FREE

ARGPARSE (see table
notes 4 on page 23
and 12 on page 23)

ARGPARSE ARGPARSE N/A N/A

AUTOTASK NOAUTOTASK NOAUTOTASK N/A N/A

BELOWHEAP (see
table note 11 on page
23)

8K,4K,FREE 8K,4K,FREE 4K,4080,FREE 4K,4080,FREE

© Copyright IBM Corp. 1991, 2013 19

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

Table 7. Runtime options, defaults, and recommendations for Language Environment (continued)

Option
Non-CICS CICS

Default Recommended Default Recommended

CBLOPTS (see table
note 12 on page 23)

ON ON N/A N/A

CBLPSHPOP ON N/A ON ON

CBLQDA OFF OFF N/A N/A

CEEDUMP
60,SYSOUT=*,
FREE=END,
SPIN=UNALLOC

60,SYSOUT=*,
FREE=END,
SPIN=UNALLOC

60,SYSOUT=*,
FREE=END,
SPIN=UNALLOC

60,SYSOUT=*,
FREE=END,
SPIN=UNALLOC

CHECK ON ON ON ON

COUNTRY (see table
note 5 on page 23)

US User-defined US User-defined

DEBUG OFF OFF OFF OFF

DEPTHCONDLMT 10 0 10 0

DYNDUMP
*USERID,NODYNAMIC,
TDUMP

*USERID,NODYNAMIC,
TDUMP

*USERID,NODYNAMIC,
TDUMP

*USERID,NODYNAMIC,
TDUMP

ENV (see table notes 4
on page 23 and 12 on
page 23)

No default User-defined No default User-defined

ENVAR '' '' '' ''

ERRCOUNT 0 0 0 0

ERRUNIT 6 6 N/A N/A

EXECOPS (see table
notes 4 on page 23
and 12 on page 23)

EXECOPS EXECOPS N/A N/A

FILEHIST ON ON N/A N/A

FILETAG (see table
note 12 on page 23) NOAUTOCVT,

NOAUTOTAG
NOAUTOCVT,
NOAUTOTAG

N/A N/A

FLOW (see table note
4 on page 23)

NOFLOW FLOW N/A N/A

HEAP (see table notes
3 on page 22 and 11
on page 23)

32K,32K,ANY,KEEP,
8K,4K

32K,32K,ANY,KEEP,
8K,4K
(C, COBOL, Multi, PL/I)

4K,4K,ANY,KEEP, 8K,4K
(Fortran)

4K,4080,ANY,KEEP,
4K,4080

4K,4080,ANY,KEEP,
4K,4080

HEAP64
1M,1M,KEEP,32K,32K,
KEEP,4K,4K,FREE

N/A N/A N/A

HEAPCHK (see table
note 9 on page 23) OFF,1,0,0,0,1024,0,

1024,0
OFF,1,0,0,0,1024,0,
1024,0

OFF,1,0,0,0,1024,0,
1024,0

OFF,1,0,0,0,1024,0,
1024,0

HEAPPOOLS
OFF,8,10,32,10,128,10,
256,10,1024,10,2048,10

User-defined
OFF,8,10,32,10,128,10,
256,10,1024,10,2048,10

User-defined

20 z/OS V2R1.0 Language Environment Customization

Table 7. Runtime options, defaults, and recommendations for Language Environment (continued)

Option
Non-CICS CICS

Default Recommended Default Recommended

HEAPPOOLS64
OFF,8,4000,32,2000,128,
700,256,350,1024,100,
2048,50,3072,50,4096,
50,8192,25,16384,10,
32768,5,65536,5

N/A N/A N/A

HEAPZONES (see
table notes 4 on page
23, 9 on page 23 and
12 on page 23)

0,ABEND,0,ABEND 0,ABEND,0,ABEND 0,ABEND,0,ABEND 0,ABEND,0,ABEND

INFOMSGFILTER OFF OFF OFF OFF

INQPCOPN ON ON N/A N/A

INTERRUPT OFF OFF N/A N/A

IOHEAP64
1M,1M,FREE,12K,8K,
FREE,4K,4K,FREE

N/A N/A N/A

LIBHEAP64
1M,1M,FREE,16K,8K,
FREE,8K,4K,FREE

N/A N/A N/A

LIBSTACK 4K,4K,FREE 4K,4K,FREE 32,4080,FREE 32,4080,FREE

MSGFILE
SYSOUT,FBA,121,0,
NOENQ

ddname N/A N/A

MSGQ 15 15 N/A N/A

NATLANG ENU ENU ENU ENU

OCSTATUS ON ON N/A N/A

PAGEFRAMESIZE
(see table notes 4 on
page 23 and 12 on
page 23)

4K,4K,4K 4K,4K,4K N/A N/A

PAGEFRAMESIZE64
(see table notes 4 on
page 23 and 12 on
page 23)

4K,4K,4K 4K,4K,4K N/A N/A

PC OFF OFF N/A N/A

PLIST (see table notes
4 on page 23 and 12
on page 23)

HOST HOST N/A N/A

PLITASKCOUNT 20 20 N/A N/A

POSIX OFF OFF N/A N/A

PROFILE OFF,'' OFF,'' OFF,'' OFF,''

PRTUNIT 6 6 N/A N/A

PUNUNIT 7 7 N/A N/A

RDRUNIT 5 5 N/A N/A

RECPAD OFF OFF N/A N/A

REDIR(see table notes
4 on page 23 and 12
on page 23)

REDIR REDIR N/A N/A

RPTOPTS OFF OFF OFF OFF

RPTSTG OFF OFF OFF OFF

RTEREUS OFF OFF N/A N/A

Chapter 5. Customizing Language Environment runtime options 21

|
|
|
|

||||

|
|
|
|

||||

Table 7. Runtime options, defaults, and recommendations for Language Environment (continued)

Option
Non-CICS CICS

Default Recommended Default Recommended

SIMVRD OFF OFF N/A N/A

STACK (see table note
11 on page 23) 128K,128K,ANY,KEEP,

512K,128K
128K,128K,ANY,KEEP,
512K,128K
(C, Fortran, Multi, PL/I)

64K,64K,ANY,KEEP
(COBOL)

4K,4080,ANY,KEEP,
4K,4080

4K,4080,ANY,KEEP,
4K,4080

STACK64 1M,1M,128M N/A N/A N/A

STORAGE NONE,NONE,NONE,0K NONE,NONE,NONE,0K NONE,NONE,NONE,0K NONE,NONE,NONE,0K

TERMTHDACT TRACE,,96 TRACE,,96 (C, Fortran,
Multi, PL/I)

UATRACE,,96 (COBOL)

TRACE,CESE,96 TRACE,CICSDDS,96 (C,
Fortran, Multi, PL/I)

UATRACE,CIDSDDS,96
(COBOL)

TEST
NOTEST(ALL,*,
PROMPT,INSPPREF)

NOTEST(ALL,*,
PROMPT,INSPPREF)

NOTEST(ALL,*,
PROMPT,INSPPREF)

NOTEST(ALL,*,
PROMPT,INSPPREF)

THREADHEAP 4K,4K,ANY,KEEP 4K,4K,ANY,KEEP N/A N/A

THREADSTACK
OFF,4K,4K,ANY,KEEP,
128K,128K

OFF,4K,4K,ANY,KEEP,
128K,128K

N/A N/A

THREADSTACK64 OFF,1M,1M,128M N/A N/A N/A

TRACE OFF,4K,DUMP,LE=0 OFF,4K,DUMP,LE=0 OFF,4K,DUMP,LE=0 OFF,4K,DUMP,LE=0

TRAP ON,SPIE ON,SPIE ON,SPIE ON,SPIE

UPSI 00000000 00000000 00000000 00000000

USRHDLR (see table
note 5 on page 23)

NOUSRHDLR User-defined NOUSRHDLR User-defined

VCTRSAVE OFF OFF N/A N/A

XPLINK (see table
notes 4 on page 23
and 12 on page 23)

OFF OFF N/A N/A

Table notes:
1. When running with IMS, this setting ensures that IMS transactions are rolled

back if errors occur in an application that is written in another Language
Environment-enabled language; an abend causes IMS to roll back any
database updates. When running a batch job, this setting ensures that a job
step abends if errors occur in an application that is written in another
language.

2. For PL/I, specify ALL31(OFF) for AMODE 24 programs. For COBOL, specify
ALL31(OFF) if the applications contain one of the following:
v A VS COBOL II NORES program (non-CICS program)
v An OS/VS COBOL program (non-CICS program)
v An AMODE 24 program
If you use ALL31(OFF), you must also specify STACK(,,BELOW,,,); AMODE 24
programs usually require stack storage below the 16M line.

3. If your installation uses Fortran in a multi-language environment, use the
recommended setting for Fortran.

22 z/OS V2R1.0 Language Environment Customization

4. You cannot specify this option as a system-level (CEEPRMxx parmlib member
or SETCEE command) or region-level default. For more information about this
option, see z/OS Language Environment Programming Reference.

5. There is no standard recommended value for this option; specify an
appropriate value according to the needs of your installation.

6. If your installation uses COBOL in a multi-language environment, use the
recommended option setting for COBOL.

7. Specify any name for the message output file. For Fortran applications, specify
MSGFILE(FT06F001) to produce the same ddname as in VS Fortran.

8. For single-tasking PL/I applications, use the recommended Language
Environment default. However, for multitasking PL/I applications, the
following setting is recommended: THREADSTACK(4K,4K,BELOW,KEEP,,).

9. Specify this option only when developing and debugging applications.
10. To get behavior that is similar to the VS COBOL II runtime option WSCLEAR,

use STORAGE(00,NONE,NONE,0K).
Do not use STORAGE(NONE,NONE,00,0K). Although it initializes variables for C
and PL/I applications, serious performance degradation can occur. C and
PL/I programs should be changed to initialize their own variables.

11. Acquiring a storage increment often involves a new storage obtain.
The increment size (4080 is recommended) should be 16 bytes less than the
exact size of one or more pages to account for the 16-byte check zone that
CICS applies to all storage obtain requests. This keeps Language Environment
from obtaining an extra page of storage beyond the requested amount. This is
important in CICS environments where storage below the line is especially
constrained. The initial size in a CICS environment is part of a larger storage
obtain that includes other storage required for Language Environment during
initialization. Therefore, you can specify the initial size as exactly one or more
pages, for example, 4K, 8K, and so on, without concern for acquiring an extra
page.

12. You cannot specify this option with the CEEBXITA assembler user exit
interface.

Creating system-level runtime option defaults with CEEPRMxx
Parmlib members are provided for specifying defaults for many system options.
The CEEPRMxx parmlib member can be used for specifying system-level default
runtime options that control various aspects of Language Environment. The
CEEPRMxx parmlib member is identified during IPL by a CEE=xx statement, either
in the IEASYSyy parmlib member or in the IPL parameters. After IPL, the operator
can do the following tasks:
v Change the active CEEPRMxx parmlib member with the SET CEE=xx command.
v Change individual runtime options using the SETCEE command.
v Display current runtime option settings with the D CEE command.
v Clear all the system-level default runtime options and keywords using the

SETCEE CLEAR command.
v Check existing CEEPRMxx parmlib members for valid syntax.

Using this support is not required, so the default IEASYS00 parmlib member does
not specify a CEEPRMxx parmlib member. If you want to use this support, a
sample CEEPRM00 member is included in CEE.SCEESAMP.

Chapter 5. Customizing Language Environment runtime options 23

|
|
|

|

|
|

|

|
|
|
|
|
|

|

|

|

|
|

|

|
|
|

CEEPRMxx parmlib member

Use the CEEPRMxx parmlib member to set system-level default runtime options.

Syntax

�� � CEECOPT(Runtime options)
CEEDOPT(Runtime options)
CELQDOPT(Runtime options)
CEEROPT(COMPAT)

ALL
CELQROPT(NONE)

ALL

��

Runtime options:

�

,

runtimeopt ((subopts), OVR)
= NONOVR

(1)
runtimeopt(subopts)

Notes:

1 Specifying runtime options without the OVR or NONOVR attribute.
Runtime options specified using this format can be overridden.

CEECOPT
The options group used to specify runtime options for CICS environments.

CEEDOPT
The options group used to specify runtime options for non-CICS environments
excluding AMODE 64 environments.

CELQDOPT
The options group used to specify runtime options for AMODE 64
environments.

CEEROPT
Indicates whether region-level runtime options should be used in a non-CICS
or non-LRR environment.

COMPAT
Attempt a load and use of CEEROPT only in CICS or LRR environments.
This is the default behavior.

ALL
Attempt a load and use of CEEROPT in all AMODE 31 and AMODE 24
environments.

CEEPRMxx

24 z/OS V2R1.0 Language Environment Customization

|

|

|
|

||

|

|

||

|

|

||
|
||

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

CELQROPT
Indicates whether region-level runtime options should be used in an AMODE
64 environment.

NONE
Do not attempt a load or use of CELQROPT in AMODE 64 environments.
This is the default behavior.

ALL
Attempt a load and use of CELQROPT in all AMODE 64 environments.

runtimeopt
The name of the runtime option to change.

subopts
The suboption values for the specified runtime option to change.

OVR
Specifies that the option can be overridden. This is the default setting.

NONOVR
Specifies that the option cannot be overridden, which can be used to enforce
runtime options critical to the Language Environment operating environment.

Once a runtime option is specified as nonoverrideable with the NONOVR
attribute, it cannot later be overridden. This includes later specification in the
same parmlib member or a SETCEE command. To remove the nonoverrideable
setting, use the SETCEE CLEAR operator command, or the SET CEE command
with a parmlib member that does not mark the runtime option as
nonoverrideable.

Note: The runtime options AIXBLD, DEBUG, FILEHIST, INQPCOPN,
OCSTATUS, PC, RTEREUS and SIMVRD require an ON or OFF suboption to
be specified when using the OVR or NONOVR attribute. For example,
AIXBLD=((),OVR) results in an error and the option is ignored.

Usage notes
v The options for each group are saved independently to allow CEEDOPT to

specify NATLANG(ENU) while CEECOPT can specify NATLANG(JPN).
v Enter values in uppercase, lowercase, or mixed case. The system converts the

input to uppercase, except for values enclosed in single quotation marks, which
are processed without changing the case.

v Commas are required between suboptions and before an OVR or NONOVR
attribute.

v Commas are allowed between options.
v Use blanks or commas as delimiters. Multiple blanks are interpreted as a single

blank. Blanks are allowed between parameters and values.
Restriction: Blanks are not allowed within the required =((or ((delimiter for
runtime options that specify an OVR or NONOVR attribute.

v More than one option can be specified on a line. An option can be continued on
multiple lines.

v Comments can appear in columns 1-71 and must begin with "/*" and end with
"*/".

v Nested comments are not supported.
v When CEEROPT(ALL) is in effect, an attempt is made to load a CEEROPT

module during Language Environment initialization. When no CEEROPT can be

CEEPRMxx

Chapter 5. Customizing Language Environment runtime options 25

|
|
|

|
|
|

|
|

|
|

|
|

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|

|
|

|
|
|

|
|

|

|
|

|
|

|
|

|
|

|

|
|

found, there is potential performance overhead, especially for applications or
transaction servers that repeatedly initialize Language Environment.

v You can specify a group or keyword more than once in a single member.
v A runtime option can be repeated within a parmlib member, group, or can

appear in multiple members when more than one member is specified. Runtime
options are processed in the order in which they appear. The suboptions are
saved for each occurrence. When suboptions are repeated, the last occurrence is
used. The last occurrence of the runtime option is identified as the runtime
options source in the runtime options report.
Restriction: Only the last occurrence of the ENVAR runtime option is saved. If
multiple members are used, and ENVAR appears in the same runtime options
group in more than one member, the last one found is saved.

v When the runtime options are merged during the initialization of a Language
Environment application, errors might be reported if any system-level or
region-level defaults were marked nonoverridable (NONOVR). These messages
are displayed for every application. Under CICS, the messages are displayed for
the first transaction only.

v If RPTOPTS(ON) is in effect at runtime, the Language Environment runtime
options report is displayed, and the Last Where Set column will identify any
options that were set by a CEEPRMxx parmlib member. For a sample of the
runtime options report, see z/OS Language Environment Debugging Guide.

Note: CICS TS 3.1 and higher supports XPLINK programs in a CICS environment.
The options specified in the CEEDOPT group are used for these programs.

Examples

The following example shows the IBM-supplied sample of the CEEPRM00 parmlib
member provided in the CEE.SCEESAMP data set. All valid groups, options,
suboptions with their default values, and keywords are coded in the sample within
comment characters. You must remove the comment characters from the groups,
options, or keywords that you want to use.
/***/
/* CEEPRM00 - Sample Language Environment parmlib member for */
/* runtime options. */
/* */
/* LICENSED MATERIALS - PROPERTY OF IBM */
/* */
/* 5650-ZOS */
/* */
/* COPYRIGHT IBM CORP. 2005, 2012 */
/* */
/* ALL RIGHTS RESERVED */
/* */
/* US GOVERNMENT USERS RESTRICTED RIGHTS - USE, */
/* DUPLICATION OR DISCLOSURE RESTRICTED BY GSA ADP */
/* SCHEDULE CONTRACT WITH IBM CORP. */
/* */
/* STATUS = HLE7790 */
/* */
/* */
/* This sample parmlib member contains the IBM-supplied default */
/* runtime options that are valid at the system level. The defaults */
/* can be overridden using the options groups CEEDOPT, CEECOPT, and */
/* CELQDOPT. */
/* */
/* This sample also contains the default values for the CEEROPT and */
/* CELQROPT keywords. */
/* */

CEEPRMxx

26 z/OS V2R1.0 Language Environment Customization

|
|

|

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* */
/* Syntax for options: */
/* */
/* group_name(option_1, option_2, */
/* option_3, option_4) */
/* */
/* Where: */
/* group_name is CEEDOPT, CEECOPT or CELQDOPT. */
/* option_x is any option valid at the system level. */
/* */
/* */
/* Syntax for keywords: */
/* */
/* CEEROPT(value) - Where value is ALL or COMPAT */
/* CELQROPT(value) - Where value is ALL or NONE */
/* */
/* */
/* All valid options and keywords are listed but commented out. */
/* To include an option you must edit this file (or a copy) and */
/* remove the comment delimiters around the options to be used. */
/* It is not necessary to uncomment all options. */
/* */
/* */
/* Notes: */
/* */
/* * Comments and blank lines are allowed for readability. */
/* */
/* * Individual options must be separated by a comma or a blank */
/* */
/* * There can be more than one option on a line. */
/* */
/* * Mixed case is allowed. */
/* */
/* * Individual options can be specified as overrideable (OVR) or */
/* nonoverrideable (NONOVR). */
/* */
/* */
/***/
/***/
/* 31 bit non-CICS option group */
/***/
/*CEEDOPT(*/
/* ABPERC=((NONE),OVR), */
/* ABTERMENC=((ABEND),OVR), */
/* AIXBLD=((OFF),OVR), */
/* ALL31=((ON),OVR), */
/* ANYHEAP=((16K,8K,ANYWHERE,FREE),OVR), */
/* BELOWHEAP=((8K,4K,FREE),OVR), */
/* CBLOPTS=((ON),OVR), */
/* CBLPSHPOP=((ON),OVR), */
/* CBLQDA=((OFF),OVR), */
/* CEEDUMP=((60,SYSOUT=*,FREE=END,SPIN=UNALLOC),OVR), */
/* CHECK=((ON),OVR), */
/* COUNTRY=((US),OVR), */
/* DEBUG=((OFF),OVR), */
/* DEPTHCONDLMT=((10),OVR), */
/* DYNDUMP=((*USERID,NODYNAMIC,TDUMP),OVR), */
/* ENVAR=((’’),OVR), */
/* ERRCOUNT=((0),OVR), */
/* ERRUNIT=((6),OVR), */
/* FILEHIST=((ON),OVR), */
/* FILETAG=((NOAUTOCVT,NOAUTOTAG),OVR), */
/* HEAP=((32K,32K,ANYWHERE,KEEP,8K,4K),OVR) */
/* HEAPCHK=((OFF,1,0,0,0,1024,0,1024,0),OVR) */
/* HEAPPOOLS=((OFF,8,10,32,10,128,10,256,10,1024,10,2048, */
/* 10,0,10,0,10,0,10,0,10,0,10,0,10),OVR) */
/* INFOMSGFILTER=((OFF,,,,),OVR) */

CEEPRMxx

Chapter 5. Customizing Language Environment runtime options 27

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* INQPCOPN=((ON),OVR), */
/* INTERRUPT=((OFF),OVR), */
/* LIBSTACK=((4K,4K,FREE),OVR), */
/* MSGFILE=((SYSOUT,FBA,121,0,NOENQ),OVR), */
/* MSGQ=((15),OVR), */
/* NATLANG=((ENU),OVR), */
/* NOAUTOTASK=(OVR), */
/* NOTEST=((ALL,*,PROMPT,INSPPREF),OVR), */
/* NOUSRHDLR=((),OVR), */
/* OCSTATUS=((ON),OVR), */
/* PC=((OFF),OVR), */
/* PLITASKCOUNT=((20),OVR), */
/* POSIX=((OFF),OVR), */
/* PROFILE=((OFF,’’),OVR), */
/* PRTUNIT=((6),OVR), */
/* PUNUNIT=((7),OVR), */
/* RDRUNIT=((5),OVR), */
/* RECPAD=((OFF),OVR), */
/* RPTOPTS=((OFF),OVR), */
/* RPTSTG=((OFF),OVR), */
/* RTEREUS=((OFF),OVR), */
/* SIMVRD=((OFF),OVR), */
/* STACK=((128K,128K,ANYWHERE,KEEP,512K,128K),OVR), */
/* STORAGE=((NONE,NONE,NONE,0K),OVR), */
/* TERMTHDACT=((TRACE,,96),OVR), */
/* THREADHEAP=((4K,4K,ANYWHERE,KEEP),OVR), */
/* THREADSTACK=((OFF,4K,4K,ANYWHERE,KEEP,128K,128K),OVR), */
/* TRACE=((OFF,4K,DUMP,LE=0),OVR), */
/* TRAP=((ON,SPIE),OVR), */
/* UPSI=((00000000),OVR), */
/* VCTRSAVE=((OFF),OVR), */
/* XUFLOW=((AUTO),OVR) */
/*) */
/***/
/* 31 bit CICS option group */
/* The following options are ignored in CICS: */
/* - ABPERC - OCSTATUS */
/* - AIXBLD - PC */
/* - AUTOTASK - PLITASKCOUNT */
/* - CBLOPTS - POSIX */
/* - CBLQDA - PRTUNIT */
/* - DYNDUMP - PUNUNIT */
/* - ERRUNIT - RDRUNIT */
/* - FILEHIST - RECPAD */
/* - FILETAG - RTEREUS */
/* - INQPCOPN - SIMVRD */
/* - INTERRUPT - THREADHEAP */
/* - MSGFILE - THREADSTACK */
/* - MSGQ - VCTRSAVE */
/* */
/***/
/*CEECOPT(*/
/* ABTERMENC=((ABEND),OVR), */
/* ALL31=((ON),OVR), */
/* ANYHEAP=((4K,4080,ANYWHERE,FREE),OVR), */
/* BELOWHEAP=((4K,4080,FREE),OVR), */
/* CBLPSHPOP=((ON),OVR), */
/* CEEDUMP=((60,SYSOUT=*,FREE=END,SPIN=UNALLOC),OVR), */
/* CHECK=((ON),OVR), */
/* COUNTRY=((US),OVR), */
/* DEBUG=((OFF),OVR), */
/* DEPTHCONDLMT=((10),OVR), */
/* ENVAR=((’’),OVR), */
/* ERRCOUNT=((0),OVR), */
/* HEAP=((4K,4080,ANYWHERE,KEEP,4K,4080),OVR), */
/* HEAPCHK=((OFF,1,0,0,0,1024,0,1024,0),OVR), */
/* HEAPPOOLS=((OFF,8,10,32,10,128,10,256,10,1024,10,2048, */

CEEPRMxx

28 z/OS V2R1.0 Language Environment Customization

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

/* 10,0,10,0,10,0,10,0,10,0,10,0,10),OVR), */
/* INFOMSGFILTER=((OFF,,,,),OVR), */
/* LIBSTACK=((32,4080,FREE),OVR), */
/* NATLANG=((ENU),OVR), */
/* NOTEST=((ALL,*,PROMPT,INSPPREF),OVR), */
/* NOUSRHDLR=((),OVR), */
/* PROFILE=((OFF,’’),OVR), */
/* RPTOPTS=((OFF),OVR), */
/* RPTSTG=((OFF),OVR), */
/* STACK=((4K,4080,ANYWHERE,KEEP,4K,4080),OVR), */
/* STORAGE=((NONE,NONE,NONE,0K),OVR), */
/* TERMTHDACT=((TRACE,CESE,96),OVR), */
/* TRACE=((OFF,4K,DUMP,LE=0),OVR), */
/* TRAP=((ON,SPIE),OVR), */
/* UPSI=((00000000),OVR), */
/* XUFLOW=((AUTO),OVR) */
/*) */
/***/
/* 64 bit options group */
/***/
/*CELQDOPT(*/
/* CEEDUMP=((60,SYSOUT=*,FREE=END,SPIN=UNALLOC),OVR), */
/* DYNDUMP=((*USERID,NODYNAMIC,TDUMP),OVR), */
/* ENVAR=((’’),OVR), */
/* FILETAG=((NOAUTOCVT,NOAUTOTAG),OVR), */
/* HEAPCHK=((OFF,1,0,0,0,1024,0,1024,0),OVR), */
/* HEAPPOOLS=((OFF,8,10,32,10,128,10,256,10,1024,10,2048, */
/* 10,0,10,0,10,0,10,0,10,0,10,0,10),OVR), */
/* HEAPPOOLS64=((OFF,8,4000,32,2000,128,700,256,350, */
/* 1024,100,2048,50,3072,50,4096,50,8192,25,16384,10, */
/* 32768,5,65536,5),OVR) */
/* HEAP64=((1M,1M,KEEP,32K,32K,KEEP,4K,4K,FREE), */
/* INFOMSGFILTER=((OFF,,,,),OVR), */
/* IOHEAP64=((1M,1M,FREE,12K,8K,FREE,4K,4K,FREE),OVR), */
/* LIBHEAP64=((1M,1M,FREE,16K,8K,FREE,8K,4K,FREE),OVR), */
/* NATLANG=((ENU),OVR), */
/* NOTEST=((ALL,*,PROMPT,INSPPREF),OVR), */
/* POSIX=((OFF),OVR), */
/* PROFILE=((OFF,’’),OVR), */
/* RPTOPTS=((OFF),OVR), */
/* RPTSTG=((OFF),OVR), */
/* STACK64=((1M,1M,128M),OVR), */
/* STORAGE=((NONE,NONE,NONE,),OVR), */
/* THREADSTACK64=((OFF,1M,1M,128M),OVR), */
/* TERMTHDACT=((TRACE,,96),OVR), */
/* TRACE=((OFF,,DUMP,LE=0),OVR), */
/* TRAP=((ON,SPIE),OVR) */
/*) */

/***/
/* Keywords */
/***/
/*CEEROPT(COMPAT) */
/*CELQROPT(NONE)

CEE= statement at IPL

Use the CEE=xx statement to specify CEEPRMxx parmlib members during system
IPL. The CEE=xx statement can be specified in the IEASYSyy parmlib member or
in the IPL parameters.

CEEPRMxx

Chapter 5. Customizing Language Environment runtime options 29

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

Syntax

�� �

,

CEE = (xx)
,L

��

xx Two alphanumeric characters that specify a CEEPRMxx parmlib member.

L Indicates that the system will write the statements from the associated parmlib
members to the operator's console during system initialization.

Usage notes
v When multiple members are specified, they are processed in the order specified.
v When the runtime options are merged during the initialization of a Language

Environment application, errors might be reported if any system-level or
region-level defaults were marked nonoverridable (NONOVR). These messages
are displayed for every application. Under CICS, the messages are displayed for
the first transaction only.

Examples

During IPL, you can specify CEEPRMxx parmlib members by using one of the
methods shown in these examples:
v To specify a single parmlib member on the system parameters entered at IPL:

R 0,SYSP=yy,CEE=xx

v To specify a single parmlib member in the IEASYSyy parmlib member:
ALLOC=01
APF=PX,
CEE=xx,
CLOCK=00,
CLPA, CMD=PX,

v To specify multiple parmlib members in the IEASYSyy parmlib member:
ALLOC=01
APF=PX,
CEE=(xx,zz),
CLOCK=00,
CLPA, CMD=PX,

v To specify multiple parmlib members with the L option on the system
parameters entered at IPL:
R 0,SYSP=yy,CEE=(xx,zz,L)

SET CEE command

Use the SET CEE command to change the active parmlib member after IPL. The
SET CEE command parses the CEEPRMxx parmlib member and replaces the
runtime options and keywords with the contents of the new member.

CEE= statement

30 z/OS V2R1.0 Language Environment Customization

|
|

|||||||||||||||||||||||||||||

|
||

||

||
|

|

|

|
|
|
|
|

|

|
|

|

|

|

|
|
|
|
|

|

|
|
|
|
|

|
|

|

|

|
|
|

Syntax

�� �

,

SET CEE = (xx) ��

xx Two alphanumeric characters that specify a CEEPRMxx parmlib member.

Usage notes
v If you specify only one member, parentheses are optional.
v If you specify two or more members, parentheses are required.
v Changing the system-level default runtime options with the SET CEE command

does not affect any currently initialized environments on the system. When
applications go through Language Environment initialization, the new runtime
option values are used for that application.

v When the runtime options are merged during the initialization of a Language
Environment application, errors might be reported if any system-level or
region-level defaults were marked nonoverridable (NONOVR). These messages
are displayed for every application. Under CICS, the messages are displayed for
the first transaction only.

Examples

The following example shows how to change the active parmlib member to
CEEPRMJ1:
SET CEE=J1

The following example shows how to change the active parmlib members to
CEEPRMJC and CEEPRMJM:
SET CEE=(JC,JM)

SETCEE command

Use the SETCEE command to change individual runtime options or keywords.

SET CEE

Chapter 5. Customizing Language Environment runtime options 31

|
|

||||||||||||||||||||||||

|
||

||

|

|

|

|
|
|
|

|
|
|
|
|

|

|
|

|

|
|

|

|

|

Syntax

�� SETCEE CEECOPT, Runtime options
CEEDOPT, Runtime options
CELQDOPT, Runtime options
CEEROPT, COMPAT

ALL
CELQROPT, NONE

ALL
CLEAR

��

Runtime options:

�

,

runtimeopt ((subopts), OVR)
= NONOVR

(1)
runtimeopt(subopts)

Notes:

1 Specifying runtime options without the OVR or NONOVR attribute.
Runtime options specified using this format can be overridden.

CEECOPT
The options group used to specify runtime options for CICS environments.

CEEDOPT
The options group used to specify runtime options for non-CICS environments
excluding AMODE 64 environments.

CELQDOPT
The options group used to specify runtime options for AMODE 64
environments.

CEEROPT
Indicates whether region-level runtime options should be used in a non-CICS
or non-LRR environment.

COMPAT
Attempt a load and use of CEEROPT only in CICS or LRR environments.
This is the default behavior.

ALL
Attempt a load and use of CEEROPT in all AMODE 31 and AMODE 24
environments.

CELQROPT
Indicates whether region-level runtime options should be used in an AMODE
64 environment.

NONE
Do not attempt a load or use of CELQROPT in AMODE 64 environments.
This is the default behavior.

SETCEE

32 z/OS V2R1.0 Language Environment Customization

|
|

|||

|

|

||

|

|

||
|
||

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

ALL
Attempt a load and use of CELQROPT in all AMODE 64 environments.

CLEAR
Clear all the system-level default runtime options and keywords that were set
using the SETCEE or SET CEE commands.

runtimeopt
The name of the runtime option to change.

subopts
The suboption values for the specified runtime option to change.

OVR
Specifies that the option can be overridden. This is the default setting.

NONOVR
Specifies that the option cannot be overridden, which can be used to enforce
runtime options critical to the Language Environment operating environment.

Once a runtime option is specified as nonoverrideable with the NONOVR
attribute, it cannot later be overridden. This includes later specification in the
same parmlib member or a SETCEE command. To remove the nonoverrideable
setting, use the SETCEE CLEAR operator command, or the SET CEE command
with a parmlib member that does not mark the runtime option as
nonoverrideable.

Note: The runtime options AIXBLD, DEBUG, FILEHIST, INQPCOPN,
OCSTATUS, PC, RTEREUS and SIMVRD require an ON or OFF suboption to
be specified when using the OVR or NONOVR attribute. For example,
AIXBLD=((),OVR) results in an error and the option is ignored.

Usage notes
v Any group, keyword, or runtime option that can be specified in a CEEPRMxx

parmlib member is valid.
v A maximum of 126 characters is allowed for each command. There is no

continuation.
v You can use one SETCEE command to modify multiple runtime options within a

single group.
v Enter values in uppercase, lowercase, or mixed case. The system converts the

input to uppercase, except for values enclosed in single quotation marks, which
are processed without changing the case.

v Commas are required between options, suboptions and before an OVR or
NONOVR attribute.

v Blanks are not allowed within the required =((or ((delimiter for runtime
options that specify an OVR or NONOVR attribute.

v To synchronize the setting of multiple runtime options or keywords, use the SET
CEE command to process additional parmlib members. For more information,
see “SET CEE command” on page 30.

v When CEEROPT(ALL) is in effect, an attempt is made to load a CEEROPT
module during Language Environment initialization. When no CEEROPT can be
found, there is potential performance overhead, especially for applications or
transaction servers that repeatedly initialize Language Environment.

v Changing the system-level default runtime options with the SETCEE command
does not affect any currently initialized environments on the system. When
applications go through Language Environment initialization, the new runtime
option values are used for that application.

SETCEE

Chapter 5. Customizing Language Environment runtime options 33

|
|

|
|
|

|
|

|
|

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|

|
|

|
|

|
|

|
|
|

|
|

|
|

|
|
|

|
|
|
|

|
|
|
|

v When the runtime options are merged during the initialization of a Language
Environment application, errors might be reported if any system-level or
region-level defaults were marked nonoverridable (NONOVR). These messages
are displayed for every application. Under CICS, the messages are displayed for
the first transaction only.

v If RPTOPTS(ON) is in effect at runtime, the Language Environment runtime
options report is displayed, and the Last Where Set column will identify any
options that were set by a CEEPRMxx parmlib member. For a sample of the
runtime options report, see z/OS Language Environment Debugging Guide.

v When the SETCEE command completes, Language Environment produces
message CEE3743I stating that the SETCEE command completed successfully.

Examples

The following example shows variations of using the SETCEE command to set
individual runtime options:
SETCEE CEEDOPT,POSIX=((ON),OVR)
SETCEE CEECOPT,DEBUG=((OFF),NONOVR)
SETCEE CELQDOPT,HEAP64(1M),IOHEAP64(1M,1M)

The following example shows how to attempt a load and use CEEROPT in all
AMODE 31 and AMODE 24 environments:
SETCEE CEEROPT,ALL

The following example shows how to clear all system-level default runtime options
and keywords:
SETCEE CLEAR

D CEE command

Use the D CEE command to display the values that were set in the current
CEEPRMxx parmlib members and by the SETCEE command.

Syntax

�� D CEE
,CEEDOPT
,CEECOPT
,CELQDOPT
,CEEROPT
,CELQROPT
,ALL

,L= a
cc
cca
name
name-a

��

CEEDOPT
Displays the current list of system-level default runtime options for z/OS
batch.

CEECOPT
Displays the current list of system-level default runtime options for CICS
environments.

SETCEE

34 z/OS V2R1.0 Language Environment Customization

|
|
|
|
|

|
|
|
|

|
|

|

|
|

|
|
|

|
|

|

|
|

|

|

|
|

|
|

||

|
||

|
|
|

|
|
|

CELQDOPT
Displays the current list of system-level default runtime options for AMODE 64
environments.

CEEROPT
Displays the current value for the CEEROPT keyword.

CELQROPT
Displays the current value for the CELQROPT keyword.

ALL
Specifies that all keywords and groups with their respective option values
should be displayed.

L Specifies where the display is presented.

a Specifies the display area.

cc Specifies the console. You must specify a decimal number from 1 to 99.

cca
Specifies the console and display area.

name
Specifies the console name.

name-a
Specifies the console name and display area.

Usage notes

None.

Examples
v If the SET CEE command is: set cee=(01,pv)

d cee
CEE3744I 10.55.33 DISPLAY
CEE=(01,PV)

d cee,ceedopt
CEE3745I 10.55.59 DISPLAY CEEDOPT
CEE=(01,PV)
LAST WHERE SET OPTION

PARMLIB(CEEPRM01) ENVAR("verify=1 2 3")
PARMLIB(CEEPRMPV) HEAP(4194304,5242880,ANYWHERE,KEEP,

16384,16384)
PARMLIB(CEEPRMPV) POSIX(ON)
PARMLIB(CEEPRM01) PROFILE(OFF,"XXX")
PARMLIB(CEEPRM01) RPTOPTS(ON)
PARMLIB(CEEPRMPV) STORAGE(AA,BB,NONE,0)
PARMLIB(CEEPRMPV) THREADHEAP(8192,10240,ANYWHERE,KEEP)

v If the SETCEE command is: setcee ceedopt,rptopts(off)

d cee,ceedopt
CEE3745I 10.59.33 DISPLAY CEEDOPT
CEE=(01,PV)
LAST WHERE SET OPTION

PARMLIB(CEEPRM01) ENVAR("verify=1 2 3")
PARMLIB(CEEPRMPV) HEAP(4194304,5242880,ANYWHERE,KEEP,

16384,16384)
PARMLIB(CEEPRMPV) POSIX(ON)
PARMLIB(CEEPRM01) PROFILE(OFF,"XXX")

D CEE

Chapter 5. Customizing Language Environment runtime options 35

|
|
|

|
|

|
|

|
|
|

||

||

||

|
|

|
|

|
|

|

|

|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

SETCEE command RPTOPTS(OFF)
PARMLIB(CEEPRMPV) STORAGE(AA,BB,NONE,0)
PARMLIB(CEEPRMPV) THREADHEAP(8192,10240,ANYWHERE,KEEP)

v If the SETCEE command is: setcee clear

d cee,all
CEE3745I 12.50.54 DISPLAY CEEDOPT
NO MEMBERS SPECIFIED
LAST WHERE SET OPTION

CEE3745I 12.50.54 DISPLAY CEECOPT
NO MEMBERS SPECIFIED
LAST WHERE SET OPTION

CEE3745I 12.50.54 DISPLAY CELQDOPT
NO MEMBERS SPECIFIED
LAST WHERE SET OPTION

CEE3745I 13.40.06 DISPLAY CEEROPT
NO MEMBERS SPECIFIED
NO CEEROPT KEYWORD SPECIFIED
CEE3745I 13.40.06 DISPLAY CELQROPT
NO MEMBERS SPECIFIED
NO CELQROPT KEYWORD SPECIFIED

v If the SET CEE command is: set cee=(mc)

d cee,ceeropt
CEE3745I 16.17.23 DISPLAY CEEROPT
CEE=(MC)
PARMLIB(CEEPRMMC) CEEROPT (COMPAT)

v If the SETCEE command is: setcee celqropt,all

d cee,celqropt
CEE3745I 16.14.52 DISPLAY CELQROPT
CEE=(MC)
SETCEE COMMAND CELQROPT(ALL)

CEEPRMCC - syntax checking under z/OS batch

CEEPRMxx parmlib members can be syntactically checked for errors under z/OS
batch. Before calling the syntax checker, a CEEPRMxx parmlib member must be
created and placed in a PDS or PDSE. You can find the format and requirements
for creating the parmlib member in “CEEPRMxx parmlib member” on page 24.

The CEEPRMCC program reads and parses a CEEPRMxx parmlib member for
syntax errors, and displays the runtime options report if no errors are found. The
runtime options report only displays options that are specified inside the
CEEPRMxx parmlib members.

Syntax

The CEEPRMCC program expects the following inputs:
v The PARM parameter of the EXEC job control statement to select one or more

CEEPRMxx parmlib members:
// PARM=’CEE=(xx,yy,...,nn)’

The two alphanumeric characters, xx,yy,...,nn, are the suffix of the CEEPRMxx
parmlib members to be checked. Embedded blanks are not allowed within the
PARM.

D CEE

36 z/OS V2R1.0 Language Environment Customization

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|

|
|
|
|

|

|
|
|
|

|
|
|
|

|

|

|
|

|

|
|
|

v An optional CEEPRMCK DD statement to specify the data set where CEEPRMxx
parmlib members are located:
//CEEPRMCK DD DSN=MEENAK.SYSTEM.PARMLIB,DISP=SHR

If no DD is specified, the CEEPRMCC program uses the default data set
SYS1.PARMLIB.

Usage notes

An input data set must be a fixed record format and a record length of 80.

Return codes

The possible return codes are as follows:

0 Successful completion.

4 No members were specified.

8 Input members were not specified or not valid.

12 A closing parenthesis was missing when specifying input members.

16 One or more chars were found after the closing parenthesis of the input
members.

20 One or more embedded blanks were found.

24 SYS1.PARMLIB allocation to the CEEPRMCK DD failed.

28 The specified data set had one or more incorrect attributes.

32 The specified data set did not exist.

1004 The input members string contained a single char suffix.

1008 The specified members could not be read.

1012 The specified members had one or more syntax errors.

1016 The specified member has three or more char suffix.

Examples
v The following example shows how to check the CEEPRMJM parmlib member,

which resides in the MEENAK.SYSTEM.PARMLIB data set:
//CEEPRMCJ EXEC PGM=CEEPRMCC,
// PARM=’CEE=(JM)’
//CEEPRMCK DD DSN=MEENAK.SYSTEM.PARMLIB,DISP=SHR

v If there are syntax errors, no runtime options report will be displayed. Error
messages will be written to the Language Environment message file. CEE3761I
will be followed by other existing error messages related to syntax errors in
CEEPRMxx parmlib members and end with CEE3762I, for example:
CEE3761I The following messages pertain to the call to the Language
Environment Parmlib checker.
CEE3731I The following messages pertain to the system default
runtime options in the CEEDOPT in CEEPRMME.
CEE3616I The string ’NNE’ was not a valid or supported suboption
of the runtime option STORAGE in this release.
CEE3762I The Language Environment Parmlib checker has completed.

v The following example shows sample output when no errors are found:
CEE3762I The Language Environment Parmlib checker has completed.

CEE3745I 11.14.01 Display CEEDOPT
CEE=(ME)

CEEPRMCC - z/OS batch

Chapter 5. Customizing Language Environment runtime options 37

|
|

|

|
|

|

|

|

|

||

||

||

||

||
|

||

||

||

||

||

||

||

||

|

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|

LAST WHERE SET OPTION

PARMLIB(CEEPRMME) POSIX(OFF)
PARMLIB(CEEPRMME) STORAGE(NONE,NONE,NONE,0)

CEE3745I 11.14.01 Display CEECOPT
CEE=(ME)

LAST WHERE SET OPTION

PARMLIB(CEEPRMME) STORAGE(NONE,NONE,20,2048)

CEE3745I 11.14.01 Display CELQDOPT
CEE=(ME)

LAST WHERE SET OPTION

PARMLIB(CEEPRMME) POSIX(OFF)
PARMLIB(CEEPRMME) STORAGE(NONE,NONE,30,3072)

CEE3745I 11.14.01 Display CEEROPT
CEE=(MS)

PARMLIB(CEEPRMMS) CEEROPT(ALL)

CEE3745I 11.14.01 Display CELQROPT
CEE=(MS)

PARMLIB(CEEPRMMS) CELQROPT(NONE)

CEEPRMCK - syntax checking under TSO/E

CEEPRMxx parmlib members can be syntactically checked for errors under TSO/E.
Before calling the syntax checker, a CEEPRMxx parmlib member must be created
and placed in a PDS or PDSE. You can find the format and requirements for
creating the parmlib member in “CEEPRMxx parmlib member” on page 24.

The CEEPRMCK program reads and parses the CEEPRMxx parmlib member for
syntax errors, and displays the runtime options report if no errors are found. The
runtime options report only displays options that are specified inside the
CEEPRMxx parmlib members.

Syntax

�� �

,

CEEPRMCK MEMBERS(xx)
DSN (data-set-name)
DSN ('data-set-name')
DSNAME (data-set-name)
DSNAME ('data-set-name')

��

CEEPRMCC - z/OS batch

38 z/OS V2R1.0 Language Environment Customization

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|

|
|

|||

|
||

xx The two alphanumeric characters that are the suffix of the CEEPRMxx parmlib
members to be checked. The MEMBERS keyword parameter must always be
specified.

data-set-name
The data set name that contains the specified CEEPRMxx parmlib member. The
fully qualified data set name must be enclosed in single quotation marks if a
TSO/E prefix is not required. The DSN and DSNAME keyword parameters
are optional.

If both DD is allocated and DSN or DSNAME is specified, the CEEPRMCK
program uses the DD and the DSN/DSNAME is ignored. DD allocation
overrides DSN/DSNAME specification.

If no DD is allocated and no DSN or DSNAME is specified, the CEEPRMCK
program uses the default data set SYS1.PARMLIB.

Usage notes
v An input data set must be a fixed record format and a record length of 80.
v To invoke CEEPRMCK by using the documented syntax, SCEECLST must be

allocated to a system file (SYSPROC or SYSEXEC). See z/OS TSO/E REXX
Reference for more information about setting up and using REXX execs.

Return codes

The possible return codes are as follows:

0 Successful completion.

4 Keyword parameter is not a valid option or was specified incorrectly.

8 The MEMBERS keyword was not specified or was specified incorrectly.

12 DSN and DSNAME keywords cannot be specified at the same time.

16 Failed to allocate parmlib data set.

20 The MEMBERS, DSN, or DSNAME keyword parameter was missing a
closing parenthesis.

1xxx xxx is the return code from the CEEPRMCC program. See “CEEPRMCC -
syntax checking under z/OS batch” on page 36.

Examples

The following example shows how to check the parmlib members CEEPRMMS,
CEEPRMPV, and CEEPRMJM which reside in the MEENAK.SYSTEM.PARMLIB
data set.
CEEPRMCK MEMBERS(MS,PV,JM) DSN(’MEENAK.SYSTEM.PARMLIB’)

Creating region-level runtime option defaults with CEEXOPT
Your site might need to set region-level runtime option defaults that are different
from the system-level defaults (if present) or the IBM-supplied defaults. For
example, one CICS region (Region A) can be designated to run only AMODE 31
programs, while another region (Region B) runs both AMODE 24 and AMODE 31
programs. This requires Region B to have the ALL31(OFF) option setting while
Region A can perform better with the ALL31(ON) option setting. You can
accommodate this need by creating separate region-level runtime option load
modules for Region A and Region B.

CEEPRMCK - TSO/E

Chapter 5. Customizing Language Environment runtime options 39

||
|
|

|
|
|
|
|

|
|
|

|
|

|

|

|
|
|

|

|

||

||

||

||

||

||
|

||
|

|

|
|
|

|

|
|

|
|
|
|
|
|
|
|

The CEE.SCEESAMP data set contains sample jobs and assembler source files
needed to create region-level load modules. In the sample assembler source files,
all runtime options are coded with the IBM-supplied default suboption values.
When the sample jobs are used to assemble the source files, the CEEXOPT macro is
invoked to create the CEEROPT (AMODE31) or CELQROPT (AMODE 64) load
modules. The following table summarizes the samples provided in
CEE.SCEESAMP:

Table 8. Samples for creating region-level runtime option load modules

Set defaults for Sample job Assembler source

Region-level z/OS batch/IMS/LRR CEEWROPT CEERDOPT (shown in
“Sample invocation of
CEEXOPT within the
CEERDOPT member”)

Region-level CICS CEEWROPT CEERCOPT (shown in
“Sample invocation of
CEEXOPT within the
CEERCOPT member” on
page 41)

Region-level z/OS batch (AMODE 64) CEEWQROP CELQRDOP (shown in
“Sample invocation of
CEEXOPT within the
CELQRDOP member” on
page 42)

The CEEWROPT and CEEWQROP jobs do not use SMP/E to create the
region-level load modules, so you can run them several times to create several
different load modules, each in their own specific library. The load modules can
then be included as part of the STEPLIB concatenation. If a CEEROPT or
CELQROPT load module is present in a program search order, Language
Environment loads and merges the specified options. Any region-level options
specified will override the system-level defaults (if present and overridable) and
the IBM-supplied defaults. Language Environment does not ship a default
CEEROPT or CELQROPT load module.

Sample invocation of CEEXOPT within the CEERDOPT
member

CEEROPT CSECT
CEEROPT AMODE ANY
CEEROPT RMODE ANY

CEEXOPT ABPERC=((NONE),OVR), X
ABTERMENC=((ABEND),OVR), X
AIXBLD=((OFF),OVR), X
ALL31=((ON),OVR), X
ANYHEAP=((16K,8K,ANYWHERE,FREE),OVR), X
BELOWHEAP=((8K,4K,FREE),OVR), X
CBLOPTS=((ON),OVR), X
CBLPSHPOP=((ON),OVR), X
CBLQDA=((OFF),OVR), X
CEEDUMP=((60,SYSOUT=*,FREE=END,SPIN=UNALLOC),OVR), X
CHECK=((ON),OVR), X
COUNTRY=((US),OVR), X
DEBUG=((OFF),OVR), X
DEPTHCONDLMT=((10),OVR), X
DYNDUMP=((*USERID,NODYNAMIC,TDUMP),OVR), X
ENVAR=((’’),OVR), X
ERRCOUNT=((0),OVR), X
ERRUNIT=((6),OVR), X
FILEHIST=((ON),OVR), X
FILETAG=((NOAUTOCVT,NOAUTOTAG),OVR), X

CEEXOPT

40 z/OS V2R1.0 Language Environment Customization

|
|
|
|
|
|
|

||

|||

|||
|
|
|

|||
|
|
|
|

|||
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

HEAP=((32K,32K,ANYWHERE,KEEP,8K,4K),OVR), X
HEAPCHK=((OFF,1,0,0,0,1024,0,1024,0),OVR), X
HEAPPOOLS=((OFF,8,10,32,10,128,10,256,10,1024,10,2048, X
10,0,10,0,10,0,10,0,10,0,10,0,10),OVR), X
INFOMSGFILTER=((OFF,,,,),OVR), X
INQPCOPN=((ON),OVR), X
INTERRUPT=((OFF),OVR), X
LIBSTACK=((4K,4K,FREE),OVR), X
MSGFILE=((SYSOUT,FBA,121,0,NOENQ),OVR), X
MSGQ=((15),OVR), X
NATLANG=((ENU),OVR), X
NOAUTOTASK=(OVR), X
NOTEST=((ALL,*,PROMPT,INSPPREF),OVR), X
NOUSRHDLR=((),OVR), X
OCSTATUS=((ON),OVR), X
PC=((OFF),OVR), X
PLITASKCOUNT=((20),OVR), X
POSIX=((OFF),OVR), X
PROFILE=((OFF,’’),OVR), X
PRTUNIT=((6),OVR), X
PUNUNIT=((7),OVR), X
RDRUNIT=((5),OVR), X
RECPAD=((OFF),OVR), X
RPTOPTS=((OFF),OVR), X
RPTSTG=((OFF),OVR), X
RTEREUS=((OFF),OVR), X
SIMVRD=((OFF),OVR), X
STACK=((128K,128K,ANYWHERE,KEEP,512K,128K),OVR), X
STORAGE=((NONE,NONE,NONE,0K),OVR), X
TERMTHDACT=((TRACE,,96),OVR), X
THREADHEAP=((4K,4K,ANYWHERE,KEEP),OVR), X
THREADSTACK=((OFF,4K,4K,ANYWHERE,KEEP,128K,128K),OVR), X
TRACE=((OFF,4K,DUMP,LE=0),OVR), X
TRAP=((ON,SPIE),OVR), X
UPSI=((00000000),OVR), X
VCTRSAVE=((OFF),OVR), X
XUFLOW=((AUTO),OVR)

END

Sample invocation of CEEXOPT within the CEERCOPT
member

CEEROPT CSECT
CEEROPT AMODE ANY
CEEROPT RMODE ANY

CEEXOPT ABPERC=((NONE),OVR), X
ABTERMENC=((ABEND),OVR), X
AIXBLD=((OFF),OVR), X
ALL31=((ON),OVR), X
ANYHEAP=((4K,4080,ANYWHERE,FREE),OVR), X
BELOWHEAP=((4K,4080,FREE),OVR), X
CBLOPTS=((ON),OVR), X
CBLPSHPOP=((ON),OVR), X
CBLQDA=((OFF),OVR), X
CEEDUMP=((60,SYSOUT=*,FREE=END,SPIN=UNALLOC),OVR), X
CHECK=((ON),OVR), X
COUNTRY=((US),OVR), X
DEBUG=((OFF),OVR), X
DEPTHCONDLMT=((10),OVR), X
DYNDUMP=((*USERID,NODYNAMIC,TDUMP),OVR), X
ENVAR=((’’),OVR), X
ERRCOUNT=((0),OVR), X
ERRUNIT=((6),OVR), X
FILEHIST=((ON),OVR), X
FILETAG=((NOAUTOCVT,NOAUTOTAG),OVR), X
HEAP=((4K,4080,ANYWHERE,KEEP,4K,4080),OVR), X

CEEXOPT

Chapter 5. Customizing Language Environment runtime options 41

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

HEAPCHK=((OFF,1,0,0,0,1024,0,1024,0),OVR), X
HEAPPOOLS=((OFF,8,10,32,10,128,10,256,10,1024,10,2048, X
10,0,10,0,10,0,10,0,10,0,10,0,10),OVR), X
INFOMSGFILTER=((OFF,,,,),OVR), X
INQPCOPN=((ON),OVR), X
INTERRUPT=((OFF),OVR), X
LIBSTACK=((32,4080,FREE),OVR), X
MSGFILE=((SYSOUT,FBA,121,0,NOENQ),OVR), X
MSGQ=((15),OVR), X
NATLANG=((ENU),OVR), X
NOAUTOTASK=(OVR), X
NOTEST=((ALL,*,PROMPT,INSPPREF),OVR), X
NOUSRHDLR=((),OVR), X
OCSTATUS=((ON),OVR), X
PC=((OFF),OVR), X
PLITASKCOUNT=((20),OVR), X
POSIX=((OFF),OVR), X
PROFILE=((OFF,’’),OVR), X
PRTUNIT=((6),OVR), X
PUNUNIT=((7),OVR), X
RDRUNIT=((5),OVR), X
RECPAD=((OFF),OVR), X
RPTOPTS=((OFF),OVR), X
RPTSTG=((OFF),OVR), X
RTEREUS=((OFF),OVR), X
SIMVRD=((OFF),OVR), X
STACK=((4K,4080,ANYWHERE,KEEP,4K,4080),OVR), X
STORAGE=((NONE,NONE,NONE,0K),OVR), X
TERMTHDACT=((TRACE,CESE,96),OVR), X
THREADHEAP=((4K,4080,ANYWHERE,KEEP),OVR), X
THREADSTACK=((OFF,4K,4080,ANYWHERE,KEEP,4K,4080),OVR), X
TRACE=((OFF,4K,DUMP,LE=0),OVR), X
TRAP=((ON,SPIE),OVR), X
UPSI=((00000000),OVR), X
VCTRSAVE=((OFF),OVR), X
XUFLOW=((AUTO),OVR)

END

Sample invocation of CEEXOPT within the CELQRDOP
member

CELQROPT CSECT
CELQROPT AMODE 64
CELQROPT RMODE ANY

CEEXOPT CEEDUMP=((60,SYSOUT=*,FREE=END,SPIN=UNALLOC),OVR), X
DYNDUMP=((*USERID,NODYNAMIC,TDUMP),OVR), X
ENVAR=((’’),OVR), X
FILETAG=((NOAUTOCVT,NOAUTOTAG),OVR), X
HEAPCHK=((OFF,1,0,0,0,1024,0,1024,0),OVR), X
HEAPPOOLS=((OFF,8,10,32,10,128,10,256,10,1024,10, X
2048,10,0,10,0,10,0,10,0,10,0,10,0,10),OVR), X
HEAPPOOLS64=((OFF,8,4000,32,2000,128,700,256,350, X
1024,100,2048,50,3072,50,4096,50,8192,25,16384,10, X
32768,5,65536,5),OVR), X
HEAP64=((1M,1M,KEEP,32K,32K,KEEP,4K,4K,FREE),OVR), X
INFOMSGFILTER=((OFF,,,,),OVR), X
IOHEAP64=((1M,1M,FREE,12K,8K,FREE,4K,4K,FREE),OVR), X
LIBHEAP64=((1M,1M,FREE,16K,8K,FREE,8K,4K,FREE),OVR), X
NATLANG=((ENU),OVR), X
NOTEST=((ALL,*,PROMPT,INSPPREF),OVR), X
POSIX=((OFF),OVR), X
PROFILE=((OFF,’’),OVR), X
RPTOPTS=((OFF),OVR), X
RPTSTG=((OFF),OVR), X
STACK64=((1M,1M,128M),OVR), X
STORAGE=((NONE,NONE,NONE,),OVR), X

CEEXOPT

42 z/OS V2R1.0 Language Environment Customization

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

THREADSTACK64=((OFF,1M,1M,128M),OVR), X
TERMTHDACT=((TRACE,,96),OVR), X
TRACE=((OFF,,DUMP,LE=0),OVR), X
TRAP=((ON,SPIE),OVR)

END

CEEXOPT invocation for CEEROPT (AMODE 31)
To invoke CEEXOPT and create the CEEROPT load module, do the following:
1. Copy member CEERDOPT (non-CICS) or CEERCOPT (CICS) from

CEE.SCEESAMP into CEEWROPT in place of the comment lines following the
SYSIN DD statement.

2. Change the parameters on the CEEXOPT macro statement to reflect the values
you have chosen for this region-level load module.

3. Code only the options that you want to change. Options omitted remain same
as the system-level defaults (if present) or the IBM-supplied defaults.

4. Change DSNAME=YOURLIB in the SYSLMOD DD statement to the name of the
partitioned data set into which you want your CEEROPT load module to be
link-edited. This data set does not need to be APF authorized.

Note: If you have a CEEROPT load module in the specified data set, it will be
replaced by the new version.

5. Check the SYSLIB DD statement to ensure the data set names are correct.

CEEWROPT should run with a condition code of 0.

Note: CICS supports XPLINK programs in a CICS environment. The CICS region
defaults are not used for these programs. However, if the CEEPRMxx parmlib
member keyword CEEROPT is set to ALL, the XPLINK programs can use the
region defaults that can be located within the MVS search order.

CEEXOPT invocation for CELQROPT (AMODE 64)
To invoke CEEXOPT and create the CELQROPT load module, follow these steps:
1. Copy member CELQRDOP from CEE.SCEESAMP into CEEWQROP in place of

the comment lines following the SYSIN DD statement.
2. Change the parameters on the CEEXOPT macro statement to reflect the values

that you chose for this region-level load module.
3. Code only the options that you want to change. Options that you omit from

CELQROPT remain the same as the system-level defaults (if present) or the
IBM-supplied defaults.

4. Change DSNAME=YOURLIB in the SYSLMOD DD statement to the name of the
partitioned data set into which you want your CELQROPT load module to be
link-edited.

Note: If you have a CELQROPT module in the specified data set, it will be
replaced by the new version.

5. Check the SYSLIB DD statement to ensure that the data set names are correct.

CEEWQROP should run with a condition code of 0.

CEEXOPT coding guidelines for CEEROPT and CELQROPT

Be aware of the following coding guidelines for the CEEXOPT macro:

CEEXOPT

Chapter 5. Customizing Language Environment runtime options 43

|
|
|
|
|

|

|

|
|
|

|
|

|
|

|
|
|

|
|

|

|

|
|
|
|

|

|

|
|

|
|

|
|
|

|
|
|

|
|

|

|

|

|

v A continuation character (X in the source) must be present in column 72 on each
line of the CEEXOPT invocation except the last line. The continuation line must
start in column 16. You can break the coding after any comma.

v Options and suboptions must be specified in uppercase. Only suboptions that
are strings can be specified in mixed case or lowercase. For example, both
MSGFILE=(SYSOUT) and MSGFILE=(sysout) are acceptable.

v A comma must end each option except for the final option. If the comma is
omitted, everything following the option is treated as a comment.

v If one of the string suboptions contains a special character, such as an embedded
blank or unmatched right or left parenthesis, the string must be enclosed in
apostrophes (' '), not in quotation marks (" "). A null string can be specified with
either adjacent apostrophes or adjacent quotation marks.
To get a single apostrophe (') or a single ampersand (&) within a string, two
instances of the character must be specified. The pair is counted as only one
character in determining if the maximum allowable string length has been
exceeded, and in setting the effective length of the string.

v Avoid unmatched apostrophes in any string. The error cannot be captured
within CEEXOPT itself; instead, the assembler produces a message such as:
IEV03 *** ERROR *** NO ENDING APOSTROPHE

which bears no particular relationship to the suboption in which the apostrophe
was omitted. Furthermore, none of the options are parsed properly if this
mistake is made.

v Macro instruction operands cannot be longer than 1024 characters. If the number
of characters to the right of the equal sign is greater than 1024 for any keyword
parameter in the CEEXOPT invocation, a return code of 12 is produced for the
assembly, and the options are not parsed properly.

v You can completely omit the specification of any runtime option. Options not
specified are ignored at the time Language Environment merges the options.

v Any options specified must be designated as overridable (OVR) or
nonoverrideable (NONOVR).

Performance considerations

For optimal performance when using CEEROPT or CELQROPT, code only those
options that you want to change. This enhances performance by minimizing the
number of options that Language Environment must merge at runtime. Options
and suboptions that are to remain the same as the defaults do not need to be
repeated. For example, if the only change you want to make is to define STACK
with an initial value of 64K and an increment of 64K, include only that runtime
option, as shown in the following example:
CEEROPT CSECT
CEEROPT AMODE ANY
CEEROPT RMODE ANY

CEEXOPT STACK=((64K,64K,ANYWHERE,KEEP,512K,128K),OVR)
END

CEEXOPT

44 z/OS V2R1.0 Language Environment Customization

|
|
|

|
|
|

|
|

|
|
|
|

|
|
|
|

|
|

|

|
|
|

|
|
|
|

|
|

|
|

|

|
|
|
|
|
|
|

|
|
|
|
|

|

Chapter 6. Language Environment runtime options

This topic includes descriptions of the Language Environment runtime options.
Where noted, some of the runtime options might be used only by a specific
program or by specific AMODE applications only.

For a table that maps Language Environment runtime options to HLL runtime
options to help you plan your customization, see z/OS Language Environment
Runtime Application Migration Guide.

Note: CICS TS 3.1 and higher supports XPLINK programs in a CICS environment.
The default values for these programs are the non-CICS default values.

Cobol compatibility
Restriction: COBOL is not supported for AMODE 64 applications.

VS COBOL II supported an order of runtime options and program options that is
the reverse of that of Language Environment: program arguments precede runtime
options in COBOL. To ensure compatibility with COBOL, Language Environment
provides the runtime option CBLOPTS, which specifies whether runtime options or
program arguments are first in the character parameter.

For example:

CBLOPTS=OFF
//GO EXEC PGM=PROGRAM1,PARM=’AIXBLD/’

CBLOPTS=ON
//GO EXEC PGM=PROGRAM1,PARM=’/AIXBLD’

Runtime options
The runtime options that can be modified at the system or region level are
described in the format specific to CEEPRMxx, CEEROPT and CELQROPT. You do
not have to specify all of the options, and abbreviations are not permitted.

IBM-supplied default keywords are indicated for planning information only and
appear above the main path or options path in the syntax diagrams. In the
parameter list, IBM-supplied default choices are underlined.

Some of these runtime options descriptions refer to the severity of conditions. The
values that can occur as condition token severity codes, and their meanings, are as
follows:

0 An informational message (or, if the entire token is zero, no information).

1 An attention message. Service completed, probably correctly.

2 An error message. Correction attempted. Service completed, perhaps
incorrectly.

3 A severe error message. Service not completed.

4 A critical error message. Service not completed and condition signaled. A
critical error is a condition that jeopardizes the environment. If a critical

© Copyright IBM Corp. 1991, 2013 45

|
|
|

error occurs during a Language Environment callable service, it is always
signaled to the condition manager instead of being returned synchronously
to the caller.

For a complete description of all Language Environment runtime options, see z/OS
Language Environment Programming Reference.

ABPERC

Derivation: ABnormal PERColation

ABPERC percolates an abend whose code you specify. This provides Language
Environment condition handling semantics for all abends except the one specified.

Restriction: TRAP(ON) must be in effect.

When you run with ABPERC and encounter the specified abend:
v User condition handlers are not enabled.
v In z/OS UNIX, POSIX signal handling semantics are not enabled for the abend.
v No storage report or runtime options report is generated.
v No Language Environment messages or Language Environment dump output is

generated.
v The assembler user exit is not driven for enclave termination.
v The abnormal termination exit (if there is one) is not driven.
v Files opened by HLLs are not closed by Language Environment, so records

might be lost.
v Resources acquired by Language Environment are not freed.
v The debug tool is not notified of the error.

Tip: You can also use the CEEBXITA assembler user exit to specify a list of abend
codes for Language Environment to percolate. For more information about
CEEBXITA, see z/OS Language Environment Programming Guide

Non-CICS default
ABPERC=((NONE),OVR)

CICS default
ABPERC is ignored under CICS.

Syntax

�� ABPERC = ((
NONE
abcode) ,

OVR
NONOVR) ��

NONE
Specifies that all abends are handled according to Language Environment
condition handling semantics.

46 z/OS V2R1.0 Language Environment Customization

abcode
Specifies the code number of the abend to percolate. The abcode can be
specified as:

Shhh A system abend code, where hhh is the hex system abend code

Udddd A user abend code, where dddd is a decimal user-issued abend code

Any 4-character string can also be used as an abcode.

You can identify only one abend code with this option. However, an
abend U0000 is interpreted in the same way as S000.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

z/OS UNIX considerations

ABPERC percolates an abend regardless of the thread in which it occurs.

Usage notes

Language Environment ignores ABPERC(0Cx). In this instance, no abend is
percolated, and Language Environment condition handling semantics are in effect.

For more information

For more information about the assembler user exit (CEEBXITA), see z/OS Language
Environment Programming Guide.

ABTERMENC

Derivation: ABnormal TERMination of the ENClave

ABTERMENC sets the enclave termination behavior for an enclave ending with an
unhandled condition of severity 2 or greater. TRAP(ON) must be in effect for
ABTERMENC to have an effect.

Non-CICS default
ABTERMENC=((ABEND),OVR)

CICS default
ABTERMENC=((ABEND),OVR)

Syntax

�� ABTERMENC = ((
ABEND
RETCODE) ,

OVR
NONOVR) ��

ABEND
Specifies that Language Environment issues an abend to end the enclave

ABPERC

Chapter 6. Language Environment runtime options 47

regardless of the setting of the CEEAUE_ABND flag by the assembler user exit.
However, the setting of the CEEAUE_ABND flag affects the abend processing,
as follows:

When CEEAUE_ABND is set to OFF, the following occurs:
v Abend code: Language Environment sets an abend code value that depends

on the type of unhandled condition.
v Reason code: Language Environment sets a reason code value that depends

on the type of unhandled condition.
v Abend dump attribute: Language Environment does not request a system

dump.
v Abend task/step attribute (on z/OS): An abend is issued to terminate the

task.

When CEEAUE_ABND is set to ON, Language Environment uses values set by
the assembler user exit to determine abend processing:
v Abend code: Value of the CEEAUE_RETC parameter of the assembler user

exit.
v Reason code: Value of the CEEAUE_RSNC parameter of the assembler user

exit.
v Abend dump attribute: Language Environment requests a system dump only

if the assembler user exit sets CEEAUE_DUMP to ON. The system abend
dump goes to the system abend ddname with the file name you define in
your JCL. The file name is the name defined in the DD card.

v Abend task/step attribute (on z/OS): If the assembler user exit sets
CEEAUE_STEPS to ON, Language Environment issues an abend to
terminate the step. Otherwise, Language Environment issues an abend to
terminate the task.

RETCODE
Specifies that the enclave terminates with a nonzero return code.

However, the assembler user exit can modify this behavior as follows:
v If the assembler user exit does not set the CEEAUE_ABND flag to ON

during enclave termination, Language Environment returns to its caller with
a return code and a reason code.

v If the assembler user exit sets the CEEAUE_ABND flag to ON during
enclave termination, Language Environment issues an abend to terminate
the enclave. Language Environment sets the abend and reason code for the
abend to equal the values of assembler user exit parameters, as follows:
– Abend code: Value of the CEEAUE_RETC parameter of the assembler

user exit. If the assembler user exit does not modify the CEEAUE_RETC
value, Language Environment sets an abend code that maps to the
severity of the condition and to the user return code.

– Reason code: Value of the CEEAUE_RSNC parameter of the assembler
user exit.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

ABTERMENC

48 z/OS V2R1.0 Language Environment Customization

z/OS UNIX considerations

In a multithreaded application with ABEND set for ABTERMENC only the
main(IPT) thread will be ABENDed and the application terminated, regardless of
which thread experienced the unhandled condition. All other threads (the
NON-IPT threads) will be terminated normally, including the offending thread, if it
is a NON-IPT thread.

Usage notes

When running with IMS, the ABTERMENC(ABEND) setting ensures that IMS
transactions are rolled back if errors occur in an application that is written in
another Language Environment-enabled language; an abend causes IMS to roll
back any database updates.

When running a batch job, the ABTERMENC(ABEND) setting ensures that a job
step will abend if errors occur in an application that is written in another language.

For more information
v For information about return code calculation CEEAUE_RETC, CEEAUE_ABND,

and assembler user exit CEEBXTA processing, see z/OS Language Environment
Programming Guide.

v For more information about abend codes and a list of abend code values see
z/OS Language Environment Programming Guide.

AIXBLD (COBOL only)

Derivation: Alternate IndeX BuiLD

AIXBLD invokes the access method services (AMS) for VSAM indexed and relative
data sets (KSDS and RRDS) to complete the file and index definition procedures
for COBOL programs.

AIXBLD conforms to the ANSI 1985 COBOL standard.

Non-CICS default
AIXBLD=((OFF),OVR)

CICS default
AIXBLD is ignored under CICS.

Syntax

�� AIXBLD = ((
OFF
ON) ,

OVR
NONOVR) ��

OFF
Does not invoke the access method services for VSAM indexed and relative
data sets.

ON Invokes the access method services for VSAM indexed and relative data sets.
AIXBLD can be abbreviated AIX®.

ABTERMENC

Chapter 6. Language Environment runtime options 49

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

z/OS UNIX considerations

If you also specify the MSGFILE runtime option, the access method servies
messages are directed to the MSGFILE ddname or to the default SYSOUT.

Usage notes

The only valid abbreviations for AIXBLD and NOAIXBLD are AIX and NOAIX,
respectively.

Performance considerations

Running your program under AIXBLD requires more storage, which can degrade
performance. Therefore, use AIXBLD only during application development to build
alternate indexes. Use NOAIXBLD when you have already defined your VSAM
data sets.

ALL31

Derivation: ALL AMODE 31

ALL31 specifies whether an application can run entirely in AMODE 31 or whether
the application has one or more AMODE 24 routines.

This option does not implicitly alter storage, in particular storage managed by the
STACK and HEAP runtime options. However, you must be aware of your
application's requirements for stack and heap storage, because such storage can
potentially be allocated above the line while running in AMODE 24.

It is recommended that ALL31 have the same setting for all enclaves in a process.
Language Environment does not support the invocation of a nested enclave
requiring ALL31(OFF) from an enclave running with ALL31(ON) in non-CICS
environments.

In a multithread environment, Language Environment invokes all start routines,
which are specified in a Language Environment pthread_create() function call, in
AMODE 31. However, for PL/I MTF applications, Language Environment provides
AMODE switching. Thus, the first routine of a task can be in AMODE 24.

Non-CICS default:
ALL31=((ON),OVR)

CICS default
ALL31=((ON),OVR)

AIXBLD

50 z/OS V2R1.0 Language Environment Customization

Syntax

�� ALL31 = ((
ON
OFF) ,

OVR
NONOVR) ��

ON Indicates that no user routines of a Language Environment application are
AMODE 24.

With ALL31(ON) specified:
v AMODE switching across calls to Language Environment common runtime

routines is minimized. For example, no AMODE switching is performed on
calls to Language Environment callable services.

OFF
Indicates that one or more routines of a Language Environment application are
AMODE 24.

With ALL31(OFF) specified:
v AMODE switching across calls to Language Environment common runtime

routines is performed. For example, AMODE switching is performed on calls
to Language Environment callable services.

v In COBOL, EXTERNAL data is allocated in storage below the 16-MB line.

If you use the setting ALL31(OFF), you must also use the setting
STACK(,,BELOW,,,). AMODE 24 routines require that stack storage is below the
16-MB line.

If you use the setting ALL31(OFF), Language Environment preallocates
BELOWHEAP instead of ANYHEAP storage.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS considerations

With ALL31(ON), Language Environment allocates storage for the common anchor
area (CAA) and other control blocks in unrestricted storage.

z/OS UNIX considerations

The ALL31 option applies to the enclave.

Usage notes

When an application is running in an XPLINK environment (that is, either the
XPLINK(ON) runtime option was specified, or the initial program contained at
least one XPLINK-compiled part), the ALL31 runtime option will be forced to ON.
No AMODE 24 routines are allowed in an enclave that uses XPLINK. No message
will be issued to indicate this action. In this case, if a Language Environment
runtime options report is generated using the RPTOPTS runtime option, the ALL31
option will be reported as "Override" under the LAST WHERE SET column.

ALL31

Chapter 6. Language Environment runtime options 51

COBOL considerations
You must specify ALL31(OFF) if your applications contain one of the
following programs:
v A VS COBOL II NORES program
v An OS/VS COBOL program (non-CICS program)
v An AMODE 24 program

Fortran considerations
Use ALL31(ON) if all of the compile units in the enclave have been
compiled with VS FORTRAN Version 1 or Version 2 and there are no
requirements for 24-bit addressing mode. Otherwise, use ALL31(OFF).

Performance considerations

If your application consists entirely of AMODE 31 routines, it might run faster and
use less below-the-line storage with ALL31(ON) than with ALL31(OFF), since
mode switching code is not required.

For more information
v See “STACK” on page 113 for information about the STACK runtime option.

ANYHEAP

ANYHEAP controls the allocation of library heap storage that is not restricted to a
location below the 16-MB line.

The ANYHEAP option is always in effect. If you do not specify ANYHEAP or if
you specify ANYHEAP(0), Language Environment allocates the value of 16K when
a call is made to get heap storage.

Non-CICS default
ANYHEAP=((16K,8K,ANYWHERE,FREE),OVR)

CICS default
ANYHEAP=((4K,4080,ANYWHERE,FREE),OVR)

Syntax

�� ANYHEAP = ((init_size , incr_size ,
ANYWHERE
ANY
BELOW

,
FREE
KEEP �

�) ,
OVR
NONOVR) ��

init_size
Determines the minimum initial size of the anywhere heap storage. This value
can be specified as n, nK, or nM bytes of storage. The actual amount of
allocated storage is rounded up to the nearest multiple of 8 bytes.

incr_size
Determines the minimum size of any subsequent increment to the anywhere

ALL31

52 z/OS V2R1.0 Language Environment Customization

heap area, and is specified in n, nK, or nM bytes of storage. This value is
rounded up to the nearest multiple of 8 bytes.

ANYWHERE|ANY
Specifies that heap storage can be allocated anywhere in storage. If there is no
storage available above the line, storage is acquired below the 16-MB line.

The only valid abbreviation for ANYWHERE is ANY.

BELOW
Specifies that heap storage must be allocated below the 16-MB line in storage
that is accessible to 24-bit addressing.

FREE
Specifies that storage allocated to ANYHEAP increments is released when the
last of the storage is freed.

KEEP
Specifies that storage allocated to ANYHEAP increments is not released when
the last of the storage is freed.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS considerations

Both the initial size and the increment size are rounded up to the nearest multiple
of 8 bytes. If ANYHEAP(0) is specified, the initial HEAP is obtained on the first
use and will be based on the increment size. The maximum initial and increment
size for ANYHEAP under CICS is 1 gigabyte (1024 MB).

The default increment size under CICS is 4080 bytes, rather than 4096 bytes, to
accommodate the 16-byte CICS storage check zone. Without this accommodation,
an extra page of storage is allocated (only when the storage allocation is below the
16MB line).

z/OS UNIX considerations

The ANYHEAP option applies to the enclave.

Performance considerations

The ANYHEAP option improves performance when you specify values that
minimize the number of times the operating system allocates storage. The RPTSTG
runtime generates a report of the storage the application uses while running; you
can use the report numbers to help determine what values to specify.

For more information
v See z/OS Language Environment Programming Guide for more information about

Language Environment heap storage.
v See “RPTSTG” on page 108 for more information about the RPTSTG runtime.
v For more information about heap storage tuning with storage report numbers,

see z/OS Language Environment Programming Guide.

ANYHEAP

Chapter 6. Language Environment runtime options 53

AUTOTASK | NOAUTOTASK (Fortran only)
AUTOTASK specifies whether Fortran Multitasking Facility is to be used by your
program and the number of tasks that are allowed to be active.

Non-CICS default
NOAUTOTASK=(OVR)

CICS default
AUTOTASK is ignored under CICS.

Syntax

��
NOAUTOTASK = (
AUTOTASK = ((loadmod , numtasks) ,

OVR
NONOVR) ��

NOAUTOTASK
Disables the MTF and nullifies the effects of previous specifications of
AUTOTASK parameters.

loadmod
The name of the load module that contains the concurrent subroutines that run
in the subtasks created by MTF.

numtasks
The number of subtasks created by MTF. This value can range from 1 through
99.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

BELOWHEAP

BELOWHEAP controls the allocation of library heap storage that must be located
below the 16MB line. The heap controlled by BELOWHEAP is intended for items
such as control blocks used for I/O.

Non-CICS default
BELOWHEAP=((8K,4K,FREE),OVR)

CICS default
BELOWHEAP=((4K,4080,FREE),OVR)

AUTOTASK | NOAUTOTASK

54 z/OS V2R1.0 Language Environment Customization

Syntax

�� BELOWHEAP = ((init_size , incr_size ,
FREE
KEEP) , �

�
OVR
NONOVR) ��

init_size
Determines the minimum initial size of the below heap storage. This value can
be specified as n, nK, or nM bytes of storage. The actual amount of allocated
storage is rounded up to the nearest multiple of 8 bytes.

incr_size
Determines the minimum size of any subsequent increment to the area below
the 16MB line, and is specified in n, nK, or nM bytes of storage. This value is
rounded up to the nearest multiple of 8 bytes.

FREE
Specifies that storage allocated to BELOWHEAP increments is released when
the last of the storage is freed.

KEEP
Specifies that storage allocated to BELOWHEAP increments is not released
when the last of the storage is freed.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS considerations

The default increment size under CICS is 4080 bytes, rather than 4096 bytes, to
accommodate the 16 bytes CICS storage check zone. Without this accommodation,
an extra page of storage is allocated (only when the storage allocation is below the
16MB line).

z/OS UNIX considerations

The BELOWHEAP option applies to the enclave.

Usage notes

Both the initial size and the increment size are rounded to the nearest multiple of 8
bytes. If you specify BELOWHEAP(0), the initial BELOWHEAP is obtained on the
first use and will be the increment size.

Performance considerations

BELOWHEAP improves performance when you specify values that minimize the
number of times that the operating system allocates storage. The RPTSTG run-time
option generates a report of storage your application uses while running. You can
use its numbers to help determine what values to specify.

BELOWHEAP

Chapter 6. Language Environment runtime options 55

For more information
v See z/OS Language Environment Programming Guide for more information about

Language Environment heap storage.
v See “RPTSTG” on page 108 for more information about the RPTSTG runtime

option.
v For more information about tuning your application with storage report

numbers, see z/OS Language Environment Programming Guide.

CBLOPTS (COBOL only)

Derivation: COBOL OPTionS

CBLOPTS specifies the format of the parameter string on application invocation
when the main program is COBOL. CBLOPTS determines whether run-time
options or program arguments appear first in the parameter string.

You can only specify this option at the system level, region level, or in CEEUOPT.

When you specify the ON suboption, the runtime options and program arguments
specified in the JCL or on the command line are honored in the following order,
which is the reverse of that usually honored by Language Environment:
program arguments/runtime options

CBLOPTS(ON) allows the existing COBOL format of the invocation character
string to continue working (user parameters followed by runtime options).
CBLOPTS(ON) is valid only for applications whose main program is COBOL.

Non-CICS default
CBLOPTS=((ON),OVR)

CICS default
CBLOPTS is ignored under CICS.

Syntax

�� CBLOPTS = ((
ON
OFF) ,

OVR
NONOVR) ��

ON Specifies that program arguments appear first in the parameter string.

OFF
Specifies that runtime options appear first in the parameter string.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

Usage notes

If the string contains only runtime options that are invalid, the entire string is
interpreted as a program argument. For example, if you pass the string

BELOWHEAP

56 z/OS V2R1.0 Language Environment Customization

|

|
|
|

|

|

11/16/1967, 1967 is interpreted as an invalid runtime option. Since there are no
other runtime options, the entire string is interpreted as a program argument.

CBLPSHPOP (COBOL only)

Derivation: COBOL PUSH POP

CBLPSHPOP controls whether CICS PUSH HANDLE and CICS POP HANDLE
commands are issued when a COBOL subroutine is called.

Specify CBLPSHPOP(ON) to avoid compatibility problems when calling COBOL
subroutines that contain CICS CONDITION, AID, or ABEND condition handling
commands.

You can set the CBLPSHPOP run-time option on an enclave basis using CEEUOPT.

CBLPSHPOP is ignored in non-CICS environments.

Non-CICS default
n/a

CICS default
CBLPSHPOP=((ON),OVR)

Syntax

�� CBLPSHPOP = ((
ON
OFF) ,

OVR
NONOVR) ��

ON Automatically issues the following when a COBOL subroutine is called:
v An EXEC CICS PUSH HANDLE command as part of the routine

initialization.
v An EXEC CICS POP HANDLE command as part of the routine termination.

OFF
Does not issue CICS PUSH HANDLE and CICS POP HANDLE commands on
a call to a COBOL subroutine.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS considerations

If your application calls COBOL subroutines under CICS, performance is better
with CBLPSHPOP(OFF) than with CBLPSHPOP(ON).

For more information

For more information about CEEUOPT, see z/OS Language Environment
Programming Guide.

CBLOPTS

Chapter 6. Language Environment runtime options 57

CBLQDA (COBOL Only)

Derivation: COBOL QSAM Dynamic Allocation

CBLQDA controls COBOL QSAM dynamic allocation on an OPEN statement.

CBLQDA does not affect dynamic storage allocation for the message file specified
in MSGFILE or the Language Environment formatted dump file (CEEDUMP).

Non-CICS default:
CBLQDA=((OFF),OVR)

CICS default:
CBLQDA is ignored under CICS.

Syntax

�� CBLQDA = ((
OFF
ON) ,

OVR
NONOVR) ��

OFF
Specifies that COBOL QSAM dynamic allocation is not permitted.

ON Specifies that COBOL QSAM dynamic allocation is permitted. ON conforms to
the 1985 COBOL Standard.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

z/OS UNIX considerations

Using CBLQDA(OFF) under z/OS prevents a temporary data set from being
created in case there is a misspelling in your JCL. If you specify CBLQDA(ON) and
have a misspelling in your JCL, Language Environment creates a temporary file,
writes to it, and then z/OS deletes it. You receive a return code of 0 but no output.

CEEDUMP

Derivation: Common Execution Environment DUMP

The CEEDUMP runtime option is used to specify options to control the processing
of the Language Environment dump report CEEDUMP.

Non-CICS default
CEEDUMP=((60,SYSOUT=*,FREE=END,SPIN=UNALLOC),OVR)

CICS default
CEEDUMP=((60,SYSOUT=*,FREE=END,SPIN=UNALLOC),OVR)

AMODE 64 default
CEEDUMP=((60,SYSOUT=*,FREE=END,SPIN=UNALLOC),OVR)

CBLQDA

58 z/OS V2R1.0 Language Environment Customization

Syntax

�� CEEDump = ((page_len , �

� SYSOUT= *
class
(class)
(, ,)

class form-name

,
FREE=END
FREE=CLOSE , �

�
SPIN=UNALLOC
SPIN=NO) ,

OVR
NONOVR) ��

page_len
Specifies the number of lines that a CEEDUMP report contains on each page.
The number specified by page_len must be 0 or a whole number greater than 9.
A value of 0 indicates that the dump report contains no page breaks. The
default is 60.

The maximum length of page_len is limited to 9 digits.

SYSOUT=
Specifies SYSOUT attributes for a dynamically allocated CEEDUMP DD.
SYSOUT has three possible parameters, of which two can be specified.

class
Specifies a value that is one character in length. Valid values are A through
Z, 0 through 9, and *. A SYSOUT class must not be specified inside
quotation marks.
v If class is not specified, it defaults to * for the dynamically allocated

CEEDUMP.
v If dynamic allocation for the specified SYSOUT class fails, SYSOUT=* is

set and message CEE3785I is issued.

writer-name
This parameter is not supported and must be omitted.

form-name
Provides a name assigned to an output form for dynamically allocated
CEEDUMP DD. form-name is made up of 1-4 alphanumeric or national
($,#,@) characters according to JCL rules. If you want to allow separation of
CEEDUMP output from other SYSOUT output for the same class in the JES
spool, specify a form in addition to a class for a dynamically allocated
CEEDUMP.

FREE=
Specifies that dynamically allocated CEEDUMPs have one of the following JCL
DD attributes:

END
The FREE=END DD attribute requests that the system unallocate the data
set at the end of the last step that references the data set. This is the
default value for this suboption.

CEEDUMP

Chapter 6. Language Environment runtime options 59

CLOSE
The FREE=CLOSE DD attribute requests that the system unallocate the
data set when it is closed. Code the FREE=CLOSE suboption along with
SYSOUT=class to make CEEDUMP a spinning data set.

SPIN=
Specifies that dynamically allocated CEEDUMPs have one of the following JCL
DD attributes:

UNALLOC
The SPIN=UNALLOC DD attribute indicates that the system needs to
make the SYSOUT data set available for processing immediately when it is
unallocated. This is the default value for this suboption.

NO The SPIN=NO DD attribute indicates that the system needs to make the
SYSOUT data set available for processing as a part of the output at the end
of the job, regardless of when the data set is unallocated.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS considerations

The SYSOUT=, FREE=, and SPIN= suboptions do not affect the CEEDUMP report
taken under CICS

z/OS UNIX considerations

The SYSOUT=, FREE= and SPIN= suboptions do not affect the CEEDUMP report
taken in a z/OS UNIX file system.

Usage notes
v If a CEEDUMP DD card is explicitly coded in a job step, Language Environment

ignores any SYSOUT class, form-name, FREE, or SPIN specified in the CEEDUMP
runtime.

v The SYSOUT=class suboption is overridden by _CEE_DMPTARG when this
environment variable is used at the same time to indicate the SYSOUT class.

v The page_len suboption is overridden by the CEE3DMP PAGESIZE option. For
more information about CEE3DMP, see z/OS Language Environment Programming
Reference.

v Language Environment supports the use of a CEEDUMP DDNAME dynamically
allocated with the XTIOT, UCB nocapture, or DSAB-above-the-line options
specified in the SVC99 parameters (S99TIOEX, S99ACUCB, S99DSABA flags).

z/OS UNIX considerations
v CEEDUMP=((60,SYSOUT=(C),FREE=END,SPIN=UNALLOC),OVR)

The example changes the default CEEDUMP settings so that the dynamically
allocated CEEDUMP output will be sent to sysout class 'C'.

v CEEDUMP=((0,SYSOUT=*,FREE=END,SPIN=UNALLOC),OVR)
The example changes the default CEEDUMP CEEDOPT settings so that the
CEEDUMP pagelen is 0. This suppresses all page breaks in all the CEEDUMP
reports.

CEEDUMP

60 z/OS V2R1.0 Language Environment Customization

CHECK (COBOL only)

This option applies to Enterprise COBOL V4R2 and earlier releases. Starting with
Enterprise COBOL V5R1, if the compile time option SSRANGE is specified, range
checks are generated by the compiler and the checks are always executed at
runtime.

CHECK flags checking errors within an application. In COBOL, index, subscript,
and reference modification ranges are checking errors. COBOL is the only language
that uses the CHECK option.

Non-CICS default
CHECK=((ON),OVR)

CICS default
CHECK=((ON),OVR)

Syntax

�� CHECK = ((
ON
OFF) ,

OVR
NONOVR) ��

ON Specifies that runtime checking is performed.

OFF
Specifies that runtime checking is not performed.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

Usage notes

CHECK(ON) has no effect if NOSSRANGE was in effect at compile time.

Performance considerations

If your COBOL program was compiled with SSRANGE, and you are not testing or
debugging an application, performance improves when you specify CHECK(OFF).

COUNTRY

COUNTRY sets the country code, which affects the date and time formats, the
currency symbol, the decimal separator, and the thousands separator, based on a
specified country. COUNTRY does not change the default settings for the language
currency symbol, decimal point, thousands separator, and date and time picture
strings set by CEESETL or setlocale(). COUNTRY affects only the Language
Environment NLS services, not the Language Environment locale callable services.

You can set the country value using the runtime option COUNTRY or the callable
service CEE3CTY.

CHECK

Chapter 6. Language Environment runtime options 61

|
|
|
|

The COUNTRY setting affects the format of the date and time in the reports
generated by the RPTOPTS and RPTSTG runtime options.

Non-CICS default
COUNTRY=((US),OVR) with US signifying the United States.

CICS default
COUNTRY=((US),OVR) with US signifying the United States.

Syntax

�� COUNTRY = ((country_code) ,
OVR
NONOVR) ��

country_code
A 2-character code that indicates to Language Environment the country on
which to base the default settings.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

z/OS UNIX considerations

The COUNTRY option sets the initial value for the enclave.

Usage notes

If you specify an unsupported country_code, Language Environment accepts the
value and issues an informational message. When you specify an unavailable
country code, you must provide a message template for that code. CEEUOPTand
CEEROPT permit the specification of an unavailable country code, but give a
return code of 4 and a warning message.

C/C++ considerations
Language Environment provides locales that are used in Language
Environment and C++ to establish default formats for the locale-sensitive
functions and locale callable services, such as date and time formatting,
sorting, and currency symbols. To change the locale, you can use the
setlocale() library function or the CEESETL callable service.

The settings of CEESETL or setlocale() do not affect the setting of the
COUNTRY runtime option. COUNTRY affects only Language Environment
NLS and date and time services. setlocale() and CEESETL affect only
C/C++ locale-sensitive functions and Language Environment locale
callable services.

To ensure that all settings are correct for your country, use COUNTRY and
either CEESETL or setlocale().

For more information
v For more information about the CEE3CTY and the CEESETL callable services,

see z/OS Language Environment Programming Reference.

COUNTRY

62 z/OS V2R1.0 Language Environment Customization

|
|
|
|
|

v For more information about setlocale(), see z/OS XL C/C++ Programming Guide.
v For a list of countries and their codes, see “National language support country

codes for Language Environment” on page 271 and z/OS Language Environment
Programming Reference.

DEBUG (COBOL only)

DEBUG activates the COBOL batch debugging features specified by the USE FOR
DEBUGGING declarative.

Non-CICS default
DEBUG=((OFF),OVR)

CICS default
DEBUG=((OFF),OVR)

Syntax

�� DEBUG = ((
OFF
ON) ,

OVR
NONOVR) ��

OFF
Suppresses the COBOL batch debugging features.

ON Activates the COBOL batch debugging features.

You must have the WITH DEBUGGING MODE clause in the environment
division of your application in order to compile the debugging sections.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

Performance considerations

Because DEBUG(ON) gives worse runtime performance than DEBUG(OFF), use it
only during application development or debugging.

For more information

For more information about the USE FOR DEBUGGING declarative, see the
appropriate version of the COBOL programming guide in the COBOL library at
Enterprise COBOL for z/OS library (http://www-01.ibm.com/support/
docview.wss?uid=swg27036733).

DEPTHCONDLMT

Derivation: DEPTH of nested CONDition LiMiT

COUNTRY

Chapter 6. Language Environment runtime options 63

|
|
|
|

http://www-01.ibm.com/support/docview.wss?uid=swg27036733
http://www-01.ibm.com/support/docview.wss?uid=swg27036733

DEPTHCONDLMT specifies the extent to which conditions can be nested. Figure 1
illustrates the effect of DEPTHCONDLMT(3) on condition handling. The initial
condition and two nested conditions are handled in this example. The third nested
condition is not handled.

Non-CICS default
DEPTHCONDLMT=((10),OVR)

CICS default
DEPTHCONDLMT=((10),OVR)

Syntax

�� DEPTHCONDLMT = ((limit) ,
OVR
NONOVR) ��

limit
An integer of 0 or greater value. It is the depth of condition handling allowed.
An unlimited depth of condition handling is allowed if you specify 0. A 1
value specifies handling of the initial condition, but does not allow handling of
nested conditions that occur while handling a condition. With a 5 value, for
example, the initial condition and four nested conditions are processed, but
there can be no further nesting of conditions.

If the number of nested conditions exceeds the limit, the application terminates
with abend U4087.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

z/OS UNIX consideration

The DEPTHCONDLMT option sets the limit for how many nested synchronous
conditions are allowed for a thread. Asynchronous signals do not affect
DEPTHCONDLMT.

Error

(level 1)

User-written

condition handler

Another error

(level 2)

User-written

condition handler

User-written

condition handler

Not handled

Another error

(level 3)

Another error

(level 4)

Figure 1. Effect of DEPTHCONDLMT(3) on condition handling

DEPTHCONDLMT

64 z/OS V2R1.0 Language Environment Customization

Usage notes

PL/I considerations
DEPTHCONDLMT(0) provides PL/I compatibility.

PL/I MTF considerations
In a PL/I MTF application, DEPTHCONDLMT sets the limit for how many
nested synchronous conditions are allowed for a PL/I task. If the number
of nested conditions exceeds the limit, the application terminates
abnormally.

For more information

For more information about nested conditions, see z/OS Language Environment
Programming Guide.

DYNDUMP

Derivation: DYNamic DUMP

The DYNDUMP runtime option provides a way to obtain dynamic dumps of user
applications that would ordinarily be lost due to the absence of a SYSMDUMP,
SYSUDUMP, or SYSABEND DD statement.

The dynamic dump is written when:
v Certain types of ABENDs occur. You can select whether a U4039 ABEND or

other U40xx ABEND types can cause a dump to be collected.
v The first suboption defines the high-level qualifier of the dynamic dump data set

name.
v The second suboption controls when dynamic dumps are taken for U4039

ABENDS.
v The third suboption controls when dynamic dumps are taken for other U40xx

ABENDS.

The dump is written to a z/OS data set. It cannot be part of a z/OS UNIX file
system.

Non-CICS default
DYNDUMP=((*USERID,NODYNAMIC,TDUMP),OVR)

CICS default
DYNDUMP is ignored.

AMODE 64 default
DYNDUMP=((*USERID,NODYNAMIC,TDUMP),OVR)

DEPTHCONDLMT

Chapter 6. Language Environment runtime options 65

Syntax

�� DYNdump = ((
*USERID
hlq
*TSOPREFIX
*TSOPRE
*USERID.SEG1.SEG2
*TSOPRE.SEG1.SEG2
*TSOPREFIX.SEG1.SEG2

,
NODYNAMIC
DYNAMIC
FORCE
BOTH

, �

�
TDUMP
NOTDUMP) ,

OVR
NONOVR) ��

hlq
Is a high-level qualifier for the dynamic dump data set to be created. This is
concatenated with a time stamp consisting of the Julian day and the time of
the dump. The job name or PID can also be part of the name if the combined
length of hlq and the time stamp is 35 characters or less.

hlq is limited to 26 characters including dot (.) separators.hlq allows three
keywords:

*USERID
Tells Language Environment to use the user ID associated with the job step
task as the high-level qualifier for the dynamic dump data set.

*TSOPREFIX or *TSOPRE
Tells Language Environment to use the TSO/E prefix. Each keyword may
be followed by additional characters to be used to create the data set name.
When appended to the user ID or the TSO prefix, they form the hlq used
when creating the dump data set.

Restriction: The prefix is only valid in a TSO/E environment. If the prefix
is not available, the user ID is used.

The data set name is limited to 44 characters. If the combined length of hlq and
the time stamp is 35 characters or less, the job name or PID is added to the
data set name.

If the system is using multilevel security, the SECLABEL is used as the second
qualifier. If hlq contains multiple qualifiers, only the first is used, followed by
the SECLABEL. The format of the data set name is:
v When the application is not exec()ed and not multilevel security:

hlq.Djjj.Thhmmsst.jobname
v When the application is exec()ed and not multilevel security:

hlq.Djjj.Thhmmsst.Pppppppp
v When the application is multilevel security and not exec()ed:

hlq.MLS-level.Djjj.Thhmmsst.jobname
v When the application is both multilevel security and exec()ed:

hlq.MLS-level.Djjj.Thhmmsst.Pppppppp

For U4039 ABENDS
The following suboptions are used for U4039 ABENDS only:

DYNDUMP

66 z/OS V2R1.0 Language Environment Customization

DYNAMIC
Language Environment creates a dynamic dump automatically when the
application has not already specified one of the dump ddnames, (for
example, SYSUDUMP).

NODYNAMIC
Language Environment does not create a dynamic dump if no dump DD
names are specified.

FORCE
Language Environment always creates a dynamic dump even if other
dump DD names have been specified. The SYSnnnnn DD card is ignored if
it exists. FORCE should not be used as the default.

BOTH
Language Environment creates a dynamic dump and, if a SYSnnnnn DD
name exists, a dump is also written to the DD. BOTH should not be used
as the default.

For U40xx ABENDS
The following suboptions are used for other U40xx ABENDS only. Existing
SYSnnnnn DD statements are also honored.

TDUMP
Language Environment creates a dynamic dump automatically.

NOTDUMP
Language Environment does not create a dynamic dump.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

Usage notes
v Suggestions:

– Set up an hlq to which everyone can write.
– Do not use FORCE or BOTH as the default for the U4039 ABENDS.

v The DYNDUMP runtime option is ignored under CICS.
v When an ABEND occurs during Language Environment initialization, the

dynamic dump is not created if runtime options have not been processed yet.
v When the dynamic dump fails, messages are written to the operator's console or

the job log (for batch). These are written by the IEATDUMP system service, by
Language Environment, or by RACF®.

v When an ABEND has been issued without the DUMP option, no dump is
generated.

v When Language Environment terminates with a U4038 abend, the U4038 abend
is issued without the DUMP option. Therefore, no system dump is generated,
and DYNDUMP does not collect a dump for this ABEND.

v The job name is taken from the JOBNAME system symbol.
– A dump for a TSO application uses the user ID of the JOBNAME.
– For a batch job, JOBNAME is taken from the JOB card in the JCL.
– In the shell, JOBNAME is the user ID with a suffix.

Examples
v DYNDUMP=((smith,FORCE,NOTDUMP),OVR)

DYNDUMP

Chapter 6. Language Environment runtime options 67

A dynamic dump is generated only for ABEND code U4039. Other SYSnnnnn
DD cards are ignored. Other ABENDs might cause a dump to be created if a
SYSnnnnn DD card exists. The dynamic dump data set name will be similar to
SMITH.D012.T112245.JOB11.

v DYNDUMP=((smith,DYNAMIC,TDUMP),OVR)
A dynamic dump is created if no SYSnnnnn is specified and the ABEND code is
U4039. The data set name will be similar to SMITH.D117.T235900.JOBZ2.

v DYNDUMP=((*TSOPREFIX,NODYNAMIC,TDUMP),OVR)
A dynamic dump is generated only for ABEND code U40xx. The data set name
will be similar to SMITH.D287.T234560.JOBZ2.

v DYNDUMP=((*USERID,NODYNAMIC,TDUMP),OVR)
A dynamic dump for a U4039 ABEND is taken to SMITH.D109,T234512.JOBZ3.

v DYNDUMP=((*USERID.HOT.DUMPS,NODYNAMIC,TDUMP),OVR)
v DYNDUMP=((*TSOPRE.A1234567.B1234567,NODYNAMIC,TDUMP),OVR)

ENVAR

Derivation: ENvironmental VARiables

ENVAR sets the initial values for the environment variables that can later be
accessed or changed using the C functions getenv(), putenv, setenv, and clearenv.

The set of environment variables established by the end of run-time option
processing reflects all the various sources where environment variables are
specified, rather than just the one source with the highest precedence. However, if
a setting for the same environment variable is specified in more than one source,
the setting with the highest precedence is used.

The system() function can be used to create a new environment. Environment
variables in effect at the time of the POSIX system() call are copied to the new
environment. The copied environment variables are treated the same as those
found in the ENVAR run-time option on the command level.

When you specify the RPTOPTS run-time option, the output for the ENVAR
runtime option contains a separate entry for each source where ENVAR was
specified with the environment variables from that source.

Non-CICS default
ENVAR=((''),OVR)

CICS default
ENVAR=((''),OVR)

AMODE 64 default
ENVAR=((''),OVR)

DYNDUMP

68 z/OS V2R1.0 Language Environment Customization

Syntax

�� ENVAR = ((�

,

string) ,
OVR
NONOVR) ��

string
Is of the form name=value, where name and value are sequences of characters
that do not contain null bytes or equal signs. The string name is an
environment variable, and value is its value.

Blanks are significant in both the name= and the value characters.

You can enclose the string in either single or double quotation marks to
distinguish it from other strings. The string cannot contain DBCS characters. It
can have a maximum of 250 characters.

You can specify multiple environment variables, separating the name=value
pairs with commas. Quotation marks are required when specifying multiple
variables.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

z/OS UNIX considerations

The environment variables apply to the enclave.

Usage notes

The ENVAR option functions independently of the POSIX runtime option setting.

C considerations
An application can access the environment variables using C function
getenv or the POSIX variable environ, which is defined as:

extern char **environ;

Access through getenv is recommended, especially in a multithread
environment.

HLLs can access the environment variables through standard C functions
at enclave initialization and throughout the application's run. Access
remains until the HLL returns from enclave termination. Environment
variables that are propagated across the EXEC override those established
by the ENVAR option. getenv serializes access to the environment
variables.

C++ considerations
An application can access the environment variables using C function
getenv.

HLLs can access the environment variables through standard C functions
at enclave initialization and throughout the application's run.

ENVAR

Chapter 6. Language Environment runtime options 69

For more information

For more information about the RPTOPTS runtime option, see “RPTOPTS” on page
107.

ERRCOUNT

Derivation: ERRor COUNTer

ERRCOUNT specifies how many conditions of severity 2, 3, and 4 can occur per
thread before the enclave terminates abnormally. After the number specified in
ERRCOUNT is reached, no further Language Environment condition management,
including CEEHDLR management, is honored.

Non-CICS default
ERRCOUNT=((0),OVR)

CICS default
ERRCOUNT=((0),OVR)

Syntax

�� ERRCOUNT = ((number) ,
OVR
NONOVR) ��

number
The number of severity 2, 3, and 4 conditions per individual thread that can
occur while this enclave is running. If the number of conditions exceeds
number, the thread and enclave terminate abnormally.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

z/OS UNIX considerations

Synchronous signals that are associated with a condition of severity 2, 3, and 4 do
not affect ERRCOUNT. Asynchronous signals do not affect ERRCOUNT.

Usage notes
v ERRCOUNT(0) means that the Language Environment condition handler will

not terminate the task regardless of the severity 2, 3, or 4 conditions that are
generated. This setting allows previously existing infinite loop or runaway task
conditions to persist.

v ERRCOUNT only applies when conditions are handled by a user condition
handler, signal catcher, PL/I on-units, or a language-specific condition handler.
Language Environment does not count severity 0 or 1 messages. However, the
COBOL specific runtime library does count its severity 1 (warning) messages.
When the limit of 256 IGZnnnnW messages is reached, the COBOL library issues

ENVAR

70 z/OS V2R1.0 Language Environment Customization

message IGZ0041W, which indicates that the limit of warning messages was
exceeded. Any further COBOL warning messages are suppressed.

C++ considerations
The ERRCOUNT option sets the threshold for the total number of severity
2, 3, and 4 synchronous conditions that can occur. Note that each thrown
object is considered a severity 3 condition. However, this condition does
not affect ERRCOUNT.

PL/I considerations
ERRCOUNT(0) is recommended for applications containing PL/I. Some
conditions, such as ENDPAGE, can occur many times in an application.
Use ERRCOUNT(0) to avoid unnecessary termination of your application.

PL/I MTF considerations
In a PL/I MTF application, ERRCOUNT sets the threshold for the total
number severity 2, 3, and 4 synchronous conditions that can occur for each
task. If the number of conditions exceeds the threshold, the application
terminates normally.

For more information
v For a description of condition severities, see z/OS Language Environment

Programming Guide.
v For more information about the CEEHDLR callable service, or the CEESGL

callable service, see z/OS Language Environment Programming Reference.
v See z/OS Language Environment Programming Guide for more information about

the facility ID part of messages.

ERRUNIT (Fortran only)
Derivation: ERRor UNIT

ERRUNIT identifies the unit number to which runtime error information is to be
directed. This option is provided for compatibility with the VS Fortran version 2
runtime.

Non-CICS default
ERRUNIT=((6),OVR)

CICS default
ERRUNIT is ignored under CICS.

Syntax

�� ERRUNIT = ((number) ,
OVR
NONOVR) ��

number
A valid unit number in the range 0-99. The Language Environment message
file and the file connected to the Fortran error message unit are the same.

OVR
Specifies that the option can be overridden.

ERRCOUNT

Chapter 6. Language Environment runtime options 71

|
|

NONOVR
Specifies that the option cannot be overridden.

FILEHIST (Fortran only)
Derivation: FILE HISTory

FILEHIST specifies whether to allow the file definition of a file referred to by a
ddname to be changed during runtime. This option is intended for use with
applications called by Fortran that reallocate Fortran's supplied DD names.

Non-CICS default
FILEHIST=((ON),OVR)

CICS default
FILEHIST is ignored under CICS.

Syntax

�� FILEHIST = ((
ON
OFF) ,

OVR
NONOVR) ��

ON Causes the history of a file to be used in determining its existence. It checks to
see whether:
v The file was ever internally opened (in which case it exists)
v The file was deleted by a CLOSE statement (in which case it does not exist).

OFF
Causes the history of a file to be disregarded in determining its existence.

If you specify FILEHIST(OFF), you should consider:
v If you change file definitions during runtime, the file is treated as if it

were being opened for the first time. Before the file definition can be
changed, the existing file must be closed.

v If you do not change file definitions during runtime, you must use
STATUS='NEW' to re-open an empty file that has been closed with
STATUS='KEEP', because the file does not appear to exist to Fortran.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

FILETAG (C/C++ only)

Derivation: FILE TAGging

FILETAG controls automatic text conversion and automatic file tagging for z/OS
UNIX files. It activates the automatic file tagging, on the first write, of new or
empty files open with fopen() or freopen(), or upon the first I/O to a pipe created
with popen().

ERRUNIT

72 z/OS V2R1.0 Language Environment Customization

Recommendation: To use the runtime option properly, be familiar with the concept
of file tagging, automatic conversion, and the CCSID. See z/OS XL C/C++
Programming Guide for more information.

Non-CICS default
FILETAG=((NOAUTOCVT,NOAUTOTAG),OVR)

CICS default
FILETAG is ignored under CICS.

AMODE 64 default
FILETAG=((NOAUTOCVT,NOAUTOTAG),OVR)

Syntax

�� FILETAG = ((
NOAUTOCVT
AUTOCVT ,

NOAUTOTAG
AUTOTAG) ,

OVR
NONOVR) ��

NOAUTOCVT
Disables the following behavior:

AUTOCVT
Enables automatic text conversion for untagged files opened using fopen() or
freopen(). The conversion for an untagged file will be from the program
CCSID to the EBCDIC CCSID as specified by the _BPXK_CCSIDS environment
variable. If the environment variable is unset, a default CCSID pair is used. See
z/OS XL C/C++ Programming Guide for more information about the
_BPXK_CCSIDS environment variable.

Restriction: Automatic conversion for untagged UNIX files can only take place
between IBM-1047 and ISO8859-1 code sets. Other CCSID pairs are not
supported. By default, automatic conversion for untagged files applies only to
files opened in text mode. An untagged file opened in binary mode is not
converted automatically. You can control this by using the
_EDC_AUTOCVT_BINARY environment variable. For more information about
the _EDC_AUTOCVT_BINARY environment variable, see z/OS XL C/C++
Programming Guide.

This suboption also indicates that the standard streams should be enabled for
automatic text conversion to the EBCDIC IBM-1047 code page when they refer
to an untagged terminal file (tty).

This suboption does not affect untagged files that are automatically tagged by
the AUTOTAG suboption. A file that is automatically tagged is already enabled
for automatic text conversion.

Requirement: The automatic text conversion is performed only if one of the
following is also true:
v The _BPXK_AUTOCVT environment variable value is set to ON.
v The _BPXK_AUTOCVT environment variable is unset and AUTOCVT(ON)

was specified in the active BPXPRMxx member on your system.

For more information about the _BPXK_AUTOCVT environment variable, see
z/OS XL C/C++ Programming Guide.

NOAUTOTAG
Deactivates the automatic tagging of new or empty files.

FILETAG

Chapter 6. Language Environment runtime options 73

|
|
|

AUTOTAG
Activates the automatic file tagging, on the first write, of new or empty files
open with fopen(), freopen(), or popen().

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

z/OS UNIX considerations

FILETAG applies to the enclave. Nested enclaves do not inherit the setting of this
runtime option. Files that are opened in the nested enclave are not affected.

Usage notes
v Avoid these situations:

– Setting this runtime option at the system or region levels.
– Setting this runtime option using _CEE_RUNOPTS in a default profile for the

UNIX shell users.
– Exporting _CEE_RUNOPTS that specifies this runtime option. It can cause

unexpected behaviors for the unknowing user or application.
v The application programmer should define this runtime option with the

assumption that the application is coded to behave based on the option's setting.
v The application programmer should specify this runtime option at compile time

using #pragma runopts or at bind using a CEEUOPT CSECT that has been
previously created.

v The application user should not override this runtime option because it can
change the expected behavior of the application.

v The default CCSID pair is (1047,819), where 1047 indicates the EBCDIC
IBM-1047 code page and 819 indicates the ASCII ISO8859-1 code page.

v Automatic text conversion is enabled for the standard streams only when the
application has been exec()ed, for example, when the UNIX shell gives control
to a program entered on the command line, and the standard stream file
descriptors are already open, untagged and associated with a tty.

v For the UNIX shell-owned standard streams that are redirected at program
execution time, the shell includes added environment variables that control
whether the redirected streams are tagged. See z/OS UNIX System Services
Command Reference for more information.

v Automatic tagging for a file is done at first write by the LFS. The CCSID used
for the tag is the program CCSID of the current thread. Both text and binary
files are tagged.

v When FILETAG(,AUTOTAG) is in effect, fopoen() or freopen() of a file fails if it
cannot determine whether the file exists or if it cannot determine the size.

HEAP

HEAP controls the allocation of the initial heap, controls allocation of additional
heaps created with the CEECRHP callable service, and specifies how that storage is
managed.

Heaps are storage areas where you allocate memory for user-controlled
dynamically allocated variables such as:

FILETAG

74 z/OS V2R1.0 Language Environment Customization

v C variables allocated as a result of the malloc(), calloc(), and realloc()
functions

v COBOL WORKING-STORAGE data items
v PL/I variables with the storage class CONTROLLED, or the storage class

BASED

The HEAP option is always in effect. If you do not specify HEAP, Language
Environment allocates the default value of heap storage when a call is made to get
heap storage.

Language Environment does not allocate heap storage until the first call to get
heap storage is made. You can get heap storage by using language constructs or by
making a call to CEEGTST.

Non-CICS default
HEAP=((32K,32K,ANYWHERE,KEEP,8K,4K),OVR)

CICS default
HEAP=((4K,4080,ANYWHERE,KEEP,4K,4080),OVR)

Syntax

�� HEAP = ((init_size , incr_size ,
ANYWHERE
ANY
BELOW

,
KEEP
FREE , �

� initsz24 , incrsz24) ,
OVR
NONOVR) ��

init_size
Determines the minimum initial allocation of heap storage. Specify this value
as n, nK, or nM bytes of storage. The actual amount of allocated storage is
rounded up to the nearest multiple of 8 bytes.

incr_size
Determines the minimum size of any subsequent increment to the heap
storage. Specify this value as n, nK, or nM bytes of storage. The actual amount
of allocated storage is rounded up to the nearest multiple of 8 bytes.

ANYWHERE|ANY
Specifies that you can allocate heap storage anywhere in storage. If there is no
available storage above the line, storage is acquired below the 16 MB line.

The only valid abbreviation of ANYWHERE is ANY.

BELOW
Specifies that you must allocate heap storage below the 16-MB line in storage
that is accessible to 24-bit addressing.

KEEP
Specifies that storage allocated to HEAP increments is not released when the
last of the storage is freed.

FREE
Specifies that storage allocated to HEAP increments is released when the last of
the storage is freed.

HEAP

Chapter 6. Language Environment runtime options 75

initsz24
Determines the minimum initial size of the heap storage that is obtained when
an application running AMODE 24 (ALL31(OFF)) requests storage and
ANYWHERE has been specified. An AMODE 31 application running with
ALL31(OFF) uses the regular heap allocation size. Specify initsz24 as n, nK, or
nM number of bytes. The amount of storage is rounded up to the nearest
multiple of 8 bytes.

initsz24 applies to the initial heap and other heaps created with the CEECRHP
callable service that are not allocated strictly below the 16-MB line.

incrsz24
Determines the minimum size of any subsequent increment to the heap area
that is obtained when an application running AMODE 24 (ALL31(OFF))
requests storage and ANYWHERE has been specified. An AMODE 31
application running with ALL31(OFF) uses the regular heap allocation size.
Specify incrsz24 as n, nK, or nM number of bytes. The amount of storage is
rounded up to the nearest multiple of 8 bytes.

The incrsz24 applies to the initial heap and other heaps created with the
CEECRHP callable service that are not allocated strictly below the 16-MB line.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS considerations

Both the initial HEAP allocation and HEAP increments are rounded to the next
higher multiple of 8 bytes (not 4K bytes). If HEAP(0) is specified the initial HEAP
is obtained on the first use and will be based on the increment size.

If HEAP(,,ANYWHERE,,,) is in effect, the maximum size of a heap segment is 1
gigabyte (1024 MB). These restrictions are subject to change from one release of
CICS to another.

The default increment size under CICS is 4080 bytes, rather than 4096 bytes, to
accommodate the 16 bytes CICS storage check zone. Without this accommodation,
an extra page of storage is allocated (only when the storage allocation is below the
16MB line).

z/OS UNIX considerations

The HEAP option applies to the enclave.

Under z/OS UNIX, heap storage is managed at the thread level using
pthread_key_create, pthread_setspecific, and pthread_getspecific.

Usage notes
v Applications running in AMODE 24 that request heap storage get the storage

below the 16 MB line regardless of the setting of ANYWHERE | BELOW.
v For PL/I, the only case in which storage is allocated above the line is when all

of the following conditions exist:
– The user routine requesting the storage is running in 31-bit addressing mode.
– HEAP(,,ANY,,,) is in effect.
– The main routine is AMODE 31.

HEAP

76 z/OS V2R1.0 Language Environment Customization

AMODE(31) and RMODE(31) are the default settings for Enterprise PL/I
applications. To run an application in AMODE(24) you must:
1. Compile all PL/I source with the compiler option NORENT
2. Link with the SIBMAM24 data set concatenated in front of the SCEELKED

data set
3. Run with the Language Environment runtime option

ALL31(OFF),HEAP(,,BELOW,,,) and STACK(,,BELOW,,,)

COBOL considerations
You can use the HEAP option to provide function similar to the VS
COBOL II space management tuning table.

PL/I MTF considerations
In a PL/I MTF application, HEAP specifies the heap storage allocation and
management for a PL/I main task.

Performance considerations

To improve performance, use the storage report numbers generated by the
RPTSTG runtime option as an aid in setting the initial and increment size for
HEAP.

For more information
v See z/OS Language Environment Programming Guide for more information about

Language Environment heap storage or about specifying runtime options at
application invocation.

v For more information about the CEECRHP callable service, or the CEEGTST
callable service, see z/OS Language Environment Programming Reference.

v See “RPTSTG” on page 108 for more information about the RPTSTG runtime
option.

HEAP64 (AMODE 64 only)

HEAP64 controls the allocation of user heap storage for AMODE 64 applications
and specifies how that storage is managed.

Heaps are storage areas that contain user-controlled dynamically allocated variables
or data. An example is C data allocated as a result of the malloc(), calloc(), and
realloc() functions.

AMODE 64 default
HEAP64=((1M,1M,KEEP,32K,32K,KEEP,4K,4K,FREE),OVR)

Syntax

�� HEAP64 = ((init64 , incr64 ,
KEEP
FREE
FILL

, init31 , incr31 �

� ,
KEEP
FREE , init24 , incr24 ,

FREE
KEEP) ,

OVR
NONOVR) ��

HEAP

Chapter 6. Language Environment runtime options 77

init64
Determines the initial allocation of heap storage obtained above the 2G bar.
Specify this value as nM bytes of storage. If a value of 0 or less is specified, the
default is used.

incr64
Determines the minimum size of any subsequent increment to the user heap
storage obtained above the 2G bar. Specify this value as nM bytes of storage. If
a value less than 0 is specified, the default is used.

KEEP
Specifies that an increment to user heap storage is not released when the last
of the storage within that increment is freed.

FREE
Specifies that an increment to user heap storage is released when the last of the
storage within that increment is freed.

FILL
Specifies that an increment to user heap storage is released when the last of the
storage within that increment is freed. In addition, when a storage request
results in a new increment segment being created which is greater than the
incr64 size, the entire segment is filled by the single storage request. This
option is available only for user heap storage above the bar.

init31
Determines the minimum initial size of user heap storage that is obtained
above the 16MB line and below the 2GB bar. This value can be specified as n,
nK, or nM number of bytes. If a value of 0 or less is specified, the default is
used. The amount of allocated storage is rounded up to the nearest multiple of
8 bytes.

incr31
Determines the minimum size of any subsequent increment to user heap
storage that is obtained above the 16MB line and below the 2GB bar. This
value can be specified as n, nK, or nM number of bytes. If a value less than 0
is specified, the default is used. The amount of allocated storage is rounded up
to the nearest multiple of 8 bytes.

init24
Determines the minimum initial size of user heap storage that is obtained
below the 16MB line. This value can be specified as n, nK, or nM number of
bytes. If a value of 0 or less is specified, the default is used. The amount of
allocated storage is rounded up to the nearest multiple of 8 bytes.

incr24
Determines the minimum size of any subsequent increment to user heap
storage that is obtained below the 16MB line. This value can be specified as n,
nK, or nM number of bytes. If a value less than 0 is specified, the default is
used. The amount of allocated storage is rounded up to the nearest multiple of
8 bytes.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

z/OS UNIX considerations
v In a multithreaded environment, user heap storage is shared by all threads the

process.

HEAP64

78 z/OS V2R1.0 Language Environment Customization

v Heap storage is managed at the thread level using pthread_key_create,
pthread_setspecific, and pthread_getspecific.

Performance considerations

You can improve performance with the HEAP64 runtime option by specifying
values that minimize the number of times the operating system allocates storage.
See “RPTSTG” on page 108 for information about how to generate a report you
can use to determine the optimum values for the HEAP64 runtime option.

For more information
v For more information about Language Environment heap storage, see z/OS

Language Environment Programming Guide for 64-bit Virtual Addressing Mode.
v For more information about the RPTSTG runtime option, see “RPTSTG” on page

108.

HEAPCHK

Derivation: HEAP storage CHecKing

Use HEAPCHK to run additional heap check tests.

Non-CICS default
HEAPCHK=((OFF,1,0,0,0,1024,0,1024,0),OVR)

CICS default
HEAPCHK=((OFF,1,0,0,0,1024,0,1024,0),OVR)

Amode 64 default
HEAPCHK=((OFF,1,0,0,0,1024,0,1024,0),OVR)

Syntax

�� HEAPCHK = ((
OFF
ON , frequency , delay , call depth , �

� pool call depth , number of entries , pool number , �

� number of entries 31 , pool number 31) ,
OVR
NONOVR) ��

OFF
Indicates that no heap checking or tracing is done regardless of the values of
the remaining suboptions.

ON Indicates that heap checking or tracing is activated based on the values of the
remaining suboptions.

frequency
The frequency at which the user heap is checked for damage to the heap
control information. It is specified as n, nK or nM. A value of one (1) is the
default and causes the heap to be checked at each call to a Language
Environment heap storage management service. A value of n causes the user

HEAP64

Chapter 6. Language Environment runtime options 79

heap to be checked at every nth call to a Language Environment heap storage
management service. A value of zero results in no check for damage to the
user heap.

delay
A value that causes a delay before user heap is checked for damage, and is
specified in n, nK or nM. A value of zero (0) is the default and causes the heap
checking to begin with the first call to a Language Environment heap storage
management service. A value of n causes the heap checking to begin following
the nth call to a Language Environment heap storage management service.

call depth
Specifies the depth of calls displayed in the traceback for the heap storage
diagnostics report. A value of zero is the default that turns heap storage
diagnostics reporting off.

The heap storage diagnostics report consists of a set of tracebacks. Each
traceback is a snapshot of the stack (to a specified call depth) for each request
to obtain user heap storage that has not had a corresponding free request.

pool call depth
Specifies the depth of calls in the traceback for each trace entry of a heap pools
trace. A value of zero is the default that turns heap pools tracing off.

The heap pools trace is an in-core wrapping trace. Each heap pool has a
separate trace table. The heap pools trace is only formatted from a system
dump using the IPCS Verbexit LEDATA.

number of entries
Specifies the number of entries to be recorded in one heap pool trace table for
the main user heap in the application. Each pool has its own trace table. If the
number of entries is 0, the heap pool trace table is not generated.

pool number
Specifies which pools are traced for the main user heap in the application. You
can either trace one pool or all pools. The value should be a valid pool number
from 1 to 12. If the pool number is 0, all pools will be traced.

number of entries 31
Specifies the number of entries to be recorded in one heap pool trace table
when an application is using heap storage from 31–bit addressable storage
(__malloc31()). Each pool has its own trace table. If the number of entries is 0,
the heap pool trace table is not generated. This value is only supported in an
AMODE64 environment.

pool number 31
Specifies which pools are traced when an application is using heap storage
from 31–bit addressable storage (__malloc31()). You can trace either one pool or
all pools. The value should be a valid pool number from 1 to 12. If the pool
number is 0, all pools will be traced. This value is only supported in an
AMODE64 environment.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

Usage notes
v If HEAPCHK(ON) is used with STORAGE(,heap_free_value), the free areas of

the heap will also be checked.

HEAPCHK

80 z/OS V2R1.0 Language Environment Customization

v If HEAPCHK(ON) is specified, this will result in a performance degradation due
to the additional error checking that is performed.

v A U4042 abend dump will be generated when an error is detected, but no
CEEDUMP will be produced.

v To request only a heap storage diagnostics report, you must specify a zero for
frequency, a zero for pool call depth and a number n greater than zero for call
depth. For example, you could specify HEAPCHK(ON,0,0,10,0,1024,0,1024,0).
Recommendation: Use a value of 10 to ensure an adequate call depth is
displayed so that you can identify the storage leak.

v To request heap pools tracing, set pool call depth to a nonzero value and number of
entries (for AMODE 64 applications, number of entries, number of entries 31, or
both) to a nonzero value. To request only heap pools tracing, in addition, set
frequency to zero and call depth to zero. The heap pools trace is only formatted
from a system dump using the IPCS Verbexit LEDATA.
Recommendation: Use a value of 10 to ensure an adequate call depth is
displayed.

v For AMODE 64 applications, number of entries and pool number control tracing
for the set of heap pools located in storage above the 2GB bar. Number of
entries 31 and pool number 31 control tracing for the set of heap pools located
in storage above the 16MB line and below the 2GB bar. Pool call depth applies
to both sets of heap pools.

v Under normal termination conditions, when the call depth is greater than zero,
the heap storage diagnostics report is written to the CEEDUMP report. This is
independent of the TERMTHDACT setting.

v If a heap storage diagnostics report is desired while calling CEE3DMP, you must
specify the BLOCKS option.

For more information

See z/OS Language Environment Debugging Guide for more information about
creating and using the heap storage diagnostics report.

HEAPPOOLS (C/C++ and Enterprise PL/I only)

Derivation: HEAP storage POOLS

The HEAPPOOLS runtime option is used to control an optional heap storage
management algorithm known as heap pools. This algorithm is designed to
improve performance of multithreaded C/C++ applications with high usage of
malloc(), __malloc31(), calloc(), realloc(), free(), new(), and delete(). When
active, heap pools can eliminate contention for heap storage.

Non-CICS default
HEAPPOOLS=((OFF,8,10,32,10,128,10,256,10,1024,10,2048,
10,0,10,0,10,0,10,0,10,0,10,0,10),OVR)

CICS default
HEAPPOOLS=((OFF,8,10,32,10,128,10,256,10,1024,10,2048,
10,0,10,0,10,0,10,0,10,0,10,0,10),OVR)

AMODE 64 default
HEAPPOOLS=((OFF,8,10,32,10,128,10,256,10,1024,10,2048,
10,0,10,0,10,0,10,0,10,0,10,0,10),OVR)

HEAPCHK

Chapter 6. Language Environment runtime options 81

Syntax

�� HEAPPOOLS = ((
OFF
ON
ALIGN

, �

� �

,
(1)

cell-size , percentage
(cell-size , pool-count)

) , �

�
OVR
NONOVR) ��

Notes:

1 The variable group repeats 11 times

OFF
Specifies that Language Environment does not use the Heap Pools Manager.

ON Specifies that Language Environment does use the Heap Pool Manager to
manage heap storage requests against the initial heap.

ALIGN
Specifies that Language Environment structures the storage for cells in a heap
pool so that a cell less than or equal to 248 bytes does not cross a cache line.
For cells larger than 248 bytes, two cells never share a cache line.

cell-size
The size of cells in a heap pool. The cell size must be a multiple of 8 within a
range from 8 to 65536. Cell sizes 1K, to 64K are also allowed.

pool-count
The number of pools to be created for the cell size. The pool-count must be in
a range from 1 to 255.

percentage
Percentage of the HEAP runtime option init size value to be used as the size
for the heap pool and any extents. The percentage must be in a range from 1
to 90.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

Usage notes
v To use less than the supported number of heap pools, specify 0 for the cell size

after the last heap pool to be used. For example if four heap pools are desired,
use 0 for the fifth cell size when setting the HEAPPOOLS runtime option.

v If the percentage of the HEAP runtime option init size values does not allow for
at least one cell, the system automatically adjusts the percentage to enable four
cells to be allocated.

HEAPPOOLS

82 z/OS V2R1.0 Language Environment Customization

v The sum of the percentages may be more or less than 100 percent. This can
cause the allocation of a heap pool to require the allocation of a heap increment
to satisfy the request.

v Each heap pool is allocated on an as-needed basis. The allocation of a heap pool
can result in the allocation of a heap increment to satisfy the request.

v For tuning and performance information, see z/OS Language Environment
Programming Guide.

v Heap pools and extents are not released back to the heap, and cell sizes are
fixed, so care should be taken when specifying the HEAPPOOLS runtime option
to avoid wasting storage.

v The HEAPPOOLS runtime option has no effect when the initial heap is allocated
below the 16-MB line. This would be the case when BELOW is specified as the
location on the HEAP runtime option.

v The FREE suboption on the HEAP runtime option has no effect on the initial
heap or any extents in which a heap pool resides. Each cell in a heap pool can
be freed, but the heap pool itself is only released back to the system at enclave
termination.

v Mixing of the storage management AWIs (CEEGTST(), CEEFRST() and
CEECZST()) and the C/C++ intrinsic functions (malloc(), calloc(), realloc()
and free()) is not supported when operating on the same storage address. For
example, if you request storage using CEEGTST(), then you may not use free()
to release the storage.

v The HEAPPOOLS runtime option applies to the enclave.
v Using the ALIGN suboption might cause an increase in the amount of heap

storage used by an application.
v Examine the storage report and adjust storage tuning when first using the

ALIGN suboption.
v The RPTSTG runtime option will indicate HEAPPOOLS as one of the runtime

options which can be adjusted.
v The HEAPCHK runtime option will indicate that individual cells in the cell

pools controlled by the HEAPPOOLS runtime option are not validated. It is the
heap pool itself which is validated, as it is the actual storage managed by the
regular storage manager.

v If you specify the RPTSTG runtime option while using HEAPPOOLS, extra
storage is obtained from the ANYHEAP and is used to complete the storage
report on heappools. This extra storage is only allocated when both
HEAPPOOLS and RPTSTG are used.

v When cell-size is specified without parenthesis, the default value of pool-count is 1
rather than being picked up from an earlier setting of pool-count. For example,
specifying 128 is treated like (128,1).

v When cell-size is specified within parenthesis, pool-count must also be specified.
v When pool-count is greater than 1, the size of each heap pool extent is

determined by dividing the heap allocation for the cell-size by the pool-count.
v HEAPPOOLS runtime option can be used by AMODE 64 applications to manage

user heap storage above the 16MB line and below the 2GB bar.

Performance considerations
v To improve the effectiveness of the heap pools algorithm, use the storage report

numbers generated by the RPTSTG runtime option as an aid in determining
optimum cell sizes, percentages, and the initial heap size.

HEAPPOOLS

Chapter 6. Language Environment runtime options 83

v Use caution when using cells larger than 2K. Large gaps between cell sizes can
lead to a considerable amount of storage waste. Properly tuning cell sizes with
the help of RPTSTG is necessary to control the amount of virtual storage needed
by the application.

v When there are many successful get requests for the same size cell and the
maximum elements used in the cell pool is high, this can be an indication that
there is excessive contention allocating elements in the cell pool. Specifying
pool-count greater than 1 might help relieve some of this contention. Multiple
pools are allocated with the same cell size and a portion of the threads are
assigned to allocate cells out of each of the pools.

Examples

Specifying HEAPPOOLS(ON,(8,4),20,(16,2),10) results in:
v Four cell pools being allocated for 8-byte cells with each pool using 5 percent of

the heap allocation
v Two cell pools being allocated for 16-byte cells with each pool using 5 percent of

the heap allocation.

HEAPPOOLS64 (AMODE 64 only)

Derivation: HEAP storage POOLS for AMODE 64

The HEAPPOOLS64 runtime option is used to control an optional user heap
storage management algorithm, known as heap pools. This algorithm is designed
to improve the performance of multithreaded C/C++ applications with a high
frequency of calls to malloc(), calloc(), realloc(), free(), and operators new and
delete. When active, heap pools virtually eliminates contention for user heap
storage.

AMODE 64 default
HEAPPOOLS64=((OFF,8,4000,32,2000,128,700,256,350,
1024,100,2048,50,3072,50,4096,50,8192,25,16384,10,32768,5,65536,5),OVR)

HEAPPOOLS

84 z/OS V2R1.0 Language Environment Customization

Syntax

�� HEAPPOOLS64 = ((
OFF
ON
ALIGN

, �

� �

,
(1)

cell-size , count
(cell-size , pool-count)

) ,
OVR
NONOVR �

�) ��

Notes:

1 repeats 11 times

OFF
Specifies that the AMODE 64 heappools algorithm is not used.

ON Specifies that the AMODE 64 heappools algorithm is used.

ALIGN
Specifies that Language Environment structures the storage for cells in a heap
pool so that a cell less than or equal to 240 bytes does not cross a cache line.
For cells larger than 240 bytes, two cells never share a cache line.

cell-size
Specifies the size of the cells in a heap pool, specified as n or nK. The cell size
must be a multiple of 8, with a maximum of 65536 (64K).

pool-count
The number of pools to create for the cell size. The pool-count must be in a
range from 1 to 255.

count
Specifies the number of cells of the corresponding size to be allocated initially.
The minimum cell count is 4.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

Usage notes
v Restriction: HEAPPOOLS64 only manages storage above the 2G bar.
v Cell pool sizes should be specified in ascending order.
v To use less than twelve heap pools, specify 0 for the cell size after the last heap

pool to be used. For example if four heap pools are desired, use 0 for the fifth
cell size when setting the HEAPPOOLS64 runtime option.

v Each heap pool is allocated as needed. The allocation of a heap pool can result
in the allocation of a heap increment to satisfy the request.

v Using the ALIGN suboption might cause an increase in the amount of heap
storage used by an application.

HEAPPOOLS64

Chapter 6. Language Environment runtime options 85

v Examine the storage report and adjust storage tuning when first using the
ALIGN suboption.

v The HEAPCHK runtime option does not validate individual heap pool cells.
v If you specify the RPTSTG runtime option while using HEAPPOOLS64, extra

storage is obtained from the LIBHEAP64 and is used to complete the storage
report on heappools. This extra storage is only allocated when both
HEAPPOOLS64 and RPTSTG are used.

v When cell-size is specified without parenthesis, the default value of pool-count is 1
rather than being picked up from an earlier setting of pool-count. For example,
specifying 128 is treated like (128,1).

v When cell-size is specified within parenthesis, pool-count must also be specified.
v When pool-count is greater than 1, the size of each heap pool extent is

determined by dividing the heap allocation for the cell-size by the pool-count.
v HEAPPOOLS runtime option can be used by AMODE 64 applications to manage

user heap storage above the 16MB line and below the 2GB bar.

Performance considerations
v To improve the effectiveness of the heap pools algorithm, use the storage report

numbers generated by the RPTSTG runtime option as an aid in determining
optimum cell sizes, cell count, and the initial heap size.

v Use caution when using cells larger than 2K. Large gaps between cell sizes can
lead to a considerable amount of storage waste. Properly tuning cell sizes with
the help of RPTSTG is necessary to control the amount of virtual storage needed
by the application.

v When there are many successful get requests for the same size cell and the
maximum elements used in the cell pool is high, this can be an indication that
there is excessive contention allocating elements in the cell pool. Specifying
pool-count greater than 1 might help relieve some of this contention. Multiple
pools are allocated with the same cell size and a portion of the threads are
assigned to allocate cells out of each of the pools.

Examples

Specifying HEAPPOOLS64(ON,(8,4),1000,(16,2),500) results in:
v Four cell pools being allocated for 8-byte cells with each pool extent containing

250 cells.
v Two cell pools being allocated for 16-byte cells with each pool containing 250

cells.

INFOMSGFILTER
Derivation

INFOrmational MeSsaGe FILTER

During normal operations, there are times when long lists of informational
messages are written to the Language Environment MSGFILE. These messages are
not limited to Language Environment (CEE) messages. Informational messages
may also be written, using the CEEMSG interface, by other IBM program products
or user-written applications. If these messages are routed to the user's terminal,
then the user must constantly clear them. If the messages are saved to a data set,
they take up disk space and may interfere with a user browsing the output looking
for a specific message. INFOMSGFILTER allows the user to activate a filter that

HEAPPOOLS64

86 z/OS V2R1.0 Language Environment Customization

eliminates the unwanted and unnecessary informational messages. All
informational messages, whether generated by Language Environment or any other
source, are suppressed when the INFOMSGFILTER=(ON) option is in effect.

Non-CICS default
INFOMSGFILTER=((OFF,,,,),OVR)

CICS default
INFOMSGFILTER=((OFF,,,,),OVR)

Amode 64 default
INFOMSGFILTER=((OFF,,,,),OVR)

Syntax

�� INFOMSGFILTER = ((
OFF
ON , ,

FOREGROUND
�

� ,
BACKGROUND

,) ,
CICS

OVR
NONOVR) ��

OFF
Turns off the filtering of messages for all environments.

ON Turns on the filtering of messages for the specified environments.

FOREGROUND
Selecting this keyword turns message filtering on for the following
environments:
v TSO
v CMS
v z/OS UNIX

BACKGROUND
Selecting this keyword turns message filtering on for the following
environments:
v MVS Batch
v CMS Batch

CICS
Selecting this keyword turns message filtering on in the CICS environment.
This is ignored for AMODE 64 applications.

Note: These three keywords are not positional; you can specify them in any order.
The fourth comma is required when coding this option at the region level, even
though there is no keyword to fill its position. This position is reserved by IBM for
future use.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

INFOMSGFILTER

Chapter 6. Language Environment runtime options 87

|
|
|
|

INQPCOPN (Fortran only)
Derivation: INQuire the Pre-Connected units that are OPeNed

INQPCOPN controls whether the OPENED specifier on an INQUIRE by unit
statement can be used to determine whether a preconnected unit has had any I/O
statements directed to it.

Non-CICS default
INQPCOPN=((ON),OVR)

CICS default
INQPCOPN is ignored under CICS.

Syntax

�� INQPCOPN = ((
ON
OFF) ,

OVR
NONOVR) ��

ON Causes the running of an INQUIRE by unit statement to provide the value true
in the variable or array element given in the OPENED specifier if the unit is
connected to a file. This includes the case of a preconnected unit, which can be
used in an I/O statement without running an OPEN statement, even if no I/O
statements have been run for that unit.

OFF
Causes the running of an INQUIRE by unit statement to provide the value false
for the case of a preconnected unit for which no I/O statements other than
INQUIRE have been run.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

INTERRUPT

INTERRUPT causes attention interrupts recognized by the host system to be
recognized by Language Environment after the Language Environment
environment has been initialized. The way you request that an attention interrupt
varies from operating system to operating system. When you request the interrupt,
you can give control to your application or to a debug tool.

Non-CICS default
INTERRUPT=((OFF),OVR)

CICS default
INTERRUPT is ignored under CICS.

INQPCOPN

88 z/OS V2R1.0 Language Environment Customization

Syntax

�� INTERRUPT = ((
OFF
ON) ,

OVR
NONOVR) ��

OFF
Specifies that Language Environment does not recognize attention interrupts.

ON Specifies that Language Environment recognizes attention interrupts. In
addition, if you specified the TEST(ERROR) or TEST(ALL) run-time option, the
interrupt causes the debug tool to gain control.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

z/OS UNIX considerations

The INTERRUPT option applies to the enclave. However, only one thread in the
enclave is affected for a particular attention interrupt.

Usage notes

PL/I considerations
Language Environment supports the PL/I method of polling code. The
PL/I routine must be compiled with the INTERRUPT compiler option in
order for the INTERRUPT runtime option to have an effect.

PL/I MTF considerations
To receive the attention interrupt, the PL/I program must be compiled
with the INTERRUPT compiler option, and the INTERRUPT runtime
option must be in effect.

The INTERRUPT option applies to the enclave. However, only one thread
in the enclave is affected for a particular attention interrupt.

For more information
v For more information about the TEST runtime option, see “TEST | NOTEST” on

page 127.
v For more information about the POSIX runtime option, see “POSIX” on page

103.

IOHEAP64 (AMODE 64 only)

Derivation: IO HEAP storage for AMODE 64

IOHEAP64 controls the allocation of I/O heap storage for AMODE 64 applications
and specifies how that storage is managed. Language Environment uses this
storage when performing I/O for AMODE 64 applications.

AMODE 64 default
IOHEAP64=((1M,1M,FREE,12K,8K,FREE,4K,4K,FREE),OVR)

INTERRUPT

Chapter 6. Language Environment runtime options 89

Syntax

�� IOHEAP64 = ((init64 , incr64 ,
KEEP
FREE , init31 , incr31 �

� ,
KEEP
FREE , init24 , incr24 ,

FREE
KEEP) ,

OVR
NONOVR) ��

init64
Determines the initial allocation of I/O heap storage obtained above the 2G
bar. Specify this value as nM bytes of storage. If a value of 0 or less is
specified, the default is used.

incr64
Determines the minimum size of any subsequent increment to the I/O heap
storage obtained above the 2G bar. Specify this value as nM bytes of storage. If
a value less than 0 is specified, the default is used.

KEEP
Specifies that an increment to I/O heap storage is not released when the last of
the storage within that increment is freed.

FREE
Specifies that an increment to I/O heap storage is released when the last of the
storage within that increment is freed.

init31
Determines the minimum initial size of I/O heap storage that is obtained
above the 16MB line and below the 2GB bar. This value can be specified as n,
nK, or nM number of bytes. If a value of 0 or less is specified, the default is
used. The amount of allocated storage is rounded up to the nearest multiple of
8 bytes.

incr31
Determines the minimum size of any subsequent increment to I/O heap
storage that is obtained above the 16MB line and below the 2GB bar. This
value can be specified as n, nK, or nM number of bytes. If a value less than 0
is specified, the default is used. The amount of allocated storage is rounded up
to the nearest multiple of 8 bytes.

init24
Determines the minimum initial size of I/O heap storage that is obtained
below the 16MB line. This value can be specified as n, nK, or nM number of
bytes. If a value of 0 or less is specified, the default is used. The amount of
allocated storage is rounded up to the nearest multiple of 8 bytes.

incr24
Determines the minimum size of any subsequent increment to I/O heap
storage that is obtained below the 16MB line. This value can be specified as n,
nK, or nM number of bytes. If a value less than 0 is specified, the default is
used. The amount of allocated storage is rounded up to the nearest multiple of
8 bytes.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

IOHEAP64

90 z/OS V2R1.0 Language Environment Customization

Performance considerations

To improve performance, use the storage report numbers generated by the
RPTSTG runtime option as an aid in setting the initial and increment sizes for
IOHEAP64.

For more information

See “RPTSTG” on page 108 for more information about the RPTSTG runtime
option.

LIBHEAP64 (AMODE 64 only)

Derivation: LIBRARY HEAP storage for AMODE 64

The LIBHEAP64 runtime option controls the allocation of heap storage used by
Language Environment for AMODE 64 applications and specifies how that storage
is managed.

AMODE 64 default
LIBHEAP64=((1M,1M,FREE,16K,8K,FREE,8K,4K,FREE),OVR)

Syntax

�� LIBHEAP64 = ((init64 , incr64 ,
KEEP
FREE , init31 , �

� incr31 ,
KEEP
FREE , init24 , incr24 ,

FREE
KEEP) ,

OVR
NONOVR �

�) ��

init64
Determines the initial allocation of library heap storage obtained above the 2G
bar. Specify this value as nM bytes of storage. If a value of 0 or less is
specified, the default is used.

incr64
Determines the minimum size of any subsequent increment to the library heap
storage obtained above the 2G bar. Specify this value as nM bytes of storage. If
a value less than 0 is specified, the default is used.

KEEP
Specifies that an increment to library heap storage is not released when the last
of the storage within that increment is freed.

FREE
Specifies that an increment to library heap storage is released when the last of
the storage within that increment is freed.

init31
Determines the minimum initial size of library heap storage that is obtained
above the 16MB line and below the 2GB bar. This value can be specified as n,

IOHEAP64

Chapter 6. Language Environment runtime options 91

nK, or nM number of bytes. If a value of 0 or less is specified, the default is
used. The amount of allocated storage is rounded up to the nearest multiple of
8 bytes.

incr31
Determines the minimum size of any subsequent increment to library heap
storage that is obtained above the 16MB line and below the 2GB bar. This
value can be specified as n, nK, or nM number of bytes. If a value less than 0
is specified, the default is used. The amount of allocated storage is rounded up
to the nearest multiple of 8 bytes.

init24
Determines the minimum initial size of library heap storage that is obtained
below the 16MB line. This value can be specified as n, nK, or nM number of
bytes. If a value of 0 or less is specified, the default is used. The amount of
allocated storage is rounded up to the nearest multiple of 8 bytes.

incr24
Determines the minimum size of any subsequent increment to library heap
storage that is obtained below the 16MB line. This value can be specified as n,
nK, or nM number of bytes. If a value less than 0 is specified, the default is
used. The amount of allocated storage is rounded up to the nearest multiple of
8 bytes.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

Performance considerations

To improve performance, use the storage report numbers generated by the
RPTSTG runtime option as an aid in setting the initial and increment sizes for
LIBHEAP64.

For more information
v For more information about heap storage and heap storage tuning with storage

report numbers, see z/OS Language Environment Programming Guide for 64-bit
Virtual Addressing Mode.

LIBSTACK

Derivation: LIBrary STACK storage

LIBSTACK controls the allocation of the thread's library stack storage. This stack is
used by Language Environment and HLL library routines that require save areas
below the 16MB line.

Non-CICS default
LIBSTACK=((4K,4K,FREE),OVR)

CICS default
LIBSTACK=((32,4080,FREE),OVR)

LIBHEAP64

92 z/OS V2R1.0 Language Environment Customization

Syntax

�� LIBSTACK = ((init_size , incr_size ,
FREE
KEEP) , �

�
OVR
NONOVR) ��

init_size
Determines the minimum size of the initial library stack segment. The storage
is contiguous.

Specify init_size as n, nK, or nM bytes of storage. init_size can be preceded by a
minus sign. In environments other than CICS, if you specify a negative
number, all available storage minus the amount specified is used for the initial
stack segment.

In non-CICS environments, an init_size of 0 or -0 requests half of the largest
block of contiguous storage below the 16-MB line. In addition when
STACK(,,ANY,,,) is in effect, Language Environment does not acquire the initial
library stack segment until the first program that requires LIBSTACK runs.

Language Environment allocates the storage rounded up to the nearest
multiple of 8 bytes.

incr_size
Determines the minimum size of any subsequent increment to the library stack
area. Specify this value as n, nK, or nM bytes of storage. The actual amount of
allocated storage is the larger of 2 value (theincr_size or the requested size)
rounded up to the nearest multiple of 8 bytes.

If you do not specify incr_size, Language Environment uses the Non-CICS
default setting of 4K. If incr_size=0, Language Environment gets only the
amount of storage needed at the time of the request, rounded up to the nearest
multiple of 8 bytes.

The requested size is the amount of storage a routine needs for a stack frame.
For example, if the requested size is 9000 bytes, incr_size is specified as 8K, and
the initial stack segment is full, then Language Environment gets a 9000 byte
stack increment from the operating system to satisfy the request. If the
requested size is smaller than 8K, Language Environment gets an 8K stack
increment from the operating system.

FREE
Specifies that Language Environment releases storage allocated to LIBSTACK
increments when the last of the storage in the library stack is freed. The initial
library stack segment is not released until the enclave terminates.

KEEP
Specifies that Language Environment does not release storage allocated to
LIBSTACK increments when the last of the storage is freed.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

LIBSTACK

Chapter 6. Language Environment runtime options 93

CICS considerations
v If ALL31(ON) is specified, LIBSTACK is allocated above the 16MB line.
v The initial and increment sizes for LIBSTACK are rounded to the next higher

multiple of 8 bytes.
v The minimum initial size is 32 bytes; the minimum increment size is 4080.
v The default increment size under CICS is 4080 bytes, rather than 4096 bytes, to

accommodate the 16-bytes CICS storage check zone. Without this
accommodation, an extra page of storage is allocated (only when the storage
allocation is below the 16-MB line).

z/OS UNIX considerations

The LIBSTACK option sets the library stack characteristics on each thread.

The recommended setting for LIBSTACK under z/OS UNIX is
LIBSTACK=((4K,4K,FREE),OVR).

Performance considerations

To improve performance, use the storage report numbers generated by the
RPTSTG run-time option as an aid in setting the initial and increment size for
LIBSTACK.

For more information
v For more information about the RPTSTG runtime option “RPTSTG” on page 108.
v For more information about using the storage reports generated by the RPTSTG

runtime option to tune the stacks, see z/OS Language Environment Programming
Guide.

MSGFILE

Derivation: MeSsaGe FILE

MSGFILE specifies the ddname of the file where all runtime diagnostics and reports
generated by the RPTOPTS and RPTSTG run-time options are written. MSGFILE
also specifies the ddname for CEEMSG and CEEMOUT callable services.

Non-CICS default
MSGFILE=((SYSOUT,FBA,121,0,NOENQ),OVR)

CICS default
MSGFILE is ignored under CICS.

Syntax

�� MSGFILE = ((ddname , recfm , lrecl , blksize ,
NOENQ
ENQ �

�) ,
OVR
NONOVR) ��

LIBSTACK

94 z/OS V2R1.0 Language Environment Customization

ddname
The ddname of the runtime diagnostics file.

recfm
The default record format (RECFM) value for the message file. recfm is used
when this information is not available either in a file definition or in the label
of an existing file. The following values are acceptable: F, FA, FB, FBA, FBS,
FBSA, U, UA, V, VA, VB, and VBA.

lrecl
The default record length (LRECL) value for the message file. lrecl is used
when this information is not available either in a file definition or in the label
of an existing file. lrecl is expressed as bytes of storage.

The lrecl value (whether from MSGFILE or from another source) cannot exceed
the blksize value, whose maximum value is 32760. For variable-length record
formats, the lrecl value is limited to the blksize value minus 4.

blksize
The default block size (BLKSIZE) value for the message file. blksize is used
when this information is not available either in a file definition or in the label
of an existing file. blksize is expressed as bytes of storage.

blksize (whether from MSGFILE or from another source) cannot exceed 32760.

NOENQ
Serialization around writes to the message file destination specified ddname are
not performed.

ENQ
Specifies that serialization is performed around writes to the ddname specified.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS considerations

This runtime output under CICS is directed to a transient data queue named CESE.

z/OS UNIX considerations

The MSGFILE option specifies the ddname of the diagnostic file for the enclave.
When multiple threads write to the message file, the output is interwoven by line.
To group lines of output, serialize MSGFILE access (by using a mutex, for
example).

When z/OS UNIX is available and the MSGFILE option specifies a ddname
nominating a POSIX file, Language Environment uses POSIX services to write the
message file. A ddname nominates a POSIX file using the keyword PATH=.

z/OS UNIX must be available on the underlying operating system for the
MSGFILE option to write to a POSIX file. If the ddname nominates a POSIX file and
z/OS UNIX is not present, then Language Environment tries to dynamically
allocate an MVS file to be used as the message file.

If the message file is allocated (whether POSIX or z/OS), Language Environment
directs the output to this file. If the current message file is not allocated, and the

MSGFILE

Chapter 6. Language Environment runtime options 95

application carries out a fork()/exec, spawn(), or spawnp(), Language Environment
checks whether File Descriptor 2 exists. If it does exist, then Language
Environment uses it; otherwise, Language Environment dynamically allocates the
message file to the POSIX file system and attempts to open the file SYSOUT in the
current working directory; or, if there is no current directory, then in the directory
/tmp.

Usage notes
v The ENQ suboption should only be used where multiple Language Environment

environments are running in the same address space and are sharing the same
MSGFILE destination. An example would be a batch job which uses ATTACH to
create some number of subtasks. Each of these tasks is potentially a distinct
Language Environment environment all running with the same default
MSGFILE parameters. In this example, each of these environments will share the
same MSGFILE destination. To avoid conflicts while writing to the shared
MSGFILE destination, it is recommended that the ENQ suboption be used for
each MSGFILE destination that will be shared. Using different ddname for each
environment would remove the need to use the ENQ suboption.

v HLL compiler options, such as the COBOL OUTDD compiler option, can affect
whether your runtime output goes to MSGFILE ddname.

v Use commas to separate suboptions of the MSGFILE runtime option. If you do
not specify a suboption but do specify a subsequent one, you must still code the
comma to indicate its omission. However, trailing commas are not required.
If you do not specify any suboptions, either of the following is valid: MSGFILE
or MSGFILE().

v If there is no block size in the MSGFILE runtime option, in a file definition, or in
the label of an existing file, block size is determined as follows:
– For a recfm value that specifies unblocked fixed-length format records (F or

FA) or undefined-format records (U or UA), the blksize value is the same as
the lrecl value.

– For a recfm value that specifies unblocked variable-length format records (V or
VA), the blksize value is the lrecl value plus 4.

– For a DASD device on MVS and a recfm value that specifies blocked records
(FB, FBA, FBS, FBSA, VB, or VBA), the blksize value is left at 0 by Language
Environment so that the system can determine the optimum blksize value.

– For a terminal and a recfm value that specifies blocked fixed-length format
records (FB, FBA, FBS, or FBSA), the blksize value is the same as the lrecl
value.

– For a terminal and a recfm value that specifies blocked variable-length format
records (VB or VBA), the blksize value is the lrecl value plus 4.

– For all other cases, blksize has a value which gives 100 records per block if the
blksize value wouldn't exceed 32760, otherwise, a value giving the largest
number of records per block such that the blksize value that does not exceed
32760.
Or, to put it another way:
- For a recfm value that specifies blocked fixed-length format records (FB,

FBA, FBS, or FBSA), the blksize value is lrecl × bfact where bfact is the
largest integer not exceeding 100 such that the blksize value does not exceed
32760.

- For a recfm value that specifies blocked variable-length format records (VB
or VBA), the blksize value is (lrecl × bfact) plus 4 where bfact is the largest
integer not exceeding 100 such that the blksize value does not exceed 32760.

MSGFILE

96 z/OS V2R1.0 Language Environment Customization

v Language Environment detects certain invalid values for the MSGFILE
suboptions, namely an invalid value for recfm and a value of lrecl or blksize that
exceeds 32760. A message is printed, and any incorrect values are ignored.

v Invalid combinations of recfm, lrecl, and blksize values are not diagnosed by
Language Environment but can cause an error condition to be detected by the
system on the first attempt to write to the message file.

v Language Environment does not check the validity of the MSGFILE ddname. An
invalid ddname generates an error condition on the first attempt to issue a
message.

v Language Environment supports the use of a MSGFILE DDNAME dynamically
allocated with the XTIOT, UCB nocapture, or DSAB-above-the-line options
specified in the SVC99 parameters (S99TIOEX, S99ACUCB, S99DSABA flags).

C/C++ considerations
C perror() messages and output directed to stderr go to the MSGFILE
destination.

Fortran considerations
To get the same message file function as with VS Fortran, specify
MSGFILE(FTnnF001,UA,133) where nn is the unit number of the error unit.
For more information, see the Fortran Run-Time Migration Guide.

PL/I considerations
Runtime messages in PL/I programs are directed to the file specified by
MSGFILE, instead of to the PL/I SYSPRINT STREAM PRINT file.

User-specified output is still directed to the PL/I SYSPRINT STREAM
PRINT file. To direct this output to the Language Environment MSGFILE
file, specify MSGFILE(SYSPRINT).

For more information
v For more information about the RPTOPTS and RPTSTG runtime options, see

“RPTOPTS” on page 107 and “RPTSTG” on page 108.
v For more information about the CEEMSG and CEEMOUT callable services, see

z/OS Language Environment Programming Reference.
v For details on how HLL compiler options affect messages, see information about

HLL I/O statements and message handling in z/OS Language Environment
Programming Guide.

v For more information about perror() and stderr see C message output
information in z/OS Language Environment Programming Guide.

v For more information about the CESE transient data queue, see z/OS Language
Environment Programming Guide.

MSGQ

Derivation: MeSsaGe Queue

MSGQ specifies the number of ISI blocks that Language Environment allocates on
a per thread basis for use by the application. The ISI contains information for
Language Environment to use when identifying and reacting to conditions,
providing access to q_data tokens, and assigning space for message inserts used
with user-created messages. When an ISI is needed and one is not available,
Language Environment uses the least recently used ISI. CEECMI allocates storage
for the ISI, if necessary.

MSGFILE

Chapter 6. Language Environment runtime options 97

Non-CICS default
MSGQ=((15),OVR)

CICS default
MSGQ is ignored under CICS.

Syntax

�� MSGQ = ((number) ,
OVR
NONOVR) ��

number
An integer that specifies the number of ISIs to be maintained per thread within
an enclave.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

Usage notes

PL/I MTF considerations
In a PL/I MTF application, MSGQ sets the number of message queues
allowed for each task.

For more information
v For more information about the CEECMI callable service, see z/OS Language

Environment Programming Reference.
v For more information about the ISI, see z/OS Language Environment Programming

Guide.

NATLANG

Derivation: NATional LANGuage

NATLANG specifies the initial national language to be used for the run-time
environment, including error messages, month names, and day of the week names.
Message translations are provided for Japanese and for uppercase and mixed-case
US English. NATLANG also determines how the message facility formats
messages.

NATLANG affects only the Language Environment NLS and date and time
services, not the Language Environment locale callable services.

You can set the national language by using the NATLANG run-time option or the
SET function of the CEE3LNG callable service Language Environment maintains
one current language at the enclave level. The current language remains in effect
until it is changed. For example, if you specify JPN in the NATLANG run-time
option, but later specify ENU using the CEE3LNG callable service, ENU becomes
the current national language.

MSGQ

98 z/OS V2R1.0 Language Environment Customization

Non-CICS default
NATLANG=((ENU),OVR)

CICS default
NATLANG=((ENU),OVR)

Amode 64 default
NATLANG=((ENU),OVR)

Syntax

�� NATLANG = ((
ENU
UEN
JPN

) ,
OVR
NONOVR) ��

ENU
A 3-character ID specifying mixed-case US English.

Message text consists of SBCS characters and includes both uppercase and
lowercase letters.

UEN
A 3-character ID specifying uppercase US English.

Message text consists of SBCS characters and includes only uppercase letters.

JPN
A 3-character ID specifying Japanese.

Message text can contain a mixture of SBCS and DBCS characters.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

z/OS UNIX considerations

The NATLANG option specifies the initial value for the enclave.

Usage notes
v Restriction: CEE3LNG and CEESETL are not available to AMODE 64

applications.
v If you specify a national language that is not available on your system,

Language Environment uses the IBM-supplied default ENU (mixed-case US
English) and issues a return code of 4 and a warning message. CEEROPT,
CEEUOPT, CELQROPT, and CELQUOPT can specify an unknown national
language code, but give a return code of 4 and a warning message.

v Language Environment is sensitive to the national language when it writes
storage reports, option reports, and dump output. When the national language is
uppercase US English or Japanese, the environment variable
_CEE_UPPERCASE_DATA can be used to determine whether variable data in
storage reports, options reports and dump output is in uppercase. When this
environment variable is set to YES, variable data (entry point names, program
unit names, variable names, Trace Entry in EBCDIC data, and

NATLANG

Chapter 6. Language Environment runtime options 99

|
|
|
|
|

hexadecimal/EBCDIC displays of storage) are changed to uppercase. When this
environment variable is not set or set to a value other than YES, variable data
will not be changed to uppercase.. Variable data is never changed to
uppercase.when the national language is mixed case US English.

C/C++ considerations
Language Environment provides locales used in C and C++ to establish
default formats for the locale-sensitive functions and locale callable
services, such as date and time formatting, sorting, and currency symbols.
To change the locale, you can use the setlocale() library function or the
CEESETL callable service.

The settings of CEESETL or setlocale() do not affect the setting of the
NATLANG runtime option. NATLANG affects only Language
Environment NLS and date and time services. setlocale() and CEESETL
affect only C/C++ locale-sensitive functions and Language Environment
locale callable services.

To ensure that all settings are correct for your country, use NATLANG and
either CEESETL or setlocale().

PL/I MTF considerations
NATLANG affects every task in the application. The SET function of
CEE3LNG is supported for the relinked OS PL/I or PL/I for MVS & VM
MTF applications only.

For more information
v For more information about the CEE3LNG callable service, see z/OS Language

Environment Programming Reference.
v For more information about setlocale(), see z/OS XL C/C++ Programming Guide.

OCSTATUS (Fortran only)
Derivation: Open Close STATUS

OCSTATUS controls the verification of file existence and whether a file is deleted
based on the STATUS specifier on the OPEN and CLOSE statement, respectively.

Non-CICS default
OCSTATUS=((ON),OVR)

CICS default
OCSTATUS is ignored under CICS.

Syntax

�� OCSTATUS = ((
ON
OFF) ,

OVR
NONOVR) ��

ON Specifies that file existence is checked with each OPEN statement to verify that
the status of the file is consistent with STATUS='OLD' and STATUS='NEW'. It
also specifies that file deletion occurs with each CLOSE statement with
STATUS='DELETE' for those devices which support file deletion. Preconnected
files are included in these verifications. OCSTATUS consistency checking

NATLANG

100 z/OS V2R1.0 Language Environment Customization

applies to DASD files, PDS members, VSAM files, MVS labeled tape files, and
dummy files only. For dummy files, the consistency checking occurs only if the
file was previously opened successfully in the current program.

In addition, when a preconnected file is disconnected by a CLOSE statement,
an OPEN statement is required to reconnect the file under OCSTATUS.
Following the CLOSE statement, the INQUIRE statement parameter OPENED
indicates that the unit is disconnected.

OFF
Bypasses file existence checking with each OPEN statement and bypasses file
deletion with each CLOSE statement.

If STATUS='NEW', a new file is created; if STATUS='OLD', the existing file is
connected.

If STATUS='UNKNOWN' or 'SCRATCH', and the file exists, it is connected; if
the file does not exist, a new file is created.

In addition, when a preconnected file is disconnected by a CLOSE statement,
an OPEN statement is not required to reestablish the connection under
OCSTATUS(OFF). A sequential READ, WRITE, BACKSPACE, REWIND, or
ENDFILE will reconnect the file to a unit. Before the file is reconnected, the
INQUIRE statement parameter OPENED will indicate that the unit is
disconnected; after the connection is reestablished, the INQUIRE statement
parameter OPENED will indicate that the unit is connected.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

PC (Fortran only)
Derivation: Private Common blocks

PC controls whether Fortran status common blocks are shared among load
modules.

Non-CICS default
PC=((OFF),OVR)

CICS default
PC is ignored under CICS.

Syntax

�� PC = ((
OFF
ON) ,

OVR
NONOVR) ��

OFF
Specifies that Fortran static common blocks with the same name but in
different load modules all refer to the same storage. PC(OFF) applies only to
static common blocks referenced by compiled code produced by any of the
following compilers and that were not compiled with the PC compiler option:

OCSTATUS

Chapter 6. Language Environment runtime options 101

v VS FORTRAN Version 2 Release 5
v VS FORTRAN Version 2 Release 6

ON Specifies that Fortran static common blocks with the same name but in
different load modules do not refer to the same storage.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

PLITASKCOUNT (PL/I only)

Derivation: PL/I TASK COUNTer

PLITASKCOUNT controls the maximum number of tasks active at one time while
you are running PL/I MTF applications. PLITASKCOUNT(20) provides behavior
compatible with the PL/I ISASIZE(,,20) option.

Non-CICS default
PLITASKCOUNT=((20),OVR)

CICS default
PLITASKCOUNT is ignored under CICS.

Syntax

�� PLITASKCOUNT = ((tasks) ,
OVR
NONOVR) ��

tasks
A decimal integer that is the maximum number of tasks allowed in a PL/I
MTF application at any one time during execution. The total tasks include the
main task and subtasks created directly or indirectly from the main task.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

Usage notes
v A value of zero (0) assumes the IBM-supplied default of 20.
v If a request to create a task would take the number of currently active tasks over

the allowable limit, condition IBM0566S is signaled and the task is not created.

PL/I MTF considerations
If tasks or the IBM-supplied default of 20 exceeds the z/OS UNIX
installation default of the maximum number of threads, Language
Environment assumes the z/OS UNIX installation default.

PC

102 z/OS V2R1.0 Language Environment Customization

POSIX

Derivation: Portable Operating System Interface - X

POSIX specifies whether the enclave can run with the POSIX semantics.

POSIX is an application characteristic that is maintained at the enclave level. After
you have established the characteristic during enclave initialization, you cannot
change it.

When you set POSIX to ON, you can use functions that are unique to POSIX, such
as pthread_create().

One of the effects of POSIX(ON) is the enablement of POSIX signal handling
semantics, which interact closely with the Language Environment condition
handling semantics.

ANSI C programs can access the z/OS UNIX file System on MVS independent of
the POSIX setting. Where ambiguities exist between ANSI and POSIX semantics,
the POSIX runtime options, setting indicates the POSIX semantics to follow.

Non-CICS default
POSIX=((OFF),OVR)

CICS default
POSIX is ignored under CICS.

AMODE 64 default
POSIX=((OFF),OVR)

Syntax

�� POSIX = ((
OFF
ON) ,

OVR
NONOVR) ��

OFF
Indicates that the application is not POSIX-enabled.

ON Indicates that the application is POSIX-enabled.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

Usage notes
v If you set POSIX to ON and you run non-thread-safe languages such as PL/I

and C++ in a thread other than the initial thread, the behavior is undefined.
v If you set POSIX to ON when z/OS UNIX is not active, the message file receives

a warning, POSIX is set to OFF, but the application continues to run.

POSIX

Chapter 6. Language Environment runtime options 103

v When you set POSIX to ON while an application is running under CICS, you
receive a warning message, POSIX is set OFF, and the application continues to
run.

v Within nested enclaves, only one enclave can have the POSIX option set to ON.
All other nested enclaves must have the POSIX option set to OFF. When nested
enclaves are specifying the runtime option POSIX(ON) within one Language
Environment process, Language Environment will display a severity 3 error
message and let abend U4039 occur with reason code 172.

For more information
v For more information about POSIX functions that have an z/OS UNIX kernel

dependency, or a POSIX ON dependency (especially for a failure where the
kernel dependency or the POSIX ON setting is not met), see z/OS XL C/C++
Runtime Library Reference.

v For more information about the INTERRUPT run-time option, see
“INTERRUPT” on page 88.

PROFILE

PROFILE controls the use of an optional profiler which collects performance data
for the running application.

Non-CICS default
PROFILE=((OFF,' '),OVR)

CICS default
PROFILE=((OFF,' '),OVR)

Amode 64 default
PROFILE=((OFF,' '),OVR)

Syntax

�� PROFILE ((
OFF
ON ,

' '
string) ,

OVR
NONOVR) ��

OFF
Indicates that the profile facility is inactive.

ON Indicates that the profile facility is active.

' '
A null string indicates that no options are to be passed to the profiler.

string
Profile options that Language Environment will pass to the profiler installed.
You can enclose the string in either single or double quotation marks. The
maximum length of the string is 250 bytes when specified on program
invocation or via a compiler directive. When specifying this option using the
CEEXOPT macro, the size is limited to 242 bytes.

OVR
Specifies that the option can be overridden.

POSIX

104 z/OS V2R1.0 Language Environment Customization

|
|
|
|
|

NONOVR
Specifies that the option cannot be overridden.

For more information

An application cannot run with both the TEST and PROFILE options in effect. If
both are specified, an informational message is generated and the Language
Environment forces the PROFILE option OFF.

PRTUNIT (Fortran only)
PRinT UNIT

Derivation: PRTUNIT identifies the unit number used for PRINT and WRITE
statements that do not specify a unit number.

Non-CICS default
PRTUNIT=((6),OVR)

CICS default
PRTUNIT is ignored under CICS.

Syntax

�� PRTUNIT = ((number) ,
OVR
NONOVR) ��

number
A valid unit number in the range 0-99.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

PUNUNIT (Fortran only)
Derivation: PUNch UNIT

PUNUNIT identifies the unit number used for PUNCH statements that do not
specify a unit number.

Non-CICS default
PUNUNIT=((7),OVR)

CICS default
PUNUNIT is ignored under CICS.

PROFILE

Chapter 6. Language Environment runtime options 105

Syntax

�� PUNUNIT = ((number) ,
OVR
NONOVR) ��

number
A valid unit number in the range 0-99.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

RDRUNIT (Fortran only)
Derivation: ReaDeR UNIT

RDRUNIT identifies the unit number used for READ statements that do not
specify a unit number.

Non-CICS default
RDRUNIT=((5),OVR)

CICS default
RDRUNIT is ignored under CICS.

Syntax

�� RDRUNIT = ((number) ,
OVR
NONOVR) ��

number
A valid unit number in the range 0-99.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

RECPAD (Fortran only)

Derivation: RECord PADding

RECPAD specifies whether a formatted input record is padded with blanks.

Non-CICS default
RECPAD=((OFF),OVR)

CICS default
RECPAD is ignored under CICS.

PUNUNIT

106 z/OS V2R1.0 Language Environment Customization

Syntax

��
OFF OVR

RECPAD = ((ON) , NONOVR)
NONE
ALL
VAR

��

OFF|NONE
Specifies that no blank padding be applied when an input list and format
specification requires more data from an input record than the record contains.
If more data are required, the error described by condition FOR1002 is
detected.

ON|ALL
Specifies that a formatted input record within an internal file, or a varying or
undefined length record (RECFM=U or V) external file, be padded with blanks
when an input list and format specification require more data from the record
than the record contains. Blanks added for padding are interpreted as though
the input record actually contains blanks in those fields.

VAR
Applies blank padding to any of the following types of files:
v An external, non-VSAM file with a record format (the RECFM value) that

allows the lengths of records to differ within the file. Such record formats
are variable (V), variable blocked (VB), undefined (U), variable spanned
(VS), and variable blocked spanned (VBS); this excludes fixed (F), fixed
blocked (FB), and fixed blocked standard (FBS).

v An external, VSAM entry-sequenced data set (ESDS) or key-sequenced data
set (KSDS).

v An internal file.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

Usage notes
v NORECPAD has the same effect as RECPAD(OFF) and RECPAD(NONE).

RECPAD has the same effect as RECPAD(ON) and RECPAD(ALL).
v The PAD specifier of the OPEN statement can be used to indicate padding for

individual files.

RPTOPTS

Derivation: RePorT OPTionS

RPTOPTS generates, after an application has run, a report of the run-time options
in effect while the application was running. RPTOPTS(ON) lists the declared
run-time options in alphabetical order. The report lists the option names and

RECPAD

Chapter 6. Language Environment runtime options 107

shows where each option obtained its current setting. Language Environment
writes options reports only in mixed-case US English.

For an example and complete description of the options report, see z/OS Language
Environment Debugging Guide.

Non-CICS default
RPTOPTS=((OFF),OVR)

CICS default
RPTOPTS=((OFF),OVR)

AMODE 64 default
RPTOPTS=((OFF),OVR)

Syntax

�� RPTOPTS = ((
OFF
ON) ,

OVR
NONOVR) ��

OFF
Does not generate a report of the run-time options in effect while the
application was running.

ON Generates a report of the run-time options in effect while the application was
running.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

Usage notes
v For AMODE 64 applications, Language Environment writes the options report to

stderr.
v RPTOPTS may not generate the options report if your application ends

abnormally.
v In a non-CICS environment, Language Environment directs the report to the

ddname specified in the MSGFILE run-time option. Under CICS, with
RPTOPTS(ON), Language Environment writes the options report to the CESE
queue when the transaction ends successfully.

For more information
v See “MSGFILE” on page 94 for more information about the MSGFILE run-time

option.
v For an example and complete description of the options report, see z/OS

Language Environment Debugging Guide.

RPTSTG

Derivation: RePorT ST or aGe

RPTOPTS

108 z/OS V2R1.0 Language Environment Customization

RPTSTG generates, after an application has run, a report of the storage the
application used. Language Environment writes storage reports only in mixed-case
US English.

Use the storage report information to help you set the ANYHEAP, BELOWHEAP,
HEAP, HEAP64, HEAPPOOLS, HEAPPOOLS64, IOHEAP64, LIBHEAP64,
LIBSTACK, STACK, STACK64, THREADHEAP, THREADSTACK, and
THREADSTACK64 run-time options for the best storage tuning.

For an example and complete description of the storage report, see z/OS Language
Environment Debugging Guide.

Non-CICS default
RPTSTG=((OFF),OVR)

CICS default
RPTSTG=((OFF),OVR)

AMODE 64 default
RPTSTG=((OFF),OVR)

Syntax

�� RPTSTG = ((
OFF
ON) ,

OVR
NONOVR) ��

OFF
Does not generate a report of the storage used while the application was
running.

ON Generates a report of the storage used while the application was running.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS considerations

The phrases “Number of segments allocated” and “Number of segments freed”
represent, on CICS, the number of EXEC CICS GETMAIN and EXEC CICS
FREEMAIN requests, respectively.

z/OS UNIX considerations

The RPTSTG option applies to storage utilization for the enclave, including
thread-level information about stack utilization, and heap storage used by multiple
threads.

Usage notes
v For AMODE 64 applications, Language Environment writes the storage report to

stderr.

RPTSTG

Chapter 6. Language Environment runtime options 109

v RPTSTG may not generate the storage report if your application ends
abnormally.

v When a vendor heap manager (VHM) is active, the Language Environment
storage report includes a text line indicating that the user heap for the C/C++
part of the enclave is managed separately. The VHM is expected to write its own
storage report to the stderr stream.

v RPTSTG includes PL/I task-level information about stack and heap usage.
v The phrases “Number of segments allocated” and “Number of segments freed”

represent the number of system requests to allocate and deallocate storage
requests, respectively.

v If you specify the RPTSTG runtime option while using HEAPPOOLS, extra
storage is obtained from the ANYHEAP and is used to complete the storage
report on heappools. This extra storage is only allocated when both
HEAPPOOLS and RPTSTG are used.

v If you specify the RPTSTG runtime option while using HEAPPOOLS64, extra
storage is obtained from the LIBHEAP64 and is used to complete the storage
report on heappools. This extra storage is only allocated when both
HEAPPOOLS64 and RPTSTG are used.

Performance considerations

This option increases the time it takes for an application to run. Therefore, use it
only as an aid to application development.

The storage report generated by RPTSTG(ON) shows the number of system-level
calls to obtain storage that were required while the application was running. To
improve performance, use the storage report numbers generated by the RPTSTG
option as an aid in setting the initial and increment size for stack and heap. This
reduces the number of times that the Language Environment storage manager
makes requests to acquire storage. For example, you can use the storage report
numbers to set appropriate values in the HEAP init_size and incr_size fields for
allocating storage.

For more information
v For more information about tuning your application with storage numbers, see

z/OS Language Environment Programming Guide or z/OS Language Environment
Programming Guide for 64-bit Virtual Addressing Mode.

v For more information about the MSGFILE run-time option, see “MSGFILE” on
page 94.

v For an example and complete description of the storage report, see z/OS
Language Environment Debugging Guide.

RTEREUS (COBOL only)

Derivation: Run Time Environment REUSe

RTEREUS implicitly initializes the runtime environment to be reusable when the
main program for the thread is a COBOL program. This option is valid only when
specified at the system level, region level, in a CEEUOPT, or in the CEEBXITA
assembler user exit.

Non-CICS default
RTEREUS=((OFF),OVR)

RPTSTG

110 z/OS V2R1.0 Language Environment Customization

|
|
|
|

CICS default
RTEREUS is ignored under CICS.

Syntax

�� RTEREUS = ((
OFF
ON) ,

OVR
NONOVR) ��

OFF
Does not initialize the runtime environment to be reusable when the first
COBOL program is invoked.

ON Initializes the runtime environment to be reusable when the first COBOL
program is invoked.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

Usage notes
v Avoid using RTEREUS(ON) as a system-level or region-level default. If you do

use RTEREUS, use it for specific applications only.
v Restrictions:

– RTEREUS(ON) cannot be used with XPLINK(ON).
– RTEREUS(ON) cannot be used in a z/OS UNIX process.
– Enterprise COBOL programs compiled with the THREAD compiler option do

not run with RTEREUS(ON).
v Under Language Environment, RTEREUS(ON) is only supported in a single

enclave environment unless you modify the behavior using the IGZERREO
CSECT. With the IBM-supplied default setting for COBOL's reusable
environment, applications that attempt to create nested enclaves terminate with
error message IGZ0168S.
Nested enclaves can be created by applications that use SVC LINK or CMSCALL
to invoke application programs. One example is when an SVC LINK is used to
invoke an application program under ISPF that is using ISPF services (such as
CALL 'ISPLINK' and ISPF SELECT).

v If a Language Environment reusable environment is established (using
RTEREUS), attempts to run a C or PL/I main program under Language
Environment will fail. For example, when running on ISPF with RTEREUS(ON):
– The first program invoked by ISPF is a COBOL program. A Language

Environment reusable environment is established.
– At some other point, ISPF invokes a PL/I or C program. The initialization of

the PL/I or C program will fail.
v If a large number of COBOL programs are run (using RTEREUS) under the same

MVS task, you can encounter out-of-region abends. This is because all storage
acquired by Language Environment to run COBOL programs is kept in storage
until the MVS task ends or the Language Environment environment is
terminated.

RTEREUS

Chapter 6. Language Environment runtime options 111

|
|

v Language Environment storage and runtime options reports are not produced by
Language Environment (using RTEREUS) unless a STOP RUN is issued to end
the enclave.

v The IGZERREO CSECT affects the handling of program checks in the
non-Language Environment-enabled driver that repeatedly invokes COBOL
programs. It also affects the behavior of running COBOL programs in a nested
enclave when a reusable environment is active.

IMS considerations
RTEREUS is not recommended for use under IMS.

Performance considerations

You must change STOP RUN statements to GOBACK statements in order to gain
the benefits of RTEREUS. STOP RUN terminates the reusable environment. If you
specify RTEREUS and use STOP RUN, Language Environment recreates the
reusable environment on the next invocation of COBOL. Doing this repeatedly
degrades performance, because a reusable environment takes longer to create than
does a normal environment.

The IGZERREO CSECT affects the performance of running with RTEREUS.

Language Environment also offers preinitialization support in addition to
RTEREUS.

For more information
v For more information about specifying this option at the system or region level,

see Chapter 5, “Customizing Language Environment runtime options,” on page
19.

v For more information about preinitialization and specifying this option in a
CEEUOPT, see z/OS Language Environment Programming Guide.

v For more information about IGZERREO, see “Modifying COBOL reusable
environment behavior” on page 174.

SIMVRD (COBOL only)

Derivation: SIMulate Variable length Relative organization Data sets

SIMVRD specifies whether your COBOL programs use a VSAM KSDS to simulate
variable-length relative organization data sets.

Non-CICS default
SIMVRD=((OFF),OVR)

CICS default
SIMVRD is ignored under CICS.

Syntax

�� SIMVRD = ((
OFF
ON) ,

OVR
NONOVR) ��

RTEREUS

112 z/OS V2R1.0 Language Environment Customization

|
|
|

|
|

OFF
Do not use a VSAM KSDS to simulate variable-length relative organization.

ON Use a VSAM KSDS to simulate variable-length relative organization.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

For more information

See the appropriate version of the programming guide in the COBOL library at
Enterprise COBOL for z/OS library (http://www-01.ibm.com/support/
docview.wss?uid=swg27036733).

STACK

STACK controls the allocation of the thread's stack storage for both the upward
and downward-growing stacks. Typical items residing in the upward-growing
stack are C or PL/I automatic variables, COBOL LOCAL-STORAGE data items,
and work areas for COBOL library routines.

The downward growing stack is allocated only when an application has been built
with XPLINK.

Storage required for the common anchor area (CAA) and other control blocks is
allocated separately from, and before, the allocation of the initial stack segment
and the initial heap.

Non-CICS default
STACK=((128K,128K,ANYWHERE,KEEP,512K,128K),OVR)

CICS default
STACK=((4K,4080,ANYWHERE,KEEP,4K,4080),OVR)

Syntax

�� STACK = ((usinit_size , usincr_size ,
ANYWHERE
ANY
BELOW

, �

�
KEEP
FREE , dsinit_size , dsincr_size) ,

OVR
NONOVR) ��

usinit_size
Determines the size of the initial upward-growing stack segment. The storage
is contiguous. You specify the usinit_size value as n, nK, or nM bytes of storage.
The actual amount of allocated storage is rounded up to the nearest multiple of
8 bytes.

usinit_size can be preceded by a minus sign. In environments other than CICS,
if you specify a negative number Language Environment uses all available
storage minus the amount specified for the initial stack segment.

SIMVRD

Chapter 6. Language Environment runtime options 113

|
|
|

http://www-01.ibm.com/support/docview.wss?uid=swg27036733
http://www-01.ibm.com/support/docview.wss?uid=swg27036733

A size of "0" or "-0" requests half of the largest block of contiguous storage in
the region below the 16-MB line.

usincr_size
Determines the minimum size of any subsequent increment to the
upward-growing stack area. You can specify this value as n, nK, or nM bytes of
storage. The actual amount of allocated storage is the larger of two values
(usincr_size or the requested size) rounded up to the nearest multiple of 8 bytes

If you specify usincr_size as 0, only the amount of the storage needed at the
time of the request, rounded up to the nearest multiple of 8 bytes, is obtained.

The requested size is the amount of storage a routine needs for a stack frame.
For example, if the requested size is 9000 bytes, usincr_size is specified as 8K,
and the initial stack segment is full, Language Environment gets a 9000 byte
stack increment from the operating system to satisfy the request. If the
requested size is smaller than 8K, Language Environment gets an 8K stack
increment from the operating system.

ANYWHERE | ANY | BELOW
Specifies the storage location. For downward growing stack, this option is
ignored and the storage is always placed above 16 MB.

BELOW
Specifies that the stack storage must be allocated below the 16MB line in
storage that is accessible to 24-bit addressing.

ANYWHERE | ANY
Specifies that stack storage can be allocated anywhere in storage. If there is
no storage available above the line, Language Environment acquires
storage below the 16-MB line.

KEEP | FREE
Determines the disposition of the storage increments when the last stack frame
in the increment segment is freed.

KEEP
Specifies that storage allocated to stack increments is not released when the
last of the storage in the stack increment is freed.

FREE
Specifies that storage allocated to stack increments is released when the
last of the storage in the stack is freed. The initial stack segment is never
released until the enclave terminates.

dsinit_size
Determines the size of the initial downward growing stack segment. The
storage is contiguous. You specify the dsinit_size value as n, nK, or nM bytes of
storage. The actual amount of allocated storage is rounded up to the nearest
multiple of 16 bytes.

dsincr_size
Determines the minimum size of any subsequent increment to the downward
growing stack area. You can specify this value as n, nK, or nM bytes of storage.
The actual amount of allocated storage is the larger of two values-- dsincr_size
or the requested size--rounded up to the nearest multiple of 16 bytes.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

STACK

114 z/OS V2R1.0 Language Environment Customization

CICS considerations

dsinit_size and dsincr_size suboptions are ignored under CICS.

The maximum initial and increment size for CICS above 16 MB is 1 gigabyte (1024
MB). This restriction is subject to change from one release of CICS to another.

Both the initial size and the increment size are rounded up to the nearest multiple
of 8 bytes. The initial size minimum is 4 KB.

If you do not specify STACK, Language Environment assumes the default value of
4 KB. Under CICS, STACK(0), STACK (-0), and STACK (-n) are all interpreted as
STACK(4K).

The default increment size under CICS is 4080 bytes, rather than 4096 bytes, to
accommodate the 16 bytes CICS storage check zone. Without this accommodation,
an extra page of storage is allocated (only when the storage allocation is below the
16MB line).

z/OS UNIX considerations

The STACK option specifies the characteristics of the user stack for the initial
thread. In particular, it gets the initial size of the user stack for the initial thread.

The characteristics that indicate incr_size, ANYWHERE, and KEEP | FREE apply to
any thread created using pthread_create. Language Environment gets the initial
stack size from the thread's attribute object specified in the pthread_create
function. The default size to be set in the thread's attribute object is obtained from
the STACK run-time option's initial size.

The recommended default setting for STACK under z/OS UNIX is
STACK=((12K,12K,ANYWHERE,KEEP,512K,128K),OVR).

Usage notes

When an application is running in an XPLINK environment (that is, either the
XPLINK(ON) runtime option was specified, or the initial program contained at
least one XPLINK-compiled part), the STACK runtime option will be forced to
STACK(,,ANY,,,). Only the third suboption of the STACK runtime option is
changed by this action, to indicate that stack storage can be allocated anywhere in
storage. No message will be issued to indicate this action. In this case, if a
Language Environment runtime options report is generated using the RPTOPTS
runtime option, the STACK option will be reported as "Override" under the LAST
WHERE SET column.

The dsinit_size and dsincr_size values are the amounts of storage that can be used
for downward growing stack frames (plus the stack header, approximately 20
bytes). The actual size of the storage getmained will be 4K (8K if a 4K page
alignment cannot be guaranteed) larger to accommodate the guard area.

The downward growing stack is only initialized in an XPLINK supported
environment, and only when an XPLINK application is active in the enclave.
Otherwise the suboptions for the downward growing stack are ignored.

Applications running with ALL31(OFF) must specify STACK(,,BELOW,,,) to ensure
that stack storage is addressable by the application.

STACK

Chapter 6. Language Environment runtime options 115

PL/I considerations
PL/I automatic storage above the 16-MB line is supported under control of
the Language Environment STACK option. When the Language
Environment stack is above, PL/I temporaries (dummy arguments) and
parameter lists (for reentrant/recursive blocks) also reside above.

The stack frame size for an individual block is constrained to 16MB. Stack
frame extensions are also constrained to 16MB. Therefore, the size of an
automatic aggregate, temporary variable, or dummy argument cannot
exceed 16MB. Violation of this constraint might have unpredictable results.

If an OS PL/I application does not contain any edited stream I/O and if it
is running with AMODE 31, you can relink it with Language Environment
to use STACK(,,ANY,,,). Doing so is particularly useful under CICS to help
relieve below-the-line storage constraints.

PL/I MTF considerations
The STACK option allocates and manages stack storage for the PL/I main
task only. For information about stack storage management in the subtasks,
see “THREADSTACK” on page 131.

Performance considerations

To improve performance, use the storage report numbers generated by the
RPTSTG run-time option as an aid in setting the initial and increment sizes for
STACK.

For more information
v See “ALL31” on page 50, for more information about the ALL31 run-time

option.
v See “RPTSTG” on page 108, for more information about the RPTSTG run-time

option.
v See “THREADSTACK” on page 131, for more information about the

THREADSTACK run-time option.
v For more information about using the storage reports generated by the RPTSTG

run-time option to tune the stacks, see z/OS Language Environment Programming
Guide.

STACK64 (AMODE 64 only)

Derivation: STACK storage for AMODE 64

STACK64 controls the allocation of the thread's stack storage for AMODE 64
applications.

AMODE 64 default
STACK64=((1M,1M,128M),OVR)

STACK

116 z/OS V2R1.0 Language Environment Customization

Syntax

�� STACK64 = ((initial , increment , maximum) ,
OVR
NONOVR �

�) ��

initial
Determines the size of the initial stack segment. The storage is contiguous. This
value is specified as nM bytes of storage.

increment
Determines the minimum size of any subsequent increment to the
downward-growing stack area. This value is specified as nM bytes of storage.
The actual amount of allocated storage is the larger of two values— increment
or the requested size—rounded up to the nearest 1MB.

If you specify increment as 0, only the amount of the storage needed at the time
of the request, rounded up to the nearest multiple of 1MB, is obtained.

The requested size is the amount of storage a routine needs for a stack frame.

maximum
Specifies the maximum stack size. This value is specified as nM bytes of
storage. When the maximum size is less than the initial size, initial is used as
the maximum stack size.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

Usage notes
v The 1 MB guard area is not included in any of the sizes.
v The maximum stack segment is the maximum of STACK64 initial and maximum

sizes.
v When a multithreaded application that creates many pthreads is run, the default

value of 128MB for the maximum stack size of the STACK64 and
THREADSTACK64 runtime options might cause excessive use of system
resources, such as real storage. For such applications, you need to use the
Language Environment Storage Report (RPTSTG runtime option) to determine
the actual pthread stack storage usage of your application, and then use the
THREADSTACK64 runtime option to set the maximum stack size to a value
closer to the actual usage.

Performance considerations

To improve performance, use the storage report numbers generated by the
RPTSTG runtime option as an aid in setting the initial and increment sizes for
STACK64.

For more information
v See “RPTSTG” on page 108 for more information about the RPTSTG runtime

option.

STACK64

Chapter 6. Language Environment runtime options 117

v For more information about using the storage reports generated by the RPTSTG
runtime option to tune the stacks for AMODE 64 applications, see z/OS Language
Environment Programming Guide for 64-bit Virtual Addressing Mode.

STORAGE

STORAGE controls the initial content of storage when allocated and freed. It also
controls the amount of storage that is reserved for the out-of-storage condition. If
you specify one of the parameters in the STORAGE run-time option, all allocated
storage processed by that parameter is initialized to the specified value. Otherwise,
it is left uninitialized.

You can use the STORAGE option to identify uninitialized application variables, or
prevent the accidental use of previously freed storage. STORAGE is also useful in
data security. For example, storage containing sensitive data can be cleared when it
is freed.

Non-CICS default
STORAGE=((NONE,NONE,NONE,0K),OVR)

CICS default
STORAGE=((NONE,NONE,NONE,0K),OVR)

Amode 64 default
STORAGE=((NONE,NONE,NONE,),OVR)

Syntax

�� STORAGE = ((heap_alloc_value , heap_free_value , �

� dsa_alloc_value , reserve_size) ,
OVR
NONOVR) ��

heap_alloc_value
The initialized value of any heap storage allocated by the storage manager. You
can specify heap_alloc_value as:
v A single character enclosed in quotation marks. If you specify a single

character, every byte of heap storage allocated by the storage manager is
initialized to that character's EBCDIC equivalent. For example, if you specify
'a' as the heap_alloc_value, heap storage is initialized to X'818181...81' or
'aaa...a'.

v Two hex digits without quotation marks. If you specify two hex digits, every
byte of the allocated heap storage is initialized to that value. For example, if
you specify FE as the heap_alloc_value, heap storage is initialized to
X'FEFEFE...FE'. A heap_alloc_value of 00 initializes heap storage to X'0000...00'.

v NONE. If you specify NONE, the allocated heap storage is not initialized.

heap_free_value
The value of any heap storage freed by the storage manager is overwritten.
You can specify heap_free_value as:

STACK64

118 z/OS V2R1.0 Language Environment Customization

v A single character enclosed in quotation marks. For example, a
heap_free_value of 'f' overwrites freed heap storage to X'868686...86'; 'B'
overwrites freed heap storage to X'C2'.

v Two hex digits without quotation marks. A heap_free_value of FE overwrites
freed heap storage with X'FEFEFE...FE'.

v NONE. If you specify NONE, the freed heap storage is not initialized.

dsa_alloc_value
The initialized value of stack frames from the Language Environment stack. A
stack frame is dynamically acquired storage that is composed of a standard
register save area and the area available for automatic storage.

If specified, all Language Environment stack storage, including automatic
variable storage, is initialized to dsa_alloc_value. Stack frames allocated outside
the Language Environment stack are never initialized.

You can specify dsa_alloc_value as:
v A single character enclosed in quotation marks. If you specify a single

character, any dynamically acquired stack storage allocated by the storage
manager is initialized to that character's EBCDIC equivalent. For example, if
you specify 'A' as the dsa_alloc_value, stack storage is initialized to X'C1'. A
dsa_alloc_value of 'F' initializes stack storage to X'C6', 'd' to X'84'.

v Two hex digits without quotation marks. If you specify two hex digits, any
dynamically acquired stack storage is initialized to that value. For example,
if you specify FE as the dsa_alloc_value, stack storage is initialized to X'FE'. A
dsa_alloc_value of 00 initializes stack storage to X'00', FF to X'FF'.

v CLEAR If you specify CLEAR, any unused portion of the initial upward
growing stack segment is initialized to binary zeros, just before the main
procedure gains control. This value has no effect on any stack increments or
on the XPLINK or AMODE 64 downward growing stack.

v NONE. If you specify NONE, the stack storage is not initialized.

reserve_size
The amount of storage for the Language Environment storage manager to
reserve in the event of an out-of-storage condition. You can specify the
reserve_size value as n, nK, or nM bytes of storage. The amount of storage is
rounded to the nearest multiple of 8 bytes.

Restriction: This suboption is ignored for AMODE 64 applications.

The default reserve_size is 0, so no reserve segment is allocated. If you do not
specify a reserve segment and your application exhausts storage, the
application terminates with abend 4088 and a reason code of 1024.

If you specify reserve_size as 0, no reserve segment is allocated. If you do not
specify a reserve segment and your application exhausts storage, the
application terminates with abend 4088 and a reason code of 1004.

If you specify a reserve_size that is greater than 0 on a non-CICS system,
Language Environment does not immediately abend when your application
runs out of storage. Instead, when the stack overflows, Language Environment
uses the reserve stack as the new segment and signals a CEE0PD out of
storage condition. This allows a user-written condition handler to gain control
for this signal and release storage. If the reserve stack segment overflows while
this is happening, Language Environment terminates with abend 4088 and
reason code of 1004. The reserve stack segment is not freed until thread
termination. It is acquired from 31-bit storage if the STACK(,,ANY,,,) runtime
option is set or 24-bit storage when STACK(,,BELOW,,,) is requested. If a

STORAGE

Chapter 6. Language Environment runtime options 119

determination is made to activate the reserve stack, the reserve size should be
set to a minimum of 32 KB to support Language Environment condition
handling and messaging internal routines as well as the user condition handler.
When the reserve stack is used in a multithreaded environment, it is suggested
that the ALL31(ON) and STACK(,,ANY,,,) options also be in effect.

If unsuccessful, Language Environment temporarily adds the reserve stack
segment to the overflowing stack, and signals the out-of-storage condition. This
causes a user-written condition handler to gain control and release storage. If
the reserve stack segment overflows while this is happening, Language
Environment terminates with abend 4088 and reason code of 1004.

To avoid such an overflow, increase the size of the reserve stack segment with
the STORAGE(,,,reserve_size) run-time option. The reserve stack segment is not
freed until thread termination.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS considerations
v The out-of-storage condition is not raised under CICS. Therefore, the reserve

stack size (fourth suboption) is ignored under CICS and displays as 0 in all
options reports

z/OS UNIX considerations

A reserve stack of the size specified by the reserve_size suboption of STORAGE is
allocated for each thread.

Usage notes
v The behavior of the dsa_alloc_value suboption of the STORAGE runtime option

is different for an XPLINK stack. The DSA is only initialized for routines that
perform an explicit check for stack overflow. (For C/C++, the compiler option
XPLINK(NOGUARD) can be used to force the compiler to generate prologs with
explicit checks for stack overflow.)

v heap_alloc_value, heap_free_value, and dsa_alloc_value can all be enclosed in
quotation marks. To initialize heap storage to the EBCDIC equivalent of a single
quotation mark, double it within the string delimited by single quotation mark
or surround it with a pair of double quotation marks. Both of the following
examples are correct ways to specify a single quotation mark:

STORAGE(’’’’)
STORAGE("’")

Similarly, double quotation marks must be doubled within a string delimited by
double quotation marks, or surrounded by a pair of single quotation marks. The
following are correct ways to specify a double quotation mark:

STORAGE("""")
STORAGE(’"’)

v CLEAR is not a valid option for AMODE 64 applications.
v If the initial stack segment is too small to contain the main procedure, it is

allocated from the stack increment, and is not be cleared even if the CLEAR
option is specified.

v If you specify CLEAR, any unused portion of the initial upward growing stack
segment is initialized to binary zeros, just before the main procedure gains

STORAGE

120 z/OS V2R1.0 Language Environment Customization

control. If a small initial stack segment size is specified, the DSA of the main
procedure can be allocated in the stack increment, not in the initial stack
segment. In this case, the variables of the main procedure cannot be initialized to
binary zeros because they are in the stack increment, not the initial stack. To
prevent this, the size of the initial stack segment needs to be increased.

COBOL considerations
If you are using WSCLEAR in VS COBOL II,
STORAGE(00,NONE,NONE,0K) is recommended.

Performance considerations

Using STORAGE to control initial values can increase program runtime. If you
specify a dsa_alloc_value, performance is likely to be poor. Therefore, use the
dsa_alloc_value option only for debugging, not to initialize automatic variables or
data structures. You should not use STORAGE(,,00) in any performance-critical
application.

Use STORAGE(NONE,NONE,NONE,0K) when you are not debugging.

TERMTHDACT

Derivation: TERMinating THreaD ACTions

TERMTHDACT sets the level of information that is produced when Language
Environment percolates a condition of severity 2 or greater beyond the first
routine's stack frame.

The Language Environment service CEE3DMP is called for TRACE, UATRACE,
DUMP and UADUMP suboptions of TERMTHDACT.

The following CEE3DMP options are used for TRACE and UATRACE:
NOBLOCKS CONDITION ENCLAVE(ALL) NOENTRY FILES
FNAME(CEEDUMP) GENOPTS STACKFRAME(ALL) NOSTORAGE
THREAD(ALL) TRACEBACK VARIABLES

The following options are used for DUMP and UADUMP:
BLOCKS CONDITION ENCLAVE(ALL) NOENTRY FILES FNAME(CEEDUMP)
GENOPTS STACKFRAME(ALL) STORAGE THREAD(ALL) TRACEBACK
VARIABLES

If a message is printed, based upon the TERMTHDACT(MSG) run-time option, the
message is for the active condition immediately before the termination imminent
step. In addition, if that active condition is a promoted condition (was not the
original condition), the original condition's message is printed.

If the TRACE runtime option is specified with the DUMP suboption, a dump
containing the trace table, at a minimum, is produced. The contents of the dump
depend on the values set in the TERMTHDACT runtime option.

Under normal termination, the following dump contents are generated:
Independent of the TERMTHDACT setting, Language Environment generates a
dump containing the trace table only.

Non-CICS default
TERMTHDACT=((TRACE,CESE,96),OVR)

STORAGE

Chapter 6. Language Environment runtime options 121

|
|
|

|
|
|

CICS default
TERMTHDACT=((TRACE,CESE,96),OVR)

AMODE 64 default
TERMTHDACT=(TRACE,,96),OVR)

Syntax

�� TERMTHDACT = ((
TRACE
QUIET
MSG
DUMP
UADUMP
UAONLY
UAIMM
UATRACE

,
CESE
CICSDDS , reg_stor_amount �

�) ,
OVR
NONOVR) ��

TRACE
Specifies that when a thread terminates due to an unhandled condition of
severity 2 or greater, Language Environment generates a message indicating
the cause of the termination and a trace of the active routines on the activation
stack.

QUIET
Specifies that Language Environment does not generate a message when a
thread terminates due to an unhandled condition of severity 2 or greater.

MSG
Specifies that when a thread terminates due to an unhandled condition of
severity 2 or greater, Language Environment generates a message indicating
the cause of the termination.

DUMP
Specifies that when a thread terminates due to an unhandled condition of
severity 2 or greater, Language Environment generates a message indicating
the cause of the termination, a trace of the active routines on the activation
stack, and a Language Environment dump.

UADUMP
Specifies that when a thread terminates due to an unhandled condition of
severity 2 or greater, Language Environment generates a message indicating
the cause of the termination, a Language Environment dump, and generates a
U4039 abend which allows a system dump of the user address space to be
generated. Under non-CICS, if the appropriate DD statement is used, you will
get a system dump of your user address space. Under CICS, you will get a
CICS transaction dump.

UATRACE
Specifies that when a thread terminates due to an unhandled condition of
severity 2 or greater, Language Environment generates a message indicating
the cause of the termination, a trace of the active routines on the activation
stack, and generates a U4039 abend which allows a system dump of the user
address space to be generated. Under non-CICS, if the appropriate DD

TERMTHDACT

122 z/OS V2R1.0 Language Environment Customization

statement is used, you will get a system dump of your user address space.
Under CICS, you will get a CICS transaction dump.

UAONLY
Specifies that when a thread terminates due to an unhandled condition of
severity 2 or greater, Language Environment generates a U4039 abend which
allows a system dump of the user address space to be generated. Under
non-CICS, if the appropriate DD statement is used, you will get a system
dump of your user address space. Under CICS, you will get a CICS transaction
dump.

UAIMM
Specifies to Language Environment that prior to condition management
processing, for abends and program interrupts that are conditions of Severity 2
or higher, Language Environment will immediately request the operating
system to generate a system dump of the original abend/program interrupt of
the user address space. Due to an unhandled condition of severity 2 or greater,
Language Environment generates a U4039 abend which allows a system dump
of the user address space to be generated. Under non-CICS, if the appropriate
DD statement is used, you will get a system dump of your user address space.
After the dump is taken by the operating system, Language Environment
condition manager can continue processing. If the thread terminates due to an
unhandled condition of Severity 2 or higher, then Language Environment will
terminate as if TERMTHDACT(QUIET) was specified.

Note: For software-raised conditions or signals, UAIMM behaves the same as
UAONLY. When TRAP(ON,SPIE) is in effect, UAIMM will yield UAONLY
behavior.

CESE

Restriction: This suboption is ignored for AMODE 64 applications.Specifies
that Language Environment dump output will be written to the CESE queue.

CICSDDS

Restriction: This suboption is ignored for AMODE 64 applications.

Specifies that Language Environment dump output will be written to the CICS
transaction dump data set that contains both CICS and CEEDUMP data. For
program checks or ABENDs, the CICSDDS option directs Language
Environment to place the message output in the CICS dump dataset created
for the failure. For software-raised errors, like subscript range exceeded, the
CESE queue remains the destination for the output (since there may be no
transaction dump for these). CICSDDS can be specified with any of the first
TERMTHDACT settings except DUMP and UADUMP. Attempts to request this
combination will result in an error in building the options module.

reg_stor_amount
Controls the amount of storage to be dumped around registers. This amount
can be in the range from 0 to 256 bytes. The amount specified is rounded up to
the nearest multiple of 32. The default amount is 96 bytes.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

TERMTHDACT

Chapter 6. Language Environment runtime options 123

CICS considerations
v All TERMTHDACT output is written to the data queue based on the setting of

CESE or CICSDDS.

See Table 9 for help in understanding the results of the different options that are
available.

Table 9. Condition handling of 0Cx ABENDS in a CICS environment

Options TERMTHDACT(option,CESE,) TERMTHDACT(option,CICSDDS,)

QUIET v No output.

v ASRA or user ABEND issued.

v No output.

v ASRA or user ABEND issued.

MSG v Message written to CESE queue or
MSGFILE.

v ASRA or user ABEND issued.

v Message written to CESE queue or
MSGFILE.

v ASRA or user ABEND issued.

TRACE v Message written to CESE queue.

v Traceback written to CESE queue.

v ASRA or user ABEND issued.

v Message written to CESE or
MSGFILE.

v Traceback included in CICS
transaction dump for this ABEND.

v ASRA or user ABEND issued.

DUMP v Message written to CESE queue.

v Traceback written to CESE queue.

v CEEDUMP to CESE queue.

v ASRA or user ABEND issued.

v Incorrect suboption combination.
Not supported.

UATRACE v Message written to CESE queue.

v Traceback included in CICS
transaction dump for this ABEND.

v U4039 transaction dump in CICS
dump data set.

v ASRA or user ABEND issued.

v Message written to CESE queue.

v Traceback written to CESE queue.

v U4039 transaction dump in CICS
dump data set.

v ASRA or user ABEND issued.

UADUMP v Message written to CESE queue.

v Traceback written to CESE queue.

v CEEDUMP written to CESE queue.

v U4039 transaction dump in CICS
dump data set.

v ASRA or user ABEND issued.

v Incorrect suboption combination.
Not supported.

UAONLY v U4039 transaction dump in CICS
dump data set.

v No changes in behavior for
CICSDDS.

UAIMM v U4039 transaction dump in CICS
dump data set.

v No changes in behavior for
CICSDDS.

Note: Program checks end in ASRx (most commonly ASRA) CICS abend with a
CICS dump in the dump data set. Abends end with the abend code provided on
the EXEC CICS ABEND command with a CICS dump in the dump data set if the
NODUMP option was NOT specified.

For software raised errors of severity 2 or higher in a CICS environment:

TERMTHDACT

124 z/OS V2R1.0 Language Environment Customization

Table 10. Handling of software-raised conditions in a CICS environment

Options TERMTHDACT(option,CESE,) TERMTHDACT(option,CICSDDS,)

QUIET v No output.

v U4038 abend issued with CANCEL
and NODUMP options.

v No output.

v U4038 abend issued with CANCEL
and NODUMP options.

MSG v Message written to CESE queue or
MSGFILE.

v U4038 abend issued.

v Message written to CESE queue or
MSGFILE.

v U4038 abend issued.

TRACE v Message written to CESE queue or
MSGFILE.

v Traceback written to CESE queue.

v U4038 abend issued.

v Message written to CESE queue or
MSGFILE.

v Traceback written to CESE queue.

v U4038 abend issued.

DUMP v Message written to CESE queue or
MSGFILE.

v Traceback written to CESE queue.

v CEEDUMP written to CESE queue.

v U4038 abend issued.

v Invalid suboption combination. Not
supported.

UATRACE v Message written to CESE queue or
MSGFILE.

v Traceback written to CESE queue.

v U4039 transaction dump in CICS
dump data set.

v U4038 abend issued.

v Message written to CESE queue or
MSGFILE.

v Traceback written to CESE queue.

v U4039 transaction dump in CICS
dump data set.

v U4038 abend issued.

UADUMP v Message written to CESE queue or
MSGFILE.

v Traceback written to CESE queue.

v CEEDUMP written to CESE queue.

v U4039 transaction dump in CICS
dump data set.

v U4038 abend issued.

v Invalid suboption combination. Not
supported.

UAONLY v U4039 transaction dump in CICS
dump data set.

v U4038 abend issued.

v No changes in behavior for
CICSDDS.

UAIMM v U4039 transaction dump in CICS
dump data set.

v U4038 abend issued.

v No changes in behavior for
CICSDDS.

Note:

1. See z/OS Language Environment Runtime Messages for more complete details
regarding the U4039 abend.

2. When assembling a CEEROPT or CEEUOPT, the CICSDDS option cannot be
issued with DUMP, or UADUMP. This results in an RC=8, CEEXOPT issues
and MNOTE, and the setting is forced to TRACE.

3. Running with something like TERMTHDACT(TRACE,CICSDDS) in the
CEECOPT group or CEEROPT and then creating a CEEUOPT without

TERMTHDACT

Chapter 6. Language Environment runtime options 125

|
|
|

|

specifying the second operand (for example, TERMTHDACT(DUMP)) results in
the CICS dump data set as the output destination and the following message
occurs in the CESE queue:
CEE3627I The following messages pertain to the programmer default
runtime options.
CEE3775W A conflict was detected between the TERMTHDACT suboptions
CICSDDS and DUMP.
The TERMTHDACT level setting has been set to TRACE.

and the traceback is written to the CICS transaction dump data set.

z/OS UNIX considerations

The TERMTHDACT option applies when a thread terminates abnormally.
Abnormal termination of a single thread causes termination of the entire enclave. If
an unhandled condition of severity 2 or higher percolates beyond the first routine's
stack frame, the enclave terminates abnormally.

If an enclave terminates due to a POSIX default signal action, TERMTHDACT
applies only to conditions that result from program checks or abends.

Usage notes

A runtime options report will be generated and placed at the end of the enclave
information whenever the TRACE, UATRACE, DUMP and UADUMP options are
invoked.

COBOL considerations
TERMTHDACT(UADUMP) produces debugging information that is similar
to the information produced by previous levels of COBOL.

PL/I considerations
After a normal return from a PL/I ERROR ON-unit or from a PL/I FINISH
ON-unit, Language Environment considers the condition unhandled. If a
GOTO is not performed and the resume cursor is not moved, the thread
terminates. The TERMTHDACT setting guides the amount of information
that is produced. The message is not presented twice.

PL/I MTF considerations
v TERMTHDACT applies to a task when the task terminates abnormally

due to an unhandled condition of severity 2 or higher that is percolated
beyond the initial routine's stack frame.

v When a task ends with a normal return from an ERROR ON-unit and
other tasks are still active, a dump is not produced even when the
TERMTHDACT option DUMP, UADUMP, UAONLY, or UAIMM is
specified.

v All active subtasks created from the incurring task also terminate
abnormally, but the enclave can continue to run.

For more information
v See “TRACE” on page 135, for more information about the TRACE runtime

option.
v For more information about the CEE3DMP service and its parameters, see z/OS

Language Environment Programming Reference.
v See z/OS Language Environment Programming Guide for more information about

the TERMTHDACT run-time option and condition message.

TERMTHDACT

126 z/OS V2R1.0 Language Environment Customization

v For more information about CESE, see z/OS Language Environment Programming
Guide.

TEST | NOTEST

TEST specifies the conditions under which a debug tool (such as the Debug Tool
supplied with z/OS) assumes control when the user application is being
initialized. Parameters of the TEST and NOTEST run-time options are merged as
one set of parameters.

Non-CICS default
NOTEST=((ALL,*,PROMPT,INSPPREF),OVR)

CICS default
NOTEST=((ALL,*,PROMPT,INSPPREF),OVR)

Amode 64 default
NOTEST=((ALL,*,PROMPT,INSPPREF),OVR)

Syntax

��
NOTEST
TEST = ((

ALL
ERROR
NONE

,
*
commands_file ,

PROMPT
NOPROMPT
*
;
command

�

� ,
INSPPREF
preference_file
*

) ,
OVR
NONOVR) ��

ALL
Specifies that any of the following causes the debug tool to gain control even
without a defined AT OCCURRENCE for a particular condition or AT
TERMINATION:
v The ATTENTION function
v Any Language Environment condition of severity 1 or above
v Application termination

ERROR
Specifies that only one of the following causes the debug tool to gain control
without a defined AT OCCURRENCE for a particular condition or AT
TERMINATION:
v The ATTENTION function
v Any Language Environment-defined error condition of severity 2 or higher
v Application termination

NONE
Specifies that no condition causes the debug tool to gain control without a
defined AT OCCURRENCE for a particular condition or AT TERMINATION.

commands_file
A valid ddname, data set name (MVS), or file name (CMS), specifying the
primary commands file for this run. If you do not specify this parameter all
requests for commands go to the user terminal.

TERMTHDACT

Chapter 6. Language Environment runtime options 127

You can enclose commands_file in single or double quotation marks to
distinguish it from the rest of the TEST | NOTEST suboption list. It can have a
maximum length of 80 characters. If the data set name provided could be
interpreted as a ddname, it must be preceded by a slash (/). The slash and
data set name must be enclosed in quotation marks.

A primary commands file is required when running in a batch environment.

* (asterisk — in place of commands_file)
Specifies that no commands_file is supplied. The terminal, if available, is used as
the source of the debug tool commands.

PROMPT
Specifies that the debug tool is invoked at Language Environment
initialization.

NOPROMPT
Specifies that the debug tool is not invoked at Language Environment
initialization.

* (asterisk — in place of PROMPT/NOPROMPT)
Specifies that the debug tool is not invoked at Language Environment
initialization; equivalent to NOPROMPT.

; (semicolon — in place of PROMPT/NOPROMPT)
Specifies that the debug tool is invoked at Language Environment
initialization; equivalent to PROMPT.

command
A character string that specifies a valid debug tool command. The command
list can be enclosed in single or double quotation marks to distinguish it from
the rest of the TEST parameter list; it cannot contain DBCS characters.
Quotation marks are needed whenever the command list contains embedded
blanks, commas, semicolons, or parentheses. The list can have a maximum of
250 characters.

preference_file
A valid ddname, data set name (MVS), or file name (CMS), specifying the
preference file to be used. A preference file is a type of commands file that you
can use to specify settings for your debugging environment. It is analogous to
creating a profile for a text editor, or initializing an S/370 terminal session.

You can enclose preference_file in single or double quotation marks to
distinguish it from the rest of the TEST parameter list. It can have a maximum
of 80 characters.

If a specified data set name could be interpreted as a ddname, it must be
preceded by a slash (/). The slash and data set name must be enclosed in
quotation marks.

The IBM-supplied default setting for preference_file is INSPPREF.

* (asterisk — in place of preference_file)
Specifies that no preference_file is supplied.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

TEST | NOTEST

128 z/OS V2R1.0 Language Environment Customization

z/OS UNIX considerations

Language Environment honors the initial command string before the main routine
runs on the initial thread.

The test level (ALL, ERROR, NONE) applies to the enclave.

Language Environment honors the preference file when the debug tool is
initialized, regardless of which thread first requests the debug tool services.

Usage notes
v You can specify parameters on the NOTEST option. If NOTEST is in effect when

the application gains control, it is interpreted as TEST(NONE,,*,). If Debug Tool
is initialized using a CALL CEETEST or equivalent, the initial test level, the
initial commands_file, and the initial preference_file are taken from the NOTEST
runtime setting.

Performance considerations

To improve performance, use this option only while debugging.

For more information

See Debug Tool publications for details and examples of the TEST run-time option
as it relates to Debug Tool.

THREADHEAP

Derivation: THREAD level HEAP storage

THREADHEAP controls the allocation and management of thread-level heap
storage. Separate heap segments are allocated and freed for each thread based on
the THREADHEAP specification.

For PL/I MTF applications, controlled and based variables declared in a subtask
are allocated from heap storage specified by THREADHEAP. Variables in the main
task are allocated from heap storage specified by HEAP.

Library use of heap storage in a substack is allocated from the enclave-level heap
storage specified by the ANYHEAP and BELOWHEAP options.

Non-CICS default
THREADHEAP=((4K,4K,ANYWHERE,KEEP),OVR)

CICS default
THREADHEAP is ignored under CICS.

TEST | NOTEST

Chapter 6. Language Environment runtime options 129

Syntax

�� THREADHEAP = ((init_size , incr_size ,
ANYWHERE
ANY
BELOW

, �

�
KEEP
FREE) ,

OVR
NONOVR) ��

init_size
The minimum initial size of thread heap storage, and is specified in n, nK, or
nM. Storage is acquired in multiples of 8 bytes.

A value of zero (0) causes an allocation of 4K.

incr_size
The minimum size of any subsequent increment to the noninitial heap storage
is specified in n, nK, or nM. The actual amount of allocated storage is the
larger of two values, incr_size or the requested size, rounded up to the nearest
multiple of 8 bytes.

If you specify incr_size as 0, only the amount of the storage needed at the time
of the request (rounded up to the nearest 8 bytes) is obtained.

ANYWHERE|ANY
Specifies that the heap storage can be allocated anywhere in storage. If there is
no available storage above the line, storage is acquired below the 16-MB line.

The only valid abbreviation of ANYWHERE is ANY.

BELOW
Specifies that the heap storage must be allocated below the 16-MB line.

KEEP
Specifies that storage allocated to THREADHEAP increments is not released
when the last of the storage in the thread heap increment is freed.

FREE
Specifies that storage allocated to THREADHEAP increments is released when
the last of the storage in the thread heap increment is freed.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS considerations
v Even though this option is ignored under CICS, the default increment size under

CICS has changed from 4 KB (4096 bytes) to 4080 bytes, to accommodate the 16
byte CICS storage check zone.

Usage notes
v If the requesting routine is running in 24-bit addressing mode and

THREADHEAP(,,ANY,) is in effect, THREADHEAP storage is allocated below
the 16-MB line based upon the HEAP(,,,,initsz24,incrsz24) settings.

THREADHEAP

130 z/OS V2R1.0 Language Environment Customization

v PL/I MTF considerations — The thread-level heap is allocated only in
applications that use the PL/I MTF. For PL/I MTF applications, controlled and
based variables specified in subtasks are located in the thread-level heap.
If the main program is AMODE 24 and THREADHEAP(,,ANY,) is in effect, heap
storage is allocated below the 16-MB line. The only case in which storage is
allocated above the line is when all of the following conditions exist:
– The user routine requesting the storage is running in 31-bit addressing mode.
– HEAP(,,ANY,,,) is in effect.
– The main routine is AMODE 31.

v When running PL/I with POSIX(ON) in effect, THREADHEAP is used for
allocating heap storage for PL/I base variables declared in non-IPTs. Storage
allocated to all THREADHEAP segments is freed when the thread terminates.

v THREADHEAP(4K,4K,ANYWHERE,KEEP) provides behavior compatible with
the PL/I TASKHEAP option.

v The initial thread heap segment is never released until the thread terminates.
v THREADHEAP has no effect on C/C++ or VS Fortran MTF applications.

THREADSTACK

Derivation: THREAD level STACK storage

THREADSTACK controls the allocation of the thread's stack storage for both the
upward and downward-growing stacks, except the initial thread in a
multithreaded application.

If the thread attribute object does not provide an explicit stack size, then the
allocation values can be inherited from the STACK option or specified explicitly on
the THREADSTACK option.

Non-CICS default
THREADSTACK=((OFF,4K,4K,ANYWHERE,KEEP,128K,128K),OVR)

CICS default
THREADSTACK is ignored under CICS.

Syntax

�� THREADSTACK = ((
OFF
ON , usinit_size , usincr_size , �

�
ANYWHERE
ANY
BELOW

,
KEEP
FREE , dsinit_size , dsincr_size) , �

�
OVR
NONOVR) ��

OFF
Indicates that the allocation suboptions of the STACK runtime option are used
for thread stack allocation. Any other suboption specified with
THREADSTACK is ignored.

THREADHEAP

Chapter 6. Language Environment runtime options 131

ON Controls the stack allocation for each thread, except the initial thread, in a
multithread environment.

usinit_size
Determines the size of the initial upward-growing stack segment. The storage
is contiguous. You specify the usinit_size value as n, nK, or nM bytes of storage.
The actual amount of allocated storage is rounded up to the nearest multiple of
8 bytes.

usinit_size can be preceded by a minus sign. In environments other than, if you
specify a negative number Language Environment uses all available storage
minus the amount specified for the initial stack segment.

A size of "0" or "-0" requests half of the largest block of contiguous storage in
the region below the 16-MB line.

usincr_size
Determines the minimum size of any subsequent increment to the
upward-growing stack area. You can specify this value as n, nK, or nM bytes of
storage. The actual amount of allocated storage is the larger of two values—
usincr_size or the requested size—rounded up to the nearest multiple of 8 bytes

If you specify usincr_size as 0, only the amount of the storage needed at the
time of the request, rounded up to the nearest multiple of 8 bytes, is obtained.

The requested size is the amount of storage a routine needs for a stack frame.
For example, if the requested size is 9000 bytes, usincr_size is specified as 8K,
and the initial stack segment is full, Language Environment gets a 9000 byte
stack increment from the operating system to satisfy the request. If the
requested size is smaller than 8K, Language Environment gets an 8K stack
increment from the operating system.

ANYWHERE | ANY | BELOW
Specifies the storage location. For downward growing stack, this option is
ignored and the storage is always placed above 16MB.

BELOW
Specifies that the stack storage must be allocated below the 16MB line in
storage that is accessible to 24-bit addressing.

ANYWHERE|ANY
Specifies that stack storage can be allocated anywhere in storage. If there is
no storage available above the line, Language Environment acquires
storage below the 16-MB line.

KEEP | FREE
Determines the disposition of the storage increments when the last stack frame
in the increment segment is freed.

KEEP
Specifies that storage allocated to stack increments is not released when the
last of the storage in the stack increment is freed.

FREE
Specifies that storage allocated to stack increments is released when the
last of the storage in the stack is freed. The initial stack segment is never
released until the enclave terminates.

dsinit_size
Determines the size of the initial downward growing stack segment. The

THREADSTACK

132 z/OS V2R1.0 Language Environment Customization

storage is contiguous. You specify the init_size value as n, nK, or nM bytes of
storage. The actual amount of allocated storage is rounded up to the nearest
multiple of 16 bytes.

dsincr_size
Determines the minimum size of any subsequent increment to the downward
growing stack area. You can specify this value as n, nK, or nM bytes of storage.
The actual amount of allocated storage is the larger of two values-- incr_size or
the requested size--rounded up to the nearest multiple of 16 bytes.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

Usage notes
v The dsinit_size and dsincr_size values are the amounts of storage that can be

used for downward growing stack frames (plus the stack header, approximately
20 bytes). The actual size of the storage getmained will be 4K (8K if a 4K page
alignment cannot be guaranteed) larger to accommodate the guard area.

v The downward growing stack is only initialized in an XPLINK supported
environment, and only when an XPLINK application is active in the enclave.
Otherwise the suboptions for the downward growing stack are ignored.

v The THREADSTACK option replaces the NONIPTSTACK and
NONONIPTSTACK options.

v All storage allocated to THREADSTACK segments are freed when the thread
terminates.

v The initial stack segment of the thread is never released until the thread
terminates, regardless of the KEEP/FREE state.

v You can specify suboptions with THREADSTACK(OFF,...), but they are ignored.
If you override the THREADSTACK(OFF,...) suboption with
THREADSTACK(ON) and you omit suboptions, then the suboptions you
specified with THREADSTACK(OFF,...) remain in effect. If you respecify
THREADSTACK(OFF,...) with different suboptions, they override the defaults.

v In the multithreaded environment, you can explicitly specify the stack size in the
thread attribute object; it will be used instead of the value specified with
THREADSTACK or STACK.

PL/I MTF considerations
THREADSTACK(ON,4K,4K,BELOW,KEEP,,) provides PL/I compatibility
for stack storage allocation and management for each subtask in the
application.

PL/I considerations
For multitasking or multithreaded environments, the stack size for a
subtask or non-Initial Process Thread (non-IPT) is taken from the
THREADSTACK option unless THREADSTACK(OFF) is specified.
THREADSTACK(OFF) specifies that the values in the STACK option be
used.

For more information
v For more information about the STACK runtime option, see “STACK” on page

113.
v For more information about the ALL31 runtime option, see “ALL31” on page 50.

THREADSTACK

Chapter 6. Language Environment runtime options 133

THREADSTACK64 (AMODE 64 only)

Derivation: THREAD level STACK storage for AMODE 64

THREADSTACK64 controls the allocation of the thread's stack storage for AMODE
64 applications, except for the initial thread in a multithreaded environment.

AMODE 64 default
THREADSTACK64=((OFF,1M,1M,128M),OVR)

Syntax

�� THREADSTACK64 = ((
OFF
ON , initial , increment , maximum �

�) ,
OVR
NONOVR) ��

OFF
Indicates that the allocation suboptions of the STACK64 runtime option are
used for thread stack allocation. Any other suboption specified with
THREADSTACK64 is ignored.

ON Controls the stack allocation for each thread, except the initial thread, in a
multithreaded environment.

initial
Determines the size of the initial stack segment. The storage is contiguous. This
value is specified as nM bytes of storage.

increment
Determines the minimum size of any subsequent increment to the stack area.
This value is specified as nM bytes of storage. The actual amount of allocated
storage is the larger of two values— increment or the requested size—rounded
up to the nearest multiple of 1MB.

If you specify increment as 0, only the amount of the storage needed at the time
of the request, rounded up to the nearest multiple of 1MB, is obtained.

The requested size is the amount of storage a routine needs for a stack frame.

maximum
Specifies the maximum stack size. This value is specified as nM bytes of
storage. When the maximum size is less than the initial size, initial is used as
the maximum stack size.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

Usage notes
v The 1MB guard area is not included in any of the sizes.

THREADSTACK64

134 z/OS V2R1.0 Language Environment Customization

v The maximum thread stack segment is the maximum of THREADSTACK64
initial and maximum sizes.

v When a multithreaded application that creates many pthreads is run, the default
value of 128MB for the maximum stack size of the STACK64 and
THREADSTACK64 runtime options might cause excessive use of system
resources, such as real storage. For such applications, you need to use the
Language Environment Storage Report (RPTSTG runtime option) to determine
the actual pthread stack storage usage of your application, and then use the
THREADSTACK64 runtime option to set the maximum stack size to a value
closer to the actual usage.

Performance considerations

To improve performance, use the storage report numbers generated by the
RPTSTG runtime option as an aid in setting the initial and increment sizes for
THREADSTACK64.

For more information
v See “RPTSTG” on page 108 for more information about the RPTSTG runtime

option.
v For more information about using the storage reports generated by the RPTSTG

runtime option to tune the stacks for AMODE 64 applications, see z/OS Language
Environment Programming Guide for 64-bit Virtual Addressing Mode.

TRACE

TRACE controls runtime library tracing activity, the size of the in-storage trace
table, the type of trace events to record, and it determines whether a dump
containing, at a minimum, the trace table should be unconditionally taken when
the application terminates. When you specify TRACE(ON), user-requested trace
entries are intermixed with Language Environment trace entries in the trace table.

Under normal termination conditions, if TRACE is active and you specify DUMP,
only the trace table is written to the dump report, independent of the
TERMTHDACT setting. Only one dump is taken for each termination. Under
abnormal termination conditions, the type of dump taken (if one is taken) depends
on the value of the TERMTHDACT runtime option and whether TRACE is active
and the DUMP suboption is specified.

Non-CICS default
TRACE=((OFF,4K,DUMP,LE=0),OVR)

CICS default
TRACE=(OFF,4K,DUMP,LE=0)

AMODE 64 default
TRACE=(OFF,,DUMP,LE=0)

THREADSTACK64

Chapter 6. Language Environment runtime options 135

Syntax

�� TRACE = ((
OFF
ON , table_size ,

DUMP
NODUMP ,

LE=0
LE=1
LE=2
LE=3
LE=20

�

�) ,
OVR
NONOVR) ��

OFF
Indicates that the tracing facility is inactive.

ON Indicates that the tracing facility is active.

table_size
Determines the size of the tracing table as specified in bytes (nK or nM). The
upper limit is 16M - 1 (16777215 bytes).

Restriction: This suboption is ignored for AMODE 64 applications and the size
is set to 1M.

DUMP
Requests that a Language Environment-formatted dump (containing the trace
table) be taken at program termination regardless of the setting of the
TERMTHDACT runtime option.

NODUMP
Requests that a Language Environment-formatted dump not be taken at
program termination.

LE=0
Specifies that no trace events be recorded.

LE=1
Specifies that entry to and exit from Language Environment member libraries
be recorded (such as, in the case of C, entry and exit of the printf() library
function).

LE=2
Specifies that mutex init/destroy and locks/unlocks from Language
Environment member libraries be recorded.

LE=3
Activates both the entry/exit trace and the mutex trace.

LE=20
Specifies that XPLINK/non-XPLINK transition should be recorded.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

Usage notes
v When running PL/I with POSIX(ON), no PL/I-specific trace information is

provided.
v When you specify LE=20:

TRACE

136 z/OS V2R1.0 Language Environment Customization

– AMODE 64 applications have no transitions.
– Transitions across OS_UPSTACK linkage are not recorded.

v Under abnormal termination, the following dump contents are generated:

TERMTHDACT(TRACE)
Generates a dump containing the trace table and the traceback and
options report.

TERMTHDACT(QUIET)
Generates a dump containing the trace table only.

TERMTHDACT(MSG)
Generates a dump containing the trace table only.

TERMTHDACT(DUMP)
Generates a dump containing thread/enclave/process storage and
control blocks (the trace table is included as an enclave control block)
and an options report.

TERMTHDACT(UADUMP)
Generates a system dump of the user address space and an options
report.

PL/I MTF considerations
The TRACE(ON,,,LE=2) setting provides the following trace table entries
for PL/I MTF support:
v Trace entry 100 occurs when a task is created.
v Trace entry 101 occurs when a task that contains the tasking CALL

statements is terminated.
v Trace entry 102 occurs when a task that does not contain the tasking

CALL statements is terminated.

For more information
v For more information about the dump contents, see “TERMTHDACT” on page

121.
v For more information about using the tracing facility, see z/OS Language

Environment Debugging Guide.

TRAP

TRAP specifies how Language Environment programs handle abends and program
interrupts.

TRAP(ON) must be in effect for the ABTERMENC run-time option to have effect.

This option is similar to the STAE | NOSTAE run-time option currently offered by
COBOL, C, and PL/I, and the SPIE | NOSPIE option offered by C and PL/I:

Table 11. TRAP runtime option settings

If Then

A single option is specified in input, TRAP is set according to that option,
TRAP(OFF) for NOSTAE or NOSPIE,
TRAP(ON) for STAE or SPIE.

Both options are specified in input, TRAP is set ON, unless both options are
negative. TRAP is set OFFif both options are
negative.

TRACE

Chapter 6. Language Environment runtime options 137

Table 11. TRAP runtime option settings (continued)

If Then

STAE is specified in one #pragma runopts
statement, and NOSPIE in another,

The option in the last #pragma runopts
determines the setting of TRAP.

Multiple instances of STAE | NOSTAE are
specified,

TRAP is set according to the last instance
only. All others are ignored.

Multiple instances of SPIE | NOSPIE are
specified,

TRAP is set according to the last instance
only. All others are ignored.

An options string has TRAP(ON) or
TRAP(OFF) together with SPIE | NOSPIE,
and/or STAE | NOSTAE,

The TRAP setting takes preference over all
others.

CEESGL is unaffected by this option.

Non-CICS default
TRAP=((ON,SPIE),OVR)

CICS default
TRAP=((ON,SPIE),OVR)

Amode 64 default
TRAP=((ON,SPIE),OVR)

Syntax

�� TRAP = ((
ON
OFF ,

SPIE
NOSPIE) ,

OVR
NONOVR) ��

ON Fully enables the Language Environment condition handler.

OFF
Prevents language condition handlers or handlers registered by CEEHDLR
from being notified of abends or program checks; prevents application of
POSIX signal handling semantics for abends and program checks.

SPIE
SPIE specifies that Language Environment issue an ESPIE macro to handle
program interrupts. The SPIE suboption is ignore when specified with the OFF
suboption.

NOSPIE
NOSPIE specifies that Language Environment will not issue the ESPIE macro.
When you specify the ON suboption, Language Environment handles program
interrupts and abends using an ESTAE. The NOSPIE suboption is ignored
when specified with the OFF suboption.

Due to the restrictions and side effects when running TRAP(OFF) stated in
“Usage notes” on page 139, IBM highly recommends running TRAP(ON,SPIE)
in all environments.

OVR
Specifies that the option can be overridden.

TRAP

138 z/OS V2R1.0 Language Environment Customization

NONOVR
Specifies that the option cannot be overridden.

CICS considerations

Because Language Environment never sets a SPIE or STAE, the SPIE|NOSPIE
suboption is ignored on CICS.

z/OS UNIX considerations

The TRAP option applies to the entire enclave and all threads within.

Usage notes
v Restriction: TRAP(OFF) is not supported for AMODE 64 applications.
v The SPIE | NOSPIE runtime option offered by C and PL/I does not affect the

TRAP suboptions SPIE and NOSPIE.
v Use TRAP(OFF) only when you need to analyze a program exception before

Language Environment handles it.
v When you specify TRAP(OFF) in a non-CICS environment, an ESPIE is not

issued, but an ESTAE is issued. Language Environment does not handle
conditions raised by program interrupts or abends initiated by SVC 13 as
Language Environment conditions, and does not print messages for such
conditions.

v Running with TRAP(OFF) (for exception diagnosis purposes) can cause many
side effects, because Language Environment uses condition handling internally
and requires TRAP(ON). When you run with TRAP(OFF), you can get side
effects even if you do not encounter a software-raised condition, program check,
or abend. If you do encounter a program check or an abend with TRAP(OFF) in
effect, the following side effects can occur:
– Fixed-point overflow exceptions are not ignored when the PSW mask is ON.

C/C++ and COBOL language semantics expect the exceptions to be ignored.
When PL/I is part of the application, the PSW mask is ON.

– The ABTERMENC runtime option has no effect.
– The ABPERC runtime option has no effect.
– Resources acquired by Language Environment are not freed.
– Files opened by HLLs are not closed by Language Environment, so records

might be lost.
– The abnormal termination exit is not driven for enclave termination.
– The assembler user exit is not driven for enclave termination.
– User condition handlers are not enabled.
– The debugger is not notified of the error.
– No storage report or runtime options report is generated.
– No Language Environment messages or Language Environment dump output

is generated.
– In z/OS UNIX, POSIX signal handling semantics are not enabled for the

abend.

The enclave terminates abnormally if such conditions are raised.
v TRAP(ON) must be in effect when you use the CEEBXITA assembler user exit

for enclave initialization to specify a list of abend codes that Language
Environment percolates.

TRAP

Chapter 6. Language Environment runtime options 139

v When TRAP(ON) is in effect, and the abend code is in the
CEEAUE_A_AB_CODES list in CEEBXITA, Language Environment percolates
the abend. Normal Language Environment condition handling is never invoked
to handle these abends. This feature is useful when you do not want Language
Environment condition handling to intervene for certain abends or when you
want to prevent invocation of the abnormal termination exit for certain abends,
such as when IMS issues a user ABEND code 777.

v When TRAP(ON,NOSPIE) is specified, Language Environment will handle
program interrupts and abends via an ESTAE. This feature is useful when you
do not want Language Environment to issue an ESPIE macro. If you do not
want Language Environment to issue an ESPIE, you must specify TRAP(OFF).
When TRAP(OFF), (TRAP(OFF,SPIE) or TRAP(OFF,NOSPIE) is specified and
there is a program interrupt, the user exit for termination is not driven.

C++ considerations
TRAP(ON) must be in effect in order for the z/OS C++ try/throw/catch
condition handling mechanisms to work.

For more information
v See “ABTERMENC” on page 47 for more information about the ABTERMENC

runtime option.
v See z/OS Language Environment Programming Reference for more information about

the CEESGL callable service, or the CEEHDLR callable service.
v See z/OS Language Environment Programming Guide for more information about

the CEEBXITA assembler user exit.

UPSI (COBOL only)
Derivation: User Programmable Status Indicator

UPSI sets the eight UPSI switches on or off for applications that use COBOL
programs.

Non-CICS default
UPSI=((00000000),OVR)

CICS default
UPSI=((00000000),OVR)

Syntax

�� UPSI = ((nnnnnnnn) ,
OVR
NONOVR) ��

nnnnnnnn
n represents one UPSI switch between 0 and 7, the leftmost n representing the
first switch. Each n can either be 0 (off) or 1 (on).

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

TRAP

140 z/OS V2R1.0 Language Environment Customization

For more information
v For more information about how COBOL programs access the UPSI switches,

see the appropriate version of the programming guide in the COBOL library at
Enterprise COBOL for z/OS library (http://www-01.ibm.com/support/
docview.wss?uid=swg27036733).

USRHDLR

Derivation: USeR condition HanDLeR

USRHDLR registers a user condition handler at stack frame 0, allowing you to
register a user condition handler without having to include a call to CEEHDLR in
your application and then recompile the application.

Non-CICS default
NOUSRHDLR=((),OVR)

CICS default
NOUSRHDLR=((),OVR)

Syntax

��
NOUSRHDLR
USRHDLR = ((

lmname
,

lmname2
) ,

OVR
NONOVR) ��

NOUSRHDLR
Does not register a user condition handler without recompiling an application
to include a call to CEEHDLR.

USRHDLR
Registers a user condition handler without recompiling an application to
include a call to CEEHDLR.

lmname
The name of a load module (or an alias name of a load module) that contains
the user condition handler that is to be registered at stack frame 0. This
parameter is optional.

lmname2
The name of a load module (or an alias name of a load module) that contains
the user condition handler that is to be registered to get control after the
enablement phase and before any other user condition handler. This parameter
is optional.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

CICS considerations

When specifying USRHDLR under CICS, lmname and lmname2 must be defined in
the CICS PPT.

UPSI

Chapter 6. Language Environment runtime options 141

|
|
|
|

http://www-01.ibm.com/support/docview.wss?uid=swg27036733
http://www-01.ibm.com/support/docview.wss?uid=swg27036733

Usage notes
v The user condition handler specified by the USRHDLR runtime option must be

in a separate load module rather than be link-edited with the rest of the
application.

v The user condition handler lmname is invoked for conditions that are still
unhandled after being presented to condition handlers for the main program.

v The user condition handler lmname2 is invoked for each condition after the
condition completes the enablement phase but before any other registered user
condition handlers are given control.

v You can use a user condition handler registered with the USRHDLR runtime
option to return any of the result codes allowed for a user condition handler
registered with the CEEHDLR callable service.

v A condition that is percolated or promoted by a user condition handler
registered to handle conditions at stack frame 0 using the USRHDLR runtime
option is not presented to any other user condition handler.

v The loading of the user condition handlers lmname and lmname2 occurs only
when that user condition handler needs to be invoked the first time.

v If the load of either lmname or lmname2 fails, an error message is issued.
v To turn off one of the suboptions previously specified by USRHDLR (lmname or

lmname2), specify the option with either empty single quotation marks or empty
double quotation marks. For example, to turn off the lmname2 suboption after it
had been previously specified, use either USRHDLR(lmname,’’) or
USRHDLR(lmname,"").

v IBM supplies a sample user-written condition handler found in SCEESAMP
called CEEWUCHA. Under CICS, this handler will give you similar abend codes
that were around in certain pre-Language Environment environments. The
CEEWUCHA load module needs to be built using CEEWWCHA provided in
SCEESAMP. Be aware that this handler has support for both COBOL and PL/I
and is shipped with the PL/I specific behavior commented out. If you want this
PL/I behavior, modify the source before using CEEWWCHA.

For more information

For information about registering a user condition handler and its interfaces, see
the CEEHDLR callable service in z/OS Language Environment Programming Reference.

VCTRSAVE

Derivation: VeCToR environment to be SAVEd

VCTRSAVE specifies whether any language in the application uses the vector
facility when user-written condition handlers are called.

Non-CICS default
VCTRSAVE=((OFF),OVR)

CICS default
VCTRSAVE is ignored under CICS.

USRHDLR | NOUSRHDLR

142 z/OS V2R1.0 Language Environment Customization

Syntax

�� VCTRSAVE = ((
OFF
ON) ,

OVR
NONOVR) ��

OFF
No language in the application uses the vector facility when user-provided
condition handlers are called.

ON A language in the application uses the vector facility when user-provided
condition handlers are called.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

z/OS UNIX considerations

The VCTRSAVE option applies to the entire enclave and all threads within.

Performance considerations

When a condition handler plans to use the vector facility (that is, run any vector
instructions), the entire vector environment has to be saved on every condition and
restored on return to the application code. You can avoid this extra work by
specifying VCTRSAVE(OFF) when you are not running an application under vector
hardware.

XUFLOW

Derivation: eXponent Under FLOW

XUFLOW specifies whether an exponent underflow causes a program interrupt.
An exponent underflow occurs when a floating point number becomes too small to
be represented.

The underflow setting is determined at enclave initialization and is updated when
new languages are introduced into the application (via fetch or dynamic call, for
example). Otherwise, it does not vary while the application is running.

Language Environment preserves the language semantics for C/C++ and COBOL
regardless of the XUFLOW setting. Language Environment preserves the language
semantics for PL/I only when XUFLOW is set to AUTO or ON. Language
Environment does not preserve the language semantics for PL/I when XUFLOW is
set to OFF.

An exponent underflow caused by a C/C++ or COBOL program does not cause a
condition to be raised.

Non-CICS default
XUFLOW=((AUTO),OVR)

VCTRSAVE

Chapter 6. Language Environment runtime options 143

CICS default
XUFLOW=((AUTO),OVR)

Syntax

�� XUFLOW = ((
AUTO
ON
OFF

) ,
OVR
NONOVR) ��

AUTO
An exponent underflow causes or does not cause a program interrupt
dynamically, based upon the HLLs that make up the application. Enablement
is determined without user intervention.

XUFLOW(AUTO) causes condition management to process underflows only in
those applications where the semantics of the application languages require it.
Normally, XUFLOW(AUTO) provides the best efficiency while meeting
language semantics.

ON An exponent underflow causes a program interrupt.

XUFLOW(ON) causes condition management to process underflows regardless
of the mix of languages; therefore, this setting might be less efficient in
applications that consist of languages not requiring underflows to be processed
by condition management.

OFF
An exponent underflow does not cause a program interrupt; the hardware
takes care of the underflow.

When you set XUFLOW to OFF, the hardware processes exponent underflows.
This is more efficient than condition handling to process the underflow.

OVR
Specifies that the option can be overridden.

NONOVR
Specifies that the option cannot be overridden.

z/OS UNIX considerations

The XUFLOW option applies to the entire enclave and all threads within.

Usage notes

PL/I considerations
When setting XUFLOW to OFF, be aware that the semantics of PL/I
require the underflow to be signaled.

XUFLOW

144 z/OS V2R1.0 Language Environment Customization

Chapter 7. Customizing user exits

Language Environment provides support for the following user exits:

Assembler user exit
Performs functions for enclave initialization, normal and abnormal enclave
termination, and process termination. See “Changing the assembler
language user exit” on page 146.

High-level language (HLL) user exit
Performs functions for enclave initialization. See “Changing the high-level
language user exit” on page 148.

Abnormal termination user exit
Collects problem determination data when Language Environment is
terminating an enclave due to an unhandled condition. See “Customizing
Language Environment abnormal termination exits” on page 149.

Load notification user exit
Improves performance by preventing frequently used modules from being
loaded and deleted with each use. See “Creating a load notification user
exit” on page 154. The load notification user exit is only available when
Library Routine Retention (LRR) is used.

Storage tuning user exit
Provides a programming interface for collecting Language Environment
storage tuning information and setting the Language Environment runtime
option values for STACK, LIBSTACK, HEAP, ANYHEAP and
BELOWHEAP. See “Creating a storage tuning user exit” on page 156. The
storage tuning user exit is available for CICS, and for non-CICS
environments when LRR is used.

Restriction: Only the abnormal termination user exit supports AMODE 64
applications.

See “Storage tuning user exit” on page 198 for more information about the features
of the exits, default values, and syntax.

Choose which sample customization jobs to modify and run. Table 12 lists the
sample jobs that are members of Language Environment sample library
SCEESAMP.

Table 12. Sample customization jobs for the user exits

Use this sample job To

CEEWDXIT Change installation-wide assembler language user exit.

CEEWCXIT Change installation-wide CICS assembler language user exit.

CEEWUXIT Create an application-specific assembler language user exit.

CEEWHLLX Change high-level language user exit.

CEEWDEXT Identify an abnormal termination exit (non-CICS).

CEEWCEXT Identify an abnormal termination exit (CICS).

CEEWQEXT Identify an abnormal termination exit (AMODE 64).

CEEWLNUE Identify a load notification user exit.

© Copyright IBM Corp. 1991, 2013 145

Example
If there is an unhandled condition of severity 2 or greater, the default assembler
user exit in z/OS returns to the system with a return code. You can change the
default assembler user exit so that it forces an abend for unhandled conditions of
severity 2 or greater.

Examples of conditions that are severity 2 or greater include:
v Program interrupts
v System abends
v Conditions detected by Language Environment; for example, a program load

failure

The ABTERMENC(ABEND) runtime option is an alternative way to force an abend
for unhandled conditions of severity 2 or greater.

Changing the assembler language user exit
Three sample jobs are installed in the CEE.SCEESAMP target data set to help you
modify the assembler language user exit. Two of the jobs use SMP/E USERMODs
to replace the IBM-supplied installation-wide assembler user exits. The third
sample job creates an application-specific assembler user exit that can be
link-edited with applications that need its functions. You can create several
different application-specific user exits, each in a different partitioned data set, to
satisfy the needs of different application programs. Source code for the sample
assembler user exits is installed as members in the CEE.SCEESAMP data set.

Table 13. Sample assembler user exits for Language Environment

Example user exit Operating system Language (if language-specific)

CEEBXITA z/OS (default)

CEEBXITC TSO/E

CEECXITA CICS (default)

CEEBX05A z/OS VS COBOL II compatibility

Note:

1. CEEBXITA and CEECXITA are the defaults on your system for z/OS and CICS, if
Language Environment is installed at your installation without modification.

2. The source code for CEEBXITA, CEEBXITC, CEECXITA, and CEEBX05A can be found in
the SCEESAMP sample library.

Use the information in z/OS Language Environment Programming Guide to assist you
in modifying the IBM-supplied user exits or in creating your own.

If you specify runtime options in an assembler language user exit, they override all
other sources of runtime options except those that are specified as NONOVR.

CEEBXITA performs functions for enclave initialization, normal and abnormal
enclave termination, and process termination. CEEBXITA must be written in
assembler language, because an HLL environment might not be established when
the exit is invoked.

You can set up user exits for tasks such as:
v Installation accounting and charge back
v Installation audit controls

146 z/OS V2R1.0 Language Environment Customization

|
|

v Programming standard enforcement
v Common application runtime support

Changing the installation-wide assembler language user exit
(non-CICS)

Use the CEEWDXIT sample job to change the installation-wide assembler language
user exit. You must replace the comment in CEEWDXIT with your source for
CEEBXITA. You can copy the source for the IBM-supplied default installation-wide
assembler language user exit from CEEBXITA in CEE.SCEESAMP and modify it to
suit your needs, or you can create your own source for CEEBXITA. Use the
information in z/OS Language Environment Programming Guide to guide you in
coding your changes.

To modify the JCL for CEEWDXIT:
1. Replace the comment lines following the ++ SRC statement in the job with your

source program for the installation-wide assembler language user exit.
2. Change #GLOBALCSI to the data set name of your global CSI data set.
3. Change #TZONE to the name of your target zone.
4. Add necessary SMP/E PRE information for PTFs you have installed on your

system which contain the same part.

CEEWDXIT should run with a condition code of 0.

Changing the installation-wide assembler language user exit
(CICS)

Use the CEEWCXIT sample job to change the CICS installation-wide assembler
language user exit. You must replace the comment in CEEWCXIT with your source
for CEECXITA. You can copy the source for the IBM-supplied default
installation-wide assembler language user exit from CEECXITA in CEE.SCEESAMP
and modify it to suit your needs, or you can create your own source for
CEECXITA.

Note the difference between the IBM-supplied CEEBXITA and the IBM-supplied
CEECXITA. You can retain some or all of these differences in your user exit. Use
the information in z/OS Language Environment Programming Guide to guide you in
coding your changes.

To modify the JCL for CEEWCXIT:
1. Replace the comment lines following the ++ SRC statement in the job with your

source program for the installation-wide CICS assembler language user exit.
2. Change #GLOBALCSI to the data set name of your global CSI data set.
3. Change #TZONE to the name of your target zone.
4. Add necessary SMP/E PRE information for PTFs you have installed on your

system which contain the same part.

CEEWCXIT should run with a condition code of 0.

Note: CICS TS 3.1 and higher supports XPLINK programs in a CICS environment.
The installation-wide assembler user exit for non-CICS is used for these programs.

Chapter 7. Customizing user exits 147

Creating an application-specific assembler language user exit
Use the CEEWUXIT sample job to create as many application-specific assembler
language user exits as your site requires. You must replace the comment in
CEEWUXIT with your source. You can copy the source for the IBM-supplied
default installation-wide assembler language user exit from CEEBXITA or
CEEBXITC in CEE.SCEESAMP and modify it to suit your needs, or you can create
your own source.

CEEWUXIT does not use SMP/E to create the assembler language user exit
module, so it can be run several times to create several different CEEBXITA
modules, each in its own user-specified library. Use the information in z/OS
Language Environment Programming Guide to guide you in coding your changes.

Steps for modifying the JCL for CEEWUXIT
Perform the following steps to modify the JCL for CEEWUXIT:
1. Replace the comment lines following the //SYSIN statement in the job with

your source program for the application-specific assembler language user exit.

2. Change DSNAME=YOURLIB in the SYSLMOD DD statement to the name of the
partitioned data set you want your CEEBXITA module link-edited into.
Note: A CEEBXITA module currently in the chosen data set is replaced by the
new version.

3. Check the SYSLIB DD statement to ensure that the data set names are correct.

4. Bind (link) the resultant CEEBXITA module with your application.

When you are done, CEEWUXIT should run with a condition code of 0.

Exception: If your exit is written in C/C++, you could get a condition code of 4 if
your job runs correctly.

Changing the high-level language user exit
The CEEWHLLX sample job contains an SMP/E USERMOD that replaces the
IBM-supplied high-level language user exit with your high-level language user
exit. The USERMOD contains the object program for the user exit, not the
high-level language source.

SMP/E is not able to compile a source language other than assembler language, so
you must compile your user exit and place the object program produced by the
compiler into the USERMOD in CEEWHLLX. See z/OS Language Environment
Programming Guide for a description of the high-level language user exit interface.

If you write your high-level language user exit in C/C++, use the #pragma csect
statement to name the CSECT CEEBINT. Use the #pragma map statement to instruct
the compiler to correctly convert references to CEEBINT as follows:
#pragma map(CEEBINT,"CEEBINT")

You can also write high-level language user exits in PL/I and Language
Environment-conforming assembler.

148 z/OS V2R1.0 Language Environment Customization

If you use any of the C/C++ library functions, the CEEWHLLX job might generate
the following message.
IEW2454W nnnn SYMBOL xxxxxxxx UNRESOLVED.
NO AUTOCALL (NCAL) SPECIFIED.

Although you might receive a condition code of 04, this code does not indicate an
error.

Steps for modifying the JCL for CEEWHLLX
Perform the following steps to modify the JCL for CEEWHLLX
1. Replace the comment lines following the ++ MOD statement in CEEWHLLX

with the object program obtained by compiling your high-level language user
exit.

2. Change #GLOBALCSI to the data set name of your global CSI data set.

3. Change #TZONE to the name of your target zone.

4. Add necessary SMP/E PRE information for PTFs you have installed on your
system which contain the same part.

When you are done, CEEWHLLX should run with a condition code of 0.

Exception: If your exit is written in C/C++, you could get a condition code of 4 if
your job runs correctly.

Customizing Language Environment abnormal termination exits
If Language Environment encounters an unhandled condition of severity 2 or
greater, it can invoke an abnormal termination exit before it terminates the enclave.
If the abnormal termination exit is invoked before the thread is terminated, the
abnormal termination exit can collect problem determination data before Language
Environment frees the resources that it acquired.

To generate a system dump of the user address space, you can use the
TERMTHDACT(UADUMP) runtime option.

The CEEEXTAN (non-CICS), CEECXTAN (CICS), and CELQXTAN (AMODE 64)
CSECTs, which are installed in the CEE.SCEESAMP target data set, contain the
instructions for defining which abnormal termination exits, if any, are called when
a routine terminates abnormally. Use the CEEWDEXT (non-CICS), CEEWCEXT
(CICS), and CEEWQEXT (AMODE 64) sample jobs to replace the existing CSECTs
with your updated CSECTs in your runtime library. For the syntax and other
considerations for abnormal termination exits, see z/OS Language Environment
Programming Guide.

Note: CICS TS 3.1 and higher supports XPLINK programs in a CICS environment.
The abnormal termination exit for non-CICS (CEEEXTAN) is used for these
programs.

Creating a Language Environment abnormal termination exit
To create an abnormal termination exit:

Chapter 7. Customizing user exits 149

1. Create an assembler language routine that conforms to the syntax described in
z/OS Language Environment Programming Guide or z/OS Language Environment
Programming Guide for 64-bit Virtual Addressing Mode. AMODE 64 abnormal
termination exit routines should specify the "FETCHABLE=RENT" option on
the CELQPRLG MACRO. See CEEWQATX in CEE.SCEESAMP for an example
to use with AMODE 64 applications.

2. Assemble and link-edit your exit into a library that Language Environment can
access at runtime, such as SCEERUN or SCEERUN2.

3. Code a CEEEXTAN CSECT that contains a CEEXART macro identifying your
exit. The macro specifies your routine as an abnormal termination exit routine.
The CEEEXTAN CSECT can be found in source file CEECXTAN (for CICS),
CEEEXTAN (for non-CICS), or CELQXTAN (for AMODE 64). See “CEEEXTAN
abnormal termination exit CSECT” for more information.

4. Replace the existing CEEEXTAN CSECT with the updated CEEEXTAN as
described in the following sections.

CEEEXTAN abnormal termination exit CSECT
CEEEXTAN is a CSECT explicitly linked with the Language Environment
condition handling routines, and it is the CSECT that you create by coding the
CEEXAHD, CEEXART, and CEEXAST macros. Specifically, CEEEXTAN is linked
with the CEEPLPKA, CEECCICS, and CELQLIB load modules. CEEEXTAN CSECT
is created through the use of the following Language Environment-provided
assembler macros:

CEEXAHD
Defines the header of the table. CEEXAHD generates the CSECT statement
and any header information required. CEEXAHD uses an amode operand,
which can be specified as AM=ANY or AM=64.

CEEXART
Identifies the name of the abnormal termination exit to be invoked. It
generates one entry for an abnormal termination exit. It has only one
keyword parameter, TERMXIT=, which is the load name for the abnormal
termination exit. There is a limit of 8 characters for the load name, and no
validation of the name is performed by the macro.

More than one invocation of CEEXART can appear in the CEEEXTAN
CSECT, thus allowing multiple abnormal termination exits to be registered.
When more than one name is specified, the abnormal termination exits are
honored in the order found in the CEEEXTAN CSECT.

CEEXAST
Identifies the end of the list of abnormal termination exits. It generates the
trailer for the CEEEXTAN CSECT. It has no parameters.

Language Environment validates the format of the abnormal termination exit
CSECT and issues a load of the names as identified in the table. The LOAD is
attempted only for terminations due to unhandled conditions of severity 2 or
greater. If the LOAD is successful, an abnormal termination exit is invoked
according to the interface described in the following sections. If the LOAD fails
(the routine cannot be found, or there is not enough storage for the routine, for
example), no error indication is delivered and either the next name in CEEEXTAN
is chosen, or termination continues (if the names were exhausted). This allows a
STEPLIB to either contain or omit the load names, depending on whether you
want the exit to be used for this job.

150 z/OS V2R1.0 Language Environment Customization

Jobs to generate and modify CEEEXTAN CSECT
You can use three source files to generate CEEEXTAN CSECT, one for CICS, one
for non-CICS, and one for AMODE 64 applications. The following source files are
provided in the SCEESAMP data set:

CEECXTAN
Source to generate CEEEXTAN CSECT for CICS

CEEEXTAN
Source to generate CEEEXTAN CSECT for non-CICS

CELQXTAN
Source to generate CEEEXTAN CSECT for AMODE 64

You can use the following two jobs to replace CEEEXTAN CSECT:

CEEWCEXT
Replaces CEEEXTAN CSECT for CICS

CEEWDEXT
Replaces CEEEXTAN CSECT for non-CICS

CEEWQEXT
Replaces CEEEXTAN CSECT for AMODE 64

Figure 2 contains the source for the IBM-supplied CEEEXTAN:

If you want to add your own abnormal termination exit called WHODIDIT, then
the code should look like the following example:

Identifying the abnormal termination exit (non-CICS)
Use the CEEWDEXT sample job to specify your own abnormal termination exit in
a non-CICS environment.

TITLE ’LE/370 Abnormal Termination User exit CSECT’
CEEXAHD ,User exit header

*

* To specify an abnormal termination exit, change the line
* where CEEXART is specified:
* - change the XXXXXXXX to the name of the abnormal termination exit
* - change the ’*’ in column 1 to a blank

* CEEXART TERMXIT=XXXXXXXX
*

CEEXAST ,Terminate the list

Figure 2. Default CEEEXTAN

TITLE ’LE/370 Abnormal Termination User exit CSECT’
CEEXAHD ,User exit header

*

* To specify an abnormal termination exit, change the line
* where CEEXART is specified:
* - change the XXXXXXXX to the name of the abnormal termination exit
* - change the ’*’ in column 1 to a blank

CEEXART TERMXIT=WHODIDIT
*

CEEXAST ,Terminate the list

Figure 3. Updated CEEEXTAN

Chapter 7. Customizing user exits 151

Steps for modifying the JCL for CEEWDEXT
Perform the following steps to modify the JCL for CEEWDEXT:
1. Replace the comment lines following the ++ SRC statement in CEEWDEXT

with your updated CEEEXTAN CSECT identifying your abnormal termination
exit routine.

2. Change #GLOBALCSI to the data set name of your global CSI data set.

3. Change #TZONE to the name of your target zone.

4. Add necessary SMP/E PRE information for PTFs you have installed on your
system which contain the same part.

When you are done, CEEWDEXT should run with a condition code of 0.

Identifying the abnormal termination exit (CICS)
Use the CEEWCEXT sample job to specify your own abnormal termination exit in
a CICS environment.

Steps for modifying the JCL for CEEWCEXT
Perform the following steps to modify the JCL for CEEWCEXT:
1. Replace the comment lines following the ++ SRC statement in CEEWCEXT

with your updated CEEEXTAN CSECT identifying your abnormal termination
exit routine.

2. Change #GLOBALCSI to the data set name of your global CSI data set.

3. Change #TZONE to the name of your target zone.

4. Add necessary SMP/E PRE information for PTFs you have installed on your
system which contain the same part.

When you are done, CEEWCEXT should run with a condition code of 0.

Identifying the abnormal termination exit (AMODE 64)
Use the CEEWQEXT sample job to specify your own abnormal termination exit for
AMODE 64 applications.

Steps for modifying the JCL for CEEWQEXT
Perform the following steps to modify the JCL for CEEWQEXT:
1. Replace the comment lines following the ++ SRC statement in CEEWQEXT

with your updated CELQXTAN identifying your abnormal termination exit
routine.

2. Change #GLOBALCSI to the data set name of your global CSI data set.

3. Change #TZONE to the name of your target zone.

152 z/OS V2R1.0 Language Environment Customization

4. Add necessary SMP/E PRE information for PTFs you have installed on your

system which contain the same part.

When you are done, CEEWQEXT should run with a condition code of 0.

Creating global user exit XPCFTCH (CICS)
The CICS global user exit XPCFTCH allows an assembler user exit to put its own
entry point in place of the current known entry for a routine by returning a new
address in PCUE_BRANCH_ADDRESS. The CICS XPCFTCH exit enhancement for
z/OS V1R7 requires CICS Transaction Server for z/OS Version 2.3 with PTF
UQ95648.

Using XPCFTCH for an Enterprise PL/I routine
When the CICS global user exit XPCFTCH is used to intercept an Enterprise PL/I
routine by providing an alternate entry point, CICS uses the address returned in
ceecics_ruentry_real if it is available. It is supplied to XPCFTCH as the new
PCUE_REAL_ENTRY parameter. You can also provide a MAIN that conforms to
Language Environment with the hexadecimal value x'47F0F014' followed by
x'01'CEE, DSASIZE, and the offset to the PPA1. Refer to the common interfaces and
conventions information in z/OS Language Environment Vendor Interfaces for details
about routine layout.

Using XPCFTCH for a PL/I routine
When the CICS global user exit XPCFTCH is used to intercept a PL/I routine by
providing an alternate entry point, CICS uses the address returned in
ceecics_ruentry_real if it is available. It is supplied to XPCFTCH as the new
PCUE_REAL_ENTRY parameter. You can also provide a Language Environment
CEESTART with the following:
v The CEESTART eyecatcher
v A pointer to a CEEMAIN with a MAIN address pointing to your replaced

MAIN

There is no need for a CEEINPL, CEEBETBL, CEEBLLST, and CEESG010. Refer to
the program initialization and termination information in z/OS Language
Environment Vendor Interfaces for details about the format of CEEMAIN and
CEESTART.

Using XPCFTCH for a C/C++ routine
When the CICS global user exit XPCFTCH is used to intercept a C/C++ routine by
providing an alternate entry point, CICS uses the address returned in
ceecics_ruentry_real if it is available. It is supplied to XPCFTCH as the new
PCUE_REAL_ENTRY parameter. You can also provide a MAIN that conforms to
Language Environment with the hexadecimal value X'47F0F014' followed by
x'01'CEE, DSASIZE, and the offset to the PPA1. A PPA1 is also required. Refer to
the common interfaces and conventions information in z/OS Language Environment
Vendor Interfaces for details about routine layout.

Note: CICS TS 3.1 and higher supports XPLINK programs in a CICS environment.
The XPCFETCH user exit is not supported for XPLINK programs.

Chapter 7. Customizing user exits 153

Creating a load notification user exit
The load notification user exit provides customers who are running applications
with LRR active the ability to improve performance by preventing the use count
for frequently used modules from dropping below one.

See z/OS Language Environment Programming Guide for more information about load
notification user exit.

To create a load notification user exit:
1. Create an assembler language routine that conforms to the syntax described in

z/OS Language Environment Programming Guide.
2. Assemble and link-edit your exit into a library that Language Environment can

access at runtime, such as CEE.SCEERUN.
3. Code a CEEBLNUE CSECT that contains a CEEXLRT macro identifying your

exit. The macro specifies your routine as a load notification user exit. The
CEEBLNUE CSECT can be found in source file CEE.SCEESAMP(CEEBLNUE).
See “CEEBLNUE CSECT” for more information.

4. Replace the existing CEEBLNUE CSECT with the updated CEEBLNUE as
described in the following sections.

Identifying the load notification user exit
Use the CEEWLNUE sample job to specify your own load notification user exit.

Steps for modifying the JCL for CEEWLNUE
Perform the following steps to modify the JCL for CEEWLNUE:
1. Replace the comment lines following the ++ SRC statement in CEEWLNUE

with your updated CEEBLNUE CSECT identifying your abnormal termination
exit routine.

2. Change #GLOBALCSI to the data set name of your global CSI data set.

3. Change #TZONE to the name of your target zone.

4. Add necessary SMP/E PRE information for PTFs you have installed on your
system which contain the same part.

When you are done, CEEWLNUE should run with a condition code of 0.

CEEBLNUE CSECT
CEEBLNUE is a CSECT explicitly linked with Language Environment, and it is the
CSECT that you create by coding the CEEXLHD, CEEXLRT, and CEEXLST macros.
Specifically, CEEBLNUE is linked with the CEEPLPKA module. CEEBLNUE
CSECT is created through the use of the following Language Environment-
provided assembler macros:

CEEXLHD
Defines the head of the list. CEEXLHD generates the CSECT statement and
any header information required. It has no operands.

CEEXLRT
Identifies the name of the exit to register. Only one name can be provided

154 z/OS V2R1.0 Language Environment Customization

since only one load notification user exit may be registered. CEEXLRT has
only one keyword parameter, LOADXIT=, which is the load name for the
load notification user exit. There is a limit of 8 characters for the load
name, and no validation of the name is performed by the macro.

CEEXLST
Defines the end of the list. CEEXLST generates the trailer for the
CEEBLNUE load notification user exit CSECT. It has no parameters.

Language Environment validates the format of the CEEBLNUE CSECT and issues
a load of the name as identified in the table. The LOAD is attempted only during
region initialization when Library Routine Retention (LRR) is active. If the LOAD
is successful, the exit is called for initialization according to the interface described
in the following sections. If the LOAD is successful, the exit is registered and
called during region initialization, after each successful load, and during region
termination. This allows a STEPLIB to either contain or omit the load names.

Only one load notification user exit may be registered.

CEEBLNUE sample
Figure 4 shows the source for the IBM-supplied CEEBLNUE CSECT. It is provided
in the CEE.SCEESAMP data set.

*/***/
/ */
/ LICENSED MATERIALS - PROPERTY OF IBM */
/ */
/ 5645-001 5688-198 */
/ */
/ (C) Copyright IBM Corp. 1991, 1997 */
/ */
/ All Rights Reserved */
/ */
/ US Government Users Restricted Rights - Use, duplication or */
/ disclosure restricted by GSA ADP Schedule Contract with IBM */
/ Corp. */
/ */
/ Status = HMWL810 */
/ */
*/***/

CEEXLHD ,User exit header
==
* *
* To specify a load notification user exit, *
* change the line where CEEXLRT is specified, *
* by doing the following: *
* *
* 1. Change XXXXXXXX to the name of your load notification *
* user exit module name. This name must not be longer *
* than 8 characters. *
* *
* 2. Change the asterisk (*) in column 1 to a blank. *
* *
==
* CEEXLRT LOADXIT=XXXXXXXX

CEEXLST ,Terminate the list

Figure 4. Sample of CEEBLNUE load notification user exit CSECT

Chapter 7. Customizing user exits 155

Creating a storage tuning user exit
The storage tuning user exit provides a programming interface that allows you to
collect Language Environment storage tuning information and to set the Language
Environment runtime option values for STACK, LIBSTACK, HEAP, ANYHEAP and
BELOWHEAP. See “Storage tuning user exit” on page 198 for more information.

The storage tuning user exit is available on CICS and on non-CICS environments
when LRR is used.

To create a storage tuning user exit on CICS:
1. Create an assembler language routine that conforms to the syntax described in

“Storage tuning user exit” on page 198.
2. Translate your exit with the CICS translator. The SYSEIB translator option must

be used.
3. Assemble and link edit your exit into a library that is in the CICS DFHRPL DD

concatenation. The member name of the exit must be CEECSTX.
4. Define program CEECSTX to CICS with LANGUAGE(ASSEMBLER). The

definition for the program must be available at CICS start-up.

To create a storage tuning user exit on non-CICS:
1. Create an assembler language routine that conforms to the syntax described in

“Storage tuning user exit” on page 198.
2. Assemble and link edit your exit into a library that Language Environment can

load at runtime. The member name of the exit must be CEEBSTX.

Note: CICS TS 3.1 and higher supports XPLINK programs in a CICS environment.
The non-CICS storage tuning exit (CEEBSTX) is used for these programs.

156 z/OS V2R1.0 Language Environment Customization

Chapter 8. Customizing the cataloged procedures

You can tailor the cataloged procedures supplied with Language Environment to
suit the needs of your site. The procedures are part of the SCEEPROC cataloged
procedure library.

You can tailor any of the following:
v If your site uses a prefix other than the IBM-supplied one, you can modify the

data set name prefixes by using the LIBPRFX parameter.
v If you place CEE.SCEERUN and CEE.SCEERUN2 in the LNKLSTxx

concatenation during installation, remove the STEPLIB DD statements.

Note: Since SCEERUN2 contains module names that do not intersect with any
pre-Language Environment runtime library or any existing library, IBM
recommends that SCEERUN2 be added to the LNKLST. This will not result in
any adverse effects.

v If most of the programs at your site require a larger region for successful
execution, change the default region size for the GO steps.

v Change UNIT=SYSDA in CEEWL, CEEWLG, AFHWL, AFHWLG, AFHWN,
AFHWRL, and AFHWRLG.

v Tailor your TSO/E LOGON procedure. If you plan to run Language
Environment applications under TSO/E, add SCEERUN and SCEERUN2 to the
STEPLIB DD of the LOGON procedure, or use the TSO/E command TSOLIB to
allocate SCEERUN and SCEERUN2; this is unnecessary if you place SCEERUN
and SCEERUN2 into the LNKLST concatenation during installation.

v For programs that require the Language Environment Prelinker Utility, see z/OS
Language Environment Programming Guide and z/OS XL C/C++ Programming Guide
for details on changes to link-edit procedures. The requirement to use the
Prelinker has been eliminated because the Binder directly supports input from
the Language Environment conforming compilers. By choosing to eliminate
usage of the Prelinker, the executable program will be a program object and
must reside either in a PDSE or a UNIX file system.

Making the cataloged procedure library available to your jobs
Language Environment is shipped with a procedure library, CEE.SCEEPROC, that
contains several procedures that can be used during application development with
Language Environment. These procedures are summarized in Table 14:

Table 14. Language Environment invocation procedures in CEE.SCEEPROC

Procedure Purpose

AFHWL Link-edit a Fortran program.

AFHWLG Link-edit and run a Fortran program.

AFHWN Change any external names in conflict between C and Fortran to the
Fortran-recognized name.

AFHWRL Separate the nonshareable and shareable parts of a Fortran object
module, and link-edit.

AFHWRLG Separate the nonshareable and shareable parts of a Fortran object
module, link-edit, and execute.

© Copyright IBM Corp. 1991, 2013 157

Table 14. Language Environment invocation procedures in CEE.SCEEPROC (continued)

Procedure Purpose

CEEWG Load and run a non-XPLINK Language Environment-conforming
application.

CEEWL Link-edit a non-XPLINK Language Environment-conforming
application.

CEEWLG Link-edit and run a non-XPLINK Language Environment-
conforming application.

CEEXL Link-edit an XPLINK Language Environment-conforming
application.

CEEXLR Link-edit and run an XPLINK Language Environment-conforming
application.

CEEXR Load and run an XPLINK Language Environment-conforming
application.

EDCGNXLT (alias of
EDC4P006)

Read a genxlt file and produce the translation table which is stored
in the nominated LOADLIB.

EDCICONV (alias of
EDC4P007)

Convert the characters from the input file from a coded character
set definition to another character set definition and write the
characters to the output file.

EDCLIB (alias of
CRTCP002)

Maintain a C/C++ object code library.

EDCPL (alias of
EDC4P002)

Prelink and link-edit a C/C++ application.

There are three ways to make the procedures available to your jobs. The method
you choose depends on the special requirements and policies at your site. Use
Table 15 to choose which method to use at your site.

Table 15. Deciding how to make cataloged procedures available to your jobs

If Then Result

You plan to use the IBM-supplied defaults
and install into the default private
procedure library.

Modify the JES2 start
procedure.

Makes all procedures
in the libraries
available to any job in
the system.

You are not using all the defaults and you
want to choose which of the procedures to
make available to general users.

Copy the procedures
into a system or
private PROCLIB.

Makes the procedures
available to your
installation jobs.

You are not using all the defaults. Use the procedures as
inline procedures.

Inserts the
appropriate procedure
into each job.

The process is as follows:
1. Modify the JES start procedure. You can do either of the following tasks:

v Add a new //PROCnn DD statement for the Language Environment
procedure library, CEE.SCEEPROC.

v Concatenate the procedure library to the //PROC00 DD statement.
While testing, you can use the /*JOBPARM statement with the PROCLIB=
parameter to make sure that your jobs use procedures from the correct library.
To learn how to do this, see the section on JES2 control statements in z/OS MVS
JCL Reference.

158 z/OS V2R1.0 Language Environment Customization

All procedures in the libraries that are added to the JES2 start procedure are
available to any job in the system. The JES2 procedure is usually member JES2
in SYS1.PROCLIB.

2. Place cataloged procedures in a system or private PROCLIB. Copy the system
procedures from the default libraries into an already-cataloged procedure
library. You can use SYS1.PROCLIB as your cataloged procedure library. The
copied procedures are callable by your installation jobs. However, procedures
copied into a PROCLIB outside of SMP/E control are more difficult to
maintain.
You can use the JCLLIB statement to specify a private PROCLIB. Do this by
including the following statement after the JOB card and before the first EXEC
statement in the job: //PROCLIB JCLLIB ORDER=(CEE.SCEEPROC)

3. Use cataloged procedures as inline procedures. Modify the procedure to reflect
the high-level qualifiers you are using for the installation, and save your
changes. Edit each job before you submit it, and copy the procedure into the
job (inline).
Be sure to place // PEND at the end of the inline procedure.

Tailoring the cataloged procedures and CLISTs to your site
Several cataloged procedures and CLISTs are supplied with Language Environment
and the Language Environment-conforming compilers. Some of these contain data
set names that you may need to customize to your installation.

For information to help you customize the Language Environment cataloged
procedures, see the topic discussed in Chapter 8, “Customizing the cataloged
procedures,” on page 157 and the list in Table 14 on page 157.

For a list of names and possible modifications of CLISTs and all other cataloged
procedures, see Table 16.

Several Fortran and C library routines have identical names. To correctly run
existing Fortran applications under Language Environment, it is necessary to
resolve all name conflicts. The Language Environment interface validation exit is a
routine that automatically resolves conflicting library routine references within
Fortran routines.

If the possibility exists of bringing in a Fortran routine when link-editing, activate
the binder interface validation exit by modifying each of the cataloged procedures
in Table 16 that performs a link-edit step to add an LKED parm of
EXITS(INTFVAL(CEEPINTV)), and provide the following DD statement in the
same step:
//STEPLIB DD DSN=CEE.SCEELKED,DISP=SHR

For more information about resolving conflicting names, see z/OS Language
Environment Programming Guide.

Table 16. Cataloged procedures and CLISTs information

Category Procedure names Possible modifications

C/C++ cataloged
procedures

Procedures found in
hlq.SCCNPRC data set.

Modify the procedures to use
the release of Language
Environment you are using.

Chapter 8. Customizing the cataloged procedures 159

Table 16. Cataloged procedures and CLISTs information (continued)

Category Procedure names Possible modifications

COBOL cataloged
procedures IGYWC

IGYWCG
IGYWCL
IGYWCLG
IGYWCPG
IGYWCPL
IGYWCPLG
IGYWPL

Modify the procedures to use
the release of Language
Environment you are using.

PL/I cataloged procedures
IEL1C
IEL1CG
IEL1CL
IEL1CLG

Modify the procedures to use
the release of Language
Environment you are using.

Language Environment
CLISTs CMOD

CPLINK
C370LIB
GENXLT
ICONV
DLLRNAME

v If you are not using the
IBM-supplied default data set
prefix, change the data set
prefix symbolic parameter in
all CLISTs.

v Change parameters in CLISTs
to match values at your site.

v These procedures can be
found in the CEE.SCEECLST
data set.

160 z/OS V2R1.0 Language Environment Customization

Chapter 9. Using Language Environment under CICS

To make sure that CICS can communicate with Language Environment:
v Add the Language Environment required program resource definitions to the

CICS System Definition (CSD) file.
v Ensure the required transient data (TD) queue resource definitions are defined to

CICS.

Note: If the resource definitions are already defined in the CSD by the CICS
utility, you should ensure they are not removed from the CICS group list used at
startup.

v Add the Language Environment Library data sets to the CICS startup job
stream.

Add program resource definitions for CICS
Update the CICS system definition (CSD) file using the program definitions in the
CEECCSD member in the Language Environment sample (SCEESAMP). This
member contains the necessary input to the CSD file utility program to define the
Language Environment library routines to the CSD. The CSD group list that is
used during CICS startup must include the CSD group that is associated with the
Language Environment library routines. The group name for Language
Environment routines is CEE in the sample CEECCSD.

For COBOL users, the OS/VS COBOL library routines (ILBOs) in Language
Environment library SCEERUN are loaded by the operating system and do not
require entries in the CSD.

The XPLINK program definitions in the CEECCSDX member, in the Language
Environment sample (SCEESAMP) must be used to update the CICS system
definition (CSD) file. Use the CEECCSDX member in addition to the CEECCSD
member.

If you plan to run with program autoinstall and use the Language Environment
CLER transaction, you must define the following statements using the CEDA
transaction:
DEFINE PROGRAM(CEL4RTO) GROUP(CEE) LANGUAGE(ASSEMBLER)
EXECKEY(CICS)
DEFINE MAPSET(CELCLEM) GROUP(CEE)
DEFINE MAPSET(CELCLRH) GROUP(CEE)
DEFINE TRANS(CLER) PROG(CEL4RTO) GROUP(CEE)

Tip: If you use program autoinstall, Language Environment event handler modules
in the range CEEEV001-CEEEV017 that are present in the CEE.SCEERUN might
load during CICS/LE initialization, depending on the definitions in the CICS
CEECCSD member and the autoinstall program. You can remove program
definitions from the CEECCSD member to prevent them from being loaded during
CICS/LE initialization. However, if autoinstall is active, the missing definitions
from the CEECCSD are loaded dynamically unless the autoinstall program is
modified to bypass any Language Environment modules that you do not want
loaded.

© Copyright IBM Corp. 1991, 2013 161

|
|
|
|

|
|
|

|
|
|
|
|

To prevent this from occurring, you should start CICS with PGAIPGM=INACTIVE
in the CICS SIT. To take advantage of the program autoinstall feature, you can
create a PLTPI program to perform a CICS SET SYSTEM PROGAUTOINST
(auto_active/cvda) to enable the feature for use later on in initialization. The URM
can also be set in the same PLTPI program through the same SET SYSTEM
command with the PROGAUTOEXIT parameter. If you do want to run with the
autoinstall program, you can modify the autoinstall exit program to bypass any
CEEEV0* modules that you do not want loaded.

The following autoinstall exit sample demonstrates this procedure:
DFHPGADX CSECT
DFHPGADX AMODE 31
DFHPGADX RMODE ANY
DFHREGS ,
*
* If there is no commarea, return
OC EIBCALEN,EIBCALEN
BZ RETURN0
*
* Address the commarea
L R2,DFHEICAP
USING PGAC,R2
*
* Omit autoinstall for Language Environment modules
CLC PGAC_PROGRAM(6),=C’’CEEEV0’’
BE RETURNDD
*
* Add user specific code here
*
* Set the return code to OK
RETURNOK DS 0H
MVI PGAC_RETURN_CODE,PGAC_RETURN_OK
B RETURN0
*
* Branch to this label if you elect not to define
* the program
RETURNDD DS 0H
MVI PGAC_RETURN_CODE,
PGAC_RETURN_DONT_DEFINE_PROGRAM
*
RETURN0 DS 0H
EXEC CICS RETURN,
END DFHPGADX

Table 17. Excluding programming language support under CICS

If you do not run
Exclude these program definitions from the
CEECCSD sample job

COBOL applications under CICS CEEEV004, CEEEV005, IIGZMSGT, all
programs that start with IGZ

C/C++ applications under CICS CEEEV003, IEDCMSGT, all programs that
start with EDC or CEU

PL/I applications under CICS (Also VA
PL/I)

CEEEV010, CEEEV011, IIBMMSGT, all
programs that start with IBM

Guideline: If you use autoinstall and want to exclude one or more languages
using this technique, be sure to implement these changes in your autoinstall exit to
prevent them from being added dynamically.

162 z/OS V2R1.0 Language Environment Customization

|

Note: C was named AD/Cycle C/370™ before C++ was added. The sample JCL
used the nickname C/370 to refer to either Language Environment-enabled
version.

Add destination control table (DCT) entries
The CEECDCT member in the SCEESAMP sample library contains the necessary
input to create the transient data queues as extrapartition data queues.

Entries for the transient data queues used by Language Environment are required
in the destination control table. Language Environment uses the following transient
data queues:
v CESE: messages, dumps, and reports are written to this queue. Each record

written to the CESE queue has a header with terminal ID, transaction ID, date,
and time. This queue is also used by C/C++ for stderr output and by PL/I for
stream output data.

v CESO: C/C++ stdout stream output is written to this queue. The definition for
this queue is required only if you use C/C++. Each record written to the CESO
queue has a header with terminal ID and transaction ID.

v CIGZ: COBOL side file support for CEEDUMPs and Debug Tool. The definition
for this queue is required only if you run COBOL programs compiled with the
SEPARATE suboption of the TEST compiler option and you want to process side
files using the CICS Extrapartition Transient Data Queue (TDQ) interface. This is
an input-only queue.

In order to use the COBOL side file support on CICS for COBOL programs
compiled with the TEST(,SYM,SEPARATE) compiler option, you must define a
transient data queue with the name CIGZ. Do not specify a DD for the CIGZ
transient data queue in your CICS startup job. The DD will be dynamically
allocated and deallocated as needed.

The following example is the source that can be used to define CIGZ in the DCT:
IGZDBGIN DFHDCT TYPE=SDSCI, COBOL Side File Support

DSCNAME=IGZDBGIN,
TYPEFLE=INPUT

CIGZ DFHDCT TYPE=EXTRA, COBOL Side File Support
DESTID=CIGZ,
DSCNAME=IGZDBGIN,
OPEN=DEFERRED

Figure 5 illustrates the format for the output transient data queues.

ASA The American National Standard carriage-control character

Terminal ID
A 4-character terminal identifier

Transaction ID
A 4-character transaction identifier

ASA Terminal
ID

Transaction
ID

sp Timestamp
YYYYMMDDHHMMSS

sp Message

1 4 4 1 114 132

Figure 5. Format of an output transient data queue

Chapter 9. Using Language Environment under CICS 163

sp A space

Timestamp
The date and time displayed in the same format as that returned by the
CEELOCT service

Message
The message identifier and message text

These queues can have intrapartition, extrapartition, or indirect destinations. The
record length for the transient data queue CESE must be at least 161.

We recommend that you put the required Language Environment entries in the
CSD as TDQUEUE resource definitions (introduced in the CICS Transaction Server
for z/OS). The Language Environment TD queues are included in the
CICS-supplied CSD group called DFHDCTG, which is added to the DFHLIST
automatically when initializing or upgrading a CSD. The following are the
Language Environment entries created in the DFHDCTG:

DEFINE TDQUEUE (CESO) GROUP(DFHDCTG)
DESCRIPTION(LE/370 OUTPUT QUEUE)
TYPE(EXTRA) TYPEFILE(OUTPUT)
RECORDSIZE(133) BLOCKSIZE(137)
RECORDFORMAT(VARIABLE) BLOCKFORMAT(UNBLOCKED)

DDNAME(CEEOUT)
*
DEFINE TDQUEUE (CESE) GROUP(DFHDCTG)

DESCRIPTION(LE/370 ERROR QUEUE)
TYPE(EXTRA) TYPEFILE(OUTPUT)
RECORDSIZE(161) BLOCKSIZE(165)
RECORDFORMAT(VARIABLE) BLOCKFORMAT(UNBLOCKED)

DDNAME(CEEOUT)
*
DEFINE TDQUEUE (CIGZ) GROUP(DFHDCTG)

DESCRIPTION(COBOL SIDE FILE INPUT QUEUE)
TYPE(SDSCI) TYPEFILE(INPUT)

DDNAME(IGZDBGIN)

See CICS Transaction Server for z/OS System Definition Guide for information
provided by CICS about installing Language Environment support.

Use the DFHDCT macro to define the entries for CESE, CESO and CIGZ.

In addition to defining the transient data queues in the DCT, you must make sure
that there is a DD statement in the CICS startup job for the transient data queues.

Note: Do not specify a DD for the CIGZ TDQ. It will be dynamically allocated and
deallocated as needed.

If you define the CESE and CESO transient data queues as separate extrapartition
data queues, the following example shows what you would specify in your CICS
startup JCL:

//CEEMSG DD DSN=CUSTOMER.CEEMSG,DISP=SHR
//CEEOUT DD DSN=CUSTOMER.CEEOUT,DISP=SHR

For more information about the DFHDCT macro and the definitions of the queues
and associated buffers, seeCICS Transaction Server for z/OS System Definition Guide.

164 z/OS V2R1.0 Language Environment Customization

When DFHDCT encounters the entry names CESE, CESO, CIGZ, CEEMSG, and
CEEOUT, it might generate messages stating that queue names beginning with the
letter C are reserved for CICS. It is normal to receive these messages, and they do
not indicate errors.

Specifying the side file interface to be used
COBOL can use one of two interfaces to access side files during Debug Tool
debugging and CEEDUMP processing:
v CICS Extrapartition Transient Data Queues (TDQs)
v Direct QSAM access through a CICS Task Related User Exit (TRUE)

By default, COBOL will use the TDQ interface (using CICS SPI and API function
calls) to access side files. If you would prefer COBOL to use the new direct QSAM
TRUE interface instead of the TDQ interface, you need to enable the direct QSAM
TRUE interface.

To enable the direct QSAM TRUE interface, specify the following INITPARM in
your CICS startup parameters:
INITPARM=(DFHLETRU=’USEQSAM’)

Note that by providing this INITPARM, the direct QSAM TRUE interface will be
used for:
v COBOL side files
v Debug Tool files such as listing, source, preference, USE, and LOG files

In order to use the direct QSAM TRUE interface, you need the PTFs for the
following APARs to be applied to the appropriate products:

CEEMSG DFHDCT TYPE=SDSCI, Language Environment messages, dumps, reports
DSCNAME=CEEMSG, X
BLKSIZE=165, X
RECSIZE=161, X
RECFORM=VARUNBA, X
TYPEFLE=OUTPUT, X
BUFNO=1

CESE DFHDCT TYPE=EXTRA, X
DESTID=CESE, X
DSCNAME=CEEMSG

CEEOUT DFHDCT TYPE=SDSCI, C/C++ STDOUT stream X
DSCNAME=CEEOUT, X
BLKSIZE=137, X
RECSIZE=133, X
RECFORM=VARUNBA, X
TYPEFLE=OUTPUT, X
BUFNO=1

CESO DFHDCT TYPE=EXTRA, X
DESTID=CESO, X
DSCNAME=CEEOUT

IGZDBGIN DFHDCT TYPE=SDSCI, COBOL Side File Support X
DSCNAME=IGZDBGIN, X
TYPEFLE=INPUT

CIGZ DFHDCT TYPE=EXTRA, COBOL Side File Support X
DESTID=CIGZ, X
DSCNAME=IGZDBGIN X
OPEN=DEFERRED

Note: Xs are in column 72.

Figure 6. Example of DFHDCT macro

Chapter 9. Using Language Environment under CICS 165

v CICS Transaction Server 3.1 PK67329
v CICS Transaction Server 3.2 PK68401
v COBOL component of Language Environment PK71852
v Debug Tool 8.1 PK69617
v Debug Tool 9.1 PK72833

Add Language Environment-CICS data sets to the CICS startup job
stream

Before running any CICS transactions under Language Environment, you must add
Language Environment to the startup job stream. CICS Transaction Server for z/OS
System Definition Guide describes the CICS system startup procedure and provides
an example of a CICS startup job stream.

To add the Language Environment-CICS data sets to CICS:
v Update the DFHRPL DD concatenation.

Add the Language Environment runtime library SCEERUN in the DFHRPL DD
concatenation of the job that is used to start CICS.
If you are running COBOL programs on CICS, you must also add Language
Environment runtime library SCEECICS in the DFHRPL DD concatenation. The
SCEECICS library must be concatenated before the SCEERUN library.
Any libraries that contain runtime routines from earlier versions of COBOL,
PL/I, and C/C++ should be removed from the DFHRPL DD concatenation.
If you are running COBOL V5.1 (or later) programs, you must also add the
Language Environment runtime library SCEERUN2 in the DFHRPL DD
concatenation of the job that is used to start CICS.
If you are running COBOL V5.1 (or later) programs that were compiled with the
TEST compiler option on CICS, you must also add system libraries SYS1.MIGLIB
and SYS1.SIEAMIGE in the DFHRPL DD concatenation.

v If SCEERUN is not in LNKST or LPALST, then you must include the correct
Language Environment routines into an authorized library that is part of the
STEPLIB DD concatenation in the CICS startup job. If SCEERUN is in
LNKLST/LPALST, then you do not have to add SCEERUN to the STEPLIB DD
concatenation in the CICS startup job. You can either:
1. Authorize the Language Environment runtime library SCEERUN and then

include it in the STEPLIB DD concatenation in the CICS startup job. (The
SCEERUN2 data set does not need to get added to this concatenation.)

2. Put only those Language Environment routines that are needed by CICS
using the STEPLIB into another library.

If you use the second method, you must make the following Language
Environment routines available by using the STEPLIB:
– CEECCICS, CEECTCB
– IGZCWTO: Used for COBOL support.
– IGZCMTUE: Used for COBOL support.
– IGZIDYN: Used for COBOL support.
– ILBO routines: If you are running OS/VS COBOL programs, all of the ILBO

routines must be available.
Remove any libraries that contain runtime routines from earlier versions of
COBOL and C/370 from the STEPLIB DD concatenation.

Note:

166 z/OS V2R1.0 Language Environment Customization

|
|
|

|
|
|

1. The previously mentioned library routines required from the STEPLIB might
also be available by using the JOBLIB or the LNKLSTnn member.

2. There is no CICS startup option for Language Environment. If CICS locates
CEECCICS, it attempts to initialize Language Environment. If the modules have
not been installed correctly, Language Environment initialization fails, and CICS
generates an error message to that effect.

Language Environment automatic storage tuning for CICS
Language Environment automatic storage tuning for CICS provides automatic
storage tuning (AUTOTUNE) of Language Environment STACK, LIBSTACK,
HEAP, BELOWHEAP and ANYHEAP initial size values. Automatic storage tuning
of the Language Environment storage areas can improve the performance of
applications running on CICS by reducing the CICS GETMAIN/FREEMAIN
activity associated with acquiring Language Environment stack and heap
increments. In order to use Language Environment automatic storage tuning for
CICS, the CICS system initialization parameter AUTODST must be set to YES. The
CICS system initialization parameter AUTODST is available only on:
v CICS Transaction Server Version 1 Release 3 with APARs PQ39052, PQ45031, and

PQ55351.
v CICS Transaction Server Version 2.
v CICS Transaction Server Version 3.

Note: When Language Environment Automatic Storage Tuning for CICS is used,
the capability of the storage tuning user exit is changed. For example, the storage
tuning user exit can no longer get storage information. See z/OS Language
Environment Programming Guidefor information about the Language Environment
storage tuning user exit.

Note: CICS TS 3.1 and higher supports XPLINK programs in a CICS environment.
The automatic storage tuning exit is not supported for these programs.

Enclaves eligible for automatic storage tuning
When running with Language Environment automatic storage tuning for CICS, the
actual storage tuning is performed for Language Environment enclaves when one
of the following conditions is met:
v The main program is not link-edited with a CEEUOPT.
v The main program is link-edited with a CEEUOPT, and the CEEUOPT does not

specify values for any of the following runtime options: STACK, LIBSTACK,
HEAP, BELOWHEAP or ANYHEAP.

Note:

1. A CEEUOPT is present in C/C++ main programs that use #pragma runopts
when one of the following compilers were used: z/OS XL C/C++, OS/390
C/C++, C/C++ Compiler for MVS/ESA, or AD/Cycle C/370.

2. A CEEUOPT is present in PL/I main programs that use PLIXOPT when one of
the following compilers are used: Enterprise PL/I or PL/I for MVS & VM.

Automatic storage tuning behavior
Automatic storage tuning values are managed for each load module that is used to
start an enclave for Language Environment. For example, transaction ATMW starts
program COBOLA (which starts an enclave for Language Environment). COBOLA
does a CICS LINK to COBOLB which starts another Language Environment

Chapter 9. Using Language Environment under CICS 167

enclave. COBOLB does a dynamic call to COBOLC (when a dynamic call is done,
we are still running in the same enclave). In this example, automatic storage tuning
is done for the enclaves started for COBOLA and COBOLB.

When running with Language Environment automatic storage tuning for CICS,
Language Environment continuously monitors the amount of Language
Environment storage allocated in the enclave for STACK, LIBSTACK, HEAP,
ANYHEAP, and BELOWHEAP. The enclave ends normally, Language Environment
will automatically increase the initial size values for STACK, LIBSTACK, HEAP,
ANYHEAP, and BELOWHEAP as determined by the amount of storage allocated.

In more detail, Language Environment automatic storage tuning for CICS behaves
as follows:
v When a main program starts a Language Environment enclave the first time in a

CICS region and the enclave is eligible for automatic storage tuning, Language
Environment uses the values for STACK, LIBSTACK, HEAP, ANYHEAP, and
BELOWHEAP from the normal search order for runtime options. When a main
program starts an eligible enclave a subsequent time, Language Environment
uses the initial sizes for STACK, LIBSTACK, HEAP, ANYHEAP, and
BELOWHEAP as determined by automatic storage tuning.

v Whenever a Language Environment enclave is initialized and it is eligible for
automatic storage tuning, Language Environment collects the total amount of
storage allocated for STACK, LIBSTACK, HEAP, ANYHEAP, and BELOWHEAP
while the enclave is active.

Note: When Language Environment automatic storage tuning for CICS is used,
Language Environment collects the amount of storage allocated. It does not
collect the amount of storage used.

v When the enclave ends with an unhandled condition, Language Environment
does not update the automatic storage tuning values. When the enclave ends
normally, Language Environment automatic storage tuning increases the initial
size for STACK, LIBSTACK, HEAP, ANYHEAP, and BELOWHEAP to the
amount of storage allocated only when the amount of storage allocated is larger
than the initial size. The next time the main program initiates a Language
Environment enclave, Language Environment automatic storage tuning will use
the updated initial size values.

v Language Environment automatic storage tuning never decreases the initial size
values.

Altering the automatic storage tuning behavior
To alter the behavior of the Language Environment automatic storage tuning for
CICS, the storage tuning user exit can be used. For example, the storage tuning
user exit can be used as follows:
v To apply its own logic and determine which programs are eligible for automatic

storage tuning.
v To set limits on the initial sizes used by Language Environment automatic

storage tuning for CICS.

See “Storage tuning user exit” on page 198 for information about Language
Environment storage tuning user exit.

168 z/OS V2R1.0 Language Environment Customization

Chapter 10. Using Language Environment under IMS

If you are running programs that require Language Environment in an IMS/TM
dependent region, such as an IMS message processing region, you can improve
performance if you use Language Environment library routine retention.

With library routine retention in effect, Language Environment keeps certain
resources in memory when an application program ends, making subsequent
invocations of programs that use Language Environment much faster because the
Language Environment resources left in memory are reused.

Following is a partial list of the resources Language Environment keeps in memory
with library routine retention in effect:
v Language Environment runtime load modules
v Language Environment storage associated with the management of the runtime

load modules
v Language Environment storage for start-up control blocks

Initializing library routine retention
To use Language Environment library routine retention in an IMS dependent
region, you must do the following:
1. In your JCL or procedure used to bring up IMS dependent regions, specify that

you want IMS to invoke dependent region preinitialization routines. Do this by
specifying a suffix on the PREINIT keyword of the IMS dependent region
procedure.

2. In the DFSINTxx member of IMS.PROCLIB (where xx is a suffix specified by
the PREINIT keyword), include the name CEELRRIN or CEELRRXP.

When IMS invokes the module CEELRRIN or CEELRRXP, Language Environment
library routine retention is initialized.

Note: The source for module CEELRRIN or CEELRRXP is available in the
SCEESAMP library in member CEELRRIN or CEELRRXP. If this source does not
meet your needs, you can create your own assembler program to initialize
Language Environment library routine retention. If you create your own load
module to initialize Language Environment library routine retention, you need to
put the name of the module in the DFSINTxx member.

Ending library routine retention
Language Environment provides a routine called CEELRRTR to terminate library
routine retention. However, this routine does not need to be used when running on
IMS/TM. If library routine retention is initialized, and the IMS Program Control
Task is terminated (for example, due to an ABEND), the operating system will free
the Language Environment resources as part of task termination. Then when the
IMS Program Control Task is reattached, the preinitialization routines get control
before IMS scheduling is attempted.

© Copyright IBM Corp. 1991, 2013 169

For more information about specifying IMS dependent region preinitialization
routines, see IMS/ESA® Customization Guide. For more information about Language
Environment library routine retention, see z/OS Language Environment Programming
Guide.

170 z/OS V2R1.0 Language Environment Customization

Chapter 11. Customizing language-specific features

In addition to tailoring your Fortran LIBPACKs, you might want to customize
COBOL, C/C++, Fortran, and PL/I features in order to tune or diagnose the
performance of Language Environment for your site.

Restriction: You cannot customize these features for AMODE 64 applications.

Choices to make now
First, decide which language-specific features you should modify for your site. For
more information about the C/C++, Fortran, and PL/I features you can customize,
see:
v Appendix B, “Using Fortran with Language Environment,” on page 217
v PL/I for MVS & VM Compiler and Run-Time Migration Guide

You also need to choose which sample customization jobs you will need to modify
and run. Table 18 lists the sample jobs provided on the distribution tape to help
you customize COBOL, C/C++, Fortran, and PL/I features. These jobs are part of
Language Environment sample library SCEESAMP.

Table 18. Customizing programming languages with sample customization jobs

To Use this sample job

Modify the OS/VS COBOL compatibility library routines IGZWZAP

Modify the COBOL runtime environment IGZWARRE

Customize the parameter list processing when a COBOL
program is invoked with an ATTACH SVC on z/OS

IGZWAPSX

Customize the C/C++ locale time information EDCLLOCL

Relink OS PL/I Version 2 shared library and OS PL/I Version
1 CICS or tasking shared library

IBMRLSLA

Relink OS PL/I Version 1 non-CICS and non-tasking shared
library

IBMRLSLB

Tailor the Language Environment Fortran unit attribute table AFHWEUAT

Tailor the VS FORTRAN compatibility unit attribute table AFHWVUAT

Tailor the VS FORTRAN compatibility runtime options
defaults

AFHWVPRM

Tailor the VS FORTRAN compatibility Error Option Table AFHWVOPT

Modifying the OS/VS COBOL compatibility library routines
Use the IGZWZAP sample job to modify the OS/VS COBOL compatibility library
routines. The job lets you apply superzaps to make Language Environment
COBOL behave like OS/VS COBOL. See Table 19 on page 172 for a summary of
the modifications you can make with the job. “OS/VS COBOL considerations” on
page 172 explains the superzaps in detail.

© Copyright IBM Corp. 1991, 2013 171

Table 19. Using the usermods in the IGZWZAP job to modify the COBOL compatibility library

Usermod Contains superzaps to For

IGZWZA1 Continue to force USER ABEND
0100, 0201, 0303, or 0304 and
message IFK302I

Certain error situations during
VSAM file processing

IGZWZA2 Force USER ABEND 0295 A serious error detected at runtime

IGZWZA3 Add A, B, and E as valid numeric
signs

The IF NUMERIC CLASS TEST

To modify the JCL for IGZWZAP:
1. Change #GLOBALCSI to the data set name of your global CSI data set.
2. Change #TZONE to the name of your target zone.

IGZWZAP should run with a condition code of 0.

OS/VS COBOL considerations
If the COBOL programmers at your site are familiar with OS/VS COBOL, you may
want to modify Language Environment COBOL to make it behave like the OS/VS
COBOL runtime. The IGZWZAP member is a sample job provided in
CEE.SCEESAMP to apply USERMODs IGZWZA1, IGZWZA2, and IGZWZA3,
which are described in the following sections. For instructions on modifying the
JCL for the IGZWZAP job, see “Modifying the OS/VS COBOL compatibility
library routines” on page 171.

User modifications for the OS/VS COBOL library also apply for the OS/VS
COBOL compatibility library routines.

VSAM considerations
Support for VSAM processing in OS/VS COBOL Release 2 and in the OS/VS
COBOL compatibility library routines is consistent with the I/O language specified
in the COBOL standard, American National Standard COBOL, X3.23-1974.
However, OS/VS QSAM and VSAM support in OS/VS COBOL Release 1 is not
consistent with the standard.

File status

The FILE STATUS clause is optional. Specifying FILE STATUS for a VSAM
file lets you monitor the status of the file's I/O operations by testing the
FILE STATUS values. Code the FILE STATUS clause for all appropriate
files and test the FILE STATUS (status key) after each input/output
statement, including the OPEN statement. FILE STATUS detects error
conditions so you can handle them before processing continues.

If you do not specify FILE STATUS and test for the appropriate status key
values, you might get undetected errors and erroneous program results.

User abends
In certain error situations during VSAM file processing, Release 1 of the
OS/VS COBOL library modules forced user abends during program
execution. OS/VS COBOL Release 2 support eliminated four of these user
abends. In place of the abends, a FILE STATUS value is set when an I/O
operation fails, and execution continues.

Status key values are set to 90, 93, 95, or 95 rather than the forced USER
ABEND 0100, 0201, 0303, or 0304, respectively. The program should test the

172 z/OS V2R1.0 Language Environment Customization

status key value after each I/O operation to make sure its successful
completion. OS/VS COBOL Release 2 support also no longer issues the
object-time message 'IKF302I'. In place of this message, the FILE STATUS is
set to a value of 30.

Because some users might depend on the previous abends and message,
you can apply superzaps as user modifications to continue to force USER
ABEND 0100, 0201, 0303, or 0304, and continue to force message IKF302I.
The IGZWZA1 USERMOD in the IGZWZAP sample job contains the
superzaps to do this.

JOB STEP ERROR COMPLETION CODE (RC12/ABEND U0295)
In OS/VS COBOL, if a COBOL library subroutine detects a serious error at
execution time (for example, a SYSOUT DD statement is missing), ILBOSRV1 sets
the return code and the JOB STEP COMPLETION/ CONDITION CODE to 12
(CC12) upon terminating the run unit. A return code of 12 is compatible with
versions 2 and 3 of American National Standard COBOL.

If you want to change the default return code, you can overlay the halfword
X'000c' at displacement X'0002' into CSECT ILBOSRV with the error completion
code of your choice. If the halfword is set to a NEGATIVE value during STOP
RUN or GOBACK processing, the program is terminated with the USER ABEND
0295 (ABENDU0295) instead of a return code 12.

Because some users might depend on programs abending in the preceding
conditions, you can apply the superzap as a user modification (IGZWZA2) to force
a USER ABEND 0295.

IF NUMERIC CLASS TEST allows only C, D, and F
A, B, and E were valid signs for an IF NUMERIC compare in OS/VS COBOL
Release 1, but the current release allows only C, D, and F as valid signs for an IF
NUMERIC compare. Because some users might depend on the COBOL NUMERIC
CLASS TEST, which includes A, B, and E as valid numeric signs, you can apply a
provided superzap (IGZWZA3) as a user modification to add A, B, and E as valid
numeric signs.

In any case, incorrect data in a data item used for a numeric class comparison is
accepted as valid if its hexadecimal notation contains a valid sign. (For example,
EBCDIC 'A', or X'C1', is a valid numeric sign for external decimal; and EBCDIC
'%', or X'6C', is a valid numeric sign for internal decimal.)

Modifying the COBOL parameter list exit
The COBOL parameter list exit routine IGZEPSX can be modified to alter the
parameter list processing when a COBOL main program is invoked by an z/OS
ATTACH. This exit is ignored by programs compiled with COBOL V5R1 and later
releases.

With the IBM supplied default COBOL parameter list exit, if the COBOL main is
invoked by using the ATTACH SVC, a halfword-prefixed string is passed to the
application after runtime options have been removed. The source of this string is
dependent on the environment in which the ATTACH is issued:
v If the ATTACH is issued by z/OS to invoke a batch program, the string is

specified using the PARM field of the EXEC statement.

Chapter 11. Customizing language-specific features 173

|
|

v If the ATTACH is issued by TSO/E to attach a Command Processor (CP), the
string is specified as part of the command embedded within the CP parameter
of the TSO/E ATTACH CP command.

v If the ATTACH is not issued by z/OS or TSO/E, the string is specified using the
PARM field of the ATTACH macro.

If the default behavior does not meet your needs, the COBOL parameter list exit
IGZEPSX can be altered to set the parameter list processing so that R1 and the
parameter list is passed without change to the main COBOL program.

Use the IGZWAPSX sample job to change the COBOL parameter list exit. You must
replace the comment in IGZWAPSX with your source for IGZEPSX. You can copy
the source for the IBM-supplied default COBOL parameter list exit from IGZEPSX
in SCEESAMP and modify it to suit your needs. Included in IGZEPSX is sample
code that can be used to get the same parameter list processing that is done when
running COBOL programs with the VS COBOL II runtime library.

Steps for modifying the JCL for IGZWAPSX
Perform the following steps to modify the JCL forIGZWAPSX:
1. Replace the comment lines following the ++ SRC statement in the job with your

source program for the COBOL parameter list exit.

2. Change #GLOBALCSI to the data set name of your global CSI data set.

3. Change #TZONE to the name of your target zone.

When you are done, IGZWAPSX should run with a condition code of 0.

Modifying the COBOL runtime environment
The IGZERREO CSECT provides a method of specifying additional parameters for
COBOL to use at runtime. These parameters are separate from the Language
Environment runtime options and apply only to the COBOL runtime. These
parameters can be used to change the behavior of the COBOL reusable
environment, the behavior of nested enclaves in a reusable environment, and the
amount of data dumped for BLL cells in a formatted dump.

The parameters for the COBOL runtime environment are specified through
IGZERREO using the keyword parameters REUSENV, NESTENC, and DUMPBLL.

Modifying COBOL reusable environment behavior
The COBOL reusable environment behavior can be modified to control how
program checks that occur in the non-Language Environment-conforming driver
are handled, as well as to control whether COBOL programs can run in a nested
enclave in the reusable environment. The COBOL reusable environment is
established with the RTEREUS runtime option or a call to either ILBOSTPO or
IGZERRE INIT.

With the IBM supplied default setting for COBOL's reusable environment behavior
(IGZERREO with REUSENV=COMPAT), when a program check occurs while the
reusable environment is dormant (for example, between a GOBACK from a
top-level COBOL program to the non-Language Environment conforming

174 z/OS V2R1.0 Language Environment Customization

assembler driver and the next call to a COBOL program), a S0Cx abend will occur.
This behavior is compatible with the VS COBOL II and OS/VS COBOL runtimes,
but it significantly impacts the performance when an Enterprise COBOL for z/OS,
COBOL for OS/390 & VM, or COBOL for MVS & VM program is invoked
repeatedly in a COBOL reusable environment. The performance degradation is
caused by Language Environment issuing an ESPIE RESET when the reusable
environment becomes dormant and then an ESPIE SET upon reentering the
reusable environment.

COBOL's reusable environment behavior can be modified (IGZERREO with
REUSENV=OPT) so that all program checks will be intercepted by Language
Environment, even those that occur while the reusable environment is dormant. In
this case, a program check that occurs while the reusable environment is dormant
will result in a 4036 abend from Language Environment. However, since Language
Environment does not have to issue the ESPIE RESET and ESPIE SET between
invocations of the COBOL program, this can be faster than using
REUSENV=COMPAT.

Modifying nested enclave behavior
With the IBM-supplied default setting for COBOL's reusable environment behavior
(IGZERREO with NESTENC=NO), when a reusable environment is active and a
nested enclave is created that contains a COBOL program, COBOL will diagnose
this with error message IGZ0168S.

COBOL's reusable environment behavior can be modified (IGZERREO with
NESTENC=YES) so that a nested enclave containing a COBOL program will
continue to run, even though a reusable environment is still active in the parent
enclave.
v When you run a COBOL program in a nested enclave.
v The COBOL program is not part of the reusable environment.
v When the nested enclave ends, all the resources associated with the nested

enclave are freed.

If a STOP RUN is done in the nested enclave, it only terminates the nested enclave,
and does not terminate the COBOL reusable environment.

Modifying COBOL formatted dump behavior
With the IBM-supplied default, 4096 bytes of data are written for each BLL cell in
active programs and no data for BLL cells in programs that are not active.

The COBOL runtime environment behavior can be modified to change how much
data from each BLL is written to the CEEDUMP. The DUMPBLL parameter allows
two suboption keywords, ACTIVE and INACTIVE, to specify the length of data
from the BLL to be dumped for active and non-active programs respectively. Each
suboption must be associated with a length value. The suboption keywords must
be spelled out completely. If the suboption is specified, a length value must be
specified. The length value must be between 0 and 4096. If the value specified is
greater than 0, it must be a multiple of 32.

If a suboption is skipped entirely, the default value is used for that suboption. A
partially specified suboption or a suboption with a keyword or length omitted is
diagnosed as an error during the IGZRREOP macro processing. This causes a
nonzero return code.

Chapter 11. Customizing language-specific features 175

Modifying the behavior of the COBOL runtime environment
Use the IGZWARRE sample job to change the behavior of COBOL's runtime
environment. You must modify the IGZRREOP macro invocation, depending on
the function that you want.

To run with VS COBOL II and OS/VS COBOL runtime compatibility mode (that is,
the user has control of program checks that occur when the COBOL runtime
environment is dormant, resulting in an additional performance cost), use
IGZRREOP REUSENV=COMPAT

To run with optimum performance (for example Language Environment intercepts
all program checks that occur when the COBOL runtime environment is dormant
and converts them to a 4036 abend, resulting in improved performance), use
IGZRREOP REUSENV=OPT

To disable nested enclave support in the reusable environment, use IGZRREOP
NESTENC=NO

To enable nested enclave support in the reusable environment, use IGZRREOP
NESTENC=YES

To change the amount of data dumped for BLL cells in a CEEDUMP, use
IGZRREOP DUMPBLL=((suboption)). Specify either or both of the suboption
values (ACTIVE,nnnn) and (INACTIVE,nnnn). The value must be between 0 and
4096 and a multiple of 32 to replace nnnn.

Modifying the JCL for IGZWARRE
Perform the following steps to modify the JCL for IGZWARRE:
1. Copy the IGZERREO member from CEE.SCEESAMP into IGZWARRE in place

of the comment lines following the ++ SRC statement.

2. Change the REUSENV NESTENC, and DUMPBLL parameters on the
IGZRREOP macro statement to the desired value.

3. Change #GLOBALCSI to the data set name of your global CSI data set.

4. Change #TZONE to the name of your target zone.

IGZWARRE should run with a condition code of 0.

Modifying the COBOL debug file name
When a COBOL program is compiled with the SEPARATE suboption of the TEST
compiler option, the file name of the separate debug file created by the COBOL
compiler is stored in the object deck. The file name can be one of the following:
v A data set name
v A data set name with a member name
v Az/OS UNIX file name

176 z/OS V2R1.0 Language Environment Customization

At runtime, when a Language Environment-formatted dump is requested, the
runtime gets the debug file name from the COBOL executable. If the debug file
created at compile time is not available, the formatted dump does not format the
local variables of the program.

If the COBOL debug files are kept in a file that is different from the file used at
compile time, you can use the COBOL debug file user exit to provide a file name.

The COBOL debug file user exit also gets control when the debug tool is used to
debug a COBOL program compiled with the SEPARATE suboption of the TEST
compiler option.

The COBOL debug file user exit can be used in all environments. The user exit is
called each time a new COBOL debug file is required. This gives the exit the
opportunity to change the file name.

Using a COBOL debug file user exit
To use the COBOL debug file user exit in a non-CICS environment:
1. Write an assembler language routine that conforms to the interface of the

COBOL debug file user exit as described in “Using the COBOL debug file user
exit interface.”

2. Assemble and link edit your user exit into a load library that Language
Environment can load at runtime. The member name of the user exit must be
IGZIUXB.

To use the COBOL debug file user exit in a CICS environment:
1. Write an assembler language routine that conforms to the interface of the

COBOL debug file user exit as described in “Using the COBOL debug file user
exit interface.”

2. If your user exit has CICS commands, translate it with the CICS translator
using the SYSEIB translator option.

3. Assemble and link edit your user exit into a load library in the CICS DFHRPL
DD concatenation. The member name of the user exit must be IGZIUXC.

4. If not already done, define the IGZIUXC program to CICS. When you define
the program to CICS you do not need to specify the language. However, if you
do want to specify the language, you must specify LANGUAGE(ASSEMBLER).

Using the COBOL debug file user exit interface

The name of the COBOL debug file user exit is:
v IGZIUXB for non-CICS
v IGZIUXC for CICS

The COBOL debug file user exit is loaded the first time you need to use a COBOL
debug file. If the load of the user exit is not successful, Language Environment
does not issue a message and does not attempt to call the user exit.

Syntax

For IGZIUXB (non-CICS):
IGZIUXB(Interface_Version,

Name_Of_Debug_File,
Name_Of_CU)

Chapter 11. Customizing language-specific features 177

For IGZIUXC (CICS):
IGZIUXB(Interface_Version,

Name_Of_Debug_File,
Name_Of_CU,
CICS_SYSTEM_EIB)

Where:

Interface_Version (INPUT)
Is a 4-byte integer with interface version. The value is 1.

Name_Of_Debug_File (INPUT/OUTPUT)
Is a halfword-prefixed 256-byte character string that has the name of the debug
file. This is an input/output field. On input it contains the name of debug file
name that was used at compile time. On output, the name length and name
can be updated by the user exit. The new name information is used by the
runtime when R15 is zero on return. The name is not padded with blanks on
input. On output, the name length must reflect the length of the name without
blanks.

Name_Of_CU (INPUT)
Is a halfword-prefixed 160-byte character string that has the name of the
compile unit. The compile unit name of a program is the program name. The
compile unit name of a class is the class name.

CICS_SYSTEM_EIB (INPUT)
Is the CICS system EIB (EXEC Interface Block)

CICS considerations

CICS commands can be used in the COBOL debug file user exit. However, the
COBOL debug file user exit must adhere to the following conventions when using
EXEC CICS commands: The COBOL debug file user exit must use the CICS system
EIB with the SYSEIB translator option. The CICS commands must use the RESP
option.

Register conventions

Register conventions for the COBOL debug file user exit are:

Table 20. Register conventions for the COBOL debug file user exit

Register Description

1 Address of the parameter list

12 Address of the CAA

13 Address of a dynamic save area (DSA). The user exit routine can save
the registers here across its processing

14 Contains the return address

15 Contains the entry point address upon entry and the return code upon
exit

Usage notes
v The COBOL debug file user exit must be written in assembler language and

must be reentrant. If you write the COBOL debug file user exit in Language
Environment-enabled assembler, you must specify MAIN=NO on the
CEEENTRY macro.

178 z/OS V2R1.0 Language Environment Customization

v The COBOL debug file user exit must not call any HLL programs. However, it
can call other assembler routines.

v The COBOL debug file user exit must not create a Language Environment
enclave.

v R15 must be set to zero upon return when the debug file name is changed. If
R15 is nonzero, any change to the debug file name is ignored.

v Changes to the file name must be fully qualified. If the debug file is a PDS or a
PDSE, the file name returned from the user exit must be the name of the
PDS/PDSE along with the member name.

v The COBOL debug file user exit is called in AMODE(31) and must return in
AMODE(31).

COBOL debug file user exit samples
Language Environment provides a sample COBOL debug file user exit for
non-CICS and CICS environments.
v The sample COBOL debug file user exit for non-CICS is available in SCEESAMP

in member IGZWIUXB.
v The sample COBOL debug file user exit for CICS is available in SCEESAMP in

members IGZWIUXC and IGZWIUXD.
v The sample user exits take the member name used when storing the COBOL

debug file at compile time. They look for the member in a concatenated
PDS/PDSE under DD SYSDEBUG. If the member is found, the data set name
and member are returned.

v Restriction: The sample user exits do not provide a new name if the debug file
is stored in a sequential data set or a z/OS UNIX file at compile time.

Changing the C/C++ locale time information
Use the EDCLLOCL job to change the C/C++ locale time information for your site.

Recommendation: Do not install this usermod. The default C/C++ locale
(EDC$S370) will by default obtain the time zone difference from Greenwich mean
time from the system. If your C/C++ application requires a different time zone
other than the one obtained from the system, you can use the tzset() and the TZ
environment variable described in z/OS XL C/C++ Runtime Library Reference.

Modifying the JCL for EDCLLOCL
Perform the following steps to modify the JCL for EDCLLOCL
1. Change #GLOBALCSI to the data set name of your global CSI data set.

2. Change #TZONE to the name of your target zone.

When you are done, EDCLLOCL should run with a condition code of 0.

Chapter 11. Customizing language-specific features 179

180 z/OS V2R1.0 Language Environment Customization

Part 3. Appendixes

© Copyright IBM Corp. 1991, 2013 181

182 z/OS V2R1.0 Language Environment Customization

Appendix A. Language Environment user exits

Language Environment provides support for the following user exits:

Assembler user exit
Performs functions for enclave initialization, normal and abnormal enclave
termination, and process termination. See “Assembler and HLL user exits.”

High-level language (HLL) user exit
Performs functions for enclave initialization. See “Assembler and HLL user
exits.”

Abnormal termination user exit
Collects problem determination data when Language Environment is
terminating an enclave due to an unhandled condition. See “Abnormal
termination exit” on page 193.

Load notification user exit
Improves performance by preventing frequently used modules from being
loaded and deleted with each use. The load notification user exit is only
available when Library Routine Retention (LRR) is used. See “Load
notification user exit” on page 195.

Storage tuning user exit
Provides a programming interface that allows you to collect Language
Environment storage tuning information and to set the Language
Environment runtime option values for STACK, LIBSTACK, HEAP,
ANYHEAP and BELOWHEAP. The storage tuning user exit is available on
CICS and on non-CICS when LRR is used. See “Storage tuning user exit”
on page 198.

Assembler and HLL user exits
IBM offers a default version of the CEEBXITA assembler user exit that you can
customize during your Language Environment installation and use on a global or
installation-wide basis. After installation, you can again customize CEEBXITA and
link it directly to applications to use on an application-specific basis. The
application-specific exit is used only when you run that application. In this case
the installation-wide assembler user exit is not executed.

IBM also provides an HLL user exit, CEEBINT, that you can modify and use after
installation. The HLL user exit is used during enclave initialization. Language
Environment supplies an IBM-supplied default HLL user exit, or you can code one
in C, PL/I, or Language Environment-conforming assembler language. You cannot
write one in COBOL or Fortran.

After the enclave has been established, the HLL user exit is invoked and passed a
parameter list that conforms to the Language Environment definition. The
parameter list is described in z/OS Language Environment Programming Guide.

When assembler and HLL user exits are invoked
Figure 7 on page 184 shows the timing of the invocations of the assembler and
HLL user exits at initialization and termination processing.

© Copyright IBM Corp. 1991, 2013 183

In Figure 7, runtime user exits are invoked in the following sequence:
1. Assembler user exit is invoked for enclave initialization
2. Environment is established
3. HLL user exit is invoked
4. Main routine is invoked
5. Main routine returns control to caller
6. Assembler user exit is invoked for termination of the enclave

CEEBXITA is invoked for enclave termination processing after all application
code in the enclave has completed, but before any enclave termination activity.

7. Environment is terminated
8. Assembler user exit is invoked for termination of the process

CEEBXITA is invoked again when the Language Environment process
terminates.

Language Environment provides the CEEBXITA assembler user exit for termination
but does not provide a corresponding HLL termination user exit.

CEEBXITA behaves differently, depending upon when it is invoked, as described in
the following sections.

INITIALIZATION
PROCESSING

Assembler User Exit
(CEEBXITA)

HLL User Exit
(CEEBINT)

(invoked for
enclave
initialization)

User Application Code

(Main routine plus subroutines)

TERMINATION
PROCESSING

Assembler User Exit
(CEEBXITA)

Assembler User Exit
(CEEBXITA)

(invoked for
enclave
termination)

(invoked for
process
termination)

Figure 7. Location of user exits

184 z/OS V2R1.0 Language Environment Customization

CEEBXITA behavior during enclave initialization
The CEEBXITA assembler user exit is invoked before enclave initialization is
performed. You can use CEEBXITA to help establish your application runtime
environment. For example, in the assembler user exit you can specify the stack and
heap runtime options and allocate data sets. You can also use the user exit to
interrogate program parameters supplied in the JCL and change them if you want.
In addition, you can specify runtime options in the user exit by using the
CEEAUE_A_OPTIONS field of the assembler interface.

z/OS considerations: Under z/OS, CEEBXITA returns control to Language
Environment initialization.

CEEBXITA behavior during enclave termination
The CEEBXITA assembler exit is invoked after the user code for the enclave has
completed, but before the occurrence of any enclave termination activity. In other
words, the assembler user exit for termination is invoked when the environment is
still active. For example, CEEBXITA is invoked before the storage report is
produced (if you requested one), data sets are closed, and the debugger is invoked
for enclave termination.

The z/OS assembler user exit permits you to request an abend. Under z/OS,
including TSO and CICS, you can also request a dump to assist in problem
diagnosis. Because termination activities have not yet begun when the user exit is
invoked, the majority of storage has not been modified when the dump is
produced.

You can request the abend and dump in the assembler user exit for all
enclave-terminating events including:
v The situation that occurs in PL/I when the ON condition (including ERROR or

FINISH) is raised and one of the following conditions is true:
– The program does not have an appropriate ON-unit.
– The ON-unit does not terminate with a GOTO.
– The GOTO is not allowed.

This rule applies only to the conditions that cause termination of the program.
v Return from the main routine
v A Debug Tool QUIT command
v An HLL stop statement such as:

– C exit()
– COBOL STOP RUN
– PL/I STOP or EXIT
– Fortran STOP

v An unhandled condition of severity 2 or above

If a dump is requested in the user assembler exit and an unhandled condition has
occurred, this dump will overwrite the dump taken by
TERMTHDACT(UADUMP).

CEEBXITA behavior during process termination
The CEEBXITA assembler exit is invoked after:
v All enclaves have terminated
v The enclave resources have been relinquished
v Any Language Environment-managed files have been closed
v Debug Tool has terminated

Appendix A. Language Environment user exits 185

At this time you can free allocated files and request an abend.

During termination, CEEBXITA can interrogate the Language Environment reason
and return codes and, if necessary, request an abend with or without a dump. This
can be done at either enclave or process termination.

Specifying abend codes to be percolated by Language
Environment

The assembler user exit, when invoked for initialization, might return a list of
abend codes that are to be percolated by Language Environment. The list of abend
codes is contained in the CEEAUE_A_AB_CODES field of the assembler user exit
interface. For more information, see “CEEBXITA assembler user exit interface.”

On non-CICS systems, this list is contained in the CEEAUE_A_AB_CODES field of
the assembler user exit interface. (See “CEEBXITA assembler user exit interface.”)
Both system abends and user abends can be specified in this list. The abend
percolation list specified in the assembler user exit applies to all threads in the
enclave.

When TRAP(ON) is in effect, and the abend code is in the
CEEAUE_A_AB_CODES list, Language Environment percolates the abend. Normal
Language Environment condition handling is never invoked to handle these
abends. This feature is useful when you do not want Language Environment
condition handling to intervene for certain abends, such as when IMS issues a user
abend code 777.

When TRAP(OFF) is specified and there is a program interrupt, the user exit for
termination is not driven.

Actions taken for errors that occur within the exit
If any errors occur during the enclave initialization user exit, the standard system
action occurs because Language Environment condition handling has not yet been
established.

Any errors occurring during the enclave termination user exit lead to abnormal
termination (through an abend) of the Language Environment environment.

If there is a program check during the enclave termination user exit and
TRAP(ON) is in effect, the application ends abnormally with ABEND code 4044
and reason code 2. If there is a program check during the enclave termination user
exit and TRAP(OFF) was specified, the application ends abnormally without
additional error checking support. Language Environment performs no condition
handling; error handling is performed by the operating system.

Language Environment takes the same actions as described previously for program
checks during the process termination user exit.

CEEBXITA assembler user exit interface
You can modify CEEBXITA to perform any function you need, but the exit must
have the following attributes after you modify it at installation:
v The user-supplied exit must be named CEEBXITA.
v The exit must be reentrant.
v The exit must be able to execute in AMODE(ANY) and RMODE(ANY).
v The installation-wide guidelines are as follows:

186 z/OS V2R1.0 Language Environment Customization

– You must bind (link) the exit with the appropriate Language Environment
initialization/termination routines after modification.

– Use the sample customization jobs CEEWDXIT and CEEWCXIT to assist with
creating and binding (linking) your exit with Language Environment
initialization/termination routines.

v The application-specific guidelines are as follows:
– You must bind (link) the exit with your application.
– Use the sample customization job CEEWUXIT and CEEWCXIT to assist with

creating your exit.

If a user exit is modified, you are responsible for conforming to the interface
shown in Figure 8.

Rule: The modified user exit must be written in assembler.

When the user exit is called, register 1 points to a word that contains the address
of the CEEAUE control block. The high-order bit is on.

The CEEAUE control block contains the following fullwords:

CEEAUE_LEN (input parameter)
A fullword integer that specifies the total length of this control block. For
Language Environment, the length is 48 bytes.

CEEAUE_FUNC (input parameter)
A fullword integer that specifies the function code. Language Environment
supports the following function codes:
1 Initialization of the first enclave within a process.

CEEAUE

Register 1 1 XITPTR

CEEAUE_LEN0(0)

CEEAUE_FUNC4(4)

CEEAUE_RETC

CEEAUE_RSNC

CEEAUE_FLAGS16(10)

CEEAUE_A_CC_PLIST20(14)

CEEAUE_A_WORK24(18)

CEEAUE_A_OPTIONS

CEEAUE_USERWD32(20)

CEEAUE_A_AB_CODES36(24)

CEEAUE_FBCODE

CEEAUE_PAGE44(2C)

8(8)

12(C)

28(1C)

40(28)

Figure 8. Interface for CEEBXITA assembler user exit

Appendix A. Language Environment user exits 187

2 Termination of the first enclave within a process.
3 Nested enclave initialization.
4 Nested enclave termination.
5 Process termination.

The user exit should ignore function codes other than those numbered from 1
through 5.

CEEAUE_RETC (input/output parameter)
A fullword integer that specifies the return or abend code. CEEAUE_RETC has
different meanings, depending on CEEAUE_ABND:
v If the flag CEEAUE_ABND is off, this fullword is interpreted as the

Language Environment return code placed in register 15.
v If the flag CEEAUE_ABND is on, CEEAUE_RETC is interpreted as an abend

code used when an abend is issued. (This could be either an EXEC CICS
ABEND or an SVC13.)

CEEAUE_RSNC (input/output parameter)
A fullword integer that specifies the reason code for CEEAUE_RETC:
v If the flag CEEAUE_ABND is off, this word is interpreted as the Language

Environment reason code placed in register 0.
v If the flag CEEAUE_ABND is on, CEEAUE_RETC is interpreted as an abend

reason code used when an abend is issued.

This field is ignored when an EXEC CICS ABEND is issued.

CEEAUE_FLAGS
Contains four 1-byte flags. CEEBXITA uses only the first byte but reserves the
remaining flags. All unspecified bits and bytes must be 0. The layout of these
flags is shown as follows:
Byte 0

x... CEEAUE_ABTERM
0... Normal termination
1... Abnormal termination
.x.. CEEAUE_ABND
.0.. Terminate with CEEAUE_RETC
.1.. ABEND with CEEAUE_RETC and CEEAUE_RSNC given
..x. CEEAUE_DUMP
..0. If CEEAUE_ABND=0, ABEND with no dump
..1. If CEEAUE_ABND=1, ABEND with a dump
...x CEEAUE_STEPS
...0 ABEND the task
...1 ABEND the step
.... 0000 Reserved (must be zero)

Byte 1
0000 0000 Reserved for future use

Byte 2
0000 0000 Reserved for future use

Byte 3
0000 0000 Reserved for future use

Byte 0 (CEEAUE_FLAG1) has the following meaning:

CEEAUE_ABTERM (input parameter)

OFF Indicates that the enclave is terminating normally (severity 0 or 1
condition).

ON Indicates that the enclave is terminating with an Language

188 z/OS V2R1.0 Language Environment Customization

Environment return code modifier of 2 or greater. This could, for
example, indicate that a severity 2 or greater condition was raised
but not handled.

CEEAUE_ABND (input/output parameter)

OFF Indicates that the enclave should terminate without an abend being
issued. Thus, CEEAUE_RETC and CEEAUE_RSNC are placed into
register 15 and register 0 and returned to the enclave creator.

ON Indicates that the enclave terminates with an abend. Thus,
CEEAUE_RETC and CEEAUE_RSNC are used by Language
Environment in the invocation of the abend. During running in
CICS, an EXEC CICS ABEND command is issued.

The TRAP runtime option does not affect the setting of CEEAUE_ABND.

When the ABTERMENC(ABEND) runtime option is specified, the enclave
always terminates with an abend when there is an unhandled condition of
severity 2 or greater, regardless of the setting of the CEEAUE_ABND flag.

CEEAUE_DUMP (output parameter)

OFF Indicates that when you request an abend, an abend is issued
without requesting a dump.

ON Indicates that when you request an abend, an abend requesting a
dump is issued.

CEEAUE_STEPS (output parameter)

OFF Indicates that when you request an abend, an abend is issued to
stop the entire TASK.

ON Indicates that when you request an abend, an abend is issued to
stop the STEP.

This parameter is applicable only to z/OS; it is ignored under CICS.

CEEAUE_A_CC_PLIST (input/output parameter)
A fullword pointer to the parameter address list of the application
program.

If the parameter is not a character string, CEEAUE_A_CC_PLIST contains
the register 1 value as passed by the calling program or operating system
at the time of program entry.

If the parameter inbound to the MAIN routine is a character string,
CEEAUE_A_CC_PLIST contains the address of a fullword address that
points to a halfword prefixed string. If this string is altered by the user
exit, the string must not be extended in place.

CEEAUE_A_WORK(input parameter)
A fullword pointer to a 256-byte work area that the exit can use. On entry
it contains binary zeros and is doubleword-aligned.

This area does not persist across exits.

CEEAUE_A_OPTIONS (output parameter)
Upon return, this field contains a fullword pointer to the address of a
halfword-length prefixed character string that contains runtime options.
These options are honored only during the initialization of an enclave.
When invoked for enclave termination, this field is ignored.

Appendix A. Language Environment user exits 189

|

These runtime options override all other sources of runtime options except
those that are specified as NONOVR.

Under CICS, the STACK runtime option cannot be modified with the
assembler user exit.

CEEAUE_USERWD (input/output parameter)
A fullword whose value is maintained without alteration and passed to
every user exit. Upon entry to the enclave initialization user exit, it is zero.
Thereafter, the value of the user word is not altered by Language
Environment or any member libraries. The user exit might change the
value of this field, and Language Environment maintains that value. This
allows the user exit to acquire a work area, initialize it, and pass it to
subsequent user exits. The work area might be freed by the termination
user exit.

CEEAUE_A_AB_CODES (output parameter)
During the initialization exit, this field contains a fullword address of a
table of abend codes that the Language Environment condition handler
percolates while in the (E)STAE exit. Therefore, the application does not
have the chance to address the abend. This table is honored prior to shunt
routines. The table consists of:
v A fullword count of the number of abend codes that are to be percolated
v A fullword for each of the particular abend codes that are to be

percolated

The abend codes might be either user abend codes or system abend codes.
User abend codes are specified by F'uuu'. For example, if you want to
percolate user ABEND 777, a F'777' would be coded. System abend codes
are specified by X'00sss000'.

This parameter is not enabled under CICS.

CEEAUE_FBCODE (input parameter)
Contains a fullword address of the condition token with which the enclave
terminated. If the enclave terminates normally (that is, not due to a
condition), the condition token is zero.

CEEAUE_PAGE (input parameter)
This parameter indicates whether PL/I BASED variables that are allocated
storage outside of AREAs are allocated on a 4K-page boundary. You can
specify in the field the minimum number of bytes of storage that must be
allocated. Your allocation request must be an exact multiple of 4K.

The IBM-supplied default setting for CEEAUE_PAGE is 32768 (32K).

If CEEAUE_PAGE is set to zero, PL/I BASED variables can be placed on
other than 4K-page boundaries.

CEEAUE_PAGE is honored only during enclave initialization, that is, when
CEEAUE_FUNC is 1 or 3.

The offset of CEEAUE_PAGE under Language Environment is different
than under OS PL/I Version 2 Release 3.

Parameter values in the assembler user exit
The parameters described in “CEEBXITA assembler user exit interface” on page
186 contain different values depending on how the user exit is used. Table 21 on
page 191 and Table 22 on page 192 describe the possible values for the parameters
based on how the assembler user exit is invoked.

190 z/OS V2R1.0 Language Environment Customization

|
|

Table 21. Parameter values in the assembler user exit (Part 1). The assembler user exit contains these parameter
values depending on when it is invoked.

When invoked
CEEAUE_

LEN CEEAUE_RETC CEEAUE_RSNC
CEEAUE_
FLAGS CEEAUE_A_CC_ PLIST

First Enclave within
Process Initialization —
Entry

CEEAUE_FUNC = 1

48 0 0 0 Upon entry,
CEEAUE_A_CC_ PLIST
contains the register 1 value
from the operating system.
It can contain both runtime
options and user
parameters. You can alter it
in a user exit. Upon return,
the CEEAUE_A_CC_ PLIST
is processed and merged as
the invocation string.

First Enclave within
Process Initialization —
Return

0, or abend code if
CEEAUE_ABND = 1

0, or reason code for
CEEAUE_RETC if
CEEAUE_ABND = 1

See Note 1 on
page 192.

Register 1, used as the new
parameter list.
CEEAUE_A_CC_ PLIST can
contain both runtime
options and user
parameters. You can alter it
in a user exit. Upon return,
the CEEAUE_A_CC_ PLIST
is processed and merged as
the invocation string.

First Enclave within
Process Termination —
Entry

CEEAUE_FUNC = 2

48 Return code issued by
application that is
terminating.

Reason code that
accompanies
CEEAUE_RETC.

See Note 2 on
page 192.

First Enclave within
Process Termination —
Return

If CEEAUE_ABND = 0, the
return code placed into
register 15 when the enclave
terminates.

If CEEAUE_ABND = 1, the
abend code.

If CEEAUE_ABND = 0, the
enclave reason code.

If CEEAUE_ABND = 1, the
abend reason code.

See Note 1 on
page 192.

Nested Enclave
Initialization — Entry

CEEAUE_FUNC = 3

48 0 0 0 The register 1 value
discovered in a nested
enclave creation.
CEEAUE_A_CC_ PLIST can
contain both runtime
options and user
parameters. You can alter it
in a user exit. Upon return,
the CEEAUE_A_CC_ PLIST
is processed and merged as
the invocation string.

Nested Enclave
Initialization — Return

0, or if CEEAUE_ABND = 1,
the abend code.

0, or if CEEAUE_ABND = 1,
reason code for
CEEAUE_RETC.

See Note 1 on
page 192.

Register 1 used as the new
enclave parameter list.
CEEAUE_A_CC_ PLIST can
contain both runtime
options and user
parameters. You can alter it
in a user exit. Upon return,
the CEEAUE_A_CC_ PLIST
is processed and merged as
the invocation string.

Nested Enclave
Termination — Entry

CEEAUE_FUNC = 4

48 Return code issued by
enclave that is terminating.

Reason code accompanying
CEEAUE_RETC.

See Note 2 on
page 192.

Nested Enclave
Termination — Return

If CEEAUE_ABND = 0, the
return code from the
enclave.

If CEEAUE_ABND = 1, the
abend code.

If CEEAUE_ABND = 0, the
enclave reason code.

If CEEAUE_ABND = 1, the
enclave reason code.

See Note 1 on
page 192.

Appendix A. Language Environment user exits 191

Table 21. Parameter values in the assembler user exit (Part 1) (continued). The assembler user exit contains these
parameter values depending on when it is invoked.

When invoked
CEEAUE_

LEN CEEAUE_RETC CEEAUE_RSNC
CEEAUE_
FLAGS CEEAUE_A_CC_ PLIST

Process Termination —
Entry

Function Code = 5

48 Return code presented to the
invoking system in register
15 that reflects the value
returned from the “first
enclave within process
termination”.

Reason code accompanying
CEEAUE_RETC that is
presented to the invoking
system in register 0 and
reflects the value returned
from the “first enclave
within process termination”.

See Note 3.

Process Termination —
Return

If CEEAUE_ABND = 0,
return code from the
process.

If CEEAUE_ABND = 1, the
abend code.

If CEEAUE_ABND = 0, the
reason code for
CEEAUE_RETC from the
process.

If CEEAUE_ABND = 1,
reason code for the
CEEAUE_RETC abend
reason code.

See Note 1.

Notes:
1. CEEAUE_FLAGS:

CEEAUE_ABND = 1 if an abend is requested, or 0 if the enclave should continue with termination processing
CEEAUE_DUMP = 1 if the abend should request a dump
CEEAUE_STEPS = 1 if the abend should abend the step
CEEAUE_STEPS = 0 if the abend should abend the task

2. CEEAUE_FLAGS:
CEEAUE_ABTERM = 1 if the application is terminating with an Language Environment return code modifier of 2 or greater, or 0 otherwise
CEEAUE_ABND = 1 if an abend is requested, or 0 if the enclave should continue with termination processing
CEEAUE_DUMP = 0
CEEAUE_STEPS = 0

3. CEEAUE_FLAGS:
CEEAUE_ABTERM = 1 if the last enclave is terminating abnormally (that is, a Language Environment return code modifier is 2 or greater). This
reflects the value returned from the “first enclave within process termination”.
CEEAUE_ABND = 1 if an abend is requested, or 0 if the enclave should continue with termination processing “first enclave within process
termination” (function code 2).
CEEAUE_DUMP = 0
CEEAUE_STEPS = 0

Table 22. Parameter values in the assembler user exit (Part 2). The assembler user exit contains these parameter
values depending on when it is invoked.

When invoked CEEAUE_A_WORK
CEEAUE_
A_OPTIONS CEEAUE_ USERWD

CEEAUE_
A_AB_
CODES

CEEAUE_
FBCODE CEEAUE_PAGE

First Enclave within
Process Initialization —
Entry

CEEAUE_FUNC = 1

Address of a
256-byte work area
of binary zeros.

0 0 Minimum number of
storage bytes to be
allocated for PL/I
BASED variables
(default = 32768).

First Enclave within
Process Initialization —
Return

Pointer to address of
a halfword prefixed
character string
containing runtime
options, or 0.

Value of CEEAUE_
USERWD for all
subsequent exits.

Pointer to
the abend
codes table,
or 0.

User specified PAGE
value. Minimum
number of storage
bytes to be allocated
for PL/I BASED
variables (default =
32768).

First Enclave within
Process Termination —
Entry

CEEAUE_FUNC = 2

Address of a
256-byte area of
binary zeros.

Return value from
previous exit.

Feedback
code causing
termination.

First Enclave within
Process Termination —
Return

The value of
CEEAUE_ USERWD
for all subsequent
exits.

Nested Enclave
Initialization — Entry

CEEAUE_FUNC = 3

Address of a
256-byte work area
of binary zeros.

Return value from
previous exit.

0 Minimum number of
storage bytes to be
allocated for PL/I
BASED variables
(default = 32768).

192 z/OS V2R1.0 Language Environment Customization

|

Table 22. Parameter values in the assembler user exit (Part 2) (continued). The assembler user exit contains these
parameter values depending on when it is invoked.

When invoked CEEAUE_A_WORK
CEEAUE_
A_OPTIONS CEEAUE_ USERWD

CEEAUE_
A_AB_
CODES

CEEAUE_
FBCODE CEEAUE_PAGE

Nested Enclave
Initialization — Return

Pointer to fullword
address that points
to a halfword
prefixed length
string containing
runtime options, or
0.

The value of
CEEAUE_ USERWD
for all subsequent
exits.

Pointer to
abend codes
table, or 0.

User specified PAGE
value. Minimum
number of storage
bytes to be allocated
for PL/I BASED
variables (default =
32768).

Nested Enclave
Termination — Entry

CEEAUE_FUNC = 4

Address of a
256-byte work area
of binary zeros.

Return value from
previous exit.

Feedback
code causing
termination.

Nested Enclave
Termination — Return

Value of
CEEAUE_USERWD for
all subsequent exits.

Process Termination —
Entry CEEAUE_FUNC =
5

Address of a
256-byte work area
of binary zeros.

Return value from
previous exit.

Feedback
code causing
termination.

Process Termination —
Return

Value of
CEEAUE_USERWD for
all subsequent exits.

Abnormal termination exit
The abnormal termination exits in CEEEXTAN are invoked during the termination
of an enclave due to an unhandled condition of severity 2 or greater. An abnormal
termination exit is invoked in AMODE(31), with register 12 pointing to the CAA
and register 13 pointing to a DSA with a valid NAB.

For AMODE 64 applications, an abnormal termination exit is invoked in
AMODE(64), with register 4 pointing to the caller's DSA and register 1 pointing to
the CIB.

For more information about creating and using abnormal termination exits, see
“CEEEXTAN abnormal termination exit CSECT” on page 150.

Syntax

Abnormal_Termination_Exit (CIBPTR)

CIBPTR (INPUT)
A pointer to the condition information block for the current condition.

Usage notes for AMODE 31 applications
v The abnormal termination exit must be written in assembler. If you write an

abnormal termination exit in Language Environment-enabled assembler, be sure
to specify MAIN=NO in the CEENTRY macro.

v The abnormal termination exit cannot call any HLL programs.
v The abnormal termination exit cannot create a Language Environment enclave.
v The abnormal termination exit can use the following Language Environment

callable services if the feedback code is passed as a parameter:
– Date and time callable services
– Dynamic storage callable services
– Message handling callable services
– National language support callable services

Appendix A. Language Environment user exits 193

|

– A subset of the general callable services: CEE3DMP, CEE3GRC, CEE3PRM
– A subset of the condition handling callable services: CEE3GRN, CEEDCOD,

CEEGPID, CEEGQDT, CEEITOK, CEENCOD
In addition, observe the restrictions on the use of system services as described in
z/OS Language Environment Programming Guide.

v Language Environment issues a system-dependent LOAD for one of the names
contained in CEEEXTAN. If the load is successful, the abnormal termination exit
is invoked.

v Upon return from the abnormal termination exit, Language Environment deletes
the routine. A return code is not provided, because Language Environment takes
no action (beyond deleting the routine) for a nonzero return code.

v If Language Environment intercepts a program check, an ABEND, or a CEESGL
while an abnormal termination exit is in control, Language Environment issues
an ABEND to terminate the enclave with the abend code 4087 reason code 10.

v Entry conditions into the abnormal termination exit:

Register 1
Has a standard OS parameter list as described above.

Register 12
Points to the CAA.

Register 13
Points to a Language Environment DSA with a valid NAB. (You can use
it as a standard 18-fullword save area.)

Register 14
Contains the return address.

Register 15
Contains the entry point address.

AMODE
Is 31.

v Exit conditions from the abnormal termination exit:

Registers 15–1
Undefined.

Registers 2–13
Unchanged.

Register 14
Is the return point.

AMODE
Is 31.

Usage notes for AMODE 64 applications
v See the CEEWQATX sample abnormal termination exit routine for a coding

example.
v Specify FETCHABLE=RENT on the CELQPRLG macro.
v The abnormal termination exit should call only the following C library functions:

– Date and time functions
– Dynamic storage functions
– Message handling functions
– National language support functions
– Dump-oriented and CIB-oriented functions

194 z/OS V2R1.0 Language Environment Customization

– printf() and related functions
v Language Environment issues fetch() to load each routine named in

CELQXTAN. If the fetch is successful, the routine is called. Any return code
from the called routine is ignored, and release() is called to delete the routine.

v If Language Environment intercepts a program check or ABEND while an
abnormal termination exit is in control, ABEND 4087 with reason code 10 is
issued to end the application.

v Registers at entry to the AMODE 64 abnormal termination exit:

Register 1
Points to CIB

Register 4
Caller's DSA pointer (biased)

Register 5
Pointer to WSA (if available)

Register 6
Address of called entry point

Register 7
Return address

The other register contents are unspecified.

Load notification user exit

The purpose of the load notification user exit is to provide customers running
applications with LRR active the ability to improve performance by preventing the
use count for frequently used modules from dropping below one.

The load notification user exit registered via CEEBLNUE is invoked:
v Once during region initialization processing
v After each successful load of a module by Language Environment
v Once during region termination processing.

When invoked during region initialization processing, the load notification user
exit can initialize some form of module list which can be used during subsequent
invocations to keep track of modules which have an extra load.

When invoked after the successful load of a module, the load notification user exit
would perform an extra load, if desired, and update the module list.

When invoked during region termination processing, the load notification user exit
would delete the modules identified in the list so that they are actually removed
from storage.

The load notification user exit will be loaded and called only when Library
Routine Retention (LRR) is active.

For more information about creating and using the load notification user exit, see
Chapter 7, “Customizing user exits,” on page 145.

Syntax: Load_Notification_User_Exit (CEELNUEPTR)

CEELNUEPTR (INPUT)
A pointer to the load notification user exit control block.

Appendix A. Language Environment user exits 195

The CEELNUE control block elements shown in Figure 9 are described as follows:

eye-catcher (INPUT)
A 4-byte character field containing "LNUE" indicating this is the CEELNUE
control block.

version (INPUT)
A 1-byte binary field containing the control block version. This field is set to
0x01 for the first version.

flags (INPUT)
A 1-byte binary field containing flags as shown:

x... load-type
0... OS
1... HFS
.000 0000 reserved

The flags are defined as follows:

load-type (INPUT)
0 OS module was loaded
1 z/OS UNIX module was loaded

size (INPUT)
A 2-byte integer field containing the size of the CEELNUE control block. This
field will be set to 0x0018 for the first version.

function-code (INPUT)
A 2-byte integer field containing the code of the function being performed
when the load notification user exit gets control. The following function code
values for the first version are:
0 Initialization
1 Load
2 Termination

module-name-length (INPUT)
A 2-byte integer field. When the function-code is 1, this field contains the

eye-catcher

version flags size

function-code module-name-length

module-name-ptr

user-word

reserved

+0

+4

+8

+C

+10

+14

Figure 9. CEELNUE control block map

196 z/OS V2R1.0 Language Environment Customization

length of the name of the module that was just loaded. This value will be 8
when an OS module was loaded. When the function-code is 0 or 2 the value
should be ignored.

module-name-ptr (INPUT)
A 4-byte address. When the function-code is 1, this field contains the address
of the name of the module that was just loaded. The module name pointed to
will be 8 characters in length, padded on the right with blanks as necessary,
when an OS module was loaded. When the function-code is 0 or 2 the value
should be ignored.

user-word (INPUT/OUTPUT)
A 4-byte binary field. This field is to be used to communicate information
between successive calls to the load notification user exit. The very first time
the load notification user exit is called, this field will be 0. The load notification
user exit may modify the value in this field. The value will be saved by
Language Environment and returned on subsequent invocations. Language
Environment will only honor changing the field during the initialization
function.

reserved
A 4-byte reserved field.

Usage notes
v The load notification user exit must be written in Assembler. If you write the

load notification user exit in Language Environment-enabled assembler, be sure
to specify MAIN=NO on the CEEENTRY macro.

v The load notification user exit must not call any HLL programs.
v The load notification user exit must not create a Language Environment enclave.
v The load notification user exit must not use any Language Environment services.
v Language Environment issues a system dependent LOAD for the name

contained in CEEBLNUE. If the load is successful, then the load notification user
exit is invoked.

v Upon return from the load notification user exit, Language Environment takes
no action other than continuing with its processing, as no return codes are
defined.

v The load notification user exit is invoked in AMODE(31). The RMODE can be
either ANY or 24.

v Registers provided on entry to the load notification user exit are:

Register 1
Points to a word which contains the address of the CEELNUE control
block.

Register 12
Points to the CAA.

Register 13
Points to a standard save area. The exit routine can save the registers
here across its processing.

Register 14
Contains the return address.

Register 15
Contains the entry point address upon entry.

v Registers provided on exit to the load notification user exit are:

Appendix A. Language Environment user exits 197

Registers 15-1
Undefined.

Registers 2-13
Unchanged.

Register 14
Contains the return address.

Storage tuning user exit
When Language Environment is used in transaction processing environments
where Language Environment enclaves are constantly being initialized and
terminated, such as CICS online and IMS/TM message processing regions, tuning
the Language Environment storage options can improve the performance of the
transactions. By tuning the Language Environment storage options, it can reduce
the time spent doing system GETMAINs and it can reduce the time spent
initializing Language Environment stack and heap increments.

The Language Environment storage tuning user exit is provided to help manage
the task of setting Language Environment storage option values that provide the
best performance in transaction processing environments where Language
Environment enclaves are constantly being initialized and terminated. The
Language Environment storage tuning user exit can be used to manage the
Language Environment storage values for your main programs without having to
statically link-edit the storage values with your load modules.

Note: When running on CICS, the Language Environment automatic storage
tuning for CICS may provide the storage tuning function you need without having
to use the Language Environment storage tuning user exit. See “Language
Environment automatic storage tuning for CICS” on page 167 for a discussion of
Automatic Storage Tuning (AUTOTUNE) for CICS.

The Language Environment storage tuning user exit provides a programming
interface that allows you to:
v Collect Language Environment storage tuning information without having to

run with the RPTSTG option.
v Set the Language Environment runtime options STACK, LIBSTACK, HEAP,

ANYHEAP, and BELOWHEAP for each Language Environment enclave.

Note: Vendor Heap Manager (VHM) is not handled by the Language
Environment storage tuning user exit.

v Alter the behavior of Language Environment automatic storage tuning for CICS.

The storage tuning exit can be used when running on CICS or when running on
non-CICS with library routine retention. The name of the exit is as follows:
v CEECSTX for CICS
v CEEBSTX for non-CICS

The storage tuning exit is loaded when Language Environment loads its other
runtime load modules. On CICS, the storage tuning exit is loaded during CICS
startup. On non-CICS with LRR, the storage tuning exit is loaded when Language
Environment is initialized to run the first program. If the load of the storage tuning
exit is not successful, Language Environment does not issue a message. It also does
not attempt to call the storage tuning exit.

198 z/OS V2R1.0 Language Environment Customization

The storage tuning user exit is called at certain times during Language
Environment processing.
v Region initialization
v Region termination
v Enclave initialization
v Enclave termination
v New load module (CICS only)

Region initialization
The storage tuning user exit is called when Language Environment is initializing
its region level resources. On CICS, this call occurs only once during CICS startup.
On non-CICS, this call only occurs once when Language Environment is initialized
to run the first program. At this point the storage tuning user exit is passed a user
word. The storage tuning user exit can acquire any resources it needs. For example
it may allocate memory for an incore table and put the address of the table in the
user word.

Region termination
The storage tuning user exit is called when Language Environment is terminating
its region level resources. At this point the storage tuning user exit is passed a user
word. The storage tuning user exit can free any resources it had obtained.

Enclave initialization
The storage tuning user exit is called after the assembler user exit is called for
enclave initialization. At this point the storage tuning user exit is passed
information about the main program, a user word, and an area to provide
Language Environment storage option values.

When running on non-CICS or on CICS without automatic storage tuning, the
storage tuning user exit can do one or both of the following:
v Provide Language Environment storage option values. The storage option values

for each program that needs to be tuned could be in a file or in an incore table.
The address of an incore table could be stored in the user word. The storage
tuning user exit could look up the storage values for the program and pass them
back to Language Environment.

v Request that Language Environment collect storage tuning information. By
requesting storage tuning information, it will cause Language Environment to
collect storage tuning information and then call the storage tuning user exit
when the enclave terminates.

When running on CICS with automatic storage tuning, the storage tuning user exit
has limited function. At the enclave initialization call, any storage option values
provided are ignored. If the storage tuning user exit wants to provide storage
option values, it has to provide them at the new load module call and at the
enclave termination call. The storage tuning user exit can turn off the request by
automatic storage tuning to collect storage allocation information.

Enclave termination
The storage tuning user exit is called after the assembler user exit is called for
enclave termination. At this point the storage tuning user exit is passed
information about the main program, a user word, and the storage tuning
information.

Appendix A. Language Environment user exits 199

When running on non-CICS or on CICS without automatic storage tuning, the
storage tuning user exit can do the following:
v Take the storage tuning information for the program that you want to tune, and

put the information in a file or in an incore table. The tuning information can be
saved and used in the enclave initialization call the next time the program is
used. Or the tuning information may be written to a file and processed at a later
time to determine the best tuning values.

When running on CICS with automatic storage tuning, the storage tuning user exit
can do the following:
v Provide storage options values to override the values set by Language

Environment automatic storage tuning.

Note: At enclave initialization, if the storage tuning user exit does not request
Language Environment to collect storage tuning information, then Language
Environment will not call the storage tuning user exit at enclave termination.

New load module (CICS only)
At this point the exit is passed information about the main program, a user word,
and a control block to provide storage option values.

The storage tuning user exit is called whenever CICS asks Language Environment
for the size of the preallocated storage area to be used for Language Environment
stacks and heaps. CICS makes this call whenever it is processing the first copy or a
new copy of a load module

When running on CICS without automatic storage tuning, the storage tuning user
exit can do the following:
1. It can enable or disable storage tuning for a module.
2. If the load module is enabled for the storage tuning, it can provide the storage

values. This information is then used by Language Environment to tell CICS to
update its information about how much preallocated storage should be
allocated for the program before CICS calls Language Environment to run the
program.

The storage tuning values passed back from the storage tuning user exit for this
call should match the values that the storage tuning user exit passes back in the
enclave initialization call. If this is not done, preallocated storage allocations
performed by CICS for Language Environment will not be the optimal size, and
may result in additional GETMAINs.

When running on CICS with automatic storage tuning, the storage tuning user exit
can do the following:
1. It can enable or disable Language Environment storage tuning for the load

module.
2. If automatic storage tuning is wanted for the load module, the storage tuning

user exit can provide the starting storage values used by Language
Environment automatic storage tuning.

Using the storage tuning user exit
The storage tuning user exit can be used on non-CICS or on CICS without
automatic storage tuning to:

200 z/OS V2R1.0 Language Environment Customization

v Collect Language Environment storage tuning information without having to
run with the RPTSTG option.

v Set the Language Environment runtime storage options for each Language
Environment enclave.

A sample storage tuning user exit for CICS called CEEWCSTX is available in
SCEESAMP. A sample storage tuning user exit for non-CICS called CEEWBSTX is
available in SCEESAMP.

Using the storage tuning user exit to collect information
If you want to use the storage tuning user exit to collect storage usage information
instead of using RPTSTG(ON), you can use a storage tuning user exit that always
requests that Language Environment collect storage tuning information.

When running on non-CICS, the behavior of the storage tuning user exit could be
as follows:
v At the region initialization call, the storage tuning user exit opens a file for

output. The storage tuning user exit will write the Language Environment
storage information to the file at enclave termination.

v At the enclave initialization call, the storage tuning user exit always requests
Language Environment to collect storage information.

v At the enclave termination call, the storage tuning user exit can make a call to
the system to determine the load module name of the main program by using
CSVQUERY, and then it can write a record to a file which includes the load
module name and the storage usage information. On the CSVQUERY call, you
use the address of the main program that is passed to the storage tuning user
exit as input in the INADDR parameter, and use the OUTEPNM parameter to
get the load module name.

v At the region termination call, the storage tuning user exit closes the file it
opened.

When running on CICS, the behavior of the storage tuning user exit could be as
follows:
v At the region initialization call, the storage tuning user exit returns immediately.
v At the new load module call, the storage tuning user exit always enables the use

of the storage tuning user exit for the load module.
v At the enclave initialization call, the storage tuning user exit always requests

Language Environment to collect storage information.
v At the enclave termination call, the storage tuning user exit gets the name of the

module, and then writes a record to a file where the record includes the load
module name and the storage usage information.

v At the region termination call, the storage tuning user exit returns immediately.

After the file is closed, the data in the file can be analyzed. Once the data has been
analyzed, you might decide to alter your runtime option defaults, or provide a
CEEUOPT to certain modules, or use the storage tuning user exit to provide
storage values.

Using the storage tuning user exit to provide storage values
If you want to use the storage tuning user exit to perform storage tuning of certain
load modules that start Language Environment enclaves you can use a storage

Appendix A. Language Environment user exits 201

|
|
|
|

tuning user exit that provides values for the Language Environment runtime
options STACK, LIBSTACK, HEAP, ANYHEAP, and BELOWHEAP.

When running on non-CICS, the behavior of the storage tuning user exit could be
as follows:
v At the region initialization call, the storage tuning user exit allocates and

initializes a table that has storage tuning information for the load modules it
wants to tune.
The storage tuning user exit would need to know which load modules it wants
to tune and it would need to find the storage values it wants to use for each
load module. These values could be in the storage tuning user exit itself as
constants, or could be in a file.

v At the enclave initialization call, the storage tuning user exit would do a lookup
in the table to see if the load module has storage tuning information. If it does,
the storage tuning information is provided back to Language Environment.

Note: If the modules to be tuned are preloaded at region initialization and their
entry point addresses are kept in the table, a CSVQUERY would not need to be
done every time the module is run. Instead, a search of the table could be done
using the entry point address.

v At the region termination call, the storage tuning user exit frees any resources it
acquired.

Using the storage tuning user exit to provide storage values
When running on CICS, the behavior of the storage tuning user exit could be as
follows:
v At the region initialization call, the storage tuning user exit allocates and

initializes a table that has storage tuning information for the load modules it
wants to tune.
The storage tuning user exit would need to know which load modules it wants
to tune and it would need to find the storage values it wants to use for each
load module. These values could be in the storage tuning user exit itself as
constants, or could be in a file.

v At the new load module call, the storage tuning user exit would do a lookup in
the table to see if the load module has storage tuning information. If it does, the
load module is enabled for storage tuning and the storage tuning information is
provided back to Language Environment.

v At the enclave initialization call, the storage tuning user exit would do a lookup
in the table for the storage tuning information and the storage tuning
information is provided back to Language Environment.

v At the region termination call, the storage tuning user exit frees any resources it
acquired.

Storage tuning user exit interface

The storage tuning user exit can be used when running on CICS or when running
on non-CICS with library routine retention. The name of the exit is as follows:
v CEECSTX for CICS
v CEEBSTX for non-CICS

202 z/OS V2R1.0 Language Environment Customization

The storage tuning exit is loaded when Language Environment loads its other
runtime load modules. If the load of the storage tuning exit is not successful,
Language Environment will not issue a message and will not attempt to call the
storage tuning exit.

The storage tuning user exit must be written in assembler and must be reentrant.

Syntax: Storage_Tuning_User_Exit (CEESTXPTR)

CEESTXPTR (INPUT)
A pointer to the storage tuning user exit control block (CEESTX). Figure 10
shows a mapping of the storage tuning user exit control block.

The CEESTX elements are described as follows:

version (INPUT)
A 1-byte field containing the control block version. This field will be set to
0x02 since this is the second version.

flags (INPUT/OUTPUT)
A 1-byte field containing flags. The layout of these flags is as follows:

x... collect-storage-usage
.x.. collect-storage-alloc
..00 0000 reserved

A one-byte field containing flags. The flags are defined as follows:

collect-storage-usage (INPUT/OUTPUT)
This flag is used to tell Language Environment to collect storage usage
information. Language Environment only uses this flag when the storage
tuning user exit is called during enclave initialization and automatic
storage tuning for CICS is not running.

0 Do not collect storage usage information.

1 Collect storage usage information and call the storage tuning user
exit during enclave termination with the storage usage information.

function-code

flags reserved

user-word

program-entry-point

version

addr-CEEUOPT

addr-CICS-info

addr-storage-info

+0

+4

+8

+C

+10

+14

+18

Figure 10. CEESTX control block map

Appendix A. Language Environment user exits 203

Note: When the storage tuning user exit is used to collect storage usage
information, it will increase the time it takes for an application to run.

collect-storage-alloc (INPUT/OUTPUT)
This flag is used to tell Language Environment to collect storage allocation
information. Language Environment only uses this flag when the storage
tuning user exit is called during enclave initialization. The flag values are:

0 Do not collect storage allocation information.

1 Collect storage allocation information and call the storage tuning user
exit during enclave termination with the storage allocation information.

Note: There is significantly less overhead collecting storage allocation
information compared to collecting storage usage information.

function-code (INPUT)
A 4-byte integer field containing the code of the function being performed
when the storage tuning user exit gets control. The function code values are:
1 Region initialization
2 Region termination
3 Enclave initialization
4 Enclave termination
5 New load module (CICS only)

user-word (INPUT/OUTPUT)
A fullword that can be used to communicate information between successive
calls to the storage tuning user exit. The first time the storage tuning user exit
is called, this field is 0. The storage tuning user exit may modify the value in
this field when it is called for region initialization. The value is saved by
Language Environment and returned on subsequent invocations.

program-entry-point (INPUT)
When the storage tuning user exit is called for region initialization and region
termination, this field is zero.

When the storage tuning user exit is called for enclave initialization, enclave
termination, and new load module, this field contains the entry point address
of the main program.

Note: When C, C++, or PL/I is the main program, this field contains the
address of the main program and not the address of CEESTART.

addr-CEEUOPT (INPUT)
When the storage tuning user exit is called for region initialization and region
termination, this field is zero.

When the storage tuning user exit is called for enclave initialization, enclave
termination, and new load module, this field contains the address of the
CEEUOPT link-edited with the main program. If no CEEUOPT is link-edited
with the main program, this field is zero.

addr-CICS-info (INPUT)
When running on non-CICS, this field is set to zero.

When running on CICS, this field contains the address of the CEESTX CICS
specific control block.

See Figure 11 on page 205 for a mapping of the control block.

204 z/OS V2R1.0 Language Environment Customization

The CEESTX CICS-specific control block elements are described as follows:

flags (INPUT/OUTPUT)
When the storage tuning user exit is called for region initialization and
region termination, this field is reserved.

When the storage tuning user exit is called for enclave initialization,
enclave termination, and new load module, this field contains a 1-byte area
containing flags. The layout of these flags is as follows:

x... load-mod-eligible
.x.. automatic tuning
.000 0000 reserved

The flags are defined as follows:

load-mod-eligible (INPUT/OUTPUT)
For each load module loaded by CICS, there is a unique
load-mod-eligible flag available to the storage tuning user exit. The flag
is input/output when the storage tuning user exit is called for the new
load module function. The flag is output only when the storage tuning
user exit is called for enclave initialization and enclave termination.

When Language Environment automatic storage tuning for CICS is not
being used, the initial value of the flag is zero. When Language
Environment automatic storage tuning for CICS is being used, the
initial value of the flag indicates if Language Environment automatic
storage tuning for CICS will be performing automatic storage tuning
for enclaves started to run the load module.

This flag is used by the storage tuning user exit to indicate to
Language Environment if the storage tuning user exit should be called
for enclave initialization when the load module is called to start an
enclave. For example, when the storage tuning user exit is called for
the new load module function, it can determine if it wants to tune the
storage options for the enclaves that are started to run the load
module. If the storage tuning user exit decides it does want to tune the
enclaves for this load module, it must set the flag on.

0 Do not call the storage tuning user exit when the program is
used to start an enclave. If Language Environment automatic
storage tuning for CICS is being used, do not perform
automatic storage tuning when the program is used to start an
enclave.

1 Call the storage tuning user exit when the program is used to
start a Language Environment enclave. If Language

reservedflags

addr-SYSEIB

addr-load-module-name

+0

+4

+8

addr-autotune-storage-settings+C

+10 addr-autotune-storage-override

Figure 11. CEESTX CICS-specific control block map

Appendix A. Language Environment user exits 205

Environment automatic storage tuning for CICS is being used,
perform automatic storage tuning when the program is used to
start an enclave.

automatic-tuning (INPUT)
This bit indicates if automatic storage tuning for CICS is being used.

0 Automatic storage tuning for CICS is not being used.

1 Automatic storage tuning for CICS is being used.

addr-SYSEIB (INPUT)
A pointer to the CICS system EIB (EXEC Interface Block).

addr-load-mod-name (INPUT)
When the storage tuning user exit is called for region initialization and
region termination, this field is zero.

When the storage tuning user exit is called for enclave initialization,
enclave termination, and new load module, this field contains:
v A pointer to an 8 byte character field that has the name of the load

module loaded by CICS if you are running with CICS Transaction Server
Release 2 or Release 3 with APAR PQ31262 or with CICS/ESA Version 4
with APAR PQ31185.

v A zero if you are not running with the APARs listed above.

Note: The storage tuning user exit will be called for the new load module
function for every program that is Language Environment-enabled. Not
every program loaded by CICS will be the main program.

addr-autotune-storage-settings (INPUT)
When the storage tuning user exit is called for region initialization and
region termination, this field is zero. When the storage tuning user exit is
called for enclave initialization, enclave termination, and new load module,
this field contains:
v A zero when running on a CICS region that is not running with

automatic storage tuning for CICS.
v A pointer to a copy of the CEESTX storage values control block when

running on a CICS region using automatic storage tuning for CICS. This
control block has the storage values that is used by Language
Environment for automatic storage tuning. There is a copy of this control
block for each load module. This control block is an input only control
block and must not be changed by the storage tuning user exit.

addr-autotune-storage-override (INPUT)
When the storage tuning user exit is called for region initialization, region
termination, enclave initialization, and new load module, this field is zero.
When the storage tuning user exit is called for enclave termination this
field contains:
v A zero when running on a CICS region that is not running with

automatic storage tuning for CICS.
v A pointer to a copy of the CEESTX storage values control block when

running on a CICS region using Automatic Storage Tuning for CICS.
This control block can be changed by the storage tuning user exit as a
way to override the initial size values set by Automatic Storage Tuning
for CICS. Language Environment initializes the flags in the first word of
the CEESTX storage values control block to hex zeros before calling the
storage tuning user exit.

206 z/OS V2R1.0 Language Environment Customization

addr-storage-info (INPUT)
When the storage tuning user exit is called for region initialization and
region termination, this field is zero.

When the storage tuning user exit is called for enclave initialization,
enclave termination, and new load module, this field contains the address
of a control block that is used to pass Language Environment storage
information between Language Environment and the storage tuning user
exit. There are three forms of the control block:
v The CEESTX storage values control block
v The CEESTX storage used control block
v The CEESTX storage allocated control block.

When the storage tuning user exit is called with the enclave initialization
function or the new load module function, the CEESTX storage values
control block is passed.

When running on non-CICS or on CICS without automatic storage tuning:
v All of the fields in the control block are output only fields except for the

first word. The first word is an input/output field. Language
Environment initializes the flags in the first word to hex zeros before
calling the storage tuning user exit.

v All other fields will not be initialized.

When running on CICS with automatic storage tuning:
v All of the fields in the control block are output only fields except for the

first word. The first word is an input/output field. Language
Environment initializes the flags in the first word to hex zeros before
calling the storage tuning user exit.

v All other fields will not be initialized.
v The storage option values provided at the new load module call are

used as the starting values by automatic storage tuning.
v The storage option value provided at enclave initialization call are

ignored.

See Figure 12 on page 208 for a mapping of the CEESTX storage values
control block.

Appendix A. Language Environment user exits 207

When the storage tuning user exit is called with the enclave termination
function, the CEESTX storage used control block or the CEESTX storage
allocated control block is passed to the storage tuning user exit to provide
storage information collected by Language Environment. The CEESTX
storage used control block is passed when the storage tuning user exit
requested Language Environment to collect storage usage information. The
CEESTX storage allocated control block is passed when the storage tuning
user exit requested Language Environment to collect storage allocation
information. All of the fields in the control block are input only. See
Figure 13 on page 212 for a mapping of the CEESTX storage used control
block. See Figure 14 on page 213 for a mapping of the CEESTX storage
allocated control block map.

The CEESTX storage values control block elements are described as follows:

stg-flags (OUTPUT)
A 1-byte field containing flags. The layout of these flags is as follows:

reserved

reserved

reserved

reserved

reserved

reservedstg-flags

STACK-flags

STACK-init-size

STACK-incr-size

LIBSTACK-flags

STACK-init-size

LIBSTACK-init-size

LIBSTACK-incr-size

HEAP-flags

HEAP-init-size

HEAP-incr-size

HEAP-incr-size24

HEAP-init-size24

ANYHEAP-flags

ANYHEAP-init-size

ANYHEAP-incr-size

BELOWHEAP-flags

BELOWHEAP-init-size

BELOWHEAP-incr-size

+0

+4

+8

+C

+10

+14

+18

+1C

+24

+28

+2C

+30

+34

+38

+3C

+40

+44

+20

Figure 12. Mapping of the CEESTX storage values control block

208 z/OS V2R1.0 Language Environment Customization

0... STACK options not provided
1... STACK options provided
.0.. LIBSTACK options not provided
.1.. LIBSTACK options provided
..0. HEAP options not provided
..1. HEAP options provided
...0 ANYHEAP options not provided
...1 ANYHEAP options provided
.... 0... BELOWHEAP options not provided
.... 1... BELOWHEAP options provided
.... .000 reserved

There is a flag for each storage runtime option that can be altered by the
storage tuning user exit. The exit must turn on the flags for the storage
runtime options for which it is providing values.

STACK-flags (OUTPUT)
A 2-byte field containing flags. The layout of these flags is as follows:
Byte 0

0... STACK initial size not provided
1... STACK initial size provided
.0.. STACK increment size not provided
.1.. STACK increment size provided
..0. STACK location not provided
..1. STACK location provided
...0 STACK disposition not provided
...1 STACK disposition provided
.... 0000 reserved

Byte 1
0... STACK location ANYWHERE
1... STACK location BELOW
.0.. STACK disposition KEEP
.1.. STACK disposition FREE
..00 0000 reserved

In byte 0, there is a flag for each STACK suboption. The exit must set the
flags in byte 0 to indicate the STACK suboptions for which it is providing
values.

The STACK location can be set to ANYWHERE only if ALL31(ON) is in
effect. If the STACK location is set to ANYWHERE, and ALL31(OFF) is in
effect, the STACK location is not changed.

STACK-init-size (OUTPUT)
A fullword binary field used to indicate the number of bytes for the
STACK initial size.

STACK-incr-size (OUTPUT)
A fullword binary field used to indicate the number of bytes for the
STACK increment size.

LIBSTACK-flags (OUTPUT)
A 2-byte field containing flags. The layout of these flags is as follows:
Byte 0

0... LIBSTACK initial size not provided
1... LIBSTACK initial size provided
.0.. LIBSTACK increment size not provided
.1.. LIBSTACK increment size provided
..0. LIBSTACK disposition not provided
..1. LIBSTACK disposition provided
...0 0000 reserved

Appendix A. Language Environment user exits 209

Byte 1
0... LIBSTACK disposition KEEP
1... LIBSTACK disposition FREE
.000 0000 reserved

In byte 0, there is a flag for each LIBSTACK suboption. The exit must set
the flags in byte 0 to indicate the LIBSTACK suboptions for which it is
providing values.

LIBSTACK-init-size (OUTPUT)
A fullword binary field used to indicate the number of bytes for the
LIBSTACK initial size.

LIBSTACK-incr-size (OUTPUT)
A fullword binary field used to indicate the number of bytes for the
LIBSTACK increment size.

HEAP-flags (OUTPUT)
A 2-byte field containing flags. The layout of these flags is as follows:
Byte 0

0... HEAP initial size not provided
1... HEAP initial size provided
.0.. HEAP increment size not provided
.1.. HEAP increment size provided
..0. HEAP location not provided
..1. HEAP location provided
...0 HEAP disposition not provided
...1 HEAP disposition provided
.... 0... HEAP initial size 24 not provided
.... 1... HEAP initial size 24 provided
.... .0.. HEAP increment size 24 not provided
.... .1.. HEAP increment size 24 provided
.... ..00 reserved

Byte 1
0... HEAP location ANYWHERE
1... HEAP location BELOW
.0.. HEAP disposition FREE
.1.. HEAP disposition KEEP
..00 0000 reserved

In byte 0, there is a flag for each HEAP suboption. The exit must set the
flags in byte 0 to indicate the HEAP suboptions for which it is providing
values.

HEAP-init-size (OUTPUT)
A fullword binary field used to indicate the number of bytes for the HEAP
initial size.

HEAP-incr-size (OUTPUT)
A fullword binary field used to indicate the number of bytes for the HEAP
increment size.

HEAP-init-size24 (OUTPUT)
A fullword binary field used to indicate the number of bytes for the HEAP
initial size for the heap storage obtained below the 16-MB line for
applications with ANYWHERE in the HEAP runtime option.

HEAP-incr-size24 (OUTPUT)
A fullword binary field used to indicate the number of bytes for the HEAP
increment size for the heap storage increments obtained below the 16-MB
line for applications with ANYWHERE in the HEAP runtime option.

ANYHEAP-flags (OUTPUT)
A 2-byte field containing flags. The layout of these flags is as follows:

210 z/OS V2R1.0 Language Environment Customization

Byte 0
0... ANYHEAP initial size not provided
1... ANYHEAP initial size provided
.0.. ANYHEAP increment size not provided
.1.. ANYHEAP increment size provided
..0. ANYHEAP location not provided
..1. ANYHEAP location provided
...0 ANYHEAP disposition not provided
...1 ANYHEAP disposition provided
.... 0000 reserved

Byte 1
0... ANYHEAP location ANYWHERE
1... ANYHEAP location BELOW
.0.. ANYHEAP disposition KEEP
.1.. ANYHEAP disposition FREE
..00 0000 reserved

In byte 0, there is a flag for each ANYHEAP suboption. The exit must set
the flags in byte 0 to indicate the ANYHEAP suboptions for which it is
providing values.

ANYHEAP-init-size (OUTPUT)
A fullword binary field used to indicate the number of bytes for the
ANYHEAP initial size.

ANYHEAP-incr-size (OUTPUT)
A fullword binary field used to indicate the number of bytes for the
ANYHEAP increment size.

BELOWHEAP-flags (OUTPUT)
A 2-byte field containing flags. The layout of these flags is as follows:
Byte 0

0... BELOWHEAP initial size not provided
1... BELOWHEAP initial size provided
.0.. BELOWHEAP increment size not provided
.1.. BELOWHEAP increment size provided
..0. BELOWHEAP disposition not provided
..1. BELOWHEAP disposition provided
...0 0000 reserved

Byte 1
0... BELOWHEAP disposition KEEP
1... BELOWHEAP disposition FREE
.000 0000 reserved

In byte 0, there is a flag for each BELOWHEAP suboption. The exit must
set the flags in byte 0 to indicate the BELOWHEAP suboptions for which it
is providing values.

BELOWHEAP-init-size (OUTPUT)
A fullword binary field used to indicate the number of bytes for the
BELOWHEAP initial size.

BELOWHEAP-incr-size (OUTPUT)
A fullword binary field used to indicate the number of bytes for the
BELOWHEAP increment size.

Figure 13 on page 212 shows a mapping of the CEESTX storage used control
block. (See Figure 12 on page 208 for a mapping of the CEESTX storage input
control block.)

Appendix A. Language Environment user exits 211

The CEESTX storage output control block elements are described as follows:
v Each field is a fullword binary field that corresponds to the information in

the Language Environment storage report.

STACK-init-size+0

+4

+8

+C

+10

+14

+18

+1C

+20

+24

+28

+2C

+30

+34

+38

+3C

+40

+44

+48

+4C

+50

+54

+58

+9C

+5C

+60

+64

+68

+6C

+70

+74

+78

+7C

+80

+84

+88

+8C

+90

+94

+98

STACK-incr-size

LIBSTACK-segments-alloc

STACK-largest-by-thread

STACK-segments-freed

STACK-max

LIBSTACK-init-size

LIBSTACK-incr-size

LIBSTACK-max

HEAP-init-size

HEAP-incr-size

HEAP-total-used

HEAP-get-requests

HEAP-free-requests

HEAP-segments-alloc

HEAP-segments-freed

HEAP24-init-size

HEAP24-get-requests

HEAP24-segments-alloc

HEAP24-segments-freed

ANYHEAP-init-size

ANYHEAP-incr-size

ANYHEAP-total-used

ANYHEAP-free-requests

ANYHEAP-get-requests

ANYHEAP-segments-alloc

ANYHEAP-segments-freed

BELOWHEAP-init-size

BELOWHEAP-incr-size

BELOWHEAP-total-used

BELOWHEAP-get-requests

LIBSTACK-largest-by-thread

STACK-segments-alloc

LIBSTACK-segments-freed

HEAP24-incr-size

HEAP24-total-used

HEAP24-free-requests

BELOWHEAP-free-requests

BELOWHEAP-segments-alloc

BELOWHEAP-segments-freed

Figure 13. CEESTX storage used control block map

212 z/OS V2R1.0 Language Environment Customization

The CEESTX storage used control block elements are described as follows:
v Each field is a fullword binary field.
v The init-size fields indicate the initial size specified in the runtime option for

the storage area.
v The incr-size fields indicate the increment size specified in the runtime

option for the storage area.
v The max-allocated fields indicate the maximum amount of storage allocated

for the storage area.

STACK-init-size

STACK-incr-size

STACK-max-allocated

+0

+4

+8

LIBSTACK-init-size+C

+10

+14

+18

+1C

+20

+24

+28

+2C

+30

+34

+38

+3C

+40

+44

LIBSTACK-incr-size

LIBSTACK-max-allocated

HEAP-init-size

HEAP-incr-size

HEAP-max-allocated

HEAP24-init-size

HEAP24-incr-size

HEAP24-max-allocated

ANYHEAP-init-size

ANYHEAP-incr-size

ANYHEAP-max-allocated

BELOWHEAP-init-size

BELOWHEAP-incr-size

BELOWHEAP-max-allocated

Figure 14. CEESTX storage allocated control block map

Appendix A. Language Environment user exits 213

Usage notes
v The storage tuning user exit must be written in assembler and must be

reentrant. If you write the storage tuning user exit in Language
Environment-enabled assembler, you must specify MAIN=NO on the
CEEENTRY macro.

v The storage tuning user exit must not call any HLL programs.
v The storage tuning user exit must not create a Language Environment enclave.
v All values provided by the storage tuning user exit that are not valid for initial

size and increment size are ignored. For example, a negative increment size is
ignored.

v The storage tuning user exit should provide storage sizes that are multiples of 8.
Any storage size that is not a multiple of 8 will be rounded up to the nearest
multiple of 8 bytes.

v The STACK location setting cannot be set to ANY when ALL31 is OFF, or it will
be ignored.

v Only the following CICS commands can be used during the new load module
function: GETMAIN, FREEMAIN, ENQUEUE, DEQUEUE, and any command
that performs I/O to a VSAM file, a CICS data table, a transient data queue, or a
temporary storage queue.

v Only the following CICS commands can be used during enclave initialization
and enclave termination: GETMAIN, FREEMAIN, LOAD, DELETE, ENQUEUE,
DEQUEUE, INQUIRE, SET, and any command that performs I/O to a VSAM
file, a CICS data table, a transient data queue, or a temporary storage queue.

v CICS considerations: CICS commands can be used in the storage tuning user
exit. However, the storage tuning user exit must adhere to the following
conventions when using EXEC CICS commands:
– The storage tuning user exit has to use the CICS system EIB (the SYSEIB

translator option must be used).
– The CICS commands must use the RESP option.
– Only the following CICS commands can be used during region initialization

and region termination: GETMAIN, FREEMAIN, LOAD, DELETE, and any
command that performs I/O to a VSAM file, a CICS data table, or a
temporary storage queue.

– The storage tuning user exit cannot use any Language Environment services
when called for region initialization, new load module, enclave initialization,
and region termination.

v Upon return from the storage tuning user exit, Language Environment takes no
action other than continuing with its processing, as no return codes are defined.

v The values from the storage tuning user exit are ignored for those options that
are installed as nonoverrideable.

v Register conventions for the storage tuning user exit are:

Register 1
Points to a word which contains the address of the storage tuning user
exit control block.

Register 12
Points to the CAA.

When the storage tuning user exit is called for enclave initialization and
enclave termination, the CAA is fully initialized.

214 z/OS V2R1.0 Language Environment Customization

When the storage tuning user exit is called for region initialization, new
load module, and region termination, a partially initialized CAA is
provided to enable Language Environment stack processing.

Register 13
Points to a dynamic save area (DSA). The exit routine can save the
registers here across its processing.

Register 14
Contains the return address.

Register 15
Contains the entry point address upon entry.

AMODE
The storage tuning user exit is called in AMODE(31) and it must return
in AMODE(31).

v The behavior of the RPTSTG option is not affected by the storage tuning user
exit. The storage tuning user exit does not cause a Language Environment
storage report to be generated.

Appendix A. Language Environment user exits 215

216 z/OS V2R1.0 Language Environment Customization

Appendix B. Using Fortran with Language Environment

This topic provides information for tuning and customizing your Language
Environment Fortran runtime routines within Language Environment. The
customization information is intended to help you enhance system performance
and provide certain I/O characteristics.

The following sections are included:
v “Customizing for Fortran applications link-edited with Language Environment”
v “Customizing for Fortran applications link-edited with VS FORTRAN” on page

223
v “Customizing Fortran LIBPACKs” on page 238

Customizing for Fortran applications link-edited with Language
Environment

This section provides information about how to customize Language Environment
for Fortran applications that are link-edited with Language Environment. You can
customize, or not customize:
v Unit Attribute Table default values (See “Changing the unit attribute table

default values.”)
v Language Environment runtime options (See Chapter 5, “Customizing Language

Environment runtime options,” on page 19.)

For information about customizing Language Environment if you have Fortran
applications that were link-edited with VS FORTRAN Version 1 or 2 for running in
load mode, see “Customizing for Fortran applications link-edited with VS
FORTRAN” on page 223.

Changing the unit attribute table default values
Module AFHOUTAG contains the Unit Attribute Table defaults and DCB
information for each I/O unit. You can accept the IBM-supplied defaults, shown in
Figure 15 on page 221, or you can supply your own defaults. To customize
AFHOUTAG for your site, use the IBM-supplied job AFHWEUAT, and modify the
AFHOUTCM, AFHOUNTM, and AFHODCBM macro instructions in an SMP/E
USERMOD. The following sections describe the syntax and operands of the macro
instructions.

Starting the unit attribute table definition using the AFHOUTCM
macro
Use the AFHOUTCM macro to start and to end the Unit Attribute Table definition.
In addition, you can specify default values for information required by the runtime
input/output routines of the Fortran component of Language Environment. This
section shows the syntax of the operands used for starting the Unit Attribute Table
definition.

The syntax of AFHOUTCM macro instruction is as follows:

AFHOUTAG AFHOUTCM [UNTABLE={ highunit| 99 }]
[,DEVICE={ device-name | SYSDA }]

© Copyright IBM Corp. 1991, 2013 217

UNTABLE=highunit
Specifies the largest unit number that can be used in any Fortran program in
I/O statements other than the CLOSE and INQUIRE statements. highunit must
be an integer between 8 and 2000, inclusive. If the UNTABLE parameter is
omitted, the default value of highunit is 99.

DEVICE=device-name
Specifies where dynamically allocated data sets are placed if there is no
overriding value given through an invocation of the FILEINF callable service.
device-name can be a unit address, a group name, or a device type for a DASD
device. A unit address is 3 or 4 hexadecimal digits consisting of the channel,
control unit, and device number. A group name is any name that is defined
during MVS system generation for a DASD device such as SYSDA or DISK.
The device type is the IBM-supplied name such as 3380 or 3390.

If the DEVICE parameter is omitted, the default value is SYSDA.

Associating units with DCB characteristics using the AFHOUNTM
macro
Use the AFHOUNTM macro to specify a single unit, or group of units, that is to be
associated with a set of DCB default values. Use the AFHOUNTM macro in
conjunction with the AFHODCBM macro.

Syntax of AFHOUNTM macro instruction

AFHOUNTM { unitno | (unitno, qty) | RDRUNIT | PRTUNIT | PUNUNIT }
,DCBSET=label

unitno
The unit number, or the first in a series of consecutive unit numbers, for which
the set of default DCB characteristics referenced by the DCBSET parameter is
to be applied. If unitno is the number of the error message unit (or if the error
message unit is included in the range covered by qty, following), the
specification is ignored for the error message unit.

qty
The number of consecutive unit numbers, beginning with unitno, for which the
set of default DCB characteristics referenced by the DCBSET parameter is to be
applied.

RDRUNIT
Indicates that the set of default DCB characteristics referenced by the DCBSET
parameter is to be applied to the standard input unit. The standard input unit is
the unit to which a READ statement applies when the unit identifier is given
as *. The number of the standard input unit is the value given by the
RDRUNIT runtime option or its default.

Even though there may also be an AFHOUNTM macro instruction that refers
to the standard input unit by its unit number (that is, with the unitno form of
specification), the AFHOUNTM with the RDRUNIT parameter takes
precedence and applies to the standard input unit.

If there is no AFHOUNTM macro instruction with a RDRUNIT parameter, then
the default DCB characteristics for the standard input unit are those referenced
by an AFHOUNTM macro instruction that refers to this unit with the unitno
form of specification.

PRTUNIT
Indicates that the set of default DCB characteristics referenced by the DCBSET
parameter is to be applied to the print unit.

218 z/OS V2R1.0 Language Environment Customization

The print unit is one of the standard output units and is the unit to which
either a WRITE statement with a unit identifier of * or a PRINT statement
applies. The number of the print unit is the value given by the PRTUNIT
runtime option or its default if the number of the print unit is different than
the number of the error message unit.

The error message unit the unit to which output such as error messages and
dumps from services such as CDUMP and SDUMP is directed. The number of
the error message unit is the value given by the ERRUNIT runtime option or
its default.

The punch unit is one of the standard output units and is the unit to which a
PUNCH statement applies. The number of the punch unit is the value given
by the PUNUNIT runtime option or its default.

Even though there may also be an AFHOUNTM macro instruction that refers
to the print unit by its unit number (that is, with the unitno form of
specification), the AFHOUNTM with the PRTUNIT parameter takes precedence
and applies to the print unit.

If there is no AFHOUNTM macro instruction with a PRTUNIT parameter and
if the print unit and the error message units are different units, then the
default DCB characteristics for the print unit are those referenced by an
AFHOUNTM macro instruction that refers to this unit with the unitno form of
specification.

PUNUNIT
Indicates that the set of default DCB characteristics referenced by the DCBSET
parameter is to be applied to the punch unit. The punch unit is one of the
standard output units and is the unit to which a PUNCH statement applies.
The number of the punch unit is the value given by the PUNUNIT runtime
option or its default.

Even though there may also be an AFHOUNTM macro instruction that refers
to the punch unit by its unit number (that is, with the unitno form of
specification), the AFHOUNTM with the PUNUNIT parameter takes
precedence and applies to the punch unit.

If there is no AFHOUNTM macro instruction with a PUNUNIT parameter,
then the default DCB characteristics for the punch unit are those referenced by
a AFHOUNTM macro instruction that refers to this unit with the unitno form
of specification.

DCBSET=label
The identifier of the DCB attributes to associate with this unit, set of units, or
standard I/O unit. This is the name given in the associated AFHODCBM
macro instruction.

Specifying the DCB characteristics using the AFHODCBM macro
Use the AFHODCBM macro to specify default DCB information for the I/O units
that have a DCBSET=label parameter on the AFHOUNTM macro.

The syntax of AFHODCBM macro instruction is as follows:

[label] AFHODCBM [,SFBUFNO=number | 2]
[,SUBUFNO=number | 2]
[,SFBLKSI=number | 800]
[,SUBLKSI=number | 800]
[,SFLRECL=number | 800]
[,SULRECL=number | -1]

Appendix B. Using Fortran with Language Environment 219

[,SFRECFM=char | U]
[,SURECFM=char | VS]
[,SFMAXRE=number | 100]
[,SUMAXRE=number | 100]
[,DMAXRE=number | 100]

label
The name specified in the DCBSET parameter of one or more AFHOUNTM
macro instructions to relate the I/O units to this set of DCB default values.

If label is omitted, the DCB data is assigned to all units defined in the Unit
Attribute Table by the AFHOUTCM macro instruction that do not have a
AFHOUNTM macro instruction. If any of the units in the Unit Attribute Table
do not have their own AFHOUNTM macro instruction, then you must provide
a AFHODCBM macro instruction without a label to apply defaults to these
units.

SFBUFNO=number | 2
Specifies the default value for the number of buffers for sequential formatted
files on DASD or tape. number must be a value greater than or equal to 1 and
less than or equal to 255.

SUBUFNO=number | 2
Specifies the default value for the number of buffers for sequential
unformatted files on DASD or tape. number must be a value greater than or
equal to 1 and less than or equal to 255.

SFBLKSI = number | 800
Specifies the block size for sequential formatted files. number is an integer
expression of length 4 bytes; valid range of the blocksize is from 1 to 32760.

SUBLKSI = number | 800
Specifies the block size for sequential unformatted files. number is an integer
expression of length 4 bytes; valid range of the blocksize is from 1 to 32760.

SFLRECL = number | 800
Specifies the logical record length for sequential formatted files. number is an
integer expression of length 4 bytes; valid range is from 1 to 32756 for variable
record formats (SURECFM= V, VA, VB, or VBA), or 1 to 32760 for all other
record formats.

SULRECL = number | -1
Specifies the logical record length for sequential unformatted files. number is an
integer expression of length 4 bytes; valid range is from 1 to 32756 for variable
record formats (SURECFM= V, VA, VB, VBA, VS, or VBS), or 1 to 32760 for all
other record formats or -1, which specifies an unlimited record length. -1 is
valid for SURECFM=VS or VBS formats.

SFRECFM = char | U
Specifies the record format for sequential formatted files. The value of char
must be F, FA, FB, FBA, V, VA, VB, VBA, U, or UA. For more information
about I/O, see VS FORTRAN Version 2 Programming Guide for CMS and MVS

SURECFM = char | VS
Specifies the record format for sequential unformatted files. The value of char
must be F, FA, FB, FBA, V, VA, VB, VBA, VS, VBS, U, or UA. For more
information about I/O, see VS FORTRAN Version 2 Programming Guide for CMS
and MVS

SFMAXRE = number | 100
Specifies the amount of space to be converted into blocks in a sequential

220 z/OS V2R1.0 Language Environment Customization

formatted file. It is only valid for new DASD files; if specified for an existing
file, it will be ignored. number is an integer expression of length 4. See
MAXREC in VS FORTRAN Version 2 Programming Guide for CMS and MVS for
information about how space is converted to blocks.

SUMAXRE = number | 100
Specifies the amount of space to be converted into blocks in a sequential
unformatted file. It is only valid for new DASD files; if specified for an existing
file, it will be ignored. number is an integer expression of length 4. See
MAXREC in VS FORTRAN Version 2 Programming Guide for CMS and MVS for
information about how space is converted to blocks.

DMAXRE = number | 100
Specifies the amount of space to be converted into blocks in a direct file. It is
only valid for new DASD files; if specified for an existing file, it will be
ignored. number is an integer expression of length 4. See VS FORTRAN Version
2 Programming Guide for CMS and MVS for information about how space is
converted to blocks.

CAUTION: If you change the IBM-supplied default DCB values, any existing
Fortran programs that depend on the original defaults might not work.

Ending the unit attribute table definition using the AFHOUTCM
macro
The AFHOUTCM macro is used to start and to end the Unit Attribute Table
definition. This section shows the syntax of the operands used for ending the Unit
Attribute Table definition.

The syntax of AFHOUTCM macro instruction: Final statement is as follows:

AFHOUTCM TYPE=FINAL

IBM-supplied unit attribute table default values
The macro instructions shown in Figure 15 are provided in the module
AFHOUTAG. This module is used to set up the IBM-supplied default values for
the standard I/O units, and file characteristics such as the DCB information.

AFHOUTAG AFHOUTCM UNTABLE=99,
DEVICE=SYSDA

AFHOUNTM RDRUNIT,DCBSET=DCBRDR
AFHOUNTM PRTUNIT,DCBSET=DCBPRT
AFHOUNTM PUNUNIT,DCBSET=DCBPUN

DCBRDR AFHODCBM SFRECFM=F,SFLRECL=80,SFBLKSI=80,
SURECFM=F,SULRECL=80,SUBLKSI=80

DCBPRT AFHODCBM SFRECFM=UA,SFLRECL=133,SFBLKSI=133

DCBPUN AFHODCBM SFRECFM=F,SFLRECL=80,SFBLKSI=80,
SURECFM=F,SULRECL=80,SUBLKSI=80

AFHODCBM SFRECFM=U,SFLRECL=800,SFBLKSI=800,SFMAXRE=100,
SURECFM=VS,SULRECL=-1,SUBLKSI=800,SUMAXRE=100,
DMAXRE=100

AFHOUTCM TYPE=FINAL

Figure 15. IBM-supplied macro instructions

Appendix B. Using Fortran with Language Environment 221

Note: The format of this particular example is given for readability purposes.
Remember to add the necessary continuation flags in column 72, and to begin
continued lines in column 16.

The three AFHOUNTM macro instructions indicate that the standard input unit,
the print unit, and the punch unit have the default DCB information provided on
the first three AFHODCBM macro instructions. Note that the last AFHODCBM
macro does not have a label; its set of defaults apply to all units except the
standard I/O units. For more information about the RDRUNIT, ERRUNIT,
PRTUNIT, and PUNUNIT runtime options, which are used to specify the unit
numbers of these standard I/O units, see z/OS Language Environment Programming
Reference.

Examples of changing unit attribute table default values
The following example shows how you can modify the IBM-supplied defaults for
your own environment. You can alter instructions by typing over existing data, or
you can remove or add AFHOUNTM and AFHODCBM macro instructions.

Example

In this example, the device name SYSSQ is specified and a unique set of DCB
attributes is assigned to units 1 through 4 for dynamically allocated data sets.

Note: The format of the example is given for readability purposes. Remember to
add the necessary continuation flags in column 72, and to begin continued lines in
column 16.

AFHOUTCM, AFHOUNTM, and AFHODCBM must all be coded, in that order,
followed by the AFHOUTCM TYPE=FINAL statement.

AFHOUTAG AFHOUTCM UNTABLE=99,
DEVICE=SYSSQ

AFHOUNTM RDRUNIT,DCBSET=DCBRDR
AFHOUNTM PRTUNIT,DCBSET=DCBPRT
AFHOUNTM PUNUNIT,DCBSET=DCBPUN
AFHOUNTM (1,4),DCBSET=USERDCB

DCBRDR AFHODCBM SFRECFM=F,SFLRECL=80,SFBLKSI=80,
SURECFM=F,SULRECL=80,SUBLKSI=80

DCBPRT AFHODCBM SFRECFM=UA,SFLRECL=133,SFBLKSI=133

USERDCB AFHODCBM SFRECFM=FB,SFLRECL=50,SFBLKSI=250,
SFMAXRE=200,SURECFM=FB,SULRECL=50,
SUBLKSI=250,SUMAXRE=200,DMAXRE=200

DCBPUN AFHODCBM SFRECFM=F,SFLRECL=80,SFBLKSI=80,
SURECFM=F,SULRECL=80,SUBLKSI=80

AFHODCBM SFRECFM=U,SFLRECL=800,SFBLKSI=800,SFMAXRE=100,
SURECFM=VS,SULRECL=-1,SUBLKSI=800,SUMAXRE=100,
DMAXRE=100

AFHOUTCM TYPE=FINAL

Figure 16. Modified IBM-supplied macro instructions

222 z/OS V2R1.0 Language Environment Customization

Customizing for Fortran applications link-edited with VS FORTRAN
This section contains information about how to customize Language Environment
if you have Fortran applications that were link-edited with VS FORTRAN Version
1 or 2 for running in load mode.

If you have such applications, you can customize, or not customize:
v VS FORTRAN Unit Attribute Table defaults (See “Changing the unit attribute

table default values” following.)
v VS FORTRAN runtime option defaults (See “Changing VS FORTRAN runtime

option defaults” on page 229.)
v VS FORTRAN Error Option Table defaults (See “Changing the error option table

defaults” on page 234.)

Note: Language Environment provides a VS FORTRAN compatibility library for
running Fortran applications that are not link-edited with Language Environment.

You can customize Language Environment to provide certain runtime
characteristics for Fortran applications that were link-edited with VS FORTRAN for
running in load mode. You use macros with the same names as you used in VS
FORTRAN Version 2 Release 6. These macros are VSF2UAT, VSF2UNIT, VSF2DCB,
VSF2PARM, and VSF2UOPT. Each of these macros is available in Language
Environment with these macro names as aliases for members with names
beginning with AFH5. The use of these macros is identical to that in VS FORTRAN
Version 2 Release 6; therefore, if you have assembler language source files that you
used in the past, you can use these same source files to customize Language
Environment.

Changing the unit attribute table default values
Module AFH5VUAT contains the Unit Attribute Table defaults and DCB
information for each I/O unit of the VS FORTRAN compatibility library. You can
accept the IBM-supplied defaults, shown in Figure 17 on page 227, or you can
supply your own defaults. To customize AFH5VUAT for your site, use the
IBM-supplied job AFHWVUAT, and modify the VSF2UAT, VSF2UNIT, and
VSF2DCB macro instructions in an SMP/E USERMOD. The following sections
describe the syntax and operands of the macro instructions.

Starting the unit attribute table definition using the VSF2UAT
macro
The VSF2UAT macro is used to start and to end the Unit Attribute Table definition.
Fortran component of Language Environment. In addition, you can specify default
values for information required by the runtime input/output routines of the VS
FORTRAN compatibility library. This section shows the syntax of the operands
used for starting the Unit Attribute Table definition.

Syntax of VSF2UAT Macro: Statement Form

[name] VSF2UAT [DECIMAL=PERIOD | COMMA]
[,PUNCH=number | 7]
[,ERRMSG=number | 6]
[,PRINTER=number | 6]
[,READER=number | 5]
[,UNTABLE=number | 99]
[,DEVICE=device-name | SYSDA]

Appendix B. Using Fortran with Language Environment 223

See “Ending the unit attribute table definition using the VSF2UAT macro” on page
227 for the form of VSF2UAT as the final macro instruction.

The IBM-supplied default values are underlined in the following option list. If an
option is not specified, its default value will be used.

name
Specifies a name, such as AFBVUAT or AFH5UAT. name is ignored, and the
CSECT name becomes AFH5VUAT automatically.

DECIMAL = PERIOD | COMMA
Specifies the character to be used as the decimal indicator in printed output.

PUNCH = number | 7
Specifies, for LANGLVL(66) only, the standard I/O unit number for the
PUNCH statement to send data to the card punch. The number specified must
be between 0 and 99 or the value specified for the UNTABLE parameter, for
UNTABLE values less than or equal to 99. It must not be the same as the
number specified for ERRMSG, PRINTER, or READER.

ERRMSG = number | 6
Specifies the standard I/O unit number for the error messages generated by VS
FORTRAN Version 2 Library. The number specified must be between 0 and 99
or the value specified for the UNTABLE parameter, for UNTABLE values less
than or equal to 99. It must not be the same as the number specified for
PUNCH or READER; it can be the same number specified for PRINTER.

PRINTER = number | 6
Specifies the standard I/O unit number for the print statement, and with any
WRITE statement specifying an installation-dependent form of the unit. The
number specified must be between 0 and 99 or the value specified for the
UNTABLE parameter, for UNTABLE values less than or equal to 99. It must
not be the same as that specified for PUNCH and READER. It can be the same
number specified for ERRMSG.

READER = number | 5
Specifies the standard I/O unit number for any READ statement specifying an
installation-dependent form of the unit. The number specified must be between
0 and 99 or the value specified for the UNTABLE parameter, for UNTABLE
values less than or equal to 99. It must not be the same as the number
specified for either PUNCH, ERRMSG, or PRINTER.

UNTABLE = number | 99
Specifies the largest unit number you can include in a VS FORTRAN program.
It can be specified as any integer between 8 and 2000.

DEVICE = device-name | SYSDA
Specifies where dynamically allocated data sets are placed if there is no
overriding value given through an invocation of the FILEINF callable service.
device-name can be a unit address, a group name, or a device type for a DASD
device. A unit address is 3 or 4 hexadecimal digits consisting of the channel,
control unit, and device number. A group name is any name that is defined
during MVS system generation for a DASD device such as SYSDA or DISK.
The device type is the IBM-supplied name such as 3380 or 3390.

If the DEVICE parameter is omitted, the default value is SYSDA.

Note: In Fortran, the units described by the PUNCH, ERRMSG, PRINTER and
READER parameters are called standard I/O units.

224 z/OS V2R1.0 Language Environment Customization

Associating units with dcb characteristics using the VSF2UNIT
macro
Use the VSF2UNIT macro to specify a single unit, or group of units, that is to be
associated with a set of DCB default values. The VSF2UNIT macro is used in
conjunction with the VSF2DCB macro.

Syntax of VSF2UNIT Macro

VSF2UNIT { unitno | (unitno [,qty]) } ,DCBSET = label

unitno
Specifies the unit number, or the first in a series of consecutive unit numbers,
that are to have DCB default values assigned.

qty
Specifies, if there is more than one, the number of consecutive unit numbers,
beginning with unitno, that are to have DCB default values assigned.

DCBSET=label
Specifies the identifier of the DCB attributes to associate with this unit or set of
units. This is the name given in the associated VSF2DCB macro instruction.

Specifying the DCB characteristics using the VSF2DCB macro
Use the VSF2DCB macro to specify DCB default information for the I/O units that
have DCBSET=label parameter of the VSF2UNIT macro.

The syntax of VSF2DCB macro is as follows:

[label] VSF2DCB [,SFBUFNO=number | 2]
[,SUBUFNO=number | 2]
[,SFBLKSI=number | 800]
[,SUBLKSI=number | 800]
[,SFLRECL=number | 800]
[,SULRECL=number. | -1]
[,SFRECFM=char | U]
[,SURECFM=char | VS]
[,SFMAXRE=number | 100]
[,SUMAXRE=number | 100]
[,DMAXRE=number | 100]

label
Specified in the VSF2UNIT macro to identify the I/O units that are to be
assigned DCB default values.

If label is omitted, the DCB data is assigned to all units defined in the default
table by the VSF2UAT macro, but which have not been defined by the
VSF2UNIT macro. If any of the units defined in the attribute table do not have
their own associated DCBSET coded, you must provide a VSF2DCB macro
without a label to apply defaults to these units.

SFBUFNO=number | 2
Specifies the default value for the number of buffers for sequential formatted
files on DASD or tape. number must be a value greater than or equal to 1 and
less than or equal to 255.

SUBUFNO=number | 2
Specifies the default value for the number of buffers for sequential
unformatted files on DASD or tape. number must be a value greater than or
equal to 1 and less than or equal to 255.

Appendix B. Using Fortran with Language Environment 225

SFBLKSI = number | 800
Specifies the block size for sequential formatted files. number is an integer
expression of length 4 bytes; valid range of the blocksize is from 1 to 32760.

SUBLKSI = number | 800
Specifies the block size for sequential unformatted files. number is an integer
expression of length 4 bytes; valid range of the blocksize is from 1 to 32760.

SFLRECL = number | 800
Specifies the logical record length for sequential formatted files. number is an
integer expression of length 4 bytes; valid range is from 1 to 32756 for variable
record formats (SURECFM= V, VA, VB, or VBA), or 1 to 32760 for all other
record formats.

SULRECL = number | -1
Specifies the logical record length for sequential unformatted files. number is an
integer expression of length 4 bytes; valid range is from 1 to 32756 for variable
record formats (SURECFM= V, VA, VB, VBA, VS, or VBS), or 1 to 32760 for all
other record formats or -1, which specifies an unlimited record length. -1 is
valid for SURECFM=VS or VBS formats.

SFRECFM = char | U
Specifies the record format for sequential formatted files. The value of char
must be F, FA, FB, FBA, V, VA, VB, VBA, U, or UA. For more information
about I/O, see VS FORTRAN Version 2 Programming Guide for CMS and MVS

SURECFM = char | VS
Specifies the record format for sequential unformatted files. The value of char
must be F, FA, FB, FBA, V, VA, VB, VBA, VS, VBS, U, or UA. For more
information about I/O, see VS FORTRAN Version 2 Programming Guide for CMS
and MVS

SFMAXRE = number | 100
Specifies the amount of space to be converted into blocks in a sequential
formatted file. It is only valid for new DASD files; if specified for an existing
file, it will be ignored. number is an integer expression of length 4. See
MAXREC in VS FORTRAN Version 2 Programming Guide for CMS and MVS for
information about how space is converted to blocks.

SUMAXRE = number | 100
Specifies the amount of space to be converted into blocks in a sequential
unformatted file. It is only valid for new DASD files; if specified for an existing
file, it will be ignored. number is an integer expression of length 4. See
MAXREC in VS FORTRAN Version 2 Programming Guide for CMS and MVS for
information about how space is converted to blocks.

DMAXRE = number | 100
Specifies the amount of space to be converted into blocks in a direct file. It is
only valid for new DASD files; if specified for an existing file, it will be
ignored. number is an integer expression of length 4. See VS FORTRAN Version
2 Programming Guide for CMS and MVS for information about how space is
converted to blocks.

CAUTION: If you change the IBM-supplied default DCB values, the existing
Fortran programs that depend on the original defaults may not work. For more
information about DCB values, see VS FORTRAN Version 2 Programming Guide for
CMS and MVS .

226 z/OS V2R1.0 Language Environment Customization

Ending the unit attribute table definition using the VSF2UAT
macro
Use the VSF2UAT macro to start and to end the Unit Attribute Table definition.
Use the following form of VSF2UAT as the final macro instruction in the Unit
Attribute Table definition.

Syntax of VSF2UAT Macro: Final Statement

VSF2UAT TYPE=FINAL

TYPE = FINAL
Is the required last statement of the VSF2UAT macro.

IBM-supplied unit attribute table default values
The macro instructions shown in Figure 17 are provided in the module
AFH5VUAT. This module is used to set up the IBM-supplied default values for the
standard I/O units, and file characteristics such as the DCB information.

Note: The above format is given for readability purposes. Remember to add the
necessary continuation flags in column 72, and to begin continued lines in column
16.

The three VSF2UNIT macro instructions indicate that units 5, 6, and 7 have the
default DCB information provided on the first three VSF2DCB macro instructions.
Note that the last VSF2DCB macro does not have a label; its set of defaults apply
to all units except 5, 6, and 7. For more information about the RDRUNIT,
ERRUNIT, PRTUNIT, and PUNUNIT runtime options, which are used to specify
the unit numbers of these standard I/O units, see VS FORTRAN Version 2
Programming Guide for CMS and MVS.

AFH5VUAT VSF2UAT UNTABLE=99,
DECIMAL=PERIOD,
READER=5,
ERRMSG=6,
PRINTER=6,
PUNCH=7,
DEVICE=SYSDA

VSF2UNIT 5,DCBSET=DCBRDR
VSF2UNIT 6,DCBSET=DCBPRT
VSF2UNIT 7,DCBSET=DCBPUN

DCBRDR VSF2DCB SFRECFM=F,SFLRECL=80,SFBLKSI=80,
SURECFM=F,SULRECL=80,SUBLKSI=80

DCBPRT VSF2DCB SFRECFM=UA,SFLRECL=133,SFBLKSI=133

DCBPUN VSF2DCB SFRECFM=F,SFLRECL=80,SFBLKSI=80,
SURECFM=F,SULRECL=80,SUBLKSI=80

VSF2DCB SFRECFM=U,SFLRECL=800,SFBLKSI=800,SFMAXRE=100,
SURECFM=VS,SULRECL=-1,SUBLKSI=800,SUMAXRE=100,
DMAXRE=100

VSF2UAT TYPE=FINAL

Figure 17. IBM-supplied macro instructions

Appendix B. Using Fortran with Language Environment 227

Examples of changing unit attribute table default values
The following examples show how you can modify the IBM-supplied defaults for
your own environment. You can alter instructions by typing over existing data, or
you can add more VSF2UNIT and VSF2DCB macro instructions.

Example 1

In this example, we have specified device name SYSSQ for dynamically allocated
data sets and assigned a unique set of DCB attributes to units 1 through 4. The
DCB Information for both sequential formatted and unformatted files written on
these units is indicated in the first VSF2DCB macro instruction (“USERDCB”)
shown in Figure 18.

Note: The above format is given for readability purposes. Remember to add the
necessary continuation flags in column 72, and to begin continued lines in column
16.

VSF2UAT, VSF2UNIT, and VSF2DCB must all be coded, in that order, followed by
the VSF2UAT TYPE=FINAL statement.

Example 2

If you want to change the unit numbers of the standard input unit, the error
message unit, the print unit, and the punch unit, to 1, 2, 3, 4, respectively, modify
the IBM-supplied macros as shown in Figure 19 on page 229.

AFH5VUAT VSF2UAT DEVICE=SYSSQ
VSF2UNIT (1,4),DCBSET=USERDCB
VSF2UNIT 5,DCBSET=DCBRDR
VSF2UNIT 6,DCBSET=DCBPRT
VSF2UNIT 7,DCBSET=DCBPUN

USERDCB VSF2DCB SFRECFM=FB,SFLRECL=50,SFBLKSI=250,SFMAXRE=200,
SURECFM=FB,SULRECL=50,SUBLKSI=250,SUMAXRE=200,
DMAXRE=200

DCBRDR VSF2DCB SFRECFM=F,SFLRECL=80,SFBLKSI=80,
SURECFM=F,SULRECL=80,SUBLKSI=80

DCBPRT VSF2DCB SFRECFM=UA,SFLRECL=133,SFBLKSI=133

DCBPUN VSF2DCB SFRECFM=F,SFLRECL=80,SFBLKSI=80,
SURECFM=F,SULRECL=80,SUBLKSI=80

VSF2DCB SFRECFM=U,SFLRECL=800,SFBLKSI=800,SFMAXRE=100,
SURECFM=VS,SULRECL=-1,SUBLKSI=800,SUMAXRE=100,
DMAXRE=100

VSF2UAT TYPE=FINAL

Figure 18. Modified IBM-supplied macro instructions

228 z/OS V2R1.0 Language Environment Customization

Changing VS FORTRAN runtime option defaults
Module AFH5GPRM contains the set of runtime option defaults for running with
the VS FORTRAN compatibility library. You can accept the IBM-supplied defaults,
shown in this section, or you can supply your own defaults. To customize
AFBVGPRM for your site, use the IBM-supplied job AFHWVPRM, and modify the
VSF2PARM macro instruction in an SMP/E USERMOD. The syntax and operands
of the VSF2PARM macro instruction are described in this section.

Use the AFH5PARM macro to change the IBM-supplied default values for VS
FORTRAN runtime options. The default values you assign are assumed if you do
not override them.

There are no operands to set the default values for the runtime options
AUTOTASK, PARALLEL, and PARTRACE; therefore these options cannot be
changed during installation. They can, however, be changed at runtime.

There are no operands in the VSF2PARM macro to set the default values for the
runtime options ERRUNIT, RDRUNIT, PRTUNIT, and PUNUNIT. The default I/O
unit values for these units can be changed during installation through the Unit
Attribute Table.

Syntax of VSF2PARM Macro Instruction

VSF2PARM SCOPE = GLOBAL
[,ABSDUMP | NOABSDUMP]
[,CNVIOERR | NOCNVIOERR]
[,DEBUG | NODEBUG]
[,DEBUNIT(s1[,s2,...]) | NODEBUNIT]
[,ECPACK | NOECPACK]
[,FAIL(ABEND | RC |ABENDRC)]
[,FILEHIST | NOFILEHIST]
[,INQPCOPN | NOINQPCOPN]
[,IOINIT | NOIOINIT]
[,OCSTATUS | NOOCSTATUS]
[,RECPAD[(ALL)] | NORECPAD]
[,SPIE | NOSPIE]
[,STAE | NOSTAE]
[,XUFLOW | NOXUFLOW]

AFH5VUAT VSF2UAT DECIMAL=PERIOD,
READER=1,
ERRMSG=2,
PRINTER=3,
PUNCH=4,
DEVICE=SYSDA

VSF2UNIT 1,DCBSET=DCBRDR
VSF2UNIT 2,DCBSET=DCBTERM
VSF2UNIT 3,DCBSET=DCBPRT
VSF2UNIT 4,DCB=DCBPUN

Figure 19. Modified IBM-supplied macro instructions

Appendix B. Using Fortran with Language Environment 229

The IBM-supplied default values are underlined in the following option list. If an
option is not specified, its default will be used, with the exception of the SCOPE
option, which must always be specified.

SCOPE = GLOBAL
Required to replace the global runtime options table AFBVGPRM, which
supplies default values for all users of the VS FORTRAN compatibility library.

There is no default value for this option. Thus SCOPE=GLOBAL must always
be specified.

ABSDUMP | NOABSDUMP
Specifies whether the post-abend symbolic dump information is printed.

ABSDUMP
Causes the post-abend symbolic dump information to be printed in the
event of an abnormal termination.

NOABSDUMP
Suppresses the printing of the post-abend symbolic dump information.

CNVIOERR | NOCNVIOERR
Specifies whether input conversion errors will be treated as I/O errors.

CNVIOERR
Causes ERR and IOSTAT to recognize conversion errors as I/O errors.

NOCNVIOERR
Causes conversion errors not to be treated as I/O errors. ERR and IOSTAT
have no effect for these errors.

DEBUG | NODEBUG
Specifies whether interactive debug will be invoked.

Note: This option does not apply to the Language Environment VS FORTRAN
compatibility library. If you want to use the VS FORTRAN Interactive
Debugger, then run your program with the VS FORTRAN Version 2 library
rather than with Language Environment.

DEBUNIT | NODEBUNIT
Specifies whether Fortran unit numbers will be treated as if connected to a
terminal device.

Note: This option does not apply to the Language Environment VS FORTRAN
compatibility library. If you want to use the VS FORTRAN Interactive
Debugger, then run your program with the VS FORTRAN Version 2 library
rather than with Language Environment.

ECPACK | NOECPACK
Specifies whether a data space should be filled with as many extended
common blocks as possible before a new data space is allocated.

ECPACK
Specifies extended common blocks be placed into the fewest possible
number of data spaces. This option reduces some of the overhead
associated with referencing data spaces.

NOECPACK
Specifies that each extended common block be placed into a separate data
space. As a result, reference errors made beyond the bounds of an
extended common block might be more easily detected.

230 z/OS V2R1.0 Language Environment Customization

FAIL (ABEND | RC | ABENDRC)
Indicates how applications that fail are to be terminated: either by a nonzero
return or by an abnormal termination (ABEND). The suboption of the FAIL
option may have the following meanings.

ABEND
Causes the program to end by an abnormal termination (ABEND) with a
user completion code of 240.

RC Causes the program to end normally but with a nonzero return code (16).

ABENDRC
Causes the program to end by abnormal termination (ABEND) when
failure is because of a condition for which the operating system would
usually cause an ABEND; and to end with a nonzero return code when
failure is by some condition detected by VS FORTRAN.

FILEHIST | NOFILEHIST
Specifies whether to allow the file definition of a file referred to by a ddname
to be changed at runtime.

FILEHIST
Causes the history of a file to be used in determining its existence. In
particular it checks to see whether:
v The file was ever internally opened (in which case it exists)
v The file was deleted by a CLOSE statement (in which case it does not

exist).

When FILEHIST is specified, you cannot change the file definition of a file
at runtime and have the same results produced as previous VS FORTRAN
releases.

NOFILEHIST
Causes the history of a file to be disregarded in determining its existence.

If you specify NOFILEHIST you should consider:
v If you change file definitions at runtime: the file is treated as if it was

being opened for the first time. Note that before the file definition can be
changed, the existing file must be closed.

v If you do not change file definitions at runtime: you must use
STATUS='NEW' to re-open an empty file that has been closed with
STATUS='KEEP', because the file does not appear to exist to Fortran.

INQPCOPN | NOINQPCOPN
Specifies whether a unit is connected to a file when executing an INQUIRE by
unit.

INQPCOPN
Specifies that, if a unit is connected to a file, even if it was preconnected
and no I/O statement has been executed, a value of true is returned in the
variable or an array element given in the OPENED specifier from an
INQUIRE by unit statement.

NOINQPCOPN
Indicates that, if and only if a unit is internally open, a value of true is
returned in the variable or an array element given in the OPENED
specifier for an INQUIRE by unit statement.

"Internally open" means that the unit is connected to a file by an OPEN
statement, or if the unit has been preconnected, that a READ, WRITE,
PRINT, REWIND, or ENDFILE statement has been successfully executed.

Appendix B. Using Fortran with Language Environment 231

IOINIT | NOIOINIT
Specifies whether the normal initialization for I/O processing will occur during
initialization of the runtime environment.

IOINIT
Causes the normal initialization for I/O processing to occur during
initialization of the runtime environment.

NOIOINIT
Suppresses initialization for I/O processing. This means that the error
message unit is not opened during initialization of the runtime
environment. However, this does not prevent I/O from occurring on this
or on any other unit. (Such I/O might fail if proper DD statements are not
given.)

OCSTATUS | NOOCSTATUS
Specifies whether file existence is checked during the running of OPEN
statements, whether files are deleted from their storage media, and whether
files that were closed can be reconnected without an OPEN statement.

OCSTATUS
Specifies:
1. File existence is checked for consistency with the OPEN statement

specifiers STATUS=’OLD’ and STATUS=’NEW’.
2. File deletion occurs when the CLOSE statement specifier

STATUS=’DELETE’ is given (on devices which allow deletion).
3. A preconnected file is disconnected when a CLOSE statement is given

or when another file is opened on the same unit. It can be reconnected
only by an OPEN statement when there is no other file currently
connected to that unit.

NOOCSTATUS
Specifies:
1. File existence is not checked for consistency with the OPEN statement

specifiers STATUS=’OLD’ and STATUS=’NEW’.
2. File deletion does not occur when the CLOSE statement specifier

STATUS=’DELETE’ is given.
3. A preconnected file is disconnected when a CLOSE statement is given

or when another file is opened on the same unit. It can be reconnected
by a sequential READ or WRITE, BACKSPACE, OPEN, REWIND, or
ENDFILE statement when there is no other file currently connected to
that unit.

RECPAD[(ALL)] | NORECPAD
Specifies whether a formatted input record is padded with blanks.

RECPAD
Causes a formatted input record within an internal file or a varying/undefined
length record (RECFM=U or V) external file to be padded with blanks when an
input list and format specification require more data from the record than the
record contains. Blanks added for padding are interpreted as though the input
record actually contains blanks in those fields. If ALL is specified, a formatted
input record is padded regardless of the record format of the file.

NORECPAD
Specifies that an input list and format specification must not require more data
from an input record than the record contains. If more data is required,
condition FOR1002E is raised.

232 z/OS V2R1.0 Language Environment Customization

SPIE | NOSPIE
Specifies whether the runtime environment takes control when a program
interrupt occurs.

SPIE
Specifies that the runtime environment takes control when a program
interrupt occurs.

NOSPIE
Specifies that the runtime environment does not take control when a
program interrupt occurs. If you specify NOSPIE, various runtime
functions that depend on a return of control after a program interrupt are
not available. These include the following:
v The messages and corrective action for a floating-point overflow
v The messages and corrective action for a floating-point underflow

interrupt (unless the underflow is to be handled by the hardware based
upon the XUFLOW option)

v The messages and corrective action for a floating-point or fixed-point
divide exception

v The simulation of extended precision floating-point operations on
processors that do not have these instructions

v The realignment of vector operands that are not on the required storage
boundaries and the rerunning of the failed instruction.

Instead of the corrective action, abnormal termination results. In this case,
the STAE or NOSTAE option that is in effect governs whether the VS
FORTRAN runtime environment gains control at the time of the abend.

STAE | NOSTAE
Specifies whether the runtime environment takes control if an abnormal
termination occurs.

STAE
Specifies that the runtime environment will take control when an abnormal
termination occurs.

NOSTAE
Specifies that the runtime environment does not take control when an
abnormal termination occurs. If NOSTAE is specified, abnormal
termination is handled by the operating system rather than by the VS
FORTRAN runtime environment. In this case the following occurs:
v Message AFB240I, which shows the PSW and register contents at the

time of the abend, is not printed. However, this information will be
provided by the operating system.

v The indication of which Fortran statement caused the failure will not be
printed.

v The traceback of the routines will not be printed.
v The post-abend symbolic dump will not be printed even with the option

ABSDUMP in effect.
v Certain exceptional conditions handled by the runtime environment or

by the debugging device cause system abends rather than VS FORTRAN
messages. For example, some errors that occur during running of an
OPEN statement result in a system abend rather than the printing of
message AFB219I, which allows the program to possibly continue
running.

Appendix B. Using Fortran with Language Environment 233

v An MTF subtask that terminates unexpectedly causes a user ABEND 922
in the main task rather than message AFB922I.

XUFLOW | NOXUFLOW
Specifies whether an exponent underflow will cause a program interrupt.

XUFLOW
Allows an exponent underflow to cause a program interrupt, followed
by a message from the VS FORTRAN Version 2 Library, followed by a
standard fixup.

NOXUFLOW
Suppresses the program interrupt caused by an exponent underflow.
The hardware sets the result to zero.

Changing the error option table defaults
Module AFH5UOPT contains the Error Option Table defaults. You can accept the
IBM-supplied defaults, or you can supply your own defaults. To customize
AFH5UOPT for your site, use the IBM-supplied job AFHWVOPT, and modify the
VSF2UOPT macro instructions in an SMP/E USERMOD. The syntax and operands
of the VSF2UOPT macro instructions are described in this section.

If you have Fortran applications that are link-edited with Language Environment,
then there is no error option table to customize.

Use the VSF2UOPT macro to customize the Error Option Table as follows:
v Adding new error messages to the table, without changing existing ones, by

coding the VSF2UOPT Required Macro Instruction, followed by an END
statement.

v Changing existing error messages in the table, with or without adding new ones,
by coding the VSF2UOPT Required Macro Instruction, followed by the
necessary number of optional macro instructions, followed by an END
statement.

For information about IBM-supplied error messages, see “Extended Error-Handling
Subroutines and Error Option Table” in VS FORTRAN Version 2 Language and
Library Reference.

Syntax of VSF2UOPT Required Macro Instruction

VSF2UOPT [ADDNTRY = n]

ADDNTRY=n
Is a positive integer specifying the number of new error message numbers to
be added to the error option table. Additional error message numbers will
begin at 500 and continue sequentially, up to a maximum of 899. If you want
to change existing messages but do not want to add new ones, omit
ADDNTRY=n.

n Is a positive integer between 1 and 598.

Syntax of VSF2UOPT Optional Macro Instruction

VSF2UOPT MSGNO = (ermsno[,qty])
[,ALLOW = errs]
[,INFOMSG = YES | NO]
[,IOERR = YES | NO]

234 z/OS V2R1.0 Language Environment Customization

[,MODENT = YES | NO]
[,PRINT = prmsg]
[,PRTBUF = YES | NO]
[,TRACBAK = YES | NO]
[,USREXIT = exitname]

The MSGNO option must always be specified. The default values of the five
options INFOMSG, IOERR, MODENT, PRTBUF, and TRACBAK vary according to
the following conditions:
v If the value of MSGNO specifies an IBM-supplied message number, and none of

the five options is changed, then the default values are found in “Extended
Error-Handling Subroutines and Error Option Table” of VS FORTRAN Version 2
Language and Library Reference.

v If either
– The value of MSGNO specifies an IBM-supplied message number, and one or

more of the five options is changed, or
– The value of MSGNO specifies a new message number,
Then the default values for the unspecified options are the following:

INFOMSG
NO

IOERR
NO

MODENT
YES

PRTBUF
NO

TRACBAK
YES

MSGNO = (ermsno[,qty])
Specifies which error messages are affected by the default changes.

ermsno
Specifies either one message number, or the first error message number in
a series of consecutive numbers.

qty
Specifies, if there is more than one, the number of consecutive error
message numbers, beginning with ermsno.

For example, if the option is coded MSGNO=(153), then the default values for
message 153 is changed. If the option is coded MSGNO=(153,4), then the default
values for messages 153 through 156 is changed.

ALLOW = errs
Specifies the number of times the error can occur before the program is
terminated.

errs
Specifies the number of errors allowed. To specify an exact number of
errors allowed, errs must be a positive integer with a maximum of 255. A
zero, or any number greater than 255, means that the error can occur an
unlimited number of times.

Appendix B. Using Fortran with Language Environment 235

Note: Altering an error option table entry to allow “unlimited” error
occurrence might cause a program to loop indefinitely.

If the value of MSGNO specifies an IBM-supplied message number, the default
value for this option is listed in “Extended Error-Handling Subroutines and
Error Option Table” of VS FORTRAN Version 2 Language and Library Reference .
If the value of MSGNO specifies a new message number, the default value is
10.

INFOMSG = YES | NO
Specifies whether the message is an informational or an error message.

YES
Specifies that the message is informational only. In this case the following
occurs:
v No user error exit is taken.
v The value of ALLOW is ignored. Running will not terminate, even if it

reaches the designated number of errors allowed.
v The error summary printed after termination of your program does not

include a count of the number of times the condition occurred.

NO Specifies that the message is an error message.

IOERR = YES | NO
Specifies whether this error message represents an I/O error for which error
counting is to be suppressed when an ERR or IOSTAT option is given on the
I/O statement.

YES
Specifies that if an ERR or IOSTAT option is given, the occurrence of the
error is not to be counted toward the maximum number specified by the
ALLOW option above. This should be specified only for those errors listed
in VS FORTRAN Version 2 Language and Library Reference for which the ERR
and IOSTAT options are honored.

NO Specifies that the error occurrence is to be counted toward the maximum
number of errors allowed.

MODENT = YES | NO
Specifies whether the ERRSET subroutine can be used to modify the error
option table entry for this message.

YES
Specifies that the entry can be modified.

NO Specifies that the entry cannot be modified.

If you code a YES value for an IBM-supplied error message whose default is
NO, and you then modify this entry using the ERRSET subroutine, you might
receive undesirable results. Check the topic “Extended Error-Handling
Subroutines and Error Option Table” of VS FORTRAN Version 2 Language and
Library Reference to find out which message numbers have a “Modifiable
Entry” value of NO.

PRINT = prmsg
Specifies the number of times the error message is to be printed. Subsequent
occurrences of the error do not cause the message to be printed again.

prmsg
Specifies the number of times the message is to be printed. To specify an
exact number of times printed, prmsg must be a positive integer, with a

236 z/OS V2R1.0 Language Environment Customization

maximum of 254. A “0” means the message will not be printed. Specifying
255 means the message can be printed an unlimited number of times.

If the value of MSGNO specifies an IBM-supplied message number, the default
value for this option is listed in the chapter “Extended Error-Handling
Subroutines and Error Option Table” in VS FORTRAN Version 2 Language and
Library Reference If the value of MSGNO specifies a new message number, the
default value is 5.

PRTBUF = YES | NO
Specifies whether the I/O buffer is to be printed following certain I/O errors.

YES
Specifies that the contents of the buffer are to be printed.

NO Specifies that the contents of the buffer are not to be printed.

This option applies only to IBM-supplied error messages. Do not code YES
unless the IBM-supplied default for this error message number already allows
the buffer to be printed. Check the topic “Extended Error-Handling
Subroutines and Error Option Table” in VS FORTRAN Version 2 Language and
Library Reference to find out which message numbers have a “Print Buffer”
value of YES.

TRACBAK = YES | NO
Specifies whether a module traceback listing is to be printed following the
error message.

YES
Specifies that the traceback listing is to be printed.

NO Specifies that the traceback listing is not to be printed.

USREXIT = exitname
Specifies the user error exit routine that is invoked following the printing of
the error message.

exitname
Specifies the entry point name of the user error exit routine. The routine
should not be written in VS FORTRAN and should be reentrant.

If the routine is specified here, instead of being specified as an option
passed to the ERRSET subroutine, the routine is invoked when the error
occurs for any user. In this case, the routine will be invoked, regardless of
whether the ERRSET routine was used or not. (However, unless a
MODENT value of NO is in effect, programs can still call ERRSET
dynamically to specify their own exit routine instead of the one specified
by USREXIT.)

For programs operating in link mode, the user error exit routine must be
link-edited with all users’ programs.

To make the user error exit routine available to users who operate in load
mode, the routine must be included in the composite module AFH5RENA.
Then, if the user error exit routine must communicate with the program in
which the error was detected, it must do so using a dynamic common area, not
a static one.

Appendix B. Using Fortran with Language Environment 237

Customizing Fortran LIBPACKs
The Fortran LIBPACKs are collections of individual modules that are packaged into
a single load module in order to reduce the time that would otherwise be needed
to load the individual modules.

Language Environment provides four Fortran LIBPACKs, which you can customize
either during or following the installation of Language Environment.

Table 23. Fortran LIBPACKs

For applications link-edited with... Customize LIBPACK... Which is loaded...

Language Environment AFHPRNAG Above 16 MB

Language Environment AFHPRNBG Below 16 MB

VS FORTRAN AFH5RENA Above 16 MB

VS FORTRAN AFH5RENB Below 16 MB

The following tables give the names of the individual modules that can be
included with or excluded from the LIBPACKs. In the tables, the terms required
and optional are defined as follows:

required
Means that this module must be a part of the LIBPACK. It is not possible
to exclude it.

optional
Means that this module may be either included or excluded from the
LIBPACK. If the function indicated for the module is frequently used at
your installation, the module should generally be included in order to
avoid having to load it individually for each enclave.

For LIBPACKs loaded above the 16-MB line, the optional modules are included in
the IBM-supplied default LIBPACK. For LIBPACKs loaded below the 16-MB line,
only the required modules are included in the IBM-supplied default LIBPACK.
Each optional LIBPACK module is also present individually. It will be loaded if
that module is not included in the LIBPACK.

Refer to “Tailoring the Fortran LIBPACKs” on page 12 for information about how
to tailor these LIBPACKs.

Contents of the Fortran LIBPACK AFHPRNAG
Table 24 lists routines you can include in the Fortran LIBPACK AFHPRNAG and
briefly describes each to help you determine which to include in your tailored
LIBPACK.

Note: For all entries in Table 24, the link-edited AMODE is 31 and the link-edited
RMODE is ANY.

Table 24. Routines eligible for inclusion in the Fortran LIBPACK AFHPRNAG

Name Description
Required or

Optional

AFHALBCG Library common work area Required

AFHBCITT Character intrinsic functions Optional

AFHBCMPT Complex/character compare routine Optional

238 z/OS V2R1.0 Language Environment Customization

Table 24. Routines eligible for inclusion in the Fortran LIBPACK AFHPRNAG (continued)

Name Description
Required or

Optional

AFHBCMVT Character move routine Optional

AFHBCNCT Character concatenation routine Optional

AFHBCSTT IBCLR/IBSET/BTEST functions Optional

AFHBDPRT Double/Extended precision product Optional

AFHBFIFT Real to integer intrinsic function Optional

AFHBIBTT IBITS using INTEGER*1 or INTEGER*2 argument Optional

AFHBIDXT Character index function Optional

AFHBLOGT Bit intrinsic functions, INTEGER*4 arguments Optional

AFHBLXCT Lexical comparison routines Optional

AFHBMVBT MVBITS (move bits) subroutine Optional

AFHBMV8T MVBITS (move bits) routine, INTEGER*8 arguments Optional

AFHBMXDT Maximum/minimum function, REAL*8 arguments Optional

AFHBMXIT Maximum/minimum function, INTEGER*4 arguments Optional

AFHBMXRT Maximum/minimum function, REAL*4 arguments Optional

AFHBSHCT ISHFTC function, all integer argument types Optional

AFHBSHFT ISHFT bit shift function, INTEGER*1 or INTEGER*2
arguments

Optional

AFHBXMST Exponent underflow control function Optional

AFHCBFBE Condition token ownership Optional

AFHCENAE Fortran condition enablement Required

AFHCGETT Qualifying data retrieval function Optional

AFHCLC1E Locator text construction Optional

AFHCLC2E Message text construction Optional

AFHCLOCT Qualifying data address Optional

AFHCLSHE Language specific condition handler for math routines Required

AFHCPUTT Qualifying data update Optional

AFHCQFBE Feedback code query function Optional

AFHCSERT Compiler detected error processing at runtime Optional

AFHCSGLE Condition signaling processor Required

AFHCTMHE MTF termination condition handler Optional

AFHCTOHE I/O termination condition handler Optional

AFHCTRAT ERRTRA processing Optional

AFHCXITE Exit DSA activation Optional

AFHDASGT ASSIGNM (DCBS character) processor Required

AFHDBGVE DCBS given byte Required

AFHDBMOE DCBS assignment (move) Required

AFHDBMVE DCBS move string Required

AFHDBPAE DCBS pad string Required

AFHDBTRE DCBS truncate string Required

Appendix B. Using Fortran with Language Environment 239

Table 24. Routines eligible for inclusion in the Fortran LIBPACK AFHPRNAG (continued)

Name Description
Required or

Optional

AFHDBTTE DCBS translate and test Required

AFHFGSTL Math glue code generator Optional

AFHGDIRE Direct symbol table lookup Optional

AFHGFORT TEST option debug interface Optional

AFHGISDE Init symbol dictionary default Optional

AFHGSQLE Sequential lookup service Optional

AFHIABDT SYSABD processing Optional

AFHIABNT SYSABN processing Optional

AFHIEINE Enclave initialization Required

AFHIETRE Enclave termination Required

AFHIEXTT CALL EXIT processing Optional

AFHIMTRT Main program termination Required

AFHIPAUT PAUSE processing Optional

AFHIPINE Process initialization Required

AFHIRCST SYSRCS processing Optional

AFHIRCTT SYSRCT processing Optional

AFHIRCXT SYSRCX processing Optional

AFHISTPT STOP processing Required

AFHITINE Thread initialization Required

AFHITTRE Thread termination Required

AFHLNABE Find NAB and build dummy DSA Required

AFHMOCBE MTF runtime options for subtask Required

AFHOASTE Asynchronous I/O file close at termination routine Optional

AFHOASYT Asynchronous I/O request processing routine Optional

AFHOBDSE Build descriptor from parse tree Optional

AFHOBNTE Build nest table, implied DO in iolist item Optional

AFHOBTRE Build parse tree Optional

AFHOCLOT CLOSE processing routine Optional

AFHOCMFE I/O to terminal or to other device processing routine Optional

AFHOCNTT Control statement processing routine Optional

AFHOCVIE Copy parse tree or descriptor Optional

AFHODCBE DCB attributes resolution routine Required

AFHODICT DEFINE FILE processing routine Optional

AFHODYNG Dynamic file allocation Optional

AFHOFINT FILEINF processing routine Optional

AFHOFMPE Formatted I/O record processing routine Optional

AFHOFMTT Formatted I/O service request routing routine Optional

AFHOFSCG File name scan Optional

AFHOIBCT Pre-VS FORTRAN I/O services routing routine Optional

240 z/OS V2R1.0 Language Environment Customization

Table 24. Routines eligible for inclusion in the Fortran LIBPACK AFHPRNAG (continued)

Name Description
Required or

Optional

AFHOINIE I/O support initialization Required

AFHOINQT INQUIRE statement processing routine Optional

AFHOINTE Internal file I/O service processing routine Optional

AFHOLDFT Pre-VSF 1.4.0 list-directed I/O parameter list processor Optional

AFHOLDRT List-directed I/O processing routine Optional

AFHOLDTE Pre-VSF 1.4.0 list-directed I/O processing routine Optional

AFHONAMT Pre-VSF 1.4.0 NAMELIST I/O parameter processor routine Optional

AFHONLLE Namelist I/O for static debug Optional

AFHONLTE Pre-VSF 1.4.0 NAMELIST I/O processing routine Optional

AFHONMLT Namelist I/O processing routine Optional

AFHOOPNT OPEN statement processing routine Optional

AFHOSCOT Pre-VSF 1.4.0 I/O services routing routine Optional

AFHOSIIE Get scalar intrinsic items Optional

AFHOSTAG Default I/O units allocation Required

AFHOSYSE STOP/PAUSE message display routine Required

AFHOTRFE Close all files at termination routine Required

AFHOUFMT Unformatted I/O processing routine Optional

AFHOUFOE Pre-VSF 1.4.0 unformatted I/O processing routine Optional

AFHOUNIT UNTANY/UNTNOFD processing Optional

AFHOUTAG Unit attribute table Required

AFHPINIE Program management initialization Required

AFHPLVDE LIBVEC descriptor Required

AFHPRNAG AFHPRNAG LIBPACK CSECT Required

AFHRABTT ABORT processing routine Optional

AFHSDYAT Obtain storage for ALLOCATE statement routine Optional

AFHSDYDT Free storage for DEALLOCATE statement routine Optional

AFHSFREE Storage free Optional

AFHSGETE Storage get Optional

AFHSMIRE Storage management initialization Required

AFHSSG1T Signal condition FOR0311S Optional

AFHSSG2T Signal condition FOR0312S Optional

AFHSSG3T Signal condition FOR0313S Optional

AFHSVFAT VSF version ALLOCATE/DEALLOCATE statements
routine

Optional

AFHTCNIE External input to internal format conversion routine Optional

AFHTCNOE Internal format to external output conversion routine Optional

AFHTCVSE I/O data conversion routing routine Optional

AFHTCVTE I/O data conversion routing routine adcon form Optional

AFHTTENE Powers of ten constants tables Optional

Appendix B. Using Fortran with Language Environment 241

Table 24. Routines eligible for inclusion in the Fortran LIBPACK AFHPRNAG (continued)

Name Description
Required or

Optional

AFHUDMAE Dump file attributes event handler Optional

AFHUDM2E Dump variable event handler Optional

AFHUDUMT Dump processing Optional

AFHUSDMT SDUMP processing Optional

AFHVSPIT Obtain compile-time required vector temporaries routine Optional

AFHXARGT Get argument string Optional

AFHXBSDE New direct symbol table lookup routine Optional

AFHXCDME Common block directory maintenance routine Optional

AFHXCMNT Obtain dynamic common blocks storage routine Optional

AFHXCPTV CPU time processing routine Optional

AFHXCUIE Compiled unit identification routine Optional

AFHXCVDE Convert and dump program symbols routine Optional

AFHXDCLE Save area classification routine Optional

AFHXDEST Signal extended common request routine Optional

AFHXDIVT DIV requests processing routine Optional

AFHXDOCT Divide check/overflow test routine Optional

AFHXDPET Signal parallel execution request routine Optional

AFHXDSPT Old form calculate array span/dimension factor routine Optional

AFHXDTME Termination exit to close DIV objects Optional

AFHXDYLT Dynamic loading processing routine Optional

AFHXEINE LCWA init for environment and runtime options Required

AFHXEV7E Fortran event handler routine Required

AFHXFAIT LCP initialize associated variable pointer routine Optional

AFHXFAUT LCP update associated variable routine Optional

AFHXFFEE Identify entry point type routine Optional

AFHXFMTT LCP define file processing routine Optional

AFHXIGNT IGNORE FILE HISTORY processing routine Optional

AFHXLNKT Nonshareable to shareable CSECT linkage routine Optional

AFHXOWNE Save area ownership routine Optional

AFHXPMLT Subprogram parameter list checker routine Optional

AFHXSIDE Obtain ISN or sequence number id routine Optional

AFHXSISE Convert item to vib_desc_fmt Optional

AFHXSPNT Calculate array span/dimension factor routine Optional

AFHXSQLE New sequential symbol table retrieval Optional

AFHXSTIE Obtain symbol table information routine Optional

AFHXTIMT Date/time information routine Optional

AFHXUSDE Update symbol table retrieval Optional

AFHX8SMT New compiler i*8 simulator routine Optional

242 z/OS V2R1.0 Language Environment Customization

Contents of the Fortran LIBPACK AFHPRNBG
Table 25 lists routines you can include in the Fortran LIBPACK AFHPRNBG and
briefly describes each to help you determine which to include in your tailored
LIBPACK.

Note: For all entries in Table 25, the link-edited AMODE is ANY and the
link-edited RMODE is 24.

Table 25. Routines eligible for inclusion in the Fortran LIBPACK AFHPRNBG

Name Description
Required or

Optional

AFHLCLNE Clear Fortran dummy DSA Required

AFHOASUG Asynchronous I/O subtask routine Optional

AFHOBDRE Direct I/O processing routine Optional

AFHOBSQE Sequential I/O processing routine Required

AFHOFSTG File status Required

AFHOSTRE Striped I/O processing routine Optional

AFHOVKYE VSAM KSDS (keyed I/O) services routine Optional

AFHOVSMG VSAM (RRDS, ESDS) I/O services routine Optional

AFHPRNBG AFHPRNBG LIBPACK CSECT Required

Contents of the Fortran LIBPACK AFH5RENA
Table 26 lists routines you can include in the Fortran LIBPACK AFH5RENA and
briefly describes each to help you determine which to include in your tailored
LIBPACK.

Note: For all entries in Table 26, the link-edited AMODE is 31 and the link-edited
RMODE is ANY.

Table 26. Routines eligible for inclusion in the Fortran LIBPACK AFH5RENA

Name Description
Required or

Optional

AFH5ABEX VSF ABEND handler (ESTAE) Required

AFH5ALOP VAL function routine Optional

AFH5AMEP VSF NAMELIST I/O parmlist decoder Optional

AFH5AREN VSF VRENA vector table Required

AFH5ARGP VSF 2.6 ARG obtain argument string routine Optional

AFH5ASYP Asynchronous I/O services driver routine Optional

AFH5BALG Vector boundary alignment routine Optional

AFH5BCOP Old FORTRAN library services interface routine Optional

AFH5BLN$ VSF build nest table stub Required

AFH5BLNT Build nest table I/O service routine Optional

AFH5CDM$ VSF dynamic COMMON routine special stub Required

AFH5CDMA VSF COMMON block directory maintenance Optional

AFH5CLOP VSF CLOSE services routine Optional

AFH5CNI$ VSF conversion routine special stub Required

Appendix B. Using Fortran with Language Environment 243

Table 26. Routines eligible for inclusion in the Fortran LIBPACK AFH5RENA (continued)

Name Description
Required or

Optional

AFH5CNO$ VSF conversion routine special stub Required

AFH5COM$ VSF COMH special stub Required

AFH5COMH VSF formatted I/O processor Optional

AFH5CONI VSF convert external to internal format Optional

AFH5CONO VSF convert internal to external format Optional

AFH5CPTP VSF CPUTIME routine Optional

AFH5CVT$ VSF CVTH special stub Required

AFH5CVTH VSF conversion routine Optional

AFH5DEB$ VSF DEBU special stub Required

AFH5DFCP VSF DEFINEFILE processing routine Optional

AFH5DFIP VSF pre-1.4.0 list-directed I/O decoder Optional

AFH5DIO$ VSF DIOS special stub Required

AFH5DIVP VSF Data-In-Virtual services processor Optional

AFH5DOCP VSF divide check/overflow test routine Optional

AFH5DYLP VSF dynamic binder routine Optional

AFH5DYN$ VSF dynamic allocation special stub Required

AFH5DYNA VSF dynamic file allocation routine Optional

AFH5EMG$ VSF error message special stub Required

AFH5EMGN VSF message build routine Optional

AFH5ERE$ VSF EEH special stub Required

AFH5ERRE VSF object time error summary Required

AFH5ERS$ VSF exit/return code special stub Required

AFH5EXIP VSF return code and exiting routine Optional

AFH5FINP VSF file information routine Optional

AFH5FISC VSF file name scan routine Optional

AFH5FNTH VSF program interrupt handler Required

AFH5GMFM VSF getmain/freemain routine Required

AFH5GPRM VSF global parmlist Required

AFH5IAD$ VSF IAD interface special stub Required

AFH5IIO$ VSF internal I/O special stub Required

AFH5IIOS VSF internal I/O routine Optional

AFH5INI$ VSF Vector common init special stub Required

AFH5INQP VSF INQUIRE processing routine Optional

AFH5INTH VSF vector program interrupt handler Optional

AFH5INTP VSF init/term routine Required

AFH5IOCP VSF I/O control processing Optional

AFH5IOFP VSF formatted I/O router routine Optional

AFH5IOLP VSF list-directed processor Optional

AFH5IONP VSF NAMELIST processor Optional

244 z/OS V2R1.0 Language Environment Customization

Table 26. Routines eligible for inclusion in the Fortran LIBPACK AFH5RENA (continued)

Name Description
Required or

Optional

AFH5IOUP VSF unformatted I/O processor Optional

AFH5KIO$ VSF keyed I/O special stub Required

AFH5LBC0 VSF library common work area Required

AFH5LINP VSF shareable code load routine Optional

AFH5LOAD VSF load/delete service routine Required

AFH5LOC$ VSF offset locate special stub Required

AFH5LOCA VSF offset locator routine Optional

AFH5MIN$ VSF MTF init special stub Required

AFH5MMA$ VSF MTF map and attach special stub Required

AFH5MOPP VSF extended error handling routine Optional

AFH5MPR$ MTF subparameter parser special stub Required

AFH5MSKL VSF message skeletons Optional

AFH5OCMP VSF dynamic COMMON processor routine Optional

AFH5OPEP VSF OPEN processor routine Optional

AFH5PARM VSF runtime parameter list scan routine Required

AFH5PIO$ VSF striped I/O special stub Required

AFH5POS$ VSF post-ABEND processor special stub Required

AFH5RDCB VSF DCB resolution routine Required

AFH5SCOP VSF pre-1.4 I/O interface Optional

AFHFSPAP VSF array span calculator Optional

AFH5SPBP VSF 1.4 array span calculator Optional

AFH5SPIE VSF SPIE set routine Required

AFH5STAE STAE set routine Required

AFH5STIO VSF standard I/O setup routine Required

AFH5TIMP VSF obtain date and time routine Optional

AFH5TRC$ VSF traceback special stub Required

AFH5TRCH VSF traceback routine Optional

AFH5TRMF VSF termination file close routine Required

AFH5UNIN VSF vector unnorm argument exception handler Optional

AFH5UOPT VSF error message options table Required

AFH5VDMQ VSF PDUMP/CPDUMP service routine Optional

AFH5VINI VSF vector common area initializer Optional

AFH5VIO$ VSF non-keyed VSAM special stub Required

AFH5VTEN VSF floating point conversion constants Optional

AFH5VUAT VSF UNIT Attribute Table Required

Contents of the Fortran LIBPACK AFH5RENB
Table 27 on page 246 lists routines you can include in the Fortran LIBPACK
AFH5RENB and briefly describes each to help you determine which to include in
your tailored LIBPACK.

Appendix B. Using Fortran with Language Environment 245

Note: For all entries in Table 27, the link-edited AMODE is ANY and the
link-edited RMODE is 24.

Table 27. routines eligible for inclusion in the Fortran LIBPACK AFH5RENB

Name Description
Required or

Optional

AFH5ASUB Asynchronous I/O services subtask routine Optional

AFH5BREN VSF VRENB locator table Required

AFH5DIOS VSF direct access I/O routine Optional

AFH5FIST VSF file info status routine Required

AFH5KIOS VSF keyed I/O processor Optional

AFH5SIOS VSF sequential I/O routine Required

AFH5VIOS VSF non-keyed VSAM routine Optional

IBMPEV11
CEEEV011

Enterprise PL/I library ANY

246 z/OS V2R1.0 Language Environment Customization

Appendix C. Modules eligible for the link pack area

The modules listed in the following table can be put in the LPA or the ELPA,
depending on their RMODE:
v If the RMODE is ANY, the module can reside in the link pack area or in the

extended link pack area (above or below the 16-MB line).
v If the RMODE is 24, the module can reside only in the link pack area (below the

16-MB line).

If you are considering placing the modules listed in this in the LPA or the ELPA,
IBM highly suggests that you place the SCEELPA data set in the LPA list
(LPALSTxx). This data set contains modules that are reentrant, reside above the
line and are heavily used by z/OS itself.

The specific HLL sections contains tables of modules eligible for the LPA or the
ELPA above and beyond what is found in the SCEELPA data set. You will need to
use the Dynamic LPA or MLPA approach to move these modules into the
LPA/ELPA. You do not need to include recommended modules if they contain
functions your installation does not use. Language Environment modules not listed
in these tables can be moved into LPA/ELPA at your discretion.

Language Environment base modules
Modules and aliases listed in Table 28 can be added into LPA/ELPA by using the
sample job CEEWLPA that is found in the SCEESAMP data set.

Table 28. Language Environment modules eligible for inclusion in the link pack area and the
extended link pack area

Language
Environment
module name Description RMODE

CEEBINIT
CEEBLIBM

Initialization/termination for batch 24

CEEBLIIA
IBMBLIIA
IBMBPIIA

OS PL/I and C load module compatibility 24

CEEBLRR Library Retention Routine ANY

CEEBPICI Initialization/termination routines for preinitialization
compatibility

24

CEELRRIN LRR initialization ANY

CEELRRXP LRR Initialization that permits XPLINK ANY

CEELRRTR LRR termination ANY

CEEMENU0 Message file with mixed-case English; messages 000-999 ANY

CEEMENU2 Message file with mixed-case English; messages 2000-2999 ANY

CEEMENU3 Message file with mixed-case English; messages 3000-3999 ANY

CEEMENU4 Message file with mixed-case English; messages 4000-4999 ANY

CEEMENU5 Message file with mixed-case English; messages 5000-5999 ANY

CEEMJPN0 Message file with Japanese; messages 000-999 ANY

© Copyright IBM Corp. 1991, 2013 247

Table 28. Language Environment modules eligible for inclusion in the link pack area and the
extended link pack area (continued)

Language
Environment
module name Description RMODE

CEEMJPN2 Message file with Japanese; messages 2000-2999 ANY

CEEMJPN3 Message file with Japanese; messages 3000-3999 ANY

CEEMJPN4 Message file with Japanese; messages 4000-4999 ANY

CEEMJPN5 Message file with Japanese; messages 5000-5999 ANY

CEEMUEN0 Message file with uppercase English; messages 000-999 ANY

CEEMUEN2 Message file with uppercase English; messages 2000-2999 ANY

CEEMUEN3 Message file with uppercase English; messages 3000-3999 ANY

CEEMUEN4 Message file with uppercase English; messages 4000-4999 ANY

CEEMUEN5 Message file with uppercase English; messages 5000-5999 ANY

CEEPIPI Initialization/termination routines for the Language
Environment preinitialization facility

24

Note: Modules added to LPA must also remain in SCEERUN.

Language Environment C/C++ component modules
The C/C++ component modules and aliases listed in Table 29 can be moved into
LPA/ELPA using the sample job EDCWLPA found in the SCEESAMP data set. The
Language Environment base modules listed in Table 28 on page 247 should also be
moved into LPA/ELPA.

Table 29. C/C++ modules eligible for inclusion in the link pack area and the extended link
pack area

C/C++ module name Description RMODE

EDCHDMNP
DEMANGLE

Demangler ANY

EDCNINSP Debug tool interface ANY

EDCPRLK Prelink utility ANY

EDCRNLIB
EDCRNLST

Rename list ANY

EDCZEMSG Mixed-case US English messages ANY

EDCZJMSG Japanese messages ANY

EDCZUMSG Uppercase English messages ANY

IEDCMSGT C/370 message table ANY

CELHDCPP
SCEECPP

DLL for XPLINK C++ applications ANY

CELHV003 C++ runtime— for AMODE 31 XPLINK
applications

ANY

Note:

248 z/OS V2R1.0 Language Environment Customization

1. EDCNINSP is highly recommended for inclusion in the LPA or ELPA if the
Debug tool is heavily used.

2. EDCPRLK is highly recommended for inclusion in the LPA or ELPA if the
prelink utility is heavily used.

3. The default code page converters or locale modules, or customized code page
converters or locale modules (the ones applicable for the user's country), should
be included in the LPA or ELPA.

Language Environment COBOL component modules
The COBOL component modules and aliases listed in Table 30 can be moved into
LPA/ELPA using the sample job IGZWMLP4 found in the SCEESAMP data set.
The Language Environment base modules listed in Table 28 on page 247 should
also be moved into LPA/ELPA.

Additional modules that exist for OS/VS COBOL compatibility (ILBO) are not
described here. Refer to the OS/VS COBOL documentation for information about
these modules.

Table 30. COBOL modules eligible for inclusion in the link pack area and the extended link
pack area

COBOL
module name Description RMODE

CDAEEDE COBOL Member 4 utility routines CDA API
library

CEEEV004 COBOL Member 4 event handler ANY

CEEEV005 COBOL event handler ANY

IGZCA2D DBCS data manipulation ANY

IGZCD2A DBCS data manipulation ANY

IGZCMTUE COBOL WTO error messages ANY

IGZCPAC COBPACK ANY

IGZCPCO COBPACK ANY

IGZINSH Formatted dump and Debug Tool support ANY

IGZEPCL COBOL termination (VS COBOL II and OS/VS COBOL only) 24

IGZERRE COBOL reusable environment ANY

IGZEWTO COBOL: write error message to operator's console ANY

IGZCWTO COBOL write error message ANY

IGZCD24 COBOL dynamic call to AMODE(24) programs 24

IGZCMGUE COBOL (IGZ) messages in uppercase English ANY

IGZCMGEN COBOL (IGZ) messages in English ANY

IGZCMGJA COBOL (IGZ) messages in Japanese ANY

IGZCMLT
IIGZMSGT

COBOL message tables ANY

IGZEPLF COBOL environment initialization (VS COBOL II and OS/VS
COBOL only)

24

IGZCBUG Used for debugging 24

IGZCLNC Linkage manager for OS/VS COBOL and IGZBRDGE
(dynamic call and cancel)

24

Appendix C. Modules eligible for the link pack area 249

Table 30. COBOL modules eligible for inclusion in the link pack area and the extended link
pack area (continued)

COBOL
module name Description RMODE

IGZCLNK Linkage manager for VS COBOL II and COBOL/370 (dynamic
call and cancel)

24

IGZCULE User I/O logic error handler 24

IGZCXFR I/O declarative transfer 24

IGZEDMR Reusable environment deactivation 24

IGZEINI Environment initialization 24

IGZEINP Accept input reader 24

IGZEOPN OPENs SYSIN and SYSPUNCH in the Initial Program Thread
(IPT)

24

IGZEOUT Display output writer 24

IGZEQBL QSAM initialization transmission verbs, error exits 24

IGZEQOC QSAM OPEN/CLOSE 24

IGZERCO OS/VS COBOL TERMINATION 24

IGZESMG Sort/Merge interface 24

IGZEVAM VSAM-to-IDCAMS interface 24

IGZEVEX VSAM exit module for SYNAD and LERAD 24

IGZESCD SORT-CONTROL I/O handling routine 24

IGZETRM Environment termination 24

IGZLLIBV COBOL Member 4 library vector ANY

IGZXAPI Runtime information query ANY

IGZXDMR Reusable information support 24

IGZXD24 Dynamic call manager 24

IGZXLPIO I/O manager ANY

IGZXLPKA COBOL Member 4 library services 1 ANY

IGZXLPKB COBOL Member 4 library services 2 24

IGZXLPKC COBOL Member 4 core library ANY

IGZXPK2 COBOL Member 4 utility routines ANY

Language Environment Fortran component modules
The Fortran component modules and aliases listed in Table 31 on page 251 can be
moved into LPA/ELPA using the sample job AFHWMLP2 found in the
SCEESAMP data set. The Language Environment base modules listed in Table 28
on page 247 should also be moved into LPA/ELPA.

250 z/OS V2R1.0 Language Environment Customization

Table 31. Fortran modules eligible for inclusion in the link pack area and the extended link
pack area

Fortran
module name Description RMODE

AFHBCITT
AFHBACHK
AFHBACIK
AFHBACJK
AFHBACKK
AFHBCHAR
AFHBCH2R
AFHBCH8R
AFHBIACK
AFHBICHR
AFHBJACK
AFHBJCHR
AFHBLENR
AFHBLN8R

Character intrinsic functions ANY

AFHBCMPT
AFHBCMPR
AFHBXMPR

Complex/character compare routine ANY

AFHBCMVT
AFHBCMVR

Character move routine ANY

AFHBCNCT
AFH-BCNCK
AFHBCNCR

Character concatenation routine ANY

AFHBCSTT
AFHBHCLK
AFHBHCLR
AFHBHSTK
AFHBHSTR
AFHBHTSK
AFHBHTSR
AFHBKCLK
AFHBKCLR
AFHBKSTK
AFHBKSTR
AFHBKTSK
AFHBKTSR

IBCLR/IBSET/BTEST functions ANY

AFHBDPRT
AFHBDPRR
AFHBQPRR

Double/Extended precision product ANY

AFHBFIFT
AFHBIDTR
AFHBIFIR
AFHBINTR

Real to integer intrinsic function ANY

AFHBIBTT
AFHBHBTK
AFHBHBTR
AFHBKBTK
AFHBKBTR

IBITS using INTEGER*1 or INTEGER*2 argument ANY

AFHBIDXT
AFHBIDXK
AFHBIDXR
AFHBJDXK
AFHBJDXR

Character index function ANY

Appendix C. Modules eligible for the link pack area 251

Table 31. Fortran modules eligible for inclusion in the link pack area and the extended link
pack area (continued)

Fortran
module name Description RMODE

AFHBLOGT
AFHBHEOR
AFHBHNDR
AFHBHNOR
AFHBHORR
AFHBIEOR
AFHBINDR
AFHBINOR
AFHBIORR
AFHBJEOR
AFHBJNDR
AFHBJNOR
AFHBJORR

Bit intrinsic functions, INTEGER*4 arguments ANY

AFHBLXCT
AFHBLGEK
AFHBLGER
AFHBLGTK
AFHBLGTR
AFHBLLEK
AFHBLLER
AFHBLLTK
AFHBLLTR
AFHB8GEK
AFHB8GER
AFHB8GTK
AFHB8GTR
AFHB8LEK
AFHB8LER
AFHB8LTK
AFHB8LTR

Lexical comparison routines ANY

AFHBMVBT
AFHBHMBK
AFHBIMBK
AFHBIMBR
AFHBKMBK

MVBITS (move bits) subroutine ANY

AFHBMV8T
AFHBJMBK

MVBITS (move bits) routine, INTEGER*8 arguments ANY

AFHBMXDT
AFHBDMNR
AFHBDMXR

Maximum/minimum function, REAL*8 arguments ANY

AFHBMXIT
AFHBIANR
AFHBIAXR
AFHBIMNR
AFHBIMXR

Maximum/minimum function, INTEGER*4 arguments ANY

AFHBMXRT
AFHBRANR
AFHBRAXR
AFHBRMNR
AFHBRMXR

Maximum/minimum, REAL*4 arguments ANY

252 z/OS V2R1.0 Language Environment Customization

Table 31. Fortran modules eligible for inclusion in the link pack area and the extended link
pack area (continued)

Fortran
module name Description RMODE

AFHBSHCT
AFHBISCK
AFHBISCR
AFHBJSCK
AFHBJSCR
AFHBKSCK
AFHBKSCR
AFHBHSCK
AFHBHSCR

ISHFTC function, all integer argument types ANY

AFHBSHFT
AFHBHLSK
AFHBHLSR
AFHBHRSK
AFHBHRSR
AFHBHSHK
AFHBHSHR
AFHBKLSK
AFHBKLSR
AFHBKRSK
AFHBKRSR
AFHBKSHK
AFHBKSHR

ISHFT bit shift function, INTEGER*1 or INTEGER*2
arguments

ANY

AFHBXMST
AFHBXMSR

Exponent underflow control function ANY

AFHCBFBE
AFHCBFBR

Condition token ownership ANY

AFHCGETT
AFHCGETR

Qualifying data retrieval function ANY

AFHCLC1E
AFHCLC1R

Locator text construction ANY

AFHCLC2E
AFHCLC2R

Message text construction ANY

AFHCMSGE
AFHCMSGR
IFORMSGT

Fortran message table header ANY

AFHCMS1E
AFHCMS1R

Mixed-case English message file 1 ANY

AFHCMS1J Japanese message file 1 ANY

AFHCMS1U Uppercase English message file 1 ANY

AFHCMS2E
AFHCMS2R

Mixed-case English message file 2 ANY

AFHCMS2J Japanese message file 2 ANY

AFHCMS2U Uppercase English message file 2 ANY

AFHCMS3E
AFHCMS3R

Mixed-case English message file 3 ANY

AFHCMS3J Japanese message file 3 ANY

AFHCMS3U Uppercase English message file 3 ANY

Appendix C. Modules eligible for the link pack area 253

Table 31. Fortran modules eligible for inclusion in the link pack area and the extended link
pack area (continued)

Fortran
module name Description RMODE

AFHCMS4E
AFHCMS4R

Mixed-case English message file 4 ANY

AFHCMS4J Japanese message file 4 ANY

AFHCMS4U Uppercase English message file 4 ANY

AFHCPUTT
AFHCPUTR

Qualifying data update ANY

AFHCQFBE
AFHCQFBR

Feedback code query function ANY

AFHCSERT
AFHCSERR

Compiler detected error processing at runtime ANY

AFHCTMHE
AFHCTMHR

MTF termination condition handler ANY

AFHCTOHE
AFHCTOHR

I/O termination condition handler ANY

AFHCTRAT
AFHCTRAR

ERRTRA processing ANY

AFHCXITE
AFHCXITR

Exit DSA activation ANY

AFHFGSTL
AFHFGSTR

Math glue code generator ANY

AFHGDIRE
AFHGDIRR

Direct symbol table lookup ANY

AFHGFORT
AFHGSTNR
AFHGSTXR
AFHGTRCR

TEST option debug interface ANY

AFHGISDE
AFHGISDR

Init symbol dictionary default ANY

AFHGSQLE
AFHGSQLR

Sequential lookup service ANY

AFHIABDT
AFHIABDR

SYSABD processing ANY

AFHIABNT
AFHIABNR

SYSABN processing ANY

AFHIEXTT
AFHIEXTR

CALL EXIT processing ANY

AFHIPAUT
AFHIPAUK
AHHIPAUR

PAUSE processing ANY

AFHIRCST
AFHIRCSR

SYSRCS processing ANY

AFHIRCTT
AFHIRCTR

SYSRCT processing ANY

AFHIRCXT
AFHIRCXR

SYSRCX processing ANY

254 z/OS V2R1.0 Language Environment Customization

Table 31. Fortran modules eligible for inclusion in the link pack area and the extended link
pack area (continued)

Fortran
module name Description RMODE

AFHMMAAG
AFHMMAAR

MTF map and ATTACH routine 24

AFHMSTCT
AFHMSTCR

MTF subtask control 24

AFHMTFAG 3 MTF LIBPACK ANY

AFHOASTE
AFHOASTR

Asynchronous I/O file close at termination routine ANY

AFHOASUG
AFHOASUR

Asynchronous I/O subtask routine 24

AFHOASYT
AFHOAINR
AFHOAOUR
AFHOAWTR

Asynchronous I/O request processing routine ANY

AFHOBDRE
AFHOBDRR

Direct I/O processing routine 24

AFHOBDSE
AFHOBDSR

Build descriptor from parse tree ANY

AFHOBNTE
AFHOBNTR

Build nest table, implied DO in iolist item ANY

AFHOBTRE
AFHOBTRR

Build parse tree ANY

AFHOCLOT
AFHOCLOR

CLOSE processing routine ANY

AFHOCMFE
AFHOCMFR

I/O to terminal or to other device processing routine ANY

AFHOCNTT
AFHOCBSR
AFHOCDLR
AFHOCEFR
AFHOCRWR

Control statement processing routine ANY

AFHOCVIE
AFHOCVIR

Copy parse tree or descriptor ANY

AFHODICT
AFHODICR

DEFINE FILE processing routine ANY

AFHODYNG
AFHODYNR

Dynamic file allocation ANY

AFHOFINT
AFHOFINR

FILEINF processing ANY

AFHOFMPE
AFHOFMPR

Formatted I/O record processing routine ANY

Appendix C. Modules eligible for the link pack area 255

Table 31. Fortran modules eligible for inclusion in the link pack area and the extended link
pack area (continued)

Fortran
module name Description RMODE

AFHOFMTT
AFHOCSFR
AFHODSFR
AFHOESFR
AFHOFXFR
AFHOIXFR
AFHOQKFR
AFHORDFR
AFHORIFR
AFHORKFR
AFHORSFR
AFHOSXFR
AFHOUVFR
AFHOWDFR
AFHOWIFR
AFHOWKFR
AFHOWSFR

Formatted I/O service request routing routine ANY

AFHOFSCG
AFHOFSCR

File name scan ANY

AFHOIBCT
AFHOIAFR
AFHOIANR
AFHOIBSR
AFHOIEFR
AFHOIENR
AFHOILFR
AFHOILNR
AFHOINFR
AFHOIPAR
AFHOIRFR
AFHOIRNR
AFHOIRWR
AFHOIWFR
AFHOIWNR

Pre-VS FORTRAN I/O services routing routine ANY

AFHOINQT
AFHOINQR

INQUIRE statement processing routine ANY

AFHOINTE
AFHOINTR

Internal file I/O service processing routine ANY

AFHOLDFT
AFHOLFAR
AFHOLFER
AFHOLFLR
AFHOLFRR
AFHOLFWR
AFHOLVAR
AFHOLVER
AFHOLVLR
AFHOLVRR
AFHOLVWR

Pre-VSF 1.4.0 list-directed I/O parameter list processor ANY

256 z/OS V2R1.0 Language Environment Customization

Table 31. Fortran modules eligible for inclusion in the link pack area and the extended link
pack area (continued)

Fortran
module name Description RMODE

AFHOLDRT
AFHOCSLR
AFHODSLR
AFHOESLR
AFHOFXLR
AFHOIXLR
AFHORILR
AFHORSLR
AFHOWILR
AFHOWSLR

List-directed I/O processing routine ANY

AFHOLDTE
AFHOAXLR
AFHOLXLR
AFHOMXLR
AFHOTXLR

Pre-VSF 1.4.0 list-directed I/O processing routine ANY

AFHONAMT
AFHONFRR
AFHONFWR
AFHONVRR
AFHONVWR

Pre-VSF 1.4.0 NAMELIST I/O parameter processing routine ANY

AFHONLLE
AFHONLWR

Namelist I/O for static debug ANY

AFHONLTE
AFHOSSNR
AFHOXSNR

Pre-VSF 1.4.0 NAMELIST I/O processing routine ANY

AFHONMLT
AFHOCSNR
AFHOESNR
AFHORINR
AFHORSNR
AFHOWINR
AFHOWSNR

Namelist I/O processing routine ANY

AFHOSCOT
AFHOVAFR
AFHOVANR
AFHOVBKR
AFHOVEFR
AFHOVENR
AFHOVLFR
AFHOVLNR
AFHOVNFR
AFHOVRFR
AFHOVRNR
AFHOVRWR
AFHOVWFR
AFHOVWNR

Pre-VSF 1.4.0 I/O services routing routine ANY

AFHOSIIE
AFHOSIIR

Get scalar intrinsic items ANY

AFHOSTRE
AFHOSTRR

Striped I/O processing routine 24

Appendix C. Modules eligible for the link pack area 257

Table 31. Fortran modules eligible for inclusion in the link pack area and the extended link
pack area (continued)

Fortran
module name Description RMODE

AFHOUFMT
AFHOFDUR
AFHOFXUR
AFHOIXUR
AFHOQKUR
AFHORDUR
AFHORKUR
AFHORSUR
AFHOSXUR
AFHOUVUR
AFHOWDUR
AFHOWKUR
AFHOWSUR

Unformatted I/O processing routine ANY

AFHOUFOE
AFHOEXUR
AFHOLXUR
AFHOMXUR
AFHOPXUR

Pre-VSF 1.4.0 unformatted I/O processing routine ANY

AFHOUNIT
AFHOUNFR
AFHOUNTR

UNTANY/UNTNOFD processing ANY

AFHOVKYE
AFHOVKYR

VSAM KSDS (keyed I/O) services routine 24

AFHOVSMG
AFHOVDIR
AFHOVSQR

VSAM (RRDS, ESDS) I/O services routine 24

AFHPRNAG 1

CEEEV007
AFHPRNAG LIBPACK CSECT ANY

AFHPRNBG 1 AFHPRNBG LIBPACK CSECT 24

AFHRABTT
AFHRABTK

ABORT processing routine ANY

AFHSDYAT
AFHSDYAR

Obtain storage for ALLOCATE statement routine ANY

AFHSDYDT
AFHSDYDR
AFHSDYFK

Free storage for DEALLOCATE statement routine ANY

AFHSFREE
AFHSFRER

Storage free ANY

AFHSGETE
AFHSGETR

Storage get ANY

AFHSSG1T
AFHSSG1R

Signal condition FOR0311S ANY

AFHSSG2T
AFHSSG2R

Signal condition FOR0312S ANY

AFHSSG3T
AFHSSG3R

Signal condition FOR0313S ANY

258 z/OS V2R1.0 Language Environment Customization

Table 31. Fortran modules eligible for inclusion in the link pack area and the extended link
pack area (continued)

Fortran
module name Description RMODE

AFHSVFAT
AFHSVALK
AFHSVALR
AFHSVA4K
AFHSVA4R
AFHSVA8K
AFHSVA8R
AFHSVDEK
AFHSVDER

VSF version ALLOCATE/DEALLOCATE statements routine ANY

AFHTCVSE
AFHTFAOR
AFHTFCOR
AFHTFDOR
AFHTFEOR
AFHTFGOR
AFHTFIOR
AFHTFLOR
AFHTFQOR
AFHTFZOR

I/O data conversion routing routine ANY

AFHTCVTE
AFHTCVTR

I/O data conversion routing routine adcon form ANY

AFHUDMAE
AFHUDMAR

Dump file attributes event handler ANY

AFHUDM2E
AFHUDM2R

Dump variable event handler ANY

AFHUDUMT
AFHUCDMR
AFHUCPDR
AFHUDUMR

Dump processing ANY

AFHUSDMT
AFHUSDMR

SDUMP processing ANY

AFHVSPIT
AFHVSPIR

Obtain compile-time required vector temporaries routine ANY

AFHXARGT
AFHXARGR

Get argument string ANY

AFHXBSDE
AFHXBSDR

New direct symbol table lookup routine ANY

AFHXCDME
AFHXCDMR

Common block directory maintenance routine ANY

AFHXCMNT
AFHXCMNR
AFHXCMSR
AFHXDCDR
AFHXDCFR
AFHXDCGR
AFHXDCIR
AFHXSDCR

Obtain dynamic common blocks storage routine ANY

AFHXCPTV
AFHXCPTR

CPU time processing routine ANY

Appendix C. Modules eligible for the link pack area 259

Table 31. Fortran modules eligible for inclusion in the link pack area and the extended link
pack area (continued)

Fortran
module name Description RMODE

AFHXCUIE
AFHXCUIR

Compiled unit identification routine ANY

AFHXCVDE
AFHXCVDR

Convert and dump program symbols routine ANY

AFHXDCLE
AFHXDCLR

Save area classification routine ANY

AFHXDEST
AFHXDESR

Signal extended common request routine ANY

AFHXDIVT
AFHXDCMR
AFHXDNFR
AFHXDNVR
AFHXDRSR
AFHXDSVR
AFHXDTFR
AFHXDTVR
AFHXDWFR
AFHXDWVR

DIV requests processing routine ANY

AFHXDOCT
AFHXDVKR
AFHXOVER

Divide check/overflow test routine ANY

AFHXDPET
AFHXDPER

Signal parallel execution request routine ANY

AFHXDSPT
AFHXDSNR
AFHXDS2R

Old form calculate array span&slash dimension factor routine ANY

AFHXDTME
AFHXDTMR

Termination exit to close DIV objects ANY

AFHXDYLT
AFHXDYLK
AFHXDYLR

Dynamic loading processing routine ANY

AFHXFAIT
AFHXFAIR

LCP initialize associated variable pointer routine ANY

AFHXFAUT
AFHXFAUR

LCP update associated variable routine ANY

AFHXFFEE
AFHXFFER

Identify entry point type routine ANY

AFHXFMTT
AFHXFMTR

LCP define file processing routine ANY

AFHXIGNT
AFHXIGDR
AFHXIGUR

IGNORE FILE HISTORY processing routine ANY

AFHXLNKT
AFHXLIMK
AFHXLIMR
AFHXLISK
AFHXLISR

Nonshareable to shareable CSECT linkage routine ANY

260 z/OS V2R1.0 Language Environment Customization

Table 31. Fortran modules eligible for inclusion in the link pack area and the extended link
pack area (continued)

Fortran
module name Description RMODE

AFHXOWNE
AFHXOWNR

Save area ownership routine ANY

AFHXPMLT
AFHXPMLK
AFHXPMLR
AFHXPMMK

Subprogram parameter list checker routine ANY

AFHXSIDE
AFHXSIDR

Obtain ISN or sequence number id routine ANY

AFHXSISE
AFHXSISR

Convert item to vib_desc_fmt ANY

AFHXSPNT
AFHXSP4R
AFHXSP5R

Calculate array span/dimension factor routine ANY

AFHXSQLE
AFHXSQLR

New sequential symbol table retrieval ANY

AFHXSTIE
AFHXSTIR

Obtain symbol table information routine ANY

AFHXTIMT
AFHXCLKR
AFHXCLXR
AFHXDMTR
AFHXDTXR

Date/time information routine ANY

AFHXUSDE
AFHXUSDR

Update symbol table retrieval ANY

AFH5ALOP
AFBVALOP

VAL function routine ANY

AFH5AMEP
AFBNAMEP
IFYNAMEP

VSF NAMELIST I/O parmlist decoder ANY

AFH5ARGP
AFBVARGP

VSF 2.6 ARG obtain argument string routine ANY

AFH5ASUB
AFBVASUB

Asynchronous I/O services subtask routine 24

AFH5ASYP
AFBVASYP
IFYVASYP

Asynchronous I/O services driver routine ANY

AFH5BALG
AFBVBALG

Vector boundary alignment routine ANY

AFH5BCOP
AFBIBCOP
IFYIBCOP

Old FORTRAN library services interface routine ANY

AFH5BLNT
AFBVBLNT
IFYVBLNT

Build nest table I/O service routine ANY

AFH5CDMA
AFBVCDMA

VSF COMMON block directory maintenance ANY

Appendix C. Modules eligible for the link pack area 261

Table 31. Fortran modules eligible for inclusion in the link pack area and the extended link
pack area (continued)

Fortran
module name Description RMODE

AFH5CLOP
AFBVCLOP
IFYVCLOP

VSF CLOSE services routine ANY

AFH5COMH
AFBVCOMH

VSF formatted I/O processor ANY

AFH5CONI
AFBVCONI

VSF convert external to internal format ANY

AFH5CONO
AFBVCONO

VSF convert internal to external format ANY

AFH5CPTP
AFBCCPTP
AFBVCPTP

VSF CPUTIME routine ANY

AFH5CVTH
AFBVCVTH

VSF conversion routine ANY

AFH5DFCP
AFBDIOCP
IFYDIOCP

VSF DEFINEFILE processing routine ANY

AFH5DFIP
AFBLDFIP
IFYLDFIP

VSF pre-1.4.0 list-directed I/O decoder ANY

AFH5DIOS
AFBVDIOS

VSF direct access I/O routine 24

AFH5DIVP
AFBVDIVP

VSF Data-In-Virtual services processor ANY

AFH5DOCP
AFBVDOCP

VSF divide check/overflow test routine ANY

AFH5DYLP
AFBVDYLP

VSF dynamic binder routine ANY

AFH5DYNA
AFBCDYNA
AFBVDYNA

VSF dynamic file allocation routine ANY

AFH5EMGN
AFBVEMGN

VSF message build routine ANY

AFH5EXIP
AFBVEXIP

VSF return code and exiting routine ANY

AFH5FINP
AFBVFINP

VSF file information routine ANY

AFH5FISC
AFBCFISC
AFBVFISC

VSF file name scan routine ANY

AFH5IIOS
AFBVIIOS

VSF internal I/O routine ANY

AFH5INQP
AFBVINQP
IFYVINQP

VSF INQUIRE processing routine ANY

AFH5INTH
AFBVINTH

VSF vector program interrupt handler ANY

262 z/OS V2R1.0 Language Environment Customization

Table 31. Fortran modules eligible for inclusion in the link pack area and the extended link
pack area (continued)

Fortran
module name Description RMODE

AFH5IOCP
AFBVIOCP
IFYVIOCP

VSF I/O control processing ANY

AFH5IOFP
AFBVIOFP
IFYVIOFP

VSF formatted I/O router routine ANY

AFH5IOLP
AFBVIOLP
IFYVIOLP

VSF list-directed processor ANY

AFH5IONP
AFBVIONP
IFYVIONP

VSF NAMELIST processor ANY

AFH5IOUP
AFBVIOUP
IFYVIOUP

VSF unformatted I/O processor ANY

AFH5KIOS
AFBVKIOS

VSF keyed I/O processor 24

AFH5LINP
AFBVLINP
IFYVLINP

VSF shareable code load routine ANY

AFH5LOCA
AFBVLOCA

VSF offset locator routine ANY

AFH5MOPP
AFBVMOPP
IFYVMOPP

VSF extended error handling routine ANY

AFH5MSKL
AFBVMSKL

VSF message skeletons ANY

AFH5OCMP
AFBDDCMP
AFBVOCMP
IFYDDCMP

VSF dynamic COMMON processor routine ANY

AFH5OPEP
AFBVOPEP
IFYVOPEP

VSF OPEN processor routine ANY

AFH5RENA 1

AFBVRENA
AFH5RENA LIBPACK CSECT ANY

AFH5RENB 1

AFBVRENB
AFH5RENB LIBPACK CSECT 24

AFH5RENP 1

AFBVRENP
AFH5RENP LIBPACK CSECT ANY

AFH5SCOP
AFBVSCOP
IFYVSCOP

VSF pre-1.4 I/O interface ANY

AFH5SPAP
AFBVSPAP
IFYVSPAP

VSF array span calculator ANY

Appendix C. Modules eligible for the link pack area 263

Table 31. Fortran modules eligible for inclusion in the link pack area and the extended link
pack area (continued)

Fortran
module name Description RMODE

AFH5SPBP
AFBDSPAP
IFYDSPAP

VSF 1.4 array span calculator ANY

AFH5TIMP
AFBVTIMP

VSF obtain date and time routine ANY

AFH5TRCH
AFBVTRCH

VSF traceback routine ANY

AFH5UNIN
AFBVUNIN

VSF vector unnorm argument exception handler ANY

AFH5VDMQ
AFBVDUMQ
IFYVDUMQ

VSF PDUMP/CPDUMP service routine ANY

AFH5VINI
AFBVVINI

VSF vector common area initializer ANY

AFH5VIOS
AFBVVIOS

VSF non-keyed VSAM routine 24

AFH5VTEN
AFBVVTEN

VSF floating point conversion constants ANY

Note: AFH5RENA, AFH5RENB, and AFH5RENP are used only for applications that were
link-edited with VS FORTRAN Version 1 or 2 for execution in load mode.

Language Environment PL/I component modules
The PL/I component modules and aliases listed in Table 32 can be moved into
LPA/ELPA using the sample job IBMALLP2 or IBMPLPA1 found in the
SCEESAMP data set. The Language Environment base modules listed in Table 28
on page 247 should also be moved into LPA/ELPA.

Table 32. PL/I modules eligible for inclusion in the link pack area and the extended link pack
area

PL/I module
name Description RMODE

IBMREV10
CEEEV010

PL/I event handler ANY

CEEEV011 Enterprise PL/I for z/OS event handler ANY

IBMRCCLA
IBMBCCLA

Conversion director (complex strings) 24

IBMRCCRA
IBMBCCRA

Conversion director (non-complex strings) 24

IBMRCOMP Conversion routines vector 24

IBMRDMPJ Dump formatter for Japanese ANY

IBMRDMPM Dump formatter for mixed-case US English ANY

IBMRDMPU Dump formatter for uppercase English ANY

IBMREDOA
IBMBEDOA

Open diagnostic file module 24

264 z/OS V2R1.0 Language Environment Customization

Table 32. PL/I modules eligible for inclusion in the link pack area and the extended link pack
area (continued)

PL/I module
name Description RMODE

IBMREDTA
IBMBEDTA

Diagnostic file transmitter 24

IBMREDWA
IBMBEDWA

Console transmitter 24

IBMREMT
IIBMMSGT

Message table ANY

IBMREOCA
IBMBEOCA

ON-code module / ON-code calculator ANY

IBMRKDBA
IBMBKDBA

Dump file transmitter 24

IBMRKDOA
IBMBKDOA

Open dump file 24

IBMRKDTA
IBMBKDTA

Dump file transmitter 24

CEEKMRA
IBMBKMRA
IBMRKMRA

Link to main dump control module 24

IBMRKPTA
IBMBKPTA

Dump parameter translate module 24

IBMRLANA
IBMBLANA

Language table (mixed-case US English) 24

IBMRLANN
IBMBLANN

Language table (Japanese) 24

IBMRLANU
IBMBLANU

Language table (uppercase English) 24

IBMRLIB1 Lib pack (below the line) 24

IBMRLNTA
IBMBLNTA

Language table (mixed-case US English) 24

IBMRLNTN
IBMBLNTN

Language table (Japanese) 24

IBMRLNTU
IBMBLNTU

Language table (uppercase English) 24

IBMRMCTA
IBMBMCTA

ERF/ERFC (extended float) 24

IBMROCAA
IBMBOCAA

Close module 24

IBMROPEA
IBMBOPEA

Open routine (VSAM) 24

IBMROPZA
IBMBOPZA

Direct output file formatter 24

IBMRPDBA
IBMBPDBA

Debugger interface module 24

IBMRPESA
IBMBPESA

ABEND analyzer 24

Appendix C. Modules eligible for the link pack area 265

Table 32. PL/I modules eligible for inclusion in the link pack area and the extended link pack
area (continued)

PL/I module
name Description RMODE

IBMRPEVA
IBMBPEVA

ABEND diagnostic message module 24

IBMRPTLA
IBMBPTLA

Transient library level data 24

IBMRRAAA
IBMBRAAA

IBMRRAI: regional sequential output 24

IBMRRABA
IBMBRABA

REG(1) sequential unbuffered transmitter 24

IBMRRACA
IBMBRACA

BSAM LOAD REG(2) buffered F-format transmitter 24

IBMRRADA
IBMBRADA

REG(2) SEQ. unbuffered transmitter 24

IBMRRAEA
IBMBRAEA

REG(3) buffered F-format transmitter 24

IBMRRAFA
IBMBRAFA

REG(3) sequential unbuffered F-format transmitter 24

IBMRRAGA
IBMBRAGA

REG(3) buffered U+V-format transmitter 24

IBMRRAHA
IBMBRAHA

REG(3) sequential unbuffered U+V-format transmitter 24

IBMRRAIA
IBMBRAIA

REG(3) buffered VS-format transmitter 24

IBMRRBAA
IBMBRBAA

BSAM REG(1) buffered F-format transmitter 24

IBMRRBBA
IBMBRBBA

BSAM REG(1) unbuffered F-format transmitter 24

IBMRRBCA
IBMBRBCA

REG(2)+(3) buffered F-format transmitter 24

IBMRRBDA
IBMBRBDA

REG(2)+(3) unbuffered F-format transmitter 24

IBMRRBEA
IBMBRBEA

BSAM REG(3) buffered U+V-format transmitter 24

IBMRRBFA
IBMBRBFA

BSAM REG(3) update U+V-format transmitter 24

IBMRRBGA
IBMBRBGA

BSAM REG(3) input/update VS-format transmitter 24

IBMRRCAA
IBMBRCAA

BSAM (consecutive) F-format transmitter 24

IBMBRCBA
IBMRRCBA

BSAM (consecutive) U-format transmitter 24

IBMRRCCA
IBMBRCCA

BSAM (consecutive) V-format transmitter 24

IBMRRCDA
IBMBRCDA

Consecutive unbuffered OMR transmitter 24

266 z/OS V2R1.0 Language Environment Customization

Table 32. PL/I modules eligible for inclusion in the link pack area and the extended link pack
area (continued)

PL/I module
name Description RMODE

IBMRRCEA
IBMBRCEA

Consecutive unbuffered device associated F-format transmitter 24

IBMRRDAA
IBMBRDAA

REG(1) direct F-format transmitter 24

IBMRRDBA
IBMBRDBA

REG(2)+(3) direct F-format transmitter 24

IBMRRDCA
IBMBRDCA

REG(3) direct U-format transmitter 24

IBMRRDDA
IBMBRDDA

REG(3) direct V+VS-format transmitter 24

IBMRREAA
IBMBREAA

Consecutive buffered record I/O error modules 24

IBMRREBA
IBMBREBA

QISAM+BISAM record I/O error modules 24

IBMRRECA
IBMBRECA

REG+SEQ+T.P. files record I/O error modules 24

IBMRREEA
IBMBREEA

VSAM record I/O error modules 24

IBMRREFA
IBMBREFA

Record I/O endfile module 24

IBMRRJAA
IBMBRJAA

QISAM (SCAN) F-format transmitter 24

IBMRRJBA
IBMBRJBA

QISAM (SCAN) V-format transmitter 24

IBMRRKAA
IBMBRKAA

IBMRRKC: indexed direct non-exclusive 24

IBMRRKBA
IBMBRKBA

BISAM F-format transmitter 24

IBMRRKCA
IBMBRKCA

BISAM V-format transmitter 24

IBMRRLAA
IBMBRLAA

QISAM (LOAD) F-format transmitter 24

IBMRRLBA
IBMBRLBA

QISAM (LOAD) V-format transmitter 24

IBMRRQAA
IBMBRQAA

QSAM F-format transmitter 24

IBMRRQBA
IBMBRQBA

QSAM V-format transmitter 24

IBMRRQCA
IBMBRQCA

QSAM U-format transmitter 24

IBMRRQDA
IBMBRQDA

QSAM paper tape transmitter 24

IBMRRQEA
IBMBRQEA

Buffered consecutive spanned record format input 24

Appendix C. Modules eligible for the link pack area 267

Table 32. PL/I modules eligible for inclusion in the link pack area and the extended link pack
area (continued)

PL/I module
name Description RMODE

IBMRRQFA
IBMBRQFA

Buffered consecutive spanned record format output 24

IBMRRQGA
IBMBRQGA

Buffered consecutive record format update 24

IBMRRQHA
IBMBRQHA

Consecutive buffered OMR 24

IBMRRQIA
IBMBRQIA

Consecutive buffered device associated 24

IBMRRTPA
IBMBRTPA

Teleprocessing buffered input/output files 24

IBMRRVAA
IBMBRVAA

ESDS transmitter 24

IBMRRVGA
IBMBRVGA

KSDS sequential output 24

IBMRRVHA
IBMBRVHA

KSDS or PATH input/update/direct 24

IBMRRVIA
IBMBRVIA

VSAM RRDS 24

IBMRRXAA
IBMBRXAA

REG(1) direct F-format exclusive transmitter 24

IBMRRXBA
IBMBRXBA

REG(2)+(3) direct F-format exclusive transmitter 24

IBMRRXCA
IBMBRXCA

REG(3) direct U-format exclusive transmitter 24

IBMRRXDA
IBMBRXDA

REG(3) direct V+VS-format exclusive transmitter 24

IBMRRYAA
IBMBRYAA

BISAM F-format transmitter 24

IBMRRYBA
IBMBRYBA

BISAM FB-format transmitter 24

IBMRRYCA
IBMBRYCA

BISAM V-format transmitter 24

IBMRRYDA
IBMBRYDA

BISAM VB-format transmitter 24

IBMRSAP
IBMESAP

CICS bootstrap 24

IBMRSICA
IBMBSICA

Conversational input transmitter 24

IBMRSOCA
IBMBSOCA

Conversational output transmitter 24

IBMRSOFA
IBMBSOFA

Output file transmitter (F-format) 24

IBMRSOUA
IBMBSOUA

Output file transmitter (U-format) 24

268 z/OS V2R1.0 Language Environment Customization

Table 32. PL/I modules eligible for inclusion in the link pack area and the extended link pack
area (continued)

PL/I module
name Description RMODE

IBMRSOVA
IBMBSOVA

Output file transmitter (V-format) 24

IBMRSPCA
IBMBSPCA

Conversational file formatting 24

IBMRSTFA
IBMBSTFA

Print file transmitter (F-record) 24

IBMRSTIA
IBMBSTIA

Input file transmitter 24

IBMRSTUA
IBMBSTUA

Print file transmitter (U-record) 24

IBMRSTVA
IBMBSTVA

Print file transmitter (V-record) 24

IBMSOPAA
IBMBOPAA

Open 24

IBMUPJR0
IBMTPJRA

OS PL/I multitasking load module compatibility 24

IBM9LMSA NLS mixed-case message source ANY

IBM9LMSN NLS Japanese message source ANY

IBM9LMSU NLS uppercase message source ANY

IBM9LM2A NLS mixed-case message ANY

IBM9LM2N NLS Japanese message ANY

IBM9LM2U NLS uppercase English message ANY

Appendix C. Modules eligible for the link pack area 269

270 z/OS V2R1.0 Language Environment Customization

Appendix D. National language support

This topic contains information to help you modify your code for national
language support and list the codes for each country.

Modifying the JCL for Japanese national language support
Table 33 specifies additional changes you will need to make in the sample
customization jobs if you want to install Language Environment Japanese national
language support (NLS) on the MVS platform.

Table 33. JCL modifications for Japanese national language support

For this MVS job... Modify the JCL like this...

CEEWDXIT
CEEWCXIT
CEEWUXIT

Change the NATLANG runtime option default in the CEEXOPT
macro to NATLANG=(JPN).

IGZWMLP4 To store the Japanese module in the link pack area, remove the
IGZCMGEN module name and add the IGZCMGJA module name.

National language support country codes for Language Environment
Table 34 contains valid country identifiers along with their respective countries:

Table 34. Country codes

Code Country/region Code Country/region

AD Andorra AE United Arab Emirates
AF Afghanistan AG Antigua and Barbuda
AL Albania AN Netherlands Antilles
AO Angola AR Argentina
AT Austria AU Australia
BA Bosnia/ Herzegovina BB Barbados
BD Bangladesh BE Belgium
BF Burkina Faso (Upper Volta) BG Bulgaria
BH Bahrain BI Burundi
BJ Benin BM Bermuda
BN Brunei Darussalam BO Bolivia
BR Brazil BS Bahamas
BU Burma BW Botswana
CA Canada CF Central African Republic
CG Congo CH Switzerland
CI Ivory Coast CL Chile
CM Cameroon CN People's Republic of China
CO Colombia CR Costa Rica
CS Czechoslovakia CU Cuba
CY Cyprus CZ Czech Republic
DE Germany DK Denmark
DO Dominican Republic DZ Algeria
EC Ecuador EE Estonia
EG Egypt ES Spain
ET Ethiopia FI Finland
FR France GA Gabon

© Copyright IBM Corp. 1991, 2013 271

Table 34. Country codes (continued)

Code Country/region Code Country/region

GB United Kingdom GH Ghana
GM Gambia GN Guinea
GR Greece GT Guatemala
GW Guinea-Bissau GY Guyana
HK China (Hong Kong S.A.R.) HN Honduras
HR Croatia HT Haiti
HU Hungary ID Indonesia
IE Ireland IL Israel
IN India IQ Iraq
IR Iran IS Iceland
IT Italy JM Jamaica
JO Jordan JP Japan
KE Kenya KR Korea, Republic of
KW Kuwait KY Cayman Islands
LB Lebanon LC Saint Lucia
LI Lichtenstein LK Sri Lanka
LR Liberia LS Lesotho
LT Lithuania LU Luxembourg
LV Latvia LY Libya
MA Morocco MC Monaco
MG Madagascar MK Macedonia
ML Mali MO China (Macau S.A.R.)
MR Mauritania MT Malta
MU Mauritius MW Malawi
MX Mexico MY Malaysia
MZ Mozambique NA Namibia
NC New Caledonia NG Nigeria
NE Niger NI Nicaragua
NL Netherlands NO Norway
NZ New Zealand OM Oman
PA Panama PE Peru
PG Papua New Guinea PH Philippines
PK Pakistan PL Poland
PR Puerto Rico PT Portugal
PY Paraguay QA Qatar
RO Romania RU Russian Federation
SA Saudi Arabia SC Seychelles
SD Sudan SE Sweden
SG Singapore SI Slovenia
SK Slovakia SL Sierra Leone
SN Senegal SO Somalia
SR Surinam SU Union of Soviet Socialist Republics
SV El Salvador SY Syria
SZ Swaziland TD Chad
TG Togo TH Thailand
TN Tunisia TR Turkey
TT Trinidad and Tobago TW Taiwan
TZ Tanzania UG Uganda
US United States UY Uruguay
VE Venezuela VU Vanuatu
WS Western Samoa YE Yemen
YU Yugoslavia ZA South Africa
ZM Zambia ZR Zaire

272 z/OS V2R1.0 Language Environment Customization

Table 34. Country codes (continued)

Code Country/region Code Country/region

ZW Zimbabwe

Appendix D. National language support 273

274 z/OS V2R1.0 Language Environment Customization

Appendix E. Accessibility

Accessible publications for this product are offered through the z/OS Information
Center, which is available at www.ibm.com/systems/z/os/zos/bkserv/.

If you experience difficulty with the accessibility of any z/OS information, please
send a detailed message to mhvrcfs@us.ibm.com or to the following mailing
address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually

© Copyright IBM Corp. 1991, 2013 275

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!

276 z/OS V2R1.0 Language Environment Customization

(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix E. Accessibility 277

278 z/OS V2R1.0 Language Environment Customization

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1991, 2013 279

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

280 z/OS V2R1.0 Language Environment Customization

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming interface information
This publication documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of Language Environment in
z/OS. This publication also documents information that is NOT intended to be
used as a Programming Interface of Language Environment.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corporation in the United States, other countries,
or both. If these and other IBM trademarked terms are marked on their first
occurrence in this information with a trademark symbol (® or ™), these symbols
indicate U.S. registered or common law trademarks owned by IBM at the time this
information was published. Such trademarks may also be registered or common
law trademarks in other countries. A current list of IBM trademarks is available on
the Web at www.ibm.com/legal/copytrade.shtml (http://www.ibm.com/legal/
copytrade.shtml).

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle, its affiliates, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 281

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

282 z/OS V2R1.0 Language Environment Customization

Index

A
abend

CEEEXTAN CSECT 152
CICS 154
customization job 153
identifying 151
non-CICS (MVS batch) 153
syntax 195
using 195

abnormal termination exit
CEEEXTAN CSECT 152
CEEWQEXT 154
CICS 154
customization job 153
identifying 151
non-CICS (MVS batch) 153
syntax 195
using 195

abnormal termination user exit 147
ABPERC runtime option 46
ABTERMENC runtime option 47
accessibility 277

contact IBM 277
features 277

AIXBLD runtime option 49
ALL31 runtime option 50
ANYHEAP runtime option 52
assembler language

user exit 185
assembler user exit 147
assistive technologies 277
AUTOTASK runtime option 54

B
BELOWHEAP runtime option 54

C
cataloged procedure

list of 159
making available to your jobs 160

CBLOPTS runtime option 56
CBLPSHPOP runtime option 57
CBLQDA runtime option 58
CEEBDATX abnormal termination

exit 151
CEEBXITA assembler user exit 185
CEEBXITA assembler user exit

interface 188
CEECOPT 24
CEEDOPT 24
CEEPRMxx 23
CEEROPT 43
CEEWCEXT

JCL for 154
CEEWCXIT 43
CEEWDEXT 43, 151

JCL for 154
CEEWDXIT 43

CEEWHLLX 43, 150
JCL for 151

CEEWLNUE
JCL for 156

CEEWQEXT
JCL for 154

CEEWROPT 43
CEEWUXIT 43

JCL for 150
CEEXOPT macro 39
CELQDOPT 24
CHECK runtime option 61
CICS

customizing
abnormal termination exit 154

installing Language Environment
support for 163

COBOL
compatibility with Language

Environment options 45
runtime options specific to 45

COBOL component modules 251
COBOL debug file name 178
COBOL debug file user exit 179
COBOL debug file user exit

interface 179
COBOL formatted dump behavior 177
COBOL parameter list exit 175
COBOL reusable environment

behavior 176
COBOL runtime environment 176
COBOL runtime environment

behavior 178
command

syntax diagrams xi
condition nesting 63
COUNTRY runtime option 61, 273
CSECT

CEECOPT, CICS macro
sample of 41

CEEDOPT, non-CICS macro
sample of 40, 42

customizing
high-level language user exit 150
procedure 3, 150, 151, 154, 155, 156,

176, 181

D
D CEE 23
DCT (destination control table). 165
DEBUG runtime option 63
DEPTHCONDLMT runtime option 63
destination control table (DCT) 165
DYNDUMP runtime option 65

E
EDCLLOCL

modifying the JCL 181

ELPA (extended link pack area) 249
ENVAR runtime option 68
ERRCOUNT runtime option 70
ERRUNIT runtime option 71
exit

abnormal termination 151
syntax 195

assembler, customizing 185
high-level language user 150

F
FILEHIST runtime option 72
FILETAG runtime option 72
Fortran

customizing for Fortran
applications 219, 240

LIBPACKs
tailoring Fortran LIBPACKs 12,

16, 240, 248

H
HEAP runtime option 74
HEAP64 runtime option 77
HEAPPOOLS64 runtime option 84
high-level language (HLL) user exit 147
high-level language user exit 150, 185

I
IGZWARRE

modifying the JCL 178
IMS

performance considerations 171
INQPCOPN runtime option 88
installation

support for CICS 163
INTERRUPT runtime option 88
IOHEAP64 runtime option 89

J
JCL (Job Control Language)

common modifications
for customization 3

JCL for CEEWCEXT 154
JCL for CEEWDEXT 154
JCL for CEEWHLLX 151
JCL for CEEWLNUE 156
JCL for CEEWQEXT 154
JCL for CEEWUXIT 150
JCL for EDCLLOCL 181
JCL for IGZWAPSX 176
JCL for IGZWARRE 178
Job Control Language (JCL)

common modifications
for customization 3

© Copyright IBM Corp. 1991, 2013 283

K
keyboard

navigation 277
PF keys 277
shortcut keys 277

L
Language Environment

customizing 3
library 159
library routine retention 171
LIBSTACK runtime option 92
link pack area (LPA).

installing Language Environment
into 249

load notification user exit 147
locale time information 181
LPA (link pack area)

installing Language Environment
into 249

M
modifying the 175
MSGFILE runtime option 94
MSGQ runtime option 98
Multiple Virtual System (MVS)

installing
in a link pack area 249

N
national language support (NLS) 273
NATLANG runtime option 98
navigation

keyboard 277
nested conditions

limiting 63
nested enclave behavior 177
Notices 281

O
OCSTATUS runtime option 100
OS/VS COBOL 174
OS/VS COBOL compatibility library

routines 173

P
parmlib member

CEEPRMxx 23
examples 26
setting defaults 23

passing
parameters at invocation 45, 56
runtime options at invocation 45, 56

PC runtime option 101
performance

considerations for IMS 171
procedure, cataloged

list of 159
making available to your jobs 160

program resource definitions
adding for CICS 163

PRTUNIT runtime option 105
PUNUNIT runtime option 105

R
RDRUNIT runtime option 106
RECPAD runtime option 106
RTEREUS runtime option 110
runtime options 45

ABPERC—percolate an abend 46
ABTERMENC—determine how an

enclave terminates 47
AIXBLD—invoke AMS for

COBOL 49
ALL31—indicate whether application

runs in AMODE(31) 50
ANYHEAP—control unrestricted

library heap storage 52
AUTOTASK—specify whether Fortran

MTF is to be used 54
BELOWHEAP—control library heap

storage below 16 MB 54
CBLOPTS—specify format of COBOL

argument 56
CBLPSHPOP—control CICS

commands 57
CBLQDA—control COBOL

QSAM 58
CHECK—detect checking errors 61
COBOL-specific 45
COUNTRY—specify default date/time

formats 61
customizing 19
DEBUG—activate COBOL batch

debugging 63
DEPTHCONDLMT—limit extent of

nested conditions 63
ENVAR—set initial values for

environment variables 68
ERRCOUNT—specify number of

errors allowed 70
ERRUNIT—specify unit number to

which error information is
directed 71

FILEHIST—specify whether to allow a
file definition to be changed at
runtime 72

FILETAG—specify whether to allow
AUTOTAG / AUTOCVT. 72

HEAP—control allocation of
heaps 74

HEAP64 — controls allocation of user
heap storage 77

HEAPCHK—runs additional heap
check tests 79

HEAPPOOLS—control allocation of
optional heap pools storage 81

HEAPPOOLS64 — controls optional
user heap storage management
algorithm 84

INFOMSGFILTER—eliminates
unwanted informational
messages 86

runtime options (continued)
INQPCOPN—control value in

OPENED specifier of INQUIRE by
unit statement 88

INTERRUPT—cause attentions to be
recognized by Language
Environment 88

IOHEAP64 — controls allocation of
I/O heap storage 89

LIBSTACK—control library stack
storage 92

MSGFILE—specify ddname of
diagnostic file 94

MSGQ—specify number of ISI blocks
allocated 98

NATLANG—specify national
language 98

OCSTATUS—control checking of file
existence and whether file deletion
occurs 100

PC—control whether Fortran status
common blocks are shared among
load modules 101

PLITASKCOUNT—control the
maximum number of active
tasks 102

POSIX—specify whether enclave runs
with POSIX semantics 103

PROFILE—controls optional PROFILE
use 104

PRTUNIT—specifies unit number
used for PRINT and WRITE
statements 105

PUNUNIT—specifies unit number
used for PUNCH statements 105

RDRUNIT—specifies unit number
used for READ statements 106

RECPAD—specifies whether a
formatted input record is padded
with blanks 106

RTEREUS—initialize a reusable
COBOL environment 110

SIMVRD—specify VSAM KSDS for
COBOL 112

STACK—allocate stack storage 113
STORAGE—control storage 118
TERMTHDACT—specify type of

information generated with
unhandled error 121

TEST—indicate debug tool to gain
control 127

THREADHEAP—control the
allocation of thread-level heap
storage 129

THREADSTACK—control the
allocation of stack storage 131

TRACE—activate Language
Environment runtime library
tracing 135

TRAP—handle abends and program
interrupts 137

UPSI—set UPSI switches. 140
USRHDLR—register a user condition

handler at stack frame 0 141
VCTRSAVE—use vector facility 143
XUFLOW—specify program interrupt

due to exponent underflow 143

284 z/OS V2R1.0 Language Environment Customization

S
sample job

high-level language user exit 150
procedure 3, 150, 151, 154, 155, 156,

176, 181
sending comments to IBM xv
SET CEE 23
SETCEE 23
shortcut keys 277
SIMVRD runtime option 112
STACK runtime option 113
storage

required for MVS
link pack area for MVS 249

STORAGE runtime option 118
storage tuning user exit 147

creating 158
summary of changes

as updated December 2013 xvii
Summary of changes xvii
syntax diagrams

how to read xi

T
target library

description of 5
TERMTHDACT runtime option 121
TEST runtime option 127
THREADSTACK runtime option 131
TRACE runtime option 135
trademarks 283
TRAP runtime option 137
TSO/E LOGON procedure 159

U
UPSI runtime option 45

ABPERC—percolate an abend 46
ABTERMENC—determine how an

enclave terminates 47
AIXBLD—invoke AMS for

COBOL 49
ALL31—indicate whether application

runs in AMODE(31) 50
ANYHEAP—control unrestricted

library heap storage 52
AUTOTASK—specify whether Fortran

MTF is to be used 54
BELOWHEAP—control library heap

storage below 16 MB 54
CBLOPTS—specify format of COBOL

argument 56
CBLPSHPOP—control CICS

commands 57
CBLQDA—control COBOL

QSAM 58
CHECK—detect checking errors 61
COBOL-specific 45
COUNTRY—specify default date/time

formats 61
DEBUG—activate COBOL batch

debugging 63
DEPTHCONDLMT—limit extent of

nested conditions 63

UPSI runtime option (continued)
ENVAR—set initial values for

environment variables 68
ERRCOUNT—specify number of

errors allowed 70
ERRUNIT—specify unit number to

which error information is
directed 71

FILEHIST—specify whether to allow a
file definition to be changed at
runtime 72

FILETAG—specify whether to allow
AUTOTAG / AUTOCVT. 72

HEAP—control allocation of
heaps 74

HEAPCHK—runs additional heap
check tests 79

HEAPPOOLS—control allocation of
optional heap pools storage 81

INFOMSGFILTER—eliminates
unwanted informational
messages 86

INQPCOPN—control value in
OPENED specifier of INQUIRE by
unit statement 88

INTERRUPT—cause attentions to be
recognized by Language
Environment 88

LIBSTACK—control library stack
storage 92

MSGFILE—specify ddname of
diagnostic file 94

MSGQ—specify number of ISI blocks
allocated 98

NATLANG—specify national
language 98

OCSTATUS—control checking of file
existence and whether file deletion
occurs 100

PC—control whether Fortran status
common blocks are shared among
load modules 101

PLITASKCOUNT—control the
maximum number of active
tasks 102

POSIX—specify whether enclave runs
with POSIX semantics 103

PROFILE—controls optional PROFILE
use 104

PRTUNIT—specifies unit number
used for PRINT and WRITE
statements 105

PUNUNIT—specifies unit number
used for PUNCH statements 105

RDRUNIT—specifies unit number
used for READ statements 106

RECPAD—specifies whether a
formatted input record is padded
with blanks 106

RTEREUS—initialize a reusable
COBOL environment 110

SIMVRD—specify VSAM KSDS for
COBOL 112

STACK—allocate stack storage 113
STORAGE—control storage 118

UPSI runtime option (continued)
TERMTHDACT—specify type of

information generated with
unhandled error 121

TEST—indicate debug tool to gain
control 127

THREADHEAP—control the
allocation of thread-level heap
storage 129

THREADSTACK—control the
allocation of stack storage 131

TRACE—activate Language
Environment runtime library
tracing 135

TRAP—handle abends and program
interrupts 137

UPSI—set UPSI switches. 140
USRHDLR—register a user condition

handler at stack frame 0 141
VCTRSAVE—use vector facility 143
XUFLOW—specify program interrupt

due to exponent underflow 143
user

exit
abnormal termination 147
assembler 147, 185
high-level language 150, 185
high-level language (HLL) 147
load notification 147
storage tuning 147

user interface
ISPF 277
TSO/E 277

USRHDLR runtime option 141

V
VCTRSAVE runtime option 143

W
worksheet

changing runtime option defaults
on MVS 19

X
XUFLOW runtime option 143

Index 285

286 z/OS V2R1.0 Language Environment Customization

����

Product Number: 5650-ZOS

Printed in USA

SA38-0685-01

	Contents
	Figures
	Tables
	About this document
	Who should read this information
	How to read syntax diagrams
	Symbols
	Syntax items
	Syntax examples

	z/OS information

	How to send your comments to IBM
	If you have a technical problem

	z/OS Version 2 Release 1 summary of changes
	Summary of changes for Language Environment

	Part 1. Language Environment Customization: General information
	Chapter 1. Customization overview
	Deciding whether and what to customize

	Chapter 2. Description of Language Environment target libraries
	Chapter 3. Choosing your Language Environment runtime library access
	LNKLST
	STEPLIB

	Chapter 4. Placing Language Environment modules in link pack and LIBPACK
	Tailoring the Fortran LIBPACKs
	Choices to make now

	Listing the contents of Fortran LIBPACKs
	Modifying the JCL for AFHWLIST

	Deleting routines from Fortran LIBPACKs
	Steps for modifying the JCL to delete routines from a Fortran LIBPACK

	Adding routines to Fortran LIBPACKs
	Steps for modifying the JCL for adding routines to a Fortran LIBPACK

	Where to place the tailored Fortran LIBPACKs

	Part 2. Language Environment Customization: Runtime options, exits, and procedures
	Chapter 5. Customizing Language Environment runtime options
	Creating system-level runtime option defaults with CEEPRMxx
	CEEPRMxx parmlib member
	CEE= statement at IPL
	SET CEE command
	SETCEE command
	D CEE command
	CEEPRMCC - syntax checking under z/OS batch
	CEEPRMCK - syntax checking under TSO/E

	Creating region-level runtime option defaults with CEEXOPT
	Sample invocation of CEEXOPT within the CEERDOPT member
	Sample invocation of CEEXOPT within the CEERCOPT member
	Sample invocation of CEEXOPT within the CELQRDOP member
	CEEXOPT invocation for CEEROPT (AMODE 31)
	CEEXOPT invocation for CELQROPT (AMODE 64)
	CEEXOPT coding guidelines for CEEROPT and CELQROPT

	Chapter 6. Language Environment runtime options
	Cobol compatibility
	Runtime options
	ABPERC
	ABTERMENC
	AIXBLD (COBOL only)
	ALL31
	ANYHEAP
	AUTOTASK | NOAUTOTASK (Fortran only)
	BELOWHEAP
	CBLOPTS (COBOL only)
	CBLPSHPOP (COBOL only)
	CBLQDA (COBOL Only)
	CEEDUMP
	CHECK (COBOL only)
	COUNTRY
	DEBUG (COBOL only)
	DEPTHCONDLMT
	DYNDUMP
	ENVAR
	ERRCOUNT
	ERRUNIT (Fortran only)
	FILEHIST (Fortran only)
	FILETAG (C/C++ only)
	HEAP
	HEAP64 (AMODE 64 only)
	HEAPCHK
	HEAPPOOLS (C/C++ and Enterprise PL/I only)
	HEAPPOOLS64 (AMODE 64 only)
	INFOMSGFILTER
	INQPCOPN (Fortran only)
	INTERRUPT
	IOHEAP64 (AMODE 64 only)
	LIBHEAP64 (AMODE 64 only)
	LIBSTACK
	MSGFILE
	MSGQ
	NATLANG
	OCSTATUS (Fortran only)
	PC (Fortran only)
	PLITASKCOUNT (PL/I only)
	POSIX
	PROFILE
	PRTUNIT (Fortran only)
	PUNUNIT (Fortran only)
	RDRUNIT (Fortran only)
	RECPAD (Fortran only)
	RPTOPTS
	RPTSTG
	RTEREUS (COBOL only)
	SIMVRD (COBOL only)
	STACK
	STACK64 (AMODE 64 only)
	STORAGE
	TERMTHDACT
	TEST | NOTEST
	THREADHEAP
	THREADSTACK
	THREADSTACK64 (AMODE 64 only)
	TRACE
	TRAP
	UPSI (COBOL only)
	USRHDLR
	VCTRSAVE
	XUFLOW

	Chapter 7. Customizing user exits
	Example
	Changing the assembler language user exit
	Changing the installation-wide assembler language user exit (non-CICS)
	Changing the installation-wide assembler language user exit (CICS)
	Creating an application-specific assembler language user exit
	Steps for modifying the JCL for CEEWUXIT

	Changing the high-level language user exit
	Steps for modifying the JCL for CEEWHLLX

	Customizing Language Environment abnormal termination exits
	Creating a Language Environment abnormal termination exit
	CEEEXTAN abnormal termination exit CSECT
	Jobs to generate and modify CEEEXTAN CSECT

	Identifying the abnormal termination exit (non-CICS)
	Steps for modifying the JCL for CEEWDEXT

	Identifying the abnormal termination exit (CICS)
	Steps for modifying the JCL for CEEWCEXT

	Identifying the abnormal termination exit (AMODE 64)
	Steps for modifying the JCL for CEEWQEXT

	Creating global user exit XPCFTCH (CICS)
	Using XPCFTCH for an Enterprise PL/I routine
	Using XPCFTCH for a PL/I routine
	Using XPCFTCH for a C/C++ routine

	Creating a load notification user exit
	Identifying the load notification user exit
	Steps for modifying the JCL for CEEWLNUE

	CEEBLNUE CSECT
	CEEBLNUE sample

	Creating a storage tuning user exit

	Chapter 8. Customizing the cataloged procedures
	Making the cataloged procedure library available to your jobs
	Tailoring the cataloged procedures and CLISTs to your site

	Chapter 9. Using Language Environment under CICS
	Add program resource definitions for CICS
	Add destination control table (DCT) entries
	Specifying the side file interface to be used
	Add Language Environment-CICS data sets to the CICS startup job stream
	Language Environment automatic storage tuning for CICS
	Enclaves eligible for automatic storage tuning
	Automatic storage tuning behavior
	Altering the automatic storage tuning behavior

	Chapter 10. Using Language Environment under IMS
	Initializing library routine retention
	Ending library routine retention

	Chapter 11. Customizing language-specific features
	Choices to make now
	Modifying the OS/VS COBOL compatibility library routines
	OS/VS COBOL considerations
	VSAM considerations
	JOB STEP ERROR COMPLETION CODE (RC12/ABEND U0295)
	IF NUMERIC CLASS TEST allows only C, D, and F

	Modifying the COBOL parameter list exit
	Steps for modifying the JCL for IGZWAPSX

	Modifying the COBOL runtime environment
	Modifying COBOL reusable environment behavior
	Modifying nested enclave behavior
	Modifying COBOL formatted dump behavior
	Modifying the behavior of the COBOL runtime environment
	Modifying the JCL for IGZWARRE

	Modifying the COBOL debug file name
	Using a COBOL debug file user exit
	Using the COBOL debug file user exit interface
	COBOL debug file user exit samples

	Changing the C/C++ locale time information
	Modifying the JCL for EDCLLOCL

	Part 3. Appendixes
	Appendix A. Language Environment user exits
	Assembler and HLL user exits
	When assembler and HLL user exits are invoked
	CEEBXITA behavior during enclave initialization
	CEEBXITA behavior during enclave termination
	CEEBXITA behavior during process termination
	Specifying abend codes to be percolated by Language Environment
	Actions taken for errors that occur within the exit
	CEEBXITA assembler user exit interface
	Parameter values in the assembler user exit

	Abnormal termination exit
	Usage notes for AMODE 31 applications
	Usage notes for AMODE 64 applications

	Load notification user exit
	Storage tuning user exit
	Region initialization
	Region termination
	Enclave initialization
	Enclave termination
	New load module (CICS only)
	Using the storage tuning user exit
	Using the storage tuning user exit to collect information
	Using the storage tuning user exit to provide storage values
	Using the storage tuning user exit to provide storage values
	Storage tuning user exit interface

	Appendix B. Using Fortran with Language Environment
	Customizing for Fortran applications link-edited with Language Environment
	Changing the unit attribute table default values
	Starting the unit attribute table definition using the AFHOUTCM macro
	Associating units with DCB characteristics using the AFHOUNTM macro
	Specifying the DCB characteristics using the AFHODCBM macro
	Ending the unit attribute table definition using the AFHOUTCM macro
	IBM-supplied unit attribute table default values
	Examples of changing unit attribute table default values

	Customizing for Fortran applications link-edited with VS FORTRAN
	Changing the unit attribute table default values
	Starting the unit attribute table definition using the VSF2UAT macro
	Associating units with dcb characteristics using the VSF2UNIT macro
	Specifying the DCB characteristics using the VSF2DCB macro
	Ending the unit attribute table definition using the VSF2UAT macro
	IBM-supplied unit attribute table default values
	Examples of changing unit attribute table default values

	Changing VS FORTRAN runtime option defaults
	Changing the error option table defaults

	Customizing Fortran LIBPACKs
	Contents of the Fortran LIBPACK AFHPRNAG
	Contents of the Fortran LIBPACK AFHPRNBG
	Contents of the Fortran LIBPACK AFH5RENA
	Contents of the Fortran LIBPACK AFH5RENB

	Appendix C. Modules eligible for the link pack area
	Language Environment base modules
	Language Environment C/C++ component modules
	Language Environment COBOL component modules
	Language Environment Fortran component modules
	Language Environment PL/I component modules

	Appendix D. National language support
	Modifying the JCL for Japanese national language support
	National language support country codes for Language Environment

	Appendix E. Accessibility
	Accessibility features
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Trademarks

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

