<|lI!

High Level Assembler for z/0S & z/VM & z/VSE

General Information

Version 1 Release 6

GC26-4943-06

Note

Before using this information and the product it supports, be sure to read the general information under

This edition applies to IBM High Level Assembler for z/OS & z/VM & z/VSE, Release 6, Program Number
5696-234 and to any subsequent releases until otherwise indicated in new editions. Make sure you are using the
correct edition for the level of the product.

Order publications through your IBM representative or the IBM branch office serving your locality.

IBM welcomes your comments. For information on how to send comments, see [“How to send your comments to|
BM” on page xiii,

When you send information to IBM, you grant IBM a nonexclusive right to use or distribute the information in any
way it believes appropriate without incurring any obligation to you.

© Copyright IBM Corporation 1992, 2013.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
Figures .
Tables .

About this manual .

Who should use this manual.

Organization of this manual . .
High Level Assembler Publrcatlons
Online publications . .o

How to send your comments to IBM
If you have a technical problem

Chapter 1. What's new in High Level
Assembler release 6

Chapter 2. Introduction to High Level
Assembler.

Language compatibility . .

Highlights of High Level Assembler

The Toolkit Feature .

Planning for High Level Assembler .
Year 2000 support for High Level Assembler.

Chapter 3. Assembler language
extensions ..
Additional assembler instructions
Revised assembler instructions
2-Byte relocatable address constants
Character set support extensions.
Standard character set .
Double-byte character set .
Translation table .
Unicode support . .
Assembler language syntax extens1ons
Blank lines .
Comment statements
Mixed-case input .
Continuation lines .
Continuation lines and double-byte data
Continuation error warning messages
Symbol length
Underscore
Literals . ..
Levels within expressions.

. Vil

. ix
. ix

. X1

xiii

. xiil

R W w W

O O O O O O O W ww o ul Ol

Generalized object format modules (z / OS and CMS) 11

Extended addressing support

Addressing mode (AMODE) and re51dence mode

(RMODE) . .

Channel Command Words (CCWO and CCWl)
Programming sectioning and linking controls .

Read-only control sections

Association of code and data areas

© Copyright IBM Corp. 1992, 2013

Multiple location counters
External dummy sections.
Number of external symbols.

Addressing extensions. .
Labeled USINGs and qual1f1ed symbols .
Dependent USINGs.

Specifying assembler options in external ﬁle or

library member . . .
Specifying assembler 0pt10ns in the source
program .

IBM-supplied default assembler opt1ons

Chapter 4. Macro and conditional
assembly language extensions
The macro language .o
General advantages in using macros .
Assembler editing of the macro definition .
Macro language extensions .
Redefining macros .
Inner macro definitions

Generated macro instruction operatlon codes .
Multilevel sublists in macro instruction operands

Macro instruction name entries .

DBCS language support . .

Source stream input—AREAD .

Source stream insertion—AINSERT

Macro definition listing control—ASPACE and

AEJECT ..

Other macro language extensmns .
Conditional assembly language extensions .

External function calls .

Built-in functions

AIF instruction .

AGO instruction. .

Extended continuation statements

SET symbols and SETx statements.

Substring length value.

Attribute references.

Redefining conditional assembly 1nstruct10ns .

System variable symbols . .
&SYSTIME and the AREAD statement

Chapter 5. Using exits to complement
file processing

User exit types

How to supply a user ex1t to the assembler

Passing data to I/O exits from the assembler source

Statistics .

Disabling an exit .
Communication between ex1ts .
Reading edited macros (z/VSE only) .

Sample exits provided with High Level Assembler

(z/0OS and CMS)

.13
.13
.13
.14
.14
. 15

. 16

. 16
.17

. 19
.19
.19
.20
.20
.20
.21
.22

22

.22
.23
.23
. 25

. 25
. 25
. 26
. 26
. 26
. 26
. 26
.27
.27
. 29
. 30
. 33
. 34
. 35

. 37
.37
. 38

38

. 38
. 39
. 39
. 39

. 39

iii

Chapter 6. Programming and
diagnostic aids .
Assembler listings .
Option summary .
External Symbol Drctronary
Source and object
Relocation dictionary . .
Ordinary symbol and hteral Cross reference
Unreferenced symbols defined in CSECTs
General Purpose Register cross reference
Macro and copy code source summary .
Macro and copy code cross reference .
DSECT cross reference.
USING map . .
Diagnostic cross reference and assembler
summary .
Improved page—break handhng
Diagnostic messages in open code .
Macro-generated statements .

Sequence field in macro-generated statements .

Format of macro-generated statements

Macro-generated statements with PRINT

NOGEN .
Diagnostic messages in macro assernbly

Error messages for a library macro definition .

Error messages for source program macro
definitions.

Terminal output . .

Input/output enhancements .

CMS interface command .

Macro trace facility (MHELP)

iV HLASM: VIR6 General Information

.4
.41
42
.45
. 46
.49
. 50
. 52
. 52
. 53
. 54
. 55
. 56

. 57
. 59
. 60
. 61
. 61
. 61

. 62
. 63
. 63

. 63
. 64
. 64
. 65
. 65

Abnormal termination of assembly
Diagnosis facility

Chapter 7. Associated Data
Architecture

Chapter 8. Factors improving
performance

Appendix A. Assembler options .
Appendix B. System variable symbols

Appendix C. Hardware and software
requirements .

Hardware requirements

Software requirements.

Assembling under z/OS .

Assembling under VM /CMS

Assembling under z/VSE.

Notices
Trademarks

Bibliography

Index

. 66
. 66

. 67

.71

. 73

77

. 81
. 81
. 81
. 81
. 82
. 83

. 85
. 86

. 87

. 89

Figures

LN .

*® NG

©

11.
12.
13.

LOCTR instruction application .

Editing inner macro definitions .

AREAD assembler operation.

Option summary including options spec1f1ed
on *PROCESS statements .

External Symbol Dictionary .

Source and object listing sectron—121 format
Source and object listing section—133 format
Relocation dictionary .o
Ordinary symbol and hteral cross reference
Unreferenced symbols defined in CSECTS
General Purpose Register cross reference
Macro and copy code source summary
Macro and copy code cross reference .

© Copyright IBM Corp. 1992, 2013

.13
.21
.23

. 44
. 46

47
49

. 49

51
52
53
53

. 54

14.

15.
16.
17.

18.
19.
20.
21.
22.
23.

24.

Macro and copy code cross reference - with
LIBMAC option .

DSECT cross reference .

USING map .

Diagnostic cross reference and assembler
summary

In-line error messages in open code

Format of macro-generated statements

The effect of the PRINT NOGEN instruction
Macro definition with format error.

Error messages for a library macro def1n1t10n
Sample terminal output in the NARROW
format .

Sample termmal output in the WIDE format

. 55
. 55
. 56

. 57
. 60
. 62

62

. 63

63

. 64

64

vi HLASM: VIR6 General Information

Tables

1. IBM High Level Assembler for z/OS & z/VM

& z/VSE Publications . . .o X
2. Changes to High Level Assembler default

options . . . e V4
3. Multilevel subhsts .22

© Copyright IBM Corp. 1992, 2013

*® N U

Data attributes .

Flags used in the option summary
Assembler input/output devices (z/ OS)
Assembler input/output devices (CMS)
Assembler input/output devices (VSE)

vii

viii HLASM: VIR6 General Information

About this manual

This book contains general information about IBM® High Level Assembler for
72/0S® & z/VM® & z/VSE® , Licensed Program 5696-234, hereafter referred to as
High Level Assembler, or simply the assembler.

This book is designed to help you evaluate High Level Assembler for your data
processing operation and to plan for its use.

Who should use this manual

HLASM General Information helps data processing managers and technical
personnel evaluate High Level Assembler for use in their organization. This
manual also provides an introduction to the High Level Assembler Language for
system programmers and application programmers.

The assembler language supported by High Level Assembler has functional
extensions to the languages supported by Assembler H Version 2 and DOS/VSE
Assembler. To fully appreciate the features offered by High Level Assembler you
should be familiar with either Assembler H Version 2 or DOS/VSE Assembler.

Organization of this manual

This manual is organized as follows:

+ |Chapter 1, “What's new in High Level Assembler release 6,” on page 1) gives a
summary of the features and enhancements introduced in High Level Assembler
Release 5.

* [Chapter 2, “Introduction to High Level Assembler,” on page 3| gives a
summary of the main features of the assembler and its purpose.

* [Chapter 3, “Assembler language extensions,” on page 5|describes the major
extensions to the basic assembler language provided by High Level Assembler,
and not available in earlier assemblers.

« |Chapter 4, “Macro and conditional assembly language extensions,” on page 19,
briefly describes some of the features of the macro and conditional assembly
language, and the extensions to the macro and conditional assembly language
provided by High Level Assembler that were not available in earlier assemblers.

* |Chapter 5, “Using exits to complement file processing,” on page 37 describes
the facilities in the assembler to support user-supplied input/output exits, and
how these might be used to complement the output produced by High Level
Assembler.

* |Chapter 6, “Programming and diagnostic aids,” on page 41, describes the many
assembly listing and diagnostic features that High Level Assembler provides to
help in the development of assembler language programs and the location and
analysis of program errors.

» |Chapter 7, “Associated Data Architecture,” on page 67, gives a summary of the
Associated Data Architecture, and the associated data file produced by High
Level Assembler.

Chapter 8, “Factors improving performance,” on page 71| describes some of the
methods used by High Level Assembler to improve performance relative to
earlier assemblers.

© Copyright IBM Corp. 1992, 2013 ix

Organization of this manual

* |Appendix A, “Assembler options,” on page 73 |lists and describes the assembler
options you can specify with High Level Assembler.

* |Appendix B, “System variable symbols,” on page 77/ lists and describes the
system variable symbols provided by High Level Assembler.

+ |Appendix C, “Hardware and software requirements,” on page 81) provides
information about the operating system environments in which High Level
Assembler will operate.

* The|“Bibliography” on page 87| lists other IBM publications which may serve as
a useful reference to this book.

Throughout this book, we use these indicators to identify platform-specific
information:

* Prefix the text with platform-specific text (for example, “Under CMS...”)
* Add parenthetical qualifications (for example, “(CMS)”)
* A definition list, for example:

z/OS Informs you of information specific to z/OS.
z/VM Informs you of information specific to z/ VM.

z/VSE Informs you of information specific to z/VSE.

CMS is used in this manual to refer to Conversational Monitor System on z/VM.

High Level Assembler Publications

The books in the High Level Assembler library are shown in [Table 1 This figure
shows which books can help you with specific tasks, such as application
programming.

Table 1. IBM High Level Assembler for z/OS & z/VM & z/VSE Publications

Task Publication Order Number
Evaluation and Planning HLASM V1R6 General GC26-4943
Information
Installation and HLASM V1R6 Installation SC26-3494
Customization and Customization Guide
HLASM V1R6 Programmer's SC26-4941
Guide
HLASM V1R6 Toolkit GC26-8711

Feature Installation Guide

Application Programming HLASM V1R6 Programmer's S5C26-4941

Guide

HLASM V1R6 Language 5C26-4940
Reference

HLASM V1R6 General GC26-4943
Information

HLASM V1R6 Toolkit GC26-8710
Feature User's Guide

HLASM V1R6 Toolkit GC26-8709

Feature Interactive Debug
Facility User's Guide

Diagnosis HLASM V1R6 Installation SC26-3494
and Customization Guide

X HLASM: V1R6 General Information

Organization of this manual

HLASM General Information
Introduces you to the High Level Assembler product by describing what it
does and which of your data processing needs it can fill. It is designed to
help you evaluate High Level Assembler for your data processing
operation and to plan for its use.

HILASM Installation and Customization Guide
Contains the information you need to install and customize, and diagnose
failures in, the High Level Assembler product.

The diagnosis section of the book helps users determine if a correction for
a similar failure has been documented previously. For problems not
documented previously, the book helps users to prepare an APAR. This
section is for users who suspect that High Level Assembler is not working
correctly because of some defect.

HLASM Language Reference
Presents the rules for writing assembler language source programs to be
assembled using High Level Assembler.

HLASM Programmer’s Guide
Describes how to assemble, debug, and run High Level Assembler
programs.

HLASM Toolkit Feature Installation and Customization Guide
Contains the information you need to install and customize, and diagnose
failures in, the High Level Assembler Toolkit Feature.

HLASM Toolkit Feature User’s Guide
Describes how to use the High Level Assembler Toolkit Feature.

HLASM Toolkit Feature Debug Reference Summary
Contains a reference summary of the High Level Assembler Interactive
Debug Facility.

HLASM Toolkit Feature Interactive Debug Facility User’s Guide
Describes how to use the High Level Assembler Interactive Debug Facility.

Online publications

The High Level Assembler publications are available in the following softcopy
formats:

* z/OS Collection CD-ROM: SK3T-4269 (Book), SK3T-8334 (PDF)

* z/VM Collection CD-ROM: SK2T-2401 (Book), SK3T-8330 (PDF)

* z/VSE Collection CD-ROM: SK2T-2402 (Book), SK3T-8331 (PDF)

For more information about High Level Assembler, see the High Level Assembler

web site, at
http://www-306.17bm.com/software/awdtools/hlasm/

About this manual X1

Organization of this manual

xii HLASM: V1R6 General Information

How to send your comments to IBM

If you especially like or dislike anything about this book, feel free to send us your
comments.

You can comment on what you regard as specific errors or omissions, and on the
accuracy, organization, subject matter, or completeness of this book. Please limit
your comments to the information that is in this book and to the way in which the
information is presented. Speak to your IBM representative if you have suggestions
about the product itself.

When you send us comments, you grant to IBM a nonexclusive right to use or
distribute the information in any way it believes appropriate without incurring any
obligation to you.

You can get your comments to us quickly by sending an e-mail to
idrcf@hursley.ibm.com. Alternatively, you can mail your comments to:

User Technologies,

IBM United Kingdom Laboratories,
Mail Point 095, Hursley Park,
Winchester, Hampshire,

5021 2JN, United Kingdom

Please ensure that you include the book title, order number, and edition date.

If you have a technical problem

Do not use the feedback methods listed above. Instead, do one of the following:
* Contact your IBM service representative

* Call IBM technical support

* Visit the [[BM support web page

© Copyright IBM Corp. 1992, 2013 xiii

http://www.ibm.com/support/entry/portal/overview/software/other_software/high_level_assembler_and_toolkit_feature

xiv HLASM: VIR6 General Information

Chapter 1. What's new in High Level Assembler release 6

High Level Assembler Release 6 provides these enhancements over High Level
Assembler Release 5:

Changed Assembler instructions

* New QY-type and SY-type address constants provide resolution into
long-displacement.

* Support for three decimal floating-point data types, increasing instruction
addressability and reducing the need for additional instructions.

Unified Opcode table
* OPTABLE option
— The OPTABLE option is permitted on the *PROCESS statement.

Mnemonic tagging

* Suffix tags for instruction mnemonics let you use identically-named macro
instructions and machine instructions in the same source program.

New features

* High Level Assembler for Linux on System z®

New options
* WORKFILE

Changed assembler instructions

+ DC/DS
— Decimal floating-point constants
— Unsigned binary constants

Changed assembler statements
¢ OPTABLE option for ACONTROL

Services Interface
e HLASM Services Interface for I/0 exits added

Miscellany

* Qualifiers identified in symbol cross-reference.

High Level Assembler Release 6 requires processors supporting Architecture Level
Set 1 (ALS-1), for example:

* 5/390° Multiprise 3000 (or compatible server)

* S5/390 Parallel Enterprise — G5, G6 (or compatible server)

+ zSeries® 2900, 2990, and z800 servers (or compatible)

and later systems. For details, see
http://www.ibm.com/systems/z/hardware/index.html

© Copyright IBM Corp. 1992, 2013

What's new in High Level Assembler release 6

2 HLASM: V1R6 General Information

Chapter 2. Introduction to High Level Assembler

High Level Assembler is an IBM licensed program that helps you develop
programs and subroutines to provide functions not typically provided by other
symbolic languages, such as COBOL, FORTRAN, and PL/L

Language compatibility

The assembler language supported by High Level Assembler has functional
extensions to the languages supported by Assembler H Version 2 and DOS/VSE
Assembler. High Level Assembler uses the same language syntax, function,
operation, and structure as these earlier assemblers. The functions provided by the
Assembler H Version 2 macro facility are all provided by High Level Assembler.

Migration from Assembler H Version 2 or DOS/VSE Assembler to High Level
Assembler requires an analysis of existing assembler language programs to ensure
that they do not contain macro instructions with names that conflict with the High
Level Assembler symbolic operation codes, or SET symbols with names that
conflict with the names of High Level Assembler system variable symbols.

With the exception of these possible conflicts, and with appropriate High Level
Assembler option values, assembler language source programs written for
Assembler H Version 2 or DOS/VSE Assembler, that assemble without warning or
error diagnostic messages, should assemble correctly using High Level Assembler.

High Level Assembler, like its predecessor Assembler H Version 2, can assemble
source programs that use the following machine instructions:

* S5/370

* System/370 Extended Architecture (370-XA)

* Enterprise Systems Architecture/370 (ESA/370)

* Enterprise Systems Architecture/390 (ESA/390)

* 7/ Architecture®

The set of machine instructions that you can use in an assembler source program
depend upon which operation code table you use for the assembly.

Highlights of High Level Assembler

High Level Assembler is a functional replacement for Assembler H Version 2 and
DOS/VSE Assembler. It offers all the proven facilities provided by these earlier
assemblers, and many new facilities designed to improve programmer productivity
and simplify assembler language program development and maintenance.

Some of the highlights of High Level Assembler are:
* Extensions to the basic assembler language

* Extensions to the macro and conditional assembly language, including external
function calls and built-in functions

* Enhancements to the assembly listing, including a new macro and copy code
member cross reference section, and a new section that lists all the unreferenced
symbols defined in CSECTs.

* New assembler options

© Copyright IBM Corp. 1992, 2013 3

Highlights of High Level Assembler

* A new associated data file, the ADATA file, containing both language-dependent
and language-independent records that can be used by debugging and other
tools

* A DOS operation code table to assist in migration from DOS/VSE Assembler
* The use of 31-bit addressing for most working storage requirements

* A generalized object format data set

¢ Internal performance enhancements and diagnostic capabilities

This book contains a summary of information designed to help you evaluate the
High Level Assembler licensed product. For more detailed information, see
HLASM Programmer’s Guide and HLASM Language Reference.

The Toolkit Feature

The optional High Level Assembler Toolkit Feature provides a powerful and
flexible set of tools to improve application recovery and development. The tools
include the Cross-Reference Facility, the Program Understanding Tool, the
Disassembler, the Interactive Debug Facility, Enhanced SuperC, and an extensive
set of Structured Programming Macros.

Planning for High Level Assembler

The assembler language and macro language extensions provided by High Level
Assembler include functional extensions to those provided by Assembler H Version
2 and the DOS/VSE assembler. The following chapters and appendices help you
evaluate these extensions, and plan the installation and customization process.
They include:

* A description of the language differences and enhancements that will help you
decide if there are any changes you need to make to existing programs.

* A summary of the assembler options to help you decide which ones are
appropriate to your installation.

* A summary of the system variable symbols to help you determine if they
conflict with symbols already defined in your programs.

* A description of the hardware and software required to install and run High
Level Assembler.

Year 2000 support for High Level Assembler

High Level Assembler is available as an element of z/OS. z/OS is certified as a
Year 2000 ready operating system by the Information Technology Association of
America (ITAA).

4 HLASM: VIR6 General Information

Chapter 3. Assembler language extensions

The instructions, syntax and coding conventions of the assembler language
supported by High Level Assembler include functional extensions to those
supported by Assembler H Version 2 and DOS/VSE Assembler. This chapter
describes the most important of those extensions, and the language differences
between High Level Assembler and the earlier assemblers.

Additional assembler instructions

The following additional assembler instructions are provided with High Level
Assembler:

*PROCESS statement:
The *PROCESS statement lets you specify assembler options in the
assembler source program. See [“Specifying assembler options in the source
fprogram” on page 16

ACONTROL instruction:
The ACONTROL instruction lets you change many assembler options
within a program.

ADATA instruction:
The ADATA instruction allows user records to be written to the associated
data file.

ALIAS instruction:
The ALIAS instruction lets you replace an external symbol name with a
string of up to 64 bytes.

CEJECT instruction:
The CEJECT instruction allows page ejects to be done conditionally, under
operand control.

CATTR instruction (z/OS and CMS):
You can use the CATTR instruction to establish a program object external
class name, and assign binder attributes for the class. This instruction is
only valid when you specify the GOFF assembler option to produce
generalized object format modules. See [‘Generalized object formaf
fmodules (z/OS and CMS)” on page 11.| By establishing the deferred load
attribute, text is not loaded when the program is brought into storage, but
is partially loaded, for fast access when it is requested.

EXITCTL instruction:
The EXITCTL instruction allows data to be passed from the assembler
source to any of the input/output user exits. See |Chapter 5, “Using exits to|
lcomplement file processing,” on page 37|

RSECT instruction:
The RSECT instruction defines a read-only control section. See

lcontrol sections” on page 12

XATTR instruction (z/OS and CMS):
The XATTR instruction enables attributes to be assigned to an external
symbol. The instruction is only valid when you specify the GOFF
assembler option to produce generalized object format modules. See

© Copyright IBM Corp. 1992, 2013 5

Additional assembler instructions

[‘Generalized object format modules (z/OS and CMS)” on page 11.|The
linkage conventions for the symbol are established using this instruction.

Revised assembler instructions

Several assembler instructions used in earlier assemblers have been extended in
High Level Assembler.

CNOP instruction:
Symbols in the operand field of a CNOP instruction do not need to be
previously defined.

The operands of the CNOP instruction are extended to allow for any
boundary within a quadword to be specified. Valid values for the first
operand are the even numbers from 0 to 14 inclusive, while the values for
the second operand are 4, 8, or 16. Note that any present use of CNOP
may generate different object code but the new object code will not change
the execution.

COPY instruction:
Any number of nestings (COPY instructions within code that has been
brought into your program by another COPY instruction) is permitted.
However, recursive COPY instructions are not permitted.

A variable symbol that has been assigned a valid ordinary symbol may be
used as the operand of a COPY instruction in open code:
&VAR SETC 'LIBMEM'

COPY &VAR
+ COPY LIBMEM Generated Statement

DC instruction:
The DC instruction has been enhanced to cater for the new binary and
decimal floating-point numbers, Unicode character constants, and
doubleword fixed-point and A-type address constants. As well, the J-type,
Q-type and R-type address constants have been added.

A new data type, CA, has been added to indicate an ASCII character
constant type to be represented. This constant is not modified by the
TRANSLATE option. The CE data type generates an EBCDIC constant that
is not modified by the TRANSLATE option.

A new subfield has been added for the program type of symbol.

DROP instruction:
The DROP instruction now lets you end the domain of labeled USINGs
and labeled dependent USINGs. See [Labeled USINGs and qualified]
symbols” on page 14|and [“Dependent USINGs” on page 15

DS instruction:
A new subfield has been added for the program type of symbol.

DXD instruction:
The DXD instruction now aligns external dummy sections to the most
restrictive alignment of the specified operands (instead of that of the first
operand).

EQU instruction:
Symbols appearing in the first operand of the EQU instruction do not need
to be previously defined. In the following example, both WIDTH and LENGTH
can be defined later in the source code:

6 HLASM: V1R6 General Information

Revised assembler instructions

Name Operation Operand

VAL EQU 40-WIDTH+LENGTH

Two new operands are provided for the EQU instruction, a program-type
operand, and an assembler-type operand.

ISEQ instruction:
Sequence checking of any column on input records is allowed.

OPSYN instruction:
You can code OPSYN instructions anywhere in your source module.

ORG instruction:
Two new operands are provided for the ORG statement that will specify
the boundary and offset to be used to set the location counter.

The BOUNDARY operand is an absolute expression that must be a power
of 2 with a range from 8 (doubleword) to 4096 (page).

The OFFSET operand is any absolute expression.

If BOUNDARY and/or OFFSET are used, then the resultant location
counter will be calculated by rounding the expression up to the next
higher BOUNDARY and then adding the OFFSET value.

POP instruction:
An additional operand, NOPRINT, can be specified with the POP
instruction to cause the assembler to suppress the printing of the specified
POP statement. The operand ACONTROL saves the ACONTROL status.

PRINT instruction:
Seven additional operands can be specified with the PRINT instruction.
They are:

MCALL | NOMCALL
The MCALL operand instructs the assembler to print nested macro
call instructions.

The NOMCALL operand suppresses the printing of nested macro
call instructions.

MSOURCE | NOMSOURCE
The MSOURCE operand causes the assembler to print the source
statements generated during macro processing, as well as the
assembled addresses and generated object code of the statements.

The NOMSOURCE operand suppresses the printing of the
generated source statements, but does not suppress the printing of
the assembled addresses and generated object code.

UHEAD | NOUHEAD
The UHEAD operand causes the assembler to print a summary of
active USINGs following the TITLE line on each page of the source
and object program section of the assembler listing.

The NOUHEAD operand suppresses the printing of this summary.

NOPRINT
The NOPRINT operand causes the assembler to suppress the
printing of the PRINT statement that is specified.

The assembler has changed the way generated object code is printed in the
assembler listing when the PRINT NOGEN instruction is used. Now the

Chapter 3. Assembler language extensions 7

Revised assembler instructions

object code for the first generated instruction, or the first 8 bytes of
generated data is printed in the object code column of the listing on the
same line as the macro call instruction. The DC, DS, DXD, and CXD
instructions can cause the assembler to generate zeros as alignment data.
With PRINT NOGEN the generated alignment data is not printed in the
listing.

PUSH instruction:
An additional operand, NOPRINT, can be specified with the PUSH
instruction to cause the assembler to suppress the printing of the specified
PUSH statement. The operand ACONTROL restores the ACONTROL
status.

USING statements:
Labeled USINGs and dependent USINGs provide you with enhanced
control over the resolution of symbolic expressions into base-displacement
form with specific base registers. Dependent USINGs can be labeled or
unlabeled.

The end of range parameter lets you specify a range for the USING
statement, rather than accepting the default range. See [“Labeled USINGs|
land qualified symbols” on page 14|and [“Dependent USINGs” on page 15

2-Byte relocatable address constants

The assembler now accepts 2 as a valid length modifier for relocatable A-type
address constants, such as AL2(*). A 2-byte, relocatable, A-type address constant is
processed in the same way as a Y-type relocatable address constant, except that no
boundary alignment is provided.

Character set support extensions

High Level Assembler provides support for both standard single-byte characters
and double-byte characters.

Standard character set

The standard character set used by High Level Assembler is EBCDIC. A subset of
the EBCDIC character set can be used to code terms and expressions in assembler
language statements.

In addition, all EBCDIC characters can be used in comments and remarks, and
anywhere that characters can appear between paired single quotation marks.

Double-byte character set

In addition to the standard EBCDIC set of characters, High Level Assembler
accepts double-byte character set (DBCS) data.

When the DBCS option is specified, High Level Assembler accepts double-byte
data as follows:

* Double-byte data, optionally mixed with single-byte data, is permitted in:
— The nominal value of character (C-type) constants and literals
— The value of character (C-type) self-defining terms
— The operand of MNOTE, PUNCH and TITLE statements

* Pure double-byte data is supported by:
— The pure DBCS (G-type) constant and literal
— The pure DBCS (G-type) self-defining term

8 HLASM: V1R6 General Information

Character set support extensions

Double-byte data in source statements must always be bracketed by the shift-out
(SO) and shift-in (SI) characters to distinguish it from single-byte data.

Double-byte data is supported in the operands of the AREAD and REPRO
statements, and in comments and remarks, regardless of the invocation option.
Double-byte data assigned to a SETC variable symbol by an AREAD statement
contain the SO and SIL.

Translation table

In addition to the standard EBCDIC set of characters, High Level Assembler can
use a user-specified translation table to convert the characters contained in
character (C-type) data constants (DCs) and literals. High Level Assembler
provides a translation table to convert the EBCDIC character set to the ASCII
character set. The assembler can also use a translation table supplied by the
programmer.

Unicode support

High Level Assembler can be used to create Unicode character constants. The
CODEPAGE option selects which codepage to use and the CU constant is used to
define the data that will be translated into the Unicode.

Assembler language syntax extensions

The syntax of the assembler language deals with the structure of individual
elements of any instruction statement, and with the order that the elements are
presented in that statement. Several syntactical elements of earlier assembler
languages are extended in the High Level Assembler language.

Blank lines

High Level Assembler allows blank lines to be used in the source program. In open
code, each blank line is treated as equivalent to a SPACE 1 statement. In the body
of a macro definition, each blank line is treated as equivalent to an ASPACE 1
statement.

Comment statements

A macro comment statement consists of a period in the begin column, followed by
an asterisk, followed by any character string. An open code comment consists of an
asterisk in the begin column followed by any character string.

High Level Assembler allows open code statements to use the macro comment
format, and processes them like an open code comment statement.

Mixed-case input
High Level Assembler allows mixed-case input statements, and maintains the case

when it produces the assembler listing. You can use the COMPAT and FOLD
assembler options to control how the assembler treats mixed-case input.

Continuation lines

You are allowed as many as nine continuation lines for most ordinary assembler
language statements. However, you are allowed to specify as many continuation
lines as you need for the following statements:

* Macro prototype statements

¢ Macro instruction statements

Chapter 3. Assembler language extensions 9

Assembler language syntax extensions

* The AIF, AGO, SETx, LCLx, and GBLx conditional assembly instructions.

When you specify the FLAG(CONT) assembler option, the assembler issues new
warning messages if it suspects that a continuation statement might be incorrect.

Continuation lines and double-byte data
If the assembler is called with the DBCS option, then:

¢ When an SI occurs in the end column of a continued line, and an SO occurs in
the continue column of the next line, the SI and SO are considered redundant
and are removed from the statement before the statement is analyzed.

¢ An extended continuation indicator provides you with a flexible end column on
a line-by-line basis so that any alignment of double-byte data in a source
statement can be supported.

Continuation error warning messages

The FLAG(CONT) assembler option directs the assembler to issue warning
messages for continuation statement errors for macro calls in the following
circumstances:

* The operand on the continued record ends with a comma and a continuation
statement is present but continuation does not start in the continue column
(usually column 16).

* A list of one or more operands ends with a comma, but the continuation column
(usually column 72) is blank.

* The continuation record starts in the continue column (usually column 16) but
there is no comma present following the operands on the previous record.

e The continued record is full but the continuation record does not start in the
continue column (usually column 16).

Symbol length
High Level Assembler supports three types of symbols:

Ordinary symbols
The format of an ordinary symbol consists of an alphabetic character,
followed by a maximum of 62 alphanumeric characters.

Variable symbols
The format of a variable symbol consists of an ampersand (&) followed by
an alphabetic character, followed by a maximum of 61 alphanumeric
characters.

Sequence symbols
The format of a sequence symbol consists of a period (.) followed by an
alphabetic character, followed by a maximum of 61 alphanumeric
characters.

External symbols are ordinary symbols used in the name field of START, CSECT,
RSECT, COM, DXD, and ALIAS statements, and in the operand field of ENTRY,
EXTRN, WXTRN, and ALIAS statements. Symbols used in V-type and Q-type
address constants are restricted to 8 characters, unless the GOFF option is
specified, which allows symbols up to 63 characters. You can specify an alias string
of up to 64 characters to represent an external symbol.

10 HLASM: V1R6 General Information

Assembler language syntax extensions

Underscore

High Level Assembler accepts the underscore character as alphabetic. It is accepted
in any position in any symbol name.

Literals

The following changes have been made to previous restrictions on the use of
literals:

* Literals can be used as relocatable terms in expressions. They no longer have to
be used as a complete operand.

* Literals can be used in RX-format instructions in which an index register is used.

Levels within expressions

The number of terms or levels of parentheses in an expression is limited by the
storage buffer size allocated by the assembler for its evaluation work area.

Generalized object format modules (z/OS and CMS)

High Level Assembler provides support for generalized object format modules.
The GOFF or XOBJECT assembler option instructs the assembler to produce the
generalized object data set. The following new or modified instructions support the
generation of the generalized object format records:

* ALIAS

* AMODE

* RMODE

+ CATTIR

+ XATTR

For further details about this facility refer to DFSMS/MVS V1R4 Program
Management.

Extended addressing support

High Level Assembler provides several instructions for the generation of object
modules that exploit extended addressing. These instructions are:

* AMODE

* RMODE

+ CCWO

+ CCW1

Addressing mode (AMODE) and residence mode (RMODE)

Use the AMODE instruction to specify the addressing mode to be associated with
the control sections in the object program. The addressing modes are:
24 24-bit addressing mode
31 31-bit addressing mode
64 64-bit addressing mode - See note below
ANY The same as ANY31
ANY31
24-bit or 31-bit addressing mode
ANYe64
24-bit, 31-bit, or 64-bit addressing mode

Use the RMODE instruction to specify the residence mode to be associated with
the control sections in the object program. The residence modes are:

Chapter 3. Assembler language extensions 11

Extended addressing support

24 Residence mode of 24. The control section must reside below the 16MB
line.

31 Residence mode of either 24 or 31. The control section can reside above or
below the 16MB line.

64 Residence mode of 64 - See note below.

ANY Is understood to mean RMODE(31).

You can specify the AMODE and RMODE instructions anywhere in the assembly
source. If the name field in either instruction is left blank, you must have an
unnamed control section in the assembly. These instructions do not initiate an
unnamed control section.

Note: The 64-bit addressing and residence modes are accepted and processed by
the assembler. However, other operating system components and utility programs
may not be able to accept and process information related to these operands.

Channel Command Words (CCW0 and CCW1)

The CCWO instruction performs the same function as the CCW instruction, and is
used to define and generate a format-0 channel command word that allows a 24-bit
data address. The CCW1 instruction result is used to define and generate a
format-1 channel command word that allows a 31-bit data address.

The format of the CCWO0 and CCW1 instructions, like that of the CCW instruction,
consists of a name field, the operation, and an operand (that contains a command
code, data address, flags, and data count).

Using EXCP or EXCPVR access methods:
If you use the EXCP or EXCPVR access method, only CCW or CCWO is
valid, because EXCP and EXCPVR do not support 31-bit data addresses in
channel command words.

Using RMODE ANY:
If you use RMODE ANY with CCW or CCWO, an invalid data address in
the channel command word can result at execution time.

Programming sectioning and linking controls

High Level Assembler provides several facilities that allow increased control of
program organization. These include:

* Association of code and data areas

e Multiple location counters

* Multiple classes and parts for code and data

* External dummy sections

* Support for up to 65535 external symbols

Read-only control sections

With the RSECT instruction, you can initiate a read-only executable control section,
or continue a previously initiated read-only executable control section.

When a control section is initiated by the RSECT instruction, the assembler
automatically checks the control section for non-reentrant code. As the assembler
cannot check program logic, the checking is not exhaustive. If the assembler detects
non-reentrant code it issues a warning message.

The read-only attribute in the object module shows which control sections are
read-only.

12 HLASM: V1R6 General Information

Programming sectioning and linking controls

Association of code and data areas

To provide for the support of application program reentrancy and dynamic
binding, the assembler provides a way to associate code and data areas. This is
achieved by defining and accessing 'associated data areas' which are referred to as
PSECTs. A PSECT, when instantiated, becomes the working storage for an
invocation of a reentrant program.

Multiple location counters

Multiple location counters are defined in a control section by using the LOCTR
instruction. The assembler assigns consecutive addresses to the segments of code
using one location counter before it assigns addresses to segments of code using
the next location counter. By using the LOCTR instruction, you can cause your
program object-code structure to differ from the logical order appearing in the
listing. You can code sections of a program as independent logical and sequential
units. For example, you can code work areas and constants within the section of
code that requires them, without branching around them. shows this
procedure.

MAINCODE LOCTR

WORKAREA LOCTR Addresses follow Assembled with
XXX DC XXX —— combined sections —— consecutive
XXX DS XXX of MAINCODE addresses

MAINCODE LOCTR

Figure 1. LOCTR instruction application

External dummy sections

An external dummy section is a reference control section that you can use to describe
a communication area between two or more object modules that are link-edited
together. The assembler generates an external dummy section when you define a
Q-type address constant that contains the name of a reference control section
specified in a DXD or DSECT instruction.

#/VSE External dummy sections are only supported by VSE/ESA Version 2 Release 2
or later.

Number of external symbols

The assembler can support up to 65535 independently relocatable items. Such
items include control section names, names declared in EXTRNs and so forth. The
names of some of these items can appear in the external symbol dictionary (ESD)
of the assembler's object module. Note that other products might not be able to
handle as many external symbols as the assembler can produce.

Chapter 3. Assembler language extensions 13

Programming sectioning and linking controls

Assembler instructions that can produce independently relocatable items and
appear in the ESD are:

* START

* CSECT

* RSECT

+ COM

+ DXD

¢ EXTRN

* WXTRN

* ALIAS

* CATTR

e V-type address constant

e DSECT if the DSECT name appears in a Q-type address constant

Many instructions can cause the initiation of an unnamed CSECT if they appear
before a START or CSECT statement. Unnamed CSECTs appear in the external
symbol dictionary with a type of PC.

Addressing extensions

High Level Assembler extends the means that you can use to establish
addressability of a control section with two powerful new facilities:

* Labeled USINGs and qualified symbols

* Dependent USINGs

Labeled USINGs and qualified symbols

The format of the assembler USING instruction now lets you code a symbol in the
name entry of the instruction. When a valid ordinary symbol, or a variable symbol
that has been assigned a valid ordinary symbol, is specified in the name entry of a
USING instruction, it is known as the USING label, and the USING is known as a
labeled USING.

Labeled USINGs provide you with enhanced control over the resolution of symbolic
expressions into base-displacement form with specific base registers. The assembler
uses a labeled USING when you qualify a symbol with the USING label. You
qualify a symbol by prefixing the symbol with the label on the USING followed by
a period.

Labeled USING domains

You can specify the same base register or registers in any number of labeled
USING instructions. However, unlike ordinary USING instructions, as long as all
the labeled USINGs have unique labels, the assembler considers the domains of all
the labeled USINGs to be active and their labels can be used as qualifiers. With
ordinary USINGs, when you specify the same base register in a subsequent USING
instruction, the domain of the prior USING is ended.

The domain of a labeled USING instruction continues until the end of a source
module, except when:

* You specify the label in the operand of a subsequent DROP instruction.

* You specify the same label in a subsequent USING instruction.

Labeled USING ranges

You can specify the same base address in any number of labeled USING
instructions. You can also specify the same base address in an ordinary USING and
a labeled USING. However, unlike ordinary USING instructions that have the
same base address, if you specify the same base address in an ordinary USING

14 HLASM: V1R6 General Information

Addressing extensions

instruction and a labeled USING instruction, the assembler does not treat the
USING ranges as coinciding. When you specify an unqualified symbol in an
assembler instruction, the assembler uses the base register specified in the ordinary
USING to resolve the address into base-displacement form. You can specify an
optional parameter on the USING instruction. This option sets the range of the
USING, overwriting the default of 4096.

Dependent USINGs

The format of the assembler USING instruction now lets you specify a relocatable
expression instead of a base register in the instruction operand. When you specify
a relocatable expression, it is known as the supporting base address, and the USING
is known as a dependent USING. If a valid ordinary symbol, or a variable symbol
that has been assigned a valid ordinary symbol, is specified in the name entry of a
dependent USING instruction, the USING is known as a labeled dependent USING.

A dependent USING depends on the presence of one or more corresponding
ordinary or labeled USINGs to resolve the symbolic expressions in the dependent
USING range.

Dependent USINGs provide you with further control over the resolution of
symbolic expressions into base-displacement form. With dependent USINGs you
can reduce the number of base registers you need for addressing by using an
existing base register to provide addressability to the symbolic address.

Dependent USING domains

The domain of a dependent USING begins where the dependent USING
instruction appears in the source module and continues until the end of the source
module, except when:

* You end the domain of the corresponding ordinary USING by specifying the
base register or registers from the ordinary USING instruction in a subsequent
DROP instruction.

* You end the domain of the corresponding ordinary USING by specifying the
same base register or registers from the ordinary USING instruction in a
subsequent ordinary USING instruction.

* You end the domain of a labeled dependent USING by specifying the label of
the labeled dependent USING in the operand of a subsequent DROP instruction.

Dependent USING ranges

The range of a dependent USING is 4096 bytes, or as limited by the end operand,
beginning at the base address specified in the corresponding ordinary or labeled
USING instruction. If the corresponding ordinary or labeled USING assigns more
than one base register, the dependent USING range is the composite USING range
of the ordinary or labeled USING.

If the dependent USING instruction specifies a supporting base address that is
within the range of more than one ordinary USING, the assembler determines
which base register to use during base-displacement resolution as follows:

* The assembler computes displacements from the ordinary USING base address
that gives the smallest displacement, and uses the corresponding base register.

* If more than one ordinary USING gives the smallest displacement, the assembler
uses the higher-numbered register for assembling addresses within the
coinciding USING ranges.

Chapter 3. Assembler language extensions 15

Specifying assembler options in external file or library member

Specifying assembler options in external file or library member

High Level Assembler accepts options from an external file (z/OS and CMS) or
library member (VSE). The file or library member may contain multiple records.
This facility is provided to help avoid the limitation in both z/VSE and z/OS
which restricts the length of the options list to 100 characters.

Specifying assembler options in the source program

Process (*PROCESS) statements let you specify selected assembler options in the
assembler source program. You can include them in the primary input data set or
provide them from a SOURCE user exit.

You can specify a maximum of 10 process statements in one assembly. After
processing 10 process statements, the assembler treats the next input record as an
ordinary assembler statement; in addition the assembler treats further process
statements as comment statements. You cannot continue a process statement from
one statement to the next.

When the assembler detects an error in a process statement, it produces one or
more warning messages. If the installation default option PESTOP is set, then the
assembler stops after it finishes processing any process statements. If the keyword
OVERRIDE is added to a process statement, then the nominated assembler option
is not overridden by specifications at a lower level of precedence. If the specified
option is not accepted on a process statement and a different value has been
supplied as an invocation or input file option, the option is not accepted and a
warning message is issued.

The ACONTROL instruction lets you specify selected assembler options anywhere
through the assembler source program, rather than at the beginning of the source
(as provided by *PROCESS statements).

The assembler recognizes the assembler options in the following order of
precedence (highest to lowest):

1. Fixed installation defaults
Options on *PROCESS OVERRIDE statements
Options in the External File (z/OS and CMS) or Library member (z/VSE)

Options on the PARM parameter of the JCL EXEC statement under z/OS and
z/VSE or the High Level Assembler command under CMS

Options on the JCL OPTION statement (z/VSE only)

Options specified via the STDOPT (Standard JCL Options) command (z/VSE)
Options on *PROCESS statements

Non-fixed installation defaults

oD

© N o O

Options specified by the ACONTROL instruction take effect when the specifying
ACONTROL instruction is encountered during the assembly. An option specified
by an ACONTROL instruction may override an option specified at the start of the
assembly.

The assembler lists the options specified in process statements in the High Level
Assembler Option Summary section of the assembler listing.

Process statements are also shown as comment lines in the source and object section
of the assembler listing.

16 HLASM: V1R6 General Information

IBM-supplied default assembler options

IBM-supplied default assembler options

shows the changes made to the IBM-supplied default assembler options for
High Level Assembler Release 5:

Table 2. Changes to High Level Assembler default options

New in Release 6 Previously in Release 5

WORKFILE Not available

See[Appendix A, “Assembler options,” on page 73| for a list of all assembler
options.

Chapter 3. Assembler language extensions 17

18 HLASM: V1R6 General Information

Chapter 4. Macro and conditional assembly language
extensions

The macro and conditional assembly language supported by High Level Assembler
provides a number of functional extensions to the macro languages supported by
Assembler H Version 2 and DOS/VSE Assembler. This chapter provides an
overview of the language, and describes the major extensions.

The macro language

The macro language is an extension of the assembler language. It provides a
convenient way to generate a preferred sequence of assembler language statements
many times in one or more programs. There are two parts to the macro language
supported by High Level Assembler:

Macro definition
A named sequence of statements you call with a macro instruction. The
name of the macro is the symbolic operation code used in the macro
instruction. Macro definitions can appear anywhere in your source module;
they can even be nested within other macro definitions. Macros can also be
redefined at a later point in your program.

Macro instruction
Calls the macro definition for processing. A macro instruction can pass
information to the macro definition which the assembler uses to process
the macro.

There are two types of macro definition:

Source macro definition
A macro definition defined in your source program.

Library macro definition
A macro definition that resides in a library data set.

Either type of macro definition can be called from anywhere in the source module
by a macro instruction, however a source macro definition must occur before it is
first called.

You use a macro prototype statement to define the name of the macro and the
symbolic parameters you can pass it from a macro instruction.

General advantages in using macros

The main use of a macro is to insert assembler language statements into your
source program each time the macro definition is called by a macro instruction.
Values, represented by positional or keyword symbolic parameters, can be passed
from the calling macro instruction to the statements within the body of a macro
definition. The assembler can use global SET symbols and absolute ordinary
symbols created by other macros and by open code.

The assembler assigns attribute values to the ordinary symbols and variable
symbols that represent data. By referencing the data attributes of these symbols, or

© Copyright IBM Corp. 1992, 2013 19

The macro language

by varying the values assigned to these symbols, you can control the logic of the
macro processing, and, in turn, control the sequence and contents of generated
statements.

The assembler replaces the macro call with the statements generated from the
macro definition. The generated statements are then processed like open code
source statements.

Using macros gives you a flexibility similar to that provided by a problem-oriented
language. You can use macros to create your own procedural language, tailored to
your specific applications.

Assembler editing of the macro definition

The initial processing of a macro definition is called editing. In editing, the
assembler checks the syntax of the instructions and converts the source statements
to an edited version used throughout the remainder of the assembly. The edited
version of the macro definition is used to generate assembler language statements
when the macro is called by a macro instruction. This is why a macro must always
be edited, and consequently be defined, before it can be called by a macro
instruction.

#2/VSE[“Reading edited macros (z/VSE only)” on page 39 describes how you can use
a LIBRARY exit to allow High Level Assembler to read edited macros.

Macro language extensions

Extensions to the macro language include the following;:

* Macro redefinition facilities

¢ Inner macro definitions

* Multilevel sublists in macros

* DBCS language support

* AINSERT instruction that enables the creation of records to be inserted into the
assembler's input stream

* Instructions to control the listing of macro definitions

* Support for internal and external arithmetic and character functions

* Many new system variable symbols

Redefining macros

You can redefine a macro definition at any point in your source module. When a
macro is redefined, the new definition is effective for all subsequent macro
instructions that call it.

You can save the function of the original macro definition by using the OPSYN
instruction before you redefine the macro. If you want to reestablish the initial
function of the operation code, you can include another OPSYN instruction to

redefine it. The following example shows this:

Name Operation Operand Comment

MACRO
MAC1 , The symbol MAC1 is assigned as the name
of this macro definition.
MEND
MAC2 OPSYN MAC1 MAC2 is assigned as an alias for MACL.

20 HLASM: V1R6 General Information

Macro language extensions

MACRO
MAC1 s MAC1 is assigned as the name of this new macro definition.
MEND

MAC1 OPSYN MAC2 MAC1 is assigned to the first definition.

The second definition is Tost.

You can issue a conditional assembly branch (AGO or AIF) to a point before the
initial definition of the macro and reestablish a previous source macro definition.
Then that definition will be edited and effective for subsequent macro instructions
calling it.

See [“Redefining conditional assembly instructions” on page 33/

Inner macro definitions

High Level Assembler allows both inner macro instructions and inner macro
definitions. The inner macro definition is not edited until the outer macro is
generated as the result of a macro instruction calling it, and then only if the inner
macro definition is encountered during the generation of the outer macro. If the
outer macro is not called, or if the inner macro is not encountered in the
generation of the outer macro, the inner macro definition is never edited.
shows the editing of inner macro definitions.

. Edited when Edited when Edited when
° — MAC2 is called — MACl is called — definition first
o and generated and generated encountered

Figure 2. Editing inner macro definitions

First MAC1 is edited, and MAC2 and MAC3 are not. When MAC1 is called, MAC2 is edited
(unless its definition is bypassed by an AIF or AGO branch); when MAC2 is called,
MAC3 is edited. No macro can be called until it has been edited.

Chapter 4. Macro and conditional assembly language extensions 21

Macro language extensions

There is no limit to the number of nestings allowed for inner macro definitions.

Generated macro instruction operation codes

Macro instruction operation codes can be generated by substitution, either in open
code or inside macro definitions.

Multilevel sublists in macro instruction operands

Macro

Multilevel sublists (sublists within sublists) are permitted in macro instruction
operands and in the keyword default values in prototype statements, as shown in
the following:

MAC1 (A,B,(W,X,(R,S,T),Y,Z),C,D)
MAC2 &KEY=(1,12,(8,4),64)

The depth of this nesting is limited only by the constraint that the total length of
an individual operand cannot exceed 1024 characters.

To access individual elements at any level of a multilevel operand, you use
additional subscripts after &SYSLIST or the symbolic parameter name.
shows the value of selected elements if &P is the first positional parameter and the
value assigned to it in a macro instruction is (A,(B,(C)),D).

Table 3. Multilevel sublists

Selected Elements Selected Elements Value of
from &P from &SYSLIST Selected Element
&P &SYSLIST(1) (A,(B,(C)),D)
&P(1) &SYSLIST(1,1) A

&P(2) &SYSLIST(1,2) (B,(Q))
&P(2,1) &SYSLIST(1,2,1) B

&P(2,2) &SYSLIST(1,2,2) ©
&P(2,2,1) &SYSLIST(1,2,2,1) C

&P(2,2,2) &SYSLIST(1,2,2,2) null
N'&P(2,2) N'&SYSLIST(1,2,2) 1

N'&P(2) N'&SYSLIST(1,2) 2

N'&P(3) N'&SYSLIST(1,3) 1

N'&P N'&SYSLIST(1) 3

Sublists may also be assigned to SETC symbols and used in macro instruction
operands. However, if you specify the COMPAT(SYSLIST) assembler option, the
assembler treats sublists in SETC symbols as character strings, not sublists, when
used in the operand of macro instructions.

instruction name entries

You can write a name field parameter on the macro prototype statement. You can
then assign a value to this parameter from the name entry in the calling macro
(instruction). Unlike in earlier assemblers, the name entry need not be a valid
symbol.

The name entry of a macro instruction can be used to:
e Pass values into the called macro definition.

22 HLASM: V1R6 General Information

Macro language extensions

* Provide a conditional assembly label (sequence symbol) so that you can branch
to the macro instruction during conditional assembly.

DBCS language support
Double-byte data is supported by the macro language with the following:
¢ The addition of a pure DBCS (G-type) self-defining term.
¢ Double-byte data is permitted in the operands of the MNOTE, PUNCH and
TITLE statements.
* The REPRO statement exactly reproduces the record that follows it, whether it
contains double-byte data or not.

* Double-byte data can be used in the macro language, wherever quoted EBCDIC
character strings can be used.

* When a shift-in (SI) code is placed in the end column of a continued line, and a
shift-out (SO) code is placed in the continue column of the next line, the SI and
SO are considered redundant and are removed from the statement before it is
analyzed.

* Redundant SI/SO pairs are removed when double-byte data is concatenated
with double-byte data.
* An extended continuation indicator provides the ability to:
— Extend the end column to the left on a line-by-line basis, so that any
alignment of double-byte data in a source statement can be supported.

— Preserve the readability of a macro-generated statement on a DBCS device by
splitting double-byte data across listing lines with correct SO/SI bracketing.

Source stream input—AREAD

The AREAD assembler operation permits a macro to read a record directly from
the source stream into a SETC variable symbol. The card image is assigned in the
form of an 80-byte character string to the symbol specified in the name field of the
instruction. shows how the instruction is used:

Open Code Macro Definition
. H MAcro
. MAC

MAC .

B JoHN L. SMITH——— E] &S AREAD

MEND

|

&S contains JOHN L. SMITH
E IIIIIIIIIIIII_”JJ

1 6 11 80

Figure 3. AREAD assembler operation

The assembler processes the instructions in as follows:

The macro instruction MAC () causes the macro MAC (JA) to be called. When the
AREAD instruction ([f]) is encountered, the next sequential record (A following
the macro instruction is read and assigned to the SETC symbol &S ([H).

Chapter 4. Macro and conditional assembly language extensions 23

Macro language extensions

Repeated AREAD statements read successive records.

When macro instructions are nested, the records read by AREAD must always
follow the outermost macro instruction regardless of the level of nesting in which
the AREAD instruction is found.

If the macro instruction is found in code brought in by the COPY instruction (copy
code), the records read by the AREAD instruction can also be in the copy code. If
no more records exist in the copy code, subsequent records are read from the
ordinary input stream.

Records that are read in by the AREAD instruction are not checked by the
assembler. Therefore, no diagnostic is issued if your AREAD statements read
records that are meant to be part of your source program. For example, if an
AREAD statement is processed immediately before the END instruction, the END
instruction is lost to the assembler.

AREAD listing options

Normally, the AREAD input records are printed in the assembler listing and
assigned statement numbers. However, if you do not want them to be printed or
assigned statement numbers, you can specify NOPRINT or NOSTMT in the
operand of the AREAD instruction.

AREAD clock functions

You can specify the CLOCKB or CLOCKD operand in the AREAD instruction to
obtain the local time. The time is assigned to the SETC symbol you code in the
name field of the AREAD instruction. The CLOCKB operand obtains the time in
hundredths of a second. The CLOCKD operand obtains the time in the format
HHMMSSTH.

Macro input/output capability

The AREAD facility complements the PUNCH facility to provide macros with
direct input/output (I/O) capability. The total I/O capability of macros is as
follows:

Implied input:
Parameter values and global SET symbol values that are passed to the
macro

Implied output:
Generated statements passed to the assembler for later processing. See also
the AINSERT operation below.

Direct input:
AREAD

Direct output:
MNOTE for printed messages; PUNCH for punched records

Conditional I/O:
SET symbol values provided by external functions, using the SETAF and
SETCF conditional assembly instructions.

For example, you can use AREAD and PUNCH to write simple conversion
programs. The following macro interchanges the left and right halves of records
placed immediately after a macro instruction calling it. End-of-input is indicated
with the word FINISHED in the first columns of the last record in the input to the
macro.

24 HLASM: V1R6 General Information

Macro language extensions

Name Operation Operand
MACRO
SWAP
.Toop ANOP
&CARD AREAD
AIF ('&CARD'(1,8) EQ 'FINISHED').MEND
&CARD SETC '&CARD' (41,40).'&CARD' (1,40)
PUNCH '&CARD'
AGO .LooP
.MEND MEND

Source stream insertion—AINSERT

The AINSERT assembler operation inserts statements into the input stream. The
statements are stored in an internal buffer until the macro generator is completed.
Then the internal buffer is used to provide the next statements. An operand
controls the sequence of insertion of statements within the buffer. Statements can
be inserted at the front or back of the queue, though they are removed only from
the front of the queue.

Macro definition listing control—ASPACE and AEJECT

You can use the ASPACE and AEJECT instructions to control the listing of your
macro definitions. The ASPACE instruction is similar to the SPACE instruction, but
instead of controlling the listing of your open code, you can use it to insert one or
more blank lines in your macro definition listing. Similarly, the AEJECT instruction
is like the EJECT instruction, but you can use it to stop printing the macro
definition on the current page and continue printing on the next page.

Other macro language extensions

High Level Assembler provides the following extensions to some earlier macro
languages:

* You can insert blank lines in macro definitions provided they are not
continuation lines. See also |“Blank lines” on page 9/

* Macro names, variable symbols (including the ampersand), and sequence
symbols (including the period), can be a maximum of 63 alphanumeric
characters.

* You can insert comments (both ordinary and internal macro types) between the
macro header and the prototype and, for library macros, before the macro
header. These comments are not printed with the macro generation.

* You can use a macro definition to redefine any machine or assembler instruction.
When you subsequently use the machine or assembler instruction the assembler
interprets it as a macro call.

* You can include any instruction, except ICTL and *PROCESS statements, in a
macro definition.

* You no longer need to precede the SET symbol name with an ampersand in
LCLx and GBLx instructions, except for created SET symbols.

e The SETA and SETB instructions now allow you to use predefined absolute
symbols in arithmetic expressions.

Chapter 4. Macro and conditional assembly language extensions 25

Conditional assembly language extensions

Conditional assembly language extensions

Extensions to the conditional assembly language provides you with a flexible and
powerful tool to increase your productivity, and simplify your coding needs. These
include:

* New instructions that support external function calls

* New built-in functions

* Extensions to existing instructions

* Extensions to SET symbol usage

* New system variable symbols

* New data attributes

External function calls

You can use the new SETAF and SETCF instructions to call your own routines to
provide values for SET symbols. The routines, which are called external functions,
can be written in any programming language that conforms to standard OS linkage
conventions. The format of the SETAF and SETCEF instructions is the same as a
SETx instruction, except that the first operand of SETAF is a character string.

The assembler calls the external function load module, and passes it the address of
an external function parameter list. Each differently named external function called
in the same assembly is provided with a separate parameter list.

SETAF instruction:
You use the SETAF instruction to pass parameters containing arithmetic
values to the external function module. The symbol in the name field of
the instruction is assigned the fullword integer value returned by the
external function module.

SETCEF instruction:
You use the SETCF instruction to pass parameters containing character
values to the external function module. The symbol in the name field of
the instruction is assigned the character string value returned by the
external function module. The length of the returned character string can
be from 0 to 255 bytes.

Built-in functions

The assembler provides you with many built-in functions that you can use in SETx

instructions to perform logical, arithmetic, and character string operations on
SETA, SETB and SETC expressions.

For a complete list, refer to the table [’Summary of Built-In Functions and|
in the HLASM Language Reference.

AIF instruction

The AIF instruction can include a string of logical expressions and related sequence
symbols that is equivalent to multiple AIF instructions. This form of the AIF
instruction is described as an extended AIF instruction. There is no limit to the
number of expressions and symbols that you can use in an extended AIF
instruction.

AGO instruction

An AGO instruction lets you make branches according to the value of an
arithmetic expression in the operand. This form of the AGO instruction is
described as a computed AGO instruction.

26 HLASM: V1R6 General Information

Conditional assembly language extensions

Extended continuation statements

For the following statements, the assembler allows as many continuation
statements as are needed:

* Prototype statement of a macro definition

* Macro instruction statement

* AGO conditional assembly statement

* AIF conditional assembly statement

* GBLA, GBLB, and GBLC conditional assembly statements

¢ LCLA, LCLB, and LCLC conditional assembly statements

* SETA, SETB, and SETC conditional assembly statements

SET symbols and SETx statements

The most powerful element of the conditional assembly language is SET symbol
support. SET symbols are variable symbols that provide you with arithmetic,
binary, or character data, and whose values you can set at conditional assembly
time with the SETA, SETB, and SETC instructions, respectively. This section
discusses some of the major features of this support, and the extensions High Level
Assembler provides.

SET symbol definition

When you define a SET symbol, you determine its scope. The scope of the SET
symbol is that part of a program for which the SET symbol has been declared. A
SET symbol can be defined as having local scope or global scope.

If you declare a SET symbol to have local scope, you can use it only in the
statements that are part of:

e The macro definition in which it was defined, or

* Open code, if it was defined in open code

If you declare a SET symbol to have global scope, you can use it in the statements
that are part of:

¢ The same macro definition

+ A different macro definition

* Open code

To help you with SET symbol definition, High Level Assembler provides the
following facilities:

* A SET symbol is declared implicitly when it appears in the name field of a SETx
instruction, and it has not been declared in a LCLx or GBLx instruction. It is
assigned as having local scope. If the assembler subsequently encounters any
local scope explicit declaration of the symbol, the symbol is flagged as a
duplicate declaration. A SET symbol is declared as an array if the name field of
the SETx instruction contains a subscript. See [“Array processing with SET|
[symbols” on page 28

* Global and local SET symbol declarations are processed at conditional assembly
time. Both a macro definition and open code can contain more than one
declaration for a given SET symbol, as long as only one is encountered during a
given macro generation or conditional assembly of open code.

e A SET symbol can be defined as an array of values by specifying a subscript
when you declare it, either explicitly or implicitly. All such SET symbol arrays
are open-ended; the subscript value specified in the declaration does not limit
the size of the array, as shown in the following example:

Chapter 4. Macro and conditional assembly language extensions 27

Conditional assembly language extensions

Name Operation Operand
LCLA &J(50)

&J(45) SETA 415

2J(89) SETA 38

Created SET symbols

You can create SET symbols during the generation of a macro. A created SET
symbol has the form &(e), where e represents one or more of the following;:

* Variable symbols, optionally subscripted

* Strings of alphanumeric characters

* Predefined symbols with absolute values

¢ Other created SET symbols

After substitution and concatenation, e must consist of a string of 1 to 62
alphanumeric characters, the first being alphabetic. This string is then used as the
name of a SETx variable. For example:

Name Operation Operand
&X(1) SETC "Al',"A2","A3", 'A4!
&(&X(3)) SETA 5

&X is a variable whose value is the name of the variable to be updated.

These statements have an effect identical to:
&A3 SETA 5

You can use created SET symbols wherever ordinary SET symbols are permitted,
including declarations; they can even be nested in other created SET symbols.

The created SET symbol can be thought of as a form of indirect addressing. With
nested created SET symbols, you can use such indirect addressing to any level.

Created SET symbols can also offer an “associative memory” facility. For example,
a symbol table of numeric attributes can be referenced by an expression of the
form &(&SYM) (&I) to yield the I-th element of the symbol substituted for &SYM.
Note that the value of &SYM need not be the name of a valid symbol; thus created
SET symbols may have arbitrary names.

Created SET symbols also allow you to achieve some of the effect of
multidimensional arrays by creating a separate named item for each element of the
array. For example, a three-dimensional array of the form &X(&I,&J,8&K) can be
addressed as &(X&I.$&J.$&K). Then &X(2,3,4) is represented as a reference to the
symbol &X2$3$4.

Note that what is being created here is a SET symbol. Both creation and
recognition occur at macro-generation time. In contrast, the names of parameters
are recognized and encoded (fixed) at macro-edit time. If a created SET symbol
name happens to coincide with a parameter name, the coincidence is ignored and
there is no interaction between the two.

Array processing with SET symbols

You can use the SET statement to assign lists or arrays of values to subscripted
SET symbols. For example, a list of 100 SETx values can be coded in one extended
SETx statement. The extended SETx statement has the following format:

28 HLASM: V1R6 General Information

Conditional assembly language extensions

Name Operation Operand

&SYM(exp) SETx X1,X2,,X4,...,Xn

where:

&SYM is a dimensioned SET symbol
exp is a SETA arithmetic expression
SETx is SETA, SETB, or SETC

An operand can be omitted by specifying two commas without intervening blanks.
Whenever an operand is omitted, the corresponding element of the dimensioned
variable SET symbol (&SYM) is left unchanged.

Using SETC variables in arithmetic expressions

You can use a SETC variable as an arithmetic term if its character string value
represents a valid self-defining term. This includes the G-type self-defining term. A
null value is treated as zero. This use of the SETC variable lets you associate
numeric values with EBCDIC, DBCS, or hexadecimal characters, and can be used
for such applications as indexing, code conversion, translation, or sorting.

For example, the following set of instructions converts a hexadecimal value in &X
into the decimal value 243 in &VAL.

Name Operation Operand
&X SETC 'X''F3'"" &VAL SETA
&X

Using ordinary symbols in SETx statements

In addition to variable symbols, self-defining terms, and attribute references,
predefined symbols that have absolute values can be used in SETA and SETB
statements. You can use this facility to do arithmetic or logical operations on
expressions whose values are unknown at coding time, or are difficult to calculate.
For example, the following code could be used to assign the length of a CSECT to
a SETA symbol:

Name Operation Operand

BEGIN CSECT

CSECTLEN EQU *-BEGIN
&CSCTLEN SETA CSECTLEN

Similarly, in addition to character expressions and type attribute references,
predefined symbols that have absolute values can be used in SETC statements. For
example, the following code could be used to assign a string of fifty spaces to a
SETC symbol:

Name Operation Operand
FIFTY EQU 50
&SPACES SETC (FIFTY) ' !

Substring length value

You can specify an asterisk as the second subscript value of the substring notation.
This indicates that the length of the extracted string is equal to the length of the
character string, less the number of characters before the starting character.

Chapter 4. Macro and conditional assembly language extensions 29

Conditional assembly language extensions

The following examples show how the substring notation can be used:

Name Operation Operand Comment

&z SETC "Astring'(2,3) length specified

&Y SETC "Astring' (2,%) length not specified
&X SETC (UPPER '&Y'(3,%*)) length not specified

These statements have the following effect:
&Z contains the character value 'str'
&Y contains the character value 'string'
&X contains the character value 'RING'

Attribute references

Data such as instructions, constants, and areas have characteristics called data
attributes. The assembler assigns attribute values to the ordinary symbols and
variable symbols that represent the data.

You can determine up to eight attributes of symbols you define in your program
by means of an attribute reference. By testing attributes in conditional assembly
instructions, you can control the conditional assembly logic.

Attributes of symbols produced by macro generation or substitution in open code
are available immediately after the referenced statement is generated.

shows the data attributes.

Table 4. Data attributes

Attribute Purpose Notation
Type Gives a letter that identifies the type of data represented by an T
ordinary symbol, a macro instruction operand, a SET symbol, and
a literal

Length Gives the number of bytes occupied by the data that is named by L'
the symbol, or literal, specified in the attribute reference

Scaling Refers to the position of the decimal point in decimal, fixed-point, S’
and floating-point constants

Integer Is a function of the length and scaling attributes of decimal, I
fixed-point, and floating-point constants

Count Gives the number of characters that would be required to K'
represent the current value of the SET symbol or the system
variable symbol. It also gives the number of characters that
constitute the macro operand instruction.

Number Gives the number of sublist entries in a macro instruction operand N'
sublist

Defined Indicates whether the symbol referenced has been defined prior to D
the attribute reference

Operation Indicates whether a given operation code has been defined prior to 0
Code the attribute reference

Where attribute references can be used
References to the type (T'), length (L"), scaling (S'), and integer (I') attributes of
ordinary symbols and SETC symbols can be used in:

* Conditional assembly instructions

30 HLASM: V1R6 General Information

Conditional assembly language extensions

* Any assembler instruction that accepts an absolute expression as an operand
* Any machine instruction

For example:

Name Operation Operand Comment

&TYPE SETC T'PACKED Type

LENGTH LA 2,L'PACKED Length

ADTYPE LA 2,T'PACKED Value of Type (C'P')
&SCALE SETA S'PACKED Scaling

INTEGER DC AL1(I'PACKED) Integer

PACKED DC P'123.45" Referenced Symbol

Attribute references to the count (K') and number (N') attributes, however, can
only be used in conditional assembly instructions.

Attribute references and SETC variables

The symbol referenced by an attribute reference of length (L"), type (T'), scaling (S'),
integer (I'), and defined (D'), can only be an ordinary symbol. The name of the
ordinary symbol can, however, be specified in three different ways:

¢ The name of the ordinary symbol itself

* The name of a symbolic parameter whose value is the name of the ordinary
symbol

¢ The name of a SETC symbol whose value is the name of the ordinary symbol

Attribute references and literals
In addition to symbols, you can reference literals with the type, length, defined,
scaling, and integer attribute references. For example:

Name Operation Operand Comment
LENGTH LA 2,L'=C'ABCXYZ' Length attribute has value 6
TYPE EQU T'=F'1000' Type attribute has value 'F'

Type attribute of a CNOP label
The type attribute (T') of a CNOP label has been changed to ‘I'. In Assembler H
Version 2 the attribute value was ‘J’.

Defined attribute (D)

The defined attribute (D') can be used in conditional assembly statements to
determine if a given symbol has been defined at a prior point in the source
module. If the symbol is already defined, the value of the defined attribute is one;
if it has not been defined, the value is zero. By testing a symbol for the defined
attribute, you can avoid a forward scan of the source code. See
lattribute-reference scan” on page 32.|

Operation code attribute (O')

The operation code attribute (O') can be used in conditional assembly statements to
determine if a given operation code has been defined prior to the attribute
reference. The following letters are used for the operation code attribute value:

A Assembler operation codes

E Extended mnemonic operation codes
M Macro operation codes

(0] Machine operation codes

Chapter 4. Macro and conditional assembly language extensions 31

Conditional assembly language extensions

S Macro found in SYSLIB (z/OS and CMS) or library (by Librarian on
z/VSE)
U Undefined operation codes

If an operation code is redefined using the OPSYN instruction the attribute value
represents the new operation code type. If the operation code is deleted using the
OPSYN instruction the attribute value is ‘U’.

The following example checks to see if the macro MYMAC is defined. If not, the
MYMAC macro instruction is bypassed. This example prevents the assembly from
failing when the macro is not available.

Name Operation Operand

&CHECKIT SETC 0'MYMAC
AIF ('&CHECKIT' EQ 'U').NOMAC
MYMAC

.NOMAC ANOP

DATAAREA DC F'o'

Number attributes for SET symbols

The number attribute (N') can be applied to SETx variables to determine the
highest subscript value of a SET symbol array to which a value has been assigned
in a SETx instruction. For example, if the only occurrences of the definitions of the
SETA symbol &A are:

Name Operation Operand
&A(1) SETA 0

&8A(2) SETA 0

&A(3) SETA &A(2)
&A(5) SETA 5
&A(10) SETA 0

then N'&A is 10.

The number attribute is zero for a SET symbol that has been defined but not
assigned any value, regardless of whether it is subscripted or not. The number
attribute is always 1 for a SET symbol that is not subscripted and when the SET
symbol has been assigned a value.

The number attribute also applies to the operands of macro instructions.

Forward attribute-reference scan

If you make an attribute reference to an undeclared symbol, the assembler scans
the source code either until it finds the symbol in the name field of a statement in
open code, or until it reaches the end of the source module. The assembler makes
an entry in the symbol table for the symbol, as well as for any other previously
undefined symbols it encounters during the scan. The assembler does not
completely check the syntax of the statements for which it makes entries in the
symbol table. Therefore, a valid attribute reference can result from a forward scan,
even though the statement is later found to be in error and therefore not accepted
by the assembler.

You must be careful with the contents of any AREAD input in your source

module. If an AREAD input record is encountered before the symbol definition,
and the record has the same format as an assembler language statement, and the

32 HLASM: V1R6 General Information

Conditional assembly language extensions

name field contains the symbol referred to in the attribute reference, then the
forward scan will attempt to evaluate that record instead.

Redefining conditional assembly instructions

You can use the OPSYN instruction to redefine conditional assembly instructions
anywhere in your source module. A redefinition of a conditional assembly
instruction affects only macro definitions occurring after the OPSYN instruction.
The original definition of a conditional assembly instruction is always used during
the processing of subsequent calls to a macro that was defined before the OPSYN
instruction.

An OPSYN instruction that redefines the operation code of an assembler or
machine instruction generated from a macro instruction is effective immediately,
even if the definition of the macro was made prior to the OPSYN instruction.
Consider the following example:

Name Operation Operand Comment
MACRO Macro header
MACRDEF Macro prototype
AIF
MVC
MEND Macro trailer
AIF OPSYN AGO Assign AGO properties to AIF
MvC OPSYN MVI Assign MVI properties to MVC
MACRDEF Macro call

(AIF interpreted as AIF instruct-
ion; generated AIFs not printed)
+ MVC Interpreted as MVI instruction

Open code started at this point
AIF Interpreted as AGO instruction
MvC Interpreted as MVI instruction

In this example, AIF and MVC instructions are used in a macro definition. AIF is a
conditional assembly instruction, and MVC is a machine instruction. OPSYN
statements assign the properties of AGO to AIF and assign the properties of MVI
to MVC. In subsequent calls of the macro MACRDEEF, AIF is still defined, and used
as an AIF operation, but the generated MVC is treated as an MVI operation. In
open code following the macro call, the operations of both instructions are derived
from their new definitions assigned by the OPSYN statements. If the macro is
redefined (by another macro definition), the new definitions of AIF and MVC (that
is, AGO and MVI) are used for further generations.

This description does not apply to nested macro definitions because the assembler
does not edit inner macro definitions until it encounters them during the
generation of its outer macro. An OPSYN statement placed before the outer macro
instruction can affect conditional assembly statements in the inner macro
definition.

Chapter 4. Macro and conditional assembly language extensions 33

Conditional assembly language extensions

System variable symbols

System variable symbols are read-only, local-scope or global-scope variable
symbols whose values are determined and assigned only by the assembler. System
variable symbols that have local scope are assigned a read-only value each time a
macro definition is called by a macro instruction. You can only refer to local-scope
system variable symbols inside macro definitions. System variable symbols that
have global scope are assigned a read-only value for the whole assembly. You can
refer to global-scope system variable symbols in open code and in macro
definitions.

The format of the following two system variables has changed since Assembler H
Version 2:

* &SYSLIST treats parenthesized sublists in SETC symbols as sublists when passed
to a macro definition in the operand of a macro instruction. The
COMPAT(SYSLIST) assembler option can be used to treat sublists in the same
way as Assembler H Version 2, that is, parenthesized sublists are treated as
character strings, not sublists.

* &SYSPARM can now be up to 255 characters long, subject to restrictions
imposed by job control language.

Some of the new system variable symbols introduced with High Level Assembler
supplement the data provided by system variables available in previous
assemblers.

&SYSCLOCK:
&SYSCLOCK provides the date and time the macro is generated.

&SYSDATE and &SYSDATC:
&SYSDATE provides the date in the format MM/DD/YY without the
century digits, and the year digits are in the lowest-order positions.

The new variable symbol &SYSDATC provides the date with the century,
and the year digits in the highest-order positions. Its format is
YYYYMMDD.

&SYSECT and &SYSSTYP:
All previous assemblers have supported the &SYSECT variable to hold the
name of the enclosing control section at the time a macro was invoked.
This allows a macro that needs to change control sections to resume the
original control section on exit from the macro. However, there was no
capability to determine what type of control section to resume.

The &SYSSTYP variable provides the type of the control section named by
&SYSECT. This permits a macro to restore the correct previous control
section environment on exit.

&SYSMAC:
Retrieves the name of any macro called between open code and the current
nesting level.

&SYSM_HSEV:
Provides the highest MNOTE severity code for the assembly so far.

&SYSM_SEV:
Provides the highest MNOTE severity code for the macro most recently
called from this macro or open code.

&SYSOPT_XOBJECT:
Determines if the XOBJECT assembler option was specified.

34 HLASM: V1R6 General Information

Conditional assembly language extensions

&SYSNDX and &SYSNEST:
All previous assemblers have supported the &SYSNDX variable symbol,
which is incremented by one for every macro invocation in the program.
This permits macros to generate unique ordinary symbols if they are
needed as local labels. Occasionally, in recursively nested macro calls, the
value of the &SYSNDX variable was used to determine either the depth of
nesting, or to determine when control had returned to a particular level.

Alternatively, the programmer could define a global variable symbol, and
in each macro insert statements to increment that variable on entry and
decrement it on exit. This technique is both cumbersome (because it
requires extra coding in every macro) and unreliable (because not every
macro called in a program is likely to be under the programmer's control).

High Level Assembler provides the &SYSNEST variable to keep track of
the level of macro-call nesting in the program. The value of &SYSNEST is
incremented globally on each macro entry, and decremented on each exit.

&SYSTIME and the AREAD statement

The &SYSTIME variable symbol is provided by High Level Assembler and
Assembler H, but not by earlier assemblers. It provides the local time of the start
of the assembly in HH.MM format. This time stamp may not have sufficient
accuracy or resolution for some applications.

High Level Assembler provides an extension to the AREAD statement, discussed
in more detail in [“AREAD clock functions” on page 24 |that may be useful if a
more accurate time stamp is required.

|[Appendix B, “System variable symbols,” on page 77 describes all the system
variable symbols.

Chapter 4. Macro and conditional assembly language extensions 35

36 HLASM: V1R6 General Information

Chapter 5. Using exits to complement file processing

The High Level Assembler EXIT option lets you provide an exit module that can
replace or complement the assembler's data set input/output processing. This
chapter describes the exits available to you and how to use them.

User exit types

You can select up to seven exit types during an assembly on z/OS and CMS, or six
on z/VSE:

Exit type

Exit processing

SOURCE

Use this exit to replace or complement the assembler's primary input file
processing. It can read primary input records instead of the assembler, or it
can monitor and optionally modify the records read by the assembler
before they are processed. You can also use the SOURCE exit to provide
additional primary input records.

LIBRARY

Use this exit to replace or complement the assembler's MACRO and COPY
library processing. It can read MACRO and COPY library records instead
of the assembler, or it can monitor and optionally modify the records read
by the assembler before they are processed. You can also use the LIBRARY
exit to provide additional MACRO and COPY source records.

LISTING

Use this exit to replace or complement the assembler's listing output
processing. It can write the listing records provided by the assembler, or it
can monitor and optionally modify the records before they are written by
the assembler. You can also use the LISTING exit to provide additional
listing records.

OBJECT

(z/0OS and CMS) Use this exit to replace or complement the assembler's
object module output processing. It can write object module records
provided by the assembler, or monitor and optionally modify the records
before they are written by the assembler. You can also use the OBJECT exit
to provide additional object module records.

The OBJECT exit is the same as the PUNCH exit, except that you use it
when you specify the OBJECT assembler option to write object records to
SYSLIN.

PUNCH

© Copyright IBM Corp. 1992, 2013

On z/0S and CMS, the PUNCH exit is the same as the OBJECT exit,
except that you use it when you specify the DECK assembler option to
write object records to SYSPUNCH.

On z/VSE, use this exit to replace or complement the assembler's object
module output processing. It can write object module records provided by
the assembler, or monitor and optionally modify the records before they
are written by the assembler. You can also use the PUNCH exit to provide
additional object module records.

37

User exit types

ADATA
Use this exit to replace or complement the assembler's ADATA I/0. The
ADATA exit can modify the records, discard records, or provide additional
records.

TERM Use this exit to replace or complement the assembler's terminal output
processing. It can write the terminal records provided by the assembler, or
it can monitor and optionally modify the records before they are written by
the assembler. You can also use the TERM exit to provide additional
terminal output records.

Note: The ASMAOPT file does not have an I/0O exit.

How to supply a user exit to the assembler

You must supply a user exit as a module that is available in the standard module
search order.

You may write an exit in any language that allows it to be loaded once and called
many times at the module entry point, and conforms to standard OS Linkage
conventions.

On entry to the exit module, Register 1 points to an Exit Parameter list supplied by
the assembler. The Exit Parameter list has a pointer to an Exit-Specific Information
block that contains specific information for each exit type. High Level Assembler
provides you with a macro, called ASMAXITP, which lets you map the Exit
Parameter list and the Exit Specific Information block.

You specify the name of the exit module in the EXIT assembler option. You can
also pass up to 64 characters of data to the exit, by supplying them as a suboption
of the EXIT option. The assembler passes the data to your exit during assembler
initialization.

Passing data to 1/0 exits from the assembler source

You can use the EXITCTL instruction to pass data from the assembler source to
any of the exits. The assembler maintains four signed, fullword, exit-control
parameters for each type of exit. You use the EXITCTL instruction to set or modify
the contents of the four fullwords during the assembly, by specifying the following
values in the operand fields:

* A decimal self-defining term with a value in the range -2°' to +2°'-1.

* An expression in the form *+n, where * is the current value of the
corresponding exit-control parameter to which #, a decimal self-defining term, is
added or from which 7 is subtracted. The value of the result of adding # to or

subtracting 7 from the current exit-control parameter value must be in the range
2% to +27-1.

If a value is omitted, the corresponding exit-control parameter retains its current
value.

The assembler initializes all exit-control parameters to binary zeros.

Statistics

The assembler writes the exit usage statistics to the Diagnostic Cross Reference and
Assembler Summary section of the assembler listing.

38 HLASM: V1R6 General Information

Disabling an exit

Disabling an exit

A return code of 16 allows an EXIT to disable itself. The EXIT is not called again
during this assembly, or any following assemblies if the BATCH option is being

used.

Communication between exits

The Common User field in the Request information block provides a mechanism
by which all exits can communicate and share information.

Reading edited macros (z/VSE only)

An E-Deck refers to a macro source book of type E that can be used as the name of
a macro definition to process in a macro instruction. E-Decks are stored in edited
format, however High Level Assembler requires library macros to be stored in
source statement format. You can use the LIBRARY exit to analyze a macro
definition, and, in the case of an E-Deck, call the z/VSE/ESA ESERV program to
change, line by line, the E-Deck definition back into source statement format.

See the subsection Using the High Level Assembler Library Exit for Processing E-Decks,
in Chapter 4 Using VSE Libraries, section High Level Assembler Considerations, in
VSE/ESA Guide to System Functions . This section describes how to set up a
LIBRARY exit and use it to process E-Decks.

Sample exits provided with High Level Assembler (z/0S and CMS)
The following sample exits are provided with High Level Assembler:

ADATA exit:
The ADATA exit handles the details of interfaces to the assembler. It
provides ADATA records to a number of filter routines, and also to exits
which control the ADATA record output, or reformat ADATA records from
new to old format.

The filter routines inspect the records to extract the information they
require. This lets you add or modify a filter routine without impacting
either the exit or the other filter routines.

The design of the exit:

Supports multiple simultaneous filter routines.

Simplifies the ADATA-record interface for each filter, because you do not
need to be concerned about the complex details of interacting directly
with the assembler.

Supports filter routines written in high-level languages.
Supports an exit to control the ADATA record output.
Supports an exit to reformat ADATA records from new to old format.

There are three components that make up the functional ADATA filter

routine:

1. The exit, ASMAXADT, which the assembler invokes.

2. A table of filter-routine names, contained in a Filter Management Table
(FMT), module ASMAXFMT. The exit routine loads the FMT.

3. The filter routines. The exit loads these as directed by the FMT.

Chapter 5. Using exits to complement file processing 39

Sample exits provided with High Level Assembler (z/OS and CMS)

The functional ADATA exit, ASMAXADC, controls ADATA record output.
ASMAXADC uses parameters specified on the assembler EXIT option to
determine if it, or the assembler, will perform output processing for the
ADATA records, and which record types are to be kept or discarded.

The functional exit, ASMAXADR, reformats ADATA records from the High
Level Assembler Release 5 format, back to the Release 4 format.
ASMAXADR uses parameters specified on the assembler EXIT option to
determine which ADATA types are to be reformatted.

No exit modules are provided with High Level Assembler.
IADATA user exits (z/OS and CMS)”|in the HLASM Programmer’s Guide
describes the exit and the input format of the exit routines.

LISTING exit:
Use the LISTING exit to suppress the High Level Assembler Options Summary
section, or the Diagnostic Cross Reference and Assembler Summary section, or
both from the assembler listing. The exit can also direct the assembler to
print the options summary at the end of the assembler listing. You specify
keywords as suboptions of the EXIT option to control how the assembler
processes these sections of the listing.

The LISTING exit is called ASMAXPRT.

[‘Sample LISTING user exit (z/OS and CMS)”|in the HLASM Programmer's
Guide describes the exit and the keywords you can use to select the print
options.

SOURCE exit:
Use the SOURCE exit to read variable-length source data sets. Each record
that is read is passed to the assembler as an 80-byte source statement. If
any record in the input data set is longer than 71 characters the remaining
part of the record is converted into continuation records.

The exit also reads a data set with a fixed record length of 80 bytes.
The SOURCE exit is called ASMAXINV.

[‘Sample SOURCE user exit (z/OS and CMS)”| in the HLASM Programmer’s
Guide describes this exit.

40 HLASM: VIR6 General Information

Chapter 6. Programming and diagnostic aids

High Level Assembler has many assembler listing and diagnostic features to aid
program development and to simplify the location and analysis of program errors.
You can also produce terminal output to assist in diagnosing assembly errors. This
chapter describes these features.

Assembler listings

High Level Assembler produces a comprehensive assembler listing that provides
information about a program and its assembly. Each section of the assembler
listing is clear and easily readable. The following assembler options are used to
control the format and which sections of the listing to produce:

ASA (z/0OS and CMS) Allows you to use American National Standard printer
control characters, instead of machine printer control characters.

DXREF
Produces the DSECT Cross Reference section.

ESD Produces the External Symbol Dictionary section.

EXIT(PRTEXIT (1mod3))
Supplies a listing exit to replace or complement the assembler's listing
output processing.

FOLD Instructs the assembler to print the assembler listing in uppercase
characters, except for quoted strings and comments.

LANGUAGE
Produces error diagnostic messages in the following languages:
* English mixed case (EN)
* English uppercase (UE)
* German (DE)
* Japanese (JP)
* Spanish (ES)
When you select either of the English languages, the assembler listing

headings are produced in the same case as the diagnostic messages.

When you select either the German language or the Spanish language, the
assembler listing headings are produced in mixed case English.

When you select the Japanese language, the assembler listing headings are
produced in uppercase English.

The assembler uses the installation default language for messages
produced in CMS by the High Level Assembler command.

LINECOUNT
Specifies how many lines should be printed on each page, including the
title and heading lines.

LIST Controls the format of the Source and Object section of the listing. NOLIST
suppresses the entire listing.

MXREF
Produces one, or both, of the Macro and Copy Code Source Summary and
Macro and Copy Code Cross Reference sections.

© Copyright IBM Corp. 1992, 2013 41

Assembler listings

PCONTROL
Controls what statements are printed in the listing, and overrides some
PRINT instructions.

RLD Produces the Relocation Dictionary section.

RXREF
Produces the General Purpose Register Cross Reference section.

USING(MAP)
Produces the Using Map section.

XREF Produces one, or both, of the Ordinary Symbol and Literal Cross Reference
and the Unreferenced Symbols Defined in CSECTs sections.

Option summary

High Level Assembler provides a summary of the options current for the assembly,

including:

* A list of the overriding parameters specified in the external file or library
member (z/VSE only)

* A list of the overriding parameters specified when the assembler was called

* The options specified on *PROCESS statements

* In-line error diagnostic messages for any overriding parameters and *PROCESS
statements in error

You cannot suppress the option summary unless you suppress the entire listing, or
you supply a user exit to control which lines are printed.

On z/0S and CMS, High Level Assembler provides a sample LISTING exit that
allows you to suppress the option summary or print it at the end of the listing. See
the description of the sample listing exit on page

[Figure 4 on page 44| shows an example of the High Level Assembler Option Summary.
The example includes assembler options that have been specified in the external
file or library member, the invocation parameters and in *PROCESS statements. It
also shows the *PROCESS statements in the Source and Object section of the listing.

42 HLASM: VIR6 General Information

Assembler listings

1 High Level Assembler Option Summary Page 1

1]
- HLASM R6.0 2008/07/11 17.48
0 Overriding ASMAOPT Parameters - sysparm(thisisatestsysparm),rxref
Overriding Parameters- NOOBJECT,language(en),size(4meg),xref(short,unrefs),nomxref,norxref,adata,noadata
Process Statements- OVERRIDE (ADATA,MXREF (full))
ALIGN
noDBCS
MXREF (FULL) ,noT1ibmac
FLAG(0)
noFOLD, LANGUAGE (ue)
NORA2
NODBCS
XREF (FULL)

*% ASMA4OOW Error in invocation parameter - size(4meg)

* ASMA438N Attempt to override ASMAOPT parameter. Option norxref ignored.

*% ASMA425N Option conflict in invocation parameters. noadata overrides an earlier setting.

*% ASMA423N Option ADATA, in a *PROCESS OVERRIDE statement conflicts with invocation or default option. Option is not
permitted in a *PROCESS statement and has been ignored.

*% ASMA422N Option LANGUAGE(ue) is not valid in a *PROCESS statement.

*% ASMA437N Attempt to override invocation parameter in a *PROCESS statement. Suboption FULL of XREF option ignored.

*

Options for this Assembly

w

NOADATA
ALIGN
NOASA
BATCH
CODEPAGE (047C)
NOCOMPAT
NODBCS
NODECK
DXREF
ESD
NOEXIT
FLAG(0,ALIGN,CONT,EXLITW,NOIMPLEN,NOPAGEO,PUSH,RECORD,NOSUBSTR,USINGO)
NOFOLD
NOGOFF
NOINFO
LANGUAGE (EN)
NOLIBMAC
LINECOUNT (60)
LIST(121)
MACHINE (,NOLIST)
MXREF (FULL)
NOOBJECT
OPTABLE (UNI,NOLIST)
NOPCONTROL
NOPESTOP
NOPROFILE
5 NORA2
NORENT
RLD
RXREF
SECTALGN(8)
SIZE (MAX)
NOSUPRWARN
SYSPARM(thisisatestsysparm)
NOTERM

(3,

o

oo

w

(3,1

w =

N

N

Chapter 6. Programming and diagnostic aids 43

Assembler listings

1

0 NOTEST
THREAD
NOTRANSLATE

TYPECHECK(MAGNITUDE,REGISTER)

USING (NOLIMIT,MAP,WARN(15))
3 XREF(SHORT,UNREFS)

No Overriding DD Names
1
-Symbol Type Id Address

High Level Assembler Option Summary Page 2
HLASM R6.0 2008/07/11 17.48

External Symbol Dictionary Page 3

Length Owner Id Flags Alias-of HLASM R6.0 2008/07/11 17.48

0A SD 00000001 00000000 60000000 00

1
Active Usings: None

Page 4

0 Loc Object Code Addrl Addr2 Stmt Source Statement HLASM R6.0 2008/07/11 17.48

0

000000 00000 00000

R:F 00000

— =

*PROCESS OVERRIDE(ADATA,MXREF(full))
*PROCESS ALIGN
*PROCESS noDBCS
*PROCESS MXREF (FULL) ,nol1bmac
*PROCESS FLAG(0)
*PROCESS noFOLD, LANGUAGE (ue)
*PROCESS NORA2
*PROCESS NODBCS
*PROCESS XREF(FULL)
A CSECT
USING *,15

HOWONO OIS WN

Figure 4. Option summary including options specified on “PROCESS statements

The highlighted numbers in the example are:

The product description. Shown on each page of the assembler listing. (You
can use the TITLE instruction to generate individual headings for each
page of the source and object program listing.)

The date and the time of the assembly.

Error diagnostic messages for overriding parameters and *PROCESS
statements. These immediately follow the list of *PROCESS statement
options. The error diagnostic messages are:

ASMA400W -
The value specified as the size option is not valid. The valid option
is SIZE(4M).

ASMAA438N -
The option RXREEF is specified in the ASMAOPT file and the
conflicting option NORXREF is specified as an invocation
parameter. The ASMAOPT options have precedence over the
invocation parameters and the NORXREF option is ignored.

ASMAA425N -
The ADATA option specified as an invocation parameter overrides
the option NOADATA which was also specified as an invocation
parameter. When conflicting options are received from the same
source, the last occurrence takes precedence.

ASMAA423N -
The option ADATA has been specified in a *PROCESS statement
with the OVERRIDE option. The option cannot be set by a
*PROCESS statement, and the option conflicts with an invocation
or default option. This message is printed when an option that
cannot be set by a *PROCESS statement is included in a *PROCESS
OVERRIDE statement and the option conflicts with an invocation
or default option. If the option does not conflict with the

44 HLASM: VIR6 General Information

Assembler listings

invocation or default option no message is printed. (For more

information on *PROCESS statement, refer to |“*PROCES

[statement options”|in the HLASM Programmer’s Guide.)

ASMAA422N -
The option LANGUAGE is not permitted in a *PROCESS
statement.

ASMAA437N -
The option XREF(FULL) which is specified in the last *PROCESS
statement conflicts with the option NORXREF which is specified as
an invocation parameter. The option XREF(FULL) is ignored.

A flag beside each option indicates the source of the option. This table
shows the sources:

Table 5. Flags used in the option summary

Flag

Meaning

1

The option came from a *PROCESS OVERRIDE statement.

2

The option came from the ASMAOPT options file (z/OS and CMS) or
ASMAOPT.USER library member (z/VSE).

3

The option came from the invocation parameters.

4

The permanent job control options set by the VSE command STDOPT.

5

The option came from a *PROCESS statement.

(blank)

The option came from the installation defaults.

On z/0S and CMS, if the assembler has been called by a program and any
standard (default) DDnames have been overridden, both the default
DDnames and the overriding DDnames are listed. Otherwise, this
statement appears:

No Overriding DD
Names

The *PROCESS statements are written as comment statements in the
Source and Object section of the listing.

External Symbol Dictionary

[Figure 5 on page 46| shows the external symbol dictionary (ESD) information

passed to the linkage editor or loader, or z/OS Program Management Binder in the
object module.

Chapter 6. Programming and diagnostic aids 45

Assembler listings

SAMPO1

Symbol
SAMPO1
B_PRV
B_TEXT
SAMPO1
ENTRY1
KL_INST
B_PRV
B_TEXT
KL_INST

B_PRV
B_TEXT
Date0001
RCNVTIME

Type

SD
ED
ED
LD
LD
SD
ED
ED
™
SD
ED
ED
ER
ER

External Symbol Dictionary

Page 2

Id Address Length Owner Id Flags Alias-of HLASM R6.0 2008/07/11 17.48
00000001
00000002 00000001
00000003 00000000 0OOOOOEO 00000001 00
00000004 00000000 00000003 00
00000005 00000000 00000003 00
00000006
00000007 00000006
00000008 00000000 00000000 00000006 00
00000009 00000000 00000008 00
0000000A
0000000B 0000000A
0000000C 0OOOOOEO 00000000 00OOOOOA 00
0000000D 0000000A RCNVDATE
0000000E 0000000A

Figure 5. External Symbol Dictionary

2]

Shows the name of every external dummy section, control section, entry

point, external symbol, and class.

Indicates whether the symbol is the name of a label definition, external

reference, unnamed control section definition, common control section
definition, external dummy section, weak external reference, or external

definition.

Shows the length of the control section.

When you define a symbol in an ALIAS instruction, this field shows the

external symbol name of which the symbol is an alias.

You can suppress this section of the listing by specifying the NOESD assembler
option.

Source and object

On z/0S and CMS, the assembler can produce two formats of the source and

object section: a 121-character format and a 133-character format. To select one, you

must specify either the LIST(121) assembler option or the LIST(133) assembler
option. Both sections show the source statements of the module, and the object
code of the assembled statements.

The 133-character format shows the location counter, and the first and second
operand addresses (ADDR1 and ADDR2) as 8-byte fields in support of 31-bit
addresses. This format is required when producing the extended object file; see

[“Generalized object format modules (z/OS and CMS)” on page 11| The

133-character format also contains the first eight characters of the macro name in
the identification-sequence field for statements generated by macros.

[Figure 6 on page 47 shows an example of the Source and Object section of the

listing. This section shows the source statements of the module, and the object

code of the assembled statements.

The fixed heading line printed on each page of the source and object section of the
assembler listing indicates if the control section, at the time of the page eject, is a
COM section, a DSECT or an RSECT.

High Level Assembler lets you write your program and print the assembler listing
headings in mixed-case.

46 HLASM: VIR6 General Information

Assembler listings

121-Character listing format
shows an example of the source and object section in 121-character format,

and in mixed-case.

SAMPO1 Sample Listing Description Page 3
Active Usings: None
Loc Object Code Addrl Addr2 Stmt Source Statement HLASM R6.0 2008/07/11 17.48
000000 00000 0OOEO 2 Samp@l Csect
22 Entryl SAMPMAC Parml=YES 00002300
000000 18CF 23+Entryl LR 12,15 01-SAMPM
g 24+ ENTRY Entryl 01-SAMPM
R:C 00000 25+ USING Entryl,12 Ordinary Using 01-SAMPM
000002 0000 0000 00000 26+ LA Savearea, 10
01-SAMPM
[J ** ASMAO44E Undefined symbol - Savearea
[J ** ASMAO29E Incorrect register specification - Savearea
gl ** ASMA4351 Record 6 in SAMPO1 MACLIB A1(SAMPMAC) on volume: EAR191
000006 50D0 AOO4 00004 27+ ST 13,4(,10) 01-SAMPM
00000A 50A0 D0OO8 00008 28+ ST 10,8(,13) 01-SAMPM
00000E 18DA 29+ LR 13,10 01-SAMPM
R:A35 00010 30+ USING *,10,3,5 Ordinary Using,Multiple Base 01-SAMPM
*% ASMA303W Multiple address resolutions may result from this USING and the USING on statement number 25
[] %% ASMA435I Record 10 in SAMPO1 MACLIB A1(SAMPMAC) on volume: EAR191
31+ DROP 10,3,5 Drop Multiple Registers 01-SAMPM
32 COPY SAMPLE 00002400
33=* Line from member SAMPLE
C 02A 00000 0002A 34 Using IHADCB,INDCB Establish DCB addressability 00002500
C 07A 00000 0007A 35 0DCB Using IHADCB,OUTDCB 00002600
36 push using 00002700
R:2 00000 37 PlistIn Using Plist,2 Establish PTist addressability 00002800
00004 38 la 0,plistin.parm2 00002900
SAMPO1 Sample Listing Description Page 4
Active Usings (1):Entryl,R12 IHADCB(X'FD4'),R12+X'2C' PlistIn.plist,R2 ODCB.IHADCB(X'F84'),R12+X'7C"

ODCB.IHADCB(X'F86') ,R12+X'7A"
Loc Object Code

Addrl Addr2 Stmt

Source Statement HLASM R6.0 2008/07/11 17.48

000010 1851 40 ?Branch LR R5,R1 Save Plist pointer 00003100

**% ASMA147E Symbol too long, or first character not a letter - ?Branch

*% ASMA435I Record 30 in SAMPOL ASSEMBLE Al on volume: EAR191

000012 5820 5000 00000 41 L R2,0(,R5) R2 = address of request list 00003200

000016 47F0 C022 00022 42 B Open 00003300
697 End 00055100

0000D0 00000001 698 =f'l

0000D4 00000000 699 =V (RCNVDATE)

0000D8 00000000 700 =V (RCNVTIME)

0000DC 00000002 701 =f'2'

Figure 6. Source and object listing section—121 format

2]

Shows, in hexadecimal notation, the assembled address of the object code.

Shows, in hexadecimal notation, the object code generated by assembly of
the statement. The object code of machine instructions is printed in full.
Only 8 bytes of object code are printed for assembled constants, unless the
PRINT DATA instruction or the PCONTROL(DATA) assembler option is
specified, in which case all the object code is printed.

Shows the statement number. If you specify the PCONTROL(GEN)
assembler option, or if you specify the PRINT GEN instruction before a
macro instruction, the statements generated by the macro instruction is
printed. A plus sign (+) suffixes the statement numbers of generated
statements.

Shows the source statement.

The Addrl and Addr2 columns show the first and second operand

47

Chapter 6. Programming and diagnostic aids

Assembler listings

addresses in the USING instructions. The base registers on an ordinary
USING instruction are printed, right justified in the Object Code columns,
preceded by the characters R:.

6| Displays the error diagnostic messages immediately following the source
statement in error. Many error diagnostic messages include the segment of
the statement that is in error. You can use the FLAG assembler option to
control the level of diagnostic messages displayed in your listing.

Displays the informational message, ASMA435], that describes the origin of
the source statement in error. This message is only printed when you
specify the FLAG(RECORD) assembler option.

E Displays the informational message, ASMA435I, that describes the origin of
the source statement in error. Conditional assembly statements and
comment statements contribute to the record count of macro definitions.

9] The macro name in the identification-sequence field is truncated after the
first five characters.

The Addrl and Addr2 columns show the first and second operand
addresses in the USING instructions. The register and resolved base
displacement for a dependent USING instruction are printed in the Object
Code columns, as register displacement. The base address is shown in the
Addr1 column, and the explicit base displacement is shown in the Addr2
column.

Shows active USINGs.

In this example, the first is an ordinary USING, the second a dependent
USING, the third a labeled dependent USING, and the last two are labeled
USINGs.

133-character listing format

[Figure 7 on page 49| shows an example of the Source and Object section when the
same assembly is run with assembler option LIST(133), and is followed by a
description of its differences with [Figure 6 on page 47

48 HLASM: VIR6 General Information

Assembler listings

SAMPO1 Sample Listing Description Page 3
Active Usings: None
Loc Object Code Addrl Addr2 Stmt Source Statement HLASM R6.0 2008/07/11 17.48
00000000 00000000 00OOOOED 2 Samp0l Csect
22 Entryl SAMPMAC Parml=YES 00002300
00000000 18CF 23+Entryl LR 12,15 01-SAMPMAC
24+ ENTRY Entryl 01-SAMPMAC
R:C 00000000 25+ USING Entryl,12 Ordinary Using 01-SAMPMAC
00000002 0000 0000 00000000 26+ LA Savearea,10 01-SAMPMAC

*% ASMAO44E Undefined symbol - Savearea
*% ASMAO29E Incorrect register specification - Savearea
*% ASMA435I Record 6 in SAMPO1 MACLIB A1(SAMPMAC) on volume: EAR191

00000006 50D0 A0O4 00000004 27+ ST 13,4(,10) 01-SAMPMAC
0000000A 50A0 DOO8 00000008 28+ ST 10,8(,13) 01-SAMPMAC
0000000E 18DA 29+ LR 13,10 01-SAMPMAC

R:A35 00000010 30+ USING *,10,3,5 Ordinary Using,Multiple Base 01-SAMPMAC

*% ASMA303W Multiple address resolutions may result from this USING and the USING on statement number 25
*% ASMA435I Record 10 in SAMPO1 MACLIB A1(SAMPMAC) on volume: EAR191

31+ DROP 10,3,5 Drop Multiple Registers 01-SAMPMAC
32 COPY SAMPLE 00002400
33=x Line from member SAMPLE
C 02A 00000000 0000002A 34 Using IHADCB,INDCB Establish DCB addressability 00002500
C 07A 00000000 0000007A 35 0DCB Using IHADCB,OUTDCB 00002600
36 push using 00002700
R:2 00000000 37 PlistIn Using Plist,2 Establish Plist addressability 00002800
R:3 00000000 38 P1istOut Using PTist,3 00002900
SAMPO1 Sample Listing Description Page 4

Active Usings (1):Entryl,R12 IHADCB(X'FD6'),R12+X'2A' PlistIn.plist,R2 PlistOut.plist,R3

ODCB.IHADCB(X'F86') ,R12+X'7A"

Loc Object Code Addrl Addr2 Stmt Source Statement HLASM R6.0HLASM R6.0 2008/07/11 17.48
00000010 1851 40 ?Branch LR R5,R1 Save Plist pointer 00003100
*% ASMAL47E Symbol too Tong, or first character not a letter - ?Branch
+x ASMA4351 Record 30 in SAMPQ1 ASSEMBLE Al on volume: EAR191

00000012 5820 5000 00000000 41 L R2,0(,R5) R2 = address of request Tist 00003200

00000016 47F0 C022 00000022 42 B Open 00003300
697 End 00055100

00000000 00000001 698 =f'l

000000D4 00000000 699 =V (RCNVDATE)

000000D8 00000000 700 =V(RCNVTIME)

000000DC 00000002 701 =f'2'

Figure 7. Source and object listing section—133 format

The assembled address of the object code occupies 8 characters.
2| The Addrl and Addr2 columns show 8-character operand addresses.

H The first 8 characters of the macro name are shown in the
identification-sequence field.

Relocation dictionary

shows an example of the Relocation Dictionary section of the listing, which
contains information passed to the linkage editor, or z/OS Program Management
Binder, in the object module. The entries describe the address constants in the
assembled program that are affected by relocation.

SAMPO1 Relocation Dictionary Page 5
1] 2] H (415 |
Pos.Id Rel.Id Address Type Action HLASM R6.0 2008/07/11 17.48
00000003 00000003 000OEEB8 A 4 +
00000003 00000OOD 00OOEED4 V 4 ST
00000003 00OOOOOE 00OOOOD8 V 4 ST

Figure 8. Relocation dictionary

Indicates the ESD ID assigned to the ESD entry for the control section in
which the address constant is defined.

Chapter 6. Programming and diagnostic aids 49

Assembler listings

2] Indicates the ESD ID assigned to the ESD entry for the control section to
which this address constant refers.

Shows the assembled address of the address constant.

Indicates the type and length of the address constant. The type may be one
of the following:

A A-type address constant
A% V-type address constant
Q Q-type address constant
J J-type address constant or CXD instruction
R R-type address constant
RI Relative Immediate offset
5] Indicates the relocation action. The action may be one of the following:
+ the relocation operand is added to the address constant
- the relocation operand is subtracted from the address constant
ST the relocation operand overwrites the address constant

You can suppress this section of the listing by specifying the NORLD assembler
option.

Ordinary symbol and literal cross reference

[Figure 9 on page 51| shows an example of the Ordinary Symbol and Literal Cross
Reference section of the listing. It shows a list of symbols and literals defined in
your program. This is a useful tool for checking the logic of your program. It helps
you see if your data references and branches are correct.

50 HLASM: V1R6 General Information

Assembler listings

SAMPO1
2]
Symbol Length Value
DCBBITO 1 00000080
DCBBIT1 1 00000040
DCBBIT2 1 00000020
DCBBIT3 1 00000010
DCBBIT4 1 00000008
DCBBITS 1 00000004
DCBBITH 1 00000002
DCBBIT7 1 00000001
Entryl 2 00000000
IHADCB 1 00000000
INDCB 2 0000002A
Open 2 00000022
0UTDCB 2 0000007A
plist 1 00000000
PlistIn #**xQUALIFIER#*x
RCNVDATE 1 00000000
RCNVTIME 1 00000000
rl 1 00000001
r2 1 00000002
r5 1 00000005
Samp01 1 00000000
Savearea ***UNDEFINED##*x
=f'1' 4 00000000
=f'2' 4 000000DC
=V (RCNVDATE)

4 00000004
=V (RCNVTIME)

4 00000008

Ordinary Symbol and Literal Cross Reference Page 6

Id
FFFFFFFF

FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF
FFFFFFFF

FFFFFFFF
00000063
FFFFFFFF
00000063
00000063
00000063
FFFFFFFE
00000001
0000006D
0000000E
00000003
00000003
00000003
00000063
00000060
00000063
00000063

00000003
00000003

R Type Asm Program Defn References

A
AU
AU
AU
AU
AU
AU
AU
I
J
H
H
H
J
U
T
T
AU
AU
AU
J
AU
F
F
v

=

HLASM R6.0 2008/07/11 17.48

68 101 109 122 146 179 181 182 184 207 210 230 234 249 286
344

69 102 110 124 147 148 157 163 179 181 183 184 212 230 232
234 252 253 254 289 290 344

70 103 111 125 126 127 147 148 152 158 163 179 180 185 214
235 236 257 258 259 293 294 345

71 104 125 127 128 147 160 186 217 235 238 261 262 263 297

298 345
72 112 161 162 163 187 218 240 245 246 266 267 301 302 304
305 346

73 113 168 190 191 220 240 242 243 246 270 272 273 274 308
309 310 311 346
74 105 169 170 173 196 192 221 277 278 279 280 314 315 316

317 347
75 106 169 171 173 194 225 282 283 320 321 323 324
23 24 25U
56 34U 350 83 132 203 328 335 353
46 34U
366 42B
48 35U
360 37U 38U
37 38
699 699
700 700
369 40
370 4IM
373 40M 41
2 20 45 47 356 363 365
26
698 396
701 400
699 397
700 399

Figure 9. Ordinary symbol and literal cross reference

(ol o~ N o

=
o

Each symbol or literal. Symbols are shown in the form in which they are
defined, either in the name entry of a machine or assembler instruction, or
in the operand of an EXTRN or WXTRN instruction. Symbols defined
using mixed-case letters are shown in mixed-case letters, unless the FOLD
assembler option was specified.

The byte length of the field represented by the symbol, in decimal notation.

Shows the hexadecimal address that the symbol or literal represents, or the
hexadecimal value to which the symbol is equated.

Shows the ESD ID assigned to the ESD entry for the control section in
which the symbol or literal is defined.

Symbols DCBBITO, DCBBIT1, etc. are absolute symbols and are flagged “A”
in the R column. A symbol that is the result of a complex relocatable
expression would be flagged “C” in the R column. Symbol INDCB is simply
relocatable and is not flagged. (Column title R is an abbreviation for
“Relocatability Type”.)

Indicates the type attribute of the symbol or literal.
Indicates the assembler type of the symbol.
Indicates the program type of the symbol.

Indicates the number of the statement in which the symbol or literal was
defined.

Shows the statement numbers of the statements in which the symbol or
literal appears as an operand. Additional indicators are suffixed to
statement numbers as follows:

Chapter 6. Programming and diagnostic aids 51

Assembler listings

B The statement contains a branch instruction, and the symbol is
used as the branch-target operand.

D The statement contains a DROP instruction, and the symbol is used
in the instruction operand.

M The statement caused the field named by the symbol to be
modified.

U The statement contains a USING instruction, and the symbol is
used in one of the instruction operands.

X The statement contains an EX machine instruction and the symbol,
in the second operand, is the symbolic address of the target
instruction.

You can suppress this section of the listing by specifying the NOXREF assembler
option. You can also suppress all symbols not referenced in the assembly by
specifying the XREF(SHORT) assembler option.

Unreferenced symbols defined in CSECTs

shows an example of the Unreferenced Symbols Defined in CSECTs section
of the listing. This section contains a list of symbols defined in CSECTs in your
program that are not referenced. It helps you remove unnecessary labels and data
definitions, and reduce the size of your program. Use the XREF(UNREFS)
assembler option to produce this section.

SAIVﬁ)l Unreferenced Symbols Defined in CSECTs Page 7
1
Defn Symbol HLASM R6.0 2008/07/11 17.48
35 0DCB
37 Plistln
38 PlistOut
368 ro
378 rlo
379 rll
380 rl2
381 ri3
382 rl4
383 ril5
371 r3
372 r4
374 r6
375 r7
376 r8
377 r9

Figure 10. Unreferenced symbols defined in CSECTS

Shows the statement number that defines the symbol.
2] Shows the symbol name.

General Purpose Register cross reference

[Figure 11 on page 53|shows an example of the General Purpose Register Cross
Reference section of the listing. It lists the registers, and the lines where they are
referenced. This helps find all references to registers, particularly those generated
by macros that do not use symbolic names, or references using symbolic names
than the common RO, R1, and so on.

52 HLASM: V1R6 General Information

Assembler listings

General Purpose Register Cross Reference

Page 11

Register References (M=modified, B=branch, U=USING, D=DROP, N=index) HLASM R6.0 2008/07/11 17.48
0(0) (no references identified)
1(1) 49 396M 397M 460M
2(2) 370 41M 399M
3(3) 30 31D 38U
4(4) (no references identified)
5(5) 300 310 46M 41
6(6) (no references identified)
7(7) (no references identified)
8(8) (no references identified)
9(9) (no references identified)
10(n) 27 28 29 30U 31D
11(B) (no references identified)
12(c) 23M 250
13(D) 27 28 2o
14(E) (no references identified)
15(F) 23
Figure 11. General Purpose Register cross reference
Lists the sixteen general registers (0-15).
2] The statements within the program that reference the register. Additional
indicators are suffixed to the statement numbers as follows:
(blank)
Referenced
M Modified
B Used as a branch address
8) Used in USING statement
D Used in DROP statement
N Used as an index register
H The assembler indicates when it has not detected any references to a
register.
You can produce this section of the listing by specifying the RXREF
Note: The implicit use of a register to resolve a symbol to a base and displacement
does not create a reference in the General Purpose Register Cross Reference.
Macro and copy code source summary
shows an example of the Macro and Copy Code Source Summary section of
the listing. This section shows where the assembler read each macro or copy code
member from. It helps you ensure you have included the correct version of a
macro or copy code member. Either the MXREF(SOURCE), or MXREF(FULL)
assembler option generates this section of the listing.
SAMPO1 Macro and Copy Code Source Summary Page 8
Con Source Volume Members HLASM R6.0 2008/07/11 17.48
L1 SAMPE1 MACLIB Al FALIOL SAMPLE SAMPMAC
L2 OSMACRO MACLIB S2 MNT199 DCBD ~ IHBERMAC
Figure 12. Macro and copy code source summary
Shows the concatenation value representing the source of the macros and

copy code members. This number is not shown if the source is PRIMARY

Chapter 6. Programming and diagnostic aids 53

Assembler listings

INPUT. The number is prefixed with L which indicates Library. The
concatenation value is cross referenced in the Macro and Copy Code Cross
Reference section, and the Diagnostic Cross Reference and Assembler Summary
section.

Shows the name of each library from which the assembler read a macro or
a copy code member. The term PRIMARY INPUT is used for in-line
macros.

Shows the volume serial number of the volume on which the library
resides.

Shows the names of the macros or copy members.

You can suppress this section of the listing by specifying the NOMXREF assembler
option, or by specifying the MXREF(XREF) assembler option.

Macro and copy code cross reference

shows an example of the Macro and Copy Code Cross Reference section of
the listing. This section lists the names of macros and copy code members used in
the program, and the statement numbers where each was called. Either the
MXREF(XREF), or MXREF(FULL) assembler option generates this section of the

listing.

SAMPO1 Macro and Copy Code Cross Reference Page 28
A H a
Macro Con Called By Defn References HLASM R6.0 2008/07/11 17.48
A PRIMARY INPUT 826 971, 973, 998
AINSERT_TEST_MACRO

PRIMARY INPUT 3 16
AL PRIMARY INPUT 873 981, 983
DCBD L3 PRIMARY INPUT - 113
IHBERMAC L3 DCBD - 113
L PRIMARY INPUT 816 966, 968
MAC1 PRIMARY INPUT 28 36
N PRIMARY INPUT 933 991
0 PRIMARY INPUT 953 993
SAMPLE L1 PRIMARY INPUT - 8¢ A
SAMPMAC L1 PRIMARY INPUT - 64
SAVE L3 PRIMARY INPUT - 42
SL PRIMARY INPUT 883 986, 988
ST PRIMARY INPUT 836 976, 978
TYPCHKRX PRIMARY INPUT 745 775, 845, 892
X PRIMARY INPUT 943 996
XIT1 L1 PRIMARY INPUT - 30C
XIT2 L2 PRIMARY INPUT - 32C
XIT3 L1 PRIMARY INPUT - 34C

Figure 13. Macro and copy code cross reference

2]

Shows the macro or copy code member name.

Shows the concatenation value representing the source of the macro or
copy code member. This value is cross-referenced in the Macro and Copy
Code Source Summary section, and under Datasets Allocated for this Assembly
in the Diagnostic Cross Reference and Assembler Summary section.

Shows the name of the macro that calls this macro or copy code member,
or PRIMARY INPUT, meaning that the macro or copy code member was
called directly from the primary input source.

Shows one of the following:
* The statement number for macros defined in the primary input file

54 HLASM: V1R6 General Information

Assembler listings

¢ A dash (-) for macros or copy code members read from a library.

Shows the statement number that contains the macro call or COPY
instruction.

Shows the statement reference number with a suffix of C, which indicates
that the member is specified on a COPY instruction.

shows an example of the Macro and Copy Code Cross Reference section
when you specify the LIBMAC assembler option.

SAMPO1
Macro Con Called By
A PRIMARY INPUT
AINSERT_TEST_MACRO

PRIMARY INPUT
AL PRIMARY INPUT
DCBD L3 PRIMARY INPUT
IHBERMAC L3 DCBD
L PRIMARY INPUT
MAC1 PRIMARY INPUT
N PRIMARY INPUT
0 PRIMARY INPUT
SAMPLE L1 PRIMARY INPUT
SAMPMAC L1 PRIMARY INPUT
SAVE L3 PRIMARY INPUT
SL PRIMARY INPUT
ST PRIMARY INPUT
TYPCHKRX PRIMARY INPUT
X PRIMARY INPUT
XIT1 L1 PRIMARY INPUT
XIT2 L2 PRIMARY INPUT
XIT3 L1 PRIMARY INPUT

Defn

3667

3
3714
224X
2331X
3657
28
3774
3794

153X

43X
3724
3677
3586
3784

Macro and Copy Code Cross Reference Page 81
References HLASM R6.0 2008/07/11 17.48

3812, 3814, 3839

16

3822, 3824
2329

2954

3807, 3809
36

3832

3834

195C

174

130

3827, 3829
3817, 3819
3616, 3686, 3733
3837

30C

32C

34C

Figure 14. Macro and copy code cross reference - with LIBMAC option

The “X” flag indicates the macro was read from a macro library and
imbedded in the input source program immediately preceding the
invocation of that macro. For example, in you can see that
SAMPMAC was called by the PRIMARY INPUT stream from LIBRARY L1, at

statement number 174, after being imbedded in the input stream at
statement number 153.

You can suppress this section of the listing by specifying the NOMXREF assembler

option,

or the MXREF(SOURCE) assembler option.

DSECT cross reference

shows an example of the DSECT Cross Reference section of the listing.
This section shows the names of all internal and external dummy sections defined
in the program, and the statement number where the definition of the dummy
section begins.

SAMPO1

Dsect Length
IHADCB 00000034 FFFFFFFF
plist 00000008 FFFFFFFE

Id

Defn
56
360

Dsect Cross Reference Page 9

HLASM R6.0 2008/07/11 17.48

Figure 15. DSECT cross reference

Shows the name of each dummy section defined in your program.

Chapter 6. Programming and diagnostic aids 55

Assembler listings

USING map

Shows, in hexadecimal notation, the assembled byte length of the dummy
section.

Shows the ESD ID assigned to the ESD entry for external dummy sections.
For internal dummy sections it shows the control section ID assigned to
the dummy control section. You can use this field in conjunction with the
ID field in the Ordinary Symbol and Literal Cross Reference section to relate
symbols to a specific DSECT.

Shows the number of the statement where the definition of the dummy
section begins.

You can suppress this section of the listing by specifying the NODXREF assembler

option.

shows an example of the Using Map section of the listing. It shows a
summary of the USING, DROP, PUSH USING, and POP USING instructions used
in your program.

SAMPO1

Stmt ----- Loc
Count

25 00000002
30 00000010
30 00000010
30 00000010
31 00000010
31 00000010
31 00000010
34 00000010
35 00000010
36 00000010
37 00000010
38 00000010
403 000000E0

ation-----
1d
00000003
00000003
00000003
00000003
00000003
00000003
00000003
00000003
00000003
00000003
00000003
00000003
0000000C

Type

Using Map Page 10
HLASM R6.0 2008/07/11 17.48
6 7] 8]
------------ Using----------------- Reg Max Last Label and Using Text
Value Range Id Disp Stmt

USING ORDINARY 00000000 00001000 00000003 12 000DC 400 Entryl,12
USING ORDINARY 00000010 00001000 00000003 10 00000 *,10,3,5
USING ORDINARY 00001010 00001000 00000003 3 00000
USING ORDINARY 00002010 00001000 00000003 5 00000

DROP 10 10

DROP 3 3

DROP 5 5

USING DEPENDENT +0000002A 00000FD6 FFFFFFFF 12 THADCB, INDCB

USING LAB+DEPND +0000007A 00000F86 FFFFFFFF 12 0DCB. IHADCB,OUTDCB
PUSH

USING LABELED 00000000 00001000 FFFFFFFE 2 00000 P1istIn.Plist,2
USING LABELED 00000000 00001000 FFFFFFFE 3 00000 P1istOut.PTlist,3
POP

Figure 16. USING map

Shows the number of the statement that contains the USING, DROP, PUSH
USING, or POP USING instruction.

Indicates whether the instruction was a USING, DROP, PUSH, or POP
instruction.

Shows the type of USING instruction. A USING instruction can be an
ordinary USING, a labeled USING, a dependent USING, or a labeled
dependent USING.

For ordinary and labeled USING instructions, this field indicates the base
address specified in the USING. For dependent USING instructions, this
field is prefixed with a plus sign (+) and indicates the hexadecimal offset
of the address of the second operand from the base address specified in
the corresponding ordinary USING.

Shows the range of the USING. For more information, see the description
of the USING statement in the HLASM Language Reference.

For USING instructions, this field indicates the ESDID of the section
specified on the USING statement.

56 HLASM: V1R6 General Information

Assembler listings

Indicates the registers specified in USING instructions, and DROP
instructions. There is a separate line in the USING map for each register
specified in the instruction.

B Shows the maximum displacement from the base register that the
assembler calculated when resolving symbolic addresses into
base-displacement form.

You can suppress this section of the listing by specifying the USING(NOMAP)
assembler option, or the NOUSING assembler option.

Diagnostic cross reference and assembler summary

shows an example of the Diagnostic Cross Reference and Assembler
Summary section of the listing. This sample listing is from a CMS assembly, and
shows CMS data set information.

This section includes a summary of the statements flagged with diagnostic
messages, and provides statistics about the assembly. You cannot suppress this
section unless you use a LISTING exit to discard the listing lines.

See the description of the sample LISTING exit on page which lets you
suppress this section.

Diagnostic Cross Reference and Assembler Summary Page 9
HLASM R6.0 2008/07/11 17.48
Statements Flagged

1(P1,0), 3(P1,3), 4(P1,4), 5(P1,5), 6(P1,6), 7(P1,7), 8(P1,8), 170(L3:DCBD,2149)

EI 8 Statements Flagged in this Assembly 16 was Highest Severity Code
High Level Assembler, 5696-234, RELEASE 5.0
SYSTEM: CMS 11 JOBNAME: (NOJOB) STEPNAME: (NOSTEP) PROCSTEP: (NOPROC)
Datasets Allocated for this Assembly
Con DDname Data Set Name Volume Member
Al ASMAOPT XITDIS OPTIONS Al ADISK
P1 SYSIN XITDIS ASSEMBLE Al ADISK
L1 SYSLIB TEST MACLIB Al ADISK
L2 DSECT MACLIB Al ADISK
L3 OSMACRO MACLIB S2 MNT190
L4 OSMACRO1 MACLIB S2 wnT190 A
SYSLIN XITDIS TEXT Al ADISK
SYSPRINT XITDIS LISTING Al ADISK
External Function Statistics [@
----Calls---- Message Highest Function
SETAF SETCF Count Severity Name
3 1 5 22 MSG
1 0 2 8 MSG1
1 0 1 0 MSG2
Input/Output Exit Statistics
Exit Type Name Calls ---Records--- Diagnostic
Added Deleted Messages
LIBRARY CTLXIT 258 0 0 2
LISTING ASMAXPRT 195 0 52 0
Suppressed Message Summary
Message Count Message Count Message Count Message Count Message Count
169 0 306 0 309 0 320 0
4622K allocated to Buffer Pool,
16 Primary Input Records Read 3072 Library Records Read
1 ASMAOPT Records Read 141 Primary Print Records Written
2 Punch Records Written 0 ADATA Records Written

Assembly Start Time: 12.06.06 Stop Time: 12.06.07 Processor Time: 00.00.00.1771
Return Code 016

Figure 17. Diagnostic cross reference and assembler summary

Chapter 6. Programming and diagnostic aids 57

Assembler listings

The statement number of a statement that causes an error message, or
contains an MNOTE instruction, appears in this list. Flagged statements are
shown in either of two formats. When assembler option
FLAG(NORECORD) is specified, only the statement number is shown.
When assembler option FLAG(RECORD) is specified, the format is:
statement(dsnum:member,record), where:

Statement
is the sequential, absolute statement number as shown in the
source and object section of the listing.

dsnum is the value applied to the source or library dataset, showing the
type of input file and the concatenation number. “P” indicates the
statement was read from the primary input source, and “L”
indicates the statement was read from a library. This value is
cross-referenced to the input datasets listed under the sub-heading
“Datasets Allocated for this Assembly” .

member
is the name of the macro from which the statement was read. On
z/0S, this may also be the name of a partitioned data set member
that is included in the primary input (SYSIN) concatenation.

record is the relative record number from the start of the dataset or
member which contains the flagged statement.

The number of statements flagged, and the highest non-zero severity code
of all messages issued.

Provides information about the system on which the assembly was run.

On z/0S and CMS, all data sets used in the assembly are listed by their
standard DDname. The data set information includes the data set name,
and the serial number of the volume containing the data set. On z/OS, the
data set information may also include the name of a member of a
partitioned data set (PDS).

If a user exit provides the data set information, then the data set name is
the value extracted from the Exit-Specific Information Block described in
[“Exit-Specific Information Block”| in the HLASM Programmer’s Guide.

The “Con” column shows the concatenation value assigned for each input
data set. You use this value to cross-reference flagged statements, and
macros and copy code members listed in the Macro and Copy Code Cross
Reference section.

Output data sets do not have a concatenation value.

The usage statistics of external functions for the assembly. The following
statistics are reported:

SETAF function calls
The number of times the function was called from a SETAF
assembler instruction.

SETCF function calls
The number of times the function was called from a SETCF
assembler instruction.

Messages issued
The number of times the function requested that a message be
issued.

58 HLASM: V1R6 General Information

Assembler listings

Messages severity
The maximum severity for the messages issued by this function.

Function name
The name of the external function module.

The usage statistics of the I/O exits you specified for the assembly. If you
do not specify an exit, the assembler does not produce any statistics. The
following statistics are reported:

Exit type
The type of exit.

Name The name of the exit module as specified in the EXIT assembler
option.

Calls The number of times the exit was called.

Records
The number of records added and deleted by the exit.

Diagnostic messages
The number of diagnostic messages printed, as a result of exit
processing.

All counts are shown right justified and leading zeroes are suppressed,
unless the count is zero.
B The suppressed message statistics for the assembly.

These messages have been suppressed by means of the SUPRWARN
option.

Statistics about the assembly.

Ba

On z/VSE, the assembly start and stop times in hours, minutes and
seconds.

On z/0S and CMS, the assembly start and stop times in hours, minutes
and seconds and the approximate amount of processor time used for the
assembly, in hours, minutes, and seconds to four decimal places.

Improved page-break handling

In order to prevent unnecessary page ejects that leave blank pages in the listing,
the assembler takes into account the effect EJECT, SPACE and TITLE instructions
have when the assembler listing page is full. The EJECT and TITLE instruction
explicitly starts a new page, while the assembler implicitly starts a new page when
the current page is full.

When an explicit new page is pending the following processing occurs:
* Successive EJECT statements are ignored
* Successive TITLE statements allow the title to change but the EJECT is ignored

* A SPACE statement forces a new page heading to be written, followed by the
given number of blank lines. The number of blank lines specified can cause an
implicit page eject if the number exceeds the page depth.

When an implicit new page is pending the following processing occurs:
* An EJECT statement converts the implicit new page to an explicit pending new
page.

Chapter 6. Programming and diagnostic aids 59

Assembler listings

* A TITLE statement converts the implicit new page to an explicit pending new
page and redefines the title.

¢ Any other statement forces a new page heading to be printed.

Diagnostic messages in open code

The Source and Object section of the assembler listing shows in-line diagnostic
messages. The Diagnostic Cross Reference and Assembler Summary shows the total
number of diagnostic messages and the statement numbers of flagged statements.
Many in-line messages include a copy of the segment of the statement that is in
€erTor.

When you specify the FLAG assembler option, the assembler may print additional
diagnostic messages. The FLAG(ALIGN) option directs the assembler to issue
diagnostic messages when there is an alignment error between an operation code
and the operand data address. The FLAG(CONT) option directs the assembler to
issue diagnostic messages when the assembler detects a possible continuation error.
The FLAG(RECORD) option directs the assembler to print an additional
informational message after the last error diagnostic message for each statement in
error. shows the effect of the FLAG(RECORD) option:

000000 1 CSECT

22 COMM
** ASMAO57E Undefined operation code - COMM
*x ASMA435I1 Record 22 in 'HLASM3.SAMPLE.SOURCE(SAMPO1)' on volume: HLASM3

000000 35 DS (*+5)F

x ASMAO32E Relocatable value found when absolute value required - (+5)F
*x ASMA435I Record 35 in 'HLASM3.SAMPLE.SOURCE(SAMPO1)' on volume: HLASM3
000000 00000000 36 2NAME DC F'o!

*% ASMA147E Symbol too long, or first character not a letter - 2NAME

x% ASMA4351 Record 36 in 'HLASM3.SAMPLE.SOURCE (SAMPO1)' on volume: HLASM3

118 &C SETC 'AGO'
119 &C X
ASMAOO1E Operation code not allowed to be generated - AGO
ASMA4351 Record 119 in 'HLASM3.SAMPLE.SOURCE(SAMPO1)' on volume: HLASM3

151 END

Figure 18. In-line error messages in open code

You can locate messages in your assembly listing by searching for “** ASMA” in
the listing. The preferred alternative is to specify the TERM option.

60 HLASM: V1R6 General Information

Macro-generated statements

Macro-generated statements

A macro-generated statement is a statement generated by the assembler after a
macro call. During macro generation, the assembler copies any model statements
processed in the macro definition into the input stream for further processing.
Model statements are statements from which assembler language statements are
generated during conditional assembly. You can use variable symbols as points of
substitution in a model statement to vary the contents or format of a generated
statement.

Open code: Model statements can also be included in open code by using variable
symbols as points of substitution.

Sequence field in macro-generated statements

The Source and Object section of the listing includes an identification-sequence field
for macro-generated statements. This field is printed to the extreme right of each
generated statement in the listing.

When a statement is generated from a library macro, the identification-sequence
field of the generated statement contains the nesting level of the macro call in the
first two columns, a hyphen in the third column, and the macro definition name in
the remaining columns.

On z/0S and CMS, when you specify the LIST(121) assembler option, the first 5
characters of the macro name are printed after the hyphen. When you specify the
LIST(133) assembler option, the first 8 characters of the macro name are printed
after the hyphen.

On z/VSE, only the first 5 characters of the macro name are printed after the
hyphen.

This information can be an important diagnostic aid when analyzing output
dealing with macro calls within macro calls.

When a statement is generated from an in-line macro or a copied library macro,
the identification-sequence field of the generated statement contains the nesting
level of the macro call in the first two columns, a hyphen in the third column, and
the model statement number from the definition in the remaining columns.

Format of macro-generated statements

Whenever possible, the assembler prints a generated statement in the same format
as the corresponding macro-definition (model) statement. The assembler preserves
the starting columns of the operation, operand, and comments fields unless they
are displaced by field substitution, as shown in the following example:

Chapter 6. Programming and diagnostic aids 61

Macro-generated statements

Loc Object Code Addrl Addr2 Stmt Source Statement HLASM R6.0 2008/07/11 17.48
1 macro
2 macgen
3 8&A SETC 'abcdefghijklimnopq'
4 &A LA 1,4 Comment
5 &B SETC 'abc'
6 &B LA 1,4 Comment
7 mend
8 macgen
000000 4110 0004 00004 9+abcdefghijklmnopq LA 1,4 Comment 01-00004
000004 4110 0004 00004 10+abc LA 1,4 Comment 01-00006
11 end

Figure 19. Format of macro-generated statements

Macro-generated statements with PRINT NOGEN

The PRINT NOGEN instruction suppresses the printing of all statements generated
by the processing of a macro. PRINT NOGEN also suppress the generated
statement for model statements in open code. When the PRINT NOGEN
instruction is in effect, the assembler prints one of the following on the same line
as the macro call or model statement:

* The object code for the first instruction generated. The object code includes the
data that is shown under the ADDR1 and ADDR?2 columns of the assembler
listing.

* The first 8 bytes of generated data from a DC instruction

When the assembler forces alignment of an instruction or data constant, it
generates zeros in the object code and prints the generated object code in the
listing. When you use the PRINT NOGEN instruction the generated zeros are not
printed.

Note: If the next line to print after macro call or model statement is a diagnostic
message, the object code or generated data is not shown in the assembler listing.

shows the object code of the first statement generated for the wto macro
instruction when PRINT NOGEN is effective. The data constant (DC) for jump
causes 7 bytes of binary zeroes to be generated before the DC to align the constant
on a double word. With PRINT NOGEN effective, these are not shown, but the
location counter accounts for them.

Loc Object Code Addrl Addr2 Stmt Source Statement HLASM R6.0 2008/07/11 17.48

000016 1851

000018 4510 FO26
000028 C1
000030 4238000000000000

13 Tr 5,1

14 print nogen
00002 15 wto 'Hello'

23 dc cl1'A!

24 jump dc d'56'

Figure 20. The effect of the PRINT NOGEN instruction

62 HLASM: V1R6 General Information

Diagnostic messages in macro assembly

Diagnostic messages in macro assembly

The diagnostic facilities for High Level Assembler include diagnostic messages for
format errors within macro definitions, and assembly errors caused by statements
generated by the macro.

Error messages for a library macro definition

Format errors within a particular library macro definition are listed directly
following the first call to that macro. Subsequent calls to the library macro do not
result in this type of diagnostic. You can bring the macro definition into the source
program with a COPY statement or by using the LIBMAC assembler option. The
format errors then follow immediately after the statements in error. The macro
definition in |Figure 21| shows a format error in the LCLC instruction:

[Figure 22 shows the placement of error messages when the macro is called:

Name Operation Operand Comment

MACRO

MAC1

LCLC &.A Invalid variable symbol
&N SETA &A

MEND

Figure 21. Macro definition with format error

1 MAC1
*% ASMAOQ24E Invalid variable symbol - MACRO - MAC1

%% ASMAOO3E Undeclared variable symbol; default=0, null, or type=U - LIBMA/A
36 MAC1
*%x ASMAOO3E Undeclared variable symbol; default=0, null, or type=U - LIBMA/A

66 END

Figure 22. Error messages for a library macro definition

Error messages for source program macro definitions

The assembler prints diagnostic messages for macro-generated statements even if
the PRINT NOGEN instruction is in effect. In-line macro editing error diagnostic
messages are inserted in the listing directly following the macro definition
statement in error. Errors analyzed during macro generation produce in-line
messages in the generated statements.

Chapter 6. Programming and diagnostic aids 63

Terminal output

Terminal output

On z/0S and CMS, the TERM option lets you receive a summary of the assembly
at your terminal. You may direct the terminal output to a disk data set.

On z/VSE, the TERM option lets you send a summary of the assembly to SYSLOG.

The output from the assembly includes all error diagnostic messages and the
source statement in error. It also shows the number of flagged statements and the
highest severity code.

The terminal output can be shown in two formats. the wide format,
shows the source statements in the same columns as they were in the input data
set. the narrow format, shows the source statements which have been
compressed by replacing multiple consecutive blanks with a single blank. Use the
TERM assembler option to control the format.

1 &abc setc 1'f 00000100
ASMA137S Invalid character expression - 1'f
000000 3 dc c'' 00000300
ASMAO68S Length error - '
Assembler Done 2 Statements Flagged / 12 was Highest Severity Code

Figure 23. Sample terminal output in the NARROW format

1 &abc setc 1'f

00000100
ASMA137S Invalid character expression - 1'f
000000 3 dc c'!
00000300
ASMA068S Length error - '
Assembler Done 2 Statements Flagged / 12 was Highest Severity Code

Figure 24. Sample terminal output in the WIDE format

You can replace or modify the terminal output using a TERM user exit. See
(Chapter 5, “Using exits to complement file processing,” on page 37/

Input/output enhancements

High Level Assembler includes the following enhancements:
* QSAM Input/Output

The assembler uses QSAM input/output for all sequential data sets.
* System-Determined Blocksize

Under z/0S, High Level Assembler supports DFSMS System-Determined
Blocksize (SDB) for all output datasets, except SYSPUNCH and SYSLIN.

SDB is applicable when all of the following conditions are true:

— You run High Level Assembler under a z/OS operating system that includes
a DFSMS level of 3.1 or higher.

— You DO NOT allocate the data set to SYSOUT.

— Your JCL omits the blocksize, or specifies a blocksize of zero.
— You specify a record length (LRECL).

— You specify a record format (RECFM).

— You specify a data set organization (DSORG).

64 HLASM: V1R6 General Information

Input/output enhancements

If these conditions are met, DFP selects the appropriate blocksize for a new data
set depending on the device type you select for output.

If the System-Determined Blocksize feature is not available, and your JCL omits
the blocksize, or specifies a blocksize of zero, the assembler uses the logical
record length as the blocksize.

CMS interface command

The name of the CMS interface command is ASMAHL. Your installation can create
a synonym for ASMAHL when High Level Assembler is installed.

You can specify assembler options as parameters when you issue the High Level
Assembler command. You may delimit each parameter using either a space or
comma. There must be no intervening spaces when you specify suboptions and
their delimiters.

The following invocation of High Level Assembler is not correct:
ASMAHL XREF(SHORT)

The assembly continues but issues message ASMA400W ERROR IN INVOCATION
PARAMETER in the High Level Assembler Options Summary section of the assembly
listing.

The correct way to specify the option is as follows:
ASMAHL XREF (SHORT)

The Assembler H Version 2 CMS-specific options NUM, STMT, and TERM have
been removed. SYSTERM support is provided by the standard assembler TERM
option.

The new SEG and NOSEG options let you specify from where CMS should load
the High Level Assembler modules. By default the assembler loads its modules
from the Logical Saved Segment (LSEG), but if the LSEG is not available, it loads
the modules from disk. You can specify the NOSEG option to force the assembler
to load its modules from disk, or you can specify the SEG option to force the
assembler to load its modules from the Logical Saved Segment (LSEG). If the
assembler cannot load its modules it terminates with an error message.

Macro trace facility (MHELP)

The assembler provides you with a set of trace and dump facilities to assist you in
debugging errors in your macros and conditional assembly language. You use the
MHELP instruction to invoke these trace and dump facilities. You can code a
MHELP instruction anywhere in open code or in macro definitions. The operands
on the MHELP instruction let you control which facilities to invoke. Each trace or
dump remains in effect until you supersede it with another MHELP instruction.

The MHELP instruction lets you select one or more of the following facilities:

Macro Call Trace
A one-line trace for each macro call

Macro Branch Trace
A one-line trace for each AGO and true AIF conditional assembly
statement within a macro

Chapter 6. Programming and diagnostic aids 65

Macro trace facility (MHELP)

Macro Entry Dump
A dump of parameter values from the macro dictionary immediately after
a macro call is processed

Macro Exit Dump
A dump of SET symbol values from the macro dictionary on encountering
a MEND or MEXIT statement

Macro AIF dump
A dump of SET symbol values from the macro dictionary immediately
before each AIF statement that is encountered

Global Suppression
Suppresses the dumping of global SET symbols in the two preceding types
of dump

Macro Hex Dump
An EBCDIC and hexadecimal dump of the parameters and SETC symbol
values when you select the Macro AIF dump, the Macro Exit dump or the
Macro Entry dump

MHELP suppression
Stops all active MHELP options.

MHELP Control on &SYSNDX
Controls the maximum value of the &SYSNDX system variable symbol.
The limit is set by specifying the number in the operand of the MHELP
instruction. When the &SYSNDX value is exceeded, the assembler
produces a diagnostic message, terminates all current macro generation,
and ignores all subsequent macro calls.

Abnormal termination of assembly

Whenever the assembler detects an error condition that prevents the assembly
from completing, it issues an assembly termination message and, in most cases,
produces a specially formatted dump. This feature helps you determine the nature
of the error. The dump is also useful if the abnormal termination is caused by an
error in the assembler itself.

Diagnosis facility

If there is an error in the assembler, the IBM service representative may ask for the
output produced by the assembler, and the source program to help debug the
error. A new internal trace facility in the assembler can provide the IBM service
representative with additional debugging information. The IBM service
representative determines the need for this information and the circumstances
under which it can be produced. Until this facility is invoked, its inclusion in the
assembler does not impact the performance.

66 HLASM: V1R6 General Information

Chapter 7. Associated Data Architecture

This chapter describes High Level Assembler support for the associated data
architecture. Associated data was previously known as assembler language
program data. This support includes a general-use programming interface which
lets you write programs to use the associated data records the High Level
Assembler produces.

The associated data (ADATA) file contains language-dependent and
language-independent records. Language-dependent records contain information
that is relevant only to programs assembled by the High Level Assembler.
Language-independent records contain information that is common to all
programming languages that produce ADATA records, and includes information
about the environment the program is assembled in. You use the ADATA
assembler option to produce this file.

The ADATA file contains variable-length blocked records. The maximum record
length is 32756 bytes, and the maximum block size is 32760 bytes.

The file contains records classified into different record types. Each type of record
provides information about the assembler language program being assembled.
Each record consists of two parts:

* A 12-byte header section which has the same structure for all record types

* A variable-length data section, which varies by record type

The header section contains:

¢ The language code

¢ The record code, which identifies the type of record
¢ The associated data file architecture level

* A continuation flag indicator

* The record edition number

* The length of data following

The records written to the ADATA file are:

Job identification
This record provides information about the assembly job, and its
environment, including the names of primary input files.

ADATA identification
This record contains the Universal Time, and the Coded Character Set used
by the assembler.

ADATA compilation-unit (Start)
This record contains the assembly start time.

ADATA compilation-unit (End)
This record contains the assembly stop time, and the number of ADATA
records written.

Output file information
This record provides information about the data sets the assembler
produces.

© Copyright IBM Corp. 1992, 2013 67

Associated Data Architecture

Options file information
This record provides information about the external options file the
assembler read, if provided

Options
This record contains the assembler options specified for the assembly.

External Symbol Dictionary (ESD)
This record describes all the control sections, including DSECTs, defined in
the program.

Source analysis
This record contains the assembled source statements, with additional data
describing the type and specific contents of the statement.

Source error
This record contains error message information the assembler produces
after a source statement in error.

DC/DS
This record describes the constant or storage defined by a source program
statement that contains a DC or DS instruction. If a source program
statement contains a DC or DS instruction, then a DC/DS record is written
following the Source record.

DC extension
This record describes the object code generated by a DC statement when
the DC statement has repeating fields. This record is only created if the DC
statement has a duplication factor greater than 1 and at least one of the
operand values has a reference to the current location counter (*).

Machine instruction
This record describes the object code generated for a source program
statement. If a source program statement causes machine instructions to be
generated, then a Machine Instruction record is written following the
Source record.

Relocation Dictionary (RLD)
This record describes the relocation dictionary information that is included
in the object module.

Symbol
This record describes a single symbol or literal defined in the program.

Ordinary symbol and literal cross reference
This record describes references to a single symbol.

Macro and copy code source summary
This record describes the source of each macro and copy code member
retrieved by the program.

Macro and copy code cross reference
This record describes references to a single macro or copy code member.

USING map
This record describes all USING, DROP, PUSH USING, and POP USING
statements in the program.

Statistics
This record describes the statistics about the assembly.

User-supplied information
This record contains data from the ADATA instruction.

68 HLASM: V1R6 General Information

Associated Data Architecture

Register cross reference
This record describes references to a single General Purpose register.

Chapter 7. Associated Data Architecture 69

Associated Data Architecture

70 HLASM: V1R6 General Information

Chapter 8. Factors improving performance

This chapter describes some of the methods used by High Level Assembler that
improve assembler execution performance relative to earlier assemblers. These
improvements are gauged on the performance of typical assemblies, and there
might be cases where the particular circumstances of your application or system
configuration do not achieve them. The main factors that improve the performance
of High Level Assembler are:

* Logical text stream and tables that are a result of the internal assembly process
remain resident in virtual storage, whenever possible, throughout the assembly.

* High Level Assembler can be installed in shared virtual storage.
¢ High Level Assembler exploits 31-bit addressing.

* High Level Assembler runs entirely in storage: the utility files, SYSUT1 or
IJSYS03, are no longer used.

* Two or more assemblies can be done with one invocation of the assembler.

* High Level Assembler edits only the macro definitions that it encounters during
a given macro generation or during conditional assembly of open code, as
controlled by AIF and AGO statements.

* Source text assembly passes are consolidated. The edit and generation of macro
statements are done on a demand basis in one pass of the source text.

Resident tables and source text: Keeping intermediate text, macro definition text,
dictionaries, and symbol tables in main storage whenever possible improves
performance. High Level Assembler writes working storage blocks to the assembler
work data set only if necessary, and then only if the WORKFILE option is
specified. Less input and output reduces system overhead and frees channels and
input/output devices for other uses.

The amount of working storage allocated to High Level Assembler is determined
by the SIZE assembler option, and is limited only by the amount available in the
address space.

Shared virtual storage: High Level Assembler is a reentrant program that can be
installed in shared virtual storage, such as the z/OS Link Pack Area (LPA), a CMS
logical saved segment or in a VSE Shared Virtual Area (SVA). When High Level
Assembler is installed in shared virtual storage, the demand for system resources
associated with loading the assembler load modules is reduced. In a multi-user
environment, multiple users are able to share one copy of the assembler load
modules.

31-bit addressing: High Level Assembler takes advantage of the extended address
space, available in extended architecture operating systems, by allowing most of its
data areas to reside above the 16-megabyte line. I/O areas and exit parameter lists
remain in storage below the 16-megabyte line to satisfy access method
requirements and user exits using 24-bit addressing mode. The High Level
Assembler's modules can be loaded above the 16-megabyte line, except for some
initialization routines. 31-bit addressing increases the assembler's available work
area, which allows larger programs than previously possible to be assembled
in-storage. In-storage assemblies reduce the input and output system overhead and
free channels and input/output devices for other uses.

© Copyright IBM Corp. 1992, 2013 71

Factors improving performance

Multiple assembly: You can run multiple assemblies, known as batching, with one
invocation of the assembler. Source records are placed together, with no
intervening ‘/* JCL statement.

Batch assembly improves performance by eliminating job and step overhead for
each assembly. It is especially useful for processing related assemblies such as a
main program and its subroutines.

Macro-editing process: High Level Assembler edits only those macro definitions
encountered during a given macro generation or during conditional assembly or
open code, as controlled by AIF and AGO statements.

A good example of potential savings by this feature is the process of system
generation. During system generation, High Level Assembler edits only the set of
library macro definitions that are expanded; as a result, High Level Assembler may
edit fewer library macro definitions than previous assemblers.

Unlike DOS/VSE Assembler, High Level Assembler requires that library macros be
stored in source format. This removes the necessity to edit library macros before
they can be stored in the library.

Consolidating source text passes: Consolidating assembly source text passes and
other new organization procedures reduce the number of internal processor
instructions used to handle source text in High Level Assembler, which causes
proportionate savings in processor time. The saving is independent of the size or
speed of the system processor involved; it is a measure of the relative efficiency of
the processor.

72 HLASM: V1R6 General Information

Appendix A. Assembler options

High Level Assembler provides you with many assembler options for controlling
the operation and output of the assembler. You can set default values at assembler
installation time for most of these assembler options. You can also fix a default
option so the option cannot be overridden at assembly time. See
ldefault assembler options” on page 17 for a list of the changes to the IBM-supplied
default assembler options from High Level Assembler Release 4.

You specify the options at assembly time on:
* An external file (z/OS and CMS) or library member (z/VSE)

* The JCL PARM parameter of the EXEC statement on z/OS and z/VSE, or the
ASMAHL command on CMS.

* The JCL OPTION statement On z/VSE.
e The *PROCESS assembler statement.

The assembler options are:

ADATA | NOADATA
Produce the associated data file.

ALIGN | NOALIGN
Check alignment of addresses in machine instructions and whether DC,
DS, DXD, and CXD are aligned on correct boundaries.

ASA | NOASA
(z/0OS and CMS) Produce the assembly listing using American National
Standard printer-control characters. If NOASA is specified the assembler
uses machine printer-control characters.

BATCH | NOBATCH
Specify multiple assembler source programs are in the input data set.

CODEPAGE(X'047C")
Specify the code page module to be used to convert Unicode character
constants

COMPAT (suboption) | NOCOMPAT
Direct the assembler to remain compatible with earlier assemblers in its
handling of lowercase characters in the source program, and its handling
of sublists in SETC symbols, and its handling of unquoted macro operands.
The LITTYPE suboption instructs the assembler to return 'U' as the type
attribute for all literals.

DBCS | NODBCS
Specify that the source program contains double-byte characters.

DECK | NODECK
Produce an object module.

DXREF | NODXREF
Produce the DSECT Cross Reference section of the assembler listing.

ERASE | NOERASE
(CMS) Delete specified files before running the assembly.

© Copyright IBM Corp. 1992, 2013 73

Assembler options

ESD | NOESD
Produce the External Symbol Dictionary section of the assembler listing.

EXIT (suboption1,suboption2,...) | NOEXIT
Provide user exits to the assembler for input/output processing.

ADEXIT (name(string)) | NOADEXIT
Identify the name of a user-supplied ADATA exit module.

INEXIT (name(string)) | NOINEXIT
Identify the name of a user-supplied SOURCE exit module.

LIBEXIT (name(string)) | NOLIBEXIT
Identify the name of a user-supplied LIBRARY exit module.

OBJEXIT (name(string)) | NOOBJEXIT
Identify the name of a user-supplied OBJECT exit module.

PRTEXIT (name(string)) | NOPRTEXIT
Identify the name of a user-supplied LISTING exit module.

TRMEXIT (name(string)) | NOTRMEXIT
Identify the name of a user-supplied TERM exit module.

FLAG (suboptionl,suboption2,...)
Specify the level and type of error diagnostic messages to be written.

FOLD | NOFOLD
Convert lowercase characters to uppercase characters in the assembly
listing.

GOFF | NOGOFF
(z/0OS and CMS) Set generalized object format.

INFO | NOINFO
Display service information selected by date.

LANGUAGE(EN | ES | DE | JP | UE)
Specify the language in which assembler diagnostic messages are
presented. High Level Assembler lets you select any of the following:
* English mixed case (EN)
* English uppercase (UE)
* German (DE)
* Japanese (JP)
* Spanish (ES)

When you select either of the English languages, the assembler listing
headings are produced in the same case as the diagnostic messages.

When you select either the German language or the Spanish language, the
assembler listing headings are produced in mixed case English.

When you select the Japanese language, the assembler listing headings are
produced in uppercase English.

The assembler uses the default language for messages produced on CMS
by the High Level Assembler command.

LIBMAC | NOLIBMAC
Instruct the assembler to imbed library macro definitions in the input
source program.

LINECOUNT (integer)
Specify the number of lines to print in each page of the assembly listing.

74 HLASM: V1R6 General Information

Assembler options

LIST | LIST(121 | 133 | MAX) | NOLIST
(z/0S and CMS) Specify whether the assembler produces an assembly
listing. The listing may be produced in 121-character format or
133-character format.

LIST | NOLIST
(VSE only) Specify whether the assembler produces an assembly listing.

MACHINE([370 | S370XA | S370ESA | S390 | S390E | ZSERIES | ZS |
ZSERIES-2 | ZS-2 | ZSERIES-3 | ZS-3 | ZSERIES-4 | ZS-4 | ZSERIES-5 | ZS-5
| ZSERIES-6 | ZS-6][,LIST | NOLIST])
Specify the operation code table to use to process machine instructions in
the source program. A alternative to the OPTABLE option, the operands
are also synonyms of, but are not identical to, those of the OPTABLE
option.

MXREF | MXREF(FULL | SOURCE | XREF) | NOMXREF
Produce the Macro and Copy Code Source Summary, or the Macro and Copy
Code Cross Reference, or both, in the assembly listing.

OBJECT | NOOBJECT
Produce an object module.

OPTABLE([DOS | ESA | UNI | XA | 370 | YOP | ZOP | ZS3 | ZS4 | ZS5 |
ZS6 1[,LIST | NOLIST])
Specify the operation code table to use to process machine instructions in
the source program.

PCONTROL(suboptionl,suboption2,...) | NOPCONTROL
Specify whether the assembler should override certain PRINT statements
in the source program.

PESTOP
Specify that the assembler should stop immediately if errors are detected
in the invocation parameters.

PRINT | DISK | NOPRINT
(CMS) Specify that the assembler should write the LISTING file on the
virtual printer.

PROFILE | PROFILE(name) | NOPROFILE
Specify the name of a library member, containing assembler source
statements, that is copied immediately following an ICTL statement or
*PROCESS statements, or both. The library member can be specified as a
default in the installation options macro ASMAOPT.

RA2 | NORA2
Specify whether the assembler is to suppress error diagnostic message
ASMAO066 when 2-byte relocatable address constants are defined in the
source program.

RENT | NORENT
Check for possible coding violations of program reenterability.

RLD | NORLD
Produce the Relocation Dictionary section of the assembler listing.

RXREF
Produce the Register Cross Reference section of the assembler listing.

SECTALGN ((alignment)
Specify the desired alignment for all sections, expressed as a power of 2
with a range from 8 (doubleword) to 4096 (page).

Appendix A. Assembler options 75

Assembler options

SEG | NOSEG
(CMS) Specity that assembler modules are loaded from the Logical Saved
Segment (LSEG).

SIZE(value)
Specify the amount of virtual storage that the assembler can use for
working storage.

SUPRWARN (msgnum1,msgnum?2,...) | NOSUPRWARN
Specify one or more message numbers, of warning (4) or less severity, to be
suppressed.

SYSPARM (value)
Specify the character string that is to be used as the value of the
&SYSPARM system variable.

TERM(WIDE | NARROW) | NOTERM
Specify whether error diagnostic messages are to be written to the terminal
data set On z/OS and CMS, or SYSLOG On z/VSE.

TEST | NOTEST
Specify whether special symbol table data is to be generated as part of the
object module.

THREAD | NOTHREAD
Specify whether or not the location counter is to be reset at the beginning
of each CSECT.

TRANSLATE(AS | suffix) | NOTRANSLATE
Specify whether characters contained in character (C-type) data constants
(DCs) and literals should be translated using a user-supplied translation
table. The suboption AS directs the assembler to use the ASCII translation
table provided with High Level Assembler.

TYPECHECK (suboption1,suboption2) | NOTYPECHECK
Control whether or not HLASM performs type checking of machine
instruction operands.

USING (suboptionl,suboption2,...) | NOUSING
Specify the level of monitoring of USING statements required, and whether
the assembler is to generate a USING map as part of the assembly listing.

WORKFILE | NOWORKFILE
If storage apart from central storage is required during assembly, use the
utility file for temporary storage.

XREF(SHORT | UNREFS | FULL) | NOXREF
Produce the Ordinary Symbol and Literal Cross Reference, or the Unreferenced
Symbols Defined in CSECTs, or both, in the assembly listing.

76 HLASM: V1R6 General Information

Appendix B. System variable symbols

System variable symbols are a special class of variable symbols, starting with the
characters &SYS. The values are set by the assembler according to specific rules. You
cannot declare system variable symbols in local SET symbols or global SET
symbols, nor can you use them as symbolic parameters.

You can use these symbols as points of substitution in model statements and
conditional assembly instructions. You can use some system variable symbols both
inside macro definitions and in open code, and some system variable symbols only
in macro definitions.

In High Level Assembler enhancements have been made to some system variable
symbols and many new system variable symbols have been introduced.

No new system variables are introduced in High Level Assembler Release 5.
No new system variables are introduced in High Level Assembler Release 4.

The system variable symbols introduced in High Level Assembler Release 3 are:

Variable
Description

&SYSCLOCK
A local-scope variable that holds the date and time at which a macro is
generated.

&SYSMAC
A local-scope variable that can be subscripted, thus referring to the name
of any of the macros opened between open code and the current nesting
level.

&SYSOPT_XOBJECT
A global-scope variable that indicates if the XOBJECT assembly option was
specified.

&SYSM_HSEV
A global-scope variable that indicates the latest MNOTE severity so far for
the assembly.

&SYSM_SEV
A global-scope variable that indicates the latest MNOTE severity for the
macro most recently called from this level.

The system variable symbols introduced in High Level Assembler Release 2 are:

Variable
Description

&SYSADATA_DSN
A local-scope variable containing the name of the data set where associated
data (ADATA) records are written.

&SYSADATA_MEMBER
A local-scope variable containing the name of the partitioned data set
member where associated data (ADATA) records are written.

© Copyright IBM Corp. 1992, 2013 77

System variable symbols

&SYSADATA_VOLUME
A local-scope variable containing the volume identifier of the first volume
containing the ADATA data set.

&SYSLIN_DSN
A local-scope variable containing the name of the data set where object
module records are written.

&SYSLIN_MEMBER
A local-scope variable containing the name of the partitioned data set
member where object module records are written.

&SYSLIN_VOLUME
A local-scope variable containing the volume identifier of the first volume
containing the object module data set.

&SYSPRINT_DSN
A local-scope variable containing the name of the data set where listing
records are written.

&SYSPRINT_MEMBER
A local-scope variable containing the name of the partitioned data set
member where listing records are written.

&SYSPRINT_VOLUME
A local-scope variable containing the volume identifier of the first volume
containing the listing data set.

&SYSPUNCH_DSN
A local-scope variable containing the name of the data set where object
module records are written.

&SYSPUNCH_MEMBER
A local-scope variable containing the name of the partitioned data set
member where object module records are written.

&SYSPUNCH_VOLUME
A local-scope variable containing the volume identifier of the first volume
containing the object module data set.

&SYSTERM_DSN
A local-scope variable containing the name of the data set where terminal
messages are written.

&SYSTERM_MEMBER
A local-scope variable containing the name of the partitioned data set
member where terminal messages are written.

&SYSTERM_VOLUME
A local-scope variable containing the volume identifier of the first volume
containing the terminal messages data set.

System variable symbols introduced in High Level Assembler Release 1 are:

Variable
Description

&SYSASM
A global-scope variable containing the name of the assembler product
being used.

78 HLASM: V1R6 General Information

System variable symbols

&SYSDATC
A global-scope variable containing the date, with the century designation
included, in the form YYYYMMDD.

&SYSIN_DSN
A local-scope variable containing the name of the input data set.

&SYSIN_MEMBER
A local-scope variable containing the name of the current member in the
input data set.

&SYSIN_VOLUME
A local-scope variable containing the volume identifier of the first volume
containing the input data set.

&SYSJOB
A global-scope variable containing the job name of the assembly job, if
available, or '(NOJOB)'".

&SYSLIB_DSN
A local-scope variable containing the name of the library data set from
which the current macro was retrieved.

&SYSLIB_MEMBER
A local-scope variable containing the name of the current macro retrieved
from the library data set.

&SYSLIB_VOLUME
A local-scope variable containing the volume identifier of the first volume
containing the library data set from which the current macro was retrieved.

&SYSNEST
A local-scope variable containing the current macro nesting level.
&SYSNEST is set to 1 for a macro called from open code.

&SYSOPT_DBCS
A global-scope Boolean variable containing the value 1 if the DBCS
assembler option was specified, or 0 if NODBCS was specified.

&SYSOPT_OPTABLE
A global-scope variable containing the name of the operation code table
specified in the OPTABLE assembler option.

&SYSOPT_RENT
A global-scope Boolean variable containing the value 1 if the RENT
assembler option was specified, or 0 if NORENT was specified.

&SYSSEQF
A local-scope variable containing the identification-sequence field
information of the macro instruction in open code that caused, directly or
indirectly, the macro to be called.

&SYSSTEP
A global-scope variable containing the step-name, if available, or
'(NOSTEP)'".

&SYSSTMT
A global-scope variable that contains the statement number of the next
statement to be generated.

&SYSSTYP
A local-scope variable containing the current control section type (CSECT,
DSECT, RSECT or COM) at the time the macro is called.

Appendix B. System variable symbols 79

System variable symbols

&SYSTEM_ID
A global-scope variable containing the name and release level of the
operating system under which the assembly is run.

&SYSVER
A global-scope variable containing the maintenance version, release, and
modification level of the assembler.

In addition, High Level Assembler provides the following system variable symbols
not provided by DOS/VSE Assembler but provided by Assembler H Version 2:

Variable
Description

&SYSDATE
A global-scope variable containing the date in the form MM/DD/YY.

&SYSLOC
A local-scope variable containing the name of the location counter now in
effect. &SYSLOC can only be used in macro definitions.

&SYSNDX
A local-scope variable containing a number from 1 to 9999999. Each time a
macro definition is called, the number in &SYSNDX increases by 1.

&SYSTIME

A global-scope variable containing the time the assembly started, in the
form HH.MM.

80 HLASM: V1R6 General Information

Appendix C. Hardware and software requirements

This appendix describes the environments in which High Level Assembler runs.

Hardware requirements

High Level Assembler, and its generated object programs, can run in any IBM
ES/9000, 937X, or zSeries processor supported by the operating systems listed
below under [“Software requirements.”| However, you can only run a generated
object program that uses 370-XA machine instructions on a 370-XA mode processor
under an operating system that provides the necessary architecture support for the
370-XA instructions used. Similarly, you can only run a generated object program
that uses ESA /370, ESA /390, zSeries, or zEnterprise machine instructions on an
associated processor under an operating system that provides the necessary
architecture support for the ESA /370, ESA/390, zSeries, and zEnterprise
instructions used.

Software requirements

High Level Assembler runs under the operating systems listed below. Unless
otherwise stated, the assembler also operates under subsequent versions, releases,
and modification levels of these systems:

+ 0S/390® Version 2 Release 10.0

* VM/ESA Version 3 Release 1.0

* z/VM Version 5 Release 2

* VSE/ESA Version 2 Release 6

e z/VSE Version 3 Release 1 andVersion 4

* z/0S Version 1 Release 2.0

In addition, installation of High Level Assembler requires one of the following:

z/OS IBM System Modification Program/Extended (SMP/E). All load modules
are reentrant, and you can place them in the link pack area (LPA).

z/VM IBM VM Serviceability Enhancements Staged /Extended (VMSES/E) and
VMEFPLC2. Most load modules are reentrant, and you can place them in a
logical saved segment.

z/VSE Maintain System History Program (MSHP). Most phases are reentrant, and
you can place them in the shared virtual area (SVA).

Assembling under z/0OS

The minimum amount of virtual storage required by High Level Assembler is 610K
bytes. 410K bytes of storage are required for High Level Assembler load modules.
The rest of the storage allocated to the assembler is used for assembler working
storage.

At assembly time, and during subsequent link-editing, High Level Assembler
requires associated devices for the following types of input and output:

* Source program input

* Options file

* Printed listing

* Object module in relocatable card-image format, or the new object-file format
¢ Terminal output

© Copyright IBM Corp. 1992, 2013 81

Assembling under z/OS

* ADATA output

shows the DDNAME and allowed device types associated with a particular

class of assembler input or output:

Table 6. Assembler input/output devices (z/OS)

Function DDNAME Device type When required
Input SYSIN DASDMagnetic Always
tapeCard reader
Macro library SYSLIB DASD When a library macro is
called or a COPY statement
used
Options file ASMAOPT DASD When assembler options are
to be provided via an
external file
Print SYSPRINT DASDMagnetic When the LIST assembler
tapePrinter option is specified o
Output to linkage SYSLIN DASDMagnetic tape ~ When the OBJECT assembler
editor option or the XOBJECT
iassembler option is specified
Output to linkage SYSPUNCH DASDMagnetic When the DECK assembler
editor (card deck) tapeCard punch option is specified
Display SYSTERM DASDMagnetic When the TERM assembler
tapeTerminalPrinter ~ option is specified
Assembler language SYSADATA DASDMagnetic tape ~ When the ADATA assembler

program data

option is specified

Note:

1. You can specify a user-supplied exit in place of this device. For more information about

the EXIT option, see [Appendix A, “Assembler options,” on page 73

Assembling under VM/CMS

High Level Assembler runs under the Conversational Monitor System (CMS)
component of z/VM, and, depending upon system requirements, requires a virtual
machine size of at least 1800K bytes.

A minimum of 610K bytes of storage is required by High Level Assembler. 410K
bytes of storage are required for High Level Assembler load modules. The rest of
the storage allocated to the assembler is used for assembler working storage.

At assembly time, and during subsequent object module processing, High Level
Assembler requires associated devices for the following types of input and output:

* Source program input
* Options file
* Printed listing

* Object module in relocatable card-image format

* Terminal output
* ADATA output

[Table 7 on page 83| shows the characteristics of each device required at assembly

time:

82 HLASM: V1R6 General Information

Assembling under VM/CMS

Table 7. Assembler input/output devices (CMS)

Function DDNAME Default file Device type When required
type
Input SYSIN ASSEMBLE DASD Always

Magnetic tape
Card reader

Macro library MACLIB DASD When a library macro is
called or a COPY
statement used

Options file User DASD When assembler options

defined are to be provided via
an external file
Print LISTING DASD When the LIST
Magnetic tape assembler option is
Printer specified

Object module TEXT DASD When the OBJECT
Magnetic tape assembler option is
Card punch specified

Text deck SYSPUNCH N/A DASD When the DECK
Magnetic tape assembler option is
Card punch specified

Display N/A DASD When the TERM
Magnetic tape assembler option is
TerminalPrinter specified

Assembler SYSADATA SYSADATA DASD When the ADATA

language program Magnetic tape assembler option is

data specified

Note:

1. You can specify a user-supplied exit in place of this device. For more information about
the EXIT option, see [Appendix A, “Assembler options,” on page 73/

Assembling under z/VSE

The minimum amount of virtual storage required by High Level Assembler is 610K
bytes. 410K bytes of storage are required for High Level Assembler load modules.
The rest of the storage allocated to the assembler is used for assembler working
storage.

At assembly time, and during subsequent link-editing, High Level Assembler
requires appropriate devices for the following types of input and output:

* Source program input

* Macro library input

* Printed listing

* Object module in relocatable card-image format

¢ Terminal output

* ADATA output

[Table 8 on page 84| shows the file name and allowed device types associated with a
particular class of assembler input or output:

Appendix C. Hardware and software requirements 83

Assembling under VSE

Table 8. Assembler input/output devices (VSE)

Function File name Device type When required
Input IJSYSIN DASD Always[
Magnetic tape
(SYSIPT) Card reader
Macro Library LIBRARIAN DASD When a library macro is
)) called, a COPY or an
sublibraries assembler option member is
to be supplied
Print IJSYSLS DASD When the LIST assembler
Magnetic tape option is specified
(SYSLST) Printer
Output to linkage IJSYSLN DASD When the OBJECT assembler
editor Magnetic tape option is specified
(SYSLNK)
Output to LIBR IJSYSPH DASD When the DECK assembler
utility (card deck) Magnetic tape option is specified
(SYSPCH) Card punch
Display SYSLOG Terminal When the TERM assembler
option is specified
Assembler language SYSADAT DASD When the ADATA assembler
program data Magnetic tape option is specified
(SYSnnn)

Note:

1. You can specify a user-supplied exit in place of this device. For more information about
the EXIT option, see [Appendix A, “Assembler options,” on page 73

84 HLASM: V1R6 General Information

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive

Armonk, NY 10504-1785

US.A.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation

Mail Station P300

2455 South Road

Poughkeepsie New York 12601-5400

US.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:
IBM World Trade Asia Corporation
Licensing
2-31 Roppongi 3-chome, Minato-ku
Tokyo 106-0032, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR

© Copyright IBM Corp. 1992, 2013 85

Notices

PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at
trademark information|at http:/ /www.ibm.com/legal/copytrade.shtml.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

86 HLASM: V1R6 General Information

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Bibliography

High Level Assembler Documents

HILASM General Information, GC26-4943

HLASM Installation and Customization Guide| SC26-3494
HLASM Language Reference, SC26-4940

HI.ASM Programmer’s Guide, SC26-4941

Toolkit Feature document

HI.ASM Toolkit Feature User's Guide} GC26-8710

HLASM Toolkit Feature Debug Reference Summary, GC26-8712

HLASM Toolkit Feature Interactive Debug Facility User’s Guidel GC26-8709
[HLASM Toolkit Feature Installation and Customization Guidel, GC26-8711

Related documents (Architecture)
k/Architecture Principles of Operation], SA22-7832

Related documents for z/OS
z/OS:
/OS MVS JCL Referencel, SA23-1385
£/OS MVS JCL User’s Guidd, SA23-1386
&/OS MVS Programming: Assembler Services Guide, SA23-1368

k/OS MVS Programming: Assembler Services Reference, Volume 1 (ABE-HSP)}
SA23-1369

£/OS MVS Programming: Assembler Services Reference, Volume 2 (IAR-XCT),
SA23-1370

/OS MVS Programming: Authorized Assembler Services Guidel SA23-1371

z/OS MVS Programming: Authorized Assembler Services Reference, Volumes 1 - 4,
I5A23-1372| - [SA23-1375|

£/OS MVS Program Management: User’s Guide and Referencel, SA23-1393
k/OS MVS System Codes| SA38-0665

&/OS MVS System Commands, SA38-0666

z/OS MVS System Messages, Volumes 1 - 10, [SA38-0668| - [SA38-0677
&/OS Communications Server: SNA Programming], SC27-3674

UNIX System Services:

&/0S UNIX System Services User's Guided, SA23-2279

DFSMS/MVS:

2/0S DFSMS Program Management| SC27-1130

2/0S DFSMSdfp Utilities, SC23-6864

TSOV/E (z/0S):

/OS TSO/E Command Referencd, SA32-0975

SMP/E (z/OS):

SMP/E for z/OS Messages, Codes, and Diagnosis|, GA32-0883

SMPJ/E for z/OS Reference} SA23-2276

ISMPJE for z/OS User’s Guide| SA23-2277

© Copyright IBM Corp. 1992, 2013

87

http://publibz.boulder.ibm.com/cgi-bin/bookmgr/download/DZ9ZR008.pdf
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss?CTY=US&FNC=SRX&PBL=SC27-3674-00
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/dgt2m200/CCONTENTS

Related documents for z/VM

E/VM:

VMSES/E Introduction and Referencd, GC24-6243

E/VM:

Service Guidd, GC24-6247

7/VM:

CMS Commands and Utilities Reference, SC24-6166

2 /VM:

CMS File Pool Planning, Administration, and Operation), SC24-6167

7 /VM:

CP Planning and Administration], SC24-6178

2/VM:

Saved Segments Planning and Administration) SC24-6229

2/VM:

Other Components Messages and Codes, GC24-6207

7 /VM:

CMS and REXX/VM Messages and Codes, GC24-6161

z/VM:

CP System Messages and Codes, GC24-6177

2/VM:

CMS Application Development Guide, SC24-6162

7 /VM:

CMS Application Development Guide for Assemblerl, SC24-6163

2 /VM:

CMS User's Guide} SC24-6173

&/VM:

XEDIT User's Guide} SC24-6245

B/VM:

XEDIT Commands and Macros Reference] SC24-6244

E/VM:

CP Commands and Utilities Referencd, SC24-6175

Related documents for z/VSE

k/VSE: Guide to System Functions| SC33-8312

k/VSE: Administration) SC34-2627

k/VSE: Installation|, SC34-2631

z/VSE: Planning, SC34-2635

k/VSE: System Control Statements, SC34-2637

k/VSE: Messages and Codes, Vol.1|, SC34-2632

k/VSE: Messages and Codes, Vol.2|, SC34-2633

k/VSE: Messages and Codes, Vol.3, SC34-2634

[REXX/VSE Referencd, SC33-6642

[REXX/VSE User's Guidd, SC33-6641

88 HLASM: V1R6 General Information

http://publibz.boulder.ibm.com/epubs/pdf/hcsc6c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsf1c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsd8c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsi3c10.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsg0c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsg4c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsb6c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsb5c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsb4c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsd0c10.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsd2c10.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsd7c20.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcsd9c00.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcse0c00.pdf
http://publibz.boulder.ibm.com/epubs/pdf/hcse4c20.pdf
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iessye40/CCONTENTS
ftp://public.dhe.ibm.com/eserver/zseries/zos/vse/pdf3/zvse51/iesame71.pdf
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IESIST70/CCONTENTS?SHELF=IESVSE91&DN=SC34-2631-00
ftp://public.dhe.ibm.com/eserver/zseries/zos/vse/pdf3/zvse51/iesple72.pdf
ftp://public.dhe.ibm.com/eserver/zseries/zos/vse/pdf3/zvse51/iessoe71.pdf
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IESMC171/CCONTENTS?SHELF=IESVSE91&DN=SC34-2632-01
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IESMC271/CCONTENTS?SHELF=IESVSE91&DN=SC34-2633-01
http://publibz.boulder.ibm.com/cgi-bin/bookmgr_OS390/BOOKS/IESMC371/CCONTENTS?SHELF=IESVSE91&DN=SC34-2634-01
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iesrre31/CCONTENTS
http://publibfp.dhe.ibm.com/cgi-bin/bookmgr/BOOKS/iesrue02/CCONTENTS

Index

Special characters
*PROCESS statements

description 16

new statement 5
&SYSNDX, MHELP control on 66

Numerics

121-character format 46

133-character format 46

31-bit addressing 71
improved performance 71
LIST assembler option 75
source and object listing 46

A

abnormal termination of assembly 66
absolute symbols, predefined 25
ACONTROL instruction 5, 16
ADATA

assembler option 67, 73

file 67

instruction 5

records written by the assembler 67
ADATA assembler option 82, 83, 84
ADATA file

description of 67
additional assembler instructions 5
addressing extensions 14
ADEXIT, EXIT assembler suboption 74
AEJECT macro instruction 25
AGO instruction

alternate format 27

computed 26, 27

extended 27
AIF instruction

alternate format 27

extended 27

extended form 26

macro AIF dump 66
AINSERT 20
AINSERT macro instruction 25
ALIAS instruction 5
ALIGN assembler option 73
alternate format of continuation lines 9
AMODE instruction 11
AREAD

clock functions 24

macro instruction 23

punc h capability 24

statement operands 35

arithmetic expressions, using SETC variables 29

array processing with set symbols 28
ASA assembler option 73
ASCII translation table 9
ASPACE macro instruction 25
assembler instructions 8

additional 5

revised 6

© Copyright IBM Corp. 1992, 2013

assembler language extensions 5

assembler options 73
*PROCESS statement 16
ADATA 67, 82, 83, 84
ALIGN 73
ASA 73
BATCH 73
changing with ACONTROL 5
CODEPAGE 73
COMPAT 34,73
DBCS 73,79
DECK 37,73, 82, 83, 84
DXREF 73
ERASE 73
ESD 74
EXIT 38,59, 74
FLAG 10, 48, 59, 60, 74
FOLD 51, 74
GOFF 5,74
INEXIT 74
INFO 74
LANGUAGE 74
LIBEXIT 74
LIBMAC 55, 63, 74
LINECOUNT 74
LIST 46, 61, 75, 82, 83, 84
MACHINE 75
MXREF 53, 54, 55, 75
NODBCS 79
NODXREF 56
NOESD 46
NOGOFF 74
NOMXREF 54, 55
NORENT 79
NORLD 50
NOSEG 65
NOTHREAD 76
NOUSING 57
NOXREF 52
OBJECT 37,75, 82, 83, 84
OBJEXIT 74
OPTABLE 75
PCONTROL 47,75
precedence of 16
PRINT 75
PROFILE 75
PRTEXIT 74
RA2 75
RENT 75,79
RLD 75
RXREF 53, 75
SECTALGN 75
SEG 76
SIZE 71,76
SUPRWARN 59, 76
SYSPARM 76
TERM 64, 65, 76, 82, 83, 84
TEST 76
THREAD 76
TRANSLATE 76
TRMEXIT 74

89

assembler options (continued)
TYPECHECK 76
USING 57,76
WORKFILE 76
XOBJECT 11, 82
XREF 52,76
assembling under CMS 82
assembling under VSE
VSE requirements 83
assembling under z/OS 81
assembling under z/VM 82
assembly
abnormal termination of 66
processor time 59
start time 59
stop time 59
associated data file output 73, 74
attribute references
CNOP label, type attribute 31
defined attribute (D) 31
forward 32
number attribute (N') for SET symbols 32
operation code attribute (O') 31
with literals 31
with SETC variables 31

BATCH assembler option 73
batch assembly, improving performance 72
binary floating-point numbers
changes to DC instruction 6
blank lines 9
built-in functions, macro 3, 26

C

C-type
constant 8
self-defining term 8
CATTR instruction 5
CCWO instruction 12
CD-ROM publications xi
CEJECT instruction 5
channel command words 12
character set 8,9
character variables used in arithmetic expressions 29
clock functions 24
CMS
assembli ng under 82
interface command 65
use of saved segment by High Level Assembler 71
virtual storage requirements 82
CNOP instruction 6
CNOP label, type attribute 31
code and data areas 13
CODEPAGE assembler option 73
comment statements 9, 25
COMPAT assembler option 34, 73
COMPAT(SYSLIST) with multilevel sublists 22
conditional assembly extensions
alternate format 9
attribute reference
defined attribute (D) 31
forward 32
number attribute (N') for SET symbols 32

90 HLASM: V1R6 General Information

conditional assembly extensions (continued)
attribute reference (continued)
operation code attribute (O") 31
with SETC symbols 31
created SET symbols 28
extended AGO instruction 27
extended AIF instruction 27
extended continuation statements 27
extended GBLx instruction 27
extended LCLx instruction 27
extended SETx instruction 27, 28
system variable symbols
&SYSLIST with multilevel sublists 22
&SYSNDX, MHELP control on 66
CONT, FLAG assembler option 10
continuation
error warning messages 10
extended indicator for double-byte data 10, 23
extended line format 27
lines with double-byte data 9
number of lines 9
control sections, read-only 12
COPY instruction 6
created SET symbols 28
Customization book xi

D

DBCS assembler option 73, 79
DC instruction 6
DECK assembler option 37, 73, 82, 83, 84
declaration of SET symbols
dimensioned SET symbols 27
implicit declaration 27
multiple declaration 27
deferred loading 5
defined attribute (D') 31
dependent USING 15
diagnostic facilities
diagnostic cross reference and assembler summary
listing 57
error messages for library macros 63
error messages for source macros 63
internal trace 66
messages in open code 60
source record information 60
using FLAG(RECORD) assembler option 60
dimension of SET symbol, maximum 27
documents
High Level Assembler 87
HLASM Toolkit 87
machine instructions 87

z/0S 87
z/VM 87, 88
z/VSE 88

double-byte data
C-type constant 8
C-type self-defining term 8
concatenation of 23
continuation of 10, 23
double-byte character set 8
G-type constant 8
G-type self-defining term 8, 23, 29
in AREAD and REPRO 8
in MNOTE, PUNCH and TITLE 8, 23
macro language support 23
MNOTE operand 8

double-byte data (continued)
PUNCH operand 8
pure DBCS data 8, 23
SI/SO 8,10, 23
TITLE operand 8
DROP instruction 6
DS instruction
changes to DS instruction 6
DSECT
cross reference listing 55
referenced in Q-type address constant 13
dummy sections
aligning with DXD 6
DXD instruction 6
DXD, referenced in Q-type address constant 13
DXREF assembler option 73

E

E-Decks, reading 39
edited macros 39
editing inner macro definitions 22
editing macro definitions 20
EJECT instruction 59
ENTRY instruction 11
EQU instruction 6
ERASE assembler option 73
error messages
in library macros 63
in open code 60
in source macros 63
ESD assembler option 74
ESD symbols, number of 13
EXIT
communicating 39
disabling 39
EXIT assembler option 38, 59, 74
EXITCTL instruction 5, 38
extended
AGO instruction 27
AIF instruction 27
continuation indicator 10, 23
SETx instruction 27, 28
extended addressing support 11
extended continuation statements 27
extended object support
CODEPAGE assembler option 73
GOFF assembler option 74
instructions 11
NOGOFF assembler option 74
NOTHREAD assembler option 76
THREAD assembler option 76
extended source and object listing 75
extended symbol length 10
external
symbols, length of 10
external dummy sections 13
external function calls, macro 24, 26
external symbol dictionary (ESD)
listing 45
restrictions on 13
external symbol dictionary listing 45
external symbols, number of 13

F

factors improving performance 71
finding error messages
TERM assembler option 60
FLAG assembler option 10, 48, 59, 60, 74
FOLD assembler option 51, 74
formatted dump, produced by abnormal termination 66
forward attribute-reference scan 32

G

G-type
constant 8
self-defining term 8, 23, 29
General Information book xi
general purpose register cross reference listing 52
generated macro operation codes 22
generated statement
attribute reference for 30
format of 61
sequence field of 61
suppress alignment zeroes 62
with PRINT NOGEN 62
global SET symbol
declaration 27
suppression of dump (in MHELP options) 66
GOFF assembler option 5, 74

H

hardcopy publications x
hardware requirements 81
High Level Assembler
highlights 3
machine requirements 81
planning for 4
required operating environments 81
use of CMS saved segment 71
use of VSE shared virtual area (SVA) 71
use of z/OS link pack area (LPA) 71
High Level Assembler option summary 42

1/0 Exit Usage Statistics

in the listing 59
I/0 exits

description 37

usage statistics 38
implicit declaration of SET symbols 27
INEXIT assembler option 74
INFO assembler option 74
inner macro definitions 21
input/output capability of macros 24
input/output enhancements 37, 64
installation and customization

book information xi
internal macro comment statements 9, 25
ISEQ instruction 7

L

labeled USING 14
LANGUAGE assembler option 74
language compatibility 3

Index

91

Language Reference xi

LCLx and GBLx Instructions 25

LIBEXIT assembler option 74

LIBMAC assembler option 55, 63, 74

library macro, error messages for 63

license inquiry 85

LINECOUNT assembler option 74

link pack area (LPA) 71

LIST assembler option 46, 61, 75, 82, 83, 84

listing
*PROCESS statements 42
121-character format 46
133-character format 46
diagnostic cross reference and assembler summary 57
DSECT cross reference 55
external symbol dictionary 45
general purpose register cross reference 52
macro and copy code cross reference 54
macro and copy code source summary 53
option summary 42
ordinary symbol and literal cross reference 50
page-break improvements 59
relocation dictionary 49
source and object 46, 47
source and object, 121-character format 47
source and object, 133-character format 48
unreferenced symbols defined in CSECTs 52
USING map 56

literals, removal of restrictions 11

local SET symbol
declaration 27

location counters, multiple 13

LOCTR instruction 13

M

MACHINE assembler option 75
machine instructions
documents 87
machine requirements 81
macro
AIF dump 66
assembly diagnostic messages 63
branch trace 65
buil t-in functions 26
call trace 65
calls by substitution 22
comment statements 9, 25
entry dump 66
exit dump 66
general advantages 19
hex dump 66
input/output capability of 24
suppressing dumps 66
use of 20
macro and copy code
cross reference listing 54
source summary listing 53
macro definition 19
bypassing 20
editing 20
inner macro definitions 21
instructions allowed in 26
listing control 25
nesting 21
placement 19
redefinition of 20

92 HLASM: V1R6 General Information

macro editing
for inner macro definitions 21
improving performance 72
in general 20
macro input/output capability 24
macro instruction 19
name entries 22
nested 21
macro instruction operation code, generated 22
macro language extensions
declaration of SET symbols 27
instructions permitted in body of macro definition 26
mnemonic operation codes redefined as macros 26
nesting definitions 21
overview 20
placement of definitions 19
redefinition of macros 20
sequence symbol length 10
source stream language input, AREAD 23
substitution, macro calls by 22
variable symbol length 10
macro language overview 19
macro name, length of 25
macro prototype 19
macro-generated statements 61
macro-generated text
format of 61
sequence field of 61
with PRINT NOGEN 62
MHELP instruction 65
migration considerations 3
mixed-case input, changes to 9
mnemonic operation codes used as macro operation codes
MNOTE operand, double-byte character set 8
model statements 61
multilevel sublists 22
multiple assembly 72
multiple declaration of SET symbols 27
multiple location counters 13
MXREF assembler option 53, 54, 55, 75

N

nesting macro definitions 21
NODBCS assembler option 79
NODXREEF assembler option 56
NOESD assembler option 46
NOGOFF assembler option 74
NOMXREF assembler option 54, 55
NORENT assembler option 79
NORLD assembler option 50
NOSEG assembler option 65
NOTHREAD assembler option 76
NOUSING assembler option 57
NOXREF assembler option 52
number attribute (N') for SET symbols 32

O

OBJECT assembler option 37, 75, 82, 83, 84
object module output 74

object modules, extended format 11

OBJEXIT assembler option 74

online publications xi

operating systems for High Level Assembler 81
operation code attribute (O) 31

26

operation codes, redefining conditional assembly 33
OPSYN instruction
operation codes 7
placement 7
to redefine conditional assembly instructions 33
to rename macro 20
OPTABLE assembler option 75
option
MHELP 65
summary listing 42
option summary listing 42
ordinary symbol and literal cross reference listing 50
ORG instruction 7
organization of this manual ix

P

page-break improvements 59
parentheses 11
PCONTROL assembler option 47, 75
performance

improvement factors 71
PESTOP assembler option 75
planning for High Level Assembler 4
POP instruction 7
precedence of options 16
PRINT assembler option 75
PRINT instruction 7
printer control characters 73
process (*PROCESS) statements 16
processor time

in assembly listing 59

reduced instruction path 72
processor time for the assembly 59
PROFILE assembler option 75
Programmer's Guide xi
prototype, in macro definitions 19
PRTEXIT assembler option 74
PSECT 13
publications

online (CD-ROM) xi
PUNCH operand, double-byte character set 8
PUNCH output capability 24
PUSH instruction 8

R

RA2 assembler option 75
read-only control sections 12
reading edited macros 39
record numbers 60
redefining conditional assembly instructions 33
redefining macro names 20
redefining standard operation codes as macro names 26
Release 6, what's new 1
relocatable address constants, 2-byte 8
relocation dictionary listing 49
RENT assembler option 75, 79
requirements
hardware 81
software 81
storage 83
resident macro definition text 71
resident source text 71
resident tables 71
revised assembler instructions 6

RLD assembler option 75
RMODE instruction 11

RSECT instruction 5, 12
RXREF assembler option 53, 75

S

sample I/O exits 39
sample interchange program using macros 24
saved segment in CMS 71
SDB 64
SECTALGN assembler option 75
sectioning and linking extensions
external dummy sections 13
multiple location counters 13
no restrictions on ESD items 13
read-only control sections 12
SEG assembler option 76
sequence field in macro-generated statements 61
sequence symbol length 10, 25
SET symbol
built-in macro functions 26
created 28
declaration
implicit 27
multiple 27
defined as an array of values 27
dimension 27
global scope 27
local scope 27
SET symbol format and definition changes 27
SETAF instruction 26
SETC symbol
attribute reference with 31
in arithmetic expressions 29
SETCF instruction 26
SETx instruction
built-in macro functions 26
extended 27, 28
using ordinary symbols 29
shared virtual area (SVA) 71
shared virtual storage 71
shift-in (SI) character (DBCS) 8
shift-out (SO) character (DBCS) 8
SI (shift-in) character (DBCS) 8
SIZE assembler option 71, 76
SO (shift-out) character (DBCS) 8
softcopy publications xi
software requirements 81
source and object listing
121-character format 47
133-character format 48
description 46
source macro, error messages for 63
source stream input (AREAD) 23
source stream insertion (AINSERT) 25
SPACE instruction 59
start time of assembly 59
statistics
I/0 exit usage 38
in the listing 59
stop time of assembly 59
sublists, multilevel 22
substitution in macro instruction operation code 22
substring length value 29
suppress
alignment zeroes in generated text 62

Index

93

suppress (continued) virtual storage (continued)
dumping of global SET symbols (in MHELP options) 66 z/0OS requirements 81
suppressed messages listing 59
SUPRWARN assembler option 76
symbol and literal cross reference listing 50 W
symbol name definition 10, 11
symbolic parameter
conflicting with created SET symbol 28
syntax extensions

what's new in High Level Assembler release 6 1
WORKFILE assembler option 76

blank lines 9 X

character variables in arithmetic expressions 29

continuation lines, number of 9 XATTR instruction 5

levels of parentheses XOBJECT assembler option 11, 82
in macro instruction 22 XREF assembler option 52, 76

in ordinary assembler expressions 11

number of terms in expression 11

removal of restrictions for literals 11 Z

symbol length 10 2/0S
SYSLIST (&SYSLIST) with multilevel sublists 22 mbling under 81
SYSNDX (&SYSNDX), MHELP control on 66 assembing unde .
SYSPARM assembler option 76 use of link pack area by High Level Assembler 71
system determined blocksize 64 virtual storage requirements 81
system variable symbols 34, 77 i;\(?iddocuments 87

&SYSLIST with multilevel sublists 22 mbling under CMS 82

&SYSNDX, MHELP control on 66 VS it e 65
system-determined blocksize 64 CMS saved segment 71

SYSTERM output 64 2/VM documents 87, 88

z/VSE documents 88
T zeroes, suppress alignment 62

TERM assembler option 64, 65, 76, 82, 83, 84
terminal output 64, 74
terms, number of, in expressions 11
TEST assembler option 76
THREAD assembler option 76
time of assembly 35
TITLE instruction 59
TITLE operand, double-byte character set 8
Toolkit Customization book xi
Toolkit installation and customization
book information xi
TRANSLATE assembler option 76
translation table 9
TRMEXIT assembler option 74
type attribute of a CNOP label 31
TYPECHECK assembler option 76

U

underscore, in symbol names 11
Unicode support 9
unreferenced symbols defined in CSECTs 52
USING assembler option 57, 76
USING instruction
dependent USING 15
example of map listing 56
labeled USING 14
using map listing 56

\'

variable symbol length 10

virtual storage
CMS requirements 82
performance improvements 71
VSE requirements 83

94 HLASM: V1R6 General Information

GC26-4943-06

	Contents
	Figures
	Tables
	About this manual
	Who should use this manual
	Organization of this manual
	High Level Assembler Publications
	Online publications

	How to send your comments to IBM
	If you have a technical problem

	Chapter 1. What's new in High Level Assembler release 6
	Chapter 2. Introduction to High Level Assembler
	Language compatibility
	Highlights of High Level Assembler
	The Toolkit Feature
	Planning for High Level Assembler
	Year 2000 support for High Level Assembler

	Chapter 3. Assembler language extensions
	Additional assembler instructions
	Revised assembler instructions
	2-Byte relocatable address constants
	Character set support extensions
	Standard character set
	Double-byte character set
	Translation table
	Unicode support

	Assembler language syntax extensions
	Blank lines
	Comment statements
	Mixed-case input
	Continuation lines
	Continuation lines and double-byte data
	Continuation error warning messages
	Symbol length
	Underscore
	Literals

	Levels within expressions
	Generalized object format modules (z/OS and CMS)
	Extended addressing support
	Addressing mode (AMODE) and residence mode (RMODE)
	Channel Command Words (CCW0 and CCW1)

	Programming sectioning and linking controls
	Read-only control sections
	Association of code and data areas
	Multiple location counters
	External dummy sections
	Number of external symbols

	Addressing extensions
	Labeled USINGs and qualified symbols
	Labeled USING domains
	Labeled USING ranges

	Dependent USINGs
	Dependent USING domains
	Dependent USING ranges

	Specifying assembler options in external file or library member
	Specifying assembler options in the source program

	IBM-supplied default assembler options

	Chapter 4. Macro and conditional assembly language extensions
	The macro language
	General advantages in using macros
	Assembler editing of the macro definition

	Macro language extensions
	Redefining macros
	Inner macro definitions
	Generated macro instruction operation codes
	Multilevel sublists in macro instruction operands
	Macro instruction name entries
	DBCS language support
	Source stream input—AREAD
	AREAD listing options
	AREAD clock functions
	Macro input/output capability

	Source stream insertion—AINSERT
	Macro definition listing control—ASPACE and AEJECT
	Other macro language extensions

	Conditional assembly language extensions
	External function calls
	Built-in functions
	AIF instruction
	AGO instruction
	Extended continuation statements
	SET symbols and SETx statements
	SET symbol definition
	Created SET symbols
	Array processing with SET symbols
	Using SETC variables in arithmetic expressions
	Using ordinary symbols in SETx statements

	Substring length value
	Attribute references
	Where attribute references can be used
	Attribute references and SETC variables
	Attribute references and literals
	Type attribute of a CNOP label
	Defined attribute (D')
	Operation code attribute (O')
	Number attributes for SET symbols
	Forward attribute-reference scan

	Redefining conditional assembly instructions
	System variable symbols
	&SYSTIME and the AREAD statement

	Chapter 5. Using exits to complement file processing
	User exit types
	How to supply a user exit to the assembler
	Passing data to I/O exits from the assembler source
	Statistics
	Disabling an exit
	Communication between exits
	Reading edited macros (z/VSE only)
	Sample exits provided with High Level Assembler (z/OS and CMS)

	Chapter 6. Programming and diagnostic aids
	Assembler listings
	Option summary
	External Symbol Dictionary
	Source and object
	121-Character listing format
	133-character listing format

	Relocation dictionary
	Ordinary symbol and literal cross reference
	Unreferenced symbols defined in CSECTs
	General Purpose Register cross reference
	Macro and copy code source summary
	Macro and copy code cross reference
	DSECT cross reference
	USING map
	Diagnostic cross reference and assembler summary
	Improved page-break handling

	Diagnostic messages in open code
	Macro-generated statements
	Sequence field in macro-generated statements
	Format of macro-generated statements
	Macro-generated statements with PRINT NOGEN

	Diagnostic messages in macro assembly
	Error messages for a library macro definition
	Error messages for source program macro definitions

	Terminal output
	Input/output enhancements
	CMS interface command
	Macro trace facility (MHELP)
	Abnormal termination of assembly
	Diagnosis facility

	Chapter 7. Associated Data Architecture
	Chapter 8. Factors improving performance
	Appendix A. Assembler options
	Appendix B. System variable symbols
	Appendix C. Hardware and software requirements
	Hardware requirements
	Software requirements
	Assembling under z/OS
	Assembling under VM/CMS
	Assembling under z/VSE

	Notices
	Trademarks

	Bibliography
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Z

